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Abstract

Recent advances in cross-prompt automated
essay scoring typically train models jointly
on all available source domains, often requir-
ing simultaneous access to unlabeled target
domain samples. However, using all sources
can lead to suboptimal transfer and high com-
putational cost. Moreover, repeatedly access-
ing the source essays for continual adapta-
tion raises privacy concerns. We propose a
source-free adaptation approach that selectively
merges the parameters of individually trained
source models without further access to the
source datasets. In particular, we mix the
task vectors—the parameter updates from fine-
tuning—via a weighted sum to efficiently sim-
ulate selective joint-training. We use Bayesian
optimization to determine the mixing weights
using our proposed Prior-encoded Information
Maximization (PIM), an unsupervised objec-
tive which promotes score discriminability by
leveraging useful priors pre-computed from the
sources. Experimental results with LLMs on
in-dataset and cross-dataset adaptation show
that our method (1) consistently outperforms
joint-training on all sources, (2) maintains su-
perior robustness compared to other merging
methods, (3) excels under severe distribution
shifts where recent leading cross-prompt meth-
ods struggle, all while retaining computational
efficiency.1

1 Introduction

Automated essay scoring (AES) is a machine learn-
ing task of developing a system that scores es-
says written in response to a given prompt (i.e.,
writing instructions). A prompt represents a do-
main as different prompts may have distinct top-
ics. Early works had achieved success in prompt-
specific AES (Chen and He, 2013; Taghipour and
Ng, 2016; Dong et al., 2017; Farag et al., 2018)

* Corresponding author.
1Code is available at https://github.com/sanwooo/

composable-cross-prompt.

Method
multi-
source

adaptation

leverages
unlabeled

target essays

no source
essays for
adaptation

supports
source

selection

Phandi et al. (2015) ✗ ✗ ✗ ✗
Cao et al. (2020) ✗ ✓ ✗ ✗

Ridley et al. (2020) ✓ ✗ ✓ ✗
Chen and Li (2023) ✓ ✓ ✗ ✗

Ours ✓ ✓ ✓ ✓

Table 1: Comparison of adaptation settings among holis-
tic cross-prompt AES methods based on key criteria.
Our proposed setting satisfies all listed criteria.

where test samples were assumed to belong to
the same prompt as training samples. Yet prompt-
specific models were found to struggle when tested
on new prompts (Phandi et al., 2015), accelerating
efforts on cross-prompt AES with domain adap-
tation or generalization techniques (Zesch et al.,
2015; Jin et al., 2018; Chen and Li, 2023; Jiang
et al., 2023).

Despite the adaptability to the data-scarce target
prompt, current cross-prompt methods typically as-
sume simultaneous access to the data from both
the source and target prompts when the target sam-
ples are leveraged for adaptation (Cao et al., 2020;
Chen and Li, 2023). Yet this assumption is often
violated due to privacy concerns in releasing the
source essays. Instead, models trained from the
source prompts are safer to distribute. Hence adapt-
ing without source datasets holds great practical
implications, which aligns with the unsupervised
source-free domain adaptation (SFDA) paradigm
(Liang et al., 2020; Wang et al., 2021; Huang et al.,
2021).

On the other hand, selecting the most relevant
source domains remains a crucial yet underex-
plored aspect in cross-prompt AES. Most works ei-
ther adopt single-source adaptation setting (Phandi
et al., 2015; Dong and Zhang, 2016; Cozma et al.,
2018), or train the model jointly on all source do-
main datasets for multi-source adaptation (Jin et al.,
2018; Ridley et al., 2021; Do et al., 2023; Chen and
Li, 2024), the latter likely motivated by the belief
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Figure 1: Agreement with human raters (QWK) on the target prompts of ASAP dataset, evaluated using BERT
(Devlin et al., 2019) trained jointly on varying number of source prompt datasets. For each target prompt, the
remaining prompts serve as source prompts. Training details are provided in Appendix A.

that more sources yield better performance. How-
ever, our pilot study in Figure 1 suggests that care-
fully selecting a subset of source prompts clearly
outperforms training on all sources. Nevertheless,
the high cost of joint training makes exhaustive
search for the optimal subset impractical.

In this work, we explore merging models (Worts-
man et al., 2022; Matena and Raffel, 2022;
Ainsworth et al., 2023) as a scalable alternative
to joint training for source-free domain adaptation
in cross-prompt AES. That is, we combine mod-
els fine-tuned on individual source prompts with-
out re-training. In particular, the weighted sum
of the models’ task vectors (Ilharco et al., 2023)—
parameter updates after fine-tuning—is added back
to the pre-trained model (Eq. 2), which effectively
mimics joint training in a post-hoc fashion. It then
allows for fast and iterative search over the mixing
coefficients that (soft-) select the task vectors.

To guide this search in the absence of the tar-
get labels and source datasets, we propose Prior-
encoded Information Maximization (PIM), an
information-theoretic objective that leverages use-
ful priors pre-computed from the labeled source do-
mains, to enhance scoring performance (Sec. 3.1).
The objective is coupled with Bayesian optimiza-
tion for an efficient optimization of PIM (Sec. 3.2).

We merge lightweight LoRA adapters (Hu et al.,
2022) of large language models (LLMs), moti-
vated by LLMs’ extensibility to generate ratio-
nales (Chu et al., 2025) and the surging efforts

to build ever-stronger LLMs. Experiments on in-
and cross-dataset settings show that: our method
(1) outperforms training jointly on all sources, (2)
surpasses other merging methods in a majority
of cases, (3) remains robust under severe shifts
(i.e., cross-dataset) where recent cross-prompt AES
methods struggle, and (4) is time-saving than adap-
tation methods training jointly on all sources.

In summary, our contributions are as follows:

• We propose a domain-adaptive model merging
approach for source-free cross-prompt AES.
See Table 1 for the comparison of settings.

• We design an unsupervised objective which
promotes model’s score discriminability regu-
larized by priors derived from the sources.

• Beyond in-dataset, we validate our method
in cross-dataset adaptation, under which our
method remains more robust than recent cross-
prompt methods.

2 Preliminary

Problem Statement. This paper uses "prompt"
and "domain" interchangeably. We consider the
unsupervised source-free domain adaptation prob-
lem (Liang et al., 2020; Wang et al., 2021; Yang
et al., 2022) with multiple source domains for cross-
prompt AES, where the input x ∈ V∗ is a se-
quence of tokens and the output y ∈ Z is an integer
score. A pre-trained model M(θpre) is fine-tuned
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Figure 2: An illustration of our method for source-free cross-prompt AES. Left: Source models and statistics
are pre-trained before adaptation. Right: During source-free adaptation, merging coefficients are optimized via
Bayesian optimization to optimize the prior-encoded information maximization (PIM) criterion (Eq. 9).

on each one of the source datasets separately, and
additional statistics Sj may be computed for each
source, after which the source datasets become no
longer available (Adachi et al., 2025). We denote
M(θj) as the model fine-tuned on j-the source
dataset DSj = {(x(i)Sj

, y
(i)
Sj
)}Nj

i=1, parameterized by
θj ∈ Rd. Note that separating each source domain
apart is not a requirement for source-free adapta-
tion, but is a stricter setting we aim to address via
model merging.

During the adaptation phase, we have access
to the fine-tuned models {f(θj)}Mj=1, an unlabeled

target dataset DT = {(x(i)T )}NT
i=1 and optionally, the

pre-computed statistics {Sj}Mj=1. We note that the
score range may vary across domains (e.g., Table 2).
During inference, we require the model to adapt to
potentially novel score ranges, different from the
common approach that normalizes all score ranges
to a shared scale (Taghipour and Ng, 2016; Cozma
et al., 2018; Wang and Liu, 2025).

LLM Ordinal Regression. We employ LLMs
for scoring essays—an ordinal regression task im-
plemented by autoregressive generation. Follow-
ing Lukasik et al. (2025), we assume each score
y corresponds to a unique string representation
str(y) ∈ V∗ (e.g., 2 → "2"). Each input-output
pair (x, y) is transformed into a formatted pair
(x′, y′) using an instruction template (e.g., see Ap-
pendix C.1). The pre-trained model M(θpre) is
then instruction-tuned on the source dataset Dj to
maximize the likelihood of generating the answer:

θj = argmax
θ

E
x,y

[
p(y′|x′, θ)

]
(1)

Model Merging. The seminal work of Ilharco
et al. (2023) introduced the concept of a task vector
τj := θj − θpre defined as the parameter updates
obtained through fine-tuning. Interestingly, adding
task vectors from multiple tasks to the pre-trained
model has been shown to effectively approximate
multi-task training with a performance drop, a find-
ing further verified by follow-up studies (Yadav
et al., 2023; Yu et al., 2024; Deep et al., 2024). We
follow this merging framework and simulate selec-
tive joint-training through a weighted sum of the
task vectors:

θmrg = θpre +
M∑

j=1

λiτj (2)

where {λj ∈ R}Mj=1 are the mixing coefficients.
Updating the entire parameters results in large

task vectors, making merging less efficient. We
instead adopt low-rank adaptation (LoRA) (Hu
et al., 2022) and merge lightweight adapters. LoRA
fine-tunes models by learning low-rank updates:
for a weight matrix W ∈ Rm×n, the update is
W + ∆W = W + BA, where B ∈ Rm×r

and A ∈ Rr×n are learnable low-rank matrices
(r ≪ min(m,n)). Accordingly, we define task
vectors in terms of LoRA adapters:

τj = θj − θpre =
L

||
l=1

flatten(B(l)
j A

(l)
j ) (3)

where || denotes concatenation of the flattened vec-
tors (flatten(B(l)

j A
(l)
j )) across layers. Layers with-

out adapters contribute zeros.
Given this setup, merging models via a linear

combination of LoRA adapters (Eq. 2, 3) reduces
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our objective to selecting the mixing coefficients
λ1, . . . , λM that lead to an optimal performance on
the target prompt.

3 Method

Given the absence of target labels in cross-prompt
essay scoring, we establish an objective that pro-
motes the model’s scoring performance from an
information-theoretic view (Sec. 3.1), and employ
Bayesian optimization to maximize this objective
without costly backpropagation (Sec. 3.2). Figure
2 illustrates an overview of our method.

3.1 Prior-encoded Information Maximization
In essay scoring where target labels are ordinal
scores, a plausible scoring model would assign
unambiguous labels for individual essays, while re-
taining the discriminability across different essays.
In standard classification setup, this idea has been
formalized as maximizing the mutual information
(MI) between the input x and the output y (Bri-
dle et al., 1991; Krause et al., 2010; Liang et al.,
2020). In what follows, we revisit this principle,
study which of its properties can be modified to
be better applied in essay scoring, and propose our
final objective.

The MI between input x and output y under a
discriminative model p(y|x, θ) is given by:

I(y;x) = H(p(y|θ))−H(p(y|x, θ)) (4)

where H(·) denotes entropy. In classification,
I(y;x) is empirically estimated as

I(y;x) = H(
1

N

N∑

i=1

p(y|x(i), θ))

− 1

N

N∑

i=1

H(p(y|x(i), θ)) (5)

in which p(y|x(i), θ) ∈ RC denotes the output
probability of a sample x(i). Essentially, maximiz-
ing I(y;x) balances between sample-wise sharp-
ness and global discriminability in predictions.

However, directly applying this criterion to ordi-
nal regression can be problematic. Note that max-
imizing H(p(y|θ)) = logC − KL(p(y|θ)||U) is
equivalent to minimizing KL-divergence between
p(y|θ) and a uniform distribution U . Given the
classes are assumed to be sorted discrete scores, U
is unlikely to be the true target prompt score dis-
tribution p(y), since assigning extreme scores are
less likely than the mid-range ones.

Based on this insight, we propose Prior-encoded
Information Maximization (PIM), where we ex-
tract an informative prior q(y) from the labeled
source domains, and use it in place of U for MI
maximization. To suit source-free adaptation, we
pre-compute the marginal distribution over the
scores for each source domain before removing the
dataset. In what follows, we denote the subscript
Sj as j for brevity. For j-th source domain, we first
scale the scores {y(i)j }Nj

i=1 to the [0, 1] interval:

ỹ
(i)
j = (y

(i)
j − aj + 0.5)/(bj − aj + 1) ∀i (6)

where yj is assumed to be an integer ranging
from aj to bj . Next, we fit a Beta distribution
Beta(αj , βj) with the scaled scores via maximum
likelihood estimation:

(αj , βj) = argmax
(αj ,βj)

Eỹj [Beta(ỹj ;αj , βj)] (7)

where Beta(ỹj ;αj , βj) is the probability density
at ỹj . Beta(α, β) is a suitable abstraction of a set
of noisy (scaled) scores, given that it is unimodal
when α > 1, β > 1 and flexible in modeling the
skewness of the distribution bounded by [0, 1], just
as essay scores being bounded and roughly uni-
modal.

During the adaptation stage, we unify all source
Beta distributions into a single Beta(αS , βS)
to further reduce domain-specific noise. Essen-
tially, we consider the mean µ and variance σ2

of the mixture 1/M
∑M

j=1Beta(αj , βj) and set
Beta(αS , βS) such that its mean and variance
equal to µ and σ2 (derivations in Appendix B.1).
This unified distribution is then discretized into a
categorical distribution q(y) ∈ RCT over the target
prompt (sorted) score classes:

qc(y) =

∫ c
CT

c−1
CT

Beta(y;αS , βS) dy, for c ∈ 1:CT

(8)
yielding source-informed prior probabilities over
CT evenly spaced bins. Our intuition is that q(y)
offers better approximation to the true distribution
p(y) than U in general.

Finally, we define our PIM objective f(λ) as
maximizing the prior-encoded mutual information
by inserting q(y) in place of U :

f(λ) = −KL(p(y|λ)||q(y))−H(p(y|x, λ)) (9)

Here, the objective is written in terms of the merg-
ing coefficients λ = [λ1, . . . , λM ]⊤ ∈ RM to
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explicitly state that the parameter θ is solely de-
termined by λ in our chosen merging framework
(Eq. 2). In the context of using LLMs, we ob-
tain p(y|x(i), λ) ∈ RCT by truncating the next-
token probabilities of the score-predicting token
(the <assistant> token in our case) to CT score
tokens (e.g., "1", "2", "3"). The truncated probabili-
ties are then normalized to form a valid distribution
which sum to 1.

3.2 Bayesian Optimization
In determining the mixing coefficients λ, recent
studies have shown success in using Bayesian opti-
mization (Jang et al., 2024; Liu et al., 2024) which
is computationally less demanding than training
the coefficients (Wortsman et al., 2022). Following
this approach, we leverage Bayesian optimization
to maximize f(λ) (Eq. 9) in terms of λ ∈ RM

without costly backpropagation.
Essentially, the algorithm treats f(λ) as a black-

box function and constructs a surrogate of f(λ)
as a sample from a Gaussian Process—a distri-
bution over functions (Williams and Rasmussen,
2006). Given the prior mean function µ0, covari-
ance function Σ0 and k observations f(λ(1:k)) :=
{f(λ(i))}ki=1, it updates the posterior distribution
over the function value at the current (k + 1)-th
iteration, i.e., f(λ(k+1))|f(λ(1:k)). Next, the acqui-
sition function determines where to sample λ(k+1)

based on the posterior. In particular, we use Ex-
pected Improvement (EI) which maximizes the
expected gain over the current best value f∗(k) :=
maxλ(i){f(λ(i))}ki=1:

argmax
λ(k+1)

E
f(λ(k+1))

[
max(f(λ(k+1))− f∗(k), 0)

]

(10)
This process of posterior estimation and next point
sampling is repeated until convergence. The final
solution is argmaxλ(i){f(λ(i))}Ni=1 for N total it-
erations. See Appendix B.2 for additional details.

4 Experiment

4.1 Experimental Setup
Datasets. We validate our approach on two sce-
narios: (1) in-dataset cross-prompt scoring and (2)
cross-dataset cross-prompt scoring. All samples
are formatted using a simple instruction template,
as in Appendix C.1.

In-dataset cross-prompt scoring follows the
standard setup (Jin et al., 2018; Ridley et al., 2020;
Li and Ng, 2024) where each prompt in a dataset

Dataset Prompt #Essay Genre Avg Len Range

ASAP

1 1783 ARG 427 2-12
2 1800 ARG 432 1-6
3 1726 RES 124 0-3
4 1772 RES 106 0-3
5 1805 RES 142 0-4
6 1800 RES 173 0-4
7 1569 NAR 206 0-30
8 723 NAR 725 0-60

PERSUADE2.0

1 1656 ARG 339 1-6
2 2157 ARG 641 1-6
3 1670 ARG 552 1-6
4 1552 ARG 573 1-6
5 1372 RES 330 1-6
6 2046 RES 455 1-6
7 1862 RES 399 1-6
8 1583 RES 381 1-6

Table 2: Dataset Statistics. Genre: ARG (argumenta-
tive), RES (source-dependent), NAR (narrative). Avg
Len: Average essay length in words. Range: Score
range.

is held out as a target domain and the remaining
prompts serve as source domains. We use ASAP2

(Hamner et al., 2012) dataset, which includes es-
says written by students from grade 7 to 10 in re-
sponse to 8 prompts accross various genres and
score ranges. We adopt the same dataset splits
from Ridley et al. (2021) where each prompt is
split into training and validation sets approximately
by 5.6 : 1. When a prompt serves as the target
domain, its two splits are combined into the test set.
Dataset statistics are shown in Table 2.

Cross-dataset cross-prompt scoring is a new
setting we introduce to validate our approach and
the baselines under severer distribution shifts. In
particular, we use all prompts from ASAP as
source domains and treat each prompt from PER-
SUADE2.0 (Crossley et al., 2024) as the target
domain. PERSUADE2.0 contains essays written
by U.S. students in response to 15 prompts, among
which we choose 4 from independent writing and
another 4 from source-based writing during eval-
uation. Essay topics of the prompts are listed in
Appendix C.2.

Models & Adapters. We conduct supervised
fine-tuning on Llama-3.1-8B-Instruct (Grattafiori
et al., 2024) (8 billion parameters) and Phi-4-mini-
instruct (4 billion parameters) (Microsoft et al.,
2025), for each prompt from the source domains
independently. Details of LoRA fine-tuning are in
Appendix C.3. At inference, we use greedy decod-
ing and parse the score from the model’s response.

2https://www.kaggle.com/c/asap-aes/data
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Model Scheme Method P1 P2 P3 P4 P5 P6 P7 P8 Avg.

gpt-4.1-mini zero-shot - 0.063 0.423 0.459 0.672 0.480 0.624 0.321 0.390 0.429

llama-3.1-8b-it

zero-shot - 0.109 0.246 0.239 0.240 0.361 0.407 0.321 0.484 0.301

merge

Averaging 0.526 0.465 0.527 0.593 0.720 0.738 0.608 0.163 0.542*
Fisher Merging 0.437 0.541 0.521 0.590 0.670 0.724 0.562 0.167 0.526*
RegMean 0.482 0.461 0.526 0.580 0.724 0.731 0.580 0.135 0.527*
Task Arithmetic 0.787 0.368 0.604 0.632 0.772 0.741 0.627 0.120 0.581*
TIES-Merging 0.582 0.527 0.532 0.619 0.711 0.752 0.595 0.155 0.559*
AdaMerging 0.756 0.285 0.577 0.619 0.767 0.664 0.661 0.059 0.548*
PIM (Ours) 0.682 0.562 0.612 0.647 0.762 0.690 0.711 0.152 0.602

joint-train - 0.606 0.512 0.611 0.656 0.743 0.760 0.666 0.257 0.601

phi-4-mini-it

zero-shot - 0.084 0.305 0.238 0.479 0.367 0.350 0.131 0.184 0.267

merge

Averaging 0.383 0.613 0.494 0.625 0.528 0.652 0.396 0.334 0.503*
Fisher Merging 0.348 0.625 0.490 0.617 0.503 0.637 0.389 0.299 0.489*
RegMean 0.348 0.607 0.507 0.619 0.577 0.666 0.378 0.286 0.498*
Task Arithmetic 0.772 0.334 0.618 0.654 0.690 0.684 0.683 0.211 0.581*
TIES-Merging 0.532 0.568 0.512 0.625 0.542 0.681 0.448 0.291 0.525*
AdaMerging 0.742 0.316 0.569 0.618 0.645 0.650 0.608 0.227 0.547*
PIM (Ours) 0.737 0.585 0.637 0.612 0.731 0.654 0.692 0.387 0.629

joint-train - 0.578 0.469 0.622 0.655 0.668 0.740 0.590 0.376 0.587*

Table 3: In-dataset cross-prompt evaluation results on ASAP → ASAP, measured by QWK. P1-8 denotes Prompt
1-8. For each held-out target prompt, other 7 prompts constitute the source domains. *: Significant improvement
(p < 0.05) of our method over a merging baseline/joint-training in Avg. QWK. The best average QWK is boldfaced.

Baselines. We compare our approach against re-
cent merging methods which we apply to source-
free adaptation setting: Averaging (Wortsman et al.,
2022), Fisher Merging (Matena and Raffel, 2022),
RegMean (Jin et al., 2023), Task Arithmetic (Il-
harco et al., 2023), TIES-Merging (Yadav et al.,
2023) and AdaMerging (Yang et al., 2024c).

In addition, we report performance of joint-
training on all sources, and top-performing cross-
prompt methods—PAES(Ridley et al., 2020) and
PMAES (Chen and Li, 2023), both of which train
the model jointly on all source domains. Partic-
ularly, PMAES requires unlabeled target samples
simultaneously. See Appendix C.4 for the descrip-
tions and implementation details of the baselines.

Evaluation Metric. Following the standard eval-
uation protocol (Phandi et al., 2015; Cao et al.,
2020; Chen and Li, 2023), we use the Quadratic
Weighted Kappa (QWK) to measure the agreement
between human-rated scores and predicted scores.

Implementation Details. We use Bayesian Op-
timization toolkit (Nogueira, 2014–), with the Ex-
pected Improvement (ξ = 0.01) acquisition func-
tion. We initially let the algorithm probe 10 random
points, and iterate through 30 subsequent steps.
Each coefficient λj is bounded by [0, 1]. We ran-
domly select 64 unlabeled target prompt samples
fixed across all iterations, and compute p(y|x(i), λ)
on those samples. If not otherwise stated, experi-

mental results are averaged over 5 random seeds.
Our method is robust to the choice of the number
of iterations and unlabeled target prompt samples,
as detailed in Appendix C.5.

4.2 Main Results

In-dataset Cross-prompt. Results are shown in
Table 3. First, our merging approach matches or
surpasses joint training on all sources, validating
the effectiveness of selecting beneficial source do-
mains for adaptation. In general, linear combina-
tion of task vectors underperforms its joint-training
counterpart (Ilharco et al., 2023), which renders
the progress of our method over joint-training im-
pressive. Second, our method exceeds all merging
baselines in average QWK, with the improvements
observed to be statistically significant, highlighting
the importance of merging strategy specifically de-
signed for domain adaptation. Third, our method
brings a notable improvement over zero-shot base-
lines, with average gains of 0.301 on Llama-3.1-
8B-it and 0.362 on Phi-4-mini-it. It also outper-
forms zero-shot GPT-4.1-mini by 0.200, demon-
strating the effectiveness of our method against an
advanced LLM.

Cross-dataset Cross-prompt. Table 4 reports
results on ASAP → PERSUADE2.0 transfer. Con-
sistent with the in-dataset setting, our method
shows improvements over joint training, e.g., by
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Model Scheme Method P1 P2 P3 P4 P5 P6 P7 P8 Avg.

llama-3.1-8b-it

zero-shot - 0.136 0.363 0.278 0.309 0.043 0.120 0.166 0.139 0.194

merge

Averaging 0.365 0.529 0.407 0.397 0.222 0.463 0.342 0.296 0.378*
Fisher Merging 0.420 0.599 0.472 0.479 0.248 0.497 0.392 0.348 0.432*
RegMean 0.340 0.513 0.391 0.399 0.208 0.441 0.322 0.291 0.363*
Task Arithmetic 0.412 0.377 0.310 0.311 0.164 0.294 0.264 0.340 0.309*
TIES-Merging 0.474 0.551 0.438 0.427 0.275 0.511 0.368 0.343 0.423*
AdaMerging 0.396 0.122 0.116 0.151 0.153 0.216 0.206 0.270 0.204*
PIM (Ours) 0.504 0.734 0.674 0.652 0.197 0.464 0.420 0.449 0.512

joint-train - 0.515 0.406 0.438 0.448 0.243 0.367 0.342 0.454 0.401*

phi-4-mini-it

zero-shot - 0.181 0.216 0.397 0.515 0.341 0.345 0.352 0.386 0.342

merge

Averaging 0.520 0.581 0.547 0.572 0.214 0.567 0.522 0.489 0.502
Fisher Merging 0.533 0.594 0.564 0.579 0.224 0.577 0.529 0.500 0.512
RegMean 0.502 0.557 0.530 0.567 0.206 0.568 0.508 0.488 0.491
Task Arithmetic 0.337 0.353 0.347 0.295 0.110 0.330 0.274 0.278 0.291*
TIES-Merging 0.513 0.613 0.543 0.518 0.199 0.565 0.505 0.490 0.493
AdaMerging 0.474 0.149 0.200 0.156 0.162 0.360 0.407 0.365 0.284*
PIM (Ours) 0.438 0.581 0.671 0.668 0.186 0.480 0.407 0.434 0.483

joint-train - 0.545 0.439 0.509 0.564 0.217 0.447 0.422 0.480 0.453*

Table 4: Cross-dataset cross-prompt evaluation results on ASAP → PERSUADE2.0, measured by QWK. For each
target prompt in PERSUADE2.0, all 8 prompts in ASAP constitute the source domains.

0.111 on Llama3.1-8B-it and 0.030 on Phi-4-mini-
it. Compared to the merging baselines, our method
achieves the highest average QWK on Llama-3.1-
8B-it and falls slightly short of some baselines on
Phi-4-mini-it. Nevertheless, these baselines show
limited generalizability, as they underperform on
the other 3 settings (Table 3, 4) with larger drops,
while our method maintains the best results. Over-
all, our approach shows robust adaptation on differ-
ent types of domain shifts and LLMs.

Comparison with Leading Cross-prompt Meth-
ods. Figure 3 presents a comparison between our
method against PAES (Ridley et al., 2020) and
PMAES (Chen and Li, 2023), two strong base-
lines on ASAP → ASAP. PAES is a regression
model that combines hand-crafted features and
CNN+LSTM representations, while PMAES ex-
tends PAES with a domain adaptation strategy. We
highlight that LLM-based autoregressive scoring
does not inherently outperform PAES despite the
larger parameter size, as seen when comparing the
joint-train baseline (Table 3) with PAES (Figure 3
top). Similarly, we found that even a competitive
encoder model, DeBERTaV3-base (He et al., 2021),
underperforms PAES in the in-dataset setting with
an average QWK of 0.528. This is largely due to
the carefully designed hand-crafted features which
alone achieves 0.641 average QWK (Ridley et al.,
2020).

Under the in-dataset setting (Figure 3 top), our
method achieves QWKs close to those of both base-
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Figure 3: Comparison of PIM (phi-4-mini-it) with top-
performing cross-prompt methods (PAES and PMAES).
Similar trends for llama-3.1-8b-it (Appendix D).

lines across most prompts, though it falls slightly
short on average. In the more challenging cross-
dataset setting (Figure 3 bottom), however, our
method notably outperforms PAES and PMAES
with larger margins than the in-dataset’s case. This
change in relative performance under larger distri-
bution shifts may stem from the reliance of PAES
and PMAES on the domain-sensitive feature en-
gineering and all-source joint-training, which are
potentially prone to negative transfer. By contrast,
our method adaptively selects source domains to
mitigate negative transfer.

4.3 Ablation Study
We conduct an ablation study of the components of
our method, as in Table 5. First, reverting the useful
prior back to the uniform distribution (q(y) → U )
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Method Phi4-mini L3.1-8B

PIM 0.629 0.602
q(y) → U 0.594 0.590
w/o −H(p(y|x, λ)) 0.620 0.617
w/o −KL(p(y|λ)||q(y)) 0.542 0.552
BayesOpt → Random 0.611 0.595

joint-train 0.587 0.601

Table 5: Ablation study of PIM (Eq. 9), evaluated on
ASAP → ASAP, measured by average QWK. w/o: with-
out; BayesOpt → Random: same number of iterations
with random search.
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models on ASAP (top), followed by adaptation and
inference on PERSUADE2.0 (middle), along with the
time ratios between adaptation and inference (bottom).
Results are from a single run on an NVIDIA A40 GPU.

leads to a notable drop in performance, which
aligns with our motivation that U may not appro-
priately represent the target’s marginal distribution
p(y) in essay scoring. The prior q(y) derived from
the source prompts serves as a transferrable su-
pervision signal, without any expert knowledge.
Second, we challenge the MI maximization prin-
ciple (Krause et al., 2010), either by removing the
sharpness term (i.e., w/o −H(p(y|x, λ))) or the
separation term (i.e., w/o −KL(p(y|λ)||q(y))). In-
terestingly, the former does not necessarily lead
to performance drop, with Llama-3.1-8B-it in fact
achieving some gains. One hypothesis is that each
source model (LoRA adapter) yield sufficiently
sharp predictions on the target samples, and that
merging the source models via linear combination

preserves this property. In contrast, removing sep-
aration term leads to a significant drop, possibly
due to its tendency to favor an overconfident model
which lacks diversity in predictions. Third, given
the same number of iterations, Bayesian optimiza-
tion yields higher QWK than random search, con-
firming guided exploration.

4.4 Cost Analysis

In Figure 4, we analyze the wall-clock time of
PIM compared with PMAES, throughout the en-
tire course of ASAP → PERSUADE2.0 adaptation.
We note that PMAES joint-trains the model for all
available sources for each target prompt. Notably,
PIM requires substantially less time for adapta-
tion and inference combined than PMAES, once
all source models are pre-trained. When account-
ing for the accumulated time from pre-training,
PIM begins to outperform PMAES from the sec-
ond target prompt, with the gap widening as more
target prompts are introduced. This highlights
PIM’s scalability to new prompts, despite using
considerably larger models (LLMs) than PMAES
(CNN+LSTM). The efficiency arises from the con-
stant reuse of individual source models and efficient
merging. On the other hand, PMAES retrains the
entire model for each target, leading to relatively
high time cost for adaptation.

5 Related Work

Cross-prompt Essay Scoring. Cross-prompt
AES transfers models trained on source prompts
to unseen ones (Dong and Zhang, 2016; Ridley
et al., 2021). Early work used manual features and
domain adaptation with a few labeled target sam-
ples (Phandi et al., 2015; Cummins et al., 2016).
Later neural methods improved generalization by
incorporating prompt-agnostic objectives (Ridley
et al., 2020) or learning multi-prompt joint repre-
sentations (Cao et al., 2020; Chen and Li, 2023),
but rely on static data fusion and full retraining,
which limits the scalability. Our approach differs
by enabling dynamic and selective utilization of
source-domain knowledge without joint-training.

Model Merging. Model merging linearly com-
bines parameters from same-architecture networks
while preserving properties (Neyshabur et al., 2020;
Zhou et al., 2023). Current methods include mag-
nitude pruning (Yadav et al., 2023; Yu et al., 2024;
Deep et al., 2024; Gargiulo et al., 2025; Marczak
et al., 2025) to reduce parameter conflicts; activa-
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tion merging (Yang et al., 2024a,b; Xu et al., 2025)
to align features; optimization merging (Matena
and Raffel, 2022; Jin et al., 2023; Yang et al.,
2024c) to adjust weights via optimization. Emerg-
ing studies (Team et al., 2025; Sun et al., 2025)
have demonstrated the effectiveness of model merg-
ing on LLMs, presenting a potential pathway for
enhancing out-of-distribution performance.

Source-free Domain Adaptation. SFDA trans-
fers models pretrained on labeled source domain(s)
to unlabeled target domain without source data
(Sun et al., 2020). One approach includes com-
pensating for the absence of source data by gener-
ating virtual samples (Tian et al., 2022; Ding et al.,
2022) or computing summary statistics (Adachi
et al., 2025). Another approach is adapting solely
with unlabeled target data by minimizing entropy
(Wang et al., 2021; Niu et al., 2022), prompting
prediction diversity (Liang et al., 2020; Dong et al.,
2021), or Bayesian calibration (Zhou and Levine,
2021). Applications of SFDA in NLP are few, but
growing (Zhang et al., 2021; Yin et al., 2024). This
paper addresses SFDA for essay scoring by lever-
aging source statistics, with model merging as a
scalable alternative to training for adaptation.

6 Conclusion

In this paper, we propose a domain-adaptive model
merging approach for source-free cross-prompt
AES. Our pilot study suggests suboptimality of
training on all source domains. Inspired by this, we
shift to selecting beneficial source domains, and
approximate costly joint training by merging task
vectors through a linear combination. In optimiz-
ing the combination’s coefficients, we resort to our
proposed prior-encoded information maximization
(PIM), an unsupervised objective which encour-
ages score discriminability regularized by priors
pre-computed from the sources. Experimental re-
sults with LLMs on in- and cross-dataset settings
show that our method consistently outperforms
joint training on all sources, surpasses other merg-
ing methods in numerous cases, maintains robust-
ness under severe distribution shifts where leading
cross-prompt methods struggle, all while remain-
ing computationally efficient.

Limitations

We elucidate the limitations of this work as follows:
First, both mutual information maximization and
our improved PIM rely on the assumption that at

least one source model provides reasonable pre-
dictions (e.g., with sufficient diversity) for the tar-
get prompt. If all source models fail to capture
the semantics of the target prompt, optimizing the
PIM objective may degrade performance arbitrar-
ily, as encouraging discriminability and sharpness
becomes meaningless without meaningful initial
predictions. Second, while our adaptation process
remains efficient (using a fixed small sample of
target essays, e.g., 64), PIM is designed for LLMs,
which incur significantly higher inference latency
compared to conventional encoder-based AES mod-
els. This may limit scalability when each target
prompt contains a very large volume of essays to
be tested, despite the adaptation itself being sample-
efficient. Third, although LLMs enable adaptation
to novel score ranges, extreme deviations between
source and target ranges can lead to suboptimal
predictions. For instance, on P8 of ASAP with
score range of [0, 60], some source models lacked
diverse predictions.

Ethics Statement

Potential Risks This work aims to improve cross-
prompt AES performance of LLMs. However, our
method does not guarantee the model’s fairness
of scoring. For instance, it is possible that the
adapted model assigns the scores in favor of a cer-
tain social group, such as the essay writer’s first lan-
guage background, gender, etc. In addition, since
the source datasets may disproportionately repre-
sent certain social groups, models trained on these
datasets could reproduce the biases embedded in
the datasets in their predictions. There are ongo-
ing works analyzing the fairness of AES systems
(Loukina et al., 2019; Schaller et al., 2024), and
it is recommended to refer to this field before the
deployment of the system.

Use of Scientific Artifacts For the datasets, we
used ASAP (Hamner et al., 2012)’s publicly avail-
able text corpora, and used PERSUADE2.0 (Cross-
ley et al., 2024) which is an open source corpus
under CC BY-NC-SA 4.0 license. Both ASAP
and PERSUADE2.0 have anonymized personally
identifying information from the essays. For the
models, Llama-3.1-8B-Instruct (Grattafiori et al.,
2024) is under Llama3.1 Community License, and
Phi-4-mini-instruct (Microsoft et al., 2025) is under
MIT license. In addition, Bayesian Optimization
(Nogueira, 2014–) toolkit is under MIT license. All
of these artifacts is applicable for research use.
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Mădălina Cozma, Andrei Butnaru, and Radu Tudor
Ionescu. 2018. Automated essay scoring with string
kernels and word embeddings. In Proceedings of the

56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),
pages 503–509, Melbourne, Australia. Association
for Computational Linguistics.

S.A. Crossley, Y. Tian, P. Baffour, A. Franklin, M. Ben-
ner, and U. Boser. 2024. A large-scale corpus for
assessing written argumentation: Persuade 2.0. As-
sessing Writing, 61:100865.

Ronan Cummins, Meng Zhang, and Ted Briscoe. 2016.
Constrained Multi-Task Learning for Automated Es-
say Scoring. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 789–799, Berlin,
Germany. Association for Computational Linguis-
tics.

Pala Tej Deep, Rishabh Bhardwaj, and Soujanya Po-
ria. 2024. Della-merging: Reducing interference in
model merging through magnitude-based sampling.
CoRR, abs/2406.11617.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ning Ding, Yixing Xu, Yehui Tang, Chao Xu, Yunhe
Wang, and Dacheng Tao. 2022. Source-free do-
main adaptation via distribution estimation. In 2022
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 7202–7212.

Heejin Do, Yunsu Kim, and Gary Geunbae Lee. 2023.
Prompt- and trait relation-aware cross-prompt essay
trait scoring. In Findings of the Association for Com-
putational Linguistics: ACL 2023, pages 1538–1551,
Toronto, Canada. Association for Computational Lin-
guistics.

Fei Dong and Yue Zhang. 2016. Automatic features for
essay scoring – an empirical study. In Proceedings
of the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1072–1077, Austin,
Texas. Association for Computational Linguistics.

Fei Dong, Yue Zhang, and Jie Yang. 2017. Attention-
based recurrent convolutional neural network for au-
tomatic essay scoring. In Proceedings of the 21st
Conference on Computational Natural Language
Learning (CoNLL 2017), pages 153–162, Vancouver,
Canada. Association for Computational Linguistics.

Jiahua Dong, Zhen Fang, Anjin Liu, Gan Sun, and
Tongliang Liu. 2021. Confident anchor-induced
multi-source free domain adaptation. In Advances in
Neural Information Processing Systems, volume 34,
pages 2848–2860. Curran Associates, Inc.

24395

https://openreview.net/forum?id=SXtl7NRyE5
https://openreview.net/forum?id=SXtl7NRyE5
https://openreview.net/forum?id=CQsmMYmlP5T
https://openreview.net/forum?id=CQsmMYmlP5T
https://proceedings.neurips.cc/paper_files/paper/1991/file/a8abb4bb284b5b27aa7cb790dc20f80b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1991/file/a8abb4bb284b5b27aa7cb790dc20f80b-Paper.pdf
https://aclanthology.org/D13-1180/
https://aclanthology.org/D13-1180/
https://doi.org/10.18653/v1/2023.acl-long.83
https://doi.org/10.18653/v1/2023.acl-long.83
https://doi.org/10.18653/v1/2023.acl-long.83
https://aclanthology.org/2024.lrec-main.1118/
https://aclanthology.org/2024.lrec-main.1118/
https://aclanthology.org/2024.lrec-main.1118/
https://aclanthology.org/2025.findings-naacl.322/
https://aclanthology.org/2025.findings-naacl.322/
https://aclanthology.org/2025.findings-naacl.322/
https://doi.org/10.18653/v1/P18-2080
https://doi.org/10.18653/v1/P18-2080
https://doi.org/10.1016/j.asw.2024.100865
https://doi.org/10.1016/j.asw.2024.100865
https://doi.org/10.18653/v1/P16-1075
https://doi.org/10.18653/v1/P16-1075
https://doi.org/10.48550/arXiv.2406.11617
https://doi.org/10.48550/arXiv.2406.11617
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1109/CVPR52688.2022.00707
https://doi.org/10.1109/CVPR52688.2022.00707
https://doi.org/10.18653/v1/2023.findings-acl.98
https://doi.org/10.18653/v1/2023.findings-acl.98
https://doi.org/10.18653/v1/D16-1115
https://doi.org/10.18653/v1/D16-1115
https://doi.org/10.18653/v1/K17-1017
https://doi.org/10.18653/v1/K17-1017
https://doi.org/10.18653/v1/K17-1017
https://proceedings.neurips.cc/paper_files/paper/2021/file/168908dd3227b8358eababa07fcaf091-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/168908dd3227b8358eababa07fcaf091-Paper.pdf


Youmna Farag, Helen Yannakoudakis, and Ted Briscoe.
2018. Neural automated essay scoring and coher-
ence modeling for adversarially crafted input. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 263–271, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Peter I Frazier. 2018. A tutorial on bayesian optimiza-
tion. arXiv preprint arXiv:1807.02811.

Antonio Andrea Gargiulo, Donato Crisostomi,
Maria Sofia Bucarelli, Simone Scardapane, and
Emanuele Rodolà. 2025. Task Singular Vectors:
Reducing Task Interference in Model Merging.
Preprint, arXiv:2412.00081.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Ben Hamner, Jaison Morgan, lynnvandev, Mark Sher-
mis, and Tom Vander Ark. 2012. The hewlett foun-
dation: Automated essay scoring.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing. arXiv preprint arXiv:2111.09543.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Jiaxing Huang, Dayan Guan, Aoran Xiao, and Shijian
Lu. 2021. Model adaptation: Historical contrastive
learning for unsupervised domain adaptation with-
out source data. In Advances in Neural Information
Processing Systems, volume 34, pages 3635–3649.
Curran Associates, Inc.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali
Farhadi. 2023. Editing models with task arithmetic.
In The Eleventh International Conference on Learn-
ing Representations.

Chaeyun Jang, Hyungi Lee, Jungtaek Kim, and Juho
Lee. 2024. Model fusion through bayesian optimiza-
tion in language model fine-tuning. In Advances in
Neural Information Processing Systems, volume 37,
pages 29878–29912. Curran Associates, Inc.

Zhiwei Jiang, Tianyi Gao, Yafeng Yin, Meng Liu, Hua
Yu, Zifeng Cheng, and Qing Gu. 2023. Improving do-
main generalization for prompt-aware essay scoring
via disentangled representation learning. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 12456–12470, Toronto, Canada. Association
for Computational Linguistics.

Cancan Jin, Ben He, Kai Hui, and Le Sun. 2018.
TDNN: A two-stage deep neural network for prompt-
independent automated essay scoring. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1088–1097, Melbourne, Australia. Association
for Computational Linguistics.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and
Pengxiang Cheng. 2023. Dataless knowledge fu-
sion by merging weights of language models. In
The Eleventh International Conference on Learning
Representations.

Andreas Krause, Pietro Perona, and Ryan Gomes. 2010.
Discriminative clustering by regularized information
maximization. In Advances in Neural Information
Processing Systems, volume 23. Curran Associates,
Inc.

Shengjie Li and Vincent Ng. 2024. Conundrums in
cross-prompt automated essay scoring: Making sense
of the state of the art. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 7661–
7681, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Jian Liang, Dapeng Hu, and Jiashi Feng. 2020. Do we
really need to access the source data? Source hy-
pothesis transfer for unsupervised domain adaptation.
In Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 6028–6039.
PMLR.

Deyuan Liu, Zecheng Wang, Bingning Wang, Weipeng
Chen, Chunshan Li, Zhiying Tu, Dianhui Chu, Bo Li,
and Dianbo Sui. 2024. Checkpoint merging via
bayesian optimization in llm pretraining. arXiv
preprint arXiv:2403.19390.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Anastassia Loukina, Nitin Madnani, and Klaus Zechner.
2019. The many dimensions of algorithmic fairness
in educational applications. In Proceedings of the
Fourteenth Workshop on Innovative Use of NLP for
Building Educational Applications, pages 1–10, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Michal Lukasik, Zhao Meng, Harikrishna Narasimhan,
Yin-Wen Chang, Aditya Krishna Menon, Felix Yu,
and Sanjiv Kumar. 2025. Better autoregressive re-
gression with LLMs via regression-aware fine-tuning.
In The Thirteenth International Conference on Learn-
ing Representations.

Daniel Marczak, Simone Magistri, Sebastian Cygert,
Bartłomiej Twardowski, Andrew D. Bagdanov, and
Joost van de Weijer. 2025. No Task Left Behind:
Isotropic Model Merging with Common and Task-
Specific Subspaces. Preprint, arXiv:2502.04959.

24396

https://doi.org/10.18653/v1/N18-1024
https://doi.org/10.18653/v1/N18-1024
https://doi.org/10.48550/arXiv.2412.00081
https://doi.org/10.48550/arXiv.2412.00081
https://kaggle.com/competitions/asap-aes
https://kaggle.com/competitions/asap-aes
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://proceedings.neurips.cc/paper_files/paper/2021/file/1dba5eed8838571e1c80af145184e515-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/1dba5eed8838571e1c80af145184e515-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/1dba5eed8838571e1c80af145184e515-Paper.pdf
https://openreview.net/forum?id=6t0Kwf8-jrj
https://proceedings.neurips.cc/paper_files/paper/2024/file/34d3cf97696022b179171e5abda42c0b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/34d3cf97696022b179171e5abda42c0b-Paper-Conference.pdf
https://doi.org/10.18653/v1/2023.acl-long.696
https://doi.org/10.18653/v1/2023.acl-long.696
https://doi.org/10.18653/v1/2023.acl-long.696
https://doi.org/10.18653/v1/P18-1100
https://doi.org/10.18653/v1/P18-1100
https://openreview.net/forum?id=FCnohuR6AnM
https://openreview.net/forum?id=FCnohuR6AnM
https://proceedings.neurips.cc/paper_files/paper/2010/file/42998cf32d552343bc8e460416382dca-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/42998cf32d552343bc8e460416382dca-Paper.pdf
https://doi.org/10.18653/v1/2024.acl-long.414
https://doi.org/10.18653/v1/2024.acl-long.414
https://doi.org/10.18653/v1/2024.acl-long.414
https://proceedings.mlr.press/v119/liang20a.html
https://proceedings.mlr.press/v119/liang20a.html
https://proceedings.mlr.press/v119/liang20a.html
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/W19-4401
https://doi.org/10.18653/v1/W19-4401
https://openreview.net/forum?id=xGs7Ch3Vyo
https://openreview.net/forum?id=xGs7Ch3Vyo
https://doi.org/10.48550/arXiv.2502.04959
https://doi.org/10.48550/arXiv.2502.04959
https://doi.org/10.48550/arXiv.2502.04959


Michael S Matena and Colin A Raffel. 2022. Merg-
ing models with fisher-weighted averaging. In Ad-
vances in Neural Information Processing Systems,
volume 35, pages 17703–17716. Curran Associates,
Inc.

Microsoft, :, Abdelrahman Abouelenin, Atabak Ash-
faq, Adam Atkinson, Hany Awadalla, Nguyen Bach,
Jianmin Bao, Alon Benhaim, Martin Cai, Vishrav
Chaudhary, Congcong Chen, Dong Chen, Dong-
dong Chen, Junkun Chen, Weizhu Chen, Yen-Chun
Chen, Yi ling Chen, Qi Dai, and 57 others. 2025.
Phi-4-mini technical report: Compact yet powerful
multimodal language models via mixture-of-loras.
Preprint, arXiv:2503.01743.

Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang.
2020. What is being transferred in transfer learning?
Advances in neural information processing systems,
33:512–523.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo
Chen, Shijian Zheng, Peilin Zhao, and Mingkui Tan.
2022. Efficient test-time model adaptation without
forgetting. In Proceedings of the 39th International
Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages
16888–16905. PMLR.

Fernando Nogueira. 2014–. Bayesian Optimization:
Open source constrained global optimization tool for
Python.

Peter Phandi, Kian Ming A. Chai, and Hwee Tou Ng.
2015. Flexible Domain Adaptation for Automated
Essay Scoring Using Correlated Linear Regression.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 431–
439, Lisbon, Portugal. Association for Computational
Linguistics.

Robert Ridley, Liang He, Xin-yu Dai, Shujian Huang,
and Jiajun Chen. 2021. Automated cross-prompt
scoring of essay traits. In Proceedings of the AAAI
conference on artificial intelligence, volume 35,
pages 13745–13753.

Robert Ridley, Liang He, Xinyu Dai, Shujian Huang,
and Jiajun Chen. 2020. Prompt agnostic essay
scorer: a domain generalization approach to cross-
prompt automated essay scoring. arXiv preprint
arXiv:2008.01441.

Nils-Jonathan Schaller, Yuning Ding, Andrea Horbach,
Jennifer Meyer, and Thorben Jansen. 2024. Fairness
in automated essay scoring: A comparative analy-
sis of algorithms on German learner essays from
secondary education. In Proceedings of the 19th
Workshop on Innovative Use of NLP for Building Ed-
ucational Applications (BEA 2024), pages 210–221,
Mexico City, Mexico. Association for Computational
Linguistics.

Lin Sun, Guangxiang Zhao, Xiaoqi Jian, Yuhan Wu,
Weihong Lin, Yongfu Zhu, Change Jia, Linglin
Zhang, Jinzhu Wu, Junfeng Ran, Sai-er Hu, Zihan

Jiang, Junting Zhou, Wenrui Liu, Bin Cui, Tong Yang,
and Xiangzheng Zhang. 2025. TinyR1-32B-Preview:
Boosting Accuracy with Branch-Merge Distillation.
Preprint, arXiv:2503.04872.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller,
Alexei Efros, and Moritz Hardt. 2020. Test-time
training with self-supervision for generalization un-
der distribution shifts. In Proceedings of the 37th
International Conference on Machine Learning, vol-
ume 119 of Proceedings of Machine Learning Re-
search, pages 9229–9248. PMLR.

Kaveh Taghipour and Hwee Tou Ng. 2016. A neural
approach to automated essay scoring. In Proceedings
of the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1882–1891, Austin,
Texas. Association for Computational Linguistics.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing,
Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, Chuning
Tang, Congcong Wang, Dehao Zhang, Enming Yuan,
Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda
Wei, Guokun Lai, and 75 others. 2025. Kimi
k1.5: Scaling Reinforcement Learning with LLMs.
Preprint, arXiv:2501.12599.

Jiayi Tian, Jing Zhang, Wen Li, and Dong Xu. 2022.
Vdm-da: Virtual domain modeling for source data-
free domain adaptation. IEEE Transactions on Cir-
cuits and Systems for Video Technology, 32(6):3749–
3760.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno
Olshausen, and Trevor Darrell. 2021. Tent: Fully
test-time adaptation by entropy minimization. In In-
ternational Conference on Learning Representations.

Jiong Wang and Jie Liu. 2025. T-MES: Trait-aware
mix-of-experts representation learning for multi-trait
essay scoring. In Proceedings of the 31st Inter-
national Conference on Computational Linguistics,
pages 1224–1236, Abu Dhabi, UAE. Association for
Computational Linguistics.

Christopher KI Williams and Carl Edward Rasmussen.
2006. Gaussian processes for machine learning, vol-
ume 2. MIT press Cambridge, MA.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre,
Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Mor-
cos, Hongseok Namkoong, Ali Farhadi, Yair Car-
mon, Simon Kornblith, and 1 others. 2022. Model
soups: averaging weights of multiple fine-tuned mod-
els improves accuracy without increasing inference
time. In International conference on machine learn-
ing, pages 23965–23998. PMLR.

24397

https://proceedings.neurips.cc/paper_files/paper/2022/file/70c26937fbf3d4600b69a129031b66ec-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/70c26937fbf3d4600b69a129031b66ec-Paper-Conference.pdf
https://arxiv.org/abs/2503.01743
https://arxiv.org/abs/2503.01743
https://proceedings.mlr.press/v162/niu22a.html
https://proceedings.mlr.press/v162/niu22a.html
https://github.com/bayesian-optimization/BayesianOptimization
https://github.com/bayesian-optimization/BayesianOptimization
https://github.com/bayesian-optimization/BayesianOptimization
https://doi.org/10.18653/v1/D15-1049
https://doi.org/10.18653/v1/D15-1049
https://aclanthology.org/2024.bea-1.18/
https://aclanthology.org/2024.bea-1.18/
https://aclanthology.org/2024.bea-1.18/
https://aclanthology.org/2024.bea-1.18/
https://doi.org/10.48550/arXiv.2503.04872
https://doi.org/10.48550/arXiv.2503.04872
https://proceedings.mlr.press/v119/sun20b.html
https://proceedings.mlr.press/v119/sun20b.html
https://proceedings.mlr.press/v119/sun20b.html
https://doi.org/10.18653/v1/D16-1193
https://doi.org/10.18653/v1/D16-1193
https://doi.org/10.48550/arXiv.2501.12599
https://doi.org/10.48550/arXiv.2501.12599
https://doi.org/10.1109/TCSVT.2021.3111034
https://doi.org/10.1109/TCSVT.2021.3111034
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=uXl3bZLkr3c
https://openreview.net/forum?id=uXl3bZLkr3c
https://aclanthology.org/2025.coling-main.81/
https://aclanthology.org/2025.coling-main.81/
https://aclanthology.org/2025.coling-main.81/


Jing Xu, Jiazheng Li, and Jingzhao Zhang. 2025. Scal-
able Model Merging with Progressive Layer-wise
Distillation. Preprint, arXiv:2502.12706.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A
Raffel, and Mohit Bansal. 2023. Ties-merging: Re-
solving interference when merging models. In Ad-
vances in Neural Information Processing Systems,
volume 36, pages 7093–7115. Curran Associates,
Inc.

Enneng Yang, Li Shen, Zhenyi Wang, Guibing Guo,
Xiaojun Chen, Xingwei Wang, and Dacheng Tao.
2024a. Representation surgery for multi-task model
merging. In International Conference on Machine
Learning, pages 56332–56356. PMLR.

Enneng Yang, Li Shen, Zhenyi Wang, Guibing Guo,
Xingwei Wang, Xiaocun Cao, Jie Zhang, and
Dacheng Tao. 2024b. SurgeryV2: Bridging the
Gap Between Model Merging and Multi-Task Learn-
ing with Deep Representation Surgery. Preprint,
arXiv:2410.14389.

Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guib-
ing Guo, Xingwei Wang, and Dacheng Tao. 2024c.
Adamerging: Adaptive model merging for multi-task
learning. In The Twelfth International Conference on
Learning Representations.

Shiqi Yang, yaxing wang, kai wang, Shangling Jui, and
Joost van de Weijer. 2022. Attracting and dispersing:
A simple approach for source-free domain adapta-
tion. In Advances in Neural Information Processing
Systems, volume 35, pages 5802–5815. Curran Asso-
ciates, Inc.

Maxwell Yin, Boyu Wang, and Charles Ling. 2024.
Source-free unsupervised domain adaptation for
question answering via prompt-assisted self-learning.
In Findings of the Association for Computational Lin-
guistics: NAACL 2024, pages 700–713, Mexico City,
Mexico. Association for Computational Linguistics.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin
Li. 2024. Language models are super mario: Absorb-
ing abilities from homologous models as a free lunch.
In International Conference on Machine Learning,
pages 57755–57775. PMLR.

Torsten Zesch, Michael Wojatzki, and Dirk Scholten-
Akoun. 2015. Task-independent features for auto-
mated essay grading. In Proceedings of the Tenth
Workshop on Innovative Use of NLP for Building
Educational Applications, pages 224–232, Denver,
Colorado. Association for Computational Linguis-
tics.

Bo Zhang, Xiaoming Zhang, Yun Liu, Lei Cheng, and
Zhoujun Li. 2021. Matching distributions between
model and data: Cross-domain knowledge distillation
for unsupervised domain adaptation. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 5423–5433, Online.
Association for Computational Linguistics.

Aurick Zhou and Sergey Levine. 2021. Bayesian adap-
tation for covariate shift. In Advances in Neural
Information Processing Systems, volume 34, pages
914–927. Curran Associates, Inc.

Zhanpeng Zhou, Yongyi Yang, Xiaojiang Yang, Junchi
Yan, and Wei Hu. 2023. Going beyond linear mode
connectivity: The layerwise linear feature connec-
tivity. Advances in neural information processing
systems, 36:60853–60877.

A Details of Pilot Study

In the pilot study (Figure 1), we investigate the ef-
fect of jointly training on varying number of source
datasets on the transfer performance. In this experi-
ment, we train BERT with the following configura-
tions: a regression head is placed on top of BERT
encoder, which consists of a linear layer and a sig-
moid activation; We train 30 epochs with a batch
size of 128, a learning rate of 2 ·10−5 with constant
learning schedule; We choose the best checkpoint
on the validation set among the epochs, with early
stopping of 10 epochs.

B Supplementary Details of Method

B.1 Matching Mean and Variance of Beta
Mixture

We describe how the unified Beta(αS , βS) is de-
rived by matching its mean and variance to the
Beta mixture 1/M

∑M
j=1Beta(αj , βj). For each

source distribution Beta(αj , βj), the mean µj and
variance σ2

j are

µj =
αj

αj + βj
, σ2

j =
αjβj

(αj + βj)2(αj + βj + 1)
.

The mean µ and variance σ2 of the mixture is then
given by

µ = M−1
M∑

j=1

µj

σ2 = M−1
M∑

j=1

(σ2
j + µ2

j )− µ2.

Finally, we let Beta(αS , βS) have µ and σ2 as its
mean and variance, which is:

αS = µ

(
µ(1− µ)

σ2
− 1

)

βS = (1− µ)

(
µ(1− µ)

σ2
− 1

)
.
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B.2 Details of Bayesian Optimization
Bayesian optimization (Williams and Rasmussen,
2006) constructs a surrogate model of the black-
box function f(λ) as a sample from a Gaussian
Process—a distribution over functions, and updates
the posterior on f given observations {f(λ(i))}ki=1.
It then uses an acquisition function to determine
where to sample λ(k+1) next. When the iteration
terminates, λ∗ = argmaxλ(i) f(λ(i)) is chosen as
the final solution.

In detail, for (k+1)-iteration, the Gaussian prior
is placed on the observations:

f(λ(1:k)) ∼ N (µ0(λ
(1:k)),Σ0(λ

(1:k), λ(1:k)))

where λ(1:k) is a compact notation for k points
{f(λ(i))}ki=1, and µ0 and Σ0 are the mean and co-
variance function of the Gaussian Process. We
choose the commonly used 0 for µ0 and Matern
2.5 kernel (Williams and Rasmussen, 2006) for
Σ0. Then the posterior on a new function value
f(λ(k+1)) given previous observations f(λ(1:k)) is
updated by the Bayes’ rule (Frazier, 2018):

f(λ(k+1))|f(λ(1:k))

∼ N (µk+1(λ
(k+1)), σ2

k+1(λ
(k+1)))

where

µk+1(λ
(k+1)) = Σ0(λ

(k+1), λ(1:k))

· Σ0(λ
(1:k), λ(1:k))−1

· (f(λ(1:k))− µ0(λ
(1:k))) + µ0(λ

(k+1))

σ2
k+1(λ

(k+1)) = Σ0(λ
(k+1), λ(k+1))

− Σ0(λ
(k+1), λ(1:k))

· Σ0(λ
(1:k), λ(1:k))−1Σ0(λ

(1:k), λ(k+1)).

Intuitively, the posterior mean µk+1(λ
(k+1)) is a

weighted sum between the prior µ0(λ
(k+1)) and a

calibration term based on the data f(λ(1:k)), and
the posterior variance σ2

k+1(λ
(k+1)) is given as

the prior variance Σ0(λ
(k+1), λ(k+1)) subtracted

by the reduction in variance (uncertainty) after ob-
serving the data f(λ(1:k)) (Frazier, 2018).

Next, the acquisition function specifies where to
sample λ(k+1) based on the posterior. We use Ex-
pected Improvement (EI) which finds λ(k+1) such
that the expected gain over the current best value
f∗(k) := maxλ(i){f(λ(i))}ki=1 is maximized:

argmax
λ(k+1)

E
f(λ(k+1))

[
max(f(λ(k+1))− f∗(k), 0)

]

This process of posterior estimation and next point
sampling is repeated until convergence.

C Additional Details of Experimental
Setup

C.1 Instruction Template

We use the instruction template below throughout
the experiments.
User Message
### Prompt:
{prompt}
### Student Essay:
{essay}
### Instruction:
Given the student’s essay written in
response to the prompt, assign a score
within the range of {min_score} to
{max_score}. Respond with only an integer
score and no additional text.
Assistant Message
{score}

C.2 Prompt Topics

In Table 6, we specify the correspondence between
the prompt IDs (Table. 2) and the prompt topics.

Dataset Prompt Topic

ASAP

1 Effects computers have on people
2 Censorship in the libraries
3 Impact of setting on the cyclist’s experience
4 The meaning of the ending in Winter Hibiscus
5 The mood created in Narciso Rodriguez’s memoir
6 Obstacles to docking dirigibles
7 A story about patience
8 A story about laughter

PERSUADE2.0

1 Cell phones at school
2 Distance learning
3 Mandatory extracurricular activities
4 Seeking multiple opinions
5 "A Cowboy Who Rode the Waves"
6 Does the electoral college work?
7 Exploring Venus
8 The Face on Mars

Table 6: Prompt Topics of ASAP and PERSUADE2.0.

C.3 Details of LoRA Fine-tuning

We use LoRA with r = 16, α = 32, dropout =
0.1, targeting all linear layers in the transformer
block (Vaswani et al., 2017). During fine-tuning we
use the AdamW optimizer (Loshchilov and Hutter,
2019) with a batch size of 16, a learning rate of
10−4 and a cosine scheduler. The best checkpoint
on the validation set is selected, with evaluation
steps of 30 and early stopping patience of 3.
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C.4 Descriptions and Implementation Details
of Baselines

Averaging (Wortsman et al., 2022) simply averages
the models’ parameters. Task Arithmetic (Ilharco
et al., 2023) adds a scaled sum of task vectors to
the pre-trained model, and TIES-Merging (Yadav
et al., 2023) pre-processes task vectors to resolve
their interferences prior to merging. Following the
recommended hyperparameters, we set the scaling
factor of TA to λ = 0.4 and of TIES to λ = 1.0.

Fisher Merging (Matena and Raffel, 2022) im-
proves Averaging by accounting for parameter-
wise importance using Fisher information. Fisher
information is estimated by sampling from the
label distribution of samples from the validation
set. RegMean (Jin et al., 2023) aims to minimize
the layer-wise distance in activation between the
merged model and all fine-tuned models. Follow-
ing the original implementation on T5 models, we
set the non-diagonal multiplier to α = 0.1.

AdaMerging (Yang et al., 2024c) is a test time
adaptation method which trains layer-wise coeffi-
cients for merging task vectors in order to minimize
entropy on test samples. In our domain adaptation
setting, test samples are the samples from the target
domain. In contrast to other baselines, AdaMerg-
ing exploits the information of the target domain
samples.

As for Joint-train baseline, we use the same con-
figuration as C.3 except for batch size = 64 and
early stopping patience = 10. For another joint-
training baselines, PAES (Ridley et al., 2020) and
PMAES (Chen and Li, 2023), we follow the orig-
inal settings for model architecture and training
hyperparameters. As the original implementation
of PMAES does not specify the batch size, we set
the combined batch size for the source and target
domains data to 32, and allocate it proportionally
based on the data ratio between the source and
target domains.

C.5 Impact of Hyperparameter Choices

We examine the impact of hyperparameter choices
on the performance of PIM. Specifically, we
present results for varying the number of iterations
in Table 7 and varying the number of unlabeled tar-
get prompt samples in Table 8. Table 7 shows that
reducing half of the number of iterations (40 → 20)
yields a comparable average QWK, suggesting that
convergence may occur as early as the 20th itera-
tion. Table 8 indicates that PIM’s performance is

Setting Method # of iterations Avg. QWK

ASAP
→ ASAP

PIM
(llama3.1-8b-it)

40 (10+30) 0.602
20 (5+15) 0.600

PIM
(phi-4-mini-it)

40 (10+30) 0.629
20 (5+15) 0.632

ASAP
→ PERSUADE2.0

PIM
(llama3.1-8b-it)

40 (10+30) 0.512
20 (5+15) 0.498

PIM
(phi-4-mini-it)

40 (10+30) 0.483
20 (5+15) 0.486

Table 7: Impact of varying the number of iterations for
on performance. The iterations consist of the initial
random steps plus the optimization steps.

Setting Method # of samples Avg. QWK

ASAP
→ ASAP

PIM
(llama3.1-8b-it)

16 0.593
32 0.603
64 0.602

128 0.603

PIM
(phi-4-mini-it)

16 0.629
32 0.633
64 0.629

128 0.625

ASAP
→ PERSUADE2.0

PIM
(llama3.1-8b-it)

16 0.528
32 0.514
64 0.512

128 0.513

PIM
(phi-4-mini-it)

16 0.497
32 0.483
64 0.483

128 0.489

Table 8: Impact of varying the number of (unlabeled)
test samples on performance.

robust to the choice of the number of target prompt
samples leveraged during Bayesian optimization.
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Figure 5: Comparison of PIM (llama-3.1-8b-it) with top-
performing cross-prompt methods (PAES and PMAES).

D Additional Comparison with Leading
Cross-prompt Methods

In Figure 5, we show additional comparison results
between PIM (llama-3.1-8b-it) and leading cross-
prompt AES methods—PAES (Ridley et al., 2020)
and PMAES (Chen and Li, 2023). The overall
trend is consistent with PIM (phi-4-mini-it).
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