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Abstract

Pretrained language models (LMs) are prone to
arithmetic errors. Existing work showed lim-
ited success in probing numeric values from
models’ representations, indicating that these
errors can be attributed to the inherent unreli-
ability of distributionally learned embeddings
in representing exact quantities. However, we
observe that previous probing methods are in-
adequate for the emergent structure of learned
number embeddings with sinusoidal patterns.

In response, we propose a novel probing tech-
nique that decodes numeric values from input
embeddings with near-perfect accuracy across
a range of open-source LMs. This proves that
after the sole pre-training, LMs represent num-
bers with remarkable precision. Finally, we
find that the embeddings’ precision, judged by
our probe’s accuracy, explains a large portion
of LM’s errors in elementary arithmetic, and
show that aligning the embeddings with the
pattern our probes discover can mitigate these
errors.

1 Introduction

The landmark paper of Brown et al. (2020) showed
that generic neural networks trained on text pre-
diction alone could develop surprising arithmetic
capabilities. In the years since, this observation has
flourished into a large and vibrant field interested in
the arithmetic reasoning capabilities of Transform-
ers (Ahn et al., 2024), rife with research opportuni-
ties ranging from interpretability work (Akter et al.,
2024) to solving Olympiad-level problems in math-
ematics (Li et al., 2025). Yet this work has also
underscored the limitations of LMs on arithmetic
tasks: Previous studies have explored how mod-
els can benefit from incorporating precise numeric
representations (Feng et al., 2024), or offloading
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the arithmetic computation to a tool (Schick et al.,
2023; Kadl¢ik et al., 2023), suggesting that their na-
tive learned representations are not reliable. Other
works (Kantamneni and Tegmark, 2025; Zhou et al.,
2024) have inspected such learned representations
directly and tried to understand how models use
them. Although model probing methods showed
some success in interpreting numeric values from
model representations (Zhu et al., 2025), the ac-
curacy of those methods is low, suggesting that
learned representations are highly imprecise.

In this paper, we push back on this interpreta-
tion: we show that a probe with the right kind of
inductive bias can retrieve numeric information
from number embeddings with near-perfect ac-
curacy across an extensive range of LMs, span-
ning the Llama 3 (Grattafiori et al., 2024), Phi 4
(Abdin et al., 2024) and OLMo 2 (OLMo et al.,
2025) series and ranging from 1B to 72B parame-
ters. Given that number embeddings usually follow
a sinusoidal wave-like pattern (Nanda et al., 2023;
Kantamneni and Tegmark, 2025), this characteris-
tic must be accounted for when designing probes.

We further show how these insights can be lever-
aged to improve performances on arithmetic rea-
soning: errors on addition and subtraction tasks
can often be matched with an inability of the probe
to retrieve the expected numerical information for
a given embedding, and demonstrate that interven-
ing on number embeddings such that they more
cohesively follow the pattern of other number em-
beddings can directly improve arithmetic perfor-
mances. Lastly, we document edge cases that do
not fall within this previously understood pattern:
in particular, OLMo2 32B (OLMo et al., 2025)
learns embeddings that are not sinusoidal-like, de-
spite a high success rate on arithmetic tasks.
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2 Related Work

One line of work focuses on incorporating numeri-
cal values directly into token representations, pro-
viding LMs with a prior. Charton (2022) explores
different number encodings based on scientific no-
tation for training LM solvers of linear algebra
problems. Golkar et al. (2023) propose represent-
ing numbers as a learned <NUM> token scaled
by the number scalar value, demonstrating how
models can adopt this scheme for regression tasks.

Another line of work investigates how models
learn to represent and process numerical informa-
tion. Nanda et al. (2023) show that a transformer
with one-hot encoding trained from scratch on mod-
ular addition discovers Fourier basis and its com-
putation is interpretable in trigonometric functions.
Kantamneni and Tegmark (2025) discover an anal-
ogous circuitry for (non-modular) addition in a
general pretrained language model, and find that its
intermediate representations combine both linear
and periodic components, reminiscent of a helix
structure. Zhou et al. (2024) further identifies sub-
components of the addition circuitry implemented
by the attention mechanism and feedforward layers.
Zhu et al. (2025) demonstrate that hidden states of
pretrained language models can be approximately
decoded with a linear (or multi-layer) probe to esti-
mate the logarithm of the number value. Although
the probe outputs correlate with the target value,
decoding achieves low accuracy. Recently, Levy
and Geva (2025) show success in recovering the
values of digits from internal representations of in-
termediate layers, hinting on a more generalized,
circular pattern in representations of numbers.

In summary, prior works suggest that language
models attempt to encode numerical information
into token representations during pretraining, but
their precision is rather limited. However, we hy-
pothesize that this perception stems from inade-
quate probing methods, and learned representations
are much more precise than previously estimated.

3 Recovering numerical information from
number embeddings

We study LMs from the Llama 3 (Grattafiori et al.,
2024), Phi 4 (Abdin et al., 2024), and OLMo 2
(OLMo et al., 2025) series, ranging from 1B to
72B parameters. Wide selection allows us to verify
the validity of our observations across a panel of
models sharing the characteristic of representing
all integers between 0 and 999 with unique tokens.

Motivations. The central and foremost point to
address is whether the embeddings representing
specific numbers in LMs contain the numeric in-
formation of the value they represent. In practice,
this is best addressed with a probing setup: If em-
beddings do contain numerical information, we
should be able to learn a decoding function from
number embedding to the corresponding integer
value. Probing as a methodology comes with its
own set of caveats: probes should be kept as sim-
ple as possible, and their expressivity should be
compared against baseline benchmarks (Hewitt and
Liang, 2019). Our specific use case adds further
constraints: in particular, we have only one instance
per LLM of each integer representation, viz., there
is only one vector for the token 42. This rules out
naive classifier implementations, as we aim for the
probe to generalize to entirely unseen classes.

Probe architectures. We consider four probes:

(x)=alx+b (1)
flog lin (X) exXp (a X+ b) —1 (2)
( ) ( outS) ( mX) (3)
( ) ( outB) (Winx) (4)
where a, b, Wjy, and W, are learned parameters,

whereas S and B are means of injecting inductive
biases in the linear classifiers fg, and fpin:

S {sin(z’ejl()()()/d) if j=0 mod 2
ij =

cos(ie?711000/d) if j=1 mod 2
0 ... 001
0 ... 010
B =0 01 1
Le., the i row of B corresponds to the integer

1 expressed in binary, whereas S is defined as a
Fourier basis, suggested by Zhou et al. as the hid-
den structure learned by pretrained models. The
matrices S and B thus allows us to partition the
label projection of the classifier into three compo-
nents: a learned projection Wy, : R — R to
project the number embeddings into a reduced low-
dimensional space, a fixed matrix (S or B) allow-
ing us to encode integers using an a priori scheme,
and a learned projection Wy : R* — R map-
ping these a priori representations onto the same
space as the reduced embeddings. Intuitively, W,
uncovers the underlying hidden structure of the
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learned embeddings, while W,,; expresses it in
terms of interpretable a priori basis, which allows
us to generalize to unseen tokens.

Implementation. We evaluate the probes in
Equations (1) to (4) using a cross-validation setup
with 20 folds. We report their accuracy measured
by rounding the output of the regression probes
Equations (1) and (2) to the nearest integer, or
by retrieving the index of the row in S or B that
maximizes the output distribution of the classifier
probes Equations (3) and (4). We control the va-
lidity of our probes by ensuring that they reach
an accuracy of 0 for standard Gaussian vectors as
well as for a random permutation of the embed-
dings. Parameters for regressions are estimated
using a least-squares algorithm; whereas our clas-
sifiers’ parameters are optimized with Adam with
a learning rate of 0.0001, weight decay of 0.001,
and 5 = (0.9,0.999). We choose a hidden di-
mension of 100. The classifiers are optimized to
distinguish output only between training tokens,
and during testing, must choose between all tokens.
The probes are optimized until loss converges on a
validation split separate from the testing split.

We release an implementation and training
recipes for the new probes, including all configura-
tions we use, in the project’s GitHub repository. !
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Figure 1: Overview of probes’ accuracy (7).

Results. We summarize performances, measured
in terms of accuracy, in Figure 1. Crucially, we are
almost systematically able to retrieve the integer
value corresponding to the embedding’s number
with very high accuracy. Another salient observa-
tion is that fg, consistently outperforms all other
probe architectures including the regression probe
used in previous work of Zhu et al. (2025), con-
tradicting their finding that LMs learn to encode
numbers linearly. Explaining the success of the
Fourier basis, we note that other prior literature

"https://github.com/prompteus/numllama

has suggested that sinusoidal features are used for
arithmetic computation in LMs (Zhou et al., 2024).
Adding onto this, we can also stress that, qualita-
tively, most of the models’ whose number embed-
dings we survey here exhibit wave-like patterns in
a PCA projection and have sparse Fourier trans-
form, confirming regularity in the hidden structure.
See Figures 2 and 3 in Appendix A.1 for visualiza-
tions of PCA and its Fourier transform. Notably,
OLMo 2 32B is the only model with low resem-
blance of the pattern, which is consistent with the
low performance of its sinusoidal probe.

Analysis. To verify that our sin-base probes in-
deed reach their superior accuracy by learning to
extract a generalized, sin-like representation from
models’ representations, we analyse the encoded
representations that trained sin probes produce as
the output of Wj,,. We experiment with two train-
ing settings: (i) using L1 regularization — encour-
aging sparsity, and (ii) using L2 regularization —
encouraging the employment of a broader scale
of input features. We note that in both of these
settings, the probes achieve almost identical gener-
alization capacity as assessed by their accuracy on
unseen inputs (embeddings of numbers).

Figure 6 in Appendix A.3 displays the resulting
representations for model embeddings of Llama3
1B associated with different numeric values. We
can observe that the L1- and L2-regularized probes
learn a substantially distinct representational pat-
tern. We hypothesize that a main difference be-
tween probes trained with different regularizations
is that the L1 probe learns to follow a broader scale
of distinct frequencies, while the L2 probe follows
similar frequencies shifted by a different constant.
Nevertheless, in both of the cases, the probe learns
a projection into a wave-like pattern across input
numbers, thus successfully following their injected
inductive bias.

4 Leveraging numerical information from
number embeddings

Motivation. Having established that number em-
beddings do encode retrieval numerical informa-
tion about the integers they represent, we now turn
to how this numerical information is leveraged
by LMs to perform arithmetic tasks. We study the
zero-shot performances of a subset of our models
on addition and subtraction tasks. We define our
addition task as taking any pair of integers x1, 2
such that 0 < x; < 500 as input, and computing
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the expected output z; + x2. The subtraction task
is defined by taking as inputs any pair x1, 2 such
that 0 < z2 < x1 < 1000, and computing the
expected output x; — xa.

Performance. To perform the arithmetic tasks,
we conduct minimal prompt engineering: we sys-
tematically evaluate a handful of natural language
prompts for their accuracy in a zero-shot setting,
and then select the highest-performing for sub-
sequent analyses. Due to computational costs,
we ignore the two largest models (OLMo2 32B
and Llama 3 70B). All prompts are listed in Ap-
pendix B, see Table 3a for addition and Table 3b
for subtraction.

OLMo2 1B
OLMo2 7B
OLMo2 13B
Llama 3 1B
Llama 3 3B
Llama 3 8B
Phi 4 15B

Add.
Sub.

21.39 1.12 0.17 2.58 0.45 0.25 0.00
28.12 0.36 0.16 1.43 0.03 0.01 0.00

Table 1: Overview of error rates (%, J.) on arithmetic
tasks in zero-shot setting.

An overview of the error rates from the LMs we
study is listed in Table 1. As is apparent, most mod-
els achieve high degrees of performance (except
for OLMO 2 1B); we also observe a trend towards
fewer errors for models with more parameters.

Error analysis. To assess how numerical infor-
mation and arithmetic performance are linked, we
evaluate whether the errors we see in these arith-
metic tasks are associated with defects of the num-
ber embeddings used as inputs.

We measure the error rate on the downstream
addition and subtraction task in two separate cases
— in the first case, both input tokens are decodable
by the probe, in the second case, at least one value
is not. The results can be seen in Table 2.

The results show that models tend to make more
errors when the input embeddings are misaligned
with the pattern used by the probe, as undecod-
able inputs lead to higher error rates in 8 out of 12
configurations. The effect is more prominent for
models with substantial error rates, such as OLMo?2
1B.

Direct intervention. We hypothesize that embed-
dings of tokens that our probes can not correctly
decode diverge from the model’s robust representa-

==
2B g = 8 8B 8
2 2 8 % % %
= = = E E E
= = = = = =
o =) =) — — —
Addition
decodable 20.30 0.98 0.16 2.48 0.46 0.24
undecodable 23.33 1.84 0.2014.86 0.28 0.28
Subtraction
decodable 24.61 0.32 0.19 1.43 0.03 0.01
undecodable 31.45 0.53 0.13 0.90 0.04 0.00

Table 2: Downstream arithmetic error rate (%, |) given
that (1) all tokens are decodable, and (2) at least one
token is non-decodable. Results are measured on all
possible input combinations. Phi is omitted because it
does not make errors.

tion scheme and thus contribute to errors in arith-
metic tasks. With this motivation, we test whether
a direct intervention on the embeddings of these
tokens can improve models’ performance on arith-
metic. In practice, we start from the fg, probes
described in Equation (3) and trained for Llama
3 1B and freeze all probe parameters. We then
perform gradient descent to optimize the embed-
dings of all incorrectly decoded tokens (namely 0,
4, 977 and 999) with respect to the probe decoding
loss, aiming to align those tokens with the overall
pattern discovered by the probe.

We finally measure how this embedding inter-
vention impacts model error rate on addition and
multiplication tasks involving these four tokens as
one of the inputs or expected outputs, using the
model’s best-performing template (a set of our ex-
perimental templates is listed in Table 3a).

We find that in additions involving these assum-
ably divergent tokens, our intervention reduces
26% of errors (from 17.6% to 13.0%). In mul-
tiplications, our intervention brings error reduction
by 9.4% (from 8.5% to 7.7%). This experiment,
while of an anecdotal scale determined by a low
error rate of our probes, shows that more accurate
probes of models’ representations can also guide
direct refinements of models’ possibly imprecise
embeddings, aligning them with the model’s gen-
eral hidden structure and bringing improvements
in accuracy of the model’s predictions.

5 Conclusion

In this paper, we have inspected the embedding rep-
resentations for number tokens across a range of
widely used open-source LMs. Our observations
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consolidate a growing body of studies showcas-
ing how LMs learn sinusoidal hidden structure in
number representations. Building upon this obser-
vation, we design a probing method leveraging this
structure that decodes LMs’ embeddings with near-
perfect accuracy across multiple models, demon-
strating that the quality of numeric representations
in pretrained LMs was strongly underestimated in
previous work. Still, we find a model (OLMo 2
32B) that deviates from this pattern, calling into
question the generalizability of the conclusions of
works such as Zhou et al.’s (2024). Finally, we
show that the preciseness of embeddings relative
to the sinusoidal pattern can explain a proportion
of practical errors on arithmetic tasks, especially
when models fail to align closely with this sinu-
soidal pattern.

Furthermore, we demonstrate improved accu-
racy on those tasks by aligning imprecise embed-
dings to the model’s learned embedding pattern.
To some extent, our findings curtail the validity
of offloading approaches for numerical reasoning
(Schick et al., 2023; Kadl¢ik et al., 2023): showing
that their initial premise — of models not learn
accurately representations of numbers — is incor-
rect. We hope that our findings will motivate future
work to rigorously compare relative advantages of
tool-using models in terms of computational effi-
ciency, and challenge future work towards the data
(Stefanik et al., 2024) and architecture refinements
(Spiegel et al., 2025) accelerating more efficient
learning of accurate representations of exact ele-
ments of language.

Acknowledgements

This work is supported by the Research Council of
Finland through project No. 353164 “Green NLP —
controlling the carbon footprint in sustainable lan-
guage technology”. This project has received
funding from the European Union’s (EU) Horizon
Europe research and innovation programme under
Grant agreement No. 101070350 and from UK
Research and Innovation (UKRI) under the UK
government’s Horizon Europe funding guarantee
(grant number 10052546). The contents of this
publication are the sole responsibility of its authors
and do not necessarily reflect the opinion of the
EU.

Limitations

Our work, while demonstrating the remarkable ac-
curacy of number embeddings in pre-trained lan-
guage models, comes with several limitations that
warrant consideration for future research.

First, our probing method, though highly effec-
tive for many models, relies on an assumed hidden
structure of models’ learned representations, and
therefore expects a broad a priori understanding
of models’ representation space. This necessarily
limits the applicability of our approach to models
where a known structure exists; Our results aim
to show that some language models indeed do ex-
hibit alternativel encoding schemes, exemplified by
OLMo 2 32B that, ableit being highly accurate in
arithmetics, can not be accurately probed by our
sinusoidal probes.

Second, our intervention method was performed
on a small-scale experiment, and its generalization
across a large suite of models remains an object for
future work.

Third, even when we do not perform any pre-
training of models, reproducing our experiments
requires access to computational resources. We
estimate that replicating all our results requires
around several hundred GPU hours.

Fourth, our analysis targets model embeddings.
It is thus limited to single-token representations,
and does not address the inner mechanisms of nu-
meric information processing in large language
model. This area also calls for further research.

While we recognize the ethical risks associ-
ated with Al research, given that our paper fo-
cuses on fundamentals of internal representations
of numbers within pre-trained language models
and their immediate impact on basic arithmetic
tasks, broader societal ethical concerns like bias,
discrimination, privacy, or job displacement are not
directly relevant. Our research operates at a funda-
mental level of understanding how models encode
numerical information, rather than exploring their
application or misuse in real-world systems with
downstream societal consequences.
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A Supplementary visualization

A.1 Wave-like patterns in embeddings

Figure 2 displays the sinusoidal patterns in Llama
3 70B and OLMo?2 13B after PCA dimensionality
reduction. For clarity, we only include the first 16
principal components.

A.2 Explainability plots for arithmetic tasks.

Model behavior. To better explain the behavior
of the LMs, we conduct a simple circuit analy-
sis and a feature attribution experiment using inte-
grated gradients (Sundararajan et al., 2017). For
convenience, we focus on the two smaller models
in our panel. OLMo 2 1B and Llama 3 1B.

Both experiments suggest one major difference
between operand pairs leading to failure and to
success: the probability assigned by the LLM to
the predicted output token tends to be statistically
lower when the model produces an incorrect out-
put, see Figure 4. We also observe the same subset
of heads being activated for failure and success
on the arithmetic task. Besides the usefulness of
this difference in probability mass for diagnostic
purposes, these experiments also suggest a differ-
ence in degree rather than kind between failures
and successes.

In Figure 5, we present an overview of head-level
attribution of the logits in Llama 2 1B. The same
heads in Layers 13 through 15 appear activated in
all cases, playing the same inhibitor and booster
roles. Incorrectly performed addition leads to a
noisier overall pattern. Remarkably, we observe
that activity occurs in the latter stages of the model,
whereas input embeddings (layer 0) already contain
precise numeric information, as per our probing
experiments. This delayed processing may explain
some of the errors we observe, despite the high
accuracy of our probes in Section 3.

A.3 Analysis of sin-base probes’ learned
representations

In Figure 6, we can see that our newly proposed
sin-like probes indeed learn to project input em-

beddings of models into an expected, generalized
wave-like representation.

B Experimental details

ER]

“r1+ro equals to
“The result of zi+zy is
“The result of x1 plus x5 is
“The result of z1 plus z9 =
“The result of z1 plus x9 =
“ry plus x9 equals to ”
="

“xr1 plus x9 equals
“ry plus x9 is equal to ”
“xr1t+xo equals ”
“x1t+xo is equal to
“xr1 plus xo equals
“ry plus x9 is equal to ”

2

2
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(a) Prompts considered for addition task. z; and x> are place-
holders for the augend and the addend. Prompts are delimited
by double quotes; trailing white-space is significant.

—

“The result of x1 minus x5 is
“The result of z1 minus x9 =
“The result of x1 minus x9 =
“r1 minus s equals to ”
S

“r1 minus zo equals
“r1 minus x9 is equal to ”
“r1-x9 equals ”
“r1-x9 is equal to
“r1 minus xzo equals
11  “xq minus x5 is equal to ”

2

E]

O 0 3 O L B W

2

—_
=)

(b) Prompts considered for subtraction task. x1 and zo are
placeholders for the minuend and the subtrahend. Prompts are
delimited by double quotes; trailing white-space is significant.

Table 3: Prompts considered for engineering of arith-
metic zero-shot setting.

We conduct a minimal prompt optimization in
Section 4 to maximize the performances on arith-
metic task. For all models below 20B parameters,
we explore the prompts listed in Table 3a and Ta-
ble 3b, and report results with the highest perfor-
mance in a zero-shot setting in Section 4.

The most successful prompts for addition are
prompt #4 for Llama 3 1B, 2B and 8B as well as
OLMo?2 1B, and prompt #3 for OLMO2 7B and
13B. As for subtraction, the most effective prompt
was prompt #1 for Llama 3 1B, OLMo2 1B and
7B, and prompt #2 for Llama 3 3B and 8B as well
as OLMo2 13B.
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Figure 2: Visualization of PCA (DIM=16) reduced number embeddings, selected models. Although most model
exhibit relatively regular wave-like patterns, OLMO 2 32B exhibit little regularity.

C Disclosure of usage of Al assistance

We disclose that we used Al assistance during im-
plementation of this work and its writing. Specif-
ically, we used Al-based code auto-completion
(Github Copilot) for increasing productivity of pro-
gramming, and conversational chatbots (OpenAl
ChatGPT, Google Gemini) for improving gram-
mar and fluency of the text. We guarantee that all
content is original and factually accurate.
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Figure 3: Maximal contribution (magnitude) of each Fourier base frequency’s to embedding features in PCA (d=128)
reduced space. Sparsity in this plot indicates strong regularity in the hidden structure of model embeddings. OLMo
2 32B has noticeably stronger contribution of all low-contribution frequencies, indicating high irregularity.
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(a) Llama 3 1B, addition. (b) Llama 3 1B, subtraction.
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(c) OLMo 2 1B, addition. (d) OLMo 2 1B, subtraction.

Figure 4: Probability mass on the predicted output token
when the LLM yields a correct vs. incorrect answer.
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(a) Llama 3 1B, addition performed correctly.
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(b) Llama 3 1B, addition performed incorrectly.
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(c) Llama 3 1B, subtraction performed correctly.
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(d) Llama 3 1B, subtraction performed incorrectly.

Figure 5: Head activations across arithmetic tasks for
Llama 3 1B, broken down by task (addition and subtrac-
tion) and success (correct or incorrect computation.
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(b) L2 regularization

Figure 6: Hidden representations of sin-base probes for
numeric input embeddings of Llama 3 1B model, af-
ter training with different regularization strategies show
that our sin-base probes learn to project numeric embed-
dings into a generalized, wave-like representation used
as target inductive bias.
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