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Abstract

Large language models (LLMs) have achieved
human-level text generation, emphasizing the
need for effective AI-generated text detection
to mitigate risks like the spread of fake news
and plagiarism. Existing research has been con-
strained by evaluating detection methods on
specific domains or particular language mod-
els. In practical scenarios, however, the detec-
tor faces texts from various domains or LLMs
without knowing their sources. To this end,
we build a comprehensive testbed by gather-
ing texts from diverse human writings and
texts generated by different LLMs. Empiri-
cal results show challenges in distinguishing
machine-generated texts from human-authored
ones across various scenarios, especially out-
of-distribution. These challenges are due to
the decreasing linguistic distinctions between
the two sources. Despite challenges, the top-
performing detector can identify 86.54% out-
of-domain texts generated by a new LLM, indi-
cating the feasibility for application scenarios.

1 Introduction

With constant advancements in artificial intelli-
gence generated content (AIGC) technology (Rom-
bach et al., 2022; Zhang and Agrawala, 2023; Shi
et al., 2023; Brown et al., 2020; OpenAI, 2023b),
texts generated by large language models (LLMs)
(Brown et al., 2020; OpenAI, 2023b; Touvron et al.,
2023; Taori et al., 2023) have reached a level com-
parable to that of human peers, enabling the genera-
tion of remarkably fluent and meaningful responses
to various user queries.

Advanced LLMs have become prevalent in en-
hancing human life and productivity. Nevertheless,
they can also be employed for purposes such as

* Work was conducted during the internships of Yafu Li
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Figure 1: Machine-generated text detection in the wild:
the detector encounters texts from various human writ-
ings or fake texts generated by diverse LLMs.

manipulating public opinion, spreading fake news,
and facilitating student plagiarism. To this end, re-
searchers have recently been putting efforts into dif-
ferentiating between texts written by humans and
those generated by machines (Pu et al., 2022; Guo
et al., 2023; Zhao et al., 2023; Mitchell et al., 2023).
However, these findings are limited to testbeds of
specific domains (Pu et al., 2022) or deepfake texts
from certain models (Guo et al., 2023), or they as-
sume the accessibility of the source LLMs (Zhao
et al., 2023; Mitchell et al., 2023). Within a spe-
cific domain (e.g., BBC News), it can be easy to
identify texts generated by a certain model (e.g.,
ChatGPT) from human writings (Pu et al., 2022;
Mitchell et al., 2023).

In practice, however, a machine-generated text
detector may encounter fake news from various
LLMs without knowing their sources, as depicted
in Figure 1. The detector can also face ChatGPT-
generated student assignments across different
tasks such as story generation, question answering,
and scientific writing. As the detector encounters
increasingly diverse texts from both human-written
and machine-generated sources, it has fewer sur-
face patterns or linguistic differences to rely on.
In a more demanding scenario, the detector must
identify texts from unfamiliar domains or those



generated by unseen LLMs. In this study, we try to
address the following research questions: (1) Can
existing detection methods effectively distinguish
texts generated by diverse LLMs for various writ-
ing tasks in real-world scenarios? (2) Are there
inherent distinctions between human-written texts
and machine-generated texts in an open-domain
setting, irrespective of their topic or content?

To this end, we build a large-scale testbed,
MAGE, for MAchine-GEnerated text detection,
by collecting human-written texts from 7 distinct
writing tasks (e.g., story generation, news writing
and scientific writing) and generating correspond-
ing machine-generated texts with 27 LLMs (e.g.,
ChatGPT, LLaMA, and Bloom) under 3 represen-
tative prompt types. We categorize the data into 8
testbeds, each exhibiting progressively higher lev-
els of “wildness” in terms of distributional variance
and detection complexity. Initially, we detect texts
generated by a white-box LLM within a specific do-
main. Subsequently, we enhance the complexity by
incorporating texts generated by additional LLMs
across various writing tasks. The most challenging
testbed necessitates the detector’s ability to identify
out-of-domain texts generated by newly developed
LLMs and perform detection against paraphrasing
attacks.

We evaluate 4 commonly employed detection
methods, encompassing both supervised and un-
supervised approaches, on our proposed testbeds.
Empirical results indicate that all detection meth-
ods are effective in identifying machine-generated
texts from a single domain or generated by a lim-
ited range of LLMs. However, as the diversity of
domains and models increases, except for the PLM-
based detector, all other methods experience sig-
nificant performance deterioration. The challenge
intensifies with out-of-distribution (OOD) testbeds,
where even the best-performing detector misclas-
sifies 61.95% of human-written texts from unseen
domains. The suboptimal OOD performance can
be effectively mitigated by leveraging a mere 0.1%
of in-domain data, resulting in over 80% recall for
identifying out-of-domain texts generated by previ-
ously unencountered LLMs. This demonstrates the
feasibility of machine-generated text detection in
real-world scenarios.

Finally, we investigate potential differences be-
tween human texts and machine generations that
can be utilized for detection. Statistical findings
demonstrate that while significant linguistic differ-
ences exist within a particular domain, they gradu-

ally converge as more texts from diverse domains
and language models are included. Moreover, em-
pirical results demonstrate that perplexity can serve
as a fundamental feature for clustering the two
sources of text. It is applicable to distinguishing be-
tween human and machine compositions in general,
regardless of the text domain or the language model
used for generation. We release our resources at
https://github.com/yafuly/MAGE.

2 Related Work

A line of work explores the linguistic pat-
terns to achieve automatic machine-writing de-
tection, which has gone through n-gram frequen-
cies (Badaskar et al., 2008), entropy (Lavergne
et al., 2008; Gehrmann et al., 2019), perplex-
ity (Beresneva, 2016), and negative curvature re-
gions of the model’s log probability (Mitchell
et al., 2023; Bao et al., 2023). One limitation
of these statistics-based methods is the white-box
assumption that we can access the model predic-
tion distributions, hindering wider applications on
models behind APIs, such as ChatGPT. Another
alternative paradigm is training neural-based de-
tectors (Bakhtin et al., 2019; Fagni et al., 2021;
Uchendu et al., 2020; OpenAI, 2023a). Some
works (Meral et al., 2009; Krishna et al., 2023;
Zhao et al., 2023; Kirchenbauer et al., 2023) ex-
plore the potential of watermarks in language mod-
els, making model-generated texts easier to detect.
Liang et al. (2023) indicate that texts by non-native
speakers are more likely to be incorrectly identi-
fied as AI-generated. Our work does not assume
language models are enhanced with watermarks,
instead considering a more common detection set-
ting where we do not know the sources of detected
texts.

Current AI text detection has not achieved sig-
nificant success, as evidenced by the successful
exploits of paraphrasers that expose weaknesses in
existing detectors (Sadasivan et al., 2023; Krishna
et al., 2023), raising concerns about the robustness
of current detection methods. On the other hand,
most of the detectors focus on specific domains,
such as news (Zellers et al., 2019b; Zhong et al.,
2020) and reviews (Chakraborty et al., 2023), or
specific models (Pu et al., 2022; Rodriguez et al.,
2022; Mitchell et al., 2023). The transferability of
detection capabilities to out-of-distribution scenar-
ios, involving texts from unseen domains or models,
remains uncertain and represents a crucial practi-

https://github.com/yafuly/MAGE


cal challenge. To address this issue, we examine
a scenario where texts from various domains gen-
erated by different language models are combined
and extended to out-of-distribution settings with
consideration for paraphrasing attacks.

3 Dataset Construction

Data Sourcing. We collect human-written texts
from a set of benchmark datasets, which cover
diverse writing tasks including: (1) Opinion
statement: 804 opinion statements from the
/r/ChangeMyView (CMV) Reddit subcommunity
(Tan et al., 2016) and 1,000 reviews from Yelp
dataset (Zhang et al., 2015); (2) News arti-
cle writing: 1,000 news articles from XSum
(Narayan et al., 2018) and 777 news articles from
TLDR_news*(TLDR); (3) Question answering:
1,000 answers from the ELI5 dataset (Fan et al.,
2019); (4) Story generation: 1,000 prompted stories
from the Reddit WritingPrompts (WP) dataset (Fan
et al., 2018) and 1,000 stories from ROCStories
Corpora (ROC) (Mostafazadeh et al., 2016); (5)
Commonsense reasoning: 1,000 sentence sets for
reasoning from HellaSwag (Zellers et al., 2019a);
(6) Knowledge illustration: 1,000 Wikipedia para-
graphs from SQuAD contexts (Rajpurkar et al.,
2016); (7) Scientific writing: 1,000 abstracts of sci-
entific articles from SciXGen (Chen et al., 2021a).

Model sets. We aim to adopt a wide spec-
trum of representative large language models
(LLMs) to construct machine-generated texts.
In particular, we consider 27 LLMs in this
work: OpenAI GPT (text-davinci-002/text-
davinci-003/gpt-turbo-3.5) (Brown et al., 2020),
LLaMA (6B/13B/30B/65B) (Touvron et al., 2023),
GLM-130B (Zeng et al., 2022), FLAN-T5
(small/base/large/xl/xxl) (Chung et al., 2022),
OPT (125M/350M/1.3B/2.7B/6.7B/13B/30B/iml-
1.3B/iml-30B) (Zhang et al., 2022a), BigScience
(T0-3B/T0-11B/BLOOM-7B1) (Sanh et al., 2022;
BigScience, 2023) and EleutherAI (GPT-J-6B and
GPT-NeoX-20B) (Wang and Komatsuzaki, 2021;
Black et al., 2022).

Prompts. To generate machine-generated text for
each instance in the collected data, we use three
types of prompts to feed the LLMs: (1) contin-
uation prompts: ask LLMs to continue genera-
tion based on the previous 30 words of the orig-
inal human-written text; (2) topical prompts: as

*https://huggingface.co/datasets/JulesBelveze/TLDR_news

LLMs to generate texts based on a topic (e.g., argu-
ment, news title, story topic, etc.) and (3) specified
prompts: topical prompts with specified informa-
tion about the text sources (e.g., BBC news, Red-
dit Post, etc.). The topical and specified topical
prompts are designed for OpenAI models, as they
can respond to such prompts robustly. We present
several prompt examples in Appendix A.

In summary, for each human-written text, we
generate a set of machine-generated texts using 27
LLMs with 3 different prompts. Data construction
details and statistics are presented in Appendix B.

4 Detection Methods

A detection system labels a text as either machine-
generated or human-written, or outputs a proba-
bility distribution. In this work, we consider a set
of commonly used detection methods. To show-
case detection difficulty, we first consider naive
baselines, i.e., human detection and ask Chat-
GPT, by asking human and query ChatGPT to
identify the text source. For supervised methods,
we choose the PLM-based classifier, which is
commonly used in text detection (Rodriguez et al.,
2022; Pu et al., 2022). We report the performance
of Longformer (Beltagy et al., 2020) in the remain-
der of the paper, as it outperforms other commonly
used PLMs, such as BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and GPT-2 (Radford
et al., 2019). Detailed comparisons can be found in
Appendix E. GLTR (Gehrmann et al., 2019) is also
included to represent methods that leverage model-
based features. In addition, we include FastText
(Joulin et al., 2017), which uses linguistic statistics
as features. For unsupervised detection, we con-
sider DetectGPT (Mitchell et al., 2023) to study
the robustness of zero-shot detectors, which can
also serve as a representative method that requires
access to the text-generation LLM. Implementation
details are shown in Appendix C.

5 Experimental Setup

5.1 Testbed Settings
We consider each benchmark dataset as separate
domains, such as CMV, XSum, SciXGen, etc.
We group the LLMs into 7 sets based on their
source: OpenAI GPT set, LLaMA set, GLM-130B
set, FLAT-T5 set, OPT set, BigScience set, and
EleutherAI set. To investigate whether machine-
generated text can be distinguished from human-
written text, we categorize the collected data into



8 settings. These settings are determined by the
sources of training and evaluation data and increase
in detection difficulty. The simplest setting in-
volves detecting within-domain white-box detec-
tion while the most challenging setting involves
detecting against paraphrasing attack.

We first consider in-distribution settings, where
the detection method is evaluated on texts from
seen domains and model sets, i.e., the training and
test data are from the same data source.

Testbed 1: Fixed-domain & Model-specific.
Human-written texts come from a single domain
and machine-generated texts are generated by a
specific LLM (GPT-J-6B). A classifier is trained
for each of the 10 domains, and the weighted av-
erage performance is reported. In this setting, we
use only GPT-J-6B to generate fake texts instead
of the entire model set from EleutherAI, aiming
to simulate white-box detection, i.e., accessibility
to the text-generating LLM, which is crucial for
detection methods such as DetectGPT.

Testbed 2: Arbitrary-domains & Model–specific.
Human-written texts are obtained from combining
all 10 domains, while machine-generated texts are
produced by a single model set, creating 7 inde-
pendent testbeds for each model set. We train 7
classifiers accordingly and report weighted average
performance.

Testbed 3: Fixed-domain & Arbitrary-models.
Similarly, we include human-written texts from a
single domain and obtain machine-generated us-
ing all model sets. In this way, we create 10 in-
dependent testbeds for each domain and train 10
classifiers accordingly.

Testbed 4: Arbitrary-domains & Arbitrary-
models. Human-written texts are from all do-
mains with machine-generated texts generated us-
ing all model sets, which creates an integral testbed
covering the full range of data. We train a general
classifier and report its performance.

Furthermore, we consider four out-of-
distribution settings where the detection model
is tested on texts from unseen domains or unseen
models.

Testbed 5: Unseen Models. This setting eval-
uates whether the classifier can detect texts from
unseen models. In this setting, texts generated by a
specific model set are excluded from the training

data. The classifier is then trained on the remain-
ing texts and tested on the excluded ones. This
process creates 7 testbeds for cross-validation. We
train 7 classifiers for each testbed and report their
weighted average performance.

Testbed 6: Unseen Domains. This setting eval-
uates whether the classifier can detect texts from
unseen domains. In this setting, texts from a spe-
cific domain are excluded from the training data.
The classifier is then trained on the remaining texts
and tested on the excluded one. This process cre-
ates 10 testbeds for cross-validation. We train 10
classifiers for each testbed and report weighted av-
erage performance.

Testbed 7: Unseen-domains & Unseen-model.
We go one step “wilder” by constructing an ad-
ditional test set with texts from unseen domains
generated by an unseen model, to test the de-
tection ability in more practical scenarios. We
consider four new datasets: CNN/DailyMail (See
et al., 2017), DialogSum (Chen et al., 2021b), Pub-
MedQA (Jin et al., 2019) and IMDb (Maas et al.,
2011) to test the detection of machine-generated
news, dialogues, scientific answers and movie re-
views. We sample 200 instances from each dataset
and use a newly developed LLM, i.e., GPT-4 (Ope-
nAI, 2023b), with specially designed prompts (Ap-
pendix A) to create machine-generated texts.

Testbed 8: Paraphrasing Attack. Sadasivan
et al. (2023) show that detection methods are vul-
nerable to being deceived by paraphrased target
texts. Based on the Unseen Domains & Unseen
Model test set, we paraphrase each sentence in-
dividually for both human-written and machine-
generated texts, forming a more challenging test
set. We treat paraphrases from both sources as
machine-generated. We adopt gpt-3.5-turbo as
the paraphraser and consider all paraphrased texts
as machine-generated.

5.2 Evaluation Metrics

We report AUROC (the area under the receiver
operating characteristic curve), which quantifies
the classifier’s potential of distinguishing between
the positive and negative classes. An AUROC
of 1.0 corresponds to a perfect classifier, whereas
0.5 represents random guessing. Following Nakov
et al. (2013), we also consider AvgRec (average
recall), which is calculated by averaging the recall
scores on human-written texts (HumanRec) and



Detector HumanRec MachineRec AvgRec

ChatGPT 96.98% 12.03% 54.51%
Human 61.02% 47.98% 54.50%

Table 1: Detection performance of ChatGPT and hu-
mans.

Methods Human/Machine AvgRec AUROC

FastText 94.72%/94.36% 94.54% 0.98
GLTR 90.96%/83.94% 87.45% 0.94
Longformer 97.30%/95.91% 96.60% 0.99
DetectGPT 91.68%/81.06% 86.37% 0.92

Table 2: (Testbed 1) White-box detection performance.
“Human/Machine” denotes HumanRec and MachineRec,
respectively.

machine-generated texts (MachineRec) †. These re-
call scores help us assess the realistic detection per-
formance. For instance, black-box detection meth-
ods like human detection and ask ChatGPT cannot
be evaluated using AUROC. Furthermore, deter-
mining a decision boundary based on a reliable
validation set is challenging in an open-domain
detection setting.

6 Results

6.1 Naive Baselines

Table 1 shows that both ChatGPT and human an-
notators fail to distinguish machine-generated texts
from human-written ones. The AvgRec is only
slightly better than random guessing, suggesting
that machine-generated texts have achieved a level
(e.g., fluency and coherence) comparable to those
of humans. We then explore whether there exist
underlying differences that can be captured by au-
tomatic detection methods.

6.2 In-domain Detection

The results of in-domain detection are shown in
Table 2 and the upper part of Table 3.

White-box Detection. From Table 2, we can ob-
serve that all detection methods obtain solid perfor-
mance when the texts are from a specific domain
and a specific LLM (GPT-J-6B) (i.e., Fixed-domain
& Model-specific). Typically, DetectGPT performs
well in identifying machine-generated texts when
the scoring model matches the one used to generate

†Since our test sets are balanced, the precision score heav-
ily relies on and can be reflected by the recall score. Therefore,
we choose to report only the recall scores for a more intuitive
evaluation.

the fake texts, i.e., accessibility to the generation
LLM in the white-box setting.

PLM-based Detectors demonstrate robustness
to texts from various sources. As shown in Ta-
ble 3, the detection performance (AvgRec and AU-
ROC) decreases as the detector encounters broader
data sources, i.e., texts from various domains or var-
ious LLMs. For example, GLTR’s AUROC drops
from 0.94 to 0.80 and DetectGPT’s drops from 0.92
to 0.57 when encountering texts from multiple mod-
els (Arbitrary-models). The severe performance
drop of DetectGPT is attributed to its reliance on ac-
cessibility to the generation LLMs (Mitchell et al.,
2023). On the other hand, FastText faces significant
challenges in detecting texts from various domains
(Arbitrary-domains), despite its robustness on texts
sourced by different language models. Among all
detection methods, the Longformer detector con-
sistently outperforms others in terms of AUROC
and AvgRec. Despite the minor performance degra-
dation, Longformer surpasses other detectors by a
considerable margin in the Arbitrary-domains &
Arbitrary-models setting, where the detector en-
counters diverse texts from various domains and
language models.

6.3 Out-of-domain Detection
We further investigate whether the detection model
can identify machine-generated texts in out-of-
distribution settings, i.e., detect texts from unseen
domains or generated by new LLMs. The results
are presented in the lower part of Table 3. Em-
pirical results indicate that, except for the Long-
former detector, all other detectors perform poorly
in identifying texts generated by unseen models.
Furthermore, none of the detectors effectively clas-
sify texts from novel domains.

Unseen Models. Among all methods, the Long-
former detector is the only one that performs well
(with an AUROC of 0.95 and AvgRec of 86.61%)
when detecting texts from unseen LLMs. The per-
formance of FastText further degrades, with AU-
ROC dropping from 0.83 to 0.74. GLTR faces a
significant challenge when it comes to unseen mod-
els. Its AUROC of 0.65 suggests that it struggles to
differentiate between different text sources. The de-
tection performance (Longformer) on each unseen
model set is shown in Figure 2. The Longformer
classifier has the most difficulty distinguishing texts
generated by the OpenAI and FLAN-T5 models
from human-written ones. By comparison, the de-



Settings Methods Metrics
HumanRec MachineRec AvgRec AUROC

Testbed 2,3,4: In-distribution Detection

FastText (Joulin et al., 2017) 88.96% 77.08% 83.02% 0.89
Arbitrary-domains GLTR (Gehrmann et al., 2019) 75.61% 79.56% 77.58% 0.84
& Model–specific Longformer (Beltagy et al., 2020) 95.25% 96.94% 96.10% 0.99

DetectGPT⋆ (Mitchell et al., 2023) 48.67% 75.95% 62.31% 0.60

FastText (Joulin et al., 2017) 89.43% 73.91% 81.67% 0.89
Fixed-domain GLTR (Gehrmann et al., 2019) 37.25% 88.90% 63.08% 0.80

& Arbitrary-models Longformer (Beltagy et al., 2020) 89.78% 97.24% 93.51% 0.99
DetectGPT⋆ (Mitchell et al., 2023) 86.92% 34.05% 60.48% 0.57

FastText (Joulin et al., 2017) 86.34% 71.26% 78.80% 0.83
Arbitrary-domains GLTR (Gehrmann et al., 2019) 12.42% 98.42% 55.42% 0.74

& Arbitrary-models Longformer (Beltagy et al., 2020) 82.80% 98.27% 90.53% 0.99
DetectGPT⋆ (Mitchell et al., 2023) 86.92% 34.05% 60.48% 0.57

Testbed 5,6: Out-of-distribution Detection

Unseen Models

FastText (Joulin et al., 2017) 83.12% 54.09% 68.61% 0.74
GLTR (Gehrmann et al., 2019) 25.77% 89.21% 57.49% 0.65

Longformer (Beltagy et al., 2020) 83.31% 89.90% 86.61% 0.95
DetectGPT⋆ (Mitchell et al., 2023) 48.67% 75.95% 62.31% 0.60

Unseen Domains

FastText (Joulin et al., 2017) 54.29% 72.79% 63.54% 0.72
GLTR (Gehrmann et al., 2019) 15.84% 97.12% 56.48% 0.72

Longformer (Beltagy et al., 2020) 38.05% 98.75% 68.40% 0.93
DetectGPT⋆ (Mitchell et al., 2023) 86.92% 34.05% 60.48% 0.57

Table 3: (Testbed 2-6) Detection performance of different detection methods. The out-of-distribution settings
examine the detection capability on texts from unseen domains or machine-generated texts generated by new LLMs.
⋆ denotes the unsupervised detection method.

50 60 70 80 90 100
MachineRec(%)

OpenAI(c)
OpenAI(t)
OpenAI(s)

OpenAI
LLaMA

GLM-130B
FLAN-T5

OPT
BigScience
EleutherAI

83.30%
79.94%

66.93%
77.65%

95.36%
98.09%

81.78%
97.18%
97.16%

99.59%

Figure 2: Out-of-distribution detection performance on
machine-generated texts generated by unseen models.
OpenAI(c), OpenAI(t) and OpenAI(s) corresponds to
texts generated by OpenAI models using continuation,
topical and specified prompts, respectively.

tector can identify most of the machine-generated
texts from other models, even if it has not encoun-
tered any of them during training. On the other
hand, the difficulty of detection is influenced by
the prompt types used for model generation. Texts
generated from specific prompts (OpenAI(s)) are
harder to distinguish than continuation prompts
(OpenAI(c)) and topical prompts (OpenAI(t)). This
can be because they follow a detailed prompt con-
dition, making them more similar to human-written

50 60 70 80 90
AvgRec(%)

CMV
Yelp

XSum
TLDR
ELI5
WP

ROC
HellaSwag

SQuAD
SciGen

78.28%
65.31%

54.62%
61.66%

83.30%
79.72%

51.53%
62.40%

66.80%
84.41%

Figure 3: Out-of-distribution detection performance
(AvgRec) on texts from unseen domains.

texts.

Unseen Domains. Detecting texts from unseen
domains presents a heightened challenge for clas-
sifiers. Notably, even the top-performing model,
Longformer, experiences a substantial decline
in AvgRec, dropping from 90.53% to 68.40%.
Typically, Longformer tends to classify human-
written texts from unfamiliar domains as machine-
generated, which results in a low HumanRec score
but an almost perfect MachineRec. We present
detection performance (Longformer) on each un-
seen domain in Figure 3. The top three text do-
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Figure 4: Decision boundary adjustment.

Metrics Unseen Models Unseen Domains

HumanRec 86.09% 82.88%
MachineRec 89.15% 80.50%

AvgRec 87.62%(+1.01%) 81.78%(+13.38%)

Table 4: Detection performance (Longformer) on out-
of-distribution testbeds with decision threshold adjusted
based on 0.1% of the in-distribution data.

mains most likely to be misclassified as machine-
generated are ROC, XSum, and TLDR datasets.
This could be attributed to their low average per-
plexity scores which confuse PLM-based detectors
(discussed in Section 7.2).

Boundary Adjustment. Despite the low Av-
gRec in the Unseen Domains setting, Longformer
achieves a high AUROC score (0.93). This sug-
gests that the model can distinguish between the
two classes but struggles with selecting an appro-
priate decision boundary, as shown in Figure 4a.
To address this issue, we utilize a portion of the
in-domain data from the training set to adjust the
decision boundary. We compute an average deci-
sion boundary across 10 classifiers (in the Unseen
Domains setting) and apply it universally across all
domains. As depicted in Figure 4b, refining the de-
cision boundary with only 0.1% of in-domain data
(e.g., 4 instances for CMV) significantly enhances
detection performance. Table 4 demonstrates that
adjusting the decision boundary (using 0.1% of in-
domain data) notably improves detection accuracy
for both out-of-distribution settings.

Unseen Domains & Unseen Model We vali-
date the detection ability of Longformer, the best-
performing detector, on the Unseen Domains &
Unseen Model testbed. The results are presented
in Table 5. The Longformer detector trained us-

HumanRec MachineRec AvgRec AUROC

Testbed 7: Unseen Domains & Unseen Model

52.50% 99.14% 75.82% 0.94
88.78† 84.12%† 86.54%† 0.94

Testbed 8: Paraphrasing Attack

52.16% 81.73% 66.94% 0.75
88.78%† 37.05%† 62.92%† 0.75

Table 5: (Testbed 7-8) Detection performance of
Longformer detector on the two challenging test sets.
†denotes the refined decision boundary. Appendix G
includes the performance of other detection methods.

Figure 5: Linguistic difference (Jensen-Shannon dis-
tance) between human-written texts and machine-
generated texts in 4 in-distribution settings (darker col-
ors indicate larger differences).

ing our dataset achieves a high performance (0.94
AUROC) in detecting texts generated by GPT-4,
even when sourced from newly added datasets and
generated by a new LLM. After refining the bound-
ary, the detector demonstrates balanced accuracy
in detecting both text sources, resulting in an Av-
gRec of 86.54%. This showcases its feasibility for
deployment in real-world scenarios.

Paraphrasing Attack However, similar to other
methods (Krishna et al., 2023), the Longformer
detector also shows vulnerability to paraphrasing
attacks, as shown in Table 5. The AUROC drops
from 0.94 to 0.75 when the detector encounters ad-
ditional paraphrased texts, which can be attributed
to the shifted perplexity distribution of paraphrased
texts (Section 7.2).

7 Analysis

7.1 Convergence of Human and Machine
Compositions

We explore to find potential differentiability
through a comparison of linguistic patterns in
human-written and machine-generated composi-
tions. To accomplish this, we employ Stanza (Qi
et al., 2020) to extract the distribution of various
linguistic patterns such as named entities, part-of-
speech tags, and constituents. Next, we calcu-
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Figure 7: Comparison of the average perplexity of texts
which the Longformer detector predicts correctly and
incorrectly.

late the Jensen-Shannon distance to quantify the
disparity between the probability distributions ob-
tained from both text sources (human-written and
machine-generated).

Figure 5 demonstrates that including texts from
diverse domains and LLMs reduces the linguistic
dissimilarity between the two text sources. This
makes it more challenging for a detector to dis-
tinguish them, which aligns with the increasing
difficulty of detection in the four in-distribution
settings. Once an adequate amount of texts from
various domains and LLMs are collected, there is
no significant statistical distinction between the
two text sources (see Figure 13 in Appendix H). In
contrast, when dealing with texts from a specific do-
main or an LLM (Fixed-domain & Model-Specific),
noticeable differences exist. For example, entity
tags like "ORDINAL" and "DATE" can serve as
detection shortcuts, as shown Figure 6. Comparing
the sentiment polarity and grammatical formality
of the two text sources (Appendix H) also demon-
strates convergence between human-written and
machine-generated texts.

7.2 Double-edged Sword of Perplexity Bias

In this section, we explore to find the general dis-
tinction which is not influenced by text domain
or generation LLMs. Prior work on unsupervised
detection (Mitchell et al., 2023; Bao et al., 2023)
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Figure 8: Perplexity distribution: A darker colour indi-
cates a larger proportion of incorrect predictions in the
perplexity bucket.
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Figure 9: Perplexity distribution of human-written texts,
machine-generated texts and their corresponding para-
phrased texts.

leverages the property that model generations re-
side in local minima of perplexity. We discover that
such property also acts as a fundamental feature
for PLM-based methods to effectively differentiate
machine generations.

Specifically, we use an untuned Longformer to
obtain perplexity score (Salazar et al., 2020) for
test set texts in the Unseen Domains setting. Fig-
ure 7 illustrates how prior knowledge in PLMs,
as measured by perplexity, aids in clustering two
text sources into distinct peaks. The average per-
plexity score of machine-generated texts is notably
lower than that of human writings, establishing an
implicit pattern to distinguish them.

However, perplexity bias can hinder robust detec-
tion. PLM-based detectors also exhibit overconfi-
dence in text perplexity, classifying low-perplexity
texts as machine-generated and high-perplexity
texts as human-generated. We categorize the texts
based on prediction correctness. As shown in Fig-
ure 7, misidentified human-written texts by the
Longformer detector have significantly lower av-
erage perplexity compared to correctly predicted
ones, but are similar to correctly predicted machine-
generated texts. In contrast, the average perplexity
of incorrectly predicted machine-generated texts is
higher than that of correctly predicted ones. Figure
8 presents a more intuitive visualization: false pre-
dictions of human-written texts (darker green bars)
are concentrated in the lower perplexity region,



while false predictions of machine-generated texts
(darker khaki bars) are spread across the higher per-
plexity region. Paraphrasing attacks, illustrated in
Figure 9, cause the peak of human-written texts to
be positioned between that of machine-generated
texts (machine-generated, machine-generated-para,
and human-written-para), leading to significant
confusion for the Longformer detector.

8 Conclusion

We proposed a comprehensive testbed for machine-
generated text detection, by gathering texts from
various writing tasks and machine-generated texts
generated by different LLMs. Empirical results on
commonly used detection methods demonstrated
the challenge of AI-generated text detection. Out-
of-distribution posed a greater challenge for de-
tectors to be employed in application scenarios.
With the boundary refined, the best-performing de-
tector on our testbeds (i.e., Longformer detector)
achieved 86.54% AvgRec on out-of-domain texts
generated by a new LLM, i.e., GPT4. By study-
ing differences between human and machine com-
positions, we find that perplexity can serve as a
fundamental feature for classification regardless
of text domain or generation LLM. To the best of
our knowledge, this is the first study to investigate
the challenges and feasibility of AI-generated text
detection in a "wild" testbed.

Limitations

Although we are the first to propose a comprehen-
sive testbed for AI-generated text detection and
validate the detection effectiveness on frontier test
sets, there are two major limitations: (1) We strive
to include a wide variety of LLMs in our dataset.
However, new LLMs such as Alpaca (Taori et al.,
2023) and Vicuna (Chiang et al., 2023) continue to
emerge and may not be currently included. Never-
theless, our dataset aims to serve as a testbed to se-
lect the best-performing detectors, which encounter
sufficiently diverse machine-generated texts and
can deal with texts from newly-developed LLMs
in future. (2) We adopt benchmark datasets as text
sources, which can be used as the training data for
LLM pretraining. The detection capability may
vary on new online texts that were not included
in the LLMs’ pretraining data. In the future, we
plan to gather new online texts that have not been
previously seen by LLMs to study such variation.
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A Prompt Design

Figure 10 present prompt cases in three domains
(CMV, XSum and ELI5) to showcase different
prompt types (i.e., continuation prompts, topical
prompts and specified prompts). The prompts used
for building GPT-4 test sets are presented in Figure
11.

B Dataset Construction

We show an example of Yelp dataset to give an
intuitive illustration of dataset construction: We
randomly sample 1,000 human-written texts from
the Yelp dataset and use 27 LLMs to generate cor-
responding machine-generated texts. After data
preprocessing and filtering, we obtained a total of
26,235 machine-generated texts and 1,000 human-
written texts. To mitigate data imbalance between
the text sources (human-written v.s. machine-
generated), we additionally collect data from the
Yelp dataset and obtain a total of 37,706 human-
written texts after filtering. The additional data is
used to compensate validation and test sets first for
more accurate evaluation. We discuss the effects of
data balance for training in Appendx F.

By default, machine-generated texts are gen-
erated using continuation prompts. For datasets
which provide topics or titles, we also consider
topical and specified prompts. The latter two
prompt types are only used for the OpenAI GPT
model set, since we empirically find they perform
robust generation to various prompts. For ex-
ample, for the 1,000 human-written texts in the
Xsum dataset, we have 33,000 (27,000+3*2*1000)
machine-generated texts and finally obtain 32,930
texts after filtering.

We conduct preprocessing to reduce the effects
beyond text contents, such as punctuation normal-
ization and line-break removal, etc. We also filter
out texts that are too long or too short. We divide
the texts into three splits, i.e., train/validation/test,
with an 80%/10%/10% partition. The data statistics
are shown in Table 6. The distribution of machine-
generated texts by model is presented in Figure 12.

C Method Implementation

Human annotation & Ask-ChatGPT. We cre-
ate a test subset from the whole testset, by pair-
ing one machine-generated text with each human-
generated one through random sampling. To create
the test set for the naive baselines, we randomly
select 10% of the human-written texts from the test

set used in the "Arbitrary-domains & Arbitrary-
models" setting. Data statistics of the test set is
shown in Table 7. We also randomly sample an
equal number of machine-generated texts. We hire
3 expert annotators to conduct independent annota-
tion and average their performance.

Longformer. Across all datasets, we used the
Adam optimizer (Kingma and Ba, 2015) with a
learning rate of 0.005 and set the dropout rate at
0.1. All models are finetuned for 5 epochs on 8
V100 GPUs. We select the best-performing model
based on validation classification accuracy.

FastText. We experiment with different combina-
tions of word n-gram features and character n-gram
features. Based on validation results, we choose
only word bi-grams as text features. We train all
models for 100 epochs and leave other settings as
default.

GLTR. GLTR uses a language model to gather
features, i.e., the number of tokens in the Top-10,
Top-100, and Top-1000 ranks, which are fed into a
logistic regression model to classify texts. Follow-
ing Pu et al. (2022), we use GPT-2-XL (Radford
et al., 2019) as the language model and use scikit-
learn (Pedregosa et al., 2011) to train regression
models. We conduct a grid search on optimiza-
tion algorithm (’lbfgs’, “liblinear”, “newton-cg”,
“newton-cholesky”, “sag”, and “saga”), the norm
of the penalty (“l1”, “l2” and “elasticnet”) and reg-
ularization strength (0.001, 0.01, 0.1, 1, 10, and
100) and choose the best-performing model under
cross-validation.

DetectGPT. We follow the best-performing set-
ting (Mitchell et al., 2023), using T5-3B (Raffel
et al., 2020) as the mask infilling model, with the
mask rate set as 15%, the masked span length as
2, and the number of perturbations as 100. We
use GPT-J-6B (Wang and Komatsuzaki, 2021) as
the scoring model. We manually set the decision
boundary based on the validation set.

D Randomness

We conduct experiments to testify the stability of
our testbeds. Specifically, we investigate the ef-
fects of randomness under the Arbitrary-domains
and Arbitrary-models setting by (1) splitting the
testbeds (train, validation and test) with 5 different
seeds and training 5 Longformer detectors on each
split; and (2) training 5 Longformer detectors with



Domain Continuation Prompt Topical Prompt Specified Prompt

CMV

I spend my summer as a representative 
of the college I attend and interact 
regularly with kids between the ages of 
10 and 18. In these interactions, I have 
noticed

Generate a counter-argument to refute 
the following opinion: HandwritingCursive
is an important skill that should be taught 
throughout a minor's schooling.

Generate a counter-argument to refute 
the following Reddit post: 
HandwritingCursive is an important skill 
that should be taught throughout a 
minor's schooling.

XSum

Apple Music performed a U-turn over 
payment policy a day after the pop star 
threatened to prevent the US firm from 
streaming her album 1989. Swift had 
argued that Apple

Write a news article with the following 
headline: A photographer has accused 
Taylor Swift of "double standards" in her 
row with Apple over music streaming.

Write an article for BBC News with the 
following headline: A photographer has 
accused Taylor Swift of "double 
standards" in her row with Apple over 
music streaming.

ELI5

When you're watching a scene and the 
camera moves, say left to right for 
example; The stuff that's closer to the 
camera will move faster than the stuff 
that's further

How they turn 2D movies into 3D Explain like I am 5 years old: How they 
turn 2D movies into 3D

Figure 10: Examples of three prompt types.

Domain Prompt for GPT-4

CNN/DailyMail
Write a news article given the following highlights: Powers appeared in the final season of 
the long-running sitcom . He played the husband of main character Thelma . Powers died 
April 6 at his home in New Bedford, Massachusetts at the age of 64. His family have not 
revealed the cause of death .

DialogSum
Continue the following daily dialogue: #Person1#: School has added several new courses 
to our grade this semester. I have more homework to do now. #Person2#: What's your 
favorite course, Daniel?

PubMedQA Does prenatal ethanol exposure reduce mGluR5 receptor number and function in the 
dentate gyrus of adult offspring?

IMDb Write a short movie review with the following beginning: I am not a big fan of the 
Spielberg/Cruise version of this film.

Figure 11: Examples of prompts for building the frontier test sets.

Dataset CMV Yelp XSum TLDR ELI5

Train 4,461/21,130 32,321/21,048 4,729/26,372 2,832/20,490 17,529/26,272
Valid 2,549/2,616 2,700/2,630 3,298/3,297 2,540/2,520 3,300/3,283
Test 2,431/2,531 2,685/2,557 3,288/3,261 2,536/2,451 3,193/3,215

WP ROC HellaSwag SQuAD SciXGen all
6,768/26,339 3,287/26,289 3,129/25,584 15,905/21,489 4,644/21,541 95,596/236,554
3,296/3,288 3,286/3,288 3,291/3,190 2,536/2,690 2,671/2,670 29,467/29,462
3,243/3,192 3,275/3,207 3,292/3,078 2,509/2,535 2,563/2,338 29,015/28,365

Table 6: Number of instances for each dataset. The number of human-written texts and that of machine-generated
texts are separated by "/".

different running seeds on one of the splits. The
results in Table 8 show that our testbeds are robust
to randomness, with a small standard deviation.

E PLM Backbone Comparison

In addition to Longformer, we also experiment with
other PLM backbones such as BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), and GPT2 (Rad-
ford et al., 2019). The results of these experiments
are shown in Table 9. Firstly, the Longformer de-
tector achieves the best performance in terms of
both AvgRec and AUROC due to its ability to han-
dle longer texts, while maintaining a small model
size for efficient detection. Secondly, increasing
the model size improves detection performance for

each backbone PLM. Thirdly, masked language
models (BERT, RoBERTa, and Longformer) out-
perform causal language models (GPT2).

F Data Balance

Since the number of machine-generated texts is
larger than that of human-written ones in the train
set. We investigate whether such an imbalance has
an impact on the model performance. Specifically,
we randomly sample machine-generated texts to
be the same quantity as human-written ones. We
experiment on the Longformer detector and present
the results in Table 10. Despite the narrowed gap
between HumanRec and MachineRec, we can ob-
serve that data balance has little influence on model
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indicates that the model "FLAN-T5-small" generated 9382 texts using continuation prompts. The letters C, T and S
represent the types of prompts used: "continuation" "topical" and "specified", respectively.

performance in terms of AvgRec and AUROC. In
addition, the tendency of the Longformer detec-
tor to classify human-written texts as machine-
generated ones still exists with a perfectly balanced
training set.

G Detection Performance on the Two
Challenging Test Sets

The detection performance of all methods on the
two challenging test sets, i.e., Unseen Domains &
Unseen Model and Paraphrase Attack, is shown in
Table 11. Detect-GPT is not included due to its
reliance on the white-box detection setting. We
can observe that all methods suffer severe perfor-
mance degradation in terms of AUROC, indicating
weakness in detecting machine-paraphrased texts.

H Text Characteristics

We first explore to find potential surface patterns
that can help discriminate between human-written
texts and machine-generated ones. The length
statistics are shown in Table 12. As can be seen
from the table, although we do not exert explicit
length control over the model generation, the aver-
age length of machine-generated texts is marginally
longer than that of human-written.

Linguistic Pattern. We further use Stanza, a lin-
guistics analysis tool (Qi et al., 2020), to gain a
more systematic understanding of the linguistic
components in both sources, with results shown
in Figure 13. We can observe that texts from both
sources share similar distributions under various
linguistic scales, such as word frequency, part-of-
speech frequency, named-entity frequency, and con-
stituent frequency. In other words, there is no
significant linguistic difference between the text



CMV Yelp XSum TLDR ELI5 WP ROC HellaSwag SQuAD SciXGen all

# human 80 100 100 77 100 100 100 100 100 99 1912
# machine 80 100 100 77 100 100 100 100 100 99 1912

Table 7: Number of human-written and machine-generated texts of the sampled testset for naive baselines.

Randomness HumanRec MachineRec AvgRec AUROC

Data Split 83.00%±2.82% 97.74%±0.34% 90.37%±1.29% 0.99±0.0010

Training (Longformer) 82.81%±2.38% 97.90%±0.25% 90.36%±1.12% 0.99±0.0021

Table 8: Stability of the empirical results considering both data split randomness and training randomness.

PLM # Parameters HumanRec MachineRec AvgRec AUROC

BERT-base 110M 67.11% 98.34% 82.72% 0.97
BERT-large 336M 80.96% 93.27% 87.12% 0.96

RoBERTa-base 125M 72.29% 95.28% 83.78% 0.96
RoBERTa-large 355M 70.81% 98.38% 84.59% 0.98

GPT2 117M 57.42% 97.84% 77.63% 0.96
GPT2-medium 345M 69.94% 96.82% 83.39% 0.96

GPT2-large 774M 84.27% 96.67% 90.47% 0.98
Longformer 149M 82.80% 98.27% 90.53% 0.99

Table 9: Performance comparison of different PLM-based classifiers.

Figure 13: Linguistic statistics (word frequency distribution, part-of-speech distribution, named entity distribution
and constituency distribution) for human-written and machine-generated samples.

HumanRec MachineRec AvgRec AUROC

85.38% 92.95% 89.16% 0.99

Table 10: Effects of data balance on detection perfor-
mance (Longformer) under the Arbitrary-domains &
Arbitrary-models setting.

sources (human-written versus machine-generated)
that can assist the classifier in differentiating them
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Figure 14: Sentiment polarity.



Methods HumanRec MachineRec AvgRec AUROC

Unseen Domains & Unseen Model

FastText 71.78% 68.88% 70.33% 0.74
GLTR 16.79% 98.63% 57.71% 0.73
Longformer 52.50% 99.14% 75.82% 0.94
Longformer† 88.78%† 84.12%† 86.54%† 0.94

Paraphrasing Attack

FastText 71.78% 50.00% 60.89% 0.66
GLTR 16.79% 82.44% 49.61% 0.47
Longformer 52.16% 81.73% 66.94% 0.75
Longformer† 88.78%† 37.05%† 62.92%† 0.75

Table 11: Detection performance on the two challenging test sets. ‘†’ denotes the boundary is adjusted.

Data Source Human-written Machine-generated All

Average Document Length 232.02 279.99 263.87
Average Sentence Length 18.90 18.80 18.83

Average # Sentences per Document 13.48 15.33 14.71

Table 12: Length statistics for human-written and machine-generated samples.
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Figure 15: Grammar formality. A lower number of edits
indicates better grammar formality.

in a wild setting.
In addition, we explore whether there are dif-

ferences between human-written and machine-
generated texts in other characteristics (such as
sentiment polarity and grammar formality) when
considering diverse writing tasks and various text-
generating LLMs.

Sentiment Polarity. We use an off-the-shelf sen-
timent classifier (Barbieri et al., 2022) trained on
198M tweets for sentiment analysis to analyze the
sentiment polarity of both texts, with results shown
in Figure 14. As suggested by Guo et al. (2023),
ChatGPT expresses more neutral sentiments than
humans. In a large-scale setting that considers vari-
ous domains and LLMs, however, there is no clear
distinction between human-written and machine-
generated texts in terms of sentiment polarity. No-
tably, LLMs generally generate more positive texts,
especially when creating reviews or comments

(Yelp).

Grammatical Formality. We use an off-the-
shelf grammar error correction model (Zhang
et al., 2022b) to evaluate the grammar formality
of human-written and machine-generated texts. We
adopt the average number of edits to quantify gram-
mar formality. As shown in Figure 15, machine-
generated texts are equally or even more grammati-
cal in domains (CMV, Yelp, ELI5, and WP) where
texts are less formal (reviews or posts on forums).
In formal domains such as XSum (news articles),
SQuAD (Wikipedia documents), and SciXGen (sci-
entific writings), human-written texts exhibit better
grammatical formality.
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