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Abstract

Assessment and evaluation have long been crit-
ical challenges in artificial intelligence (AI)
and natural language processing (NLP). Tra-
ditional methods, usually matching-based or
small model-based, often fall short in open-
ended and dynamic scenarios. Recent advance-
ments in Large Language Models (LLMs) in-
spire the “LLM-as-a-judge” paradigm, where
LLMs are leveraged to perform scoring, rank-
ing, or selection for various machine learning
evaluation scenarios. This paper presents a
comprehensive survey of LLM-based judgment
and assessment, offering an in-depth overview
to review this evolving field. We first provide
the definition from both input and output per-
spectives. Then we introduce a systematic tax-
onomy to explore LLM-as-a-judge along three
dimensions: what to judge, how to judge, and
how to benchmark. Finally, we also highlight
key challenges and promising future directions
for this emerging area12.

1 Introduction
Automatic model assessment and evaluation have
long been essential yet challenging tasks in ma-
chine learning (ML) and natural language process-
ing (NLP) (Sai et al., 2022; Chang et al., 2024). Tra-
ditional static metrics like BLEU (Papineni et al.,
2002) and ROUGE (Lin, 2004) measure quality by
calculating lexical overlap between output and ref-
erence texts. While computationally efficient, these
metrics perform poorly in dynamic and open-ended
scenarios (Liu et al., 2016; Reiter, 2018). With
the rise of deep learning, small language model-
based metrics like BERTScore (Zhang et al., 2020)
and BARTScore (Yuan et al., 2021) have emerged.
However, these metrics still face challenges in cap-

1More resources on LLM-as-a-judge are on the website:
https://llm-as-a-judge.github.io

2We have released and will maintain a paper list
about LLM-as-a-judge at: https://github.com/
llm-as-a-judge/Awesome-LLM-as-a-judge

turing nuanced attributes like fairness (Sun et al.,
2022) and helpfulness (Zhu et al., 2024a).

Recently, the advancements of large language
models (LLMs) such as GPT-4 (Achiam et al.,
2023) and o1 (Jaech et al., 2024), have led to strik-
ing improvements in various applications, lever-
aging substantial prior knowledge in vast training
corpora. This progress has motivated researchers to
propose the concept of “LLM-as-a-judge” (Zheng
et al., 2023; Wang et al., 2023c; Liu et al., 2023b;
Chiang and Lee, 2023b), where LLMs are used to
assess the candidate outputs by assigning scores,
producing rankings, or selecting the best options,
based on various input formats (e.g., point- and
pair-wise), given context and instruction. The
strong capability of LLMs combined with well-
designed assessment pipelines (Li et al., 2023b;
Bai et al., 2023a) leads to fine-grained and human-
like judgment for various evaluation applications,
addressing the previous limitations.

Beyond evaluation, LLMs-as-a-judge has been
adopted across the lifecycle for next generations
of LLM developments and applications. LLMs-
as-a-judge is often used as a scalable way to pro-
vide supervisions for key development steps like
alignment (Lee et al., 2023), retrieval (Li et al.,
2024c), and reasoning (Liang et al., 2023). LLM-
as-a-judge also empowers LLMs with a series of
advanced capabilities such as self-evolution (Sun
et al., 2024), active retrieval (Li et al., 2024c), and
decision-making (Yang et al., 2023), driving their
elevations from generative models to intelligent
agents (Zhuge et al., 2024). However, as the field
develops rapidly, challenges like bias and vulnera-
bility (Koo et al., 2023; Park et al., 2024; Fu et al.,
2024; Huang et al., 2024a) are emerging. There-
fore, a systematic review of both techniques and
limitations is crucial for facilitating this field.

This survey delves into the details of LLM-as-
a-judge, aiming to provide a systematic overview
of LLM-based judgment systems. We start by for-
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mally defining LLM-as-a-judge with its diverse
input and output formats (Section 2). Next, we
propose an in-depth and comprehensive taxonomy
to address the three key questions (Section 3, 4 6):

• Attribute: What to judge? We outline six subtle
attributes that are uniquely assessed by LLM-as-
a-judge, including helpfulness, safety & security,
reliability, relevance, logical, and overall quality.

• Methodology: How to judge? We explore ten
tuning and prompting methods for LLM-as-a-
judge, including manual labeling, synthetic feed-
back, supervised fine-tuning, preference learning,
swapping operation, rule augmentation, multi-
agent collaboration, demonstration, multi-turn
interaction, and comparison acceleration.

• Benchmark: How to evaluate LLM-as-a-
judge? We categorize existing benchmarks for
LLM-as-a-judge into four types: for general per-
formance, bias quantification, challenging tasks,
and domain-specific performance.

Finally, we discuss challenges and potential future
directions for LLM-as-a-judge in Section 7.
Differences from Existing Surveys. Existing con-
current surveys investigate LLM for the evaluation
of natural language generation (NLG) (Gao et al.,
2024; Li et al., 2024n; Gu et al., 2024). However,
LLM-as-a-judge has been applied across a broader
range of scenarios beyond evaluation, as we dis-
cussed, necessitating a systematic survey to catego-
rize and summarize its various applications.

2 Preliminary

In this section, we provide a detailed definition of
LLM-as-a-judge, discussing the various input and
output formats as shown in Figure 1.

LLMs

Point-wise

Pair/ List-wise

Score

Ranking

Selection

Figure 1: Overview of I/O formats of LLM-as-a-judge.

2.1 Input
Given a judge LLM J , the assessment process can
be formulated as: R = J(C1, ...Cn). Here Ci is
the ith candidate to be judged and R is the judging
result. We categorize two input formats based on
the different candidate numbers n.
Point-Wise: When n = 1, it becomes a point-wise
judgment where the LLMs judges will solely focus
on one candidate sample (Gao et al., 2023).
Pair/ List-Wise: When n ≥ 2, it becomes a pair-
wise (n = 2) or list-wise (n > 2) judgment where
multiple candidate samples are provided together
for the LLM judges to compare and make a com-
prehensive assessment (Zheng et al., 2023).

2.2 Output

In this section, we discuss three kinds of output of
the judgment based on the different formats of R.
Score: When each candidate sample is assigned
a continuous or discrete score: R = {C1 :
S1, ..., Cn : Sn}, it becomes a score-based judg-
ment. This is the most widely adopted protocol,
leveraging LLMs to generate scores for quantitative
comparisons (Li et al., 2024a) or attribute detec-
tion (Xie et al., 2024a).
Ranking: In ranking-based judgment, the output is
a ranking of each candidate sample, represented as
R = {Ci > ... > Cj}. This comparative approach
is useful in scenarios where establishing a rank or-
der among candidates is required (Li et al., 2023b;
Liu et al., 2024b).
Selection: In selection-based judgment, the output
involves selecting one or more optimal candidates,
represented as R = {Ci, ..., Cj} > {C1, ...Cn}.
This method is particularly crucial in decision-
making (Yao et al., 2023a) or content-filtering (Li
et al., 2024c) contexts.

3 Attribute

In this section, we categorize current research in
LLM-as-a-judge from attribute perspectives. Fig-
ure 2 gives an overview summarization of what
aspects can be assessed by the LLM judges.

3.1 Helpfulness

Helpfulness is a critical criterion to measure the
utility and informativeness of a generated response.
Due to the high cost of manually assessing helpful-
ness in training data, recent studies have explored
leveraging LLMs to label helpfulness and to gen-
erate or filter alignment data (Bai et al., 2022; Lee
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Figure 2: Overview of different judging aspects.

et al., 2023; Guo et al., 2024; Zhang et al., 2025d).
Beyond alignment tuning, helpfulness assessment
using LLM-as-a-judge also plays a vital role in au-
tomatic model evaluation (Zheng et al., 2023; Lin
et al., 2023; Li et al., 2024e; Zhang et al., 2025a).

3.2 Safety & Security
Safety and security are essential to ensure that mod-
els do not generate harmful content or respond
inappropriately to malicious inputs. Current stud-
ies have validated that LLMs can be effectively
used for model safety assessment, either as off-the-
shelf models guided by policy instructions (Bai
et al., 2022; Phute et al., 2023; Li et al.; Ye et al.,
2024b; Wang et al., 2024l; Eiras et al., 2025; Chen
and Goldfarb-Tarrant, 2025; Rodriguez et al., 2025;
Hengle et al., 2025), or as lightweight models fine-
tuned on safety-specific datasets (Inan et al., 2023;
Zhang et al., 2024f; Xie et al., 2024a). Besides,
LLM-as-a-judge has been widely adopted to detect
and purify adversarial and toxic prompts designed
with malicious intent (Cantini et al., 2025; Mu et al.,
2025; Armstrong et al., 2025).

3.3 Reliability
Reliability is a crucial attribute for LLMs, enabling
them to generate faithful content while present-
ing uncertainty or acknowledging missing knowl-
edge about certain topics. Regarding sentence-level
faithfulness assessment, existing researches lever-
age LLM-as-a-judge to either instruct the powerful
LLMs (e.g., GPT-4) directly (Cheng et al., 2023;
Gekhman et al., 2023; Luo et al., 2024a; Hsu et al.,
2024) or train specific reliability judges (Wang
et al., 2024a). Several works adopt LLM judges
for long-form and fine-grained faithfulness evalua-
tion (Tan et al., 2024a; Bai et al., 2024; Wu et al.,
2025), using external retrieval bases (Min et al.,

2023; Cao et al., 2025b; Loru et al., 2025) or search
engines (Wei et al., 2024b). Jing et al. (2024); Pu
et al. (2025) further expand this assessment to the
multimodal area. Besides evaluation, there are also
many works that adopt LLM-as-a-judge to improve
the reliability of the generated content, either by
external verifiers (Xie et al., 2024b) or synthetic
alignment datasets (Zhang et al., 2024g; Wen et al.,
2024). For uncertainty judgment, Xu et al. (2024d)
propose SaySelf, a training framework that teaches
LLMs to express more fine-grained confidence es-
timates with self-consistency prompting and group-
based calibration training.

3.4 Relevance

Relevance assessment with LLM-as-a-judge has
been explored and validated to be a more refined
and effective manner across various tasks (Chiang
and Lee, 2023a; Arabzadeh and Clarke, 2025a). In
conversation evaluation, both Lin and Chen (2023a)
and Abbasiantaeb et al. (2024) propose to replace
expensive human annotation with LLM judgment
in relevance assessment. In retrieval-augmented
generation (RAG) scenarios, there are also many
works that utilize LLMs to determine which demon-
strations (Li and Qiu, 2023a) or documents (Li
et al., 2024c) are most relevant for solving the cur-
rent problem. Recently, LLM-as-a-judge has also
been used in multimodal applications for cross-
modality relevance judgment (Lee et al., 2024b;
Chen et al., 2024g; Yang and Lin, 2024; Chen et al.,
2024a; Lu et al., 2024b; Luo et al., 2024b; Lin et al.,
2025). Additionally, LLM-as-a-judge has also
been explored in many traditional retrieval applica-
tions for relevance assessment (Zhao et al., 2023a;
Alaofi et al., 2024; Dietz et al., 2025; Arabzadeh
and Clarke, 2025b; Balog et al., 2025), such as
search (Thomas et al., 2024; Sebastian and Hoppe,
2025), retrieval (Ma et al., 2024; Dey et al., 2025),
recommendation (Hou et al., 2024; Zhang et al.,
2024h).

3.5 Logic

In agentic LLMs, assessing the logical correct-
ness of candidate actions or steps is crucial for
LLMs’ planning, reasoning and decision-making,
which further releases their great potential at
inference-time. While some works leverage met-
rics or external tools for this feasibility assess-
ment (Huang et al., 2023a; Yuan et al.), many oth-
ers leverage LLMs’ feedback as the signal (Light-
man et al.; Kawabata and Sugawara, 2024) to per-
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form planning and searching in complex reasoning
spaces (Hao et al., 2023; Yao et al., 2023a; Besta
et al., 2024). In multi-agent collaboration systems,
both Liang et al. (2023) and Li et al. (2024b) pro-
pose to leverage the judge LLM to select the most
feasible solutions among multiple candidates’ re-
sponses. Besides, other works adopt LLM judges to
perform logical assessment in API selection (Zhao
et al., 2024b), tool using (Yang et al., 2023) and
LLM routing (Ong et al., 2024).

3.6 Overall Quality

As previously mentioned, LLM-as-a-judge can
be employed to perform multi-aspect and fine-
grained assessments. However, in many cases, a
general assessment is still required to represent
the candidates’ overall quality. One straightfor-
ward approach to obtain this overall score is based
on the aspect-specific scores, either by averaging
them (Lin et al., 2023) or referring them to generate
an overall judgment (Yu et al., 2024c). Moreover,
in many traditional NLP tasks (Lu et al., 2024a;
Jiang et al., 2024; Ho et al., 2025; Shibata and
Miyamura, 2025; Kartáč et al., 2025) like summa-
rization (Gao et al., 2023; Jain et al., 2023a; Chen
et al., 2023; Kumar et al., 2024a; Qi et al., 2025;
Barnes et al., 2025; Altemeyer et al., 2025; Jeong
et al., 2025; Calderon et al., 2025) and machine
translation (Kocmi and Federmann, 2023; Huang
et al., 2024b; Piergentili et al., 2025; Wang et al.,
2025d), the evaluation dimensions are less diverse
compared to more open-ended, long-form gener-
ation tasks. As a result, LLM-as-a-judge is often
prompted directly to produce an overall judgment
in these tasks.

4 Methodology

In this section, we present commonly adopted meth-
ods and tricks to improve LLMs’ judging capabil-
ities, splitting them into tuning (Section 4.1) and
prompting strategies (Section 4.2).

4.1 Tuning

To enhance the judging capabilities of a general
LLM, various tuning techniques have been em-
ployed in different studies. In this section, we dis-
cuss these tuning approaches for LLM-as-a-judge
from two perspectives: data sources (Section 4.1.1)
and training techniques (Section 4.1.2).

4.1.1 Data Source
Manually-labeled Data: To train a LLM judge
with human-like criteria, one intuitive method
is to collect manually-labeled judgments. Previ-
ous works have leveraged and integrated existing
sources annotated by humans, including instruc-
tion tuning datasets (Lee et al., 2024a; Wang et al.,
2024k) and traditional NLP datasets (Vu et al.,
2024), for tuning LLM judges. Other works collect
manually-labeled datasets with fine-grained judg-
ment feedback. These fine-grained feedbacks can
be rationales behind judgment results (Xu et al.,
2023a), multi-aspect judgment formats (Liu et al.,
2024a) and fine-grained judgment labels (Yue et al.,
2023), all of which facilitate the LLM judges to pro-
duce more detailed and context-rich judging results.
Notably, Ke et al. (2024) first prompt GPT-4 to gen-
erate judgment and then manually verify and revise
the outputs to ensure high-quality annotations.

Synthetic Feedback: While manually labeled
feedback is high-quality and accurately reflects hu-
man judgment preferences, it is limited in both
scale and coverage. To address it, researchers
have also explored synthetic feedback as a data
source for LLM judges’ tuning. Some rely on
the LLM judges themselves to generate the syn-
thetic feedback. It involves instructing the LLM
to self-evaluate and improve its judgments (Wu
et al., 2024a), or by generating corrupted in-
structions and corresponding responses as nega-
tive samples for Directed Preference Optimiza-
tion (DPO) training (Wang et al., 2024h). Be-
sides, other powerful and stronger LLMs are also
introduced for feedback synthesis. For example,
GPT-4 has been widely leveraged to synthesize
judging evidence (Wang et al., 2024a), erroneous
responses (Park et al., 2024), rationale and feed-
back (Li et al., 2024e; Kim et al., 2024b; Xiong
et al., 2024), and judgment labels (Zhu et al., 2023;
Xie et al., 2024a).

4.1.2 Tuning Techniques
Supervised Fine-tuning: Supervised fine-tuning
(SFT) is the most widely used approach for training
LLM judges (Hu et al., 2025a), enabling them to
learn from pairwise (Li et al., 2024e; Wang et al.,
2023b; Zhu et al., 2023; Wang et al., 2024k; Pom-
bal et al., 2025b; Salinas et al., 2025) or point-
wise (Wang et al., 2023b; Yue et al., 2023; Xie
et al., 2024a; Lee et al., 2024a; Chiang et al., 2025)
judgment data. Among many tricks applied in SFT,
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multi-task training and weight merging are intro-
duced to enhance the robustness and generaliza-
tion of LLM judges (Kim et al., 2024b; Vu et al.,
2024; Saad-Falcon et al., 2024b). Other works try
to enrich the original training set with augmented
or self-generated samples. Ke et al. (2024) aug-
ment pairwise training data by swapping the order
of two generated texts and exchanging the corre-
sponding content in critiques. Xu et al. (2023a)
further fine-tune their INSTRUCTSCORE model
on self-generated outputs to align diagnostic re-
ports better with human judgment. Additionally,
Liu et al. (2024a) propose a two-stage SFT pro-
cess: an initial phase of vanilla instruction tuning
for evaluation diversity, followed by additional tun-
ing with auxiliary aspects to enrich the model’s
evaluative depth.

Reinforcement Learning: Reinforcement learn-
ing from human preference is closely tied to judg-
ment and evaluation tasks, particularly those involv-
ing comparison and ranking. Rather than directly
adopt or augment preference learning datasets for
SFT, several studies apply preference learning tech-
niques to enhance LLMs’ judging capabilities. One
straightforward way is to treat the off-topic re-
sponses as inferior samples and apply DPO (Wang
et al., 2024a; Yu et al., 2025; Rad et al., 2025). Be-
sides, Wu et al. (2024a) propose meta-rewarding,
which leverages the policy LLMs to judge the
quality of their own judgment and produce pair-
wise signals for enhancing the LLMs’ judging ca-
pability. This concept is also adopted by Wang
et al. (2024h), who propose self-taught evaluators
that use corrupted instructions to generate subop-
timal responses as inferior examples for prefer-
ence learning. Moreover, Hu et al. (2024b) in-
troduce rating-guided DPO, in which the rating
difference between two responses is considered in
preferences modeling. Different from RLHF- and
DPO-based approaches, several recent works lever-
age reinforcement learning with verifiable reward
(RLVR) (Guo et al., 2025) to train LLM judges by
rewarding reasoning trajectories that lead to cor-
rect judgments (Saha et al., 2025; Liu et al., 2025e;
Zhou et al., 2025).

4.2 Prompting

Designing appropriate prompting strategies and
pipelines at the inference stage could improve judg-
ment accuracy and mitigate bias. We summarize
existing prompting strategies for LLM-as-a-judge

into six categories (see Figure 3).

4.2.1 Swapping Operation
Previous studies have demonstrated that LLM-
based judges are sensitive to the positions of can-
didates, and the ranking results of candidate re-
sponses can be easily manipulated by merely alter-
ing their order in the context (Wang et al., 2023d).
To mitigate this positional bias and establish a more
fair LLM judging system, (Zheng et al., 2023) pro-
pose a swapping operation, which involves invok-
ing the judge LLM twice, swapping the order of the
two candidates in each instance. If the two results
are inconsistent, it is labeled a “tie”, indicating that
the LLM is unable to confidently distinguish the
quality of the candidates. This swapping operation
technique has also been widely adopted in pairwise
feedback synthesis to produce more accurate re-
ward signals (Lee et al., 2023; Sun et al., 2024; Lee
et al., 2024a).

4.2.2 Rule Augmentation
Rule-augmented prompting involves embedding a
set of principles, references, and evaluation rubrics
directly within the prompt for LLM judges. This
approach is commonly employed in LLM-based
evaluations, where LLM judges are guided to as-
sess specific aspects (Lahoti et al., 2023; Li et al.,
2024e; Bai et al., 2023a; Yu et al., 2024c; Qian
et al., 2024; Dong et al., 2024; Wei et al., 2025; Xie
et al., 2025b) and provided with detailed rubrics
and criteria (Gao et al., 2023; Kim et al.; Wang
et al., 2024g; Murugadoss et al., 2024; Li et al.,
2024l,h; Hu et al., 2024a; Liu et al., 2024d; Li
et al., 2025b; Fan et al., 2025) to ensure accurate
judgments. Following this concept, studies in align-
ment (Bai et al., 2022; Lee et al., 2023, 2024a; Guo
et al., 2024; Sun et al., 2024; Beigi et al., 2024)
enhance this principle-driven prompting by incor-
porating more detailed explanations for each aspect
of the principle or rubric. Apart from these human-
written rules, some works (Liu et al., 2024c; Zhang
et al., 2024f; Xu et al., 2025b; Wen et al., 2025;
Zhou et al., 2024a) embed the self-generated or
automaticaly-searched scoring criteria and princi-
ples as a part of their instruction.

4.2.3 Multi-agent Collaboration
Accessing results from a single LLM judge may not
be reliable due to inherent biases in LLMs (Wang
et al., 2023d; Liusie et al., 2024; Ohi et al., 2024).
To address this limitation, Li et al. (2023b); Chen
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Figure 3: Overview of prompting strategies for LLM-as-a-judge.

et al. (2024c); Ning et al. (2024) introduce the
Peer Rank (PR) algorithm, which produces the fi-
nal ranking based on each LLM judge’s output.
Building on this, several architectures and tech-
niques for multi-agent LLMs emerge, including
mixture-of-agent (Zhang et al., 2023; Xu et al.,
2023b; Beigi et al., 2024; Cao et al., 2025a), role
play (Wu et al., 2023; Li et al., 2024m; Patel et al.,
2024), debating (Chan et al., 2023; Zhang et al.,
2024e; Bandi and Harrasse, 2024; Kenton et al.,
2024), voting & aggregation (Zhu et al., 2024c;
Verga et al., 2024; Li et al., 2025c; Guerdan et al.,
2025; Rahmani et al., 2024) and cascaded selec-
tion Jung et al. (2024); Badshah and Sajjad (2025).
Additionally, others apply multi-agent collabora-
tion for alignment data synthesis, leveraging mul-
tiple LLM judges to refine responses (Arif et al.,
2024) or provide more accurate feedback (Li et al.,
2024i).

4.2.4 Demonstration
In-context samples or demonstrations (Brown et al.,
2020; Dong et al., 2023; Agarwal et al.) provide
concrete examples for LLMs to follow and have
been shown to be a crucial factor in the success of
in-context learning for LLMs. Several studies have
introduced human assessment results as demonstra-
tions for LLMs-as-judges, aiming to help LLMs
learn evaluation standards from a few illustrative
examples (Jain et al., 2023b; Kotonya et al., 2023).
To improve the robustness of LLM evaluations,
Hasanbeig et al. (2023) propose ALLURE, an ap-
proach that iteratively incorporates demonstrations
of significant deviations to enhance the evaluator’s
robustness. Additionally, Song et al. (2024b) bor-
row the insights from many-shot in-context learn-
ing and apply it in LLM-as-a-judge applications.

4.2.5 Multi-turn Interaction
A single response may not provide enough infor-
mation for an LLM judge to thoroughly and fairly
assess each candidate. To address this limitation,
multi-turn interactions are proposed to offer a more
comprehensive evaluation. Typically, the process
begins with an initial query or topic, followed by
dynamically interacting between the LLM judge
and candidate models (Bai et al., 2023b; Yu et al.,
2024c; Pombal et al., 2025a). Besides, some ap-
proaches facilitate debates among candidates in a
multi-round manner, allowing their true knowledge
and performance to be fully revealed and evalu-
ated (Zhao et al., 2024c; Moniri et al., 2024).

4.2.6 Comparison Acceleration
Among various input formats in LLM-as-a-judge,
pair-wise comparison is the most common ap-
proach for model comparison in evaluation or pro-
ducing pair-wise feedback for training. However,
when multiple candidates need to be ranked, this
method can be quite time-consuming (Zhai et al.,
2024). To mitigate the computational overhead,
Zhai et al. (2024) propose a ranked pairing method
in which all candidates are compared against an in-
termediate baseline response. In addition, Lee et al.
(2024a); Liu et al. (2025d) utilize a tournament-
based approach (Liu et al., 2023a; Zhao et al.,
2023b) for rejection sampling during inference to
speed up the pair-wise comparison.

5 Application

We introduce four applications which LLM-as-a-
judge can be applied: evaluation (Section 5.1),
alignment (Section 5.2), retrieval (Section 5.3), and
reasoning (Section ??). Due to the space limitation,
we provide a more detailed version in Appendix C.
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5.1 Evaluation

LLM judges are initially proposed for and widely
adopted in various evaluation scenarios. For open-
ended generation, LLM judges assess the quality
of outputs like dialogues, summaries, and creative
writing, ensuring contextual relevance, coherence,
and safety (Badshah and Sajjad, 2024; Kumar et al.,
2024b; Zeng et al.; Jones et al., 2024). For reason-
ing tasks, they judge intermediate steps and final
answers (He et al., 2023; Parmar et al., 2024; Xia
et al., 2024) in areas such as math (Xia et al., 2024),
logic (Parmar et al., 2024), and temporal reason-
ing (Fatemi et al., 2024). There are also some
emerging areas where LLM judges are applied to
domains once dominated by humans, including so-
cial intelligence (Zhou et al., 2023), multimodal
tasks (Chen et al.) and multilingual generation (Fu
and Liu, 2025).

5.2 Alignment

Model alignment also benefits from the automatic
LLM-as-a-judge to produce and filter data at scale.
Typically, larger and powerful LLMs are usu-
ally used as judges to align smaller models, pro-
viding synthetic preference data. This includes
methods like multi-agent collaboration (Arif et al.,
2024) and specialized tasks such as code align-
ment (Weyssow et al., 2024). Additionally, self-
judging methods have LLMs rank or critique their
own outputs to generate preference data without
external teachers. To improve the judging capabil-
ity of the policy model, techniques such as meta-
rewarding (Wu et al., 2024a), Judge Augmented
Supervised Fine-Tuning (JSFT) (Lee et al., 2024a),
and self-evaluation (Zhang et al., 2024g) have been
proposed. Apart from pairwise data, some other
studies also use LLM-as-a-judge to judge and filter
synthetic SFT data for instruction tuning (Liang
et al., 2024c; Yasunaga et al., 2024).

5.3 Retrieval

LLM judges can assist with both traditional re-
trieval tasks and retrieval-augmented generation
(RAG). For traditional retrieval, LLM-as-a-judge
ranks documents by relevance (Zhuang et al.,
2024a) without task-specific data (Ma et al., 2023),
using permutation-based (Sun et al., 2023), pair-
wise (Qin et al., 2024), and listwise (Zhuang et al.,
2024b) approaches to improve reranking for com-
plex queries and domain-specific search tasks. For
RAG, LLM judges guide how external knowledge

is fetched and used during generation, ensuring co-
herence, accuracy, and relevance. This includes
frameworks like Memory-of-Thought (Li and Qiu,
2023b), Self-Retrieval (Tang et al., 2024a), and
Self-RAG (Asai et al.), where the judge selects or
filters retrieved content, particularly in specialized
fields such as biomedicine (Li et al., 2024c).

5.4 Reasoning

Reasoning is a critical capability of LLMs for com-
plex and dynamic problem-solving. LLM judges
can aid reasoning tasks by improving reasoning
path selection and external tool use. Reasoning
path selection involves identifying the correct tra-
jectory for the LLM’s reasoning process, where
LLM-as-a-judge are adopted to evaluate intermedi-
ate reasoning steps (Lahoti et al., 2023), perform
trajectory-level selection (Musolesi, 2024), and act
as a process reward model for reasoning state scor-
ing (Lightman et al., 2023) or a fine-grained critic
to provide verbal feedback (Ankner et al., 2024).
For external tool use, LLM judges help AI systems
decide which external tools, modules, or agents
to activate at each step of reasoning, acting as
controllers that coordinate tool choice (Sha et al.,
2023), agent communication (Ong et al., 2024),
and message flow management (Liang et al., 2023)
to ensure accurate and coherent problem solving.

6 Benchmark: Judging LLM-as-a-judge

We categorize benchmarks for evaluating LLMs-as-
judges into four groups: general performance (Sec-
tion 6.1), bias quantification (Section 6.2), challeng-
ing task performance (Section 6.3), and domain-
specific performance (Section 6.4).

6.1 General Performance

Benchmarks focusing on general performance aim
to evaluate the overall competence of LLMs in var-
ious tasks. One direct way to benchmark LLM
judges’ performance is to calculate the alignment
between LLM prediction and the manual judgment
result, using various metrics like Cohen’s kappa,
Discernment Score, and normalized accuracy (Li
et al., 2023a; Tan et al., 2024b; Wang et al., 2024j;
Lambert et al., 2024; Penfever et al., 2024; Qu
et al., 2025; Xu et al., 2025a; Chang et al., 2025;
Hu et al., 2025b; Calderon et al., 2025; Elango-
van et al., 2024; Schroeder and Wood-Doughty,
2024; Gera et al., 2024). Moreover, several stud-
ies build LLM leaderboards using LLM-as-a-judge
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and assess their validity by comparing model rank-
ings with those from established benchmarks and
leaderboards, such as Chatbot Arena (Zheng et al.,
2023)) (Zheng et al., 2023; Dubois et al., 2024; Li
et al., 2024k; Zhao et al., 2024c; Chi et al., 2025).

6.2 Bias Quantification

Quantifying and mitigating bias in LLM judgments
is critical to ensuring fairness and reliability (Xie
et al., 2025a). Typical benchmarks include EvalBi-
asBench (Park et al., 2024) and CALM (Ye et al.,
2024a), focus explicitly on quantifying biases, in-
cluding those emerging from alignment and robust-
ness under adversarial conditions. Besides, Shi
et al. (2024) adopt metrics such as position bias
and percent agreement in question-answering tasks.
Recently, (Tripathi et al., 2025) examine the influ-
ence of protocol choice (pairwise and pointwise)
on the bias degree of LLM judges.

6.3 Challenging Task Performance

Benchmarks designed for difficult tasks push the
boundaries of LLM evaluation. For example,
Arena-Hard (Li et al., 2024k) and JudgeBench
(Tan et al., 2024b) select harder questions based on
LLMs’ performance for conversational QA and var-
ious reasoning tasks, respectively. CALM (Ye et al.,
2024a) explores alignment and challenging scenar-
ios, using metrics like separability and agreement
to evaluate performance in manually identified hard
datasets.

6.4 Domain-Specific Performance

Domain-specific benchmarks provide task-focused
evaluations to assess LLMs’ effectiveness in spe-
cialized contexts. Concretely, Raju et al. (2024)
measure separability and agreement across tasks in
specific domains such as coding, medical, finance,
law and mathematics. CodeJudge-Eval (Zhao et al.,
2024a) specifically evaluates LLMs for judging
code generation with execution-focused metrics
such as accuracy and F1 score. This idea has
also been adopted by several following works in
code summarization and generation evaluation (Wu
et al., 2024b; Yang et al., 2024; Tong and Zhang,
2024). Besides, there are also domain-specific
benchmarks focusing on LLMs’ assessing capa-
bilities in multimodal (Chen et al., 2024a), mul-
tilingual (Son et al., 2024b,a), instruction follow-
ing (Murugadoss et al., 2024) and LLM agent (Lù
et al., 2025).

7 Challenges & Future Works

7.1 Bias & Vulnerability

The use of LLMs-as-a-judge inherently introduces
significant challenges related to bias and vulnera-
bility, which significantly compromise fairness and
reliability when LLMs are deployed for diverse
judging tasks. Among the various types of bias,
some are consistent across all LLM judges, for ex-
ample, a tendency to prefer longer (Koo et al., 2023;
Dubois et al., 2024; Domhan and Zhu, 2025; Yuan
et al., 2024a), authoritative-looking (Stephan et al.,
2024; Chen et al., 2024b) and well-formatted (Chen
et al., 2024b) responses. In addition, other bi-
ases stem from individual judges’ own preferences
or knowledge, such as egocentric bias (Liu et al.,
2023c; Wataoka et al., 2024; Panickssery et al.,
2024; Chen et al., 2025c) and preference leak-
age (Li et al., 2025a; Goel et al., 2025; Naseh and
Mireshghallah, 2025). LLM judges are also suscep-
tible to adversarial manipulations. Techniques like
prompt injection attacks (Shi et al., 2024; BENCH-
MARK; Banerjee et al., 2024; Tong et al., 2025)
and adversarial phrases (Liusie et al., 2023; Raina
et al., 2024; Doddapaneni et al., 2024b) can dras-
tically influence LLMs’ judgment, thus raising
concerns about the reliability of LLM judges in
high-stakes scenarios (Shi et al., 2024; Raina et al.,
2024).
Future Direction. Existing studies have already
explored approaches, such as providing more de-
tailed evaluation principles (Zheng et al., 2023; Zhu
et al., 2023; Liusie et al., 2023; Krumdick et al.,
2025) and eliminating spurious features through
calibration (Li et al., 2024d; Raina et al., 2024;
Zhou et al., 2024b; Liu et al., 2024c; Chen et al.,
2025a; Wang et al., 2025c; van den Burg et al.,
2025), to mitigate LLM judges’ bias. Future work
could focus more on analyzing and understand-
ing the root causes of these biases. For example,
why would LLMs prefer their own generation (Pan-
ickssery et al., 2024)?

7.2 Scaling Judgment at Inference Time.

Motivated by recent inference-time scaling (ITS)
studies in LLMs (Snell et al., 2024; Zhang et al.,
2025b), several works have begun to explore how
to scale LLMs’ judgment capabilities at inference
time (Saha et al., 2025; Liu et al., 2025e; Zhou
et al., 2025). By expanding the reasoning process
in judgment tasks and incorporating advanced be-
haviors such as reflection and exploration, both the
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accuracy and fairness (Chen et al., 2025c; Wang
et al., 2025a) of judge LLMs have seen significant
improvements. A straightforward approach to scal-
ing judge LLMs is to employ Large Reasoning
Models (LRMs) that generate judgments via long
CoT reasoning (Chen et al., 2025b). Additionally,
traditional sampling and search strategies, such
as self-consistency, best-of-N, and Monte Carlo
Tree Search (MCTS), have been used to more thor-
oughly explore the space of possible judgment
trajectories (Wang et al., 2025f; Kalra and Tang,
2025). Other methods leverage golden labels as su-
pervision, applying rule-based reinforcement learn-
ing (Chen et al., 2025b; Liu et al., 2025e; White-
house et al., 2025; Chen et al., 2025d; Shi and Jin,
2025), DPO (Saha et al., 2025) or distillation (Zhao
et al., 2025) to train LLMs to serve as more effec-
tive judges.
Future Directions. While LLM-as-a-judge ap-
proaches benefit from ITS techniques, it is
also important to recognize the associated chal-
lenges. These include efficiency bottlenecks (Sui
et al., 2025), performance degradation from over-
thinking (Chen et al., 2024e), and increased vul-
nerability of long CoTs to adversarial attack (Jiang
et al., 2025). Future research could investigate
these limitations and develop mitigation strategies,
paving the way for more efficient, accurate, and
robust judge LLMs enhanced by ITS.

7.3 Dynamic & Complex Judging Strategy
Compared with earlier static and straightforward
approaches that directly prompt LLMs for judg-
ment (Zheng et al., 2023), more dynamic and
complex judgment pipelines have been proposed
recently to address various limitations, improv-
ing the robustness and effectiveness of LLM-as-
a-judge. One approach is to follow the concept of
“LLM-as-a-examiner”, where the system dynam-
ically and interactively generates both questions
and judgments based on the candidate LLMs’ per-
formance (Yu et al., 2024c; Bai et al., 2023a; Pom-
bal et al., 2025a; Dammu et al., 2025; Khalili and
Smyth, 2025; Wang et al., 2024i; Kim et al., 2024a;
Zhang et al., 2025e). Other works focus on mak-
ing judgments based on multiple candidate LLMs’
battling and debating (Moniri et al., 2024; Zhao
et al., 2024c). Additionally, building complex judg-
ment agents is another popular research area (Li
et al., 2023b; Chan et al., 2023; Zhuge et al., 2024),
which typically involves multi-agent collaboration
with well-designed planning systems.

Future Direction. One promising direction for fu-
ture research is to equip LLMs with human-like and
agentic judgment capabilities (Yuan et al., 2024a;
Liang et al., 2024b; Li et al., 2024o; Saha et al.,
2024; Zhang et al., 2024b; Wang et al., 2025e; Song
et al., 2025), such as anchoring, comparing, and
meta-judgment. Another intriguing avenue would
be to develop an adaptive difficulty assessment
system (Hu, 2024; Patel et al., 2025), dynamically
adjusting problems’ difficulties based on candi-
dates’ performance.

7.4 Human-LLMs Co-judgement

As mentioned earlier, the biases and vulnerabili-
ties in LLM-as-a-judge can be addressed through
human-in-the-loop for further intervention and
proofreading. However, only a few studies have
focused on this direction (Wang et al., 2023d; Fag-
gioli et al., 2023; Pradeep et al., 2025).
Future Direction. As data selection (Xie et al.,
2023; Albalak et al., 2024) becomes an increas-
ingly popular research area for improving the ef-
ficiency of LLMs’ training and inference, it also
holds the potential for enhancing LLMs-based eval-
uation. LLM-as-a-judge can draw insights from
data selection to enable judge LLMs to serve as a
critical sample selector, choosing a small subset of
samples based on specific criteria (e.g., difficulty)
for human annotators to conduct evaluation.

Due to the space limitation, we put the applica-
tion of LLM-as-a-judge, paper collection for our
taxonomy, tuning techniques and benchmark for
LLM-as-a-judge in Appendix 5, D, E and F.

8 Conclusion

This survey explores the intricacies of LLM-as-a-
judge. We begin by categorizing existing LLM-
based judgment methods based on input and output
formats. Then, we propose a comprehensive taxon-
omy for LLM-as-a-judge, encompassing judging
attributes, methodologies and benchmarks. After
this, a detailed and thoughtful analysis of current
challenges and future directions of LLM-as-a-judge
is proposed, aiming to provide more resources and
insights for future works in this emerging area.

Limitations

This work aims to provide a comprehensive sur-
vey of the LLM-as-a-judge paradigm. Due to
space constraints, we focus on three core aspects
in the main paper: judging attributes, methods, and
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benchmarks. Applications of LLM-as-a-judge and
a detailed list of related papers are included in the
appendix. Additionally, as discussed in Section 7.1,
LLM-as-a-judge carries inherent limitations and
biases. The substantial computational resources
required for deploying LLMs may also pose chal-
lenges in resource-constrained scenarios.
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A Attribute Definition

We provide a detailed definition for each judgment
attribute in Table 1.

B Prompting Methods Categories

Based on each prompting strategy’s target, we cate-
gorize them into following four group: (1) bias
reduction, which involves reducing bias caused
by candidate output position or reliance on a sin-
gle LLM judge (swapping operations, multi-agent
collaboration); (2) boosting instruction-following,
which helps the LLM judge learn clear judging cri-
teria and principles from rules or demonstrations
(rule augmentation, in-context demonstration); (3)
enhancing evaluation depth, which enables a better
understanding of model capabilities (multi-turn in-
teraction); and (4) improving evaluation efficiency,
which refers to reducing the computational budget
required during judgment (comparison accelera-
tion).

C Application with More Details

C.1 Evaluation
LLM-as-a-judge is first proposed for evaluation. It
enables human-like evaluations rather than overlap-
based matching (Post, 2018; Lin and Chen, 2023b).
We discuss how LLM-as-a-judge has been utilized
to evaluate open-ended generation (Section C.1.1),
reasoning (Section C.1.2), and emerging NLP tasks
(Section C.1.3).

C.1.1 Open-ended Generation Tasks
Open-ended generation includes tasks like dialog
response, text summarization, and creative writing,
where outputs must be safe, accurate, and contextu-
ally relevant with multiple “correct” answers (Bad-
shah and Sajjad, 2024; Kumar et al., 2024b; Zeng
et al.; Song et al., 2024a; Jones et al., 2024). Unlike
traditional metrics, LLM-as-a-judge enables nu-
anced and adaptable evaluation (Zheng et al., 2023).
This approach has been used for single-model eval-
uations and competitive comparisons (Gao et al.,
2023; Wu et al., 2023). While LLMs-as-judges
demonstrate human-like judgments, longer outputs
risk hallucinations (Wang et al., 2024a; Cheng
et al., 2023). Another concern is biased and un-
safe judgements (Yu et al., 2024a; Li et al., 2024g;
Ye et al., 2024a), though excessive caution may
cause overly refusal (Xie et al., 2024a). To address
these, researchers have proposed conversational
frameworks like self-reflection (Ji et al., 2023)

and debating (Moniri et al., 2024). Besides, mul-
tilingual LLM-as-a-judge research has advanced
with various methods and benchmarks that address
cross-lingual evaluation challenges. Approaches
include scoring non-English answers against En-
glish references (Doddapaneni et al., 2024a), us-
ing multi-agent debate frameworks for fine-grained
evaluation (Feng et al., 2024), and developing open-
source multilingual judges that outperform English-
centric evaluators across 20+ languages (Pombal
et al., 2025b). Benchmarks like MM-Eval and
PARIKSHA test the consistency and fairness of
multilingual LLM judges, showing that evalua-
tors tuned in English often underperform on low-
resource languages (Son et al., 2024b).

However, key challenges still remain in LLM-
based multilingual judgment. Studies highlight
cross-lingual inconsistency, where judges show low
agreement across languages, especially for low-
resource settings (Fu and Liu, 2025). Evaluators
may also suffer from factual errors, cultural misrep-
resentations, and toxic content (Hada et al., 2024).
Additionally, dialectal variation further complicates
the bias, with weaker alignment between LLM
and human toxicity ratings in regional varieties
[8]. These issues underscore the need for more cul-
turally sensitive and robust multilingual evaluation
methods.

C.1.2 Reasoning Tasks
The reasoning abilities of LLMs can be assessed
through their intermediate thinking processes and
final answers (He et al., 2023; Parmar et al., 2024;
Mondorf and Plank, 2024). For mathematical
reasoning, Xia et al. (2024) introduce a frame-
work using judge LLMs to assess the quality of
reasoning steps. Similarly, for temporal reason-
ing, Fatemi et al. (2024) create synthetic datasets
to evaluate models’ ability to reason about event
sequences, causality, and dependencies. To distin-
guish genuine reasoning ability from pattern mem-
orization, Wang et al. (2023a) propose a human-in-
the-loop framework where LLMs and users adopt
opposing positions to reach correct decisions. Nan
et al. (2024) develop a multi-agent framework sim-
ulating peer review, leveraging LLMs-as-judges
to collaboratively assess reasoning capabilities in
data-driven tasks.

C.1.3 Emerging Tasks
LLM-as-a-judge is also applied to tasks once ex-
clusive to humans, particularly in context-specific
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Attribute Definition

Helpfulness Helpfulness is a critical criterion to measure the utility and informativeness of a
generated response.

Safety & Security Safety & security refer to whether the model avoids generating and is not affected
by harmful, toxic, biased, or adversarial content.

Reliability Reliability is the degree to which a response is faithful to verifiable sources and
appropriately calibrated in expressing uncertainty.

Relevance Relevance is a metric to measure how well a response aligns with the user query,
topic, or task context.

Logic Logic refers to the internal coherence and correctness of reasoning steps within
a response, independent of factual accuracy.

Overall Quality Overall quality is a holistic assessment of a response’s merit, typically integrating
multiple dimensions into one comprehensive score.

Table 1: Common judgment attributes and their definitions.

areas. A prominent task is in social intelligence,
where models are presented with complex so-
cial scenarios requiring the understanding of cul-
tural values, ethical principles, and potential so-
cial impacts (Xu et al., 2024a; Zhou et al., 2023).
Research has also extended to evaluating Large
Multimodal Models (LMMs) and Large Vision-
Language Models (LVLMs) (Zhu et al., 2024b).
For example, Xiong et al. (2024) use LMM-as-a-
judge to provide transparent evaluations with ratio-
nales, while Chen et al. (2024d) propose a bench-
mark for LVLMs in self-driving scenarios, showing
that LLM-based evaluations align better with hu-
man preferences than LVLM-based ones. Recently,
we have seen more customized utilization of LLM-
as-a-judge to evaluate emerging tasks such as code
understanding and generation (Zhao et al., 2024a;
Zhuo, 2024; Tseng et al., 2024; Wu et al., 2024c;
He et al., 2025; Yu et al.; Wang et al., 2025b; Prasad
et al., 2025; Liu et al., 2025b; Chi et al., 2025),
legal knowledge (Fei et al., 2023), game develop-
ment (Isaza-Giraldo et al., 2024), nature science (Bi
et al., 2023; Chuang et al., 2025; Kim et al., 2025),
manufacture engineering (Liu et al., 2025a), health-
care conversations (Wang et al., 2024m; Zhang
et al., 2024a; Zhou et al., 2024c), debating judg-
ment (Liang et al., 2024a), RAG (Dhole et al.,
2024; Saad-Falcon et al., 2024a; Jin et al., 2024;
Liu et al., 2025c; Seo et al., 2025), biomedical ap-
plication (Brake and Schaaf, 2024; Zheng et al.,
2025; Zhang et al., 2024i), paper review (Zhou
et al., 2024e; Wang et al., 2024c; Zhu et al., 2025;
Kirtani et al., 2025), novelty & creativity evalua-
tion (Olson et al., 2024; Feng et al., 2025; Sawicki
et al., 2025), and human-computer interaction (Li
et al., 2024j).

C.2 Alignment

Alignment tuning is a vital technique to align LLMs
with human preferences and values (Wei et al.,
2022a; Ouyang et al., 2022; Rafailov et al., 2023).
In this section, we discuss the use of larger LLMs
as judges (Section C.2.1) and self-judging (Sec-
tion C.2.2) for alignment.

C.2.1 Larger Models as Judges
Recently, alignment tuning leverages feedback
from larger LLMs to guide smaller models. Bai
et al. (2022) first propose to train reward mod-
els with synthetic preferences from pre-trained
LLMs. Following this, there are also some works
explore online learning (Guo et al., 2024) and di-
rect preference optimization (Lee et al., 2023) with
larger models as judges. To prevent reward hack-
ing, Sun et al. (2024) develop an instructable re-
ward model enabling real-time human interventions
for alignment. Moreover, multi-agent collabora-
tions employ diverse workflows and LLM debates
to improve judgments in alignment tuning (Arif
et al., 2024; Sengupta et al., 2024; Li et al., 2024i).
For code alignment, Weyssow et al. (2024) create
CodeUltraFeedback, a dataset using LLM judges
to align smaller code models. Wang et al. (2024f)
introduce BPO, employing GPT-4 as a judge to
augment pairwise feedback.

C.2.2 Self-Judging
Self-judging utilizes LLMs’ own preference sig-
nals for self-improvement. Some focus on directly
judging the preference ranking with the policy
LLMs. Yuan et al. (2024c); Zhang et al. (2025c)
first introduce self-rewarding, where LLMs judge
their outputs to construct pairwise data. Following
works adopt various methods to improve the judg-
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Figure 4: Overview of application and scenario for LLM-as-a-judge.

ing capabilities, including meta-rewarding (Wu
et al., 2024a), Judge-Augmented Supervised Fine-
Tuning (JSFT) (Lee et al., 2024a) and self-
evaluation (Zhang et al., 2024g). To guarantee the
quality of synthetic pairwise data, Pace et al. (2024)
introduce West-of-N approach while Tong et al.
(2024) apply self-filtering to produce high-quality
synthetic data pairs for reasoning tasks. To reduce
computational overhead, Zhai et al. (2024) pro-
pose ranked pairing for self-preferring models. Liu
et al. (2024e) introduce meta-ranking, enabling
smaller LLMs to act as judges and combining this
method with Kahneman-Tversky optimization for
post-SFT alignment. Besides pairwise data, (Liang
et al., 2024c) and (Yasunaga et al., 2024) lever-
age LLM-as-a-judge to filter synthetic instruction
tuning data. Other works adopt self-assessment
and self-judgment in specific domains, such as
robotics (Zeng et al., 2024; Yi et al., 2024) and
multimodal (Ahn et al., 2024).

C.3 Retrieval

In traditional retrieval, LLM-as-a-judge ranks doc-
uments by relevance with minimal labeled data
(Section C.3.1). LLM judges can also enhance the
RAG system by dynamically integrating retrieved
knowledge into the final response (Section C.3.2).

C.3.1 Traditional Retrieval
LLMs enhance document ranking by employing
methods like permutation-based ranking (Sun et al.,
2023), fine-grained relevance labeling (Zhuang
et al., 2024a), and listwise reranking without task-
specific training (Ma et al., 2023). Moreover, Set-
wise (Zhuang et al., 2024b) and Pairwise Ranking
Prompting (PRP) (Qin et al., 2024) offer a cost-
efficient alternative for complex tasks. Tang et al.
(2024b) introduce a permutation self-consistency
technique that averages across multiple orders
to obtain order-independent rankings. Domain-
specific knowledge retrieval with LLM-as-a-judge
includes legal information, recommender systems
and searching (Ma et al., 2024; Hou et al., 2024;
Thomas et al., 2023).

C.3.2 Retrieval-Augmented Generation
(RAG)

Li and Qiu (2023a) propose the Memory-of-
Thought (MoT) framework, where LLMs store
and recall reasoning to enhance response rele-
vance. Tang et al. (2024a) introduce Self-Retrieval,
an architecture integrating retrieval into docu-
ment generation, enabling end-to-end IR within
a single LLM. Similarly, Asai et al. (2024) de-
velop SELF-RAG, combining retrieval with self-
reflection to enhance response quality. In the do-
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Benchmark Definition

General Performance Benchmarks that assess the general accuracy performance of LLM judges (e.g.,
MT-Bench)

Bias Quantification Benchmarks focused on measuring and analyzing biases in LLM judgments (e.g.,
CALM)

Challenging Performance Benchmarks that test LLM judges on difficult or adversarial tasks designed to
probe the limits of their evaluation capabilities (e.g., Arena-Hard)

Domain-Specific Performance Benchmarks that measure LLM judges’ effectiveness in specific domains, such
as biomedical, legal, and coding evaluation (e.g., Raju et al. (2024))

Table 2: Categories of benchmarks for evaluating LLM judges.

main of Q&A, Rackauckas et al. (2024) present an
LLM-based evaluation framework using synthetic
queries to judge RAG agent performance. Zhang
et al. (2024c) study LLMs’ ability to assess rele-
vance versus utility. In the biomedical area, several
studies explore the usage of LLM-as-a-judge for
active and dynamic retrival (Wang et al., 2024b) or
retrieved knowledge filtering (Jeong et al., 2024;
Li et al., 2024c).

C.4 Reasoning

Reasoning is a critical aspect of LLMs because it
directly affects their ability to solve complex prob-
lems. Recently, many studies leverage LLM-as-a-
judge in reasoning path selection (Section C.4.1)
and external source utilization (Section C.4.2).

C.4.1 Reasoning Path Selection

While many complex reasoning and cognition struc-
tures emerges for LLMs’ reasoning (Yao et al.,
2023a; Hao et al., 2023), one crucial challenge
is how to select a reasonable and reliable reasoning
path or trajectory for LLMs to reason. To achieve
this, LLM-as-a-judge has been introduced. Some
works adopt the reasoner LLMs to perform self-
assessment, alternatively executing reasoning and
judging steps to achieve the best result (Lahoti et al.,
2023; Creswell et al., 2023; Xie et al., 2024c; Kawa-
bata and Sugawara, 2024) or perform sample-level
selection among a group of candidates (Musolesi,
2024). Additionally, there are also many work
train LLM-based verifiers, leveraging the judge
LLM as the process reward model (PRM) to evalu-
ate each state (Lightman et al., 2023; Setlur et al.,
2024; Zhang et al., 2024d; Ye et al., 2025). Be-
sides, there are also studies train critique-based
LLM judges (Xu et al., 2024c; Ankner et al., 2024;
Yu et al., 2024b; Wang et al., 2024e; Lan et al.; Xie
et al., 2024b) which provide fine-grained verbal
feedback to boost the reasoning process.

C.4.2 Reasoning with External Source
Selecting an appropriate external source to use is
essential in the success of agentic LLM systems (Xi
et al., 2023; Wang et al., 2024d). Auto-GPT (Yang
et al., 2023) is the first to benchmark LLMs’ per-
formance in real-world decision-making scenar-
ios. Following them, many other works adopt
LLM-as-a-judge in various external tool selection
applications, including autonomous driving (Sha
et al., 2023), reasoning structure selection (Zhou
et al., 2024d) and multi-modal area (Zhao et al.,
2024b). In addition to selecting among exter-
nal tools or APIs, LLM-as-a-judge has also been
widely adopted as a controller in multi-agent sys-
tems, to selectively activate agents for a given prob-
lem (Ong et al., 2024) or to assess and manage mes-
sage flow among a group of agents (Liang et al.,
2023; Li et al., 2024b).

C.5 Definition of each LLM-as-a-judge
Benchmark Category

We provide the definition of each LLM-as-a-judge
benchmark in Table 2.
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(Gao et al., 2023), Prometheus (Kim et al.), KIEVAL(Yu et al., 2024c), CEB (Wang et al., 2024g),
(Murugadoss et al., 2024), (Liu et al., 2024c), OAIF (Guo et al., 2024), SALMON (Sun et al., 2024),
SELF-JUDGE (Lee et al., 2024a), DALK (Li et al., 2024c), (Qian et al., 2024), RevisEval
(Zhang et al., 2024f), LLM-as-a-personalized-judge (Dong et al., 2024), (Li et al., 2024l), (Li et al., 2024h)

Multi-Agent
Collaboration (§4.2.3)

PRD (Li et al., 2023b), (Zhang et al., 2023), (Wu et al., 2023), MPA (Zhu et al., 2024c), JudgeLM
(Zhu et al., 2023), ChatEval(Chan et al., 2023), CoEvol (Li et al., 2024i) LRQ-Fact (Beigi et al., 2024),

Cascaded Selective Evaluation(Jung et al., 2024), Fellowship (Arif et al., 2024), MATEval (Li et al., 2024m),
(Zhang et al., 2024e)

Demonstration
(§4.2.4)

ICE (Jain et al., 2023b), Little Giants (Kotonya et al., 2023), ALLURE (Hasanbeig et al., 2023), MSoR
(Song et al., 2024b)

Multi-Turn
Interaction (§4.2.5)

LLM-as-an-examine (Bai et al., 2023b), KIEVAL (Yu et al., 2024c), Auto-Arena (Zhao et al., 2024c),
(Moniri et al., 2024)

Comparison
Acceleration (§4.2.6) (Liu et al., 2023a), OSP (Zhai et al., 2024), Starling (Zhu et al., 2024a), SELF-JUDGE (Lee et al., 2024a)

Application
(§5)

Evaluation
(§5.1)

(Bi et al., 2023), (Fei et al., 2023), (Zhou et al., 2023), (Wang et al., 2023a), (Nan et al., 2024), (Zheng et al., 2023), (Gao et al., 2023),
(Wu et al., 2023), (Cheng et al., 2023), (Lin and Chen, 2023b), (Mondorf and Plank, 2024), (Badshah and Sajjad, 2024),
(Bai et al., 2023a), (Kumar et al., 2024b), (Wang et al., 2024a), (Li et al., 2024g), (Xie et al., 2024a), (Chan et al., 2023),
(Moniri et al., 2024), (Xia et al., 2024), (Fatemi et al., 2024), (Parmar et al., 2024) , (Xu et al., 2024a), (Xiong et al., 2024),
(Chen et al., 2024d), (Zhao et al., 2024a), (Isaza-Giraldo et al., 2024), (Wang et al., 2024m), (Zeng et al.), (Yu et al., 2024a),
(Dhole et al., 2024), (Yang et al., 2024), (Xu et al., 2024b), (Wu et al., 2024b)

Alignment
(§5.2)

(Bai et al., 2022), (Lee et al., 2023), (Sun et al., 2024), (Guo et al., 2024), (Arif et al., 2024), (Li et al., 2024i), (Yuan et al., 2024c),
(Wu et al., 2024a), (Pace et al., 2024), (Lee et al., 2024a), (Tong et al., 2024), (Zhai et al., 2024), (Liu et al., 2024e),
(Liang et al., 2024c), (Zhang et al., 2024g), (Zeng et al., 2024), (Ahn et al., 2024), (Weyssow et al., 2024), (Wang et al., 2024f),
(Yasunaga et al., 2024), (Sengupta et al., 2024)

Retrieval
(§5.3)

(Sun et al., 2023), (Thomas et al., 2023), (Ma et al., 2023), (Tang et al., 2024b), (Qin et al., 2024), (Ma et al., 2024), (Hou et al., 2024),
(Li and Qiu, 2023a), (Tang et al., 2024a), (Asai et al., 2024) (Zhuang et al., 2024a), (Rackauckas et al., 2024), (Zhang et al., 2024c),
(Wang et al., 2024b), (Li et al., 2024c), (Jeong et al., 2024), (Zhuang et al., 2024b), (Chen et al., 2024f)

Reasoning
(§)

(Yao et al., 2023b), (Creswell et al., 2023), (Wei et al., 2022b), (Yao et al., 2023a), (Yang et al., 2023), (Sha et al., 2023),
(Hao et al., 2023), (Zhou et al., 2024d), (Lahoti et al., 2023), (Liang et al., 2023), (Li et al., 2024b), (Besta et al., 2024),
(Ong et al., 2024), (Zhao et al., 2024b), (Kawabata and Sugawara, 2024), (Xie et al., 2024b), (Lightman et al., 2023), (Li et al.),
(Setlur et al., 2024)

Figure 5: Taxonomy of research in LLM-as-a-judge that consists of judging attribution, methodology and application.
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E Tuning Methods

Method Data Tuning Method Base LLM
Source Annotator Type Scale Technique Trick

AttrScore (Yue
et al., 2023) Manual Human

QA, NLI,
Fact-Checking,
Summarization

63.8K SFT - Multiple
LLMs

PandaLM (Wang
et al., 2024k) Manual Human Instruction

Following 300K SFT - Multiple
LLMs

AUTO-J (Li et al.,
2024e) Synthetic GPT-4 Real-world

Scenarios 4K SFT - LLaMA-2

JudgeLM (Zhu
et al., 2023) Synthetic GPT-4 Instruction

Following 100K SFT - Vicuna

Self-Judge (Lee
et al., 2024a) Manual Human Preference Learning 65/57K SFT JSFT LLaMA-2

X-EVAL (Liu
et al., 2024a) Manual Human

Dialogue,
Summarization,

Data-to-Text
55K SFT Two-Stage

Instruction Tuning Flan-T5

FLAMe (Vu et al.,
2024) Manual Human Various Tasks 5M+ SFT Multi-task Training PaLM-2

InstructScore (Xu
et al., 2023a)

Manual&
Synthetic

Human&
GPT-4 Various Tasks 20K SFT Meta-Feedback LLaMA

CritiqueLLM (Ke
et al., 2024) Manual Human

Instruction
Following,

real-world scenarios
5K SFT

Prompt Simplify,
Swapping

Augmentation
ChatGLM3

Meta-Rewarding
(Wu et al., 2024a) Synthetic LLaMA-

3 Preference Learning 20K Preference
Learning Meta-Rewarding LLaMA-3

Self-Taught Evalu-
ator (Wang et al.,
2024h)

Synthetic Mixtral Various Tasks 20K Preference
Learning Self-Taught LLaMA-3

HALU-J (Wang
et al., 2024a) Synthetic GPT-4o Fact Extraction 2.6K Preference

Learning DPO Mistral

OffsetBias (Park
et al., 2024) Synthetic GPT-4,

Claude3 Preference Learning 8.5K SFT Debiasing
Augmentation LLaMA-3

SorryBench (Xie
et al., 2024a) Synthetic GPT-4 Safety 2.7K SFT - Multiple

LLMs
LLaVA-Critic
(Xiong et al.,
2024)

Synthetic GPT-4o Preference Learning 113K Preference
Learning DPO LLaVA-v.1.5

PROME-
THEUS2 (Kim
et al., 2024b)

Synthetic GPT-4 Preference Learning 300K SFT Joint Training,
Weight Merging Mistral

Themis (Hu et al.,
2024b)

Manual &
Synthetic

Human &
GPT-4 Various Tasks 67K Preference

Learning

Multi-perspective
Consistency
Verification,

Rating-oriented
DPO

LLaMA-3

Table 3: Overview of tuning methods in LLM-as-a-judge.

F Benchmark

G AI Assistants In Writing

We acknowledge the use of ChatGPT-4o in paper polishing, but not in any direct paper writing or relevant
work collections.
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Method Data Type Scale Reference Metrics Purpose

MT-Bench
(Zheng et al.,

2023)

Multi-turn
Conversation 80 Human

Expert Consistency, Bias, Error
General Performance,

Position/Verbosity/Self-
enhancement Bias

Chatbot Arena
(Zheng et al.,

2023)

Single-turn
Conversation 30K User Consistency, Bias, Error

General Performance,
Position/Verbosity/Self-

enhancement Bias
CodeJudge-
Eval (Zhao

et al., 2024a)
Code 457 Execution

System Accuracy, F1 General Performance

JudgeBench
(Tan et al.,

2024b)
Various Tasks 70K Human Cohen’s kappa,

Correlation General Performance

SOS-BENCH
(Penfever et al.,

2024)
Various Tasks 152K Human Normalized Accuracy General Performance

LLM-judge-
eval (Wei et al.,

2024a)

Summarization,
Alignment 1K Human

Accuracy, Flipping
Noise, Position Bias,

Length Bias
General Performance

DHP (Wang
et al., 2024j) Various Tasks 400 Human Discernment Score General Performance

EvalBiasBench
(Park et al.,

2024)
Alignment 80 Human Accuracy Various Bias

Raju et al.
(2024) Various Tasks 1.5K Human Separability, Agreement,

BrierScore Domain-specific Performance

MLLM-as-a-
judge (Chen
et al., 2024a)

Various Tasks 30K Human
Human Agreement,
Analysis Grading,

Hallucination Detection
Multimodal

MM-EVAL
(Son et al.,

2024b)
Various Tasks 5K Human Accuracy Multilingual

KUDGE (Son
et al., 2024a)

Question
Answering 3.3K Human &

GPT-4o Accuracy, Correlation Non-English & Challenging

Murugadoss
et al. (2024) Various Tasks - Human Correlation Evaluation Instruction

Following
Thakur et al.

(2024)
Question

Answering 400 Human Scott’s π, Percent
Agreement Vulnerability

Rewardbench
(Lambert et al.,

2024)
Various Tasks 20K Human &

LLMs Accuracy General Performance

Arena-Hard
Auto (Li et al.,

2024k)
Alignment 500 GPT-4-

Turbo Separability, Agreement Challenging

R-Judge (Yuan
et al., 2024b)

Multi-turn
Interaction 569 Human F1, Recall, Spec, Effect Safety

Shi et al. (2024) Alignment 100K Human
Repetition Stability,

Position Consistency,
Preference Fairness

Position Bias

CALM (Ye
et al., 2024a) Various Tasks 14K Human

Robustness/Consistency
Rate, 0riginal/ Hacked

Accuracy
Bias Quantification

VL-
RewardBench

(Li et al.,
2024f)

Various Tasks 1.2K Human &
LLMs

Overall Accuracy, Macro
Average Accuracy Multimodal

Table 4: Overview of various benchmarks and datasets for LLM-as-a-judge.

2791


