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Abstract

Large language models (LLMs) struggle with
maintaining accurate knowledge due to con-
flicting/outdated parametric memories. While
locate-and-edit methods address this, their re-
liance on models’ internal representations leads
to robustness failures in long-context reason-
ing and paraphrased queries. We identify
a fundamental limitation of locate-and-edit
methods: existing semantic keys (for mem-
ory localization) cannot simultaneously sat-
isfy robustness (context-invariant activation)
and specificity (precise knowledge discrimina-
tion). Through theoretical error-bound anal-
ysis, we establish formal criteria for effec-
tive editing. Our solution introduces Ro-
bust Edit Pathway (REP), a plug-and-play
module that: (1) disentangles editing keys
from native model representations; (2) dynam-
ically adjusts keys via contrastive learning to
achieve robustness-specificity balance. Exten-
sive experiments across various editing meth-
ods (ROME/MEMIT/R-ROME/EMMET), ex-
isting LLMs (LLaMA2, QWen, Mistral), and
datasets (CounterFact, ZsRE) show that REP
improves success rate over robustness tests by
up-to 66.4% while maintaining the success rate
unaffected. !

1 Introduction

Large language models (LLMs, Achiam et al. 2023;
Touvron et al. 2023a,b) have revolutionized knowl-
edge storage through their parametric memories,
yet their reliance on static training data renders
them prone to inaccuracies from conflicting or out-
dated information. While knowledge editing meth-
ods like ROME and MEMIT (Meng et al., 2022a,b)
attempt to address this by modifying specific model
parameters, existing approaches are found to suf-
fer from editing failures with robustness tests (Ma
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'0ur code can be found at https://github.com/
ElliottYan/RobustKeyEdit.

et al., 2024c; Yang et al., 2024b). For example,
editing "Slovenia belongs to Europe — Antarctica"
frequently collapses when the subject is rephrased
("Republic of Slovenia"), embedded in long con-
texts, or attacked by shuffling subjects. The unreli-
ability greatly limits the impact and application of
model editing methods.

We uncover a fundamental flaw in their core
mechanism: the intrinsic instability of the model’s
internal representations when used as semantic
keys for editing.  Existing approaches assume
these internal representations can reliably local-
ize knowledge. Through formal analysis of key-
value associative memory in MLP layers (Defini-
tions 3.2 - 3.3) and empirical analyses, we prove
that existing internal representations frequently vi-
olate the foundational conditions for reliable edit-
ing: (1) Key Sensitivity: Representations of the
same fact diverge drastically under perturbations.
Whitened similarity scores drop to near-random lev-
els for shuffled subject tokens (e.g., "_ia Sloven" vs.
"Sloven _ia") and for rephrased variants, breaching
the robustness bound derived in Lemma 4.6; (2)
Key Collisions: Semantically distinct entities ex-
hibit unintended overlaps in the whitened space for
unrelated pairs like "Michael Jordan" and "Kobe
Bryant", Figure 4), contradicting the specificity
requirement in Lemma 4.7.

To resolve this, we propose Robust Edit Path-
way (REP), a novel plug-and-play module that
disentangles editing keys from native model rep-
resentations. Inspired by our theoretical results,
where effective knowledge insertion requires both
centering around semantically equivalent surface
forms of subjects while not affecting unrelated ones
— REP introduces: (1) Disentangled Key Projection:
A contrastively trained adapter aligns keys for tar-
get facts across perturbations, ensuring context-
invariant activation through whitened similarity
optimization (Eq. 6); (2) Dynamic Gate Mecha-
nism: Token-level gating selectively activates edits,
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Figure 1: An example of the edited knowledge ‘Slovenia belongs to the continent of” through knowledge editing and its failures

on the different scenarios.

dynamically balancing robustness and specificity.
Extensive evaluations across 4 editing methods
(ROME/MEMIT/R-ROME/EMMET)(Meng et al.,
2022a,b; Gupta et al., 2024a; Yoon et al., 2024),
3 LLMs (LLaMAZ2-7B, Mistral-7B, and Qwen-2-
7B)(Touvron et al., 2023b; Jiang et al., 2023; Yang
et al., 2024a), and two datasets (Meng et al., 2022a;
De Cao et al., 2021) demonstrate REP’s superiority:
(1) up-to 66.4% absolute gains on robustness tests,
recovering at most 94% of the editing performance
versus unperturbed inputs; (2) specificity preserva-
tion (ALocality < 1.6) and minimal fluency degra-
dation (AFluency <2.2); (3) effectiveness on both
in-domain and out-of-domain robustness queries.

Our contributions are as follows:

* Through theoretical error-bound analysis, we
establish formal criteria for effective model
editing and reveal fundamental limitations in
using internal representations as editing keys.

» Extensive experiments demonstrate existing
semantic keys cannot simultaneously achieve
robustness (context-invariant activation) and
specificity (precise knowledge discrimina-
tion).

* We propose Robust Edit Pathway (REP), a
plug-and-play module that disentangles edit-
ing keys from native model representations
and dynamically adjusts them via contrastive
learning.

» Experiments across various editing methods
(ROME/MEMIT/R-ROME/EMMET), LLMs,
and datasets show REP improves success rate
over robustness tests by up-to 66.4% while
maintaining editing performance.

2 Related Work

Knowledge Editing. As large language mod-
els have grown in complexity and size, post-
modification has become increasingly challenging
due to their opaque mechanisms and vast parameter
spaces (Mitchell et al., 2022; Zhong et al., 2023).
This has led to heightened interest in knowledge
editing, a technique for precise model modification.
Knowledge editing are applied to various scenar-
ios, such as editing for safety (Wang et al., 2024c),
debias (Yan et al., 2024) and concepts (Wang et al.,
2024e).

Our work is in line with the locate-and-edit meth-
ods, which draw much attention as they potentially
unveil how the knowledge are stored in an LLM.
These approaches first identify relevant parameters
before updating them to modify specific knowl-
edge, including KnowledgeNeuron’s attribution-
based neuron updating (Dai et al., 2021), ROME’s
causal mediation analysis for MLP editing (Meng
et al., 2022a), MEMIT’s multi-layer residual dis-
tribution (Meng et al., 2022b), PMET’s refined
allocation strategy (Li et al., 2024), and WilKE’s
dynamic layer selection (Hu et al., 2024b) to re-
duce potential negative effects. These methods all
utilize inner representations as keys for key-value
modeling. In contrast, we show that inner repre-
sentations cannot meet the requirements of robust
and specific edits, and we propose a robust edit
pathway to mitigate this.

Another line of knowledge editing methods for
large language models (LLMs) employs tuning-
based approaches, often incorporating constraints
or routing mechanisms to enhance locality perfor-
mance (Wang et al., 2024d; Hartvigsen et al., 2023;
Liu et al., 2025; Zhang et al., 2024b). For instance,
WISE (Wang et al., 2024d) proposes a dual para-



metric memory scheme, utilizing a router to di-
rect queries to either pretrained or edited knowl-
edge, which implicitly involves determining rout-
ing based on activation differences. Similarly,
GRACE (Hartvigsen et al., 2023) introduces dis-
crete key-value adaptors to implement spot-fixes by
writing new mappings into the model’s latent space,
where keys are cached activations and a deferral
mechanism decides activation. Our theoretical and
empirical analysis reveals fundamental trade-offs
between robustness (context-invariant activation)
and specificity (precise knowledge discrimination)
in inherent semantic keys, which potentially pro-
vides a principled explanation for the efficacy of
these routing-based approaches and their architec-
tural design choices.

Challenges of Knowledge Editing. Despite the
promise, various challenges persist in practical ap-
plications of model editing methods. Previous stud-
ies show that edits often degrade general language
abilities (Gu et al., 2024; Ma et al., 2024b), damage
the hidden space (Wang et al., 2024b), struggle to
propagate to related facts (Hua et al., 2024), and are
easily forgotten during sequential updates (Gupta
et al., 2024b). Moreover, multi-hop reasoning can
elicit old knowledge (Zhang et al., 2024a), and
models may collapse after few edits (Yang et al.,
2024b; Brown et al., 2023).

Further complications include cross-lingual in-
consistencies (Wang et al., 2024a), knowledge con-
flicts (Li et al., 2023), and inadequate evaluation
in realistic settings such as long-form generation
(Rosati et al., 2024) and neighborhood knowledge
(Ma et al., 2024a). These issues underscore the
need for more sophisticated and comprehensive
editing techniques. However, previous research
largely remains focused on the outcomes of knowl-
edge editing in various scenarios, lacking a deeper
understanding of the underlying mechanisms of
these methods and the true reasons behind their
frequent failures. Our work presents both theo-
retical and empirical understanding regarding the
reason for the robustness failures of locate-and-edit
methods and proposes REP to enhance them.

3 Knowledge Editing

In this section, we explain the background of
knowledge editing. We first formulate knowledge
editing and review the locate-and-edit methods
with ROME (Meng et al., 2022a) as the representa-
tive.

Task Definition Knowledge editing focuses on
updating factual associations in language models.
Following (Meng et al., 2022a) and (Meng et al.,
2022b), we define a knowledge f as a triple (h, r, t),
where h is the head entity, r is the relation, and ¢ is
the target entity (e.g., (USA, has president, Biden)).
Given a knowledge triple: (h,r,t), the goal is to
modify the model’s knowledge by replacing the
target entity ¢ with a new target ¢, = Trump (e.g.,
changing ‘Biden’ to ‘Trump’).

Autoregressive large language models (LLMs)
can complete a natural-language sentence by lever-
aging implicit knowledge encoded within their pa-
rameters. Thus, a knowledge triple (h,,t) is con-
sidered stored in the LLM when the model can
predict the target ¢ given a prompt that corresponds
to (h,,-). For instance, given a prompt ‘The presi-
dent of USA is’, a model with the above knowledge
would predict ‘Biden’.

Definition 3.1 (Knowledge Editing for LLMs).
Given a knowledge triple (h,r,t) already stored
in the language model M and a new knowledge
(h,r, ty), there exists a set of prompts P = {p}
corresponds to (h,r, ). The knowledge editing al-
gorithm A aims to modify the model’s prediction on
P from t to t,. This task can be formally expressed
as follows:

M = AM),
s.t. M(p) = t, M'(p) = t.,Vp € P,

Architectural Foundations for locate-and-edit
The efficacy of locate-and-edit methods relies on
identifying modular components in LLMs that
encode factual knowledge. Transformer-based
(Vaswani, 2017) LLMs organize computation into
layers containing two core submodules: self-
attention (for contextual reasoning) and Multi-
Layer Perceptrons (MLPs, for nonlinear feature
transformations). A key insight from ROME
(Meng et al., 2022a) establishes that factual asso-
ciations localize to specific MLP layers—enabling
precise edits.

Each MLP layer comprises two feed-forward
operations: (1) an up-projection that expands hid-
den dimensions for fine-grained feature interac-
tions, and (2) a down-projection that contracts
dimensions to synthesize higher-level representa-
tions. ROME treats these MLPs as linear associa-
tive memories (Definition 3.2), leveraging causal
mediation analysis to pinpoint layers where edits
(e.g., substituting “Biden” — “Trump” in presi-
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Figure 2: Overview of REP. Left: Key concept visualization; Right: Architectural design of the adapter.

dential facts) propagate correctly. By surgically
modifying these layers, ROME updates targeted
knowledge while preserving unrelated model capa-
bilities, minimizing unintended side effects.

Definition 3.2 (MLP Layers as Associative Mem-
ories). The down-projection weight matrix W in
the MLP layer can be interpreted as a linear asso-
ciative memory system. Specifically:

s Keys K = [kilka|---|ks] € RPY*™ repre-
sent the intermediate representations of the
prompt corresponding to (h,r,-) before down-
projection.

s Values V. = [vi|va] -+ |v,] € RP2X" pep-
resent the corresponding outputs after down-
projection.

The weight matrix W € RP2*P1 approximately
maps the keys to their associated values, satisfying

WK =V.

Definition 3.2 (illustrated by Figure 2 left) en-
ables the MLP layers to store and retrieve prompt-
target associations. Then, ROME accomplishes
knowledge editing by inserting a new key-value
pair into the MLP layer, modifying W to .

Definition 3.3 (The Solution of ROME). In
ROME, a new key-value pair (k.,v.) can be in-
serted into the language model using the following
closed-form solution:

minimize.;, |IWK — V|| s.t. Wk,
by setting W = W + A(C™ k)T

where:

o C = KK is a constant matrix pre-cached by
estimating the uncentered covariance of k from
a sample of Wikipedia text,

e A= % is a vector proportional to the
residual error of the new key-value pair on the

original memory matrix.

Intuitively, || K — V|| controls the shift from
previously stored keys and values, and Wk, = v,
makes sure that the new knowledge is added into
. To implement this solution, it is necessary to
extract the key k. and calculate the value v,.

Remark 3.4 (Extract k). In M, k., is obtained
by averaging the activations collected at the last
token of the head entity h, processing a small set
of texts that end with the head entity h. This can be
formally written as:

1 M
ka]—kh
7j=1

where k(-) is the input of the second MLP layer of
the l.-th FFN layer in the transformer, M is the
number of the selected texts and x; represents a
random prefix.

Once k, is extracted, the next step is to determine
the appropriate value v, for the new key-value pair.

Remark 3.5 (Calculate v,). Let Py (t|p) de-
note the probability of t, after M processes query
prompt p. We seek a vector z to substitute as the
output of the MLP in layer I* at token i (denoted
mgl*) : z) such that the network predicts the target
tail entity t, while maintaining the model’s under-
standing of the subject’s essence. The optimization
objective is as follows:
1 ,
Ve = argmin Z; —log PM(mﬁ.l*):z) [h|z; + p]
j=

(a) Maximizing h' probability
+ Drt (B 0005 P IPACL D)

(b) Controlling essence drift

where p' is ‘subject is a’.



In conclusion, the ROME method effectively
enables the insertion of new knowledge triples
(h,r,t) into large language models through op-
erating key-value pairs.

4 Theoretical Results of Key-Value
Associative Memory

The idea of keys and values in associative mem-
ory (as shown in Definition 3.2) is analogous to
the key-value databases in modern computer sys-
tems. What makes the difference here is that down-
projection FFNs implement a fuzzy retrieval mech-
anism, whereas modern key-value databases gener-
ally require the keys to be unique.

Lemma 4.1 (Fuzzy Key-Value Mapping). Given
K e RPY>" and V € RP2X"™ as defined in Defini-
tion 3.2 that are already stored in the feed-forward
layer W € RP2xD1 gosume n > Dy and K
has the rank of D1. When a new query k, comes,
its corresponding value can be represented as the
weighted sum of existing values, v, = Zi\io Q;v;
and o« = KT(KK")" 'k, can be solved by the
Moore-Penrose pseudoinverse.

Lemma 4.1 demonstrates that the retrieved mem-
ory of a new test query can be considered as the
linear combination of previously stored memory,
which leads to the following direct corollary.

Corollary 4.2 (Edited Key-Value as a Patch
against Original Knowledge). In locate-and-edit
algorithms, new knowledge is injected into the
memory as a key-value pair (ky,vy). Consider
a set of existing key-value pairs (k;,v;) where
k; € Ks,v; € Vi that represent the same knowl-
edge as (k.,vy) (e.g., paraphrases). Suppose the
injection is lossless® and that K has full row rank,
querying with any k; € KCs would retrieve a value
V=), 0 F Qs

Remark 4.3. This corollary reveals that knowledge
editing operates as an additive mechanism rather
than a replacement one. Instead, it leaves the pre-
viously stored knowledge intact and counters them
with a newly added value v,.

Lemma 4.4 (Bound on optimized Av = v, — v,).
Assume the edited layer is only connected to the
final prediction layer via an attention layer, where

’In a real-world scenario, the edit cannot be lossless. Here,
for a clear intuition, the above lemma is presented in an ideal
way as the editing process will change the value of previously
stored key-value pairs. We show that even considering the
lossless scenario, the current LLMs cannot satisfy robustness
and specificity requirements.

the attention layer has parameters Wg, Wi, Wy,
and wy and wy, are the output embeddings for the
original and edited target, we have the following
inequality,

(wt* - wt)TWV<U* - Uo) > €1+ €9
=||(wr, —we) "Wy || - [Jox = vol| > €1 + €,

where € is the logit gap after projection to the out-
put embedding between t and t.. €1 denotes the
logit gap before edit and €5 denotes the logit gap
after edit. A value of € =~ 2.30 corresponds to a
90% top-1 prediction probability.

Remark 4.5. Lemma 4.4 suggests that an edited
value should be first similar to the vector pointing
from t to t, after a projection with Wy,. Then, the
edited values Av should be sufficiently large to
ensure the success of the edit.

Our assumption here simplifies the connection
between the edited layer and the prediction layer,
as in real-world scenarios, the edit layer might pass
through subsequent layers and undergo multiple at-
tention operations before finally connecting to the
prediction layer. However, the path we’re consider-
ing (i.e., from the edit layer to the prediction layer
via an attention layer) is arguably the most direct
route. We contend that this direct path is crucial
and warrants particular attention, and this simpli-
fication allows us to focus on the most immediate
and potentially significant impact of edits.

Lemma 4.6 (Robustness Requirement for the
Key-Values). Robust editing requires consistency
across semantically equivalent inputs: when edit-
ing knowledge with a new pair (k.,v.), the edit
should propagate to all semantically equivalent
representations in the memory. For an edit to
be considered a robust edit, querying with any
ks € KCs should reliably retrieve the new knowl-
edge (h,r,ty). This can be expressed as the follow-
ing constraint:

(wy, —w) T Wy (KL C7 k) vl > €142, Vky € K.

When we look into the Lemma 4.6, BS,* =
kIC~'k, can be seen as a similarity measure
on a projected space, namely whiten similarity.
This lemma implies that (1) v, is decided by
miny ,eic, (ks C~'k,), thatis, k, should be near all
ks € K. If not, v, needs to be of large magnitude
to counter the difference. Such large-magnitude
updates can destabilize the model’s learned repre-
sentations and potentially degrade its overall per-



formance; (2) v, needs not only to be aligned with
the direction (w;, — w;), but also has a sufficiently
large magnitude to ensure editing success.

Lemma 4.7 (Specificity Requirement for the
Key-Values). If the newly added knowledge triplet
(h,r, t.) would not be retrieved for any k, ¢ Ks, it
requires the following inequality to be satisfied:

(wy, — we, )T Wy (EXC7 k) - 0T < e,
Vko & Ks and Yw € W,

where t,, is the original target retrieved by k, and
€3 denotes the logit difference between t,, and t..

One simple solution for this lemma is
kTC~'k, = 0, which describes no superposition,
as discussed in one of the concurrent work (Hu
et al., 2024a). However, as superposition gener-
ally exists among existing LLMs, we discuss more
general cases here.

Lemma 4.8 (Whitened Similarity Bounds). For
a successful edit to achieve both robustness and
specificity, the whitened similarities must satisfy:

1. Lower bound for semantically equivalent
keys:
53,* = kzc_lk* > Bmirv

€1+€2
[(wex —we) TWy ||| [o*]]

Vks € Ks (1)

where Bmin = |

2. Upper bound for unrelated keys:
’/807*’ = ’kgc_lk*’ S Bmaxa vko §é ,Cs
2

Il

_ €3
where Bmax = S T W T

Detailed proof of all lemmas can be found in
Appendix A.

Remark 4.9. Lemma 4.9 suggests that when
adding new knowledge, a new key must be intro-
duced at an appropriate position. This new key
must be placed carefully, as its position can affect
both its intended target and potentially interfere
with nearby keys.

5 Empirical Analysis: A Break of
Requirements

In light of our theoretical results in previous section,
we analyze the current knowledge editing methods,
showing that the robustness and specificity require-
ments from previous section cannot be satisfied
with inner representations as keys, motivating our
approach.
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Figure 3: The distribution of normalized whitening similarity
between different kinds of keys and original keys.

5.1 Experimental Setup

Following previous work, we use the Counter-
Fact (Meng et al.,, 2022a) datasets, choosing
LLaMA-2 as our base model. In addition to the
prompt from CounterFact dataset, we additionally
consider three types of perturbation in our exper-
iments, namely prompt appended with unrelated
long context, subject rephrase and random shuf-
fled subject. Even though the shuffled subject does
not contain the same semantic meaning, it demon-
strates how keys shift when the position of same
token occurs at different positions.

We collect 10 rephrases for each subject by
prompting gpt-40-mini. The prompt we use can
be found in Appendix. For long context, we follow
(Ma et al., 2024c) and extract random text span of
512 tokens from Wikitext-103 (Merity et al., 2016).
For rephrased prompts, we use the paraphrases of
prompts released by (Patil et al., 2023). For shuf-
fled subject, we sample 10 random orderings of
tokens in the subject. We use 100 samples in our
valid set for empirical analyses.

5.2 Empirical Statistics of Keys, Values and
Others

Dissimilar Keys. In Figure 3, we present the dis-
tribution of whiten similarity 5 for three operations
over the original edit along with a random key base-
line. The implementation detail can be found in
Appendix B.2.

We can see that the similarity after these opera-
tions drops drastically. Rephrasing and shuffling
word orders generally reduce the similarity from
1.0 to less than 0.4, even to the random level. Ap-
pending long context is less destructive, but still re-
duces the key similarity to [0.2, 0.9]. These results
indicate a violation of the robustness requirement,
showing a significant variability in the representa-
tion of the same subject, making locate-and-edit



difficult to retrieve the edited value to be retrieved.

These findings challenges the intuition that se-
mantically equivalent subjects should have similar
representations, and poses severe challenges to the
effectiveness of edits.

Similar but Non-Related Keys. We also investi-
gate whether there exist different subjects that have
highly similar keys. To this end, we iterate through
a slice of Wikitext-103 dataset (about 80M tokens)
and select those close to subjects in CounterFact in
the whitening space. We filter those tokens whose
prefix has the same subject token and collect the
top 10 unrelated keys of each subject in Counter-
Fact. The left of Figure 4 plots the distribution of
whitening similarities between unrelated prefixes
and CounterFact subjects. We find that a large
portion of them has an extremely high whitening
similarity score, i.e., > 2500. Based on our theory,
it indicates that any edit that affects these subjects
would inevitably affect the output on these unre-
lated prefixes.

On the right side of Figure 4, we present a list of
subjects and their top-1 prefix in terms of whiten-
ing similarities. Interestingly, we observe that a
subject can exhibit similarity in distributional se-
mantics (Lenci and Sahlgren, 2023) to its corre-
sponding top unrelated prefix. For example, the
keys of Michael Jordan are highly similar to keys
of a prefix related to Kobe. Considering that these
two basketball players has much in common in
many perspectives, it makes sense that their keys
are similar. However, an edit to Michael Jordan
affects Kobe would be definitely unreasonable.

6 Robust Edit Pathway

Our solution is to separate keys from the model’s
internal representations by introducing a potential
branching path as keys for edited facts.

This is done by adding an adapter after the keys,
allowing their representations to be modified when
needed. As shown on the right of Figure 2, our
adapter consists of two modules, a projection mod-
ule that is responsible for aligning the keys and a
gate module that activates the adapter when a token
representation needs to be edited:

]% = fgate(k) o fproj(k) +k, 3)
where k € RbszXLXD, fgate(k) c RbszXLxl and
fproj(k) c RbszxLxD.

The gate mechanism here operates on the gran-
ularity of tokens and adaptively selects whether a

key should be modified or not.

We train the adapter by aggregating the keys of
same subject ks € K4 toward our injected target
key k,:

Lo — ks 11
age = — (=)  C7 kil “
[1Fs ]2

where k, is the output keys after adapter. The in-
tuition is inspired by Lemma 4.6 and 4.7. If the
edited key is close to the keys of the same subject,
especially those we found dissimilar in Section 5.2,
the edit would be more robust.

In practice, we find that the model inclines to
‘cheat’ by simply increasing the norm of kg, and
thus we normalize the output of f. In practice, we
take the last token of rephrased subjects over dif-
ferent contexts and rephrased templates as k. This
objective, built on the whiten similarity, further
strengthens the validness of our theoretical results.

To address the drift of the target key &, dur-
ing optimization, we introduce a target consistency
loss:

Econsistency - MSE(kA*? k*) (5)

The final training objective combines both compo-
nents:

L= Eagg + Oéﬁconsistency (6)

with « controlling the trade-off.

For testing, we use a gate threshold 7 to deter-
mine whether to activate this projection. This gate
mechanism allows the model to dynamically de-
cide whether the original keys should be modified.
If not, the keys are left intact and thus ensure the
locality of edits. The whole algorithm can be found
in Appendix.

6.1 Experimental Results

Setup We evaluate our Robust Edit Pathway with
representative locate-and-edit methods, namely
ROME, MEMIT, R-ROME, and EMMET. We use
the LLaMAZ2-7B, Mistral-7B, and Qwen2-7B as
our base model and CounterFact and ZsRE as our
datasets. We filter knowledge triplets of datasets
not presented in the model as (Meng et al., 2022a)
did, and randomly sample 100 knowledge triplets
as the validation set and 400 triplets as the test set.
While other studies in model editing explore modi-
fying multiple facts continuously (Mitchell et al.,
2022; Hartvigsen et al., 2024; Meng et al., 2022b),
we have found that robustly injecting even a single
fact presents significant challenges. Therefore, we
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baseline. Right: Semantically similar subjects bring challenges to specificity.

Method Edit Performance In-Domain Out-of-Domain
SucessT Locality? Para.t Fluency| | Rephraset Shuffle} Long! | Rephrasef Shufflef Long?
Baseline Methods
ROME 100.0 96.1 63.8 587.4 61.0 13.0 89.8 62.6 13.7 89.8
MEMIT 99.3 91.2 71.9 571.4 73.3 30.0 92.3 734 32.0 94.3
R-ROME 99.7 95.8 62.1 583.8 58.9 14.7 89.5 61.7 16.1 90.7
EMMET 99.7 93.8 63.0 584.0 59.7 16.3 83.7 60.9 16.5 83.0
With REP
ROME 100.0t%0 94615 66931 587501 88.0%270 599469 9] 7+l9 | 755+129  9g 7+150 gy 3+15
MEMIT | 99.4+01 90.804 74223 567242 89.9+166 58 9289 g3 g+1.3 84.4%11.0 45 2+315 94 701
R-ROME | 99.9102  947-L.1  67.4%53  586.0%>2 | 88.8"2%%  (0.3*456 92,025 | 765148 29 5+134 op o+l3
EMMET | 99.8*01  922-16  84+54 584606 | 94.4+347 g 7+064 g8 4+47 | 829+220  4p 5+260 gg (+36

Table 1: The main results of REP across three seeds comparing ROME, MEMIT, R-ROME, and EMMET editing methods
on Llama2-7B on CounterFact dataset. REP consistently enhances model performance Results averaged over three seeds with
7 = 0.9. The upperscript numbers denote the improvement after using REP.

keep our focus on single-edit paradigm.

For evaluation, we first follow (Meng et al.,
2022a,b) and utilize the following four metrics for
edit performance: (1) Success: the ratio of targeted
knowledge achieving the top probability; (2) Lo-
cality: the ratio of related but non-identical facts
kept intact by the edit; (3) Paraphrase (Para.): the
ratio of targeted knowledge achieving success on
paraphrased prompts; (4) Fluency: the weighted
average of bi- and tri-gram entropies.

Moreover, we report the success rate for three ro-
bustness tests: paraphrasing subjects, shuffling sub-
jects’ token ordering, and appending long context,
as discussed throughout the paper. Improving these
metrics suggests a more robust editing method. We
report robustness metrics at both in-domain, where
the test cases are seen in training adapter, and out-
of-domain, where the test cases are not seen by
adapter. Note that in our ‘in-domain’, we do not
reveal the target knowledge to the model, we only
aggregate the keys.

ROME and MEMIT’s Failure on Robustness.
Our results are shown in Table 1. We can see

that our baseline methods, ROME, MEMIT, R-
ROME, and EMMET achieve near-perfect edit
success rates (>99%) while preserving good lo-
cality scores (93-96%). Nonetheless, these meth-
ods are prune to robustness tests. Taking ROME
as an example, the success rate drops 39% with
rephrased subjects, 87% with shuffled subjects or-
dering, and 10.2% with randomly appended long
context. These results reconcile with those reported
in previous studies (Ma et al., 2024c).

Effectiveness of Robust Edit Pathway. REP im-
proves the robustness of each of the locate-and-edit
methods significantly, with a slight cost of local-
ity drop. For instance, REP improves ROME over
three robustness tests with +27.0%/+46.9%/+1.9%
for in-domain queries, and +12.9%/+15.0%/+1.5%
for out-of-domain queries. We also conduct ex-
periments over a different dataset (ZsRE) and two
additional base models (QWen and Mistral). The
results are shown in Appendix and consistently
demonstrate the effectiveness of REP. This vali-
dates our theoretical results and empirical insights.



Ablation Studies. Gate threshold 7 and consis-
tency loss weight « are crucial to the performance
of REP. We study them in the Appendix with Figure
5 and Figure 6. We find that a larger 7 and a larger
« leads to a better locality and success rate. Mean-
while, the robustness metrics first plateau, then
degrade with the increase of 7 and «, indicating a
trade-off between robustness and edit performance.
Throughout our experiments, we use 7 = 0.9 and
a =be+4.

7 Conclusion

In this work, we challenge a core assumption in
the locate-and-edit mechanism — the model’s inner
representations can serve as semantic keys for edit-
ing. We present theoretical results and empirical
analyses revealing that these keys are both sensitive
and unspecific. To address this issue, we propose
the Robust Edit Pathway (REP), which disentan-
gles the editing keys from native model representa-
tions. By extensive experiments, we show that REP
can significantly enhance robustness over various
locate-and-edit methods while maintains the edit
success rate.

8 Limitations

While REP demonstrates significant improvements
in knowledge editing robustness, our work is lim-
ited in the following aspects: (1) REP requires addi-
tional training steps to learn the adapter parameters,
introducing computational overhead compared to
direct editing methods. (2) Our current evaluation
focuses on single-fact editing. The effectiveness
of REP in scenarios involving multiple interrelated
facts or continuous editing remains to be investi-
gated. (3) In this work, we focus on locate-and-edit
methods. Even though it is the dominant line of
methods in model editing methods, there are still
other model editing methods and REP does not
apply to them.
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A Proofs

A.1 Proof of Lemma 4.1

Since K has full row rank (rank(K) = Dy), KKT
is invertible. To find «, we use the Moore-Penrose
pseudoinverse of K.

Given K € RP1*" the pseudoinverse K7 is
defined as: Kt = KT(KK")~!, which also min-
imizes || Ko — kJ|.

Then, we can express © as:

b=Va=VKT(KK") k. (7

Note that since n > D1, the system Ka = kis
underdetermined. This means there are infinitely
many solutions for «, and the Moore-Penrose pseu-
doinverse gives the one with the smallest norm.

A.2 Proof of Lemma 4.4

We can focus on the logit difference between the
largest and the second-largest logits to achieve high
confidence in the final prediction. This difference is
an important factor in determining the confidence
of a prediction in a softmax layer.

Here, we simplify the modeling by only consid-
ering the contribution of edited layer towards final
prediction via its the edited layer is connected to
the final prediction layer directly via its attention
layer

Given a vector of logits z = [z1,22,..., Zn],
the softmax function yields probabilities p =
[p1,D2, -, Pn), where:

e

To increase the confidence in the prediction for
the largest logit, maximize the difference between
the largest logit and the second-largest logit.

Let zmax be the largest logit and zomer be another
logit. The logit difference A is given by: € =
Zmax — Zother-

The softmax confidence for the class correspond-
ing to zmax can be expressed as:

ezmax
Pmax = ®)
- eFmax + eFother - Zk;ﬁmax, other ek

ezmax

e#max | eZother (9)
1

= 10
1+ec (19)

After organizing between two sides, we get a lower
bound of e for achieving a sufficiently large confi-

dence:

e > —log(1l— ) an

pmax

Now, in a transformer architecture, the edited
MLP layer is connected to the word prediction layer
through an attention layer at the final token. Let
the difference between the original and the edited
output of the MLP layer be Awv, the parameters of
the attention layer are Wq, Wi, Wy € RP*P and
the query vector at the prediction token is ¢ = Qh,
the attention layer’s output is defined by

0= Z Softmax (g’ Wicv; ) Wyv;.
J

(12)

Since in the locating part we use causal intervention
to identify the most influential position of tokens
to edit, we can assume that (¢ Wiv;) has already
get the largest weight. The difference caused by
edited MLP is,

Ao = Softmax(-) Wy Aw. (13)

Then, residual connections directly connect this
output to the final word prediction layer. Combin-
ing our result from equation 11, let the original fact
t before the edit has a logit gap €; and the new fact
t, after edit has e, we can bound the Ao with,

(wy — wt*);oom’ > € (14)
(we, —wy)” (0ori + A0) > €2
= (wy, — wt)TAO > €1+ €2 (15)
= (wy, — we) Softmax(-) Wy Av > €1 + €
(16)
= (wy, — wt)TWVAv > €1+ €9 a7
(18)

Given that the softmax weight is at most 1, we have
our lower bound on Aw.

A.3 Proof of Lemma 4.6

For an edit to be robust, it must propagate correctly
to all semantically equivalent inputs. We derive
this requirement step by step:

1) From Lemma 4.4, a successful edit requires:

(wer — wt)TWV(v* —V,) > €1 + €

2) When querying with a semantically equivalent
key ks € K, by Lemma 4.1, the retrieved value is:

v = kgC_lk* 0% = Py
where f3; . represents the whiten similarity between
ks and k*.
3) For robust editing, this retrieved value must



maintain the prediction gap:
(ws — w) "Wy (Bsw - v") > €1 + €
4) Rearranging terms:
(we — w) T Wy (KLCTE*) 0™ > €1 + €,
Vks € K,

This inequality must hold for all semantically
equivalent keys ks € K, establishing our robust-
ness requirement.

A.4 Proof of Lemma 4.7

The specificity requirement ensures edits do not
affect unrelated knowledge. We derive this as fol-
lows:

1) Consider an unrelated key k, ¢ K with origi-
nal target ¢,,. The corresponding output embedding
18 wy,.

2) To preserve specificity, the edit should not
significantly alter predictions for unrelated inputs:

(wy, — wee ) T Wy (kL O - 0T < g5
3) This constraint must hold for:
* All unrelated keys k, ¢ K
 All possible target embeddings w,, € W

4) Therefore, our specificity requirement is:
(wn, — we ) Wy (KL C7H) - 0T < e,
Vk, ¢ Kq,Yw, € W

This establishes the formal criterion for main-
taining specificity in knowledge editing. The re-
quirement ensures that edits remain localized to the
intended knowledge while not affecting unrelated
retrievals.

B Experimental Details

B.1 Data Construction

We build our evaluation data based on the Counter-
Fact dataset. We further augment our data with all
three robustness tests. For rephrased subjects by
prompting gpt4o-mini with the following prompt.

Give 10 rephrases representing the same
entity: {ENTITY}

The irrelevant long contexts are extracted from the
Wikitext-103 dataset (Merity et al., 2016). The
shuffled tokens are generated via sampling different
word ordering. Finally, we filter the samples that
are not present in the current LLM, that is, given
the prefix, the target tokens are not predicted by the

LLMs with the top-1 probabilities. We sample 100
samples for validation and 400 samples for test. To
evaluate in-domain and out-of-domain robustness,
we split the all three kinds of robustness queries
in a 50-50 manner. For each sample, we have 5
in-domain queries and 5 out-of-domain queries.

B.2 Analyzing Dissimilar Keys

In Section 5.2, for each subject in CounterFact, we
compute the dot product for each pair of keys of
a subject’s rephrases. We utilize the inputs to the
FFN’s down projection of layer 5 of LLaMA-2 as
our keys, consistent with previous ROME exper-
iments. Additionally, we include the dot product
values of randomly sampled keys as a baseline for
comparative analysis. We normalize the whiten
similarity by the similarities between the subject
itself.

B.3 Details of Training REP

We implement our methods based on
EasyEdit (Wang et al., 2023). We use Adam
optimizer for all experiments and the learning rate
is 5e-4. We train each adaptor for 10 steps. The
inner dimension of the projection module is 32,
and the inner dimension of gate module is 0.1 of
key dimension.

C Additional Results

Table 2 and 3 present the performance of ROME,
MEMIT, R-ROME, and EMMET methods, both
with and without the REP enhancement, across
CounterFact and ZSRE respectively. Across both
datasets, REP consistently improves model robust-
ness, particularly in in-domain generalization and
out-of-domain adaptability, despite minor trade-
offs in edit success rates. Results are averaged
over three seeds , with standard deviations indicat-
ing stable improvements. Notably, REP-enhanced
variants demonstrate superior fluency and locality
preservation, highlighting its effectiveness in bal-
ancing edit precision with broader generalization.

D Preliminary Experiments to
Multi-Edits

Even though the focus of this paper is in single edit
scenario, extending REP to the mulit-edit scenario
would be an interesting extension for further work.

Thus, we have conducted some preliminary ex-
periments on multi-edits. Our setting is to extend
the single edit to 5 edits sequentially, as was done



Table 2: The main results of REP across three seeds comparing ROME, MEMIT, R-ROME, and EMMET editing methods
on Llama2-7B, Mistral-7B and Qwen2-7b on CounterFact dataset. REP consistently enhances model performance Results
averaged over three seeds with 7 = 0.9, showing standard deviations. 1 indicates higher values are better, | indicates lower

values are better.

Edit Performance Generalization In-Domain Out-of-Domain
Model ‘ Method ‘ Success?  Localityt  Reversion], ‘ Para.t Fluency? ‘ Rephraset  Shufflet Long?t ‘ Rephraset  Shuffle? Long?t
ROME 100.0+0.0 961+0.1 0.0+00 |63.8+03 5874+12| 61.0£0.7 13.0+09 89.8+02 | 62.6+0.1 13.7+0.5 89.8+0.5
+REP 100.0+£0.0 946+02 00+0.0 |669+03 587.5+0.8 | 88.0+0.2 599+03 91.7+0.2 | 755+0.6 28.7+19 913+14
MEMIT | 993+05 91.2+0.6 00+0.0 |719+17 5714+£2.6 | 733+1.2 300+09 923+09 | 734+0.7 320+3.1 943+33
Llama2 +REP 994+0.1 90.8+0.2 0.0+0.0 |742+0.1 5672+03 | 89.9+04 589+08 93.6+1.1 | 844+0.5 452+0.8 942=+15
R-ROME | 99.7+0.5 958+03 03+05 |62.1+13 583.8+33 | 589+0.7 147+08 895+35 | 61.7+13 16.1+1.8 90.7+0.5
+REP 999+0.1 947+04 00%£0.0 | 674+0.2 586.0+0.1  88.8+0.5 603+12 92.0+0.2 | 765+0.6 29.5+14 92.0+0.8
EMMET | 99.7+05 938+0.2 0.0+0.0 |63.0+13 584.0+65 | 59.7+23 163+06 83.7+02| 609+12 165+15 83.0+24
+REP 99.8+0.2 922+04 0.1+0.1 |684+0.2 584.6+08 | 944+0.2 827+1.0 884+19 | 829+03 425+1.3 88.6+2.2
ROME 999+0.1 94100 00%0.0 |69.1£05 609.4+08 | 71.1+02 14602 946+04 | 71.8+03 143+1.1 94403
+REP 99.8+02 928+0.1 0.1%0.1 |722%£0.2 610005 | 955+0.2 84.6+0.6 951+04 | 84.8+08 41.6+x0.5 947+0.3
MEMIT | 99.7+03 892+02 00+0.0 |768+05 607.0£09 | 84.0+0.1 29.0+03 950+0.6 | 824+04 28.6+04 94.0+0.5
Mistral +REP 985+05 855+0.1 0.0+£00 |773+x0.6 6055+1.0 | 93.1+05 751+13 954+04 | 89.2+03 62.7+0.7 943+0.3
R-ROME | 998+0.1 93.7+01 0.0%00 | 705+0.1 608.6+09 | 732+0.2 161+04 955+04 | 734+03 16012 953+12
+REP 99.7+£0.1 924+00 0.1%0.1 |73.6+01 6094+12 | 961+0.1 869+03 959+0.2 | 859+0.2 43.9+0.5 954+1.0
EMMET | 998+0.1 925+02 0.1%01 |69.6x09 609.0+1.0 | 73.8+0.5 167+05 920%0.7 | 73.5+03 164+0.6 914+13
+REP 99.0+00 899+03 0.1+0.1 |742+11 6084+03 | 982+0.1 952+1.0 93.6+0.7 | 90.2+03 587+1.0 929%15
ROME 99.6+0.1 956+01 00+0.0 |694+03 6204+15] 632+03 200+£04 941+£03 | 62.7+02 181+05 93905
+REP 99.4+0.1 91.0+0.1 00+0.0 |731+£01 622.1+1.9 | 81.0+£0.6 705+0.5 959+0.2 | 75.6+0.0 654+0.6 958=+0.5
MEMIT | 99.6+0.1 903+0.2 04+0.1 |756+0.1 620.1+03 | 759+0.6 314+09 97.6+0.1 | 748+04 29.7+09 96.6+0.3
Owen2 +REP 99.7+0.1 81.8+0.1 0.0%0.0 |79.7+0.2 6202+2.2 | 957+0.2 81.7+12 98.0+0.1 | 89.7+0.1 723+15 969=+0.2
R-ROME | 99.8+0.0 962+0.1 02+00 |685+04 621.0+04 | 63.1+0.3 202+03 938+02 | 623+0.1 184+04 933+09
+REP 999+0.1 919+0.1 01%01 |724+£05 621.1+0.2 | 81.4+03 708+0.8 957+0.5 | 755+0.2 64.8+0.9 945+1.1
EMMET | 99.8+0.0 925+01 02+00 |722+0.1 6195+02 | 71.5+0.7 313+06 962+04 | 70509 30.0+04 96.7+0.6
+REP 999+01 764+08 0.0+£0.0 |785+04 621.0+2.6 | 929+0.3 884+09 97.0+0.1| 89.2+03 87.1+13 974+0.6
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Figure 5: Hyper-parameter study of 7 on validation set.

in previous studies. We naively extend the REP
adaptors one by one after each ROME edit. These
initial results, shown in Table 4, are consistent with
the experiments in the single edit scenario: Ro-
bustness is greatly improved while precision and
locality are largely maintained.

E Ablation Study

The gate threshold 7 and consistency loss weight
« significantly influence REP’s performance, as
discussed in Section 6.1. Empirical analysis (Fig-
ures 5 and 6) demonstrates that increasing 7 and
a improves locality preservation and edit success
rates. However, robustness metrics initially plateau
before deteriorating with further parameter esca-
lation, underscoring the need to balance precision

against generalization. This trade-off analysis justi-
fies our selection of 7 = 0.9 and o« = 1e+5, which
optimally reconcile competing objectives across
experiments.

F Case Visualization

Figure 7 (right) provides a visualization of rep-
resentations for the subject *Slovenia’ after three
types of perturbations, reduced to two dimensions
using Principal Component Analysis (PCA). This
visualization corroborates our previous findings:
(1) Context sensitivity: Long irrelevant context
induces a slight shift in the representation, indi-
cating contextual influence on subject encoding.
(2) Rephrase variability: Rephrased versions of
the subject sometimes cluster close to the original



Table 3: The main results of REP across three seeds comparing ROME, MEMIT, R-ROME, and EMMET editing methods on
Llama2-7B, Mistral-7B and Qwen2-7b on ZSRE dataset. REP consistently enhances model performance. Results averaged over
three seeds with 7 = 0.9, showing standard deviations. 1 indicates higher values are better, | indicates lower values are better.

Edit Performance ‘ Generalization ‘ In-Domain Out-of-Domain
Model Method Sucess Locality  Reversion ‘ Fluency ‘ Rephrase Shuffle Long ‘ Rephrase Shuffle Long
ROME | 921+£0.1 99.6+0.0 0.5+0.0 566.1 £ 1.8 444+£03 47+£01 682+06|442+09 45+03 683+1.0
+REP 90.0£0.5 99.6+0.0 0.6+0.1 567.2+1.8 723+02 51.5+03 725+02|58.0+0.7 249+04 71217
MEMIT | 885+0.6 994+0.1 05+0.0 545.1 £ 2.6 53.7+0.8 13.0+09 72.0%+19 | 545+06 12.7+05 71.2+23
L1ama2 +REP 87.1+0.1 994+0.1 05%0.0 5433+23 57.0+03 17406 719+19 |562+0.6 145+0.2 71.8+1.5
R-ROME | 92.1+0.2 99.7+0.0 0.5%0.0 565.0 £ 0.9 43.1£09 46+£02 687+£04 |43.1+x1.1 44+£03 687+14
+REP 89.8+03 99.7+0.0 0.8+0.2 562.0+£2.2 714+0.6 51.2+07 724+02|572+£09 252+09 72017
EMMET | 86.6+14 99.7+0.1 0.5%0.0 563.8 £ 0.9 33.0+13 28+03 521+26|33.0+1.1 28+£03 52739
+REP 847+13 99.7+0.1 0.7+0.1 561.6 +2.0 66.7+23 509+22 594+22|500+1.8 22.6+1.8 59.7+3.7
ROME | 97.2+0.3 995+0.1 1.6+0.1 584.0+25 492+04 42+04 772+0.1|503+£09 41+£07 783+£09
+REP 93.1+0.6 99.5+0.1 15%0.0 584.6 £ 1.0 843+08 741+11 786+06 | 71.5+1.5 408+15 79.1+14
MEMIT | 941+1.0 994+0.1 14+0.1 579.6 £3.1 60.5+0.8 124+08 809+22|621+12 11.9+03 81.8%1.2
Mistral +REP 90.2+0.7 99.4+0.1 13x%0.0 579.0 £ 1.6 689+19 365+24 80019 |661+1.7 259+1.6 80.8+1.6
R-ROME | 975+£0.2 99.6+0.2 1.6+0.1 585.5+2.5 50.1+£04 43+03 784+0.8|509+07 44+0.8 788=+1.1
+REP 933+0.7 99.6+0.2 1.6+0.1 585.0+4.3 849+0.7 756+0.7 793+0.6 | 72.0+1.6 424+15 80314
EMMET | 959+03 995+0.1 1.7+0.1 588.0+0.9 41812 29+05 528+42|424+14 2703 526+54
+REP 90.2+1.0 995+0.1 1.6+0.1 589.1+1.8 83.0+06 76107 61.0+32|684+15 448+2.0 60.2+4.2
ROME | 983+0.1 989+0.2 20+0.0 562.1 +3.7 53.8+0.2 11.0+0.5 768+04 |559+0.1 11.0+x09 775+1.1
+REP 97.0+04 974+0.0 2.0+0.0 568.8 +2.9 642+04 422+1.0 80.6+05 | 61.7+0.8 36.0+04 79.2+1.0
MEMIT | 954+0.2 982+0.1 15+0.0 573.9+£5.8 62.4+03 222+03 888+%1.6|652+03 221+08 89.2+0.5
Qwen2 +REP 942+03 972+0.1 1.6+0.1 576.4 +4.1 787+£09 519+20 888+15|748+0.7 41.2+24 89.0+04
R-ROME | 982+0.2 98.8+0.1 2.0%0.0 571.5+22 542+03 11.5+05 772+13|567+0.1 120+08 76.7+1.5
+REP 96.0+0.2 97.4+0.1 22+03 575.5+3.3 663+1.0 453+04 80.0+2.1|633+0.7 38.8+0.5 789+25
EMMET | 94.6+0.2 97.7+03 15+0.0 570.6 £4.2 585+05 17.7+04 752+18 | 603+0.7 189+05 756+09
+REP 914+03 91.7+0.1 1.8+0.2 5745+ 4.6 782+£0.5 70705 772+18 | 750%£09 67.6+1.0 77.2+0.8
In-Domain Out-of-domain

ACC Locality rephrase shuffle | long rephrase shuffle long

ROME 79.3 57.3 59.9 21.5 71.0 59.9 22.2 69.5

ROME + REP | 78.0 56.4 71.7 51.5 71.5 65.3 30.8 70.3

Table 4: Performance comparison between ROME and ROME + REP methods for 5 sequential edits.

representation, while at other times they are dis-
tant. (3) Order dependence: Shuffling the word
order results in substantial deviations from the orig-
inal representation. This observation highlights the
model’s sensitivity to word order, even when the
constituent tokens remain unchanged.

When the edited key has near-zero or negative
similarity with other keys, based on Lemma 4.6 it
becomes virtually impossible for the edited value
to be retrieved, potentially compromising the ro-
bustness of the edit.

G Analyzing Value Distributions

Loud Voices. In Figure 8, we present the dis-
tribution of values before and after edits, using
LLaMA-2 7B and ROME. The results demonstrate
that post-edit values exhibit significantly larger L2
norms compared to pre-edit values. This observa-
tion aligns with our findings in Lemma 4.4 and
4.6, which suggest that edited values must be suf-
ficiently large to effect changes on the current key
and influence distant keys.

However, this increase in value magnitude, while

necessary for effective editing, presents potential
challenges. As indicated by Lemma 4.7 and our
previous analysis, these ’loud’ values may inad-
vertently affect unrelated keys, particularly those
that are proximal in the representation space to the
one being edited. This observation highlights a ten-
sion between achieving targeted edits and avoiding
unintended consequences in the model’s broader
knowledge representation.

Summary. Our findings collectively suggest that
the inner representations of large language models
(LLMs) may not serve as reliable keys for editing
purposes. The observed variability in key similari-
ties, even among semantically equivalent subjects,
coupled with the necessity for large-magnitude
value changes, poses significant challenges for pre-
cise and controlled model editing. These issues
can lead to unintended effects on unrelated parts of
the model’s knowledge and compromise the speci-
ficity of edits. Furthermore, the sensitivity of rep-
resentations to word order and context underscores
the instability of using these internal states as edit
targets. These limitations motivate us to explore
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Figure 8: Values before and after edit with ROME.
alternative approaches, particularly the concept of
branching a separate path for keys. By creating a
dedicated pathway for key representations, we may
achieve more stable and controllable edit targets,
potentially mitigating the issues of representation
variability and unintended side effects observed
when directly manipulating the model’s inner rep-
resentations.
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