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Abstract

Extracting causal relationships from a medi-
cal case report is essential for comprehending
the case, particularly its diagnostic process.
Since the diagnostic process is regarded as a
bottom-up inference, causal relationships in
cases naturally form a multi-layered tree struc-
ture. The existing tasks, such as medical re-
lation extraction, are insufficient for capturing
the causal relationships of an entire case, as
they treat all relations equally without consid-
ering the hierarchical structure inherent in the
diagnostic process. Thus, we propose a novel
task, Causal Tree Extraction (CTE), which re-
ceives a case report and generates a causal tree
with the primary disease as the root, provid-
ing an intuitive understanding of a case’s diag-
nostic process. Subsequently, we construct a
Japanese case report CTE dataset, J-Casemap,
propose a generation-based CTE method that
outperforms the baseline by 20.2 points in the
human evaluation, and introduce evaluation
metrics that reflect clinician preferences. Fur-
ther experiments also show that J-Casemap en-
hances the performance of solving other med-
ical tasks, such as question answering.

1 Introduction

A medical case report is a detailed document de-
scribing a case involving a rare disease or an im-
portant clinical experience, intended to share clin-
ical knowledge. Each report comprehensively en-
capsulates the diagnostic process, integrating rich
medical entities such as patient information (e.g.,
age), medical history (e.g., past diseases), clini-
cal findings (e.g., symptoms and test results), and
treatments. As described in Jha AK (2002), un-
derstanding the causal relationships among med-
ical entities is crucial for comprehending the di-
agnosis procedure. In this context, existing NLP
research has a history of engaging in medical re-
lation extraction (RE) (Parikh et al., 2019; Wolf
et al., 2019; Gao et al., 2023; Khetan et al., 2022)

A p.IausibIe céusal tree'."g
(complete that describes the case :

occlusion @ i i
BELHIEE coronary artery) [ SpO2/{&fE :
(acute ) : (SpO2/low)

5

myocardial o i
infarction) {EIEABR ; 5
(mitral valve

(foamy*sputum)

T -

mitral valve regurg

ZE2HEQTBAR
Hypothetical causal subtree (complete occlusion
@ coronary artery)

SpO2/{& &
(SpO2/low

fRAH pararp

(mitral valve *
regurgitation) (i spuitis)

(complete occlusion
@ coronary artery)

: SpO2/{&fE

Alist of (SpO2/low)

SRR
(foamy*sputum)

DI I—=EEAER
(Echocardiogram =

causally
unexplained
findings

mitral valve regurgitation)

Figure 1: A diagnostic bottom-up procedure.

to extract causal relationships between medical
entity pairs.

Clinicians can gain valuable insights to enhance
their practice by understanding the diagnostic pro-
cedure of an existing case (Bowen, 2006). The di-
agnosis procedure is often carried out in a bottom-
up manner, resulting in a comprehensive causal
tree extracted from the case report. An illustra-
tion of the diagnostic procedure is shown in Figure
1. In this process, first, clinicians organize a list
of findings as leaves. Second, clinicians predict
which causative disease corresponds to some set
of leaves, and construct a hypothetical causal sub-
tree with causative disease as the parent. Third, the
parents of subtrees serve as children in the bottom-
up procedure and clinicians iteratively infer the
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parent of each subtree. Finally, clinicians reach
the primary disease as the root and derive the most
plausible causal tree that can describe the entire
case. This indicates the limitation of the existing
RE task for pairwise causal relationships that lacks
consideration of multi-layered causal structures.
Consequently, they are insufficient for demonstrat-
ing expert-like medical text comprehension proce-
dures.

Therefore, we propose a novel causal tree ex-
traction (CTE) task that transforms case reports
into a causal tree. An example of a causal tree is
shown in the top box in Figure 1. The most dis-
tinctive characteristic of CTE is that it form a tree
structure with the primary diseases as roots. The
causal tree presents an at-a-glance understand-
ing of which parts of the case are important and
what the main causal consequences are, even if
the reader lacks specialized knowledge. In addi-
tion, causal relations has the potential to enhance
the keyword searching capabilities of case report
databases.

In this paper, we present a full pipeline of the
construction of a human-annotated CTE dataset,
LLM-based CTE method, and evaluation metrics.
First, we construct the J-Casemap dataset, which
consists of Japanese case reports and their corre-
sponding causal trees. The causal trees in the J-
Casemap have been annotated by highly special-
ized Japanese clinicians, and further experiments
show their benefits on medical QA tasks, making
them a potential resource for various medical ap-
plications.

Next, we propose a generation-based method
for CTE. Though recent LLMs have demonstrated
high performance in the medical domain (Kasai
et al., 2023), large commercial models like Chat-
GPT (OpenAl et al., 2024), Claude (Antropic,
2024), Gemini (Team et al., 2024) are restricted
from processing patient data due to data leakage
concerns. Therefore, we conduct experiments us-
ing Japanese specialized open LLMs and com-
bine continual pretraining with Japanese medi-
cal data and fine-tuning for CTE to compensate
for the lack of medical knowledge. The pro-
posed method achieves a human evaluation score
of 82.7, which substantially outperforms the base-
line (Ozaki et al., 2022) by 20.2 points. Ablation
study shows the effectiveness of continual pre-
training, especially in the low-resource setting.

Finally, we propose an automatic evaluation
method that reflects clinician preferences since hu-

man evaluation requires highly experienced clin-
icians and is costly. In evaluating CTE, the im-
portant factors are whether the primary disease of
the case is correctly extracted and whether rela-
tionships associated with those nodes at the higher
layer of the tree are correctly extracted. Con-
versely, the absence of extracted entities that are
less related to the diagnosis is not a critical is-
sue. For such a task, existing automatic evalua-
tion methods, such as triplet F1 used in relation
extraction tasks is not suitable because they can-
not determine the importance of each entity or its
position in the causal tree. Since this evaluation re-
quires extensive medical knowledge, we propose
a method that weights relational triplets and fo-
cuses on the salient entities based on human pref-
erence. This weighting method reduces the gap
between automatic evaluation scores and manual
evaluation scores, improving their correlation.

We summarize our contributions as follows: (1)
Introducing a novel CTE task that requires ad-
vanced text comprehension and constructing the
J-Casemap dataset consisting of case reports an-
notated with high-quality causal tree annotation;
(2) Proposing an LLM-based generative model for
extracting causal trees from case reports; (3) Dis-
cussing an automatic evaluation method for CTE
on case reports.

2 Task Definition: Causal Tree
Extraction (CTE)

This section explains the specifications of the CTE
task. A medical case report is represented as a
disease-centric tree, where each node offers the
modification information surrounding a head en-
tity (usually a disease or finding), and the edges
between nodes usually represent the causal or ev-
idential parent_of relation between diseases and
findings. For instance, the root “ ZUME/LMiifHZE
(acute myocardial infarction)” is evidenced by the
child “ 5242FA%E (complete occlusion)” in Fig-
ure 3. The root node of the tree structure corre-
sponds to the primary disease, which represents
the main factor that causes other diseases or find-
ings. Then, we link those evidential nodes through
edges (representing parant_of relationships) to
the root. These diseases may also cause their own
child nodes, naturally extending the depth of a
tree summary.

To be noticed, each node can have internal
structures, expressing the supporting informa-
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tion modifying the head entity. There are four
pre-defined modification relationships and corre-
sponding text symbols are denoted as follows:
located relation (symbol: @): Represents the
anatomical location of a disease or finding (e.g.,
“SE4PH%E (complete occlusion) @ EEHR (coro-
nary artery)”).

polarity relation (symbol: /): Indicates whether a
test result is high or low, or whether a treatment
was effective or not (e.g., “SpO2 / &M (Iow)”).
All numerical test results in the case report are
converted to polarity within the causal tree.

tested relation (symbol: =): Specifies the test
from which a finding was obtained (e.g., ‘[
T 22— (Echocardiogram) = fE1EF ¥ i (mitral
valve regurgitation)”).

Seatured relation (symbol: >): Represents de-
tails such as laterality or appearance features of
a disease or finding (e.g., “TAIRIK (foamy) > 5
(sputum)”).

In addition, the head node may have a special pre-
fix, H:. This symbol indicates that the node repre-
sents a medical history or treatment. For example,
"H: 7L a — )VEFRRHERE (Alcoholic liver fibro-
sis)" indicates that the parent disease has a history
of alcoholic liver fibrosis. Similarly, "H: A7 1
A K (Steroid) / %) (Effective)" indicates that
the parent entity was treated with steroids, and the
treatment was effective.

The head entity of located or polarity relation is
the preceding one and that of tested and featured
relation is the succeeding one. Modifier relation-
ships can be combined, such as in “MRI = DWI {5
{85 (high signal) @ 45 (right) > KKK (cere-
bral hemisphere).” For example, the case in Fig-
ure 3 shows that the condition of acute myocardial
infarction caused chest pain, complete coronary
artery occlusion, and mitral valve regurgitation.
Moreover, “mitral valve regurgitation” resulted in
a “low Sp0O2” test result and “foamy sputum”, and
it was observed through an “echocardiogram”.

2.1 Dataset Construction: J-Casemap

This subsection introduces the collection of the
CTE dataset, named J-Casemap. All annotated
data are based on case reports in internal medicine.
The most experienced doctor (a co-author of this
paper) first drafted the annotation schema. The an-
notation was then conducted by the doctors with at
least ten years of experience (See Section 2.2 for
details). They made iterative revisions to the anno-
tation schema and cross-validation of the annota-

i Causal tree
decompose
( DEFHEE, parent_of, )
parent relation Relation
(DAAMEZE, featured, ) | triplets
head relation

Figure 2: A tree summary is decomposed into triplets.

tion for years to complete around 15,000 medical
case reports. After excluding inappropriate data,
the final dataset consisted of 14,094 cases.

Since all case reports included in the J-Casemap
dataset are based on the J-CaseMap case search
database! that requires membership for access,
they cannot be released publicly. We will instead
release 100 causal tree samples® based on public
case reports from the Japan national medical li-
cense examination. In fact, we investigated pub-
licly available Japanese case report sources such
as J-STAGE, but their copyright policies do not
permit annotated versions of the case reports to be
public. We made our best effort in this regard, and
using data from the national medical licensing ex-
amination remains the only option at this moment.

2.2 Details of Manual Annotation

The annotators were instructed on the annotation
scheme—specifically, the structure of the causal
trees—and all annotations produced by them were
reviewed and revised as necessary by the chief an-
notator who took the lead in designing the causal
tree task. Therefore, the consistency of the anno-
tations has been sufficiently ensured.

The cost associated with annotating new causal
trees is described below. Various methods can
be considered for annotating causal trees. In our
study, the annotations were carried out by the same
clinicians who designed the causal tree format.
When extending to other data sources, hiring an-
notators familiar with the causal tree format, such
as those we employed, is expected to be more
costly. When creating your own CTE dataset,
you can reduce annotation costs through optional
methods that are better suited to your specific con-
text, such as the following:

* Hire multiple clinicians and introduce major-

"https://www.naika.or.jp/j-casemap/
“https://github.com/ku-nlp/J-CaseMap
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Figure 3: The SFT data example. The English translation version of the instruction (immediately following “###f5
7IR:”) is as follows: “Causal trees of case reports represent causal relations among diseases and modifier relations

such as anatomical locations or test results. Please generate a causal tree from the given case report.”

ity voting to reduce dependence on the exper-
tise of each single annotator

* Rigorously define an annotation scheme tai-
lored to the target data source and provide de-
tailed guidelines to annotators

e Hire crowd workers to create a first draft,
which is then revised by a expert

As our annotation schema is iteratively refined in
the future, the criteria will become more formal-
ized, and example cases will accumulate—both of
which will help to lower the barrier for future an-
notation efforts.

2.3 The generalizability of causal trees

Our task and dataset are tailored to Japanese case
reports in internal medicine. We are also consider-
ing expanding to case reports from other medical
specialties; however, this will be addressed as fu-
ture work. Moreover, to extend our approach to
different domains, such as other languages or clin-
ical contexts, we must take the following factors
into account:

The distribution of diseases may vary by re-
gion. For example, endemic diseases related to
specific cultures or lifestyles could be more preva-
lent.

The optimal causal tree format may differ
depending on the medical specialty or clinical
context. For instance, when applying our method
to radiology reports, the causal trees may not be as
deep as those for case reports in internal medicine.

Additionally, modifiers such as anatomical loca-
tions may not be directly applicable in fields like
dermatology or psychiatry.

3 Automated CTE Models

This section introduces two comparable meth-
ods of automatic causal tree generation: the RE
method and the generation method.

3.1 RE Method (baseline)

The RE task is originally designed to extract
triplets of relationships between entities, instead
of the tree structure. Thus, we first decompose a
tree summary into a list of triplets (Figure 2) with
each triplet assigned by one relation type among
the set: {parent_of, located, polarity, tested, and
featured} defined in Section 2.

RE methods typically require entity span infor-
mation in the input texts. However, our dataset
does not include span annotations for entities in
the case reports. Ozaki et al. (2022) applied dis-
tant supervision to heuristically align nodes with
words in the text, thereby generating pseudo-
labeled data. A supervised model trained on this
data was then used to predict relation triplets. Fol-
lowing this approach, we train an RE model as a
baseline in this paper. However, distant supervi-
sion inevitably introduces substantial noise in span
alignment, which becomes a bottleneck that limits
the performance of RE models.

Recently, generation-based approaches (Zeng
et al., 2020; Zhang et al., 2020; Wadhwa et al.,
2023; Wan et al., 2023) in an end-to-end manner
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(i.e., shorten the need of span information) have
achieved performance on sentence-level RE tasks
that rivals or even surpasses traditional RE models.
Moreover, the fact that LLMs have recently passed
the Japanese medical licensing exam (Kasai et al.,
2023), suggests LLMs are capable of learning ex-
tensive medical knowledge. All these findings
indicate that the LLM-based generation method
could be highly suitable for our CTE task. The po-
tential challenge lies in that our task is much more
complex than sentence-level RE.

3.2 Generation Method (proposal)

In this study, we propose to solve CTE using
LLMs, referred to as the generation model. Apart
from not relying on noisy spans like RE models,
the generation model also benefits from being able
to refer to previously predicted triplets as context,
allowing it to maintain consistency across triplets.

Since LLMs take textual input of the pairs of
case reports and tree summaries, the tree structure
must be converted into certain forms of text rep-
resentation as shown in Figure 3. We converted
the tree structure into text using a depth-first lin-
earization method with indentation indicating the
depth information. In this representation, each line
corresponds to a node, and the depth of indenta-
tion indicates the parent_of relationship between
nodes. As recent LLMs are typically trained on
datasets that include code (such as Python), using
indentation to represent nested structures is con-
sidered a natural format for LLMs. For determine
the textual representation of the tree structure, we
also experimented with a bracket-based format to
represent the nested structure. However, it was not
adopted because the nested structure broke down
the output format, making evaluation impossible.

We conduct two-step training to derive our gen-
eration model.

Continual pretraining (domain adaptation):
Since solving CTE requires highly specialized ex-
pertise, we leverage continual pretraining to in-
ject the Japanese medical domain knowledge into
the base models. Our Japanese medical corpora
are collected from two sources. One is the ab-
stracts from Japanese medical papers, the other
is the Japanese version of English MedPub trans-
lated by human experts. In summary, we collect
high-quality medical data (approximately 2B to-
kens) for the pretraining process.

100

80 B Generation model
B RE model

60

40

2° J nl
JJJI

b9 <o° @Q \:\Q \%
'\ m N Y oY A % q\'
score range

#case

Figure 4: Manual evaluation on the same 300 cases.
The generation and RE models achieved average scores
of 82.7 and 62.5, respectively.

Supervised fine-tuning: We implemented su-
pervised fine-tuning (SFT) on our collected J-
Casemap data as shown in Figure 3. Supervised
fine-tuning is a technique that uses labeled data
to adapt pre-trained LLMs to specific downstream
tasks. The prompt template filled with pairs of
case reports and tree summaries is fed into LLM
for SFT. The blue part in the prompt demonstrates
that only the tree summary is used to calculate the
cross-entropy loss for updating model parameters.

4 Evaluation

Comprehensively evaluating CTE requires the
medical perspective of human clinicians to differ-
entiate the importance of nodes, parent_of rela-
tionships, and modifiers for extracting salient di-
agnostic information. Since existing automatic
evaluation metrics in RE fail to align with hu-
man clinicians (as later shown in section 6.1), we
propose a weighting method emphasizing human
preference to narrow the gap.

In this section, we will introduce the manual
evaluation and the automatic evaluation, including
our proposed weighting method.

4.1 Manual Evaluation

The manual evaluation is scored on a scale of 0
to 100. The scoring criteria mainly follow a de-
duction system, where the less amount of manual
post-edit is needed, the higher score is assessed,
and vice versa. Human doctors are naturally al-
lowed to focus more on those important diseases
and any associated diseases in the tree structure
based on their expertise. Consequently, modifier
relations such as findings and locations are con-
sidered less important than the parent_of causal
relations in the trees. The most important dis-
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ease often corresponds to the root node of the tree,
and shallow layers tend to be more important than
deeper layers.

The human evaluation includes 0-100 scores
and brief comments explaining the reasons be-
hind each score. e.g., If score was deducted due
to an error in causal relationships between nodes:
“[comments] SEIEERAYZFME RO TRIZ, if
1L CHEEMEERE R & N RARTER DD 5 & &
Z AN\ X, 7 (Hypertrophic pachymeningitis and
anterior hypophysitis should be considered as par-
allel downstream nodes of microscopic polyangi-
itis.) “[score] 80 fio (80 points.)

The scores were assigned based on the amount
of post-processing deemed necessary.

4.2 Automatic Evaluation

To utilize automatic metrics, the output of the
structured summary was broken down into a set
of triplets, which were then compared to the set of
correct triples. A correct prediction was defined
as one where both the entities and the relationship
between them matched. Precision, Recall, and F-
score were calculated based on the number of cor-
rect prediction triplets.

In a entity matching for judging the correct-
ness of triplet, minor variations in notation and ty-
pographical errors were allowed to some extent.
First, a thesaurus was used to convert entities into
their representative forms. Next, the edit distance
between the output and correct entities was di-
vided by the length of the correct entity, and if this
ratio was below a threshold, the entities were con-
sidered a match. In this experiment, the thresh-
old was empirically set at 0.5. However, for polar-
ity information among modifier relations, no vari-
ations were allowed, and only exact matches were
considered correct.

Proposed weighting method Since existing
triplet-based evaluation treats all triplets evenly,
it fails to reflect human preference. In our ex-
periments, each triplet was weighted based on the
depth d of the node and the presence of modifier
relations. The depth of an entity is calculated as
the depth of its parent entity plus 1, and the depth
of a triplet is equal to the depth of the parent entity
or the head entity inside. In our automatic evalua-
tion method, when decomposing causal trees into
triplets, we use a dummy entity “[root]” with the
depth d = 0 as the parent of the root node. For
the example in Figure 3, the depth of the triplet

“([root], parent_of, = M/CMiifHE%E)” is 0, and the
depth of the triplet “(ZME/CMIifEZE, parent_of, {8
MEF%3R)” is 1. We design a weighting method of
each triplet as follows:

1
W = 1_|_erelati0’rz

Trelation 18 1 when the relation type is parent_of,
and % if not. C'is a constant hyper-parameter that
can be tuned. d is the triplet depth.

These weighting methods are heuristically de-
termined by referencing the manual evaluations
conducted by highly experienced clinicians, who
emphasized those top layers in the tree summaries
(e.g., the root) and parent_of relations over other
relation types. Details of the weighting formula
design and hyperparameter selection are provided
in Appendix A. The hyperparameter C' = 2, which
shows the highest correlation coefficients to hu-
man scores, is used in the following experiments.

5 Experiment Setups

This section describes the settings for continual
pretraining and SFT. See Appendix B for details
of continual pretraining, prompt templates, and
hyper-parameters.

Base LLMs As general-domain LLMs for
Japanese processing, we leverage the instruct
version of multilingual Japanese LLM-jp-13b-
vl (Aizawa et al., 2024), and Japanese Swallow-
13b (Fujii et al., 2024).

Continual pretraining We totally trained one
epoch on the 2B tokens for each model. For those
continually pre-trained LLMs, we re-name them
by adding the prefix “Med-."

Supervised fine-tuning We divided J-Casemap
into 13,426 training cases, 200 development cases,
and 468 test cases. We used LoRA (Hu et al.,
2022) as the SFT method.

Baseline exploration Initially, we considered a
wider range of baseline models, including RE
models with different configurations and genera-
tive models under 0-shot/few-shot settings. How-
ever, in the end, we decided not to include the
scores of other RE models and non-SFTed LLMs
for the following reasons:

* We did not experiment with additional RE
models due to a bottleneck caused by the
quality of weakly supervised data, which lim-
its the performance gains achievable with dif-
ferent RE architectures.
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Triplet-based evaluation

w/o weight

P R F1

RE model (DeBERTa) 50.7 48.2 494 412 514 458

LLM-jp-13b-v1

48.0 489 484 505 50.0 50.2

w/ weight Manual evaluaton

P R F1
62.5
82.7

Table 1: The comparison between automatic and manual evaluation on the subset of 300 test cases. To be noticed,
manual scores ranging from 0-100 are not directly comparable to the automatic triplet F1.

Domain Precision Recall Fl1

RE model (Ozaki et al., 2022) DeBERTa general 40.7 50.1 449
LLM-jp-13b-v1 general 48.2 49.1 48.6

Generation model Swallow-13b general 52.0 542 533
(Proposed method) Med-1lm-jp-13b-vl medical 48.3 49.2 4838
Med-swallow-13b  medical 52.8 543 53.6

Table 2: The automatic evaluation for the CTE task. "Med-" denotes the continually pretrained models.

* Without SFT, it becomes challenging for
models to adhere to the required tree-
structured format. Non-SFTed generative
models often result in nearly zero F1-scores
because they cause many formatting errors.
Regarding the use of non-SFT generative
models in a few-shot setting, we encoun-
tered a limitation with the maximum input
sequence length because of the long case re-
ports and complex tree structure, which al-
lowed us to insert only a single example. 1-
shot setting also results in nearly zero F1-
scores.

Eventual RE Baseline We fine-tune models via
the distant supervision approach mentioned in
Section 3.1. JaMIE (Cheng et al., 2022) is the
backbone RE model, and the encoder is initialized
by Japanese DeBERTa (He et al., 2023). Other
possible baselines like zero-shot or few-shot with-
out SFT were not adopted in this experiment be-
cause they all fail to follow the causal tree output
format and achieve near-zero triplet F1 scores.

6 Experimental Results

6.1 Pre-examination for Optimizing
Automatic Evaluation

As a pre-examination of evaluation metrics, we
chose the RE model and generation models based
on LLM-jp-13b-v1 as our subjects. We fine-tune
both models on the J-Casemap train set. We ran-
domly sample 300 cases from the test set to com-
pare the automatic and manual evaluations for the
RE and generation models. To be clarified, the

manual evaluation is scored on a scale of 0-100
and is not directly comparable to the automatic F1
score. Figure 4 shows the manual evaluation re-
sults. The generation model achieved an average
score of 82.7, significantly outperforming the RE
model by 20.2 points.

However, in the vanilla triplet evaluation (w/o
weight) of Table 1, the RE model obtained a
slightly higher score than the RE model, which
substantially contradicts the human evaluation re-
sults. Such inconsistency suggests that the vanilla
metric, lacking a focus on those salient entities,
does not align with human evaluation. After the
weighting method was applied, the correlation be-
tween the triplet score and the human score was
improved from 0.604 to 0.646 in Figure 7. Con-
sequently, the generation model obtained signifi-
cantly higher scores than the RE model in the new
metric (w/ weight), which suggested improved
consistency with the human evaluation and better
reflection of the doctors’ preferences. Please see
Appendix D.1 for details on case studies of triplet
weighting and the evaluation results.

6.2 Main Results

The automatic evaluation scores are shown in Ta-
ble 2. All generation models outperformed the RE
models substantially. Swallow-13b demonstrates
stronger performance, likely because it is built on
the powerful LLaMA, while LLM-jp models are
trained from scratch. Domain adaptation through
continual pretraining further improves the scores
slightly. More detailed investigations are con-
ducted in the later training curve part.
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Domain Precision Recall Fl

RE model (Ozaki et al., 2022) DeBERTa general 23.5 67.7 34.9
LLM-jp-13b-vl general 64.9 59.4 62.0

Generation model Swallow-13b general 69.2 63.6 66.3
(Proposed method) Med-1lm-jp-13b-vl medical 64.9 60.3 62.5
Med-swallow-13b  medical 66.1 65.8 66.0

Table 3: The automatic evaluation for the root node only. "Med-" prefix denotes the continually pretrained models.

== Swallow-13b == Med-swallow-13b

54
5 //
L
50
48
2500 4500 6500 8500 10500 12500 14500

SFT data size

Figure 5: Triplet-based F1 scores of fine-tuned mod-
els in settings with varying amounts of SFT data (25%,
50%, 75% and 100%).

As discussed in Section 4.1, manual evalua-
tions by clinicians prioritize the salient informa-
tion, such as the primary disease. We compute the
triplet F1 for the root nodes only, which can be
viewed as a primary disease classification task re-
quiring models to capture the primary disease of a
case report, as shown in Table 3. The precision of
the generation model significantly outperformed
that of the RE model. This indicates that the gen-
eration model adequately detects the focus of the
case compared to the RE model. Root scores de-
tail is discussed in Appendix C.

Training Curves of general domain and med-
ical domain LLMs We compare F1 scores of
LLMs fine-tuned with different data sizes (25%,
50%, 75%, and 100%) in Figure 5. The medical
model consistently outperforms the general model
under four data size settings, especially when the
data size is low (e.g., 25%, 50%, and 75%). Given
the fact that only 2B tokens of medical corpora
are leveraged during continual pretraining, which
is relatively a small size, we are optimistic about
the use of larger volumes of domain corpora and
more advanced domain adaptation techniques. We
leave these directions for future work.

MedQA MedMCQA IgakuQA
base 25.6 33.6 339
+ J-Casemap 22.7 29.3 26.3
+ MedQA 29.3 27.6 37.6
+ 2-stage 34.7 32.2 34.1
+ mix 37.0 34.1 38.6

Table 4: Accuracy of QA tasks. We compare the fol-
lowing three SFT settings: (1) only J-Casemap; (2)
only MedQA; (3) first J-Casemap then MedQA (2-
stage); (4) merge J-Casemap and MedQA (mix). The
evaluation were conducted using JmedBench (Jiang
et al., 2024).

6.3 Can CTE help Medical QA?

The J-Casemap data has the potential to serve a va-
riety of other medical tasks, given the comprehen-
sive understanding required for a model to com-
plete the CTE task.

We conduct the experiments on Japanese
medical question answering (QA) benchmarks,
like Japanese medical licensing exam dataset
IgakuQA (Kasai et al., 2023) and the translated
medical QA datasets MedQA (Jin et al., 2020),
MedMCQA (Pal et al., 2022) to see whether a
model trained on J-Casemap can be beneficial
to medical QA tasks. For each benchmark, we
used Med-swallow-13b as the base model, and the
training set of MedQA or added J-Casemap for
fine-tuning; a prompt example is shown in Ap-
pendix B.3.

As shown in Table 4, for MedQA, both the
“2-stage” and “mix” settings outperform SFT on
MedQA alone. For MedMCQA, even SFT on
MedQA hurts the performance due to the out-of-
domain distribution; after adding J-Casemap in the
“mix,” the performance improves and beats the
base model. In particular, “mix” performs better
than “2-stage” and achieves the highest scores on
all QA datasets. This indicates that our J-Casemap
data is valuable for facilitating LLMs’ medical
abilities in various tasks.
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Figure 6: Case study of an automatically generated causal tree. Blue entities are the focus of the tree.

6.4 Case Study

Examples of causal trees generated by the genera-
tion model are shown in Figure 6. Most errors in
the generation model’s output are failures of en-
tity extraction. Additionally, the problem of hallu-
cinations, where the model generates entities not
present in the original case report, was sometimes
observed in the causal trees ( See Appendix D.2
for details). In contrast, due to the nature of in-
formation extraction, RE models did not exhibit
such hallucinations. Further studies will explore
to what extent the hallucination issue can be mit-
igated through improvements to the base LLM or
additional training using medical domain texts.

7 Related Works

Various RE tasks have been undertaken in the
medical domain for different purposes. For in-
stance, Parikh et al. (2019) aimed at improving ac-
cess to medical information and Wolf et al. (2019)
tackles entity extracting from trustworthy med-
ical literature for question-answering assistants.
Dialogue-based entity extraction tasks designed to
assist in electronic medical record (EMR) entry
(Jeblee et al., 2019; Xia et al., 2022) have all been
explored. More complex tasks include extracting
predefined medical entities and their conditions
(Gao et al., 2023; Cheng et al., 2022; Yang et al.,
2023) and extracting findings and characteristics
from radiology reports (Park et al., 2024).

While recent LLMs have demonstrated the abil-
ity to perform RE as a generation task in general
domains (Wadhwa et al., 2023; Wan et al., 2023),
there are few studies applying LLMs to medical
RE, focusing only on temporal relations between
diseases (Kougia et al., 2024) or drug-related RE
(Bhattarai et al., 2024). While these studies fo-
cus on the conditions of medical entities, CTE is

unique in its focus on the causal relationships be-
tween higher-level diseases.

For collecting data on causal relationships be-
tween diseases and findings, (Khetan et al., 2022)
proposed a dataset with annotation specifications
covering four types of causal relationships be-
tween diseases. Compared to CTE annotation
specification, it differs because CTE constructs a
tree structure and extract primary diseases as root.

8 Conclusion

We proposed a novel task, causal tree extrac-
tion (CTE), which requires expert-like text com-
prehension, and we constructed the J-Casemap
dataset containing case reports and their causal
trees. We tackled the CTE task by fine-tuning
LLMs and achieved higher scores than existing
methods across both automatic and human eval-
uations. Furthermore, we improved the automatic
evaluation through heuristic weighting, which re-
flects clinicians’ preferences in automatic evalua-
tion scores.

The causal tree of case reports is useful not only
for clinicians but also for LLMs to train along with
other medical tasks, such as question answering
tasks. The insights into advanced causal reasoning
have the potential to be applied in domains beyond
medicine.

9 Limitations

Hallucination problems were seen in the LLMs’
outputs, but we have not discussed the solutions
in this paper. In future work, more advanced ap-
proaches like Retrieval-augmented generation or
entity linking between the causal tree and the case
report text are probably needed to find the support-
ing evidence towards more reliable generation.
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Besides, all of the case report data in this ex-
periment are from internal medicine, which po-
tentially limits the scope of this study. We
are ambitious in envisioning the future where
the J-Casemap data is expanded beyond internal
medicine to other departments, ultimately estab-
lishing a unified standard across different medical
fields.

The last limitation lies in the automatic evalu-
ation of CTE. Even though we already improved
automatic metrics, developing more comprehen-
sive and accurate automatic metrics that more
closely resemble manual evaluation is necessary.

10 Ethical Statement

The copyright of the J-Casemap dataset belongs to
the Japanese Society of Internal Medicine, making
it difficult to make the data publicly available due
to privacy and security concerns. we will release
the final version of the annotation schema and 100
causal tree samples based on public case reports
without ethical concerns from the Japan national
medical license examination.
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A Searching optimal triplet weights

We design two weighting methods for the triplet
evaluation as follows:
Weighting method 1:

1
W = 1_|_erelabtion

Trelation 18 1 when the relation type is parent_of,
and % if not.
Weighting method 2:

1
W = axrelation

Zrelation 18 1 When the relation type is parent_of,
and % if not. C'is a constant hyper-parameter that
can be tuned. d is the triplet depth.

We further calculate the correlation coefficients
of weighting factors in automatic evaluations,
shown in Figure 7. It was noticed that the weight-
ing of prioritized entities in lower layers showed a
higher correlation with manual evaluations. How-
ever, when extreme weighting was applied, the
correlation with manual evaluations decreased.
The Appendix D.1 provides a more detailed anal-
ysis.

After we assign heuristic weights to the auto-
matic evaluation, the performances become closer
to the human clinicians, as shown in Table 1. Cur-
rently, automatic evaluation is still unable to match
human doctors’ precision in judging salient infor-
mation and ideally identifying entities. We con-
sider this an open issue for future research. The
weighting pattern 1 (C' = 2), which shows the
highest correlation coefficients to human scores,
is used in all the following experiments.

B Experiments details

B.1 Continual Pre-training

Our dataset constructs of two corpora, 0.9B tokens
of English PubMed Abstracts & PubMed Central
articles from The Pile and 0.9B tokens of Japanese
medical texts used by JMedRoBERTa. We used
Megatron-LM as the training framework. We used
2 nodes 8 40GB A100 GPU with 61,035 steps in
total. We selected global batch size of 32, learning
rate of 3e-6 and warmup ratio of 0.1 in our train-
ing.
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Figure 7: Correlation between manual scores and au-
tomatic scores. 600 causal trees generated by the RE
model and generation model for 300 case reports were
automatically evaluated, and correlation coefficients
with human scores were calculated.

B.2 Prompt Template for Different LL.Ms

Due to differences in model compatibility, two
types of inference templates were used accord-
ing to the model. The inference templates fol-
low the examples provided on the model card
for each model. Additionally, a beginning-of-
sequence (BOS) token was added at the start of
the prompt, and an end-of-sequence (EOS) token
was added at the end of the LLM-generated out-
puts during training and testing.

B.3 MedQA prompt

We present the prompt for MedQA SFT in Figure
8.

B.4 Hyperparameters

We present the detailed hyper-parameters of the
pretraining in Table 7 and the fine-tuning stage in
Table 5.

C Comparison of Model Prediction
Trends

This section provides a more detailed analysis and
comparison of the RE model and the best gener-
ation model, Med-swallow-13b. Statistics on the
number of generated triplets and root nodes are
shown in Table 6. Compared to RE models, gener-
ation models extracted more triplets and had fewer
omissions in information extraction. Additionally,
the RE model predicts far more root nodes than
Gold, while the Generation model predicts about
the same number of roots as Gold. This indi-
cates that the generation model was able to des-
ignate a few critical entities as root elements and
link other entities comprehensively downstream.
On the other hand, the RE model enumerated ex-
tracted entities that did not have identified rela-

LT, BAVZRATRHERTT,
FEnE,

it TR
EMERBREBVTILEEL,

HH ER:

BEABOEFMHEESN, ZREEZEYELLTFEON R
BEZIT>TVET, FHiP, HEERTIEBCEEHFOEZ
PorTLEVET, BEIEAESRKBEEhET, BYEGHHE
ElCxL, BEEEELE<EETIESS L, BEN/NTHEICH
BedcezBT2d, COBRMREHELERETILERFR
WERERET. BRETEEIC, CORPMELEFMBEEHN S5E<L
LSIERLET, RICHEENTMBNEEL WVTEHRANDSS
ENTIH?

A BEICIZ—ZBARL. ThEFNREE, 5B
B.BEICIS—%2BMRL. ThEFHB/EZSICREATS
C.HIEERIZFL, COZRAZARLAVZERFRTERVELERAS
D. BfizfEZERICHETS

E. FMMEEOEREERTD

HH ISE
BHEICHL,

EREZBELICHLTHEE

COIRZRARLBEVWC LR TERVWEERS

Figure 8: MedQA prompt for SFT. The blue parts were
used for loss calculation.

tionships as root elements. These aligns with the
experimental results that showed a significant dif-
ference in precision and a smaller difference in re-
call.

D Case Study

D.1 Evaluation Comparison

Examples of a case study that focuses on auto-
matic evaluation are shown in Figure 9. In both
of the examples, the generated summary of the RE
model got good scores in the human evaluation,
but the automatic evaluation score is very low.

The reason for the evaluation failure of the case
1 is that the influence of matching errors for enti-
ties in lower layers becomes too significant, lead-
ing to a lower correlation with the manual eval-
vation. While manual evaluations can perfectly
match entities, automatic evaluations may fail to
do so.

The reason for the evaluation failure of the case
2 is the ambiguity of the causal relationship. It
is occasionally difficult to determine which is the
cause and which is the result of the causal relation-
ship between diseases, especially when multiple
diseases are combined.

Even with the most correlated weighting, the
correlation coefficient remained around 0.6, indi-
cating a substantial gap between manual and au-
tomatic evaluation scores. To perform automatic
evaluation more similar to human evaluation, a
more flexible evaluation method than evaluation
by triplet comparison is required.
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LLM-jp-13b-v1

Swallow-13b

model Med-lIm-jp-13b-v1 Med-swallow-13b
batch-size 64 64
max_seq 2048 4096
learning rate 1.00E-04 1.00E-04
warmup ratio 0.1 0.1

LoRA target modules c_attn, c_proj, c_fc

LoRA alpha 32
LoRA T 8
LoRA dropout 0.05

q_proj, k_proj, v_proj, o_proj,

gate_proj, up_proj, down_proj, Im_head

32
8
0.05

Table 5: Hyper-parameters of fine-tuning.

Triplets Root node

Gold 14,049 545
RE model 13,343 1,584
Generation model 14,453 550

Table 6: The statistics on the number of triplets and root
nodes. Med-swallow-13b is used as generation model.

Hyper-parameters Value
Constant learning rate  3.00e =%
Warm-up schedule Linear
Warm-up ratio 0.03
Weight decay 0.1
Data type bf16
Global batch size 32

Table 7: Hyper-parameters of pretraining

D.2 Hallucinations

Examples of a case study that focuses on halluci-
nation are shown in Figure 10. Addressing halluci-
nation issues is indeed an important direction, and
we plan to explore this more thoroughly as future
work. Below, we provide an analysis of notable
hallucinations observed in our system.

The errors found in the causal trees generated
by our proposed method can be categorized as fol-
lows:

1. Missing necessary entities from case reports
or errors in the relationships between enti-
ties. Because case reports assume that read-
ers possess medical knowledge, they rarely
explicitly describe the medical relationships
between entities in the text. Consequently,
errors may occur when the model * s lim-
ited medical knowledge leads it to misunder-
stand that an entity mentioned in a case report
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should not be included in a causal tree, or to
incorrectly assess the relationships between
entities.

. Unnecessary entity extraction or hallucinated

medical terms generation (e.g., Figure 10 of
the Appendix.) In the automatic generation
of causal trees, the model occasionally pro-
duces terms that do not appear in the original
case report texts. These hallucinations can be
broadly categorized into two types:

* Terms that are semantically similar to
the main topics in the text but are not
explicitly mentioned. For example, in a
case report concerning “ A AR
7 (large cell neuroendocrine car-
cinoma),” the fine-tuned model output
“HEME) > o< (malignant lymphoma)”
as the root node instead of “ AAHALAHHE
N%5318%% (large cell neuroendocrine car-
cinoma). ” Although the latter was not
mentioned in the case report, “ KA
#EN 53 W89 (large cell neuroendocrine
carcinoma)” and “ MY o< (ma-
lignant lymphoma) ” are considered to
be clinically similar malignant tumors,
as they can exhibit similar symptoms
and metastatic patterns. One possible
cause of this hallucination may be the
biased co-occurrence frequency or the
positional proximity of related terms in
the training data.

* Completely fabricated terms that do
not exist in reality. For example, in a
case involving “ KEIRAIEMERE (aor-
tic arteritis syndrome), ” the fine-tuned
model generated a downstream node la-
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Figure 9: Case study of evaluation.

beled “PIRENRAIEIZRETUAR (anti aor-
tic arteritis syndrome antibody) / F&{4:
(negative). ” However, the term “ T K
FAR ASIEMRAEPUAR (anti aortic arteritis
syndrome antibody) / fZ1 (negative) ”
does not exist in actual medical termi-
nology. This is considered to be a hallu-
cination influenced by the context of the
case report and the surrounding output.

3. Failure to infer contextually implied enti-

ties. Some case reports describe scenarios in
which a first disease triggers a second dis-
ease, which in turn causes a finding, repre-
senting a multi-step causal structure. In such
reports, it is occasionally the case that the first
disease and the finding are explicitly men-
tioned, whereas the second disease is omit-
ted. In these instances, it is necessary to in-
fer the second disease and incorporate it into
the causal tree based on medical knowledge.
This represents a highly challenging subtask
that requires advanced domain-specific ex-
pertise.

. Formatting errors. In our baseline investi-
gation, we attempted to generate causal trees
from case reports using commercial mod-

els such as ChatGPT. When testing multiple
prompts specifying the format of the causal
tree on models without fine-tuning, the out-
puts frequently contained formatting errors.
Such errors hinder the decomposition of the
causal tree into relational triplets, complicat-
ing subsequent evaluation. Notably, in our
experiments, no formatting errors were ob-
served in the outputs of fine-tuned generative
models.

We believe these issues stem from either a fail-
ure to adequately reference the context of the in-
put case report or from insufficient medical knowl-
edge or retrieval errors.

E Preliminary Experiment on
Non-Internal Medicine Texts

The model trained on our J-Casemap dataset can
be utilized to automatically generate draft versions
of causal trees, which can significantly facilitate
the creation of new structured datasets. Moreover,
we have found that J-Casemap dataset is also help-
ful for training structured prediction models on
other types of medical texts beyond case reports
as below.

We implement a preliminary experiment on
structuring radiology reports using our dataset.
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Figure 10: Case study of hallucinations.

Please note that in the radiology report task, an-
notations are performed on semantic blocks (often
at the sentence level), which differs from the set-
ting of the J-Casemap dataset.

In this experiment, we conducted supervised
fine-tuning (SFT) under two conditions:

* Using only 100 annotated radiology reports
(comprising 1,263 semantic blocks), and

* Performing SFT first on J-Casemap dataset
(approximately 14,000 cases), followed by
SFT on the radiology report dataset.

The results of SFT experiment is shown in Ta-
ble8. The models were evaluated on a test set
consisting of 104 semantic blocks. The automatic
evaluation score was 81.7 when using only the ra-
diology report data, and it improved to 85.8 when
combining it with J-Casemap dataset.

These results suggest that our dataset con-
tributes to the automatic generation of structured
data in domains where structured resources are
scarce. We consider the construction of datasets
in other domains to be promising future work.

SFT dataset F1
Radiation reports  81.7
2-stage 85.8

Table 8: Evaluation results (accuracy) of the structured
radiology report. We compare three settings of SFT-
trained models: SFT using only radiology reports (Ra-
diation reports), SFT using the J-Casemap dataset fol-
lowed by SFT using radiology reports (2-stage)."
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