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Abstract

The Transformer architecture has become the
standard LLM architecture due to its powerful
self-attention mechanism. However, it suffers
from quadratic computational complexity and
linear memory complexity. RNN-based LLMs
have been proposed as alternatives. Yet, RNN
models struggle in long-context scenarios, mak-
ing it challenging to replace self-attention with
RNNs. We identify the state size as a criti-
cal bottleneck, which is significantly smaller
than that of Transformers with a basic context
length of 2k. However, simply increasing the
state size significantly raises the number of pa-
rameters and lowers training efficiency. In this
paper, we propose an efficient scaling method
to scale the state size of RNN models to match
the 2k context length of Transformers, with
small parameters overhead. Experimental re-
sults demonstrate that scaling the state size sig-
nificantly enhances long-context understanding.
Retrieval performance scales almost linearly
with state size, with a 454M model featuring
an expanded state achieving performance com-
parable to a 1.47B model on FDA, a recall-
intensive task. These findings highlight state
scaling as a promising approach for advancing
RNN-based LLMs.

1 Introduction

Transformer-based Large Language Models
(LLMs) (Achiam et al., 2023) have achieved
state-of-the-art performance across various tasks
and applications (Liu et al., 2023; Zhang et al.,
2024). Their core self-attention mechanism
(Vaswani, 2017) excels at capturing long-range
dependencies and fine-grained past information.
However, its quadratic computational complexity
and linear memory requirements limit scalability.
To overcome these challenges, RNN models (Peng
et al., 2024; Gu and Dao) have been proposed as
efficient alternatives, offering linear computational
complexity and constant memory usage.

RNN models have recently made significant
progress, achieving performance comparable to
Transformers on tasks like language modeling and
common-sense reasoning (Zuo et al.; Waleffe et al.,
2024). This positions RNNs as a promising alterna-
tive to Transformers. However, they still struggle
with long-context scenarios, particularly in recall-
intensive tasks like needle-in-a-haystack (Hsieh
et al., 2024), limiting their ability to replace self-
attention. Improving long-context understanding
remains a key challenge.

Recent RNN models have made notable advance-
ments, particularly in state expansion (Peng et al.,
2024; Qin et al.; Sun et al., 2023a). Early RNNs
(Peng et al.; Qin et al., 2023) relied on vector states,
which were severely limited in memory capacity.
To overcome this limitation, newer models (Peng
et al., 2024; Qin et al.) introduced matrix states,
significantly enhancing memory capacity. Despite
these improvements, the state sizes of RNNs re-
main much smaller than those of Transformers
with a 2k context length, making state size a criti-
cal bottleneck for long-context understanding. Yet,
simply increasing the state size significantly raises
the number of parameters and lowers training effi-
ciency, making it challenging to scale RNN mod-
els to match Transformers. We propose an effi-
cient method to scale the state size of RNN models
to match Transformers with a 2k context length,
alleviating the challenges of increased parameter
counts and reduced training efficiency.

We evaluate the performance of the scaled RNN
models on various tasks, including language model-
ing, zero-shot common-sense reasoning, and long-
context understanding tasks. The results demon-
strate that scaling the state size of RNN models sig-
nificantly enhances their long-context understand-
ing ability. Additionally, we conduct experiments
to investigate the scalability of RNN models by
examining how increasing the state size affects the
maximum recallable context length. Our findings
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show that the maximum recallable context length
scales nearly linearly with the RNN state size, pro-
viding a valuable reference for further scaling of
RNN models. These results highlight scaling the
state size of RNN models as a promising approach
to improving their long-context understanding abil-
ity.

In conclusion, our contributions are as follows:

• We propose an efficient method to scale the
state size of RNN models to match Transform-
ers with a 2k context length, addressing the
challenges of increased parameter counts and
reduced training efficiency.

• We evaluate the performance of the scaled
RNN models on various tasks, showing that
scaling the state size significantly improves
the long-context understanding ability of
RNN models.

• We conduct experiments to investigate the
scalability of RNN state size, providing a valu-
able reference for further scaling of RNN mod-
els.

2 Related Work

2.1 RNN LLMs
RNN LLMs have made significant progress in long-
context understanding tasks. In this paper, we fo-
cus on the state expansion of RNN models. Early
RNN models, such as RWKV4 (Peng et al.) and
HGRN (Qin et al., 2023), utilized vector states,
where states are updated at each step by a vec-
tor. However, this approach has limited memory
capacity. Building on linear attention (Katharopou-
los et al., 2020), matrix states have been widely
adopted to replace vector states. In this approach,
states are updated at each step by a matrix, which is
the outer product of keys and values, significantly
enhancing the memory capacity of RNN LLMs.
Recent RNN models, such as RWKV5 (Peng et al.,
2024), Mamba2 (Dao and Gu), and others, com-
monly employ matrix states. Nevertheless, the state
size of RNN models remains much smaller than
that of self-attention mechanisms with a basic con-
text length of 2k. To the best of our knowledge,
this is the first work to scale the state size of RNN
LLMs to match Transformers with a 2k context
length. We argue that there is considerable room
to scale the state size of RNN models, which is
crucial for advancing their performance in long-
context understanding tasks.

In addition to state expansion, various other
methods have been proposed to enhance the per-
formance of RNN LLMs. Data-dependent gates
(Yang et al.; Peng et al., 2024; Dao and Gu) enable
models to selectively forget irrelevant information
while retaining important information. The delta
update rule (Yang et al., 2025, 2024) and test-time
training (Sun et al.) reformulate recurrent updates
as optimization problems, making state updates
more efficient. Notably, our scaling method can be
integrated with these techniques to further improve
the performance of RNN LLMs.

Outside the scope of LLMs, some prior methods
have attempted to upscale the state size of linear
attention in a parameter-efficient manner. DPFP
(Deterministic Parameter-Free Projection) (Schlag
et al., 2021) leverages interactions between the fea-
tures of queries and keys to expand their dimen-
sions. While this approach avoids introducing addi-
tional parameters, it results in sparse features. Sim-
ilarly, LFM (Learnable Feature Map) (Pramanik
et al., 2024) proposes using the outer product to
expand the state size, which is equivalent to repeat-
ing heads with different weights, but this also leads
to reduced performance. We compare our method
with these approaches in the experiments.

2.2 Scalability
In recent years, research has highlighted the impor-
tance of LLM scalability, with scaling laws widely
used to analyze this property. (Kaplan et al., 2020;
Hoffmann et al., 2022) conducted extensive ex-
periments using dense curve fitting and regression
analysis to examine the relationships among perfor-
mance, model size, dataset size, and other factors,
establishing their scaling law as a key reference for
guiding LLM scaling. Broader scaling trend analy-
ses, which do not rely on dense curves or regression
analysis, have also been conducted to explore LLM
scalability under different scenarios and targets, as
seen in (Gu and Dao; Dao and Gu; Li et al., 2023).

In this paper, we focus on the scalability of state
size in RNN LLMs, a dimension less explored than
model size. We assess scalability through coarse
scaling trends, given real-world limitations in ob-
taining precise scaling laws for RNN LLMs, as
detailed in Section 6. Consistent with (Ye et al.,
2024), we observe that scaling different model com-
ponents affects performance in distinct ways, and
increasing the state size of RNNs is particularly ef-
fective for improving performance on long-context
understanding tasks.
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3 Preliminaries

3.1 Attention

Attention has become the cornerstone of large lan-
guage models, leveraging queries and keys to com-
pute attention scores, which are then used to gener-
ate the output.

The output is computed using the following for-
mula:

O = softmax

(
QKT +M√

dqk

)
V (1)

where Q, K, and V represent the queries, keys,
and values, respectively. dqk denotes the dimen-
sionality of the queries and keys, and M is the
causal attention mask.

During the generation process, key and value
caches/states are maintained continuously, caus-
ing the state size to grow proportionally with the
context length. This mechanism allows the atten-
tion model to recall information from earlier con-
texts effectively. For a context length of L, the
average state size per batch during inference is
L×H × (dqk + dv)/2, where H is the number of
attention heads, and dv is the dimensionality of the
values.

3.2 Linear Attention

To address the quadratic complexity of tra-
ditional attention mechanisms, linear attention
(Katharopoulos et al., 2020) was proposed. It elim-
inates the softmax operation and uses feature maps
to process Q, K, and V, approximating the atten-
tion score. The computation takes the following
form:

O = (QKT )⊙MV (2)

This can also be reformulated in an RNN-like
structure:

St = St−1 + kT
t vt =

t∑

0

kT
i vi,

ot = qt × St, St ∈ R[H×dqk×dv ] (3)

Here, S represents the state matrix, while ki

and vi denote the key vector and value vector, re-
spectively. Linear attention reduces the quadratic
complexity of self-attention to linear complexity

and replaces the growing state size with a fixed-
sized state. As a result, linear attention is more
efficient than self-attention in terms of both infer-
ence speed and memory usage. The state size for
linear attention per batch is H × dqk × dv.

Assuming dqk = dv = d, the ratio of the state
sizes between self-attention and linear attention can
be expressed as:

Ratio =
L×H × (dqk + dv)/2

H × dqk × dv
=

L

d
(4)

For d = 128 and L = 2048, the ratio is 16. This
indicates that the state size of linear attention is 16
times smaller than that of self-attention, potentially
making the reduced state size a bottleneck for long-
context understanding tasks.

3.3 Recent Linear Attention Variants
In recent years, several linear attention variants
have been proposed to improve the memory effi-
ciency of linear attention. Among them, Gated
Linear Attention (GLA) (Yang et al.) and Gated
DeltaNet (Yang et al., 2024) are two notable exam-
ples with SOTA performance.

GLA introduces data-dependent gating mecha-
nisms, similar to the forget gate used in LSTMs
(Graves and Graves, 2012), to enhance the memory
capabilities of linear attention. Its formulation is as
follows:

St = diag(gt)⊙ St−1 + kT
t vt (5)

where gt acts as a gate that enables the model
to selectively forget irrelevant information and re-
tain important information, thereby improving the
memory retention of linear attention.

Gated DeltaNet builds upon this idea by incor-
porating the delta rule (Schlag et al.) to update the
state matrix. The update rule is expressed as:

St = αtSt−1 + βtk
T
t (vt − αtktSt−1)

= St−1(αt(I− βtk
T
t kt)) + βtk

T
t vt (6)

From a test-time training perspective, the state S
is treated as a weight matrix optimized via online
stochastic gradient descent (SGD) with the objec-
tive Loss(St) =

1
2∥ktSt−vt∥2. In this context, αt

functions as an adaptive weight decay term, while
βt serves as a learning rate. This delta-based up-
date mechanism further strengthens the memory
capabilities of linear attention.
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Figure 1: Our method for scaling the state size of RNN models includes head-wise expansion and the division of
heads into subheads, highlighted by the red dashed-line rectangles. This figure demonstrates the expansion process
with an expansion factor of 2 applied to 2 heads.

4 Method

As discussed in the previous section, linear atten-
tion employs a fixed-size state matrix to store in-
formation from the past, achieving greater compu-
tational and memory efficiency compared to self-
attention. However, this efficiency comes at a cost:
accumulating information over time makes it more
challenging for RNN-based LLMs to retrieve past
information, limiting their long-context understand-
ing ability. From Equation (3), assuming all keys
are normalized, when qj = kj is used to retrieve
vj , the output becomes:

oj = qT
j St =

t∑

i=0

(qjk
T
i )vi

= vj +
t∑

i=0,i ̸=j

(qjk
T
i )vi (7)

Without the softmax function to polarize atten-
tion scores, linear attention suffers from attention
dilution (Qin et al., 2022). Ideally, all keys should
be orthogonal to one another, allowing the atten-
tion score to focus entirely on the target key. One
straightforward way to improve the model’s re-
trieval ability is to increase the dimensionality of
the keys, which makes it more likely for keys to
become orthogonal.

Furthermore, as previously mentioned, there is
significant room to scale the state size, which is pro-
portional to dqk. Therefore, scaling the state size
with dqk is a promising direction to enhance the
long-context retrieval ability of RNN-based models.
However, scaling the state size introduces two key
challenges: an increased parameter count and re-
duced training efficiency. In the following sections,
we propose our method to alleviate these challenges

effectively. Our entire expansion method is sum-
marized in Figure 1.

4.1 Head-wise Expansion for Parameter
Efficiency

Directly scaling dqk significantly increases the
number of parameters. Specifically, Wq,Wk ∈
RD×Hdqk , and scaling dqk by a factor of E results
in a proportional E-fold increase in parameters.
This approach is not parameter-efficient. For in-
stance, in a 400M-parameter model, scaling dqk by
a factor of 8 would nearly double the total number
of parameters.

To address this inefficiency, we propose a head-
wise expansion method. Instead of naively scaling
dqk across all heads, we expand dqk within each
head individually. Queries and keys are first gen-
erated using the original Wq and Wk, and then
each head is expanded separately. For example,
the query expansion process of the ith head is as
follows:

qi = x×Wqi ∈ R1×dqk ,

q
expand
i = qi ×Wexpand

qi ∈ R1×Edqk ,

Wexpand
qi ∈ Rdqk×Edqk ,

Wqi ∈ Rdmodel×dqk , i ∈ [0, H] (8)

We summarize the parameter comparison in Ta-
ble 1. Naive scaling introduces E-fold more param-
eters, whereas the head-wise expansion method in-
troduces only (1 + E

H )-fold more parameters, mak-
ing it significantly more parameter-efficient. When
E = H , the additional Wexpand

q has the same size
as Wq. Since Wq and Wk constitute only a small
portion of the total parameters, the overhead is lim-
ited—approximately 10%, which is acceptable. For
example, in a 400M-parameter model with H = 8,
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Number of Parameters Scaling Ratio

Baseline dmodel × (dqk ×H) 1 ×
Naive dmodel × (dqk ×H)× E E ×
Head-wise dmodel × (dqk × (H + E)) (1 + E

H )×

Table 1: Parameter comparison: The number of pa-
rameters for queries or keys using different methods.
The parameter count is for a single layer of the model.
Our head-wise expansion method is significantly more
parameter-efficient than naive scaling.

Method Device E=8 E=16

Naive H800 9569 2933
Subhead H800 15722 6554

Naive RTX-3090 OOM OOM
Subhead RTX-3090 4829 2658

Table 2: Training Efficiency Comparison. We com-
pare the training throughput (tokens per second) of the
naive and subhead division on two different GPUs. The
subhead division significantly improves training effi-
ciency when the state size is large. OOM indicates that
the model runs out of shared memory. The speed is
measured with 400M-parameter models, with training
lengths of 4096 and 1024 on H800 and RTX-3090, re-
spectively.

scaling dqk by a factor of 8 results in an increase
to 454M parameters, representing a manageable
overhead.

4.2 Subhead Division for Training Efficiency

In existing RNN kernels (Yang et al., 2024), a sin-
gle CUDA block is assigned to process a linear
attention head and stores the states in shared mem-
ory instead of global memory. This approach sig-
nificantly improves training efficiency. However,
each CUDA block has access to only limited shared
memory and computational resources. When the
expansion factor E becomes large, the model runs
slowly or may even exhaust the shared memory.

To overcome this limitation, we propose splitting
a head into multiple subheads, running on multiple
CUDA blocks, and then merging them back into a
single head. Specifically, an expanded query or key
head is divided into E subheads, with each subhead
retaining the same size as the original head. Ad-
ditionally, RNN-based LLMs commonly employ
convolutional layers and feature maps to process
queries and keys, which we denote as f . We ensure
that f operates on each subhead independently. The
values (vi) are shared across all subheads within
the same head. The dimensions of other compo-

nents, such as gates, α, and β, are expanded to
align with the subheads, as their associated parame-
ters are relatively small. We find that the expanded
gates, α, and β provide finer control over the state
update, which is important for the model’s perfor-
mance. The output for each subhead is computed
independently, and the final output of the head is
obtained by summing the outputs of all subheads:

q
expand
ij = q

expand
i [:,j·dqk:(j+1)·dqk] ∈ R1×dqk (9)

oi =

E∑

j=0

RNN(f(q
expand
ij ), f(k

expand
ij ),vi) (10)

We compare our subhead division with the naive
method in terms of training efficiency, as shown in
Table 2. Our subhead division doubles the training
throughput on H800 when E = 16. Addition-
ally, it enables the model to run efficiently on less
resource-intensive GPUs, such as the RTX-3090.

4.3 Enhancing Nonlinear Capacity
Building on the head-wise expansion method, we
further enhance the model’s nonlinear capacity by
incorporating a SiLU activation function (Elfwing
et al., 2017) prior to the head-wise expansion. Our
experiments demonstrate that the SiLU activation
function improves the model’s retrieval ability, en-
abling it to capture more complex patterns.

5 Experiment

5.1 Experimental Setting
We scale the state size of two RNN models, Gated-
DeltaNet (Yang et al., 2024) and GLA (Yang et al.),
under two configurations: approximately 400M
and 1.5B parameters. Both models are derived from
Transformer++ (Touvron et al., 2023), replacing
the self-attention mechanism with linear attention
variants. All base models consist of 24 layers. For
the 400M-parameter models, the model dimension
is set to 1024 with dqk = dv = 128, while for the
1.5B-parameter models, the model dimension is
2048 with dqk = dv = 256.

For the 400M-parameter models, we use expan-
sion factors of 2, 4, 8, and 16, corresponding to
state sizes equivalent to those of a Transformer with
context lengths of 256, 512, 1024, and 2048, respec-
tively. For the 1.5B-parameter models, the expan-
sion factors are 2, 4, and 8, corresponding to state
sizes equivalent to those of a Transformer with con-
text lengths of 512, 1024, and 2048, respectively.
Additionally, we compare the effects of scaling the
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number of layers versus scaling the state size while
maintaining the same total parameter count. In the
tables below, “-L” indicates scaling the number of
layers, while “-E” indicates scaling the state size.
We provide more details in Appendix A.3.

5.2 Common Sense Reasoning
First, we evaluate the performance of scaled RNN
models and Transformer++ (Touvron et al., 2023)
on language modeling and zero-shot common-
sense reasoning tasks. While improving perfor-
mance on these tasks is not our primary objective,
increasing the state size of RNNs yields modest
gains. With a comparable number of parameters,
scaling the state size achieves performance simi-
lar to scaling the number of layers. At the 400M
parameter scale, Gated DeltaNet-E8 outperforms
Gated DeltaNet-L by an average of 0.2%.

5.3 Real-World Recall-Intensive Tasks
We evaluate the performance of scaled RNN mod-
els and Transformer++ on real-world retrieval
tasks, including FDA (Arora et al., 2023), SWDE
(Lockard et al., 2019), and SQuAD (Rajpurkar
et al., 2018), with maximum context lengths of
2723, 2222, and 928, respectively.

Finding 1: Scaling the state size of RNNs
significantly enhances recall ability, especially
for long-context tasks. Our results demonstrate
that increasing the state size of RNNs substan-
tially improves recall performance, particularly for
tasks with longer contexts. Expanding the state
size of RNN models from 2× to 8× consistently
yields performance gains. At the 1.5B scale, Gated
DeltaNet-E8 outperforms the base Gated DeltaNet
by an average of 11.73%, highlighting the effective-
ness of state size scaling in enhancing long-context
retrieval ability.

In contrast, scaling the number of layers has a
more limited impact. At the same 1.5B scale, Gated
DeltaNet-L achieves only a 3.8% improvement on
average compared to the baseline model. Gated
DeltaNet-E8 with 454M parameters achieves bet-
ter performance than Gated DeltaNet with 1.47B
parameters on FDA. Furthermore, the performance
gains across the three tasks follow the order FDA
> SWDE > SQuAD, indicating that scaled RNN
models are particularly effective for tasks involving
longer contexts.

Finding 2: The update rule plays a critical
role in recall ability scaling. At the 400M scale,
Gated DeltaNet-E8 achieves a 9.36% improvement,

whereas GLA achieves only a 3.46% average gain.
This underscores the importance of the update rule
in scaling retrieval ability. Specifically, the delta
rule employed by Gated DeltaNet proves more ef-
fective than the gated linear attention mechanism
used in GLA.

5.4 Long Context Understanding
To further assess the performance of scaled RNN
models, we evaluate Gated DeltaNet with 1.5B
parameters on LongBench (Bai et al., 2024), a
specialized benchmark designed for long-context
understanding. The maximum context length in
LongBench is up to 64k tokens. The results of the
scaled RNN models are presented in Table 5. Our
findings indicate that expanding the state size of
RNN models consistently enhances performance
across tasks. Specifically, Gated DeltaNet-E8
achieves an average improvement of 5.74% com-
pared to the baseline model and outperforms Gated
DeltaNet-L by 3.16% on average. Furthermore,
due to the limited extrapolation capabilities of
Transformer++, its performance on LongBench
is inferior to that of Gated DeltaNet. We further
compare with Transformer++-2k, which is a Trans-
former++ model using sliding window attention
with a window size of 2048. The results show that
Gated DeltaNet-E8 outperforms Transformer++-2k
by 2.79% on average with a smaller state size1.

5.5 State-Recall Context Scaling Trend
To quantify the scalability of RNNs on long-context
tasks, we propose the state-recall context scaling
trend. The maximum recall context length is de-
fined as the longest context length at which RNNs
maintain recall accuracy above a specified thresh-
old. To evaluate this, we test our models on S-
NIAH (Single Needle-In-A-Haystack) (Hsieh et al.,
2024) with UUIDs as needle values. We measure
accuracy with progressively increasing haystack
context lengths, using a step size of 512. Thresh-
olds are set between 0.5 and 0.8, incremented by
0.1. The resulting maximum recall context lengths
for various state sizes are presented in Figure 2.

Finding 3: The maximum recall context
length of RNNs scales linearly with state size.
The results in the figure reveal a near-linear relation-
ship between the maximum recall context length
and the state size, indicating that the recall ability of
RNNs can be significantly improved by scaling the

1The computation of the state size for Transformer++ with
sliding window attention is detailed in Appendix A.4.
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Model State Params Wiki ↓ LMB ↓ LMB ↑ PIQA ↑ Hella ↑ Wino ↑ ARC-e ↑ ARC-c ↑ SIQA ↑ BoolQ ↑ Avg ↑
Transformer++ / 400M 24.24 32.49 34.64 64.69 30.97 52.33 45.79 18.94 36.23 55.29 42.36
Transformer++ / 1.47B 14.31 9.74 52.53 72.36 43.55 59.12 60.14 26.79 40.43 61.41 52.04

GLA 1× 400M 26.32 36.60 31.54 63.66 30.85 49.41 45.12 19.62 37.67 59.91 42.22
GLA-L 1.2× 455M 25.41 32.99 33.98 65.67 31.45 52.64 47.22 20.39 37.72 60.21 43.66
GLA-E2 2× 412M 26.34 35.56 33.28 64.69 31.07 51.30 44.95 19.20 36.39 58.78 42.46
GLA-E4 4× 427M 26.07 32.53 34.43 64.42 31.04 49.96 45.54 19.28 37.31 61.07 42.88
GLA-E8 8× 454M 25.99 34.74 32.89 63.93 31.52 51.30 45.54 18.77 36.80 59.08 42.48

Gated DeltaNet 1× 400M 25.25 36.20 31.40 64.31 31.20 51.85 45.03 18.43 36.90 57.61 42.09
Gated DeltaNet-L 1.2× 455M 24.17 33.60 32.97 64.80 32.17 51.93 46.84 19.88 38.02 58.62 43.16
Gated DeltaNet-E2 2× 413M 24.38 31.93 34.76 66.21 31.73 50.12 48.40 19.03 37.21 58.72 43.27
Gated DeltaNet-E4 4× 427M 23.96 32.74 33.53 65.61 32.24 52.49 47.56 19.11 36.64 58.96 43.27
Gated DeltaNet-E8 8× 454M 23.61 29.50 36.85 65.29 32.30 50.36 46.46 19.28 37.82 58.53 43.36

Gated DeltaNet 1× 1.47B 17.27 14.57 44.89 71.06 40.28 56.75 56.31 23.81 40.38 61.22 49.34
Gated DeltaNet-L 1.2× 1.68B 16.42 10.37 50.75 72.63 41.95 57.77 58.63 26.71 39.71 60.49 51.08
Gated DeltaNet-E2 2× 1.52B 16.45 10.65 50.75 72.91 41.72 57.46 59.34 26.11 38.69 61.62 51.07
Gated DeltaNet-E4 4× 1.57B 15.99 10.80 50.16 72.20 41.54 58.09 59.47 24.57 40.28 60.52 50.85
Gated DeltaNet-E8 8× 1.68B 15.66 10.87 50.63 72.52 42.03 58.96 59.64 25.34 39.82 59.05 51.00

Table 3: Performance Comparison on Language Modeling and Zero-shot Common-sense Reasoning. “L” denotes
scaling the number of layers, and “E” denotes scaling the state size. “State” indicates the state size with respect to
corresponding base models. The upward arrow (↑) indicates that higher values are better, while the downward arrow
(↓) indicates that lower values are better.

Model State Params FDA ↑ SWDE ↑ SQuAD ↑ Avg ↑
Transformer++ / 400M 72.96 64.00 36.96 57.97
Transformer++ / 1.47B 77.77 79.93 48.26 68.65

GLA 1× 400M 11.52 31.95 28.32 23.93
GLA-L 1.2× 455M 12.34 31.68 29.93 24.65
GLA-E2 2× 412M 15.52 28.98 29.12 24.54
GLA-E4 4× 427M 17.06 32.94 28.28 26.09
GLA-E8 8× 450M 19.06 34.47 28.65 27.39

Gated DeltaNet 1× 400M 22.50 32.94 28.65 28.03
Gated DeltaNet-L 1.2× 455M 20.69 36.27 28.35 28.44
Gated DeltaNet-E2 2× 413M 21.14 38.34 29.79 29.76
Gated DeltaNet-E4 4× 427M 34.85 41.49 31.23 35.86
Gated DeltaNet-E8 8× 454M 38.93 43.02 30.23 37.39

Gated DeltaNet 1× 1.47B 37.66 53.47 37.60 42.91
Gated DeltaNet-L 1.2× 1.69B 41.74 60.31 38.07 46.71
Gated DeltaNet-E2 2× 1.52B 46.01 60.40 39.71 48.71
Gated DeltaNet-E4 4× 1.57B 52.63 61.48 39.51 51.21
Gated DeltaNet-E8 8× 1.68B 58.53 66.16 39.24 54.64

Table 4: Performance Comparison on Real-World Retrieval Tasks: FDA, SWDE, and SQuAD.

state size. Furthermore, compared to GLA, Gated
DeltaNet exhibits a steeper slope, highlighting its
greater potential for state size scaling. We fur-
ther evaluate the scaling trend on 1.5B-parameter
models in Figure 3, which is consistent with our
findings on 400M-parameter models.

5.6 Comparison with Transformer under
Similar State Sizes

To investigate whether scaling the state size of
RNNs can make them competitive with Trans-
former models, we compare the performance of
RNNs and Transformer++ with similar state sizes.
Since the state size of a Transformer is proportional

to its context length, we control the Transformer’s
state size by adjusting the context length in the
tasks. For this comparison, we use a more challeng-
ing benchmark, M-NIAH (Multi-keys Needle-In-
A-Haystack) with numbers as needle values (Hsieh
et al., 2024), with context lengths of 512, 1024, and
2048. Specifically, we evaluate the performance
of Gated DeltaNet and Transformer++ at the 1.5B
parameter scale. Gated DeltaNet, with expansion
factors of 2, 4, and 8, has state sizes comparable
to those of a Transformer with context lengths of
512, 1024, and 2048, respectively. The results are
provided in Table 6.

Finding 4: Gated DeltaNet remains less com-
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Single-Doc QA ↑ Multi-Doc QA ↑ Summarization ↑ Few-shot ↑ Code ↑
Model State NQA QQA MFQ HQA 2WM Mus GvR QMS MNs TRC TQA SSM LCC RBP Avg ↑
Transformer++ / 0.35 6.77 12.58 1.36 5.66 0.38 8.14 3.17 11.72 17.50 12.49 7.77 45.00 19.52 10.89
Transformer++-2k 16× 5.38 6.05 12.74 7.70 9.46 3.21 9.02 14.47 6.71 35.00 44.62 27.69 52.05 48.37 20.18

Gated DeltaNet 1× 2.46 5.78 13.67 5.81 7.70 3.71 7.06 16.71 12.16 28.00 32.16 26.97 40.83 38.20 17.23
Gated DeltaNet-L 1.2× 6.18 6.65 13.53 6.92 9.13 2.76 10.27 16.38 14.81 40.50 36.84 31.86 43.48 37.98 19.81
Gated DeltaNet-E2 2× 7.29 6.80 13.66 6.40 8.96 3.88 11.09 16.85 10.20 48.50 30.60 31.11 41.61 40.49 19.82
Gated DeltaNet-E4 4× 6.90 6.45 13.79 7.84 9.97 4.45 13.67 16.40 10.16 61.00 23.69 30.78 44.68 41.42 20.80
Gated DeltaNet-E8 8× 4.11 6.94 16.71 7.98 10.61 3.78 11.07 16.47 18.11 67.50 41.88 33.95 43.09 39.39 22.97

Table 5: Performance Comparison on 14 Tasks from LongBench (Bai et al., 2024). Transformer++-2k is a
Transformer++ model using sliding window attention with a window size of 2048.
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Figure 2: Scaling Trend of Maximum Recall Context Length vs. State Size on S-NIAH. The X-axis represents
the state size expansion factor, while the Y-axis denotes the maximum recall context length at which the model
maintains recall accuracy above a specified threshold t.

Model 512 ↑ 1024 ↑ 2048 ↑ AVG ↑
Transformer++ 100.00 99.60 99.20 99.60

Gated DeltaNet-E2 68.20 24.40 4.00 32.20
Gated DeltaNet-E4 65.00 30.20 7.20 34.13
Gated DeltaNet-E8 94.20 54.80 20.80 56.60

Table 6: Comparison of Transformer and Gated
DeltaNet on M-NIAH: We compare Transformer++ and
Gated DeltaNet models with similar state sizes. For the
Transformer, the state size is controlled by adjusting the
context length (“512”, “1024”, “2048”). Underlined val-
ues indicate that the Gated DeltaNet has the same state
size as the Transformer for the corresponding context
length.

petitive than Transformer models in terms of re-
call ability, even with similar state sizes. The re-
sults demonstrate that Gated DeltaNet, even when
matched in state size, underperforms compared to
Transformer models. This highlights the need for
further advancements in memory efficiency and
the development of new mechanisms to narrow the
retrieval ability gap between RNNs and Transform-
ers.

5.7 Ablation Study

We conduct an ablation study to evaluate the con-
tributions of the key components in our proposed
methods. 1) We replace the head-wise expansion
with other efficient alternatives, including low-rank
expansion, DPFP (Schlag et al., 2021), and LFM
(Pramanik et al., 2024). 2) We evaluate the impact
of removing the subhead mechanism. 3) We assess
the effect of replacing the SiLU activation function
with ReLU, 1+ELU, or identity.

The results are summarized in Table 7. The
results indicate that the head-wise expansion mech-
anism preserves more information compared to
other methods. The subhead division enhances
performance by providing finer control over state
updates. Additionally, the SiLU activation function
improves the model’s performance by introducing
greater nonlinear capacity.

Additionally, we compare our method with a
naive approach of directly increasing the number
of heads, as shown in Table 8. Given the same state
size, increasing the number of heads does improve
performance, but it also significantly increases the
number of parameters, thereby constraining further
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Model Wiki ↓ Recall ↑
Gated DeltaNet-E8 23.61 37.39

Head-wise expand -> Low Rank 23.93 36.71
Head-wise expand -> DPFP 24.41 33.93
Head-wise expand -> LFM 24.59 34.52

w/o Subhead 25.16 29.84

SiLU -> ReLU 23.61 36.48
SiLU -> 1+ELU 24.06 26.86
SiLU -> Identity 23.71 36.29

Table 7: Ablation Study on Gated DeltaNet-E8: The
table summarizes the impact of replacing the head-wise
expansion, subhead division, and SiLU activation func-
tion with alternatives. “Recall” represents the average
performance across FDA, SWDE, and SQuAD.

Model State Param FDA ↑ SWDE ↑ SQuAD ↑ Avg ↑
Gated DeltaNet-H2 2× 526M 29.76 39.69 31.57 33.67

Gated DeltaNet-E2 2× 413M 21.14 38.34 29.79 29.76
Gated DeltaNet-E8 8× 454M 38.93 43.02 30.23 37.39

Table 8: Comparison with vanilla increasing the number
of heads. “H2” indicates that the number of heads is
directly increased by 2 times.

scalability. In contrast, our Gated DeltaNet-E8
achieves better performance with fewer parameters
than simply increasing the number of heads. We
further compare our models with additional RNN
variants, including Mamba, RetNet, and DeltaNet
in Appendix A.2. This highlights the superiority of
our scaled RNN models in terms of recall ability.

6 Conclusion

To address the limitations of RNNs in handling
long-context tasks, we propose an efficient method
to scale the state size of RNNs, aiming to match the
state size of Transformers with a 2k context length.
Our results reveal that the recall ability of RNNs
scales nearly linearly with state size, indicating
that enlarging the state size of RNNs is a promising
approach to improving their long-context under-
standing ability. We hope this work inspires further
research into developing more powerful and effi-
cient RNN models, particularly by scaling their
state size effectively.

Limitations

Although we propose subhead division to improve
training efficiency, our expanded models still train
more slowly than the baseline models. However,
as discussed in Appendix A.1, this limitation can

be mitigated by developing more efficient RNN
kernels, as the FLOPs of our scaled RNN models
are comparable to those of self-attention. We leave
this exploration for future work.

We do not conduct a precise scaling law analysis
in this work, instead focusing on a coarse scal-
ing trend. There are several reasons. First, our
coarse scaling trend sufficiently demonstrates the
effectiveness of increasing RNN state size for long-
context understanding tasks, which meets the needs
of this paper. Second, evaluating long-context abil-
ities is sensitive to factors such as evaluation meth-
ods, training data, and prompts, making it difficult
to obtain a smooth scaling curve comparable to
those seen in loss-related scaling laws. Third, train-
ing RNN LLMs with large state sizes is slow, lim-
iting the number of experiments we can perform.
It’s hard to solve these issues within the scope of
this work. Therefore, we leave a precise scaling
law analysis for future work.
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A Appendix

A.1 Training Efficiency Discussion

We report the training throughput of our scaled
RNN models in Table 9. The results show that the
training throughput of Gated DeltaNet-E8 is only
0.21 times that of Gated DeltaNet-E1, indicating
a significant decrease in training efficiency as the
state size increases. This reduction is primarily
attributed to two factors: the RNN kernel and the
expansion of queries and keys.

Starting with the RNN kernels, we compare the
FLOPs of GLA, Gated DeltaNet, and self-attention
in Table 10. As shown, current RNN kernels re-
quire significantly fewer FLOPs than self-attention.
For example, when L = 4096 and D = 128, self-
attention consumes 10.7 times more FLOPs than
GLA and 8 times more FLOPs than Gated DeltaNet.
Consequently, our scaled RNN models have similar
FLOPs to self-attention and should exhibit com-
parable training efficiency. However, we identify
the bottleneck within the RNN kernel itself. De-
spite having a similar number of FLOPs as self-
attention, the RNN kernels run significantly slower
than FlashAttention-2 (Dao, 2023). Specifically,
the kernel TFLOPS of Gated DeltaNet and GLA
are approximately one-tenth that of FlashAttention-
2, indicating substantial room for improving the
kernel efficiency of RNNs. FlashAttention-2 ben-
efits from a highly optimized CUDA implemen-
tation, whereas the kernels of GLA and Gated
DeltaNet rely on less optimized Triton implementa-
tions (Tillet et al., 2019). This highlights the poten-
tial to enhance RNN kernel efficiency by adopting
CUDA-based optimizations.

The second factor is the expansion of queries
and keys, which involves multiple operations with

State TGS Ratio

Gated DeltaNet-E1 1× 24462 1.00
Gated DeltaNet-E2 2× 13998 0.57
Gated DeltaNet-E4 4× 9736 0.40
Gated DeltaNet-E8 8× 5172 0.21

Table 9: Training Throughput Comparison of Scaled
Gated DeltaNets. “TGS” refers to training tokens per
GPU per second.

FLOPs Ratio Kernel TFLOPS

Self-Attention 2HDL2 1× 213

GLA 6HLD2 L
3D× 21

Gated DeltaNet 8HLD2 L
4D× 25

Table 10: FLOPs and Kernel Comparison of Self-
Attention, GLA, and Gated DeltaNet. “FLOPs” refers
to floating-point operations, while “TFLOPS” denotes
the number of tera floating-point operations per second.
H , D, and L represent the number of heads, head di-
mension, and sequence length, respectively. “Kernel
TFLOPS” is measured with B = 4, H = 8, D = 128,
and L = 4096 on an H800 GPU. The self-attention
kernel is implemented using FlashAttention-2, whereas
the kernels for GLA and Gated DeltaNet are derived
from FLA.

fewer FLOPs, such as head-wise matrix multipli-
cation, SiLU activation, convolutional layers, and
normalization. Although these operations require
relatively few FLOPs, they incur higher memory
access costs. Fortunately, as these operations are
head-wise parallel, they can be fused into the RNN
kernels, saving most memory operations, which
should ideally make their overhead negligible.

As a result, the training efficiency of our scaled
RNN models has the potential to match that of
self-attention. We leave this as future work.

A.2 Comparison with Additional RNN
Models

We compare our scaled Gated DeltaNet with other
RNN models in Table 11. As shown, Gated
DeltaNet outperforms other RNN models, includ-
ing RetNet (Sun et al., 2023b), Mamba (Gu and
Dao), and DeltaNet (Yang et al., 2025). Further-
more, our scaled Gated DeltaNet-E8 achieves even
greater performance improvements.
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Figure 3: Scaling Trend of Maximum Recall Context Length vs. State Size on S-NIAH. We use numbers and
UUIDs as needle values, respectively, on 1.5B Scale

Model FDA ↑ SWDE ↑ SQuAD ↑ Avg ↑
RetNet 14.3 42.8 34.7 30.6
Mamba 6.2 41.4 35.2 27.6
DeltaNet 17.2 49.5 37.4 34.7
Gated DeltaNet 21.7 53.6 37.8 37.7

Gated DeltaNet-E8 27.0 66.2 39.2 44.1

Table 11: Comparison with Additional RNN Models
on FDA, SWDE, and SQuAD. Following (Yang et al.,
2025), we truncate the context length to 2048 for our
models. The results of RetNet, Mamba, and DeltaNet
are from (Yang et al., 2025).

Hyperparameter 400M 1.5B

Model Dim 1024 2048
Num Heads 8 8
Head Dim dqk = dv 128 256
Num Layers 24 24
Intermediate Dim 2816 5632

Table 12: Architecture Details

A.3 Implementation Details

A.3.1 Architecture

The architectural details of the two basic configu-
rations are summarized in Table 12, serving as the
foundation for all our models. Both GLA (Yang
et al.) and Gated DeltaNet (Yang et al., 2024)
are implemented based on FLA (Yang and Zhang,
2024), incorporating short convolutions and output
gates in their RNN layers. Since Transformer++
has fewer parameters per layer compared to GLA
and Gated DeltaNet, we increase its number of
layers to achieve a comparable parameter count.

A.3.2 Training Details

All models are trained on the SlimPajama dataset
(Soboleva et al., 2023). The 400M-parameter mod-
els are trained on 15B tokens, while the 1.5B-
parameter models are trained on 100B tokens.
Across all experiments, we employ the AdamW
optimizer with a weight decay of 0.1 and gradi-
ent clipping of 1.0. We use cosine learning rate
scheduling with a peak learning rate of 3e-4. The
warm-up steps are set to 1000 and 2000 for the
400M and 1.5B models, respectively. The batch
size is set to 0.5M tokens, with a sequence length
of 4096 tokens during training. All models use the
Mistral tokenizer with a vocabulary size of 32,000.

A.3.3 Evaluation Details

Following (Yang et al., 2024), our common-sense
reasoning evaluation includes Wikitext (Merity
et al., 2016), LAMBADA (Paperno et al., 2016),
PIQA (Bisk et al., 2020), HellaSwag (Zellers et al.,
2019), WinoGrande (Sakaguchi et al., 2020), ARC-
easy (ARC-e) and ARC-challenge (ARC-c) (Clark
et al., 2018), SIQA (Sap et al., 2019), and BoolQ
(Clark et al., 2019). Real-world retrieval tasks in-
clude FDA (Arora et al., 2023), SWDE (Lockard
et al., 2019), and SQuAD (Rajpurkar et al., 2018).
The above tasks are evaluated using lm-eval (Gao
et al., 2024). We also evaluate on 14 English tasks
in LongBench (Bai et al., 2024), including Narra-
tive QA, QasperQA, MultiField QA, HotpotQA,
2WikiMulti QA, Musique, GovReport, QMSum,
MultiNews, TRec, Trivia QA, SamSum, LCC, and
RepoBench-P.
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A.3.4 Implementation
Our experiments are primarily conducted using
publicly available libraries, including PyTorch,
XTuner (Contributors, 2023), and FLA (Yang and
Zhang, 2024), with training performed on H100
GPUs. This paper has been refined with the assis-
tance of a chatbot.

A.4 State Size of Transformer++ with Sliding
Window Attention

There are two scenarios regarding the state size
of Transformer++ with sliding window attention.
First, when the context length is smaller than the
window size, the state size is the same as that
of the original Transformer++, i.e., L × H ×
(dqk + dv)/2. Second, when the window size is
smaller than the context length, as is the case in
LongBench where the context length can be up
to 64k tokens—much larger than the window size
of 2048 in Transformer++-2k—the state size of
Transformer++-2k with sliding window attention
is approximately W ×H × (dqk + dv), where W
denotes the window size.

A.5 Ethical Considerations
Our work focuses on improving the long-context
understanding ability of RNNs. The potential ap-
plications of our work include enhancing the per-
formance of RNN models in long-context tasks.
We believe that our research can contribute to the
development of more powerful and efficient RNN
models, which can benefit society by improving
the performance of AI systems in various applica-
tions. Our work is not associated with any ethical
concerns.
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