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Message from the Conference Chairs

It is our great pleasure to welcome you to the 37th Conference on Computational Linguistics and Speech
Processing (ROCLING 2025), held at National Taiwan University in Taipei, Taiwan, November 20 to 22,
2025.

This year’s conference continues the tradition of serving as a premier forum for presenting cutting-edge
research and showcasing innovative systems and techniques across the broad fields of natural language
processing and speech processing.

This year marks a major milestone for ROCLING with the introduction of a dual-track submission system
featuring both archival and non-archival papers. This new format provides authors with greater flexibility
to present their research at different stages, combining rigorous review with opportunities for early idea
exchange and community feedback.

ROCLING 2025 also launches its first Round Table Forum, a special event that brings together experi-
enced researchers, industry experts, early-career scholars, and students for in-depth small-group discus-
sions. The forum offers a valuable opportunity to exchange ideas across disciplines, receive constructive
feedback, and build lasting professional connections.

We are also proud to note that this year’s Program Committee is chaired by a team of outstanding young
scholars from Taiwan. Their vision and dedication have shaped a high-quality, forward-looking program
that reflects the energy, creativity, and diversity of our growing research community.

The conference program features two keynote speeches delivered by world-renowned scholars, who will
share their insights into the future of language understanding and speech generation, two tutorials ad-
dressing Al-driven hearing assistive technologies and audio intelligence, and three special sessions ex-
ploring key directions in persuasive language in the age of Al, sentiment and medical text analysis, and
speech recognition for Taiwanese Hakka languages.

We thank all authors, reviewers, organizers, and volunteers, as well as our sponsors, for their dedicated
contributions. We hope that ROCLING 2025 will inspire new ideas, foster lasting collaborations, and
strengthen our shared mission to advance human language and speech technologies.

Warm regards,

Prof. Yun-Nung Chen, National Taiwan University
Prof. Hung-Yi Lee, National Taiwan University
Prof. Pu-Jen Cheng, National Taiwan University

Conference Chairs, ROCLING 2025
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Keynote Talk
Towards Social Agents

Asli Celikyilmaz
Meta FAIR

November 21st, 2025 — Time: 09:10 - 10:10 — Room: 2F, Space M Session Room / 1F, R117

Abstract: As language models evolve into social agents, new challenges arise around reasoning, col-
laboration, and understanding others’ minds. I'll share three directions that move us beyond next-word
prediction and towards social agents: collaborative reasoning, where agents learn to communicate, coor-
dinate, and build on each other’s ideas; mental modeling (theory of mind), the ability to represent what
others know, believe, or intend; and social preference alignment, where models learn human values not
just from isolated feedback but through extended, context-rich interaction. Together, these efforts aim to
build agents that not only converse fluently but also reason jointly, interpret intentions, and evolve toward
more adaptive, long-horizon social intelligence.

Bio: Asli Celikyilmaz is a Senior Research Manager at Fundmendals Al Research (FAIR). Formerly, she
was Senior Principal Researcher at Microsoft Research (MSR) in Redmond, Washington. She is also an
Affiliate Associate Member at the University of Washington. She has received Ph.D. Degree in Infor-
mation Science from University of Toronto, Canada, and later continued her Postdoc study at Computer
Science Department of the University of California, Berkeley. Her research interests are mainly in deep
learning and natural language, specifically on language generation with long-term coherence, language
understanding, language grounding with vision, and building intelligent agents for human-computer in-
teraction She is serving on the editorial boards of Transactions of the ACL (TACL) as area editor and
Open Journal of Signal Processing (OJSP) as Associate Editor. She has received several “best of”” awards
including NAFIPS 2007, Semantic Computing 2009, CVPR 2019, EMNLP 2023.
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Keynote Talk
Giving Voice and Face to Al

Joon Son Chung
KAIST

November 22nd, 2025 — Time: 09:10 - 10:10 — Room: 2F, Space M Session Room / 1F, R117

Abstract: As Al systems advance, building natural and intuitive multimodal interfaces is becoming in-
creasingly critical. This talk examines technologies that equip Al with both a voice and a face, improving
their capacity for seamless, expressive communication with humans. We will discuss how incorporating
visual and linguistic signals into speech synthesis enables alignment between acoustic output, facial and
textual attributes, yielding more natural and expressive speech generation. Our recent work synthesises
speech directly from visual inputs, enabling communication where audio signals are limited or absent.
In parallel, we present our talking head synthesis system, where audio inputs generate lifelike facial ani-
mations, effectively giving a face to the AI’s voice and enriching the multimodal interaction.

Bio: Joon Son Chung is an associate professor at the School of Electrical Engineering, KAIST, where he
is directing the Multimodal AI Lab. Previously, he was a research team lead at Naver Corporation, where
he managed the development of speech recognition models for various applications including Clova Note
and LINE CLOVA Al Speaker. He received his BA and PhD from the University of Oxford, working with
Prof. Andrew Zisserman. His work has been published in top-tier venues such as TPAMI and IJCV, and
he has received several paper awards, including at Interspeech and ACCV. His research interests include
speaker recognition, multimodal learning, visual speech synthesis and audio-visual speech recognition.
He is a co-author of the well-known audio-visual dataset for human speech, VoxCeleb. According to
Google Scholar, his work has accumulated over 17,000 citations.
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Abstract

The rise of Green Al emphasizes minimizing
the environmental footprint of AI systems.
This paper explores a no-GPU agentic
architecture for fine-tuning NLP tasks. It
presents our initial experiments applying these
no-GPU algorithms in pretraining and
fine-tuning tasks on our CubicPower agentic
mixture of experts (AMoE) framework, with
the aim of contributing to more sustainable Al

development. In contrast to the training
procedures of neural networks, which
consume significant power, the AMoE

framework’s primary contribution toward
power savings is that it requires no training
process. We explore non-neural-network
methods for solving NLP tasks and employ
similarity measures to match predefined
patterns for use in a RAG database.

Keywords: Green Al, MoE, RAG, CubicPower,
AMOE.

1 Introduction

In recent years, many countries have set a 2050
net-zero emissions goal. Energy conservation has
become a top priority across all industries.
However, Al neural network algorithms, such as
the Bitcoin Proof-of-Work (PoW) algorithm, rely
heavily on GPUs or other custom-designed
accelerators. These machine learning training
processes, using the gradient descent method, can
take weeks or months to run on large numbers of
high-power-consuming GPUs. Therefore, many
solutions have been developed to save energy
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(Verdecchia et al., 2023). However, we believe
that a no-GPU Green Al algorithm could be a
new and effective direction (Hsia, 2022), since it

eliminates the primary source of power
consumption.
Traditional text mining algorithms use

parameters to measure word properties, such as
TF-IDF and similarity. TF-IDF measures the
importance of a word, while similarity measures
the distance between words. These algorithms are
not neural networks and, of course, do not
involve any gradient descent training process. We
have developed algorithms
similarity to select the most similar text from the

based on text

pattern pool.

This paper presents our initial experiments
applying such no-GPU algorithms in pretraining
and fine-tuning tasks on our CubicPower agentic
mixture of experts (AMoE) framework, aiming to
contribute  toward more sustainable Al

development.

While MoE and RAG approaches have improved
efficiency, most still rely on GPU computation.
We propose a GPU-free AMoE framework using
similarity-based retrieval to fine-tune NLP tasks.

The main contributions of this paper are as
follows:

1. Exploration of non-neural-network methods
for solving NLP tasks.

2. Elimination of the training process in the
AMOoE framework to save power.

3. Use of
predefined patterns for retrieval in a RAG

similarity measures to match

database.


mailto:chaoyihhsia@gmail.com

2 Related Work

Early dialogue systems evolved from rule-based
methods, such as ELIZA (Weizenbaum, 1966),
which applied pattern-matching rules to simulate
human-like responses. This approach laid the
foundation for later systems, such as GUS
(Bobrow, 1977), which introduced a frame-based
architecture. In GUS, dialogues were organized

into structured templates containing slots,
enabling simple task-oriented conversation
handling.

Modern systems have shifted toward neural
architectures. The sequence-to-sequence
(seq2seq) model, originally designed for machine
translation (Sutskever et al., 2014; Bahdanau et
al., 2015), was later adapted for chatbot design. It
uses an encoder-decoder  structure and
autoregressive generation. These models are
typically powered by GPU-intensive training and

inference pipelines.

To reduce computation costs, retrieval-based

systems have re-emerged, using similarity
metrics (e.g., cosine similarity) to find the most
relevant response from a pattern database. This is
often more power-efficient than generation-based
models. Retrieval-Augmented Generation (RAG)
combines neural language models with external
information  retrieval,  offering  enhanced

relevance and scalability (Gao et al., 2023).

Similarity search plays a crucial role in these
systems. Johnson et al. (2019) proposed a
billion-scale similarity search framework using
GPUs, while Han et al. (2023) surveyed vector
databases and their indexing strategies. In
contrast, Hsia (2022) developed a GPU-free
similarity-based system, forming the basis of the
CubicPower knowledge base, which enables fast
and structured retrieval.

Another concept  for
computation is the Mixture of Experts (MoE).
MoE architectures achieve scalability by
activating only a small subset of the model’s
parameters for each input, allowing for high

model capacity without proportional increases in

important reducing
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computation. Shazeer et al. (2017) demonstrated
this with the Sparsely-Gated MoE, where only a
few experts are selected per example, reducing
computational cost while preserving

performance.

The rise of Green Al (Verdecchia et al., 2023)
emphasizes minimizing the
footprint of Al systems. Techniques that reduce
power consumption, including rule-based
reasoning, task-specific similarity retrieval, and

environmental

agent-level model decomposition, align with this
goal. This paper explores a no-GPU agentic
architecture for fine-tuning NLP tasks.

3 Methodology

In this paper, we develop the entire AMoE
framework based on the CubicPower Data
Processing Engine for similarity computation,
following the description in Hsia (2022). The
framework was implemented in C# .NET.

3.1 Agentic Architecture

We define Al agents as modular components,
each responsible for a specific NLP fine-tuning
task, such as question answering (QA), reading
comprehension (RC), or chatbot dialogue state
tracking. Each agent maintains a local dataset
and operates independently, processing only the
inputs relevant to its task domain. This follows a
Mixture of Experts (MoE) model design but is
implemented without neural networks.

3.2 Retrieval-Augmented Module

Figure 1. shows the design of our AMOoE
framework to perform the retrieval-augmented
generation (RAG) function.

Each agent is equipped with a sentence-level
retrieval mechanism. It consists of a vector
database which stores sequence to sequence
(seq2seq) pair records such as question-answers.

Given input, the agent generates
corresponding sentence vector and compares it
against stored records by dot-product to compute

an a



their similarities. Then the system finds the
record i with the highest similarity. Extracting the
second part of the seq2seq pair, we can find the
answer to the question. By leveraging these
structures, operate the
retrieval-augmented generation (RAG) process

we can

effectively.

Vector
Database

i=argmax
S~

dot-product
(dot-p ) (Question-

Answer)

Extract

Input
Question

- Answer i
Pairi

Figure 1. Our approach

3.3 Dataset and Procedures for
Fine-Tuning Tasks

All datasets are stored in plain text format to
ensure efficient loading and access by intelligent
agents. This format facilitates rapid retrieval,
parsing, and integration into downstream tasks
such as question answering, multiple-choice
tasks, and reading comprehension.

3.3.1 Question Answering (QA) Task:

The dataset for the QA task consists of
question—answer pairs, as shown in Figure 2. We
have collected sets of question—answer pairs. To
perform the QA task, we need to analyze the QA
training dataset to construct the overall word
distribution. First, we sample the QA training
dataset to construct the overall QA word
distribution:

D=Sample(QA training set) = My_.p (1)
Here D is the distribution of the current QA
words. This distribution is used to map each
word The output
word-to-paragraph map My.p. It is used to

to a sentence. is a
compute the most similar paragraphs from a

group of words in a question.

Following the description in Hsia (2022), we can
implement a similarity-based system using the
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distribution D to find paragraphs from a word.
Each paragraph is a question—answer pair.

We then build a paragraph-based RAG module
RAG, to select answers from RAGy for the
questions.

Denote RAGp() as a RAG module based on the
distribution D. Once we feed a question into this
module, the output paragraph from this module
for a question becomes:

paragraphg,cp = RAGp(question)  (2)
We can therefore obtain the answer to the
question as a QA RAG output answer:

answer = answerOf(paragraphg,cp) (3)

The answerOf() function in (3) returns the

answer from a paragraph containing a

question—answer pair.
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Figure 2. Dataset for the question
answering task

3.3.2 Multiple Choice (MC) Task:

The dataset consists of question—option—answer
triples, where each record contains a question,
options A-D, and the correct answer, as depicted
in Figure 3.

Each  multiple-choice  question be
reformulated into four independent True or False

can

questions, allowing the system to evaluate each
option separately.

Alternatively, the task can be approached as a
QA problem by checking the answer to existing
questions in the training set.



For unseen questions, we must learn the
question—answer relationships from the training
set and select the option whose relationship most

closely matches the learned patterns.

GiE] ®m|m1 EIR2 WIR3 ER4 EE
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M7 mE M it

e

Figure 3: Dataset for the multiple choice task
3.3.3 Reading Comprehension (RC) Task:

Similar to the QA task, we need to analyze the
word distribution for the RC task. However, the
source of the word distribution is not the training
set; it comes from each RC question. Therefore,
we must resample the RC question each time to
reconstruct the RC word distribution for that
question.

In order to answer a question in the RC task, we
first resample the RC document i in the test
dataset to extract the word distribution D; of the
RC question i.

Di=Resample(RC document i) = M; yp (4)
Here D, is the word distribution of the current RC

question i. This distribution is used to map each
word to a paragraph.

Following the same method as QA, we can build
a paragraph-based RAG module RAGy,; to select
answers for the questions.

Here we denote RAGp;() as a RAG module based
on the distribution D;. The output paragraph for a
question becomes:

paragraphg,gp; = RAGp;(question)  (5)

We can therefore obtain the answer to the
question from the RC RAG output:

answer = answerOf(paragraphsgagpi ) (6)
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The answerOf() function in (6) returns the
answer from a paragraph containing a
question—answer pair.
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Figure 4. Dataset for the reading comprehension
task

3.3.4 Chatbot (CB) Task:

The chatbot dataset consists of paired utterances,
each representing a conversational turn, as
illustrated in Figure 5. The task involves
predicting the next appropriate response based on
the current user input.

B3 =E

B SRORRMMA ? 2% | SRR - FURBHI25E

P IEREGAIMG ©

Figure 5. Dataset for the chatbot task
3.4 Power-Efficient Design

In contrast to the training procedures of neural
networks, which consume significant power, the
main contribution of the AMoE framework to
power saving is that it requires no training
process.

Additionally, the CubicPower AMoE framework
consists of many agents. Each agent stores only
a small portion of data relevant to its task. This
follows the Mixture of Experts (MoE) method
(Lepikhin et al., 2020; Fedus et al., 2022). In our
system, the experts are agents. Therefore, only a
small amount of power is consumed at any given
time. Furthermore, we can split the data by
language, geographical location, and type,
assigning each subset to a different agent. The



system decides which agent should handle the
input based on the content of the prompt.

4 Experiments

The experiment in this study relies on a similarity
metric. Similarity is measured as the proportion
of words in the correct answer that also appear in
the predicted answer.

This measure is conceptually similar to BLEU-1
(Bilingual Evaluation Understudy), which
assesses word overlap between reference and
generated text.

4.1 Experimental Setup

All experiments were conducted on a standard
CPU-based machine without GPU acceleration.
The framework was implemented using C# .NET
and utilized the CubicPower Data Processing
Engine’s classical text processing libraries for
cosine similarity computation.

Each
independently using a dedicated dataset, split into
training and testing subsets. The training set

task-specific ~agent was evaluated

served as the retrieval base for the test queries.
4.2 Datasets

We prepared different datasets for fine-tuning
tasks. We used small private datasets collected by
CubicPower. Each dataset contains several

hundred records.

For the Question Answering task, the dataset
consists of a question and an answer field (see
Figure 2). When a QA agent receives a QA
request with a question, it searches the question
field of the database and returns the most similar
QA record.

For the Multiple Choice task, our dataset was
prepared as shown in Figure 3. For each
question, there are four options. The final field
contains the answer to the question. Each
question is essentially a combination of four true
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or false questions. By testing each of the four
true or false questions, only one of them will be
true.

The Reading Comprehension task first provides a
document and then asks a series of questions
based on that document.

We aim to answer the questions using only the
material provided in the document; therefore, we
need to build a word space derived from this
document. Figure 4 shows a sample of the RC
dataset.

Table 1 lists the sizes of the training and test sets
for all four fine-tuning tasks used in our

experiments.
Task Training Set | Test Set Size
Size
QA 749 371
MC 440 181
RC — 619
CB 1121 389

Table 1: tasks train/test Dataset Size

5 Results

5.1 Fine-tuning Tasks Test:

We loaded the training dataset for the QA task
into our database and then used it to verify the
search results. Figure 6a shows a screenshot of
the verification results on the training set. We
can see that the top-1 accuracy is 0.847, and the
similarity between the question and the returned
answer is 0.983.

Then, we used the test dataset to query the
training database. Figure 6b shows a screenshot
of the test results. The results are near zero since
there should be no overlap between the training
and the test datasets. The nonzero result indicates



that some data leakage exists between the two
datasets.

Figures 7 to 9 show the remaining test result
screenshots for the MC, RC, and CB tasks. Table
2 summarizes their test results.

QA-Question: MAREATEMEREIG? Correct Ansver: TLEREEBRON @ HEENS MIRMHRRAISE - 5
Ansver: TREREEMAOSN » FEENSE ﬁ!yﬁl’ﬁ[?ﬁﬁiﬁ SHER—ERSHESEIERD (Rate Sensitive
cnt= 747 topl= 0. 847389558232932 sin- 0.983910619619

QA-Question: Eilﬁﬁlﬂﬁ%im&ﬁﬁl" 747 Correct Answex SRR AN o EE@EK&T?@&HH’
Ansver: ETIBFIEANBEED AR EESBENB R » HERFEDNFEN -

cnt= 748 topl= 0.8475035828877 sin= 0.983932129486578

0A-Question: ERMSEANTIHEATEMEDS 7 Correct Answer: TIREUFIEVCALEERE « ﬂﬁﬂxxmlﬁﬁi DS
Answer: TTIFRUFISVAL SRS  SEAFEIRT BE0EN - SR EENSHEEREE -

cr\t 749 topl= 0.847797062750334 sin= 0.98395358191717

Figure 6a. Figure 6a. QA Train Verification
Result

04-Question: FRMERIEARERMPERIAMBZIHA? Correct Ansver: SERLARFHRA - *lxﬂﬁiﬁ{bﬁﬁﬂﬂb
7 REERITRGEE REIFEIR TARAER © (FARFIERRRDROEES -
in= 0.0750324249980312
*Rri§5‘)ﬁ‘7ﬂsh‘ﬁf7 Correct Answer: &f“sét PUERRBRERAE-
BAEEIEN - (BEEMELLIBTRA RS -
0748301812648828
i E(’E‘!ﬁ"t$§7 Correct Ansver: BVE BN « WHEE HMRITHIET D -
Answer: EEA’EA:IEI}: BpEE HREEE - o RIFREARIMIBER LR - REH A EEMBRERILA)
cnt 372 topl= 0 sim= 0 074770507602739

Figure 6b. QA Test Result

Mcégées:wn THE—TARRARLRAOLERIE? Correct Ansver: B KIEIRRI
ss|

HRIRIRENR
§'Jllﬁ—fir‘qf7N§fE§E’J?i§Efi7 | RERBSER RASHEEG HREEERK

SMERRRRAIERZ—2 7 Correct Answer: BERFE{AE
: '9F§F&§Eﬁfiﬁ2—57 | RERRMEII WEASEER

cnt= 430 topl= | sin=

MC-Question: 21J¥‘fi§4’iés*E1§’HIVEW ? Correct Answer: JAEIRRIZEE

ssR!\GMé E‘Jlﬁ‘{isqisl!%’fzﬂﬁl!ﬁ’iw@ v THBAIT BB ARMUER BN AR

cnt= top sim=

FOFEIAT 23AER

Figure 7a. MC Train Verification Result

cnt= 179 topl= 05474
HC- Duesuon Q%iiﬁlﬁ']{n&ﬁ({‘ﬁ%V onecl Answer: RETLTIFIRIT

EETEENTFRBRHAERE? | EFEE AREF RERF BTEE REEE
Answex ﬁE#ﬁUA}!{NFx

cnt= 180 topl= 0.544444444444444 sin= 0.557830687830688

MC-Question: fE¥ESZ{LOTLURIBHEES I 7 Correct Answer: ~ B SR St SRR R
isRAG | EEBIBHREEAAME? 0| fEER) ‘.E'RW’F ﬁ;éﬁ!ﬂéﬁiﬁl CHEPEH|  AIEREE
nsw

cni:e;Hl topl= 0.541436464088398 sim= 0.554748750328861

Figure 7b. MC Test Result

Losding Str
RC- Uuestwn I]lJoSIS&?DI‘JIﬁﬂbﬁ? Correct Answer: iBBARTEESR BEIMES -

Answer: ARGARAERARTEIER (DDoS) SBBARTRMEAREME ERMBPES
cnt= 621 topl= 0 sin= 0.54640228000131

Loading String:

RC-Question SR IEF LRI ? Correct Answer: RE S RMLIRERBEH - .
Answer: ﬁﬁmﬁ&%&x&ﬁ’é‘@?ilﬂ*&*ﬁ»ﬁ MEZTERHBATHRENSE  ERNRTHER
cnt= 622 topl= 0 sin= 0.546636863604697

A

Figure 8. RC RAG Test Result

CB-Question: {FRERMEERANAIZHE? Correct Ansver: HEERMBEBRIDE—ITEK - IRE?
Answer : #ZEBMH!‘IQF 008 — 17 m7)< Dﬂ'l’E
7 96978:

46113
Hi”ﬁﬂn Correct Answel POREIRIEF MADGLE D » (FERRIME TS
P FERRIME TR Y
"10508883375
i Cunect Answe[ HEOLANRE -

L% 812 » o LliES
cnl 1121 topl= 0. 793041926851026 sxm- 0 969763101352905

TTLUBA AR - (A

Figure 9a. CB Train Verification Result

CB-Question: m;é-—;&ﬁﬂﬂ*m?!ﬁ’l%ﬂﬁ#kiﬁuw Correct Ansver: HRHRARS - FASIER—E 7
Answer: VRBIEELREE *

cnt= 387 topl sm.- 0. 0813056359331381
CB-Question: AR LIRIR IR -
Answer: {44 HATRIRIR EEE?

cnt= 388 topl= 0 sin= 0.081096085325063

CB-Question: {RFRFEERIEHAIRGEAN? Correct Answer: HBBERHEHRMIIYouTubesBE + {RIE 7
Ansver: $HEEH S HIETDBHR » (FIE 7

cnt= 389 topl= 0 sin= 0.0812732162111168

IRREEERE © (FALNEPLERRED

Correct Answer:
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Figure 9b. CB Test Result

Table 2. Task Training/Test Similarity

Task Similarity Similarity
(Train) (Test)

QA 0.983 0.074

MC 1 0.554

RC 0.546

CB 0.969 0.081

5.2 Exams Test:

We evaluated the performance of our AMoE
system using three datasets. The first dataset
the Taiwan government employee
entrance tests and the Financial Institution

includes

Certification. The second dataset contains the
Taiwan Government Professional Certifications.
The third dataset is the Taiwan Massive
Multitask ~ Language  Understanding  Plus
(TMMLU+) dataset (Tam et al., 2024).

Figure 10 shows screenshots of the test results,
and Table 3 summarizes these results. The first
test includes 33,608 training records and achieves
an accuracy of 0.354. The second test contains
20,807 training records, achieving an accuracy of
0.283. The third test has 21,120 records and
achieves a test accuracy of 0.289.

Table 3. Exam Test Results

Train set | Data Set | MC Task
Accuracy
Financial 33,608 26,985 0.354
Institution
Certifications /
government
employee entry
test.
Government 20,807 2,069 0.283
Professional
Certifications
TMMLU+ 21,120 2,225 0.289




5.3 Benchmarking Test:

To compare the performance with other
Traditional Chinese LLM models, we tested the
TMML+ benchmark dataset using zero-shot and
5-shot settings.

Table 4 presents the TMML+ benchmark results
for different LLM models reported by Tam et al.
(2024). The results show that the zero-shot
average accuracy of Breeze-7B-Instruct-v1.0 is
36.1%, which higher than our 25.1%.
However, the other two models,
Taiwan-LLaMa-13B and Taiwan-LLaMa-7B,
achieved accuracies of 21.3% and 15.6%,
respectively. The performance of our AMoE
framework in the Traditional Chinese TMMLU+
test ranks second among the compared models.

is

Table 4. Comparative Results on TMMLU+:

(*from Tam et al., 2024)

LLM Models Zero-shot 5-shot
accuracy accuracy
(%) (%)

*Breeze-7B-Instruct-v1.0 36.1 28.6

CubicPower AMoE 25.1 25.7

*Taiwan-LLaMa-13B 21.3 22.3

*Taiwan-LLaMa-7B 15.6 5.1

ssRAG: Igﬁn‘ﬂﬁ it (expenditure approach) HtBEIAEELE » THTETEHEE
2:7“’%6934 ’;‘Wtopl 0.354284020160005 AVsin= 7 2—{E&
MC-Question: FEEERISIBISN FFE H0 B 0b PR (I8, » ?vt@ﬁ&ﬁmﬂﬁﬁﬁ BALREE
ssRAG: | ZIEEEE RS AR AP ISR AR 7 1 REIEES 1S

answer: 2 2

cnt= 269% AVtopl= 0.354270891235872 AVsin= F2—E&F acc= 0 sin=0

Tnadine Yrine-

ace= 0 sim= 0

Figure 10a. Financial Institution
Certifications / Government Employee Entry
Tests
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HEm= (M) fi%T e
cnt= 2067 AVtopl= 0.283986453797775 AVsin= T 2—E#F acc= 1 sim= 1
!'dC Question: TR FIERS RHERHFIE T Correct Ansver: 3idh

cnt= ZDGB A'Ilopl 0.28384912959381 A¥sin= F 2—E#F acc= 0 sin=
MC Question: $HZEAMMAFEE  ReviTRBAa s8R ﬁiﬁfﬁxﬁfﬁ iapriE

cnl 2069 A'Ilopl 0.283711938124364 AVsin= TR2—@EHF acc= 0 sin= T2—BEHF

Tradine Str

Figure 10b. Government Professional
Certifications

phenylbutazone—oxyphenbutazone
cnt= 2223 AVtopl= 0.290148448043185 AVsin= F2—
MC-Question: Benzodnzep1ne%éf,Ii%{’ﬁﬁﬂ??ﬂfﬁiﬁﬁ??ﬁiﬁﬁﬁﬂ7 Correct Answe

iPRET

cnt= 2224 AVtopl= 0.290017985611511 AVsin= F2—E&F acc= 0 sin= 0.5
HC-Question: TFITHERBIFRA7IEIBEMEY: » BIRBESR? Correct Answer: anp
ketoconazole

cnt= 2225 AVtopl= 0.289887640449438 AVsin= T 2—E&F acc= 0 sin= 0

Tradinoe Strine-

acc= 0 sin= 0.1481481

Figure 10c. TMMLU+ Test Results
5.4 Discussion

The results indicate that the AMoE framework
performs poorly on unseen data in the QA and
CB tasks. One possible improvement is to
expand the scope of the training dataset.

Additionally, the MC task accuracies in the
Government Professional Certifications and
TMMLU+ datasets are around 0.28, which is
only slightly above random guessing. Although
we rank second in the TMMLU+ Traditional
Chinese test, there is still considerable room for
improvement.

These challenging tests require extensive
reasoning before an answer can be generated. As
a result, it is difficult to apply a simple QA-style
predefined answer list to solve them.

To address this, our next step will be to develop a
reasoning agent that applies the chain-of-thought
(CoT) method to complex problems.

6. Conclusion

The rise of Green Al emphasizes minimizing the
footprint of Al systems.
Techniques that reduce power consumption,

environmental

including rule-based reasoning, task-specific
similarity retrieval, and agent-level model
decomposition, align with this goal. Traditional
text mining algorithms wuse parameters to

measure word properties, such as similarity. We



propose a GPU-free AMoE framework using
similarity-based retrieval to fine-tune NLP tasks.

This paper explores no-GPU agentic
architecture for fine-tuning NLP tasks. It presents

a

our initial experiments applying these no-GPU
algorithms in pretraining and fine-tuning tasks on
our CubicPower agentic mixture of experts
(AMoE) framework, with the aim of contributing
to more sustainable Al development. In contrast
to the training procedures of neural networks,
which consume significant power, the AMoE
framework’s primary contribution to power
savings is that it requires no training process. We
have developed basic functionalities, but there is
still room for improvement. To address this, the
next step of our research will be to develop a
reasoning agent using the chain-of-thought (CoT)
method for complex problems.
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Design and Evaluation of a Courtroom Examination Al Simulation System with

Behavioral Fidelity
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Abstract

We present a courtroom cross-examination
Al simulation system centered on
Behavioral Fidelity, with speech interaction
included as a design feature to enhance
immersion. For standardization and
reproducibility, the present pilot evaluation
uses transcripts. The system integrates
pragmatic—psychological ~ rules  with
Taiwanese criminal case files to simulate
witness behavior under cross-examination
pressure. Using an optimized Expert Turing
Test framework with four dimensions—
professional accuracy, situational
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adaptability, human-likeness, and logical
consistency—we conduct a pilot study.
Under identical prompts and knowledge
sources, the customized GPT condition
received higher ratings than GPT-Vanilla
on adaptability and human-likeness.
Applying the same framework to another
mainstream model (Gemini 2.5 Flash)
yielded comparable performance, while
differences remain inconclusive at this
sample size. Overall, the results provide
preliminary evidence that Behavioral
Fidelity is a feasible evaluation target and
indicate the scalability of generative Al for
legal training; speech-condition evaluation
and multi-case, multi-role extensions are

left for future work.
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Keywords: courtroom examination, behavioral
fidelity, forensic linguistics, Al simulation
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Abstract

Mental health concerns have garnered
increasing attention, highlighting the
importance of timely and accurate
identification of individual stress states as a
critical research domain. This study
employs the multimodal StressID dataset to
evaluate the contributions of three
modalities—physiological signals, video,
and audio—in stress recognition tasks. A
set of machine learning models, including
Random Forests (RF), Support Vector
Machines (SVM), Multi-Layer Perceptrons
(MLP), and K-Nearest Neighbors (KNN),
were trained and tested with optimized
parameters for each modality. In addition,
the effectiveness of different multimodal
fusion strategies was systematically
examined. The wunimodal experiments
revealed that the physiological modality
achieved the highest performance in the
binary stress classification task (F1-score =
0.751), whereas the audio modality
outperformed the others in the three-class
classification task (Fl-score = 0.625). In
the multimodal setting, feature-level fusion
yielded stable improvements in the binary
classification task, while decision-level
fusion achieved superior performance in
the three-class classification task (F1-score
= 0.65). These findings demonstrate that
multimodal integration can substantially
enhance the accuracy of stress recognition.
Future research  directions include
incorporating temporal modeling and
addressing data imbalance to further
improve the robustness and applicability of
stress recognition systems.
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1 Introduction

As the pace of modern society accelerates and
life pressures intensify, mental health is getting
more attention. The World Health Organization
(WHO) designates October 10th each year as
World Mental Health Day, emphasizing that
mental health is a fundamental human right and
urging all sectors to address psychological issues
and provide necessary resources. However, in
high-pressure environments, many individuals
struggle to recognize and manage stress, which can
gradually accumulate and lead to more serious
mental health challenges.

Stress is essentially a state, both mental and
physical, that happens when people feel the
demands of their environment are beyond their
ability to cope, threatening their well-being
(Lazarus, R.S. et al., 1984). It is a dynamic and
interactive process that involves the individual’s
cognitive appraisal and coping strategies in
response to stressors. Research has shown that
stress has both direct and indirect effects on mental
health, particularly through the regulation of
psychological states via negative emotions
(Moreta-Herrera, R., et al, 2023). While moderate
stress can foster adaptation and motivation,
prolonged and unmanaged stressors may
negatively impact the nervous system, mental
health, and behavior patterns (Hsu, Y. F., 2021).

Taking the campus as an example, students
face multiple pressures from academic work,
interpersonal relationships, and future
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development, which often brings their mental
health issues into the news spotlight. According to
statistical data released by the Ministry of
Education's Campus Safety and Disaster
Prevention Center in 2024 ( #t7 ¥R i 3f ¢

<, 2024) , suicide and self-harm incidents have

—_

T

ranked first in campus safety-related accidental
reports for the past three years, accounting for 33%
of all reported accidents. The number of deaths in
higher education institutions remains high. In
recent  years, universities have  begun
implementing mental health leave, believing that it
helps students with self-awareness and provides an
opportunity for short-term adjustment, hoping to
reduce the incidence of such incidents.

Currently, the assessment of psychological
stress primarily relies on traditional questionnaire-
based surveys (Scale, P.S., 1983). However, these
methods are limited by their high subjectivity and
lack of real-time responsiveness, which hinder the
implementation of timely intervention strategies.
Therefore, developing an objective and real-time
stress monitoring technology has become a crucial
research direction. Furthermore, existing research
and datasets on stress detection face notable
limitations, including small dataset sizes, a lack of
diverse stress sources, and unimodal data
constraints. To address these issues and advance
the field of stress recognition, this study will utilize
the rich resources of the StressID dataset
(Chaptoukaev, H., et al., 2023). It aims to optimize
and evaluate the performance of various unimodal
and multimodal fusion models, with the goal of
developing more objective and reliable stress
identification techniques that can enhance mental
health monitoring and intervention capabilities.

2 Related Literature

2.1 Stress Recognition Research

With the growing awareness of mental
health, recent years have witnessed increasing
research efforts dedicated to enhancing the
accuracy of stress detection through a wide range
of features and classification models. One notable
contribution is the WESAD dataset introduced by
Schmidt et al. (2018), which integrates multiple
wearable sensor signals with emotion annotations
and has since become a widely used benchmark for
developing and evaluating multimodal stress
recognition systems. Building on this resource,
Abdelfattah et al. (2025) conducted a comparative
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analysis of machine learning and deep learning
models using the WESAD dataset. Their findings
suggest that deep learning methods provide
superior cross-subject generalization but are
computationally demanding, limiting their
feasibility for real-time applications. In contrast,
traditional machine learning models demonstrate
greater computational efficiency and achieve high
accuracy in personalized settings—reaching up to
99.8% F1 score—yet they suffer from limited
generalizability. To address these shortcomings,
ensemble learning has been highlighted as a
promising strategy for enhancing both robustness
and generalization in stress recognition. Extending
this line of research, the present study explores the
StressID multimodal dataset, with particular
emphasis on evaluating the contributions of
different modalities and investigating the impact of
fusion strategies on model performance.

2.2 Classification Models for  Stress

Detection

To achieve this, a set of established machine
learning and deep learning models is considered.
Random Forest (RF) is an ensemble learning
approach composed of multiple decision trees that
improves classification stability and accuracy by
employing a voting mechanism for both
classification and regression tasks. Its performance
depends on hyperparameters such as the number of
estimators (n_estimators), the splitting criterion
(criterion), and the maximum tree depth
(max_depth), which are generally optimized
through cross-validation. Support Vector Machine
(SVM) is a supervised learning model that
identifies the optimal hyperplane separating data
points of different classes with the maximum
margin, making it effective for classification tasks
with well-defined decision boundaries. Its
effectiveness relies on the selection of the kernel
function, the regularization parameter (C), and the
kernel coefficient (gamma). K-Nearest Neighbors
(KNN) 1is a non-parametric, distance-based
algorithm that classifies new data points by
identifying the K nearest neighbors and applying
majority voting, with hyperparameters including
the number of neighbors (n neighbors), the
weighting scheme, and the neighbor computation
algorithm. Multilayer Perceptron (MLP), a
feedforward artificial neural network, is capable of
modeling complex nonlinear relationships through
an input layer, one or more hidden layers, and an



output layer. Its performance is shaped by factors
such as the activation function, learning rate,
optimization algorithm, and hidden layer
configuration. Finally, the Deep Belief Network
(DBN), composed of stacked Restricted
Boltzmann Machines (RBMs), is a deep generative
model that performs unsupervised pretraining to
capture hierarchical data representations, followed
by supervised fine-tuning for classification. DBNs
are particularly valued for their strong feature
extraction capabilities, especially in handling
structured and high-dimensional data.

3 Dataset Collection and Processing

3.1

This study employs the StressID dataset, a
multimodal resource integrating physiological
signals, video, and audio recordings. Figure 1
illustrates the structure of the dataset. Data
collection followed a rigorous and reproducible
experimental protocol comprising 11 tasks
organized into four main blocks: guided breathing,
emotional video clips, seven interactive stress-
inducing tasks, and a relaxation phase. These
diverse tasks were designed to elicit varying stress
responses among participants.

Dataset Description

Figure 1: Multimodal Structure of the StressID
Dataset

The experiment involved 65 healthy adult
participants. Following each task, participants
completed self-assessment questionnaires to report
their perceived stress, relaxation, valence, and
arousal levels. In this context, valence refers to the
positive or negative emotional state experienced
during a task, whereas arousal reflects emotional
activation or engagement. These self-reported
measures were subsequently used for supervised
learning models to generate binary labels (stressed
vs. not stressed) and ternary labels (relaxed, neutral,
stressed).
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All  multimodal data were collected
synchronously and processed through task
segmentation and annotation procedures. The final
StressID dataset comprises over 39 hours of
annotated recordings, including 711 physiological
signal recordings, 587 video segments, and 385
audio recordings. Its scale and diversity make the
dataset one of the most extensive publicly available
stress  identification resources suitable for
unimodal and multimodal research.

3.2 Dataset Processing

The StressID dataset provides baseline stress
classification models in unimodal and multimodal
settings. This section describes the feature
extraction and preprocessing procedures for the
three unimodal data types, inputs for subsequent
machine learning models. For physiological
signals, 35 features were extracted from the
electrocardiogram (ECQG), 23 from electrodermal
activity (EDA), and 40 from respiration signals. All
signals were first processed using a Butterworth
filter to reduce high-frequency noise and baseline
drift. Extracted features include statistical and
physiological measures such as heart rate
variability (HRV), skin conductance level (SCL),
skin conductance response (SCR), and respiratory
rate variability (RRV), all intended to quantify the
participants’ physiological states.

Video data were processed using the OpenFace
library to extract facial features, including Action
Units (AUs) and eye gaze trajectories. These
features' mean and standard deviation were
calculated to capture facial expressions and gaze
dynamics, resulting in an 84-dimensional feature
vector for each video segment. Audio recordings
were down-sampled to 16 kHz, and amplitude-
based Voice Activity Detection (VAD) was applied
to remove non-speech segments. Handcrafted
features were extracted, including Mel-frequency
cepstral coefficients (MFCCs) and their derivatives,
spectral centroid, and other spectral features,
forming a 114-dimensional feature vector.
Additionally, speech embeddings were obtained
from the pre-trained Wav2Vec 2.0 (W2V) model.
Embeddings were extracted every 20 milliseconds
and averaged over time to generate a 513-

dimensional  representation per utterance,
capturing variations in frequency, energy, and
speech rhythm.

All features, except those extracted by Wav2Vec
2.0 (which were classified using a linear classifier),



were standardized and used as inputs to machine
learning models, including Random Forest (RF),
Support Vector Machine (SVM), Multilayer
Perceptron (MLP), and K-Nearest Neighbors
(KNN). These models were trained and evaluated
under various parameter configurations to predict
stress-related labels, including binary and three-
class classification.

Multimodal integration strategies were also
explored to improve classification performance.
The first approach, feature-level fusion,
concatenates features from each modality into a
single high-dimensional vector, which is then used
as input to machine learning models. The second
approach, decision-level fusion, trains independent
models for each modality and combines their
predictions using ensemble rules such as
summation, product, averaging, or maximum to
generate the final decision.

A notable challenge in the StressID dataset is
class imbalance, particularly in audio data, as
speech tasks are often associated with elevated
stress levels. SMOTE was applied to balance
binary-class audio data and the multimodal
training set to address this. However, in three-class
audio classification, the “relaxation” category is
underrepresented due to the limited presence of
audio during relaxation tasks. The scarcity of
relaxed audio samples and the absence of
characteristic relaxed speech features limit the
effectiveness of resampling in this scenario.

3.3 Model Performance Evaluation

To assess the classification performance of the
model in stress detection tasks, this study evaluated
the model on the test dataset using weighted F1-
score and balanced accuracy. The evaluation
metrics are defined as follows:

Flweighted = Z?=1 w; X Fli

(1
@

N TPi
=1rp,4FN;

Balanced Accuracy = %Z

These metrics were used to measure the model’s
performance in both binary and multi-class stress
classification tasks across different modalities. The
weighted Fl-score emphasizes classification
accuracy while taking the class distribution into
account. On the other hand, balanced accuracy
mitigates the influence of class imbalance by
averaging the recall across all classes, providing a
fairer assessment of the model’s ability to
recognize each class equally.
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4 Experimental Results and Discussion

This study implements various classification
models using Python’s scikit-learn library,
including K-Nearest Neighbors (KNN), Support
Vector Machine (SVM), Random Forest (RF), and
Multi-layer Perceptron (MLP), with parameter
tuning for comparison. The MLP model utilizes
multiple combinations of hidden layers, SVM
employs the RBF kernel with C-value adjustment
and a fixed gamma of 0.00714, KNN investigates
the effect of different numbers of neighbors, and
RF investigates the effect of different tree depths.
All models were evaluated using 10 random splits
to ensure robustness and reliable performance
estimation.

As shown in Table 1 and Table 2, for the
binary-stress classification task, the Physio
modality with Random Forest achieved the best
performance (F1 = 0.751) with a maximum tree
depth of 20. For the three-class affect classification
task, the Audio modality with SVM performed best
(F1 = 0.577) with a C-value of 10. Overall, all
models performed better on the binary
classification task, with the Physio modality
demonstrating the best binary performance, while
the Audio modality outperformed others in the
three-class setting.

Table 1. Comparison of unimodal baseline

performances on the binary-stress classification task.

Binary-stress

Classifier F1-score Accuracy

Video. AUs + RF 0.702+0.03 0.703+0.03
Video. AUs + SVM 0.701+£0.03 0.70140.02
Video. AUs + KNN 0.706+0.03 0.70510.03
Video. AUs + MLP 0.708+0.04 0.708+0.04
Audio. HC features + RF 0.68910.07 0.629+0.07
Audio. HC features + SVM  0.713+0.05 0.664+0.05
Audio. HC features + KNN  0.576+0.04 0.627+0.03
Audio. HC features + MLP  0.71810.07 0.671+0.07
W2V 2.0 classifier + MLP 0.7254+0.05 0.667+0.05
Physio. HC features + RF 0.751+0.03 0.744+0.03
Physio. HC features + SVM  0.733+0.03 0.725+0.03
Physio. HC features + KNN  0.696+0.04 0.689+0.04
Physio. HC features + MLP  0.712+0.03 0.709+0.03




Table 2. Comparison of unimodal baseline

performances on the affect3-class classification task.

Affect3-class

Classifier Fl-score  Accuracy

Video. AUs + RF 0.55740.05 0.555+0.05
Video. AUs + SVM 0.5651+0.03 0.559+0.03
Video. AUs + KNN 0.563+0.04 0.558+0.04
Video. AUs + MLP 0.56440.03 0.557+0.04
Audio. HC features + RF ~ 0.515+0.07 0.47840.06
Audio. HC features + SVM  0.5774+0.04 0.535+0.06
Audio. HC features + KNN  0.526+0.06 0.491+0.07
Audio. HC features + MLP  0.558+0.03 0.519+0.07
W2V 2.0 classifier 0.625+0.05  0.564+0.05
Physio. HC features + RF  0.56940.02 0.56540.02
Physio. HC features + SVM  0.57610.04 0.574+0.04
Physio. HC features +KNN  0.561+£0.02 0.552+0.03
Physio. HC features + MLP  0.537+0.04 0.534+0.04

In the multimodal analysis, three approaches are
covered: unimodal models, feature-level fusion,
and decision-level fusion. Additionally, various
classifiers (SVM, RF, MLP, KNN) are compared.

According to Table 3, the best unimodal
performance is achieved by Audio + SVM (F1 =
0.73), with parameters C = 10. Among the fusion
strategies, feature-level fusion with MLP (1 hidden
layer, 100 units) or SVM (C = 1.0, gamma
0.00714) achieved the best performance in the
binary-stress task (F1 0.72), slightly
outperforming the decision-level fusion results.

Table 3. Comparison of multimodal baseline

performances on the binary-stress classification task.

Binary-stress

Classifier Fl-score  Accuracy

Video. + SVM 0.740.04  0.64+0.05
Audio. + SVM 0.73+0.02 0.68+0.02
Physio. + RF 0.71+£0.04 0.6310.04
Feature level fusion+ MLP  0.7240.06 0.661+0.07
Feature level fusion+ KNN  0.61+0.07 0.63+0.07
Feature level fusion + RF 0.67+0.05 0.5740.03
Feature level fusion+ DBN  0.63+0.05 0.57+0.04
Feature level fusion + SVM 0.72+0.06 0.66+0.06
RF + Sum level fusion 0.7240.03  0.651+0.03
RF + Product level fusion 0.7240.03 0.641+0.03
RF + Average level fusion 0.72+0.03  0.65+0.03
RF + Maximum level fusion  0.72+0.04 0.631+0.04

In contrast, in the affect3-class task in Table 4,
the multimodal fusion strategies clearly
outperform the unimodal models. Among them,
the Decision-level fusion with RF (max_depth =
25, random_state = 0) + Sum/Average achieved the

33

best performance, with F1 = 0.65. Feature-level
fusion with MLP (F1 = 0.62) also showed a close
performance, demonstrating practical potential.

Table 4. Comparison of multimodal baseline

performances on the affect3-class classification task.

Affect3-class

Classifier Fl-score  Accuracy
Video. + SVM 0.58+0.06 0.55+0.06
Audio. + SVM 0.52+0.06 0.491+0.04
Physio. + RF 0.52+0.05 0.5+0.06
Feature level fusion + MLP 0.62+0.05 0.611+0.04
Feature level fusion + KNN  0.53+0.04 0.56+0.06
Feature level fusion + RF 0.544+0.06 0.4910.06
Feature level fusion + DBN  0.34+0.11 0.35+0.04
Feature level fusion + SVM 0.5740.05 0.5140.04
RF + Sum level fusion 0.65+0.06 0.6+0.06
RF + Product level fusion 0.64+0.06  0.6+0.06
RF + Average level fusion 0.65+0.06  0.610.06
RF + Maximum level fusion  0.63+0.04 0.59+0.04
Overall, multimodal fusion  strategies

outperform unimodal models in both tasks.
Feature-level fusion is more suitable for the binary-
stress task, while Decision-level fusion shows its
advantage in the affect3-class task. In comparison,
KNN and DBN underperformed overall, with both
accuracy and stability being relatively low.

5 Conclusion and Future Work

This study investigated unimodal and
multimodal approaches for stress recognition using
the StressID dataset. The results demonstrate the
effectiveness of multimodal fusion, with feature-
level fusion providing stable performance in binary
stress classification, while decision-level fusion
achieves superior performance in the three-class

affective classification task. Despite these
promising  outcomes, challenges remain,
particularly regarding class imbalance. The

underrepresentation of the “relaxation” category
adversely affects the performance of three-class
classification models. Future research should
explore strategies to mitigate these imbalances and
consider the incorporation of temporal models,
such as LSTM, GRU, or Transformer architectures,
to better capture the dynamic nature of stress
responses. Additionally, further investigation into
the feasibility of these models for real-time
monitoring and practical deployment is essential to
enhance the timeliness, robustness, and overall
accuracy of mental health interventions.
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Abstract

Misinformation rarely presents itself as en-
tirely true or entirely false. Instead, it
often embeds partial truths within mis-
leading contexts, creating narratives that
blur the boundary between fact and false-
hood. Traditional binary fact-checking
frameworks fail to capture this nuance,
forcing complex claims into oversimplified
categories. To address this gap, we intro-
duce MEGA, a multidimensional graph
framework designed to classify ambiguous
claims, with a particular focus on those
labelled “Somewhat True” MEGA in-
tegrates event evidence, spatio-temporal
metadata, and a quantifiable nuance score.
Its Event Candidate Extraction (ECE)
module identifies supporting or contradict-
ing evidence, while the Nuance Control
Module (NCM) injects or removes nuance
to assess its effect on classification. Experi-
ments show that nuance is both detectable
and learnable: adding nuance improves
borderline discrimination, while stripping
it leads the decisions toward false extremes
and conceals partial truth. Our top model
—nuance-injected without score weighting
—improve accuracy and F'1 score by 15 and
16 points over the claims-only baseline, and
6 and 9 points over the ECE-only variant.
These results show that explicitly modeling
nuance alongside context is crucial for clas-
sifying mixed-truth claims and advancing
fact-checking beyond binary judgments.

Keywords: Misinformation detection,
Linguistic nuance, Event-guided evidence

1 Introduction

The rapid growth of online media has fu-
eled an overwhelming spread of misinforma-
tion (Sharma et al., 2019; Hu et al., 2025a).
Because misleading narratives often inter-
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weave genuine facts with distortions, separat-
ing truth from fiction has become increasingly
difficult. Traditional fact-checking pipelines,
built on binary true/false labels (Wang et al.,
2020a), are ill-suited for claims that fall
into the borderline category—especially those
tagged Somewhat True. Such claims typically
contain accurate information that is exagger-
ated, stripped of context, or paired with omis-
sions (Rashkin et al., 2017), making their clas-
sification inherently challenging.

This challenge connects to the notion of
certainty, long studied in pragmatics and
discourse through phenomena such as epis-
temic modality, evidentiality, doubt, and
hedging (Rubin, 2007). These signals express
how confidence is conveyed, and in compu-
tational terms can be characterised by po-
larity (support vs. contradiction) and inten-
sity (strength of stance). Yet, recent work
on causal epistemic consistency demonstrates
that current language models struggle to re-
main stable when distinguishing such fine-
grained cues (Cui et al., 2025). Motivated by
these limitations, we manually analysed 150
Somewhat True claims and observed recurring
linguistic patterns: hedging markers (“may,”
“could”), context-sensitive phrasing, and con-
trastive framing. These are not new facts, but
structural signals—indicating that Somewhat
True is not merely a midpoint between False
and True, but a distinct category shaped by
nuance.

Building on this observation, we design two
key modules. A Nuance Control Mod-
ule (NCM) manipulates hedging and ambi-
guity markers to probe how linguistic fram-
ing influences classification. An Event Can-
didate Extraction (ECE) module retrieves
and summarises event-level snippets as exter-
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nal evidence, grounding claims in verifiable
context. Together, these modules allow us to
test whether nuanced linguistic cues help or
hinder borderline judgments, and motivate our
inclusion of score-aware evidence that weights
semantic, temporal, spatial, and nuance fea-
tures.

To integrate these signals, we propose the
Multidimensional Event-Guided Analy-
sis Graph (MEGA), a graph-based frame-
work that links claims to event evidence and
metadata while encoding semantic, temporal,
spatial, and nuanced relations. Experimental
results show that injecting nuance improves
performance in borderline cases: our best con-
figuration, a nuance-injected model without
score weighting, achieves a 15-point and 16-
point improvement on accuracy and F1 scores
over the claims-only baseline. Conversely, re-
moving nuance pushes decisions toward ex-
tremes and obscures partial truths. These find-
ings demonstrate that explicitly modelling nu-
ance, alongside contextual evidence, is essen-
tial for reliable classification of mixed-truth
claims.

The key contributions are:

o Nuance Control Module (NCM) —
injects or removes hedging, conditional,
and ambiguity markers to test framing ef-
fects.

MEGA —a configurable graph that links
claims to event evidence, metadata, and
linguistic nuance features via semantic,
temporal, spatial, and nuanced edges.

Event Candidate Extraction (ECE)
—automatically retrieves and summarises
real-world events for each claim.

Score-Aware Graph Construction —
weights edges with temporal, spatial, se-
mantic, and nuance scores to prioritise
high-quality evidence.

2 Related Work

Research on misinformation has been exten-
sively explored, with many studies adopting
a binary classification approach. For exam-
ple, Wang et al. (2020b) propose WEFEND, a
reinforcement learning framework designed to
filter noisy crowd-sourced reports, addressing
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the challenge of limited labeled data. While
effective for binary fake news detection, WE-
FEND assumes all claims are either entirely
true or entirely false, overlooking borderline
or ambiguous cases. Earlier work on multi-
class datasets has shown that mixture labels
in between true and false are often predicted
as hoaxes, mapping mostly to false (Torabi Asr
and Taboada, 2018). Not accounting for this
gray area can weaken detection, since some on-
line users employ half-truths as propaganda to
mislead readers (Hazra and Majumder, 2024).
This stresses the importance of considering
gray-area class labels. Using the PolitiFact
dataset with six labels, the subquestion-based
approach (Chen et al., 2022) improved multi-
class veracity prediction, yet overall perfor-
mance remained modest, highlighting the diffi-
culty of distinguishing fine-grained cases such
as half-true.

Beyond label design, model architecture also
introduces limitations. ICP-BGCN (Hu et al.,
2025b) combines tweet content and propaga-
tion structure into a graph but ignores exter-
nal evidence, leaving it prone to echo-chamber
bias. FrameTruth (Wang et al., 2024) ex-
tracts misleading narrative frames with an
LLM, yet its text-only scope overlooks tempo-
ral, spatial, and source-level context. CAM-
OUFLAGE (Bethany et al., 2025) rewrites
claims with hedges and ambiguity to evade
detectors, but treats hedging solely as adver-
sarial noise rather than an informative signal.
More recently, Tang et al. (2025) introduced
POLITIFACT-HIDDEN, a 15k-claim dataset
annotated with omitted evidence and intent,
and proposed TRACER, a framework that
models omissions for half-truth detection. In-
tegrated with existing verifiers, TRACER im-
proved Half-True F1 by up to 16 points, un-
derscoring the need to capture hidden context
for trustworthy verification.

While several prior studies have explored
half-truths, mixture labels, and omitted evi-
dence (Chen et al., 2022; Tang et al., 2025),
none have explicitly modelled linguistic nu-
ance as the primary learnable signal for deter-
mining borderline claims. Existing approaches
often collapse such borderline statements into
either "True” or "False,” overlooking the lin-
guistic and contextual subtleties that define



partial truths. To the best of our knowledge,
MEGA is the first framework to operational-
ize Somewhat True as an independent, learn-
able class, treating nuance not as noise but as
a structural feature that bridges the gap be-
tween traditional binary classification and a
more complex real-world claims.

In summary, prior work often relies on
binary labels, internal propagation graphs,
or text-only framing models, and sometimes
treats linguistic nuance as noise. Our frame-
work addresses this by modelling nuance with
both a controllable module and a scoring mech-
anism, while incorporating event evidence and
spatio-temporal metadata into the verification
process.

3 Methodology

Our proposed framework, MEGA (Multidi-
mensional Event-Guided Analysis), addresses
the challenge of classifying borderline misin-
formation claims by combining real-world ev-
idence, metadata, linguistic tone, and quality
signals into a unified graph-based architecture.
Our framework has four stages: (1) Event Can-
didate Extraction (ECE), (2) Nuance Control
Module (NCM), (3) Evidence-Quality Assess-
ment Score (EQAS), and (4) MEGA graph
construction and classification.

3.1 Event Candidate Extraction(ECE)

The first step is to link each claim ¢; (with
metadata m; = (date,platform)) to exter-
nal real-world evidence. = We retrieve an
event snippet e; by generating structured
queries using named entities extracted with
spaCy (Honnibal et al., 2020), temporal ex-
pressions identified via rule-based patterns,
and platform-specific keywords.These snippets
were submitting to a Sear XNG-powered search
interface (SearXNG, 2021) for multi-engine
lookups. Retrieved passages are embedded
with Sentence-BERT (Reimers and Gurevych,
2019), clustered semantically, and summarised
into a single factual event snippet e;.

If search or clustering fails, we return a
short “no reliable event context found” note,
so downstream steps always receive a clear, in-
terpretable output.
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3.2 Nuance Control Module (NCM)

We change tone, not facts. This module
manipulates the linguistic tone of event candi-
dates before they are scored and selected, ad-
justing each event snippet e; to convey vary-
ing levels of clarity, ambiguity, or caution. In
this paper, linguistic tone refers to surface cues
that influence how a statement is read—such
as hedges and modality (“may”, “could”), con-
ditionality (“if”, “unless”), attribution (“ac-
cording to..”), and contrast markers (“how-
ever”, “but”). The presence and strength of
these cues are referred to as nuance.

We apply linguistic reframing to modify
these nuances without adding or removing fac-
tual content. Specifically, we define two trans-
formation mechanisms (Figure 1):

1. Nuance injection — introduces hedg-
ing/ambiguity (e.g., “reportedly”, “sug-
gests”, “appears to”).

2. Nuance removal — celiminates those

markers to make the same content more as-
sertive.

Formally, let e; denote the event snippet re-
trieved by ECE for claim ¢;. The NCM gen-
erates two rewrites: an injected version e
(adds hedging/ambiguity cues) and a removed
version e (strips them). Each experimental
variant uses exactly one of these downstream;
for brevity, we write

e € {e;nj, e;"™ }.

We generate e;nj and e using Qwen2.5-
14B-Instruct hosted locally via Ollama with
fixed prompts and parameters to ensure consis-
tency and reproducibility (Bai et al., 2023; Ol-
lama, 2023). Only the event snippet is rewrit-
ten; the claim ¢; remains unchanged. The re-
sulting pair (¢;, e}) is then used for Evidence-
Quality Assessment Score (EQAS) and node-
feature construction. This setup lets us di-
rectly measure how framing influences classi-
fication—especially for Somewhat True class.

3.3 Evidence-Quality Assessment
Score (EQAS)

For each pair of claim and event snippet
(ci,ef), we compute a four-dimensional score
vector S = {sr, Ss, Spm, SN}



S

Extracted
Events

The bill may cut
benefits next year

LLM-XOR

-1

Nuance
Added

Analysts suggest the
bill could cut
benefits next year

Nuance
Removed

The bill cuts
benefits next year

Figure 1: Nuance Control Module (NCM). Given
the extracted event snippet, NCM applies one
rewrite: inject hedging/ambiguity or remove it,
producing two alternative snippets used in our vari-
ants.

Temporal specificity (sp) —precision
of temporal references in e}, determined
via rule-based parsing of explicit dates
and scaled to [0, 1].

Spatial specificity (sg) —granularity
of location mentions in e;, mapped by
rule-based city /region/country resolution
to [0, 1].

Semantic similarity (sjs) —cosine sim-
ilarity between Sentence-BERT embed-
dings of ¢; and e} (Reimers and Gurevych,
2019).

Nuance score (sy) —strength of hedg-
ing or ambiguity cues in e, assigned by
a locally hosted Qwen2.5-14B-Instruct us-
ing a short rubric; computed only when
NCM is enabled (Bai et al., 2023).

For
[ST,is 85,is SM.i» SN,i s
when NCM is disabled.

The score set S serves two purposes:
(i) pruning edges via adaptive, type-specific
thresholds, and (ii) augmenting node features
during graph construction, which will be done
in the next stage.

we denote
with sy

claim ¢, S

omitted

3.4 MEGA Graph Construction and
Classification

Node Features. FEach data point is d; =
(ci, mi,yi), where ¢; is the claim text, m; =
(date, platform) is metadata, and y; € {0, 1,2}
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is the gold label (Completely False, Some-
what True, True). We encode: (1) ¢; with
SBERT — ¢;; (2) m; into z; using date buck-
ets and platform one-hots; (3) e into EQAS
si = (87,0, 588, SM,i» SNi)- The node feature is:

w; = [t; || 2 || enc(e]) || si],

where enc(-) is the SBERT embedding of e!.
y; is used only for training and evaluation pur-
poses.

Graph and pruning. We construct a
claim—evidence graph G over all claims, where
each node v; is assigned the feature vector x;.
Edges connect nodes whose claims and associ-
ated events are similar in semantic, temporal,
or spatial terms, with the corresponding simi-
larity scores stored as edge features.

Adaptive pruning. Using only the train-
ing split, we examine the distribution of each
edge-score type (semantic, temporal, spatial)
and select one cutoff per type (e.g., a chosen
percentile). These cutoffs are then fixed and
applied unchanged to validation and test splits
to avoid leakage. An edge (i,j) is retained if
it meets the semantic threshold, or if it satis-
fies both the temporal and spatial thresholds.
We further keep only the top-k most similar
neighbours (by semantic score) for each node
to prevent any single node from dominating
the graph. When the Nuance Control Module
(NCM) is active, we increase the thresholds for
edges whose endpoints have higher average nu-
ance, sy = W%, making the gate stricter
when reframing is more ambiguous. This en-
sures that only well-supported links are pre-
served in high-nuance contexts.

Classifier. We employ a standard Graph
Attention Network (GAT) without architec-
tural modifications (Velickovi¢ et al., 2018).
The combination of edge-aware construction
and adaptive pruning biases the model toward
stronger, contextually grounded relationships
while reducing noise from weak or misleading
connections.

3.5 Dataset and Labelling

We collect fact-checked claims from Politi-
Fact (2007—2024) (PolitiFact, 2024), includ-
ing claim text, publish date, platform, and the
original veracity label. PolitiFact uses six la-
bels: Pants on Fire, False, Mostly False, Half
True, Mostly True, and True.



Model Configuration Scores NCM
Claims only No No
Claims + metadata No No
ECE only No No
ECE + EQAS ST,85,5M No
Nuance injected (no EQAS) SN Yes
Nuance removed (no EQAS) SN Yes
sN-only SN Yes
Full MEGA All Yes
Contrastive removal SN Yes
ECE Core Isolation No No
Positional bias No No

Table 1: Feature and edge model configurations
used in the experiments

For our experiments, we relabel to three
classes to separate outright falsehoods, clear
truths, and ambiguous cases:

e Completely False —merge Pants on
Fire + False

e Somewhat True —merge Half True +
Mostly True

e True —keep True as-is

We exclude Mostly False due to inconsis-
tent annotation patterns and class imbalance
in our corpus, which would introduce noise
into the three-class distinction we aim to evalu-
ate. The final dataset contains 26,500 labelled
claims after cleaning (removing nulls, dupli-
cates, extreme-length outliers, and formatting
noise). For a balanced evaluation, we sam-
ple 6,000 claims (2,000 per class) with a fixed
seed and use this same subset across all exper-
iments.

4 Experiments

4.1 Experimental Setup

We conducted extensive experiments across
multiple model configurations as shown in
Table 1. All models use two GAT lay-
ers with a hidden size of 256 and 8 at-
tention heads (Velickovié¢ et al., 2018), with
each node linked to its top-7 semantic neigh-
bours. Training uses cross-entropy loss, the
AdamW optimiser with a learning rate of
5x10~* (Loshchilov and Hutter, 2019), early
stopping after 25 epochs without improve-
ment, and a dropout rate of 0.30. We
use sentence-BERT all-mpnet-base-v2 to en-
code the text (Reimers and Gurevych, 2019).
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Model F1-Score by Class | Acc.
T | SW True | CF

Baseline Models

Claims only 58 63 60 60

Claims + metadata 64 64 62 63

Real-World Context

ECE only 72 65 70 69

Nuance Control Variants

(no EQAS)

Nuance injected T 74 73 75

Nuance removed 74 70 72 72

Nuance-injected (EQAS)

per dimension

Nuance Score (sn) 78 80 71 T

Contextual only 7 74 73 74

Temporal only 78 75 70 76

Spatial only ad 76 72 75

Spatial + Contextual 71 74 71 74

Spatial + Temporal 78 75 74 76

Contextual + Temporal e 75 71 74

Full MEGA 76 74 73 74

Table 2: Performance metrics across models con-
figurations. Abbreviations: T = True; SW True =
Somewhat True; CF = Completely False; Acc.
Accuracy. The values are in percentage, applied
for all the subsequent tables

The dataset is split into 70% training, 10%
validation, and 20% test sets, stratified by
class. We evaluate performance using Ac-
curacy and per-class F1, and analyse confu-
sion matrices to investigate misclassification
boundaries, particularly for cases near deci-
sion edges (Fawcett, 2006). Unless otherwise
stated, all tables report the same 20% test split
with identical thresholds and prompts carried
over from training.

4.2 Results and Discussion

Impact of External Evidence. Baseline
models highlight the difficulty of claim clas-
sification without real-world context. The
claims-only model reached just 60% accuracy,
with weak performance across all labels (Ta-
ble 1). Adding metadata such as platform and
date improved accuracy by 3%, showing lim-
ited discriminative value on its own. A larger
gain came from external evidence: incorpo-
rating ECE snippets raised accuracy to 69%.
This supports the premise that linking claims
to real-world events provides factual anchors
through temporal and spatial cues. However,
the model continued to struggle with Some-
what True, motivating the need for additional
signals.

Nuance injection. The next significant
shift occurs when the Nuance Control Mod-



ule (NCM) introduces hedging and ambigu-
ity into event snippets. Accuracy rises to
75%, with Somewhat True F1 improving by +9
points over ECE-only. Gains are also consis-
tent for True and False classes. These improve-
ments indicate that the model is not simply
relaxing decision criteria but exploiting tone-
related cues that clarify borderline distinc-
tions. In particular, hedging and contrastive
phrasing sharpen the boundary between Some-
what True and both extremes, showing that lin-
guistic nuance functions as a meaningful signal
rather than noise.

Nuance removal. When nuance is removed
from the event snippet, the performance still
improves compared to the base ECE configu-
ration, with Somewhat True rising from 65%
to 70% and overall accuracy from 69% to 72%.
However, this configuration falls short of the
injection gains, with Somewhat True reach-
ing 74% and accuracy 75% under injection.
This gap suggests that removing linguistic cues
helps reduce some confusion but also strips
away information that could aid the model in
identifying fine-grained distinctions. Without
these cues, the boundary between True and
Somewhat True becomes less defined, and cer-
tain borderline cases may be pushed toward
the wrong side of the decision threshold. The
fact that removal still performs better than
base ECE implies that not all nuance is help-
ful, and in some contexts, tone markers may
distract the model from content-based reason-
ing.

Nuance as Isolated Signal. To examine
the effect of linguistic nuance in isolation, the
Nuance Score sy is used as a probe in two set-
tings: using only sy, and applying the same
score to versions where nuanced phrasing has
been removed. Using only sy yields the high-
est overall accuracy at 77% and the strongest
Somewhat True F1 at 80%, surpassing the Full
MEGA configuration, which achieves 74% ac-
curacy. When sy is applied to the stripped
versions, performance declines in proportion to
the amount of nuance removed, indicating that
sy captures the influence of linguistic tone
rather than memorising content. The compar-
ative results are shown in Table 3. The values
for nuance injection and removal differ from
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Configuration T | SW True | CF | Acc.
Nuance injection 78 80 71 T
Nuance removal 78 72 72 75
Contrastive removal | 72 64 70 69

Table 3: Nuance Score sy variants.

Score Config. T | SW True | CF | Acc.
Contextual only 75 66 69 70
Temporal only 73 7 70 70
Spatial only 72 63 70 68
Spatial + Contextual 71 65 71 69
Spatial + Temporal 75 67 71 71
Contextual + Temporal | 76 65 71 70
All combined 73 66 70 70

Table 4: EQAS applied to base ECE.

those in the previous table because this experi-
ment measures the effect of nuance alone, with-
out other cues. This indicates that sy alone
is a strong proxy for linguistic tone.

The Effect of Evidence-Quality Assess-
ment Score (EQAS) Module. Applying
EQAS on top of the base ECE produces
only modest changes in performance (Table 4).
Overall accuracy ranges from 68% to 71%,
with the highest at 71% for the Spatial + Tem-
poral configuration, a gain of two points over
ECE-only at 69%. The Temporal-only setting
pushes the Somewhat True F1 to 77% but does
not raise overall accuracy beyond 70%. Other
configurations mostly exchange small gains be-
tween classes without a consistent advantage.
While these results show that EQAS adds use-
ful signal, its contribution is secondary to the
larger improvements achieved through nuance.

When nuance is reduced—either by remov-
ing all nuanced phrasing or only contrastive
cues—EQAS still provides measurable but
modest gains (Tables 5 and 6). Temporal
and spatial scores occasionally lift accuracy by
up to two points over the base setting, with
Temporal-only and Spatial-only configurations
performing best in their respective contexts.
This shows that EQAS retains value even with-
out nuanced language, but its effect is smaller
and less consistent than when nuance is pre-
served (see Table 2).

Full MEGA Configuration. Full MEGA
is the complete configuration of our frame-
work, combining the ECE evidence snippet



Score Config. T | SW True | CF | Acc.
Contextual only 72 73 72 72
Temporal only 44 75 74 75
Spatial only 74 72 72 73
Spatial + Contextual 73 T4 72 73
Spatial + Temporal s 75 73 75
Contextual + Temporal | 70 73 70 71
All combined 74 74 71 74

Table 5: EQAS with all nuance removed.

Score Config. T | SW True | CF | Acc.
Contextual only 72 66 70 69
Temporal only 74 66 71 70
Spatial only 76 66 70 71
Spatial + Contextual 73 66 70 70
Spatial + Temporal 73 66 69 69
Contextual + Temporal | 75 69 70 71

Table 6: EQAS after contrastive removal.

ei, an NCM rewrite €], and all EQAS scores
S = {sr,ss,5Mm,SN}, which are encoded in
the node features and also used as edge sig-
nals in the graph. As shown in Table 2, this
configuration delivers strong and balanced per-
formance across classes, although it is not the
top performer for Somewhat True, where the
nuance-injected model without EQAS achieves
slightly higher F1 and accuracy. We eval-
uated both configurations on unseen claims,
keeping all thresholds, hyper-parameters, and
model settings fixed. Both maintain an F1 of
75% on Somewhat True, indicating that the
nuance signal generalises beyond the training
distribution. Full MEGA achieves the highest
overall accuracy in this setting (77% vs. 76%
for the nuance-injected variant) by combining
temporal and spatial gating with semantic ev-
idence, which slightly reduces off-class errors
(Table 7).

We therefore regard Full MEGA as the
comprehensive, stability-oriented configura-
tion, while the nuance-injected variant with-
out EQAS remains the most effective for bor-
derline detection.

Model Variant T | SW True | CF | Acc.
Nuance-injected ECE | 77 75 75 76
Full MEGA 78 75 76 7

Table 7: Generalisation performance on unseen
claims
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Nuance Config. T | SW True | CF | Acc.
Original (front-loaded) | 77 74 73 75
Mid-loaded 75 72 73 73
Back-loaded 74 7 73 75

Table 8: Impact of shifting nuance position within
a claim.

4.3 Diagnostics: Examining Model
Behaviour

We conducted three controlled experiments to
disentangle the contribution of linguistic nu-
ance from other model cues: (1) Positional
Bias —hedging cues (e.g., “may cause”) were
moved to different positions in the sentence
(front, middle, end) to test whether their lo-
cation influences predictions. (2) Contrastive
Framing —rhetorical pivots such as “however”
and “although” were removed to evaluate re-
liance on explicit discourse contrast. (3) Core
Isolation —each event was reduced to its fac-
tual core, removing all hedging, elaboration,
and contextual detail, to assess how structural
simplification affects classification.

Structural dependency via positional
bias. The positional bias test examined
whether the location of nuance changes the
model’s decision-making. As shown in Table 8,
shifting hedging cues had minimal effect, with
only a 2% drop in accuracy for mid-position
placement. This suggests the model’s detec-
tion of nuance is not tied to its syntactic loca-
tion but rather to its lexical and semantic pres-
ence in the sentence. Performance stability
across positions indicates that nuanced phras-
ing is treated as a content-level signal rather
than a positional signal.

Contrastive removal (rhetorical pivots).
The contrastive framing test evaluated the im-
pact of removing explicit discourse markers
that signal rhetorical shifts. Compared to the
Full MEGA baseline, removing cues such as
“however” and “although” reduced accuracy
(Table 9), with the largest relative drop in
Somewhat True performance. These pivots
typically mark stance changes or qualifications,
making them especially informative for detect-
ing borderline or mixed-truth claims. Their re-
moval reduces the model s ability to recognise
such shifts, confirming that contrastive phras-
ing acts as a nuance-like signal in classification.



Model F1-Score by Class | Acc.
T | SW True | CF

Nuance-Focused Baselines

Nuance injection 7 74 73 75

Nuance Score (sy) 78 80 71 77

Full MEGA 76 74 73 74

Structural Diagnostics

Contrastive removal 76 68 72 72

ECE Core Isolation 79 83 76 80

Table 9: Comparison of nuance-focused models
and structural diagnostic variants

Core isolation (higher-accuracy pitfall).
Finally, we investigated the effect of stripping
away all structural tone. The Core Isolation
variant (which reduces events to bare factual
statements without hedging or contextual de-
tail) yielded the highest raw accuracy among
non-EQAS settings (Table 9), but this cre-
ated a problematic trade-off. As shown in
the confusion matrices (Figures 2-3), predic-
tions skewed toward extreme labels, particu-
larly Completely Fulse. Counts rose from 259
in the nuance-injected variant to 307 under
Core Isolation, with "True” — "False” errors
increasing from 12 to 18, and Somewhat True
— 7False” from 46 to 54. Thus, accuracy gains
came at the cost of misclassifying borderline
cases, indicating sharper but less calibrated de-
cision boundaries.

Interpreting the results. FEvent ground-
ing (ECE) was necessary but not sufficient—
linking claims to real-world events provided
the first performance lift. The decisive change
came from linguistic nuance: injecting hedg-
ing and conditional cues prevented the collapse
of borderline cases into extremes, allowing the
model to treat nuance as a distinct, learnable
signal rather than noise. In contrast, Core Iso-
lation simplified the problem rather than solv-
ing it, improving accuracy for the wrong rea-
son by inflating binary decisions.

Nuance therefore acts as a dual-role struc-
tural signal. As text, it consistently stabilises
Somewhat True predictions; as a graph fea-
ture, it retains influence via the nuance score,
providing a direct input for model reasoning.
These effects are position-independent, and
contrastive phrasing behaves similarly to nu-
ance, broadening the operational definition of
nuanced language. EQAS complements this
by anchoring decisions to temporal, spatial,
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COMPLETELY
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COMPLETELY
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TRUE
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Figure 2: Confusion matrix for ECE with nuance
injection.

CORE ISOLATION

COMPLETELY
FALSE

TRUE

SOMEWHAT

TRUE

COMPLETELY
FALSE

SOMEWHAT TRUE

TRUE
PREDICTED

Figure 3: Confusion matrix for the ECE core iso-
lation experiment.

and semantic context, but its impact is sec-
ondary when strong tone cues are present.
Overall, the most robust configuration is ECE
+ Nuance Injection (no EQAS), which pre-
serves calibration on borderline content while
still generalising effectively to unseen claims.

5 Conclusion

Nuance stands out as the signal that de-
fines our approach to misinformation detec-
tion. Real-world event grounding provides ev-
idential anchoring, but it is the modelling of
tone—hedging, conditionality, and contrast—
that consistently enables accurate recognition



of partial truths. This effect holds regard-
less of where cues appear, showing that their
strength comes from presence, not position.
Other signals, like temporal, spatial, and se-
mantic scores, add stability but do not replace
the interpretive weight of nuance. By embed-
ding this signal into both the evidence and the
graph, we show that subtle language patterns
are not noise, but essential, learnable features
for distinguishing misinformation with preci-
sion.

Limitations and Future Works

Our framework adopts a relatively simple ar-
chitecture that combines Sentence-BERT em-
beddings with a Graph Attention Network, al-
lowing us to isolate and highlight the effects of
linguistic nuance. This design effectively cap-
tures the contribution of tone and event con-
text; however, its simplicity may constrain the
model s expressive capacity and ultimate per-
formance ceiling. Consequently, the full poten-
tial of nuanced language understanding within
state-of-the-art fact-verification architectures,
which incorporate richer contextual modeling
or explicit propagation dynamics, remains an
open area for further exploration.

Recent fact-verification models use dense
passage retrieval (Thorne et al., 2018), fine-
tuned transformers trained on large-scale veri-
fication datasets (Schuster et al., 2019), or het-
erogeneous graphs that capture social propaga-
tion patterns (Hu et al., 2025b). Such architec-
tures may already capture hedging and tonal
variation through large-scale pre-training or
by integrating evidence from multiple sources.
However, it remains uncertain whether these
implicit signals achieve the same interpretive
precision as explicit nuance modeling. In
other words, while advanced models may rec-
ognize linguistic uncertainty to some extent,
they may not yet distinguish how specific tone
markers influence veracity judgments.

Future work could therefore explore inte-
grating the ECE and NCM modules into more
advanced architectures would yield diminish-
ing returns or, conversely, reveal complemen-
tary effects—and how stronger baselines might
interact with nuance-aware modelling to either
enhance or reduce their overall impact.
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Abstract

Retrieval-Augmented  Generation (RAGQG)
has emerged as a promising approach for
knowledge-intensive tasks. However, few
studies have examined RAG for Taiwanese
Historical Archives. In this paper, we present
an initial study of a RAG pipeline applied to
two historical Traditional Chinese datasets,
Fort Zeelandia and the Taiwan Provincial
Council Gazette, along with their correspond-
ing open-ended query sets. We systematically
investigate the effects of query characteris-
tics and metadata integration strategies on
retrieval quality, answer generation, and the
performance of the overall system. The results
show that early-stage metadata integration
enhances both retrieval and answer accuracy
while also revealing persistent challenges
for RAG systems, including hallucinations
during generation and difficulties in handling
temporal or multi-hop historical queries.

Keywords: Retrieval-Augmented Generation,
Humanities Data, Large Language Model

1 Introduction

Recent advances in large language models have
substantially improved open-domain question an-
swering and knowledge-intensive tasks. Retrieval-
Augmented Generation (RAG) (Lewis et al., 2020),
which combines document retrieval with text gen-
eration, has shown promise in mitigating halluci-
nation and improving factuality. Prior research has
primarily focused on English (Bajaj et al., 2018;
Kwiatkowski et al., 2019; Yang et al., 2024) or
Simplified Chinese datasets (Lyu et al., 2024; Li
et al., 2024a) and general-purpose domains such as
Wikipedia or web-collected questions.

However, much less attention has been given to
RAG performance on underrepresented languages

“Equal contribution.
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and culturally specific corpora, particularly in the
humanities. Historical contexts in Traditional Chi-
nese pose unique challenges, including unstruc-
tured documents, time-sensitive content, and lin-
guistic differences between queries and archival
sources. These factors complicate both retrieval
and generation, making it unclear how well current
RAG systems handle such materials.

To address this gap, we propose two Tai-
wanese historical datasets, Fort Zeelandia and Tai-
wan Provincial Council Gazette (TPCG), along
with their associated query sets, as case stud-
ies for historical open-ended question answering.
The datasets are annotated with query-level and
document-level metadata, enabling fine-grained ex-
periments on how query types and metadata integra-
tion strategies affect RAG performance. Through
systematic evaluation across multiple retrieval
methods and query characteristics, we demonstrate
that early-stage metadata integration substantially
improves system effectiveness. Furthermore, our
findings reveal persistent challenges: hallucina-
tions remain a recurring issue during generation,
and questions involving temporal reasoning exhibit
notable difficulty. Furthermore, our analysis of re-
trieval performance reveals that multi-hop and time-
sensitive queries tend to yield lower recall, whereas
early-stage metadata integration consistently deliv-
ers the strongest overall retrieval effectiveness.

2 Related Work

RAG Lewis et al. (2020) improves language model
performance on knowledge-intensive tasks by in-
corporating relevant external information during
generation. By grounding outputs in retrieved evi-
dence, RAG reduces hallucinations when models
encounter unfamiliar topics and alleviates the sub-
stantial cost of continuously retraining models to
incorporate new knowledge.
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Dataset Language Humanities Query-Passage Pairs Metadata
MS MARCO English X v Limited
Natural Questions English X v X
MMLU English v X X
CMMLU Simplified Chinese v X X
Fort Zeelandia Query Set (Our) Traditional Chinese v v v
TPCG Query Set (Our) Traditional Chinese v v v

Table 1: Comparison of datasets by language, domain knowledge, structure, and metadata. Fort Zeelandia and
TPCG Query sets stand out for their rich metadata and grounding in historical or contextual knowledge.

Early benchmarks of RAG mainly relied on
general-purpose datasets such as MS MARCO
(Bajaj et al.,, 2018) and Natural Questions
(Kwiatkowski et al., 2019). More recently, re-
searchers have introduced domain-specific datasets
in areas including biomedicine (Xiong et al., 2024;
Li et al., 2024b; He et al., 2025), law (Pipitone and
Alami, 2024; Zheng et al., 2025; Wahidur et al.,
2025), and non-English languages such as Tradi-
tional Chinese (Yang et al., 2025). However, RAG
applications in the humanities are underexplored,
particularly for Taiwanese historical materials.

Table 1 compares the key differences of existing
benchmarks with the query sets from our newly
introduced Fort Zeelandia and TPCG datasets.
Firstly, in terms of humanities coverage, MS
MARCO and Natural Questions primarily target
general-purpose or factual QA and contain lit-
tle to no humanities material, whereas MMLU
(Hendrycks et al., 2021) and CMMLU (Li et al.,
2024a) include partial coverage through their
broader topical scope. By contrast, our Fort Zee-
landia and TPCG query sets are explicitly designed
around humanities data, with a particular emphasis
on historical materials. Secondly, with respect to
query—passage alignment, MS MARCO and Natu-
ral Questions are constructed around paired queries
and passages, a design we also adopt for Fort Zee-
landia and TPCG query sets to support retrieval-
based evaluation. MMLU and CMMLU, in con-
trast, rely on multiple-choice formats. Finally, in
terms of metadata, our proposed datasets provide
rich query- and document-level annotations, en-
abling more fine-grained retrieval experiments and
analysis than existing resources.

3 Dataset

We introduce two Traditional Chinese datasets
from Taiwanese historical archives: Fort Zeelandia
and Taiwan Provincial Council Gazette (TPCG).
We refer to the associated queries as the Fort Zee-
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landia Query Set and the TPCG Query Set, and to
Fort Zeelandia and TPCG themselves as the docu-
ment datasets in this paper.

3.1 Fort Zeelandia

Entity Single-hop Multi-hop Total
Event 32 18 50
Item 14 2 16
People 19 4 23
Place 16 6 22
Time 19 4 23
Multi-entity 0 39 39
Total 100 73 173

Table 2: Fort Zeelandia Query Set Entity Focus Distri-
bution across Question Complexity

This dataset is constructed from historical di-
aries! documenting Dutch colonization of Taiwan
in the 17th century. We collected 5,443 passages
and collaborated with students from the Depart-
ment of History, who created 173 queries and an-
notated the relevant passages for each query.

Query-level Metadata. Each QA pair is anno-
tated with query-level metadata, including:

* Question complexity: Single-hop or multi-
hop question. A multi-hop question requires
combining information from multiple pas-
sagesto determine the answer, whereas a
single-hop question can be answered using
just one passage.

* Entity focus: Whether the question centers
on a person, item, time, event, or location.

An example from the Fort Zeelandia dataset is
demonstrated in Appendix A.1.
3.2 Taiwan Provincial Council Gazette

The TPCG dataset comprises official meeting
records from the Taiwan Provincial Council As-

"https://taco.ith.sinica.edu.tw/tdk/
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sembly 2, spanning the mid to late 20th century,
totaling 228,135 documents. To build the question
answering benchmark, history students manually
crafted 56 question-passage pairs based on selected
gazette excerpts. The resulting dataset captures
realistic information needs and research scenarios
commonly encountered in historical inquiry.
Document-level Metadata. TPCG is character-
ized with well-defined document-level metadata,
enabling experiments on how structured context
can be used to improve system performance. Each
document is associated with:

¢ Time/Event Information: Includes time in-
formation such as the start and end dates, vol-
ume and published date.

¢ Person/Organization Information: Covers
participating members, agencies, decree, pre-
siding officials and president at that time.

* Content/Document Information: Includes
document title, abstract, content type, cate-
gory, subject, keywords, attachments, refer-
ences, and remarks.

An example from the TPCG dataset is demon-
strated in Appendix A.2.

4 Methods

The RAG pipeline in Figure 1 comprises four
stages: Input, Retrieval, Generation, and Evalu-
ation. Throughout the pipeline, we (a) construct
datasets and annotate query—passage pairs, (b) re-
trieve candidate passages using lexical, dense, and
hybrid methods with optional metadata integration
and reranking, (c) prompt a generator LLM with
the query, retrieved passages, and metadata to gen-
erate an answer, and (d) assess answer quality with
an LL.M-as-judge protocol.

4.1 Input

The input stage in Figure 1 (a) covers data acquisi-
tion and annotation. We first crawl and normalize
raw materials into document collections for Fort
Zeelandia and TPCG datasets. Domain experts
(Taiwanese history students) then author queries
and annotate the associated gold passages, yielding
high-quality query—passage pairs for RAG experi-
mentation. To enable controlled analysis, we fur-
ther annotate (i) question complexity (single-hop

“https://drtpa.th.gov.tw/index.php?act=Archive
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vs. multi-hop) and entity focus (people, event, time,
place, item, or multi-entity) for Fort Zeelandia, and
(i) document-level metadata for TPCG, grouped
into Time/Event, Person/Organization, and Docu-
ment/Content categories.

4.2 Retrieval

Given a user query, the retrieval stage in Figure 1
(b) identifies a small set of passages most likely to
support grounded answer generation. This stage is
essential in a RAG pipeline because it (i) grounds
the generator in verifiable evidence to reduce hal-
lucinations, (ii) filters a large corpus into a com-
pact candidate set that fits the context window, and
(iii) adapts to lexical, semantic information, and
structured metadata in Fort Zeelandia and TPCG.
The stage comprises two parts: retrieval models
(sparse, dense, hybrid) that score query—passage
relevance, and retrieval strategies that optionally
use document-level metadata and a second-stage
reranker. Together, these components return top-k
passages for the generation stage.

4.2.1 Retrieval Models

We instantiate three families of retrieval models:

Sparse retrieval. We adopt BM25 (Robertson
and Zaragoza, 2009), which retrieves documents
based on term-matching style term-frequency and
inverse document frequency (TF-IDF) weighting
(Salton and Buckley, 1987), together with sparse
embeddings derived from a BGE-M3-based model
(Chen et al., 2024).

Dense retrieval. A BGE-M3-based dense en-
coder maps queries and passages into a shared em-
bedding space for semantic matching, which is
helpful when relevant evidence is phrased differ-
ently from the query.

Hybrid retrieval. To leverage both lexical and
semantic signals, we fuse the sparse and dense
ranked lists using Reciprocal Rank Fusion (RRF)
(Cormack et al., 2009):

n

RRF(d) =)

i=1

1

kot ri(d) M

where d is the document, n is the number of ranked
lists, 7;(d) is the rank of document d in the i-th
ranked list, and £ is a constant that dampens the
contribution of the lower-ranked documents.

4.2.2 Retrieval Strategies

Beyond first-stage retrieval, we integrate document-
level metadata and a second-stage reranker to im-
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Figure 1: Overview of RAG pipeline and components in each stage. The two highlighted elements: Query and
Metadata are the key factors that impact RAG system performance we focused on in this paper. The details of
these factors are discussed in Section 3.1 and Section 3.2, respectively. Section 6.2 and Section 6.3 elaborates how
these factors impact retrieval and generation performance.

prove ranking. Metadata in TPCG is grouped
into Time/Event, Person/Organization, and Con-
tent/Document fields; these fields capture signals
(e.g., publication dates, presiding officials, content
categories) that are often only weakly expressed in
raw text but crucial for precise matching in civic
or historical domains. We adopt four strategies,
illustrated in Figure 2.

Baseline Retrieval. Retrieve using only the
query and original document text without metadata.
This provides a clean reference that relies purely
on text similarity.

Metadata-Augmented Retrieval. Append se-
lected metadata fields to each document chunk be-
fore embedding, treating metadata as part of the
content. This allows the retriever to encode, for
instance, dates, roles, or categories directly into
passage representations so they influence similarity
at retrieval time. The retriever returns top-k pas-
sages given the embeddings of query and metadata-
augmented document chunks.

Metadata-Only Reranking. Incorporate meta-
data at the reranking stage rather than directly ap-
pended to the documents. We first retrieve the
top-100 candidate passages using the original doc-
uments. Then, compute the similarity between the
query and the available document-level metadata of
each candidate passage. The passages are reranked
based on this similarity score, and the final top-%
passages are returned for generation.

Metadata-Augmented Reranking. Append
metadata to the original document text before com-
puting similarity for reranking. After retrieving
the candidate passages, we concatenate each docu-
ment’s metadata with its original content, and then
measure the similarity between this augmented text
and the query to rerank the candidates. The top-k
passages are returned for generation.
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By comparing these strategies, we aim to quan-
tify the contribution of metadata at both embedding
and reranking stages, and to better understand how
different integration points influence retrieval effec-
tiveness for historical information retrieval.

4.3 Generation

We use GPT-40 (OpenAl et al., 2024) to produce
answers conditioned on the retrieved passages. The
goal is to leverage an LLM to aggregate informa-
tion dispersed across multiple relevant passages
into a fluent natural-language response.

At inference time, each query is paired with the
top-5 retrieved passages and any available meta-
data, which together serve as the external knowl-
edge context for generation. The model is in-
structed to ground its answer strictly in the pro-
vided materials and to avoid introducing external
knowledge not mentioned in the documents. When
multiple passages support the same fact, the model
is encouraged to prioritize such corroborated in-
formation. If none of the provided materials is
relevant to the query, the model is instructed to
respond with “I don’t know”. The full generation
prompt is detailed in Appendix A.3.

4.4 Evaluation

We evaluate both retrieval performance and end-
to-end RAG quality. For retrieval evaluation, we
report Recall @k, which measures the ratio of rel-
evant passages that appear in the top-k retrieved
results for each query:

N
1
Recall@k = N z; I (Relevant; € Top-k) (2)
1=

where N is the number of relevant passages for the
query, I(-) is the indicator function, Relevant; is
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Figure 2: Overview of four retrieval strategies with
different metadata integration stages explored in this
work. (a) Baseline Retrieval retrieves top passages
using only the query and document content. (b)
Metadata-Augmented Retrieval integrates metadata
into the document representation during retrieval. (c)
Metadata-Only Reranking uses only metadata during
the reranking stage after initial retrieval. (d) Metadata-
Augmented Reranking incorporates both document
content and metadata in the reranking stage.

the 7! relevant passage, and Top-k denotes the top-
k retrieved passages. The average Recall @k across
all queries yields the overall retrieval performance.

For generation quality, we employ Gemini-2.5-
Pro (Comanici et al., 2025) as an evaluator follow-
ing (Chiang and Lee, 2023). The evaluator is given
the golden passage, the retrieved top-5 passages,
and the answer from GPT-40. The complete evalu-
ation prompt is provided in Appendix A.4. It con-
sists of three scoring dimensions: groundedness,
relevance, and hallucination.

Groundedness. Assesses whether the generated
answer correctly incorporates information directly
supported by the golden passage. Each distinct
atomic fact from the golden passage that appears
correctly in the answer receives one point.

Relevance. Evaluates whether the answer in-
cludes additional information present in other re-
trieved passages consistent with the golden passage.
Each relevant atomic fact receives one point.

Hallucination. Penalizes content that is unsup-
ported or irrelevant. For each hallucinated state-
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ment or extraneous detail that is neither aligned
with the golden passage nor substantiated by the
retrieved passages, one point is deducted.

5 Experimental Setup

In our experiments, each document is segmented
into chunks of 512 tokens with an overlap of 128
tokens to preserve contextual continuity. For direct
retrieval methods, where reranking is not applied,
both BM25 and BGE-M3-based approaches are
configured to return the top 5 most relevant pas-
sages (i.e., top-k = 5). The hybrid method indepen-
dently retrieves 5 passages using both the sparse
and dense retrievers, then combines the two ranked
lists using RRE, setting £ = 60, to produce the final
top-5 results. For experiments involving reranking,
we first retrieve the top-100 candidate passages and
then apply reranking using BGE-reranker (Xiao
et al., 2023) to select the final top-5 results. In
the reranking scenario, the hybrid approach sim-
ilarly retrieves 100 passages from each retriever
before merging and reranking. We do not perform
any retriever and reranker tuning; all retrievers and
reranker are used off-the-shelf.

For Fort Zeelandia and its query set, we use pas-
sages retrieved by a hybrid retriever with baseline
retrieval. For TPCG and the associated query set,
we fix the retriever to BM25 and evaluate the im-
pact of different metadata integration stages and
types on answer quality. GPT-40 is used to generate
answers with the retrieved passages, and Gemini
2.5 Pro is used as an independent evaluator.

6 Results

Figure 1 illustrates the RAG pipeline and its key
components at each stage. To evaluate the applica-
bility of the RAG system on historical materials, we
conduct experiments using Fort Zeelandia, TPCG,
and their query sets. Our study examines how dif-
ferent retrieval strategies, query characteristics, and
metadata integration approaches affect overall sys-
tem performance. The evaluation focuses on mul-
tiple dimensions, including the ability to leverage
accurate context and the extent of hallucinations.

6.1 Overall RAG Results

Tables 3 and 4 show the overall RAG results on
the Fort Zeelandia and TPCG datasets. In Ta-
ble 4, Metadata-Augmented Retrieval with early
Document/Content metadata achieves the high-
est groundedness, with a significant increase of



Groundedness 1

Relevance T

Hallucination 1

2.9769

1.0578

-0.6821

2.8600 (-0.1169)
3.1370 (+0.1601)

0.8700 (-0.1878)
1.3151 (+0.2573)

-0.5600 (+0.1221)
-0.8493 (-0.1672)

Question Type Subcategory
All Questions -
. . Single-hop

Question Complexity Multi-hop
People
Event

. Time
Entity Focus Place
Item

Multi-entity

3.2174 (+0.2405)
3.4600 (+0.4831)
1.3478 (-1.6291)
1.8636 (-1.1133)
2.5625 (-0.4144)
3.9744 (+0.9975)

1.0870 (+0.0292)
1.2200 (+0.1622)
0.4783 (-0.5795)
1.2273 (+0.1695)
0.1875 (-0.8703)
1.4359 (+0.3781)

-0.5217 (+0.1604)
-0.5800 (+0.1021)
-0.9565 (-0.2744)
-0.7727 (-0.0906)
-0.5625 (+0.1196)
-0.7436 (-0.0615)

All Questions (Oracle) -

4.4104

0.2312

-0.2601

Table 3: RAG evaluation by Query Type on the Fort Zeelandia dataset. The table reports average scores for three
evaluation metrics: Groundedness (incorporates gold passage information), Relevance (integrates relevant passages
information), and Hallucination (including irrelevant information). For all three metrics, higher values indicate
better performance. Since Hallucination scores are negative, a value closer to zero reflects fewer hallucinations. All
values are compared against the ”All Questions” row. Colored deltas in parentheses indicate the difference from
the average: green for improvement and red for decline. The Oracle row denotes the upper bound of the LLM’s
performance when directly given the gold passages. An evaluation example can be found in Appendix A.5.

Groundedness T

Relevance T

Hallucination T

0.7321

0.8571

-0.2500

1.0893 (+0.3572)
1.1786 (+0.4465)
2.1429 (+1.4108)

1.0000 (+0.1429)
0.7321 (-0.1250)
1.2500 (+0.3929)

-0.2857 (-0.0357)
-0.2679 (-0.0179)
-0.3214 (-0.0714)

0.3393 (-0.3928)
0.5714 (-0.1607)
1.5893 (+0.8572)

1.0000 (+0.1429)
0.6071 (-0.2500)
1.8571 (+1.0000)

-0.4821 (-0.2321)
-0.2857 (-0.0357)
-0.3393 (-0.0893)

Integration Stage Metadata Type
Baseline -
Time/Event
Metadata-Augmented Retrieval Person/Organization
Document/Content
Time/Event
Metadata-Only Reranking Person/Organization
Document/Content
Time/Event
Metadata-Augmented Reranking Person/Organization
Document/Content

1.2679 (+0.5358)
0.9821 (+0.2500)
1.3750 (+0.6429)

1.0357 (+0.1786)
1.1071 (+0.2500)
1.0536 (+0.1965)

-0.6250 (-0.3750)
-0.6250 (-0.3750)
-0.5357 (-0.2857)

Oracle -

3.6964

0.0179

-0.0714

Table 4: RAG evaluation by Metadata Integration Strategies on the TPCG dataset. The table reports average scores
across the three evaluation metrics. All rows are compared to the Baseline Retrieval, values in the parentheses
indicate the improvement or decline. The Oracle row denotes the upper bound of the LLM’s performance when
directly given the gold passages. Two evaluation examples can be found in Appendix A.6.

1.4108 over the baseline. Appendix A.7 details
the significance tests for various retrieval meth-
ods. Performance also varies by query type: event-
related queries benefit most, with groundedness up
0.4831, relevance by 0.1622, and hallucinations
reduced 0.1021. These findings indicate that RAG
effectiveness depends on query characteristics and
is strengthened by metadata-augmented retrieval,
though hallucinations persist even with oracle pas-
sages, highlighting a key limitation.

6.2 RAG Results

This section takes a deeper dive into two key fac-
tors that critically influence RAG performance at
the Input and Retrieval stages: query type and use
of document-level metadata. Specifically, we an-
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alyze how different query types affect accuracy,
relevance, and hallucination. Additionally, we ex-
amine the impact of metadata integration at differ-
ent stages of retrieval and reranking, considering
multiple metadata types. This analysis highlights
which combinations of query characteristics and
metadata strategies yield the most reliable and ac-
curate outputs for historical open-ended QA tasks.

1) Different Query Types Table 3 illustrates
RAG performance across query types. Multi-hop
and Multi-entity questions are high-risk: when
successful, groundedness increases by 0.1601 and
0.9975, and relevance by 0.2573 and 0.3781, but
hallucination worsens by -0.1672 and -0.0615,
highlighting a trade-off between complexity and
reliability. People- and event-focused queries are
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Figure 3: Fort Zeelandia Dataset Recall@5 per Question
Complexity by Retriever

more stable, achieving gains in groundedness and
relevance with lower hallucination. Time-focused
queries are the most challenging, with ground-
edness and relevance decreasing by 1.6291 and
0.5795, alongside worse hallucination, indicating
that temporal reasoning remains a key bottleneck.

2) Different Metadata Integration Strategies
Table 4 presents the evaluation scores across three
dimensions for the open-ended question answering
task, focusing on the key factor Metadata, using
TPCG and its query set.

Overall, Metadata-Augmented Retrieval proves
the most reliable approach, improving grounded-
ness and relevance with minimal worsening in hal-
lucination. By contrast, reranking strategies show
mixed results: Metadata-Only Reranking under-
performs the baseline, while Metadata-Augmented
Reranking achieves gains in retrieval quality but
at the cost of greater hallucination, making it less
stable. Across all strategies, Document/Content
metadata emerges as the most effective type, under-
scoring its importance for enhancing the system.

6.3 Ablation Study of Retrieval Results

In this section, we take a closer look at the Retrieval
stage of the RAG pipeline. Since RAG fundamen-
tally relies on retrieved documents as the founda-
tion for generating answers, understanding retrieval
effectiveness is critical to interpreting overall sys-
tem performance. By analyzing how different re-
trieval strategies, query types, and metadata inte-
gration methods influence the quality of retrieved
context, we can better identify the factors that drive
successes and failures in retrieval.

1) Retrieval with Query-level Metadata We
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Figure 4: Fort Zeelandia Dataset Recall@5 per Entity
Focus by Retriever

investigate the impact of query types on retrieval
performance using query-level metadata, focusing
on query complexity and entity focus.

Different Question Complexity. To gain
deeper insight into RAG performance across vary-
ing query complexity, we further analyze the re-
trieval results on the Fort Zeelandia dataset. Figure
3 presents Recall@5 scores comparing single-hop
and multi-hop questions across different retriev-
ers. For single-hop questions, Recall@5 scores are
roughly twice as high as for multi-hop questions,
corresponding to a lower tendency for hallucina-
tion. In contrast, retrievers achieve Recall@5 of at
most only 0.28 for multi-hop queries, increasing
the likelihood of hallucinated responses.

Notably, despite the lower recall, multi-hop and
multi-entity questions still achieve higher ground-
edness and relevance, suggesting that the LLM is
capable of performing multi-step reasoning when
appropriate context is provided.

Different Entity Focus. We analyze retrieval
performance across different entity focuses to bet-
ter understand its impact on RAG outcomes. Fig-
ure 4 presents Recall@5 scores for People, Event,
Time, Place, Item, and Multi-entity questions. For
the hybrid retriever used in the RAG pipeline
for Fort Zeelandia, performance is notably higher
for People- and Event-focused questions, with
Recall@5 around 0.55, corresponding to better-
controlled hallucination. In contrast, Time- and
Multi-entity questions exhibit lower retrieval per-
formance, with Recall@5 of 0.43 and 0.33, respec-
tively, which aligns with increased hallucination.

Considering both RAG scores and retrieval re-
sults, we find that although retrieval for Time-
focused questions is slightly better than for Multi-
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Figure 5: TPCG retrieval performance across different metadata integration stages and metadata types. Left:
Metadata-Augmented Retrieval performance across different metadata types. Center: Performance of Metadata-
Only Reranking across different metadata types. Right: Retrieval performance of Metadata-Augmented Reranking

across different metadata types.

entity queries, the system achieves higher overall
evaluation scores on Multi-entity questions. This
indicates that the LLM can generate high-quality
answers for Multi-entity queries even with partial
or imperfect context. In contrast, despite adequate
retrieval for Time-focused questions, generation
performance remains poor, highlighting that time-
sensitive reasoning constitutes a key limitation of
the LLM rather than retrieval.

2) Retrieval with Document-level Metadata
We examine the role of document-level metadata
in the retrieval process, focusing on metadata type
and integration stage.

Different Metadata Type. Figure 5 com-
pares TPCG retrieval performance across different
retrievers and metadata types: Time/Event, Per-
son/Organization, and Document/Content, at each
integration stage, arguing how metadata affects
RAG performance. Document/Content metadata
provides the largest improvement over the base-
line across all strategies, achieving recall scores
roughly twice those of the other types, with the
highest around 0.5 under the Metadata-Augmented
Retrieval setting. This enhanced retrieval supplies
essential context to the LLM, improving answer
quality and boosting groundedness and relevance,
as shown in Table 4. In contrast, Time/Event and
Person/Organization metadata exhibit variable ef-
fectiveness across integration stages and are insuf-
ficient alone for effective reranking, a trend also
reflected in the RAG evaluation scores.

Different Metadata Integration. Figure 5 also
illustrates retrieval performance across different
metadata integration stages. Metadata-Augmented
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Retrieval consistently outperforms the baseline
across all retrievers and metadata types. For BM25,
which is used for TPCG, recall increases from 0.21
to 0.48, indicating that integrating metadata directly
into document embeddings during retrieval enables
the most effective use of structured information.

In contrast, Metadata-Only Reranking produces
only modest gains and sometimes underperforms
the baseline; for BM25, recall drops from 0.21
to 0.08, suggesting that metadata applied solely
at the reranking stage is insufficient. Metadata-
Augmented Reranking yields mixed results: while
recall generally improves over the baseline, gains
are smaller than those of Metadata-Augmented Re-
trieval, leading to greater instability in generation.

7 Conclusion

This study investigates the application of RAG to
historical open-ended question answering using
two Traditional Chinese historical datasets, Fort
Zeelandia and TPCG, along with query sets. By
examining the impact of query types and metadata
integration strategies on retrieval and end-to-end
RAG, we show that early-stage metadata integra-
tion substantially enhances performance. Our re-
sults also reveal persistent challenges: hallucina-
tions are frequent during generation, and temporal
or multi-hop queries are particularly difficult be-
cause of the low retrieval recall. These findings
inform future humanities-focused RAG research
and underscore the need for robust retrieval strate-
gies in historical and Traditional Chinese contexts.
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A Appendix

A.1 Fort Zeelandia Dataset Example

Figure 6 gives an example from the Fort Zeelandia

dataset.

Query Set

Query: 16324053 > L AD A FAYFI 8B 0 AeA?
Question complexity: Single-hop

Entity focus: People

Gold passage ID: #: jif &5 p 35/1-C/1632-03-04

Document dataset

Passage ID: #: fif &5 p 35/1-C/1632-03-04

Passage content: 27 28 -29p »3%1-2-3-4p - % » 5 P-#Catwijck
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Figure 6: A data sample of the Query Set and its relevant
passage in the document dataset from the Fort Zeelandia

dataset.

A.2 TPCG Dataset Example

Figure 7 gives an example from the TPCG dataset.

Query Set

Query LA B1990£31 260 PH 4 WP doimimR AG LA G
FAHT SFL LR ?
Gold passage ID: 003-09-010A-67-6-6-01-01120

Document dataset

Passage ID: 003-09-010A-67-6-6-01-01120
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Figure 7: A data sample of the Query Set and its relevant
passage in the document dataset from the TPCG dataset.
Note that some metadata fields are missing in the raw
data source, such as Decree and Officials. The second
half of Passage content is omitted for brevity.

A.3 Generation Prompt

The full prompt provided to GPT-4o0 for response
generation, given the query, retrieved passages, and
available metadata, is shown in Figure 8.
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P % © {content;}

{metadata;_; name} : {metadata;_; content}
{metadata; , name} : {metadata;_, content}

{metadata;_, name} : {metadata,_, content}
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M % : {content,}
{metadata, | name} : {metadata, | content}

{metadata, , name} : {metadata,_, content}

{metadata,_, name} : {metadata, ., content}

r %
{metadata,_| name} :

: {content, }
{metadata,_; content}

{metadata, , name} : {metadata, , content}

{metadata,_, name} : {metadata, ., content}

Figure 8: RAG generation prompt to GPT-40. Retrieved
passages are numbered from 1 to n, representing the 15¢
retrieved passage to the n'” retrieved passage. Metadata
rows for each retrieved passage are numbered from 1
to m, representing the 1°¢ type of metadata to the m"
type of metadata.

A.4 Evaluation Prompt

The full prompt provided to Gemini-2.5-Pro for
response evaluation, given the query, golden pas-
sages, retrieved passages, available metadata, and
model response of GPT-4o0, is shown in Figure 9.
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{query}

RS R
{golden passages}

W R 2
{retrieved passages}

#HH# T e R
{model response}

Figure 9: RAG evaluation prompt to Gemini-2.5-Pro.
Formats for golden passages and retrieved passages are
the same as the retrieved passages in the RAG genera-
tion prompt.

A.5 Fort Zeelandia Dataset Evaluation
Example

Figure 10 gives a detailed example of the evalua-
tion result on a single-hop question from the Fort
Zeelandia dataset.

Focusing on the third scoring dimension of the
evaluation result, we can observe that GPT-4o,
which is used for model response generation, can
still hallucinate, even when the golden passage is
retrieved as the first retrieved passage. The hallu-
cination may be attributed to the model’s tendency
not to include violence-related information from
the golden passage, resulting in an incomplete re-
sponse.

A.6 TPCG Dataset Evaluation Example

Figure 11 and 12 give two detailed examples of the
evaluation results on the TPCG dataset.

In the first example, the model response from
GPT-40 covers almost all the information in the
golden passage, which is also the fifth retrieved
document. However, the meeting session (in the
Title metadata field) of the first retrieved docu-
ment is wrongly linked to the golden passage and
appears in the model response. This example sug-
gests the limitation that hallucination may come
from the integration of rich and complex metadata
information.

In the second example, the evaluation result of
the second scoring dimension shows that GPT-40
can still summarize related information from other
retrieved passages even though the golden passage
is not given for generation. Nonetheless, the model
regards the requirements and questions, which are
raised by council members, as implemented spe-
cific measures, introducing another type of hal-
lucination due to the imprecise interpretation of
retrieved passages.
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Figure 11: First example of evaluation result on the TPCG dataset. For brevity, part of Passage content and empty

metadata fields for each passage are omitted.
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Figure 12: Second example of evaluation result on the TPCG dataset. For brevity, part of Passage content and
empty metadata fields for each passage are omitted.

Method Metadata Type Mean A p-value Significant
Time/Event 0.3571 0.0327 v
Metadata-Augmented Retrieval Person/Organization 0.4464 0.0619 X
Document/Content 1.1407 0.0007 v
Time/Event -0.3929 0.9175 X
Metadata-Only Reranking Person/Organization -0.1607 0.7156 X
Document/Content 0.8571 0.0005 v
Time/Event 0.5357 0.0036 v
Metadata-Augmented Reranking Person/Organization 0.2500 0.1095 X
Document/Content 0.6429 0.0047 v

Table 5: Wilcoxon signed-rank test results comparing each retrieval method and metadata type against the baseline
for Groundedness on TPCG. The table shows the mean difference (A), p-value, and whether the improvement is
statistically significant at p < 0.05.

A.7 RAG Groundedness Significance Test

Table 5 presents the detailed results of significance
testing for the Groundedness metric. For each com-
bination of method and metadata type, we report
the mean difference compared to the baseline, the
corresponding p-value from the Wilcoxon signed-
rank test, and a visual indicator of statistical signifi-
cance. The results show that the Document/Content
metadata type provides the most substantial ben-
efit across retrieval stages, and among the meth-
ods, Metadata-Augmented Retrieval with Docu-
ment/Content metadata achieves the largest mean
difference, indicating the strongest improvement
over the baseline.
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Abstract

Retrieval-Augmented Generation (RAG)
has proven effective for text-only ques-
tion answering, yet expanding it to vi-
sually rich documents remains a chal-
lenge. Existing multimodal benchmarks,
often derived from visual question an-
swering (VQA) datasets, or large vision-
language model (LVLM)-generated query-
image pairs, which often contain under-
specified questions that assume direct im-
age access. To mitigate this issue, we pro-
pose a two-stage query rewriting frame-
work that first generates OCR-based image
descriptions and then reformulates queries
into precise, retrieval-friendly forms un-
der explicit constraints. Experiments show
consistent improvements across dense, hy-
brid and multimodal retrieval paradigms,
with the most pronounced gains in visual
document retrieval—Hits@1 rises from
21.0% to 56.6% with VDocRetriever and
further to 79.3% when OCR-based descrip-
tions are incorporated. These results in-
dicate that query rewriting, particularly
when combined with multimodal fusion,
provides a reliable and scalable solution to
bridge underspecified queries and improve
retrieval over visually rich documents.

Keywords: RAG, Query Rewriting, Visually
Rich Documents, LVLMs, Information Retrieval,
Multimodal Retrieval, Optical Character Recogni-
tion (OCR)

1 Introduction

Retrieval-Augmented Generation (RAG) has
become a central paradigm for building
knowledge-intensive QA systems (Gao et al.,
2023; Cheng et al., 2025), where large lan-
guage models (LLM) are paired with retrieval
modules to ensure a factual foundation and a
broader domain coverage. In text-only settings,
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such as Wikipedia, news archives, or enter-
prise databases, RAG systems have been exten-
sively studied, with dense, sparse, and hybrid
retrievers achieving strong performance on well-
established benchmarks (Lewis et al., 2020; Pan
et al., 2022; Abdallah et al., 2025; Sawarkar
et al., 2024).

Many real-world enterprise documents are vi-
sually rich, containing tables, charts, diagrams,
and layout-dependent structures such as those
found in product manuals, engineering draw-
ings, or quality control reports. In these cases,
relying solely on OCR text extraction leads
to partial information loss, as complex visual
semantics cannot be fully captured, limiting
the effectiveness of traditional text-based RAG
pipelines (Appalaraju et al., 2021; Xu et al.,
2020). Developing effective RAG systems for
such documents requires appropriate datasets
and evaluation settings. However, most ex-
isting multimodal benchmarks originate from
VQA tasks (Tanaka et al., 2025; Wang et al.,
2025) are automatically constructed by prompt-
ing LVLMs to generate multiple queries for
each image, which are then aggregated to
form large-scale query-image datasets. These
datasets often contain underspecified queries
(e.g. "What does this figure show’) that presup-
pose direct image access; In retrieval settings
where only textualized or embedding-based rep-
resentations are available, such queries fail to
identify the correct document reliably, leading
to poor retrieval performance.

This limitation motivates our study. We
propose a two-stage query rewriting framework
that leverages OCR-informed context to refor-
mulate underspecified queries in visually rich
RAG settings. Our approach enriches query
semantics and produces retrieval-friendly refor-
mulations that better align with multimodal
document representations. Extensive experi-
ments demonstrate consistent gains across re-
trieval paradigms, particularly in multimodal
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settings. Our main contributions are as follows:

o We formalize the problem of underspeci-
fied queries in multimodal RAG systems.

« We propose a two-stage query rewriting
framework that uses OCR-informed im-
age descriptions and prompt constraints to
produce retrieval-friendly queries.

Our evaluations show that query rewrit-
ing significantly improves retrieval perfor-
mance on visually rich documents.

2 Related Work

2.1 Optical Character Recognition

PaddleOCR PP-OCRv5 ! (Cui et al., 2025)
is an open-source multilingual OCR, system
supporting Simplified Chinese, Traditional Chi-
nese, Chinese Pinyin, English, Japanese, and
over 80 additional languages. It follows a
three-stage pipeline of text detection, direc-
tion classification, and text recognition. Com-
pared with PP-OCRv4, PP-OCRv5 reports
a 13-percentage-point improvement in end-to-
end benchmark accuracy and includes enhance-
ments for challenging cases such as handwrit-
ten text, vertical text, and complex document
layouts. Other widely used open-source OCR
systems include docTR 2 and EasyOCR 3.
PP-OCRv5’s open-source availability and com-
prehensive documentation make it a practical
choice for research and production use.

2.2 Multimodal Document Retrieval

Retrieval-augmented generation (RAG) re-
trieves external knowledge to enhance large lan-
guage models (Lewis et al., 2020), but most
prior work assumes text-only corpora. Re-
cent visual RAG studies leverage LVLMs to en-
code document images directly (Tanaka et al.,
2025), enabling retrieval over visually rich doc-
uments. However, existing datasets such as Vi-
DoRe (Wang et al., 2025) cover limited doc-
ument types and often contain questions that
do not truly require retrieval, and previous ap-
proaches typically lack dedicated training to
adapt LVLMs for retrieval tasks.

"https://www.paddleocr.ai/latest/en/
version3.x/algorithm/PP-0CRv5/PP-0CRv5.html

https://github.com/mindee/doctr

3https://github.com/Jaided Al/EasyOCR
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VDocRAG (Tanaka et al., 2025) addresses
these gaps with a dual-encoder retriever, where
query tokens and document image features
(processed by image encoder + projector) are
fed into the same LVLM block to produce em-
beddings for similarity search. Its generator
then uses the top-k retrieved images to pro-
duce answers. The model is built on Phi-3-
Vision-128K-Instruct (4.2B parameters, image
encoder + connector + projector + Phi-3 Mini
LLM, 128K context length) and pre-trained
with retrieval- and generation-oriented objec-
tives (RCR, RCG) to align visual and textual
features. OpenDocVQA #, the accompanying
dataset, provides open-domain and multi-hop
questions, forming a comprehensive benchmark
for visually rich document understanding.

2.3 Query Rewriting in Information Re-
trieval

Query rewriting is a common technique in infor-
mation retrieval for reformulating user queries
into semantically richer or more precise forms
to improve retrieval performance. Existing ap-
proaches include rule-based methods, neural
sequence-to-sequence models (Yu et al., 2020;
Ma et al., 2023), and reinforcement learning
strategies that optimize retrieval metrics (Ma
et al., 2023). Recent work such as the Rewrite—
Retrieve-Read framework demonstrates that
rewriting can substantially improve dense re-
trievers by bridging the semantic gap between
user queries and relevant documents (Ye et al.,
2023; Kostric and Balog, 2024; Mo et al., 2023).
However, most prior research focuses on text-
only corpora, leaving open challenges for visu-
ally rich documents where key information may
be embedded in layouts, figures, and tables.

3 Materials and Methods

3.1 Problem Definition

Let D denote a collection of image-centric doc-
uments (e.g., charts, tables, engineering draw-
ings). We represent it as:

D ={(Q:, I)}Y,,

where each image I; may correspond to mul-
tiple associated queries, which are often am-
biguous and underspecified. Our objective is

Qi = {qi1, %2, - - -, qix },

“https://huggingface.co/datasets/NTT-hil-
insight /OpenDocVQA-Corpus


https://www.paddleocr.ai/latest/en/version3.x/algorithm/PP-OCRv5/PP-OCRv5.html
https://www.paddleocr.ai/latest/en/version3.x/algorithm/PP-OCRv5/PP-OCRv5.html
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Figure 1: Overview of the two-stage query rewriting framework. Given an ambiguous query and a visually
rich document, OCR, text is extracted and summarized by a language model (Mistral) into an image
description. The description, together with the original query, is used to generate a rewritten query that
clarifies entities and avoids answer leakage. Both the original and rewritten queries are compared in the
retriever to evaluate improvements in retrieval success.

to rewrite each query g¢;; into a semantically
complete and retrieval-friendly form g;;.

(1)

The rewritten query g;;, generated through the
two-stage process (Section 3.2), is constrained
by a predefined system prompt (Section 3.3.1).
Its objective is to retrieve the corresponding
document more accurately.

az] = frewrite(qij)

3.2 Two-Stage Query Rewriting

The proposed two-stage framework (Figure 1)
comprises image description generation and
constrained query reformulation, detailed in
the following subsections.

3.2.1 Image Description Generation

Each document image I is first processed by an
OCR engine (PP-OCRv5; (Cui et al., 2025)) to
extract the raw textual content ¢; = OCR(;).
Since OCR outputs are often fragmented or in-
complete (e.g. isolated labels or numbers), we
employ Mistral-Small 3.2 (24B)° as the descrip-
tion generator fyesc to produce a context rich
description d; conditioned on both ¢; and I;:

di = fdesc(thli) (2)

The generated description supplements miss-
ing or implicit OCR details, providing essential
context for the subsequent rewriting stage.
The choice of Mistral-Small 3.2 (24B) was
validated through comparisons with lighter

https://ollama.com/library /mistral-small3.2:24b
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multimodal models (LLaVA-7B and Qwen2.5-
VL-7B) in the dense retrieval configuration. Al-
though the smaller models achieved moderate
accuracy (68 Hits@l) with shorter and less
coherent descriptions, the 24B variant gener-
ated richer and layout-aware outputs, yield-
ing +8-9 higher Hits@1l and a favorable cost-
performance balance.

3.2.2 Controlled Query Rewriting

In the second stage, the original query g;; is
rewritten into g;; with the help of the image de-
scription d;. The concatenated pair (gi;, d;) s
fed into an LLM-based rewriting model frewrite
(Mistral-Small 3.2 (24B)), guided by a struc-
tured prompt P and few-shot exemplars £ (Sec-
tion 2.3):

(3)

This design allows the model to contextualize
visual information via d; and generate retrieval-
friendly reformulations.

Gij = frewrite(qij, di | P,§)

3.3 Prompt and Constraint Design
3.3.1 System Prompt

We design the rewriting prompt with explicit
instructions that serve as hard constraints to
ensure retrieval-oriented outputs. Specifically,
the prompt requires that the rewritten query
adhere to the following rules:

1. Preserve interrogative form: retain
the question structure (e.g., “what,” “how



# Queries # Docs Representative Visual Elements

Sales 135 25 Workflow and configuration diagrams; market analy-
sis charts; wiring schematics; product dimension and
application illustrations

Manufacturing 35 6 Process flow diagrams; Gantt charts; dimensional
drawings; production statistics plots

Quality Control 52 9 Pareto and pie charts; Gantt charts; statistical per-
formance plots

Technical 95 19 System layouts; architecture diagrams; measurement
charts; circuit schematics

Others 40 7 Organizational and process flow diagrams

Total 357 66 —

Table 1: Domain-level statistics of the proprietary dataset containing 66 visually rich document images
and 357 queries across five enterprise domains, each characterized by distinct visual elements common to

industrial documentation.

many,  “why ) when the original query
is interrogative.

2. Avoid answer leakage: exclude factual
answers or numeric values appearing in the

image text.
3. Disambiguate references: replace
vague terms (e.g., “this chart,” “the

» . oy .
server ) with concrete entities from d;.

4. Maintain source language: keep the
rewritten query in the same language as
the input.

By enumerating these constraints in the sys-
tem prompt, the model adheres to the intended
query style and retrieval objectives.

3.3.2 Few-Shot Exemplars

To further guide model behavior, the prompt in-
cludes a few demonstration pairs of original and
rewritten queries. Positive exemplars show ef-
fective reformulations where ambiguous queries
are clarified with explicit entities or technical
terms without leaking answers, while negative
exemplars illustrate undesirable cases such as
declarative rewrites, answer exposure, or lan-
guage alteration. Together with the system
prompt constraints (Section 3.3.1), these exem-
plars provide complementary supervision that
steers frewrite toward generating well-formed,
retrieval-oriented queries.

3.4 Post-hoc Validation

After rewriting, a lightweight validation step
verifies compliance with the constraints in Sec-
tion 3.3.1. This step ensures that each query
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Original Query

Rewritten Query

What kind of
coating is applied
to the machine
surface?

What is the ef-
ficiency improve-
ment shown
the chart?

in

What is the mem-
ory specification
of this server?

What color of heat-resistant
paint is applied on the surface
of the ZX-200 industrial ma-
chine?

In the Q3 operations report,
what is the percentage of effi-
ciency improvement related to
production output and cost re-
duction?

What is the memory configu-
ration of the NovaEdge R720
server used in enterprise data-

center deployments?

Table 2: Query rewriting examples illustrating how
ambiguous user questions are refined into precise,
retrieval-oriented formulations.

preserves interrogative form, retains the origi-
nal language, and avoids revealing factual an-
swers or numeric values. Queries failing valida-
tion are replaced with the original input and
logged with a status code, serving as a safe-
guard for overall quality and consistency.

3.5 Dataset

We evaluate the proposed method on a propri-
etary dataset provided by an industry partner,
comprising 66 visually rich document images
across five enterprise domains—sales, manufac-
turing, quality control, technical, and others.
Fach document contains layout-dependent vi-
sual structures such as charts and diagrams.
A LVLM (Qwen3-VL-235B) was prompted to
generate multiple natural-language queries per
image, yielding 357 query-image pairs that sim-
ulate realistic but often underspecified informa-
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Figure 2: Integration of the query rewriting module with VDocRetriever. Each document is processed
with OCR and a language model (Mistral) to generate enriched descriptions, which are combined with
original queries for rewriting. Document and query embeddings are encoded by a vision—language model
(Phi-3-Vision) to support multimodal retrieval. The red arrow marks VDocRetriever', a variant that
augments the document encoder with OCR-based image descriptions as additional textual context.

tion needs (Table 2). Each query g;; is paired
with its originating image I; as the sole relevant
item for retrieval.

To quantify query ambiguity, we manually
classified all queries into three levels—clear
(33.3%), partially underspecified (35.3%), and
severely underspecified (31.4%)—based on the
contextual information required for accurate re-
trieval. Although the dataset cannot be re-
leased due to confidentiality, detailed statistics
(Table 1) and experimental results (Table 3) il-
lustrate its diversity, the prevalence of ambigu-
ous queries, and the effectiveness of the pro-
posed framework.

4 Experiment Setup

4.1 Evaluation of Query Rewriting
Across Retrieval Methods

We evaluate the proposed framework across
three representative retrieval paradigms—
dense, hybrid, and visual document retrieval
(Figure 2)—covering neural, neural-lexical, and
multimodal approaches. In each setting, rewrit-
ten queries replace the originals under identi-
cal conditions to isolate the effect of rewriting.
Details of each retrieval configuration are pro-
vided in the following sections.

4.1.1 Dense Retrieval

For dense retrieval, we adopt BGE-M3 (Chen
et al., 2024), a multilingual embedding model
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trained with contrastive objectives for retrieval
tasks. Both queries and OCR-derived docu-
ment descriptions are encoded into the same
semantic space, and cosine similarity is used
to rank document candidates. This text-only
setup provides a strong baseline for evaluat-
ing whether query rewriting enhances seman-
tic alignment between queries and OCR-based
document representations.

4.1.2 Hybrid Retrieval

To leverage both semantic and lexical signals,
we adopt a hybrid retrieval strategy combin-
ing BGE-M3 (Chen et al., 2024) and BM25
(Robertson and Zaragoza, 2009). Each rewrit-
ten query is simultaneously encoded by BGE-
M3 for dense similarity matching and submit-
ted to a BM25 index built from OCR-derived
document text. BM25 first retrieves the top-k
candidates; then both BM25 and cosine simi-
larity scores are normalized to [0,1] and linearly
combined (0.6 x BM25 4+ 0.4 x BGE-M3), as
tuned on validation data. This design prior-
itizes exact lexical matches while allowing se-
mantic reranking, enabling controlled analysis
of how rewriting affects both retrieval signals.

4.1.3 Visual Document Retrieval

We further evaluate VDocRetriever (Tanaka
et al., 2025), a state-of-the-art system for vi-
sually rich document retrieval. Unlike dense



or hybrid retrievers that rely solely on textual
representations, VDocRetriever jointly encodes
multimodal signals (layout, visual appearance,
and OCR text) making it an ideal baseline for
testing the robustness of query rewriting under
multimodal retrieval.

Two configurations are considered: the orig-
inal VDocRetriever, which jointly encodes
queries and document images, and VDocRe-
triever’, which augments document embed-
dings with OCR-based descriptions as addi-
tional textual context. The latter allows us to
examine whether explicit textual anchors fur-
ther enhance cross-modal alignment when com-
bined with query rewriting.

4.2 Evaluation Metric

Retrieval effectiveness is measured using the
Hits@k metric, reported at &k = 1,5,10. A
query is counted as successful if its relevant
document appears within the top-k retrieved
results. Formally, for a set of queries {g;}}¥,,
Hits@k is defined as:

2

Hits@Qk = E [rank(d;|q;) < k]

(4)

where di denotes the ground-truth document
for query g;, and rank(d}|¢;) denotes the rank
position of d} returned by the retrieval system.
1[rank(d}|¢q;) < k] is an indicator function that
equals 1 if the condition is true (i.e., if the rele-
vant document d for query ¢; is ranked within
the top-k results) and 0 otherwise.

Since each query in our dataset has a sin-
gle relevant document, Hits@k directly reflects
the ability of each retrieval configuration to sur-
face the correct document near the top of the
ranked list. Higher values (especially for small
k) indicate better retrieval effectiveness.

5 Results & Discussion

Rewriting Models Hits@1 Hits@5 Hits@Q10

Qwen 3 (4B) 563 759  79.6
Qwen 3 (14B) 574 766 T79.6
Llama 3 (SB) 56.0 754 78.1
Mistral-Nemo (12B) 74.5 82.9 84.0
Mistral-Small 3.2 (24B)  76.8 82.9 84.6

Table 4: Performance comparison of different query
rewriting models evaluated under the dense re-
trieval configuration (BGE-M3).
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Across all retrieval configurations, query rewrit-
ing consistently improves retrieval effectiveness
(Table 3). For the dense retriever (BGE-
M3), Hits@l1 increases from 57.4% to 76.8%
(+33.8%), showing stronger semantic align-
ment between rewritten queries and OCR-
based document embeddings. The hybrid re-
triever (BGE-M3 + BM25) exhibits a similar
pattern (Hits@1l + 37.8 %), suggesting that
rewriting introduces lexical cues that comple-
ment dense representations.

The most pronounced gains occur in mul-
timodal retrieval. The baseline Hits@Q1 of
VDocRetriever (21.0%) is considerably lower
than that of dense or hybrid retrievers, reflect-
ing the difficulty of aligning vague queries with
image-based embeddings. Rewritten queries in-
troduce explicit anchors—such as entity names,
field labels, and technical terms—that facili-
tate cross-modal alignment, raising Hits@1 to
56.6% (+169.5%). With additional OCR-based
image descriptions (VDocRetrieverT), perfor-
mance further improves to 79.3% Hits@1 and
97.8% Hits@10, approaching near-perfect re-
trieval. These results highlight the value of
multimodal fusion, where textual anchors ex-
tracted from images mitigate ambiguity in vi-
sual representations and strengthen query—
document alignment.

Beyond retrieval paradigms, we also ana-
lyzed the influence of the rewriting backbone
(Table 4). Model capacity correlates with
rewriting precision: smaller models such as
Qwen 3 (4B/14B) and Llama 3 (8B) pro-
duced syntactically correct but semantically
shallow rewrites, while Mistral-Nemo (12B)
and Mistral-Small 3.2 (24B) generated more
contextually grounded reformulations, achiev-
ing 74.5 and 76.8 Hits@1, respectively. The
24B model slightly outperformed the 12B vari-
ant while maintaining acceptable inference la-
tency, making Mistral-Nemo (12B) a practical
choice for cost-sensitive deployments, whereas
Mistral-Small 3.2 (24B) remains preferable for
high-precision retrieval.

Taken together, these findings reveal sev-
eral key insights. First, query rewriting ben-
efits both dense and hybrid retrieval, but has
the greatest impact in multimodal settings.
Second, the disproportionate gains observed
for VDocRetriever highlight that query rewrit-
ing is most critical when retrieval relies heav-
ily on visual or layout-based representations.
Finally, the strong performance of VDocRe-



Target Retrieval Original Queries Rewritten Queries
Document Method Hits@l Hits@5 Hits@10 | Hits@l Hits@5 Hits@10
d; BGE-M3 57.4 76.8 79.6 76.8 82.9 84.6
d; BGE-M3+BM25 55.5 77.3 80.1 76.5 83.2 87.1
I; VDocRetriever 21.0 51.5 68.6 56.6 88.5 94.1
I, + d; VDocRetriever! 29.4 52.4 64.2 79.3 93.8 97.8

Table 3: Retrieval performance with and without ablation study on the effect of query rewriting across
different retrieval methods. Retrieval effectiveness is reported using Hits@k (%). T indicates the variant
of VDocRetriever that incorporates the image description as additional context to improve retrieval
precision. The column ”Target Document” specifies the representation used as the retrieval target, such
as document image embeddings I; or OCR-based descriptions d;.

triever! shows that combining rewriting with
textualized visual context offers a powerful
strategy for visually rich document retrieval.
Overall, the results position query rewriting as
a robust and versatile technique, capable of en-
hancing retrieval effectiveness across both text-
centric and multimodal paradigms.

6 Conclusion

This paper presents a two-stage query rewrit-
ing framework for addressing underspecified
queries in RAG systems over visually rich docu-
ments. By leveraging OCR-informed image de-
scriptions and applying constrained reformula-
tion, the framework produces retrieval-friendly
queries that reduce ambiguity and improve
alignment with document content. Experi-
mental results demonstrate that query rewrit-
ing consistently enhances retrieval effective-
ness across dense, hybrid, and visual document
paradigms, with particularly strong benefits in
visual document settings. Overall, the findings
establish query rewriting as a robust and gen-
eral strategy for RAG over visually rich docu-
ments, with promising potential for scaling to
larger datasets and integration into end-to-end
question answering pipelines.
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Abstract

This study introduces the ”Collision Care
Guide” (CCG), a system designed to col-

lect structured traffic accident informa-
tion during the early stages of an inci-

dent. CCG integrates three core mod-
ules: question generation, information
extraction, and accident reconstruction.

Through multi-turn dialogues, users are
guided to describe accident details, which
are then transformed into a structured
format (TARF), alongside readable narra-
tives for verification. To address cost ef-
ficiency, privacy protection, and deploy-
ment flexibility, this study compares the
performance of open-source Llama mod-
els (3B/8B parameters with full fine-tuning
and 4-bit PEFT methods) against the com-
mercial baseline GPT-40-mini. Results
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show that the information extraction mod-
ule achieves field accuracy above 0.94 and
JSON semantic similarity of 0.995, while
the question generation module attains se-
mantic similarity between 0.85-0.88 with
more concise expressions. Fine-tuned mod-
els scored 4 (out of 5) in dialogue qual-
ity and information extraction evaluations,
with differences from the commercial base-
line within 0.5 points. Findings confirm
that fine-tuned open-source models can
achieve performance comparable to com-
mercial models, with quantized versions
demonstrating high efficiency and deploy-
ment potential in resource-constrained sce-
narios. The CCG design bridges the tech-
nical gap in interactive information collec-
tion during the early stages of accidents,
offering a cost-effective and efficient solu-
tion for traffic incident management.

MetF : LMEFRFTALE S RAUETA
A~ HFE X Agent ~ AP ~ B AL

Keywords: LLM ~ Conversation Agent ~
Information Extraction > Finetuning
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Megiiz » RETERER -2 @H TR
F1-THsil ] FEEBR - KRR TR
Jo o3 HERBEATREEARBLELERZE o
Blde s FAEAEEE [ 5@ TR £ 4%
Wi BF > A g 4 TARF F TR 7175
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Table 3: ARMBEBRBEAR THARE (REXF AT
F I B Rk %ﬁ%ﬂr“’)

Prompt

LEFTHEARERDE > R [FFATE] FHRET
\‘!ﬂ‘

3N [JSON # K] #EH Az

FATHRA]

o A€ IR E AT R H AR W 69 JSON #i4x
o TRFMFITH4ei)] FEEEN [ K]
o HERBEANTARETARLTE
WAL

- [JSON # X : {current__tarf}

- [FA] : {previous_ question}

- [ FAEA] : {user_response}

3.5 F¥HEFEHEM

$&§%&m%%%m%HAM?“%ﬁhﬁ
WA ARBZTHME  URBF AL EGBRKE
B (el 2P ) o bR RER T E
T EAHAE N EE - &1L TARF % @ i@
S AR ER BRI EGRAGF » R
i&iﬂig{iﬁsﬁ&@x#iﬁx AREZ 4 1 &
&N B HMFE ﬂﬁﬁﬁa’b%$ﬁﬁiﬁ%
ﬁ*$k@i%w
Mﬁ’ﬁﬁTﬁm¢% AR o KR4 A R e
T%ﬂ,r$&$i%2m4#7ﬂ15a¥i
8:30 > B A ZJ TR LI o &I KA
BB B MR FRF AR T ERY T
oo BITHARE K 40 N EE D FHE
B &R F 2L AE o

side of the motor rcytl dd l>ylh plaintiff 00O, with lic
plate umbe;oooooo wsing theptin tﬂOOOt falloffthe
motorcycle. As a result, h e plaintiff OO0 d injuries

Figure 2: AR E F R TE L & M 4

Table 4: TH ERZR AR THEFE (KT
R F )

FAT

Prompt

2MEAETE > BRI [JSON %X FHFE >
R A 7 N F il 8 A8 4E 8

PATRA

o R JSON FIRE 8 £id4n B F T
o T 88 HA M F AR KR

o HABRORGEE EL A6 F AR
WAL

- [JSON # X : {final tarf}
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4 ALk

RERBEFHFCHMAZZHAREAE (Llama
3.2 3B’ Llama 3.1 8B) £ CCG A% 8 Mm%
m&%(ﬁ%i& fﬂﬁﬁ)?’%%@ﬁ

FAEFF IR % 1275 % 4 (Combined) # T »
ﬁkk@A%ﬁLm4Q%%%ﬁ%’$%%
AT G Reig s £ A% (GPT-40-mini) ° 3k
9k o KRBT RFHAE 4-bit EILEEMFA (PEFT)
AT A~ AL LI F TR F a9 BT
T

4.1 ABEAEIF T

Llama B S#E L EZLEMR s A REHT R
%ﬁ%ﬁ’ﬁ%$%%%é§omm%¥ﬁﬁ
(4= GPT-40-mini) * BB A B A & 3 8 &
AABRMEEEMN - BE—FTHRKTERT
K> %HPMTﬁm<uﬁm1JTmm§
it s BERAE R 2 BRI P 6 B e 48
jy o

BT A T B 359 7> Nvidia RTX A6000 GPU
L3470 % GPU 484 48GB #9985 » fbA 3K
I H R 6 MR - 3 B8 443 9| 4R AT
Bl o #BEINLRAAZIK A Unsloth HE 3 » ZAE
z<ﬁal. CIER AR AL AT » BB 1K GPU 2ig

5 R R AR E o

$LE R IR IE

4.2 IR FHEH
4.2.1 FHAA X
I%J’f‘l_ CCG ‘?‘ é}téﬁﬁinﬂﬂ AL j&ﬁﬂ- nﬁ’%‘%v@

HREE ~ BRI = - BRI A R RE
S EBE— Instruction s AR T A B A2
(T —18 F]#8 3&, £ #74£ 69 TARF) o sbA& X 3%
AR R AN —RBREZAHE o &
1% 7> BAL 5 SLBE S-S SR AL A 3L Z A &4 o
FEEHOIERME l?-:‘lg 4~ : Instruction
L Qutput e & 5 & 6 29 A+ T HAL
mﬁﬁmﬁﬂ%m%fﬂTm

Table 5: M £ RN EH =4 (Fdk)

Instruction

[ FET T T mLTikaﬂwm%o
LR FHAER  wE
WAL H K 0 RAATEER

PALHEA ¢ TR A AT R R LA o
Output
FRFEEARERTROERZAHTHE?

4.2.2 ZEFH K%
ok Pl kX R ERAHF B £
TARF 18 B4 4% P 1% 49 810 18 4% "4 #E $2

3https://unsloth.ai/


https://unsloth.ai/

Table 6: ARk T4 70 (Fék)

Instruction

&IE =B £ 47 JSON °

JLA JSON : {F#a4LAM]: .}
R AT ey dss ?

R ST AR £k o
Output

{(FHEADH: RE 10854 A 2 8,
FHE AR H: 07:28,
KRAATE A, HETHMATR AhREed, )

Boo BB AR 2IF@MARFH RS K
mi%m%*ﬂknkﬁﬁw’%tm
B =% :normal (%7 F3A44) - unknown
(BA#E K47 ) ~ other ﬁ#ﬂ/ﬁt%ﬁ%ﬁ) o &2
Ik IR EGZRI»H A 160:198:20
(% 42.3%/52.4%/5.3% » BlR R 5B
39:46:3 (#9 44.3%/52.3%/3.4%) *» #EAR L5
18 82 R Fo A 3009 1R R % T B m T4 o

il

4.2.3 S H b

/‘—%éx%a‘%*ﬂ 02404 iJ N
%%W?%Ha% E A A (2
) iﬁkyiﬂbaﬂlﬁﬁi B4t o fiz&%‘ﬁ”\ v%

wmA ik F K345 TARF 4z » r*u»”ﬁ’

HMAEFURE - FFY  FOEITRFH

B o BRIy R Ftm iy ~ AR ¢ {E4E AL

SEREET XK o
EEEE SR BERAEY (FFB

WEFH) A %#33‘1 A (EHgE - TRE

F)-ESHE (RHaEablantkg) s £l

%Wﬂ<1%iﬁﬁ%\%ﬁﬁéﬁm>\

At (EIA 4~ H A% ) o suF

LR P ARG F BB

TEAMMAY B RER I EAE R

RA

ir

>
“>i*z~

/u
/t

'.:smcuw*\?w

x “>‘ 7 B ‘\Fﬂ“gf“ﬁ

TR AR S BB A TR P 7 FAN S AL
K o
7"+i}5&.mu7‘ﬁ£%75/\% /7{{1% 3\4 TARF #Eﬁ
h#%#)i HERSEMEMAAZZEA (Claude 4
Sonnet ~ Gemini-2.5-pro ~ GPT-4.1) & & =4
FUMARE MG AN EREGETFAA
M ARRBRA CCG BATHER & A AAR

BlE

B BATEBA XS BB RINR/BRE
# o

4.2.4 FH&FF

RETHELS IRE 40 f%é"f:‘é ( &4

B 378 %h$ . Fﬂ;"e’éiﬁk 338 A ) AR
%10 BHE (AR 88 FHA F‘iféiﬁk
78 FHRA)  EAH I ARIFLETIE S hiAiL
Ko BEANREE AL BE o
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4.3 BRAZEHMI|REE

ABFRILE 3B 2 8B WmAAE ML »
R %A% (Full Fine- Tuning) 1 4-bit =1L
LoRA (PEFT) #A7TEATHE o L& B 4o
R THE o

Table 7: A 34k fe &

2 # &N EIE &y =1t
Llama_ 3B 4bit 3.23B PEFT (LoRA) 4-bit
Llama_3B 3.2 3B Full FT None
Llama_ 8B 4bit 3.18B PEFT (LoRA) 4-bit
Llama_8B 3.1 8B Full FT None
5 BAARFELER
AR F ARG SRR GPT-4o-

mini /& & AP B B A & R AT P a9 sk AR

R, oo FHEBAZRM (Kung et al. 2024) IZ R S
by 754 FHEEH Jﬁkkxv{’ﬁf ( Gemini-
2.0 2 GPT-40) #ATRX L34 » URERAER
EHRFERE AT RBREE B H Loy — 8
AEfRME o

5.1 BXEBREML

AR ERREANAG ST %iﬂ%’*ﬁf{lﬁi
RIRE A A o f2 B ARBBALRS F > AR A 2R A8 VAR
15 G &5 04 ¥ R RS ?xﬁ‘w—/ﬁ%&ﬁvﬂé t3iE
WER JSON —H MR H SRS M85
f,xﬁ”*#%fd% F2 B A RAEF T 0 B E A

A A SR ERREEF AR EHIRAZE -
Wb 0 B BRI AL ISR A AR 0 BT R —
WAL FTERATOR TR ETIFA BRI
FF o
5.2 AAIBABBAE AT

Bt e A A 0 AT RARA NERAE D A
—?«b'EF“ (Exact Accuracy) #rE s L
LA E - FLRMME (Semantic Sim-
ilarity) "X Sentence Transformer 3t A
@ EREAAME > B [11] AT 1 E
FAR— m éfk—g‘@ﬁ (High Semantic
Accuracy) A& &RAAMNE FHF 0.8 89K 3R
4% pufp) s ﬂi%ﬂ/é’fﬁ*ﬂﬂﬁi$ (Unknown /
Empty Mismatch Rate) #5427 4 12k
EERE kR — B ER JSON Al E
(Overall JSON Similarity) #F4& #5175
KRR — B o

L AEARAZ A X T

Accuracy; = Z
\V |
1€V

b
_ 0(,J))



Table 8: AAMABAL B RE R (WAL B FHISEE)

K Exact High Semantic ~ Unknown Empty Overall JSON
= Accuracy Accuracy Mismatch  Mismatch Similarity
3B 0.9508 0.9654 0.0139 0.0183 0.9946
3B_ 4bit 0.9508 0.9694 0.0139 0.0189 0.9948
8B 0.9571 0.9621 0.0145 0.0152 0.9957
8B_ 4bit 0.9539 0.9627 0.0139 0.0158 0.9942
Combined_ 3B 0.9489 0.9673 0.0170 0.0227 0.9942
Combined_3B_4bit  0.9470 0.9618 0.0158 0.0202 0.9937
Combined 8B 0.9558 0.9702 0.0139 0.0177 0.9954
Combined 8B 4bit  0.9558 0.9701 0.0107 0.0145 0.9954
N Table 9: Combined 8B 4bit &-#4% 4542
Unknown_ Mismatch; Z ,J 7é u ’ ]
i=1 WAz AR FiERME AR
HEJE (Y IC 2,
¢’N%@A#$% (88) : Vv, A& — -
‘ (b) N FHEE RN 0.955 0982  0.011
B LABRARS Do) S0 ARABEMA Fusawm 0.955 0982  0.000
ﬁ%ﬁﬁﬂfm,u)ﬁ%TH& FHH AL 0.955  0.984  0.011
" N o7 BB A LA . . .
ks kT B EERBRER Y0k JTE0R000 b O 0o
RRAEAE c BRE T 8B BAEXARMER K AT A 0.977  0.996  0.000
(0.9571) A JSON A& (0.9957) 7 @ &RHA  FHed 0898 0995 0.000
24k, B3 ET L N T T O WEN KT @ HIE 0966 1.000  0.011
ilj:‘& R A3 A IJ % f;] 4-bit ¥ X KM% 0.989 1.000  0.011
(0.0107) $27E48 (0.0145) FIE & & EgAK o AT R 0955 0910  0.034
%8 Eft;}iﬁygﬁ 1EF5 R R F A T o AR A7 R RARIA 0.943 0.988 0.000
2 T o 8B AL 3 A 3B A > 8 RITGH 0932  0.992  0.000
95 % LSRN A o EIBRFH 0.955 0.984 0.000
LR ABEERFATERER > BEARTR R 0932 0965  0.023
Wi o R I FEAE A 0.989 1.000  0.000
£ 9 B » Combined_8B_dbit BE A S R7THERNR 0077 008 0028
WA 6 7 4 B A AR 0.95 » ARPACHRAE (4o i ' '
2~ RAE) FRAAMEE 0985 £ 1.000 °
RAAMIL (b0 TFREB ) OZERER  HEREGEMEZE > RokBAREH T EMR
A% (0.898) » 123 ?WFEWU’ #0099 BT HEBRE o SSEHFEARET
#%ﬁﬁgﬁ}i%ﬁﬁii\ ;Kg i FRR S ik N 0 )
B R A S S B kS R IT e R .1~ min(lg; ] g )
o e AvgLengthSim = —
(>0.034) > e e T2 E - N P max(|q£f)], ‘ng)’)
Zko ﬁioﬂﬁéﬁ;%%m#ﬁu 1 ZHERE
REFHHERE > BloarAH L2428 L O Q”AwﬁﬁwmﬁM¢g$ﬁ
R E %ﬁ%}%;&i;’i W—FRAZERZILES a*l.iﬁk iR RE 0 N B R -

5.3 B4 sk E

AF ST M A RAE T AT T @ a9
A BERAREE T8 FaA EESMBA
FERBEAREMENS @ RA o 7447
WO BB RRER (FRAAMEHAL 0.8
B retl) ~ P FE KRR (38 RARPE M A
0.6 B9 rfl) ~ F343E K AME (Avg Semantic
Similarity) * A& & EA8MLE (Avg Length
Similarity) °

&k EAMLE (Length Similarity) 78
TR A g ] AR B9 R oL R R AR A A g P

76

%10%%Tkﬁﬂﬁﬁ%iﬂﬁ T 8y
BARLER - TABRR G FHYERMMNE Y E
%] 0.8323 YAk » L P Combined 8B 4bit £
BB RBEHEE (0.7949) A -FHEERAMOE
M%m>ﬁ@ﬁ%ﬁ& # Combined 8B
Fo L FALIR A P FE A BEAEE L5
09872 RATH-FRENERBEZIR - 3k
Sho BTAEBER G REMMEE T 078 £
0.80 > #8 T MBI A & ik 09 P RE T3 b R AR
B 20% 2 MBEETHOER ZAE
B3 B IR 69 % B RS o

VATF VASE S8R DUARAL A Ak, Fe] 72 B 1)
R GAARE R 03RS R E R

s Fewk



Table 10: F178 & AL 4B K& R

= High Semantic Avg Semantic Medium Semantic Avg Length
B A A\ e Badpnia
ccuracy Similarity Accuracy Similarity
3B 0.6538 0.8486 0.9103 0.7919
3B_ 4bit 0.6667 0.8323 0.8974 0.7848
8B 0.7179 0.8601 0.9487 0.7779
8B__4bit 0.6923 0.8545 0.9487 0.7850
Combined_ 3B 0.6667 0.8508 0.9359 0.7876
Combined_3B_ 4bit 0.7308 0.8671 0.9615 0.7990
Combined_ 8B 0.7564 0.8761 0.9872 0.7822
Combined_8B_ 4bit 0.7949 0.8841 0.9872 0.7939

e GPT-40-mini: TE BB G F R B
HEET AR GREARIEEM o ARE > F R
BT AT B 69 38 B K IR Ao 4T 2 49 4o > AR{EFS B
AL H I~ AR R H A @R T 7

Llama-3B : [#F & @8 —TF & 754
B RAAT 2 e s HEH#HL S %@
AT RIR A LA EE 7]

ARG R REF LSRR AR EE
& AN A REREREE Rk
AR B wg TR 6 R IEE 0 ABREABRS
EBER o HAEHHREE R o BT Y
EERAMAE R REHREGF B
e 38 & DM -

5.4 HELHZLEFE

NI EHH T4 EHERTEFLEEI LR
#2304 A Gemini-2.0 ¥ GPT-40 1
HERH > BEZABORE - T ESL
% GPTScore (Fu et al., 2023) $2 G-Eval (Liu
et al., 2023) FH R > HM L — R TAEREST
AN c F A S R EER BB T A
T AW (Fluency) 3#4& & %A R B JE 8
GETAARER AWM MEEME (Relevance)
HrECRA R PR R GAME  k
B M (Coherence) ¥ 5 %8 L A2 0 H 8
— Ek

R 11 £HT SR AWE - BT - &
BHAREMFN»OLRR - £RBET > Gemini-
2.0 &P > AKX L Llama-8B A HE €1k
PRATE BB L3 4.74—4.76 0 A A
GPT-40-mini (4.65+0.60) {£A #& s £3E - 48
T 2 GPT-40 8 3F 4 & & 187 Gemini-
2.0° THKME 04—05 2 » BF GPT-4o
FAT ERATFHEAZE o

AW (Fluency) 7 @ > BT A #2735 3% 3|
2+ 2 F GPT-40-mini £ Gemini-2.0 7F4&
1F495B 5.004+0.06 ° BRATHEZHFBEZ AR
B oo R PR Llama-8B AL i K
BB (Relevance) 22 B M (Coherence)

o

-+ 3%
N

77

AL ERAEEIEE  ERFEE 4.74—
4.76 » HH A EFR EHA GPT-40-mini °

FIZ T » GPT-4do &R B THMAK
Rl o) AT Ak 0 2B AWM B
B MHIEZLE o B4 > Llama-8B # GPT-40 +F
o B 4.2840.69 » & #A £ Gemini-2.0 F 89
4.76+0.62 ° i3 £ ¥ » GPT-40 & mix & %3
© A E AR I — B WHGEAZ R

By Fst o

BEmET o MAKY Llama 272 A H
A AT ARE LT AL A Gemini-2.0
PP R R R e akhE > BT T MR
0y 7 N BE LA 8 B AT AT o

5.5 FABIALS 46 AH

B ST 4T Bl puteE TATEAT A RBAIAE 7 69 &
@FE 0 BB AL BIRA 5 2 EER
#ATIFY  FE— M (Fact Consistency)
¥ B JSON #& X F - B89 F AL & 5k R Bk
HIEAZE  BARTEM (Information Com-
pleteness) #F1& JSON £ Gk & & FAFMA
TR L RFHEEL s S M (Descrip-
tion Reasonability ) #| 87 £ a6 & 248 1 &
GA-FEE S B EH R R T REERE T
By Rm o

R 12 BHRT BB E FRBBAEH T
AR REFFT —HM FADEMN - B
S MRS o Gemini-2.0 FHEE R A
T TR ERA Y E 493 AL K
¥ Llama-8B-4bit B & A 4.97 894F 5 R A &
1 » X % GPT-40-mini (4.96+0.20) % &A%
Ao B H ARG TARBEAE ) o

MRZTF » GPT-4o 2 HE 8 B R » &
A F 5457 Gemini-2.0 » /2 Llama-8B % 7
BRI © &I > #8130 (4.84—4.86)
w5 7 A% GPT-4o-mini (4.82+0.40) - it
9 BALHAT R H R E LB EHE &
LR A (4-bit) AR EILARKREGIFH £IE T A
@003 FELETRZTRGF Fa3ER
18 o



Table 11: #3&& &R (R ~ BB ~ 2 F )
B Gemini-2.0 GPT-40
- Fluency  Relevance Coherence  Overall Fluency  Relevance Coherence  Overall
GPT-40-mini 5.00+£0.06 4.64+0.61 4.63+0.62 4.65+0.60 ‘ 4.984+0.14 4.50+0.65 4.514+0.62 4.64+0.47
Llama-3B 4.74£0.49 4.68+0.66 4.63+0.73 4.65+0.71 | 4.54+£0.51 4.14+0.75 3.96+0.87 4.14+0.74
Llama-3B-4bit 4.72£0.49 4.67+£0.63 4.614+0.71 4.63+£0.68 | 4.51£0.52 4.19+0.76 3.994+0.90 4.20+0.74
Llama-8B 4.85+0.38 4.77+0.64 4.754+0.66 4.76+0.62 | 4.66+£0.47 4.28+0.70 4.144+0.82 4.28+0.69
Llama-8B-4bit 4.824+0.40 4.76+£0.61 4.73+0.65 4.74+0.62 | 4.54+0.50 4.11+0.72 3.944+0.83 4.12+0.71
Llama-3B (Combined) 4.73£0.48 4.67+0.67 4.62+0.73 4.63+£0.70 | 4.54+£0.51 4.15+0.73 3.96+0.85 4.15+0.73
Llama-3B-4bit (Combined) | 4.684+0.52 4.62+0.68 4.544+0.81 4.57+0.77 | 4.49+0.51 4.06+0.81 3.86+0.92 4.06+0.79
Llama-8B (Combined) 4.84+0.38 4.76+£0.66 4.754+0.66 4.76+£0.63 | 4.60£0.49 4.20+0.72 4.044+0.83 4.19+0.72
Llama-8B-4bit (Combined) | 4.85+£0.36 4.77+0.65 4.76+0.64 4.76+0.63 | 4.63+0.48 4.244+0.72 4.09+£0.83 4.24+0.72
Table 12: KRMBARFLER (FE—EE ~ FATEM - ik &EIE)
P Gemini-2.0 GPT-40
- Consistency Completeness Reasonability ~ Overall | Consistency Completeness Reasonability — Overall
GPT-40-mini ‘ 4.96+0.20 4.9440.24 4.98+0.14 4.96+0.20 ‘ 4.70%0.50 4.80+0.41 4.984+0.17 4.8240.40
Llama-3B 4.93+£0.25 4.9540.22 4.95+0.23 4.9440.23 | 4.724+0.57 4.69+0.50 4.85+0.46 4.7540.52
Llama-3B-4bit 4.92+0.33 4.954+0.24 4.94+0.29 4.93+0.30 | 4.73%£0.57 4.67+0.53 4.8640.45 4.7540.52
Llama-8B 4.94+0.26 4.96+0.19 4.96+0.21 4.95+0.23 | 4.8240.46 4.80+0.43 4.9010.39 4.831+0.45
Llama-8B-4bit 4.95+0.22 4.97+0.18 4.97£0.18 4.97£0.19 | 4.86+0.42 4.81+0.42 4.92+0.33 4.86+0.40
Llama-3B (Combined) 4.94+0.28 4.9440.27 4.94+0.27 4.94+0.27 | 4.76£0.55 4.68+0.53 4.884+0.44 4.784+0.51
Llama-3B-4bit (Combined) | 4.94+0.30 4.95+0.28 4.96+£0.27 4.96+£0.27 | 4.74%0.58 4.71£0.53 4.86+0.47 4.761+0.53
Llama-8B (Combined) 4.95+0.21 4.96+0.19 4.96+0.20 4.96+£0.20 | 4.84+0.46 4.81£0.41 4.90+0.39 4.84+0.45
Llama-8B-4bit (Combined) | 4.95+0.22 4.96+0.19 4.96+0.20 4.96+£0.21 | 4.844+0.46 4.81+£0.41 4.90+0.39 4.8440.44
5.6 4RI XSRS ZE TS LTS ST AL

AR A BB X LALLM B 313046 0 BB
# 7T Llama AL £ L@ FRHEELH T
By A - R T -

BEBXES LIM AHF/HER 1) &
A A WA A H) JSON 3% & 48
PLEE 0.995 » WAL B AEF AR 949 » LR
HEERZTHREBERPREL TN BEEE
952) MIREA AL @ F3ERARUE S 0.85
WAE B E R B E 0.7949 0 PR F MR e
FRAEMERLYE - 3) LLM LR %
IR AFEREYN BH » MAE R BE75 M
g o A AEARRA R -

BGRAAE R 4 AR Eak b 24K > {2 B a8
W ML R RR AR o A REET
PR B RAE 6 F At SR AR B 0 ERAE
EERZTIRIER 7P eES -

6 IR

EERRER LLM 3-8 2 A% CCG #HA
B EREEEEMERTr BEARL &
HA A A AP % BLA T R 69 % 4
AHEEAR  IREHIZRAAREL
Ao P AALAE IR B 49 8-10/18 AL - FEAL
A RIS o R A RF A
Mefkdm £ o A2 & ik AR R ) 5T 6975 A
SR TRIXDEFEEIBL -
R FER : CC AHLIERALEH TR
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TR IR VABE R RERAR o

WRBEBIR  EAEAAAERE LRSS
BERARYE  WARBEZZRXEHEAEA
B RE e BHHNFE T EX B ARAAIERAG
oo RN EBERESUERSARL L
A o
7 K
A REE CCG ALREM » BOMAAE KR
AHEPRAFERFTFE AN AR FE
a0 BARAL TR R 0 B E U T KRR
BT X -

A Llama B A 9L 4FL A 24
PRI T EAEA - KRB B AL e R
89% » A A JSON & & AaMLE 0.995 5 MR 4
PRE&RAADLE 0.85—0.88 » B IR R R I
20% ° % AEF I AR B AEE RAL T > 4-bit
TR A B2 R 5% L E—FL
FALBSKRETRRILGRLAIIE -

AR 7 R A F AR RF G AR
CCG Rzt TFHBD—HH) 9 EHAE
FHICSR o B R B SN F ISR AL A1 A
R E o FFRAY » BB L EH A
R L EARBIHERAY » RAZ
HEFERBBRARKE » B A AL HARER
B Ao
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Abstract
This study explores the automatic
generation of corpus-based language

exercises using a generative Al model
Corpus Linguist. It focuses on the
interaction between the language model
and corpus data, detailing a workflow in
which collocation and translation patterns
are extracted from a tagged corpus and
structured prompts are constructed to guide
the model in producing sentence-level
exercises. The generated exercises reveal
both the potential and the current
limitations of Al-driven approaches.
Challenges include inconsistency in corpus
data wuse, and choosing appropriate
translation equivalents. These observations
highlight the necessity of careful design and
critical ~evaluation when integrating
generative models with corpus-based
language materials. By analysing these
processes from a computational linguistics
perspective, this study contributes to
understanding how generative Al can
interact with structured linguistic data,
informing future applications in automated
language resources.

Keywords: Al, corpus, corpus-based exercises, DDL

1 Introduction

Since November 2022, when ChatGPT from
OpenAl was released, new language models using
generative artificial intelligence (GenAl) have
appeared. These are no longer simple chatbots but
more advanced tools that allow users not only to
engage in conversation but also to create images
and videos, and perform data analysis. Thanks to
this development, it has become possible, for the
very first time, to link corpus data with GenAl to
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create human-like queries for corpora, instead of
relying on traditional queries in Corpus Query
Language (CQL), which require professional
knowledge of CQL syntax. Combining corpus
methods with GenAl opens new possibilities in
language analysis, enabling us to evaluate how
GPT models interact with corpus data.

One reason for this synergy is the integration of
corpus data and GenAl with data-driven learning
(DDL), which relies on authentic data in language
learning (Johns, 1991). In the early 1990s, DDL
faced challenges due to the lack of user-friendly
tools that could attract learners. Some studies
(Vyatkina, 2020, pp. 362-363; Zasina, 2022,
p. 126) highlight that learners benefit from corpus
activities, however, the tools available at the time
were often too complex. The advent of ChatGPT
has enabled fast communication and brought
substantial computational capacities. Finally, the
creation of Corpus Linguist GPT model (Milicka
& Machalek, 2024) in 2024 has made it feasible to
use corpus data in a user-friendly environment.
Some corpus linguists are aware of the limitations
of existing corpus interfaces, therefore, new studies
(Cheung & Crosthwaite, 2025) combining these
two sources are beginning to appear.

However, there is little evidence on the interaction
between language models and corpus data in terms
of DDL practice (cf. Zasina, 2025). Therefore, this
study attempts to explore the automatic generation
of corpus-based exercises for learners using
a GenAl model. First, attention is paid to prompt
crafting along with the co-star framework (Lin,
2025), which enables better results. Second, the
study focuses on the interaction between the
Corpus Linguist model and corpus data. The aim is
to evaluate both the potential and current
limitations of combining GenAl and corpus data in
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terms of corpus searching and the generation of
corpus-based exercises.

2 Data

For the purpose of this study, the ChatGPT
(OpenAl, 2025) web interface and the GPT model
Corpus Linguist (Milicka & Machalek, 2024) were
used. The Corpus Linguist model enables
communication with the resources of the Czech
National Corpus (CNC) project (Kfen et al., 2016),
which is an umbrella term for many corpora, not
only those delivering data in the Czech language.
The GPT model communicates through an API
with written corpora (SYN2020, SYN vl12),
spoken corpora (ORTOFON), and parallel corpora
(InterCorp) covering most European languages
such as Croatian, Czech, Danish, Dutch, German,
English, Finnish, French, Greek, Hungarian,
Italian, Polish, Portuguese, Romanian, Slovak,
Slovenian, Spanish, and Swedish. It also allows
communication with the corpus of Czech
contemporary poetry, the British National Corpus,
and the Old Bailey Corpus. Of course, the CNC
offers many more corpora available via its website
(www.korpus.cz), but only the aforementioned
ones are accessible through the API.

3  Workflow with Chat-GPT

In this study, the automatic generation of corpus-
based exercises makes use of Czech corpora to
evaluate exercises intended for foreign learners of
Czech. However, all communication with the
GPT model was carried out in English. The first
step was to determine what kind of corpus-based
exercises the model is able to generate. Next, the
workflow with the model focused on a single
exercise type in order to evaluate the interaction
between the language model and corpus data.

Based on previous studies (Lin, 2025), it is
known that the more detailed prompt is, the more
plausible  the  results are.  Therefore,
communication with the Corpus Linguist model
started with a detailed question: Could you list the
types of language exercises for foreigners that you
are able to create based on corpus data? In return,
six categories of exercises were obtained:

1. Vocabulary & Collocations

e Fill-in-the-blank with collocation
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2.

3.

4.

5.

example: “He made a _ decision”
(from frequent collocates of decision).

Match words with their typical partners

example: strong tea vs. *powerful tea.

Frequency-based vocabulary lists

most common words in a domain, genre,
or register.

Grammar Practice

Conjugation & declension in context
sentences from corpus with a verb
missing (oni __ domit — 5§li, ‘they went
home*).

Case exercises (Czech)

fill the missing case ending from
authentic examples.

Word order practice jumbled authentic
sentences to be reordered correctly.

Reading & Comprehension

Gap-fill reading texts

real corpus sentences with systematic
gaps (e.g., prepositions, verbs).

Multiple-choice  from  concordances
choose which option fits the authentic
sentence.

Register awareness

compare informal spoken excerpts
(ORTOFON) with formal written ones
(SYN).

Error Detection & Correction

Spot the odd one out

one untypical collocate among three
authentic ones.

Learner error simulations

based on what corpus shows is not used,
learners choose the correct form.

Translation & Contrastive Tasks (using
InterCorp)

Parallel text exercises

learners match Czech sentences with
their English (or other language)
equivalents.



e False friends & tricky equivalents

highlight differences between corpora in
two languages.

6. Communicative / Production

e Prompts with authentic phrases

learners continue a sentence taken from

corpus.
e Roleplay triggers
situational expressions mined from

spoken corpora (“Muzu si ptfisednout?”,
‘Can I sit down?”).

The model indicated that all these exercises can
be data-driven and offered to prepare a sample
exercise. To ensure that all possible exercises
were listed, the model was asked: Did you listed
all possible exercises? In response, the model
honestly answered that it was a representative set
of exercises and that more possibilities are
available depending on teaching goals, learners’
level, and other factors. It then provided
additional exercise types as follows:

1. Lexical / Phraseological

e Idioms & proverbs

find authentic variants and ask learners
to complete or explain them.

Synonym choice

pick the most frequent synonym in
a given context.

2. Morphosyntax

e Transformation tasks

rewrite corpus sentences (active —
passive, direct — reported speech).

Agreement practice

highlight mismatches and ask learners to
fix them (subject—verb, adjective—noun).

Tense/aspect recognition (Czech
perfective vs. imperfective verbs).

3. Discourse / Pragmatics

e Dialogue completion

fill missing turns in authentic spoken
dialogues.

Register/style awareness
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classify sentences as formal/informal.
Connector use

identify or insert discourse markers
(totiz, nicmené ‘however’).

4. Writing Support

e Sentence starters

give frequent corpus-based openings,
learners continue.

Chunk recycling

learners create new sentences with
frequent multiword units.

Error-avoidance training

contrast common learner mistakes with
authentic usage.

5. Assessment & Awareness

e Acceptability judgments

choose the corpus-attested variant.

Frequency awareness

rank synonyms according to corpus
frequency.

Guess the meaning from context

show concordances with a new word
hidden.

Two exercise types were chosen for the further
evaluation of the interaction between the language
model and corpus data. The first was an exercise on
error detection, where a learner needs to identify
one untypical collocate among three authentic
ones, and the second focused on false friends. The
model was also asked to provide information about
corpus data use.

Table 1 and Table 3 present a generative result
of GenAl, divided into three steps: 1) Exercise,
2) Task, and 3) Answer. In both cases, a target word
was not specified, so the model selected a lemma
on its own.

In the first exercise, the chosen lexeme was
rozhodnuti ‘decision’. The GPT model explained
the individual steps, stating that the top authentic
collocates were provided based on the SYN2020
corpus and that one example was added as the “odd
one out”, an unattested collocate. However,
a discrepancy can be observed between the
collocates in the Exercise and Task parts. The
collocation ucinit rozhodnuti (‘make a decision’)



does not appear in the Task part and is replaced by
tezke rozhodnuti (‘hard decision’).

Could you generate an exercise type
"Spot the odd one out"? Please inform
me, what kind of corpus data you used.

Prompt

Exercise: Spot the odd one out (Czech collocations)

Target word: lemma rozhodnuti (“decision”).
From the SYN2020 written corpus, I can
extract its most frequent collocates.

Top authentic collocates include: ucinit
rozhodnuti (“make a decision”), diilezité
rozhodnuti (“important decision”), sprdvné
rozhodnuti (“right decision”).

[ will then add one implausible or unattested
collocate as the “odd one out”.

Task

Which of the following combinations is NOT
typical in Czech? Circle the odd one out.
1. dileZité rozhodnuti

2. spravné rozhodnuti
3. c&ervené rozhodnuti
4. tézké rozhodnuti

Answer

3. cervené rozhodnuti (“red decision”)
It is not attested in corpus collocations and

does not make semantic sense.

Table 1: Generative result of corpus exercise "Spot
the odd one out".

To wverify that the model was indeed
communicating with the corpus, the most frequent
collocates of the lexeme rozhodnuti ‘decision’ were
extracted through the corpus portal in the same way
as described by the model, using the logDice
collocation measure, a span window of £5 words,
and a minimum frequency of 3 within the
collocation. Sprdavné (‘right’) was the only
collocate provided by GenAl in the exercise that
also appeared in the top 10 collocates (Table 2)
based on the corpus search. It ranked 8th, while the

next two appeared at ranks 43 (diileZité ‘important’)

and 62 (tezké ‘hard’).

The model stated that it “chose 3 real frequent
collocates and added 1 fabricated/unattested one as
the distractor.” However, not all collocates were
among the most frequent. Therefore, the model was
asked to deliver the collocation profile of the
lemma rozhodnuti from the written Czech corpus
SYN2020 (Kfen et al., 2020). The results were
identical to those of the corpus search, which
confirmed the communication between the GPT
model and the corpus portal.

&3

Traslation
Rank Lemma (POS) Fq logDice
1. soud court (N) 940 9.72
2. uzemni territorial (A) 305 9.11
3. ucinit to make (V) 354 9.08
4. soudni judicial (A) 267 8.73
5. padnout to fall (V) 303 8.66
6. dospét to come (V) 174 8.18
7. pravomocny authoritative (A) 135 8.17
8. spravny right (A) 285 8.08
9. Cinit to make (V) 190 8.03
10. konecny final (A) 203 8.01

Table 2: Top 10 collocate of lexeme rozhodnuti in
SYN2020.

The most top collocates of lemma rozhodnuti are
mostly related to an institutional context, which
might be the reason why the model did not use this
vocabulary, as it is not always pedagogically useful
for lower proficiency levels. The model also argued
that semantically clear collocations are needed for
pedagogical reasons. This reasoning is valid, and
the procedure for the automatic generation of
corpus-based exercises provides not only authentic
examples for learners but also the most appropriate
ones from a pedagogical perspective. The longer
the communication with the GPT model is
conducted, the better the results obtained, and the
interaction with corpus data is well explained.

In the second exercise (Table 3), the model
chose the interesting Czech lexeme eventudiné,
that is a false friend with English lexeme
eventually. 1t explained that the parallel corpus
InterCorp v13ud (Cermék & Rosen, 2012) was
used to extract concordance lines for eventudlné
in Czech texts aligned with English translations.
The model also assumed that corpus frequency
results identified possibly and alternatively as the
major equivalents. However, a direct consultation
of the corpus revealed discrepancies. Following
the same steps described by the model, 156 hits of
eventualné were found in the Czech-English part
of InterCorp v13ud (Klégr et al., 2021). Manual
analysis of the context confirmed that the most
frequent equivalent was possibly, with 33 hits,
however, it was followed by eventually with 28
(in the subtitle collection 14) hits (Figure 1).
Alternatively appeared only 7 times. The other
results were mostly translated by omission or by
other equivalents not mentioned by the model.
Further prompting revealed that the model is not
able to consult corpus data when it comes to two



parallel corpora aligned directly. The current API
settings do not allow this function. In fact, the
model provided misleading information, claiming
that the corpus data delivered the most frequent
translations. This type of hallucination is
particularly problematic, as the Corpus Linguist
model was expected to cooperate with corpus
data. Nonetheless, it highlights the unreliability of
some outputs, which users should be aware of.

Could you generate an exercise type
"False friends & tricky equivalents"?
Please inform me, what kind of corpus
data you used.

Prompt

Exercise: Exercise: False Friends (Czech—English)

Target word: Czech eventualné
e Many learners think

eventually.

But in corpus data, eventualné is most often

translated as possibly / alternatively.

it means English

Task

Fill in the blanks with the correct English equivalent
of Czech eventudlné. Choose between eventually and
possibly.

Pokud se nam to nepodari, mizeme ___ zvolit jinou
metodu.

— If we don’t succeed, we can __ choose another
method.

Po dlouhych diskusich ___ dospéli k rozhodnuti.

— After long discussions, they  reached a
decision.

Tyto ¢asti mohou byt nahrazeny novymi.

— These parts can be  replaced by new ones.

Answer
1. possibly
2. eventually
3. possibly
Table 3: Generative result of corpus exercise "False

friends & tricky equivalents".

The exercise itself asks learners to fill in the
gaps in English sentences, not in Czech ones.
Therefore, it resembles practice for Czech native
speakers studying English rather than exercises
for foreign learners of Czech. Moreover, the
second Czech sentence should not contain the
lexeme eventudlnée but nakonec ‘in the end’. This
exercise requires improvement in this regard.
Further prompting produced a new version of the
exercise in which learners were asked to choose
between two English sentences, e.g. *The trip can
eventually be extended and The trip can possibly
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H eventually (41.2%)
m possibly (48.5%)
alternatively (10.3%)

Figure 1: Distribution of translation equivalents of
lexeme eventualné in InterCorp 13ud.

be extended, to identify the correct equivalent of
the given Czech sentence Cestu lze eventualné
prodlouzit.

4 Discussion

This study, based on two examples of corpus-based
exercises, explored the possible communication of
a GPT model (Corpus Linguist) with corpus data
(CNC). The results revealed that the model
successfully extracted data from corpora in some
cases, however, in other cases, it claimed to use
corpus data that were not actually consulted.
Comparison with previous a study (Zasina, 2025)
also indicates that the Corpus Linguists model
tends to choose similar target lexemes (rozhodnuti
‘decision’) for different exercises when a target
lexeme is not specified in the prompt. The model
appears to be pre-set to choose target words for
exercise generation, which represents a certain
limitation of the tool. Therefore, for the automatic
generation of corpus-based exercises, it is essential
to deliver input data concerning the most
problematic areas for the learners for whom the
exercises are intended. This precaution has the
potential to improve the generated results and
better target learner-specific needs. It seems that
the model is not yet able to truly consider learners’
real needs, and this remains the task of materials
developers.

The two examples also demonstrated that it is
crucial to define detailed prompts and verify the
answers through subsequent prompting. Longer
interactions make it possible to identify the
processes undertaken by the GPT model. This is an



important consideration in prompt crafting, to
avoid succumbing to the illusion that every answer
is correct. It should be remembered that GenAl can
only produce strings of characters that form words
and sentences; it is not capable of independent
thought.

An interesting concept of GenAl as a role player
(see Shanahan et al., 2023) can be applied in this
context. When prompting a GPT model, one may
feel that the automatically generated sentences are
human-like. However, GenAl’s ability to “act”
convincingly stems from its vast training data
(Shanahan et al., 2023, p. 496), and it strives to

deliver coherent responses. Some scholars
(Milicka, 2024, p. 16) have emphasised that the
model should not be anthropomorphised.

Anthropomorphising GPT models can be a trap
that dulls vigilance. Thus, it is important to
critically assess GenAl’s outputs, especially when
combining them with corpus data.

Some attempts to integrate GenAl with corpus
data in language learning have been undertaken
(Cheung & Crosthwaite, 2025; Crosthwaite &
Anthony, 2025, p. 6; Zasina, 2025) and have
produced promising results. However, this study
highlighted its limitations regarding
communication with corpus data via the ChatGPT
interface, which tends to provide an answer under
any circumstances. Users should therefore be
cautious and prepare more elaborated prompts that
explicitly query the source data.

Even though this evaluation is limited to two
examples of corpus-based exercises, it provides
insight into how GenAl interacts with CNC
sources. It offers guidance for future developments
in prompt crafting and for evaluating the reliability
of generative results. Furthermore, it underscores
that users should approach GenAl critically.
Further investigation may lead to improvements
that could mitigate these issues.

5 Conclusion

This study focused on the interaction between
language models and corpus data in terms of DDL
practice. It shows that there are many possibilities
for language learners to combine GenAl and
corpus data. GenAl can effectively use corpus data
within GPT models to produce corpus-based
exercises. However, it is important to emphasise
that prompts should contain high-quality input
information and be as precise as possible in order
to obtain appropriate results. It is also crucial to
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critically evaluate the automatically generated
outputs, as they can be hallucinated by GenAl.
In the future, further evaluations of this kind will
be necessary to determine whether Al sufficiently
cooperates with corpus data or merely creates the
illusion of real corpus results.
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Abstract

Automated Audio Captioning (AAC) is a mul-
timodal task aimed at generating natural lan-
guage descriptions of audio content. Previ-
ous studies have shown that LLMs can im-
prove AAC performance by summarizing audio
events based on a list of candidate captions,
which are selected by an external reranker
from those generated using Nucleus Sampling.
However, the reranking process often selects
overly similar captions, disregarding the orig-
inal diversity of the sampled captions. In this
work, we show that this diversity reflects the
AAC model’s level of certainty and propose a
lightweight candidate selection approach that
preserves the initial diversity of the generated
captions. This, in turn, enables an LLM to sum-
marize the captions while considering the AAC
model’s certainty in a few-shot setting. Experi-
mental results demonstrate that our method out-
performs previous post-processing techniques
while being significantly faster.

Keywords: Automated Audio Captioning,
Large Language Models, In-context Learning, Post-
processing

1 Introduction

Automated Audio Captioning (AAC) is a mul-
timodal task that aims to generate natural lan-
guage descriptions of the content within audio
samples. Unlike Automatic Speech Recognition
(ASR), which focuses on transcribing spoken lan-
guage, AAC primarily targets environmental and
non-speech sounds, providing meaningful descrip-
tions of auditory scenes and events.

One of the primary challenges in AAC lies
in the inherent ambiguity of audio signals. Un-
like image captioning, where objects can be de-
scribed through concrete attributes such as shape,
color, size, and spatial relationships, describing
audio clips is significantly more complex (Wu
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A person is making noise by
tapping their fingernails on a
solid surface.

Tapping two metal sticks
together a few times a
second.

...........

Two metal objects tapping
into each other a number of
times.

faucet into the sink.

-

11
11
11
1
Water is dripping from the 11
(N}
11
1\

P ——

Figure 1: Diverse and occasionally conflicting per-
ceptions of a single audio sample due to the inher-
ent ambiguity of audio signals. The captions corre-
spond to one training sample from the Clotho dataset
(dual metal.wav).

et al., 2019). Acoustic events often exhibit over-
lapping or similar sound characteristics, leading to
varied perceptions among individuals, as shown
in Figure 1 (Zhang et al., 2023; Drossos et al.,
2020). Consequently, widely used audio caption-
ing datasets, such as Clotho (Drossos et al., 2020),
provide multiple ground-truth captions from differ-
ent annotators for each audio sample, and models
are typically trained on one-to-many audio-caption
pairs, where each audio clip is randomly paired
with a single ground-truth caption in each itera-
tion (Zhang et al., 2023). This can introduce uncer-
tainty in the learned representations and potentially
result in performance degradation.

Thanks to the annual DCASE challenges'
and the release of open-source audio captioning
datasets such as Clotho (Drossos et al., 2020) and
AudioCaps (Kim et al., 2019), advancements in
AAC research have gained momentum in recent

'TEEE AASP Challenge on Detection and Clas-

sification of Acoustic Scenes and Events, available
at https://dcase.community
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Caption
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Figure 2: Overview of our proposed method. First, N = 50 captions are generated for a given audio input using
Nucleus Sampling. Next, in the candidate selection stage, KX = 5 captions are chosen to preserve the diversity of
the generated captions. Finally, these selected captions are processed by an LLM to further enhance diversity and

produce the final caption.

years. Most state-of-the-art AAC models employ
an encoder-decoder architecture (Xu et al., 2022;
Ye et al., 2022; Narisetty et al., 2021; Wu et al.,
2024), where the encoder is typically a pre-trained
audio encoder, such as PANN (Kong et al., 2020) or
BEATSs (Chen et al., 2023), that extracts audio fea-
tures from the input signal. These features are then
passed to an autoregressive text decoder, such as
BART (Lewis et al., 2020) or GPT-2 (Radford et al.,
2019), which generates the corresponding caption.
The decoders normally generate sequences using
greedy decoding and beam decoding.

In addition to these conventional decoding meth-
ods, recent research has demonstrated that a hybrid
sampling and reranking strategy, which leverages
external pre-trained models for reranking, can im-
prove the outputs of AAC models by exploring a
broader search space than beam search (Wu et al.,
2024; Jung et al., 2024). Furthermore, inspired by
the success of Large Language Models (LLMs) in
a zero-shot setting across a variety of tasks and
their ability to generate human-like text (Radford
et al., 2019), recent studies in AAC have incor-
porated zero-shot LLM-based caption summariza-
tion (Jung et al., 2024) and error correction (Liu
et al., 2024) as post-processing steps, demonstrat-
ing the effectiveness of these techniques in refining
the generated captions.

In this work, we hypothesize that the diversity of
sampled captions reflects the AAC model’s level of
certainty regarding a given input. We demonstrate
that reranking is not the most effective approach
for candidate caption selection, as the resulting cap-
tions lack sufficient diversity to both capture the
model’s uncertainty and serve as input for LLM-
based summarization. To address this limitation,
we propose a method that preserves the original
diversity of the sampled captions and employs an
LLM in a few-shot setting to generate a final cap-
tion while considering the AAC model’s uncer-
tainty. Experimental results show that the proposed
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method outperforms previous post-processing tech-
niques while being significantly simpler and faster.
Our contributions can be summarized as follows:
(1) we propose a lightweight candidate caption
selection method as an alternative to the hybrid
sampling and reranking strategy, (2) we enhance
AAC performance through an LLM-based post-
processing approach that leverages in-context learn-
ing and accounts for the AAC model’s certainty,
and (3) we introduce a simple technique to iden-
tify high-quality captions generated by AAC mod-
els, enabling selective LLM-based refinement that
improves performance while minimizing unneces-
sary processing overhead. The source code, experi-
ments, and results from this work will be publicly
released upon publication.

2 Related Work

2.1 Sampling and Reranking

Nucleus Sampling (Holtzman et al., 2020), also
known as Top-p Sampling, is a stochastic decod-
ing method commonly used in modern LLMs to
generate more diverse text compared to conven-
tional beam decoding (Shi et al., 2024). Inspired
by this, Wu et al. (2024), the winners of the DCASE
2023 AAC challenge, observed that approximately
one-third of the captions generated using Nucleus
Sampling achieve higher scores on AAC metrics
compared to those produced with beam decoding.
To leverage this advantage, they proposed a sam-
pling and reranking strategy that first generates a
list of I\ captions (50 in their original work) using
Nucleus Sampling, followed by a hybrid reranking
method to select the most suitable caption from the
list by computing two reranking scores. The de-
coder score is obtained by feeding the input wave-
form into the encoder and the generated captions
into the decoder to directly compute the caption
log-likelihood on the decoder outputs. The encoder
score is calculated as the cosine similarity between
the audio embedding, obtained by feeding the input



Audio File: Shanghai Traffic Near Peoples Square.wav

CLAP Reranking Our Proposed Method
Several cars and trucks are driving by on a busy street. A car drives by and then stops.
. Several cars driving by on a busy street. Several cars are driving by on a busy road.
Candidate . .. .. . .
Selecti A busy street with cars driving by on a nearby road. Cars are driving by on the street and a woman is speaking.
election | busy street with vehicles passing by. A person is walking down the street with cars driving by.
A large number of cars pass by on a nearby road. A car drives by and people are talking.
LLM Several cars and trucks are driving by on a busy street. | Cars are driving by on a busy road while a person is walking
Output (53.67%) and people are talking. (70.35%)
(FENSE)
CLAP Reranking ranks the sampled captions based on their embedding similarity to a fixed-dimensional audio embedding,
Explanation capturing only the aspects of the audio emphasized by the CLAP audio encoder. This process may overlook some events detected
xp ! by the AAC model, such as the sound of people’s voices in this example. In contrast, our proposed method selects the most salient
concept clusters, better reflecting the full range of events recognized by the AAC model.
Audio File: Fountain Trompenburg 090928.wav
CLAP Reranking Our Proposed Method
A stream is flowing over rocks as people chatter and walk. | Water is flowing down a stream as people talk in the background.
. Water is flowing in a creek as people talk and walk.
Candidate . .
Selecti Water is flowing as people talk and walk by.
clection | water is flowing as people talk and walk through a stream.
A stream of water flows while people talk and walk.
LLM Water is flowing in a stream as people talk and walk by. | Water is flowing down a stream as people talk in the background.
Output (45.77%) (53.31%)
(FENSE)
The low diversity among the sampled captions in this example indicates that the AAC model was highly confident about the events
in the audio. This is further supported by the fact that our method identified only a single salient cluster. As a result, we skip
Explanation | LLM inference and directly use the centroid of this cluster as the final caption. This not only reduces computational overhead but
may also improve evaluation scores, as the AAC model is trained to align with the target caption distribution, whereas the LLM,
operating in a few-shot setting, is less familiar with the characteristics of AAC-generated captions.

Table 1: Illustration of how different candidate selection methods affect the LLM’s output.

waveform into the encoder, and the caption embed-
ding, derived by feeding the generated caption into
a pre-trained text encoder, i.e., INSTRUCTOR (Su
et al., 2023). Finally, the generated captions are
reranked using a weighted sum of the decoder (0.3)
and encoder (0.7) scores, with the top-ranked cap-
tion selected as the system output.

However, our experiments revealed that the de-
coder score has a negligible effect and can be safely
omitted without significantly impacting perfor-
mance. Specifically, the system achieves FENSE
scores of 52.13 and 50.17 when using only the
encoder or decoder score for reranking, respec-
tively, while the fused scores yield a performance
of 52.28. This suggests that the success of the pro-
posed reranking method relies heavily on the addi-
tional supervision signal provided by INSTRUCTOR
during training, which prevents it from being ap-
plied to other pre-trained AAC models.

In DCASE 2024, Jung et al. (2024) introduced
a model-independent reranking approach based on
CLAP (Wu et al., 2023), a multimodal audio and
text encoder that uses contrastive learning tech-
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niques to jointly embed these two modalities. Their
approach is similar to the previous sampling and
reranking method, with the key difference that they
encode both the generated captions and the input
audio using CLAP. Additionally, beyond utilizing
CLAP for reranking, they proposed incorporating
it as an additional filtering stage prior to the pre-
viously described hybrid reranking method. This
filtering step removes half of the generated cap-
tions that are not sufficiently aligned with the audio
embedding.

2.2 LLM-based Summarization

Given that LLMs have been proven effective across
a range of zero-shot tasks, Jung et al. (2024) adopt
an LLM-based caption summarization method. In
this approach, a sampling and reranking strategy is
first used to rank a set of sampled captions. Next,
rather than selecting the top-ranked caption, the
top-K captions are fed into an LLM with a zero-
shot caption summarization prompt to generate the
final caption. This method aims to enrich the final
caption by combining key phrases that may be scat-



Prompt Template

You are provided with several candidate captions generated by
an Automated Audio Captioning system for a specific audio
file. These captions may contain repetitions, inaccuracies, or
illogical details. Each caption may describe one or more main
events. Identify the most frequent and relevant events from all
the captions, and generate a single caption, logically describing
the most probable events present in the original audio. En-
sure the caption is free of punctuation marks, including commas.

Captions:

A car is driving down a road with the window open.

The rain is falling as a car passes by.

Water is flowing as a car passes by.

The rain is falling and the wind is blowing.

Generated Caption:

A car is passing by while the rain is falling and the wind is
blowing.

Captions:

Cars are passing by on a busy road.

Cars drive by on a busy highway while a wind blows.

Cars drive by on a wet road.

A car is driving down the road and then the car drives by.
Generated Caption:

Cars are driving down a busy and wet road while the wind blows.

[more demonstrations]

Captions:
[selected candidates]

Table 2: Few-shot prompt template.

tered across different sampled captions, while also
leveraging the LLM’s ability to generate grammat-
ically accurate sentences. However, in our exper-
iments, we observe that the reranking stage con-
siderably diminishes the diversity of the selected
captions, often resulting in many identical captions,
thereby reducing the effectiveness of LLM-based
summarization.

2.3 LLM-based Error Correction

In their recent work, Liu et al. (2024) used an LLM
as a post-corrector to address potential grammatical
errors and repetitions in the captions generated by
their AAC model, operating in a one-shot setting.
In this approach, only a single caption sample from
the AAC model is provided to the LLLM for error
correction.

3 Methodology

A major challenge in AAC arises from the inherent
ambiguity of audio signals. Due to the overlapping
and similar sound characteristics of many acoustic
events, individuals may perceive the same audio
differently, sometimes even with conflicting inter-
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pretations (Figure 1). To address this variability,
popular audio captioning datasets, such as Clotho,
provide multiple ground-truth captions from var-
ious annotators for each audio sample (Drossos
et al., 2020). During training, models are exposed
to one-to-many audio-caption mappings, with each
audio clip paired with a randomly selected ground-
truth caption in each epoch. This randomness can
introduce uncertainty into the learned representa-
tions and degrade model performance (Zhang et al.,
2023).

To examine how this uncertainty affects the out-
put of AAC models, we randomly selected 50 audio
samples from the Clotho dataset and generated 50
captions per audio sample with Nucleus Sampling
using two pre-trained AAC models. A careful man-
ual analysis of the generated captions revealed that
the AAC model’s confidence in the acoustic events
of a given input audio is strongly reflected in the di-
versity of the sampled captions. Specifically, when
the AAC model is confident about the audio con-
tent, nearly all sampled captions describe the same
events, differing only in word choice and ordering.
Conversely, when the input audio is ambiguous or
challenging, the sampled captions display greater
diversity, describing a range of possible events.

Thus, we hypothesize that the diversity of sam-
pled captions can serve as an indicator of an AAC
model’s confidence level. Based on this hypothe-
sis, we propose a post-processing method for AAC
models with the following steps (Figure 2): First,
we generate IN captions for each input audio us-
ing Nucleus Sampling and encode them with a
lightweight sentence encoder. Next, the encoded
captions are clustered into K groups to identify
the primary event clusters. The K cluster cen-
troids, representing the primary possible events,
are then fed into an LLM along with a few demon-
strations to generate the final caption. When the
selected captions describe similar events, the LLM
is expected to produce a consistent caption with
its inputs. However, when the diversity among the
selected captions is high, the LLM should incorpo-
rate different possible events, resulting in a more
diverse and comprehensive output. The following
subsections provide a detailed explanation of each
step, and Table 1 presents two illustrative examples.

3.1 Sampling and Candidate Selection

For each given input audio, we use Nucleus Sam-
pling to generate a set of IN diverse captions. We



AAC Model Decoding & Post-Processing FENSE (%)
CoNeTTE (Labbé et al., 2024) Beam Decoding (width=5) 51.96
CoNeTTE Beam Decoding (width=5) + LLM-based Error Correction (Liu et al., 2024) 51.60
CoNeTTE Sampling + CLAP Reranking (Jung et al., 2024) 49.86
CoNeTTE Sampling + CLAP Reranking + LLM-based Summarization (Jung et al., 2024) 53.32
CoNeTTE Sampling + Ours 53.76
BEATs-Conformer-BART (Wu et al., 2024) Beam Decoding (width=5) 50.35
BEATSs-Conformer-BART Beam Decoding (width=5) + LLM-based Error Correction 50.15
BEATSs-Conformer-BART Sampling + Hybrid Reranking (Wu et al., 2024) 52.28
BEATSs-Conformer-BART Sampling + Hybrid Reranking + LLM-based Summarization 52.63
BEATSs-Conformer-BART Sampling + CLAP Reranking 51.49
BEATs-Conformer-BART Sampling + CLAP Reranking + LLM-based Summarization 52.71
BEATs-Conformer-BART Sampling + CLAP Filtering + Hybrid Reranking 52.75
BEATSs-Conformer-BART Sampling + CLAP Filtering + Hybrid Reranking + LLM-based Summarization 52.89
BEATSs-Conformer-BART Sampling + Ours 53.49

Table 3: Results on the evaluation subset of Clotho.

then select a set of K = 5 candidate captions that
preserve the original diversity of events present
in the generated captions (the first example in
Table 1). To achieve this, we use a lightweight
pre-trained off-the-shelf text encoder, Sentence-
BERT (Reimers and Gurevych, 2019), to encode
the captions into vector embeddings, and then ap-
ply Agglomerative clustering with complete link
to group them into K clusters. For each cluster,
we compute the center point by averaging the em-
beddings of the captions within the cluster, and se-
lect the caption with the closest embedding to this
center as the cluster representative. In this work,
cosine similarity was used consistently across all
embedding-based steps.

Moreover, to prevent the selection of too infre-
quent events that could mislead the LLM, we in-
corporate an outlier removal step during this phase,
removing clusters with fewer than R = 5 embed-
dings. Additionally, when the majority of embed-
dings fall into a single cluster (at least C' = 72% of
the embeddings), indicating high confidence from
the AAC model, we bypass the LLM phase and
directly use the cluster representative as the sys-
tem output (the second example in Table 1). This
approach not only reduces the computational over-
head of LLM inference but also enhances perfor-
mance, as the AAC model is specifically trained to
generate captions and is more adept at producing
outputs that align with the target distribution. This
simple yet effective step is also extendable to other
LLM-based post-processing methods.

3.2 Few-shot Caption Diversity Enhancement

The selected captions are then processed by an
LLM using a few-shot prompt to generate the final
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caption. When there is high diversity among the
input candidate captions, the LLM is anticipated
to generate a more diverse caption. Conversely,
when the diversity is low, the LLM is expected to
produce a caption that closely matches the inputs.
Table 2 contains the prompt template used for this
task. Since the primary goal of this study is to
evaluate the impact of diversity-enhanced candi-
date selection, we did not focus on optimizing the
number or content of demonstrations used in the
LLM prompt. Instead, a fixed set of five manually
crafted demonstrations was used across all inputs.
This choice was supported by preliminary experi-
ments, which indicated that four to six demonstra-
tions are generally sufficient for reasonable LLM
performance, depending on the model. Given that
manually creating this small number of examples
is straightforward, we leave the exploration of auto-
matic demonstration optimization for future work.
The complete list of demonstrations can be found
in the accompanying source code.

4 Experimental Setup

4.1 Models

Our proposed post-processing method is inde-
pendent of the AAC model. Thus, we con-
duct our experiments using two open-source mod-
els: CONeTTE? (Labbé et al., 2024) and BEATs-
Conformer-BART? (Wu et al., 2024). Additionally,
GPT-40-mini is used as the LLM in our experi-
ments, accessed through the OpenAl APIL.

Zhttps://github.com/Labbeti/conette-audio-captioning
3https://github.com/sISeanW U/beats-conformer-bart-
audio-captioner



4.2 Hyperparameters

During the sampling phase of all methods, Nucleus
Sampling was performed with a temperature of 0.5
and a top-p value of 0.95. Greedy decoding was
used for all LLM-based stages. The max tokens
parameter was set to 50 for both Nucleus Sampling
and LLM generations.

The parameters K = 5 and R = 5 were se-
lected based on intuition and preliminary experi-
ments. We observed that moderate changes to these
values do not significantly affect the results, and the
chosen values offer a good balance that works well
across a wide range of AAC models and LLMs. In
contrast, C' = 0.72 was determined through grid
search on Clotho’s validation subset.

4.3 Dataset

We conduct our experiments using the Clotho v2.1
dataset (Drossos et al., 2020), which served as the
standard benchmark in previous DCASE scientific
challenges. The dataset consists of four subsets.
The development and validation subsets are in-
tended solely for optimizing AAC models, while
the evaluation subset is used for assessing and com-
paring results. The festing subset is reserved exclu-
sively for scientific challenges, such as the DCASE
challenge. To conform with this standard, we use
only the evaluation subset of the dataset to compare
and report our results.

4.4 Evaluation Metrics

We adopt the FENSE metric (Zhou et al., 2022),
the standard evaluation metric of the DCASE
2024 challenge, as our evaluation metric. Prior
to FENSE, AAC evaluation metrics were borrowed
from machine translation and image captioning and
focused on the surface form of the words (Labbé
et al., 2024). FENSE, on the other hand, leverages
pre-trained models to capture sentence meanings.
It also penalizes grammatically incorrect or inco-
herent sentences.

5 Results and Discussion

The experimental results (Table 3) demonstrate the
effectiveness of our proposed method compared
to other post-processing approaches when applied
to the outputs of two open-source AAC models.
These findings underscore the importance of pre-
serving the diversity of sampled candidates, partic-
ularly for LLM-based post-processing methods.
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Method FENSE (%)
Random Selection (K=5) 52.46
Random Selection (K=20) 53.05
All Candidates (K'=50) 53.07
Clustering (K=5) 52.21
+ Outlier Removal 53.31
+ Skipping LLM Usage 53.49

Table 4: Ablation study of the candidate selection
stages.

Additionally, Table 1 presents two concrete ex-
amples that illustrate how our method works in
practice and provide intuition behind its effective-
ness. In these examples, the same prompt template
was used across different candidate selection meth-
ods to enable a fair comparison, ensuring that the
observed improvements can be attributed solely to
the proposed candidate selection strategy rather
than differences in prompt design compared to
prior studies.

5.1 Ablation Study

We conduct a comprehensive ablation study on the
candidate selection phase, beginning with a random
candidate selection method and gradually incorpo-
rating the proposed components. Table 4 shows
that the clustering phase is significantly affected by
outliers, leading to performance that falls behind
random candidate selection. However, removing
the outliers results in a notable improvement, em-
phasizing the importance of this step. Addition-
ally, while including more samples in the prompt,
up to selecting all generated captions, can slightly
improve performance, it still lags behind the pro-
posed clustering method. This is likely due to the
large volume of redundant information the LLM
must process, as well as the presence of outliers
that represent highly unlikely events in the inputs.
These findings underscore the importance of tar-
geted candidate selection. Finally, skipping LLM
inference when a single cluster contains more than
C captions leads to additional performance gains.
In this specific scenario, although the overall im-
provement across the entire Clotho evaluation set
may appear modest, the FENSE score increases
from 55.15 to 56.11 for the 116 samples where this
condition applies (approximately 11% of the sub-
set). This demonstrates that the method effectively
identifies cases where the AAC model is confident



Stage Time (ms)
Beam Decoding (width=5) 487
Nucleus Sampling (IN=50) 991
Hybrid Reranking (Wu et al., 2024) 739
CLAP Reranking (Jung et al., 2024) 340
CLAP Filtering + Hybrid Reranking 833
Candidate Selection (Ours) 15
LLM Inference (GPT-40-mini) 779

Table 5: Average processing time per sample (in mil-
liseconds) for various decoding and post-processing
methods.

and avoids unnecessary LLM processing.

5.2 Runtime Analysis

As depicted in Table 5, our proposed candidate
selection stage is considerably faster than previ-
ous reranking strategies. The processing times
were calculated by running the methods on the
entire evaluation subset of Clotho v2.1 using a ma-
chine with a single Nvidia RTX 3090 GPU. The
LLM inference time, which includes the HTTP re-
quest and response times as well, was measured on
Google Colaboratory servers. Since this time was
consistently similar across different inputs, with
negligible variations, only the average time is re-
ported. During each stage, parallelism was dis-
abled, and all samples were processed sequentially.
The AAC model used throughout all stages was
BEATSs-Conformer-BART.

6 Conclusion and Future Work

In this work, we explored various post-processing
methods for automated audio captioning and pro-
posed a novel LLM-based method for enhancing
caption diversity. The proposed approach leverages
in-context learning to consider the certainty of the
AAC model, reflected in the diversity of its gener-
ated captions. Despite being considerably faster,
our method demonstrates performance improve-
ments over previous post-processing techniques, as
evidenced by experiments conducted on two open-
source models.

Future work could investigate the effectiveness
of alternative embedding and clustering methods
in the proposed candidate selection phase. Addi-
tionally, since the demonstrations in our prompt
were manually crafted and remained fixed across
all inputs, future research could improve perfor-
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mance by exploring automatic example generation
techniques or employing more advanced prompting
strategies.

7 Limitations

This study is limited to experiments conducted with
a single LLM (GPT-40-mini) due to resource lim-
itations. A broader evaluation involving multiple
LLMs could offer deeper insights into the strengths
and limitations of LLM-based post-processing
methods for AAC.
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Abstract

This paper presents our submission to the Ira-
nian division of the Text-Dependent Speaker
Verification Challenge (TdSV) 2024. Conven-
tional TdSV approaches typically jointly model
speaker and linguistic features, requiring un-
segmented inputs during training and incur-
ring high computational costs. Additionally,
these methods often fine-tune large-scale pre-
trained speaker embedding models on the tar-
get domain dataset, which may compromise the
pre-trained models’ original ability to capture
speaker-specific characteristics. To overcome
these limitations, we employ a TdSV system
that utilizes two pre-trained models indepen-
dently and demonstrate that, by leveraging pre-
trained models with targeted domain adapta-
tion, competitive results can be achieved while
avoiding the substantial computational costs as-
sociated with joint fine-tuning on unsegmented
inputs in conventional approaches. Our best
system reached a MinDCF of 0.0358 on the
evaluation subset and secured first place in the
challenge.

Keywords: Text-dependent Speaker Verifica-
tion, Speaker Verification, Memory-efficient Train-
ing, Pre-trained Models, Transfer Learning

1 Introduction

Speaker verification (SV) is the task of confirming
an individual’s identity based on their voice. It
involves comparing one or more enrollment utter-
ances with a test utterance and can be performed in
either a text-independent (TiSV) or text-dependent
(TdSV) setting. In TiSV, the phonetic content of the
utterances is unrestricted, and only the speaker’s
identity is verified, whereas in TdSV, the system
verifies both the speaker’s identity and the specific
phrase spoken. With the development of various
neural network architectures (Xie et al., 2019; Des-
planques et al., 2020; Zeinali et al., 2019b; Snyder
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et al., 2018), loss functions (Xiang et al., 2019;
Zhang and Koishida, 2017; Wang et al., 2018;
Deng et al., 2019), and pooling methods (Sny-
der et al., 2018; India et al., 2019; Zhu et al.,
2018), TiSV has seen considerable improvement
in recent years, whereas TdSV has remained rela-
tively underexplored. TdSV systems can be either
phrase-dependent (i.e., shared passphrases), where
a fixed set of phrases is predefined by the system, or
phrase-independent (i.e., user-defined passphrases),
allowing users to customize their phrases (Hossein
et al., 2024). With the growing demand for voice-
based authentication, TdSV has gained increasing
attention, as the phonetic content can be used as
passphrases (Tu et al., 2022), adding an extra layer
of security to voice-based access control systems.

This paper presents our system submitted to Task
1 of the Text-dependent Speaker Verification Chal-
lenge 2024! (Zeinali et al., 2025), which aimed to
encourage participants to explore novel approaches
for TdSV. The challenge was organized into two
divisions: an international one, which included
two subtasks focusing on shared and user-defined
passphrases, and an Iranian division, which mir-
rored Task 1 of the worldwide challenge but specifi-
cally emphasized developing methods with limited
GPU resources. In this challenge, model enroll-
ment is done using three enrollment utterances, and
each trial consists of a test utterance and a model
identifier. Speaker verification trials fall into one
of the following categories:

» Target Correct (TC): The speaker matches
the claimed model and utters the correct
phrase.

» Target Wrong (TW): The speaker matches
the claimed model but utters an incorrect
phrase.

!Challenge website: https://tdsvc.github.io
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* Impostor Correct (IC): The speaker does not
match the claimed model but utters the correct
phrase.

Impostor Wrong (IW): The speaker does
not match the claimed model and utters an
incorrect phrase. This category was excluded
from the current year’s challenge, as it does
not pose sufficient difficulty for contemporary
models.

In the context of TdSV, proposed systems are
required to integrate both speaker and phrase veri-
fication scores and accept only TC trials?. Task 1
is phrase-dependent, employing a fixed set of ten
phrases (five in Persian and five in English) for en-
rollment and testing. Additionally, to enhance the
complexity of the challenge, some test utterances in
TW trials were sourced from free-text recordings.

The primary evaluation metric adopted by TdSV
2024 is the normalized minimum Detection Cost
Function (MinDCF), as defined in NIST SRE 2008
as a weighted sum of miss and false error probabil-
ities, with Pigrger = 0.01, Craiseiarm = 1, and
Chriss = 10. The Equal Error Rate (EER) will also
be reported as a secondary performance measure.

Previous successful approaches to TdSV typ-
ically jointly model speaker characteristics and
the linguistic content of utterances. For instance,
Liu et al. (2021) proposed a phoneme-aware at-
tentive pooling method that incorporates frame-
level phoneme posteriors into attentive pooling,
improving the model’s ability to utilize phonetic
information effectively. Also, some studies have
employed supervised multi-task learning to jointly
learn speaker and linguistic features for further im-
provement (Yang et al., 2020; Han et al., 2021).

However, joint speaker and phrase modeling has
some drawbacks compared to independent mod-
eling. First, model development becomes more
complex than developing the system based on in-
dependent phrase and speaker embedding models.
Additionally, since phrase modeling requires at-
tending to an entire utterance, inputs cannot be
chunked during training, requiring variable-length
inputs to be zero-padded. This issue substantially
increases GPU memory requirements, particularly
for recent transformer-based models, due to their
quadratic time and memory complexity (Vaswani
etal., 2017).

2For Text-independent Speaker Verification (TiSV), the
task definition differs: both TC and TW trials are accepted.
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Furthermore, as demonstrated in this work, pre-
trained speaker embedding models are highly ef-
fective at extracting speaker-related features while
disregarding other information in input utterances.
However, when subjected to multi-task fine-tuning,
these models are prone to lose their initial ability
to extract speaker-related features, allocating ca-
pacity to learning linguistic content instead. This
shift reduces their effectiveness, especially when
in-domain data for multi-task fine-tuning is limited.

Motivated by these challenges, we leverage the
full capacity of pre-trained models and develop
a TdSV system based on independent pre-trained
models for phrase and speaker verification. For
phrase verification, we fine-tune a pre-trained cross-
lingual speech representation model for bilingual
automatic speech recognition (ASR) in Persian and
English, followed by a further fine-tuning stage
for phrase classification. This classifier is used
to reject incorrect phrases. Similarly, we develop
several speaker embedding extractors based on pre-
trained ResNets and Whisper (Radford et al., 2023)
for our speaker verification system. After reject-
ing incorrect phrases using the phrase classifier,
final verification scores are obtained by comput-
ing cosine similarity between test and enrollment
embeddings.

Experimental results demonstrate that with well-
designed fine-tuning stages, our TdSV system built
on independently pre-trained models can achieve
performance comparable to systems that jointly
model speaker-related and linguistic information
while using only a single Nvidia RTX 3090 GPU.
This strategy substantially lowers GPU memory
requirements and, consequently, reduces compu-
tational costs compared to the multi-GPU setups
typically employed for training speaker recogni-
tion models (Zheng et al., 2023). Our best system
secured first place in the Iranian division of the
challenge and outperformed the third-place team
in the international division (Zeinali et al., 2025).

The rest of the paper is organized as follows:
Section 2 introduces the datasets used in this work.
Sections 3 and 4 describe the architecture of our
phrase and speaker verification systems, respec-
tively. The experimental results and discussion are
given in Section 5, and we conclude in Section 6.

2 Challenge Datasets

The DeepMine dataset (Zeinali et al., 2018, 2019a)
is the primary source of the training and evalua-



tion data for TdSV 2024. It was collected through
crowd-sourcing, and while all participants were
native Persian speakers, most contributed to the
English portion of the dataset as well. The official
TdSV 2024 data for Task 1 includes three subsets:
training, development, and evaluation. The training
subset consists of 183,431 utterances from 1,620
speakers. Among the utterances, 31,738 are free-
text, while the rest were drawn from a fixed set of
ten phrases comprising five Persian and five En-
glish phrases. The development and evaluation
subsets are intended solely for system evaluation
and contain 117,348 and 6,464,241 trials, respec-
tively. During evaluation, model enrollment is con-
ducted using three recordings of a specific phrase,
and each trial includes a test utterance and a model
identifier. The development set is provided to par-
ticipants for evaluation and parameter tuning before
submitting results to the official leaderboard. The
evaluation subset is used for the official evalua-
tion of the challenge. In addition to the DeepMine
dataset, participants are also allowed to use the
following datasets:

* VoxCeleb 1&?2 (Nagrani et al., 2017; Chung
et al., 2018) are two large-scale datasets
collected from YouTube videos, which con-
tain over one million recordings from 7,205
celebrities. In this work, due to resource con-
straints, only VoxCeleb 1 was used, which
includes over 100,000 utterances from 1,251
speakers.

LibriSpeech (Panayotov et al., 2015) is a stan-
dard ASR corpus in US English that com-
prises approximately 1,000 hours of speech
from 2,338 speakers. We only used the train-
clean-100 subset of this dataset to train our
phrase verification system, which contains
about 100 hours of speech.

Common Voice (Ardila et al., 2020) is a mul-
tilingual speech dataset created from contribu-
tions of volunteers from worldwide. For this
challenge, teams are restricted to using the
Persian (Farsi) subset, which contains approx-
imately 363 hours of validated speech from
4,148 speakers®. To prepare this subset for
training our speaker verification systems, we
excluded speakers with fewer than 30 record-
ings. From the remaining speakers with more

3Common Voice 18.0, released on 6/19/2024
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than 650 recordings, we randomly selected
650 utterances per speaker, resulting in a fi-
nal dataset with 125,017 utterances from 813
speakers.

The challenge rules prohibit the use of any other
public or private data for training.

2.1 Data Augmentation

We did not use any augmentation methods in our
phrase verification system. However, following
the previous successful studies on speaker verifi-
cation (Chen et al., 2022; Zheng et al., 2023), we
adopted SoX-based speed perturbation by factors
of 0.9 and 1.1 to triple the number of speakers
during training, followed by an on-the-fly imple-
mentation of the following augmentations, each
applied with a probability of 0.6: noise addition
using the MUSAN dataset (Snyder et al., 2015),
reverberation using RIRs dataset (Ko et al., 2017),
and gain augmentation.

3 Phrase Verification System

Our proposed system for TdSV 2024 consists of
two independent subsystems for phrase and speaker
verification. The phrase verification system is a
classifier that rejects TW trials, while the speaker
verification system is responsible for producing
similarity scores. Although this system design does
not benefit from joint modeling of speaker and text,
it greatly simplifies the system development pro-
cess and allows for the use of various pre-trained
models for each subsystem with minimal modifica-
tions.

The phrase classifier is an 11-class model trained
with standard softmax. The first ten classes corre-
spond to the set of phrases in the challenge, and
the final class represents free text (or “none of the
above™). This classifier is built on XLSR* (Con-
neau et al., 2021), a pre-trained cross-lingual
speech representation model trained by solving a
self-supervised contrastive task, proven to be effec-
tive in low-resource languages compared to tradi-
tional feature extraction methods. This model takes
a raw waveform as input and produces a sequence
of features.

Moreover, to improve the model’s ability to ex-
tract linguistic features from Persian and English
inputs, we initially fine-tuned the XL.SR for bilin-
gual speech recognition in Persian and English.

“Facebook/wav2vec2-x1s-r-300m



Full Training Domain Adaptation
System
Epoch BS LR Epoch BS LR
S2 - - - 15 32 3e-4
S3 100 64 le-3 15 32 3e-4
S4 15 64 le-3 7 28  5e-5
S5 15 64 le-3 7 28  5e-5

Table 1: Hyper-parameters used in different submitted
systems S2-S5 (BS = batch size, LR = learning rate).

During this phase, 30% of the training subset of
Common Voice Farsi and LibriSpeech (train-clean-
100) were used, and the model was trained using
CTC loss (Graves et al., 2006) for 40 epochs, with
an initial learning rate of 0.001 and an effective
batch size of 32. In our experiments, this phase
contributes to improving the performance of the
phrase verification system.

Finally, to train the classifier, an attention-based
pooling layer was added to the fine-tuned XLSR to
compute fixed-dimensional utterance-level feature
vectors from frame-level representations h; (t =

1,...7):
et:VVlht—Hn, (1)
exp(e)
= 2
" ST exp(er) ?
~ T
h=> a(Wahy +by), 3)

t

where, e; and o are the attention score and weight,
respectively. h refers to the utterance-level feature
vector, which is finally fed to a fully connected
layer with ReLU activation, followed by a linear
classifier. The network was trained using the Cross-
Entropy loss function for one epoch on the entire
training samples of the challenge dataset, with a
learning rate of 0.0005 and an effective batch size
of 64.

4 Speaker Verification System

To leverage the full power of pre-trained SV mod-
els and mitigate the computational cost of training
randomly initialized models, we explored two di-
rections for developing our SV system. In the first
approach, we fine-tuned several pre-trained ResNet-
based models, widely used as a standard architec-
ture in speaker verification. In the second approach,
we studied the performance of pre-trained ASR
models adapted for SV, which have shown promis-
ing results in previous studies (Zhang et al., 2022;
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Cai et al., 2023; Liao et al., 2023). More specifi-
cally, we employed the Whisper-PMFA (Zhao et al.,
2024) method, which involves fine-tuning a pre-
trained Whisper model for speaker recognition.

4.1 Training Protocol

We trained our models in two stages:

e Full training (77): In this stage, models were
trained on a combination of out-of-domain
data (Common Voice Farsi and VoxCeleb
1) and in-domain (DeepMine) data, totaling
3,684 speakers, to learn robust and general-
izable speaker embeddings across different
domains. Pre-trained ResNets did not un-
dergo this stage, as they are already capable
of extracting rich speaker-specific features.
During this phase, 300 consecutive frames
of each input utterance were randomly se-
lected in each epoch to prevent overfitting,
reduce GPU memory usage, and accelerate
training. Moreover, all augmentation methods
explained in Section 2.1 were applied. We em-
ployed the widely used AAM-Softmax (Deng
et al., 2019) loss with the subcenter method
and the Inter-TopK penalty (Zhao et al., 2021)
to train our models, with a constant margin
and scale of 0.2 and 32, respectively.

Domain adaptation (75): We fine-tuned our
models using in-domain data after full train-
ing to bridge the domain gap and improve
performance. During this stage, augmentation
methods and the Inter-TopK penalty were re-
moved to prevent domain mismatch. Addition-
ally, the number of randomly selected frames
was increased from 300 to 600 to enhance
the models’ generalization capability (Garcia-
Romero et al., 2019, 2020). Fine-tuning was
performed with smaller learning rates to pre-
serve the models’ generalization abilities.

All models were optimized using SGD with a
momentum of 0.9 and a weight decay of 1e-4. We
also utilized an exponential decay scheduler with
a minimum learning rate of 5e-5 for 7} and le-6
for T5. Other training hyper-parameters are listed
in Table 1. Note that gradient accumulation was
used to achieve the target effective batch size when
GPU memory was limited. The dimensionality
of speaker embeddings was set to 256 across all
models. All experiments were conducted on a sin-



System Architecture Training Stages Development Evaluation
MinDCFj o; EER(%) MinDCF o1 EER(%)
S1 ResNet34 0.0614 1.3938 0.0784 1.7390
S2 ResNet293 To 0.0225 0.8733 0.0376 1.1080
S3 ResNet152 T + T 0.0191 0.6757 0.0764 2.3444
S4 Whisper-PMFA Ty + To 0.0163 0.6121 0.0584 2.0410
S5 Whisper-PMFA T+ T2 0.0161 0.6126 0.0583 2.0445
Fusion (S1~S5) 0.0119 0.5605 0.0358 1.2457
Table 2: Results of different submissions on the development and evaluation sets.

Subset MinDCF, o EER(%) posed Whlsper—PMFA (.Partlal Multi-Scale Feature

Aggregation using Whisper) to leverage the capa-

Development 0.0000 0.00 bilities of Whisper, a large-scale multilingual ASR

Evaluation 0.0003 0.01

Table 3: Phrase verification performance on TC-vs-TW
trials.

gle Nvidia RTX 3090 GPU using the WeSpeaker
toolkit (Wang et al., 2024).

4.2 ResNet

ResNet (Xie et al., 2019) is a widely used archi-
tecture for speaker recognition that has performed
excellently in previous speaker verification chal-
lenges (Zheng et al., 2023). Consequently, many
open-source implementations and pre-trained mod-
els have been publicly released based on this archi-
tecture. Trained on large-scale datasets like Vox-
Celeb 1&2, these pre-trained models can provide
a robust starting point for training speaker recog-
nition models on other datasets by improving their
generalization and speeding up the convergence.

During the challenge period, we submitted three
systems based on a bottleneck-block ResNet, all
adopting temporal statistics pooling (Snyder et al.,
2018) for aggregating variable-length sequence fea-
tures into utterance-level embeddings. The first
system (S1) was a pre-trained ResNet34 without
domain adaptation, while the second one (S2) was
a pre-trained ResNet293 that underwent domain
adaptation. Finally, we applied both training stages
to a randomly initialized ResNet152 to obtain our
last ResNet-based system (S3).

4.3 Whisper-PMFA

Building on the successful use of pre-trained ASR
models in speaker verification (Zhang et al., 2022;
Cai et al., 2023), Zhao et al. (2024) recently pro-
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model based on transformer architecture. Whisper-
PMFA adapts Whisper for speaker verification by
selectively concatenating frame-level outputs from
specific transformer layers rather than aggregating
features from all layers. This approach not only
reduces computational overhead but also enhances
performance by minimizing the integration of irrel-
evant information from lower-impact layers.

Inspired by this, we studied the performance of
Whisper-PMFA in this challenge. Since Whisper
was not trained for the speaker recognition task, we
applied both training stages to Whisper-PMFA. Ad-
ditionally, before the full training stage, we froze
the Whisper parameters and fine-tuned the model
for five epochs to prevent updating the pre-trained
model in the wrong direction due to the random
initialization of newly added components. We sub-
mitted two Whisper-PMFA-based systems (S4 and
S5) to this challenge, differing only in the AAM-
Softmax margin used during the domain adaptation
phase: 0.35 for S4 and 0.2 for S5.

4.4 Feature Extraction

80-dimensional log Mel filter bank energies with a
25ms window and 10ms frame-shift were extracted
for our ResNet-based models. Voice activity de-
tection (VAD) was not applied, and all features
were mean-normalized. Likewise, 80-dimensional
log magnitude Mel spectrograms consistent with
the pre-trained Whisper were utilized for training
Whisper-PMFA.

4.5 Backend

Speaker embeddings were extracted from the final
fully connected layer of the models, and cosine sim-
ilarity was used to compute scores. Since model



Development

Methods
MinDCFOAm EER(%)
Whisper-PMFA (T;) 0.0234 0.9253
+ Domain adaptation (T3) 0.0177 0.6273
++ AS-Norm 0.0161 0.6126

Table 4: Ablation study on Whisper-PMFA.

enrollment is done using three utterances in this
challenge, we used the average of embedding vec-
tors of each model during scoring.

Afterward, AS-Norm (Wang et al., 2020) was
used for score normalization, using 1,620 cohorts
obtained from speaker-wise averaging of all em-
beddings in the training subset of the challenge
dataset. The top 300 most similar scores were se-
lected to compute the mean and standard deviation
for normalization.

Finally, we adopted score fusion by averaging
single-system scores to further improve perfor-
mance.

5 Results

Table 2 shows the evaluation results of our sin-
gle and fusion systems on the development and
evaluation subsets of the challenge after applying
AS-Norm and rejecting TW trials. The results
indicate that the Whisper-PMFA method outper-
forms the widely used ResNet architecture with
random initialization, conforming to the findings
of previous studies on the effectiveness of adapting
pre-trained ASR models for speaker verification.
However, it can be observed from the results that
the ResNets pre-trained on approximately twice
the data (VoxCeleb 1&2) can considerably surpass
Whisper-PMFA after a well-designed domain adap-
tation stage, which highlights the importance of
large-scale pre-training in improving the general-
ization ability of speaker verification models.

In addition, Figure 1 presents the Detection Error
Tradeoff (DET) curves of the best-performing sys-
tem for different categories of evaluation data. The
results indicate that the model generally performs
better on Persian phrases, which is expected given
that the DeepMine dataset was collected from na-
tive Persian speakers, many of whom are likely less
fluent in English. Furthermore, the results show
noticeably higher performance for male speakers
compared to female speakers. This disparity is not
solely due to the inherent challenges of verifying
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Figure 1: DET curves of our best-performing system.

female voices, but is also influenced by the spe-
cific characteristics of the DeepMine dataset, as
discussed in its original description (Zeinali et al.,
2018, 2019a) and in the official challenge results
paper (Zeinali et al., 2025).

We also report the MinDCF and EER of the
proposed phrase verification system on TC-vs-TW
trials of the development and evaluation subsets
(Table 3). According to the results, our phrase
verification system demonstrates a near-optimal
performance on this task.

5.1 Ablation Study

We conducted an ablation study on our Whisper-
PMFA system (S5). The development set of the
challenge dataset was used as our evaluation bench-
mark. We can observe from the results (Table 4)
that the domain adaptation phase improved the
MinDCF from 0.0234 to 0.0177. Also, a further
improvement of MinDCF to 0.0161 was achieved
after applying AS-Norm.

5.2 Comparison with Other Teams

To contextualize our performance, we report in
Table 5 the evaluation results of our best system
alongside the top-performing submissions in Task
1 of the international division of the TdSV Chal-
lenge. Team names and scores are taken directly
from the official challenge results paper (Zeinali
et al., 2025), which also provides brief descriptions
and comparisons of the proposed architectures. As
shown, our system achieves a lower MinDCF than
the team ranked third in the international division.

6 Conclusion

In this paper, we present our system for Task
1 of the Iranian division of the Text-dependent
Speaker Verification (TdSV) Challenge 2024, fo-



Team MinDCF ¢ EER(%)
Team 04 (Sreekanth, 2024) 0.0297 1.132
Team 08 0.0326 1.013
Our System 0.0358 1.246
Team 02 0.0379 1.164
Team 01 0.0504 2.245

Table 5: Evaluation results for our best system and the
top-ranked teams in Task 1 of the international division
of TdSV.

cusing on resource-constrained training for TdSV
systems. Unlike previous methods that jointly
model speaker-related and linguistic features, our
approach leverages two independent pre-trained
models for phrase and speaker verification. This
design reduces the computational costs associated
with joint modeling during training while fully
utilizing the capabilities of pre-trained models to
achieve competitive performance. Our best system
achieved a MinDCF of 0.0358 on the evaluation
subset, securing first place in the challenge.
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Abstract cally, our semantics-based probability es-
timation outperformed LLM-based estima-
tion and the baseline in both cases. This
suggests the feasibility of semantics-based

probability estimation in specialized do-
1

This study examines how information-
theoretic correlates, specifically contextual
surprisal, condition terminological alterna-

tions in specialized domains, where both mairns.

domain-specific and general terms express

similar concepts. Specifically, two com-

peting theories exist. The Uniform In- Keywords: domain-specific variation, in-
formation Density (UID) theory proposes formation theory, surprisal calculation, seman-
that the speaker would avoid abrupt in- tics

formation rate changes. This predicts the
use of more specific variants when the sur-
prisals are higher. Conversely, availability- 1 Introduction
based production suggests the use of more
readily-accessible items with higher sur-

prisals. This study examines the dynamics A growing number of studies have come to

between these two potential mechanisms emphasize the role of information-theoretic
in the terminological use in specialized do- (Shannon, 1948) constraints in communica-
mains. Specifically, we argue that, in spe- tion and the conditioning of these constraints
clalized language, due to the higher fre- on linguistic distributions. Especially, lexi-

quency of domain-specific terms, both ac-
counts predict the use of specific items in
higher-surprisal contexts. The cases of Tai-
wan Mandarin legal language and English

cal and syntactic production and processing
are attested to be conditioned by information-
theoretic correlates, including word frequency

biomedical language were, therefore, exam- and contextual surprisal. Zhan and Levy
ined. Crucially, a current popular method (2018), for example, investigated the choice of
for probability estimation is through large classifiers in Mandarin and found that while
language models (LLMs). The linguistic frequency did not have an effect, the surprisal

distribution in specialized domains, how-
ever, may deviate from the general lin-
guistic distribution on which the LLMs
are trained. Thus, we propose a novel

of the following noun could predict the lan-
guage user’s choice of classifiers. When the
following noun had a higher contextual sur-

semantics-based method of estimating the prisal, the language user was more likely to opt
token probability distribution in a given for the general classifier ge, as opposed to the
corpus that avoids the potentially differ- other specific classifiers. Likewise, in Wilcox
ent linguistic distribution and the issue of et al.’s (2023) reading time study across 11 lan-
word segmentation. As expected, results guages, it was found that both contextual sur-

indicated a positive correlation between a
variable’s surprisal and the use of domain-
specific variants in both cases. This sup-
ports UID-based production, and arguably
also availability-based production, since 'The code implementation of this study is available

more specific and frequent variants are pre- at: https://github.com/Peh-Suan/information_
ferred in high-surprisal contexts. Specifi- theoretic_conditioning_domain_specific.

prisal and contextual entropy were positively
correlated with the subjects’ reading time.
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1.1 Speaker-centric vs. listener-centric
production

Importantly, two competing mechanisms have
been put forth. The Uniform Information
Density (UID) theory (Levy and Jaeger, 2007;
Jaeger, 2010) proposes that during communi-
cation, the speaker would prevent abrupt infor-
mation rate changes to facilitate better speech
comprehension. Conversely, a more speaker-
centric account, availability-based production
(Bock, 1987; Ferreira and Dell, 2000), predicts
that the speaker would prefer more readily ac-
cessible items. These two mechanisms, there-
fore, make opposite predictions: While UID
would predict the use of more specific vari-
ants when the variable is contextually surpris-
ing, availability-based production would ex-
pect more general items to be used, as they
are more accessible than specific ones.

In this study, we examine these two poten-
tial mechanisms in the terminological alterna-
tions in specialized domains. Specifically, sev-
eral studies have suggested availability-based
production in lexical-syntactic alternations.
For example, Zhan and Levy (2018) examined
how the contextual surprisal of a noun might
influence the use of the general classifier ge vs.
specific classifiers in Mandarin. It was found
that when the noun had a higher surprisal,
there was a higher tendency for the speaker
to use the general classifier. Likewise, such
availability-based production was also attested
in Russian comparative constructions (Clark
et al., 2022). In Russian, there are two options
for comparative construction. The first one is
the explicit option, where “than” is used. The
other is the genitive option, where the target
noun phrase being compared is marked with
the genitive case, and “than” is omitted. In
the first construction, there is an additional
morpheme before going into the target noun
phrase, while in the second construction, there
is no such buffer. The first construction thus
provides a higher availability for the speaker’s
speech planning. Indeed, it was also found
that when the target noun phrase was more
complex, the explicit option was preferred.
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1.2 Terminological alternations in
specialized domains

All the previous studies, however, focused on
general language use. It therefore remains un-
known whether style differences exist between
general and domain-specific language.

Crucially, it is likely that both accounts
may favor the domain-specific terms in high-
surprisal contexts in domain-specific language.
In specialized domains, the same concepts may
be expressed through different terms. In En-
glish biomedical language, dermis or epidermis
can be used instead of skin. Similarly, in Tai-
wan Mandarin legal language, zhi.yan.zhi “in
sum” can be used instead of the more collo-
quial jian.yan.zhi.

In the general context, the general terms are
without doubt more frequently used. In the
specialized domains, however, the respective
domain-specific terms may actually be more
frequent than the general counterparts. In-
deed, in the corpora in this study, the domain-
specific terms are 2.18 and 3.27 times more fre-
quent than the general terms in Taiwan Man-
darin legal language and English biomedical
language, respectively. This, therefore, sug-
gests that both the availability-based produc-
tion and UID may support the use of domain-
specific items when the surprisals are higher.

Therefore, in this study,
the information-theoretic conditioning, specif-
ically the effects of surprisal, on terminologi-
cal alternations in Taiwan Mandarin legal lan-
guage and English biomedical language.

we examine

2 Methods

To answer how contextual surprisal interacts
with terminological alternations, two corpora
were examined. The contextual surprisals of
the terminological variables were calculated
based on the popular LLM-based probability
estimation and our proposed semantics-based
estimation. Linear-mixed effects models were
used for statistical analysis.

2.1 Corpora

2.1.1 Taiwan Mandarin legal corpus

The Taiwan Mandarin legal corpus was built
from 383,733 legal judgments made in 2024
obtained from the Governmet OpenData plat-
form (http://data.gov.tw). Sentence segmen-


http://data.gov.tw

tation was performed based on punctuation.
580,593 sentences were collected. 100,000 sen-
tences were then randomly selected as the final
corpus.

2.1.2 English biomedical corpus

A subset of the PMC corpus (National Library
of Medicine, 2024) was used to build the En-
glish biomedical corpus. 1,029,191 sentences
were collected. 100,000 sentences were then
randomly selected as the final corpus.

2.1.3 Terminological variable selection

The terminological variables were manually in-
spected and selected by the authors. Only
variables with higher frequencies were in-
cluded. 15 general-vs.-legal and 25 general-vs.-
biomedical terminological variables were cho-
sen. An example of such variables is the skin
vs. dermis/epidermis alternation mentioned
previously. In this example, skin, dermis, and
epidermis are all variants of this variable.

2.2 Surprisal estimation

The contextual surprisal of a token w given
the context cis —logP(w|c). To calculate a to-
ken’s contextual surprisal, therefore, its prob-
ability in the corpus has to be estimated.

A conventional method of calculating prob-
ability is to calculate the raw frequency of the
token. This is, however, not ideal for contex-
tual surprisal estimation, since the likelihood
of the exact context sentence happening more
than once is low.

A more popular alternative is to directly es-
timate P(w|c) through trained large language
models (LLMs). This, however, may also not
be ideal since the style differences between gen-
eral and specialized language may lead to dif-
ferent linguistic distributions.

Therefore, in this study, we propose a novel
semantics-based probability estimation based
on the “semantic bit count” instead of the raw
frequency of the tokens. We propose that,
since information-theoretic correlates are es-
sentially based on the amount of information,
the semantics of the word token could be more
revealing than pure token counts.

2.2.1 Semantics-based probability
estimation

In this study, we propose counting a token’s

semantic bit occurrences in the corpus to esti-
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mate the probability of the token. Given the
word embedding of a token w, and the embed-
ding of a context sentence ¢ (calculated as the
mean of all the token embeddings in the sen-
tence), the number of semantic bits of w in ¢
can be approximated as the cosine similarity
between the two vectors.

To convert this cosine similarity to a seman-
tic bit count (sb), it is then rescaled from —1
to 1 to 0 to 1. This semantic bit count is then
used instead of the raw frequency. The final
semantics-based probability estimation of a to-
ken w in the context ¢ is shown in Eq. 1, where
C is all the context sentences in the corpus and
Cy is all the context sentences where w occurs.

ZCjGCw Sb(w7 c])
ZC»,;EC Sb(C, Ci)

To compare the performance of semantics-
based surprisal (Isemantics), LLM-based? sur-
prisal (Irzar) and baseline surprisal (Ipgseline )s
which were calculated with direct 5-gram con-
text counts, were also calculated.

A

Psemantics (w|c) =

(1)

2.3 Statistical analysis

Logistic-mixed effects models (LMMs) were
used to test statistical significance through
Satterthwaite’s method. A model was fitted
for each of the three kinds of surprisals for each
of the two corpora.

The use of general vs. domain-specific
was contrast coded as -0.5 (general) and 0.5
(domain-specific). Surprisal was standardized
and taken as the predictor. Standardized
frequency was included as a control variable.
Random intercepts were grouped by termino-
logical variable.

To compare the performance of the three
types of surprisals, Akaike Information Crite-
rion (AIC) was also used to test the relative
quality of the fitted models.

3 Results

3.1 Taiwan Mandarin legal language

For both Isemantics and Irrar, positive corre-
lations between the use of the domain-specific
variants and the variable’s contextual surprisal
were found (Isemantics: ﬁ = 4.37; p < 0.001;

2LLAMA-2-7B were used.



Iy B =0.11; p = 0.03). On the flip side,
Tyaserine was found to have insignificant effects
(3 = —0.06; p = 0.10).

Crucially, the Isemantics model had the low-
est AIC (Isemantics5 6164.80; Irra: 6185.45;
Tpasetine: 6623.24), suggesting it is the most
ideal model among the three.

3.2 English biomedical language

Similar positive effects were found between
Tsemantics and domain-specific vs. general term
use (3 = 0.27; p < 0.001). However, a neg-
ative correlation between I and domain-
specific vs. general term use was found (B =
—1.51; p < 0.001). On the other hand, Ipgserine
was once again found to have insignificant ef-
fects (B =0.02; p = 0.48).

In terms of the model quality based on AIC,
the Isemantics model was once again suggested
to be the most ideal (Isemantics: 654.47; Irrar:
2100.33; Ipgsetine: 5789.62).

4 Discussion

4.1 Information-theoretic conditioning
in specialized language and
speaker vs. listener-centric

production

The main focus of this study is to examine how
the style differences between general language
and specialized language may interplay with
speaker vs. listener-centric production. As
discussed in Section 1.1, the UID theory and
availability-based production are put forth as
two competing mechanisms in previous studies
(Zhan and Levy, 2018; Clark et al., 2022). It
is suggested that, from a listener-centric per-
spective, the UID theory would predict more
specific language use when the variable is more
unpredictable/informative, in order to reduce
abrupt information rate changes. From a
speaker-based angle, on the other hand, the
speaker would prefer more readily accessible
This would thus predict the use
of more general items, which are presumably
more accessible, when the unpredictability is
higher.

variants.

These studies, however, focus on general
language use. We argue that while such
competition may hold in general/colloquial
language, the two mechanisms may be com-
patible in specialized language. This is be-
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cause the domain-specific terms may in fact
be more frequent, and thus more accessible,
than the general terms in specialized domains.
Thus, both accounts would predict the use of
domain-specific terms in higher-surprisal con-
texts, since they are at the same time more
informative and readily accessible.

Indeed, the results in this study support our
hypothesis. Positive correlations were attested
between the semantics-based surprisal and the
use of domain-specific terms in both cases. In-
deed, opposite effects were found for the LLM-
based surprisal, and no effects were found for
the baseline surprisal. We argue, however, as
will be discussed in the next section, that the
semantics-based surprisal is the more appro-
priate estimation.

4.2 Semantics-based probability
estimation for specialized language

The other contribution of this study is the
proposal of a novel semantics-based probabil-
ity estimation for specialized language. As ar-
gued in Section 2.2, contextual surprisal can-
not be ideally calculated through raw token
frequency, nor is it appropriate to use pre-
trained LLMs, as the linguistic distributions
of specialized language may differ from that
of general language.

In this study, we propose that the seman-
tics of a token may be more information-
theoretically relevant than pure occurrence fre-
quency. A probability estimation based on
the semantic bit count of the token was pro-
posed. It was found that in both test cases, our
method outperformed the LLM-based method
and the baseline. Our results, therefore, sug-
gest the feasibility of semantics-based proba-
bility estimation for specialized language in fu-
ture studies.

Limitations

While the examination of competing surprisal
candidates, i.e., the LLM-based surprisal and
the baseline, allowed for a general investi-
gation of the performance of our semantics-
based method, it remains possible that differ-
ent LLMs may lead to better or worse per-
formances. In this study, we only examined
one LLM (LLAMA-2-7B). To make the find-

ings more grounded, a comparison between our



method with a wider array of models may be
ideal.
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Abstract

Recent advancements in Al-based voice
cloning have led to increasingly convincing
synthetic speech, posing significant threats
to speaker verification systems. In this
paper, we propose a novel voice spoofing
detection method that integrates acoustic
feature  variations ~ with  attention
mechanisms derived from wav2vec 2.0
representations. Unlike prior approaches
that directly utilize wav2vec 2.0 features as
model inputs, the proposed method
leverages wav2vec 2.0 features to construct
speech rules characteristic of bona-fide
speech. Experimental results indicate that
the proposed RULE-AASIST-L system
significantly outperforms the baseline
systems on the ASVspoof 2019 LA
evaluation set, achieving a 24.6% relative
reduction in equal error rate (EER) and an
10.8% reduction in minimum tandem
detection cost function (min t-DCF).
Ablation studies further confirm the
importance of incorporating speech rules
and selecting appropriate hidden layer
representations. These findings highlight
the potential of using self-supervised
representations to guide rule-based
modeling for robust spoofing detection.
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1 Introduction

Telecom fraud has become a critically important
issue today, particularly the method of using Al to
synthesize the voices of victims' family members
to impersonate them and commit financial fraud.
This has emerged as a new tactic employed by
scam groups. Voice spoofing can be primarily
divided into two categories: Physical Access (PA)
attacks and Logical Access (LA) attacks.
According to past research in relevant literature,
the difficulty of signal detection in LA attacks is
typically greater than that in PA attacks. This is
primarily because voice conversion and text-to-
speech technologies can more accurately mimic
the target speaker's voice, rather than merely
reproducing recorded playback quality.

To address the growing threat of voice spoofing
attacks, many studies have adopted deep neural
network (DNN)-based models to classify speech as
either genuine or spoofed (Y. Zhang et al., 2021; J.
Zhou et al., 2022; A. Gomez-Alanis et al., 2019).
However, these approaches typically treat spoofing
detection as a binary classification problem that
focuses solely on surface-level acoustic differences,
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without accounting for the complexity and
diversity of feature variations introduced by
different spoofing methods. To address this
limitation, (J. Boyd et al., 2023) proposed using a
multi-class  classification  framework  that
distinguishes between genuine, voice conversion,
speech synthesis, and replay categories. This
enables the model to learn more discriminative
features for identifying various types of spoofing
attacks targeting genuine speech. However, most
existing research on voice spoofing detection
focuses on feature analysis from a single audio
perspective.

Self-supervised learning (SSL) has emerged as
a powerful alternative for extracting high-
dimensional representations of speech signals (A.
Baevski etal, 2020; W.-N. Hsu et al., 2021; S. Chen
et al,, 2022). These models typically rely on
convolutional neural network (CNN)-based feature
encoders, where CNN kernels perform nonlinear
transformations on short segments of audio. A key
advantage of self-supervised learning lies in its
ability to learn from large-scale unlabeled data,
enabling pre-trained models to capture a wide
range of speech variability. Compared to
conventional frequency-domain methods, these
learned representations often yield more robust and
informative features. Recently, SSL models such as
wav2vec 2.0 (A. Baevski et al., 2020) have gained

significant attention in various speech-related tasks.

Originally developed for automatic speech
recognition (ASR) (A. Bawitlung et al., 2025),
these models have also demonstrated strong
performance in speaker verification (Z. Fan et al.,
2021) and speech emotion recognition (B.
Nasersharif and M. Namvarpour, 2024). Recently,
several studies have investigated the application of
wav2vec 2.0 for spoofing detection tasks (H. Tak
et al., 2022), taking advantage of its rich
contextualized speech representations to improve
feature modeling and detection accuracy.

This work proposes a novel framework that
integrates conventional acoustic feature analysis
with the sequential representation patterns derived
from wav2vec 2.0. By exploring the interactions
between acoustic features and the sequential rule of
wav2vec 2.0 representations, the proposed
approach enables voice spoofing detection not only
from the inherent characteristics of speech but also
through identifying inconsistencies in the sequence
patterns of wav2vec 2.0 representations correlated
with spoofed audio. This joint analysis enhances
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detection performance by uncovering unnatural
patterns indicative of spoofed speech.

This paper addresses the fraudulent methods
arising from current Al voice cloning technologies
by proposing a detection method that combines the
correlation between acoustic features and wav2vec
2.0-based attention mechanisms. This approach
simultaneously considers the interaction between
variations in acoustic features, and the rules of
speech representations, aiming to enhance the
accuracy of distinguishing between synthetic and
genuine voices.

2 Related Work

2.1 AASIST

The AASIST network is composed of four main
components: an encoder module, graph modules, a
max graph operation (MGO) module, and an
output module, as shown in the upper part of
Figure 1. The encoder, based on RawGAT-ST (H.
Tak et al, 2021), extracts high-level feature
representations F directly from the raw audio
waveform. Two parallel graph modules are
employed to model the spectral and temporal
characteristics of F, respectively, producing graph-
structured features in both domains. These outputs
are then fused to construct a heterogeneous graph,
which is further processed by the MGO module.

The MGO module consists of two parallel upper
and lower branches, each comprising two
heterogeneous attention mechanisms and two
stacked nodes that store time-frequency
heterogeneous information. The final
representation is obtained by applying an element-
wise max operation to the outputs of the two
branches. This representation is used to
discriminate between bona-fide and spoofed
speech.

2.2 wav2vec 2.0 Representations

wav2vec 2.0 leverages self-supervised learning to
derive informative and high-level speech
representations directly from raw audio input. Its
architecture consists of two primary components: a
convolutional feature extractor and a Transformer-
based contextual module. The convolutional
encoder transforms the input waveform into a
sequence of latent vectors that capture fine-grained
acoustic details. These latent features are
subsequently processed by the contextual module,
which employs self-attention mechanisms to
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detection.

model temporal dependencies across the sequence,
resulting in contextualized embeddings that reflect
both short- and long-range speech characteristics.
The model is pretrained using a contrastive
objective, where segments of the latent sequence
are masked and the network learns to distinguish
the true representation from a set of distractors
based on surrounding context. This training
strategy enables wav2vec 2.0 to acquire phonetic
and semantic knowledge from unlabeled speech
data, making the learned representations broadly
applicable to downstream tasks such as automatic
speech recognition, speaker verification, and
spoofing detection.

3 Speech Rule Generation via wav2vec
2.0-Based Attention

Unlike previous studies that directly utilize
wav2vec 2.0 features as input to classification
models, this work explores the use of wav2vec 2.0
representations to learn the underlying speech rules
present in bona-fide speech. We hypothesize that
spoofed speech introduces inconsistencies or
deviations from these learned regularities. By
identifying such rule violations, the proposed
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The proposed wav2vec 2.0-based attention network for high-level feature extraction in voice spoofing

approach aims to enhance the accuracy of voice
spoofing detection. The proposed wav2vec 2.0-
based attention network for high-level feature
extraction as depicted in Figure 1.

3.1 wav2vec 2.0-Based Attention

Initially, wav2vec 2.0 is used to extract hidden
states s from the raw training audio, where s €
R™*L denotes a sequence of T time steps, each
represented by an L -dimensional feature vector.
These representations are then passed through N
Residual Blocks for feature transformation.
Assuming the py = s, the standard transformation
performed by each Residual Block is defined as
follows:

Pi+1 = F(F(0i; Kin); Kiz) + pi (1)
where F(-) denotes a 2D convolutional layer
parameterized by kernel Xy, and each input of
F () is nonlinearly transformed by a composite
function consisting of batch normalization
followed by the scaled exponential linear unit
(SELU) activation.

After that, the feature size of py and the raw
audio after encoder processing are different, we



Layer Input shape  Output shape
Raw audio - (64600)
Wa2vec 2.0 (64600) (199, 768)
hidden states
Expand dim (199, 768) (1, 199, 768)
ResBlock A x2 (1,199,768) (Cy, 199, 768)

ResBlock Bx 4 (Cy, 199,768) (C,, 199, 768)

Conv2D (C5,199,768)  (C3,29,69)
kernel: (7, 11)
stride: (7, 11)

BN - -

MaxPool (C,, 29, 69) (Cy, 29, 23)
kernel: (1, 3)

Softmax dim=1 (Cy, 29, 23)

Hybrid High-Level (Cs, 29, 23) (C,, 58, 23)
Features combine R, F

Table 1: The speech rule generation architecture for
voice spoofing detection.

apply local convolution and max pooling to
compress the size of py to match the encoder
output size.

T = MaxPool(BN(F(pn))) (2)
eTC,t,f
Porf= o——s—
MR el 3)

where MaxPool(+) is max pooling, BN(-) is batch
normalization, and P € R*T*F can be defined as
the attention weights employed to regulate speech
rules.

3.2 Hybrid High-Level Features

Since P is the attention weights derived from the
hidden states of wav2vec 2.0, we further apply an
element-wise product between P and the encoder
output F to generate the corresponding speech
rules.
R=PQOF @)
Finally, the speech rule R is used as auxiliary
features and concatenated with F to obtain the

hybrid high-level features. The size for each layer
is illustrated in Table 1.
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4 Experimental Results

4.1 Data Preparation

In alignment with the data preparation
methodology outlined in (J.-w. Jung et al., 2022),
all experiments in this study are conducted using
the LA partition of the ASVspoof 2019 dataset (M.
Todisco et al., 2019). The dataset is divided into
three distinct subsets: training, development, and
evaluation. The training and development subsets
include spoofed speech generated using six known
attack algorithms (A01-A06), while the evaluation
subset extends this with an additional set of seven
attack methods (A07-A19). Furthermore, the
ASVspoof 2021 (J. Yamagishi et al., 2021)
evaluation set is used to evaluate the cross-corpus
performance of the proposed voice spoofing
detection method.

In  this paper, we
“facebook/wav2vec2-base-960h” model, a
Transformer-based architecture designed for
speech representation learning. The model is
pretrained in a self-supervised manner on 960
hours of unlabelled audio from the LibriSpeech
corpus and later fine-tuned for automatic speech
recognition tasks. Its structure consists of a
convolutional feature extractor followed by twelve
Transformer encoder layers, enabling the model to
capture hierarchical representations of speech
signals. We extract hidden states from both
intermediate layers and the final layer. The
intermediate layers are known to preserve more
acoustic-level and phonetic information, making
them well-suited for tasks that require detailed
speech characteristics such as prosody, speaker
traits, or subtle temporal variations. In contrast, the
final layer tends to encode high-level semantic
features aligned with the ASR objective, capturing
more abstract linguistic content but potentially
discarding lower-level acoustic cues.

employ  the

4.2 Experimental Setup

In our experiments, we adopt lightweight variant
AASIST-L as the backbone architecture, following
the experimental setup outlined in (J.-w. Jung et al.,
2022). The input to the model consists of raw audio
waveforms with a fixed length of 64,600 samples,
corresponding to approximately four seconds of
speech. No data augmentation techniques are
applied during training, ensuring that all models
are trained on the original waveform data without
synthetic variation. Model training is conducted



min

System A07 A08 A09 A10 A11 A12 A13 Al4 Al5 A16 A17 A18 A19 EER -DCF
RawNet2 [13] 9.8 179 73 89 42 88 20 13 73 46 2.4 629 58 554 0.1547
RawGAT-ST [14] 1.19 0.33 0.03 1.54 0.41 1.54 0.14 0.14 1.03 0.67 1.44 3.22 0.62 1.19 0.0333
AASIST-L (reproduced) 0.45 0.34 0.02 0.63 0.34 0.69 0.19 0.23 0.53 0.42 1.96 2.97 0.88 1.14 0.0316

RULE-AASIST-L
0.77 0.16 0.02 0.90 0.16 0.79 0.12 0.10 0.42 0.57 1.18 2.34 0.87 0.86 0.0282

(proposed)

Table 2: EER (%) and minimum t-DCF results for baseline and proposed model on the ASVspoof 2019 LA
evaluation set.

® spoof
bonafide

® spoof
bonafide

(A) AASIST-L

(B) RULE-AASIST-L

Figure 2: The distribution of output features from the last hidden layer of different models visualized using t-

SNE, based on 240 randomly selected samples.

using the Adam optimizer with a batch size of 24
and a total of 100 training epochs. The objective
function used is categorical cross-entropy loss.

As demonstrated in the study by (X. Wang and
J. Yamagishi, 2021), the performance of spoofing
detection systems can vary considerably
depending on the choice of random seed due to the
inherent stochasticity of the training process. To
ensure a fair and robust evaluation, all experiments
in this work are conducted using three different
random seeds. In the experimental analysis, this
paper reports the best result obtained from model
training conducted with three different random
seeds.

To evaluate system performance, we adopt two
widely used metrics: the minimum tandem
detection cost function (min t-DCF) and the equal
error rate (EER).

4.3 Voice Spoofing Detection Results

The results are summarized in Table 2. Compared
to the baseline systems, the proposed RULE-
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AASIST-L. demonstrates significantly improved
performance. Under the same backbone
architecture and experimental setup, RULE-
AASIST-L achieves a relative improvement of
24.6% in EER (i.e., 0.86% vs. 1.14%) and an
10.8% reduction in min t-DCF (i.e., 0.0282 vs.
0.0316), highlighting the effectiveness of the
proposed method. On the other hand, Figure 2
illustrates the distribution of the output features
from the last hidden layer of different models. It is
evident that the proposed RULE-AASIST-L model
yields more compact distributions for both spoof
and bonafide classes compared to the AASIST-L
baseline. This indicates that the RULE-AASIST-L
model can more effectively distinguish between
genuine and spoofed speech.

The results indicate that RULE-AASIST-L
successfully leverages the attention generated
during model training to define bona-fide speech
rules. These learned rules help identify
inconsistencies in spoofed speech, thereby



System EER min t-DCF
RULE-AASIST-L 0.86 0.0282
/o F in the high-level feat
w/o F in the high-level features 154 0.0468
S
Use only P as the high-level
2.80 0.0830

features S
Replace wav2vec 2.0 hidden
state extraction from layer 6 1.29 0.0371

with layer 12

Table 3: Results for ablation studies on AASIST-L

backbone.
ASVspoof 2021
evaluation set
System min
EER t-DCF
AASIST-L 13.65 0.4574
RULE-AASIST-L 1291 0.4347

Table 4: EER (%) and minimum t-DCF results for
baseline and proposed model on the ASVspoof 2021
LA evaluation set.

enhancing the system's voice spoofing detection
capabilities.

Notably, the proposed approach does not
directly use the wav2vec 2.0 features as input to the
spoofing detection model. Instead, it employs these
representations to construct speech rules, which in
turn modulate the output of high-level features F.
This indirect usage of wav2vec 2.0 features
contributes to the strong performance gains
observed. As a result, the method opens promising
directions for future research on using self-
supervised representations to guide rule-based
structures in voice spoofing detection.

4.4 Ablation Study

Table 3 presents the results of ablation experiments,
in which individual components of the AASIST
model are either removed or replaced. The results
show a clear drop in performance when only the
speech rule R is used as the high-level
representation S. This performance degradation is
attributed to the fact that R, while effective in
modeling sequential consistency, lacks the rich
acoustic information contained in the original
high-level features F, making it insufficient on its
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own for effective spoofing detection. Similarly,
replacing S directly with attention weights P
results in an even more significant decline in
performance. This suggests that attention weights
alone, without the support of learned feature
representations, are inadequate as standalone
features.

Finally, we examine the effect of changing the
source layer for feature extraction within the
wav2vec 2.0 encoder. When the hidden states are
extracted from layer 12 (the final layer) instead of
layer 6 (an intermediate layer), a noticeable
performance drop is observed. This can be
explained by the representational nature of the final
layer, which is optimized for ASR and tends to
encode more abstract semantic features. While
such features are wuseful for linguistic
understanding, they often lack the lower-level
acoustic cues that are critical for spoofing detection,
thereby reducing detection effectiveness.

4.5 Cross-Corpus Evaluation

In this experiment, the ASVspoof 2021 LA
evaluation set was further used to evaluate the
cross-corpus performance of voice spoofing
detection as shown in Table 4. It is evident that
training solely on the ASVspoof 2019 training set
and evaluating on the ASVspoof 2021 evaluation
set leads to an increase in EER due to data
mismatch. Nevertheless, the proposed RULE-
AASIST-LL. model consistently outperforms the
baseline AASIST-L, demonstrating that the
wav2vec 2.0-based attention mechanism remains
effective in improving the performance of voice
spoofing detection in cross-corpus evaluations.

5 Conclusions

This work introduces RULE-AASIST-L, a rule-
aware voice spoofing detection framework that
utilizes attention-derived speech rules based on
wav2vec 2.0 representations. By modeling the
correlation between acoustic features and attention
weights, the proposed method captures rule-based
inconsistencies introduced by synthetic speech.
Unlike previous methods that treat wav2vec 2.0
features as direct inputs, our approach exploits
these representations to guide the learning of bona-
fide speech patterns, thereby improving detection
robustness. Experimental results on the ASVspoof
2019 LA dataset confirm the effectiveness of our
method, with substantial performance gains over



baseline systems. Ablation experiments further
underscore the importance of rule modeling and
the choice of representation layer, showing that
intermediate-layer features (e.g., layer 6) retain
richer  acoustic cues than  final-layer
representations. In the future, this study opens new
directions for integrating self-supervised learning
and rule-based reasoning in the field of voice
spoofing detection, and we plan to further
investigate the possibility of utilizing the
constructed speech rules during the inference stage
without relying on wav2vec 2.0 features. One
potential direction involves integrating alignment
search and a flow-based module to generate
approximated wav2vec 2.0 representations during
inference, thereby eliminating the need for direct
feature extraction from the original model.
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Abstract

This study presents a quantitative analysis
of pause-duration patterns in a Mandarin
spoken corpus to establish a baseline for
prosodic and cognitive assessment.
Drawing on cross-linguistic research, the
distribution of pause patterns is viewed as
reflecting multiple underlying factors.
Longer pauses aligned with prosodic and
syntactic  boundaries indicate more
deliberative and planned discourse rather
than spontaneous speech. Such settings
place higher demands on cognitive and
articulatory planning, producing extended
thinking time as speakers handle complex
topics and specialized terminology.
The spoken corpus was automatically
processed and annotated using an in-house
alignment and pause-tagging pipeline.
Outlier detection with a 3.0XIQR threshold
retained 35,474 tokens and removed
extreme values exceeding 1,016 ms. Short
and medium pauses remained stable across
mean, median, and variability measures,
while long pauses showed a moderate
reduction (16,436 to 15,420 tokens), with
mean duration decreasing from 535 to 426
ms and standard deviation sharply reduced
from 786 to 169 ms, while the median
stayed around 370-380 ms. These findings
demonstrate that automatic cleaning
primarily removed aberrant values while
preserving linguistically meaningful long
pauses. This baseline from non-impaired
adult speakers underscores the need for
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corpus-specific frameworks and offers a
reference point for cross-linguistic research
on speech planning.

Keywords: Pause Duration, Speech Disfluency,
Computational ~ Approaches, Taiwan Mandarin,
Spontaneous Speech, Quantitative Analysis

1 Introduction

Speech pauses and silences have been recognized
as integral components of spoken interaction,
reflecting cognitive processing, social norms and
communicative strategy rather than mere absences
of sound. Once viewed as interruptions, these
pauses are now understood to serve important
semantic, pragmatic and cognitive functions
(Saville-Troike, 1985; Zuo, 2002). Socio-
pragmatic studies have emphasized that silence,
hesitations and pauses serve diverse interactional
functions beyond turn-taking. For instance, Ephratt
(2007) categorized pauses into four types including
stillness, planned pauses, silencing and eloquent
silence, highlighting their role as meaningful
communicative acts. Similarly, Olaoye (2020)
offered a typology of silence, including stillness,
pauses, eloquent silence and judicial or
commemorative silence, showing how these forms
operate as communicative tools to express respect,
humility, self-control, and conflict avoidance. By
situating silence within sociolinguistic and
pragmatic theory, these studies highlight silence as

Proceedings of the 37th Conference on Computational Linguistics and Speech Processing (ROCLING 2025), pages 116—123
November 20-22, 2025 ©2025 Association for Computational Linguistics



a culturally and religiously embedded strategy with
perlocutionary effects on interlocutors.

Building on this foundation, research on
hesitation phenomena and filler use has offered
valuable insights into language production
processes. Modeling how speakers manage
planning and execution through hesitations and
disfluencies can inform both human—computer
interaction and clinical applications. Grosjean and
Collins (1979) long ago provided early evidence
that speakers adjust breath and pause placement in
read speech to match pre-planned syntactic
structures, further linking silent pauses to
deliberate production planning. A segment of
silence exceeding 150 milliseconds in duration was
classified as a speech pause (Maassen & Povel,
1984; Hammen et al., 1994). Moreover, a number
of corpus studies of academic speech suggested
that a relatively high proportion of long pauses
align closely with prosodic or syntactic boundaries.
This pattern is reminiscent of formal or highly
prepared speech genres such as reading aloud and
political speeches (Duez, 1982; Grosjean & Collins,
1979; Ferreira, 1993). Also, Ferreira (1993) argued
that prosodic planning, rather than purely syntactic
parsing, governs pause insertion, especially at
sentence ends, a view echoed by Krivokapi¢ et al.
(2020), who treated grammatical pauses as
anticipatory prosodic boundary events. Zellner
(1994) also emphasized the close link between
pauses, prosody and information packaging. In a
prepared speech, pauses are more structurally
aligned and semantically functional. Other work
also confirmed style-sensitive variation where
Gustafson-Capkova et al. (2001) observed
systematic differences in pause placement,
frequency and duration across spontaneous
dialogue, amateur reading and professional
broadcasting. In the latter, pauses were shorter, less
frequent and more tightly aligned with syntactic
boundaries, consistent with higher planning and
rhetorical control.

In terms of pause patterning, Campione and
Véronis (2002) compared pause patterns in read vs.
spontaneous speech across five languages and
found that read speech exhibited a more regular
bimodal distribution of short and medium-length
pauses. In contrast, spontaneous speech introduced
a third mode, which showed rather long pauses
(often >1000 ms), typically associated with
hesitation, lexical search, or real-time syntactic
planning. This suggests that formal and pre-
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planned speech tends to contain longer structurally
aligned pauses, while extremely long pauses are
characteristic of high planning load in spontaneous
dialogue. In their studies, a methodological caveat
emerges when setting the lower boundary of “long
pause” at >250 ms: such a threshold may conflate
two functionally distinct phenomena including
boundary-aligned silences in formal registers and
hesitation-induced delays in spontaneous speech.
It is critical to distinguish these planned boundary-
aligned pauses from extremely long pauses that
more likely reflect spontaneous cognitive planning
difficulties (Campione & Véronis, 2002). Sturm
(2023) further compared news reading with poetry
reading and demonstrated that pause patterns are
shaped not only by genre but also by the underlying
text structure (explicit vs. implicit cues),
highlighting how increasing planning demands and
formality elevate discourse-based pause control.
Computational and empirical approaches have
sought to model disfluencies and pause phenomena
in large-scale speech data. Aijmer (2011) and
Crible (2017) utilized prosodic features as cues to
indicate the presence of prosodic markers. Betz et
al. (2020) investigated the form, function and
modeling of disfluencies, especially hesitations, in
human speech and their integration into spoken
dialogue systems, providing empirical data on the
frequency, distribution and acoustic characteristics
of silent and filled pauses. Similarly, Wan and
Allassonniere-Tang (2021) present a connectionist
model of Mandarin speech production to examine
how word frequency and position within an
utterance influence the occurrence of speech errors,
using corpus-based data and computational
simulations. Zhang (2024) further applied
quantitative methods to spontaneous speech
corpora to uncover sociolinguistic variation linked
to speech planning. These findings suggested that
features such as pause duration, frequency and
distribution can support speaker-state detection
and automatic speech processing, extending the
relevance of pause research beyond linguistics into
computational and even forensic applications.
Clinical and cognitive research has increasingly
begun to explore pauses and silences as sensitive
markers of neurological and cognitive status. Imre
et al. (2022) analyzed silent pauses, hesitations and
irrelevant utterances in phonemic and semantic
fluency tasks, demonstrating that silence-related
parameters such as the length of pauses can
effectively differentiate between individuals with



mild cognitive impairment and healthy controls. In
a complementary study, Sluis et al. (2020)
presented an automated approach to analyzing
pausing behavior in the speech of people with
dementia using the Calpy open-source speech
processing toolkit. They found progressive
increases in pause duration and proportion of
silence across groups, alongside a rise in very long
pauses (=2000 ms) and decreases in total speech
duration and mean phrase length, demonstrating
that automated pause detection can effectively
capture speech disfluencies associated with
dementia and support future diagnostic and
communication research.

Therefore, these strands of research indicate that
pauses and silences are multi-layered phenomena
bridging sociocultural, cognitive, and
computational domains. However, despite
substantial advances, most of this work has been
conducted on English or other major European
languages, and there remains a paucity of
comparable studies in Mandarin. Chen et al.(2022)
further examined how discourse functions are

reflected through phonological or acoustic features.

However, there is still a lack of integrated corpora
that combine detailed pause-duration
measurements from healthy speakers with the
methodological —rigor necessary for later
comparison to clinical populations. Existing
studies either focus on the qualitative or
typological aspects of silence, or they apply
automated methods primarily to clinical or task-
based data without establishing a robust baseline
from non-impaired speech in naturalistic settings.
Therefore, this study aims to fill this gap by
constructing a quantitative corpus-based resource
of pause duration in Taiwan Mandarin, providing a
robust baseline of silent and filled pauses in
naturalistic speech. This corpus not only enables
direct comparison with existing English-language
studies but also lays the groundwork for future
research on aging and clinical populations.

In this paper, we address this gap by
constructing a speech-pause corpus that provides
high-quality and time-aligned pause data from
non-impaired speakers. This corpus is designed to
support cross-sectional and longitudinal analyses
of pause duration and distribution. By combining
socio-pragmatic insights with computational
modeling and corpus-based methods, our approach
aims to advance both theoretical understanding and
practical applications of pause analysis in
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naturalistic speech. Ultimately, we envision that
this resource can be extended to high-risk and
aging populations, enabling comparative research
on pause behavior as an indicator of cognitive and
communicative change in the near future.
Questions to be investigated include the following:
1.  How can a dedicated speech-pause corpus
of non-impaired speakers be designed and
annotated to capture detailed pause-
duration information across spontaneous
speech?
To what extent do pause-related
parameters, such as number of pauses,
average pause length or distribution,
provide a reliable baseline for future
comparisons with aging and clinical
populations?
How can insights from socio-pragmatic
studies of silence and computational
modeling of disfluencies be integrated to
improve the automatic detection and
classification of pause phenomena?
In what ways can such a corpus support
cross-linguistic or cross-task analyses,
enabling the identification of
sociolinguistic variation and potential
early markers of cognitive decline?

2 Methodology

A subset of the corpus, totaling 16 hours, 8 minutes,
and 2 seconds, drawn from a larger 202-hour
multimodal Mandarin speech database, was
automatically annotated using Praat (Boersma &
Weenink, 2023-2025) for fine-grained analysis of
features such as fillers and silent pause-related
phenomena. This section outlines the participants,
data collection procedures, annotation schema and
analysis methods used in the study.

All participants were native speakers of Taiwan
Mandarin (N = 4; 1 male, 3 females; age range =
23-25 years, M = 24.2, SD = 0.7). Although the
corpus size used here is relatively limited, it was
intentionally designed as a controlled case study
focusing on young adult speakers with comparable
linguistic and cognitive profiles. The goal of this
study is not large-scale modeling, but to provide a
proof-of-concept analysis demonstrating how
automatic annotation can reveal pause and filler
patterns in naturalistic speech.

Recordings were made in controlled
environments using high-quality audio equipment.
The primary content comprises graduate-level



classroom settings, including instructor lectures
and interactive seminar-style discussions between
instructors and students. Notably, over 97% of the
annotated utterances showed no statistical outliers
in pause duration, indicating a high degree of
internal consistency and reliability in the dataset.
The combination of academic lectures, seminar
discussions, free conversations, and short
cognitive-linguistic exercises ensures a rich
distribution of spontaneous speech, encompassing
a wide range of pause types and speech planning
demands.

Drawn partially from graduate classroom
discussions, the corpus represents a semi-
spontaneous academic register rather than a fully
unplanned conversation. However, the speakers
produced their utterances without any prepared
script or reading material, and the recordings
capture natural pauses, hesitations and fillers
characteristic of spontaneous speech production.
This makes the data appropriate for a case study of

cognitive and prosodic pause behaviors in
controlled academic discourse, which
complements findings from more casual

conversational corpora.

Regarding the nature of our speech data, we
agree that some portions of the corpus (e.g.,
classroom lectures) may reflect a more deliberative
and planned register. However, these data were
chosen because they still involve spontaneous
verbal responses, turn-taking, and hesitations
typical of natural speech in academic contexts.

We employed an in-house automatic phonetic
alignment pipeline developed and refined over
several years in the laboratory, rather than relying
on open-source tools." This system, combined with
manual verification, allows for highly accurate
segmentation and annotation. Pauses are
operationalized as segments of silence or silent
pauses detected by our automated tagging
procedure. Each pause instance is annotated with
start time, end time, duration, and position relative
to syntactic boundaries. From these annotations,
we extracted the number of pauses, mean pause
duration and distributional patterns  from
spontaneous speech. Metadata included various

! The speech data were processed using a self-supervised
in-house phonetic alignment pipeline developed with Praat
scripting and custom Python routines, rather than relying on
forced-alignment toolkits. The system performs automatic
segmentation, boundary detection and iterative self-
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speakers, speech type and speech rate. These
measures in the future hope to provide a normative
baseline for future comparisons with aging or
clinical populations. Quantitative analyses include
descriptive statistics to identify pause-duration
profiles.

Pause duration was identified by detecting
segments of silence in the acoustic waveform.
According to Maassen & Povel (1984) and
Hammen et al. (1994), the data were categorized
based on two duration thresholds, which were 150
milliseconds and 250 milliseconds, resulting in
three distinct groups: pauses shorter than 150 ms,
pauses between 150 and 250 ms, and pauses
exceeding 250 ms.

3 Data Analysis

We first tested whether
altered the distribution
shown in Figure 1.

data cleaning materially
of pause categories, as
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Figure 1: Distributional characteristics of speech
pause duration in raw and log-transformed scales .
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Pause durations showed a pronounced right-
skewed, non-normal distribution (n = 36,490), with
a peak around 230 ms and a long upper tail. Long
pauses were disproportionately affected by outlier
removal: 1,016 long pauses were excluded,
reducing the mean from 535 to 426 ms (—20%) and
compressing the standard deviation (786 to 169
ms). These changes primarily truncated extreme
hesitations rather than altering the median (380 to
370 ms), suggesting that the core distribution of
boundary-aligned pauses remained stable. The
cleaned corpus therefore reflects a clearer

correction through acoustic feature learning, allowing cross-
linguistic adaptability (see Wan et al., 2024, for how Thai
preschoolers learn Mandarin). This study, however, does
not address prosody or intonation, as its primary focus lies
in the analysis of pause and hesitation phenomena within
spontaneous speech.



distinction between short/medium pauses, which
often aligned with prosodic or syntactic boundaries,
and very long pauses, which tend to index planning
or hesitation in spontaneous speech (cf. Campione
& Véronis, 2002). Because pause durations are
non-normally distributed, non-parametric methods
and median/IQR statistics are used. This approach
preserves linguistically meaningful contrasts
between routine boundary pauses and hesitation-
driven silences, while minimizing the influence of
outliers.
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Figure 2: Detection of outliers in pause durations

In Figure 2, outlier detection analysis revealed
substantial upper-tail extremes requiring data
cleaning prior to modeling. Using the 3.0xIQR
method (threshold ~1,016 ms) alongside a
modified Z-score approach (|z| > 3.5), we identified
approximately 3% of pauses as outliers. In contrast,
the standard 1.5%IQR criterion flagged over 7% of
pauses, which was deemed overly restrictive for
preserving natural speech variability. Frequency
analysis of the central 95% of data showed a right-
skewed distribution peaking around 200-300 ms,
consistent with known pause distributions in
formal and semi-formal speech. By selecting the
3.0xIQR criterion, we retained linguistically
meaningful long pauses while trimming only
extreme hesitation events, resulting in a final
dataset of 35,474 observations capped at about one
second. This procedure preserves the contrast
between short/medium pauses—often aligned with
prosodic or syntactic boundaries—and very long
pauses, which tend to index planning or hesitation
in spontaneous speech (Campione & Véronis,
2002).
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Figure 3: Impact of outlier removal on speech
pause duration distributions.

As shown in Figure 3, outlier removal using the
3.0xIQR threshold produced minimal impact on
the central distribution while substantially
reducing extreme variability. Median pause
duration remained essentially unchanged (=230
ms), while the interquartile range decreased
moderately, indicating that core pause behavior
was preserved. The most pronounced effect was
the elimination of extreme upper outliers without
distorting the underlying distribution. Short pauses
(<150 ms; n=9,767) and medium pauses (150-250
ms; n=10,287) were unaffected by data cleaning,
retaining virtually identical means, medians, and
standard deviations. In contrast, long pauses (>250
ms) showed the largest adjustment (n reduced from
16,436 to 15,420), with mean duration decreasing
from about 535 to 426 ms and standard deviation
sharply reduced, while the median shifted only
slightly (380—370 ms). This selective effect
confirms that the procedure primarily targeted
aberrant values in the upper tail while preserving
linguistically meaningful pause patterns. Short and
medium pauses continue to represent routine
boundary-aligned silences, whereas the cleaned
long-pause category better reflects legitimate
planning-related  hesitations  rather  than
measurement noise, aligning with established
pause typologies (Campione & Véronis, 2002).

Speech Pause Distribution (Cleaned Data)

Short (<150ms)

Medium (150-250ms) 7.5%
29%

Percentage (%)
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43.5%

Figure 4: Speech pause distribution by duration
category following data cleaning.

The present analysis revealed a distinctive pause
distribution pattern that deviates substantially from
typical conversational speech norms reported in
the literature (Figure 4). The observed
distribution—short pauses (<150ms): 27.5%,
medium pauses (150-250ms): 29.0%, long pauses
(>250ms):  43.5%—contrasts markedly with
expected ranges where short pauses typically
comprise 40-60% and long pauses 10-30% of total
pause events. This inverted pattern, characterized
by a predominance of long pauses and relative
scarcity of brief hesitations, suggests speech
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production involving heightened cognitive
processing demands rather than spontaneous
discourse.

Several factors may account for this
distributional profile. The elevated proportion of
long pauses likely reflects deliberative speech
planning processes, indicating that speakers
engaged in more cognitively demanding language
production requiring additional processing time for
lexical access, syntactic formulation, or discourse
organization. The reduced frequency of
micropauses and brief hesitations suggests less
spontaneous, more controlled speech output
characteristic of formal register or task-specific
contexts. This pattern is consistent with speech
elicited in academic interviews, formal
presentations, or complex narrative tasks where
speakers prioritize accuracy and coherence over

fluency.

The linguistic implications extend beyond
simple temporal measurements to suggest
fundamental differences in speech production
mechanisms. The predominance of longer
articulatory timing intervals may indicate
enhanced monitoring  processes, increased
attention to phonetic precision, or elevated
cognitive load associated with L2 speech

production or specialized discourse domains.
These findings underscore the importance of
considering contextual factors when interpreting
pause patterns and highlight the need for corpus-
specific normative data in prosodic boundary
analysis.

Within-category frequency analysis revealed
distinct distributional characteristics across pause
types in the cleaned dataset (n = 35,474), as shown
in Figure 5. Short pauses (<150ms) exhibited a
right-skewed distribution with modal frequency
around 80-90 ms and high consistency between
median (80.00 ms) and mean (83.32 ms),
indicating minimal internal variability. Medium
pauses (150-250ms) demonstrated the most
symmetric distribution with peak frequency at 200
ms and perfect convergence of median and mean
values (200.00 ms), reflecting highly standardized
phrase boundary timing. Long pauses (>250ms)
showed pronounced right skew with median
(370.00 ms) substantially lower than mean (426.24
ms), indicating considerable internal heterogeneity
despite outlier removal. The long pause category
maintained an extended upper tail reaching the
1,016 ms threshold, suggesting that even within
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linguistically ~ valid boundaries, substantial
variation exists in processing-related articulatory
timing intervals.

Short Pauses (<150ms) Distribution
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Figure 5: Frequency distributions of speech pause
duration by category following outlier removal.

This figure effectively demonstrates that the three-
category classification captures fundamentally
different pause phenomena, with each category
showing distinct statistical properties that justify
separate analytical treatment.
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Figure 6: Comparative box plot distributions of
pause duration categories in cleaned dataset.

Box plot comparison across pause categories
confirmed distinct non-overlapping duration
ranges with varying internal distributions
following data  cleaning.  Short  pauses
demonstrated tight clustering with median at 80.00
ms, narrow interquartile range (51.14-110.00 ms),
and minimal outliers, indicating highly consistent
micropause timing. Medium pauses exhibited the
most compact distribution with median at 200.00
ms and symmetrical quartile spacing (174.36-



225.64 ms), reflecting standardized phrase
boundary durations. Long pauses showed the
greatest variability despite outlier removal, with
median at 370.00 ms, expanded interquartile range
(290.91-481.09 ms), and extended upper whiskers
reaching the 1,016 ms threshold. The clear
separation between categories validates the
literature-based classification scheme, while the
progressive increase in variability from short to
long pauses reflects the transition from automated
articulatory timing to cognitively-mediated
processing intervals.

This box plot effectively summarizes the key
finding that the three categories represent
genuinely distinct pause phenomena with different
underlying timing mechanisms.

For word-level pauses labeled sp, cleaning
produced a small but reliable shift in category
composition: the proportion of long pauses
decreased by 1.58 percentage points (from 45.04%
to 43.47%), with corresponding increases in short
(+0.77 pp, from 26.79% to 27.56%) and medium
(+0.81 pp, from 28.17% to 28.98%). The
association between dataset (Original vs. Cleaned)
and category was significant, y*> (2) = 18.10, p =
1.17x10%, Cramér’s V = 0.016 (small effect).
Because the cleaned set is a subset of the raw set,
this test quantifies a composition shift rather than
independence.

The significant change is expected given the rule
that removes extremely long pauses; the effect size
is small (V=0.016), indicating that cleaning mainly
trims the right tail without materially altering
central tendencies. Substantively, inferences about
typical pause behavior should remain stable, while
metrics sensitive to heavy tails (e.g., variance,
mean) become less influenced by outliers. For rigor,
if token-level retention flags are available, a
paired/marginal-homogeneity test can confirm the
finding; additionally, a sensitivity analysis across
alternative cutoffs (e.g., 800-1,200 ms) can
demonstrate robustness.

4 Conclusion

Based on cross-linguistic research findings, the
distinctive distributional pattern observed in this
Chinese corpus likely reflects several underlying
factors. The speech production characteristics
suggest more deliberative and planned discourse,
potentially originating from formal or academic
contexts with reduced spontaneous rapid speech.
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The cognitive processing patterns indicate
increased demands for articulatory planning, with
language production involving extended thinking
time that may reflect topic-specific complexity or
cognitive load.

The data collection context provides an
interpretive framework for these findings. The
corpus appears to derive from structured
interactions such as interviews, presentations, or
academic discussions, where speakers engage with
specialized content requiring careful formulation.
Notably, the speakers may represent non-native
Chinese users presenting advanced academic
material, a context that inherently promotes more
cautious speech production with extended
processing intervals. This linguistic environment
naturally facilitates longer pause durations as
speakers navigate complex conceptual material
while managing potential language proficiency
constraints.

These findings underscore the importance of
contextual factors in prosodic boundary analysis
and highlight how discourse demands, speaker
characteristics, and communicative settings
interact to shape temporal speech patterns. The
results provide valuable baseline data for
understanding pause distributions in formal
Chinese academic discourse and demonstrate the
necessity of corpus-specific normative frameworks
for cross-linguistic prosodic research.
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HE
ERBFZEEER T 2EAEEH Tk
ZFARRREFHE  PARBUOHE
BEHRAHR FARZAHHH LT
AARZBZRANEREHZ — AUAR
P IXAREARBZLY LR - BAN
BB A A R AT K AL
PR ZR S TEA R EFERT
RERAE o B AU —AE LA
BN HTEBEA (hidden Markov model *
HMM) #F C#aE B 3888 75 0% > F3eE
4R eh & A BAZR HMM R RZHE > 2
HE L] S P R AL B SR GE B A Rk R
Z MBI BB A o B SR RB R
BERAEE MB—ERBAGHHERAY
A% BT AREERRIK - BRAW » 2
AFEAML KFEBEANHE S 28V~
HHEAREN BB ERGL BRI F L
BAEHE > P EFEHYE S HEILER
RGBSR BRSO EABAIEE -

Abstract

Spelling errors in Chinese idioms fre-
quently occur due to various types of mis-
spellings and optical character recognition
errors in daily learning and usage. Achiev-
ing automatic error correction for Chinese
idioms is one of the important natural
language processing tasks, as it helps im-
prove the quality of Chinese texts as well
as language learning. Existing methods,
such as edit distance and custom dictio-
nary approaches, suffer from limited error
correction capability, low computational ef-
ficiency, and weak flexibility. To address
these limitations, this paper proposes a
novel automatic error correction method
for Chinese idioms based on the hidden
Markov model (HMM). Specifically, the
generation process of idiom spelling errors
is modeled using an HMM, transforming
the idiom correction problem into a match-
ing task between erroneous idioms and le-
gitimate idioms. By constructing a legit-
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imate idiom table and a Chinese charac-
ter confusion set, a prototype system for
idiom correction was developed, and per-
formance testing was completed. FExper-
iment results demonstrate that the pro-
posed model is simpler with fewer parame-
ters and has lower computational complex-
ity while exhibiting stronger error correc-
tion capability and parameter robustness
as compared to existing methods. It can
more flexibly correct diverse types of idiom
errors, showing high potential application
value.

Mg @ PXHE -~ aH 8 - ERXEHT
R

Keywords: Chinese idiom, Automatic er-
ror correction, Hidden Markov model

1 &

PXRERERFEHOLFZ— LELE
Ao RBTEENFRRE L F o HE
(idiom) AIEAMME R FAEFRBPHRERR
B4EERAES)  ME S MEE S A RER B
o~ BRE S BRRE S 55E K E >~
Léj %k R mAREEHBE R AEE
FoERFEYAERAE R EABEH
Ro FROBZEHEHRRLR  FUAMF - R
FFEEFF AR F AP R AR
5 REERRABEFEHE X FRAF o 51
REAPIREADH G TAREST R
WA B — o B P UEAR ~ BA
PILAREELAE

A A B AZ ~ BB G 2 Atk R 43 e AL
Ao EHBEREHEHANAEALR A B
Tk B —REETHNESELERARNY T
THBEAHPHEEEAFTE - KMV ELRRA
AIEH X HTXREA (hidden Markov model »
HMM) 235 & %% F 4 89 J& A (Rabiner,
1989) © /& 4t #7823 (isolated words) #)3&
FHERT 0 HMM B A ZRE TR IG5

= %
IS
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Transformation

Correct  Error  Position

Error Correction  Letter Letter  (Letter #)  Type
acress  actress t — 2 deletion
acress  cress — a 0 insertion
acress  caress ca ac 0 transposition
acress  access @ r 2 substitution
acress  across o e 3 substitution
acress  acres — s 5 insertion
acress  acres — s 4 insertion

. 28 == > 5 iy B2 >

Figure 1: $14%3%7%% acress % IEAE B 1 89 &% 1%

EF 7 o ME A (Jurafsky and Martin, 2024) #9
Appendix B

FIAFB o ) R AR 6K RG9S A R A R A R
FHE BEHGHIAEF R ENFZBRT
HATHEK o Lin et al. (2012) ¥4 A HMM 4
PER BRI BFAHEREZGHEREY A
%o R E A HMM B A £ 354 9Fk P 09 e
A& E Bl T4 o HMM B2 & 0 B 7 7] 9
TP BT RS0 E A f AR B K KRB
TEEERAEH L o

AAOREBHEAHMET X T2AR
o F—MAKRABEIEHE (edit distance
A% Damerau-Levenshtein ¥£#) (Hodge and
Austin, 2003; Wang et al., 2014) 8 7% ik » &
Fh % LB FH A (Jurafsky and Martin,
2024; Norvig, 2016; Revathi et al., 2023) > [
% AL R 744K 35 (Varlamova et al., 2023) ~ &
A 3i3% (Khairul Islam et al., 2019) ~ 4 @) 35
(Mon et al., 2021) ~ ¥? Z R & &3 (Soleh and
Purwarianti, 2011) ~ ¥F 3635 (Jain and Jain,
2014) FRF 84 o LG BT ERB LR G
R 0 kBRI ARG VT RLSIAE B AR
Fo EmeeFARRTET SRR o L
P o 45 3E AT 48 F U4 (insertion) ~ F
LMk (deletion) ~ FUH# (substitution)
A AR F R4 U (transposition) #F & ARAE
BRE o WwBI1FTT o R > dAMEE R K
N G 98 FE AR 0 38 e ZRAE R K A
FAFTARREEAR D RBEREGH S S
R LB 2B E KRG RA o

BoAEA RERFLT K R AT R T
7] LAY SR P R AL SR 69 EAE T 0 A
SERFN M P AgAR R — AT IS o AR
Bl &M 3] Word # A B RH GRE
% (Microsoft-Corporation, 2025) 9 i35 #| 44
e W B2FT T o R AT HRBRED
WM SR B G HR R EEMRK > &4
B A TR o flde o RIZE2693 3L > R K RE
Ay Tk be# ) B ER NKEEE
fe kst Tk beE ) BT84 BE
w3 ORGSR Tk EEE | 18 —43R5 o

SHRAA T EAENER) AR RRES
P @ ey R R HAUERN HMM #EEY
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BENXIE

| BBRE HPEHKE BDAREHERERX SBEARE  BfF

M BTRERRERERHH)

M EEATMEREXFEARNERQ)
M EXFE-BFEAROS)

M =EEERE-BEXFEAR(QO)
M EXEHE-EFEARN)

M EEBSMET Caps Lock SHIFEER(L)

BISHE)...

M BgmitFe0

BAR): ALAS (W) &F(P) B 7

M ERHFRENEBRENEG)

’E HUH

Figure 2: #$k2 3 Word A KBH EmE S R
% & OE O AR M Sk 69 8532 B o BB B : Microsoft
Word -> # £ -> £ > K37 -> AHKREEAE
> A#HRIE

FH—RAPLRAZAHLERBER T E > UM
A S AR 0 B R 48R AR R A EE R
AL E o RATH AR T ¢

1) AFEHEAE ~ M7 2 Aok R & F
HARA EHASFPIRBHHEEA EH
HMM A7 i 47 B R 2 A fo L AR o

2) £ R AERARF > #4 HMM AL A 69 $345
MR AR F NS B YRRTY
WEkE BRI AR XEAR
by A I M Ao T FRAE M o

3) AN BB SL T EAL o Ko
EEEMER > THETERAAY NP LHE
1 R4E3% s mMABRABBEY FEF LA
M e R AEAEER o

4) LA AR RPN LGERGE T EAAk s K
TR RN B 3% > T B RATE P AL
WSk 09 4 2 43R 7 o

5) AT AR R EEA B E - A0 Y
SHMEE - THEME > TRETRE Rep
B R A G A MRER > TESRBRAAE
M3~ Bk~ BB BT FHFLHFNE
By ] SEAE TS o
2 Wkraik
2.1 HMM ##
HMM # % %47 # Leonard E. Baum ¥4 & »
#% K Lawrence R. Rabiner ¥ AT E A R
(Rabiner, 1989) o #% A & — 48 % & i #% @
o AAELKEEBAREREKRY - %k
B A 8 o d =T BLR F A 69 [ A% 8 A SR



KA PeB A2 0 AR B B (Zong, 2024) o

FHE > EARELAN=(N,M A B,7 &
A7 —MEHERCFAE HMM R A » S 884

1) FEEAR & EE N

2) ALK R EER M

3) A AESEM (transition matrix) A ° 3%
SEME NN ZR BF i 7% j Flu®
[Al;; R FERRZ ¢t WIEBKRE s, BHEAT
T ¢4+ 1 IREGRE 5; BRE

4) Ak R R (LR K FER - B
4t #% £ 4E 12 > observation/confusion/emission
matrix) B e #%EMRA N T M 7 £ 5 j 17
%k 3l E (Bl RTIEEFR ¢ b EEKE
s; AERAKE v, 89K F 3

5) W4 ¥ % & Z (initial probability vector)
ne e EXAREA N 9478 E (row vec-
tor) » £ % i BAE [n]; RTAEWEEFR
t=1 AHEATERKE 5, B9 o

HMM # & 3 & 3F 45 (evaluation) ~ f#
#5 (decoding) ~ @N% (training) F =18 %

A B A& (Rabiner, 1989; Zong, 2024 S‘camap7
2021) - b > A REM LA : & F HMM

ﬁﬂA:(MMABmy%%M%%Tw
0=010y0r° FTHREGZEATEAFT o
B 4% % Pr{o|\} o % PR T 4% A AT & % H &

(Forward Algorithm) #47KA% o ATATIR
89 75 FAFAL SR AE A R AL 3 R AR o

2.2 #H3EAH I LG HMM ZE#
AT F G N B & R RGE R T W PR 2
BN ELL AN HMM ER > @ b4k S
Yo fo] &3 3% B A8 HMM A 69 53¢ o
KAV AF W 509 5532 5 w A BB BIK &
7 Bl o HBt G HREG TR EREF] - R
HATAE R B9 & R AGEREA Naiom 18HFE
%4 THUOCL % & 3 Bt 89 & 7% A& & (Han

et al., 2016) £H Nigiom = 8519 1B R3E © 32
B on BEKIES Cn (TL =12,-- 7N1d10m) ’
%ﬁ%}ﬂﬂd%ﬂ
An = (NnaMmAnaBnann)- (1)
A N, EARMNKEFI w K EE
Pr{w|\,} o sbB¥ » —FE &30 89 Rk LB
Copt = argmax Pr{w|\,} (2)

B R AR s o X (2) PTARA 09 R
B s T A A 4R MR ST A A ok B Z B
B AR T o 1

TTRETEFEEALCREER - flde > H K
R copt = arg max, Pr{\,|w} > TR¥# Bayes Formula *
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Ak RER ! : ( #35-1-HMM —,—a« Pr{w|#:51} G

> Pr{w| %352}

) 1 a« Pr{w|#%i&n} —l
! et
( #35-N-HMM ;—J‘—a Pr{w| #35N}
\ D )
*::ﬁ% ————" £HMM
|| K ECp oy
R kAR H
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Figure 3: A7 HMM # A 69 F U335 B $ & 5%
EEHRTR

BT 89 B RE G o A B BB A R GERE T
HMM ##H %% (N, M,,,A,,B,,m,¥n} ° &
W FEREIEE RGEAE R SR R KT
M AR AR 7y o

Hoho BRMIFEAKEEE N, REES
FHFBc, WRE (e, 8208 FTEK) »
MRk R M, ZEELSKEFOME
o Blde» HEHF/ TREHL] 89 HMM
BRAEAE N, = 4 BEARKE 27 5
TR J~Td)~TH~T3k] s #EEF Unicode
BASEH 0x4E00 £ 0x9FA5 » £ A 20902 1B

SkET S HIE M, M,, = 20902 B8 B R 28 o

HR > RMVE R ATHGEHRLR - FPEF
TR TF o Bl T R 22
MET Kbt REFEHMAER B TR
Hidk | RAE TR ZEFH KR
M TRégxesb) RAE Tadibi) s TEF
f%?éa%’% 02 3@"‘7‘5—3}’& ? ﬁﬁ"gé%/éﬁﬁpfkkfa S
1 R SR EIEE A, A5 0 SEFHRAMEA
RAEMEER B, AT o

—,El-%grfn’é‘ ’ [An]z,z ?ﬁﬁ?é\/f,%@g% Cp, élj% 1
ﬂﬂ'}"i%’&iﬁhié ;9%‘%7}%'? [ n]w—i—l %ﬁ’l—_a
FERGE e, B BFAEEBEINE +1
BF TR & [ n]zz+k R T A ERGE Cp
BEi+1Ei+k—1MHFT (k>1) 548

KAROEE 5 B, P ARSERE ¢, B
% i BMEAREAE R AL ERTORE o

ré—;’ﬁ}ﬁ ’ {Fluiyt/cr\li‘:"}z‘wo Cp, élj% Z 'ﬂﬂ’?;ﬁiaﬂ/&\/i‘
BEEATOR ¢ BRT > B (Bl AET

A FHUEATE copr = argmax, Pr{w|\,}Pr{c,}
R EEX (2) HAS L oA LR K FE SR
Pr{cn}(n = 1,2, Nldmm) Bp 418 & ik B 1L 35
%%Tm&MQ%&$< B P MR AERET) ©
ALK (2) E’]’JWM‘—E'JPJ% AT ] e T o
ERFHA L 0 AR MG 8 Hol sz k> #7
TR BAPEFEHRIAT LK FESMHHR
Flof h a0 09 2 it (def TRk #AE XX
MM~ TEHF T RG] ) HEEP
TSR o FRFALG TERARA G A T



KRB RGEREEE - 5 A, Fo B, 89
1742 (row-sum) #FB 1 o

ERBAEGE 5ETHI A, B, Fm,
Wik b & BHME ¢, 0 EABSERAL R
BAT KR FHIT o Rfn o KIUBLIN &R A A 69 7 B
BEEK - FELE TUFAMG L » BipEY
A, "B, o, FiALERSGEHFIHRE
A E e AL BIE S 09 8 By el s M A8 o KA

W B398 F mBt e & Ak EE HMM KA
SBOGKAEH » LEFITTRETRER

Je Bl 3tsh o AUATIE A4S HMM &R 8 &
LHREAGHME TR T RBEIHT o

3 —,Ei‘ A Xlg.

3.1 FHE
AFFEBREZAHMERAE T2 5—
BAR#FEEILE AN HMM £R > i mst
F & HMM 2R Z 4 52 8RB0 % REE -
ARG FEGPEFE R B - Ak
FEBESERGZEA (BEMESLE)  BEF
%%%(@Ek%%‘ﬂa% ﬁ%?%’m
%HMM&MK%d;)‘ﬁiﬁﬁ%W%

(RAARRT EEE) F o BT :
1)&%%%%%%%%’ﬁm&m

THUOCL &#t% (Han et al., 2016) ¥ 8 &%
W A B Ak GE R - wB4PT R - THUOCL
‘ﬂ&ﬂiﬂb Zhiyuan Liu B 5324 & 69 F 05

J& o FMFEF B 8 8519 ERE » BAK S
%kiio

2) EAEEETRA LY 0 A nlp-hanzi-
similar 3 F34= SimilarCharacter Bl & F3&
FRASE TA T AR A o sbol > KME A 745
HTHLZFHENE - ABEEFFENRER
v HFME TEFHRHE) 2 THERTAE
F ) AR RRE > M T AR RS
FHRAREZFTENBERETR -

3) A2 BIRA T AL RERE - R AA R
RO B R RENE - LA ME LK
WARS ~ LS EBERET S BN AES S Lk
INEIFERZ MG H RS EEERIFEEGE
# o AR (S AT A RGEE) (Cai, 2016) A=
«ﬁ‘ &8 55 F M) (Cao and Liu, 2011) % F4F
THAL R o

3https://github.com/houbb/nlp-hanzi-similar
“https://github.com/contrdl/
SimilarCharacter
*https://github.com/kfcd/hyzd
Shttps://www.han-1in.tw/chinese-form/
"http://www.newoaa.shisu.edu.cn/cc/ct/
c6349a117967/page . htm
Shttps://jwc.yzu.edu.cn/info/1054/1902.htm
%https://www.msshw.pudong-edu.sh.cn/list/36/
115680.html
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. EE =
THUOCL : BEABRN P X E
B
o M& | Hai |2  EEBA | S5 BE K8  ZR  SE | B9
BN
THUOCL ( THU Open Chinese Lexicon ) 2% BRHFAGEEREREEHN &
BRENPXEM - DRRETRAMOH RINE - SEFWE - THUOCLEBMUTHE @

1. /23545t WRDF{E ( Document Frequency ) - S EMABALEEER -

2. AMASBZ WA\ TEN - (R SEOAETRY
3. AR - S RMEARARR - WHHESHHEE - BOURALNA - BIFRRMKEE - B

FFRIE thunlp@

ZAMTIMARPXENNE - RAPXSEUR - RABRFEFRABHTHULAC
B PIABOBR -

6 - BAR

Figure 4: THUOCL ¥ X # & # B & :
http://thuocl.thunlp.org/

3.2 HMM #& 2%%E

'ﬁﬂﬂi};ﬁ‘fhs L\J:rﬁ—,'ﬁ‘;}fk /il'\"’}[‘
(e V) 845 M HF 0L 4T K B 43t K

oIl RO & Ak B E HMM B A 2
{A,,B,,m,¥n} o 7@ » BT RHIEKRE
ER o REPRIETA o TUARMG A > BpiE
%%{MBWMWQLH%“ S F Lk
B AT EMERILRESEE - AFBANE
AR B SR An Ty ik o

3.2.1 HBHKFER [A,Vn}

do A SR SRk EAL T 0 REAMFHES
HEIGEAE R AR S BRI o e 0 HH

RKEB N=60&XRE THELFFTRL
ABAGREEE A THERER
010 0.80 0.07 0.03 0 0 ]
0 010 080 0.07 003 0
A_| O 0 010 080 007 003
0O 0 0 010 080 0.10
0O 0 0 0 010 0.90
.0 0o o0 0 0 1 |

(3)
EX(3) FPERAB—BEARARETES
# (probability mass function * PMF ) #47#
12 (shifted) @ &E% o &M ZEKR PMF 2
ﬁ? aq ° llb ’ 3\4 (3) ‘:Fé/? ap i%"f@%‘ﬁl%g
B La =4 84178 % (row vector) » LEUEE

(4)

X Q) RTZbEREBEHEMBETY [EAE
B A 080 BEFEEMELRE 0.10
Bk 1 BEFORER 007 K 2 BEF
MEEE 003 MR E S ETFHBRENE

ag = [0.10,0.80, 0.07,0.03).
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Figure 5: nlp-hanzi-similar #&#t & (Hou, 2025)
By af o A A (GAFEA R RS F R EAT
#H) > #IL A : https://github.com/houbb/nlp-

hanzi-similar

0 OR8> 4B A 89T H A% TE (entries
strictly below the main diagonal) 33% 4 0 °
BAGABIE N A EREFEALEFEE
R MR BT LB o F R o A AHT L
RAZ T BT L > HIEME A 89K PMF #A4T
G RREE o

3.2.2 BMAMKFELER (B, Vn}
MAMFIEE B, BALFTNERTESEZRT
SRAELCSHREFTORE - Flikxk» BhE
FREARNETFHEMNEHETLFIZE 28
FEREOFAETR  BAMAHLETRAS
MARFEMNANG ;AL RE—H K
(Liu et al., 2008) » FLA FAH#AELA| A o

Bt s RUARE — 2 i A 2 A A R
MG B Ak Bk MARAEHE KA
BeFEFRINEHEGTAR AL F ~ AFF
Foili FF o FRAMAE [F) ZH/HF
mAREZEERAR > TRETHEE RK1E M4
JEH B A Bl RBHE ~ EEARE=
X~ REFHPF ~ BB FF o AL REZH
FEBIEATH TR o dm s KRR E
REaMF RAEF AFFRALCEXE
FR#EFSR c LEREELT :

1) M FEHRGHEANERL &2 A nlp-
hanzi-similar 4 /& (Hou, 2025) #ATH & ©
Bl £ BT #HARF T3] » FR
M ~THg~Tie)~Te) FLAHBF o

2) W B FF R AFR > 4&M Similar-
Character 35 #F/& (XiaoFang et al., 2025)
FT3RE o Blde » £E6%F 1599 TF > #HART
Moy » R M1~ TR~ T £ 3 BRAF
F11

el A #9F N —Ly+1 %2 NATH EHARTE
(entries strictly above the main diagonal) % % #4714
iE s ARESTA (row-sum) 45 1> =X (3) TH% 3
E G ATH T ©

Vg AU Bt TRF 5443 ZH5540
R E TR RO (o R A ) LA
FF) o B RERAPF A AL AR o
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SimilarCharacter / &L F B} FE.txt

Code Blame 6763 lines (6763 loc) - 714 KB

1597 # A MBS RIS EMERNEAE

1598 # NEI AR B EME AR

1599 5 151RE

1600 5 ERE

1601 B EHE

1602 ES ER

1603 X IR

1604 B JEIR

1605 & JEIR

1606 18 JEIRY

1607 &R JETRE
Figure 6:  SimilarCharacter & # & (Xiao-
Fang et al., 2025) # 3% % & 4 (K FH &
RAH®PRFFHEFETRESE) > AEA:

https://github.com/contr4l/SimilarCharacter

3) HAt G E AR K0
RTHEFHENE - EALT TR MHERA
AT WHREBEHARERETARTFHE S
DR FHR o Blde s HFE lcanl 9
RF o R FFetEHF A lcangl #2 Ichan)
BT ZET s ¥5 A Tan) 923 L5
OB 5 Tang) BIPTHIET o 243> &
1 F S B8 I T 6 B A B B &- AR T B
FTHEBGTAET > PER TEFHHET A
(Bt MR EST] -

W BAELRAMF ~ Bl FF UG TH
REH THELSREFHERNAELCS KRR
FERR MR ERITHRE o B PG EHE
2E pp Bl EZMERMEE 1 —pg IR
FINGTA AR F P BT B o B
FE5R Rl R TR L uat
F 3t 4 AR ATAE B 5 7] B r1 > To X3
Fa gy : 1 + 29 + 23 + x4 = 100% © =
L C kB — M EAROMIER KB
B FHFERE (1 —pp)ry > A& FHAKE
(1—pp)wy ~ LFFHFEMRE (1-pp)rs PEE
SRR (1—pp)ay 2R EFT R PTA &%
B P Rk 0 REAFR A RS LT
F O 4E o Blde 0 F pp =090 B 21 = 20% ~
Ty = 40% ~ x3 = 30% A= x4 = 10% BF » A%
% FEEME 0.10 = 0.02~ Bl & 7434
£ 0.1002 = 0.04 ~ A FFHREE 0.1003 =
0.03 An e 4522 E 0.1024 = 0.01 27 £ %
T FHYHER -

Py

RGBT/ A %W‘Vlﬁ'ﬂ’f}??%%% » HITFF
5%?9%%5’2@1‘5‘1’%3)’(#?/%33 » 4o € & Mnanl #2 MNanl &
AP o



R AGE EEEEAVACE Word & & 3% GPT-5 ATy ik
SR W1 ] S ]
YO, Fl& 1 B 35 B B
B 8l 4 KE 1 RO T Bk S Bk S
Fhtt BT 1 LX) F A F K
B PR %tk 2 RO T B FH A
JB A2 % Fl& 3 SR #2378 B 239 B
HEH TR Rl& 3~ %81 susEg ASFFAR ABFFAAR
BM#AEFA B3 2 FE 1 musdg  #HFAFTHA BFEATHA
FHIRA—R RE 2% 1451 &8s FLihr—%& FhLor—K&
&8 24K Fl& 3 £ 0] 5528 REEE — 85—
K A& A Bl 3 s g X AR X B bBE
@A 3 Rl& 2 %51 ES AR H M
B R B4 2~ 34 2 0 s B 2K AP A E
ERe1 Rl& 2 %52 BB HER —BEA —BEA
Fl B Bl 2 S| RS Folip K oL K
B . A 341 ) 4RI, BAKEL W58
—F R Rl&1-%F2 S BER —HiT & —FHE
= /5%;4‘&5\1 A& 2~#F1 ?’%ﬂé’é“}%?{i )ﬁ)ﬁ:i}i\—(‘ J;%);%i)i&‘
LR &= CESRE S| 0] s & ERTS
REIRE B 1~EE 1 S ) LA 3 NEHM NEHM
Table 1: FFl 44 F T2 T 69 F T HGE S 44 & R4 LR ]
axE Al T ME A ay TEMG L] fFk - 20 184
BES HErEE shschon TEAEE % A0 R - BIAE THEsES
G&L 1285 1241 96.6% Eo FRAE THRHNE] o« 35 BXE
YZU 104 101 97.1% By BB E H A s R B E B o AR S E
SISU 47 46 97.9% SO ZKAE KB b B PEAEARAZ o F | E R E R
SISU-PD 183 175 95.6% (correction rate * CR) ©
w3t 1619 1563 96.5%

Table 2: 1% A Bl E & AR ik 8 5568 ) AT

3.2.3 mHEKERE {m,Vn}
EARALHEEERY »m, 9% i ALFAT
A EAE R & kB e, B AMREFE ¢, 8
FiMEFOEE - BFEHAT »m, 895 1
BAERATEKR » BPEEERRAERKR - £
BETRT > oS RIVE T,
W% 1 BAAEMRER )11 =m ° L%
GG >1) BAFRES [m); = 5

3.3 FEER]

KMTE L BALE ZARARDRBAXTR
KRB Fa.2F04.380 18 R B X 4T 4 @ T
f o BIZKE 6,4 5B R AR B8R XA
KOS 118 THEREX o 1 BT EEG K-
EBRERT » AEMB XA T 09 4538
k) BAMA s RAF XL OB ERKR
B Neana 188 65 RAE A # st > 3 8Kk
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4 TRERAH

4.1 AR Er

FERE P RIDA B AR TR 6 2EE A R
I 0 BUR TR PTE d0G FAR H B B
BAIE (Neang = 1) » S48 3] Word ¥
NREH G E R AR GPT-5 8% 484 £ &
REAEAT RO DURER Ay R A R RE o &AM
f TR BB P e AT R L F ~ F
FTFUEFF K FHRFHRELN EE
H 5 AEEER R B BB o

EERT TR BS M EERG LK PMF
AR E B ag = [0.10,0.80,0.07,0.03] » & FiE
AL ME pg = 0907 21 = 20% * x9 =
40% r3 = 30% T4 = 10% ﬁ"ﬂﬁé#%/%‘@f‘%
m =097, = [m, 2, vy) o KR
R R1PTR 13

1430 GPT-5 FHE A9 7a & 0 TRT 28 - &
BB B S Fhk - EHBRBARK - BiEE
CINE NSRRI EANE IS OE 3 S NS S
B~ TR RIEMAE S AWEAEIL - BlAium - BR




Lo BIRBAT  AZE AEGAT o OH & =
e ‘o 2 s . 5 i) fétlx
PR g Egs OEARE ARSI
TEF B3] RENAHERRE - &k
LoEyAH EYAH  ETEN et R ALRR T EE -
e e s s DASRFEL A= TRT &35 RAHA - &%
&= dE= SE = K= sEHE = 3=
2 REHE ORTRE ORTEF arr e g En - RERAARARTHITE -
P —— RRERERTRA R
3 4 B o7 2 S A {
SOTERT wmEd wEeT FHHBTHNAITELBGS -
BELE T LRt B

FH—F L FHERAER -

Table 3: &2%F SISU A= YZU BRI K69 4 188438 &) £ R4 A 09 b 85 B 3d 3

W ALIT R Word #f S E S84
WE WA LA » BRABFGRERMEAT
B ERFE  Rees EesgAFRFET
$53% (Bldm TP 235 | Ao 335808 ) 1318
55383 ) c mMEAA L CHRFR EKRIE oM
Z AR R AFEBEET HMM ER £ 5
DA ek R 7 @A 1E 0 BT ERY
i % AR AbIA A 6 BB A A S5 3R o

BB R > GPT-5 Mk H— LR AET
VASERE#]E » SUHE R R 43R A 2 4 443 rh i
FE o flde s EERITF 0 GPT-5 #fA &
LI MEETREEE Mk M—2— >
K TRBAIHEETRAE ] I TRE
Wi o T—3FfgE | HEAET—BITE &
FFI—5%E) - B> GPT-5 A T4 B
RGP ERE PHELRERTNDBGES K
B Bl k1P T LB K FR > AT
FAREMME 28 BFHENIREBAE
MR R B RBZEN T (HE2EHF) &
PGEL MM A KM B K T EDE
& GPT-5 ty3kzE#|sha ) (E X REHH L
FERHAE—BIEE)  MAMAIEAHILEEZ
— o BRI AR R B A E AN o

4.2 A RMREH AL AEITIE

KB s-AE K kg # B AEAE R o 3 BUA E IR
A (RFEMEFM) S BHMKRE ~ LI EE
KEF LiBSNBZRERE R RIPBEAZER
5B g 3t e (B F R GEE R SR £ 1)
FEEBKE > TXHRHEE G&L~YZU
SISU #= SISU-PD Bl % - iz w8 B X & 4
B A 1285~ 104 ~ 47 A= 183 B B AL A » 3£
3+ 1619 18 - HEBIREAEAS 118 T4#3RE
A1 TEHEE X plhedsmey THE
T&) AmEskey TEBTE] o B £8K
AAB s Rl TR BAREREY « — R R AR —

BT~ RELE > AL EF - 53] KT AL LIE R
FEAY4ESRAL N 70 AL A  https://chatgpt.com/ ©

TEY » ZRIREAY TEHEG R FhiK
47> THUOCL M3EE T » Bl HE o X & 37
SERER  URESERERGWSEA E -
EERY > B4 K EEEEKN PMF (B
ag) ~ ik FEAE N HE pp > & F R
MR g BB (21,20, 23,24) > WK EGE
7, ~ M EHERMBEE Neng I EA R F415
FF o B Rho ROFT R o AT R 0 BiR
24 {A,,B,,m,Vn} EBATH RS F LR
B K7 ke E R X R 6 # B E Ak F 7
i 96.6% ~ 97.1% ~ 97.9% #= 95.6% » 443t
96.5% » M EHTERLEAEF 09 5558
H oo BHMAF AR KB R BROEE
BH Ak #GE HMM A2 A 6 3245 4% 2 5= R
TEETS TS VL) TS SOF:N
LS AK K o

FIBF » B T 4533 AR K5 iR 0945 35 » &AM
#&2F SISU A= YZU 1B BIRX £ 69 4 84
RO EBIRAE AT R W A3 B4
Famde T o

1) % 1 ERAF » Az kg TEY aH)
— 3 R o FMRBAZ AT AR AL E
A WA E AL R 8 THUOCL meE &M T
B A3t —3 - Rt &3 Ef Ay
FOBSEAT Y o FR BLLAIKE L
TEMARET  bERBROLEN - RERp
Y EMt>EE

2) & 2 ERAT o A TS EE &
EE TATMRE » mBRR ARG ERES XL
TAZEZ - BEHAH TATRFBIATA
T EE] X—HWMEMF (Wang et al., 2001) °
A > THUOCL m3E £ T NAS ReEL —
o Wb i F—{BARAARE] » %R A R
K7 ik 0940 By s 1] o

3) % 3MEEAT - AuEAM TFFET]
WER THF2T ) - BRARAAEABELEFTR
HEW S RASER ¥ FEHWHEAAE
MF1 FR-FR - BARM TFE] o TF1RE
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https://chatgpt.com/

Correction Rate vs pp for different Ncang

Correction Rate

Figure 7: tEAE & 0E F % 508 % 48 IR B R B 09
KHERE > A ¥ Nena RTAT 694 E
et FEE 54

W FREFTF o BT BAMRL ER AT %
AR TR &N 2 AT RN KRG
#HYBFHEREFTELOH LR E—F T &
BFRAFOME

4) % 4 AT - AFEAMH THARE )
BER THBARYE - BEARAEABER G F
AR RER [F] F8FF Ishengl »
AER T4 F85—8%F Txingl » PR
T Ao T8 ABERFT - EF MR
NP G br O AN - BN I RNV
KM BB EH—F S THERAEE
— P RELTRFEEOHE o
4.3 AKX

ALY AMEARATAABKELE—EE
HHE {c,Vn} HEMHELEREAER (AL
KA E K) AIN8REE—E HMM A 89 5 #
{A,, B, Vn} o HARZ > & H4.1F04.28
TR AxEREH (A, B,,m,Vn} BT
BAWHFILHE - hAlTE 4769 #| B4Rk
o FF L MM THEEA M IERmEIE
BEAEA > b R SEAREBEZI M RALA KA
By £3 0 A7 EHD (A, B, m,Vn} 8 TF
BAE B A REEAEE (robustness) © %t »
KM ZARIAT B B AT o

FRRAR R F4.260 P o v B8] 3K 4 331 1619
BRIKAR AEAT - FloF > HAREE N, 8
SR GE ¢, 0 HHEY HMM A 4 #3%
BT REBHSER A, AKX PMF &
ag = [12A py, 1PA LoPAT s RA K ELER B,
CF ’.%‘1:372:333:30%’1'4:10% H ﬁ‘ﬂ'ﬁé‘#%%.
RFOERER m, = (1, )
Bk RMERRAKEER (B, Vn} F
89k FEREAR B R pp # 8 OE B AE £ 6%
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DA 0.4 0.6 0.8 1
CRoo1r 94.6% 94.9% 95.3% 94.3%
CRo1 96.7% 96.7% 96.9% 95.4%

Table 4: #| EEHER L BS MR RBAY L

TWER > L CR, A7 pp =0 HHER

T 0.4 0.6 0.8 1
CRoo1 95.1% 95.3% 95.2% 95.1%
CRo1  96.9% 96.9% 96.8% 96.6%

Table 5: #|EEEERZGEBEGERMBEZ B

THRER » AP CR, A7 pg =z BHHER

W FRERWETHFE BT RE py
A BA #E K A m s Ry kARG B A
95% 89 ¥ EEAER > I B AR B ELE
M e fE AL b o 145 I 0 B IEMERE RIE F I &
RAE Nogpg B3R o HHEEGZ > B
18 2B R R K 89 — — 18 B S5 1R AE A B
# (Neana = 1) °* £ pp > 0.01 B AEEF
BA 95% BB ERAEE o iR 0 RATH K
B EERAR PMF T8 py Frinks kR g
T o EHAEAEERGTE s TRER
RAFSHT T o TRt 0 A kA {A, Vn}
Fo {7, Vn} 89 R F B R AR B A AR 7 69 4
PE o VA LA IR B AR R K 2 BGEE R
DEATR R R S H 0 sb 1k o

5 &

AXRE T —HEe M 6y b THE A Byl 453
ko MBBROEUMF ~ IEFRALTF
bR FRAE S ARFRRAA & FMEBR
M P SCGE S S M R AL A TSR A BT RAEA
B KB R 3t R AR o Al MM 404 43 35 96 B e
AR RFRF Ik R AR 58V B

5 B

B R EHRAN L RGEIT RS AR

B LA e B4R > MR R
T RGET AREHEL E o BB » Ak HER
AHAABRBOMEENE AmeFTHERESR
BAAINR TR BN L LY - LR
BIAEF » FRAELERBEPEFRASE
BYARIE o AR FTAL AL 69 8] SE BB o gLl o T
B—F T ER 2 E LT CENG S
T U RAFHGARLE o

Ypg > goes EERBERATREHH L LR K
20902 AFLAK AR H o Bp &k ik P o HIP o pp T
RBEAEEA 1 RE pp=1 FEE Pr{w/\,} =0Vn >

BREHERER -
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AF AL % A KB HAM 0 6,8 RoPE »
Flash Attention 3 » 3 /& & & KA P
M EF R E A AT E A A L FAII
R—AEERLAZFOER P L HHE
B o KM MEEMR S LA AFHEH
LTI BRBE TSR ER LR
A LA o £ pseudo-perplexity
oA ROV B FAINREBRARAYZY
B9 Bt TASE S KR ETH
A FTHRYEREZ - ARERTER
A RSP LETHEARRGTHRE
B B gy ) o

Abstract

This study employs several state-of-the-
art techniques, including RoPE and Flash
Attention, and leverages large-scale Chi-
nese web corpora and encyclopedic data
to pre-train an encoder model specifically
designed for long text in Traditional Chi-
nese. We evaluate the model on tasks
such as reading comprehension and text
classification, and the results show that
its overall performance lags behind exist-
ing Chinese benchmarks. Through pseudo-
perplexity analysis, we infer that the pre-
training phase did not sufficiently capture
the data distribution, potentially due to
factors such as hyperparameters, conver-
gence, and data quality. Although the
results are suboptimal, this study still of-
fers valuable experimental insights and di-
rections for improving Chinese language
model development.

M 42 F : Transformer ~ ¥ 8 ¥ L~ & X
A~ FAIREZ AR
Keywords: Transformer, Traditional

Chinese, Long Context, Pretrained Language
Model

1 # % Introduction

& BERT (Devlin et al., 2019) P2k » {£4
#5 % (encoder-only) # Transformer (Vaswani
et al., 2017) AL RAFR % 8 REZT R
(NLP) #Hm st - A5 HF R IR
B RAZEZHEA (LLM) % GPT (Radford
et al., 2018, 2019) ~ Qwen (Bai et al., 2023;
Yang et al., 2024) ¥ % & A 1£ 4245 % (decoder-
only) R > 12K ARG SR A £ MR8 3
Fak R0 T B BB ARES s BAELRY
B~ L THAS (NER) ~ 3z % (IR)
F TR FRATRZIER -

ITXREHAAVBEIHEARTENEZ SR
VA ERGETLRERES » # LLM 85
Wit & % BAGE TR o R4k > #74 BERT »
RoBERTa ¥ ##Z A » ET UK E T EH
SR E o AR o 33 A Transformer 6942 A
B 7 self-attention %% EA O(n?) &9 8 M 4
e RHATHRERETLRY » T
R LT LRE LB

BERGHE RO EHEIEDNE LTI RES
RN RS C R R = A S & LA
BAL o AR ER T LA RIS S o Bk
ARG AR MR DT » BER T
R ETU i EENERBTRAE °

2 R 7 % Methods
2.1 HAZHMH Model Architecture

AFEALN T %R E 8 2 MK KA L
R o ARFAER R I AR IR F

o Rotary Positional Embedding (RoPE) :
A8 AMMF G0 R AL E %R A > RoPE (Su
et al., 2024) f& & A MR R IE KM -
RABA R R TR o

e Pre-Normalization : % H Pre-
Normalization (Xiong et al., 2020)
AR A AR T IREAL » fLEIRE AR
T APBL o
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o Alternating Global and Local Attention :
RAAE R 2 Ry 23R i & ) %A (Beltagy
et al., 2020) © £ &R EZEA T » token 12
42 sliding window M 8 X A& token Z
B AREZHATRERFILE) - &
MBEZRIRA—REREZEN - BFESZ
718 RoPE theta 3% 10,000 * &/ E&
718 RoPE theta 3% & 160,000 °

Unpadding : # batch A AT A & 7|
padding token # & (Zeng et al., 2022)
BEA—E RIS F bR
o RADGKE -

Flash Attention : 4% A Flash Attention
(Dao et al., 2022) AL IER L A & »
#AINERRE -

a9
i
ig

2.2 P47 E Tokenizer
At %1% A benchang1110/Qwen2.5-Taiwan-
1.5B-Instruct ! PTIRAE 89 538 35 4 & A » 3t
27 & AR Qwen2.5 (Qwen Team, 2024) 1
A > 3% # tokenizer swapping * A 88 P T
8 token 4% B A8 HJE 69 %8 F L token * WA
BACH R b LAy R T A
HETH4 BERT A G4mEZH &K
9 /£ st 28 98 e AT [PAD] ~ [UNK] ~ [SEP] ~
[CLS] ~ [MASK] % 4%k token > EAFHEA e &
% 69 pad_token PAFELE T B [PAD] » VAELAX
JR A <|endoftext|> » 1AL A 69 7T A%
VART BERT #9FAI4RAEF o

o

2.3 IR E4 Training Data
AF R FRINREA T2 b AT R385 MR

o FineWeb2: FineWeb2 2 & —1& K #H A ~
MAE$ET 0 EHE AR
Koy KAFEZHA (LLM) m%3H - &

SQ,E e a
A 2R 8 2744 Common Crawl 7444
B KRR IEIAFIR c ZEAERE TR
2013 %] 2024 4 4 A 9 96 18 Common
Crawl ¥R > HEE—ELLER
FERBTHROERARETRE |
B RERAERAE RS EZST LT
RAUBEZRURE BB RALTRENS
So W FR o ML A B Z FineWeb2 8 ¥
L35 (cmn_Hani) 89 —B T 4% » & as
4 FEERA P EH P LR A B
o
"https://huggingface.co/benchang1110/Quen2.
5-Taiwan-1.5B-Instruct

’https://huggingface.co/datasets/
HuggingFaceFW/fineweb-2
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o PXAETHTH BTHBRLET L
ABIRE SRS IE R ) 0 RAVBESNANT
TGP LA BTAETH S wEHEE
ST aRAETFYOMALR  NERERE
¥~ AL~ AR WEF S EAAS . BA
AL o H ~ FRMRGHEE - A
AN A AEREE L EHRY FHOH
TR ERNTEELEFXN LT Y
6,8 140 BEEA o

2.4 ## 7K ¥E Data Preprocessing
BT AR A B S » B ATHR
WEMETTUATRRESR

o AEBE  RIVBRTIRTH P89 3FL
L5 QA2 RIRASE KA - oL
B MNFE T o T FHAY AL

K& 8 URL 4 ~ 5] AR X F3E 8 K5

TR HRA G Y E T ML 8 H B

AR > Rof T e 5] A4 o

MBS PR E R P LAET
Fagp bR (W6l ~ FRKRE - &4
F) BFRRRELERNF - REFH LA
EERL S BIVEFHGEEARGERE

Bh 3EX " 75
LAY ERE T SEL LT &

Xk sge

@28 F TR EAR o mE A AT EH
3k 6,44 35.7B 18 tokens » £ HRFF S M
BRI WEHT SR aERE

wa B ©°
2.5 TA3I4IEFH Pretraining Task

AR RKRAELZZFZTHEAE (Masked Lan-
guage Modeling, MLM) £# » &£ & & n-
gram masking R% > £ P L&A LEATEA
FAINER - IR EBRE S EAT REGIEE

1 H—F& EXAZY): BEARKFF
K E 1024 # X RBAITINER o LI B89 A%
S EAR AR IR T LA RBEE R B
AT SIE K K o

BB (RUREM): SRS —EE&
LR RELBLE > KRB RRFI K
BWREE 8192 EATHE IR - sk T
JE A RSP AR A R FE A SURRAE B 1489
WPRPERAET) o

HmgBAERLEE LR 15 A RIER
8 7k NVIDIA H100 GPU » 4434k mkM 5 7
}i °

3https://dumps.wikimedia.org/zhwiki/

20250520/
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Phase 1 Phase 2
Max Sequence Length 1024 8192
Batch Size 512 512
Training Steps 233000 40000
Learning Rate 8e-4 3e-4
LR Schedule WSD WSD
Weight Decay le-5 le-5
Optimizer AdamW AdamW
Betas (0.9, 0.999) (0.9, 0.999)
Epsilon le-8 le-8
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1: BIRBAR TR R BB - ZBAIRE KR FEARERRK -

3 FHF evaluation

RO £ AT e L BT TR - AR
FELAM > BAERELAS TR LT RE
g U AL & R AT L (Cui et al., 2021) ©
FRRIEH 6,45

o BREAREF : CMRC2018 (Cui et al.,
2019) ~ DRCD (Shao et al., 2019)

¥ &9 #842# : ChnSentiCorp (Tan and
Zhang, 2008) ~ THUCNews (Li and Sun,
2007) ~ TNEWS (Xu et al., 2020)

8 T4 4 #4EF : XNLI (Conneau et al.,
2018) ~ LCQMC (Liu et al., 2018) ~ BQ
(Chen et al., 2018) ~ OCNLI (Hu et al.,
2020)

WA INRGEAT P LR P B Z > AR
#EE TR EEA OpenCC * AT/ %42
o

YN

Al

‘https://github.com/BYVoid/OpenCC
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3.1 B% ¥ AE1EFH Machine Reading

Comprehension

B3R AL A SRR — 0 (UK, MIAR)
LFH BEREREIANZ AL R AG L
R XA FTELATH—KLF (span) °
#4714 A DRCD 32 CMRC2018 18 P L B
SR EN EEATIE cBRETALR 2 P
£ EM (Exact Match) A&7 A& LA % » F1
Score AT F1 98 BERTR » KM
A DRCD A4t & Loy £ F 3 BERT &
A (4= BERT-base) #8% » 124 CMRC2018
EHE LA BEGRERE > LA ERXE
(Test set) #9 &R iE 4w LK EEA » 37
AEng AL A A T AR IR A9 2 AL AR T 55 o

3.2 #4854 #1E% Single Sentence

Classification
PO aREEN BT ZREA

RAFZ A T EATHH - KIMVEZE P LEHE
EEATERE

e ChnSentiCorp : ¥ X H &9 M 4 £ »
€, 2 E % (positive) ¥ A @ (negative)

R ABZE R o


https://github.com/BYVoid/OpenCC

CMRC2018 DRCD
Dev Test Dev Test

Model EM F1 EM F1 |EM F1 EM Fl1

BERT-base 65.5 84.5 70.0 87.0|83.1 89.9 82.2 89.2
BERT-wwm 66.3 85.6 70.5 87.4 |84.3 90.5 82.8 89.7
BERT-wwm-ext 67.1 85.7 714 87.7|85.0 91.2 83.6 904
RoBERTa-wwm-ext 67.4 87.2 72.6 89.4|86.6 925 85.6 92.0
ELECTRA-base 68.4 84.8 73.1 871|875 925 86.9 91.8
MacBERT-base 68.5 879 732 895|894 943 89.5 93.8
Ours 55.2 81.3 32.2 681|834 925 826 91.9

& 2. B#AZ CMRC2018 A DRCD

e THUCNews : # M| EH %> At R
1% B 7 & o 4555 5 P BT 3 M TR
FAEHEG -

e« TNEWS: X &My EHE &

15 #7125 A HMm AL AREST £
53 o

A
=
j2F

A

A3 RTTERBERGrHEF LR
#E & (Accuracy) &, o £ ChnSentiCorp
TNEWS {7 £ » A A & 51 0 K A48 7 g
¥ 3 R £ THUCNews #7 Ml o #1E7 L »
AR A A BEA R o BT R IE R TR R
BHEEIAHSHAFTRELETL ©

&) T4 %117 Sentence Pair
Classification
GFHsBEEHCREEA - (LK,
BLFH o ERENRIEZ G TFEITYE -
P2 w8 b SCEHHE EEATERE

25 =

o XNLI: 5322 A RZBZ M EHE » A8
FAER X3 9 (AP B THES
Bt T8E s FHERP L] M1 (textual

entailment ) °

LCQMC: K#AE P T R A4 & » A
FEP LA HEERMEN O RETR
WEHE -

BQ Corpus: P U3E & %18 | B (Sen-
tence Semantic Equivalence Identifica-
tion, SSEI) & #%& » M2ARS & T H L

GERAF o
OCNLL: RAF LB RFBZHEATHE
ﬁ]ﬁf@;kéﬂé% A ?}%?ig@jﬁgig+éﬁ kﬂ
NLI E#+4
B AR T AW L G TFH S AER LR
HE (Accuracy) R o AAEA LA » A

3.3
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£
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BRALEGTHIAGEREZRARTER 3R
£ XNLI #2 LCQMC 75 E{gug 70 K 4
A s {24 BQ Corpus $2 OCNLI &4t % L &
AT EREENKETE > LELZ4E OCNLI
BAEAE P RABERFGEHEL AR
WA 33 T A8 R ke B AR A AR AR 35 AR A
B REZ B @mMER T @A F e
% o

4 313 Discussion

R E ST HIEHMAK > RRAMEE
EHRARAAE S ZMERA LR AR AT
RIEBARRAY)ZEEROBLEIH -

B T B HIEH A2 &AM
FIANT % E A (Pseudo-Perplexity, PPPL)
(Salazar et al., 2020) 1F & +F4E384% - #7248
EHFEZELY > B R XE (PPL) A% &
vk & A AL BT AL EH - @ PPPL B9
R FFZHEA (MLM) EATHPGHE - #H#
—{EE# % W L PPPL 893t A7 &= T :

)

Ad N EFEHEGMAFR > @ PLL(W) &
Bt A W B HEMAE (Pseudo-Log-

PPPL(W) := exp <—Jif > PLL(W)

Wew

Likelihood) * £ & & & :
(W]

PLL(W) := Y log Porat(We | Wy;;©) (1)
t=1

SRR AR FRRHET] w, £EXETL wy, F
G -
KAV RFEA P AR AR 0 3 RAE
AR EMAEEBER 3 pseudo-perplexity ©
BRIk 5 Br By RRERAHRZ LR
3 F K89 pseudo-perplexity 1A » & & #A
AR EFAIRIEETRRRGEAT W EH S
Ao KA s RMREATEMTRRRA :



ChnSentiCorp | THUCNews | TNEWS
Model Dev Test Dev  Test Dev
BERT-base 94.7 95.0 97.7 97.8 56.3
BERT-wwm 95.1 95.4 98.0 97.8 56.5
BERT-wwm-ext 95.4 95.3 97.7 97.7 57.0
RoBERTa-wwm-ext 95.0 95.6 98.3 97.8 57.4
ELECTRA-base 93.8 94.5 98.1 97.8 56.1
MacBERT-base 95.2 95.6 98.2  97.7 57.4
Ours 94.4 95.0 93.0 93.8 56.2

& 3. BAEAF ChnSentiCorp ~ THUCNews % TNEWS FH £ R a5 8E#H AR » (812 : %) »

XNLI LCQMC | BQ Corpus | OCNLI
Model Dev Test | Dev Test | Dev Test Dev
BERT-base 77.8 77.8 | 89.4 86.9 | 8.0 84.8 86.0
BERT-wwm 79.0 782|894 87.0|86.1 85.2 86.1
BERT-wwm-ext 79.4 78.7 | 89.6 87.1 | 86.4 85.3 86.4
RoBERTa-wwm-ext 80.0 78.8 | 89.0 86.4 | 86.0 85.0 86.0
ELECTRA-base 779 78.4 |90.2 87.6 | 84.8 84.5 84.8
MacBERT-base 80.3 79.3 | 89.5 87.0 | 86.0 85.2 86.0
Ours 77.1 771 | 86.0 86.6 | 82.0 79.6 70.0

& 4. HHEAZ XNLI ~ LCQMC ~ BQ Corpus % OCNLI E# &2 ) FH 9 HEHER > (B2 : %) °

Model pppl
BERT-base 2.49
BERT-wwm 2.73
BERT-wwm-ext  3.48
MacBERT-base 13.39
Ours 5.60

& 5. & B A G KRB A IR E X pseudo-
perplexity °

4.1 BEEFZEFREHA

S K KR A 5 IR 46 3 LRI — 50 12
WA GRFER R R 048 5 A P 3
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R o
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5 %3 Conclusion
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Abstract

End-to-End Neural Diarization (EEND)
has undergone substantial development,
particularly with powerset classification
methods that enhance performance but
can exacerbate speaker confusion. To ad-
dress this, we propose a novel training
strategy that complements the standard
cross entropy loss with an auxiliary ordi-
nal log loss, guided by a distance matrix
of speaker combinations. Our experiments
reveal that while this approach yields sig-
nificant relative improvements of 15.8% in
false alarm rate and 10.0% in confusion er-
ror rate, it also uncovers a critical trade-off
with an increased missed error rate. The
primary contribution of this work is the
identification and analysis of this trade-
off, which stems from the model adopt-
ing a more conservative prediction strat-
egy. This insight is crucial for designing
more balanced and effective loss functions
in speaker diarization.

Keywords:
set classification, loss function, ordinal log loss,
Pyannote

speaker diarization, power-

1 Introduction

Speaker diarization is the task of determining
“who spoke when” in a recording with multi-
speaker. Clustering-based (Wang et al., 2018;
Landini et al., 2022; Garcia-Romero et al.,
2017) are typically structured as a pipeline of
modules, including Voice Activity Detection
(VAD), speaker embedding extraction, and a
clustering algorithm. While clustering-based
approaches can evolve with advancements in
speaker embedding and clustering algorithms,
its inherent limitation of assigning only a sin-
gle speaker to each frame still prevents it from
performing well on overlapped speech.

Although some studies (Bullock et al., 2020;
Charlet et al., 2013) have attempted to mit-
igate the inherent limitation of clustering-
based by using methods such as Overlapped
Speech Detection (OSD). However, the addi-
tional modules may exacerbate the problem
of error propagation within the pipeline. To
address the problem of overlapping speech,
End-to-End Neural Diarization (EEND) (Fu-
jita et al., 2019a,b; Horiguchi et al., 2020) was
proposed. This approach trains a single neural
network to directly output the diarization re-
sult, thereby removing the potential for error
propagation. Furthermore, EEND formulates
diarization as a multi-label classification task,
which enables it to process overlapped speech.
Nevertheless, its direct application to longer
audio recordings is impractical due to memory
requirements and degraded performance when
handling more than four speakers.

The EEND-VC framework, introduced by
Kinoshita et al. (2021), ingeniously integrates
clustering-based with EEND, bypassing the
challenges of standard EEND by applying the
EEND model to shorter chunks. Nevertheless,
a significant hurdle for most EEND-related
methods is the immense amount of training
data they require, typically requiring thou-
sands of hours, which necessitates a depen-
dency on simulated data. Consequently, the
mismatch between these simulated datasets
and the target domain typically requires fur-
ther model adaptation. To enable training di-
rectly on real data, the Pyannote framework
(Bredin, 2023) applies EEND to even shorter
chunks, enabling the assumption that only a
few speakers are present within each chunk.
This approach significantly reduces the data
dependency, making it feasible to train the
EEND model directly on real data.
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Recent advancements building upon the
Pyannote framework have delivered superior
performance in speaker diarization. These
improvements are largely attributed to key
strategies such as switching speaker diariza-
tion from multi-label to powerset multi-
class classification problem (Plaquet and
Bredin, 2023) and leveraging pre-trained Self-
Supervised Learning (SSL) models with more
robust encoder like the Conformer (Han et al.,
2025; Plaquet et al., 2025). However, while
the powerset formulation offers significant ad-
vantages over multi-label methods, it can also
exacerbate issues related to speaker confusion.
Consequently, enhancing the ability of model
to classify speakers accurately within powerset
remains a valuable area for future research.

In this paper, we use the cross entropy loss
as the main objective function and introduce
an ordinal log loss (Castagnos et al., 2022) that
considers distances between different classes
as an auxiliary objective. Because we believe
that using cross entropy loss alone makes it
difficult for the model to learn the relation-
ship between different classes during training
(e.g., {1} and {1, 2} both contain speaker 1).
Although speaker diarization is typically eval-
uated using nominal metrics, we contend that
strategic incorporation of a distance-aware ob-
jective function can be beneficial. We call
this hybrid objective function as the Multi-
task Logarithmic Loss (Multi-task Log Loss).
This combination has been proven effective in
ordinal classification (Kasa et al., 2024).

2 Methodology
2.1 Multi-task Log Loss

Since speaker diarization is a task primarily
evaluated using nominal metrics, we employ
the cross entropy loss (Lcg) as main objective
function:
N
Lop=—Y_ pilog(p:), (1)
i=1
where N represents the number of classes, and
p; is 1 if class i € {1,2,..., N} is the ground-
truth class and 0 otherwise. Assuming that
class j is the ground-truth label, cross entropy
loss can be simplified to —log(p;), where p;

denotes the probability for class j as predicted
by the model.
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To guide the model to learn the relation-
ships between different classes, we incorporate
an ordinal log loss (Lorr) as an auxiliary ob-
jective function. This approach utilizes a dis-
tance matrix to define the distance between
classes, where each class represents a unique
combination of speakers. The loss is formu-
lated as follows:

N
Lorr = — Y log(1 —p)d(j,i)*,  (2)
im1

where d(j,7) is the distance between class j
and class 4, which is defined by the distance
matrix D and scaled by a hyperparameter a.
The multi-task log loss (L) is composed
of cross entropy loss and ordinal log loss:
Lyrr = Lor + AoLr, 3)

where X is a hyperparameter that respectively

determine the weight of the contribution of or-
dinal log loss to the overall loss.

2.2 Distance Matrix

In ordinal tasks, a distance matrix can be read-
ily constructed from explicitly defined relation-
ships between classes. However, such ordinal
relationships are absent in speaker diarization.
Therefore, we propose to construct a distance
matrix based on the set-theoretic relationships
between the different speaker combinations.
The distance D;; between any two speaker sets,
s; and sj, is defined by their symmetric dif-
ference, which counts the number of speakers
present in one set but not the other. This can
be formulated as the size of their union minus
the size of their intersection:

Dij = |si U sj| = |si 0 541, (4)
where S = {si, s2,..., SN} represents the set
of powerset classes. Assuming each segment
contains C' = 3 speakers and a maximum of
K = 2 overlapping speakers, the number of
powerset class is N = T:

e () for non-speech frames;
o {1}, {2} and {3} for one speaker;

o {1,2}, {1,3} and {2, 3} for two speaker.



For example, the distance between the class
representing speakers 1 and 2, s; = {1,2}, and
the class representing only speaker 1, s; = {1},
would be D;; = |{1,2}U{1}| - [{1,2}Nn{1}| =
{1,2}| — [{1}| = 2 — 1 = 1. This intuitively
means there is one speaker difference between
the two classes. Therefore, when C' = 3 and
K = 2, the distance matrix D is:

0111222
1022113
1202131

D=|1220311 (5)
2 1130 2 2
213120 2
2311220

2.3 Speaker Diarization Pipeline

We adopt the same three-stage pipeline
as Pyannote, which proceeds sequentially
through three main components:

1. Segmentation: The input audio is first
split into overlapping short segments, and
End-to-End Neural Diarization (EEND)
is applied to each segment to produce lo-
cal diarization results.

2. Embedding: Based on the local diariza-
tion information, speaker embeddings are
extracted from speech segments corre-
sponding to each speaker.

3. Clustering: The extracted speaker embed-
dings are grouped using a clustering algo-
rithm to map speakers across all segments
and generate the final global speaker di-
arization result.

For the segmentation stage within our pipeline,
we retrain the model by adopting the EEND
framework proposed by Han et al. (2025). As
depicted in Figure 1, the architecture first ex-
tracts features from an audio input using a
pre-trained WavLM model. The feature out-
puts from each layer are subsequently com-
bined through a weighted sum with learnable
parameters to create a fused representation.
This representation then undergo a projection
layer and layer normalization before being fed
into the Conformer. Finally, another linear
layer as the classifier, producing logits for the
N output classes. During training, all param-
eters of the pre-trained WavLM backbone are
kept frozen.

Conformer

WavLM Base+

in-

Confurmer
Block

Figure 1: The architecture of EEND model.

3 Experiments

To ensure that experimental results are repro-
ducible, we will conduct model training and
evaluation using the DiariZen toolkit!, which
is driven by AudioZen and Pyannote 3.1.

3.1 Baseline

In this paper, we conduct a comparative anal-
ysis against a model trained exclusively with
cross entropy loss. To ensure a fair evaluation,
we maintained a consistent model architecture
and configuration for all experiments, with the
exception being the additional hyperparame-
ters introduced by the multi-task log loss.

3.2 Datasets

We use AMI, AliMeeting, and AISHELL-4 as
datasets for model training and evaluation,
with total durations of 98.38, 126.34, and
120.25 hours respectively.The detailed dura-
tion for each dataset is presented in Table 1.

Table 1: A summary of the datasets (hrs.)

Dataset Train Dev Test
AMI 79.65  9.67  9.06
AliMeeting 111.36 4.21 10.78
AISHELL-4 97.39 10.14 12.73
Compound 288.40 24.01 32.56

3.3 Evaluation Metrics

For evaluation, we employ Diarization Error
Rate (DER), which is the sum of three error
types: Missed Error Rate (MER), the percent-
age of speech time that is incorrectly labeled as
non-speech; False Alarm Rate (FAR), the per-
centage of non-speech time incorrectly labeled
as speech; and Confusion Error Rate (CER),
the percentage of speech time assigned to the
wrong speaker.

"https://github.com/BUTSpeechFIT /DiariZen
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Table 2: A comparison of speaker diarization performance on the AMI, AliMeeting, and AISHELL-4
datasets for EEND model trained with cross entropy loss (Lo ) versus multi-task log loss (Larrr)-

AMI AliMeeting AISHELL-4
MER FAR CER | MER FAR CER | MER FAR CER
Lcr (baseline) 9.08 394 446 | 858 3.07 713 | 2.96 429 341
- 250ms collar 687 195 258 | 454 087 563 | 121 171  2.36
Lyrr (proposed) 1051 3.12  4.03 | 925 2.55 6.30 | 3.62 3.79 3.16
- 250ms collar 807 146 230 | 509 070 495 | 152 148 219

Table 3: An ablation study on the performance of
the multi-task log loss with varying weights (\).
This comparison highlights three scenarios: (1)
A = 0.5, which yields the best performance, along-
side (2) A = 0.3 and (3) A = 0.7, which represent
cases with a lesser and greater influence from the
ordinal log loss, respectively.

Table 4: A comparison of the performance with
different distance between the non-speech and
speaker-active classes within the distance matrix.
The conditions are as follows: (1) represents the
original configuration, (4) sets the distance to 2
(i.e., d(0,i) = 2 and d(j,0) = 2), and (5) sets the
distance to 4.

Compound Compound
DER MER FAR CER DER MER FAR CER
baseline 1547 6.65 3.74 5.08 baseline 1547 6.65 3.74 5.08
(1) 15.23 751 3.15 4.57 (1) 15.23 751 3.15 4.57
(2) 15.59 757 3.15  4.88 (4) 15.69  6.95 3.72  5.02
(3) 15.54 7.74 3.22  4.58 (5) 15.80  6.80 3.82  5.19
3.4 Experimental Setups 3.5 Results

The EEND model was trained on the com-
pound training set and validated on the com-
pound development set, using a pre-trained
WavLM Base+ model? as a frozen feature
extractor. We set the maximum number of
speakers to C = 4 and the maximum over-
lapping speakers to K = 2. The input audio
was divided into 8-second segments with a 6-
second hop size. The model was trained for a
maximum of 100 epochs using the AdamW op-
timizer with a learning rate of 1 x 1073 and
a batch size of 64. Early stopping with a
patience of 10 epochs was applied based on
the validation loss. The hyperparameter « for
ordinal log loss was set to 1.5. In the sub-
sequent diarization pipeline, speaker embed-
dings were extracted using the ResNet34-LM3,
followed by Agglomerative Hierarchical Clus-
tering (AHC) to produce the final output.

https://huggingface.co/microsoft /wavlm-base-
plus

3https://huggingface.co/pyannote/wespeaker-
voxceleb-resnet34-LM
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The diarization performance of the EEND
models, trained with either the conventional
cross entropy loss or our proposed multi-task
log loss, is detailed in this section. Table 2
presents a comprehensive comparison of the
two models across the AMI, AliMeeting, and
AISHELL-4, evaluated under two conditions:
with no forgiveness collar (rows 1 and rows 3)
and with a 250ms forgiveness collar (rows 2
and rows 4). On the compound dataset, our
proposed multi-task log loss achieves relative
improvements of 15.8% in FAR and 10.0% in
CER compared to the baseline. These gains,
however, are accompanied by a notable regres-
sion in MER, which leads to only a marginal
improvement in the overall DER from 15.47%
to 15.23%. This outcome suggests a fundamen-
tal trade-off: our ordinal-aware loss function
effectively guides the model to be more pre-
cise in identifying speakers and avoiding false
speech detection, but it does so by adopting
a more conservative behavior. We will further
explain this in subsequent experiments.



To determine the optimal contribution of
our auxiliary objective, we conducted an ab-
lation study on its weight, A, with results
shown in Table 3. The findings indicate that a
weight of A = 0.5 yields the best overall DER.
While different weights modulate the balance
between MER, FAR, and CER, the study rein-
forces the previously observed trade-off, where
a lower FAR and CER consistently correlate
with a higher MER compared to the baseline.

We hypothesize that in segments of high un-
certainty, the model prefers to predict non-
speech to minimize the penalties associated
with incorrect speaker assignments, thus in-
creasing the MER. To further investigate the
cause of the elevated MER and validate our
hypothesis regarding the model’s conservative
behavior, we performed a targeted analysis
by modifying the distance between the non-
speech class and all speaker-active classes in
the distance matrix. The results, presented in
Table 4, reveal a clear and direct relationship.
As the distance from the non-speech class is
increased (conditions (4) and (5)), the MER
shows a corresponding improvement. How-
ever, this improvement comes at the cost of
a gradual regression in both FAR and CER.
This experiment confirms our hypothesis: a
smaller distance incentivizes the model to pre-
dict non-speech in uncertain segments as a low-
penalty alternative, leading to more missed
Conversely, a larger distance forces
the model to make more definitive—and con-
sequently, more error-prone—classifications
among speaker-active classes.

€ITors.

In summary, our investigation into apply-
ing an ordinal-aware loss to the EEND frame-
work has yielded a crucial insight. While the
proposed multi-task log loss effectively reduces
FAR and CER, its primary contribution is the
revelation of a distinct trade-off with the MER.
Our experiments, particularly the analysis of
the non-speech class distance, provide strong
evidence that this trade-off arises directly from
the incentive of model to adopt a more conser-
vative prediction strategy under this loss struc-
ture. Therefore, the key takeaway from our re-
sults is the characterization of this complex be-
havior. This insight is critical for understand-
ing the implications of incorporating ordinal
constraints in powerset speaker diarization.
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4 Conclusion

In this paper, we investigated the effect of in-
troducing an ordinal log loss to the training of
an EEND model. Our findings demonstrate
that equipping the model with distance in-
formation between different speaker combina-
tion classes effectively enhances performance
in terms of FAR and CER, yielding relative im-
provements of 15.8% and 10.0%, respectively.
However, these gains were largely offset by a
regression in the MER, which resulted in only
a marginal improvement in the overall DER.
We further identified that this MER degra-
dation was directly linked to the distance as-
signed to the non-speech class within our pro-
posed distance matrix. Our experiments con-
firmed that a smaller distance incentivizes the
model to adopt a more conservative predic-
tion strategy in uncertain segments, thereby
increasing missed speech errors. Therefore,
the key takeaway from our results is the iden-
tification and explanation of this complex be-
havior. This insight is critical for understand-
ing the implications of incorporating ordinal
constraints in powerset-based speaker diariza-
tion and offers a clear direction for future im-
provements.

5 Future Work

Based on our findings, we propose two poten-
tial improvements. First, the manually de-
fined, set-theoretic distance matrix could be
replaced by a data-driven approach. A fu-
ture direction would be to learn the distances
between speaker combination classes directly
from the training data. This could yield a dis-
tance matrix that is more optimally aligned
with the acoustic features of the data and po-
tentially improve the overall balance of the
proposed multi-task log loss. Second, to di-
rectly counteract the MER regression observed
in our experiments, we propose integrating
feature fusion techniques that have proven ef-
fective for VAD. Inspired by recent findings
from Tripathi et al. (2025), who demonstrated
that fusing traditional MFCC features with
pre-trained model representations can signif-
icantly reduce the MER, we plan to explore a
similar strategy. A promising approach would
be to incorporate a feature fusion module at
the input stage of our EEND model.



References

Hervé Bredin. 2023. pyannote.audio 2.1 speaker
diarization pipeline: principle, benchmark, and
recipe. In Proc. Interspeech.

Latané Bullock, Hervé Bredin, and Leibny Paola
Garcia-Perera. 2020. Overlap-aware diarization:
Resegmentation using neural end-to-end over-
lapped speech detection. In Proc. ICASSP.

Frangois Castagnos, Martin Mihelich, and Charles
Dognin. 2022. A simple log-based loss function
for ordinal text classification. In Proc. COLING.

Delphine Charlet, Claude Barras, and Jean-
Sylvain Liénard. 2013. Impact of overlap-
ping speech detection on speaker diarization for
broadcast news and debates. In Proc. ICASSP.

Yusuke Fujita, Naoyuki Kanda, Shota Horiguchi,
Kenji Nagamatsu, and Shinji Watanabe. 2019a.
End-to-end neural speaker diarization with
permutation-free objectives. In Proc. Inter-
speech.

Yusuke Fujita, Naoyuki Kanda, Shota Horiguchi,
Yawen Xue, Kenji Nagamatsu, and Shinji
Watanabe. 2019b. End-to-end neural speaker di-
arization with self-attention. In Proc. ASRU.

Daniel Garcia-Romero, David Snyder, Gregory
Sell, Daniel Povey, and Alan McCree. 2017.
Speaker diarization using deep neural network
embeddings. In Proc. ICASSP.

Jiangyu Han, Federico Landini, Johan Rohdin,
Anna Silnova, Mireia Diez, and Lukds Burget.
2025. Leveraging self-supervised learning for
speaker diarization. In Proc. ICASSP.

Shota Horiguchi, Yusuke Fujita, Shinji Watanabe,
Yawen Xue, and Kenji Nagamatsu. 2020. End-
to-end speaker diarization for an unknown num-
ber of speakers with encoder-decoder based at-
tractors. In Proc. Interspeech.

Aniket Kasa, Siva Rajesh Goel, Karan Gupta,
Sumegh  Roychowdhury,  Pattisapu Priy-
atam, Anish Bhanushali, and Prasanna
Srinivasa Murthy. 2024. Exploring ordinality
in text classification: A comparative study of
explicit and implicit techniques. In Proc. ACL.

Keisuke Kinoshita, Marc Delcroix, and Naohiro
Tawara. 2021. Integrating end-to-end neural
and clustering-based diarization: Getting the
best of both worlds. In Proc. ICASSP.

Federico Landini, Jan Profant, Mireia Diez, and
Lukas Burget. 2022. Bayesian hmm clustering
of x-vector sequences (vbx) in speaker diariza-
tion: Theory, implementation and analysis on
standard tasks. Computer Speech & Language.

145

Alexis Plaquet and Hervé Bredin. 2023. Powerset
multi-class cross entropy loss for neural speaker
diarization. In Proc. Interspeech.

Alexis Plaquet, Naohiro Tawara, Marc Delcroix,
Shota Horiguchi, Atsushi Ando, Shoko Araki,
and Hervé Bredin. 2025. Dissecting the segmen-
tation model of end-to-end diarization with vec-
tor clustering.

Kumud Tripathi, Chowdam Venkata Kumar, and
Pankaj Wasnik. 2025. Attention is not always
the answer: Optimizing voice activity detection
with simple feature fusion. In Proc. Interspeech.

Quan Wang, Carlton Downey, Li Wan, Philip An-
drew Mansfield, and Ignacio Lopz Moreno.

2018. Speaker diarization with Istm. In Proc.
ICASSP.


https://doi.org/10.21437/Interspeech.2023-105
https://doi.org/10.21437/Interspeech.2023-105
https://doi.org/10.21437/Interspeech.2023-105
https://doi.org/10.1109/ICASSP40776.2020.9053096
https://doi.org/10.1109/ICASSP40776.2020.9053096
https://doi.org/10.1109/ICASSP40776.2020.9053096
https://aclanthology.org/2022.coling-1.407/
https://aclanthology.org/2022.coling-1.407/
https://doi.org/10.1109/ICASSP.2013.6639163
https://doi.org/10.1109/ICASSP.2013.6639163
https://doi.org/10.1109/ICASSP.2013.6639163
https://doi.org/10.21437/Interspeech.2019-2899
https://doi.org/10.21437/Interspeech.2019-2899
https://doi.org/10.1109/ASRU46091.2019.9003959
https://doi.org/10.1109/ASRU46091.2019.9003959
https://doi.org/10.1109/ICASSP.2017.7953094
https://doi.org/10.1109/ICASSP.2017.7953094
https://doi.org/10.1109/ICASSP49660.2025.10889475
https://doi.org/10.1109/ICASSP49660.2025.10889475
https://doi.org/10.21437/Interspeech.2020-1022
https://doi.org/10.21437/Interspeech.2020-1022
https://doi.org/10.21437/Interspeech.2020-1022
https://doi.org/10.21437/Interspeech.2020-1022
https://doi.org/10.18653/v1/2024.findings-acl.320
https://doi.org/10.18653/v1/2024.findings-acl.320
https://doi.org/10.18653/v1/2024.findings-acl.320
https://doi.org/10.1109/ICASSP39728.2021.9414333
https://doi.org/10.1109/ICASSP39728.2021.9414333
https://doi.org/10.1109/ICASSP39728.2021.9414333
https://doi.org/https://doi.org/10.1016/j.csl.2021.101254
https://doi.org/https://doi.org/10.1016/j.csl.2021.101254
https://doi.org/https://doi.org/10.1016/j.csl.2021.101254
https://doi.org/https://doi.org/10.1016/j.csl.2021.101254
https://doi.org/10.21437/interspeech.2023-205
https://doi.org/10.21437/interspeech.2023-205
https://doi.org/10.21437/interspeech.2023-205
http://arxiv.org/abs/2506.11605
http://arxiv.org/abs/2506.11605
http://arxiv.org/abs/2506.11605
https://doi.org/10.21437/Interspeech.2025-2466
https://doi.org/10.21437/Interspeech.2025-2466
https://doi.org/10.21437/Interspeech.2025-2466
https://doi.org/10.1109/ICASSP.2018.8462628

Leveraging Weak Segment Labels for Robust Automated
Speaking Assessment in Read-Aloud Tasks

Yue-Yang He, Berlin Chen
National Taiwan Normal University, Taipei, Taiwan
{yueyanghe, berlin}@ntnu.edu.tw

Abstract

Automated speaking assessment (ASA)
has become a crucial component in
computer-assisted language learning, pro-
viding scalable, objective, and timely feed-
back to second-language learners. While
early ASA systems relied on hand-crafted
features and shallow classifiers, recent ad-
vances in self-supervised learning (SSL)
have enabled richer representations for
both text and speech, improving assess-
ment accuracy. Despite these advances,
challenges remain in evaluating long speech
responses, due to limited labeled data,
class imbalance, and the importance of
pronunciation clarity and fluency, espe-
cially for read-aloud tasks. In this work,
we propose a segment-based ASA frame-
work leveraging WhisperX to split long re-
sponses into shorter fragments, generate
weak labels from holistic scores, and aggre-
gate segment-level predictions to obtain fi-
nal proficiency scores. Experiments on the
GEPT corpus demonstrate that our frame-
work outperforms baseline holistic models,
generalizes robustly to unseen prompts and
speakers, and provides diagnostic insights
at both segment and response levels.

Keywords: Automated Speaking Assess-
ment, WhisperX, Weak Labels

1 Introduction

With the rapid advances in computing tech-
nology and the growing population of second-
language (L2) learners, automated speaking
assessment (ASA) has attracted increasing at-
tention and become an essential component in
computer-assisted language learning (CALL).
ASA systems are designed to provide timely
and reliable feedback on learners’ speaking
performance, enabling them to improve their

146

oral proficiency in an autonomous and low-
stress environment. In addition, ASA of-
fers scalable, objective, and consistent evalua-
tions, thereby alleviating the workload of lan-
guage instructors and facilitating large-scale
language learning applications.

Early ASA research primarily relied on shal-
low classifiers and hand-crafted features that
captured different aspects of speaking compe-
tence, such as delivery (e.g., pronunciation,
fluency, intonation), content (e.g., appropri-
ateness, relevance), and language use (e.g.,
grammar, vocabulary) (Cucchiarini et al.,
1998; Chen et al., 2010; Coutinho et al., 2016;
Chen et al., 2018; Qian et al., 2019; Wu
et al., 2022). More recently, the emergence
of self-supervised learning (SSL) paradigms
has opened up new opportunities for ASA.
Text-based SSL models, such as BERT and its
derivatives (Devlin et al., 2019), provide con-
textualized embeddings that have been suc-
cessfully adopted in various language assess-
ment tasks, including sentence-level evaluation
(Arase et al., 2022), essay scoring (Nadeem
et al.,, 2019; Wu et al., 2023), and spo-
ken monologue assessment (Craighead et al.,
2020). In parallel, the rapid development of
speech-based SSL models, such as wav2vec 2.0
(Baevski et al., 2020), HuBERT (Hsu et al.,
2021), and Whisper (Radford et al., 2023), has
further strengthened ASA systems by offer-
ing rich acoustic representations (Banno and
Matassoni, 2023; McKnight et al., 2023; Wu
and Chen, 2024; Lo et al., 2024).

Despite these advances, automated speak-
ing assessment still faces persistent challenges
in handling long speech responses. A represen-
tative example is the read-aloud task, where
learners are evaluated primarily on pronunci-
ation clarity and fluency. While text-based
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models can capture lexical accuracy, they are
inherently limited in assessing these speech-
specific aspects. Moreover, the development
of reliable ASA systems is hindered by the
scarcity of large-scale annotated data, as exist-
ing datasets are often limited in size and im-
balanced across proficiency levels. The com-
putational cost of processing extended speech
recordings further compounds these difficul-
ties. Consequently, the lack of sufficient la-
beled resources restricts model robustness and
limits the ability to deliver fine-grained and
diagnostic feedback.

In this work, we explore an ASA frame-
work designed to address both the scarcity
of labeled data and the challenges of long
speech recordings. Specifically, we leverage
WhisperX (Bain et al., 2023) to process long
audio responses and obtain time-aligned seg-
ments, each of which is subsequently evaluated
with segment-level scoring. To compensate for
the lack of labeled resources, we weakly as-
sociate each segment with the holistic profi-
ciency score of the full response, thereby gen-
erating weak labels for training. This strat-
egy not only increases the number of train-
ing instances, especially for underrepresented
proficiency levels, but also highlights weaker
segments where learner performance diverges
from holistic expectations. Finally, segment-
level predictions are aggregated (e.g., by mean
or median) to reconstruct the overall profi-
ciency score, offering a straightforward and in-
terpretable mapping from local to global as-
sessment.

Experiments on the GEPT corpus demon-
strate that our framework consistently out-
performs baseline holistic models and gener-
alizes robustly to unseen prompts and speak-
ers. We also investigate whether partial scor-
ing of only the first or last 30 seconds of
speech can approximate holistic judgments, re-
vealing systematic differences that highlight
both strengths and limitations of segment-
level scoring.

In summary, our contributions are threefold:

1. We introduce a segment-based ASA
framework for long read-aloud tasks that
alleviates the scarcity of sentence-level an-
notations by exploiting weak labels de-
rived from holistic scores;
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2. We examine aggregation strategies for
mapping segment-level predictions to
holistic scores; and

. We provide a comprehensive analysis of
ASR quality and response-length effects
on ASA performance.

These results offer new insights for designing
ASA systems that are both data-efficient and
diagnostically informative.

2 Related Work

2.1 Evolution of Automated Speaking
Assessment Systems

Research on automated speaking assessment
(ASA) has evolved from traditional feature en-
gineering to the adoption of deep neural ar-
chitectures. Early approaches relied on shal-
low classifiers with hand-crafted features tar-
geting specific dimensions of proficiency, such
as pronunciation, fluency, prosody, grammar,
and vocabulary (Cucchiarini et al., 1998; Chen
et al., 2010; Coutinho et al., 2016). While such
systems demonstrated the feasibility of auto-
matic scoring, their performance was often
constrained by the limited representational
power of manually designed features.

The advent of self-supervised learning (SSL)
has substantially advanced ASA. On the
text side, models such as BERT (Devlin
et al., 2019) provide contextualized embed-
dings that have been successfully applied
to various assessment tasks, including es-
say scoring (Nadeem et al., 2019), readabil-
ity estimation (Arase et al., 2022), and spo-
ken monologue evaluation (Craighead et al.,
2020). These approaches leverage the se-
mantic and syntactic richness of pre-trained
language models, enabling more robust pre-
diction of learner proficiency. In parallel,
speech-based SSL models, such as wav2vec 2.0
(Baevski et al., 2020), HuBERT (Hsu et al.,
2021), and Whisper (Radford et al., 2023),
have emerged as powerful tools for captur-
ing acoustic and phonetic information. Recent
studies demonstrate their effectiveness in pro-
ficiency prediction and related tasks (Banno
and Matassoni, 2023; McKnight et al., 2023;
Lo et al., 2024), showing that such representa-
tions can encode both linguistic and paralin-
guistic aspects critical to ASA.



However, most existing ASA systems treat
each spoken response as a single, monolithic
input, which becomes increasingly problem-
atic when applied to long read-aloud tasks.
Long-form speech raises both computational
and temporal costs during training and in-
ference, and more importantly, such systems
typically produce only a holistic score with-
out revealing which specific portions of the
response contributed to the learner s per-
As a result, localized feedback
is largely absent, and the literature contains
relatively little work explicitly targeting the
unique challenges of long-form ASA.

formance.

2.2 Handling Long Audio Inputs by
WhisperX

WhisperX (Bain et al., 2023) is a system de-
signed to efficiently transcribe long-form audio
with word-level timestamps. It utilizes Voice
Activity Detection (VAD) to segment audio
into approximately 30-second chunks, which
are then transcribed in parallel by Whisper
and aligned with phoneme recognition mod-
els to produce accurate word-level timestamps.
This approach enables batched inference, re-
sulting in a twelve-fold speedup without sac-
rificing transcription quality. The segmen-
tation process reduces issues like hallucina-
tions and repetition, and the forced alignment
ensures time-accurate transcriptions, making
WhisperX suitable for applications such as
subtitling and diarization.

3 Methodology

In this section, we describe the overall pipeline
of our proposed Automated Speaking Assess-
ment (ASA) framework, as illustrated in Fig-
ure 1. The system processes long audio re-
sponses by dividing them into manageable
fragments, scoring each fragment indepen-
dently, and subsequently aggregating these
scores into a single holistic proficiency score.

3.1 Segmentation

Each spoken response in our dataset lasts
approximately 90 seconds, which poses chal-
lenges for both ASR accuracy and downstream
scoring. To address this, we employ WhisperX
to obtain word-level timestamps. These times-
tamps allow us to segment each recording into
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shorter, coherent units of speech, hereafter re-
ferred to as segments. Each segment contains
a contiguous portion of the learner s response,
providing a finer-grained basis for subsequent
scoring.

3.2 Weak-label Assumption

Since human raters typically provide only one
holistic score per response, no ground-truth la-
bels exist at the segment level. To overcome
this limitation, we adopt a weak supervision
strategy by assigning the holistic score of the
full response to each of its segments as a weak-
label. While this assumption may introduce
label noise—because individual segments may
not fully reflect overall proficiency—it sub-
stantially increases the number of training in-
stances and enables finer-grained analysis of
learner performance. This trade-off is particu-
larly valuable under our limited-data setting.

3.3 Segment-Level Scoring

Fach audio segment is processed indepen-
dently to enable segment-level assessment.
The Whisper encoder is adopted as the acous-
tic backbone, and its representations are
fed into a grader module trained with weak
segment-level supervision derived from holistic
This architecture effectively enlarges
the usable training distribution, especially for
low-resource proficiency levels, while provid-
ing localized diagnostic feedback that would
otherwise be lost under holistic-only scoring.

scores.

3.4 Aggregation Strategies

Finally, the system aggregates segment-level
predictions into a holistic proficiency score
for the entire response. We consider multi-
ple strategies, including simple averaging and
median pooling, to examine which approach
best captures the relationship between local-
ized performance and the overall judgment.
Moreover, variations among segment scores
can highlight weaker portions of a response,
offering diagnostic information beyond the fi-
nal holistic score.
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Figure 1: Proposed ASA framework: long read-aloud responses are segmented, each segment is scored
independently, and the results are aggregated into a holistic proficiency score.

1 2 3 4 5
Train 0 52 505 787 96
Valid 0 9 o1 97 13
Known Content 0 6 67 99 8
Unknown Content 0 1 157 392 40

Table 1: Number of speakers for each holistic score
in the GEPT dataset.

4 Experiments and Results

4.1 Dataset

This study utilizes a private corpus collected
from the reading aloud task' in the General
English Proficiency Test (GEPT), an impor-
tant large-scale English assessment in Taiwan.
In this task, participants were instructed to
read aloud two given paragraphs within two
minutes. The corpus consists of responses to
eight different paragraph sets, with each set
corresponding to a distinct passage.

Each response was independently scored by
two professional raters on a five-point scale,
where 1 represents the lowest performance and
5 the highest. The final score was obtained by
averaging the two ratings. To evaluate model
generalization, we define responses from un-
seen paragraph sets as the unknown content
test set, while responses from previously seen
sets are regarded as known content. The re-
maining data was further split into training,
development, and test subsets following an
80/10/10 ratio.

The overall score distribution across train-
ing, validation, and test partitions is summa-
rized in Table 1. This partitioning strategy
ensures that the dataset supports evaluation

"https://www.gept.org.tw/Exam_Intro/t02_
introduction.asp
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under both familiar and novel content condi-
tions, which is critical for assessing model ro-
bustness in practical applications.

4.2 Experimental Setup

We employed Whisper-large-v2? as our acous-
tic encoder in our framework. Model configu-
rations were initialized using pretrained mod-
els from the HuggingFace Transformers library
(Wolf et al., 2020). Training was conducted
on a single NVIDIA 3090 GPU using Adam
optimizer with a weight decay of le-5. The
learning rate was set to 2e-4, and training was
conducted for 15 epochs with a batch size of
25.

Baseline As baselines, we employed both a
text-based SSL model and a speech-based SSL
model, namely BERT? and wav2vec 2.0%. For
the text-based baseline, the read-aloud audio
was first transcribed by Whisper-large-v2, and
the resulting text embeddings were extracted
using a frozen BERT encoder; the same grad-
ing module used in our proposed framework
was fine-tuned on top of it to predict holis-
tic proficiency scores. For the speech-based
baseline, we adopted wav2vec 2.0 as a frozen
acoustic encoder and fine-tuned only the grad-
ing module on top of its representations.

Evaluation Metrics We evaluated model
performance using three metrics: accuracy
(ACC), weighted F1 score (F1), and Pearson
correlation coefficient (PCC). ACC is defined
as the proportion of predictions that exactly
match the human-assigned holistic score. The

’https://huggingface.co/openai/
whisper-large-v2

3https://huggingface.co/google-bert/
bert-base-uncased

‘https://huggingface.co/facebook/
wav2vec2-base
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Known Content Unknown Content

Strategies

ACCt F1t PCCt ACCt Flt  PCCt

BERT 61.67 5220 0462 7050 61.98 0.295
wav 58.33 5228 0217 68.01 60.63 0.217
Whisper FUStonly 7389 7061 0577 7595 7257 0496
Last only 78.33 7497 0.679 7610 72.72 0.499

Proposed  Mean  TAALTLST 0722 7677 745 0.623
Median ~ 82.22 79.04 0.748 78.47 76.01 0.562

Table 2: Experimental results on the GEPT test
dataset. “Known Content” denotes test samples
with seen content, while “Unknown Content” de-
notes test samples with unseen content.

weighted F'1 score accounts for label imbalance
across proficiency levels, providing a more re-
liable estimate of performance on underrep-
resented categories. PCC further measures
the monotonic relationship between predicted
and reference scores, reflecting how well the
model preserves the human-assigned ranking
structure. These metrics jointly capture both
discrete correctness (ACC) and ordinal con-
sistency (F1, PCC), and are consistent with
common practice in automated speaking as-
sessment.

4.3 Results and Discussion

Baseline Performance Analysis. Table 2
summarizes the performance of our models un-
der different configurations. The text-based
baseline (BERT with Whisper transcription)
achieved acceptable accuracy, highlighting the
limitation of relying solely on ASR transcripts
for holistic scoring. Interestingly, the speech-
based SSL model (wav2vec 2.0) produced per-
formance comparable to BERT in accuracy
and weighted F1, but its PCC was substan-
tially lower, particularly on the known-content
set. This indicates that although both base-
lines can correctly classify a similar propor-
tion of samples at the categorical level, the
wav2vec-based model struggles to preserve the
ordinal relationship among proficiency levels,
likely due to its predictions being more dis-
tributionally concentrated and less sensitive
to fine-grained prosodic variation relevant for
human scoring. In contrast, BERT implicitly
benefits from lexical cues captured via ASR,
which may preserve a closer monotonic align-
ment with human-assigned proficiency levels.

Effect of Full-Length Training. The
Whisper-based grader trained on full-length
read-aloud recordings substantially outper-
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formed both baselines across all three met-
rics, confirming the effectiveness of leveraging
acoustic-prosodic information beyond lexical
content. The performance gain in PCC further
suggests that holistic fluency and speech qual-
ity are better reflected in continuous acoustic
patterns than in discrete lexical sequences ex-
tracted from ASR transcriptions.

Temporal Coverage Analysis. To inves-
tigate the effect of temporal coverage, we
compared models using only the first 30 sec-
onds and the last 30 seconds of each record-
ing. Both truncated variants yielded a no-
ticeable drop across all metrics relative to the
full-length model, suggesting that proficiency-
related cues are distributed throughout the
entire utterance rather than being concen-
trated at the onset. Notably, the last-30-
second condition slightly outperformed the
first-30-second condition, implying that later
segments of the response may contain more
stable or representative prosodic evidence of
proficiency, potentially due to speakers set-
tling into a more consistent speaking rhythm
after the initial articulation phase.

Segment-Based Aggregation and Error
Patterns. We further analyzed performance
using a segment-based aggregation approach
with WhisperX alignment. FEach recording
was divided into segments, and segment-level
scores were aggregated using either the mean
or the median. Both strategies achieved per-
formance comparable to the full-length Whis-
per model, while the median aggregation
proved more robust to local inconsistencies
and noisy or disfluent segments. This sug-
gests that outlier-prone stretches of speech dis-
proportionately affect global predictions when
treated as a single unit, and that segment-wise
aggregation can stabilize scoring by emphasiz-
ing the speaker’ s typical performance rather
than transient fluctuations.

Error patterns revealed by the confusion
matrices (Figure 2) further highlight these dif-
ferences. With the mean strategy, many level-
4 responses were misclassified as level 3, and
most level-5 responses were reduced to level
4. Due to the limited number of level-2 sam-
ples, the model struggled to classify them cor-
rectly. In contrast, the median strategy pro-
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Figure 2: Confusion matrices comparing mean and median aggregation strategies for proficiency predic-
tion: (a) mean—seen prompts, (b) mean—unseen prompts, (¢) median—seen prompts, and (d) median—

unseen prompts.

duced more concentrated predictions across
both the known and unknown content test
sets. Notably, for the unknown content condi-
tion, the median strategy yielded more correct
classifications for level-5 responses compared
to the mean strategy, indicating improved gen-
eralization on higher-proficiency learners.

5 Conclusion and Future Work

In this paper, we introduced a segment-based
ASA framework for long read-aloud scoring,
which addresses the data sparsity and tem-
poral modeling challenges of full-length utter-
ances. Using WhisperX for time-aligned seg-
mentation and weak segment-level labeling,
the framework improves supervision granular-
ity and stabilizes the learning of proficiency-
relevant speech cues. Experiments on the
GEPT corpus showed consistent gains over
text-only and speech-only baselines, and re-
vealed that segmentation combined with me-
dian aggregation enhances robustness against
disfluent or noisy segments. The analysis fur-
ther highlights that full-length coverage re-
mains essential for reliable scoring, as profi-
ciency cues accumulate beyond early articula-
tion.

Despite these promising results, the frame-
work still assumes that all spoken content
aligns with the target passage, whereas learn-
ers may occasionally insert off-topic or para-
phrastic segments. Since WhisperX already
provides high-resolution temporal alignment,
future work could exploit this timing informa-
tion to detect lexical or prosodic deviations
from the reference passage, enabling segment-
wise content validation rather than treating
misalignment as uniform noise. This direc-
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tion would further extend the framework from
holistic scoring toward diagnostic assessment,
and could generalize to open-response scenar-
ios where content is not predetermined. Ulti-
mately, incorporating alignment-based seman-
tic verification would improve both the inter-
pretability and applicability of ASA systems
in real-world learner-centered settings.
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Abstract

Machine translation (MT) for low-resource
languages remains constrained by extreme
data scarcity, making traditional fine-
tuning infeasible. This study examines
Amis—Mandarin translation as a prac-
tical case, leveraging GPT-40-mini and
GPT-5-mini with dictionary integration
and grammar-informed prompting. Ex-
periments show that GPT-5-mini, sup-
ported by dictionary, achieves usable qual-
ity (BLEU-3 ~31, COMET ~78, BLEURT
~71). To address the bottleneck of in-
complete dictionaries, we propose Context-
Driven Lexical Augmentation, which in-
fers Mandarin equivalents for unseen Amis
terms from corpus context, raising BLEU-3
to 34 and establishing a stronger basis for
semi-automatic corpus generation. These
results demonstrate that expanding and re-
fining dictionary provides greater benefits
than parameter-intensive fine-tuning in ex-
tremely low-resource settings.

We also discuss the performance gap
between Amis—Mandarin and Man-
darin—Amis translation, attributing it
to Amis’s morphological complexity and
narrower semantic coverage. Overall, our
resource-driven strategy offers a scalable
pathway toward high-quality MT and
corpus expansion, ultimately supporting
both linguistic research and language
revitalization.

Keywords: Low-Resource Languages, Ma-
chine Translation, Prompt Engineering, Data
Augmentation

1 Introduction

Taiwan’s indigenous languages, widely recog-
nized as the cradle of the Austronesian family
(Blust, 2013), are critically endangered. Many
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are spoken by only a few hundred individu-
als, and their decline threatens both cultural
continuity and linguistic diversity. Develop-
ing digital tools to support documentation and
revitalization has therefore become an urgent
priority. Among such tools, machine trans-
lation (MT) holds particular promise, as it
can facilitate communication across language
communities and accelerate the creation of lin-
guistic resources. However, MT systems typ-
ically depend on large-scale parallel corpora,
standardized orthographies, and comprehen-
sive dictionary-conditions absent for most in-
digenous languages. This scarcity firmly cate-
gorizes them as low- or no-resource languages,
requiring methods that can operate effectively
under extreme data constraints.

In this work, we focus on Amis—Mandarin
translation as a representative case of low-
resource MT. Amis is the most widely spo-
ken indigenous language in Taiwan, yet it re-
mains critically underrepresented in digital re-
sources, like large-scale corpora, standardized
lexical tools, or annotated datasets to sup-
port NLP tasks like MT. We evaluate two
large language models—GPT-40-mini (small-
scale) and GPT-5-mini (mid-tier)—in combi-
nation with existing Amis—Mandarin dictio-
naries (Zheng et al., 2022) and descriptive
grammar resources (T &35 M) (Coun-
cil of Indigenous Peoples, 2017). Our exper-
iments show that grammar-informed prompt-
ing benefits smaller models, while GPT-5-mini
achieves strong performance with dictionary
support alone. Error analysis further reveals
that dictionary coverage, rather than syntac-
tic complexity, is the principal bottleneck. To
address this, we propose a Context-Driven Lex-
ical Augmentation method that infers trans-
lations for unseen Amis words, yielding mea-
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surable improvements in BLEU and semantic
metrics. These findings highlight that system-
atic enrichment of dictionary is more effective
than scaling model size or parallel data alone.

We emphasize the Amis—Mandarin direc-
tion for both cultural and practical reasons.
From a preservation perspective, initiating
data collection from Mandarin and translating
into Amis risks cultural bias, as it inevitably
introduces Mandarin concepts absent from
Amis traditions. Practically, Amis narratives
can be translated into Mandarin with suffi-
cient accuracy to bootstrap new corpora while
keeping human validation effort low. In con-
trast, Mandarin encompasses a much broader
semantic space, covering domains such as sci-
ence, technology, and politics, whereas Amis
maintains a more compact lexicon rooted in
ecology, kinship, and oral tradition (Lewis
et al., 2023). As a result, corpora originat-
ing in Amis are more coherent and transfer-
able into Mandarin, while the reverse direc-
tion often requires paraphrase or approxima-
tion that BLEU score penalizes heavily. Taken
together, these factors make Amis—Mandarin
the most ethical and reliable pathway for semi-
automatic corpus expansion.

At the same time, we acknowledge that
some prior studies have reported higher BLEU
scores for Mandarin—Amis, contrary to our
findings. We discuss potential reasons for this
discrepancy and its implications for evaluat-
ing low-resource MT. Finally, although this
study focuses on Amis—Mandarin, we also
outline a pathway toward robust bidirectional
MT. By combining semi-automatic corpus
generation, dictionary augmentation, and
semantic-aware evaluation, future work can
enable fine-tuning and ultimately achieve
high-quality Amis—Mandarin translation in
both directions, advancing both NLP research
and the revitalization of Taiwan’s indigenous
languages.

Our contributions are threefold:

e« We conduct the first systematic evalua-
tion of Amis—Mandarin translation with
GPT-based models, showing that mid-tier
LLMs achieve usable quality when sup-
ported by dictionary resources.

o We further introduce Context-Driven Lex-
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ical Augmentation, a lightweight method
for expanding dictionary coverage by
inferring translations for unseen Amis
words, directly improving BLEU and se-
mantic scores.

¢ We establish Amis—Mandarin as a prac-
tical direction for semi-automatic corpus
generation and outline a pathway toward
high-quality bidirectional MT through fu-
ture fine-tuning on expanded corpora.

2 Related Work

Low-resource machine translation (MT) faces
a fundamental challenge: parallel corpora are
too small to support stable fine-tuning of large
models. With billions of parameters but only
a few thousand sentence pairs, gradient up-
dates are weak, training quickly overfits to id-
iosyncratic examples, and generalization suf-
fers (Haddow et al., 2022). Empirical stud-
ies suggest that with only a few to at most
tens of thousands of pairs, full fine-tuning of
large models tends to be unstable and prone to
overfitting, making parameter-efficient alterna-
tives preferable (Gu et al., 2018). Since the
Amis—Mandarin corpus contains only ~5,000
pairs, our setting falls well below this thresh-
old, motivating approaches that leverage ex-
ternal resources such as bilingual dictionaries
and grammatical descriptions rather than re-
lying solely on parallel data.

A range of alternatives to full fine-tuning
has been explored. Prompt-based methods
and in-context learning reduce dependence
on large datasets but often deliver inconsis-
tent results. For example, retrieval-augmented
prompting with dictionary support reached
BLEU ~21 for English-Mambai in one domain
but dropped to ~4 in another, revealing lim-
ited robustness (Merx et al., 2024). Prompt
tuning can exploit structural cues (Schucher
et al., 2022), yet its success is highly sensi-
tive to template design and it often struggles
to enforce lexical fidelity. Liao et al. (Liao
et al., 2024) examined error-feedback prompt-
ing for Mandarin— Amis translation, showing
that iterative correction brought modest im-
provements. By contrast, our work centers on
Amis—Mandarin, integrating dictionary and
grammar resources into prompting and extend-
ing coverage through automated lexical aug-



mentation, producing more reliable gains.

In the Formosan and Austronesian con-
text, resources remain sparse but are slowly
expanding.  Zheng et al. (Zheng et al.,
2022) introduced the first Amis-Mandarin par-
allel corpus and dictionary, demonstrating
that dictionary augmentation benefits fine-
tuned mBART models. Their experiments
reported higher BLEU for Mandarin— Amis
(15-19) than for Amis—Mandarin (<7), sug-
gesting directional asymmetry.  Yet other
research points the other way: Zhang et
al. (Zhang et al., 2024) showed that Man-
darin—Zhuang achieved much lower BLEU
(~16) than Zhuang—Mandarin (~32). Taken
together, these studies indicate that direction-
ality may be influenced by morphology, se-
mantic coverage, dictionary completeness, and
modeling strategy (fine-tuning vs. prompt-
ing).

Lin et al. (Lin et al., 2025) advanced
this line of work by releasing FormosanBench,
a benchmark spanning Amis, Atayal, and
Paiwan across several NLP tasks, including
MT. Their evaluation revealed persistent per-
formance gaps relative to high-resource lan-
guages, underscoring the importance of ap-
proaches tailored to the typological and lexical
characteristics of Formosan languages rather
than relying exclusively on transfer from unre-
lated high-resource settings.

Building on this foundation(Lin, 2025), our
work proposes a dictionary- and grammar-
driven framework for Amis—Mandarin trans-
lation with GPT models.  Unlike earlier
prompting studies that relied on static dic-
tionary , we introduce Context-Driven Lexical
Augmentation, a proof-of-concept method that
infers Mandarin equivalents for unseen Amis
words from corpus context. This augmenta-
tion improved BLEU-3 from ~31 to 34 and
raised semantic scores, surpassing the mod-
est gains reported for prior prompting strate-
gies (Merx et al., 2024; Liao et al., 2024).
More broadly, our findings suggest that lexical
expansion and semantic-aware evaluation are
more scalable and effective than parameter-
intensive fine-tuning in extremely low-resource
conditions, while also shedding new light on
the role of directionality in Amis—Mandarin
MT.

169

3 Translation Framework and
Evaluation Metrics

We present an Amis—Mandarin translation
framework that integrates mid-tier large lan-
guage models (LLMs) with lexical and gram-
matical resources. The system combines dic-
tionary pre-searching and grammar-informed
prompting with an iterative auto-prompting
procedure, which refines outputs by dynam-
ically adjusting prompts across evaluation
rounds. This design offers a practical and scal-
able strategy for machine translation in low-
resource Austronesian languages.

3.1 Models and Data

We evaluate two large language models: GPT-
4o-mini, a smaller-scale model, and GPT-5-
mini, a mid-tier model. The dataset comprises
5,751 Amis—Mandarin sentence pairs (Zheng
et al., 2022), partitioned into 576 for training
(used exclusively in the auto-prompt setting),
575 for validation, and 4,600 for testing across
all prompt strategies. To maximize evaluation
coverage, 80% of the data is allocated to test-
ing, reflecting the fact that prompt engineer-
ing does not rely on training sets. In addition,
we utilize a bilingual glossary containing 7,927
Amis-Mandarin entries (Zheng et al., 2022),
implemented as a Pandas DataFrame to facili-
tate efficient search and retrieval. Collectively,
these resources serve as the most comprehen-
sive Amis—Mandarin parallel dataset currently
available.

3.2 Preprocessing

All sentence pairs were standardized before
translation. Preprocessing involved removing
extra spaces, newline markers, and punctua-
tion. Amis tokens were lowercased while re-
taining apostrophes, which carry morphologi-
cal information. Sentences were processed in
batches of 20 to balance efficiency with model
context length. For each sentence, tokens were
normalized and matched against the glossary
using RapidFuzz similarity, retrieving up to
three candidate translations, or a single match
when similarity exceeded 95%.

3.3 Prompting Strategies

We evaluate three prompting strategies, each
incorporating glossary-based lexical hints:



1. Baseline Prompting

(Figure 1(a)):
Prompts incorporate detailed formatting
instructions and a comprehensive glossary
look-up table to guide initial translation
efforts. For each word, a fuzzy match-
ing algorithm is employed to retrieve up
to three candidate translations, prioritiz-
ing those exceeding 80% similarity to en-
sure high relevance. Sentences are pro-
cessed efficiently in batches of 20 to op-
timize computational resources and main-
tain consistency across translations.

. Grammar-Rule Prompting (Figure
1(b)): Builds on the baseline by ap-
pending a curated set of rules from the
Amis grammar book (Council of Indige-
nous Peoples, 2017) on word order, af-
fixation, and case markers, using a sim-
ilar batching process. Instead of embed-
ding the full 177-page (& & & T £ 75
— 35X WL#)  into each prompt, we use
GPT-5 to distill it into a ~3-page “core
pack” of high-impact rules (e.g., clause
structure, linker a, case/voice morphol-
ogy, negation, relative clauses). An ab-
lation study with 500 randomly selected
sentence pairs showed that appending the
full dictionary offered no benefit in im-
proving scores. This pack is frozen and
prepended to Amis—Mandarin prompts.
This extract-then-inject approach may
mitigate long-context issues like “lost in
the middle” (Liu et al., 2024). The com-
pact pack lowers latency/cost, freeing to-
kens for lexicon snippets and enhancing
controllability.

. Auto-Prompt Training (Figure 1(c)):
An iterative refinement cycle designed to
enhance translation quality through sys-
tematic feedback, comprising;:

(a) Batch Translation: Process 20-
sentence batches using the baseline
setup, ensuring consistent input han-
dling and initial translation genera-
tion across the corpus.

(b) Error Analysis: Conduct a de-
tailed comparison of translated out-
puts against reference texts, identify-
ing systematic errors such as lexical
mismatches, syntactic deviations, or

semantic inaccuracies to pinpoint ar-
eas for improvement.

(¢) Prompt Update: Revise prompt in-
structions to address identified issues,
incorporating targeted adjustments
—e.g., clarifying ambiguous rules or
adding contextual cues—based on er-
ror patterns observed.

(d) Iteration: Apply the updated
prompt to subsequent batches, itera-
tively refining the process across the
training dataset to progressively en-
hance translation fidelity and coher-
ence.

Auto-Prompt Training can be conceptu-
alized as a dynamic process wherein the
large language model (LLM) implicitly de-
rives grammar rules and linguistic pat-
terns through iterative error analysis and
correction. This self-adaptive mechanism
leverages accumulated insights to evolve
the prompt, with prompts automatically
generated by GPT based on the difference
between prediction and ground truth ref-
erence. The resulting optimized prompt,
enriched with corrections and contextual
understanding, is then deployed across
the test dataset.

3.4 Evaluation Metrics

We assess translation quality using three com-
plementary metrics—BLEU-3, BLEURT, and
COMET—each normalized to a 0—100 scale
for unified comparison.

BLEU-3, which measures up to 3-gram over-
lap, is better suited than full BLEU for low-
resource M'T because shorter n-grams are more
reliably captured and impose fewer penalties
on valid paraphrases (Liao et al., 2024). The
BLEU-3 score is calculated as:

1
BLEU-3 = BP - exp (; 5 log pn> ,
where p,, is the precision for each n-gram order
and BP is the brevity penalty.

For all BLEU calculations, we apply the
methodl smoothing function from NLTK’s
SmoothingFunction.  Under this method,
when an n-gram precision would otherwise be
zero, it is replaced with a very small constant
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Glossary (Amis = Chinese) Source (Amis, 20 Sentences)

itisowanan.

(~7900 Iinels omitted) :
: . Lawiten ita koni lotok.

[ Output Format Requirements] \

1L HHRELRETERTX -
(En: Please translate the given language into Chinese.)

288 R P SURAFER 0 LR 42047 5 &

ashowiden iR 1. Sasepatay ko wawanira, [#E#XEX]
aamaen B 2. Mifotingi no walian a riyar.

aanayaen & hiied) 3, Sanengseng cira a cinikotay.

G LR 4, Simsim hato ko somal no mako

aanini AR AHB—BRASF -

(En: Only output the final Traditional Chinese translation,
exactly 20 lines; each line corresponds to one input sentence.)

BLAREMKE (41 1) (=) ~— %)

. ig Matatekotekol i i (En: Do not include any numbering (including: 1., (1), (=), D P LR
| 6t T . Matatekotekol kami to mali. —, = etc). B &
oyas s AR ) ! o ;tf;&ﬁﬁﬁ:ti##x" ) (s EX]
‘oyasen #lElgut 20. Opi'acawan naira to nanom Skt e & ‘ [ Output Format Requirements]
ang 23 Kiraan a nemne. e e T j vSameasfrcm Baseline Prompting) /

(38 %) \
RIS A CREAN
[FTRNYSTY
$,) BEFX R o

TV R (MFE) + 445 (2F)
VR (BFEH) + £# (RF)

2 A iBie, (4 kofcifca & # nofnifna ; 4 tof-an)

Retrieve Closest Vocabulary (Fuzzy Score)

ko dko(HfiRie (£4%), Score=1000) \
wawa - wawa (#-F, Score = 100.0)

Sentence 1: Sasepatay ko wawa nira.
AT ) #3135
sasepatay - sasepatay ({8 A, 100.0)
ko> ko (#fri%sz (£4%) ,100.0)
wawa -> wawa (7%, 100.0)
nira = nira (443, 100.0)
Sentence 2: Mifoting i no walian a riyar.
kT i) #3135
mifoting - mifoting (4 ., 100.0)
il (14
no - no (#4 4
walian - walian (% 49, 100.0)

Sentence 20: .......

N1

Sentence 1: Sasepatay ko wawa nira. \
Sk (TR ) 8338

sasepatay - sasepatay ({8 A, 100.0)
ko> ko (#Art%se (£45) ,100.0)
wawa - wawa (%, 100.0)
nira = nira (# 43, 100.0)
Sentence 2: Mifoting i no walian a riyar.
AL (THE)
mifoting = mifoting (4f %, 100.0)
i>i(# (fr43),1000)
no > no (#4432 (J#) , 100.0)
walian - walian (£ % #9, 100.0)

/ K Sentence 20: ........ j

) ,100.0)
(K5 ) ,1000)

1. Sasepatay ko wawa nira.
sasepatay -» sasepatay (w8 A, Score = 100.0)
nira =) nira (f4, Score = 100.0)

2. (Omitted, similar to Example #1)
3. (Omitted, similar to Example #1)

(a) (b)

Auto Prompting

4. Simsim hato ko somal no mako i tisowanan. |

Glossary + 20 Amis + 20 References |

simsim - simsim (&4 36 17 & A 28, Score = 100.0)

hato - hanto (£, Score = 88.89), or
ato (o &.7| & #4512, Score =85.72), or |

Prompting

hatefo (3% 4, Score = 80.0)
ko - ko (#futkie (£4) , Score=100.0)
somal - somowal (33, Score = 83.34), or
simal (i, Score = 80.0)

t Repeat x29 batches I

I » I 20 Chinese Outputs I »' Updated Guidelines |

| Final Evolved Prompt: Evaluate on full dataset |

Figure 1:

(c)

Overview of the prompting framework for Amis—Mandarin MT. Each Amis sentence is

first processed through fuzzy matching to retrieve up to three glossary candidates with corresponding
Mandarin translations. These lexical hints are then integrated into either (a) Baseline Prompting,
which applies only formatting requirements, or (b) Grammar-Rule Prompting, which supplements the
baseline with explicit grammatical rules. (¢) Auto-Generated Prompting further refines the prompt
iteratively by comparing translations against references, analyzing errors, and updating guidelines before

final evaluation on the full dataset.

€ instead. This avoids BLEU scores collapsing
to zero, which is particularly important in our
setting where sentences are short and higher-
order matches are often sparse. In cases where
matches do exist, smoothing has no effect.

To evaluate semantic quality beyond sur-
face overlap, we also include BLEURT and
COMET. BLEURT uses pretrained language
models fine-tuned on human ratings, while
COMET leverages multilingual contextual em-
beddings; both metrics correlate strongly
with human judgments of translation quality.
As with BLEU, we normalize BLEURT and
COMET to a 0—100 range for consistent com-
parison.

By combining n-gram precision (BLEU-
3 with smoothing) and semantic adequacy
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(BLEURT, COMET), our evaluation frame-
work balances literal accuracy with meaning
preservation—an essential requirement for low-
resource MT.

4 Results and Analysis

4.1 Evaluation with GPT Models

Figure 2 presents the performance of GPT-
4o0-mini and GPT-5-mini under three prompt-
ing strategies—Baseline, Grammar-Rule, and
Auto-Prompt—plus an additional condition
for GPT-5-mini with an augmented dictionary.
Evaluation metrics include BLEU1—4, BLEU-
3 (our primary n-gram metric for low-resource
MT), and the semantic measures COMET
and BLEURT, all normalized to a 0—100
scale. Figure 3 plots BLEU-3, COMET, and



BLEURT scores across models and prompting
methods for easy comparison.

GPT-40-mini
BLEU1 | BLEU2 | BLEU3 | BLEU4 |COMET |BLEURT]
Baseline 52 34 20 13 60 61
Grammar-Rule 55 36 23 16 65 66
Auto-Prompt 55 35 22 14 62 64
GPT-5-mini
BLEU1 | BLEU2 | BLEU3 | BLEU4 |COMET BLEURT]
Baseline 59 43 31 24 78 71
Grammar-Rule 60 43 32 24 78 72
Auto-Prompt 59 43 31 24 77 71
Baseline +
Updated Dictionary | 62 46 34 26 &) 73
Figure 2: Comparison of GPT-40-mini and

GPT-5-mini performance with BLEU1-4, COMET,
and BLEURT. Grammar-Rule prompting bene-
fits GPT-40-mini (BLEU-3: 20—23, COMET:
60—65, BLEURT: 61—66). For GPT-5-mini,
dictionary augmentation delivers the largest im-
provement (BLEU-3: 31—34, COMET: 78—79,
BLEURT: 71—73), whereas grammar rules and
auto-prompting provide only marginal gains.

For GPT-40-mini, Grammar-Rule prompt-
ing yielded consistent gains over both Baseline
and Auto-Prompt: BLEU-3 rose from 20 to 23,
COMET from 60 to 65, and BLEURT from 61
to 66. Auto-Prompt achieved a BLEU-3 of
22 but lagged on semantic metrics, indicating
that explicit grammatical guidance is particu-
larly valuable for smaller models that struggle
with morphosyntactic variation.

GPT-5-mini, by contrast, performed
strongly across all conditions, showing that
it can already exploit dictionary support
without extensive prompting. Baseline results
reached BLEU-3 ~31, COMET ~78, and
BLEURT ~71. Grammar-Rule and Auto-
Prompt strategies offered only marginal gains
(BLEU-3 at 32, with semantic scores differing
by at most one point), suggesting that larger
models are less dependent on handcrafted
grammatical cues and generalize robustly
from lexical hints alone.

The most notable improvement for GPT-5-
mini came from context-driven lexical augmen-
tation (detailed in the next subsection). Incor-
porating inferred dictionary entries for out-of-
vocabulary terms increased BLEU-3 from 31
to 34, COMET from 78 to 79, and BLEURT
from 71 to 73. This pattern indicates that
dictionary completeness, rather than prompt
complexity, is the decisive factor in improving
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Figure 3: Comparison of GPT-40-mini and GPT-5-
mini performance before dictionary augmenta-
tion: (a) BLEU-3, (b) COMET, and (c) BLEURT.



translation quality. While additional prompt-
ing yields diminishing returns, enriching lexi-
cal coverage directly addresses the core bottle-
neck of low-resource MT.

In sum, GPT-5-mini consistently outper-
formed GPT-40-mini on both surface overlap
and semantic adequacy. Grammar rules pro-
vide clear benefits for smaller models, but for
stronger LLMs, the greatest gains derive from
expanding dictionary rather than layering in-
creasingly complex prompts.

4.2 Context-Driven Lexical
Augmentation

Table 1 demonstrates the effect of out-of-
vocabulary (OOV) tokens on translation qual-
ity for specific cases. In the baseline system,
sentences containing unknown terms such as
fitaol achieved only BLEU-3 scores of 8—11.
To address this, we applied a context-driven
lexical augmentation strategy: candidate Man-
darin equivalents were inferred from parallel
corpus contexts (e.g., fitaol — & &, pilipayan
— BF X, atolay — ¥ E), and new entries
were added to the Amis—Mandarin dictio-
nary, which originally contained ~8000 words,
with ~1200 additional OOV words incorpo-
rated. For OOV items occurring in multiple
sentences, all plausible Mandarin interpreta-
tions were appended under the same Amis en-
try.

We then re-evaluated translation perfor-
mance with GPT constrained to the aug-
mented dictionary and extracted grammar
rules, excluding access to reference transla-
tions to preserve evaluation integrity. This ap-
proach substantially improved BLEU-3 scores
for sentences containing unseen Amis words,
with some cases reaching 100 (Table 1).
These results highlight the pivotal role of en-
riched dictionary in improving low-resource
MT. While the inferred mappings require fur-
ther validation by native speakers, the findings
underscore the importance of systematic lexi-
cal development as a foundation for advancing
Amis—Mandarin translation. Future ablation
studies could isolate the impact of dictionary
size versus prompt complexity to further refine
these gains.

Amis Baseline Updated

(Reference below) (BLEU-3) Dictionary
(BLEU-3)

Mifitelak to fitaol ko ciwciw © PHEREFET o NFERAL A o

Reference: NERALF i © (11) (100)

O pilipayan i nacila ° AR A RAE AT o ERABAK o

Reference: ¥ REBFAX o (9) (100)

Mangernnger no atolay ko loma’ KR @GWEHT o FRVEEED o
Reference: F BARIE K o (8) (100)

Table 1: Impact of context-driven lexical augmen-
tation on Amis—Mandarin translation. Augmen-
tation resolves OOV terms (e.g., fitaol — & 7%,
pilipayan — B #F X, atolay — 3 E), improving
BLEU-3 from 8—11 to up to 100 for specific cases.

4.3 Limitations of BLEU for Semantic
Evaluation

Table 2 illustrates cases where BLEU under-
estimates translation quality. GPT-5-mini
Auto-Prompt outputs for some sentences re-
ceive very low BLEU scores (4-8) despite
being semantically accurate, as reflected by
much higher COMET scores (72—90). For
instance, the Amis sentence “Narikoran no
faliyos matomes ko sota’ i lalan.” is translated
as " He BB 1R > B EMAERE o7 (BLEU-3 =
8, COMET = 90). While lexically divergent
from the reference, the meaning is preserved.

Similar discrepancies appear in other exam-
ples, where paraphrasing reduces BLEU but
COMET captures semantic fidelity. These
results highlight BLEU’s limitations in low-
resource MT, particularly for languages where
flexible phrasing is common. Semantic met-
rics such as COMET provide better alignment
with human judgment and should complement
BLEU in evaluation frameworks for endan-
gered and low-resource languages. Future eval-
uations might explore large language models
for direct scoring to further reduce bias.

Amis Reference / COMET
(GPT-5-mini) (BLEU-3)
Narikoran no faliyos BB HEFLHTFR o 90
matomes ko sota’ ilalan. (BEBRE > 3 EHARE ) (8)
Aka pahacikay a mi- AT M - 88
parakat to tosiya. (R &de 2GRk o) (5)
Do"do han ko rakat ako! 3 3R#E & 69 Rr 7 | 84
(RFHA D (4)
Ma' adangen kako to HKFEAFHE BERY o 72
ngiha’ no dadacdac. (KA GG A o) B o) 5)

Table 2: Examples where BLEU-3 penalizes para-
phrasing despite high semantic fidelity, as reflected
by COMET.



5 Challenges and Pathways for
Amis—Mandarin MT

Prior work has reported that Mandarin— Amis
translation can achieve higher BLEU than the
reverse. In contrast, our experiments con-
sistently find the opposite: Amis—Mandarin
yields stronger performance. We attribute this
to the fact that Amis is morphologically rich,
with many surface forms for the same con-
cept, which leads to frequent mismatches un-
der BLEU. For example, a single Mandarin
word may correspond to several Amis forms de-
pending on context, and without explicit dis-
ambiguation, models often choose the wrong
variant, resulting in lower BLEU score.

These challenges highlight why dictionary
expansion with contextual metadata are cru-
cial for future progress. Our system al-
ready achieves sufficient accuracy in the
Amis—Mandarin direction to enable large-
scale semi-automatic corpus generation, easing
the burden on human validators and accelerat-
ing resource development. By complementing
this with automatic dictionary augmentation,
we can steadily improve lexical coverage and
translation fidelity.

Looking ahead, we see a clear pathway:
use automatic Amis—Mandarin translation to
bootstrap corpora from elder narratives, refine
outputs through lightweight human feedback,
and progressively enrich the dictionary with
contextual information. In the long term, in-
tegrating direct speech-to-text translation will
further reduce barriers to language documen-
tation and revitalization, while offering a gen-
eralizable framework for other low-resource,
morphologically complex languages.

6 Conclusion

This study examined Amis—Mandarin trans-
lation as a practical case of low-resource MT,
focusing on strategies that enable scalable
corpus expansion despite the limited parallel
data available. Our experiments show that
mid-tier LLMs, particularly GPT-5-mini, can
achieve usable quality when paired with dic-
tionary support (BLEU-3 ~31, COMET ~78,
BLEURT ~71). The proposed framework is
applicable to any large language model compa-
rable to or exceeding the capabilities of GPT-
5-mini. While grammar-informed prompting
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benefits smaller models, dictionary coverage
emerged as the decisive factor.

We further demonstrated that augment-
ing the glossary with context-inferred entries
improves translation quality and establishes
a threshold where large-scale semi-automatic
data generation becomes feasible. This ap-
proach allows Amis narratives to be trans-
lated into Mandarin with sufficient accuracy
for bootstrapping new corpora, reducing hu-
man effort to lightweight validation.

In summary, our contribution lies in refram-
ing low-resource MT for endangered languages:
progress is driven less by parameter-intensive
fine-tuning and more by systematic lexical ex-
pansion, context-sensitive dictionary design,
and semantic-aware evaluation. Crucially, the
resulting expanded corpora will make future
fine-tuning feasible, enabling higher-quality
Amis—Mandarin bidirectional MT and pro-
viding a sustainable foundation for language
preservation.
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Abstract

Automatic speech recognition (ASR) for
low-resource languages such as Taiwanese
Hokkien is difficult due to the scarcity
of annotated data. However, direct fine-
tuning on Han-character transcriptions of-
ten fails to capture detailed phonetic and
tonal cues, while training only on roman-
ization lacks lexical and syntactic cov-
erage. In addition, prior studies have
rarely explored staged strategies that inte-
grate both annotation types. To address
this gap, we present CLiFT-ASR, a cross-
lingual fine-tuning framework that builds
on Mandarin HuBERT models and progres-
sively adapts them to Taiwanese Hokkien.
The framework employs a two-stage pro-
cess in which it first learns acoustic and
tonal representations from phonetic Tai-lo
annotations and then captures vocabulary
and syntax from Han-character transcrip-
tions. This progressive adaptation enables
effective alignment between speech sounds
and orthographic structures. Experiments
on the TAT-MOE corpus demonstrate that
CLiFT-ASR achieves a 24.88% relative re-
duction in character error rate (CER) com-
pared with strong baselines. The results
indicate that CLiFT-ASR provides an ef-
fective and parameter-efficient solution for
Taiwanese Hokkien ASR and that it has
potential to benefit other low-resource lan-
guage scenarios.

Keywords: Automatic speech recognition,
low-resource language, Taiwanese Hokkien,
cross-lingual transfer, two-stage fine-tuning

1 Introduction

Taiwanese Hokkien is an important dialect in
Taiwan with rich cultural and historical signif-
icance. However, as Mandarin Chinese domi-
nates education and daily life, the use of Tai-
wanese Hokkien has been declining, especially
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among younger generations. A 2020 survey'
reports that only 7.4% of children regularly
use Taiwanese Hokkien. Despite the existence
of several speech corpora (Liao et al., 2022;
Chou et al., 2023; Lin et al., 2024), the over-
all amount of annotated data is limited com-
pared to high-resource languages such as Man-
darin and English (Zhang et al., 2022; Wang
et al., 2021). This data scarcity poses a signif-
icant challenge for developing robust Speech
Translation (Chen et al., 2023) and automatic
speech recognition (ASR) systems.

Existing Taiwanese Hokkien ASR systems
face additional challenges due to inconsistent
transcription standards. Some systems em-
ploy Tai-lo romanization (Chou et al., 2023;
Chao et al., 2021), which combines phonetic
scripts with tonal markings, making it less
intuitive and harder for general users to ac-
cept (Khoo, 2019). Other approaches anno-
tate speech with Mandarin characters, but
the mapping between Taiwanese Hokkien vo-
cabulary and Mandarin text is often one-to-
many or partially aligned, leading to longer
and less accurate output sequences (Lin et al.,
2024). Using Taiwanese Hokkien Han charac-
ters provides a practical alternative that bal-
ances readability and phonological detail, im-
proving recognition usability.

To overcome these challenges, we introduce
CLiFT-ASR?, a Cross-Lingual Fine-Tuning
framework for low-resource Automatic Speech
Recognition that leverages Mandarin Hu-
BERT backbone models and progressively
adapts them to Taiwanese Hokkien. The
framework follows a two-stage fine-tuning

"ttps://www.stat.gov.tw/News_Content .aspx?
Create=1&n=2755&state=1327FD6ADS8DCDA52&s=
230300&ccms_cs=1&sms=11065/

2https://github.com/redsheep913/CLiFT-ASR/
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strategy where it first acquires acoustic-level
knowledge from phonetic Tai-lo annotations
and then learns language-level structures such
as vocabulary and syntax using Taiwanese
Hokkien Han characters. Comprehensive ex-
periments on the TAT-MOE corpus demon-
strate that CLIFT-ASR achieves a 24.88% rel-
ative reduction in character error rate (CER).
The framework offers an effective solution for
Taiwanese Hokkien ASR and provides guid-
ance for developing ASR systems for other low-
resource languages.

2 Background

2.1 Linguistic Characteristics of
Taiwanese Hokkien

Taiwanese Hokkien has a seven-tone system
and exhibits tone sandhi, which creates tonal
variations that differ from Mandarin (Cheng,
1968).  These tonal patterns make auto-
matic speech recognition challenging, as accu-
rate recognition requires modeling both static
tones and context-dependent tone changes.
Despite these differences, Taiwanese and Man-
darin share similar morphological and syntac-
tic structures (Sun, 2006), which allows knowl-
edge transfer from Mandarin-pretrained mod-
els. Previous studies show that Mandarin-
pretrained ASR models outperform English-
pretrained models when recognizing roman-
ized Taiwanese (Tai-lo), indicating that cross-
lingual transfer can be effective for end-to-
end ASR targeting Taiwanese Han characters
(Chou et al., 2023). These observations mo-
tivate the design of CLiFT-ASR, which lever-
ages cross-lingual knowledge and adapts it pro-
gressively to Taiwanese Hokkien. Note that
this work does not focus on modeling tone
sandhi phenomena, which is left for future re-
search.

2.2 Orthographic Systems and Their
Role in ASR

Taiwanese Hokkien uses two main orthogra-
phies: romanization and Han characters. Ro-
manization systems such as Peh-oe-j1 (POJ)
and Tai-lo provide systematic phonetic repre-
sentations (Khoo, 2019). The Ministry of Ed-
ucation has published a recommended set of
roughly 700 Han characters for writing Tai-
wanese, which can be combined with roman-
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Figure 1: Overview of the proposed CLiFT-ASR.
The € operator denotes element-wise tensor addi-
tion. The dashed arrow indicates that during infer-
ence, ground-truth labels are not available, so the
model outputs are fed back autoregressively into
the prediction network.

ization in a mixed-script form known as han-
16 3. For ASR, using Han characters or han-16
offers a practical balance between phonetic de-
tail and readability and informs the two-stage
fine-tuning strategy employed in CLiFT-ASR.

3 Proposed Method

3.1 Model Architecture

The proposed CLiFT-ASR framework builds
upon the RNN-Transducer (RNN-T) (Graves,
2012) to align variable-length acoustic se-
quences with token sequences, as illustrated
in Figure 1. Given an input audio signal
O and a sequence of target tokens W =
(Wi, w2,...,wy), where N denotes the num-
ber of output tokens, CLiFT-ASR estimates
a probability distribution over possible tokens
at each alignment step. The model consists
of three components: an audio encoder, a pre-
diction network, and a joint network. The au-
dio encoder processes 1" acoustic feature frame
vectors (01,02,...,07) extracted from O and
maps them to a sequence of high-level repre-
sentations that capture phonetic, tonal, and

*https://language.moe.gov.tw/ . ../D005. pdf
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other essential speech information:

H" = AudioEncoder(0), (1)
where H®" represents the sequence of encoder
hidden states (h{"°, ... h%¢). This representa-
tion integrates both local and global acoustic
patterns, which is crucial for accurately model-
ing the tonal variations in Taiwanese Hokkien.
The prediction network generates a context
representation autoregressively, conditioning
on the previous two target tokens to form a
trigram-style context that models short-term
sequential dependencies in the output space:

hPred = PredictionNetwork(w, 2, w,_1). (2)

The joint network combines the encoder out-
put at time step ¢, h{"¢, which corresponds to
the t-th element of H®"¢, with the prediction
network state to form a joint representation.
The conditional distribution over the next to-
ken is then obtained by applying a softmax:

(3)

(4)

This architecture allows CLiFT-ASR to jointly
leverage acoustic and linguistic context at each
step, which is essential for capturing tonal and
phonological patterns in Taiwanese Hokkien.

2, = JointNetwork(hi™ + hgred)7

P(WTL | Oawan:nfl) = Softmax(zt,n).

3.2 Training Strategy

To handle limited annotated Taiwanese
Hokkien data, CLiFT-ASR adopts a two-stage
fine-tuning framework based on a pre-trained
Mandarin HuBERT encoder. In the first stage,
the model learns acoustic-level representations

from phonetic Tai-lo annotations. Given a
training set {(O(i),W(jfii_lo)}EJ:Tf“O, the model

parameters # are updated to minimize the neg-
ative log-likelihood:

(4)

Tai-lo | 0(1)7 0)

(5)
This stage captures fine-grained acoustic and
phonetic details, providing a solid foundation
for language-level learning. In the second
stage, the model is fine-tuned on Taiwanese
Hokkien Han character annotations. Starting
from the network parameter ¢’, it is trained on

0 = argmein Z —logP(W

=
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Split Spk. Utt. Hr.

Training 328 86,072  153.33
Development 58 16,357 28.60
Test 54 15,962 26.28
Total 440 118,391  208.21

Table 1: Statistics of the TAT-MOE dataset across
training, development, and test splits, including
the number of speakers (Spk.), utterances (Utt.),
and total duration in hours (Hr.).

{(O(J)’Wg;n)}UHan to learn vocabulary, syn-

j=1
tax, and higher-level linguistic structures:
UHan ( )
. . J ).
0 = arg min Zl —log P(W{, | 0(1)70).
]:

(6)
By progressively adapting from phonetic to
linguistic representations, CLiFT-ASR effec-
tively leverages cross-lingual knowledge and
maximizes the use of limited annotated data,
resulting in more accurate and robust Tai-
wanese Hokkien ASR.

4 Experimental Setup
4.1 Dataset

All experiments were conducted on the TAT-
MOE subset of the TAT corpus (Liao et al.,
2022), a large-scale Taiwanese Hokkien speech
resource covering diverse regions of Taiwan.
The corpus captures variation in speaker ac-
cents and pronunciation, providing a suitable
testbed for robust ASR development. Audio
recordings were sampled at 16 kHz with 16-bit
PCM encoding to ensure consistent acoustic
quality. Transcriptions were provided in Han-
Lo6-Tai-blin, a mixed orthography combining
Han characters and romanized phonetics. Al-
ternative annotations, including Peh-oe-j1, Tai-
lo, and tone-marked Tai-lo, were also avail-
able to support different modeling strategies.
Table 1 summarizes the number of speakers,
utterances, and total duration for the train-
ing, development, and test sets. To further
evaluate model performance, we included a
cleaner test set drawn from the pilot test of the
Formosa Speech Recognition Challenge 2020
(FSR-2020) (Liao et al., 2020), referred to as
the clean test. The TAT-MOE corpus there-
fore provides high-quality acoustic data and
multiple orthographic representations, making



Model Parameters (M) Development Test Clean Test
CER Rel. CER Rel. CER Rel
Zipformer 65 48.57 - 45.82 - 15.69 -
FSR-2020 Best - - - - - 15.62 0.07
Whisper-base 74 27.36  21.21 24.02 21.80 10.05 5.64
HuBERT-base 96 26.16 2241 24.49 21.33 1297 2.72
HuBERT-base-cmn 96 24.06 24.51 2241 2341 9.08 6.61
CLiFT-ASR 96 22.37 26.20 20.94 24.88 8.06 7.63
Whisper-small 244 22.47  26.10 18.68 27.14 T7.66 8.03

Table 2: CERs (%) and relative reductions (Rel., %) for Taiwanese Hokkien ASR using various audio
encoder initialization strategies. CLIFT-ASR applies a two-stage fine-tuning strategy with the HuBERT-
base-cmn encoder. FSR-2020 Best refers to the top-performing model from FSR-~2020.

it a valuable benchmark for low-resource Tai-
wanese Hokkien ASR.

4.2 Data preprocessing

The transcripts in the TAT-MOE dataset were
written in Han-L6-Tai-biin, a mixed system of
Han characters and romanized phonetics. To
unify the representation, we first constructed a
mapping table using additional corpora to con-
vert romanized segments into the correspond-
ing Han characters. Arabic numerals were
also converted into Chinese numerals, and vari-
ant or synonymous characters were normalized
to a single standardized form. These prepro-
cessing steps reduce inconsistencies and lexical
variation in the annotations, thereby improv-
ing the stability of training and the accuracy
of recognition.

4.3

All training procedures followed Icefall’s offi-
cial recipes and default settings?. To estab-
lish a fair baseline and assess the benefit of
cross-lingual transfer, we considered two en-
coder configurations: the baseline Zipformer
model and a HuBERT-based Transformer ini-
tialized with Mandarin pretrained weights pro-
vided by the toolkit. The prediction network
adopted Icefall’s stateless design for efficient
sequence modeling, and the joint network fol-
lowed the standard implementation for inte-
grating audio encoder and prediction network
features into output distributions (Yao et al.,
2024; Hsu et al., 2021; Ghodsi et al., 2020).
For tokenization, we employed Icefall’s byte-
level BPE model, which has proven effective

Model Configuration

‘https://github.com/k2-fsa/icefall/
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for handling large CJK vocabularies in bilin-
gual and multilingual ASR tasks. This config-
uration enables a direct comparison between a
strong baseline and our cross-lingual strategy,
ensuring that performance gains are consistent
and interpretable.

4.4 Training Details

Speech data were prepared using the Lhotse
toolkit (Zelasko et al., 2021). For feature ex-
traction, the Zipformer baseline model used
80-dimensional filter bank (FBank) features,
while the HuBERT-based model was fine-
tuned directly from raw waveform inputs. In
CLiFT-ASR, the first stage was trained for
20 epochs and the second stage for 40 epochs.
For comparison, a direct fine-tuning approach
without staging was trained for 60 epochs. All
models were trained with gradient accumula-
tion over 4 steps to stabilize optimization. To
balance computational efficiency and contex-
tual coverage, the maximum audio duration
per training sample was limited to 120 seconds.
The learning rate was initialized at 0.0005 and
scheduled over 40 epochs for smooth conver-
gence. Model embeddings were set to 256
dimensions, and training was initialized from
pretrained checkpoints. Optimization was per-
formed with the ScaledAdam optimizer, which
applied adaptive learning rates and gradient
clipping at 2.0 for stability. A custom learn-
ing rate scheduler, Eden, was employed to dy-
namically adjust the learning rate across both
batch and epoch progression (Yao et al., 2024).


https://github.com/k2-fsa/icefall/

Fine-tuning Strategy Frozen Development Test Clean Test
Direct None 24.06 22.41 9.08
Audio Encoder 36.82 35.72 26.84
Two-st Prediction Network 25.23 23.91 11.84
Omstage Joint Network 29.58 28.59 18.46
None 22.37 20.94 8.60

Table 3: CERs (%) on development, test, and clean test sets for different training strategies and parameter

freezing configurations.

The table compares direct fine-tuning with the proposed two-stage strategy,

evaluating the impact of freezing specific components (audio encoder, prediction network, joint network)

during the first stage.

4.5 Evaluation Metric

Character error rate (CER) was employed as
the primary evaluation metric. CER quanti-
fies the discrepancy between the predicted out-
put and the reference transcription by count-
ing the number of substitutions, deletions, and
insertions. It is computed as the ratio of total
character errors to the number of characters
in the reference:

D+1
CER:u’

- 7

where S, D, and I represent the numbers of
substitutions, deletions, and insertions, respec-
tively, and C denotes the total number of
characters in the reference. As a character-
level measure, CER provides a precise and
widely accepted evaluation of recognition ac-
curacy for speech recognition tasks, with lower
values indicating better performance. For Tai-
wanese Hokkien, where annotations include a
mix of Han characters and romanized phonet-
ics, CER is particularly suitable because it
captures errors across both orthographic forms
and effectively reflects the ability of the model
to handle tonal and phonological variations.

5 Results and Discussion

5.1 Effects of Language Initialization

Table 2 summarizes the impact of differ-
ent encoder initialization strategies on Tai-
wanese Hokkien ASR performance.  The
comparison includes Zipformer without pre-
training, HuBERT-base pretrained on English,
Whisper models with multilingual pretraining,
and HuBERT-base-cmn pretrained on Man-
CLiFT-ASR, built on the Mandarin-
pretrained HuBERT-base-cmn encoder and

darin.
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the proposed two-stage fine-tuning strategy,
achieves the strongest overall performance.

Models without language-specific pretrain-
ing, such as Zipformer, exhibit the low-
est performance, highlighting the difficulty
of learning effective acoustic representations
from limited Taiwanese data alone. Whisper-
base, benefiting from large-scale multilingual
pretraining, shows significant improvement
and robust generalization across languages.
English-pretrained HuBERT-base offers mod-
erate gains, indicating that cross-lingual trans-
fer helps but is constrained by the phonologi-
cal mismatch between English and Taiwanese
Hokkien. Compared with these strong base-
lines, CLiFT-ASR consistently reduces CER
across all evaluation sets, achieving up to
26.2% relative improvement on the develop-
ment set and 24.88% on the test set. While
Whisper-small slightly outperforms CLiFT-
ASR on certain splits, it contains more than
twice the number of parameters. CLiFT-ASR
therefore offers a parameter-efficient solution
with substantial gains over competitive base-
lines, demonstrating the effectiveness of cross-
lingual initialization combined with progres-
sive two-stage fine-tuning.

5.2 Analysis of Fine-tuning Strategies

Table 3 presents the effects of different
fine-tuning strategies and parameter freezing
configurations on CLiFT-ASR performance.
Compared with direct end-to-end fine-tuning,
the proposed two-stage strategy, which first
adapts the model on phonetic (romanized)
transcriptions and then refines it with Han
character targets, consistently improves recog-
nition accuracy across all evaluation sets.
Analyzing parameter freezing during the
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Figure 2: Row-normalized substitution confusion matrices for Taiwanese Hokkien tone prediction, com-
paring the baseline and proposed models. Tone labels are derived from Taibun surface forms without

applying sandhi rules.

first stage highlights the contribution of each
module. Freezing the audio encoder or joint
network restricts the ability of the model to
adapt to target phonetics and orthography,
leading to notable performance degradation,
whereas freezing the prediction network has
a milder effect. The lowest CER is achieved
when all components are trainable, indicat-
ing that full model adaptation within the
two-stage fine-tuning strategy enables effective
integration of acoustic and linguistic knowl-
edge. These results demonstrate that CLiFT-
ASR with a carefully designed multi-stage fine-
tuning strategy outperforms direct adaptation
and provides a robust solution for low-resource
mixed-orthography ASR scenarios.

5.3 Investigation of Tone Confusions

Figure 2 depicts the substitution confusion ma-
trix for tone prediction in Taiwanese Hokkien.
The diagonal dominance indicates that most
tones are correctly classified, yet tones 5, 7,
and 8 exhibit frequent mutual misclassifica-
tions. These errors are likely attributed to
tone sandhi phenomena, overlapping pitch con-
tours, and speaker-dependent prosodic varia-
tions, which complicate accurate tone model-
ing in ASR. To conduct this analysis, we em-
ployed the Taibun tool® to convert Taiwanese
Han character outputs into Romanized forms
with numerical tone labels. By aligning ref-

*https://github.com/andreihar/taibun/
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erence and predicted tone sequences, we con-
structed row-normalized substitution matrices
to quantify tone-level confusions.

In the Zipformer baseline, tones 1, 5, and
7 emerge as the most error-prone categories.
Tone 1 is correctly recognized only 29% of
the time, with 16% of its instances misclas-
sified as tone 2. Tone 5 is frequently misclas-
sified as tone 1 (21%), while tones 7 and 8
show substantial cross-confusions, indicating
the limited ability of the baseline model to dis-
criminate between acoustically similar tones.
In contrast, the proposed CLiIFT-ASR system
demonstrates clear improvements across most
tonal categories. Tone 1 accuracy increases
from 29% to 35%, while tone 4 recognition
improves from 20% to 25%. The overall mis-
classification rate decreases, particularly for
tones 5 and 7, where cross-tone errors are sub-
stantially reduced. These results highlight the
enhanced discriminative capability of the pro-
posed framework. In summary, the tone con-
fusion analysis confirms that CLiFT-ASR ef-
fectively reduces inter-tone errors, especially
among acoustically similar tone pairs. This im-
provement can be attributed to the proposed
feature design and training strategy, which to-
gether provide more robust tonal modeling for
Taiwanese Hokkien ASR.


https://github.com/andreihar/taibun/

6 Conclusion

This study presents CLiFT-ASR, a cross-
lingual fine-tuning framework designed for
low-resource Taiwanese Hokkien ASR. By ini-
tializing the audio encoder with Mandarin
speech representations and applying an effec-
tive two-stage fine-tuning strategy, CLiFT-
ASR achieves the best overall performance.
The first stage leverages Taiwanese romaniza-
tion to capture detailed phonetic information,
and the second stage adapts to Han character
transcriptions to integrate orthographic and
syntactic knowledge. This progressive strat-
egy highlights the advantage of aligning acous-
tic and linguistic representations in stages
rather than directly training with limited an-
notated data. An analysis of tone recognition
shows that while general tone recognition is ac-
curate, tones 5, 7, and 8 remain difficult due
to tone sandhi, overlapping acoustic patterns,
and speaker-specific prosodic variation, all of
which complicate precise tone modeling.

7 Future Work

Several directions can be explored to extend
the proposed CLiFT-ASR. One promising av-
enue is targeted data augmentation that bal-
ances underrepresented tones. Another is ex-
plicit modeling of tone sandhi, which may fur-
ther reduce tonal confusion. The integration
of larger and more diverse pretraining corpora
is expected to improve robustness, particularly
for conversational speech. Future research
may also apply advanced sequence modeling
or structured prediction techniques to capture
tonal dependencies more effectively. Finally,
evaluating multilingual models such as Whis-
per could provide additional gains through
large-scale pre-training and enhanced contex-
tual modeling.

8 Limitations

Although CLiFT-ASR achieves competitive
improvements, the current design relies on a
stateless RNN-Transducer framework. The
stateless prediction network constrains the
ability to model long-range dependencies,
which may reduce accuracy in recognizing
tonal patterns and complex tone sandhi. Com-
pared with recent large-scale pretrained mod-
els, the architecture also has limited capac-

ity to exploit fully contextualized acoustic rep-
resentations. These limitations suggest that
adopting more expressive architectures with
stronger context modeling could further ad-
vance Taiwanese Hokkien ASR.
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4—% 2 Narrative Assessment of Syntax for

Children), which integrates the MAIN

Sy st LFTFENER R story framework with the MAPS-R
Fr iR sRRE AT o Ka o syntactic framework to construct a Chinese

narrative corpus encompassing four

A U -0 NI ) SR LRI 3 |- e der i o h:d
= B AR A categories and 20 indicators. We evaluated

N "i P%ql Tk AT AR commercial models (ChatGPT-4, Claude
FRRABRPF Ry peitaii Sonnet 4, Gemini 2.5 Flash, DeepSeck)
R FL?};}% e g fe AP LHRY through prompt engineering, and fine-
MINAS (Mandarin Intelligent Narrative tuned open-source models (Chinese
Assessment of Syntax for Children) > % & RoBERTa, OpenHermes-2.5) with LoRA.
MAIN #& % 5 ¥ MAPS-R 3% % % B A Experimental results show that few-shot
ZrnFe BAEY 20 BopfEad 2 prompFing achieves }'ﬁgh aceuracy across
5T FAFAHEE o AP 2 Prompt most indicators, while fine-tuning with

LoRA achieves better performance in noun
and verb phrase identification but is not as
good for complex sentence structures. This

Engineering =& @ * #-3] (ChatGPT-4
Claude Sonnet 4 ~ Gemini 2.5 Flash ~

’

DeepSeek ) » i 1 LoRA ficsd B ik 3 study validates the feasibility of applying
(Chinese RoBERTa ~ OpenHermes- large language models to syntactic
25) o F % % % & 7 > Few-shot classification of Chinese child narrative
Prompt i &< % #cdp henyr B AL R corpora, highlighting their potential in
LoRA Mg | & 287 de2iiess b 4 30 clinical applications and linguistic research.

{id adfreailint #“E’v ~FE
TR LM TY - 23 &5 3
=S /"’\‘k‘PJ Y . BILH Ade
kEBEZ g A .
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B3l Ay

Keywords: Child Language Assessment; Syntactic
Classification; Large Language Models; Few-shot
Learning

Abstract

Children’s narrative ability is an important 1 Introduction

indicator of langgage ‘dc'evelopment ?,Ild is 243 H; b hE B R B BE Ffi il
commonly used in clinical diagnosis and

=i : 33 7o
linguistic research. However, the lack of FOLRFG R HUL BT VA ﬁF
large-scale, standardized, and accurately e T (narratlve ability/ it 45 FE &% 5 ~ 3
annotated Chines.e child language corpora ENEREE R T e .%F‘« iE & ;fﬁ & > 549 )3 pEd
makes gramn(;atwal anal};s.ls ‘po.th tlr}?T- TR 2E 9L S £ @24 E (Berman et al
consuming and prone to subjectivity, while i NI
existing automated tools fall short of 1994) TEE ;}ﬂ P ST *ﬁ
clinical and research needs. This study gHFTHR&EFY B A R L LA
introduces MINAS (Mandarin Intelligent B> Tt iR G R B UThE B Ry o
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A2 FBH 7 & = 4% 5 DeepSeek-V3 (DeepSeek-
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1. Prompt Engineering - 4%t * LLM @

T AR o
ii. LLM fine-tuning - i * LoRA(Hu et al,,
2021) ¥ B R AR 7 SR o
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|
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itk | BH Training Test set
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fa-rak iz Pos | Neg | Pos | Neg
NP1 £37- 805 | 805 | 58 174
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NP3 X eh 352 | 352 |40 | 120
NP4 XY 365 | 365 |40 | 120
NP5 A 510 | 510 | 43 129
VPI HWimikie | 395 | 395 |92 | 276
VP2 BEAFE 462 | 462 | 69 | 207
VP3 Age A | 252 | 252 | 47 | 141
VP4 RE A | 100 | 100 | 40 120
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W EiE
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(it 38)
a3
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S4 A GRS | 255 | 255 |83 | 249
14 3%)
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4F @7
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187

3.2 Prompt Engineering
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3.3 Fine-Tuning Models
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3 4 Over-
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iE o

. batch_size : f%[4, 8, 16,32]7 EH -
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% 0.1
FRFTHETHEF 30 K FEHR o UKE
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A A B ETEE A SRS
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(7 F % Optuna 45 3 end 242 28> 3
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Layer &2 Softmax &7 = ~ &5 > FF 120
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Input—> Tokenizer 1 0
_________________ ! e
Input IDs + Input mask + Label | Soﬁ‘max
Chinese Dense layer
. [ RoBERTa f
input < @+ contextual embeddings
“Aj B [CLS] Vector
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4 Result and Discussion


https://huggingface.co/hfl/chinese-roberta-wwm-ext
https://huggingface.co/hfl/chinese-roberta-wwm-ext
https://huggingface.co/TheBloke/OpenHermes-2.5-Mistral-7B-GPTQ
https://huggingface.co/TheBloke/OpenHermes-2.5-Mistral-7B-GPTQ

:}Fq &= Few-shot Zero-shot
Gemini | Claude | ChatGPT | Deepseek | Gemini | Claude | ChatGPT | Deepseek
NP1 0983 | 0.966 | 0.975 0.922 0.945 10952 |0.974 0.758
NP2 0.779 | 0.855 | 0.689 0.769 0.780 10.790 |0.775 0.820
NP3 0976 | 0.988 | 0.987 1.000 0.975 10981 |0.870 1.000
NP4 0.987 1.000 | 0.909 0.963 0.980 |0.985 | 0.867 0.935
NP5 0966 | 0.930 | 0.913 0.945 0.960 | 0.967 | 0.966 0.977
VP1 0948 | 0.928 | 0.879 0.845 0917 10910 | 0.938 0.738
VP2 0.763 0.789 | 0.838 0.872 0.724 10.745 |0.644 0.769
VP3 0.842 | 0.793 | 0.832 0.839 0.835 |0.823 |0.825 0.839
VP4 0.988 1.000 | 0.833 0.975 0976 | 0.980 | 0.951 1.000
VP5 1.000 1.000 | 1.000 1.000 1.000 | 1.000 | 1.000 1.000
VP6 0932 | 0911 |0.975 0.874 0914 |0.920 | 0.845 0.953
PP1 0.787 10922 | 0.750 0.883 0.853 | 0.864 | 0.831 0.949
PP2 0.966 | 0.953 |0.977 0.943 0.910 |0.930 |0.788 0.989
S1 1.000 | 0.976 | 0.822 0.988 0.986 | 0.985 | 0.988 0.977
S2 1.000 1.000 | 1.000 1.000 1.000 | 1.000 | 1.000 1.000
S3 0.747 10.796 | 0.793 0.755 0.742 | 0.750 | 0.761 0.720
S4 0964 | 0.878 | 0.698 0.872 0.881 |0.907 | 0.626 0.943
S5 0940 | 0.931 | 0.581 0.935 0.569 | 0.580 | 0.540 0.593
S6 0977 | 0.957 |0.911 0.945 0.945 0956 | 0.846 0.936
S7 0.883 0.690 | 0.962 0.690 0.617 |0.657 | 0.583 0.633
Micro_F1 | 0.902 | 0.890 | 0.854 0.878 0.832 |0.840 | 0.797 0.844
Macro_F1 | 0.920 | 0.912 | 0.865 0.901 0.875 10.884 | 0.831 0.876
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g ) g 1 T A A A A IF R M b e Fine-

tuning ¥

:Fﬁ 1= Chinese OpenHermes
Roberta 2.5
NP1 0.983 0.953
NP2 0.836 0.798
NP3 1.000 0.982
NP4 0.987 0.964
NP5 0.743 0.697
VP1 0.941 0.876
VP2 0.841 0.783
VP3 0.729 0.681
VP4 0.889 0.824
VP5 0.930 0.851
VP6 0.795 0.746
PP1 0.822 0.783
PP2 0.848 0.802
S1 0.977 0.917
S2 1.000 0.924
S3 0.766 0.546
S4 0.783 0.698
S5 0.891 0.745
S6 0.750 0.678
S7 0.547 0.603
Micro F1 | 0.828 0.774
Macro_F1 | 0.854 0.793
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Abstract

We propose the Linguistics Olympiad Bench-
mark for Structured Evaluation on Reason-
ing, or LOBSTERY, a linguistically-informed
benchmark designed to evaluate large lan-
guage models (LLMs) on complex linguis-
tic puzzles of the International Linguistics
Olympiad (IOL). Unlike prior benchmarks that
focus solely on final answer accuracy, our
benchmark provides concrete evaluation proto-
cols and rich typological metadata across over
90 low-resource and cross-cultural languages
alongside the puzzles. Through systematic
evaluations of state-of-the-art models on mul-
tilingual abilities, we demonstrate that LLMs
struggle with low-resource languages, under-
scoring the need for such a benchmark. Exper-
iments with various models on our benchmark
showed that IOL problems remain a challeng-
ing task for reasoning models, though there
are ways to enhance the performance—for ex-
ample, iterative reasoning outperforms single-
pass approaches in both final answers and ex-
planations. Our benchmark offers a compre-
hensive foundation for advancing linguistically
grounded, culturally informed, and cognitively
plausible reasoning in LLMs. !

1 Introduction

While advances in LLM have revolutionized natu-
ral language processing, significant challenges per-
sist in achieving robust reasoning capabilities—
particularly for tasks requiring multi-step ab-
straction, symbolic verification, and constraint-
based hypothesis testing.  Several reasoning-
enhancement paradigms have emerged with the
hope to solve more complex problems, such as hy-
brid tool-integrated approaches (He et al., 2025;
Gao et al., 2025; Paranjape et al., 2023; Schick
etal.,2023; Wuetal., 2025), or agentic systems (Li
et al., 2025; Ke et al., 2025).

The International Linguistics Olympiad (here-
inafter abbreviated as IOL; 2003-2025) presents
uniquely challenging problems that require solvers
to induce linguistic rules from micro-data, often
in low-resource or unfamiliar languages. These
problems test not just surface-level pattern recog-
nition, but demand multi-step abstraction, struc-
tural reasoning, and cultural inference. Compris-
ing four parts (see Appendix A.1), an IOL prob-
lem is meticulously crafted to be self-contained,
without the necessity of any prior knowledge in
linguistic rules. The logical consistency and suf-
ficiency thus allows participants to decode the un-

Keywords: reasoning, large language model,

benchmark, linguistics olympiad derlying linguistic rules purely through reasoning

and pattern analysis (Bozhanov and Derzhanski,
2013), the low-resource nature of the languages in
which these problems made offers an isolated envi-

"The benchmark and the source code can be found at
https://github.com/lopentu/LOBSTER.
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ronment to test the reasoning performance of mod-
els. (See Section 3)

In addition to abstract linguistic reasoning,
some IOL problems incorporate elements that go
beyond standard textual input, requiring models to
process non-standard scripts, phonetic transcrip-
tions, or visual symbol systems such as maps or
family trees. Some problems involve rare or ex-
tinct writing systems—occasionally ones not yet
fully encoded in Unicode—demanding the recog-
nition and manipulation of unfamiliar glyphs (Shih
et al., 2025). Others rely on International Pho-
netic Alphabet (IPA) representations, tone contour
symbols, or constructed orthographies that encode
morphophonemic information. A subset of tasks
also includes pictographic cues, spatial arrange-
ments, or logical diagrams (see Appendix A.2),
which are essential to its decipherment. While re-
cent vision-language models have made progress
in visual and text input jointly, their ability to inte-
grate these modalities with complex reasoning re-
mains limited.

Another distinctive aspect of IOL problems
lies in their cross-cultural and semantic depth.
Beyond the structural reasoning over phonology,
morphology, and syntax, many problems explic-
itly involve semantic inference, cultural concep-
tualization, or sociolinguistic reasoning—for in-
stance, deciphering kinship terms, numeral sys-
tems, metaphorical extensions, or culturally situ-
ated deixes. These tasks compel both human and
Al solvers to imagine how meaning might be con-
structed in unfamiliar cultural worlds, often requir-
ing cross-linguistic abstraction or anthropological
imagination. For LLMs, this poses a profound
challenge: it tests their ability to generalize across
not only linguistic structures but also cognitive and
cultural domains. IOL problems, therefore, serve
not only as puzzles of language form but as tests
of situated meaning-making and cultural flexibil-
ity, offering a rigorous probe into the limits of
LLMs’ representational and interpretive capacity
across diverse human experiences.

These complex challenges expose the limita-
tions of current LLMs and existing evaluation
methods, which often prioritize final-answer accu-
racy over the reasoning process.

2 Review of Past Studies

Reasoning models and reason-enhancing
paradigms enable LLMs to actively explore

solutions, rather than just passively generate text.
Their efficiency is frequently evaluated through
human-level reasoning benchmarks like the Inter-
national Linguistics Olympiad (IOL) (Sahin et al.,
2020; Chi et al., 2024), where success requires
inferring linguistic structures from constrained
datasets, mirroring real-world challenges in rule
abstraction, cross-linguistic generalization, and
constraint satisfaction.

2.1 Reasoning on Linguistic Structures

Reasoning on linguistic structures presents unique
challenges, when compared to other reasoning do-
mains such as math or coding. Unlike purely sym-
bolic systems, understanding human languages re-
quires world knowledge, cultural context, and com-
mon sense. For example, the word for “five” and
“hand” is the same in some languages because
there are five fingers on a hand. This requires the
model to also infer of a semantical link between
the two senses; it is inconceivable from a symbolic
inductive logical perspective.

For the classic Rosetta Stone problems,’ the in-
ference task is in a sense a more complex variant
of the “infer one form of a word/phrase/sentence
to another” task.

The induction task has long been of interest to
linguists (Durham and Rogers, 1969), as it mirrors
what linguists do in a field study. This induction
task has been framed in at least two ways. One
perspective treats it as a program synthesis prob-
lem, where the goal is to generate a “program”—a
set of formal rules—that transforms inputs to out-
puts (Naik et al., 2024). This has led to the devel-
opment of domain-specific languages for express-
ing such string transformations (Vaduguru et al.,
2021). Alternatively, the task can be viewed as
constrained text generation, where specialized ar-
chitectures are designed to model linguistic phe-
nomena (Lu et al., 2024).

A complementary line of research explores aug-
menting LLMs with explicit linguistic knowledge.
Rather than relying solely on induction from ex-
amples, this approach provides models with re-
sources like dictionaries, morphological analyz-
ers, or grammar books, mimicking how a human
linguist might consult reference materials (Zhang
et al., 2024). While the ability to leverage such

“Given a set of sentences in an unknown language and
their corresponding translations, the agent should infer the
underlying rules, such as grammar, meaning of each word,
or spelling changes in the unknown language.
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grammatical descriptions can be systematically
evaluated (Tanzer et al., 2024), their utility is
task-dependent: for translation, performance gains
stem from parallel examples rather than gram-
matical explanations, which are better suited for
targeted linguistic analysis tasks (Aycock et al.,
2025). Such nuances call for more research on the
intersection of LLMs and linguistics expertise.

2.2 Relevant Benchmarks from Linguistics
Olympiads

To evaluate the capabilities of LLMs on complex
reasoning tasks, researchers have developed vari-
ous benchmarks. The following are some bench-
marks relevant to Linguistics Olympiad problems:

* LingOly (Bean et al., 2024):> With 1,133
linguistic puzzles from the UK Linguistics
Olympiad (UKLO),* it excludes image-based
puzzles, non-Latin scripts, and open-ended
questions to ensure machine-scorability. The
evaluation is exact-matched, excluding fuzzy
matches and normalizing Unicode variations,
to ensure linguistic precision. Less strict met-
rics like ROUGE and BLEU were analyzed,
but the primary focus remains on context-
dependent reasoning.

+ Linguini (Sdnchez et al., 2024):> This bench-
mark also extracted data from IOL problems,
covering low-resource languages and three
core task types: sequence transduction , fill-
in-the-blanks, and number transliteration (i.e.
digit-to-text conversion). The evaluation uses
exact match accuracy and the softer chrF met-
ric to assess performance on structured lin-
guistic inference.

» IOLBENCH (Goyal and Dan, 2025):° 90 of
the IOL Problems were digitalized into text
or structured representation through LLM-
based document recognition, including some
multimodal components. While it take cares
of free-response answers through different
grading metrics, the LLM-based unverified
data construction made most of the problem
in the dataset ill-formed.
3Relevant resources for LingOly can be found on GitHub:
https://github.com/am-bean/1ling0ly.
*https://www.uklo.org/
SRelevant resources for Linguini can be found on GitHub:
https://github.com/facebookresearch/linguini

SRelevant resources for IOLBENCH can be found on
GitHub: https://github.com/Satgoy152/1ling_1lm

Existing benchmarks for IOL-style tasks have
demonstrated the promising capabilities of LLMs
in handling complex linguistic reasoning. How-
ever, several critical limitations remain that con-
strain both fine-grained evaluation and meaningful
model improvement.

First, most current evaluations rely predomi-
nantly on exact-match accuracy of the final an-
swers, without considering the plausibility, inter-
nal consistency, rules used to explain the answers,
or are logical coherence of intermediate reasoning
steps. This narrow focus obscures whether mod-
els are genuinely applying linguistic principles or
merely relying on pattern recognition and heuris-
tic guessing. Such a limitation hampers our ability
to diagnose reasoning failures and systematically
improve model understanding.

Specifically, these methods often (i) lack rig-
orous alignment with linguistic knowledge bases,
(ii) fail to capture the reflective, iterative, and self-
corrective nature of human linguistic reasoning,
and (iii) inadequately represent the hierarchical
and multi-layered reasoning structures characteris-
tic of IOL challenges. As a result, existing evalu-
ation paradigms are insufficient for capturing the
depth, correctness, and explanatory richness of
linguistic problem-solving processes. This high-
lights the need for more sophisticated evaluation
methodologies specifically tailored for linguistic
reasoning contexts.

3 Motivation: Probing the Limits of
LLMs

As Joshi et al. (2020) highlight, the vast majority of
the world’s languages are low-resource, and their
unique linguistic features are underrepresented in
pre-training corpora. This skew towards high-
resource languages like English hinders model per-
formance and the potential for cross-lingual trans-
fer, even for typologically similar languages (Pires
et al., 2019).

To empirically ground the need for a more nu-
anced evaluation benchmark, we assessed a state-
of-the-art model, Gemini-2.5-flash, on a multi-
lingual translation task using the FLORES-200
dataset (NLLB Team et al., 2022). Our experi-
ment, which covered 204 languages, revealed criti-
cal limitations (see Appendix I for full details). We
found that:

1. Performance is strongly correlated with re-
source availability. The model frequently
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failed to generate any output for the lowest-
resource languages (Class 0).

2. A significant performance asymmetry exists
based on translation direction. The model
performed substantially worse when translat-
ing from English to a target language (£ —
T') than in the reverse direction (1" — FE), es-
pecially for low-resource languages.

3. Statistical analysis confirmed that language
family and resource class are highly signif-
icant predictors of translation quality, while
script was not.

These findings demonstrate that even powerful
models struggle with genuine multilingual tasks,
often failing at the basic level of text generation
for a large portion of the world’s languages. This
underscores the inadequacy of benchmarks that fo-
cus only on high-resource languages or overlook
reasoning failures, motivating our development of
LOBSTERY.

4 LOBSTERY: Linguistics Olympiad
Benchmark for Structured Evaluation
on Reasoning

The IOL problems exhibits a wide range of typo-
logical diversity, an essential step in understand-
ing the nature of such a benchmark in profiling the
distribution of languages, for which existing LLM
benchmarks rarely account. Regarding language
family, the most common language families are
North American, Austronesian, Indo-European,
and African (see Appendix D for the language fam-
ily distribution). However, There remains a gap in
understanding how models perform across differ-
ent language families and typological features.

LOBSTERY is built on a curated selection of
past IOL problems. Unlike prior datasets, it in-
cludes enriched metadata that allows for deeper
linguistic diagnostics and reasoning trace compar-
ison. Our benchmark is intended to support: (i) ac-
curate transcription of contents of IOL problems;
(ii) typologically grounded performance analysis;
and (iii) assessment of models’ cross-cultural and
cross-linguistic inference abilities.

4.1 Data Construction

Our benchmark consists of 96 problems (225 sub-
problems) sourced from the IOL archive (2003—

2024). For kinship problems’ involving family
trees, we convert the graphical representations into
textual relationship descriptions (see Appendix
A.3 for an example of a kinship problem). We ex-
clude problems that fully rely on image-based in-
formation or untranscribable symbols.

Since most IOL problems provide only the fi-
nal solutions along with some grammatical rules,
without including detailed reasoning steps, we use
Gemini-2.5-pro to generate structured step-by-step
solutions as gold-standard references in the bench-
mark. The LLM is prompted to act as a linguis-
tics expert, producing logical deductions, linguis-
tic rules, and problem-solving strategies that lead
to the official solutions (see Appendix B for the
prompt template). To ensure reliability, seven hu-
man experts and three IOL contestants manually
verify and refine these reasoning chains, resolving
any inconsistencies to ensure alignment with the
official IOL solutions.

In summary, for each IOL problem in our bench-
mark, we include the transcribed problem text, the
official solution, and the expert-verified, refined,
LLM-generated reasoning. The latter is not used
for grading but serves as a qualitative reference for
human-understandable reasoning processes.

4.2 Typological Annotation

In addition, each problem within LOBSTERY is
annotated along multiple linguistic dimensions to
facilitate a structured analysis of model perfor-
mance. The current typological and problem-
oriented schema is an adaptation of the UKLO
classification framework® with the annotation be-
ing carried out by seven linguistic experts. We
annotate three categories for each problem: Sub-
ject, Type, and Theme; the respective tags are de-
tailed below, while the descriptions of each tag are
shown in Appendix C.1. Also, the Glottocode is in-
cluded (Hammarstrom et al., 2024) for each prob-
lem. Table 2 shows an example of annotations for
one problem.

The distribution charts of each typological cate-
gory in our benchmark are shown in Appendix D.
Key findings include:

Subject and Type Distribution: Referring to
Appendix E, the data suggests that Syntax and

"Kinship problems focus on understanding how different
languages and cultures describe family relationships and nam-
ing systems.

Shttps://www.uklo.org/
technical-information/
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Morphology are the most prominent subjects in
IOL problems, with Rosetta type problems being
heavily focused in these areas (i.e., 17.4% and
16.5%). Semantics are distributed across multiple
problem types (0.9%, 6.4%, 3.7%, 0.9%, 7.3%)
compared to others. Overall, the uneven distribu-
tion implies that certin problem types are strongly
associated with particular subjects (e.g., Phonol-
ogy has a spike (13.8%) in Pattern type problems),
while others are more diffuse.

Subject and Language Family Distribution:
North American languages have the highest num-
ber of problems (14), followed by Austronesian
(11), Indo-European (10), and African (10). As
shown in Appendix F, Syntax is the most widely
represented subject, appearing in 7 out of the top
10 language families, with the highest concentra-
tion (6.2%) in African. Morphology is the second
most frequent, appearing in 9 out of the top 10 fam-
ilies, with multiple mid-range values (2.5%—5.0%).
While Phonology stands out in Indo-European and
North American, Semantics is more broadly dis-
tributed, with Austronesian, African, Australian,
and Niger-Congo all having moderate percentages
(around 2.5%). In summary, Syntax, Morphol-
ogy, and Phonology dominate the subject distri-
bution, with North American, Austronesian, Indo-
European, and African languages showing the rich-
est variety of subjects. More details are shown in
Figures (a) and (d) in Appendix D.

Type and Language Family Distribution: Re-
garding Appendix G, Match-up problems are more
common in Austronesian and North American lan-
guage families. Pattern problems are particularly
prevalent in Indo-European languages. Rosetta
problems are the most common overall (44 prob-
lems), appearing across various language fami-
lies, with especially high occurrences in African
and North American languages. More details are
shown in Figure 8 (b) and (d) in Appendix D.

These findings reinforce the relevance of typo-
logical and reasoning-aware annotations. They
also highlight the inadequacy of answer-only met-
rics in capturing the richness of linguistic cogni-
tion demanded by IOL problems.

4.3 Evaluation Protocol and Metrics

Existing IOL-styled benchmarks (Bean et al.,
2024; Séanchez et al., 2024; Goyal and Dan, 2025)
tend to rely on exact string matching for accu-

racy, which fails to award partial credit for com-
plex problems. Grading IOL solutions is rather
complex and flexible. Generally, the final answer
is not the sole contributor to the final score; the ex-
planation of grammatical rules is just as important.
We hence evaluate the final solution generated by
the model with respect to the rules provided in of-
ficial solutions.

4.3.1 Evaluation of the Final Solution

First, we assess the model-generated final solution
based on two distinct components: the answer and
the explanation of rules.

The answer refers to all the questions inside the
problem, which the contestant would be asked to
answer. For example, the sample problem in Ap-
pendix A.1 contains 9 questions (1 in subproblem
(a), 3 in (b), and 5 in (c)). Most of the questions,
such as short sentence translations, can be graded
with simple string matching, but an exact match
metric would be unsatisfactory in many cases. Ex-
amples include semantics problems where any syn-
onym should be counted as correct if the term
is inferred, but not copied from the problem; or
questions that ask for an explanation to a certain
linguistic phenomenon (not to be confused with
the “explanation” part of the solution below). In
these cases, various metrics can be applied (e.g.,
BLEU, sentence embedding) depending on the
preferences of the user of our benchmark.

On the other hand, the explanation requires the
model to write down the linguistic rules it inferred
from the problem data. The official IOL problem
sheet explicitly states, “Your answers must be well-
supported by argument. Even a perfectly correct
answer will be given a low score unless accompa-
nied by an explanation”, but the official grading
rubrics are not publicly available, thus evaluating
the quality of these free-text explanations poses a
significant challenge unaddressed by past works.
We address it with a two-stage procedure: Through
rule composition, we convert the official solution
into a discrete set of key linguistic rules, creating
a gold-standard “rule checklist.” We then employ
an LLM grader, specifically Gemini-2.5-flash-lite,
in the process for checklist grading. The grader is
prompted to compare the model’s generated expla-
nation against our rule checklist and determine the
number of gold-standard rules that were correctly
described. By grading with a checklist rather than
the official, free-form solution, we reduce subjec-
tivity in the grading criteria, and minimize poten-
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tial biases (e.g., self-preference) from the LLM
grader.

This approach enables a stable, fine-grained,
and quantitative assessment of the explanation’s
quality. The total score for the final solution
is a weighted combination of the scores of “an-
swer” and “explanation of rules.” By default, we
assign equal weight (50/50) to each component,
with points distributed evenly across all subprob-
lems for the answer and all identified rules for
the explanation. With additional scores granted
to the explanation, the benchmark we propose can
show whether the model answers through reason-
ing within the problem data or through other exter-
nal confounders.

5 Testing LOBSTERY on Different
Systems

In the previous sections, the multilingual abilities
of LLMs are shown to be inadequate. Therefore,
when attempting to solve an IOL problem, LLMs
may not solely rely on prior knowledge about the
target language or typology. To pinpoint the abil-
ity of state-of-the-art models on IOL problems, we
examined a range of models on LOBSTERY, and
verified that IOL problems pose a challenge even
for state-of-the-art reasoning models.

5.1 Setup

A set of experiments was conducted using the most
powerful models within budget. In addition to di-
rectly prompting the models, we also tested with
various settings for the same model. To ensure
numerical stability, for each problem in each set-
ting, we obtained 5 samples and averaged over the
scores. The settings include:

* Vanilla baseline: A direct, single-pass call
to an LLM to solve the problem, following
the required output format. We used OpenAl-
04-mini, Gemini-2.5-pro, and GPT-5 for the
experiments, with temperature set to 0.75.

* Guided prompt: A major drawback of the
vanilla prompting is that, usually the LLM
is not familiar with the underlying assump-
tions of Linguistics Puzzles (e.g., “All the
questions are self-contained”, “The final so-
lution should be able to explain 100% of the
examples, not just 90%”). To inform the
model about such nuances, we include the
Introduction chapter of the book Linguistics

Olympiad: Training guide (Neacsu, 2024)
in the system prompt. As an introductory
text about linguistics problem, the chapter de-
scribes the format and classification of a lin-
guistics problem, guidelines for solution writ-
ing, and some toy examples.

¢ Grammar agent: Past work has shown that
the model performs better when given ex-
plicit knowledge (Tanzer et al., 2024). In this
setting, the model was provided with a ref-
erence grammar book of the target language.
To do so, we constructed a database contain-
ing reference grammar books from publicly
available resources, and manually labeled the
language, with its Glottocode as metadata to
facilitate search.

* Mixture-of-Agents: Following Mixture-of-
Agents (MoA) (Wang et al., 2025), a multi-
round framework is used, as depicted in Fig-
ure 1. The system consists of a customiz-
able number of Solver Agents and Aggrega-
tor Agents. The idea is that iteratively collect-
ing multiple proposed solutions may improve
performance. In our setup, we used 2 agents
for each layer (N=2 following the notations in
the figure)—Gemini-2.5-pro and OpenAl-04-
mini. The solutions are iterated for at most 6
rounds (i.e., M=2, R € {0,1,2,3,4}), with
the last round being the “final aggregator” in
the figure.

* Single agent, multi-rounds: Equivalent to
the Mixture-of-Agent setting with N=M=1,
the solution of a solver is fed into itself for
multiple rounds. This setting disentangles the
effect of parallel generation from iterative re-
finement.

5.2 Results and Analysis
5.2.1 Comparison between Models

The results are summarized in Figure 2. Based on
the evaluation methods detailed in Section 4.3.1,
the answer and the explanation scores are cal-
culated separately, and a combined score (‘“to-
tal score”) is also provided. An overview shows
that the scores for the “answer” and the “explana-
tion” are positively correlated (r=0.501). (See Ap-
pendix O)

Regarding the base models, our experiments are
mainly comparing models based on Gemini-2.5-
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intermediate rounds.

pro and OpenAl-o4-mini. The former consider-
ably outperforms the latter, and is marginally bet-
ter than GPT-5.

The trends between different settings are less
clear: we found no statistically significant differ-
ence in the grammar agents scores compared to
the baseline, nor in guided prompts vs. baseline.
These results contradicts our expectation of an im-
provement; for discussions on possible reasons,
see Section 5.3.

On the other hand, Mixture-of-Agents gives
steadily increasing scores as the number of rounds
increases, which are significantly better (p < 0.05)
than the baseline as long as there is more than one

round. Interestingly, the final aggregator plays an
important role in the performance—if the final ag-
gregator is weak (in this case, OpenAl-04-mini),
even though it has seen the (better) solutions gen-
erated by other models (in this case, Gemini-2.5-
pro), the output scores far lower than the stronger
model.

A natural question arises as to whether the ef-
fectiveness of MoA comes from multi-round from
multi-agent. We introduced the single-agent multi-
round setting to isolate their effects. Results show
that additional rounds consistently improve perfor-
mance, confirming the benefit of iterative reason-
ing. The multi-agent effect, however, is less pro-
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nounced for Gemini-2.5-pro—Ilikely because it is
already a stronger model, and a weaker collabo-
rator offers limited help (p = 0.105 for 6-round
MoA vs. single-agent multi-round with Gemini-
2.5-pro). In contrast, OpenAl-o4-mini benefits
greatly when paired with Gemini-2.5-pro (p <
0.0001).
The exact scores can be found in Appendix M.

5.2.2 Performance regarding Language
Family and Problem Type

To gain a more nuanced breakdown of the model’s
performance, we analyzed the Gemini-2.5-Pro
statistics by categorizing the problems based on
language family, linguistics subject (e.g., phonol-
ogy, syntax), and problem type (e.g., Pattern,
Match-up). The detailed scores are plotted in the
Appendix N.

Typologically, the model performs best on lan-
guage isolates (mean = 0.70), Turkic (0.64), and
Indo-European (0.55) languages, but struggles
with Papuan (0.29), South American (0.25), and
Australian (0.34) ones. The trend may be partially
attributed to the resource-level of the languages.

By problem type, the model achieves its high-
est scores on Monolingual problems and lowest
on Match-up. Across linguistic domains, it per-
forms worst on syntax and best on semantics. The
“Others” category has a score surpassing all others,
possibly due to intrinsic differences in problem de-
sign.

Overall, the model shows strong performance in
certain areas but inconsistent reasoning across lan-
guages, subjects, and problem types.

5.3 Discussions and Limitations

Exposure to the target language during pre-
training. Even though the languages are low-
resourced, models may still have some prior expo-
sure that gives them an advantage in problem solv-
ing, meaning scores may not reflect pure reasoning
ability. Additionally, the Internet presence of IOL
problems increased the possibility of being in the
pretraining data for some models. One approach
to mitigate this is to systematically adjust the or-
thography, making it harder for models to recog-
nize the language while preserving the problem’s
content (Khouja et al., 2025). Our work provides
a solid foundation well-suited for future use.

Unimodality. Currently, the benchmark is de-
signed to handle only text, in order to be applica-

ble to a wider range of models. However, linguis-
tics problems may involve other modalities (e.g.,
visual data), as seen in problems involving writing
systems, kinship trees, and even maps. Such prob-
lems could be transcribed into text if possible but
are usually excluded from the benchmark.

The exact content of the Grammar Agent.
Contrary to our expectation, we found no major im-
provement when a model was equipped with a ref-
erence book. Dissecting the reason for this obser-
vation is a non-trivial task because the content and
format of reference grammar books vary greatly,
creating many confounding variables. For exam-
ple, as Aycock et al. (2025) have discovered, the
example sentences may be more useful than long
paragraphs of grammar descriptions.

Another possible reason lies in the complexity
of language itself. Reference grammar books are
not a unified or accurate reflection of language
but rather artifacts that attempt to summarize the
real-world language use. Consequently, for the
same language, it is not uncommon for different
sources to have different orthographical conven-
tions for transcription, variations from the data
(e.g., speaker/dialect variations), and conflicting
theories about grammar, where later works may
disagree with the past literature. In Tanzer et al.
(2024), these inconsistencies did not emerge, and
we hypothesize that this is because their work used
the same, consistent source for benchmarking and
knowledge provision.

In any case, investigating the nature of exter-
nal knowledge is necessary to continue the study.
Such studies may require high-quality classifica-
tion and annotation of books broken down into
meaningful units, which we anticipate will de-
mand considerable manual effort.

Reasoning traces. While our benchmark is a
leap forward from previous linguistic reasoning
benchmarks (in particular, ours is able to evalu-
ate partially correct solutions meticulously, and is
rich in metadata), the “thought process” of a model
is not taken into consideration when grading. To
our knowledge, evaluating the reasoning steps of
LLMs remains an open problem.

To help advance this line of research, we pro-
vide a dataset of the gold-standard reasoning traces
alongside the quantitative grading part of the
benchmark, and ensure that their formats are fully
compatible. One possible quantitative use of the
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reasoning trace data is as a “rule checklist,” simi-
lar to the explanation grading in Section 4.3. This
dataset, for which direct applications are yet to be
explored, invites future researchers interested in
reasoning and human cognition.

6 Conclusion

In this work, we introduced LOBSTERY¥, a
linguistically-informed benchmark designed to
move beyond final-answer accuracy and enable a
granular assessment of an LLM’s reasoning on
complex linguistic structures. Our typological
analysis of IOL problems provides a structured
lens for this evaluation, while our empirical study
of a state-of-the-art model on the FLORES-200
dataset underscored the critical need for improved
cross-linguistic generalization, particularly in low-
resource settings. We call on the community to
build on this foundation to look inward at the
nascent logic of LLMs, and outward at the bound-
less diversity of language that inspires them.
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A IOL Problem Examples
A.1 Elements of an IOL Problem

Problem 1 (20 points). Here are some forms of the Ubykh verb to give and their English

translations:
1. was’t¥an — we ge Yyousg to him Introduction
2. sawt*an —  yougy give me to them
3. awast*an — I give them to yousg
4. wasonat¥an — they give yousg to me
5. $§%ast*an — I give youy to him
6. $antvan —  he gives us to them
7. awad’t¥an —  we give him to yousg Corpus
8. sa§¥ant*an  — he gives me to youy
9. as*ast*an — I gwe him to youy

(a) The last of the nine forms above can actually be translated into English in two ways.
What is its other translation?

b) Translate into English: (c) Translate into Ubykh:
10. a$’ant*an 13.  they give youy to me
11. sa$*t*an Tasks 14. youy give him to me
12.  $'awonat*an 15.  yousy give us to him

16.  we give yousg to them
17.  he gives them to us

Notes
A Ubykh belongs to the Abkhaz—Adyghe family. Until 1864, several tens of thousands of
people spoke it in the area of the present-day city of Sochi, Russia. Tevfik Eseng, who was
considered the last fully proficient native speaker of Ubykh, died in Turkey in 1992.
2 is a vowel; §’, §¥, t* are consonants. — Peter Arkadiev

Figure 3: An IOL Problem with the four parts: Introduction provides information about the language(s) featured
in the problem; Corpus contains the examples based on which the tasks should be solved. Tasks follows the
corpus and typically includes translation between the target language and English, correspondences of randomly
arranged items, among other types of tasks; Notes provide data about the language featured in the problem, relevant
phonetic/orthographic information, and details about specific words. Any additional information crucial to solving
the problem will be included in the introduction and notes sections.

+

A.2 More Examples on Diversity in Problem

Problem 1 (20 points). Here are some arithmetic equalities in Birom:
1. tugiin® + tat + naas = bakiird biba n4 vi rwiit
2. tat"33s — bakird bitiimin na v2 faatat
3. taama® + faatat + gwinip = bakiird binaas n4 vi faagwiniy
4. faatatSWiniD — (aaeat
5. rwiit? + ba + tipiin = bakira bitiipiin né v& faagwinip
6. batiin — pakiirdi biba na vé rwiit

7. faatat? + naas + tat = bakira bitaama na vi naas
8. naastat — bakiirdi bitiigiin n4 v& niis

9. kiirii na v¢ naas + kiirti na v¢ faatat = kiirdi na vé tiimin + ba + kiirdi na v tunin
All numbers in this problem are greater than 0 and less than 125.

(a) Write the equalities (1-9) in numerals.

Figure 4: Problem 1 (IOL 2017)
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Problem 2 (20 points).

English translations in arbitrary order:

e e O e e =
g4 O s W N RO

Problem 4 (20 points).

© 0 NS T A W N =

. abang

. atang heya

bataa hawata

dekafi

. ebataa hatang
. ekuda hawata
. falepak hawei
. hatang hamin
. helui

. maama hefalepak
. napong

. riéng

. ritama

. riya hatang

. tama habang
. tamin

. tefe hawei

/o T o

]

Here are some words and word combinations in Abui and their

. his fingertip

. your (sg.) branch
. my face

. one’s own rope

. your (sg.) shoulder

f. your (pl.) mother’s hand

g. our pigs’ ears
(the ear of the pig of each of us)
h. father’s pistol

i. your (sg.) horse’s neck

j. trigger

k. your (pl.) eyes

1. our noses

(the nose of each of us)

o s B

o

. his knife

. seashore

. upper part of a tree
. your (sg.) thumb

q. your (pl.) sea

Figure 5: Problem 2 (IOL 2017)

Here are some word combinations in Laven written in the Khom

script and in phonetic transcription and their English translations:

1 3 praj trie to wake up the wife
2 AHmeHh caxk caj from the heart/mind/soul
3 ? taw be: to see the raft
4 @S (3 kriot blaw to scratch the thigh
5 plaj priet banana
6 ? ? three bananas
7 Vel B R G 8 ? siz rhinoceros
8 WAL @ ? four hands of bananas
9 57 et A ? ?
10 ? cie pah la: seven sheets of paper
11 y AL ? aubergine/eggplant leaf
12 ? two aubergines/eggplants
13 MU & plaj hnat pah plaj | seven pineapples
14 @UW .G 8 kruat pe: to: three bees
15 la: priet traw la: ?
16 ? koa:r ba:r to: two doves ;ﬁ
17 blatk puan ka: four carp 4x )&
18 WEZE IRV piet traw pla: siz knives Y\]},{S
19 @ ot A bair ka: ?
20 b le ol A ? four blades

Figure 6: Problem 4 (IOL 2017)
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A.3 Example on Kinship Problem&Graph Transcription

Twenty-first International Linguistics Olympiad (2024) 4
Individual Contest Problems

Problem 3 (20 points). You are given the family tree of a Komnzo-speaking family and statements
describing the family members’ relation to each other. Siblings are displayed in descending age order
from left to righi. The position of one family member, Toko, is known.

PN o
S A O A&b

1. Wafine Kuraiane nge ri. 16. Trafe Tawthane ...3.
2. Mea Gwamane biipaf yé. 17. Mea Maragaane zath yé.
3. Naimr Tokoane pame ri. 18. Nfiyam Wimsane biigam ra.
4. Mea Wimsane pafe yé. 19. Wims Gwamane yamit ri.
5. Marua Kuraiane enat yé. 20. Maraga Tawthane ..®.
6. Naimr Gwamane ...D. 21. Skri Gwamane pafe yé.
7. Abia Maragaane niawi yé. 22. Naimr Maragaane zath pare ri.
8. Tawth Kuraiane zath yé. 23. Maraga Tokoane nge yé.
9. Trafe Wafineane name ri. 24. Abia Tokoane ngth yé.
10. Marua Maragaane zath yé. 25. Toko Wimsane nane ri.
11. Tawth Meaane ...@. 26. Toko Gwamane yamit ri.
12. Abia Gwamane yamit yé. 27. Maraga Wafineane zath yé.
13. Tawth Wafineane nge yé. 28. Nakre Wimsane yumad ri.
14. Wafine Maragaane zath pare ri. 29. Abia Wimsane nane yé.
15. Kurai Wafineane pafe yé. 30. Mabata ...® ngth ...@.

(a) Fill in the family tree.

(b) Fill in the gaps (1-6).

(c) The following statement is incorrect. Explain why and correct the mistake.

31. Skri Abiaane piawi yé.
A\ The Komnzo language belongs to the Yam family. It is spoken by approx. 250 people in Rouku
guag B Y P Y app peop

village and the town of Morehead in the Western Province of Papua New Guinea. The Farem people
— the primary speakers of Komnzo — practice sister exchange, whereby two men from different clans

marry each other’s sisters (as seen in the family tree).
i = ain cal. p = ng in hang. th = thin leather. z = ts in cats. —Aida Davletova

Figure 7: Original Problem 3 in 2024.
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Transcription of the Family Tree
e Man 1 and Woman 1 are married. Their child is Woman 2.

e Man 2 and Woman 2 are married. Their child is Man 3.

L]

Man 3 and Woman 3 are married. Their child is Man 4.

Woman 3 is Toko.

Man 5 and Woman 4 are married. Their children are Woman 3, Man 6 and Woman 5, from oldest
to youngest.

* Man 5 and Woman 6 are siblings. The former is older.
* Woman 4 and Man 7 are siblings. The former is older.
* Man 7 and Woman 6 are married. Their child is Man 8.
* Man 8 and Woman 7 are married.

* Woman 7 and Woman 8 are siblings. The former is older.
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B Prompt Template for Reasoning Process Generation

The following Python template was used to generate reasoning chains for IOL problems:

## Prompt:
As an expert in linguistics solve the following problem. Given the following IOL
problem and its answer, generate a detailed, step-by-step chain of thoughts that
could specifically and reasonably lead to the answer. Focus on the reasoning
process, essential linguistic rules, logical deductions, and the final solution.
Make your whole output into a markdown file.

## Problem:
{problem_text}

## Solution:
{solution_text}

## Your response:

C The Classification Framework for Problems

Category Tag

Subject Compounding, Morphology, Numbers, Phonology and Phonetics, Semantics, Syn-
tax, Writing System

Type Rosetta, Match-up, Monolingual, Pattern, Computational, Text

Theme Classical, Comparative, Encrypted, Kinship, Maps, Mystery, MFL! Senses and Feel-
ings, Stories, Poetry, No Theme

! MFL: These questions involve languages commonly taught in secondary school MFL departments, or those closely
related (e.g., Romance and Germanic languages).

Table 1: Typological Annotation Category

Sub-problems Subject  Type Language Speakers glottocode Language Family

2 Numbers Pattern Egyptian Arabic 68,000,000 egyp1253 Semitic

Table 2: Example of Typological Annotation: Problem 2 in 2003

C.1 Classification Criteria

The following categories and the classification criteria are modified from those of UKLO’.

* Subjects —For a given subject to appear in the classification, at least two rules in the solution must
be of that type.

— Compounding: The problems mainly focus on deducing the dictionary meanings of words by
analyzing how the meaning changes when different word components are combined.

— Morphology: The problems primarily require understanding how morphemes (the smallest
units of meaning) combine to form grammatical words.

— Numbers: The problems are centered on understanding the structure and formation of numer-
als and numeral expressions.

— Phonology and Phonetics: The problems focus on the sounds of a language and how they
are organized. Phonology deals with sound systems within specific languages and in general,
while phonetics studies the nature, production, and perception of speech sounds, independent
of any particular language.

*https://www.uklo.org/technical-information/
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Semantics: The problems emphasize understanding how meaning influences language, espe-
cially how meaning shapes grammar and how different languages express the same concepts
with different words.

Syntax: The problems focus on understanding how words combine to form phrases and sen-
tences.

Writing System: The problems involve analyzing writing systems, including both the use of
the Latin alphabet in various languages and other scripts.

* Problem Type

Rosetta: The problems consist of sets of corresponding words or phrases across different lan-
guages or writing systems, with most pairings provided. Some elements may be missing, cre-
ating gaps that need to be filled. Solving the task requires generating new correspondences,
typically translations.

Match-up: The problems consist of sets of corresponding words or phrases across multiple
languages or writing systems, with only a few pairings given. Some words may not belong to
any set, but it still qualifies as a match-up. The task involves identifying new correspondences,
usually translations.

Monolingual: The problems are texts in an unfamiliar language (or equivalent writing system),
generally without direct translations or transliterations, except perhaps for one or two words.
To solve the task, you must translate the text from the unknown language.

Pattern: The problems consist of words or groups of word forms or cognates that follow a
certain pattern, though there may be exceptions. To solve the task, you must either generate
other examples that fit the pattern or identify exceptions, without relying on translation as in
Rosetta tasks.

Computational: The problems include a description of a computational or logical system.
Solving the problem involves analyzing and implementing the system according to the given
rules.

Text: The problems consist of full texts in different languages or scripts, without being broken

down into smaller parts. To solve the task, you must infer linguistic rules using context and
other cues.

¢ Theme

Classical: These problems feature languages that were primarily spoken around a thousand
years ago or earlier.

Comparative:These problems involve comparing either related languages or different histori-
cal stages of a single language.

Encrypted: These problems involve deciphering an encoded message in English.

Kinship: These problems focus on understanding how different languages and cultures de-
scribe family relationships and naming systems.

Maps: These problems explore how various languages express and conceptualize directions
and spatial orientation.

Mystery: These problems include a mystery element that draws on general or world knowledge,
often involving content beyond linguistics.

MFL: These problems involve languages commonly taught in secondary school modern for-
eign language (MFL) departments, or closely related languages (e.g., those from the Romance
or Germanic families).

Senses and Feelings: These problems examine linguistic expressions related to emotions or
sensory experiences (e.g., smells, sounds).
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— Stories: These problems either contain a narrative storyline or feature one or more fictional
characters. They use storytelling to create engaging contexts for linguistic analysis, often draw-
ing from literary traditions.

— Poetry: These problems revolve around the structure and features of poetic language.

— No Theme (N/A): These problems focus on core linguistic topics without any specific thematic
context.
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D Preliminary Analysis of IOL Problems.
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Figure 8: Statistical distributions of various features in the IOL problems dataset.
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E Heatmap: Subject vs Type Distribution
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Figure 10: Subject vs Top 10 Language Family Distribution
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G Heatmap: Type vs Language Family Distribution
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Figure 11: Type vs Top 10 Language Family Distribution
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H System Prompt for Model Reasoning Evaluation

system_prompt = """Given the evaluation rules and metrics for model reasoning of
IOL problems, consider the golden reasoning reference, and evaluate the target
model reasoning with the metrics of five dimensions.

evaluation rules and metrics (5-score):

{metrics}

scoring_:
{scoring}

golden reasoning reference:
{golden_reasoning_reference}

target model reasoning:

{model_reasoning}
nun

metrics = """

### Metrics and Descriptions (Bullet Points)
(i) 3.1 Information Extraction & Structuring
* **Stepwise Logical Validity Score (SLVS)**: Measures whether each reasoning
step is logically valid and aligned with the golden reasoning reference (GRR).
* **Information Structuring Completeness (ISC)**: Measures completeness of
extracted key information and its structure compared to GRR.
[TRUNCATED FOR BREVITY IN PAPER]

nun

3 scoring =
## Reasoning Quality Evaluation -- Scoring Rubric (5 Points per Metric)
| *xDimension** | *xMetric** | **Score 5 (Excellent)** | xxScore 3 (Acceptable)x*x* |

*xScore 1 (Poor)x*x* |
| ----- | ----- | —---- | ----- | —---- !
| #**(i) 3.1 Information Extraction & Structuring** | **SLVSx*x* | A1l reasoning
steps are logically valid and follow GRR structure | Minor logical flaws or
omissions; generally coherent | Major logical errors, incoherent or illogical
steps | | | **ISCxx | Extracts and structures all key information as per GRR
| Extracts partial or incomplete key information | Fails to extract/structure
key information |
[TRUNCATED FOR BREVITY IN PAPER]

nun

> golden_reasoning_reference = """
3 # Your response:

# Chain of Thought: Solving the Swift News Linguistics Problem

[TRUNCATED FOR BREVITY IN PAPER]

nun

target_model_reasoning = """

**Solving the Linguistic Puzzle*x*

[TRUNCATED FOR BREVITY IN PAPER]

I FLORES-200 Multilingual Evaluation Details

Dataset preparation and experimental design. We combine the dev and devtest splits for a total
of 2009 sentences that are available in 204 languages. We then use the ISO 639-3 language code and
the ISO 15924 script code to identify the Glottocode and the script used for each language, respectively.
For example, the column name for Bashkir translations written in Cyrillic is sentence_bak_Cyrl. To
align the dataset with the Glottolog taxonomy, we mapped all language identifiers to their corresponding
Glottolog codes. We noted that five ISO 639-3 codes from the dataset (i.e., srd, est, kon, zho, grn)
were not directly linked to a Glottolog entry. We identified suitable entries manually. How we mapped
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these languages can be found in Table 6. In total, we have 204 languages and script combinations.'

0

Next, we take the first 10 English sentences and their translations for a total of 2030 English-to-Target

Language pairs.

We evaluate Gemini-2.5-flash with temperature=0.1 and thinking budget=0 by translating from
two directions: English-to-Target (E — T') and Target-to-English (I' — FE). We use the following
E — T prompt when eliciting a response from the model:

Translate the following sentence from English to {target_lang} using

the {script} script:
Input: {input_sentence}

We use the following 7" — E prompt:

Translate the following sentence {target_lang} to English:
Input: {input_sentence}

Language Glottocode  Class (hEd'i“;?) (l\;liu;gg) h;g:?;g
Tamasheq tamal365 0 7 1 8
Nuer nuer1246 0 6 2 8
Kabiyé kabil261 0 7 0 7
Southwestern Dinka sout2832 — 6 1 7
Central Kanuri cent2050 0 4 2 6
Fon fonn1241 0 5 0 5
Chokwe chok1245 — 2 1 3
Umbundu umbul257 0 3 0 3
Kamba (Kenya) kamb1297 0 2 0 2
Sango sang1328 1 2 0 2
South-Central Koongo koon1244 1 2 0 2
Kimbundu kimb1241 0 2 0 2
Bambara bamb1269 1 2 0 2
Dyula dyul1238 0 2 0 2
Mossi moss1236 0 4 0 4
Southern Jinghpaw kach1280 0 4 0 4
Shan shan1277 0 4 0 4
Acehnese achil257 1 1 0 1
Ewe eweel241 1 1 0 1
Dzongkha dzon1239 1 1 0 1
Central Aymara cent2142 — 1 0 1
Ayacucho Quechua ayac1239 — 1 0 1
Luba-Lulua lubal249 0 1 0 1
Kabyle kaby1243 1 1 0 1
Guarani east2555 1 1 0 1
Wolof nucl1347 2 1 0 1
Grand Total 73 7 80

Table 3: Counts of missing LLM Outputs by language and direction. Class refers to the taxonomy introduced in

Joshi et al. (2020) in which 0 indicates extremely limited resources and 5 indicates an abundance of resources.

means that the language was not found in the taxonomy.

TR

19196 unique languages while Acehnese, Minangkabau, Banjar, Central Kanuri, Tamasheq, Standard Arabic, Kashmiri, and

Mandarin each have two scripts.
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With the LLM translating in two directions, we obtain 3800 responses; however, 80 responses are
empty with the majority of them originating from the £ — T task. We will first examine these failures.

The LLM often fails to output any text for low resource languages. From the results in Table 3 we
can see that the data strongly suggests that the model’s failure to generate output is directly linked to
data resource scarcity. The Class column refers to the taxonomy introduced in Joshi et al. (2020) where
Class 0 languages have a dearth of resources while the Class 5 languages are at the opposite end of the
spectrum.'! The vast majority of missing outputs are concentrated in languages designated as Class 0
(e.g., Tamasheq, Nuer, Kabiyé€), which represents the lowest-resource tier in our dataset. “—” means that
the language was not found in the taxonomy.

Furthermore, the model fails far more frequently in the English-to-Target direction (73 instances) than
in the Target-to-English direction (7 instances). This indicates that the primary challenge is not the
model’s ability to process or analyze the target languages (i.e., I’ — F), but rather its capacity to reliably
generate text in them (i.e., £ — T"). This strongly suggests limited training data in the target language.
This conclusion is reinforced by the performance on higher-resourced languages. We will now examine
the overall translation quality of the outputs.

LLM performance is heavily influenced by translation direction, language family, and resource
availability. We use cHrF (Popovi¢, 2015) instead of cHrRF+ or cHrRF++ (Popovié, 2017) because the
former is language independent and tokenization independent, which is needed when many languages
found in FLORES-200 may not have a robust tokenizer or even have one readily available. cHRF measures
translation quality by calculating character-level n-gram overlap F-score between the machine translation
and the human translation. The latter two introduces word unigram and bigram overlap into the equa-
tion. We use the implementation provided by Hugging Face with default parameters,'> which adopts the
implementation from sacreBLEU (Post, 2018)'3 but with a slightly different input format.

Direction Mean cHRF Score Correlation with Class (p)

E—-T 43.92 0.598
T—E 64.27 0.466

Table 4: Mean cHRF scores and their Spearman’s correlation (p) with resource class for each translation direction.

Worth noting is the direction where the model is worse on average (EF — T') is also the direction where
performance is more strongly influenced by resource availability (higher correlation, p = 0.598). This
suggests that while translating into English has a relatively high performance floor, the model’s ability to
generate text in other languages is both lower on average and more vulnerable to data scarcity. Figure 12
paints a similar picture in which lower resource classes predictably have worse performance compared to
languages with more resources. We also see that translating from English to another language exacerbates
the problem.

To also see how language family and script influence translation quality we used three separate one-
way ANOVAs for each translation direction (£ — T and 7' — FE). The results, summarized in Table 5,
indicate that both family and class have a large and highly significant effect on performance in both
directions (all p < .001). In contrast, script was not found to be a statistically significant predictor of
cHRF score in either analysis.

The analysis reveals an important asymmetry in the influence of resource class. While significant in
both cases, class accounts for a larger portion of the variance in £ — T scores (171% = .412) than in
T — E scores (17 = .381).

"Because the language name to class list from Joshi et al. does not use an ISO 639-3 or Glottocode, we can only use the
name to identify which language is paired with which Glottocode. We only assign classes for unambiguous language names. For
example, while “khmer” is found in the language to class list, we do not join it with “Central Khmer.” There are 30 languages
without an assigned Resource Class.

Phttps://huggingface.co/spaces/evaluate-metric/chrf

Bhttps://github.com/mjpost/sacreBLEU#chrf--chrf
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chrF Score Distribution by Resource Class and Translation Direction
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Figure 12: Comparison of cHRF score distributions for English-to-Target (£ — T') and Target-to-English (T" — E)
translations, grouped by resource class. The plot shows a clear positive trend where quality increases with resource
availability, with the 7' — E direction consistently outperforming the £ — 7T direction. Boxes represent the
interquartile range, and points show individual languages that fall beyond the lower fence.

E—-T T—FE
Factor Effect Size (2) p-value Effect Size (1)2) p-value
Family 0409 < .001 0.515 < .001
Class 0412 < .001 0.381 < .001
Script 0.174 .265 0.125 .740

Table 5: Summary of One-Way ANOVA results showing the influence of each factor on cHrF scores. Effect sizes
are given as partial eta-squared (17]2)).
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This illustrates that processing low-resource languages still proves to be a challenge for even the most
powerful of models. FLORES-200 only covers a small fraction of the world’s languages and were chosen
carefully based on several considerations, such as having a presence on Wikipedia. This limitation with
processing low-resource languages will only be more pronounced when we examine other languages with
even fewer resources. The results for each language can be found in Table 7 as well as additional figures
for script and language family-level scores in Section L of the Appendix.

Given that these results stem from a single experimental iteration, they should be interpreted as prelim-
inary. Nevertheless, they provide strong evidence of the lopsided distribution of data resources among
the world’s languages and imbalanced performance across languages for today’s SOTA LLMs, which
warrants further investigation.
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J Resolution of Ambiguous ISO 639-3 to Glottocode Mappings

Table 6: Resolution of ambiguous source ISO 639-3 codes to specific language varieties and their corresponding
Glottocode.

Language Mapping Details

srd

Language: Sardinian
ISO — Glottocode: None — sard1257
Justification: Top-level family node.

est

Language: Estonian
ISO — Glottocode: ekk — esto1258
Justification: Primary language entry.

kon

Language: South-Central Kongo
ISO — Glottocode: kng — koon1244
Justification: Known as Kongo in World Atlas of Language Structures (WALS).

zho

Language: Mandarin
ISO — Glottocode: cmn — mand1415
Justification: Most populous variety.

grn

Language: Eastern Bolivian Guarani

ISO — Glottocode: gui — east2555

Justification: Guarani categorized as Class 1 in Joshi et al. (2020), which aligns more with
Ethnologue’s Digital Language Support classification of “Ascending” for the language.
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K Language-Level cHRF Translation Scores for Gemini-2.5-Flash on FLORES-200

Table 7: Performance results by language, including cHRrF scores, sample counts, and resource class.

Language E—T T—F Famil Class Samples
(glottocode_Script) cHrF cHrF y (E—=TI/T—E)

Acehnese (achil257_Arabic) 6.05 49.46 Austronesian 1 9/10
Acehnese (achi1257_Latin) 46.42 71.11 Austronesian 1 10/ 10
Afrikaans (afri1274_Latin) 73.91 83.15 Indo-European 3 10/ 10
Akan (akan1250_Latin) 37.78 49.00 Atlantic-Congo 1 10/ 10
Ambharic (amhal245_Ethiopic (Ge‘ez)) 35.85 70.71 Afro-Asiatic 2 10/ 10
Assamese (assal263_Bengali) 48.08 67.72 Indo-European 1 10/10
Asturian-Leonese-Cantabrian (astul245_Latin) 69.93 73.94 Indo-European 1 10/ 10
Awadhi (awad1243_Devanagari (Nagari)) 41.45 67.04 Indo-European 0 10/ 10
Ayacucho Quechua (ayac1239_Latin) 37.25 53.34 Quechuan - 9/10
Balinese (balil278_Latin) 44.79 61.53 Austronesian 0 10/10
Bambara (bamb1269_Latin) 2.12 41.72 Mande 1 8/10
Banjar (banj1239_Arabic) 4.46 53.69 Austronesian 1 10/10
Banjar (banj1239_Latin) 51.99 60.64 Austronesian 1 10/10
Bashkir (bash1264_Clyrillic) 56.01 68.67 Turkic 1 10/10
Basque (basq1248_Latin) 64.81 67.00 Unknown 4 10/10
Belarusian (belal254_Cyrillic) 52.41 60.98 Indo-European 3 10/10
Bemba (Zambia) (bemb1257_Latin) 43.05 60.86 Atlantic-Congo 0 10/ 10
Bengali (beng1280_Bengali) 59.45 68.50 Indo-European 3 10/10
Bhojpuri (bhoj1244_Devanagari (Nagari)) 44.14 62.46 Indo-European 1 10/10
Bosnian Standard (bosn1245_Latin) 67.72 70.89 Indo-European 3 10/10
Buginese (bugil244_Latin) 35.98 48.74 Austronesian 1 10/10
Bulgarian (bulg1262_Cyrillic) 76.45 76.70 Indo-European 3 10/10
Burmese (nucl1310_Myanmar (Burmese)) 53.93 68.35 Sino-Tibetan 1 10/10
Catalan (stan1289_Latin) 67.90 72.33 Indo-European 4 10/ 10
Cebuano (cebul242_Latin) 65.84 80.13 Austronesian 3 10/ 10
Central Aymara (cent2142_Latin) 31.09 44 91 Aymaran - 9/10
Central Kanuri (cent2050_Arabic) 2.31 15.26 Saharan 0 10/8
Central Kanuri (cent2050_Latin) 8.76 32.46 Saharan 0 6/10
Central Khmer (cent1989_Khmer) 43.45 73.44 Austroasiatic - 10/ 10
Central Kurdish (cent1972_Arabic) 51.29 67.85 Indo-European - 10/ 10
Central Moroccan Berber (cent2194_Tifinagh 26.34 45.68 Afro-Asiatic 0 10/10
(Berber))

Chhattisgarhi (chhal249_Devanagari (Nagari)) 50.58 70.19 Indo-European - 10/10
Chokwe (chok1245_Latin) 19.24 28.74 Atlantic-Congo - 8/9
Crimean Tatar (crim1257_Latin) 45.90 70.46 Turkic 1 10/ 10
Croatian Standard (croal245_Latin) 62.14 69.88 Indo-European 4 10/ 10
Czech (czec1258_Latin) 63.42 73.96 Indo-European 4 10/ 10
Danish (dani1285_Latin) 77.23 75.40 Indo-European 3 10/ 10
Dari (dari1249_Arabic) 42.70 65.11 Indo-European 4 10/ 10
Dutch (dutc1256_Latin) 66.63 68.29 Indo-European 4 10/ 10
Dyula (dyul1238_Latin) 16.31 33.30 Mande 0 8/10
Dzongkha (dzon1239_Tibetan) 33.37 50.97 Sino-Tibetan 1 9/10
East Latvian (east2282_Latin) 45.29 73.02 Indo-European - 10/ 10
Eastern Armenian (nucl1235_Armenian) 61.44 71.83 Indo-European 1 10/ 10
Eastern Panjabi (panj1256_Gurmukhi) 56.52 73.75 Indo-European - 10/10
Eastern Yiddish (east2295_Hebrew) 42.70 83.12 Indo-European - 10/ 10
Egyptian Arabic (egypl1253_Arabic) 52.11 65.85 Afro-Asiatic 3 10/10
Esperanto (espel1235_Latin) 66.90 76.29 Artificial Language 1 10/10
Estonian (esto1258_Latin) 61.18 67.24 Uralic 3 10/10
Ewe (eweel241_Latin) 36.73 49.73 Atlantic-Congo 1 9/10
Faroese (faro1244_Latin) 64.14 77.47 Indo-European 1 10/10
Fijian (fiji1243_Latin) 50.32 55.60 Austronesian 1 10/10
Finnish (finn1318_Latin) 66.57 68.23 Uralic 4 10/10
Fon (fonn1241_Latin) 7.64 23.20 Atlantic-Congo 0 5/10
French (stan1290_Latin) 73.10 70.06 Indo-European 5 10/10
Friulian (friu1240_Latin) 61.78 67.92 Indo-European 1 10/10
Galician (gali1258_Latin) 65.03 70.14 Indo-European 3 10/10
Ganda (gand1255_Latin) 42.86 56.15 Atlantic-Congo 1 10/10
Georgian (nucl1302_Georgian (Mkhedruli)) 56.55 63.11 Kartvelian 3 10/ 10
German (stan1295_Latin) 71.48 72.08 Indo-European 5 10/ 10

Continued on next page
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Table 7 — continued from previous page

Language E—-T T—E Family Class Samples
(glottocode_Script) cHRF cHRF (E—=TI/T—E)

Gilit Mesopotamian Arabic 51.31 66.27 Afro-Asiatic - 10/10
(meso1252_Arabic)

Guarani (east2555_Latin) 30.45 60.51 Tupian 1 9/10
Gujarati (gujal252_Gujarati) 49.30 70.17 Indo-European 1 10/ 10
Haitian (hait1244_Latin) 62.81 69.51 Indo-European 2 10/10
Halh Mongolian (halh1238_Clyrillic) 54.87 71.44 Mongolic-Khitan 0 10/10
Hausa (haus1257_Latin) 61.93 67.27 Afro-Asiatic 2 10/10
Hausa States Fulfulde (nige1253_Latin) 23.36 34.24 Atlantic-Congo - 10/ 10
Hindi (hind1269_Devanagari (Nagari)) 64.11 69.33 Indo-European 4 10/ 10
Hungarian (hung1274_Latin) 69.67 71.54 Uralic 4 10/10
Icelandic (icel1247_Latin) 65.36 69.58 Indo-European 2 10/ 10
Igbo (nucl1417_Latin) 50.62 64.71 Atlantic-Congo 1 10/10
Iloko (ilok1237_Latin) 56.05 69.03 Austronesian 1 10/ 10
Irish (iris1253_Latin) 64.73 77.31 Indo-European 2 10/10
Italian (ital1282_Latin) 62.85 64.59 Indo-European 4 10/ 10
Japanese (nucl1643_Japanese) 53.92 72.73 Japonic 5 10/10
Javanese (javal254_Latin) 64.70 71.11 Austronesian 1 10/10
Kabiyé (kabil261_Latin) 0.44 39.03 Atlantic-Congo 0 3/10
Kabuverdianu (kabul256_Latin) 58.01 75.68 Indo-European - 10/ 10
Kabyle (kaby1243_Latin) 32.01 58.15 Afro-Asiatic 1 9/10
Kamba (Kenya) (kamb1297_Latin) 24.93 47.68 Atlantic-Congo 0 8/10
Kannada (nucl1305_Kannada) 55.88 63.90 Dravidian 1 10/ 10
Kashmiri (kash1277_Arabic) 26.62 62.82 Indo-European 1 10/ 10
Kashmiri (kash1277_Devanagari (Nagari)) 22.55 57.73 Indo-European 1 10/ 10
Kazakh (kazal248_Ciyrillic) 64.98 72.01 Turkic 3 10/ 10
Kikuyu (kiku1240_Latin) 5.62 53.15 Atlantic-Congo 1 10/10
Kimbundu (kimb1241_Latin) 21.37 41.79 Atlantic-Congo 0 8/10
Kinshasa Lingala (ling1263_Latin) 48.36 53.12 Atlantic-Congo 1 10/10
Kinyarwanda (kiny1244_I atin) 59.06 65.75 Atlantic-Congo 1 10/10
Kirghiz (kirg1245_Clyrillic) 54.92 59.06 Turkic 1 10/10
Korean (kore1280_Hangul (Hangiil, Hangeul)) 38.21 62.31 Koreanic 4 10/10
Lao (laoo1244_Lao) 58.59 70.02 Tai-Kadai 2 10/ 10
Levantine Arabic (nort3139_Arabic) 67.19 74.01 Afro-Asiatic - 10/10
Ligurian (ligul248_Latin) 48.14 76.98 Indo-European 1 10/10
Limburgan (limb1263_Latin) 56.83 76.72 Indo-European - 10/10
Lithuanian (lith1251_Latin) 65.99 71.04 Indo-European 3 10/ 10
Lombard (lomb1257_Latin) 40.32 67.99 Indo-European 1 10/ 10
Luba-Lulua (lubal249_Latin) 29.97 52.74 Atlantic-Congo 0 9/10
Luo (Kenya and Tanzania) (luok1236_Latin) 37.90 47.98 Nilotic - 10/ 10
Macedonian (mace1250_Cyrillic) 64.95 70.12 Indo-European 1 10/10
Magahi (magal260_Devanagari (Nagari)) 57.93 73.59 Indo-European 0 10/10
Maithili (mait1250_Devanagari (Nagari)) 50.43 66.99 Indo-European 1 10/10
Malayalam (malal464_Malayalam) 59.07 69.10 Dravidian 1 10/10
Maltese (malt1254_Latin) 76.21 82.70 Afro-Asiatic 2 10/ 10
Mandarin (mand1415_Han (Simplified)) 40.77 66.44 Sino-Tibetan 5 10/ 10
Mandarin (mand1415_Han (Traditional)) 34.25 68.81 Sino-Tibetan 5 10/ 10
Manipuri (manil292_Bengali) 19.06 64.31 Sino-Tibetan 0 10/ 10
Maori (maor1246_Latin) 47.45 64.97 Austronesian 1 10/ 10
Marathi (maral378_Devanagari (Nagari)) 52.66 66.06 Indo-European 2 10/10
Minangkabau (minal268_Arabic) 8.12 61.44 Austronesian 1 10/ 10
Minangkabau (minal268_Latin) 62.69 71.41 Austronesian 1 10/ 10
Mizo (lush1249_Latin) 50.39 59.40 Sino-Tibetan 0 10/ 10
Modern Greek (mode1248_Greek) 59.10 73.07 Indo-European 3 10/10
Modern Hebrew (hebr1245_Hebrew) 69.28 74.57 Afro-Asiatic 3 10/ 10
Moroccan Arabic (moro1292_Arabic) 45.14 60.62 Afro-Asiatic 5 10/10
Moselle Franconian (luxe1241_Latin) 59.83 75.58 Indo-European 1 10/ 10
Mossi (moss1236_Latin) 15.53 40.71 Atlantic-Congo 0 6/10
Najdi Arabic (najd1235_Arabic) 65.27 72.14 Afro-Asiatic - 10/10
Nepali (nepal254_Devanagari (Nagari)) 52.28 70.34 Indo-European 1 10/10
North Azerbaijani (nort2697_Latin) 46.62 61.61 Turkic - 10/ 10
Northern Kurdish (nort2641_Latin) 46.16 64.78 Indo-European 0 10/ 10
Northern Tosk Albanian (tosk1239_Latin) 64.32 74.24 Indo-European - 10/ 10
Northern Uzbek (nort2690_Latin) 64.70 70.08 Turkic - 10/ 10
Norwegian Bokmél (norw1259_Latin) 67.89 70.38 Indo-European - 10/10
Norwegian Nynorsk (norw1262_Iatin) 68.94 77.57 Indo-European - 10/10
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Table 7 — continued from previous page

Language E—-T T—E Family Class Samples
(glottocode_Script) cHRF cHRF (E—=TI/T—E)

Nuer (nuer1246_Latin) 6.65 21.75 Nilotic 0 4/8
Nyanja (nyan1308_Latin) 57.28 64.36 Atlantic-Congo 1 10/ 10
Occitan (occil239_Latin) 64.46 75.99 Indo-European 1 10/10
Odia (oriy1255_Oriya) 57.08 70.09 Indo-European 1 10/ 10
Pangasinan (pang1290_Latin) 50.29 67.22 Austronesian 1 10/10
Papiamento (papil253_Latin) 59.40 77.99 Indo-European 1 10/10
Pedi (pedi1238_Latin) 58.90 72.17 Atlantic-Congo - 10/10
Plateau Malagasy (plat1254_Latin) 54.33 66.30 Austronesian 1 10/ 10
Polish (poli1260_Latin) 63.24 68.08 Indo-European 4 10/10
Portuguese (port1283_Latin) 74.12 72.46 Indo-European 4 10/10
Romanian (romal327_Latin) 72.24 73.24 Indo-European 3 10/ 10
Rundi (rund1242_Latin) 46.17 59.44 Atlantic-Congo 1 10/10
Russian (russ1263_Cyrillic) 70.87 69.89 Indo-European 4 10/10
Samoan (samo1305_Latin) 52.34 70.75 Austronesian 1 10/ 10
Sango (sang1328_Latin) 18.31 41.16 Atlantic-Congo 1 8/10
Sanskrit (sans1269_Devanagari (Nagari)) 38.77 53.26 Indo-European 2 10/ 10
Santali (sant1410_Ol Chiki (Ol Cemet’ , Ol, 28.85 57.77 Austroasiatic 1 10/10
Santali))

Sardinian (sard1257_Latin) 63.26 76.16 Indo-European 1 10/ 10
Scottish Gaelic (scot1245_Latin) 56.12 68.45 Indo-European 1 10/10
Serbian Standard (serb1264_Ciyrillic) 63.79 74.85 Indo-European 4 10/10
Shan (shan1277_Myanmar (Burmese)) 18.45 65.01 Tai-Kadai 0 6/10
Shona (shon1251_Latin) 50.02 53.16 Atlantic-Congo 1 10/ 10
Sicilian (sici1248_Latin) 50.63 68.78 Indo-European 1 10/ 10
Silesian (sile1253_Latin) 52.44 75.23 Indo-European 1 10/ 10
Sindhi (sind1272_Arabic) 56.57 71.45 Indo-European 1 10/ 10
Sinhala (sinh1246_Sinhala) 54.76 65.09 Indo-European 1 10/ 10
Slovak (slov1269_Latin) 59.60 68.26 Indo-European 3 10/ 10
Slovenian (slov1268_Latin) 70.90 72.76 Indo-European 3 10/10
Somali (somal255_Latin) 48.80 62.48 Afro-Asiatic 1 10/ 10
South Azerbaijani (sout2697_Arabic) 37.49 63.69 Turkic - 10/ 10
South Levantine Arabic (sout3123_Arabic) 53.99 70.58 Afro-Asiatic - 10/ 10
South-Central Koongo (koon1244_Latin) 24.58 49.15 Atlantic-Congo 1 8/10
Southern Jinghpaw (kach1280_Latin) 21.18 45.03 Sino-Tibetan 0 6/10
Southern Pashto (sout2649_Arabic) 33.63 64.12 Indo-European - 10/ 10
Southern Sotho (sout2807_Latin) 55.44 75.96 Atlantic-Congo 1 10/ 10
Southwestern Dinka (sout2832_Latin) 1.38 24.26 Nilotic - 4/9
Spanish (stan1288_Latin) 63.33 66.93 Indo-European 5 10/10
Standard Arabic (stan1318_Arabic) 67.19 71.83 Afro-Asiatic 5 10/10
Standard Arabic (stan1318_Latin) 19.46 68.76 Afro-Asiatic 5 10/10
Standard Indonesian (indo1316_Latin) 74.66 69.53 Austronesian 3 10/ 10
Standard Latvian (stan1325_Latin) 63.66 73.36 Indo-European 3 10/ 10
Standard Malay (stan1306_Latin) 73.67 74.33 Austronesian 3 10/10
Sundanese (sund1252_Latin) 53.08 60.76 Austronesian 1 10/ 10
Swahili (swah1253_Latin) 75.19 77.87 Atlantic-Congo 2 10/ 10
Swati (swat1243_Latin) 47.46 59.26 Atlantic-Congo 1 10/10
Swedish (swed1254_Latin) 75.76 73.53 Indo-European 4 10/ 10
Ta’izzi-Adeni Arabic (taiz1242_Arabic) 57.90 68.61 Afro-Asiatic - 10/ 10
Tagalog (tagal270_Latin) 65.38 79.03 Austronesian 3 10/10
Tajik (taji1245_Cyrillic) 57.78 65.02 Indo-European 1 10/10
Tamasheq (tamal365_Latin) 12.08 35.07 Afro-Asiatic 0 6/10
Tamasheq (tamal365_Tifinagh (Berber)) 12.61 28.51 Afro-Asiatic 0 7/9
Tamil (tami1289_Tamil) 66.37 67.33 Dravidian 3 10/10
Tatar (tatal255_Clyrillic) 63.39 65.85 Turkic 1 10/ 10
Telugu (telu1262_Telugu) 58.70 74.29 Dravidian 1 10/ 10
Thai (thail261_Thai) 64.09 74.75 Tai-Kadai 3 10/10
Tibetan (tibe1272_Tibetan) 46.95 58.32 Sino-Tibetan 1 10/ 10
Tigrinya (tigr1271_Ethiopic (Ge‘ez)) 26.43 61.36 Afro-Asiatic 2 10/10
Tok Pisin (tokp1240_Latin) 46.00 58.89 Indo-European 1 10/10
Tsonga (tson1249_L atin) 53.82 66.83 Atlantic-Congo 1 10/ 10
Tswana (tswal253_Latin) 45.34 62.99 Atlantic-Congo 2 10/ 10
Tumbuka (tumb1250_Latin) 48.32 58.45 Atlantic-Congo 1 10/ 10
Tunisian Arabic (tunil259_Arabic) 4391 67.20 Afro-Asiatic - 10/ 10
Turkish (nucl1301_Latin) 69.30 78.82 Turkic 4 10/10
Turkmen (turk1304_Latin) 54.86 67.57 Turkic 1 10/ 10
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Table 7 — continued from previous page

Language E—-T T—E Family Class Samples
(glottocode_Script) cHRF cHRF (E—=TI/T—E)
Twi (twiil234_Latin) 40.08 54.68 Atlantic-Congo 1 10/ 10
Uighur (uigh1240_Arabic) 57.10 63.85 Turkic 1 10/10
Ukrainian (ukral253_Cyrillic) 67.63 73.64 Indo-European 3 10/10
Umbundu (umbu1257_Latin) 19.95 44.89 Atlantic-Congo 0 71710
Urdu (urdul245_Arabic) 56.80 69.39 Indo-European 3 10/10
Venetian (vene1258_Latin) 53.60 72.88 Indo-European 1 10/ 10
Vietnamese (viet1252_Latin) 68.50 67.29 Austroasiatic 4 10/10
Waray (Philippines) (waral300_Latin) 61.97 80.62 Austronesian 1 10/10
Welsh (wels1247_Latin) 76.84 80.79 Indo-European 1 10/ 10
West Central Oromo (west2721_Latin) 43.92 58.33 Afro-Asiatic - 10/ 10
Western Farsi (west2369_Arabic) 51.22 69.55 Indo-European - 10/ 10
Wolof (nucl1347_Latin) 27.23 52.05 Atlantic-Congo 2 9/10
Xhosa (xhos1239_Latin) 51.60 64.15 Atlantic-Congo 2 10/ 10
Yoruba (yorul245_Latin) 25.90 50.06 Atlantic-Congo 2 10/ 10
Yue Chinese (yuec1235_Han (Traditional)) 30.09 68.45 Sino-Tibetan 1 10/ 10
Zulu (zulul1248_Latin) 58.61 74.58 Atlantic-Congo 2 10/10
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L. Supplementary Figures

Translation Score Distribution by Language Family
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Figure 13: Translation Score Distribution by Language Family. This plot compares the distribution of cHrF
scores for English-to-Target (£ — T') and Target-to-English (I" — F) directions across language families. A
consistent performance gap is evident, with 7' — E scores being almost universally higher and often less variable
than E — T scores. Families such as Saharan and Mande show particularly low performance in the £ — T
direction, whereas families like Indo-European show a wider range of performance with generally higher scores.
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Translation Score Distribution by Script
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Figure 14: Translation Score Distribution by Script. This plot compares cHrF score distributions across different
writing systems. As with the family-based plot, the I" — FE direction consistently outperforms the £ — T direction.
Performance for languages using Latin and Cyrillic scripts is relatively high but shows a wide distribution, reflecting
the diverse range of languages using them. Scripts associated with lower-resource languages, such as Ethiopic and
Tifinagh, exhibit lower median scores, particularly in the £ — T direction.
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Score vs. Class Distribution within each Language Family
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Figure 15: Score vs. Class Distribution within each Language Family. This faceted plot details the relationship
between resource class and cHRF score for each language family individually. A positive trend, where higher scores
are associated with higher resource classes, is visible within several major families like Indo-European and Afro-
Asiatic. The plot also highlights data sparsity, as many families (e.g., Mande, Saharan, Nilotic) contain languages
in only one or two resource classes. The performance gap between the two translation directions persists even when
controlling for class within a family.
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Score vs. Class Distribution within each Script
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Figure 16: Score vs. Class Distribution within each Script. This faceted plot shows the relationship between
resource class and cHRF score for each writing system. The Latin script subplot contains the most data across all
resource classes and most clearly demonstrates the positive correlation between class and score. For many other
scripts, such as Arabic and Devanagari, the data is concentrated in the lower resource classes. This visualization
confirms that the relationship between script and score is highly confounded with resource availability.
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M Full Table of Model Performances

Run ID Avg Score (Answer) Avg Score (Explanation) Avg Score (Total) p-value (Total)
Gemini-2.5-pro (baseline) 0.385 0.520 0.443 N/A
OpenAl-04-mini (baseline) 0.193 0.332 0.256 N/A

GPT-5 (baseline) 0.332 0.532 0.420 6.75 x 10719
Gemini-2.5-pro (guided) 0.392 0.537 0454 2.11 x 1071
OpenAl-04-mini (guided) 0.181 0.339 0.250 4.04 x 1071
Gemini-2.5-pro (w/ grammar agent) 0.383 0.533 0.448 5.50 x 1071
Gemini-2.5-pro (Single agent, 1°¢ round) 0.383 0.522 0.444 N/A
Gemini-2.5-pro (Single agent, 2 rounds) 0.392 0.554 0.463 1.31 x 1072
Gemini-2.5-pro (Single agent, 3 rounds) 0.397 0.553 0465 7.37x 1073
Gemini-2.5-pro (Single agent, 4 rounds) 0.404 0.563 0473 4.48 x 107
Gemini-2.5-pro (Single agent, 5 rounds) 0.407 0.569 0.478 7.08 x 1075
Gemini-2.5-pro (Single agent, 6 rounds) 0.409 0.567 0.478 1.02 x 1074
OpenAl-o4-mini (Single agent, 1° round)’ 0.180 0.344 0.253 N/A
OpenAl-o04-mini (Single agent, 2 rounds) 0.191 0.357 0.264 2.40 x 1071
OpenAl-o4-mini (Single agent, 3 rounds) 0.192 0.367 0.269 6.69 x 102
OpenAl-04-mini (Single agent, 4 rounds) 0.197 0.357 0.267 1.30 x 107!
OpenAl-04-mini (Single agent, 5 rounds) 0.199 0.371 0.274 1.20 x 1072
OpenAl-04-mini (Single agent, 6 rounds) 0.198 0.378 0276  4.29 x 1073
Gemini-2.5-pro (MoA, 15¢ round)” 0.389 0.540 0.453 N/A
Gemini-2.5-pro (MoA, R=0, (2 rounds)) 0.398 0.556 0.466 1.49 x 1072
Gemini-2.5-pro (MoA, R=1, (3 rounds)) 0.410 0.573 0.480 7.74 x 1075
Gemini-2.5-pro (MoA, R=2, (4 rounds)) 0.417 0.569 0481 1.08x107*
Gemini-2.5-pro (MoA, R=3, (5 rounds)) 0.418 0.581 0.488 1.06 x 107°
Gemini-2.5-pro (MoA, R=4, (6 rounds)) 0.421 0.579 0.489 1.50 x 107°
OpenAl-04-mini (MoA, first round)’ 0.187 0.344 0.257 N/A
OpenAl-o04-mini (MoA, R=0 (2 rounds)) 0.325 0.491 0.397 2.70 x 10716
OpenAl-o4-mini (MoA, R=1 (3 rounds)) 0.359 0.513 0427 2.83x 10718
OpenAl-04-mini (MoA, R=2 (4 rounds)) 0.366 0.531 0.438 2.12 x 10720
OpenAl-04-mini (MoA, R=3 (5 rounds)) 0.384 0.537 0451 1.83 x 10720
OpenAl-04-mini (MoA, R=4 (6 rounds)) 0.392 0.543 0.457 1.07 x 10720

99 G

Table 8: Summary of agent performance, showing average scores of “answer”, “explanation” and the combined
total score. Each row represents a unique experimental setting. For the results with multiple rounds, the name
denotes the model used in the final layer (i.e, the final solution is generated by it). The p-value is calculated with
paired Student’s t-test, comparing the model with the baseline model of the same family. The rows marked with
a dagger (1) means that its setting is equivalent to the baseline, and therefore the score differences demonstrate
model stochasticity.

N Scores Categorized by Language Family and Problem Type
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Figure 19: Distribution of Scores by Problem Type.
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Correlation between Answer Scores and Explanation Scores

Explanation Score

1.0 -
—=—Correlation Line (r=0.501)
Correlation: r = 0.501
N = 82 problems ® L4 L4
(]
)
(] [
0.8 - ° @ q
L4 )
b . ° PPt
[ e_--"
® ° e ="
e o o ="
) -
o PPt ° q
069 ° -~ 0@ °
- [}
® [} ° - [ ]
- (] e
b [ ) -7
° - e
B ° - .8
- .
"’_—.—‘ °
0.4 -r,,' ] @
L [
) o °
P
e
° ° o © ®
P [ ]
)
0.24
° e °
0
[
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Answer Score

Figure 20: Correlation between Answer Scores and Explanation Scores.
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Cross-user Collaboratlve and Sequential Modeling for
Recommendation

Qiao-Ying He, Yi-En Chen, Kuan-Yu Chen
Department of Computer Science and Information Engineering
National Taiwan University of Science and Technology
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Abstract

Multi-behavior recommendation leverages
auxiliary behaviors to effectively alleviate
the sparsity of target behaviors. Fxist-
ing approaches can be broadly categorized
into two paradigms: sequential models
that capture individual temporal dynamics
but often omit cross-user information, and
graph-based models that mine collabora-
tive patterns yet lack temporal dependency
modeling. To address these limitations,
this paper proposes an integrated approach
that combines sequential and graph model-
ing: the former focuses on learning tempo-
ral dependencies within user behavior se-
quences, while the latter captures cross-
user behavior paths. By fusing the predic-
tions from both components, the method
achieves more accurate recommendations.
Experiments on two e-commerce datasets,
Taobao and RetailRocket, show that the
integrated model outperforms the strong
baseline MB-STR. by about 1% in both
HR@10 and NDCG@10. These results in-
dicate that incorporating cross-user collab-
orative information consistently improves
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performance, even on top of strong sequen-
tial models.

WatF @ %47
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Keywords: Multi-Behavior Recommenda-
tion, Sequential Models, Graph-based Models,
Sparsity
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Structured vs. Unstructured Inputs in LLMs: Evaluating the
Semantic and Pragmatic Predictive Power in Abnormal Event
Forecasting
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Abstract

Large Language Models (LLMs) are in-
creasingly applied to temporally grounded
reasoning tasks, yet the role of input rep-
resentation remains unclear. This paper
compares structured temporal inputs, rep-
resented as Temporal Knowledge Graphs
(TKGs), with unstructured captions in two
settings: forecasting future events and de-
tecting anomalies in surveillance video de-
scriptions. To enable direct comparison,
we build a unified dataset by aligning
anomaly labels from UCF-Crime with cap-
tion annotations from UCA. Experiments
show that unstructured captions consis-
tently yield slightly higher scores across
both tasks, but the differences do not reach
statistical significance. Their trade-offs,
however, differ: captions provide richer se-
mantic cues for generation, while TKGs
reduce input length, suppress noise, and
enhance interpretability. These findings
suggest that action-centric corpora, such
as surveillance or forensic narratives, nat-
urally lend themselves to structured rep-
resentations, which can provide temporal
scaffolds for timeline reconstruction and
more traceable reasoning. All code, data
processing scripts, and experimental re-
sults are available at our GitHub reposi-
tory.!

Keywords: Large Language Mod-
els (LLMs), Temporal Knowledge Graphs
(TKGs), Forecasting, Anomaly Detection,
Structured vs. Unstructured Input, Surveil-
lance Video Understanding

1 Introduction

Large Language Models (LLMs) have demon-
strated impressive performance across a wide

"https://github. com/lowannann/
StructVsUnstruct-LLM
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spectrum of natural language processing tasks,
ranging from open-domain question answering
to temporal reasoning (Gruver et al., 2023; Jin
et al., 2023a). Yet, when these models are
applied to real-world scenarios where events
unfold over time—such as surveillance video
understanding, event forecasting, or anomaly
detection—the choice of input representation
becomes crucial. The way temporal context
is presented to an LLM can significantly af-
fect its ability to generate accurate predictions
or make reliable judgments (Su et al., 2024a;
Zhou and Yu, 2024).

Two common approaches to representing
temporal context are unstructured text and
structured knowledge representations. Raw
textual descriptions, such as captions or tran-
scripts, preserve rich semantic details and con-
textual cues, which may benefit generative
tasks. However, they are also noisy and can
introduce irrelevant information that distracts
the model. In contrast, Temporal Knowl-
edge Graphs (TKGs) encode events as struc-
tured quadruples (head entity, relation, tail
entity, timestamp) (Gastinger et al., 2022;
Trivedi et al., 2017b), thereby distilling inter-
actions into a more compact and less noisy
form. TKGs have been widely applied in
temporal reasoning tasks such as forecasting
and anomaly detection (Goel et al., 2020; Lee
et al., 2023a; Jin et al., 2020). They facilitate
knowledge management and temporal reason-
ing (Ji et al., 2021; Kejriwal, 2019), but may
omit subtle semantic cues available in natu-
ral language. Despite the growing interest
in both representations, there remains little
systematic comparison of how structured and
unstructured inputs affect LLM performance
across different temporal tasks.

In this work, we investigate this gap by
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asking: (1) Does structured temporal input
provide advantages over unstructured input
for forecasting tasks? (2) How does tempo-
ral context—whether structured or unstruc-
tured—impact anomaly detection tasks? We
evaluate LLMs on two settings using a fine-
grained surveillance video dataset that com-
bines anomaly labels from UCF-Crime (Sul-
tani et al., 2018) with caption annotations
from UCA (Yuan et al., 2023).

Our contributions are threefold. First, we
propose a comparative framework that evalu-
ates structured and unstructured inputs under
two complementary temporal reasoning tasks:
forecasting and anomaly detection. Second,
we provide empirical evidence that unstruc-
tured captions consistently perform slightly
better across both tasks, though the differ-
ences are not statistically significant. This
finding suggests that LLMs may not inher-
ently favor one representation, but that the
choice between structured and unstructured
inputs should depend on task demands. Fi-
nally, our results carry practical implications
for applying LLMs in temporally dynamic do-
mains, highlighting how structured formats
like TKGs can support contexts where reduced
input cost, transparency, or traceability are es-
sential.

2 Related Work

KGs, TKGs, and TKG Forecasting.
Knowledge Graphs (KGs) organize entities
and their relations into triples (h,r,t), offer-
ing a compact and interpretable representa-
tion that supports reasoning in applications
such as semantic search and question answer-
ing (Kejriwal, 2019; Ji et al., 2021). However,
many real-world scenarios are inherently tem-
poral. To capture evolving dynamics, Tem-
poral Knowledge Graphs (TKGs) extend this
structure by associating each fact with a times-
tamp, forming quadruples (h,r,t,7) (Trivedi
et al., 2017a; Leblay and Chekol, 2018; Goel
et al., 2020; Jin et al., 2023b). This tempo-
ral extension enables modeling sequential de-
pendencies and facilitates downstream tasks
such as forecasting and anomaly detection in
time-sensitive domains. By explicitly encod-
ing temporal order, TKGs preserve event tra-
jectories while reducing redundancy and noise
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compared to free-form text.

Research on TKG forecasting (TKGF) has
traditionally relied on graph-based methods,
which adapt knowledge graph embedding and
graph neural network (GNN) architectures to
temporal settings. Examples include RE-NET
and recurrent RGCN variants that propagate
historical states across timesteps (Jin et al.,
2020; Chang et al., 2025), as well as sym-
bolic approaches like TLogic and Temporal
ILP that induce temporal rules (Liu et al.,
2022; Xiong et al., 2024). While effective,
these methods often require dataset-specific
tuning and struggle in sparse or noisy contexts
(Ma et al., 2023; Han et al., 2021). More re-
cently, LLM-based approaches have reframed
TKG forecasting as a language modeling prob-
lem, either by integrating graph embeddings
into prompts (Zhang et al., 2024b; Wang et al.,
2024; Zhang et al., 2024a) or by casting histor-
ical quadruples into textual sequences for in-
context learning (Lee et al., 2023a; Liao et al.,
2023; Luo et al., 2024). Remarkably, even
general-purpose LLMs can perform competi-
tively with specialized graph models, suggest-
ing that LLMs capture not only semantic cues
but also structural patterns in temporal data
(Lee et al., 2023a).

LLMs in Forecasting and Anomaly De-
tection Forecasting is a fundamental tem-
poral reasoning task that aims to predict fu-
ture events or values from historical patterns.
While traditionally addressed by statistical
and deep learning models, recent work has
demonstrated that LLMs provide strong gen-
eralization and flexible prompting mechanisms
for this task (Jin et al., 2023a; Alnegheimish
et al., 2024). Approaches include zero- or
few-shot prompting, fine-tuning on domain-
specific datasets, and direct application of
foundation models. For example, Gruver et al.
(2023) and Xue and Salim (2023) showed that
GPT-family models and LLaMA variants can
achieve competitive results on standard bench-
marks in zero-shot settings, while fine-tuned
BERT-based models improved regression accu-
racy on structured datasets (Xue et al., 2022).
These studies highlight that LLMs can encode
temporal dependencies through natural lan-
guage interfaces, providing a flexible alterna-
tive to specialized time-series architectures.



Anomaly detection focuses on identifying de-
viations from expected temporal behavior and
is increasingly framed as a diagnostic test of
models’ temporal reasoning ability (Su et al.,
2024b; Zhou and Yu, 2024). LLMs have been
applied here through three main strategies: us-
ing frozen encoders for log or sensor data, fine-
tuning for binary anomaly classification, and
prompt-based reasoning. For instance, Dang
et al. (2021) fine-tuned BERT for detecting
anomalies in KPI and Yahoo datasets, while
Lee et al. (2023b) evaluated few-shot and zero-
shot anomaly detection on system logs. Other
prompt-based methods (Zhang et al., 2023;
Huang et al., 2023) demonstrated that LLMs
can capture subtle irregularities in noisy or
weakly labeled data. Collectively, these find-
ings suggest that LLMs not only generalize
well across forecasting and anomaly detection
but also provide a unified framework for han-
dling diverse temporal reasoning tasks.

Input Representations and Prompting
Strategies for LLM The representation of
temporal information critically shapes how
LLMs perform reasoning over time. Struc-
tured inputs—such as KG triples or graph em-
beddings—encode relations explicitly, provid-
ing precision and reducing ambiguity. Studies
have shown that even when entity names are
replaced with arbitrary IDs, LLMs can still
perform forecasting by exploiting the struc-
tural patterns alone (Lee et al., 2023a). Simi-
larly, prompts that present historical events as
discrete triples allow the model to better recog-
nize temporal dependencies than long descrip-
tive texts, since the latter introduce noise and
redundancy (Chang et al., 2024, 2025). In con-
trast, unstructured inputs—such as captions
or free-form text—-carry richer semantic infor-
mation and contextual cues, but are noisier
and harder for models to consistently parse.
Despite their noisiness, unstructured repre-
sentations can complement structured data by
capturing semantic or pragmatic information
that graphs often omit. For example, tex-
tual descriptions may highlight causal links or
implicit attributes useful for reasoning about
events. Prior work has shown that com-
bining structured triples with summarized or
retrieved text improves model performance
by balancing precision with semantic nuance
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(Chang et al., 2024). In temporal question an-
swering, GenTKGQA (Gao et al., 2024) and
M3TQA (Zha et al., 2024) illustrate how tex-
tual context and graph structure can be fused
to cover each other’ s blind spots. These re-
sults suggest that structured and unstructured
inputs are not mutually exclusive but offer
complementary strengths: graphs provide clar-
ity and temporal grounding, while text intro-
duces richness and flexibility.

We regard temporal forecasting and
anomaly detection as complementary settings
for evaluating how LLMs process tempo-
rally structured input. Forecasting captures
whether a model can extrapolate from ob-
served sequences to anticipate plausible next
events, while anomaly detection emphasizes
the ability to recognize deviations that require
attention to semantic coherence, pragmatic
norms, and contextual irregularities. As Zhou
and Yu (2024) notes, anomaly detection serves
as a particularly diagnostic probe, since it
goes beyond numerical accuracy and requires
models to identify exceptions and contextual
shifts rather than relying on surface-level
continuation. Together, these two tasks pro-
vide complementary perspectives on temporal
reasoning: one oriented toward projection,
the other toward sensitivity to irregularities.

In this work, we leverage the UCF-Crime
Annotation (UCA) dataset, whose human-
written captions offer semantically and prag-
matically grounded temporal descriptions of
surveillance footage. By formulating both fore-
casting and anomaly detection on this data,
we create a unified evaluation setting that al-
lows us to examine how LLMs interpret struc-
tured inputs (TKGs) versus unstructured in-
puts (captions). This dual-task design is not
aimed at comparing the tasks themselves, but
at using them jointly to assess how input
modality shapes models’ ability to internalize
temporal structures and reason about events.

3 Methods

3.1 Dataset

We employs the UCF-Crime dataset (Sultani
et al., 2018) and its multimodal extension, the
UCF-Crime Annotation (UCA) dataset (Yuan
et al., 2023). UCF-Crime contains 1,900 long
surveillance videos (over 128 hours) with ei-



ther normal activities or one of 13 predefined
anomalous event types, such as Fighting, Rob-
bery, Arson, Assault, and Burglary. In our
setting, we define an anomaly as an event
or activity within a video sequence that de-
viates significantly from expected normal pat-
terns of behavior. Anomalies are inherently
context-dependent, rare in occurrence, and in
surveillance scenarios typically correspond to
suspicious or potentially criminal actions (e.g.,
fighting, robbery, or arson). Following prior
work on video anomaly detection, anomaly
labels in our experiments are derived from
benchmark annotations, where each anoma-
lous frame is marked according to the presence
of such irregular or threatening activities.

While UCF-Crime provides video-level bi-
nary anomaly labels and segment-level annota-
tions for evaluation, it lacks natural language
descriptions of visual content. To address
this, the UCA dataset augments UCF-Crime
with over 23,000 sentence-level captions ( 110
hours), each temporally aligned at 0.1-second
resolution. These captions describe both nor-
mal and anomalous events in detail, offering
semantically and pragmatically rich accounts
of evolving scenes. The integration of UCF-
Crime and UCA yields a unified data with
anomaly labels, temporal spans, and human-
written descriptions, enabling us to compare
structured inputs (e.g., TKG quadruples) and
unstructured inputs (caption sequences) for
LLM-based forecasting and anomaly detec-
tion.

Table 1 provides illustrative examples from
this unified dataset, showing how video seg-
ments are paired with human-written captions,
their corresponding TKG representations, and
anomaly labels. This format highlights the
dual structured—unstructured nature of the
data, which supports systematic evaluation of
LLMs across different input modalities.

3.2 Models Used

We employed two LLMs, each serving a dis-
tinct role in the experimental pipeline for fore-
casting and anomaly detection tasks.

GPT-40-Mini (via OpenAI API). GPT-
4o0-Mini was used exclusively for extract-
ing TKG representations from natural lan-
guage captions. The model was accessed

through the OpenAl API? with LangChain®’
s LLMGraphTransformer () module, using a
temperature of 0.1 to ensure deterministic
triple extraction. No fine-tuning or post-
processing was applied beyond temporal align-
ment. A closed-source model was selected
for this step due to its superior performance
in zero-shot structural parsing and KG ex-
traction (Huang et al., 2024; Carta et al.,
2023), thereby ensuring high-quality and reli-
able TKG representations that minimize con-
founding errors in downstream evaluations.

Mistral-large-latest (via Open Source

API). Al downstream inference—
forecasting and  anomaly  detection—
was conducted with the open-source
mistral-large-latest? This model

was chosen for two main reasons: (1) its
open-source nature ensures reproducibility
and transparency, which are essential for
academic research; and (2) as an instruction-
tuned model, it demonstrates strong reasoning
and generation capabilities across diverse NLP
tasks. To maintain consistency, all runs used
identical inference parameters: temperature =
0.1, top-p = 1.0, and maximum input length
= 128. This setup guarantees a controlled
comparison between structured (TKG-based)
and unstructured (caption-based) inputs.

By separating the TKG extraction phase
from the main evaluation model, we en-
sure that observed differences between input
modalities stem from the LLM’ s reasoning
capacity rather than inconsistencies in struc-
tural encoding quality.

3.3 Experiment 1: Forecasting

Objective. The forecasting experiment eval-
uates whether LLMs can generate semanti-
cally plausible next-event descriptions based
on prior temporal context. Instead of predict-
ing new triples, the task is framed as fore-
casting the natural language caption of a fu-
ture video frame given preceding input in two
forms: (1) structured TKG quadruples and
(2) unstructured captions. The key goal is

20penAl APIL: https://openai.com/index/
openai-api/

3LangChain: https://python.langchain.com/
docs/introduction/

4Mistral AlL https://docs.mistral.ai/
getting-started/models/models_overview/
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Video Type

Timestamp

Caption (Text and TKG Format)

Anomalous

Arson

81.3-106

Text: The man walked down and tried to light
a piece of paper but failed to light it.

TKG: {[Man, WALKED_ DOWN, Paper],
[Man, TRIED_TO_LIGHT, Paper]|, [Man,
FAILED TO_LIGHT, Paper|}

False

115.8-121.2

Text: The man returned to the Christmas tree
and continued to light it and successfully lit it.
TKG: {[Man, RETURNED TO, Christmas
Tree|, [Man, CONTINUED_TO_LIGHT,
Christmas Tree], [Man, SUCCESSFULLY_ LIT,
Christmas Tree|}

True

Burglary

254.4-255.8

Text: Another person opened the trunk, and
there were several men in white hiding in the
trunk.

TKG: {[Another Person, HIDING IN, Men In
White]}

False

256.1-350.4

Text: A total of five people gathered around
the door and cooperated to pry it open.

TKG: {[People, GATHERED_ AROUND,
Door], [People, COOPER-
ATED_TO_PRY__OPEN, Door]}

True

Explosion

0.0-9.0

Text: Many cars were parked on the roadside
and many people walking on the roadside.
TKG: {[Cars, PARKED ON, Roadside|, [Peo-
ple, WALKING ON, Roadside]}

False

9.0-21.3

Text: An explosion occurred in a building and
produced smoke, and the glass of the nearby
building was shaken.

TKG: {[Explosion, OCCURRED_IN, Build-
ing], [Explosion, PRODUCED, Smoke], [Build-
ing, SHAKEN, Glass|}

True

Table 1: Examples of aligned captions, their corresponding TKG quadruples, and anomaly labels across

video types.

to assess semantic coherence and contextual
appropriateness of the generated output. An
overview of the pipeline is shown in Figure 1.

Input Settings.
tested:

Two input conditions were

o Structured (TKG — Text): Captions
were converted into subject—relation—
object triples with aligned timestamps.
These quadruples were verbalized into
structured prompt templates.

o Unstructured (Text — Text): Raw or
lightly summarized captions were concate-
nated to form free-text temporal con-
text, which was directly inserted into the
prompt.
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Prompt Design. Prompts were designed to
ensure parity across conditions, differing only
in input format. In both cases, the LLM was
instructed to predict the most likely action im-
mediately preceding an anomaly and to out-
put exactly one complete sentence. Example
prompt templates are shown in Figure 2 and
Figure 3.

Prompted Generation.
diction is modeled as:

Formally, the pre-

I e {TKG—Text, Text—Text}

(1)

Utewt = Pryv (Pr),



UCA [ | civen a series of
(captions) describing prior behavior.

— Given a list of structured

© aligned with t,

events in the form of TKG
quadruples "
= D e
g Your task is to predict th
(anomaly label) four task s to predict the most
\ 3 likely next action Prom (Pr)
N Teat -
\ -/ Write your prediction as a natural

ﬂ language sentence.

Pr g

ye T € {TKG — Text, Text — Tcxt)/

M Predicted Output (Model Generated) /...

“The person steps inside the oom after opening the door™

1 : (Person, walks toward, door)
to : (Person, opens, door)

B Ground-Truth Caption Y GT

\ TKG ||
AN 7/

Figure 1: Pipeline of the Experiment 1: forecasting
task. The model receives temporally ordered input
(either structured TKGs or unstructured captions)
and generates a next-frame description. The gener-
ated output is then compared against ground-truth
captions to evaluate semantic alignment.

where @ denotes the inference model
and P7 the prompt constructed from tempo-
ral context.

Metrics Predicted sentences 9.+ Were com-
pared against human-annotated ground-truth
captions ygr using semantic similarity. Both
sentences were encoded with the BAAI Gen-
eral Embedding (BGE) model, and cosine sim-
ilarity was computed:

Similarity = cos(Epar (Ytext), Ece(YaT)

)
(2)

paraphrastic
exact lexical

Cosine similarity captures
overlap without requiring
matches, making it well-suited for evaluating
free-text generation.  Segment-level scores
were averaged across the evaluation set to
yield the final similarity metric.

3.4 Experiment 2: Anomaly Detection

Objective. The anomaly detection experi-
ment evaluates how well LLMs identify ab-
normal events in surveillance video descrip-
tions under different temporal input condi-
tions. Given a sequence of frame-level cap-
tions, the model must judge whether the cur-
rent frame is anomalous. Anomalies are de-
fined as events that deviate significantly from
expected behavioral patterns and typically cor-
respond to suspicious or criminal actions (e.g.,
fighting, robbery, arson). This task probes the

. \\\ \\\

LLMGraphTransformer( ) %. J}

(GPT-40-mini) @ “ ~ -
Ve N

cos (EBGE (Jrext); EBcE(YGT))

[Goal]: You are given a list of structured events in the
form of temporal knowledge graph (TKG) quadruples:
(subject, relation, object, timestamp). These represent
a subject's past actions over time.

Your task is to predict the most likely next action that

the subject will perform **immediately before an

abnormal event occurs**. Write your prediction as a
natural language sentence.

[Input - TKG History Before Anomaly]:

T1: {[Man, WALKED_DOWN, Paper], [Man,
TRIED_TO_LIGHT, Paper], [Man, FAILED_TO_LIGHT,
Paper]}

T2: {[Man, RETURNED_TO, Christmas Tree], [Man,
CONTINUED_TO_LIGHT, Christmas Tree], [Man,
SUCCESSFULLY_LIT, Christmas Tree]}

[Constraint]:

* %

- Predict exactly one sentence** that describes the

next likely action.

* %

- Your output should be **one complete sentence**.

[Output - Predicted Sentence]:

N J

Figure 2: Structured Input Prompt (TKG — Text)
used in the forecasting task. The model is provided
with a sequence of TKG quadruples representing
past events and is asked to predict, in one com-
plete sentence, the most likely next action before
an anomalous event.

model s ability to reason over event coher-
ence and detect pragmatic inconsistencies. An
overview of the pipeline is shown in Figure 4.

Prompt Design. Following the training-
free strategy of Zanella et al. (2024), we
prompt the LLM to assign a scalar anomaly
score a € [0,1] for each frame. Examples of
each prompt are provided in Figures 5—6. The
prompt is composed of three parts:

e Pg: asystem instruction framing the task
as risk assessment on a 0—1 scale;

e Pr: an output-format instruction requir-
ing one number from a discrete set of 11
values (0.0—1.0 in steps of 0.1);

e Pc: the temporal context, either unsum-
marized captions, LLM-summarized cap-
tions, or TKG quadruples:
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[Goal]: The following is a series of natural language
captions describing the subject's behavior leading up to
an abnormal event.

Your task is to predict the most likely next action that
the subject will take right before the anomaly occurs.
The prediction should be in natural language.

[Input - Captions Before Anomaly]:

T1l: The man walked down and tried to light a piece of
paper but failed to light it.

T2: The man returned to the Christmas tree

and continued to light it and successfully lit it.

[Constraint]:

- Predict exactly **one sentence** that describes the
subject's next likely action.

- Your output should be **one complete sentence**.

[Output - Predicted Caption]:

- /

Figure 3: Unstructured Input Prompt
(Text — Text) used in the forecasting task.
The model is given a sequence of natural language
captions describing prior events and is instructed
to generate one complete sentence predicting the
subject’ s next likely action before an anomaly.

Ctempm’al S {Cunsummarizeda Csummarized) CTKG}‘

(3)

The final prompt concatenates these compo-
nents, and the LLM outputs a single anomaly
score:

a=®rrm(Ps o ProPo). (4)

Metrics. We adopt AUC-ROC as the pri-
mary evaluation metric. Each prediction a is
compared against the binary ground-truth la-
bel agr € 0,1 from UCF-Crime. AUC mea-
sures the model s ranking ability across all
thresholds:

// N
( UCA
(captions)

L_—— . : po .
8 algnedwinty [ 3 i 0 Pr J
— | | summarized The folowing are the previous
e | [ — o e
anomay a |

=

TKantmcmdﬂ B (Ps o ProPeoC(T,

[Cma 1
. Ctempor:
-\ emporal .
Vs \ - .
( ~

LLMGraphTransformer() . &

(GPT-40-mini)

t1 : (Person, walks toward, door)
t : (Person, opens, door)

TKG

- /

as context p

AUC = AUC-ROC (@, acr) ‘

for evaluation

Figure 4: Pipeline of the Experiment 2: anomaly
detection task. The model receives prior context
in one of three forms—raw captions, summarized
text, or structured TKGs—and predicts whether
the current frame is anomalous. The prediction is
compared against the ground-truth anomaly label
for evaluation.

AUC = AUC — ROC(a,acr).  (5)

Unlike accuracy, AUC is threshold-
independent and reflects whether anomalies
are consistently ranked above normal events.
This makes it well-suited for surveillance,
where operational definitions of abnormality
vary. In our setting, AUC provides a robust
criterion to compare how structured versus
unstructured temporal inputs enable LLMs
to detect deviations from normative event
sequences.

4 Discussion

4.1 Research Questions

RQ1: Does structured temporal input
provide advantages over unstructured
input for temporal forecasting tasks?
As shown in Table 2 and Table 3, the un-
structured input condition yielded a slightly
higher mean similarity score (0.5978) than
the structured TKG input (0.5718). However,
this difference was not statistically significant,
as indicated by both the paired t-test (¢t =
1.7259,p = 0.0978) and the non-parametric
Wilcoxon signed-rank test (W = 90.0,p =
0.0894). These findings suggest that unstruc-
tured input consistently produces marginally
higher semantic alignment on average, though
the difference does not reach statistical signif-
icance.
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If you were a law enforcement agency, rate the scene on
a scale from 0 to 1, where 0 = standard (normal) and 1 =
suspicious activity (abnormal). Use the following
semantic grading as guidance (examples are illustrative
only; your output must still be numeric from the list

below):

-0.80-1.00 —» Almost Certain / Very Likely
— The scene is almost certainly abnormal. Example:
Abuse, Arrest, Arson, Assault, Road Accident, Burglary,

Explosion, Fighting, Robbery, Shooting, Stealing,
Shoplifting, and Vandalism.
-0.60-0.80 > High Suspicion
— Clear signs of abnormality, though alternative

explanations may exist. Example: pushing, running

aggressively, heated argument.

-0.40-0.60 —» Uncertain /[ Ambiguous
— Difficult to judge; may require human review or
depend on domain context.

-0.20-0.40 - Low Suspicion
— Scene is mostly normal, but with minor suspicious

cues. Example: wunusual crowd gathering, subtle
suspicious movements.

-0.00-0.20 » Normal / Unlikely

— Almost certainly routine daily activity. /

Figure 5: System prompt (Ps) used in the anomaly
detection task. This instruction frames the model’
s role as a law enforcement agent and asks it to
assess whether the described scene is normal or
suspicious on a scale from 0 (normal) to 1 (highly
anomalous).

A closer inspection of forecasting outputs re-
veals systematic error patterns that help ex-
plain this small but non-significant gap. With
TKG-based inputs, predictions often stalled
at preparatory actions rather than advancing
toward anomalous outcomes (e.g., anticipat-
ing ignition attempts but not the actual ar-
son). Highly specific or low-probability events
—such as an arsonist accidentally catching
fire—were rarely captured, reflecting the diffi-
culty of forecasting unexpected developments
from sparse cues. The model also frequently
lacked narrative progression, anchoring on ear-
lier triplets and producing semantically plausi-
ble but stagnant outputs. Finally, forecasting
performance varied by category: gradual, visu-
ally grounded events (e.g., arson, shoplifting)
were more predictable than abrupt or ambigu-
ous ones (e.g., explosions, accidents, shoot-
ings), highlighting the dependence of struc-

~

Respond STRICTLY as a Python list containing ONE
number chosen from: [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1.0] No text, no labels, no extra spaces or
characters. The response MUST begin with '[' and end

with 'T".
)
\

You are given prior frame-by-frame textual descriptions

as CONTEXT (no anomaly scores are provided): {context}

Use this context ONLY to understand the flow of events
(e.g., who is present, what objects are involved, how
actions transition over time).

! IMPORTANT: The anomaly score of the CURRENT frame
must be determined independently. Do NOT inherit or
carry over abnormality from previous frames. Context is
background information only; the final rating must
reflect what is explicitly described in the CURRENT
frame. Current frame description: /

Figure 6: Prompt components for the anomaly de-
tection task. Top: output-format prompt (Pr),
which constrains the model to return exactly one
anomaly score as a Python list containing a sin-
gle value between 0.0 and 1.0. Bottom: context
prompt (Pc), which provides frame-by-frame de-
scriptions as temporal context. The context is used
only to interpret event flow, while the anomaly
score must be determined independently for the
current frame.

tured inputs on contextual richness.

These results carry important implications
for the utility of structured input. TKGs offer
a consistent and formal representation that ab-
stracts away surface-level linguistic noise and
encourages the model to reason based on event
structure and temporal progression. This con-
sistency may be beneficial in downstream tasks
that require symbolic manipulation or multi-
modal alignment. By contrast, raw captions
naturally carry richer lexical and syntactic
cues, which directly benefit tasks emphasiz-
ing surface-level 