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Abstract

Document Visual Question Answering
(DocVQA) is a practical yet challenging
task, which is to ask questions based on
documents while referring to multiple pages
and different modalities of information, e.g.,
images and tables. To handle multi-modality,
recent methods follow a similar Retrieval
Augmented Generation (RAG) pipeline, but
utilize Visual Language Models (VLMs)
based embedding model to embed and retrieve
relevant pages as images, and generate answers
with VLMs that can accept an image as input.
In this paper, we introduce SimpleDoc, a
lightweight yet powerful retrieval-augmented
framework for DocVQA. It boosts evidence
page gathering by first retrieving candidates
through embedding similarity and then
filtering and re-ranking these candidates based
on page summaries. A single VLM-based
reasoner agent repeatedly invokes this dual-cue
retriever, iteratively pulling fresh pages into
a working memory until the question is
confidently answered. SimpleDoc outperforms
previous baselines by 3.2% on average
on 4 DocVQA datasets with much fewer
pages retrieved. Our code is available at
https://github.com/ag2ai/SimpleDoc.

1 Introduction

Documents are a fundamental form for the preser-
vation and exchange of information, and an im-
portant source for humans to learn and acquire
knowledge (Gu et al., 2021; Chia et al., 2024; Deng
et al., 2024). Document question answering is a
core task for automated understanding and retrieval
of information (Appalaraju et al., 2021; Van Lan-
deghem et al., 2023). Document Visual Question
Answering (DocVQA) involves answering ques-
tions grounded in multi-modal documents contain-
ing text, tables, and images — common in formats
like reports and manuals (Suri et al., 2024; Ma
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Figure 1: Illustration of the vanilla Retrieval-
Augmented Generation (RAG) pipeline and the pro-
posed SimpleDoc framework. SimpleDoc introduces
a two-step page retrieval process that utilizes pre-
processed embedding and summaries of each page. Dur-
ing generation, a reasoning agent reviews the retrieved
pages and decide whether to give the answer, or produce
a new query to retrieve more pages.

et al., 2024b). There are three main challenges in
this task: (1) multiple pages, where a portion of a
long document needs to be processed to answer the
question, (2) multiple references, where different
pages need to be cross-referenced, and (3) multiple
modalities.

Retrieval-augmented generation (RAG) (Lewis
et al., 2020) is an effective pipeline to overcome
challenges (1) and (2), where relevant information
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is retrieved by a retrieval model and then fed to a
generation model to output the answer. To handle
different modalities, several methods have been
proposed to pre-process documents by convert-
ing different modalities into texts (Memon et al.,
2020; Fenniak, 2022; Shinyama et al., 2019). Re-
cently, multi-modal retrieval models such as Col-
Pali (Faysse et al., 2025) are proposed to perform
page-level retrieval by treating each page as im-
age (Yu et al., 2024a; Xie et al., 2024). Building
on this, M3DocRAG (Cho et al., 2024) proposed a
multi-modal RAG system that demonstrated strong
performance in DocVQA tasks by combining im-
age and text embeddings for document retrieval.
Since multi-agent systems have emerged as an ef-
fective method to solve complex tasks and multi-
step tasks (Wu et al., 2023; Zheng et al., 2025; Wu
et al., 2024), MDocAgent (Han et al., 2025) ap-
plied this concept to document QA by designing
a multi-agent pipeline composed of dedicated text
and image retrieval agents, a critical information
extractor, and a final summary agent to collabora-
tively tackle multi-modal document understanding.
Despite MDocAgent’s effectiveness, we find it to
be overcomplicated and might not utilize the full
capacity of recent VLMs.
SimpleDoc introduces a simple retrieval aug-

mented framework that leverages modern VLMs
without the overhead of complex multi-agent de-
signs. The pipeline unfolds in two stages. First, an
offline document-processing stage indexes every
page twice: (i) as a dense visual embedding pro-
duced by a page-level VLM such as ColPali, and
(ii) as a concise, VLM-generated semantic sum-
mary that captures the page’s most salient content.
Second, an online iterative QA stage employs a
dual-cue retriever that first shortlists pages via em-
bedding similarity and then asks an LLM, operating
solely over the summaries, to decide which of those
pages are pertinent to the query and re-rank them
by relevance. This ordered subset is handed to a
single reasoning agent. The agent reads only the
newly selected pages along with a working mem-
ory, which preserves important information from
previously examined pages, and judges whether
the evidence now suffices to answer the question.
If it detects missing information, the agent emits
a refined follow-up query, prompting another re-
trieval round and merging the newly distilled notes
into memory. This lightweight loop of targeted
retrieval and memory-aided reasoning continues
until an answer is produced or a preset iteration

limit is reached, enabling SimpleDoc to flexibly
trade retrieval depth for generation quality.

We perform various experiments and analyses to
gain an understanding of the VQA problem and to
validate the effectiveness of our method. We test
on 4 different datasets and find that our method can
improve over previous baselines by 3.2 absolute
points, with only 3.5 pages retrieved for each ques-
tion. While the setting of multi-modal, multi-page
document-based QA seems new, we find it very
much resembles ‘traditional’ RAG tasks focusing
on tasks like HotpotQA (Yang et al., 2018) and
2WIKI (Ho et al., 2020), which usually require re-
trieved fine-grained chunked texts from given doc-
uments. However, M3DocRAG and MDocAgent
have had few discussions in this direction. Instead,
we do a detailed analysis of these RAG methods
and uncover two common strategies: query decom-
position and relevant page review. We implement
Plan∗ RAG and Chain-of-note as representations of
the common strategies and compare them under the
DocVQA setting. To summarize, our contributions
are the following:

• We propose SimpleDoc, a straightforward and
effective framework for multi-modal document
question-answering.

• We perform various experiments to test effective-
ness of SimpleDoc, and analyze and compare
with traditional RAG methods in which previous
methods on DocVQA are missing.

2 Related Work

Document visual question answering. focuses
on answering questions grounded in visual and tex-
tual information contained within documents (Ding
et al., 2022; Tanaka et al., 2023). Early efforts
primarily addressed single-page document images
using OCR-based approaches and multi-modal lan-
guage models (MLMs) (Mathew et al., 2021b,a;
Mishra et al., 2019). However, these methods often
struggled with the long-context reasoning and com-
plex layouts found in real-world documents. Re-
cently, benchmarks like MP-DocVQA (Tito et al.,
2023) and MMLongBench-Doc (Ma et al., 2024b)
focus on long multi-page and multi-modal doc-
ument understanding, posting new challenges to
the task (Tanaka et al., 2023). However, recent
advances in vision-language models (VLMs) has
shown promise for multi-modal document under-
standing (Liu et al., 2024a, 2023; Chen et al.,
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Figure 2: SimpleDoc consists of two stages: (1) offline extraction of visual embeddings and LLM-generated
summaries for all document pages, and (2) an online reasoning loop that performs retrieval via embedding and
summary-based re-ranking, followed by answer generation with a memory-guided VLM agent that iteratively refines
its query if needed.

2022; Bai et al., 2025; Xie et al., 2025; Ma et al.,
2024a). ColPali (Faysse et al., 2025) introduces
a new concept of treating document pages as im-
ages to produce multi-vector embeddings, where
pages can be retrieved for each query. Other
methods such as VisRAG (Yu et al., 2024a) and
VDocRAG (Tanaka et al., 2025) also convert pages
as images to avoid missing information from pars-
ing text and image separately from one page. From
ColPali, M3DocRAG (Cho et al., 2024) proposed
a multi-modal RAG pipeline that retrieves relevant
document pages across large document corpora and
feeds them into a vision language model. MDocA-
gent (Han et al., 2025) extended this by introduc-
ing specialized agents for handling cross-modal
retrieval and reasoning over long documents.
Retrieval augmented generation (RAG) has be-
come a powerful strategy for knowledge-intensive
tasks by supplementing language models with ex-
ternal context, which consists of two core steps:
retrieve and generate (Jiang et al., 2023a; Gao
et al., 2023). Many works have been proposed
to improve RAG, such as training effective em-
bedding models (Karpukhin et al., 2020; Khattab
and Zaharia, 2020a), query rewrite and decompo-
sition (Ma et al., 2023; Peng et al., 2024; Chan
et al., 2024; Verma et al., 2025; Lee et al., 2024;
Wang et al., 2024), constructing different forms

of databases (e.g., knowledge graphs) (Gaur et al.,
2022; Edge et al., 2024; Liu et al., 2025), improving
quality of retrieved context (Yu et al., 2024b; Chen
et al., 2024), augmenting the RAG process (Asai
et al., 2023; Trivedi et al., 2022a; Liu et al., 2024b),
and many others (Jiang et al., 2023b). Most of the
RAG methods focus on knowledge and reasoning
tasks that only require text-based retrieval (e.g.,
HotpotQA) (Yang et al., 2018; Geva et al., 2021;
Trivedi et al., 2022b; Mallen et al., 2023; Ho et al.,
2020; Kwiatkowski et al., 2019). While we are
targeting the Document Visual understanding task,
we find that many core ideas might also be effective
in DocVQA. Thus, we also implement and test two
RAG methods: Chain-of-Notes (Yu et al., 2024b),
which improves retrieval context for better gener-
ation, and Plan∗RAG (Verma et al., 2025), which
decomposes queries and augments the generation
process for better retrieval, to help understand how
previous methods can be used on DocVQA.

3 Method

Below we introduce SimpleDoc, an effective
framework for DocVQA. SimpleDoc consists of
two stages: an offline document processing phase
followed by an online iterative retrieval-augmented
question answering phase. Our framework features
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the following: 1. Enhanced page retrieval through
a combination of vector and semantic representa-
tions. 2. Continuous refinement via iterative re-
trieval and memory update. Figure 2 illustrates the
overall pipeline of our approach.

3.1 Offline Document Processing

The initial stage involves pre-processing and in-
dexing each document to create a searchable rep-
resentation. We treat each page as a unit, and use
two VLMs to get both vector and semantic rep-
resentations of each page. For vector embedding,
we employ VLM like ColPali (Faysse et al., 2025)
that are trained to generate embeddings for docu-
ment pages. For semantic representation, we use
a general VLM guided by a predefined prompt to
produce a summary (typically 3-5 sentences) that
includes the salient information of that page. These
summaries are designed to highlight information
that might be generally relevant for answering po-
tential future questions without prior knowledge of
any specific user query.

Specifically, given a document D consisting
of j pages D = p1, p2, ..., pj , we use a vision
embedding model to generate embedding vectors
E = {e1, e2, . . . , ej} for each page, and use a
VLM to generate j summaries S = {s1, s2, ..., sj}.

3.2 Multi-modal Question Answering

For retrieval, we use a VLM to retrieve pages
through embedding similarity, and a VLM to look
at the summaries and re-rank those retrieved pages.
During the question answering phase, we build
a reasoner agent that can automatically decide
whether to retrieve more information and iteratively
refine its own memory with newly retrieved pages.

Page Retrieval Given a query q and its document
D, we first embed the given query and retrieve k
pages with the highest MaxSim score (Khattab and
Zaharia, 2020b). Then, we pass q and k summaries
of the retrieved pages Sk into an LLM (can be text-
only) to select and rank the relevant pages. The
model returns an ordered list of page indices C =
c1, c2, . . . , cn based on their perceived relevance to
the query. Note that the number of relevant pages
is automatically and dynamically chosen by the
model. Since the re-rank is based on the retrieved
pages from embedding, so n < k pages are later
sent to the reasoner agent, keeping the input size
manageable. In this step, we also ask the LLM to
generate an overall document-level summary sDOC

that contextualizes the entire document in relation
to the current query, serving as the initial working
memory of the reasoner agent.

Algorithm 1 SimpleDoc

Require: query q, per–page embeddings E and
summaries S, cutoff k, max iterations L

Ensure: answer a or failure notice
1: qcur ← q
2: M ← ∅
3: for ℓ← 1 to L do
4: sDOC, C ← RetrievePages(qcur, E, S, k)
5: IC ← { ic | c ∈ C}; TC ← { tc | c ∈ C}
6: M ←M ∪ sDOC

7: (is_solved, a,m′, q′)←
8: REASONER(q, IC , TC ,M)
9: if is_solved then

10: return a
11: else
12: M ←M ∪ {m′}
13: qcur ← q′

14: return FAIL

Generation We treat the retrieved relevant pages
as images, denoted as IC = {ic1 , ic2 , . . . , icn}.
Those pages are also converted into text, denoted
as TC = {tc1 , tc2 , . . . , tcn}. We input IC , TC , in-
put query q and a working memory M (initialized
to sDOC) into a reasoner agent (backed by a VLM),
and ask it to determine if the question can be solved
with the given context.

The reasoner can produce one of three distinct
response types:

• Answer: If the provided pages contain sufficient
information, the reasoner formulates a direct an-
swer to the query.

• Not Answerable: If the question cannot be an-
swered by the document.

• Query Update: If the reasoner believes the an-
swer exists within the document but on pages not
yet retrieved, it outputs a note of current pages
m′ and generates a new query q′ that asks for
missing information.

Iterative Refinement Self-reflection has been
proven an effective method in LLMs (Shinn et al.,
2023; Madaan et al., 2023), and we employ a simi-
lar mechanism where the LLM retrieved additional
pages as needed. If the reasoner agent decides that
it cannot answer after the initial retrieval, an it-
erative process begins to continue retrieving new
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pages. As shown in Algorithm 1, we maintain
a memory module M to preserve useful informa-
tion from previous retrievals. When the reasoner
agent outputs a query update, we retrieve new page
numbers C ′ based on the refined query q′, update
the memory module M with the notes m′, and
call the reasoner again with the following inputs:
{q, IC′ , TC′ ,M}. The process stops when an an-
swer is produced, the query is marked unanswer-
able, or a maximum iteration limit L is reached,
after which the question is marked "not answer-
able".

Memory Update Mechanism The memory mod-
ule maintains a running context throughout the iter-
ative reasoning process:

• An initial document-level summary is generated
during the first retrieval pass.

• At each iteration, the reasoning agent emits notes
summarizing what has been found so far and
what information is still missing.

• This combined memory is passed as context to
all subsequent reasoning rounds and is updated
incrementally as part of the agent’s output.

This design ensures that the agent can carry for-
ward key evidence, avoid re-reading redundant con-
tent, and refine its search trajectory over multiple
iterations. We evaluated its effect by disabling
memory module; results are in Appendix A.4.

4 Experiments

Our experiment is organized as follows: In Sec-
tion 4.1, we present the main results of our method
and baselines on 4 different datasets. In Section 4.2,
we further experiment on MMLongBench using
different models. In Section 4.3, we adopt and
implement two other RAG methods that were orig-
inally proposed for knowledge Question Answer-
ing, Finally in Section 4.4, we test variations of
SimpleDoc and further analyze our method.

4.1 Main Results
Datasets. We evaluate SimpleDoc on 4 diverse
PDF document understanding benchmarks, pro-
viding a robust testbed for assessing performance
across varied document types, lengths, and retrieval
complexities:

1) MMLongBench (Ma et al., 2024b): This
dataset is designed to test document reasoning over
long PDFs, containing complex layouts and multi-
modal components. The dataset contains 1073

questions across 135 documents, with an average
length of 47.5 pages per document.

2) LongDocURL (Deng et al., 2024): Another
large-scale multi-modal benchmark aimed at eval-
uating document retrieval and reasoning. It has
over 33,000 document pages and includes 2,325
question samples.

3) PaperTab (Hui et al., 2024): It focuses on
the extraction and interpretation of the tabular data
from the research papers, providing 393 questions
from over 307 academic documents.

4) FetaTab (Hui et al., 2024): A table-based ques-
tion answering dataset using tables extracted from
Wikipedia articles. It presents 1,023 natural lan-
guage questions across 878 documents, requiring
models to generate free-form answers.

Baselines. We compare with two baselines: (1)
M3DocRAG (Cho et al., 2024) which uses an image
retrieval model to retrieve top-k pages, and a VLM
to generate an answer with retrieved pages. (2)
MDocAgent (Han et al., 2025) employs both text
and image retrieval models to retrieve two sets of
pages, then top-k pages from both sets will be used
for generation. MDocAgent uses 5 different agents
and require both a VLM and a text model. We also
include the results of using a VLM to solve the
question directly, and results of using VLM with
the ground-truth pages included as images (denoted
as GT pages), serving as lower and upper bounds.

Metrics. For this experiment, we evaluate model
performance with Binary Correctness (Accuracy).
We classify each model response as either correct or
incorrect and compute the accuracy as the ratio of
correct responses to the total number of questions.
We use GPT-4.1 as an automatic evaluator to judge
response correctness against ground truth answers
and set the temperature to 0.

Implementation Details. We use the same mod-
els for SimpleDoc and baselines for rigorous com-
parison. For visual embedding model, we use
ColQwen-2.5 for all methods, which is the latest
model trained with ColPali (Faysse et al., 2025)’s
strategy (See Table 7 for a comparison with Col-
Pali), and we use Qwen2.5-VL-32B-Ins whenever
a VLM is needed. For MDocAgent, we use Col-
BERTv2 (Khattab and Zaharia, 2020a) as the text
retrieval model following the original paper, and
Qwen3-30B-A3B as the text model. For SimpleDoc,
we use Qwen2.5-VL-32B-Ins for per-page sum-
marization during pre-processing. Note that the
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Method Pg. Ret. MMLongBench LongDocUrl PaperTab FetaTab Avg. Acc

LVMs
Qwen2.5-VL-32B-Instruct – 22.18 19.78 7.12 16.14 16.31
Qwen2.5-VL-32B-Instruct + Ground-Truth pages – 67.94 30.80 - - -

RAG methods (top 2)
M3DocRAG (Qwen2.5-VL-32B) 2 41.8 50.7 50.1 75.2 54.4
MDocAgent (Qwen3-30B + Qwen2.5-VL-32B) 4 50.6 56.8 50.9 80.3 59.6

RAG methods (top 6)
M3DocRAG (Qwen2.5-VL-32B) 6 41.8 53.1 60.1 79.8 58.7
MDocAgent (Qwen3-30B + Qwen2.5-VL-32B) 12 55.3 63.2 64.9 84.5 66.9

RAG methods (top 10)
M3DocRAG (Qwen2.5-VL-32B) 10 39.7 52.2 56.7 78.6 56.8
MDocAgent (Qwen3-30B + Qwen2.5-VL-32B) 20 54.8 61.9 63.1 84.1 65.9

Ours (top-10 and top-30)
SimpleDoc (Qwen3-30B + Qwen2.5-VL-32B) 3.2 59.55 72.26 64.38 80.31 69.12
SimpleDoc (Qwen3-30B + Qwen2.5-VL-32B) 3.5 60.58 72.30 65.39 82.19 70.12

Table 1: Accuracy(%) on 4 different DocVQA datasets. We use ColQwen-2.5 as the retrieval model for all methods.
Pg. Ret. indicates the actual pages used during generation.

Table 2: All-Match Retrieve Rate, and Page-level F-1
Score on MMLongBench (See Section A.3 for calcu-
lation). We present the results for ColQwen (used by
M3DocRAG and MDocAgent) and our retrieval.

Method Avg Ret. Pages All Hit % F1 Score

ColQwen-2.5 2 64.12 38.75
ColQwen-2.5 6 76.42 24.36
ColQwen-2.5 10 83.60 18.38
Ours (top-10) 3.19 65.72 61.42
Ours (top-30) 3.46 67.37 62.22

summarization only needs to be performed once.
We use Qwen3-30B-A3B to for page retrieval. For
baselines, we test with top-k set to 2, 6, 10. For our
method, we set top-k to 10 and 30 for embedding
retrieval. All prompts used in our method is shown
in Appendix A.6.

Results Analysis Table 1 shows that SimpleDoc
achieves the highest average accuracy of 70.12%,
outperforming all the baselines with different top-k
retrieval settings. On MMLongBench and Long-
DocURL, which contain long, diverse, and multi-
modal documents, our method significantly out-
performs MDocAgent by +5.3% and +9.1%, re-
spectively, demonstrating strength in addressing
complex queries that require aggregating informa-
tion dispersed across different sections of a docu-
ment. However, on FetaTab, a heavily table-centric
dataset, SimpleDoc performs lower than MDocA-
gent. We attribute this to MDocAgent’s explicit
multi-agent design, which uses a dedicated image
agent to focus on another modality (table grids)

and is especially effective for this specific type
of table-based QA. In contrast, SimpleDoc treats
pages as images to feed into a single agent. Thus,
SimpleDoc is more robust and effective across
questions that require diverse evidence types.

Table 1 also lists the average number of pages
each system retrieves. SimpleDoc needs only 3.5
pages per question yet achieves the best overall
accuracy. By contrast, MDocAgent attains 59.6%
accuracy when it reads 4 pages, which is about 10
percentage points below our method. Notably, both
MDocAgent and M3DocRAG reach their peak ac-
curacy at top-k=6 rather than 10, implying that in-
discriminately adding pages can hurt performance.
To understand this effect, Table 7 reports two re-
trieval metrics. 1) The all-hit rate gauges cover-
age, the fraction of questions for which the en-
tire gold evidence set appears among the retrieved
pages. 2) The page-level F1 score captures effi-
ciency, rewarding systems that surface the right
pages while avoiding noise. For ColQwen-2.5,
raising k from 2 to 10 boosts coverage but reduces
F1, showing that many of the extra pages are ir-
relevant. Thus, top-k=6 reflects a better balance
between coverage and conciseness, which in turn
yields higher answer accuracy for the agent base-
lines. In contrast, SimpleDoc attains nearly the
same coverage as ColQwen-2.5 at k=2 yet more
than doubles its F1, demonstrating that our retriever
supplies almost all necessary evidence with far
less clutter. Overall, SimpleDoc delivers the best
coverage-versus-conciseness trade-off while avoid-
ing trial-and-error to find the best top-k retrieval

28415



From the paper, which temperature gives ChatGPT the highest alignment score?QUESTION

ITERATION 1   

1) Retrieval

 1.  Retrieving top-k pages w ith embedding:    Pages: [34, 38, 67, 21, 58, ....]

 2. Filtered w ith Reasoning Agent :  Pages: [6, 13, 14] + Summary (initializing memory): The paper ... Page 6 explicitly ... Page 13 

references ... Page 14 for human eval ...

2) Generation

 -  Input: 

 -  Output: Response Type: query_update

Query: From the paper ... Please provide the section or table that compares alignment scores for ChatGPT at temperatures 0.1, 0.5, and 0.9.

Notes: The current pages describe the experimental setup and evaluation metrics but lack the specif ic results or ... which includes tables 

or ... at temperatures 0.1, 0.5, and 0.9.

ITERATION 2   

Question     +      Memory Page 6, 13, 14+

1) Retrieval

 1.  Using Embedding:    Pags: [30, 27, 67, 24, 58, ....]

 2. Filtering w ith  Reasoning Agent:  Pages: [6, 7] + Summary: The document explores ... Page 6 explicitly ..., while Page 7 includes 

Table 3, ...

2) Generation

 -  Input: 

 -  Output: 

Answer: From the information provided in **Table 3**  on Page 7, the temperature ... alignment score of **85.9**. The alignment scores ... 

the highest alignment score is achieved at temperature **0.1**

Response Type: answer

+Question     +     Summary Page 6, 7

Figure 3: An example run of SimpleDoc’s iterative reasoning solving a question. In the first round, the agent
retrieves Pages 6, 13, and 14 based on embedding and summary-based filtering. However, the retrieved pages
only describe the experimental setup and evaluation metrics without giving exact alignment scores. The agent
identifies this gap and generates a refined query asking specifically for a section or table comparing scores at
different temperatures. This updated query retrieves Page 7, which contains Table 3 with the required information,
allowing the agent to correctly answer that temperature 0.1 yields the highest alignment score (85.9).

numbers, giving the reasoner everything it needs
while keeping the reading budget minimal.

Qualitative Analysis As shown in Figure 3,
SimpleDoc reasons iteratively. Initially, it retrieves
broadly relevant pages but lacking specific details
needed to answer the question. Recognizing the
gap, the agent refines the query to target missing
information, retrieves the precise page containing
the relevant table, and answers successfully. This
demonstrates how SimpleDoc detects incomplete
evidence and adaptively improves retrieval to re-
solve complex queries.

4.2 Results with different models

In Table 3, we test with smaller models
(Qwen2.5-VL-7B-Instruct + Qwen-3-8B) with
detailed results on MMLongBench to further val-
idate our method. Note that Qwen-3-8B are text-
only models and used in MDocAgent (Text Agent)
and our method (for retrieval). Our method out-
performs all baselines in terms of avg. accuracy
(ACC) for both models. Under the smaller 7B/8B
model setting, our method achieves 50% overall

accuracy, improving over MDocAgent by +6.62
points, which is a bigger gap compared to using
larger models (+4.15 points). When broken down
by evidence source, our model achieves the best
performance on three out of five modalities. We
note that MDocAgent are competitive on charts and
tables with specialized agents, which is consistent
with our observation and analysis in Section 4.1.
When broken down by number of evident pages,
our methods have similar results compared with
MDocAgent on multi-page (MUL) and single-page
(SIN) reasoning with different models. However,
SimpleDoc achieves better results on unanswerable
questions, used to test hallucinations, showcasing
its ability to abstain from guessing when no valid
evidence is present.

4.3 Other RAG methods

We also adopt and evaluate two RAG methods that
originally focus on knowledge question answering
tasks: (1) Plan∗RAG (Verma et al., 2025): first
decomposes a question into sub-queries that form
a directional acyclic graph (DAG). It starts with
solving the leaf sub-queries, and incorporates the
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Method
Evidence Source Evidence Page

ACC
TXT LAY CHA TAB FIG SIN MUL UNA

Qwen2.5-VL-7B-Instruct + Qwen-3-8B

VLM + GT pages 51.32 45.38 37.71 40.09 47.83 58.90 35.01 77.97 54.99
M3DocRAG (top-6) 43.21 39.98 36.05 31.60 42.01 55.46 24.78 8.72 35.50
MDocAgent (top-6) 47.04 38.98 47.09 41.04 39.93 59.45 28.57 33.49 43.80
Ours 49.67 42.02 44.57 37.79 42.14 58.69 31.65 62.11 50.42

Qwen2.5-VL-32B-Instruct + Qwen-3-30B-A3B

VLM + GT pages 63.25 66.39 58.86 65.44 57.53 72.60 55.46 77.53 67.94
M3DocRAG 46.69 41.53 45.35 39.15 43.75 58.61 30.61 22.48 41.80
MDocAgent 57.49 50.00 54.65 56.13 52.78 68.70 42.86 45.41 55.30
Chain-of-Notes† 36.75 35.29 38.46 32.26 33.44 49.59 21.69 50.00 40.45
Plan∗RAG† 46.03 36.13 43.75 38.71 37.12 54.88 25.35 23.89 38.58
Ours 59.93 51.26 54.86 51.15 51.17 70.76 39.22 67.40 59.55

Table 3: Performance with different models on MMLongBench. We present detailed accuracy for questions with
five different evidence sources: text (TXT), layout (LAY), chart (CHA), table (TAB), and figure (FIG); different
numbers of evidence pages (single (SIN), multiple (MUL), unanswerable (UNA), and average accuracy. We also
test two RAG methods originally proposed for knowledge QAs on MMLongBench (labeled with †).

previous subquery+answer when solving the next
queries, until the original question. This features
the query-decomposition and augmented process
strategies, which are common in RAG methods.
(2) Chain-of-Notes (Yu et al., 2024b) taking notes
of retrieved paragraphs and then using them for
more precise generation. We do the following to
adapt them to our setting: we use ColQwen2.5 to
retrieve document pages, and use VLM for genera-
tion, which is the same as other baselines.

Table 3 reports the performance of the two RAG
baselines when paired with Qwen2.5-VL-32B. Both
Chain-of-Note and Plan∗RAG underperform meth-
ods tailored for DocVQA, showing that directly
applying text-oriented RAG techniques is insuffi-
cient for this domain. Our analysis highlights po-
tential failure causes: (1) Chain-of-Note relies on
page-level image summaries, which can miss fine
details such as exact numbers in tables or words in
charts and layouts. A single summary per page is
often too general, making cross-page reasoning and
precise answers difficult, resulting in 40.4% accu-
racy. (2) Plan∗RAG processes full-page images and
decomposes the main question into sub-questions
via a query graph. However, the generated acyclic
graph is frequently inaccurate, leading to off-target
sub-queries. Each sub-query retrieves top-k image
pages, answers them, and aggregates the results, a
multi-step pipeline that adds complexity and prop-

agates errors.

4.4 Additional Analysis of SimpleDoc
In this section, we do more experiments to decom-
pose and analyze our method.

Top-k Avg. Page Used Acc.

2 2.15 56.66
6 2.75 58.25
10 3.19 59.55
30 3.46 60.58

Table 4: Our method with different top-k numbers for
embedding retrieval on MMLongBench. Avg. Page
Used denotes the actual number of pages seen by the
reasoner agent.

Varying top-k for embedding retrieval. In
SimpleDoc, we first retrieve top-k pages using em-
beddings, and then re-rank them based on sum-
maries. With retrieval, we can filter and bound

Iteration 1 2 3

Accuracy 58.62 59.27 59.55
# Query Update 182 121 97

Table 5: Performance of SimpleDoc on MMLongBench
across different iterations, showing accuracy and num-
ber of query updates.
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the maximum number of pages before re-ranking.
We evaluate different k values to examine how the
initial candidate set affects retrieval. Larger k pro-
vides the agent with more options to recover pages
missed by embeddings, but we observed that the
agent did not select significantly more pages even
when k was large, indicating it dynamically filters
for truly relevant content.

Results with different iterations. Table 5 il-
lustrates the benefits of our iterative refinement
strategy on MMLongBench. The observed trend
shows that additional iterations allow SimpleDoc
to progressively enhance understanding and locate
crucial information initially missed. This targeted
re-querying leads to improved accuracy, while the
decreasing number of query updates indicates the
system is either satisfying the information need
or recognizing when an answer cannot be found
within the document.

We performed an ablation on the dual-cue re-
triever, showing that removing the summary-based
re-ranking stage and relying only on embeddings
causes a substantial drop in QA accuracy and re-
trieval F1. To quantify the contribution of the dual-
cue retrieval mechanism, we performed an ablation
removing the summary-based filtering stage and
relying solely on embedding retrieval.

Setting QA Accuracy

Dual retrieval (Embedding + Summaries) 59.55
Single retrieval (Embedding only) 54.80

Table 6: Effect of removing summary-based re-ranking
on MMLongBench.

Disabling the summaries leads to a drop in final
QA Accuracy to 54.80% and reduces retrieval F1
from 61.42% (Table 2) to 23.32%. We also ob-
serve a higher incidence of false positive retrievals,
where non-relevant pages are passed to the reasoner,
frequently causing hallucinated answers. These re-
sults demonstrate that summary-based re-ranking
significantly improves retrieval precision and over-
all answer quality.

We also measured computational statistics in
terms of token-level input/output to evaluate effi-
ciency across model variants and compared Sim-
pleDoc with MDocAgent (Appendix A.4). Further-
more, we conducted an error analysis categorizing
the main failure cases into eight types: retrieval
failure, partial evidence retrieval, hallucination,
long-context overload, multi-modal misalignment,

ambiguous question interpretation, unanswerable
questions, and layout errors, with examples shown
in Appendix A.5.

5 Conclusion

We present SimpleDoc, an effective framework for
multi-modal document QA. SimpleDoc consists
of an efficient retrieve module that utilizes both
dense-vector embedding and summary, to retrieve
the pages efficiently, and a reasoning agent that
can detect and remedy missing evidence iteratively.
Empirical results across 4 DocVQA benchmarks
confirm that SimpleDoc surpasses prior RAG-style
systems and multi-agent baselines with fewer com-
ponents and fewer page retrievals. These results
highlight how modern VLMs can be used on
retrieval-augmented multi-modal reasoning.

6 Limitations

In this work, we only experiment with single-
document VQAs, while the embedding retrieval
method can be readily extensible to retrieve from
the whole document database. We believe there
are still many interesting research questions under
this scenario. We focus on test-time scaling meth-
ods instead of training, and we think more RAG
methods that require training (Asai et al., 2023;
Chan et al., 2024) can be utilized for this task. Fi-
nally, graph-based database and retrieval methods
are also future directions to explore(Edge et al.,
2024; Liu et al., 2025).
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A Appendix

Table 7: All-Match Retrieve Rate on MMLongBench
with two retrieve models. A question is all-match if all
ground-truth evident pages is present in the retrieved
pages. Note that ColQwen-2.5 (v0.2) is trained with
strategy introduce by ColPali.

Model Top-K Match Rate %

ColQwen-2.5 2 54.55
ColPali 2 28.74
ColQwen-2.5 6 70.13
ColPali 6 44.35
ColQwen-2.5 10 79.22
ColPali 10 55.15

A.1 Pilot Study
We perform a pilot experiment on MMLongBench
to understand how VLM performs on DocVQA
problems. To compare, we test Qwen2.5-VL-32B
with no evidence page and with ground-truth evi-
dence pages provided by the dataset. To understand
how different modalities of evidences affect the re-
sults, we also input image of the pages, text of the
pages (extracted with PDF tools), and both text and
image of the pages. We find that using the image
form of ground-truth pages is crucial, since there is
25% accuracy gap between image-based and text-
based input. Combining the two forms can further
boost the performance, but are not significant.

Table 8: Model accuracies by input type (values to be
filled)

Doc Type Model Accuracy (%)

N/A Qwen2.5-VL-32B 22.18
GT Image Qwen2.5-VL-32B 67.94
GT Text Qwen2.5-VL-32B 42.40
GT Both Qwen2.5-VL-32B 69.06

A.2 Usage of AI assistant
We use AI assistant to help debug code and build
utility functions. We also use AI assistant to refine
writing.

A.3 Detailed Retrieval Metric Calculation
Let Q be the set of N evaluation questions. For
every question q ∈ Q we denote by

Gq ⊆ D, Rq ⊆ D

the gold set of truly relevant pages and the retrieved
set (the top–k pages produced by the system).

All-hit Rate (Coverage) The all-hit rate mea-
sures the proportion of questions for which every
gold page is retrieved:

AllHit =

∣∣{ q ∈ Q : Gq ⊆ Rq }
∣∣

N
.

Because a single missing page makes a query count
as a failure, All Hit captures strict evidence cover-
age.

Page-level F1 (Retrieval Efficiency) Retrieval
may also be viewed as a binary decision for each
candidate page (gold vs. non-gold). For every ques-
tion we compute precision and recall, abbreviated
Pq and Rq:

Pq =
|Gq ∩Rq|
|Rq|

, Rq =
|Gq ∩Rq|
|Gq|

.

Their harmonic mean gives the question-level F1:

F1q =





2Pq Rq

Pq +Rq
, if Pq +Rq > 0,

0, otherwise.

Macro-averaging over questions yields the final
score:

PageF1 =
1

N

∑

q∈Q
F1q.

A.4 Additional Analysis

Role of the Memory Module We evaluated the
effect of the memory accumulation component by
disabling it during iterative reasoning.

Setting QA Accuracy

SimpleDoc (with memory) 59.55
SimpleDoc (without memory) 59.27

Table 9: Effect of the memory module on MMLong-
Bench.

The absence of memory results in a small accu-
racy decrease, as more than half of the tasks are
solved in a single iteration. However, the memory
module becomes critical in multi-step questions,
allowing the agent to maintain evidence across iter-
ations and guide subsequent retrievals.
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Computational Statistics and Pipeline Simplicity
We report token-level I/O for both SimpleDoc and
a multi-agent baseline (MDocAgent) to compare
computational cost.

• For VLMs: input token length = sum of re-
trieved image-text pages + query + memory.

• For text-only LLMs: summary-level retrieval
+ re-ranking only.

We disregard one-time operations such as docu-
ment preprocessing and query embedding, as they
are amortized over the dataset and use small mod-
els. These statistics are compiled under a fixed
dataset (MMLongBench) for both SimpleDoc and
MDocAgent.

Model Qwen2.5-VL-32B Qwen3-30B
Input Output Input Output

SimpleDoc 4542.67 301.12 3164.83 187.43
MDocAgent 6301.48 346.44 4581.52 211.56

Table 10: Token statistics on MMLongBench (average
per question).

Despite using fewer pages on average (3.5
per question), SimpleDoc achieves higher accu-
racy while maintaining a streamlined, single-agent
pipeline.

A.5 Error Analysis
To better understand system behavior, we catego-
rized observed failures into the following types and
provide representative examples for each.

Retrieval Failure Relevant pages were not re-
trieved.
doc_id: fdac8d1e9ef56519371df7e6532df27d.pdf
Question: How many organisations does
this report introduce in detail (at least
one paragraph)?
Original Answer: 19
Final Answer: The report introduces 8
organizations in detail (ISRO, DOS, VSSC,
NARL, NE-SAC, Antrix, SCL, IIST).
Gold Pages: [9, 17, 18, 19, 20, 21]
Retrieved Pages: [9, 17, 18, 19, 20]

Partial Evidence Retrieval Only a subset of
gold evidence pages was retrieved.
doc_id: Independents-Report.pdf
Question: What’s the percentage of people
who are Democrats and voted in the

last election compared to the entire
population in 2018?
Original Answer: 18.29%
Final Answer: The document provides
turnout rates for Democrats (59%) and
Democratic-leaning independents (48%) but
does not explicitly state the total
population’s voting rate.
Gold Pages: [4, 5, 6]
Retrieved Pages: [4, 5]

Hallucination Answers not grounded in re-
trieved content.
doc_id: ddoseattle-150627210357-lva1-
app6891_95.pdf
Question: Which YouTube video do the
slides use to show the consequence of
having a weak data leadership?
Original Answer: Not answerable
Final Answer: Referenced the YouTube
video “Girls Crash into Lake following
Bad GPS directions” (Page 50).
Gold Pages: [–]
Retrieved Pages: [50]

Long-Context Overload Important content di-
luted due to long input sequences.
doc_id: bdf54dxa.pdf
Question: How many possible problems does
the dishwasher encounter before calling
for service?
Original Answer: 17
Final Answer: Retrieved pages contained
empty tables; no specific problems or
error codes were visible.
Gold Pages: [29, 30, 31, 51]
Retrieved Pages: [29, 30, 31, 51]

Multi-modal Misalignment Conflicting inter-
pretations between visual and textual cues (e.g.,
chart vs. text).
doc_id: PH_2016.06.08_Economy-Final.pdf
Question: Among all charts in this report,
how many compare the general public with
Latinos/Hispanics?
Original Answer: 6
Final Answer: Visual analysis of pages
4, 6, 7, 9, 10, 13, 14 yields 7 charts
matching the criteria.
Gold Pages: [4, 6, 7, 9, 10, 13, 14]
Retrieved Pages: [4, 6, 7, 9, 10, 13, 14]
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Ambiguous Question Interpretation Multiple
plausible interpretations of a particular question.
doc_id: PH_2016.06.08_Economy-Final.pdf
Question: Among the Hispanics shaped by
four current financial situation, which
situation has the highest percentage
expecting their future financial
situation to get a lot worse?
Original Answer: Poor financial condition
Final Answer: 8% of both “Only fair” and
“Poor” categories expect their situation
to get a lot worse.
Gold Pages: [16]
Retrieved Pages: [16]

Unanswerable Question Questions where no an-
swer exists in the document.
doc_id: edb88a99670417f64a6b719646aed326.pdf
Question: Is there blue color handwritten
words in page 30?
Original Answer: Not answerable
Final Answer: The document contains only
pages 1–20 and no references to blue
handwritten words; page 30 does not
exist.
Gold Pages: [–]
Retrieved Pages: [–]

Layout Error Misinterpretation of table struc-
tures or complex layouts.
doc_id: finalmediafindingspdf-141228031149-
conversion-gate02_95.pdf
Question: How many female respondents in
Wave III never listen to the radio in the
last half-year?
Original Answer: 1115
Final Answer: The document provides 55.7%
but not the total number of female
respondents, making the absolute count
unanswerable.
Gold Pages: [16]
Retrieved Pages: [16]

A.6 Prompts Used in SimpleDoc

In Figure 4, we show the prompt for pre-processing
each page. In Figure 5, we show the prompt to
retrieve pages based on reasoning. In Figure 6, we
should the prompt for the reasoner agent.
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Page Index Prompt:
You are tasked with creating a comprehensive summary of a given page from a document. Your
summary should focus on extracting and describing the main content, tables, figures, and images
present on the page.

Raw text extracted from the retrieved pages (without visual information):
<page_text>
{PAGE_TEXT}
</page_text>
Please follow these steps to create your summary:
1. Carefully read and analyze the page content.
2. Identify the main topics, key points, and important details presented on the page.
3. Note any tables, figures, charts, diagrams, or images on the page and briefly describe their
content and purpose.
4. Create a structured summary that captures:
- The essential textual information from the page
- Descriptions of any visual elements (tables, figures, images, etc.)
- Any particularly notable or unique information

Present your summary within <summary> tags. The summary should be concise yet comprehensive,
typically 5-8 sentences for text-only pages, with additional sentences as needed to describe visual
elements.
For visual elements, please use these specific tags:
- <table_summary> for descriptions of tables
- <figure_summary> for descriptions of figures, charts, graphs, or diagrams
- <image_summary> for descriptions of photos, illustrations, or other images

Example structure:
<summary> [Main text content summary here]

<table_summary> Table 1: [Brief description of what the table shows] </table_summary>
<figure_summary> Figure 2: [Brief description of what the figure depicts] </figure_summary>
<image_summary> [Brief description of image content] </image_summary> </summary>

Figure 4: Page indexing prompt used to extract structured information from document pages.
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Page Retrieval Prompt:
You are a document understanding agent tasked with identifying the most promising page(s) for a
given user query. You will be presented with summaries of each page in a document and a user
query. Your task is to determine which page(s) should be examined in detail in a subsequent step.

First, review the summaries of each page in the document:

<page_summaries> PAGE_SUMMARIES </page_summaries>
Now, consider the following user query:

<user_query>
USER_QUERY
</user_query>
Important context about your task:
1. You are performing an initial screening of pages based on limited information (summaries only).
2. The pages you select will be analyzed in depth by another agent who will have access to the full
page content.
3. These summaries are inherently incomplete and may miss details that could be relevant to the
query.
4. It’s better to include a potentially relevant page than to exclude it at this stage.

To determine which pages warrant closer examination:

1. Identify keywords, topics, and themes in the query that might appear in the document.
2. Select any page(s) whose summaries suggest they might contain information related to the query.
3. Be inclusive rather than exclusive - if a page seems even somewhat related or contains
terminology connected to the query, include it for further analysis.
4. Always select at least one page, even if the connection seems tenuous - the detailed examination
will determine true relevance.
5. The page order should be from most relevant to less relevant in your answer.

Additionally, create a comprehensive document-level summary that addresses the user query based
on your understanding of the entire document. This summary should:
1. Provide a high-level perspective on how the document relates to the query
2. Synthesize relevant information across multiple pages
3. Highlight key concepts, definitions, or facts from the document that pertain to the query
4. Outline a strategic approach to solving the query based on the document’s content
5. Identify potential solution paths and the types of information that should be prioritized
6. Do not be too certain about the conclusions drawn from the summaries, as they may not capture
all relevant details
7. Be concise but informative (5-8 sentences)

After your analysis, provide your final answer in the following format:

<document_summary> [A comprehensive summary addressing how the document relates to the user
query...] </document_summary>
<selected_pages> [List the indices of selected pages, separated by commas if there are multiple]
</selected_pages>

Figure 5: Prompt for selecting top pages to retrieve for downstream reasoning.

28426



Question Answering Prompt:
You are an AI assistant capable of analyzing documents and extracting relevant information to answer questions. You
will be provided with document pages and a question about these pages.

Consider this question about the document:
<question> QUESTION </question>
Document level summary:
<document_summary> DOCUMENT_SUMMARY /document_summary>
The page numbers of the CURRENT RETRIEVED PAGES that you should analyze:
<retrieved_pages> RETRIEVED_PAGE_NUMBERS </retrieved_pages>
Raw text extracted from the retrieved pages (without visual information): <page_text> PAGE_TEXT </page_text>
IMPORTANT: Images of the retrieved pages are attached at the end of this prompt. The raw text extracted
from these images is provided in the <page_text> tag above. You must analyze BOTH the visual images AND the
extracted text, along with the <document_summary>, to fully understand the document and answer the question accurately.

<scratchpad> 1. List key elements from text and images
2. Identify specific details that relate to the question
3. Make connections between the document information (from both images, text, summary) and the question 4. Determine
if the provided information is sufficient to answer the question 5. If you believe other pages might contain the answer, be
specific about which content you’re looking for that hasn’t already been retrieved </scratchpad>
CRITICAL INSTRUCTION: First carefully check if:

The pages listed in <retrieved_pages> are already the specific pages that would contain the answer to the question
The specific tables, figures, charts, or other elements referenced in the question are already visible in the current images
The document summary explicitly mentions the content you’re looking for
Do not request these same pages or elements again in a query update.

Based on your analysis in the scratchpad, respond in one of three ways:

If the provided pages contain sufficient information to answer the question, or if the document summary clearly indicates
the answer to the question is that something does not exist:
<answer> Your clear and concise response that directly addresses the question, including an explanation of how you
arrived at this conclusion using information from the document. </answer>
If based on the document summary and current pages, you’re confident the entire document likely doesn’t contain the
answer, OR if the specific pages/tables/figures/elements that should contain the answer are already in the current context
but don’t actually contain relevant information:
<not_answerable> The document does not contain the information needed to answer this question. </not_answerable>
If based on the document summary, you believe the answer exists in other parts of the document that haven’t been
retrieved yet:
<query_update> [Provide a rewritten long query that PRESERVES THE ORIGINAL MEANING of the question but
adds specific details or keywords to help retrieve new relevant pages. The information retrieved from this new query
must directly answer the original question.] </query_update>
<notes> [IF using query_update, provide concise notes about what you’ve learned so far, what information is still
missing, and your reasoning for the updated query. These notes will be appended to the document summary in the next
iteration to maintain context across searches.] </notes>
Usage guidelines:

Use <answer> when you can answer the question with the provided pages, OR when you can determine from the
document summary that the answer is that something doesn’t exist.

Use <not_answerable> when either: The document summary and current pages together suggest the document as a
whole doesn’t contain the answer
OR the specific pages that should logically contain the answer are already provided in <retrieved_pages> but don’t
actually have the relevant information

OR specific tables, figures, charts, or elements mentioned in the question are visible in the current pages but don’t contain
the information being asked for
Use <query_update> ONLY when seeking information you believe exists in other pages that have NOT already been
retrieved. Never request pages that are already listed in <retrieved_pages> or elements already visible in the current
context. When creating a <query_update>, you MUST preserve the original meaning and intent of the question while
adding specific details, keywords, or alternative phrasings that might help retrieve the necessary information. The answer
to your new query must directly answer the original question. When using <query_update>, ALWAYS include the
<notes> tag to summarize what you’ve learned so far and explain your reasoning for the updated query.
Your response must include both the <scratchpad> tag and exactly one of the following tags: <answer>, <not_answerable>,
or <query_update>. If you use <query_update>, you must also include the <notes> tag.
<answer> / <not_answerable> / <query_update>

Figure 6: Prompt used during the question-answering stage, leveraging both extracted text and page images.
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