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Introduction

These are the proceedings of the 16h International Conference on Computational Semantics, held at
Heinrich Heine University, Düsseldorf, Germany, from 22 to 24 September 2025.
The aim of IWCS is to bring together researchers interested in all areas of computational semantics and
computational aspects of meaning of natural language within written, spoken, signed, or multimodal
communication. As shown in these proceedings, covered topics embrace both symbolic and machine
learning approaches to computational semantics, in relation with multimodality, external knowledge,
cognitive analysis, and many resources, e.g., annotation and software. We invited three keynote speakers
to present their work: Oana-Maria Camburu (Department of Computing, Imperial College London, UK),
Alexander Koller (Department of Language Science and Technology, Saarland University, Germany),
and Denis Paperno (Utrecht University, Netherlands). The program also includes five oral presentation
sessions and two poster sessions. Three satellite workshops will be held on the day after the conference:

• Bridges and Gaps between Formal and Computational Linguistics (BriGap2);

• The Second International Workshop on Construction Grammars and Natural Language Processing
(CxGs+NLP 2025);

• A workshop joining the Second Workshop on Multimodal Semantic Representations (MMSR II)
and the 21st Joint ACL – ISO Workshop on Interoperable Semantic Annotation (ISA-21).

We received 50 submissions (39 long and 11 short submissions) that each was assigned three reviewers.
One long submission was withdrawn before review. Out of the remaining ones, 31 papers were accepted
for the conference (25 long and 6 short), resulting in 14 oral presentations and 18 poster presentations,
and a final acceptance rate of 63% (66% for long papers and 55% for short papers). Three long paper
were withdrawn after acceptance. We are very grateful to the reviewers for their work and discussions
that allowed us to produce a high-quality program for the conference.
In addition to this scientific work, this conference was made possible thanks to the local organizing team
and the support of Haus der Universität.
We hope that IWCS 2025 will be an exciting edition and a lively forum to the computational semantics
community.

Kilian Evang, Laura Kallmeyer, and Sylvain Pogodalla
September 2025
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Keynote Talk
Thoughts You Can Trust? Evaluating the Faithfulness of

Model-Generated Explanations and Their Effects on Human
Performance

Oana-Maria Camburu
Imperial College London

Abstract: Large Language Models (LLMs) can readily generate natural language explanations—or
chain-of-thoughts (CoTs)—to justify their outputs. In this talk, I will first introduce methods for eval-
uating whether such explanations faithfully reflect the decision-making processes of the models that
produce them. Second, I present the results of a user study involving 85 clinicians and medical students
diagnosing chest X-rays. The study compares the effectiveness of natural language explanations, saliency
maps, and their combination in supporting clinical decision-making.

Bio: Oana-Maria Camburu is an Assistant Professor in the Department of Computing at Imperial College
London. Prior to that, she was a Principal Research Fellow in the Department of Computer Science at the
University College London, holding an Early Career Leverhulme Fellowship. Oana was also a postdoc
at the University of Oxford, from where she obtained her PhD in “Explaining Deep Neural Networks”.
Her main research interests lie in explainability for deep learning models and AI safety and alignment.
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Keynote Talk
Compositionality, Intensionality and LLMs: The Case of the

Personal Relations Task
Denis Paperno

Utrecht University

Abstract: Semanticists have long considered compositionality to be at the heart of natural language
interpretation. Modern large language models (LLMs) achieve impressive results at tasks involving se-
mantics, but in most cases it is hard to judge to what extent they rely on compositional mechanisms.
Since the training data is enormous and could contain many complex phrases, much of LLM’s perfor-
mance could potentially be attributed to non-compositional pattern memorization, leaving little space for
compositional ability. For example, “mother of Elon Musk” could be processed by a language model as
a holistic unit since the phrase occurs in this form in the training corpora. The talk will discuss ongoing
work based on the Personal Relations task (Paperno, 2022), designed to assess semantic compositionality
properly. The Personal Relations task relies on a small universe with randomly generated relations which
can not be present in language model pretraining, therefore offering a testing ground for compositional
abilities of models at phrase level. Furthermore, the Personal Relations task allows us to contrast in-
tensional and extensional semantic interpretation. We find that language models (still) exhibit different
compositional abilities than humans, with intensionality playing a substantial role.

Denis Paperno. 2022. On Learning Interpreted Languages with Recurrent Models. Computational Linguistics,
48(2):471–482.

Bio: Denis Paperno is assistant professor of computational linguistics at Utrecht University. He recei-
ved a PhD in Linguistics from the University of California Los Angeles, and subsequently worked at
the University of Trento (CLIC lab, Rovereto) as a postdoc and at the Loria lab (Nancy) as a CNRS
researcher. Denis has published extensively in the fields of semantics, language model evaluation, and
vector space representations of meaning. His research contributions include work on compositionality in
computational models of semantics, visual grounding, and representation probing.
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Keynote Talk
Solving Complex Problems with Large Language Models

Alexander Koller
Saarland University

Abstract: One of the great promises that people connect with LLMs is that they can make complex
problem-solving with computers accessible to lay users. Unlike traditional symbolic solvers (e.g. for
planning or constraint solving), LLMs accept natural-language input and require no expert training; un-
like earlier task-oriented dialogue systems, they can be applied across arbitrary domains. In my talk, I
will explore the degree to which LLMs are fulfilling this promise. I will present recent work on whether
current LLMs “reason” or “recite”, discuss the role of symbolic representations in LLM-based problem-
solving, and offer some thoughts on trustworthy problem-solving with LLMs.

Bio: Alexander Koller is a Professor of Computational Linguistics at Saarland University in Saarbrücken,
Germany. His research interests include planning and reasoning with LLMs, syntactic and semantic
processing, natural language generation, and dialogue systems. He is particularly interested in neuro-
symbolic models that bring together principled linguistic modeling and correctness guarantees with the
coverage and robustness of neural approaches. Alexander received his PhD from Saarland University
and was previously a postdoc at Columbia University and the University of Edinburgh, faculty at the
University of Potsdam, and Visiting Senior Research Scientist at the Allen Institute for AI.
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Abstract

Lexical resources are crucial for cross-
linguistic analysis and can provide new in-
sights into computational models for natural
language learning. Here, we present an ad-
vanced database for comparative studies of
words with multiple meanings, a phenomenon
known as colexification. The new version in-
cludes improvements in the handling, selec-
tion and presentation of the data. We com-
pare the new database with previous versions
and find that our improvements provide a more
balanced sample covering more language fam-
ilies worldwide, with enhanced data quality,
given that all word forms are provided in pho-
netic transcription. We conclude that the new
Database of Cross-Linguistic Colexifications
has the potential to inspire exciting new stud-
ies that link cross-linguistic data to open ques-
tions in linguistic typology, historical linguis-
tics, psycholinguistics, and computational lin-
guistics.

1 Introduction

The Database of Cross-Linguistic Colexifications
(CLICS, https://clics.clld.org, Rzymski et al., 2020)
offers detailed data on the distribution and fre-
quency of colexifications across several thousand
languages. Colexification is a cover term that uni-
fies the notions of polysemy, homophony, and un-
derspecification, referring to cases where a single
word form in a given language expresses multiple
senses (François, 2008). For example, Vietnamese
xanh refers to ‘blue’ and ‘green’ at the same time,
German böse means both ‘angry’ and ‘evil’, or En-
glish ear refers to a part of the body or a part of
a grain. The different examples represent words
with multiple senses and can be labeled as under-
specification (Vietnamese), polysemy (German), or
homophony (English), but they can also be taken
together as examples of the phenomenon of colexi-
fication.

CLICS has built on this idea by collecting data
from multilingual word lists that were unified with
respect to the semantic glosses by which words
across different languages are elicited. From these
word lists, colexifications were automatically ex-
tracted, forming a large colexification network (List
et al., 2013) that can be investigated interactively
(Mayer et al., 2014). The database has improved
concerning the workflow by which data are aggre-
gated and in terms of the number of datasets under-
lying the database (4 datasets in Version 1.0, List
et al. 2014, 15 datasets in Version 2.0, List et al.
2018, 30 datasets in Version 3.0 Rzymski et al.
2020). In its current form, the CLICS database
is characterized by three major features. First,
CLICS aggregates data from existing standardized
datasets, rather than curating data directly. Second,
CLICS offers its data in both machine- and human-
readable form, allowing scholars to access the data
in computational workflows as well as through the
web interface. Third, CLICS is open, and both
the individual data and the source code are pub-
lished with permissive licenses, allowing scholars
not only to investigate the database, but also to
extend it with additional content or methods.

Given that five years have passed since the
last official release of CLICS and that new rel-
evant datasets have been published during this
time, mainly as part of Lexibank, a large repos-
itory for standardized multilingual word lists
(https://lexibank.clld.org, List et al., 2022; Blum
et al., 2025), it is time to improve the database even
further. Taking advantage of the fact that CLICS is
open and free to modification, we therefore present
an updated version of the CLICS database, which
we named CLICS 4 for convenience. CLICS 4
not only increases the underlying data, but also ad-
dresses three major shortcomings of the previous
versions of CLICS by improving (1) the handling
of concepts (§ 3.2), (2) the selection of languages
to be included in the colexification database (§ 3.3),

1

mailto:annika_tjuka@eva.mpg.de
mailto:mattis.list@uni-passau.de
https://clics.clld.org
https://lexibank.clld.org
https://creativecommons.org/licenses/by/4.0/


French fɔʀɛ bwɑ aʀbrə bwɑ
Russian lʲes dʲerɪva dʲerɪva
Yukaghir aːnmonilʲe saːl saːl
Yaqui dʒuja dʒuja kuta

, 1

1

2forest

tree

wood

forest tree wood

Figure 1: Cross-linguistic colexifications (left) and cross-linguistic colexification network (right). The figure illus-
trates how colexification networks can be reconstructed from cross-linguistic colexification data, using information
obtained from the CLICS database (Version 3.0, Rzymski et al. 2020).

and (3) the general representation of data (§ 3.4).
In the following, we will present previous studies
devoted to cross-linguistic colexifications (§ 2.1),
discuss the improvements in more detail (§ 3), il-
lustrate their consequences for CLICS 4 (§ 4), and
reflect on the future of cross-linguistic colexifica-
tion data (§ 5).

2 Background

2.1 Cross-Linguistic Colexifications
Not long after François (2008) had first introduced
the term colexification along with initial ideas on
how the phenomenon could be analyzed using
cross-linguistic data, typologists quickly adopted
the term and the technique to study lexical seman-
tics both globally and in certain linguistic areas.
Two major reasons contributed to the popularity of
the term and the technique.

First, polysemy and homophony are notoriously
difficult to distinguish, specifically when analyz-
ing languages whose history is less well known.
While scholars sometimes distinguish both rela-
tions by degree of semantic similarity, arguing
that homophonous words show greater divergence
in meaning than polysemous words (Leivada and
Murphy, 2021, 7), the original distinction between
polysemy and homophony is strictly diachronic.
Thus, they reflect two distinct processes of lan-
guage change: polysemy is the result of seman-
tic change, while homophony is the result of a
merger of originally distinct word forms due to
sound change (Sperber 1923, 12f, Apresjan 1974,
11). However, in the minds of speakers, the history
of the words does not play a major role. Speakers
seem to show some general awareness that some
words have multiple senses that are closely related
to each other, whereas other words with distinct
senses merely sound alike (Enfield and Comrie,
2015, 20f). While it may seem useful to distin-
guish polysemy and homophony in theory, the dis-
tinction of the two relations in practice is difficult to

make. Omitting the explicit distinction between the
two forms of lexical ambiguity allowed scholars
to assemble data in an unbiased and efficient way.
Scholars could accumulate colexification data for
their areas of interest without having to discuss the
consequences of impractical terminology. Instead
of deciding whether the findings would reflect pol-
ysemy or homophony, scholars could let the data
decide, given that polysemy often largely exceeds
homophony.

Second, scholars began to explore the benefits of
modeling cross-linguistic colexifications with the
help of network approaches (Cysouw, 2010). This
not only led to clear visualizations of semantic sim-
ilarities that could be observed across languages,
but also opened up new possibilities for the anal-
ysis of cross-linguistic polysemy using network
approaches (List et al., 2013) and the introduction
of interactive techniques for data visualization and
exploration, which later became a core component
of the CLICS database (Mayer et al., 2014). Fig-
ure 1 illustrates how colexification networks can
be constructed from colexification data, using data
from CLICS 3 (Rzymski et al., 2020).

Due to this approach, which facilitates the col-
lection of data and offers new ways to analyze the
data through inspection and computation, cross-
linguistic colexifications have become an integral
part of lexical typology, with a multitude of appli-
cations in studies on semantic similarity. CLICS
offered the first and largest collection of cross-
linguistic colexifications and was used in several
studies, examining a large number of topics, rang-
ing from investigations on genealogical language
relations (Blevins and Sproat, 2021; Blum et al.,
2024) and linguistic areas (Gast and Koptjevskaja-
Tamm, 2019), via analyses of particular semantic
domains (Jackson et al., 2019; Di Natale et al.,
2021; Brochhagen and Boleda, 2022; Tjuka et al.,
2024), up to initial applications in computational
linguistics (Bao et al., 2021, 2022) and communi-

2



cation science (Bradford et al., 2022). In addition,
CLICS is now regularly consulted in typological
studies that explore particular phenomena in detail,
allowing authors to contrast their findings with their
insights on a specific group of languages (Sjöberg,
2023; Souag, 2022; Schapper, 2019, 2022).

To summarize, cross-linguistic colexifications
and cross-linguistic colexification networks have
become a crucial tool in comparative linguistics.
The application of cross-linguistic colexification
analysis is not restricted to lexical typology, but
provides interesting insights into additional fields
of linguistics and beyond, including historical lin-
guistics, areal linguistics, computational semantics,
and human cognition.

2.2 Data Aggregation and Analysis in CLICS
The integral part of the Database of Cross-
Linguistic Colexifications is the workflow by which
data are aggregated from individual datasets and
later analyzed to create a colexification network. To
be able to aggregate data from different resources,
datasets must be standardized. Standardization is
achieved with the help of Cross-Linguistic Data
Formats (CLDF, https://cldf.clld.org, Forkel et al.,
2018), an initiative that builds on the CSVW stan-
dard for tabular data on the web (https://csvw.org,
Gower, 2021), but extends CSVW with seman-
tics relevant to comparative linguistics. A CLDF
dataset is a collection of CSV files linked via a
JSON file that stores the metadata, providing infor-
mation on how the CSV files should be interpreted
computationally and what values are shared across
the files. Thus, a CLDF dataset is a small relational
database with specific semantics that link the data
with additional data from outside.

The most important external datasets that
CLICS links to are three reference catalogs:
Glottolog, Concepticon, and CLTS. Glottolog
(https://glottolog.org, Hammarström et al., 2025)
offers basic information on language varieties,
including information on language classifica-
tion, geolocations, and the documentation sta-
tus of individual languages. Concepticon
(https://concepticon.clld.org, List et al., 2025) of-
fers a collection of basic senses that are expressed
across multilingual word lists. Senses are provided
in the form of concept sets that are linked across
several hundred concept lists that have been anno-
tated by the Concepticon team in the past decade
(for details on the curation process, see Tjuka et al.,
2023). CLTS (https://clts.clld.org, List et al., 2021)

is a reference catalog for Cross-Linguistic Tran-
scription Systems that standardizes phonetic tran-
scriptions by advocating a subset of the Interna-
tional Phonetic Alphabet (IPA, International Pho-
netic Association, 1999) that is represented in the
form of distinctive features (for details, see Ander-
son et al. 2018 and Rubehn et al. 2024). The con-
version of individual datasets to the CLDF standard
is supported by dedicated Python libraries (most
importantly the CLDFBench packages, Forkel and
List 2020) that help to check the overall consistency
of the data.

From a collection of CLDF datasets, the CLICS
aggregation workflow iterates over the datasets and
assembles cross-linguistic colexifications for each
language variety. Here, CLICS uses an efficient
method that avoids comparing n words in one lan-
guage against n words in the same language, but
rather identifies colexifications from tuples, con-
sisting of a word form and its corresponding sense
(a concept set in the Concepticon catalog), with the
help of hash tables (List, 2022). In other words,
the method iterates over all words in a dataset only
once, instead of comparing all words against each
other, which would result in large computation
times.

Having created a large colexification network of
all CLDF datasets, the CLICS workflow analyzes
this data further by computing communities, that is,
partitions of nodes in a graph that show more con-
nections to each other than to other nodes outside
of the partition (Newman, 2006, 8577). Commu-
nities are inferred with the help of the Infomap
algorithm (Rosvall and Bergstrom, 2008) and are
used to structure the web application, by allowing
users to inspect either entire communities or indi-
vidual subsets of the data. The methods for data
aggregation and analysis are freely accessible and
can be easily applied by scholars to create their
analyses of subsets of the data in CLICS or by ex-
tending the CLICS collection further, as illustrated,
for example, by Tjuka (2024b).

2.3 Shortcomings of CLICS
Although the CLICS database serves as a main
provider of cross-linguistic information on colexifi-
cations, CLICS 3 showed four major shortcomings
that need to be addressed to ensure that future find-
ings based on the data are solid and reliable.

The first shortcoming relates to the data under-
lying CLICS. While data from 30 datasets were
aggregated in Version 3.0 (Rzymski et al., 2020),
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many more datasets have recently been made avail-
able via the Lexibank repository (List et al., 2022).
Improving the database by increasing the number
of datasets is thus one of the most urgent tasks that
should be addressed in an updated version.

The second shortcoming relates to the treatment
of concepts in the database. CLICS 3 used a rather
naïve approach by taking concept sets provided by
the Concepticon reference catalog at face value,
without considering their interdependencies. Con-
cepticon has several concept sets that appear in a
hierarchical relation to other concept sets, mostly
reflecting cases of underspecification, such as the
concept set BLUE OR GREEN, expressed in the Viet-
namese word xanh. The colexification inference
workflow in CLICS 3 treats the colexification of
BLUE and GREEN expressed by the word xanh as
a single concept. However, this omits valuable
colexification information.

Third, CLICS 3 provided information from more
than 3,000 language varieties. However, a closer
look at the data showed that only a small proportion
of the included languages met the requirement set
by the editors of CLICS 3 to provide elicitation
glosses for at least 250 concepts. For CLICS 3,
the authors instead selected 30 datasets that were
officially compiled from concept lists with 250 or
more items. The resulting word lists for individual
languages, however, were often scarce and a larger
number of the languages did not meet the originally
stated coverage criterion.

Fourth, CLICS 3 offered the colexification
network exclusively in the form of a GML
file. Although GML is a common format
for the encoding of graphs (Himsolt, 2010),
accepted by many software tools, including
igraph (https://igraph.org, Csárdi and Nepusz,
2006), NetworkX (https://networkx.org/, Hagberg
et al., 2008), and Cytoscape (http://cytoscape.org/,
Smoot et al., 2011), the format is not well-suited to
share the extensive data on colexification patterns
computed by CLICS 3. As a result, more transpar-
ent data formats for handling colexification data
and colexification networks are needed to represent
the results of the CLICS workflow in detail.

With the increasing use of CLICS 3, it is time to
tackle these four points of criticism. In this study,
we address these shortcomings by creating an up-
dated version of CLICS that substantially increases
the amount of data, improves the handling of con-
cepts, corrects for the bias in language and concept

selection, and makes the data representation more
transparent.

3 Materials and Methods

In the following, we will introduce all necessary
steps that lead to the creation of our modified
CLICS 4 database. We followed the established
workflow for data aggregation used in CLICS 3 to
some extent (§ 2.2). However, we present a dras-
tic increase of data based on standardized datasets
(§ 3.1), introduce an improved handling of con-
cepts during data aggregation (§ 3.2), refine the
selection of languages and concepts (§ 3.3), and
make the representation of the colexification data
more transparent (§ 3.4).

3.1 Data Basis

CLICS 3 was based on 30 datasets available in
CLDF. Many more datasets have since been pub-
lished as part of the Lexibank repository, which
was first published in 2022 (List et al., 2022) as
Lexibank 1 and curates data from 100 different
datasets of different sizes. Of those 52 Lexibank
datasets were suitable for inclusion in CLICS, be-
cause they were based on concept lists that con-
tain 250 or more items (this criterion was used to
build CLICS 3, Rzymski et al. 2020). The newest
version, Lexibank 2, offers data for 134 different
datasets that are all phonetically transcribed (Blum
et al., 2025). For our enhanced version of CLICS,
we identified 95 suitable datasets. These datasets
are listed in the supplementary material accompa-
nying this study.

The datasets include cross-linguistics studies
of specific language groups (e.g., Bowern and
Atkinson, 2012; Bodt and List, 2019) and global
collections such as the Intercontinental Dictio-
nary Series (IDS, https://ids.clld.org, Key and
Comrie, 2023) or the World Loanword Database
(https://wold.clld.org, Haspelmath and Tadmor,
2009). The latter datasets were not originally pro-
vided together with phonetic transcriptions, but
recent studies have added them (see Miller et al.
2020 for WOLD and List 2023 and Miller and List
2024 for IDS).

3.2 Concept Handling

The colexifications in CLICS result from compar-
ing words mapped to the standardized concept
sets in Concepticon (List et al., 2016; Tjuka et al.,
2023). The consequent mapping of the elicitation
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glosses in individual datasets to the Concepticon
reference catalog has been one of the most impor-
tant factors that allowed for the growth of CLICS:
Version 1.0 (List et al., 2014) containing 221 lan-
guage varieties and 1,280 concepts, Version 2.0
(List et al., 2018) containing 1,220 language vari-
eties and 2,487 concepts, and Version 3.0 (Rzymski
et al., 2020) containing 3,156 language varieties
and 2,906 concepts. However, through the map-
ping of the datasets to the Concepticon, a bias for a
certain number of concepts that exhibit hierarchical
relations to other concepts was introduced.

Already with its first launch (List et al., 2016),
Conception has allowed for the definition of broad
concepts that are expressed as such only in specific
languages or specific linguistic areas. As an exam-
ple, consider the concept sets ARM OR HAND and
FOOT OR LEG. These concept sets are expressed by
individual word forms in languages such as Viet-
namese tay, referring to ‘arm’ or ‘hand’, or Rus-
sian noga, referring to ‘foot’ or ‘leg’. However,
many languages distinguish them further, using in-
dividual words for ARM, HAND, FOOT, and LEG,
respectively.

Some lists in Concepticon have a linguistic area
or language family as a target. Thus, the introduc-
tion of underspecified concept sets, such as ARM
OR HAND or FOOT OR LEG was important,
because linguists reporting on Slavic languages
or particular languages in South-East Asia do not
elicit both ARM and HAND, if they know that these
are always colexified in the languages under study.
However, this kind of lexical underspecification,
as we encounter it in the lexicons of Vietnamese
and Russian, is one of the typical reasons for colex-
ifications. Therefore, it is important to list such
cases as true colexifications of ARM and HAND, as
well as FOOT and LEG. The original aggregation
technique used by CLICS ignores these cases. As
a result, important colexification information for a
large number of languages is lost.

In our updated version CLICS 4, we account for
underspecification directly, by defining a list of 85
concept sets that exhibit underspecification along
with the more specific target concepts that they
cover. While most of these underspecified concept
sets can be represented by two concept sets, some
are represented by more than two (specifically kin-
ship terms like SISTER, which has four counter-
parts: YOUNGER SISTER (OF MAN), YOUNGER

SISTER (OF WOMAN), OLDER SISTER (OF MAN),
and OLDER SISTER (OF WOMAN)). In addition,

we decided to replace some concept sets with a too
broad or too narrow definition by more common
concept sets (e.g. replacing STONE OR ROCK by
STONE because ROCK did not occur in the data).

When encountering words that are mapped to
these concepts during the initial iteration over all
word lists in the data, the respective words are mul-
tiplied and each of the words is mapped to the
specific concept sets covered by the underspeci-
fied concept sets. Word forms that are artificially
multiplied in this form are marked in the resulting
dataset by providing information on the original
concept set. In total, we identify 85 underspecified
concept sets in Concepticon that are relevant for
the data in our modified version of CLICS. Of the
1,445,845 word forms in CLICS 4, 107,921 word
forms result from this refinement procedure. A de-
tailed list of the concept replacements can be found
in Appendix A.

3.3 Language and Concept Selection
CLICS 3 included data from 3,156 language va-
rieties. The criterion for including a given word
list in the database was the size of the concept list
underlying the respective dataset. The idea was to
include only those languages with word forms for
250 or more concepts. However, since the editors
of CLICS 3 only checked the size of the concept
lists at the level of entire datasets, the CLICS 3
data contained a large number of language varieties
with much fewer than 250 concepts covered. When
discarding those varieties that contain fewer than
250 word forms, only 1,674 varieties remain.

After detecting this problem when reviewing in-
dividual datasets in CLICS 3, we decided to modify
the criterion for the selection of languages in three
ways. First, instead of setting the threshold to 250
words per language, we lowered it to 180 words,
accounting for the fact that almost half of the lan-
guages in CLICS 3 would not pass this threshold.
The threshold was chosen because we noticed that
there were many datasets with 200 words or fewer.
For many languages, only versions of the Swadesh
list with 200 concepts (Swadesh, 1952) are avail-
able, so the chance of obtaining some concepts
missing for individual languages is considerably
high. Setting the threshold a bit lower allows us to
predefine a core set of concepts that are compara-
ble across languages (and which could be modified
anytime, depending on the analysis one desires to
conduct). Second, in our modified data aggregation
workflow, the threshold is applied to individual lan-
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guage varieties rather than to entire datasets. This
means that for all languages in the sample, we
count whether they meet the inclusion criterion or
not. As a result, it may happen that only certain
parts of the datasets from which CLICS 4 aggre-
gates the word lists make it into the final database.
Third, in order to yield a more meaningful selec-
tion of concepts, our workflow first orders all con-
cepts by their occurrence across the languages in
the data and then retains the most frequent 1,800
concepts. When aggregating the data from the indi-
vidual word lists, only these concepts are retained.
This procedure helps to decrease the sparsity of
the data, resulting from the fact that the individual
word lists often differ quite drastically with respect
to the concepts for which they provide elicitation
glosses. While the cutoff point may seem arbitrary,
it reflects our experience in working with the map-
ping of concept lists in the Concepticon project:
beyond 1,800 concepts, the chances of finding con-
cepts expressed across many languages from many
different families drop considerably.

3.4 Data Representation
The CLICS 3 colexification data was shared in the
form of an SQLite database, while the network in-
formation was shared in the form of a GML file,
offering the colexification networks with nodes,
edges, and specific node and edge attributes. It was
not a difficult task to implement the CLICS 3 work-
flow because the GML format can be easily read
by different software packages. However, working
with the data revealed several shortcomings of the
GML format as the exclusive format for sharing
the colexification network.

When following the core principle of CLDF
in using tables as the basic representation format
wherever possible, it would be straightforward
to represent a graph with the help of two tables.
One table would represent the nodes of a graph,
with node attributes being provided in additional
columns, and another table would represent the
edges, with edge attributes being represented in
additional columns. It turned out that this format
could not only be easily represented in the CLDF
specification, but that it would allow us to repre-
sent colexification data in the form of a structural
dataset (Forkel et al., 2018). While the primary
dataset underlying CLICS 4 provides information
on colexifications between a fixed set of standard-
ized concept sets, the additional view as a structural
dataset – resembling a cross-linguistic typological

database – offers a language-centered view: colex-
ifications are modeled as parameters and for each
language we provide information on their presence
or absence. Thus, following (Forkel and List, 2020)
in combining a word list and a structural dataset in
a unified CLDF dataset, CLICS 4 now consists of
a large aggregated word list with individual word
forms across several thousand language varieties,
along with structural data that provides informa-
tion on the languages that exhibit certain colexifi-
cations.

Structural data in CLDF typically consist of a
parameter table that provides information on the
features comparable across languages, and a value
table that provides information on the individual
values as they are reflected in individual languages.
In our new data model for cross-linguistic colexifi-
cation data, all individual colexifications that can
be inferred when analyzing the aggregated word list
feature are represented as parameters. In contrast,
the corresponding values for each language are rep-
resented by three different codes, indicating if the
feature represented by the parameter is present, ab-
sent, or missing. Thus, our proposal for CLICS 4
not only informs whether a given language exhibits
a particular colexification but also whether it does
not show the colexification, or whether the informa-
tion is missing, since elicitation glosses for at least
one of the concepts involved in the colexification
are missing in the word list.

There are two major advantages of this new rep-
resentation. The first advantage is that colexifi-
cations can be directly inspected in tabular form.
Since the colexification data are shared in a ta-
ble format as part of the CLDF dataset underlying
CLICS 4, interested users can browse through the
colexifications using their favorite spreadsheet ed-
itor. Analyzing the colexification network with
software tools is also facilitated, given that all ma-
jor tools support tabular data. This means that
networks can be conveniently analyzed computa-
tionally or visualized with graph visualization soft-
ware, such as Cytoscape (for a tutorial, see Tjuka,
2024a). The second advantage is that it is much
easier to integrate the data produced by CLICS 4
with the data shared by other projects. Community
assignments, along with additional information on
the coverage of concepts across languages and lan-
guage families, for example, are now part of the
concept table that serves as the basic parameter ta-
ble for the CLICS 4 word list. From this representa-
tion, it is easy to integrate the data not only into the
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Concepticon (see also Bocklage et al., 2024) but
also into extended reference catalogs such as No-
RaRe (https://norare.clld.org, Tjuka et al., 2022), a
catalog that extends the Concepticon by providing
additional information on norms, rates, and ratings
for words and concepts across multiple languages.

3.5 Implementation

CLICS 4 is implemented in the form of a
CLDFBench package (Forkel and List, 2020), writ-
ten in Python, that can be installed from the com-
mand line and contains the resulting CLDF data
along with the code that was used to create the data.
The package is shared as part of the supplemental
material accompanying this study and contains ad-
ditional information and code examples that were
used to produce the findings presented in this study.

4 Data Validation

4.1 Comparing CLICS 3 and CLICS 4

In order to understand the differences between our
updated version CLICS 4 and the previous versions
of CLICS, most importantly the last officially pub-
lished version CLICS 3 by Rzymski et al. (2020),
we carried out a detailed comparison of CLICS 3
and CLICS 4. Given that we deliberately restricted
the number of concepts in CLICS 4 to an initial list
of 1,800 concepts – of which 1,730 were retained
when selecting those languages that would cover
at least 180 concepts of the initial list – it may
seem as if CLICS 4 simply reduced the amount
of data in contrast to CLICS 3. However, this is
not the case, which is apparent when comparing
the number of words, language varieties, languages
(different glottocodes), and language families cov-
ered in both datasets, as shown in Table 1. CLICS 4
exceeds CLICS 3 not only regarding the number
of language families and language varieties cov-
ered, but most notably with respect to the number
of word forms that are provided in phonetic tran-
scriptions. CLICS 4 reaches almost the same size
as CLICS 3, while providing almost three times as
many phonetic transcriptions.

A similar situation arises when comparing the
overall number of concepts with the average num-
ber of languages and families expressing a concept
in both datasets (also shown in Table 1). Here,
CLICS 3 exceeds CLICS 4 in the number of con-
cepts that are colexified (1,386 vs. 1,647), while
showing similar values for the average number
of languages expressing a concept (607 vs. 624).

Criterion CLICS 3 CLICS 4
Datasets 30 95
Varieties 3 156 3 432
Languages 2 280 2 152
Families 200 247
Words 1 462 125 1 445 845
Transcriptions 563 878 1 445 845
Words per Variety 467 421
Concepts 2 906 1 730
Colexified Concepts 1 647 1 386
Languages per Concept 624 607
Families per Concept 61 92
Colexifications 4 228 3 986
Average Degree 5 6
Average Weighted Degree 36 53
Communities 249 315
Concepts per Community 6.6 4.4

Table 1: Comparison between CLICS 3 and CLICS 4.
Colexifications are only counted when occurring in at
least three different language families. Weighted degree
is calculated by counting the number of language fami-
lies per link.

However, regarding the average number of fami-
lies expressing a concept, CLICS 4 largely exceeds
CLICS 3 (92 vs. 61).

In sum, the comparison provided in Table 1
shows that CLICS 4 does not simply provide more
data, resulting in more languages, more concepts,
and more colexifications. Instead, the major im-
provements concerning the data basis, concept han-
dling, and language selection yield a colexification
network that consolidates the tendencies in the data
rather than diversifying them further. Thus, while
CLICS 4 has fewer colexified concepts, i.e., con-
cepts that are part of a colexification, the concepts
in the colexification network of CLICS 4 have more
connections across more language families on av-
erage, as reflected in their degree distribution (6 vs.
5). In addition, these connections are also substan-
tiated by more colexifications, as reflected in the
weighted degree distribution (53 vs. 36). This trend
can also be observed when directly comparing the
inferred colexifications. There are 2,874 colexifi-
cations observed in both networks, 1,354 unique
to CLICS 3, and 1,112 unique to CLICS 4. Of the
common edges, 859 colexifications in CLICS 4 can
be found in more language families, compared to
778 colexifications in CLICS 3.

7

https://norare.clld.org


DARKNESS

SEEDBLACK
CHEST

DARK

SKY
NORTHBLUE

LAST (FINAL)

WIND

DIRTY

HEAD
TONGUE

FRUIT
SHARP BREATHE

SWALLOWWIDE

SHADE LIFEMOUTH

RESTSTAND

FINISH

WALK (TAKE A WALK)

BURNING

CRY

MEET
SWELL LIE DOWN

BE

FRAGRANT

ROTTEN

BASKET ALLOW OR PERMIT

WINNOWING

HANG UP

TRADE OR BARTERMOVE (ONESELF)

CARRY ON HEAD

LEND

IRRIGATE
WAKE UP (SOMEONE)

GIVE BACK
FIGHT

HOWL SING

DO

GROW GOLOOK
TIRED

COMEHARVEST
GO OUT

PICK UP

PRESERVE
ANSWER

SELL

LEAD (GUIDE)

WORK (ACTIVITY)

LIFT
INCREASEKEEPTAKE

TOUCH GIVE
POUR

SENDPURSUE

CARRY IN HAND
PULLHOLD

CATCH
DIVORCE

SNIFF
PUT

STINKING

RUN
REMAIN

SMELL (STINK)
SICK

HUNTMAKE

PASTURE

BESIDE

STAR

SIDE BEHIND
OUTSIDE

WOOD

SPEARTHROWER

ADOBE

TABLE

GARDEN-HOUSE

MIDDLE
BEAM

WILLOW

BRICK

SHELFHOME

BETWEEN

STORM
PLACE (POSITION)AFTERWARDS

FLEA

ANIMAL
WEATHER

HOUSE
TOP

HEAVEN
MAINLAND

BELLY

MEDICINE

SAND
LAMP

CHAIR

STOMACH
CLAY

GRASS

SELF PART
HAY

VEGETABLESFIRST ROOFNIT
ARROW

BOARD

AFTERNOON

LATE

NIGHT

EGGYEAR
DUST

TASTE (SOMETHING)

WANT

PILE UP

WAKE UP

LOOK FOR

HEARWEIGH

WORSHIPLISTEN
CAUSE

RESCUE

ASK (REQUEST)THINK (REFLECT)
DEFENDNEED (NOUN)

COMMAND

CARRY UNDER ARM

FOLLOW

PROMISE

PROTECT

PAY

BORROW

WORD
LIGHT (IGNITE)
SHINE

NUT
NAME

BE ALIVE GREY

SEE
LICK

OWN BEGETWORK (LABOUR)
SAY

ARRIVE

FINDHAVE

GET

BUY

UP

FLAT

BELOW OR UNDERNEARLOUSETHIS
FEEL

SHRIEK

CALL

TRYMIND

INVITE

SPEECH
THOU

LIGHT (COLOR)

BE LATEBRIGHT

SPEAR

HURRY

YAWN

WET

VOICE
NOT

COPPER

"DWELL (LIVE

NOISE
CURE

BLOW (OF WIND)

BECOME

RIPEN

LUNG

ARSON

WHITE

I

LIGHT (RADIATION)

MUD

ABOVE BITTERGUN
SUN

BRAINSOUND OR NOISE
RIPE

LANGUAGE

SOUL

CONVICT

CONDEMN

THREATEN

FEAR (FRIGHT) SHAME

HELP

HIRE OR RENT

SEEM

SUSPECT

FORBIDANGER

DOUBT

MISS (A TARGET)
SOLDIER

BLAMEFAULT

SPOON

DECEIT

CURSE

OATH

BATTLE

ADJUDICATE
SWEAR

PITY

PRAISE

ANXIETY

WRONG

MILL

QUARREL

SCOLD

ACCUSE

GUILTY

SURPRISED

LIE (MISLEAD)

SIN

DEFENDANT

MISTAKE
BETRAY

ARMY

DANGER

HANG

GUARD

VILLAGE

INSIDE

DOWN

SKULLCOUNTRY SOUTH

NATIVE COUNTRY

OINTMENT
WORLD

BEFORE

TOMORROW

GARDEN

PLAIN

BOW
TOWN

ROOM

MORNING

FAT (ORGANIC SUBSTANCE)

GUTS WEAPONS

LIVESTOCK

OIL (ORGANIC SUBSTANCE)

SOONLOW

NEWREED
SHALLOW

EARTH (SOIL)

BEGIN

LIP

GREENFAECES (EXCREMENT)
MOON

LAND
BOTTOM

THEN
DAWN

CLOCK

EARLY

SOME TIMECLAN

SEASON

FLOOR

DAY (NOT NIGHT)INTESTINES AIR
HUT

HALF

GROUNDTENT

FORTRESS

RAINBOW

YESTERDAY

YARD

FENCE

VALLEY

THRESHING-FLOOR

ONCE (IN THE PAST)

SAUSAGE

TOWER

FIELD

FIREFLY

WOMB
IN FRONT OF

PIECE
WALL (OF HOUSE)

SHIT (DEFECATE)

READY

 RESIDE)"

LAZY

LAST (ENDURE)

SLEEP

KNIFE

MEASURE
ASK (INQUIRE)

HOPE

BELIEVE PRAY

TASTE

REMEMBER

BAD

THINK (BELIEVE)
EXPLAIN

GUESSUNDERSTAND OBEY DENY
UGLY

APPROACH

TIN OR TINPLATE

PREACH
MORTAR BINDER

DEMON

TALK

CALL BY NAME

MARRY

EARNREAD

EVIL

INTENTION
KNOW (SOMETHING)

AFFAIR

WATCH

NO
SPEAK

TEACH
IDEADREAM (SOMETHING)

IMITATEADMITCOUNT

LOVE

GROAN

TELL

SHOUT
GIVE BIRTH

BE BORN

RAWTALL
DAY (24 HOURS)

HIGH
AGE

SHORTTHIN (OF SHAPE OF OBJECT)

HE
GODLIGHT (WEIGHT)OTHER ANDRIGHT

UNRIPE
LOUD WEAK

BREATH
THICK

SHE

CLEAR

HEALTHY
BEAUTIFUL

BIG

GOOD

LONG GHOST

WHAT

MONTH FAR

IN

DEEP
FAT (OBESE) HERE

THINGTHERE
THAT

AT

FAST

ROUGHSOFT

WE (EXCLUSIVE)

WE (INCLUSIVE) EASYOLD (AGED)OLD (USED)
THIN (SLIM)

HEADBAND OR HEADDRESS

TOWEL

VEIL

HEADGEAR

HELMET

DOUGHSHOE
SHIRTSKIRT

FATHOM

GOOSE

ROOSTER

FLUTE

COTTON

HOOF

SPIDER WEB

COLLARBONE

BAY

BUTTON

FINGERNAIL
GILL

SHOULDERBLADE

SPADE

BEESWAX
SILVER

SOLE (FOOT)

GRASS-SKIRT
DRESS

BOOT

HEN
MOUSTACHE

STOCKING
RAG

CLOTH LAGOON EARLOBE

VEIN SHOVELBEEHIVE

VINE

ROPETOENAIL

SWAMP
END (OF TIME)

BED HEART
EYE

TOOTH
TESTICLES

EDGE LIGHTNINGPLANT (VEGETATION)

BEAK
END (OF SPACE)

POINTED

CHARCOALBOLT (OF LIGHTNING)

SMOKE (EXHAUST)TOBACCOYELLOW
MEAT

BIRD
COLD

FLESH
RED HELL

FIRE

PENIS

ASH
BRACKISH

SOUR

NECK

BONE

MATCH

MUSHROOM
NOSE

TIP (OF OBJECT)

LIVER

FOREHEADDEER

THUNDER (VERB)CLOUD
FIREWOOD

BODY
WINTER

FLAMETHUNDER

RAIN (PRECIPITATION)BACKFLOWER

TREE

THATCH
OBSCURE

CITRUS FRUIT

FASTEN

BLOOD
WATER

GRAIN

BUNCH

TWIG
CORNER

UPPER LEG (THIGH)

TREE TRUNK

CAPE

NIPPLE

HORN (ANATOMY)

EMBERS
HAND

SALTY

BREAKFAST
BREAD FIN

PUBIC HAIR

SNAIL

TREE STUMP

FISHING

CAVE

COOKHOUSE

OCEAN

SKIN (OF FRUIT)

BRASS INSTRUMENT (HORN OR
TRUMPET)

WORM

BAIT

SCALE
ICE

GOLD

LETTER

CALF OF LEG

SHIN

TOE

WRISTHAIR (BODY) ELBOW

BAMBOO

SHOULDER

FINGER

KNOT

DEWTENDON

FOOTPRINT

FEATHER OR FUR OR HAIREARRING
CLAW

ARMPIT

LEATHER

LAKESAILCLOTH
SNOW

WELL

FLOWING BODY OF WATERPAPER

BARLEY

MAIZECHICKEN

COAT

WOOL

BEARD

CLOAK

BELT

CLOTHES

FOWL
PALM OF HAND

CART

BEAN

RING
PENDUCK

WHEATORNAMENT

JEWEL

WHEEL

TEMPLES

BLANKET
KIDNEY

BUSH

UDDER

HAIR (HEAD)

SHELL WING
FUR FOOD

BARK

CANDLE

LEAF

TAIL
LEG

FOG

BRANCH

KNEEROOTLOWER LEG

DINNER (SUPPER)
MEAL

FEATHERUPPER ARM
FOOT

SPLEEN

RICE

WAIST

FISH

ANKLE

SPINE

HAIRHEEL
LUNCH

OAT NEST

ARM

RAINY SEASON
LOWER ARM

FLOUR

CIRCLE
REEF

HEAP
RUG

HIPCHEEK
COLLAR

SKIN

CHIMNEY

RIVER

NAPE (OF NECK)SALT
FIREPLACE

NASAL MUCUS (SNOT)
NOSTRIL

EAR

SEA

FISH POISON

BALL

WEST

NAVEL

AUTUMN

SPRINGTIME

MAST

DOORPOST

STOOL DEITYPRECIPICE

HILL
YOLK

CLUB
POST

MOLAR TOOTH
ROUND

POISON

MIDDAYWALKING STICK

SUMMER
BOUNDARY

STICK
FORESTRIDGEPOLE

EVENING

FOAM

MAT

RAFTER FACESHORE
STONE

RIB

MOUNTAIN

BUTTOCKSJAW

CHIN

SMELL (PERCEIVE)GO DOWN (DESCEND)

SWIM
REMAINS

CHEW

HOT

EAT

SMOKE (INHALE)
CEASEBREAST

BURN (SOMETHING)

GO UP (ASCEND)
IRON

SHOOT

HALT (STOP)
BITE

RISE (MOVE UPWARDS)

SEIZE
RULE

WALK

KILL

FLOW

LEAVE
KISS

DRIVE

MOW

CHOOSE
COME BACK

BRING
KICK

GATHER

CARRY

LET GO OR SET FREE

STRETCH
TRAP (CATCH)

CARRY ON SHOULDER

PLAY

REGRET

DANCE

FORGIVE
PUSH

RETURN HOME

ACQUIT

DONATE

GRIEF

SAIL

BAKE

PREPARE

WHISTLE

SWEET WARMDOOR

RAIN (RAINING)

STAND UP

DIG

SEPARATE

DIVIDE

POUND

CHOP (INTO PIECES)ROLL
BREAK (BREAKING)

MOVE

HIDE (CONCEAL)MOLDDESTROY
SPREAD OUT

ATTACKSPLIT
THROW

BEATCLIMB BUILDDIRT

FLEE
WINDOW

FOLDRETREAT
OPENSTRIKE ESCAPEDRAG

RIDE

JOIN

ENTER

EXTINGUISHFLY (MOVE THROUGH AIR)
KNEEL

FALL

SIT
COOK (SOMETHING)

HIDE (ONESELF)
CRAWL

WAR

FORK

RAISE (BRING UP)
BAD LUCK

OMEN

SWEAT (SUBSTANCE) FEED
UNTIE

EMBRACE

WRAP

JUMP

TURN AROUNDWASH

FLOAT

CHAINCARVE

CULTIVATE LAUGH

FORGET
GOOD LUCK

JUDGMENT

CAST
CHANGE

TEAR (SHRED) PICK

HEAT
DIE

DRINK
CORPSE SUCKTHROAT

TURN (SOMETHING)GRINDCUT MISPLACEDISAPPEAR
SHARE

DROP (SOMETHING)PUS

SNAKE
COOKED

SOW SEEDSFEVER

BEAD

STEAL PAINCUT DOWN

TWIST

BREAK (OF ROPE)CUT (WITH AXE)
DAMAGE OR INJURELAUGHTER

SQUEEZEBURY

WEAVE

STAB TO DEATH

DRIP (EMIT LIQUID)
PINCHSEW

PAINFUL

PUT ON

TEAR (OF EYE)
PLANT (SOMETHING)

WIPE

MURDERLAND (DESCEND)
ROAST (SOMETHING)

FRY

NECKLACE

BROKEN
KNEAD

BREAK (CLEAVE)

COVER
DISEASE

LOOM

CUT OR HACK

BEND
NETBAG

POCKET

CROOKED

SWEAT (PERSPIRE)

SMILE

HUNGER

STAB

SCRATCH

SINK (DESCEND)

BRAID
BORE

RUB
THRESH

VOMIT

WAIT (FOR)
CROUCH

MILK
BOIL (SOMETHING)

HOLE

SPIN
SAWBRAID (VERB) OR WEAVE

(BASKET)
FORGE

PRESS

PEEL
CONNECTSPIT

SAP
PATH

REPAIR

TUMBLE (FALL DOWN)
BATHE

WASH (ONESELF)
MIX

HOLLOW OUT

BRUISE

DRAW MILK

SOUP

FAMINE

BLACKSMITH
COURT

BE HUNGRY

LIMP

LAME

THIRST

LAW

COMMON COLD (DISEASE)
URINE

OVEN

BOIL (OF LIQUID)
BEVERAGE

SET (HEAVENLY BODIES)
TIE

BOOK

COIN
GRAVE

INSECTMONEY
DEATH

STOVE
ROW

PULL OFF (SKIN)

FROST
SIT DOWNHOE

PITCHFORK

BLISTER

TRAP (PITFALL)
BOIL (OF SKIN)

SPLASH

AXEDRIBBLE

SHAKESHARPEN (SOMETHING)

ITCH
KNOCK

WOUND

STRAIN

HAMMER

SHUT
DIVE

SWEEPROAD

PLOUGH

FORKED BRANCH

SCAR

SCRAPE SWELLING

ITCH (CAUSE ITCHING OR FEEL
ITCHY)TIE UP (TETHER)

BRUSH

SHEARS

CHISEL

COMB

COMB (VERB)

AWL

CENTIPEDE

SCORPION

RAPE

ANCHOR

FISHHOOK

BATTLE-AXE

NEEDLE (FOR SEWING)

CHOKE

BROOM

SHIVER

MANNER

FISHNET

THIEF
RAKE

FEAR (BE AFRAID)

CUSTOM

NET

HOOK

DROWNED

FISH TRAP

TASTY
FLY (INSECT)

PISS

DITCH

SUGAR

SPRING (OF WATER)

HONEY

OAR

COUGH

BEE

PAINTING

WASP

PADDLE

GLUE

FREEZE

SUGAR CANEALCOHOL (FERMENTED DRINK)

DYE

THREAD

MEAD

EARWAX

PAINT (PIGMENTS)
SNEEZE

FURROW

PIN

GRAPE

LINE
FISHING LINE

MOSQUITO

BEER
WINE

SANDFLY

RUDDER

STRING

GRAPEVINE

BRIDGE

PORT

LADDER

SPIDER

COLOR

DRESS UP
ADZE

PIERCE

NAIL (TOOL)

WRITE

RAM

SATURDAY

EWE

SHEEP SUNDAY

WEEK

MARKET

SHOP

YOUNG GOAT (KID)

DOG

MALE GOAT

LAMB

CAT

GOAT

JAGUAR

PLATE

BOWL WISE

PAN

SAUCER

DISH

PUNISHMENT

KETTLE

CUP

JUG

MARE

MAGIC

DEFEAT

STALLION

FINE (PENALTY)

PHYSICIAN

FOAL

DONKEY

MULE

HORSE

ENVY
PREGNANT

FAITHFUL
TAX

MARRIAGE OR WEDDING
WHEN

FIVE

MANY

OFTEN

MAGICIANALWAYS PUMPKIN
HOW MUCH

FOUR TWELVE

THREE EIGHT

TWINS

BEGGAR

ORPHAN

ELEVENSTATUE

VICTORY

SICKLE

FAN (OBJECT)

NEVER

TRUTH

FULL

NOTHING OR ZERO

HOW MANY PIECES

NINE

TWENTY

ALL
SOMETIMES

SEVEN

TEN

SIX

LOAD

CROWD
WHY CERTAIN

BLOW (WITH MOUTH)
SLEEP (STATE)

GOURD CLEVER

RAZOR DEBT

PRICE

CALCULATEFAN (ACTION)

LEAD (CHEMICAL ELEMENT)

MACHETE

POT

BILL

PERJURY

HINDER OR PREVENT
GLASS

LIKE

WAGES
MORTAR

REFUSE

SHOW

SAME

PESTLE

BOTTLEMIRROR

SIMILAR

HATE

COPULATE

SWORD KNIFE (FOR EATING)

ELF OR FAIRY

ANNOUNCE
GOOD-LOOKING DREAM HAPPY

CONCEIVE

OWE

FILL
LEARN

BE ABLE
STUDYSONG

BECAUSE

SPIRIT
RICH

LIE (REST)

EXPENSIVE

YES

HOW
HUSBAND

YOUNG
WHICH

MASTERMALE (OF PERSON)

OLD MAN

MARRIED MAN
OR

OLD WOMANFATHER
SMOOTH

QUEEN

TOOL

SHAMAN (FOLK HEALER)

WITH

WE TWO

THEIR
CHEAP

CHILD (DESCENDANT)

SLIP

DRY

STRONG

STRAIGHT

WHERE
HARD TRUE

FOR A LONG TIMECORRECT (RIGHT)

WIFE
DIFFICULT

AGAIN PEOPLE

MALE PERSON

SMALL

NARROW WHO
NOTHING

HOUR
TODAY ONE

FAMILY

BUTTER
SLOWNOWARCH CHIEFTAIN

YOU

THEYCLEAN

PERSON

EAST FINE OR THIN
IMMEDIATELY

CATTLE
PEACE

CALF

COW

TOGETHER
ONLYSUDDENLY

NEWS

POWERFUL

MOTHER IF

HEAVY

IT LEFT
FEW

QUIET

BULL

STORYOX
STABLE

SILENCE

GRANDFATHER
BOYRELATIVES

PARENTS
BABY

ALONE

OUR

MALE (OF ANIMAL)

CITIZEN
OLDER SISTER (OF MAN)

YOUR (PLURAL)

OLDER SISTER (OF WOMAN)

HOLYANCESTORS

BLUNT

KING
FEMALE (OF ANIMAL)

DENSE

ENOUGH

WE TWO (EXCLUSIVE)

FEMALE (OF PERSON)

GENTLE

IDOL

MARRIED WOMAN
MOREBRAVE

YOUNGER BROTHER (OF MAN)

MATERNAL UNCLE (MOTHER'S
BROTHER)

EMPTY

WOMAN

OLDER BROTHER (OF MAN)

SONMATERNAL AUNT (MOTHER'S
SISTER)YOUNGER SISTER (OF WOMAN)

YOUNGER SISTER (OF MAN)

GIRL

YOUNG MAN

DAUGHTER

DESCENDANTS

PATERNAL UNCLE (FATHER'S
BROTHER)

OLDER BROTHER (OF WOMAN)
NIECE

YOUNG WOMANSIBLING

YOUNGER BROTHER (OF
WOMAN)COUSIN

FRIEND
PATERNAL AUNT (FATHER'S

SISTER)

NEPHEW MOTHER-IN-LAW (OF MAN)
GRANDMOTHER

FATHER-IN-LAW (OF MAN)

FATHER-IN-LAW (OF WOMAN)STEPFATHER

MOTHER-IN-LAW (OF WOMAN)

TWO

STEPDAUGHTER
STEPSONDAUGHTER-IN-LAW (OF MAN)SON-IN-LAW (OF MAN)

BLIND

CHILD (YOUNG HUMAN)

THIRSTY

STINGY

CALM (OF SEA)

PRISON

DRY UP

GRANDDAUGHTER

BE SILENT

DEAF

CASSAVA

THREE TIMES

MUTE

MAD

THIRD

PAIR

SWEET POTATO

YAM

SERVANT

SLAVE

STUPID

POTATO

PUPIL (STUDENT)

NAKED

STRANGER

PRISONER

DARE

POOR

TEACHER

DAUGHTER-IN-LAW (OF WOMAN)

STEPMOTHER
SECOND

SON-IN-LAW (OF WOMAN)NEIGHBOUR

DRY IN SUN

GRANDPARENTS

GUEST

GRANDSON

HOST

GREEDY

BOUNDARY

SIDE

SAND

EDGE

BESIDE

NEAR

RIB

SHORE
CORNER

RAG

CLOAK

DRESS

VEIL

SKIRT

CLOTH

SHIRT

CLOTHES

COAT

GRASS-SKIRT

TOWEL

Figure 2: CLICS 4 colexification network with two selected communities (central concepts DRESS and EDGE).

4.2 Visualizing the CLICS 4 Network

To create a visual representation of the CLICS 4
network, researchers can either use the GML file
that is provided along with the CLDF data, or the
table with all colexifications that is shared as part of
CLDF directly. As mentioned in § 3.4, the new data
representation in tabular form as part of a unified
CLDF dataset makes it easier to analyze the data
computationally. The visualization of the data is
also greatly facilitated, given that edge tables are
the basic input format for network visualization
software tools like Cytoscape. A tutorial on how
to create a network visualization with Cytoscape is
provided in Tjuka 2024a. We used this approach to
create Figure 2, which provides a bird’s eye view
of the CLICS 4 network.

The figure shows the entire network with two
communities highlighted and enlarged. The first
community has the concept DRESS as a central
node and shows colexifications with other clothing
items. The edge weights represent the frequency
with which a given colexification occurs across lan-
guages. For example, the colexification between
DRESS and SKIRT is more frequent than the colex-

ification with COAT. The second community has
the concept EDGE as a central node and includes
cross-linguistically frequent colexifications such as
EDGE and SIDE and less frequent ones like EDGE

and CORNER. Given the straightforward represen-
tation of the colexification network in CLICS 4,
the data can conveniently be explored. By using
Cytoscape, researchers can further investigate the
properties of the network and filter them according
to their particular research interests.

5 Conclusion and Outlook

We presented CLICS 4, an enhanced version of the
Cross-Linguistic Colexification Database, which
integrates lexical data for 3,432 language varieties,
corresponding to 2,152 distinct Glottocodes. When
creating CLICS 4 we used an advanced workflow
for the aggregation and analysis of cross-linguistic
colexification data that is based on an increased
and improved data basis, an improved handling of
concepts, more fine-grained criteria for the selec-
tion of languages and concepts, and an updated
representation of the colexification data.

In contrast to previous colexification databases,
CLICS 4 determines colexifications exclusively
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based on phonetic transcriptions. This makes the
data more consistent and robust and opens new pos-
sibilities to analyze the data in comparative studies.
Due to the phonetic transcriptions in CLICS 4, fu-
ture studies can build on the initial work to infer
and investigate partial colexifications (List, 2023;
Tjuka and List, 2024; Rubehn and List, 2025). In
addition, phonetic transcriptions enable scholars
to carry out more fine-grained analyses of colexi-
fications inside specific language families, where
a handling of cognate words is important to iden-
tify colexifications that have evolved independently
from colexifications that have been inherited across
branches (Tjuka et al., 2024).

Future studies can use CLICS 4 to explore the
relationship between words and their meanings
across a wide range of languages and uncover im-
portant insights into language evolution, cultural
variations, and cognitive principles. In this way,
CLICS 4 has great potential to contribute to future
studies that address open questions in a broad range
of linguistic subfields, including linguistic typol-
ogy, historical linguistics, psycholinguistics, and
computational linguistics.

Supplementary Material

All data and code underlying this study, along with
instructions on how to run the code, are openly
available. The CLICS 4 database is curated on
GitHub (https://github.com/clics/clics4/tree/v0.5,
Version 0.5) and archived with Zenodo (DOI:
https://doi.org/10.5281/zenodo.16900180).
The code that we used to compare CLICS
3 and CLICS 4 is cuarated on Code-
berg (https://codeberg.org/calc/clics4-
paper/src/tag/v1.0, Version 1.0)
and archived with Zenodo (DOI:
https://doi.org/10.5281/zenodo.16902185).

Limitations

General limitations that apply to large-scale ag-
gregation studies in comparative linguistics also
apply to CLICS 4. These include the fact that the
word list approach for aggregating cross-linguistic
colexifications may fail to model fine-grained as-
pects of colexifications in individual language fam-
ilies, many of which cannot be modeled appropri-
ately without a detailed inspection of particular
languages and their history. An additional problem
of all cross-linguistic colexification databases is
that they contain a lot of missing data, showing low

coverage for most concepts cross-linguistically. We
also emphasize that detailed studies investigating
the properties of CLICS 4 are missing so far, but we
envisage that these will be carried out by different
teams (not only including the team which compiled
the data by now). Another improvement that needs
to be implemented in the future is the treatment
of some artificially separated concepts. For exam-
ple, the current version splits the concept THINK

into the more specific concepts THINK (REFLECT)
and THINK (BELIEVE). While this modification
reflects the ambiguity of the concept THINK, we
suspect that there is no frequently used question-
naire for cross-linguistic data that would contain
both THINK (REFLECT) and THINK (BELIEVE). As
a result, one may call the colexification between
THINK (REFLECT) and THINK (BELIEVE) in ques-
tion, given that the database lacks direct evidence.
This holds to an even larger degree for kinship
terms. One solution we could think of would be
to consider only THINK, as the broadest concept,
because this concept is present in most languages.
While our current technology would allow for such
a handling, we think addressing this problem in a
principled way will require a more thorough revi-
sion, potentially accompanied by additional com-
putational analyses and very detailed decisions that
should not be made in an ad-hoc style.

So far, CLICS 4 is limited to the data and the
database itself can only be investigated with tools
for network visualization and with computational
approaches. As of now, the web application at
https://clics.clld.org still serves the data underlying
CLICS 3. Implementing the web application for
CLICS 4 is planned and will follow in the near
future.
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Yearbook of the Poznań Linguistic Meeting, 4(1):21–
53.

Juri D. Apresjan. 1974. Regular polysemy. Linguistics,
12(142):5–32.

Hongchang Bao, Bradley Hauer, and Grzegorz Kondrak.
2021. On universal colexifications. In Proceedings
of the 11th Global WordNet Conference, pages 1–7,
University of South Africa. Global WordNet Associ-
ation.

Hongchang Bao, Bradley Hauer, and Grzegorz Kondrak.
2022. Lexical resource mapping via translations. In
Proceedings of the Thirteenth Language Resources
and Evaluation Conference, pages 7147–7154, Mar-
seille, France. European Language Resources Asso-
ciation.

Juliette Blevins and Richard Sproat. 2021. Statistical
evidence for the Proto-Indo-European-Euskarian Hy-
pothesis: A word-list approach integrating phonotac-
tics. Diachronica, 0(0):1–59.

Frederic Blum, Carlos Barrientos, Johannes Englisch,
Robert Forkel, Simon J. Greenhill, Christoph Rzym-
ski, and Johann-Mattis List. 2025. Lexibank 2: Pre-
computed features for large-scale lexical data [ver-
sion 2; peer review: 3 approved]. Open Research
Europe, 5(126):1–24.

Frederic Blum, Carlos Barrientos, Adriano Ingunza, and
Johann-Mattis List. 2024. Cognate reflex prediction
as hypothesis test for a genealogical relation between
the Panoan and Takanan language families. Scientific
Reports, 14(30636):1–12.

Katja Bocklage, Anna Di Natale, Annika Tjuka, and
Johann-Mattis List. 2024. Directional tendencies in
semantic change. Humanities Commons.

Timotheus A. Bodt and Johann-Mattis List. 2019. Test-
ing the predictive strength of the comparative method:
An ongoing experiment on unattested words in
Western Kho-Bwa languages. Papers in Historical
Phonology, 4:22–44.

Claire Bowern and Quentin Atkinson. 2012. Compu-
tational phylogenetics and the internal structure of
Pama-Nyungan. Language, 88(4):817–845.

Laurestine Bradford, Guillaume Thomas, and Yang Xu.
2022. Communicative need modulates lexical pre-
cision across semantic domains: A domain-level ac-
count of efficient communication. In Proceedings of
the Annual Meeting of the Cognitive Science Society,
pages 2561–2568.

Thomas Brochhagen and Gemma Boleda. 2022. When
do languages use the same word for different mean-
ings? The Goldilocks Principle in colexification.
Cognition, 226:1–8.

Gábor Csárdi and Tamás Nepusz. 2006. The Igraph
software package for complex network research. In-
terJournal Complex Systems, 1695.

Michael Cysouw. 2010. Drawing networks from re-
current polysemies. Linguistic Discovery, 8(1):281–
285.

Anna Di Natale, Max Pellert, and David Garcia. 2021.
Colexification networks encode affective meaning.
Affective Science, 2:99–111.

Nick J. Enfield and Bernard Comrie, editors. 2015. Lan-
guages of Mainland South-East Asia. The state of the
art. Mouton de Gruyter, Berlin and New York.

Robert Forkel and Johann-Mattis List. 2020. CLDF-
Bench: Give your cross-linguistic data a lift. In
Proceedings of the 12th Language Resources and
Evaluation Conference, pages 6995–7002, Marseille,
France. European Language Resources Association.

Robert Forkel, Johann-Mattis List, Simon J. Green-
hill, Christoph Rzymski, Sebastian Bank, Michael
Cysouw, Harald Hammarström, Martin Haspelmath,
Gereon A. Kaiping, and Russell D. Gray. 2018.
Cross-Linguistic Data Formats, advancing data shar-
ing and re-use in comparative linguistics. Scientific
Data, 5(1):1–10.

Alexandre François. 2008. Semantic maps and the ty-
pology of colexification: Intertwining polysemous
networks across languages. In Martine Vanhove, ed-
itor, From polysemy to semantic change: Towards
a typology of lexical semantic associations, pages
163–215. John Benjamins, Amsterdam.

Volker Gast and Maria Koptjevskaja-Tamm. 2019. The
areal factor in lexical typology: Some evidence
from lexical databases. In Daniël Van Olmen, Tanja
Mortelmans, and Frank Brisard, editors, Aspects of
Linguistic Variation, pages 43–82. Walter de Gruyter,
Berlin.

Robin Gower. 2021. CSV on the Web. Swirrl, Stirling.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart.
2008. Exploring network structure, dynamics, and
function using NetworkX. In Proceedings of the
7th Python in Science Conference, pages 11–15,
Pasadena.

Harald Hammarström, Martin Haspelmath, Robert
Forkel, and Sebastian Bank. 2025. Glottolog
[Dataset, Version 5.2.1]. Max Planck Institute for
Evolutionary Anthropology, Leipzig.

Martin Haspelmath and Uri Tadmor. 2009. The Loan-
word Typology Project and the World Loanword
Database. In Martin Haspelmath and Uri Tadmor,
editors, Loanwords in the World’s Languages, pages
1–34. De Gruyter Mouton, Berlin.

Michael Himsolt. 2010. GML: A portable graph file
format. Technical report, Universität Passau.

10

https://doi.org/10.2478/yplm-2018-0002
https://doi.org/10.2478/yplm-2018-0002
https://doi.org/10.1515/ling.1974.12.142.5
https://aclanthology.org/2021.gwc-1.1.pdf
https://aclanthology.org/2022.lrec-1.774/
https://doi.org/10.1075/dia.19014.ble
https://doi.org/10.1075/dia.19014.ble
https://doi.org/10.1075/dia.19014.ble
https://doi.org/10.1075/dia.19014.ble
https://doi.org/10.12688/openreseurope.20216.2
https://doi.org/10.12688/openreseurope.20216.2
https://doi.org/10.12688/openreseurope.20216.2
https://doi.org/10.1038/s41598-024-82515-3
https://doi.org/10.1038/s41598-024-82515-3
https://doi.org/10.1038/s41598-024-82515-3
https://doi.org/10.17613/0y0r-f341
https://doi.org/10.17613/0y0r-f341
https://doi.org/10.2218/pihph.4.2019.3037
https://doi.org/10.2218/pihph.4.2019.3037
https://doi.org/10.2218/pihph.4.2019.3037
https://doi.org/10.2218/pihph.4.2019.3037
https://doi.org/10.1353/lan.2012.0081
https://doi.org/10.1353/lan.2012.0081
https://doi.org/10.1353/lan.2012.0081
https://escholarship.org/uc/item/7x681267
https://escholarship.org/uc/item/7x681267
https://escholarship.org/uc/item/7x681267
https://doi.org/10.1016/j.cognition.2022.105179
https://doi.org/10.1016/j.cognition.2022.105179
https://doi.org/10.1016/j.cognition.2022.105179
https://doi.org/10.5281/zenodo.3630268
https://doi.org/10.5281/zenodo.3630268
http://journals.dartmouth.edu/cgi-bin/WebObjects/Journals.woa/1/xmlpage/1/article/377
http://journals.dartmouth.edu/cgi-bin/WebObjects/Journals.woa/1/xmlpage/1/article/377
https://doi.org/10.1007/s42761-021-00033-1
http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.864.pdf
http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.864.pdf
https://doi.org/10.1038/sdata.2018.205
https://doi.org/10.1038/sdata.2018.205
https://doi.org/10.1075/slcs.106.09fra
https://doi.org/10.1075/slcs.106.09fra
https://doi.org/10.1075/slcs.106.09fra
https://doi.org/10.1515/9783110607963-003
https://doi.org/10.1515/9783110607963-003
https://doi.org/10.1515/9783110607963-003
https://csvw.org
https://networkx.org
https://networkx.org
https://glottolog.org
https://glottolog.org
http://www.fim.uni-passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-report.pdf
http://www.fim.uni-passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-report.pdf


IPA, International Phonetic Association. 1999. Hand-
book of the International Phonetic Association. Cam-
bridge University Press, Cambridge.

Joshua Conrad Jackson, Joseph Watts, Teague R. Henry,
Johann-Mattis List, Robert Forkel, Peter J. Mucha,
Simon J. Greenhill, Russell D. Gray, and Kristen A.
Lindquist. 2019. Emotion semantics show both
cultural variation and universal structure. Science,
366:1517–1522.

Mary Ritchie Key and Bernard Comrie. 2023. The Inter-
continental Dictionary Series [Dataset, Version 4.3].
Max Planck Institute for Evolutionary Anthropology,
Leipzig.

Evelina Leivada and Elliot Murphy. 2021. Mind the
(terminological) gap: 10 misused, ambiguous, or
polysemous terms in linguistics. Ampersand, 8:1–9.

Johann-Mattis List. 2022. How to compute colexifica-
tions with CL Toolkit (How to do X in linguistics
10). Computer-Assisted Language Comparison in
Practice, 5(6).

Johann-Mattis List. 2023. Inference of partial colexi-
fications from multilingual wordlists. Frontiers in
Psychology, 14:1–10.

Johann-Mattis List, Cormac Anderson, Tiago Tresoldi,
and Robert Forkel. 2021. Cross-Linguistic Transcrip-
tion Systems [Dataset, Version 2.3.0]. Max Planck
Institute for the Science of Human History, Jena.

Johann-Mattis List, Michael Cysouw, and Robert Forkel.
2016. Concepticon: A resource for the linking of con-
cept lists. In Proceedings of the 10th International
Conference on Language Resources and Evaluation,
pages 2393–2400, Portorož, Slovenia. European Lan-
guage Resources Association.

Johann-Mattis List, Robert Forkel, Simon J. Greenhill,
Christoph Rzymski, Johannes Englisch, and Rus-
sell D. Gray. 2022. Lexibank, a public repository
of standardized wordlists with computed phonologi-
cal and lexical features. Scientific Data, 9(1):1–16.

Johann-Mattis List, Simon J. Greenhill, Cormac An-
derson, Thomas Mayer, Tiago Tresoldi, and Robert
Forkel. 2018. CLICS2: An improved database of
cross-linguistic colexifications assembling lexical
data with the help of Cross-Linguistic Data Formats.
Linguistic Typology, 22(2):277–306.

Johann-Mattis List, Thomas Mayer, Anselm Terhalle,
and Matthias Urban. 2014. CLICS: Database of
Cross-Linguistic Colexifications [Dataset, Version
1.0]. Forschungszentrum Deutscher Sprachatlas,
Marburg.

Johann-Mattis List, Anselm Terhalle, and Matthias Ur-
ban. 2013. Using network approaches to enhance
the analysis of cross-linguistic polysemies. In Pro-
ceedings of the 10th International Conference on
Computational Semantics, pages 347–353, Potsdam,
Germany. Association for Computational Linguistics.

Johann-Mattis List, Annika Tjuka, Frederic Blum,
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A Original and Replaced Concepts

Original Concept Rep. Con. New Con. Details
MOUNTAIN OR HILL 1466 2 HILL (733), MOUNTAIN (733)
SPRING OR WELL 1016 2 SPRING (OF WATER) (508), WELL (508)
STONE OR ROCK 484 1 STONE (484)
MAN 2280 1 MALE PERSON (2280)
BROTHER 2668 4 OLDER BROTHER (OF MAN) (667),

OLDER BROTHER (OF WOMAN) (667),
YOUNGER BROTHER (OF MAN) (667),
YOUNGER BROTHER (OF WOMAN) (667)

OLDER BROTHER 2462 2 OLDER BROTHER (OF MAN) (1231),
OLDER BROTHER (OF WOMAN) (1231)

YOUNGER BROTHER 1814 2 YOUNGER BROTHER (OF MAN) (907),
YOUNGER BROTHER (OF WOMAN) (907)

SISTER 3060 4 OLDER SISTER (OF MAN) (765), OLDER
SISTER (OF WOMAN) (765), YOUNGER
SISTER (OF MAN) (765), YOUNGER SIS-
TER (OF WOMAN) (765)

OLDER SISTER 1910 2 OLDER SISTER (OF MAN) (955), OLDER
SISTER (OF WOMAN) (955)

YOUNGER SISTER 1664 2 YOUNGER SISTER (OF MAN) (832),
YOUNGER SISTER (OF WOMAN) (832)

UNCLE 1254 2 MATERNAL UNCLE (MOTHER’S
BROTHER) (627), PATERNAL UNCLE
(FATHER’S BROTHER) (627)

AUNT 1406 2 MATERNAL AUNT (MOTHER’S SISTER)
(703), PATERNAL AUNT (FATHER’S SIS-
TER) (703)

HE OR SHE OR IT 3444 3 HE (1148), IT (1148), SHE (1148)
WE 3862 2 WE (EXCLUSIVE) (1931), WE (INCLU-

SIVE) (1931)
BLOOD VESSEL 342 1 VEIN (342)
ROAST OR FRY 868 2 FRY (434), ROAST (SOMETHING) (434)
SIEVE OR STRAIN 409 1 STRAIN (409)
TORCH OR LAMP 400 1 LAMP (400)
SICKLE OR SCYTHE 445 1 SICKLE (445)
BRANCH OR TWIG 353 1 BRANCH (353)
STRIKE OR BEAT 1416 2 BEAT (708), STRIKE (708)
CHOP 1116 2 CHOP (INTO PIECES) (558), CUT (WITH

AXE) (558)
BREAK (DESTROY OR
GET DESTROYED)

2240 2 BREAK (BREAKING) (1120), BREAK
(CLEAVE) (1120)

TWIST (AROUND) 415 1 TWIST (415)
CRAWL OR CREEP 455 1 CRAWL (455)
STORE 311 1 SHOP (311)
AFTER 743 1 AFTERWARDS (743)
OLD 5164 2 OLD (AGED) (2582), OLD (USED) (2582)
BREATH OR BREATHE 728 2 BREATH (364), BREATHE (364)
BE ALIVE OR LIFE 990 2 BE ALIVE (495), LIFE (495)
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BE DEAD OR DIE 1358 1 DIE (1358)
MIGHTY OR POWER-
FUL OR STRONG

852 2 POWERFUL (426), STRONG (426)

COOKING POT 660 1 POT (660)
DO OR MAKE 1582 2 DO (791), MAKE (791)
BRONZE OR COPPER 273 1 COPPER (273)
DOWN OR BELOW 646 2 BELOW OR UNDER (323), DOWN (323)
CENTER OR MIDDLE 337 1 MIDDLE (337)
BEGIN OR START 520 1 BEGIN (520)
CANNON OR GUN 338 1 GUN (338)
FINGERNAIL OR TOE-
NAIL

872 2 FINGERNAIL (436), TOENAIL (436)

PATH OR ROAD 2920 2 PATH (1460), ROAD (1460)
COLD (OF WEATHER) 204 1 COLD (204)
A LITTLE 191 1 FEW (191)
HOW MANY 1592 2 HOW MANY PIECES (796), HOW MUCH

(796)
SON-IN-LAW 434 2 SON-IN-LAW (OF MAN) (217), SON-IN-

LAW (OF WOMAN) (217)
CUT (WITH KNIFE) 250 1 CUT (250)
MARRY (AS MAN) 269 1 MARRY (269)
HIT 2051 1 STRIKE (2051)
THIN (OF LEAF AND
CLOTH)

240 1 THIN (OF SHAPE OF OBJECT) (240)

ITCH OR ITCHY OR
ITCHING

344 2 ITCH (172), ITCH (CAUSE ITCHING OR
FEEL ITCHY) (172)

HE OR SHE 2052 2 HE (1026), SHE (1026)
THIN 3456 2 THIN (OF SHAPE OF OBJECT) (1728),

THIN (SLIM) (1728)
MALE 938 2 MALE (OF ANIMAL) (469), MALE (OF

PERSON) (469)
FEMALE PERSON 1154 1 WOMAN (1154)
CHILD 3876 2 CHILD (DESCENDANT) (1938), CHILD

(YOUNG HUMAN) (1938)
HIDE 2594 2 HIDE (CONCEAL) (1297), HIDE (ONE-

SELF) (1297)
THINK 3834 2 THINK (BELIEVE) (1917), THINK (RE-

FLECT) (1917)
SMELL 1608 2 SMELL (PERCEIVE) (804), SMELL

(STINK) (804)
BOIL 338 1 BOIL (OF LIQUID) (338)
BURN 5012 2 BURN (SOMETHING) (2506), BURNING

(2506)
KNOW 689 1 KNOW (SOMETHING) (689)
EAGLE OR HAWK 382 2 EAGLE (191), HAWK (191)
ARM OR HAND 720 2 ARM (360), HAND (360)
FOOT OR LEG 2340 2 FOOT (1170), LEG (1170)
FLESH OR MEAT 2852 2 FLESH (1426), MEAT (1426)
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PERSPIRE OR SWEAT 996 2 SWEAT (PERSPIRE) (498), SWEAT (SUB-
STANCE) (498)

THIN (OF HAIR AND
THREAD)

34 1 THIN (OF SHAPE OF OBJECT) (34)

RAINING OR RAIN 1086 2 RAIN (PRECIPITATION) (543), RAIN
(RAINING) (543)

BLACK OR DARK 204 2 BLACK (102), DARK (102)
EARTH OR LAND 402 2 EARTH (SOIL) (201), LAND (201)
TURN 2620 2 TURN (SOMETHING) (1310), TURN

AROUND (1310)
BELLY OR STOMACH 70 2 BELLY (35), STOMACH (35)
FINGER OR TOE 4 2 FINGER (2), TOE (2)
WE TWO (INCLUSIVE) 302 1 WE TWO (302)
HOT OR WARM 274 2 HOT (137), WARM (137)
SHY OR ASHAMED 607 1 SHY (607)
NO OR NOT 2190 2 NO (1095), NOT (1095)
CLAW OR NAIL 759 3 CLAW (253), FINGERNAIL (253), TOE-

NAIL (253)
BLUE OR GREEN 58 2 BLUE (29), GREEN (29)
BAD OR EVIL 1344 2 BAD (672), EVIL (672)
THATCH OR ROOF 1408 2 ROOF (704), THATCH (704)
PAINFUL OR SICK 1954 2 PAINFUL (977), SICK (977)
DREAMING OR
DREAM

514 2 DREAM (257), DREAM (SOMETHING)
(257)

LARGE WILD HERBI-
VORE

132 1 DEER (132)
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Abstract

During Human Robot Interactions in disas-
ter relief scenarios, Large Language Models
(LLMs) have the potential for substantial phys-
ical reasoning to assist in mission objectives.
However, these reasoning capabilities are often
found only in larger models, which are not cur-
rently reasonable to deploy on robotic systems
due to size constraints. To meet our problem
space requirements, we introduce a dataset and
pipeline to create Field Reasoning and Instruc-
tion Decoding Agent (FRIDA) models. In our
pipeline, domain experts and linguists combine
their knowledge to make high-quality, few-shot
prompts used to generate synthetic data for fine-
tuning. We hand-curate datasets for this few-
shot prompting and for evaluation to improve
LLM reasoning on both general and disaster-
specific objects. We concurrently run an abla-
tion study to understand which kinds of syn-
thetic data most affect performance. We fine-
tune several small instruction-tuned models and
find that ablated FRIDA models only trained on
objects’ physical state and function data outper-
formed both the FRIDA models trained on all
synthetic data and the base models in our evalu-
ation. We demonstrate that the FRIDA pipeline
is capable of instilling physical common sense
with minimal data.

1 Introduction

Which of the following would be most dangerous
if it collapsed? This question, as seen in Figure 1,
is fairly trivial for humans to answer, but requires
several types of semantic knowledge. One must
know the general size of these items and their other
functions to fully assess the danger the item poses.
A collapse is also a change of state that fundamen-
tally shifts the use of these objects; a collapsed
chair could be more likely to cut or scrape some-
one, but it could also mean the chair can now be
carried if the chair folds. All of this knowledge
is needed to answer this question, and all of it is

Figure 1: An example of how a FRIDA-tuned LLM
outperforms its base model on questions combining an
object’s affordances and physical characteristics.

embedded in our semantic understanding of objects
that can cause danger and objects that can collapse,
both intentionally and unintentionally.

The ability to reason about objects is especially
important in the context of human-robot interac-
tion in disaster relief scenarios (Bonial et al., 2024).
For example, during search and rescue after an
earthquake, a robot needs to know how to navigate
partially collapsed buildings and how to use the
many tools required to free people from the rubble.
However, using robots to aid in disaster relief intro-
duces many constraints. Because of the destruction
a disaster can wreak, consistent internet connectiv-
ity cannot be assumed. For human safety, robots
must be handled via radio in a secure location. This
low-bandwidth communication means limited im-
age data can be transmitted to the handlers, which
rules out remote piloting (Bonial et al., 2024). We
therefore need an autonomous system that can
reason about its environment and the relief tasks
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required.
As LLMs have improved dramatically, their abil-

ities at semantic reasoning about objects have im-
proved as well. LLMs have long been proven able
to encode physical world knowledge (Petroni et al.,
2019), and their embeddings can improve physical
understanding of an environment and its objects
both within and beyond a fine-tuned domain (Co-
hen et al., 2024).

However, much of this improvement is found
only in larger models trained on more data (Wei
et al., 2022a; Kaplan et al., 2020). This makes
these essential semantic capabilities less accessible
to our use case. Our robot cannot rely on an internet
connection to make API calls. We instead must uti-
lize the robot’s limited on-board computing power,
which can be as little as 16 GB of virtual RAM on
an array of GPUs (Osteen, 2025). That amount of
GPU RAM can only reasonably run inference on
a 13 Billion parameter model given the heuristics
described in Anthony et al. (2023). Furthermore,
this heuristic assumes that our robot is not running
other processes in parallel, which is fairly unrea-
sonable. We thus wanted to answer: Given our
constraints, how can we imbue all the physical
common sense and semantics needed for smaller
LLMs to be more capable at understanding a
disaster environment?

To answer our research question, we first tested
the effectiveness of fine-tuning smaller models on
disaster relief data. However, available data proved
to be an additional constraint. Most publicly avail-
able data on disasters is social media-based reac-
tions (Godinho, 2024), which do not pertain much
to our subdomain of disaster relief efforts. Fur-
thermore, the specific knowledge (and to a lesser
extent, the general knowledge) required for each
mission varies by disaster. For example, after an
earthquake, a robot needs to find survivors, while
after a chemical spill, a robot needs to sample the
environment for hazardous materials. Therefore,
we need a method for generating training data
for specific disasters, and we need to evaluate
which data are most effective at improving robot
performance.

We present a pipeline to create Field Reasoning
and Instruction Decoding Agent (FRIDA) mod-
els as a proof of concept for LLM viability in the
disaster relief domain. For FRIDA, we leveraged
both disaster and linguistic expertise to create gold-
standard instructions that, in turn, are used as a
basis for synthetic data generation, as seen in Fig-

ure 2. These synthetic data are then used to fine-
tune smaller models that fit our memory constraints.
Like its rescue dog eponym,1 our FRIDA models
were initially developed and tested for earthquake
disaster relief, based on expert knowledge pertain-
ing to the February 6th, 2023 earthquakes in Turkey
and Syria (Arranz et al., 2023). Thus, the resulting
models are small enough to effectively operate
onboard a robot and are fine-tuned on special-
ized and inexpensive data, satisfying all of our
use case constraints.

To investigate which synthetic data most influ-
enced model performance, we ran an ablation study
where we fine-tuned the same small LLMs on sub-
sets of our synthetic data corresponding to specific
types of object-based reasoning. We call these re-
sulting models the ablated FRIDA (aFRIDA) mod-
els. We found that aFRIDA models trained on
general semantics and physical common sense had
stronger overall performances than models trained
on only domain-specific knowledge. Additionally,
the best performing aFRIDA models scored better
than their corresponding base models and FRIDA
models trained on the entire synthetic dataset. We
posit that FRIDA succeeds in improving object-
related general common sense, but that small LLMs
struggle with disaster-specific equipment usage.

Our contributions are as follows:

1. An expert-in-the-loop pipeline (Figure 2) for
generating specific and high-quality synthetic
data that can be used for fine-tuning when
man-made data are not feasible to obtain, as
well as the resulting gold-standard datasets.

2. A synthetic dataset of 25,000 instructions re-
lating to object reasoning and earthquake re-
sponse with accompanying analysis.

3. The FRIDA model, fine-tuned on Mistral AI’s
Ministral 8B model with the above synthetic
data, which investigates small LLM potential.

4. A series of ablated FRIDA (aFRIDA) models
trained on subsets of the synthetic dataset to
investigate which synthetic data were most
effective.

5. An in-depth analysis investigating the chal-
lenges of imbuing physical common sense
and complex object reasoning into LLMs.

1https://en.wikipedia.org/wiki/Frida_(dog)
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Our datasets, code, and a complete walkthrough of
the FRIDA pipeline are currently available.2

2 Related Work

2.1 LLMs Reasoning about the World
There are a wide variety of methods for leverag-
ing LLMs for reasoning in a physical environment
based on Chain of Thought prompting (Wei et al.,
2022b). These include variants like re-prompting
(Raman et al., 2022), which prompts the LLM to
regenerate a plan if certain criteria aren’t met at
certain steps, or Tree of Thought (Yao et al., 2023),
which generates a tree of potential steps and evalu-
ates each potential path via either a breadth-first or
depth-first search.

There are also methods that allow the LLM to
take in environmental feedback in response to its
output. For Inner-Monologue (Huang et al., 2023),
the LLM is given the option to ask for more scene
descriptors from a human handler, which it then in-
corporates into its prompts, improving task comple-
tion and decreasing hallucination. Another exam-
ple is SayPlan (Rana et al., 2023), which uses 3D
scene plans to iterate on proposed strategies until
an effective path is discovered. Xie and Zou (2024)
get feedback from LLMs themselves by using a
wide variety of LLM agents to do various sub-tasks
for planning, including generating a general out-
line, using external tools to gain information, and
evaluating which plan is best.

One resource for improving LLM understanding
of an object’s functions, also known as the object’s
affordances, is Adak et al. (2024), who curate a
dataset of naturally occurring sentences and corre-
sponding images. They then transform them into
inference, probing, and masking tasks for LLMs
and Visual Language Models (VLMs). Their evalu-
ation shows that VLMs do not have straightforward
understandings of object affordances, but few-shot
fine-tuning improves LLM and VLM performance
on identifying object affordances. This work fo-
cuses on building a stronger basis in LLMs to im-
prove these downstream tasks, as well as under-
stand which data are most important for a robot’s
success.

2.2 Disaster Work and Natural Language
Processing

Godinho (2024) completed a systematic search and
analysis of over 100 peer-reviewed papers relating

2https://github.com/mshich1/FRIDA/

to Natural Language Processing (NLP) tools being
applied to disasters. 85 of the 107 papers found
were analyzing social media, and the majority of
papers focused on sentiment analysis, text classifi-
cation, and information extraction tasks. Both the
data sources and NLP tasks do not have a clear
parallel with our objective.

While robots have been successfully deployed in
disaster relief missions, the current state of the art
is a human tele-handler in complete control of the
robot (Chiou et al., 2022; Kanazawa et al., 2023).
This puts all of the cognitive burden on said tele-
handler, and does not allow for the re-tasking and
pivoting required in such a high-stakes, fast chang-
ing scenario (Bonial et al., 2024). To move the
state of the art from tele-handling to human-robot
dialogue, Lukin et al. (2024) provide a corpus of
simulated dialogues in a disaster scenario that are
annotated for semantic meaning, dialogue structure,
and visual common ground. However, this corpus
works with a robot with limited abilities and does
not touch on creating a system to reason about a
wide variety of objects and disasters.

2.3 Synthetic Data Generation
Synthetic data, or data generated by an LLM, has
become increasingly popular as an inexpensive
and relatively proficient method of data collection.
While cyclically fine-tuning LLMs on the synthetic
data they generate denigrates the models’ perfor-
mance (Alemohammad et al., 2023), fine-tuning
on synthetic data has nevertheless improved short
term performance in instruction following and so-
cial common sense (Eldan and Li, 2023; Wang
et al., 2022).

This paper is inspired in particular by the
pipeline developed by Wang et al. (2022), who
hand crafted 175 “seed” instructions. These seed in-
structions were used for 8-shot prompting of GPT’s
text-davinci-001 model to generate more than
50,000 instructions for a generic and ungrounded
AI assistant. These synthetic instructions were then
used to fine-tune text-davinci-001. The authors
found that their method and resulting fine-tuned
model performed comparably to OpenAI’s GPTIn-
struct (Wang et al., 2022). Taori et al. (2023) in-
novated on Wang et al. (2022) by fine-tuning a
separate, smaller language model with a different
architecture, as opposed to fine-tuning on the same
model that generated the data. They subsequently
found that their resulting model’s answers were
rated as highly as GPT’s text-davinci-003.
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Figure 2: The pipeline to create the FRIDA suite of models. A search and rescue expert fills out a survey on the
relevant tasks and objects used in disaster response, then a semantics expert adds those terms to the ontology and
fills in the templates to generate new seed instructions for a variety of different disasters. These seed sentences are
utilized to generate synthetic data for fine-tuning an LLM with the necessary expertise on the specific disaster.

3 Methods

3.1 FRIDA Seed Data

We developed an expert-in-the-loop pipeline to gen-
erate high-quality seed data that leverage expertise
on both disaster-relief and semantics. The pur-
pose of this pipeline is to enable quick and efficient
fine-tuning of small LLMs to be capable of critical
reasoning in specific disaster environments. The
details of this pipeline are described in Shichman
et al. (2024), here we provide a brief overview. We
developed a series of templates that can be filled in
with vocabulary from an affordance ontology based
on the Rich Event Ontology (Kazeminejad et al.,
2018). This affordance ontology is extended to
serve as an ontology of disaster-related objects and
their functionalities, as defined by the objects’ Prop-
Bank semantic roles labels (Palmer et al., 2005).

To fill in these templates with proper data, a dis-
aster expert first provides information about the
relevant objects and situations encountered in their
work. For this paper, the authors simulated this
step by gathering existing resources authored by ex-
perts on the Turkey-Syria Earthquake recovery ef-
forts (Arranz et al., 2023). After gathering domain-
specific data, linguists go through a template-filling
pipeline. Summarily, the linguists select the rele-
vant vocabulary from the expert knowledge to add

to the aforementioned affordance ontology. They
then use this ontology and template-specific gener-
ation instructions to fill in the templates to create
“seed” instructions. These templates are format-
ted as multiple choice questions with semantically
distinct answers. Some examples of this process,
as well as some of the synthetic instructions that
result, can be seen in Table 1.

Although some related work leverages the same
seed sentences used for generating synthetic data to
also evaluate the data (Wang et al., 2022), we used
this same pipeline to develop a separate and unique
evaluation to ensure that our evaluation was not
present in any training data. The seed and evalua-
tion instructions include multiple choice answers,
enabling more efficient evaluation and comparison
of models.

3.2 Synthetic Dataset Generation and
Analysis

The dataset we use in this work focused on search
and rescue operations in the aftermath of the
Turkey-Syria Earthquake (Arranz et al., 2023). We
had 26 templates grouped into 8 categories based
on the type of knowledge they query as defined by
the Generative Lexicon Qualia (Pustejovsky and
Jezek, 2016). For all categories and examples, see
Table 4 of Appendix A. For each template, expert
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Template What state should OBJECT be
in to easily use it: X STATE or
Y STATE?

Seed In-
struction

What state should a drawbridge
be in for cars to cross a river? A)
Lowered or B) Raised

Synthetic
Instruction

What state should a door be in to
easily enter a room? A) Open B)
Closed

Template What role does OBJECT play in
DISASTER-RELATED TASK

Seed In-
struction

What role do hydraulic lifts
play in rescuing people after an
earthquake?

Synthetic
Instruction

How is a crowbar typically used
during earthquake rescue oper-
ations?

Table 1: Two Examples of templates and their corre-
sponding gold standard and synthetic instructions. Note
that the blanks in the first template can only be filled
in by objects with multiple states (i.e. linguistic knowl-
edge), while the blanks in the second template can only
be filled in with specific tools (i.e. disaster expert knowl-
edge).

annotators hand-made 5 seed instructions for syn-
thetic data generation (130 total instructions) and a
minimum of 4 evaluation instructions (119 exam-
ples). All resulting instructions were examined by
a second author for correctness.

For each template, we used its corresponding
seed instructions for 5-shot prompting with Gemini-
1.5-flash to generate 980 synthetic instructions
based on the given template (Team, 2024a). We
chose Gemini as our synthetic data generator for
its accessible and affordable API, as well as its
high scores on our evaluation (93.9% average Sem-
score, see section 3.4). We prompted Gemini to
return 40 instructions per API call. To ensure our
synthetic data were unique, we used ROUGE scor-
ing (Lin, 2004) to ensure Gemini was not giving
us duplicates of previously generated instructions.
Depending on the template, the cut-off ROUGE
score went from 0.8 for templates with more varied
language to 0.97 for templates with very structured
wording. We also increased model temperature for
the more structured templates to increase diversity
of responses.

We get a sense of the resulting synthetic dataset

Figure 3: The distribution of the synthetic data’s instruc-
tion length (top) and maximum ROUGE score (bottom).
Averages are shown as black dashed lines. Our high av-
erage instruction length and general distribution shows
synthetic instructions are sufficiently complex, and our
average over each instruction’s top ROUGE score shows
the instructions are sufficiently unique for this to be a
challenging task.

from the histograms in Figure 3. We automatically
evaluated for instruction length and each instruc-
tion’s maximum pairwise ROUGE score. We found
we had substantial average instruction length, and
reasonable ROUGE scores given that our data are
template-based. There was a large range in both
metrics across the different template categories,
which we attribute to the overall complexity of the
individual templates. Some templates require short
instructions with binary answers, while others have
longer instructions where all answers are sentences.

Category Training / Dev split

Relative Size 3620 / 403
Object Functions 4460 / 496
Objects Causing Harm 2675 / 298
Earthquakes 882 / 99
Specialized Equipment 2679 / 298
Instruction Understanding 1792 / 200
Differences 4458 / 496
Non-functional Object Facts 2662 / 296

Total Instructions 23232 / 2582

Table 2: The number of instructions in the training and
development datasets used for fine-tuning FRIDA and
its ablations.
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3.3 FRIDA Model construction

We used our synthetic dataset to fine-tune the 1
Billion, 3 Billion, and 8 Billion parameter Instruct
models from the LLaMa 3 herd (Team, 2024b) as
well as the Mistral AI’s Ministral 8B Instruction
tuned model (Team, 2024c). We chose to use the
LLaMa suite due to it having multiple small instruc-
tion tuned models of different sizes, with strong
performance (Team, 2024b). We chose Ministral
8B to serve as a comparison, since it is trained
with sliding window attention, unlike the LLaMa
models trained with full attention (Team, 2024c).
Additionally, Ministral 8B was released after the
LLaMa 3 herd and outperformed the LLaMa mod-
els on a variety of metrics (Team, 2024c). We chose
to fine-tune the instruct variations of these models
because our task is based on answering questions.
All models were trained with the performance en-
hanced fine-tuning model LoRA (Hu et al., 2021)
with full precision.

Of the four fine-tuned models, the strongest fine-
tuned model performance on our evaluation was
from models trained on Ministral 8B. We hypothe-
size that this is due to the architectural differences
between Mistral AI and Meta AI models. Specif-
ically, sliding attention could be helpful in focus-
ing the model’s attention on the instruction con-
tent instead of the multiple choice answers. Ad-
ditionally, Ministral 8B’s sliding attention mech-
anism is more memory and time efficient, mak-
ing it more practical for deployment on a robot
(Team, 2024c). As such, we focused our analysis
on FRIDA and aFRIDA models based on Ministral
8B, since they are the most conceivable models to
work in a robotic system in the near term. Results
for the LLaMa models can be found in our github.
Fine-tuning specifics can be found in Appendix B.

3.4 Evaluation

As described in section 3.2, we used the same
pipeline for creating seed data to create a custom
evaluation, with at least four evaluation questions
per template for a total of 119 evaluation instruc-
tions.

Although we leverage multiple choice questions
and answers for evaluation, we required a less rigid
method than exact match so that formatting er-
rors (e.g., writing “A” instead of “A)”, or forget-
ting punctuation) would have less impact. Thus,
we used SemScore (Aynetdinov and Akbik, 2024;
Geronimo and Lera, 2024), which is a scoring met-

ric that uses cosine similarity to compare a model’s
embedding vectors of the gold standard and FRIDA
responses.

3.5 Ablation Study

To better understand the effectiveness of the types
of physical reasoning represented in our synthetic
data, we ran an ablation study where we fine-tuned
our base model on subsets of the synthetic fine-
tuning data, which can be seen in Table 2. We made
an ablated model for each category of data, where
each model is fine-tuned only on the synthetic data
generated by templates in said category. For exam-
ple, the “Relative Sizes and Shapes” ablation model
is trained on data generated from 4 templates test-
ing size, weight, objects fitting in containers, and
objects changing state. We refer to these ablated
models as ablated-FRIDA (or aFRIDA) models.

The resulting name for a FRIDA model trained
only on data from the Relative Sizes and Shapes cat-
egory would thus be, “aFRIDA: relative sizes and
shapes”, where “relative sizes and shapes” refers to
the subset of data used (see Appendix Table 4 for
data categories). The ablated models were tuned
with the same hyper-parameters and hardware as
the full FRIDA model.

A model suite for a given base model contains
FRIDA, trained on the full dataset, as well as 8
aFRIDA models trained on the categorical subsets
of the data: relative sizes and shapes, object func-
tion, object differences, specialized equipment, ob-
jects causing harm, non-function object facts, earth-
quake knowledge, and instruction understanding.
Examples of data for each category can be found
in Table 4 in the appendix.

4 Results

As seen in Table 3, the Ministral 8B FRIDA model
had a higher SemScore Aacuracy than its base
model. However, the aFRIDA models for the “Rel-
ative Size and Shape” and “Object Functions” cat-
egories outperformed both the unablated FRIDA
model and the base model. These models also out-
performed Gemini-1.5-flash’s SemScore of 93.9 in
a zero shot setting.

We assessed each model’s capability on each
type of reasoning tested in the evaluation dataset.
To show the overall trend across models, we present
the SemScore results for the FRIDA and aFRIDA
models in Figure 4. Overall, when observing model
performance in the Figure 4’s columns, models
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Model SemScore
Accuracy (%)

Ministral 8B Instruct 93.5
FRIDA 94.6

Ablated Model SemScore
Fine-Tuning Data Subset Accuracy (%)

relative sizes and shapes 95.0
object functions 94.7
object differences 93.4
objects causing harm 93.3
specialized equipment 93.8
non-functional obj facts 93.2
earthquake knowledge 91.7
instruction understanding 85.0

Table 3: The SemScore Accuracy on all evaluation
data for the base model Ministral 8B Instruct, the fine-
tuned FRIDA model trained on all synthetic data, and
the fine-tuned models trained on ablated subsets of the
synthetic data (aFRIDA). The FRIDA model trained on
all data improved performance over its corresponding
base model. The best overall performance came from
the aFRIDA model trained on a subset of the synthetic
dataset involving comparing objects by their physical
state.

fine-tuned only on objects’ basic size and shape
characteristics or only on object functionality per-
formed more strongly across most evaluation cate-
gories. This was despite these synthetic data cover-
ing straightforward physical semantics that don’t
require any highly specific knowledge or creativity
like the “specialized equipment” or “objects caus-
ing harm” categories. These models also had the
strongest performance with far less training data
than the full FRIDA model (see Table 2).

Looking at evaluation data types represented in
the rows, it is clear that the more difficult evalu-
ations are “specialized equipment”, the category
querying about the specialized objects used in earth-
quake search and rescue, and “earthquake”, the cat-
egory evaluating scientific knowledge about earth-
quakes. Both of these evaluations are highly spe-
cific and technical. The easier evaluation categories
are “object functions” and “differences”, which
pertain to understanding the basic semantics of ob-
jects’ abilities and the differences between objects,
respectively.

Another key observation from Figure 4 can
be found by comparing evaluation performance
between FRIDA and Ministral 8B. FRIDA has

Figure 4: SemScores (embedding-vector cosine sim-
ilarity scores) for the FRIDA suite for each type of
evaluation. Across all models, performance is better
in evaluation data corresponding to physical common
sense (object functions, differences) and worse in eval-
uation data corresponding to specialized object knowl-
edge (earthquake, specialized equipment).

stronger performance than the base model except
for the “required equipment”, “earthquake”, and
“instruction following” evaluations. This could po-
tentially demonstrate that these data need to be
generated differently or that Ministral 8B needs
more of them in order to strengthen performance.

5 Discussion & Error Analysis

It is particularly surprising that the “aFRIDA rela-
tive size and shape” and the “aFRIDA object func-
tion” models outperformed all other models across
the board, even though the physical semantics ex-
pressed in those fine-tuning data are not complex.
We hypothesize that clarifying the basic properties
and affordances of objects provided a better basis
for the model to have stronger physical reasoning
across all categories.

Another surprise was that the “relative sizes and
shapes” evaluation subset was a challenge for the
FRIDA suite. Although one may think that simpler
object properties like its “relative sizes and shapes”
might be relatively prevalent in the base models’
pre-training data, it is also plausible that report-
ing bias in web text leads to under-representation
of highly commonplace facts (Raji et al.). We
hypothesize that this lack of pretraining data is
partially why the ablation model trained on “rela-
tive shapes and sizes” synthetic data performs so
strongly. However, this does not answer why the
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ablated models trained on data pertaining to other
challenging categories in our evaluation, namely
“aFRIDA: earthquake” and “aFRIDA: specialized
equipment”, did not receive the same overall per-
formance bump.

We suspect that the reason “aFRIDA: earthquake”
and “aFRIDA: specialized equipment” did not sim-
ilarly improve performance is that our synthetic
data for the more specific objects and tasks tended
to be longer and have lower ROUGE scores. These
data therefore had more diversity. The sample size
of the Earthquakes and Specialized Equipment syn-
thetic data subsets may have been too small for the
model to be correctly biased by fine tuning. Con-
versely, larger models may have ingested operators’
manuals for specialized equipment, facilitating par-
roting answers for questions on this topic. We note
that our research highlights the general difficulty of
analyzing the precise effects of fine-tuning given
opaque pre-training data.

Error analysis of both the FRIDA model (fine-
tuned using all synthetic data) and the “aFRIDA
relative size and shape” model revealed that both
models got the same instances and number of the
“relative size and shape” evaluation data incorrect.
For example:

1. “What is the easiest way to use a camera?”
A) with the camera plugged in
B) with the camera unplugged
Gold: B) with the camera unplugged
FRIDA: A) with the camera plugged in

The base Ministral model generally gets the same
“relative size and shape” evaluation instances in-
correct as the FRIDA models. However, it also
answers incorrectly for over half of the instances
of test items that relate to answering which item
is bigger and which item will fit into another item.
For example:

2. “Choose the biggest of a given set of objects
in terms of your own common sense.”
A) bicycle
B) chalk
C) poster
D) jar
E) taillight
Gold: A) bicycle
Ministral: D) jar

3. “Can chalk fit in a cup?”
Answer “it can” or “it cannot”
Gold: it can
Ministral: it cannot

Thus, we conclude that the fine-tuning con-
tributed to improvement in understanding which
items are bigger and which items fit into others in
particular. This improvement may translate to im-
provement in other related categories. Specifically,
we also see dramatic improvement over the base
model for the “objects causing harm” evaluation
data. This could be further boosted by a general
understanding of which objects are larger.

When it came to reasoning about the complex
equipment used, error analysis revealed that both
vanilla and fine-tuned models scored perfectly
when asked to choose the correct role for an object
in an event. For example:

4. “What role does a helicopter play in the search
and rescue process?”
A) Provide a vantage point to identify heavily
damaged areas
B) Move large vehicles to disaster area
C) Blow away debris
D) Warn victims about aftershocks
E) Blow debris out of the way
Gold: A) Provide a vantage point to identify
heavily damaged areas
Ministral: A) Provide a vantage point to iden-
tify heavily damaged areas
FRIDA: A) Provide a vantage point to identify
heavily damaged areas

The task of choosing the correct object to use
for a task proved more challenging. Fine-tuning
on related data seemed to unnecessarily bias the
model toward choosing the most complicated ob-
ject, while fine-tuning on unrelated data maintained
results. For example:

5. “Select the equipment needed for breaking rub-
ble into smaller pieces after an earthquake.”
A) axe
B) pickaxe
C) hydraulic lift
D) hard hat
E) hammer
Gold: B) pickaxe
Ministral: B) pickaxe
FRIDA: C) hydraulic lift
aFRIDA relative sizes: B) pickaxe
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In the most complex reasoning task of ordering
steps to complete to use an object, fine-tuning had
no clear effect, with all models providing random
answers.

6. “The following are two different steps for
using a dump truck. Which needs to happen
first?
A) Wait for others to fill the truck bed
B) open the tailgate
Gold: B) open the tailgate
Ministral: B) open the tailgate
FRIDA: B) open the tailgate
aFRIDA relative sizes: A) Wait for others to
fill the truck bed
aFRIDA required equipment: A) Wait for
others to fill the truck bed

We thus conclude that fine-tuning for required
equipment did not effectively bias the models to un-
derstand the use cases of these complex objects. At
its worst, it incorrectly biases the model to choose
complex objects when simpler ones would be more
effective.

Overall, the FRIDA pipeline improves small
LLM object reasoning when said models are fine-
tuned on more general physical common sense and
object reasoning data. The FRIDA suite models
are lightweight enough to fit within our constraints,
and can even achieve comparable performance to a
much larger Gemini model. In comparison to the
ablated models, the performance of the full FRIDA
model trained on all synthetic data demonstrates
that more work needs to be done to improve the
synthetic dataset distribution to be ideal for improv-
ing FRIDA model performance on reasoning for
earthquake search and rescue.

5.1 Future Work
There are several ways we can further improve the
FRIDA pipeline. We want to improve our prompt-
ing for synthetic data to make them less trivial to
answer. We can refine and expand our less tech-
nical templates. By adding different phrasing, we
hope to make our synthetic data more reflective
of real world natural language. We also hope im-
plementing the strategies in other work (Ge et al.,
2024; Ding et al., 2023; Mukherjee et al., 2023)
for diversifying synthetic data will improve genera-
tion quality and efficiency. We want to explore the
impact of using quantized models over full preci-
sion models to determine if we can save additional

storage space while maintaining reasoning ability.
Finally, we plan to test the pipeline on other do-
mains with experts to help us refine our process.

6 Conclusion

We introduce a pipeline to create expert-in-the-
loop-based synthetic data that is then used for
fine-tuning to create FRIDA models. We found
our pipeline improved performance over our base
model. We performed an ablation study and found
that data generated from templates based in ba-
sic physical common sense reasoning about ob-
jects improved performance most; ablated models
trained on those data scored higher than FRIDA
models trained on all synthetically generated data
and higher than Gemini-1.5-flash, the LLM that
generated the synthetic data. This pipeline is an im-
portant step in understanding and improving LLM
object reasoning for practical use. Even if some of
our problem constraints are eventually alleviated by
technology that facilitates very large models with
smaller compute requirements, there will remain
problem spaces for which web-based pre-training
data simply does not exist. Our research demon-
strates an effective pipeline to specialize models
fine-tuned on data that is not well-represented in
typical web text pre-training data.

7 Limitations, Risks, and Ethics

One limitation is that we train and evaluate on
template-generated data rather than naturally occur-
ring language; there could be linguistic or stylistic
differences between template-generated data and
naturally occurring instructions. Though our ap-
proach still relies on access to expert input and
non-trivial computational power for fine-tuning to
counter these shortcomings, we outline solutions
in Section 5.1 which we believe are ripe avenues
for future work.

We note that multiple choice questions can
be different and less complicated than an uncon-
strained turn between a user and an AI assistant.
Nevertheless, we believe this work is an impor-
tant step towards our goal of imbuing smaller lan-
guage models with physical common sense. This
is because we prove the feasibility and capability
of small LLMs to complete this more constrained
task. We argue that FRIDA should be seen as a
proof-of-concept for LLM physical common sense
understanding, which sets the stage for increasingly
challenging training data and evaluations.
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FRIDA is built by biasing an LLM to a specific
domain. While this is important for our work, this
could be misused to bias models in harmful ways,
especially when considering applications involving
social common sense. When modifying our seed
data and templates, we took care to reduce gender
bias as much as possible. This was fairly trivial
since all questions pertained to objects and events,
not people. We acknowledge that many objects
from the ontology we used were annotated with a
Western perspective, and that other cultures likely
have additional uses for these objects.
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A Categories and Descriptions

See Table 4.

B Fine Tuning Specifics

For fine-tuning, we used Huggingface TRL(von
Werra et al., 2020) supervised fine-tuning example
script modified to access our custom dataset. We
used random sampling to split each dataset 90-10
into training and development subsets. We fine-
tuned using PEFT (Mangrulkar et al., 2022) and
LORA (Hu et al., 2021) to both decrease the com-
putational load on the robot and the time spent fine-
tuning. We mostly used parameters suggested by
the fine-tuning software we used (von Werra et al.,
2020), with a learning rate of 2.0e-4, and lora r and
alpha values of 32 and 16, respectively. The main
differences between our training and the default
parameters were training over 3 epochs instead of
1 and not using data packing. We fine-tuned on 2
A100 GPUs.

C Synthetic Data Generation Prompting

We primed Gemini with a system prompt that read
as follows:

You will be creating multiple choice
questions on a variety of topics related to
common sense and/or earthquake knowl-
edge. Be creative in choosing the vocabu-
lary and phrasing of these questions. All
responses must be given as json objects
with the following format:

{“instruction”:“example instruction”, “in-
put”:“A) this B) is C) an D) example E)
question”,“output”:“E) Question”}

A subsequent template prompt from each template
category can be seen in Table 5. The corresponding
5 shot examples followed these prompts.

D Licenses

We used TRL (von Werra et al., 2020) under the
Apache License. SemScore (Geronimo and Lera,
2024) implements the MIT license, and the LLaMa
models were used after author agreement to the
LLaMa 3.1 and 3.2 Community License Agree-
ment (Team, 2024b). Ministral 8B Instruct was
used under the Mistral Research License (Jiang
et al., 2023).
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Category Templates Examples Instances
in Seed
Sets

Relative sizes
and shapes

Biggest Object, Heaviest
Object, Relative Fit

Which of these objects is the lightest? out-
let, broom, pail, orange, screen

20

Ease of Interaction Given
Object State

Is a raised or lowered drawbridge more
effective at getting cars across the river?
Would a shoe fit in a bag?

Object Func-
tions

Basic Affordance, Size
Restricted, Shape Re-
stricted, General Property
Restricted,

Which of the following can be used to
climb and is bigger than a table? stile,
stairway, stepladder, step, ladder

25

Goal Restricted What should I use if I want to learn some-
thing from the internet?

Object Differ-
ences and Hy-
pernyms

Difference within Affor-
dance, Difference within
Affordance given Criteria,

What is the difference between a window
and a pane?

25

Basic Is-A, Identical Us-
age, Sub-Types

Can you use a shed as a barn?

Choose the truck from the list: coupe,
minivan, 18 wheeler, sedan, ATV

Objects in
Risky Situa-
tions

Cause Injury, Cause Dan-
ger, Cause Object Damage

Which of the following objects would be
the most dangerous if it hit something?
dvd, screen, wall, drum, mat

15

Required
Equipment

How to Use, Equipment
for Scenarios, Role of
Equipment in Task

Give a step by step explanation of how to
use a concrete saw.

15

What role does a thermal imaging camera
play in identifying survivors?

Primary and
Secondary
Object Facts

Where Object Found, Ob-
jects in Location, Sec-
ondary Uses

Which of the following can be used as a
lever? art, motorcycle, picture, dvd, broom

15

Disaster
Specific Knowl-
edge

Earthquake knowledge Choose the relevant precautions one
should take to prepare for an earthquake.

5

Instruction Fol-
lowing

Instruction Identification,
Follow-Up Questions

Choose the navigation instruction: drink
from the bottle, sail a boat, enter the door-
way

11

Table 4: An overview of the types of templates within each category, some examples of resulting seed sentences
within each category, and the number of instances of each category within the resulting seed dataset. Note the
emphasis on affordances, object knowledge, and instruction knowledge.
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Category Prompt
Heaviest Create 40 unique multiple choice questions about which objects

weigh the most. These questions must be multiple choice and
they must have 5 options with 1 correct answer. Choose lots of
different objects that people interact with.

Affordances
and Shape

Create 40 unique multiple choice questions about which objects
can complete a given function and are a certain shape.
These questions must be multiple choice and they must have 5
options with 1 correct answer. Choose lots of different objects
that people interact with.

Use As Create 40 unique multiple choice questions about if an object
can be used as a substitute for another object.
These questions must be multiple choice with the two choices
being “it can” or “it cannot”. Choose lots of different objects
that people interact with.

Damage
to Objects

Create 40 unique multiple choice questions about which object
would cause the most damage to a larger object or structure.
These questions must be multiple choice and they must have 5
options with 1 correct answer. Choose lots of different objects
that people interact with.

Equipment
Used in
Task

Create 40 unique multiple choice questions about how an object
is used in a task. The tasks and objects should be related to
earthquakes. The answer choices should be brief descriptions
of potential ways to use the object in the task. These questions
must be multiple choice and they must have 5 options with 1
correct answer. Make sure each answer option is unique.

Secondary
Uses

Create 40 unique multiple choice questions about objects that
are not created to complete a task, but nevertheless can complete
the task. These questions must be multiple choice and they must
have 5 options with 1 correct answer.
Make sure the answer choices do not include objects that are
meant to do the task described. Make sure to pick lots of unique
tasks and objects.

Earthquake Create 40 unique multiple choice questions about earthquakes,
earthquake preparation, and earthquake search and rescue pro-
tocols. These questions must be multiple choice and they must
have 5 options with 1 correct answer. Be as creative as possible
with the types of questions you generate, as long as they have
something to do with earthquakes.

Instruction
ID

Create 40 unique multiple choice questions about the purpose
of instructions. These questions must be multiple choice and
they must have 5 options with 1 correct answer. The answer
choices must all be simple instructions. Make sure the correct
answer falls under the given category. Use lots of different
simple instructions.

Table 5: A selection of prompts used to generate the synthetic data using Gemini Flash 1.5. Note all prompts had
similar language encouraging creativity and strict multiple choice answer requirements.
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Abstract
We present our work to build a French semantic
corpus by annotating French dialogue in Ab-
stract Meaning Representation (AMR). Specifi-
cally, we annotate the DinG corpus, consisting
of transcripts of spontaneous French dialogues
recorded during the board game Catan. As
AMR has insufficient coverage of the dynamics
of spontaneous speech, we extend the frame-
work to better represent spontaneous speech
and sentence structures specific to French. Ad-
ditionally, to support consistent annotation, we
provide an annotation guideline detailing these
extensions. We publish our corpus under a free
license (CC-SA-BY). We also train and eval-
uate an AMR parser on our data. This model
can be used as an assistance annotation tool to
provide initial annotations that can be refined
by human annotators. Our work contributes
to the development of semantic resources for
French dialogue.

1 Introduction

Abstract Meaning Representation (Banarescu et al.,
2013, AMR) encodes the meaning of a text as a
rooted, directed, and acyclic graph (see Figure 1).
Representing meaning in a structured form offers
several advantages for information systems. AMR
reduces semantic ambiguity by explicitly specify-
ing one plausible interpretation among others. Fur-
thermore, because AMR abstracts away from sur-
face variations — especially syntactic variations —
sentences with the same underlying meaning share
the same AMR representation (e.g., “The police
arrested the thief.” and “The thief was arrested by
the police.”). This canonical representation reduces
the search space for models, making AMR a useful
tool for various NLP tasks, such as machine trans-
lation (Wein and Schneider, 2024), automatic text
summarization (Liao et al., 2018; Liu et al., 2015),
and human-robot interaction (Bonial et al., 2019,
2023).

Training an AMR parser to automatically gen-
erate an AMR graph from a given text requires a
dataset consisting of texts associated with their cor-
responding AMR graphs. However, AMR datasets
for French are currently scarce, since most avail-
able AMR resources are in English. This imbal-
ance in semantic resources limits the development
of French semantic parsers, which hinders the
progress of French NLP systems that rely on them.
Furthermore, most existing AMR data are based on
written texts such as newspaper articles and online
forums. In contrast, dialogue data, which exhibits
unique linguistic features due to its interactive and
spontaneous nature –e.g., French discourse mark-
ers such as alors (then), du coup (so), donc (so),
and backchannels– remain underrepresented.

To fill this gap in French semantic resources, par-
ticularly for dialogue, we manually annotate the
DinG corpus (Boritchev and Amblard, 2022) in
AMR. DinG consists of transcriptions of dialogues
recorded during board game sessions of Catan, cap-
turing various linguistic features of spoken interac-
tion in French.

However, the standard AMR framework, as cur-
rently defined,1 has limitations in representing
speech-specific features. Therefore, we extend
AMR by introducing additional relations to (i) an-
notate two pragmatic phenomena: discourse mark-
ers and backchannel expressions, (ii) represent
coreference across multiple turns of speech.

To summarize, our main contributions are as
follows:

• We publish ding-01,2 a new AMR corpus
of spontaneous French dialogue containing
1,830 turns of speech. We aim to expand the

1The current version of the annotation guideline
is available at https://github.com/amrisi/
amr-guidelines/blob/master/amr.md

2https://doi.org/10.5281/zenodo.
15537425
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corpus to cover 3,000 turns of speech by the
end of 2025. We also release a data state-
ment with the corpus to describe all relevant
metadata and potential biases, following best
practices for data production for NLP (Bender
and Friedman, 2018; McMillan-Major et al.,
2024).

• We adapt AMR to represent spontaneous
speech phenomena in French, including dis-
course markers and backchannels.

• We provide an annotation guideline for two
purposes: 1) ensure annotation consistency by
clarifying aspects not specified in the original
AMR annotation guideline 2) newly define
how to annotate linguistic features specific to
French dialogue.

• We train and evaluate an AMR parser on our
dataset to showcase its practical use case. This
model is further expected to serve as an anno-
tation assitance tool.

We expect our corpus to contribute to the fu-
ture development of semantic parsers for French
dialogue, along with future (computational) linguis-
tics research on French dialogical data. As noted
by Wein and Opitz (2024), AMR corpora and tools
are an underexplored source of data for linguistic
investigation. The corpus is already getting some
interest from the semantics research community,
as it has been integrated in Grew (Amblard et al.,
2022) and can now be explored in the tool.3

2 Background and Related Work

2.1 Introduction to AMR
AMR represents the meaning of texts using di-
rected, acyclic, and rooted graphs. In an AMR
graph, the nodes are 1) predicates predefined in
Propbank4 (Palmer et al., 2005), e.g., break-01
in Figure 1 or 2) English words, e.g., man and
window in Figure 1 or 3) AMR-specific keywords,
e.g., date-entity.

The edges of the AMR graph are labeled to
indicate the relation between nodes. For exam-
ple, :ARG0 and :ARG1 in Figure 1 respectively
indicate that man is the agent of the predicate
break-01 and that window is the object of the

3https://semantics.grew.fr/?corpus=
ding-01

4https://propbank.github.io/v3.4.0/
frames/

same predicate. This predicate-argument structure
is defined in Propbank.5 An AMR graph can also
be represented in textual form (see Figure 2). Al-
though AMR is initially designed for English texts,
it is also commonly used to represent non-English
texts (Damonte and Cohen, 2018; Xu et al., 2021;
Liu et al., 2020). In multilingual settings, two sen-
tences in different languages that convey the same
meaning (i.e., sentences that are translations of
each other) will share the same AMR graph.

Figure 1: AMR graph for “A man breaks a window” or
« Un homme a cassé la fenêtre ».

(b / break-01
:ARG0 (m / man)
:ARG1 (w / window))

Figure 2: AMR graph linearized in text format.

2.2 AMR Datasets
Most large-scale AMR datasets, including
AMR 3.0 (Knight et al., 2020) and Massive-AMR
(Regan et al., 2024), are available exclusively in
English. AMR 3.0 is the most popular dataset for
training and evaluating AMR parsers. It contains
around 60,000 annotated examples from various
sources such as news articles, blogs, and online
forums. Massive-AMR, the largest manually
annotated AMR dataset, consists of 84,000
utterances addressed to a virtual assistant. Most
sentences in Massive-AMR are short questions or
requests.

For French, a few datasets are available: Le Petit
Prince AMR (Kang et al., 2023), Massive-AMR
French (Regan et al., 2024) and ReMEDIATE (Dru-
art, 2024). For Le Petit Prince AMR, the authors
manually aligned the entire English dataset, The
Little Prince AMR,6 with the original French text.
The French Massive-AMR consists of a part of
Massive-AMR English (Regan et al., 2024), manu-
ally translated into French. ReMEDIATES is anno-

5https://propbank.github.io/v3.4.0/
frames/break.html#break.01

6https://github.com/flipz357/
AMR-World/blob/main/data/reference_amrs/
amr-bank-struct-v3.0.txt
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tated semi-automatically in French using a trained
annotation model. Unlike two previous datasets,
ReMEDIATES is not built on pre-existing English
data. In terms of corpus type, The Little Prince
AMR is a literary piece of work. Massive-AMR
consists of requests sent to virtual assistants. Fi-
nally, ReMEDIATES contains interactions between
a virtual assistant and its user to make reservations.
Note that ReMEDIATES uses the syntax of AMR
graphs but adapts all the concepts and edge labels
for Task-Oriented Dialogues (TOD).

Our work stands out from prior work in several
key ways. First, we annotate spontaneous conver-
sations between multiple speakers. Our corpus
captures real-world interactions, reflecting the dy-
namics of spontaneous speech in French. Further-
more, The Little Prince AMR and Massive-AMR
were initially annotated in English and then adapted
to other languages through manual translation or
crosslingual alignment (assuming that translated
sentences should have the same semantic graph as
its original sentence). This process can introduce
bias, making the data potentially English-centric.
We directly annotate French dialogues in AMR
without relying on prior English annotations, en-
suring that the semantics of French are preserved
throughout the annotation process. Finally, while
ReMEDIATES is annotated semi-automatically, we
annotate the data manually. It is worth emphasiz-
ing that large generative language models remain
unreliable for semantic annotation tasks, even for
English (Ettinger et al., 2023).

2.3 AMR for Dialogues

Although standard AMR provides various semantic
roles to present meanings of texts, several efforts
have been made to extend it to capture various
aspects of dialogue. DMR (Hu et al., 2022) and
Dialogue-AMR (Bonial et al., 2020), as well as the
work of Druart (2024) are among these extensions.
These three approaches primarily focus on task-
oriented dialogues, in which an agent requests an
action to a robotic or virtual agent. Therefore, they
integrate fine-grained instructions and introduce
additional roles to represent, for example, illocu-
tionary force or the speakers’ intended contribution
(Bonial et al., 2020).

However, these roles are not ideally suited to
our corpus, which consists of spontaneous conver-
sations among multiple speakers. While we aim
to follow standard AMR conventions as closely

as possible by adhering to the established annota-
tion guidelines, the nature of our data—French di-
alogue—introduces linguistic phenomena specific
to natural oral interaction, such as backchannels
and discourse markers.

Backchannels and discourse markers convey
pragmatic information in dialogue. However, stan-
dard AMR does not take this type of information
into account, as specified in its annotation guide-
lines. Despite this, we chose to annotate the prag-
matic information conveyed by backchannels and
discourse markers for two main reasons. First, un-
like AMR 3.0, which relies primarily on textual
data, our corpus consists of dialogues rich in prag-
matic content. We believe that annotating this infor-
mation provides a valuable resource for the study
of French dialogue. Furthermore, the additional
roles we propose can be easily removed, ensuring
compatibility with AMR 3.0.

Second, although the AMR annotation guide-
line states that pragmatic information is not in-
cluded, in practice, AMR incorporates some prag-
matic elements. For example, the choice of the root
node in AMR often depends on the primary focus
of the sentence, reflecting pragmatic information.
In addition, some predicates (e.g., know-05 and
see-03) are used for their discourse functions
(e.g., as in “you know” and “you see.”), which are
also closely related to pragmatics. Thus, adding
pragmatic elements to our annotations is not en-
tirely incompatible with standard AMR practices.
To account for this pragmatic information, we in-
troduce new roles, which are detailed in Section 5.

3 The DinG Corpus

We annotate the DinG corpus7 (Boritchev and Am-
blard, 2022), a collection of manually transcribed
multi-party dialogues among French-speaking play-
ers of the board game Catan.8 Catan is a strategic
board game centered on resource management and
exchange. Thus, players often negotiate resource
exchanges with each other, and their actual inter-
actions are recorded in the corpus. We select this
corpus for two main reasons.

First, DinG is available under a free license.9 As

7https://gitlab.inria.fr/
semagramme-public-projects/resources/
ding/

8We refer readers to the website https://www.catan.
com/ for more information on the game.

9The Attribution ShareAlike Creative Commons (CC BY-
SA 4.0) license.
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Number of utterances (non-empty) 1,667
Number of tokens covered 17,887
Number of speakers 9

Table 1: Basic statistics on our data.

our goal is to make our data public, selecting open
data is a crucial requirement. Second, DinG con-
sists of natural dialogues among speakers. Since
the environment is not controlled by the data col-
lectors and the players are free to interact during
the game, this dataset captures a natural conversa-
tional flow and includes a wide variety of dialogic
phenomena. As such, its semantic annotations will
serve as an ideal testbed for evaluating pre-trained
language models on spontaneous speech transcrip-
tions.

4 ding-01

In this section, we present some statistics on the
corpus, the annotation process, and the data quality
assessed by inter-annotator agreement.

The annotation was carried out over a six-months
period, during which approximately 1,830 (see Ta-
ble 1 for other statistics) turns of speech were an-
notated using AMR.10 Among these 1,830 turn tak-
ings, some examples only consist of non-annotable
words, e.g., [toux] (cough), [rire] (laugh). The
number of utterances (non-empty) in Table 1 ex-
cludes these non-annotable examples.

Among these examples, there are 459 discourse
markers and 36 instances of backchannel. The
corpus was primarily annotated by the first author
of this article using the metAMoRphosED annota-
tion tool (Heinecke, 2023, see Figure 3). Approx-
imately 15% of the examples in the entire corpus
were validated by two other annotators, who are co-
authors of this article. Specifically, the lead annota-
tor and the two annotators met regularly throughout
the annotation process (once a week or every two
weeks) to check the validity of the examples one
by one and record any difficulties encountered. In
case of disagreement among the three annotators,
the example was corrected or modified during the
discussion.

We encountered several challenges during the an-
notation process. One example concerned the word
‘donc’ (so), which appears frequently in DinG. In

10We followed the original turn-taking divisions as defined
in the DinG corpus.

most cases, it functions more as a discourse marker
(used to start a speech turn or as a filler word) than
as a causal connector. However, its usage was of-
ten ambiguous, and both interpretations could be
valid depending on the context. To reduce ambigu-
ity and improve consistency between annotations,
we established the following rule: systematically
annotate ‘donc’ as a discourse marker, provided
that its removal does not change the meaning of the
sentence. Our method for addressing other similar
challenges by defining clear directions is detailed
in our annotation guidelines. Furthermore, when
faced with complex cases, or cases where multiple
annotation choices were correct, we referred to ex-
isting AMR 3.0 data in English to choose the most
plausible annotation. These examples contain com-
ments with references to the AMR 3.0 sentences
that justify these choices.

To assess the quality of the annotations, 160 ex-
amples from our corpus were annotated by two
annotators. The agreement score was measured
using the SMATCH (Cai and Knight, 2013) score.
SMATCH is an evaluation metric for AMR calcu-
lated by counting the number of triplets (node, la-
beled edge, node) in common. We obtained a score
of 71.6. For comparison, Banarescu et al. (2013)
reports inter-annotator agreement scores ranging
from 71 to 83, depending on the data source and
the annotators’ level of expertise.

After this evaluation, we performed an annota-
tion conflict resolution step to produce our final
gold corpus. All three authors jointly reviewed
these 160 annotation examples. In cases of dis-
agreement, the group resolved conflicts by choos-
ing one of the existing annotations or agreeing on
a new alternative.

Common conflicts involved edge labels such
as :ARG0, :ARG1, and :ARG2, typically result-
ing from annotation mistakes that were straight-
forward to correct once identified. Another recur-
ring issue concerned the selection of synonymous
PropBank concepts. For instance, own-01 and
possess-01 convey the same meaning and share
the same two semantic roles (:ARG0 for the owner
and :ARG1 for the owned item). In the English
AMR data, the choice between these concepts is
guided by the specific lexical item used in the sen-
tence. We used these cases of conflict to refine
our annotation guidelines, ensuring a consistent
selection between such synonymous concepts.
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Figure 3: Screenshot illustrating the annotation process with metAMoRphosED.

5 AMR Adapted for DinG

While adhering as closely as possible to standard
AMR, we introduce some extensions to better cap-
ture the specific features of spontaneous French
speech. Some of these key features are outlined be-
low. In addition, we annotate inter-instance corefer-
ence, which is an addition that sets our corpus apart
from AMR 3.0. We also adapt the standard AMR
concept of focus to represent focalization strategies
in spoken French. Further details on these exten-
sions are provided in our annotation guideline.

For ding-01 use cases requiring compatibility
with the English AMR 3.0 corpus, these extensions
are designed to be easily removable.

5.1 Discourse Markers

Discourse markers are short words or phrases used
by speakers to structure their discourse, for exam-
ple, donc (so), et (and). They are used to begin an
utterance, or can serve as fillers in the middle of
an utterance or during a hesitation. We introduce
a new role, :discourse-marker, to annotate
them (see Figure 4). This role can also be reified
with the concept be-discourse-marker-91.

#::id 0780B
(p / put-01

:ARG0 (y / you)
:ARG1 (r / road)
:mode imperative
:ARG2 (h / here)
:polarity -

:discourse-marker “donc”

Figure 4: « Donc mets pas ta route ici » (So don’t
put your road here).11

5.2 Backchannels

Backchannels refer to short interjections made by
a listener while another person is speaking (e.g.,
hum, mmh-mmh) to signal attention to the conver-
sation. We annotate them using a new relation
:back-channel, which can be reified with the
concept be-back-channel-91. Figure 6 is an
annotation of backchannel to a previous utterance
(Figure 5).

11#::id specifies the identifier of the example in our cor-
pus. The identifier is composed of a number (i.e., 0780) and
the letter (i.e., B) that denotes a speaker.
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#::id 0851B
(p / possible-01

:ARG1 (e / exchange-01
:ARG1 (t / thingy))

:ARG1-of (r / request-confirmation-91)
:discourse-marker “du coup”

:time (n / now))

Figure 5: « du coup là on peut échanger des trucs
c’est ça ? » (So now we can exchange thingies,
right?).

#::id 0852Y
(b / be-back-channel-91

:ARG2 “hum”)

Figure 6: « hum » (hmm).

5.3 Inter-Instance Coreference

Since the DinG corpus captures interactions be-
tween players throughout the game, coreference
can span multiple utterances or instances. To en-
sure a complete representation of meaning, we an-
notate multi-instance coreferences by marking an-
tecedents that appear in different utterances. For ex-
ample, the node s0080b_s_stone in Figure 8
indicates that its antecedent comes from the exam-
ple identified by the ID 0080b in Figure 7 and the
concept s / stone associated with that exam-
ple.

# ::id 0080B
(w / want-01

:ARG0 (y / you)
:ARG1 (s / stone)
:polarity (a / amr-unknown))

Figure 7: « Tu veux de la pierre ? » (You want
stone?)

# ::id 0082B
(e / exchange-01

:ARG0 (I / I)
:ARG2 (y / you)
:ARG1 (s / sheep

:quant 3)
:ARG3 (s1 / s0080B_s_stone))

Figure 8: « Je te l’échange contre 3 moutons » (I
trade you 3 sheep for it).

5.4 Inter-Instance Verb Ellipsis

Speakers often omit verbs when the meaning re-
mains clear without them (verb ellipsis). When
this occurs across different instances (inter-instance
level), the omitted verb is mentioned in a previous
utterance, and may be spoken by another speaker.
We annotate such ellipses similarly to inter-instance
coreference, by referencing the utterance ID of the
original verb (see Figure 9 and 10).

# ::id 0061R
(a / and

:op2 (p / possible-01
:ARG1 (p1 / put-01

:ARG0 (w / we)
:ARG1 (c / settlement)
:ARG2 (i / intersect-01)
:mod (o / only))))

Figure 9: « On peut poser les colonies que sur les
intersections. » (We can put the settlements only on
intersections).

# ::id 0062Y
(s / s0061R_p1_put-01

:ARG0 (w / s0061R_w_we)
:ARG1 (r / road)
:ARG2 (e / edge

:mod (o / only))

Figure 10: « et les routes que sur les arêtes » (and
roads only on edges).

5.5 Focus Representations

In AMR, the focus of a sentence is indicated by a
root node. We apply this principle to the annotation
of cleft structure, a sentence structure commonly
used in French for emphasis. The cleft structure
follows the pattern « C’est [subject] qui ... » (“it’s
[subject] who/that...” in English) used to empha-
size the [subject]. To reflect this emphasis on the
subject, we select it as the root of the AMR graph.
Figure 11 presents an example of a sentence with
a cleft structure, accompanied by its annotation in
AMR. We adopt the same strategy for cases of left
dislocations with pronominal resumption, as in the
example: «moi, je veux 2 blés» (“me, I want 2
grains,” in English). This type of structure, very
common in spoken French, is also a way of express-
ing focus. In this case, the concept i will be the
root of the AMR graph.

#::id 0095Y
(y / you

:ARG0-of (c / choose-01
:ARG1 (p1 / place

:ARG2-of (p / put-01
:ARG1 (t / they))))

:polarity (a / amr-unknown))

Figure 11: « C’est toi qui choisis où est-ce que tu
les mets ? » (It’s you who choose where you put
them?).

5.6 Disfluencies

Disfluencies are common in spontaneous dialogues.
Disfluency markers (e.g., euh, eh), repetitions
(e.g., «franchement t’es t’es franchement» “frankly
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you’re you’re frankly” in English) and false starts
(e.g., «j’ai be- j’ai pas de bois» “I nee- I don’t
have lumber” in English) are often observed in
the DinG corpus. In standard AMR, disfluency
markers are not annotated. In line with this conven-
tion, we do not annotate disfluency markers, repeti-
tions or short false starts. However, if a false start
has interpretable semantic content, we annotate it
using :reparandum (see Figure 12) following
de Marneffe et al. (2021), who employed this la-
bel to mark overridden disfluencies in syntactic
annotations.

# ::id 0314R
(t / thing

:value 7
:ord (o / ordinal-entity

:value 1)
:ARG1-of (f / fall-01)
:ARG1-of (h / have-degree-91

:ARG5 (r / roll-01
:ARG1 (d / dice))

:ARG2 (c / common
:reparandum (p / possible-01))

:ARG3 (m / most))
:discourse-marker “et”
:discourse-marker “donc”
:discourse-marker “hein”

:discourse-marker “et”)

Figure 12: « et au premier 7 qui va tomber qui est
donc euh le lancé de dés le plus possible hein le
plus courant » (and the first 7 to fall, which is the
most posssible the most common dice roll).

6 Models

We train an AMR parser on the previously de-
scribed data to showcase its practical use. The
trained model can assist in the annotation process
in our future work. Specifically, the model auto-
matically annotates the data, which can then be
manually refined by a human annotator. This semi-
automatic approach is useful for scaling up data
annotation.

6.1 Sequence-to-Sequence AMR Parser

Recently, sequence-to-sequence AMR parsers
(Konstas et al., 2017; Bevilacqua et al., 2021; Yu
and Gildea, 2022) have gained popularity due to
their strong performance and methodological sim-
plicity. These models take an input sentence and
generate an AMR graph in a textual format. Train-
ing such models requires a graph linearization step,
which converts the AMR graph into a single-line
textual format. It also requires a post-processing
step because the model may produce ill-formed out-
puts, for example, graphs with mismatched paren-
theses or disconnected components. To address

this, a post-processing step is applied to correct for-
matting errors and reconstruct a well-formed AMR
graph from its linearized representation. These
steps are described in more detail in the following
sections.

6.2 Experimental Setup

To train a sequence-to-sequence AMR parser, we
employ a multilingual language model mBart (Liu
et al., 2020). To linearize AMR graph, we traverse
the graph with depth first search (DFS) in line with
Bevilacqua et al. (2021). As a pre-processing step,
we rename variables in AMR graphs so that vari-
able numbering follows an order (e.g., a, a2, a3· · ·)
instead of random numbering (e.g., a3, a, a2· · ·). In
addition, we added empty space between parenthe-
ses (see Figure 13 and 14 for differences between
before and after pre-preprocessing).

(m2 / multi-sentence
:snt1 (e / exact)
:snt2 (m / make-05

:ARG2 (c1 / settlement
:ARG1-of (b / build-01

:ARG0 (y / you)))
:ARG1 (p / point :quant 1))

:snt3 (m1 / make-05
:ARG2 (c2 / city)

:ARG1 (p1 / point :quant 2)))

Figure 13: AMR graph before pre-processing.

( m / multi-sentence
:snt1 ( e / exact )
:snt2 ( m2 / make-05

:ARG2 ( s / settlement
:ARG1-of ( b / build-01

:ARG0 ( y / you ) ) )
:ARG1 ( p / point :quant 1 ) )

:snt3 ( m3 / make-05
:ARG2 ( c / city )

:ARG1 ( p2 / point :quant 2 ) ) )

Figure 14: AMR graph after pre-processing.

We train two distinct models: one trained solely
on our data (hereafter referred to as Domain-
specific), and another that is first trained on a larger
AMR corpus (Knight et al., 2020) and then fine-
tuned on our data (hereafter referred to as Pre-
trained+Domain-specific). The aim of the second
model is to explore whether leveraging large-scale
AMR data can facilitate learning our data, which
differs in several key aspects: data types (text vs.
dialogue transcripts), domain (general vs. board
game-related), and semantic roles (standard AMR
vs. AMR adapted for French dialogue). Note that
the current large-scale AMR data is only available
in English and not in our target language, French.
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To obtain such data in French, we translated En-
glish AMR 3.0 into French using machine transla-
tion12 following Damonte and Cohen (2018).

We split our data set into train, dev and test
sets to respectively train the model, to select the
best checkpoint, and to evaluate the model’s per-
formance on unseen data. The training and dev set
respectively consists of 1,375 and 146 examples.13

For testing, we used the subset of data that under-
went a conflict resolution (see Section 4), which
consists of 146 examples after filtering out exam-
ples solely consisting of non-annotable words.

The model was trained for 4,000 steps, with eval-
uations conducted every 50 steps on a dev set to
select the best-performing checkpoint. Early stop-
ping was applied, terminating training if the vali-
dation score did not improve over 750 consecutive
steps. The learning rate was set to 3e−5. Pre-
trained+Domain-specific was initially pre-trained
on AMR 3.0 data for up to 40,000 steps, with
early stopping triggered after 7,500 steps without
improvement. Following pre-training, the model
was fine-tuned on our data for 4,000 steps using
the same settings described above for the Domain-
specific training.

6.3 Results

Figure 2 shows the results of our experiments. The
findings indicate that pre-training the model on
large-scale data is beneficial to learn our corpus
in several ways. First, it helps to learn the cor-
rect structure of AMR graphs. For example, while
the Domain-specific model produced 3 ill-formed
graphs out of 146 that could not be recovered
during post-processing, the Pre-trained+Domain-
specific model successfully avoided such errors.

Moreover, large-scale pre-training helps the
model better identify the appropriate predicates
for French text. The Domain-specific model occa-
sionally produced predicates that closely resembled
the surface form of the French verb, rather than the
correct PropBank predicate. For instance, it gener-
ated poser-01 instead of put-01 for the phrase
«tu peux poser...» (you can put...), and peux-01
instead of capable-01 for «tu peux » (you can).

12https://www.deepl.com/fr/translator
13We filtered out examples that include only non-annotable

sound e.g., [rire] and [toux] - [laugh] and [cough] in English.

SMATCH

Domain-specific 68.1
Pre-trained+Domain-specific 73.5

Table 2: SMATCH scores of the two models.

Despite these improvements, both models exhib-
ited certain weaknesses. Some sentences in the
dataset included non-annotable elements such as
coughing or laughter, marked with square brack-
ets (e.g., [toux] for coughing, [rire] for laughing).
These elements should not be represented in AMR
graphs, but our model failed to capture the pat-
tern and incorrectly annotated some of them (see
Figures 15 and 16 for an example). Additionally,
although the Pre-trained+Domain-specific model
generally performed better at predicting PropBank
predicates for French verbs, both models strug-
gled with rare verbs. In such cases, they gener-
ated incorrect predicates resembling the verb’s sur-
face form—for example, confine-01 instead of
entrust-01 for «on te confie...» (we entrust you
with...).

(y / yes

:mod (a / ah))

Figure 15: Reference graph for « ah [pron fin de
mot fricative palatele sourde]+ oui (0.5s) +[pron]»
(ah [pronounce voiceless palatal fricative]+ yes
(0.5s)).

(m / multi-sentence
:snt1 (a / ah)
:snt2 (e / end-01

:ARG1 (w / word
:mod (f / fricative))

:ARG2 (y / yes))
:snt3 (a2 / and

:op1 (y2 / yes)))

Figure 16: Pre-trained+Domain-specific’s prediction
for Figure 15.

Lastly, concerning new semantic roles added
in our adaptation (:discourse-marker and
:back-channel), both models showed good
performance at capturing them. Among 43 dis-
course markers to predict, both models found
around 30 discourse-markers (recall around 0.7).
However, some of these discourse-markers were
attached to wrong parent nodes. As for
:back-channel, there was only one example
in the test set and both models correctly predicted
the :back-channel.
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7 Conclusion and Future Work

We presented our ongoing work to annotate the
DinG corpus in AMR to contribute to linguistic
resources for French. To better represent the dy-
namics of spontaneous speech in the DinG cor-
pus, we adapted standard AMR by introducing new
semantic roles. We provide an annotation guide-
line detailing these adaptations, as well as a data
statement containing metadata of ding-01.14 To
demonstrate a practical application of the dataset,
we trained and evaluated an AMR parser on our
data. The resulting model can also serve as an an-
notation assistance tool, helping to accelerate the
annotation process and scale up the semantic anno-
tation process. In our future work, we aim to ex-
pand the annotated dataset to approximately 3,000
utterances.

UMR Uniform Meaning Representation (UMR)
have been introduced in Van Gysel et al. (2021)
as an extension of AMR to languages other than
English, with the ambition of being used to “anno-
tate the semantic content of a text in any language”.
UMR is developed as AMR with additional fea-
tures, notably aspect, tense, modality, along with
expanded ones, such as quantification & scope, and
discourse relations.

While UMR appears as a very promising rep-
resentation tool, we have not yet used it for our
purposes. There is no French-UMR dataset avail-
able for now, which makes evaluation difficult, es-
pecially for corpora with complex language phe-
nomena such as DinG. We plan to participate in
the development of AMR to UMR translation tools,
which should result in several silver French-UMR
corpora, paving the way for further meaning repre-
sentation work. The additions we made to AMR
in order to annotate DinG are a lighter version of
some of the additional annotations needed for UMR
annotation; thus our annotation guidelines could
also be of use for a middle step between AMR and
UMR.
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Abstract

We present a novel graph autoencoder (GAE)
architecture for classifying gestures using
Gesture Abstract Meaning Representation
(GAMR), a structured semantic annotation
framework for gestures in collaborative tasks.
We leverage the inherent graphical structure of
GAMR by employing Graph Neural Networks
(GNNs), specifically an Edge-aware Graph At-
tention Network (EdgeGAT), to learn embed-
dings of gesture semantic representations. Us-
ing the EGGNOG dataset, which captures di-
verse physical gesture forms expressing similar
semantics, we evaluate our GAE on a multi-
label classification task for gestural actions. Re-
sults indicate that our approach significantly
outperforms naive baselines and is competi-
tive with specialized Transformer-based mod-
els like AMRBART, despite using consider-
ably fewer parameters and no pretraining. This
work highlights the effectiveness of structured
graphical representations in modeling multi-
modal semantics, offering a scalable and effi-
cient approach to gesture interpretation in situ-
ated human-agent collaborative scenarios.

1 Introduction

In-person situated communication involves not just
language, but non-verbal behavior like actions and,
importantly, gestures. However, automated ges-
ture interpretation is complicated by how the same
gestural semantics may be represented by very dif-
ferent physical forms. Fig. 1 shows an instance of
this: two people use entirely distinct iconic gesture
shapes to denote the same concept—block.

This points to the need for higher levels of ab-
straction to adequately model the relationship be-
tween physical form and gestural meaning, particu-
larly in collaborative dialogue. Abstract Meaning
Representation (AMR; Banarescu et al. (2013)) is a
popular choice in the computational semantics com-
munity for its clarity and expressiveness, and Brutti

Figure 1: Example from the EGGNOG dataset (Wang
et al., 2017) showing different gesture shapes expressing
the same gesture semantics. Both are iconic gestures
(Brutti et al., 2022) denoting blocks, articulated dif-
ferently: the physical label of the left is RH: into
closed, left; that of the right is arms: move,
up; hands: into facing, into open.

et al. (2022) and Donatelli et al. (2022) developed
Gesture AMR (GAMR), an AMR formalism specif-
ically for gesture semantics. Within GAMR, the
semantics accompanying the iconic gesture block,
irrespective of physical form, may be rendered as
follows:

(i / icon
:ARG0 (s / signaler)
:ARG1 (b / block)
:ARG2 (a / actor))

In this paper, we observe that AMR/GAMR’s
natural graphical structure lends itself to graph
neural network (GNN)-based approaches for au-
tomated processing, and propose a graph autoen-
coder (GAE) that learns mappings between ges-
ture semantics represented in GAMR annotation
and the physical forms of the associated gestures.
Experiments on EGGNOG (Wang et al., 2017), a
challenging audio-visual dataset, show that our ap-
proach both outperforms naive baselines, and beats
or competes with strong Transformers on gesture
shape prediction, despite having significantly fewer
parameters and faster inference time, making our
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method suitable for gesture classification in low-
resource and edge environments.

2 Related Work

Early work on gesture semantics followed tradi-
tions viewing gesture as simulated action (Kendon
et al., 1980; Kendon, 2004) or a general mode of
reference (McNeill, 1992, 2000, 2008). Follow-
ing McNeill’s work, Lascarides and Stone (2006,
2009) posited a division of gestures into deictic
and iconic, creating a typing system continued
in GAMR (Brutti et al., 2022; Donatelli et al.,
2022). Lücking et al. (2015), Pustejovsky and Kr-
ishnaswamy (2021a,b, 2022), and Krishnaswamy
and Pustejovsky (2021) further developed the gram-
mar, semantics, and pragmatics of gesture on which
GAMR is based. Related coding schemes for mul-
timodal or non-verbal behavior include Kopp et al.
(2006); Allwood et al. (2007); Kipp et al. (2007);
Kong et al. (2015), and Rohrer et al. (2020).

Abstract Meaning Representation (AMR; (Ba-
narescu et al., 2013)) is well-known for abstracting
away from specific syntax using rooted, directed
acyclic graphs (DAGs) and for applications to di-
verse tasks such as translation and NLU. Graph-
based learning approaches using AMR include
AMR-to-sequence learning (Beck et al., 2018) and
text generation (Song et al., 2018; Wang et al.,
2020; Zhao et al., 2020).

Our primary experimental dataset EGGNOG
(Wang et al., 2017), containing natural gestures
elicited during a collaborative task. EGGNOG has
been used to train gesture recognizers for multi-
modal interactive agents such as Krishnaswamy
et al. (2017, 2020, 2022) and Narayana et al. (2019).
Lai et al. (2024) annotated a subset of EGGNOG
with gesture and speech AMR, as well as corefer-
ence relations within and across the two modalities.

3 Methodology

The EGGNOG dataset (Wang et al., 2017) contains
360 videos of pairs of participants engaged in a col-
laborative task. One person, the actor, is given a set
of wooden blocks, while the other, the signaler, is
shown an image of a block structure. The signaler
uses gesture, sometimes together with speech, to in-
struct the actor how to build the structure. Gestures
are labeled according to both a physical descrip-
tion (e.g., RH: thumbs, up) and the signaler’s
intent (e.g., yes); this work focuses on the former.

Each EGGNOG physical gesture label refers to

one or more body parts, which include the head,
arms, hands, and upper body. Each body part
is then described with one or more aspects, in-
cluding various types of motions (of body parts
in space, such as rotate and shake), relations
(of body parts to each other, such as crossed
and facing), and poses (hand positions, such as
claw and point). Finally, aspects have optional
orientations: up, down, left, right, front,
or back. See Fig. 1 for an example. For simplicity,
we focus on the aspects within each label.

Lai et al. (2024) annotated 21 of the EGGNOG
videos with Gesture AMR. Because this was done
separately from the physical gesture labels, a single
GAMR can overlap with multiple labels. We link
each GAMR with each overlapping label, and, in
turn, with each aspect occurring in those labels,
making this a multi-label classification problem.
In total, the dataset contains 319 GAMRs (167
unique), associated with 889 aspects (33 unique).
We split the data into an 80:20 train/test split.

3.1 Graph Autoencoder
Our graph autoencoder (GAE) learns graph-
level representations from GAMR graphs for the
EGGNOG classification task. It is adopted from
the EdgeGAT-based message passing framework
proposed by Zhang and Ji (2021), which leverages
edge-aware attention mechanisms to integrate both
node and edge features. Each node in the graph
is represented using a one-hot 94D feature vector,
where 94 is the size of the unique node vocabu-
lary extracted from the GAMRs in the EGGNOG
dataset. Edges are typed with one of 9 possible la-
bels and are embedded into 9D continuous vectors
using a learnable embedding layer. To enable bidi-
rectional information flow between root and leaf
nodes, all graphs are made explicitly bidirectional
by adding the reverse of each original edge.

The encoder consists of three stacked EdgeGAT
layers. Each EdgeGAT layer performs attention-
based message passing where, for a given node i
and neighbor j, attention score αij is computed as

αij = LeakyReLU
(
aT [Whi ∥Whj ∥Weeij ]

)
,

where hi and hj are input node features, eij is the
edge feature, and W and We are learnable linear
projections applied to node and edge features, re-
spectively. aT is a learnable linear layer that maps
the concatenated vector into a scalar attention score.
Post-activation, these values are normalized using
softmax to compute a weighted sum over neighbor
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Figure 2: Graph autoencoder with EdgeGAT for self-supervised GAMR embedding, followed by MLP-based
multi-label gesture classification.

embeddings. A residual connection is applied to
preserve the original node features, controlled by a
mixing parameter λ:
hout
i = (1− λ) · hi + λ ·

∑

j∈N (i)

softmaxj(αij) ·Whj .

Each EdgeGAT layer except for the last is followed
by a ReLU activation. Node embeddings are then
average-pooled into a fixed-dimensional graph rep-
resentation g = 1

|V |
∑

i∈V hfinal
i , where V is the

set of nodes and hfinal
i is the embedding of node i

from the last EdgeGAT layer.
We employ a multilayer perceptron (MLP) de-

coder to predict the presence of edges. For each
edge (i, j), the decoder receives the concatenation
of node embeddings [zi ∥ zj ] and outputs a scalar
prediction ŷij = σ (MLP([zi ∥ zj ])), where σ is
the sigmoid activation function. The MLP consists
of a 128D hidden layer, followed by ReLU, and a
final linear layer projecting to a scalar.

The training objective is binary cross-entropy
over observed positive and sampled negative edges:

L = − 1

|E+|
∑

(i,j)∈E+

log ŷij − 1

|E−|
∑

(i,j)∈E−
log(1− ŷij)

where E+ denotes the set of observed edges and
E− is the set of randomly sampled negative edges.
The model is optimized using the Adam optimizer
with a learning rate of 0.001 over 100 epochs.

This GAE framework learns node and graph-
level representations that capture both structural
and semantic properties of the GAMR graphs. The
learned graph embeddings are used for downstream
classification in the EGGNOG task.

3.2 Evaluation
We evaluate the effectiveness of different vector-
ized GAMR representations for classifying the

physical description of gestures. The EGGNOG
dataset provides ELAN-annotated gesture in-
stances along with their associated physical forms.
High-level physical actions, such as put, lift, and
lean, serve as the classification labels for this task.

The same GAMR (i.e., same graph structure)
may appear multiple times across different gesture
instances, each potentially annotated with a differ-
ent set of physical labels. To investigate the impact
of label aggregation on classification performance,
we evaluate three label assignment strategies:

1. Non-Aggregated (Instance-Level): Each
GAMR instance is treated independently, with
its own label set. This results in multiple in-
stances of the same GAMR with potentially
different labels.

2. Majority Aggregation (≥ 50%): For each
unique GAMR, only those labels that appear
in at least 50% of its instances are retained.
This strategy aims to filter out noise while
preserving consistent labels.

3. Binary-Union Aggregation (Any Occur-
rence): For each unique GAMR, we include
all labels that appear in any of its instances.
This is the most inclusive strategy and ensures
maximum label coverage.

All three versions result in a multi-label classifi-
cation setup with 33 possible physical action aspect
labels. We report results separately for each to en-
able informed choice of strategy for downstream
task accuracy and robustness.

We compare classification performance of graph-
based GAMR embeddings against several alter-
natives: (1) a naive baseline where GAMRs are
represented using k-hot encodings of their node
vocabulary, (2) embeddings of GAMRs extracted
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Instance-Level Majority Aggregation Binary-Union

P R F1 P R F1 P R F1 # params.

k-hot 0.083 1.000 0.154 0.083 1.000 0.152 0.188 1.000 0.317 —
RoBERTa 0.475 0.479 0.477 0.602 0.599 0.601 0.772 0.833 0.802 124.1M
AMRBART 0.487 0.474 0.480 0.732 0.715 0.724 0.882 0.895 0.889 409.3M
GAE 0.490 0.447 0.468 0.731 0.648 0.687 0.834 0.836 0.835 52k

Table 1: Performance comparison of different GAMR representations across different label aggregation strategies
on multi-label classification. All models use the same MLP classifier and training setup. # params incl. trainable
and non-trainable, excl. MLP classification head.

from pretrained RoBERTa (Liu et al., 2019) using
linearized AMRs as strings, and (3) GAMR embed-
dings from AMRBART (Bai et al., 2022) pretrained
specifically on AMR parsing and generation.

For all embedding types, we use a lightweight
multi-layer perceptron (MLP) classifier, consis-
tent with common practice in unsupervised learn-
ing evaluations. The input to the classifier is the
GAMR embedding vector as extracted from each
method. All classifiers are trained and evaluated on
the same 80:20 split described in Sec. 3.

All experiments follow the training protocol de-
scribed in Sec. 3.1. This ensures that performance
differences stem from the quality of the underlying
GAMR representations rather than classifier capac-
ity. We evaluate the three embedding types (GAE,
AMRBART, RoBERTa), and the flat k-hot baseline,
across the three aforementioned labeling strategies.

In these experiments, we use AMRBART-large-
v2, which is a simpler, faster, and stronger version
of AMRBART-large. This was pretrained on AMR
3.01, which comprises 55,635 training instances, as
well as on 200,000 English sentences from English
Gigaword2. RoBERTa experiments use RoBERTa-
base.

4 Results and Discussion

Table 1 shows micro-averaged precision, recall, and
F1 across all labels. The best overall performance
is achieved under the binary-union label strategy,
where a GAMR is labeled with any action that
appears in at least one of its instances.

While AMRBART achieves the best F1 score
overall, our GAE embeddings achieve competi-
tive performance despite using orders of magni-
tude fewer parameters (Table 1, right side) and
no pretraining. Notably, GAE embeddings outper-
form RoBERTa-based ones in both binary-union

1https://catalog.ldc.upenn.edu/
LDC2020T02

2https://catalog.ldc.upenn.edu/
LDC2011T07

Figure 3: F1 scores for the top 10 most frequent classes
across under binary-union labeling.

and majority aggregation settings, highlighting the
benefit of incorporating relational structure over a
linearized string representation. The naive k-hot
baseline performs poorly all around due to its in-
ability to encode structural context, and tends to
overlabel all class, resulting in a spurious 100% re-
call. These results suggest that leveraging the graph
structure of GAMRs provides a natural, effective
and, notably, efficient way to learn meaningful ges-
ture representations.

Table 2 shows the performance of our proposed
method across the gesture types available from the
EGGNOG dataset. We can observe a slight perfor-
mance advantage leaning towards Iconic gestures
when using instance-level labeling, which can be
explained by the data imbalance toward this class as
suggested by Table 3. However, under the binary-
union strategy, Deixis gestures strongly outperform
the other classes, this weakening the idea that the
model might be biased towards any specific gesture
category across labeling strategies. Instead, the
strong performance of Deixis under this strategy
may be attributable to the characteristic hand-shape
of most deictic gestures that accompany English
spoken dialogue.

Fig. 3 shows the F1 scores for the 10 most-
frequently occurring physical gesture classes ac-
cording to the binary-union strategy, across all
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Gesture Type Instance-Level Majority Aggregation Binary-Union

P R F1 P R F1 P R F1

Iconic 0.525 0.489 0.506 0.692 0.537 0.605 0.624 0.653 0.638
Deixis 0.500 0.421 0.457 0.577 0.750 0.652 0.943 0.978 0.960
Emblem 0.450 0.474 0.462 0.348 0.727 0.471 0.524 0.942 0.674

Table 2: Performance comparison over different gesture types using the GAE method.

Gesture Types Train Test

Iconic 179 43
Deixis 54 14
Emblem 29 8

Table 3: Gesture types distribution across train and test
sets.

Figure 4: Cumulative inference time vs. number of
GAMRs processed.

3 learnable methods. Here we see a number of
classes where GAE embeddings match or exceed
the performance of AMRBART embeddings, such
as closed, shake, and together.

Finally, since the GAE has substantially fewer
parameters than the competitor methods, we per-
formed an inference-time experiment to quantify
the speed advantage. Fig. 4 shows the cumula-
tive time required to process increasing numbers
of GAMRs by each method. We see that the GAE
boasts a nearly 50% improvement in processing
time over AMRBART despite AMRBART’s ex-
tremely modest classification advantage, and that
the GAE remains about 20% faster than RoBERTa
at all input sizes despite outperforming it nearly
globally.

5 Conclusion

We presented a novel approach to gesture clas-
sification using Gesture AMR and graph autoen-
coders. Our approach achieves competitive clas-
sification accuracy with SOTA Transformer ap-
proaches at significantly less computational over-
head with faster inference speed. We also explored

the effects of different label aggregation strategies,
based on the premise that in real world data, the
same semantics may have different physical forms
attached to them. Our results can inform the choice
of classification technique for downstream tasks
that use gesture information with different require-
ments, such as epistemic position classification as
in Khebour et al. (2024). Our efficient GAE method
is suitable for real-time (e.g., VanderHoeven et al.
(2025)) or GPU-less systems.

Limitations

Our method as presented (and all those tested) re-
quires pre-annotated Gesture AMRs to be used as
input, which entails additional human preparatory
effort. Automating this step would entail some
form of automatic AMR-graph construction for
GAMR, such as sequence-to-graph transduction
approaches for AMR parsing (Zhang et al., 2019)
from raw dialogues and/or videos (VanderHoeven
et al., 2024), potentially using text enrichment tech-
niques such as dense paraphrasing (Tu et al., 2024).
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A Additional Technical and
Implementation Details

Hyperparameters Each of the 3 layers of the
EdgeGAT network consists of 94 hidden units. The
value of the mixing parameter λ was set to 0.5. The
MLP classifier consists of 3 hidden layers (256,
128, and 64 units, respectively). Batch normaliza-
tion and ReLU activation are used after each of the
first three linear layers, followed by a dropout layer
with probability 0.3. The activation function used
throughout is ReLU.

MLP Decoder An inner product decoder mod-
els only a simple, fixed linear similarity between
node embeddings. That is, it only predicts that an
edge exists between two nodes if node vectors are
aligned (high inner product), providing a rigid no-
tion of connectivity. By contrast, an MLP provides
a learnable decoder which can learn complex, non-
linear relationships to explain the presence and ab-
sence of edges, and hence can more reliably capture
asymmetric relationships. When comparing inner
product with MLP approaches during development,
we used AUROC on the task of reconstructing the
node adjacency matrix as a guiding metric. An
inner product decoder achieved a top AUROC of
93, which increased to 99 with the MLP decoder.
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Sampling Strategy Random sampling was used
for sampling negative edges for training (Sec. 3.1).
For each batch, we sampled node pairs that are
not connected in the input graph to serve as
negative edges. The sampling is uniform and
done on the fly during training and evaluation.
We use the negative sampling utility by
torch geometric, which makes sure that sam-
pled edges do not overlap with positive edges.

Hardware and Software All classification ex-
periments were performed on an AMD Ryzen
Threadripper 3960X 3.8 GHz system with 96 GB
RAM running Linux 5.15.0-130-generic x86 64
(Ubuntu-based kernel).

The inference time experiment shown in Fig. 4
was performed on an Intel Xeon Gold 5520+ with
256 GB RAM and Ubuntu 24.04.2 LTS.

PyTorch 2.4.0 was used.
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Abstract

Open-domain semantic parsing remains a chal-
lenging task, as neural models often rely on
heuristics and struggle to handle unseen con-
cepts. In this paper, we investigate the poten-
tial of large language models (LLMs) for this
task and introduce Retrieval-Augmented Se-
mantic Parsing (RASP), a simple yet effective
approach that integrates external lexical knowl-
edge into the parsing process. Our experiments
not only show that LLMs outperform previous
encoder-decoder baselines for semantic pars-
ing, but that RASP further enhances their abil-
ity to predict unseen concepts, nearly doubling
the performance of previous models on out-of-
distribution concepts. These findings highlight
the promise of leveraging large language mod-
els and retrieval mechanisms for robust and
open-domain semantic parsing.

1 Introduction

Open-domain semantic parsing involves mapping
natural language text to formal meaning represen-
tations, capturing the concepts, relations between
them, and the contexts in which they appear (Oepen
and Lønning, 2006; Hajič et al., 2012; Banarescu
et al., 2013; Bos et al., 2017; Martı́nez Lorenzo
et al., 2022). Such meaning representations are ap-
plied in many downstream applications—ranging
from database querying to embodied question
answering—where parsers must handle a vast array
of concepts that may not appear in the training data.
While neural encoder-decoder architectures have
shown impressive performance in semantic pars-
ing tasks, their reliance on training distributions
constrains their ability to generalize, especially to
out-of-distribution (OOD) concepts.

Most existing semantic parsers struggle to inter-
pret the symbols, such as rare senses, often default-
ing the unseen words to the most frequent mean-
ing encountered during training. As a result, they

fail to adapt to novel linguistic phenomena and re-
main limited to fixed patterns. Recent work (Zhang
et al., 2025) have attempted to mitigate these limi-
tations by encoding concept representations sym-
bolically, forcing models to learn underlying struc-
tural knowledge from resources like WordNet (Fell-
baum, 1998). However, these approaches require
substantial preprocessing and intricate encodings
that can be difficult for models to fully exploit.

In our work, instead, we explore the potential
of large language models, powerful decoder-only
architectures with strong in-context learning capa-
bilities and extensive pretraining, to enhance the
ability of semantic parsers to generalize. We pose
two central research questions:

• Do large language models outperform tradi-
tional encoder-decoder architectures in se-
mantic parsing? Decoder-only architectures
are known to be more scalable and to inter-
nalize broader knowledge, potentially leading
to stronger generalization and learning abili-
ties. Assessing their performance in semantic
parsing tasks can help reveal the architectural
advantages of these decoder-only models.

• How can these large language models be
leveraged to improve the generation of
out-of-distribution concepts? Beyond sim-
ple architecture comparisons, we investigate
whether LLMs can be guided to handle con-
cepts more flexibly, using their ability to inter-
pret and integrate external information.

In Section 2 we provide background on the se-
mantic formalism of our choice, earlier approach to
semantic parsing, and the challenge of an important
task, word sense disambiguation. Then we propose
Retrieval-Augmented Semantic Parsing (RASP)
in Section 3, a technique that integrates a retrieval
mechanism into parsing. RASP leverages external
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lexical knowledge in the input, enabling the model
to dynamically access and interpret relevant con-
cept information. By incorporating this retrieval
step (Section 4), we relax the reliance on lemma-
based mappings and allow the model to adapt more
naturally to unseen words or senses. Our results
show that this approach nearly doubles the perfor-
mance on predicting OOD concepts compared to
previous methods, demonstrating a substantial ad-
vancement in handling challenging open-domain
data (Section 5).

2 Background and Related Work

2.1 Discourse Representation Structure

Discourse Representation Theory (Kamp and
Reyle, 1993, DRT) is a semantic modeling frame-
work. The core component of DRT is the Discourse
Representation Structure (DRS), a formal represen-
tation that captures the meaning of a discourse,
which captures the essence of the text and covers
linguistic phenomena like anaphors and temporal
expressions. Unlike many other formalisms such
as Abstract Meaning Representation (Banarescu
et al., 2013, AMR) used for large-scale semantic
annotation efforts, DRS covers logical negation,
quantification, and discourse relations. Moreover,
DRS is equipped with complete word sense disam-
biguation, and offers a language-neutral meaning
representation. A Discourse Representation Struc-
ture (DRS) can be coded and visualised in various
ways, which are all provided in Parallel Meaning
Bank (Abzianidze et al., 2017). In formal seman-
tics they are often pictured in a human-readable
box format. The clause notation was introduced to
represent DRS in a sequential format suitable for
machine learning models (van Noord et al., 2018).
To further simplify DRS, Bos (2023) proposed a
variable-free format known as Sequence Box Nota-
tion (SBN). An example of the three different but
logically equivalent formats is shown in Figure 1.
Recent trends in using seq2seq models have led to
a preference for sequence notation, which is also
the format used in this paper.

2.2 Semantic Parsing

Semantic parsing, as a traditional NLP task, re-
mains essential in real-world applications, despite
recent progress in natural language understanding
shown by large language models. For instance,
natural language front-end interfaces to databases
require a mapping from text to structured data.

(a) box notation

(b) graph notation

(c) sequence notation

x1

female.n.02(x1)

Name(x1, Mary)

x2 e1 t1

time.n.08(t1)

    t1 ≺ now

commit.v.01(e1)

    Time(e1, t1)

    Theme(e1, x2)

    Agent(e1, x1)

crime.n.01(x2)

¬

female.n.02

commit.v.01 time.n.08

crime.n.01

¬

∈

∈

∈

∈

Time

Name
Mary

now

female.n.02 Name ”Mary” NEGATION <1 time.n.08 TPR now 

commit.v.01 Agent -2 Time -1 Theme +1 crime.n.01

Figure 1: Three formats of Discourse Representation
Structure (DRS) for ”Mary didn’t commit a crime.”: the
box notation, a directed acyclic graph, and the sequence
notation. These formalisms are mutually convertible
without loss of information.

Speech interactions with conversational agents that
act in the real world (e.g., service robots) require
situation-sensitive symbol grounding. Hence, ad-
vancing the development of more robust and gen-
eral semantic parsers remains crucial.

Early approaches to semantic parsing primarily
relied on rule-based systems (Woods, 1973; Hen-
drix et al., 1977; Templeton and Burger, 1983). The
advent of neural methodologies, coupled with the
availability of large semantically annotated datasets
(Banarescu et al., 2013; Bos et al., 2017; Abzian-
idze et al., 2017), marked a significant shift in se-
mantic parsing techniques (Barzdins and Gosko,
2016; van Noord and Bos, 2017; Bevilacqua et al.,
2021a). The introduction of pre-trained language
models within the sequence-to-sequence frame-
work further improved parsing performance (van
Noord et al., 2018, 2020; Ozaki et al., 2020; Samuel
and Straka, 2020; Shou and Lin, 2021; Bevilacqua
et al., 2021a; Zhou et al., 2021; Martı́nez Lorenzo
et al., 2022; Zhang et al., 2024; Liu, 2024a,b;
Yang et al., 2024; Amin et al., 2025). Further-
more, several studies introduced more pre-training
tasks specifically designed for semantic parsing
(Bai et al., 2022; Wang et al., 2023a). With the rise
of large language models, there has been consider-
able discussion about leveraging these models for
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semantic parsing, achieving notable results through
techniques like prompting and chain-of-thought
reasoning (Roy et al., 2022; Ettinger et al., 2023;
Jin et al., 2024). However, there is currently no
work that leverages the knowledge and understand-
ing capabilities of large language models to address
the generalization problem in semantic parsing.

2.3 Word Sense Disambiguation
The generalization problem introduced in the pre-
vious section can also be understood as word sense
disambiguation (WSD) for out-of-distribution con-
cepts, within the context of semantic parsing. For
instance, consider the sentence ”She had £10,000
in the bank”, with the target word ”bank”. In tra-
ditional WSD tasks, a predefined inventory of pos-
sible senses (e.g., 1. sloping land; 2. financial in-
stitution; 3. a long ridge or pile; 4. ...) would be
provided, and the WSD model would classify the
word according to one of these senses (Navigli,
2009; Bevilacqua et al., 2021b).

In semantic parsing, WSD can be seen as a sub-
task (Zhang et al., 2025), but it is more challeng-
ing because the parsing model must generate the
correct sense directly without access to an explic-
itly provided sense inventory. However, traditional
knowledge-based WSD offers a potential solution
that inspires our approach: by retrieving and pre-
senting all possible concepts as alternatives, we
can explicitly provide external information to the
model, thereby enhancing its generalization capa-
bility. As a consequence, this requires the model to
be able to process long contexts, making the LLMs
be the preferred choice, in particular retrieval aug-
mented generation.

2.4 Retrieval Augmented Generation
Retrieval-Augmented Generation (RAG) is a hy-
brid approach that combines retrieval mechanisms
with generative models to enhance the quality and
accuracy of text generation tasks (Zhao et al., 2024;
Gao et al., 2024). In RAG, a retrieval component
first identifies relevant information from a large
external knowledge base or corpus, which is then
used as additional context for the generative model.
This method allows the model to generate more
informed and contextually accurate outputs, partic-
ularly in scenarios where the input data alone may
not provide sufficient information.

By integrating retrieved knowledge into the gen-
erative process, RAG effectively bridges the gap
between retrieval and generative models, leading to

Text

WordNet

LLM

…

Meaning 
Representation

Tokenization& 
Lemmatization

Retrieval 
Augmentation

Figure 2: Global overview of RASP (Retrieval-
Augmented Semantic Parsing). Both the training and
testing phases adhere to this pipeline.

improved performance in tasks such as question an-
swering (Karpukhin et al., 2020; Lewis et al., 2020;
Borgeaud et al., 2021; Guu et al., 2020; Izacard
and Grave, 2021; Petroni et al., 2020), common-
sense reasoning (Liu et al., 2021; Wan et al., 2024)
and other downstream tasks (Lewis et al., 2020;
Izacard et al., 2024; Jiang et al., 2023; Guo et al.,
2023; Cheng et al., 2023; Li et al., 2023). While
RAG was initially employed in a wide scope of
applications, its popularity can be attributed to the
advent of large language models and their strong
capabilities. Consequently, we will concentrate on
the application of RAG in the context of LLMs.

3 Retrieval-Augmented Semantic Parsing

We propose a new method that combines retrieval-
augmented generation with semantic interpretation:
Retrieval-Augmented Semantic Parsing (RASP), a
framework that is outlined in Figure 2. It comprises
two key components: retrieval and parsing.

Different from the Dense Passage Retrieval
(Karpukhin et al., 2020) method, which is com-
monly employed in question-answering tasks, our
retrieval process is designed to be more straightfor-
ward and tailored to the needs of semantic parsing.
The process begins with tokenizing and lemmatiz-
ing1 the source text. Following these, we perform
a search for relevant concept synsets in an external
knowledge base, specifically WordNet. For exam-
ple, in the sentence ”Mary went for birdwatching.
She saw a harrier, a golden eagle, and a hobby”, the
retrieval process would identify multiple synsets
for ”go”, ”birdwatch”, ”see”, ”harrier”, ”golden
eagle” and ”hobby”, as illustrated in Table 1. Ad-
ditionally, to ensure comprehensive coverage of
multi-word expressions, which are critical in cap-
turing the correct semantic meaning, we employ a
hierarchical n-gram search strategy. This strategy

1https://www.nltk.org/api/nltk.stem.wordnet.html
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Source Text Mary went for birdwatching. She saw a harrier, a golden eagle, and a hobby.

Concepts

golden eagle.n.01: large eagle of mountainous regions of ... having a golden-brown head and neck
birdwatch.v.01: watch and study birds in their natural habitat
... ...
harrier.n.01: a persistent attacker
harrier.n.02: a hound that resembles a foxhound but is smaller
harrier.n.03: hawks that hunt over meadows and marshes and prey on small terrestrial animals ...
... ...
hobby.n.01 an auxiliary activity
hobby.n.02 a child’s plaything consisting of an imitation horse mounted on rockers ...
hobby.n.03 small Old World falcon formerly trained and flown at small birds

Prompts
Normal prompt: Text to parse: {Source Text}
RASP prompt: Considering the concepts with glosses: {Concepts}. Text to parse: {Source Text}

Gold DRS
female.n.02 Name ”Mary” time.n.08 TPR now birdwatch.v.01 Agent -2 Time -1 ELABORATION <1
female.n.02 ANA -3 see.v.01 Experiencer -1 Time +1 Stimulus +3 time.n.08 TPR now harrier.n.03
golden eagle.n.01 entity.n.01 Sub -2 Sub -1 Sub +1 hobby.n.03

Table 1: An example illustrating the workflow of RASP. We omit some senses and words for the retrieved concepts
to save space. The distinction between prompts for semantic parsing with and without RASP are shown in the
Prompts row. Some examples of complete prompts can be found in Appendix A.

involves sequential searches using 4-gram, 3-gram,
2-gram, and 1-gram patterns, thereby ensuring that
no multi-word expressions (such as ”golden eagle”)
are overlooked.

The parsing process for a decoder-only model2

is guided by the probability distribution of possible
output sequences given an input sequence. The
model generates an output sequence by predicting
each token iteratively, based on the input text and
previously generated tokens, as shown in (1).

pdecoder-only(o | x) =
n∏

i=1

pθ(oi | x, o1:i−1) (1)

Here, x is the input text, o1:i−1 represents the se-
quence generated so far, and oi is the token gen-
erated at the current step. θ refers to the model’s
parameters, and p denotes the likelihood of gener-
ating output sequence o given input sequence x.

To enhance this process, retrieval and generation
are integrated, leveraging external knowledge to
inform output generation. Mathematically, the re-
trieval step introduces a probability, p(o′|x), which
models the likelihood of retrieving relevant con-
cepts o′ based on x. This probability is combined
multiplicatively with the generation probability, as
shown in (3). This combination ensures both com-
ponents contribute meaningfully, with retrieval act-

2The models we use are all in decoder-only architecture,
so we omit the discussion about encoder-decoder architecture.

ing as a filter to guide the generation process toward
relevant concepts.

pRASP(o | x) = p
(
o′ | x

)
pdecoder-only

(
o | x, o′

)

= p
(
o′ | x

) n∏

i=1

pθ
(
oi | x, o′, o1:i−1

)
(2)

By incorporating retrieved concepts, RASP goes
beyond relying solely on the input sequence and
training data, adding additional context to guide
generation. For example, when handling words
with multiple meanings, like ”hobby,” retrieved
synsets help the model select the correct interpre-
tation based on glosses and context. This integra-
tion sharpens the model’s focus on relevant con-
cepts, reducing the likelihood of generating incor-
rect or overly broad outputs, particularly for out-of-
distribution concepts.

4 Experiments

4.1 Datasets
We conduct our experiments on the Parallel Mean-
ing Bank (PMB, version 5.1.0)3 (Abzianidze et al.,
2017; Zhang et al., 2024). We first use the
gold-standard English data of the PMB to eval-
uate the large language models and their retrieval-
augmented version under in-distribution condi-
tions.

3https://pmb.let.rug.nl/releases
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To further assess the models’ ability to handle
out-of-distribution (OOD) concepts, we adopt the
challenge set proposed by Zhang et al. (2025),
which is also derived from the PMB. Neural se-
mantic parsers often default to the first sense of
unknown concepts–an approach that can lead to
”lucky guesses” without truly understanding new
words. The challenge set, consisting of 500 sen-
tences, is deliberately designed to eliminate this
shortcut. Each sentence includes at least one con-
cept that does not appear in the training data and
does not correspond to the first sense in the on-
tology. In total, the challenge set contains 410
unknown nouns, 128 verbs, and 65 modifiers (ad-
jectives and adverbs). By evaluating on this set, we
measure the true generalization capability of the
models, testing whether they can correctly inter-
pret novel concepts rather than relying on heuristic
assignment.

Train Dev Standard Challenge

9,560 1,195 1,195 500

Table 2: Dataset statistics for PMB 5.1.0, i.e., number
of meaning representations for train, development and
two test sets: standard and challenge.

4.2 Experiment Settings

It is crucial to note that large language models,
when used in zero-shot or few-shot scenarios, tend
to perform poorly on the highly complex graph
structures inherent in formal meaning represen-
tations such as DRS. Prior work (Ettinger et al.,
2023; Zhang et al., 2025) demonstrates that with-
out fine-tuning, LLMs struggle to match the perfor-
mance of models specifically optimized for these
tasks. Therefore, in our experiments, we fine-tune
all large language models.

For RASP, we explore two retrieval-enhanced
approaches: (1) Train+Test Retrieval: Incorporate
retrieval-derived concepts both during training and
inference, thereby familiarizing the model with
external lexical knowledge throughout the entire
learning process. (2) Test-Only Retrieval: Use re-
trieval only during inference, training the model
on raw DRS structures without external lexical in-
puts. Our experiments show that the first approach
consistently yields better performance. Thus, we
focus our primary analysis on the first approach
and provide results for the second approach in Ap-
pendix C.

Due to computational constraints, we se-
lect open-sourced LLMs with model sizes un-
der 10B parameters, including phi3-4B, Mistral-
7B, LLaMa3.1-3B, LLaMa3.2-8B, Gemma2-2B,
Gemma2-9B, Qwen2.5-3B, and Qwen2.5-7B.
These models strike a balance between state-of-
the-art language understanding and manageable
resource requirements. For fine-tuning, we employ
Low-Rank Adaptation (Hu et al., 2021, LoRA), a
parameter-efficient technique that introduces train-
able low-rank matrices into the model’s layers,
greatly reducing computational overhead.

We compare our results against several strong
baselines, including BART, T5, byT5, TAX-parser
(Zhang et al., 2024), and AMS-Parser (Yang et al.,
2024), all of which were previously fine-tuned on
PMB data. We exclude work conducted on earlier
versions of PMB or using silver data. Additionally,
we do not apply retrieval augmentation to these
baseline models due to input length constraints,
which limit their ability to incorporate external lex-
ical sources efficiently.

We trained each model for 10 epochs, using a
learning rate of 10−4, and fp16 precision. More
information on the hyperparameters is provided in
Appendix B.

4.3 Evaluation Metrics

We used SMATCH and its variants to evaluate the
performance of the models. SMATCH (Cai and
Knight, 2013), referred to as Hard-SMatch, strictly
matches concepts, where any discrepancy results in
a non-match. In contrast, its variant, Soft-SMatch
(Opitz et al., 2020), considers concept similarity
when matching. Instead of adopting the approach
of using word-embedding similarity, we applied the
Wu-Palmer similarity (Wu and Palmer, 1994), as
introduced by Zhang et al. (2024). Wu-Palmer sim-
ilarity provides a precise measure of semantic sim-
ilarity between concepts based on their positions
within the WordNet taxonomy. Unlike embedding-
based methods, it does not rely on external training
and easily adapts to changes in WordNet’s structure
or content. The calculation is:

WuP = 2 ∗ depth(LCS(s1, s2))
depth(s1) + depth(s2)

(3)

where s is the concept, LCS refers to the Least
Common Subsumer of these concepts, and depth
denotes the distance from the concept to the root
of the taxonomy.
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Model Size Input Graph-level Node-level

Hard-SMatch↑ Soft-SMatch↑ IFR↓ F score↑
BART-large 400M Normal 79.54 82.81 3.92 75.40
T5-large 770M Normal 84.27 86.44 6.41 79.88
byT5-large 580M Normal 87.41 89.43 4.78 84.75
AMS-Parser – Normal 87.08 89.15 0.00 85.00
TAX-Parser 580M Normal 86.65 91.80 2.34 80.12

Phi3 4B Normal 85.74 87.92 4.94 (59) 81.60
RASP 85.96 (+0.3%) 88.13 (+0.2%) 4.80 (57) 83.33 (+2.1%)

Mistral 7B Normal 89.95 92.48 2.00 (24) 83.90
RASP 90.95 (+1.1%) 93.33 (+0.9%) 1.58 (19) 85.00 (+1.3%)

Qwen2.5
3B Normal 86.50 88.64 4.69 (56) 82.60

RASP 88.70 (+2.5%) 90.74 (+2.4%) 3.01 (36) 83.90 (+1.6%)

7B Normal 89.88 91.83 2.51 (30) 84.50
RASP 89.93 (+0.1%) 91.87 (+0.1%) 2.51 (30) 85.50 (+1.2%)

LLama3
3B Normal 87.30 90.01 3.34 (40) 81.50

RASP 87.76 (+0.5%) 90.51 (+0.6%) 3.01 (36) 82.30 (+1.0%)

8B Normal 89.92 92.46 2.09 (25) 83.90
RASP 90.65 (+0.8%) 93.10 (+0.7%) 1.50 (18) 84.72 (+1.0%)

Gemma2
2B Normal 89.20 91.08 3.01 (36) 84.20

RASP 89.30 (+0.1%) 91.23 (+0.2%) 3.10 (37) 85.58 (+1.6%)

9B Normal 90.72 93.15 1.67 (20) 84.67
RASP 91.37 (+0.7%) 93.65 (+0.5%) 1.58 (19) 86.11 (+1.7%)

Table 3: Performance of baseline models, large language models (Normal) and their retrieval-augmented variants
(RASP) on standard test, with percentage changes in parentheses. Size is the number of model’s parameters (B:
billion). IFR is Ill-Formed Rate and the number of ill-formed prediction are in parentheses. Note: AMS-Parser
(Yang et al., 2024) performs well for IFR for it is a compositional neuro-symbolic system. TAX-Parser (Zhang et al.,
2025) is a neuro-symbolic system, trained with a novel encoded meaning representation.

For the fine-grained evaluation on the challenge
set, we applied the metric proposed by Wang et al.
(2023b), focusing specifically on concept-node
matching scores. When evaluating the results on
the challenge set, we directly calculated the Wu-
Palmer similarity between the target concepts and
the corresponding model-generated results.

5 Results

5.1 Semantic Parsing on Standard Test

Table 3 shows that large language models consis-
tently surpass earlier encoder-decoder baselines,
providing direct evidence for our first research
question. While BART, T5, and byT5 achieve
Hard-SMatch scores up to 87.41, several LLM-
based models (e.g., Mistral-7B, Gemma2-9B) ex-
ceed 90.0 on the standard test set. This improve-
ment is substantial, with the strongest baseline
LLM reaches 90.72 on Hard-SMatch, outperform-
ing the best encoder-decoder model (byT5) by a
margin of 3.3 points.

These higher scores are also reflected in Soft-
SMatch and node-level F-scores, indicating that
LLM-based models not only produce more struc-

turally accurate meaning representations but also
more reliably identify concept nodes. Addition-
ally, Ill-Formed Rate (IFR) reductions suggest
that these models generate fewer ill-structured out-
puts. In summary, these improvements highlight
that large language models outperform previous
encoder-decoder models.

Beyond confirming the advantages of LLMs, we
also examine the impact of retrieval augmentation
(RASP) on standard test results. Although the
largest gains from retrieval are observed on the
challenge set (as discussed in Section 5.2), even
here on the in-distribution standard test, RASP pro-
vides consistent performance improvements. Most
LLMs show an increase of about 0.3% to 2.5%
in Hard-SMatch and Soft-SMatch scores when us-
ing RASP. Furthermore, the Ill-Formed Rate (IFR)
tends to decrease, and the node-level F-score im-
proves by approximately 1.0% to 2.1%. These
node-level gains suggest that RASP’s improve-
ments stem largely from more accurate concept
prediction. While these enhancements are moder-
ate in the standard test scenario, they indicate that
retrieval can enhance the model’s understanding of
concept-level semantics.
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Model Input Noun Verb Modifiers Overall

BART-large Normal 26.11 37.34 46.88 30.95
T5-large Normal 25.48 35.21 41.28 29.45
byT5-large Normal 27.59 39.14 44.70 32.13
TAX-Parser Normal 42.15 31.58 43.27 39.68

phi3-4B Normal 35.48 36.91 46.97 37.91
RASP 62.03 (+74.8%) 46.32 (+25.5%) 63.63 (+35.5%) 58.28 (+53.7%)

Mistral-7B Normal 38.02 40.61 50.00 39.87
RASP 72.03 (+89.5%) 59.27 (+46.0%) 67.42 (+34.8%) 68.44 (+71.7%)

Qwen2.5-7B Normal 38.51 37.52 46.97 39.12
RASP 66.77 (+73.4%) 56.95 (+51.8%) 64.39 (+37.1%) 64.12 (+63.8%)

LLama3.2-8B Normal 37.06 34.79 47.73 37.59
RASP 72.28 (+95.1%) 61.62 (+77.1%) 66.67 (+39.7%) 69.86 (+85.9%)

Gemma2-9B Normal 39.68 45.01 55.30 42.54
RASP 73.93 (+86.3%) 62.31 (+36.5%) 69.70 (+26.0%) 70.41 (+65.6%)

Table 4: Wu-Palmer similarities between unknown concepts and generated concepts across four parts of speech. For
the sake of clarity, we exclude the smaller version of the same model.

5.2 Performance on the Challenge Set

Table 4 provides the results on the challenge set, de-
signed specifically to test the models’ ability to pre-
dict out-of-distribution (OOD) concepts. Here, we
report Wu-Palmer similarities for unknown nouns,
verbs, and modifiers (adjectives and adverbs). We
calculate the Wu-Palmer similarities between the
target concepts (out-of-distribution concepts) and
the generated concepts (see examples in Table 5).

Among the baselines, TAX-Parser (Zhang et al.,
2025) stands out, achieving an overall similarity
score of 39.68. However, some Normal (non-
RASP) large language models already exceed this
performance on the challenge set. For example,
Gemma2-9B (Normal) obtains an overall score of
42.54, indicating that LLMs can yield improve-
ments, even without retrieval augmentation. When
retrieval augmentation (RASP) is introduced, these
large language models show substantial additional
gains. For example, Gemma2-9B (RASP) achieves
an overall similarity score of 70.41, compared to
the best baseline’s 39.68—an increase of over 30
absolute points. These gains are particularly re-
markable for noun concepts, with relative improve-
ments of approximately 70% to 95%. Verbs show
increases between about 25% and 77%, and modi-
fiers improve by roughly 26% to 43%.

These results directly support our second
research question regarding improving out-of-
distribution generalization. While model scaling
alone can yield moderate improvements, the in-
tegration of external lexical knowledge through
retrieval allows LLMs to select more accurate con-

cepts in OOD scenarios. In effect, RASP helps the
models ”look up” relevant information, enhancing
their concept selection and producing more seman-
tically appropriate results. In this case, retrieval-
augmented LLMs not only outperform strong base-
lines like TAX-Parser but also set the state-of-the-
art for OOD semantic parsing performance.

5.3 Error Analysis on the Challenge Set
We selected a subset of the challenge set and man-
ually checked how the best performing model—
Gemma2-9B (Normal) and Gemma2-9B (RASP)—
handle the out-of-distribution concepts.

We picked 22 instances, comprising 11 com-
pletely perfect predictions (WuP=1.00) and 11 im-
perfect predictions (WuP<1.00) made by RASP, as
presented in Table 5. With respect to the perfect
predictions, it is evident that the retrieval signif-
icantly enhances the model’s ability to interpret
most out-of-distribution concepts. For instance,
in the text about birdwatching, the word ”hobby”
clearly refers to a species of bird. The model
without RAG defaults to the most frequent sense
number, predicts hobby.n.01 (an auxiliary activity).
In contrast, retrieval provides the glosses of each
sense related to the noun ”hobby” and leads the
model to pick hobby.n.03 (a falcon), by explicit
lexical connections between ”falcon” in the gloss
of hobby.n.03 and the context provided by ”bird-
watching”.

However, RASP makes imperfect predictions
sometimes. We identified three possible causes:
(a) similar glosses between WordNet concepts; (b)
insufficient textual context; and (c) limitations in
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Input Text Gold Normal RASP

He bought the painting for a song on a flea market. song.n.05 n.03 (0.22) n.05 (1.00)
The detective planted a bug in the suspect’s office to gather evidence. plant.v.05 v.02 (0.22) v.05 (1.00)
Scientist examines the insect’s antennae. antenna.n.03 n.01 (0.24) n.03 (1.00)
I’ve seen a short extract from the film. extract.n.02 n.01 (0.25) n.02 (1.00)
She prepared a three course meal. course.n.07 n.03 (0.27) n.07 (1.00)
The music student practiced the fugue. fugue.n.03 n.02 (0.28) n.03 (1.00)
Johanna went birdwatching. She saw a harrier, a kite, and a hobby. hobby.n.03 n.02 (0.38) n.03 (1.00)
A harrier is a muscular dog with a hard coat. muscular.a.02 a.01 (0.50) a.02 (1.00)
The hiker spotted an adder sunbathing on a rock. adder.n.03 n.01 (0.50) n.03 (1.00)
A tiny wren was hiding in the shrubs. wren.n.02 n.01 (0.55) n.02 (1.00)
Hungarian is a challenging language with 18 cases. hungarian.n.02 n.01 (0.11) n.02 (1.00)

The moon is waxing. wax.v.03 v.03 (1.00) v.02 (0.75)
The function ordered the strings alphabetically. order.v.05 v.02 (0.17) v.06 (0.75)
The elephant’s trunk is an extended nose. extended.a.03 a.01 (0.50) a.01 (0.50)
A tripper helps control the flow of materials on a conveyor. tripper.n.04 n.02 (0.40) n.02 (0.40)
We saw a kite gliding in the sky during the walking. kite.n.04 n.03 (0.40) n.03 (0.40)
The elegant pen glided gracefully across the tranquil lake. pen.n.05 n.01 (0.36) n.01 (0.36)
The immature sparrows are feathering already. feather.v.05 v.03 (0.20) v.02 (0.29)
The visitors can observe various species of ray in the aquarium. observe.v.02 v.01 (0.25) v.01 (0.25)
She hobbled the horse. It freaked out. hobble.v.03 v.01 (0.18) v.02 (0.18)
The gardener noticed the growth on the rose after the rain. growth.n.04 n.01 (0.18) n.01 (0.18)
The surge alarmed the town’s residents. alarm.v.02 v.01 (0.15) v.01 (0.15)

Table 5: Twenty instances of the challenge set with content words with out-of-distribution concepts in bold face,
and the concepts generated by the Gemma2-9B (Normal) and retrieval-augmented Gemma2-9B (RASP). The scores
in brackets are the Wu-Palmer Similarity between the predicted concept and gold concept.

the model’s linguistic coverage.

The verb ”alarm” in Table 5 is an instance of the
similarity problem. The challenge arises because
some of its senses have similar glosses, such as
alarm.v.01 (fill with apprehension or alarm) and
alarm.v.02 (warn or arouse to a sense of danger).
Similar issues occur with the verbs ”wax”, ”order”,
”observe” and ”hobble”. Although glosses were
carefully crafted by lexicographers, they don’t al-
ways show a clear difference in meaning (Mihalcea
and Moldovan, 2001; Navigli, 2006).

In cases of insufficient textual context, such as
with the noun ”kite” in the sentence ”We saw a
kite gliding in the sky”, the sense annotators chose
kite.n.04 (a bird of prey). However, kite.n.03 (a
plaything) could perhaps also be appropriate given
the limited context provided by this sentence. Sim-
ilar issues can be raised in the sentences with the
noun ”tripper” and the verb ”feathering”.

The third cause can be attributed to the model’s
linguistic coverage. A case in point is ”pen”: the
meanings of pen.n.01 (a writing implement) and
pen.n.05 (a female swan) are quite different, but the
latter is the correct one in the text ”Jane saw two
swans. The elegant pen glided gracefully across
the tranquil lake”. However, the model fails to dis-
tinguish them, likely because ”pen” is rarely used
to refer to ”swan” in available corpora. As a result,

the models may not have encountered this sense
during training, making it challenging for them to
predict a meaning they have not been exposed to.
In sum, while retrieval drastically improves con-
cept prediction, there are still some difficulties that
can pose challenges for the models.

6 Conclusion

This paper demonstrates that LLMs, even with-
out retrieval augmentation, outperform previous
encoder-decoder approaches in semantic parsing
for Discourse Representation Structures, thereby
answering our first research question in the affirma-
tive, setting a new state of the art. We also show
that our proposed Retrieval-Augmented Semantic
Parsing (RASP) framework, which integrates ex-
ternal lexical knowledge, further enhances the per-
formance of LLMs. Notably, RASP nearly dou-
bles the accuracy on out-of-distribution concepts,
which answers our second research question and
confirms robust generalization ability of RASP in
open-domain scenarios. Our experiments show that
by simply appending relevant information to the
model input, the RASP approach offers a practical
and intuitive approach that can be easily applied to
other meaning representations used in natural lan-
guage processing, such as AMR (Banarescu et al.,
2013) and BMR (Martı́nez Lorenzo et al., 2022).
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7 Limitations

We think the limitations of this work mainly come
from two aspects: the language models used in
RASP and the retrieval source (i.e., WordNet).

The retrieval process is proven to provide more
information and knowledge to the models. How-
ever, retrieval will significantly increase the input
length of the model, making it (only) adoptable
for the large language models with strong context
understanding and long text processing capabilities.
Therefore, the RASP framework cannot be directly
used to improve previous parsers that rely on other
methods, which is also why we only provided re-
sults of retrieval-augmented LLMs.

Another limitation is the retrieval source. Our
implementation of RASP uses WordNet, so if a
sense is not in WordNet, it will never be guessed.
For example, ”velvet scooter” (a bird) is not in
WordNet, nor is Cobb salad (a dish). Hence, RASP
will never make a perfect prediction for such cases.
Moreover, the glosses in WordNet, even though
carefully crafted by lexicographers in most cases,
are sometimes concise, lacking information to sep-
arate them from other senses. This makes it dif-
ficult for the models to accurately distinguish be-
tween different meanings (see Section 5.3). For fu-
ture work, the BabelNet, ConceptNet, or extended
WordNet (Delmonte and Rotondi, 2012; Navigli
and Ponzetto, 2012; Delmonte and Rotondi, 2015;
Speer et al., 2017) can be considered as a better
choice for concept in meaning representations.
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A Prompt

The following is a complete example of the
prompts we use for the LLMs. Since the mod-
els we use are all instruction-based versions, the
prompt is structured in a dialogue format.

RASP Prompt
user:
Please parse the following text into
Discourse Representation Structure,
considering using the concepts based
on the following glosses:
- birdwatch.v.01: watch and study
birds in their natural habitat
- saw.n.01: a condensed but memorable
saying embodying some important fact
of experience that is taken as true
by many people
- saw.n.02: hand tool having a
toothed blade for cutting
- saw.n.03: a power tool for cutting
wood
- saw.v.01: cut with a saw
- harrier.n.01: a persistent attacker
- harrier.n.02: a hound that
resembles a foxhound but is smaller;
used to hunt rabbits
- harrier.n.03: hawks that hunt over
meadows and marshes and prey on small
terrestrial animals
- kite.n.01: a bank check that has
been fraudulently altered to increase
its face value
- kite.n.02: a bank check drawn on
insufficient funds at another bank in
order to take advantage of the float
- kite.n.03: plaything consisting of
a light frame covered with tissue
paper; flown in wind at end of a
string
- kite.n.04: any of several small
graceful hawks of the family
Accipitridae having long pointed
wings and feeding on insects and
small animals
- kite.v.01: increase the amount (of
a check) fraudulently
- kite.v.02: get credit or money by
using a bad check
- kite.v.03: soar or fly like a kite
- kite.v.04: fly a kite
- hobby.n.01: an auxiliary activity
- hobby.n.02: a child’s plaything
consisting of an imitation horse
mounted on rockers; the child
straddles it and pretends to ride
- hobby.n.03: small Old World falcon
formerly trained and flown at small
birds

Text to parse: Johanna went
birdwatching. She saw a harrier, a
kite, and a hobby.

model:
female.n.02 Name "Johanna" time.n.08
TPR now birdwatch.v.01 Agent -2 Time
-1 ELABORATION <1
female.n.02 ANA -3 see.v.01
Experiencer -1 Time +1 Stimulus +3
time.n.08 TPR now
harrier.n.03 kite.n.04 entity.n.01
Sub -2 Sub -1 Sub +1 hobby.n.03

Normal Prompt
user:
Text to parse: Johanna went
birdwatching. She saw a harrier, a
kite, and a hobby.

model:
female.n.02 Name "Johanna" time.n.08
TPR now birdwatch.v.01 Agent -2
Time -1 ELABORATION <1 female.n.02
ANA -3 see.v.01 Experiencer -1 Time
+1 Stimulus +3 time.n.08 TPR now
harrier.n.03 kite.n.04 entity.n.01
Sub -2 Sub -1 Sub +1 hobby.n.03

B Experiment Settings

Table 6 and 7 provide the basic details of the ex-
periments and models.

Category Details Category Details

Stage SFT/inference Precision fp16
Fine-tuning LoRA Batch Size 1
Cutoff Length 1024 GPU Number 4
Learning Rate 10−4 GPU H100
Epochs 10 lr scheduler cosine

Table 6: Configurations for large language models Fine-
Tuning and Inference.

Model Details

BART-large facebook/bart-large
T5-large google-t5/t5-large
byT5-large google/byt5-large
Phi3-4B microsoft/Phi-3.5-mini-instruct
Qwen2.5-3B Qwen/Qwen2.5-3B-Instruct
Qwen2.5-7B Qwen/Qwen2.5-7B-Instruct
LLama3.2-3B meta-llama/Llama-3.2-3B-Instruct
LLama3.1-8B meta-llama/Llama-3.1-8B-Instruct
Gemma2-2B google/gemma-2-2b-it
Gemma2-9B google/gemma-2-9b-it

Table 7: Details of Models.

C Additional Experiments

We present the results of fine-tuning on Normal
data and testing by RASP prompt, as shown in Ta-
bles 8 and 9. This approach involves providing re-
trieval information during inference but using only
text-to-DRS data during training. From the results,
it is evident that this training method adversely af-
fects the model’s performance, particularly on the
standard test. We believe that fine-tuning reduces
the models’ ability of in-context learning, which
limits the models from effectively utilizing the ad-
ditional information provided by retrieval.
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Model Size Input Graph-level Node-level

Hard-SMatch↑ Soft-SMatch↑ IFR↓ F score↑

Phi3 4B Normal 85.74 87.92 4.94 (59) 81.60
RASP 66.78 (–22.1%) 70.88 (–19.4%) 14.9 (178) 63.50 (–22.2%)

Mistral 7B Normal 89.95 92.48 2.00 (24) 83.90
RASP 83.22 (–7.5%) 85.90 (–7.1%) 3.58 (43) 80.10 (–4.5%)

Qwen2.5
3B Normal 86.50 88.64 4.69 (56) 82.60

RASP 84.32 (–2.5%) 87.44 (–1.4%) 5.00 (60) 81.90 (–0.8%)

7B Normal 89.88 91.83 2.51 (30) 84.50
RASP 86.23 (–4.1%) 90.78 (–1.1%) 2.57 (33) 83.40 (–1.3%)

LLama3
3B Normal 87.30 90.01 3.34 (40) 81.50

RASP 85.90 (–1.6%) 86.91 (–3.4%) 4.10 (49) 77.59 (–4.8%)

8B Normal 89.92 92.46 2.09 (25) 83.90
RASP 88.65 (–1.4%) 91.30 (–1.3%) 2.50 (30) 82.11 (–2.1%)

Gemma2
2B Normal 89.20 91.08 3.01 (36) 84.20

RASP 84.40 (–5.4%) 89.93 (–1.3%) 3.01 (36) 80.11 (–4.9%)

9B Normal 90.72 93.15 1.67 (20) 84.67
RASP 91.11 (+0.4%) 93.35 (+0.2%) 1.79 (21) 83.10 (–1.9%)

Table 8: Performance on standard test.

Model Input Noun Verb Modifiers Overall

phi3-4B Normal 35.48 36.91 46.97 37.91
RASP 40.03 (+12.8%) 36.32 (–1.6%) 49.13 (+4.6%) 40.03 (+5.6%)

Mistral-7B Normal 38.02 40.61 50.00 39.87
RASP 40.90 (+7.6%) 49.27 (+21.3%) 50.00 (–0.0%) 43.61 (+9.4%)

Qwen2.5-7B Normal 38.51 37.52 46.97 39.12
RASP 40.11 (+4.2%) 43.54 (+16.1%) 50.00 (+6.5%) 41.94 (+7.2%)

LLama3.2-8B Normal 37.06 34.79 47.73 37.59
RASP 42.10 (+13.6%) 38.88 (+11.8%) 49.00 (+2.7%) 42.00 (+11.7%)

Gemma2-9B Normal 39.68 45.01 55.30 42.54
RASP 45.93 (+15.8%) 50.11 (+11.3%) 59.70 (+8.0%) 48.34 (+13.6%)

Table 9: Performance on the challenge set.
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Abstract

Interpreting whether a word is hateful in con-
text is inherently subjective. While growing
research in NLP recognizes the importance of
annotation variation and moves beyond treat-
ing it as noise, most work focuses primarily
on annotator-related factors, often overlooking
the role of linguistic context and its interaction
with individual interpretation. In this paper,
we investigate the factors driving variation in
hateful word meaning interpretation by extend-
ing the HateWiC dataset with linguistic and
annotator-level features. Our empirical analy-
sis shows that variation in annotations is not
solely a function of who is interpreting or what
is being interpreted, but of the interaction be-
tween the two. We evaluate how well models
replicate the patterns of human variation. We
find that incorporating annotator information
can improve alignment with human disagree-
ment but still underestimates it. Our findings
further demonstrate that capturing interpreta-
tion variation requires modeling the interplay
between annotators and linguistic content and
that neither surface-level agreement nor predic-
tive accuracy alone is sufficient for truly reflect-
ing human variation.1

Content warning! Some examples in this paper
contain language that may be offensive, for illustra-
tive purposes; we recognize their potential harm.

1 Introduction

Words play a central role in hate speech by encod-
ing derogatory meanings. The meaning of such
words is rarely fixed but highly dependent on con-
text and interpretation which poses a significant
challenge for both theoretical understanding and
computational modeling of hate speech (Sayeed,

1Code and supplementary materials for this study are
available at https://github.com/SanneHoeken/
HateWiCVariation.

2013). Despite growing interest in hate speech
detection, there has been little systematic investiga-
tion into the semantic and pragmatic mechanisms
that underlie how hateful word meanings are inter-
preted.

Recent work by Hoeken et al. (2024) introduced
the HateWiC dataset, which identified substantial
variation and disagreement in judgments about
whether a word is hateful in context. Models tend
to underperform on those cases where annotators
disagree. Although incorporating annotator demo-
graphic information shows modest improvements
in model performance, the underlying sources driv-
ing these variations remain poorly understood. This
aligns with a broader trend in NLP research, that
moves away from aggregated judgments to explic-
itly modeling inter-annotator variation (Uma et al.,
2021; Basile et al., 2021).

Yet, the focus in NLP research on label variation
in subjective tasks has largely remained on who is
interpreting (Kocoń et al., 2021; Orlikowski et al.,
2023), with far less attention given to what is being
interpreted. While linguistic content has always
been the basis for classification, recent subjectivity-
focused approaches tend to sideline the role of the
content itself. Only a few studies acknowledge the
role of linguistic ambiguity in subjective labeling
(Sandri et al., 2023; Jiang and Marneffe, 2022).

Table 1 illustrates how subjective variation can
emerge from both linguistic and annotator features
with examples from HateWiC. Variation in per-
ceived hatefulness of the word napoleon in the
first example likely arises from ambiguity between
senses (food vs. person) with limited context.
Whereas in the second example annotator differ-
ences likely contributed to disagreement, as the
annotators seem to have different tendencies to la-
bel content as hateful (based on their label ratios).
Lastly, the shrink example shows that the same
annotator’s tendency can shift depending on the
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Word in Context Term Sense Definition Sense Sense Context Ann. Gender Hateful Label
Domain Person Aspect Length Id Ratio

Miss Manvers thrust aside a garnished napoleon Another name for a millefeuille Food NotPerson 11 36 Female ▲▲▲ ✗

plate and attacked her napoleon. pastry. 69 Female ▲▲ ✓

He is the napoleon of crime, Watson. He napoleon A person having come to dominate Person Personality/ 41 36 Female ▲▲▲ ✗

is the organizer of half that is evil [...] an area of activity through illegality. behavior 75 Male ▲ ✓

My shrink said that he was an enabler, shrink A psychiatrist or psychotherapist. Person Profession 11 36 Female ▲▲▲ ✓

bad for me. 4 Female ▲▲▲ ✗

Table 1: Examples from the HateWiC dataset, with augmented linguistic and annotator information, that illustrate
how label variation (✗= hateful; ✓= not hateful) can arise from linguistic ambiguity (e.g. different senses of
napoleon) as well as from annotator tendencies (Hatefulness Ratio from low (▲) to high (▲▲▲)), while also
highlighting the interaction of these features with subjective interpretation.

linguistic content they are judging, such as whether
the term’s referent is defined by profession or be-
havior (Person Aspect). It is this interaction be-
tween linguistic features and subjective tendencies
that shapes variation in interpretation.

Within the ongoing search for meaningful pre-
dictors of human variation in subjective language
interpretation, relatively little attention has been
given to the level of word meaning. Moreover,
most studies only focus on annotator-related fea-
tures, neglecting the interplay between semantics,
linguistic context, and subjective interpretation that
shapes how hateful meanings arise. Additionally,
existing modeling efforts typically emphasize over-
all performance metrics without assessing whether
models replicate the patterns of human variation.
Yet understanding and modeling such patterns is
crucial for NLP systems to meaningfully reflect
the subjective nature of language interpretation in
sensitive tasks like hate speech detection.

Addressing these gaps, we augment the
HateWiC dataset with linguistic and annotator-
level features (§3) and empirically show that vari-
ation in hateful meaning interpretation is driven
not just by who the annotator is or what is being
annotated, but by their interaction (§4). Building
on this analysis, we propose an evaluation frame-
work that assesses whether BERT-based classifica-
tion models capture this variation (§5). The results
(§6) demonstrate that while models incorporating
annotator-specific inputs can reproduce superficial
variation, they substantially underestimate its mag-
nitude and fail to capture the internal structure of
variation found in human annotations.

2 Related Work

In what follows, we discuss prior work on hate-
ful word meaning in NLP and subjective variation
in Hate Speech Detection (HSD), both of which
motivate our study.

2.1 Hateful word meaning in NLP

Capturing variation in word meaning has long
been a focus in NLP (Pustejovsky, 1991; Schütze,
1998; Haber and Poesio, 2024). Computational ap-
proaches to lexical semantics have included tasks
such as Word Sense Disambiguation (Loureiro
et al., 2021), Word Sense Induction (Eyal et al.,
2022) and Lexical Semantic Change Detection (Per-
iti and Montanelli, 2024). Methods predominantly
rely on embedding-based techniques using encoder-
based language models and often employ contextu-
alized sense similarity metrics (Blevins and Zettle-
moyer, 2020; Cassotti et al., 2023). Moreover, the
tasks and approaches typically depend on general-
purpose resources and corpora that are oriented to-
ward standard language usage. Consequently, they
tend to focus on denotative rather than domain-
specific or connotative meaning (Potts, 2007) (e.g.
capturing denotative shifts as with a word like
plane changing from primarily a geometric con-
cept to also denoting an aircraft, in contrast to con-
notative shifts, such as spinster becoming more
negatively charged over time).

In contrast, some work has addressed connota-
tive meaning in the context of hate speech by exam-
ining lexical features used in sequence-level detec-
tion (Koufakou et al., 2020; Zampieri et al., 2022).
Other studies have explored the disambiguation
and detection of such terms, including subtle forms
like dog whistles (Kruk et al., 2024; Mendelsohn
et al., 2023). Prior research has also examined more
clear-cut cases, such as swear words (Pamungkas
et al., 2022) and slurs (Hoeken et al., 2023), which
are often argued to be more stable across contexts
(Frigerio and Tenchini, 2019). Additional work
has addressed more ambiguous pejorative terms
(Dinu et al., 2021). However, much of this research
adopts a (binary) classification perspective, with
limited attention to intra-word variation, i.e. how
the connotative meaning of a term shifts across con-
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texts or individuals. Recently, Hoeken et al. (2024)
addressed this issue with the introduction of the
HateWiC dataset. Their findings highlight the sub-
stantial variation in how hateful word meanings are
perceived, but the question about what underlies
this variation remains.

2.2 Subjective variation in HSD

Annotator disagreement is increasingly recognized
as a signal of subjective variation rather than mere
labeling noise (Larimore et al., 2021; Plank, 2022;
Fleisig et al., 2024). This shift is especially perti-
nent in HSD, where personal differences strongly
influence interpretive judgments. Several studies
have highlighted the role of annotator identity in
shaping perceived offensiveness. While some high-
light the relevance of sociodemographic variables
like gender and age (Kocoń et al., 2021; Sang and
Stanton, 2022), recent findings suggest that such
variables often act as noisy proxies and are poor pre-
dictors for interpretation variation (Alipour et al.,
2024; Orlikowski et al., 2023). Several studies
consider other annotator factors like ideology (Sap
et al., 2022) or moral values (Mostafazadeh Davani
et al., 2024), yet all consider annotator information
as the primary source of variation.

Recent modeling approaches have incorporated
annotator-specific information in various ways.
These include demographic-based embeddings
(Fleisig et al., 2023), embeddings based on annota-
tor ids or label histories (Deng et al., 2023; Mokhbe-
rian et al., 2024), and label distribution learning
(Weerasooriya et al., 2023). Other recent personal-
ization techniques involve multimodal signals like
gaze (Alacam et al., 2024), or fine-tuning LLMs
with annotator-specific prompts (Orlikowski et al.,
2025). Despite these advances, most efforts em-
phasize improvements in predictive performance,
often evaluated via accuracy metrics. An excep-
tion is Anand et al. (2024), who propose aligning
model confidence with annotator agreement as a
step toward more human-aligned predictions.

Our work contributes to this line of research by
explicitly modeling individual variation in hateful
word interpretation, and evaluating models by how
well they capture the structure of this variation
across linguistic and annotator-related dimensions.

3 Data & Features

To analyze variation in the interpretation of poten-
tially hateful words, we use the HateWiC dataset

(Hoeken et al., 2024), which provides contextual-
ized word usages annotated for perceived hateful-
ness. We further enrich this dataset with additional
linguistic and annotator-related features to facilitate
a comprehensive empirical analysis of variation.

3.1 The HateWiC dataset
The HateWiC dataset comprises approx. 4,000
word-in-context (WiC) instances, each annotated
independently by three annotators (N ≈ 12k total
annotations). Annotation was distributed across
48 annotators, with each annotating 250 instances.
Each instance consists of a target term embedded
in a sentence and linked to a Wiktionary definition
that corresponds to its contextual meaning (totaling
1,888 unique definitions). This setup thus provides
sense-level information. The terms included have
at least one sense referring to people and consid-
ered offensive based on Wiktionary data. Annota-
tors were asked to indicate whether the meaning
of the target term in the specific sentence was hate-
ful or not, and could also indicate undecided. The
dataset is balanced across the two main classes.

To measure variation, we use a binary variable
indicating whether an individual annotator’s label
matches the majority label for that instance (agree)
or not (disagree). We adopt this annotation-level
operationalization because it allows us to associate
both linguistic features of the text and annotator fea-
tures (which require individual annotations) with
variation in interpretation. We further augment the
HateWiC data with various supplementary features,
described (and highlighted in bold) below.

3.2 Linguistic features
We manually annotated the semantic Domain of
each Wiktionary definition, assigning categories
such as Person, Animal, and Food. This is moti-
vated by the idea that ambiguity across these broad
semantic domains (e.g. Napoleon as a person ver-
sus a dessert) may lead to variation in hateful inter-
pretation. We further annotated the Person Aspect
emphasized, distinguishing among categories such
as Personality/Behavior, Ethnicity/Nationality and
Appearance. These dimensions could influence
annotators’ judgments of hatefulness differently.
For example, references to ethnicity may evoke
stronger perceptions of offense compared to those
focused on behavior or appearance. All annotations
were carried out by two linguistic experts, with full
dual annotation for validation. More details on cat-
egory taxonomies and annotation are provided in
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Appendix A.
In addition to these semantic annotations, we

included the part of speech (POS) linked to each
sense definition, which was already included as
metadata in the HateWiC dataset. We also consider
for each word in context the Context Length, mea-
sured by the number of whitespace-separated to-
kens, as shorter contexts might provide fewer clues
for disambiguation which potentially increases dis-
agreement among annotators.

Finally, we incorporate the Grammatical Role
of the target word in its context. Grammatical Role
was identified using SpaCy’s dependency parser
and mapped to a coarser set of ten categories such
as subject, object and preposition (fully specified in
Appendix A). This syntactic information might af-
fect how strongly a term is emphasized and thereby
influence variation in perceived hateful intent.

3.3 Annotator features
We incorporated annotator-related features by lever-
aging information already present in the HateWiC
dataset. This includes the Annotator Id, along
with available sociodemographics (Gender, Eth-
nicity, and Age). We converted absolute age values
into age categories (e.g. ‘20-29’). As an additional
feature, we computed each annotator’s Hateful-
ness Ratio, defined as the proportion of instances
they labeled as hateful across the dataset (see also
Appendix A). This metric serves as an approxima-
tion of an annotator’s tendency to classify content
as hateful.

4 Empirical Analysis

We begin our empirical analysis by assessing
the overall degree of annotator agreement in the
HateWiC dataset. We calculate inter-annotator
agreement on the original dataset’s annotations,
with Krippendorff’s alpha resulting in 0.452. This
value reflects moderate agreement and matches the
original HateWiC paper’s findings (Hoeken et al.,
2024)2. Moving beyond surface-level agreement,
we statistically test the association between our en-
riched set of linguistic and annotator features, and
the binary outcome of agreement with the majority.

4.1 Independent feature associations
For a fair comparison of statistical test outputs, we
converted numerical features (Context Length and

2The alpha value reported in Hoeken et al. (2024) was
obtained without considering the undecided label, a difference
that does not appear to substantially affect the outcome.

Hatefulness Ratio) into categorical variables using
quantile-based binning (with n bins = 4). We con-
ducted Chi-squared tests of independence to assess
the relationship between each feature and anno-
tation agreement (i.e. agree or disagree with the
majority vote). Effect sizes were calculated using
Cramer’s V to measure the strength of associations.

Type Feature χ2 p-value Cramer’s V

linguistic Person Aspect 61.43 <0.001 0.072
Domain 31.83 <0.001 0.052
Context Length 48.53 <0.001 0.064
Grammatical Role 18.99 0.040 0.040
POS 4.06 0.669 0.018

annotator Annotator Id 238.11 <0.001 0.141
Hatefulness Ratio 37.32 <0.001 0.056
Ethnicity 59.39 0.000 0.071
Age 14.53 0.006 0.035
Gender 4.73 0.094 0.020

Table 2: Statistical test results for association of cat-
egorical features with annotation agreement (agree or
disagree with majority vote)

The results in Table 2 show several statistically
significant associations. Among linguistic fea-
tures, Person Aspect shows the strongest associ-
ation. Context Length and Domain also have sig-
nificant effects on the agreement (p < 0.001) and
Grammatical Role is marginally significant (p =
0.04). In the annotator-related features, Annotator
Id shows the strongest association. Ethnicity and
Hatefulness Ratio are also significant (p < 0.001).
Age is significant at the 0.01 level. Further details
on the computation and results, including contin-
gency tables, are provided in Appendices B and D.

Overall, the analysis indicates that both
linguistic properties of the input and demo-
graphic/behavioral characteristics of annotators in-
fluence annotation variation, with the strongest ef-
fects observed at the annotator level. While many
features have significant effects, the effect sizes are
generally small (Cramer’s V < 0.15), indicating
weak to modest associations. This suggests that a
large portion of variation in annotation variation
remains unexplained by these main effects.

4.2 Feature interaction associations

Figure 1 displays both individual and pairwise in-
teraction effects on annotation agreement, again
based on Chi-squared tests, this time considering
combinations of two features as well. The diag-
onal represents individual feature effects, while
the off-diagonal quadrants correspond to pairwise
interactions: the lower-left quadrant shows interac-
tions between linguistic and annotator features, the
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upper-left linguistic × linguistic interactions, and
the lower-right annotator × annotator interactions.

Pers
on

_A
sp

ec
t

Dom
ain

Con
tex

t_L
en

gth

Gram
_R

ole POS

Ann
ota

tor
_Id

Hate
_R

ati
o

Ethn
ici

ty

Age
_C

at

Gen
de

r

Person_Aspect

Domain

Context_Length

Gram_Role

POS

Annotator_Id

Hate_Ratio

Ethnicity

Age_Cat

Gender

0.07

0.09 0.05

0.11 0.09 0.06

0.12 0.11 0.08 0.04

0.08 0.06 0.07

0.29 0.26 0.19 0.24 0.19 0.14

0.14 0.13 0.09 0.08 0.07 0.14 0.06

0.13 0.12 0.10 0.10 0.09 0.14 0.10 0.07

0.10 0.09 0.08 0.14 0.06 0.09 0.03

0.09 0.06 0.07 0.14 0.07 0.08 0.05
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Linguistic Annotator

Li
ng

ui
st

ic
A

nn
ot

at
or

Figure 1: Heatmap of Cramer’s V effect sizes showing
both individual and pairwise associations of features
with annotation agreement. The upper triangle (above
the diagonal) as well as non-significant (p > 0.05) inter-
action effects are masked.

Generally, interactions explain more variation
in annotation agreement than individual features.
Particularly, interactions between annotator and lin-
guistic features are the strongest, with the highest
effect size of V = 0.29 for Person Aspect × Ann Id.
This pattern of low main effect but high cross-type
(linguistic × annotator) interaction supports that
annotation variation is more a function of who is
interpreting what, rather than just who, or what.

Within type interactions, the higher interaction
effects among linguistic features (max V = 0.12
for Person Aspect × Grammatical Role), compared
to individual features (max V = 0.07), emphasize
that the combined effect of linguistic features mat-
ters more for meaning variation, which aligns with
linguistic theories of compositionality and context-
dependent meaning (Partee et al., 1984).

Adding interactions among annotator features
does not increase association strength beyond what
is captured by Annotator Id alone. This is logical
because Annotator Id essentially encapsulates all
annotator-related factors. Ignoring Annotator Id,
interactions among other annotator features show
modestly stronger effects than individual features,
with the ethnicity × Hatefulness Ratio interaction
yielding V = 0.10. This implies possible interpre-
tative biases (reflected by tendency to label hate)
linked to cultural context. Nonetheless, these ef-
fects remain smaller than those involving Annota-
tor Id, thus the results show that individual annota-
tor differences beyond demographics and labeling
tendency has stronger influence on the agreement.

4.3 A closer look: Person Aspect ×
Hatefulness Ratio

While statistical tests and interaction analyses pro-
vide evidence of feature associations with annota-
tion agreement, inspecting the directions and pat-
terns of these effects allows for a more concrete
interpretation. We illustrate this by zooming in on
the interaction effect of two features from our anal-
ysis. Figure 2 visualizes the interaction between
the semantic Person Aspect of the target word and
annotators’ hateful labeling tendency (Person As-
pect × Hatefulness Ratio, with the latter discretized
into four intervals. The disagreement probability
shows distinct patterns across Person Aspect cate-
gories. For example, instances in the Appearance
or Social class categories exhibit relatively high
disagreement for annotators with a low Hateful-
ness Ratio and less disagreement with moderate
to high ratios. Conversely, the Kinship/social cate-
gory exhibits the opposite trend. These diverging
patterns emphasize that annotator tendencies do not
exert uniform effects across linguistic categories.
Instead, the influence of individual biases on anno-
tation variation is mediated by the specific semantic
characteristics of the content.

5 Computational Modeling

In this section, we investigate to what extent com-
putational models with different inputs can capture
human variation in annotations. We address this
question in the context of the binary classification
task that predicts the individual annotations in the
HateWiC dataset (12K annotations of words in con-
text, labeled hateful or not hateful based on their
meaning in that context). We explicitly model and
analyze this variation by conditioning predictions
on auxiliary inputs such as annotator identity or
demographics. The primary goal is to gain insights
into alignment with human interpretation variation
rather than optimize benchmark performance.

5.1 Model architecture & experiments

We largely follow the approach proposed by Deng
et al. (2023), who incorporate annotator embed-
dings into a BERT model. Their mechanism relies
on a predefined annotator id vocabulary. We extend
this approach by introducing a modular framework
that allows integration of auxiliary information, in-
cluding not only discrete id-based inputs but also
free-form text descriptions, alongside standard in-
put text (primary input). The model architecture
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Figure 2: Interaction between the person-related semantic category of the target word (Person Aspect) and annotator’s
individual tendency to label instances as hateful (Hatefulness Ratio) on the probability of disagreement as the
proportion of annotations where individual annotators disagreed with the majority vote.

builds upon a pre-trained encoder for representa-
tions of textual inputs. Specifically, we initialize
all models with the base version of ModernBERT
(Warner et al., 2024) as encoder. Similar to Deng
et al. (2023) we adopt a learnable feature-wise
weighting mechanism for auxiliary embeddings.

Primary text embeddings For each HateWiC
instance, the primary input is the sentence con-
taining the target term (WiC). Alternatively, fol-
lowing Hoeken et al. (2024), we test replacing
this input with the corresponding Wiktionary def-
inition (WikDef), or using a concatenation of
both. WikDef provides lexical semantic informa-
tion about the term in a non-contextualized form.
Each input type is independently passed through
the encoder to obtain a [CLS] representation, which
serves as the primary feature embedding.

Auxiliary annotator embeddings Following
Deng et al. (2023), an embedding layer maps auxil-
iary ids to dense vectors, which are jointly trained
with the rest of the model, yielding id-based anno-
tator embeddings (ann id). We extend this frame-
work by enabling auxiliary inputs in natural lan-
guage form, resulting in text-based annotator em-
beddings. These include: (i) annotator ids (ann
id) expressed as text (e.g. “annotator 12”), (ii) a
description of demographic characteristics (profile
descr.) (e.g. “The reader is Female, Asian and
28”) and (iii) a description of a single character-
istic, for which we specifically test ethnicity (e.g.
“Asian”). Additionally, inspired by recommender
system approaches (Shin et al., 2023), we explore
(iv) representations of each annotator’s label his-
tory (ann. behavior) as the set of prior WiC in-
stances they labeled as hateful (drawn from the
training set). All textual inputs are processed using

the same ModernBERT encoder, with the [CLS]
token representation used as the embedding. For
behavior-based inputs, which consist of a list of
texts, the [CLS] representations are averaged to
produce a single embedding.

Feature Weighted Classifier (FWC) To inte-
grate the auxiliary embeddings with the primary
text representation, we adopt a feature-wise learn-
able weighting scheme. Each auxiliary embedding
is assigned a scalar weight (learned during train-
ing) that determines its contribution. The weighted
auxiliary vectors are then concatenated with the
primary text embedding and passed into the clas-
sifier. The classifier is a single-layer multilayer
perceptron (MLP) comprising a linear transforma-
tion, ReLU activation, dropout regularization, and
a final linear layer mapping to the output classes.

Experimental setup We evaluate ten model con-
figurations: three using only primary inputs (i.e.
the WiC and/or its definition), and seven that ad-
ditionally incorporate auxiliary annotator informa-
tion. Model predictions are generated for each
individual annotation in the HateWiC dataset using
a 10-fold cross-validation framework. Each fold
follows a fixed 80-10-10 split into training, vali-
dation, and testing sets. Further implementation
details, including libraries, hyperparameters, and
hardware specifics, are provided in Appendix C.

5.2 Evaluation

Our goal is to assess how closely computational
models capture human variation in annotation for
the HateWiC task. In the previous section, we
statistically analyzed a range of linguistic and
annotator-specific features to understand their in-
fluence on human agreement. Here, we evaluate
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whether models can replicate these patterns by an-
alyzing their predictions of individual annotations
(typically three per sentence), with and without
annotator-specific information as auxiliary input.
In the latter case, models simulate predictions from
annotators by conditioning on annotator identity.

Prediction agreement To quantify how closely
the model’s predictions resemble human annota-
tion variation in terms of inter-annotator agreement
measured through Krippendorff’s alpha (α), we
define an Agreement Alignment score as:

AA = 1− |αmodel − αhuman|

Here, αmodel is computed over the model’s pre-
dicted annotations and thus reflects the model’s
variation across simulated annotators. αhuman is the
alpha from actual human annotations. The score
ranges from 0 to 1, with higher values indicating
that the degree of variation in the model’s predic-
tions more closely matches the degree of variation
observed in human annotations.

Agreement patterns To assess whether models
go beyond surface-level agreement and replicate
deeper variation patterns, we examine whether they
reproduce the same effects of linguistic and anno-
tator variables on label variation as observed in
human data. Specifically, we conduct the same
statistical tests (§4), replacing human annotations
with model predictions. Variation is again treated
as a binary variable (agree or disagree) based on
whether each individual model prediction aligns
with the model-level majority vote. This mirrors
the human data procedure, where individual anno-
tations were compared to the human majority.

Using the same set of ten linguistic and annotator
features listed in Table 2, we examine both main ef-
fects of individual features (10 effects) and interac-
tions between feature pairs, i.e. 45 effects from all
possible pairwise combinations. To quantify how
closely a model replicates variation patterns, we
compute the Relative Pattern Alignment (RPA)
score between human and model effect sizes (mea-
sured using Cramér’s V) across all n effects, which
we define as:

RPA = 1− 1
n

∑n
i=1

∣∣∣ effecthuman,i−effectmodel,i
effecthuman,i

∣∣∣

We normalize each error by the magnitude of the
corresponding human effect size to accommodate
the small magnitude of Cramér’s V and to prevent

larger effects from disproportionately influencing
the score. The final metric is inverted so that higher
RPA values indicate stronger alignment between
the model’s and humans’ variation patterns.

Prediction accuracy Finally, we directly com-
pare the model predictions to individual human
annotations, following traditional evaluation prac-
tices. For each model, we report accuracy across
all instances.

6 Results & Discussion

We present results for all ten model configurations
in Table 3, which vary in terms of their input fea-
tures: (i) primary input only, (ii) primary input with
id-based annotator embeddings, and (iii) primary
input with text-based annotator embeddings.

FWC config. model input AA RPA Acc.

primary only WiC 0.452 0.000 0.650
WikDef 0.452 0.000 0.671
WiC + WikDef 0.452 0.000 0.700

+ aux. (id-based) WiC + ann. id 0.670 0.620 0.664
WikDef + ann id 0.732 0.632 0.682
WiC + WikDef + ann. id 0.638 0.658 0.704

+ aux. (text-based) WiC + ann. id 0.516 0.567 0.656
WiC + profile descr. 0.576 0.557 0.654
WiC + ethnicity 0.501 0.539 0.654
WiC + ann. behavior 0.452 0.000 0.654

Table 3: Agreement Alignment score, Relative Pattern
Alignment score and accuracy for the different model
configurations compared to the human annotation data.

6.1 Prediction agreement

Models that process only primary text naturally
produce identical predictions across simulated an-
notators for each instance. This results in perfect
inter-annotator agreement (αmodel = 1). Conse-
quently, they score lowest on Agreement Align-
ment (AA = 0.452), as they fail to reproduce the
human variation in annotations. In contrast, mod-
els that incorporate auxiliary annotator information,
particularly those with id-based embeddings, ex-
hibit lower agreement rates. This indicates that
simulated annotators produce diverging predictions
on the same primary input, mimicking the variation
observed in human annotations.

Text-based auxiliary inputs result only in modest
improvements over primary-only baselines and un-
derperform compared to id-based embeddings. For
instance, using text-based annotator ids yields an
AA of 0.516, whereas the corresponding id-based
configuration achieves 0.670. These differences
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Figure 3: Heatmaps of Cramer’s V effect sizes showing both individual (along the diagonal) and pairwise associations
of features with model prediction agreement for different FWC model configurations (named after their inputs). The
upper triangles (above the diagonal) as well as non-significant (p > 0.05) interaction effects are masked.

might originate from the fact that id-based embed-
dings are jointly trained, letting the model distin-
guish the annotators in a more clear-cut manner,
whereas text-based inputs rely on static represen-
tations from a pre-trained encoder, limiting their
influence on the model’s decision making. Notably,
the WiC + ann. behavior model maintains perfect
inter-annotator agreement (αmodel = 1), suggest-
ing that the behavior representations do not inject
any variation into model predictions. A possible
explanation is that each annotator’s behavior em-
bedding is a fixed average of the hateful sentences
they labeled, which may smooth out fine-grained
differences and lack strong signals to distinguish
annotators.

Overall, these findings suggest that conditioning
on annotator identity introduces label variation, but
the way this auxiliary input is provided affects the
extent of this variation. Yet, in general, models
underestimate the magnitude of variation observed
in human annotations.

6.2 Agreement patterns
While Agreement Alignment quantifies whether
models produce human-like variation in an aggre-
gated manner, it does not capture how that varia-
tion arises. To probe this, we analyze Relative Pat-
tern Alignment (RPA), which measures how well
a model replicates the internal structure of human
variation. High AA does not always translate to
high RPA, indicating that the variation in human
data and model predictions might originate from
different instances. For example, while the model

with WikDef + ann. id has the highest AA (0.732),
the configuration with combined inputs (WiC +
WikDef + ann. id) achieves the best RPA (0.658).
These results reveal that surface-level agreement
can be misleading, since it does not guarantee align-
ment with the internal structure of human variation.

Figure 3 visualizes feature association patterns
for each of the six models, restricted to those ex-
hibiting variation in their predictions (αmodel < 1).
It displays for each model a heatmap of Cramer’s V
effect sizes showing both individual and pairwise
associations of features with prediction agreement.
The human annotation data showed a diverse range
of significant effects (48 out of 55 tested), includ-
ing interactions between annotator features, linguis-
tic features, and cross-type combinations. Among
these, the latter were particularly prominent. Mod-
els generally captured far fewer significant effects
and vary widely in their replication of human-like
effect structures. A key distinction emerges in the
types of feature interactions that models are able to
replicate. The best model in terms of RPA (WiC +
WikDef + ann. id) captures numerous significant
effects spanning all three interaction types. In con-
trast, only two significant effects were identified for
the model with WiC + ann id (text-based) inputs,
none involving annotator × annotator interactions.

Overall, these findings show the importance of
not just measuring agreement rates, but also system-
atically analyzing the patterns of variation, which
can offer a more fine-grained view of how model
predictions reflect the structure of human annota-
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tion behavior.

6.3 Prediction performance
Across all configurations, predictive accuracy re-
mains relatively stable (0.65–0.70). The highest
accuracies are observed for models using semantic-
rich inputs, i.e. including both sentence context
(WiC) and definitions (WikDef) as inputs. This
highlights the importance of linguistic information
for predicting individual annotations and aligns
with our earlier findings on the role of linguistic
features in human annotations. In addition, mod-
els that best capture human-like variation do not
necessarily predict individual labels more accu-
rately. For instance, although the WikDef + ann. id
model exhibits strong AA (0.732) and RPA (0.632),
its accuracy (0.682) is only marginally better than
primary-only models. These findings suggest that
optimizing for predictive accuracy and optimizing
for alignment with human variation may constitute
distinct modeling objectives that warrant separate
consideration in model development.

7 Conclusion
In this paper we demonstrated that the variation
in interpretation of hateful word meaning is not
merely a function of who the annotator is or what is
being annotated, but of the interaction between the
two. Through empirical analysis of the HateWiC
dataset, we showed that both linguistic properties
of the target word in context and annotator charac-
teristics shape interpretive variation. Our evalua-
tion of model alignment with human variation fur-
ther reveals that although models that incorporate
annotator-specific information introduce human-
like variation at a surface level, they still under-
estimate the magnitude of variation observed in
human annotations and generally fail to represent
the internal structure of variation. In conclusion,
our findings show that capturing human interpretive
variation requires modeling the interaction between
annotators and linguistic content, and that surface-
level agreement or predictive accuracy alone does
not ensure true alignment with human variation.

Limitations

Alongside its contributions, this study has several
limitations that should be acknowledged:

Binary operationalization. Our analysis relies
on binary categorizations for hatefulness (hateful
vs. not hateful) and annotator agreement (agree vs.

disagree with majority). While this simplifies mod-
eling and interpretation, it risks oversimplifying
the complexity of human judgments. Future work
could explore multi-class or continuous scales to
capture finer distinctions in hatefulness and annota-
tion variation.

Feature selection & categorization. The linguis-
tic and annotator features included in our study, al-
though carefully chosen to cover key linguistic and
annotator dimensions, represent a subset of poten-
tially relevant factors. Additionally, some features
were either provided in broad categories or grouped
during analysis to facilitate reliable statistical anal-
ysis. Other linguistic phenomena, richer annotator
identity information and more refined categoriza-
tions might further explain variation patterns.

Label variation as interpretation variation.
We interpret label variation among annotators
as indicative of variation in meaning interpreta-
tion. While this is a reasonable assumption, other
sources of disagreement, such as sloppy annota-
tions or uncertainty, cannot be fully ruled out (e.g.
Sandri et al. (2023)). Incorporating complemen-
tary data such as annotator confidence ratings or
qualitative feedback could strengthen this.

Automatic parsing. The Grammatical Role fea-
ture was derived using automatic dependency pars-
ing (SpaCy) without additional validation tailored
to the specific dataset. While SpaCy generally of-
fers robust performance, parsing errors could in-
troduce noise in the linguistic feature set. Dataset-
specific parser evaluation could improve feature
reliability in future analyses.

Data size and imbalance. Some feature cate-
gories have limited observations, restricting the
use of complex models like mixed-effects regres-
sion with random intercepts for annotators. These
models treat each subcategory as a separate binary
feature which requires enough data per subcate-
gory to produce reliable estimates of variation and
interaction effects. Due to this, we relied on Chi-
squared tests and effect size measures better suited
to the dataset. Larger, more balanced data would
enable exploring richer feature effects.

Limited modeling diversity. The modeling com-
ponent of this study focused on one type of archi-
tecture (ModernBERT-based encoder models with
auxiliary feature integration). While this design al-
lowed us to systematically evaluate the contribution
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of annotator information within a controlled setup,
it does not explore the full range of potentially use-
ful architectures. Future work could broaden this
scope to assess generalizability across modeling
paradigms.

Ethics Statement

Our work builds upon the HateWiC dataset by en-
riching it with additional linguistic annotations and
computational analyses. Apart from the supple-
mentary linguistic annotations (see also Appendix
A), no new human annotations were collected for
this research beyond what is already available in
HateWiC, and no personally identifying informa-
tion was processed or used. Where annotator iden-
tity is used for modeling purposes, it is limited to
anonymous identifiers that cannot be traced to real
individuals. We recognize that demographic cat-
egories such as ethnicity, gender and age provide
only a limited representation of individual identity.
These features are used here solely to explore vari-
ation in annotator interpretation and not to make
generalizations about any group.

Given the sensitive nature of hate-related content,
we have taken care to conduct our analyses and re-
porting in a manner that avoids harm. The focus
of our work is on variation in interpretation rather
than the endorsement or rejection of any specific
viewpoint. Our goal is to improve understanding
of the variation inherent to such subjective anno-
tation tasks, in order to support the development
of computational methods that better account for
subjective variation and promote fairness in NLP
applications.
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A Data

We retrieved the HateWiC dataset upon request
which is available for research purposes, licensed
under CC BY-NC 4.0.

A.1 Sense-level annotation

The annotation task was conducted on Wiktionary
definitions from the HateWiC dataset, comprising
nearly 1,900 instances. Each instance was anno-
tated with two categorical labels: one for semantic
Domain and one for Person Aspect. The Domain
label captures the conceptual domain of the term,
provided that its part of speech is a noun; otherwise,
it is labeled as NotNoun. The Person Aspect label
identifies what aspect of a person the sense pertains
to, and is only applied if the term refers to a person;
otherwise, it is labeled as NotPerson.

The Domain taxonomy includes the following
categories: Person, Animal, Artefact, Body part,
Disease, Food, Plant, Supernatural being, Ambigu-
ous and Other. The Person Aspect taxonomy in-
cludes: Personality/behavior, Ethnicity/nationality,
Health/disability, Intelligence, Profession, Poli-
tics/ideology, Appearance, Gender/sexuality, Kin-
ship/social, Social class, Age and Unspecified.
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Full annotation guidelines, including definitions
of each category, are available in our GitHub repos-
itory. The annotation was carried out by two anno-
tators with expertise in linguistics: Annotator 1 (au-
thor) is a PhD student in Computational Linguistics
and Annotator 2 is a student in English and Com-
putational Linguistics. Inter-annotator agreement,
measured using Cohen’s kappa, was κ = 0.832 for
the Domain annotations and κ = 0.764 for the Per-
son Aspect annotations. Annotator 2’s annotations
served as validation, with Annotator 1 providing
the authoritative judgment when consensus was not
reached.

A.2 Grammatical Role extraction

We implemented a custom pipeline using the
spacy nlp library with the en core web sm
model. To locate predefined (multiword)
terms within sentences, we used spacy’s
PhraseMatcher, configured to match on the
lemmatized form of the target terms (using spacy’s
built-in lemmatizer). If no exact lemmatized match
was found, approximate string matching was per-
formed using the rapidfuzz library, leveraging
the Levenshtein similarity ratio. Candidate noun
chunks in each sentence were compared to the
expected lemmatized term, and the highest-scoring
match above a fuzzy similarity threshold of 85 was
selected. For both exact and approximate matches,
the syntactic role of the term was determined by
extracting the dependency label (dep ) of the
syntactic head of the matched span. Processing
was parallelized using spacy’s nlp.pipe API
with a batch size of 50.

After extracting the dependency parsing tags
using SpaCy for the target terms in the texts, we
mapped them to a coarser categorization based
on guidelines provided in https://github.com/

clir/clearnlp-guidelines/blob/master/

md/specifications/dependency_labels.md.
The coarse-grained categories of Grammatical
Roles are: subject, object, nominal, adverbial,
preposition, coordination, root, compoundword,
complement and miscellaneous.

A.3 Annotator Hatefulness Ratio

We computed each annotator’s Hatefulness Ratio,
defined as the proportion of instances they labeled
as hateful across the dataset, i.e.:

Ha =
N

(h)
a

Na

where Ha denotes the Hatefulness Ratio of anno-
tator a, N (h)

a is the number of instances annotator
a labeled as hateful, and Na is the total number of
instances annotated by a.

B Empirical Analysis

Inter-annotator agreement was computed using the
krippendorff package. Furthermore, we con-
ducted two types of statistical analyses. Feature as-
sociation testing was carried out using chi-squared
tests of independence via the scipy.stats
package. For handling numerical variables, we
applied quantile-based binning to create discrete
categories. This was achieved using the qcut func-
tion from the pandas library.

For the analysis visualized in Figure 4, ordinary
least squares (OLS) regression was applied using
the OLS method from the statsmodels.api
module. We included interaction and poly-
nomial terms using PolynomialFeatures
from sklearn.preprocessing and com-
puted the coefficient of determination (R2) with
sklearn.metrics.r2 score.

All data visualizations were produced with
matplotlib.pyplot and seaborn.

C Computational Modeling

All modeling experiments were implemented us-
ing the PyTorch framework. Text representa-
tions were obtained using a pre-trained transformer
model. More specifically, initialized with the
‘answerdotai/ModernBERT-base’ check-
point via the transformers library. Model
training was performed with the Adam optimizer
using a learning rate of 2× 10−5 and a batch size
of 32 for both training and evaluation. The train-
ing process was conducted over 3 epochs using
a fixed random seed of 56 to ensure reproducibil-
ity. Classification performance was evaluated us-
ing cross-entropy loss and accuracy computed with
sklearn.metrics. All experiments were exe-
cuted on a single NVIDIA RTX A6000 GPU using
CUDA acceleration.

D Additional Results

D.1 Main effect of Hatefulness Ratio

An additional illustration of the directions of fea-
ture effects is provided in Figure 4. The figure
plots individual annotators’ hateful labeling ten-
dency (Hatefulness Ratio) against their annotation
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agreement ratio with the majority, which allows
for more concrete interpretation of this measured
main effect as presented in Table 2. Unlike earlier
analyses, which relied on binned categories, this
figure presents the continuous relationship between
these variables. The relationship appears weakly
quadratic, with lower agreement visible at both
extremes of Hatefulness Ratio. As expected, anno-
tators who rarely or frequently label instances as
hateful tend to deviate more often from the majority
decision, while those with moderate Hatefulness
Ratios agree more frequently. Especially for these
annotators, incorporating individual labeling behav-
ior may improve models of annotation variation.
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Figure 4: Annotator’s hatefulness proportion (i.e. how
much of their annotations is hateful) against agreement
ratio (i.e. how much of their annotations is the majority
vote). Each datapoint represents one annotator.

D.2 Contingency tables
For each feature, the frequency counts that underlie
the statistical analyses in Table 2 are reported in
Tables 4 until 13.

Person Aspect agree disagree

Age 77 16
Appearance 307 41
Ethnicity/nationality 480 80
Gender/sexuality 510 74
Health/disability 171 17
Intelligence 380 52
Kinship/social 164 14
NotPerson 4271 688
Personality/behavior 2183 473
Politics/ideology 772 185
Profession 228 43
Social class 49 10
Undecided 47 10
Unspecified 177 18

Table 4: Frequencies for individual annotations by
Agreement with the majority vote and Person Aspect

Domain agree disagree

Ambiguous 191 28
Animal 248 40
Artefact 579 50
Body part 212 46
Disease 213 43
Food 110 15
NotNoun 2111 377
Other 802 120
Person 6786 1107
Plant 82 12
Super natural being 33 7

Table 5: Frequencies for individual annotations by
Agreement with the majority vote and Domain

Context Length agree disagree

3-14 2667 341
14-23 2494 374
23-35 2478 512
35-176 2483 487

Table 6: Frequencies for individual annotations by
Agreement with the majority vote and Context Length

Grammatical Role agree disagree

adverbial 457 55
complement 415 73
compoundword 704 125
coordination 687 125
miscellaneous 101 18
nominal 1078 188
not found 196 48
object 2897 486
preposition 1073 373
root 600 91
subject 1246 297

Table 7: Frequencies for individual annotations by
Agreement with the majority vote and Grammatical
Role

76



POS agree disagree

adjective 848 159
adverb 237 30
interjection 47 5
noun 7688 1421
phrase 3 0
proper noun 94 11
verb 1193 210

Table 8: Frequencies for individual annotations by
Agreement with the majority vote and POS

Hate Ratio agree disagree

0.25-0.4 2632 480
0.4-0.48 2668 482
0.48-0.56 2577 382
0.56-0.7 2418 535

Table 9: Frequencies for individual annotations by
Agreement with the majority vote and Hate Ratio

Ethnicity agree disagree

Asian 889 142
Black 3883 810
Mixed 639 110
Other 191 66
White 4511 675

Table 10: Frequencies for individual annotations by
Agreement with the majority vote and Ethnicity

Age Category agree disagree

20-29 3657 1255
30-39 2790 960
40-49 210 20
50-59 208 40
60+ 213 32

Table 11: Frequencies for individual annotations by
Agreement with the majority vote and Age Category

Gender agree disagree

Female 5410 1086
Male 4467 777
Prefer 217 27

Table 12: Frequencies for individual annotations by
Agreement with the majority vote and Gender

Annotator Id agree disagree

annotator 1 261 33
annotator 10 213 32
annotator 13 181 32
annotator 14 213 32
annotator 16 198 59
annotator 18 193 39
annotator 19 187 60
annotator 2 228 24
annotator 22 215 43
annotator 23 217 27
annotator 24 220 26
annotator 25 216 31
annotator 26 169 31
annotator 28 219 29
annotator 30 217 29
annotator 31 222 17
annotator 34 215 41
annotator 35 207 37
annotator 36 191 53
annotator 37 226 28
annotator 39 193 42
annotator 4 206 51
annotator 42 214 38
annotator 44 222 35
annotator 47 191 66
annotator 5 225 27
annotator 53 208 36
annotator 55 164 78
annotator 56 198 18
annotator 58 225 28
annotator 59 220 38
annotator 6 189 39
annotator 60 222 33
annotator 62 234 23
annotator 63 186 67
annotator 64 209 44
annotator 65 209 26
annotator 66 230 28
annotator 69 213 40
annotator 71 213 32
annotator 74 214 44
annotator 75 203 50
annotator 77 215 36
annotator 78 208 49
annotator 79 218 37
annotator 8 216 35
annotator 83 204 45
annotator 85 236 21

Table 13: Frequencies for individual annotations by
Agreement with the majority vote and Annotator Id
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Abstract
In complement coercion sentences, like John
began the book, a covert event (e.g., reading)
may be recovered based on lexical meanings,
world knowledge, and context. We investigate
how context influences coercion interpretation
performance for 17 language models (LMs) in
Norwegian, a low-resource language. Our new
dataset contained isolated coercion sentences
(context-neutral), plus the same sentences with
a subject NP that suggests a particular covert
event and sentences that have a similar effect
but that precede or follow the coercion sentence.
LMs generally benefit from contextual enrich-
ment, but performance varies depending on the
model. Models that struggled in context-neutral
sentences showed greater improvements from
contextual enrichment. Subject NPs and pre-
coercion sentences had the largest effect in fa-
cilitating coercion interpretation.

1 Introduction

Coercion results from a semantic type mismatch
between a predicate and its argument (Pustejovsky,
1991, 1995; Jackendoff, 1997). In John began the
book, the aspectual verb begin requires an event-
denoting complement, but is instead combined with
an entity-denoting NP (the book). The covert event
can be recovered by exploiting the meaning of lex-
ical constituents, world knowledge, and context
(Pustejovsky, 1991, 1995; Lapata and Lascarides,
2003). Hence, speakers can interpret the sentence
above as meaning, for example, that John began
reading the book. Because the resulting interpreta-
tion is not a strict function of constituent meanings
and syntax, coercion has been argued to violate
strong versions of the principle of compositional-
ity (Asher, 2015; Jackendoff, 1997; Baggio et al.,
2012, 2016). Experiments found longer reading
times (McElree et al., 2001; Traxler et al., 2002)
and on-line processing costs (Pylkkänen and McEl-
ree, 2007; Baggio et al., 2010; Baggio, 2018) for

coercion sentences compared to controls in which
the relevant event is expressed by a non-aspectual
verb (e.g., John read the book) or an event-denoting
complement.

Transformer-based language models (LMs)
(Vaswani et al., 2017) have become popular in NLP
owing to their success in a range of tasks. However,
few studies addressed how LMs process comple-
ment coercion. Previous research focused mainly
on coercion as a challenge for sentence interpre-
tation and framed it as a task where LMs have to
predict the best covert event given an aspectual
verb–complement combination (Rambelli et al.,
2020; Ye et al., 2022; Gietz and Beekhuizen, 2022;
Im and Lee, 2024; Rambelli et al., 2024). Radaelli
et al. (2025) demonstrate that LMs have difficulty
retrieving covert events for coercion sentences in
Norwegian in the absence of context. The present
study extends that work by investigating the role of
context. Transformers’ self-attention mechanism
captures local contextual information by assigning
greater relevance to some tokens compared to oth-
ers within a sequence (Vaswani et al., 2017; Devlin
et al., 2019; Radford et al., 2019). The result is the
generation of dynamic linguistic representations
that vary according to the surrounding context. We
expect that contextual information will improve the
performance of transformer-based LMs in covert
event interpretation of coercion sentences.

2 Theories of Coercion in Context

One hypothesis assumes that a coercion interpreta-
tion is the result of enriched composition: lexico-
semantic properties of words are leveraged to en-
rich the meaning of the sentence, resulting in an
eventive reading (Pustejovsky, 1991, 1995, 1998;
Asher, 2015). Each lexical item is associated with
a qualia structure that includes, among others, a
specification of TELIC (the purpose of an object)
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and AGENTIVE (how an object is created) roles of
the relevant entity. For coercion sentences, a type
mismatch between the aspectual verb and its com-
plement leads to the recovery of the covert event
by exploiting the qualia roles of the entity book:
the TELIC role implies that reading is the covert
activity, while the AGENTIVE role implies writing.
Contextual information can motivate different in-
terpretations than those suggested by default qualia
roles (Pustejovsky, 1995; Pustejovsky and Bouil-
lon, 1995; Pustejovsky, 1998; Traxler et al., 2002).
In The author began the book, the subject NP can
facilitate the recovery of the AGENTIVE quale write
(Traxler et al., 2005). In The climber enjoyed the
rock, instead, where no specific TELIC role is pro-
vided by rock, the complement is enriched through
co-composition of the subject NP climber, sug-
gesting the interpretation that the climber enjoyed
climbing the rock (Pustejovsky, 1998, p. 294).

The contextual enrichment of coercion sentences
is also motivated by empirical studies. McElree
et al. (2001, p. 7), for instance, acknowledge that
the “properties of the subject NP appear to deter-
mine the default interpretation in an otherwise neu-
tral context.” In eye-tracking experiments, Traxler
et al. (2005) concluded that contextual information
does not necessarily attenuate processing costs in
coercion sentences, but can be exploited as an ‘ex-
tended lexicon’, licensing an eventive interpretation
that could be otherwise costly to generate.

The pragmatic hypothesis proposes a different
account of complement coercion compared to the
more constrained approach of the lexical analy-
sis, which claims that coercion sentences are en-
riched solely via default qualia-based lexical infor-
mation (Lascarides and Copestake, 1998; Zarcone
et al., 2014). Building on relevance theory (Sperber
and Wilson, 1986; Falkum, 2015), the proposal by
De Almeida (2004) and De Almeida and Dwivedi
(2008) claims that lexical entries only specify an
expression’s denotation or type (Fodor and Lepore,
1998). The interpretation of coercion sentences is
therefore not lexically-driven but guided by post-
lexical pragmatic inferences, world knowledge, and
context. This leads to more flexible interpretations
and a wider variety of readings compared to those
afforded by qualia roles (Fodor and Lepore, 1998;
De Almeida, 2004; Falkum, 2015).

Experimental work by Zarcone and Padó (2011)
and Zarcone et al. (2014) provides instead support
for Generalized Event Knowledge (GEK) (McRae

and Matsuki, 2009) in coercion interpretation, an al-
ternative to both lexical qualia-based and pragmatic
hypotheses. The words-as-cues hypothesis (Elman,
2009) claims that speakers store event knowledge
in memory: words serve as cues that allow access
to such knowledge, modulating expectations about
upcoming words. In a self-paced reading study,
Zarcone et al. (2014) found that if coercion inter-
pretations align with more typical events, sentences
are read faster.

According to Piñango and Deo (2016), aspectual
verbs do not necessarily trigger coercion effects
when combined with entity-denoting complements,
but can also specify mereological (i.e., part-whole)
relationships between arguments (e.g., The perch
begins the trail) as well as causal relations between
events. In this theory, aspectual verbs select struc-
tured individuals, with parts ordered along a par-
ticular axis (e.g., spatial, temporal, informational
etc.), formally a ‘one-dimensional directed path
structure’ (DPS). Each argument encodes a set of
functions that guide the mapping relative to a spe-
cific dimension. Both stative and eventive readings
for sentences with aspectual verbs are possible. In
the aspectually stative sentence A thunderstorm be-
gan the day, the predicate specifies the existence
of a part-whole relation between the denotata of
the complement and the subject. The information
provided by the complement allows the predicate
function to map the arguments onto a temporal di-
mension, interpreting the subject thunderstorm – a
non-agentive entity – as denoting the initial tem-
poral sub-interval of the denotation of the comple-
ment morning (Piñango and Deo, 2016, p. 369).

In sentences like John began the book, Piñango
and Deo (2016) argue that the aspectual verb does
not impose any type-selectional restrictions, hence
no type-mismatch repair is needed. They propose
instead a ‘structured mapping’ via inverse thematic
functions. Because the event is underspecified, the
traditional thematic function, which relates events
to their participants, is not available. The inverse
thematic function allows mapping of “pairs of in-
dividuals to the smallest event that the individual
bears a participant role to at that time in a given con-
text” (p. 385). Argument denotations and sentence
context provide further constraints on the recovery
of the event. Since complements are semantically
undetermined and can map onto several possible
axes, the same sentence can also be interpreted sta-
tively. If John is not interpreted as an agent, the
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arguments would be mapped onto an informational
dimension instead of an eventive one, and John
would be considered one subpart of the informa-
tional object the book: John’s work would then be
an initial part of the book, such as a first chapter.

3 LMs and Complement Coercion

The first study evaluating LMs on complement co-
ercion was Rambelli et al. (2020), who analyzed
the performance of pretrained Transformers of the
BERT and GPT families. They used datasets from
different behavioral studies (McElree et al., 2001;
Traxler et al., 2002; Lapata and Lascarides, 2003).
The results revealed that Transformer-based mod-
els behaved differently from each other depending
on the model’s framework. ROBERTA, for exam-
ple, emerged as the most robust LM, performing
better than other models on the Lapata-Lascarides
dataset (Lapata and Lascarides, 2003), with 80%
accuracy in binary classification and 73% in a cor-
relation task. In contrast, GPT-2 appeared to be
more unstable, with a better score in the binary
classification task (87%) but poorer performance
in the correlation task (43%). Vanilla BERT, on
the other hand, showed a marginal improvement
over the baseline, suggesting a limited ability for
contextualized embeddings in capturing eventive
information from context. Finally, the authors re-
port that distributional and non-Transformer frame-
works, such as the Structured Distributional Model
(SDM), performed similarly to ROBERTA despite
being pretrained on smaller datasets.

Gietz and Beekhuizen (2022) consider coercion
as a case of flexible semantic enrichment based on
context, rather than as obligatory semantic comple-
tion. They analyzed a vanilla BERT model using a
dataset with naturally-occurring coercion sentences
from the COCA Corpus, successively annotated by
humans. They argue that traditional ‘hand-crafted’
coercion sentences from previous studies always
allow clear event interpretations, while naturally-
occurring sentences usually include additional con-
textual information. BERT performed well in cases
where consensus between annotators on a covert
event was high, but struggled with sentences with
less consensus. The model benefited from contex-
tual information, improving event prediction.

Ye et al. (2022) used a dataset of naturally-
occurring coercion sentences extracted from the
C4 Corpus (Raffel et al., 2020). The authors ar-
gue that the process of coercion interpretation is

analogous to paraphrasing: the coercion sentence
is rephrased in a way that ambiguity is eliminated
and the covert event is revealed. They found that
pretrained BERT has difficulty with coercion inter-
pretation, while a model fine-tuned with explicitly
paraphrased sentences leads to better performance.

Radaelli et al. (2025) investigate whether LMs
can leverage syntactic structure and lexical mean-
ing toward recovering covert events. They conduct
a large-scale evaluation of LMs in Norwegian, a
low-resource language with variable grammatical
realization of coercion, which partly depends on
the aspectual verb used. Initiation verbs usually
combine with entity-denoting NPs in PPs intro-
duced either by på or by med (John begynte på/med
boken; ‘John began on/with the book’). With con-
tinuation and cessation verbs, complements are
mainly introduced by med-PPs or directly an NP
(John avluttet med/ø boken, ‘John finished (with)
the book’). Radaelli et al. (2025) released a new
dataset of sentence pairs, each containing a context-
neutral coercion sentence and an event resolution
prompt. The dataset included 90 distinct entities
from 6 different categories, and the syntactic real-
ization of coercion was varied systematically by
the aspectual verb and PP/NP. The study tested
17 Norwegian LMs, spanning BERT-like autoen-
coders and autoregressive models. In general, LMs
struggled to recover implicit events. Surprisal esti-
mates for whole sentences indicate that most LMs
tested are unable to leverage the syntactic structure
of the VP to interpret coercion items, showing no
significant performance changes across syntactic
constructions. For more details, see Section 5.1.

4 Task Proposal

Here, we explore the role of context in coercion in-
terpretation, extending Radaelli et al. (2025)’s work
on Norwegian context-neutral sentences. We study
how different types of context influence the predic-
tion distributions for LMs in a covert event interpre-
tation task. We used the same evaluation strategy
as Radaelli et al. (2025): instead of assessing mod-
els’ performance only on a pre-defined set of top-1
ranked predictions as gold standard, we considered
the ranked prediction distribution for each model;
for each coercion sentence, a model must output a
set of top-5 ranked predictions O = o1, ..., o5.

The distribution is then evaluated by calculating
the mean average precision metric, which captures
the consistency of LMs in predicting appropriate
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events (see below) in the top ranking. We consider
a model ‘sensitive’ to coercion, if it can provide a
prediction distribution that is relevant to event inter-
pretations: given a coercion sentence, expressed as
a triplet 〈subject, aspectual verb, entity〉, we expect
a redistribution of output predictions in a way that
eventive interpretations are at the top of the rank-
ing. The addition of contextual information should
lead to further redistribution of the outputs, possi-
bly with a shift towards the event interpretations
suggested by the context.

The output predictions for each sentence will be
evaluated by considering any event (verb) as cor-
rect as long as it satisfies the semantic constraints
required by coercion and by the context. Follow-
ing Piñango and Deo (2016) and Spalek and Sæbø
(2019), a covert event is a plausible candidate for
coercion when its combination with subject and
complement expresses telicity, implying a “natu-
ral endpoint or goal state” that is coherent with
the overall meaning of the sentence. The class of
accomplishments is our ground truth for event clas-
sification, as it specifies durative, dynamic, and
telic situation types or Aktionsart (Vendler, 1967;
Spalek and Sæbø, 2019). All predicted events that
are accomplishments are compositionally appropri-
ate candidates, including those that may be weakly
associated in coercion contexts. For example, the
triplet 〈goat, begin, book〉 can suggest the covert
event eat (Lascarides and Copestake, 1998). Some
events must however be discarded: although they
belong to the accomplishment class, their combina-
tion with the given subject and object results in a
semantic anomaly. For example, a verb like klatre
(‘climb’) could be plausible when predicted with
objects that afford movement (e.g., mur; ‘wall’) but
not with food items (e.g., salat; ‘salad’).

4.1 Dataset
We adopted a dataset originally created by Radaelli
et al. (2025). Each item is a sentence pair designed
to elicit the generation of covert events. Each pair
includes (1) a context-neutral coercion sentence:

(1) {SUBJ} {VERB-FIN} {PREP|Ø}
{ENTITY-DEF}.
E.g.: Kim begynte på boken. (‘Kim began the book’)

and (2) a sentence that prompts event retrieval:

(2) Det som {SUBJ} {VERB-FIN} å
gjøre, var å [MASK].
‘What {SUBJ} {VERB-FIN} to do was to
[MASK]’.

The sentences contained the following elements:

• A single gender-neutral proper name (Kim) as
subject {SUBJ}.

• 90 complement entity-denoting definite nouns
{ENTITY-DEF}, consisting of real artifacts as
incremental theme arguments of the implicit
event. These entities belong to six different se-
mantic categories: food, text, clothing, every-
day objects (e.g., bag), construction/housing
(e.g., wall), and entertainment (e.g., graffiti).

• Four aspectual verbs {VERB-FIN} in simple
past form (preteritum), i.e., begynne (begin),
starte (start), fortsette (continue), and avslutte
(finish). Aspectual verbs, in contrast to other
classes like psychological verbs (e.g., enjoy),
were considered the only class of verbs that ro-
bustly trigger complement coercion, as shown
experimentally by Katsika et al. (2012).

• Three complement syntactic constructions
{PREP—Ø} introduced by a PP with either
på or med or directly by an NP.

• The masked token [MASK] is included only
for autoencoder models. With autoregressive
models, [MASK] is replaced by blank tokens,
used to prompt the prediction of the next sen-
tence token.

We extended this dataset, here condition (a), by
introducing three new conditions (b-d), each pro-
viding controlled contextual information in a spe-
cific portion of the experimental item (Table 1).
The contextual enrichment applies only to sentence
(1) in each pair, leaving (2) unchanged:

(a) Context-neutral: as in the original dataset;

(b) Subject-enriched context: the neutral subject
(Kim) is replaced with a subject NP relevant
for particular covert events;

(c) Post-verbal context: additional text is added
after the entity complement as an adjunct or a
coordinated phrase;

(d) Pre-coercion sentence: a sentence is concate-
nated before the coercion sentence, providing
a discourse-level context.

All items in (1) included sentences with similar to-
ken length, with length variation of 2-3 tokens. Sub-
jects and entity NPs were always in definite form,
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(1) Coercion Sentence (2) Prompt Sentence for Event Interpretation

(a) Kim begynte på essayet.

Det som Kim/tolken begynte å gjøre, var å ([MASK]).(b) Tolken begynte på essayet.
(c) Kim begynte på essayet ved hjelp av ordboken.
(d) Kim ønsket å publisere sitt nye verk på et annet
språk for en fransk avis. Kim begynte på essayet.

Table 1: Examples of coercion sentences with the aspectual verb å begynne (to begin) in context conditions (a–d)
in Norwegian and a common event-prompt interpretation sentence. Contextual information is presented in bold.
Translations into English: (1a) ‘Kim began the essay’, (1b) ‘The interpreter began the essay’, (1c) ‘Kim began the
essay with the help of the dictionary’, (1d) ‘Kim wanted to publish his new work in a different language for a French
newspaper. Kim began the essay’, (2) ‘What Kim/the interpreter began to do was to ([MASK])’.

while aspectual verbs were in preteritum form (past
simple). The context was always coherent with the
verb-complement combination.

For the assessment of models’ performance we
compared the results by Radaelli et al. (2025) with
context-enriched conditions. The extended dataset
includes a total of 4320 sentence pairs in standard
written Norwegian Bokmål.

4.2 Tested Models

We tested the extended dataset on 17 pretrained
Norwegian LMs, with autoencoders, such as BERT

(Devlin et al., 2019), and autoregressive models,
such as GPT-2 (Radford et al., 2019), LLAMA-2
(Touvron et al., 2023), BLOOM (Scao et al., 2022),
and MISTRAL (Jiang et al., 2023). Table 2 shows
the list of the language models tested here. The
models differ considerably not only in architec-
ture, but also in number of parameters and size of
training data. Most LMs tested are monolingual
models, only two (MBERT-CASED/UNCASED) are
multilingual, while NORMISTRAL-7B-WARM was
primarily pretrained in English and further trained
in Norwegian. All tested models are available on
Hugginface.1

4.3 Baseline Model

To assess performance between models and be-
tween different contextual conditions, we leveraged
the same statistical baseline model as Radaelli et al.
(2025): plausibility of event estimates were based
on Pointwise Mutual Information (PMI) (Church
and Hanks, 1990) between the verb and its object.
The result is a list of (eventive) verbs strongly asso-
ciated with an entity. These estimates are based on
the Norwegian Colossal Corpus (NCC) (Kummer-
vold et al., 2022), an open source corpus employed
for training most current Norwegian LMs.

1https://huggingface.co/

Model # Par. Tr. Data
MBERT CASED/UNCASED 178M 3.3B*
NB-BERT-BASE 178M 7B
NB-BERT 355M 7B
NORBERT 111M 1.9B
NORBERT2 125M 15B
NORBERT3-BASE 123M 25B
NORBERT3-LARGE 353M 25B
NORBERT3-SMALL 40M 25B
NORBERT3-XS 15M 25B
NORBLOOM-7B-SCRATCH 7B 26.7B
NORGPT-369M 369M 25B
NORGPT-3B 3B 25B
NORGPT-3B-CONTINUE 3B 25B
NORLLAMA-3B 3B 26.7B
NORMISTRAL-7B-SCRATCH 7B 26.7B
NORMISTRAL-7B-WARM 7B 26.7B

Table 2: Tested LMs with number of parameters (#Par.)
and training data (Tr. Data). *The amount of training
data for MBERT is shared over 114 different languages.

4.4 Performance Evaluation

All prediction outputs provided by a given LM
were manually classified by two of the authors ac-
cording to Aktionsart, assessing the plausibility of
the prediction in the coercion sentence. Disagree-
ments were resolved through discussion. Predic-
tions that were grammatically irrelevant to coercion
sentences were discarded. We adopted two evalu-
ation metrics for assessing models’ performance.
The first is mean average precision (mAP), which
evaluates the ranking quality of a specific model
based on the weighted means of average precision
scores (AP) in the set of all sentences (S) (Manning
et al., 2009; Kotlerman et al., 2010):

mAP =
1

S

S∑

s=1

AP(s)

For any given sentence s, the AP score takes into
account the ranking of the top-5 output predictions:

AP(s) =
5∑

k=1

P (k) ·∆R(k)
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where P (k) is the precision score at rank k and
∆R(k) is the recall difference between the current
k and its antecedent k − 1. A high mAP score
indicates that the model tends to predict and rank
accomplishments at the top. A low mAP score sug-
gests either that the model proposes an event from
an Aktionsart class other than accomplishments, or
that the predicted accomplishment is ranked lower.
The second metric is the mean top-ranked accu-
racy (A1) across the entire set of sentences (S). In
this case, for each sentence, only the top-ranked
prediction will be considered. Similar to the pre-
vious score, accomplishments count as the correct
outputs, while other classes are false positives.

5 Results

5.1 General Results

Radaelli et al. (2025) found that LMs generally
struggle to identify plausible events in context-
neutral coercion sentences: mAP and A1 scores
were low across LMs. Only few models exceeded
the statistical baseline, and their performance var-
ied mainly by model architecture and size. BERT-
like models performed better than autoregressive
models, with NORBERT3 showing relatively strong
performance. Among autoregressive models, only
NORLLAMA-3B and NORMISTRAL-7B-WARM ex-
ceeded the baseline. Model size also played a
role: only the larger NORBERT3 variants could
reach higher results, and autoregressive LMs like
NORLLAMA-3B also showed decent performance,
most likely due to their size.

Table 3 shows the mAP and A1 scores of all
LMs tested on the covert event interpretation task
in Norwegian. For comparison, we included the
context-neutral scores from Radaelli et al. (2025).
The results are available on GitHub. On the mAP
scores, contextual information generally improved
performance for most models compared to context-
neutral sentences: 9 models outperformed the base-
line, compared to only 4 with coercion-neutral sen-
tences. However, even with context, the remaining
8 models still showed difficulties in consistently
predicting appropriate events. Contextual informa-
tion appears to particularly improve prediction for
autoencoder models. Most models in the NORBERT

family performed relatively well, reaching mAP
scores above the baseline. Smaller models like
NORBERT3-BASE, NORBERT3-SMALL, and NOR-
BERT2, which showed poor performance in context-
neutral sentences, here outperformed even the best

Model mAP A1

No Ctx W/Ctx Diff No Ctx W/Ctx Diff

NCC (Baseline) 0.59 0.59 0.00 0.47 0.47 0.00
MBERT-CASED 0.07 0.07 0.00 0.00 0.01 0.01
MBERT-UNCASED 0.27 0.36 0.09 0.22 0.32 0.10
NORGPT-369M 0.56 0.62 0.06 0.54 0.57 0.03
NORGPT-3B 0.48 0.62 0.14 0.42 0.55 0.13
NORGPT-3B-CONT. 0.46 0.58 0.13 0.42 0.50 0.08
NORLLAMA-3B 0.71 0.66 -0.06 0.67 0.61 -0.06
NB-BERT-BASE 0.38 0.57 0.19 0.33 0.49 0.16
NB-BERT-LARGE 0.54 0.67 0.13 0.47 0.61 0.14
NORBERT 0.25 0.36 0.11 0.18 0.30 0.12
NORBERT2 0.44 0.69 0.24 0.34 0.62 0.28
NORBERT3-BASE 0.63 0.73 0.11 0.58 0.69 0.11
NORBERT3-LARGE 0.60 0.65 0.05 0.55 0.56 0.01
NORBERT3-SMALL 0.59 0.73 0.14 0.55 0.69 0.14
NORBERT3-XS 0.29 0.43 0.14 0.16 0.30 0.14
NORBLOOM-7B-S. 0.46 0.56 0.10 0.34 0.45 0.11
NORMISTRAL-7B-S. 0.38 0.58 0.19 0.29 0.49 0.20
NORMISTRAL-7B-W 0.63 0.64 0.01 0.54 0.56 0.02

Table 3: Comparison of mean average precision (mAP)
and mean top-ranked accuracy (A1) for covert event
retrieval in Norwegian context-neutral (No Ctx) and
context-enriched (W/Ctx) sentences. Results for No Ctx
are provided by Radaelli et al. (2025).

model NORLLAMA-3B in the context-neutral con-
dition. NORBERT and NORBERT3-XS, on the other
hand, still struggled with the task. Contextual infor-
mation also improved performance of the NB-BERT

family, namely LMs trained entirely on the NCC
corpus, also used to create the statistical baseline
model. While NB-BERT-LARGE achieved results
above the baseline, NB-BERT-BASE still showed
low performance despite the improvement.

A different pattern is found for autoregressive
models. Most GPT-2 models still struggled to per-
form at or above the baseline. Only NORGPT-
369M and NORGPT-3B benefited from the con-
text, reaching reasonable results in mAP scores.
NORBLOOM-7B-SCRATCH and NORMISTRAL-7B-
SCRATCH still showed poor performance despite
contextual enrichment, remaining below the base-
line, while NORMISTRAL-7B-WARM did not im-
prove relative to context-neutral sentences. Finally,
NORLLAMA-3B is the only model that apparently
suffers from the presence of context, showing a
performance drop.

Analyzing the difference of mAP scores in sen-
tences with and without context, we can appre-
ciate how much context-enriched sentences en-
hanced the models’ performance. First, context
generally increases performance for most of those
LMs that in the context-neutral condition struggled
with coercion resolution. For example, NORBERT2,
NB-BERT-BASE, and NORMISTRAL-7B-SCRATCH

showed a significant improvement. MISTRAL and
BERT-like models demonstrate the ability to exploit
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context more effectively to improve performance
while they struggled in the context-neutral condi-
tion, regardless of parameter sizes. GPT models
also showed positive but weaker improvements, es-
pecially those with higher parameter sizes, such
as NORGPT-3B and NORGPT-3B-CONTINUE. On
the other hand, models that previously obtained
relatively high mAP scores either did not show a
significant change (e.g., NORMISTRAL-7B-WARM)
or performed worse (e.g., NORLLAMA-3B).

A similar trend emerges from an analysis of A1
scores. NORBERT3-SMALL and NORBERT3-BASE

reached the highest A1 score, close to 0.70. The
other models showed considerably lower perfor-
mance. Even the 10 models that outperformed the
baseline obtained an A1 score ranging from 49 to
62, indicating that models still fail to top-rank ac-
complishments in approximately half of the cases.

A qualitative error analysis revealed that the ad-
dition of contextual information can sensibly af-
fect model’s performance. For example, compar-
ing the subject-enriched sentence Fienden begynte
med testamentet (‘The enemy began with the will’)
to its neutral counterpart (Kim begynte med testa-
mentet) on NORBERT3-BASE, we observed differ-
ences in the ranking. In the context-neutral case,
the top-5 predictions were 〈skrive (‘write’), lage
(‘make’), ta (‘take’), gjøre (‘do’), bruke (‘use’)〉,
with the first two events being the only plausible
accomplishments for coercion interpretation. In
the context-enriched cases, the model kept the ac-
complishment (skrive) but prioritized verbs like
drepe (‘kill’) and stjele (‘steal’), indicating subject-
driven biases. This means that, in this case, the
replacement with a subject NP enriched with ad-
ditional semantic information strongly shifts the
prediction space of the model to events that are
closely related to it. However, despite coherence
with the subject, such outputs cannot be accepted:
drepe requires an animate patient, while stjele lacks
the durativity typical of accomplishments. Such
events do not consider the contextual information
conveyed by entire sentences, in particular the com-
bination verb-entity. This suggests that contextual
cues, especially those provided by the subject may
strongly override the prediction ranking, guiding
the model to predictions associated with those cues
rather than by a compositional requirements.

Radaelli et al. (2025) conducted a quantitative
error analysis with focus on the best performing
model NORLLAMA-3B, examining the general fre-

Verb No Ctx (Rel. Freq) W/Ctx (Rel. Freq.)

spille (play) 803 (0.15) 1,493 (0.09)
skrive (write) 781 (0.14) 1,924 (0.12)
le (laugh) 630 (0.12) 1,251 (0.08)
telle (count) 577 (0.11) 1,317 (0.08)
slå (hit) 524 (0.10) 1,455 (0.09)
danse (dance) 438 (0.08) 623 (0.04)
regne (calculate/rain) 414 (0.08) 1,117 (0.07)
vente (wait) 398 (0.07) 1,871 (0.12)
male (paint) 260 (0.05) 1,471 (0.09)
gå (go) 72 (0.01) 237 (0.01)
tale (speak) 65 (0.01) 392 (0.02)
lage (make) 56 (0.01) 644 (0.04)
holde (hold) 48 (0.01) - (-)
rape (burp) 40 (0.01) - (-)
bli (become / stay) 35 (0.01) - (-)
sy (sew) - (-) 316 (0.02)
hjelpe (help) - (-) 233 (0.01)
bygge (build) - (-) 185 (0.01)

Table 4: Top 15 events predicted by NORBERT3-SMALL
across context-neutral (No Ctx) and context-enriched
(W/Ctx) sentences, including both absolute and relative
frequencies.

quency distribution of the predicted verbs across
all context-neutral coercion sentences in the exper-
iment. The analysis showed that the model pro-
duced a limited set of 68 unique verbs over 5,400
predictions, with the most frequent ones denoting
either particularly generic events (e.g., lage, make,
which combines with a wide range of entitites)
or non-accomplishment verbs, here considered as
false positives. In this study, we adopted the same
analysis approach, by inspecting NORBERT3-BASE

and comparing the event distribution across context-
neutral and context-enriched coercion sentences.
Table 4 shows the distribution of the first 15 most
predicted events in all coercion sentences, com-
paring both context-neutral and context-enriched
sentence conditions. The results suggest a similar
trend to that found by Radaelli et al. (2025). First,
also this model predicted a limited set of unique
events, from 50 with context-neutral coercion sen-
tences (among 5,400 predictions made in 1,080
sentences) increasing to 93 in context-enriched sen-
tences (16,200 predictions in 3,240 sentences), sug-
gesting that the addition of contextual information
increases the variability of predicted events. Sec-
ond, the ranking of predictions in both conditions
is similar, following a skewed Zipfian distribution:
the top ranked verbs dominate the distribution (cov-
ering up to 15% of the entire verb set), whereas pre-
dictions at lower positions show a sharp decrease of
frequency. Finally, this analysis shows a minimal
ranking variation in the distribution of verbs across
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the two conditions, suggesting that context could
not effectively elevate accomplishment verbs to the
top rank, but influenced primarily the lower posi-
tions (e.g., sy, sew). Moreover, the most predicted
events are in both conditions non-accomplishments,
and therefore false positives for the classification
task, usually denoting generic events not directly
related to coercion resolution.

5.2 Context Types

We conducted further analyses of the impact of dif-
ferent context types on coercion sentences, with
the conditions outlined in Section 4.1. For sim-
plicity, we will consider only four models for
this analysis: NORBERT3-SMALL, one of the top-
performing models in this experiment, NORBERT2,
which showed clear improvements compared to
the context-neutral results by Radaelli et al. (2025),
NORGPT-3B, the best performing GPT-based model,
and NORLLAMA-3B, that showed instead a perfor-
mance drop. Table 5 shows the models’ mAP and
A1 scores according to context conditions (b-d),
including the context-neutral scores from Radaelli
et al. (2025) as condition (a).

All context types led to improvements, with vary-
ing scores across conditions and LMs. Condition
(d), the pre-coercion sentence, improved perfor-
mance most, followed by condition (b), the context-
enriched subject. Post-verbal context in condition
(c) contributed the least among all conditions. A
closer look at the scores reveals performance dif-
ferences between LMs. First, NORBERT2 appears
to benefit most when we consider the percentage
increase over the mAP and A1 scores under con-
texts (b) and (d), with around 69% and over 90%
improvement respectively compared to condition
(a). This gap between the scores suggests that the
model changed drastically the prediction distribu-
tion of verbs, ranking accomplishments at the top.

A more moderate performance improvement is
found for both NORBERT3-SMALL and NORGPT-
3B, which showed a similar behavior. On the one
hand, their relative change against the baseline is
small compared to NORBERT2, with a range be-
tween 25-33% for mAP scores and 28-39% for A1
scores. In this case, the gap between the mAP and
A1 scores is minimal, meaning that the prediction
distribution was more stable.

Finally, compared to the other models under test,
NORLLAMA-3B shows the opposite trend in per-
formance. Condition (c), the one that contributed

Model Cond. mAP A1

NORLLAMA-3B a 0.713 0.670
NORLLAMA-3B b 0.717 (0.004) 0.665 (-0.005 )
NORLLAMA-3B c 0.601 (-0.111) 0.547 (-0.123)
NORLLAMA-3B d 0.653 (-0.060) 0.605 (-0.065 )
NORBERT2 a 0.444 0.338
NORBERT2 b 0.718 (0.274) 0.650 (0.312)
NORBERT2 c 0.587 (0.143) 0.511 (0.173)
NORBERT2 d 0.753 (0.309) 0.708 (0.370)
NORBERT3-SMALL a 0.593 0.545
NORBERT3-SMALL b 0.747 (0.154) 0.699 (0.154)
NORBERT3-SMALL c 0.676 (0.083) 0.608 (0.063)
NORBERT3-SMALL d 0.776 (0.183) 0.762 (0.217)
NORGPT-3B a 0.478 0.418
NORGPT-3B b 0.625 (0.148) 0.536 (0.118)
NORGPT-3B c 0.592 (0.115) 0.534 (0.116)
NORGPT-3B d 0.639 (0.161) 0.571 (0.153)

Table 5: Mean average precision (mAP) and mean top-
ranked accuracy (A1) for covert event retrieval in Nor-
wegian across context-neutral (a) and context-enriched
conditions (b-d). The results for (a) are from Radaelli
et al. (2025).

least to the improvement, here leads to the largest
decrease in performance, while a minimal positive
improvement is observed for condition (b). Its A1
scores, however, remained unchanged under all
conditions, showing only a minimal decrease.

6 General Discussion and Conclusion

Our results indicate that contextual enrichment of
coercion sentences in Norwegian generally leads to
better prediction distributions of covert events in al-
most all tested LMs. Additional context in specific
sentence regions, such as in subject position, or
the inclusion of sentences preceding the coercion
construction, leads to most benefits in performance.

In this study, we found that performance varies
also according to LM framework: BERT-like au-
toencoders appear to benefit most from contextual
enrichment as compared to autoregressive models.
This is consistent with the conclusion of Radaelli
et al. (2025), where LMs were tested on coer-
cion sentences without context. The advantage
for autoencoders may be their bidirectional self-
attention mechanism, which may be better able
to capture semantic relations between constituents.
However, models such as MBERT, NB-BERT-BASE,
and NORBERT3-XS, for example, still showed only
marginal improvements when exposed to context.
Better performance for such models may be re-
lated to the interplay between their size and the
amount of pretraining data: the multilingual model
was one of the worst performing probably due to
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its small training data in Norwegian. Conversely,
results from NORBERT3-XS, suggest that, despite
the large pretraining data, a smaller model still
has limitations. Performance increases when the
model’s size increases, as shown for the larger NOR-
BERT3 models. Other factors could also play a role.
The NORBERT family showed more robust perfor-
mance compared to NB-BERT models and MBERT,
probably because the model was trained entirely
from scratch on Norwegian and employed a cus-
tom WordPiece vocabulary. In contrast, NB-BERT

starts from the MBERT framework and is trained
on additional data in Norwegian without further
changes (Kutuzov et al., 2021). Moreover, the third
NORBERT generation, also introduces optimized
training methods by excluding the next sentence
prediction task and improving the masked language
modeling objective task, increasing the span-based
masking rather than masking single tokens (Samuel
et al., 2023).

From the analysis of LM scores, we also found
a consistent pattern linking their performance on
context-neutral sentences and their improvement
when context is introduced. Specifically, models
that previously obtained poor results appear to ben-
efit the most from context. Models like NORBERT2,
NB-BERT-BASE, and NORBERT3-XS obtained a
significant boost in performance compared to oth-
ers. Such an improvement is however relative to
their poor performance in context-neutral sentences.
Their capacity to exploit contextual signals appears
to compensate for such limitations.

It is particularly noteworthy that the LMs that
obtained relatively high scores with context-neutral
items are those that also showed more limited im-
provement when context is provided. This claim
requires further research, but we hypothesize that
such behavior may reflect a form of ‘encoding sat-
uration’ by Transformer-based models, manifested
in a limited capacity to integrate additional seman-
tic information once a certain level of encoding
complexity in a model’s embedding-based repre-
sentations has been reached. This behavior can
also be observed when comparing models with al-
most identical architectures: NORBERT3-XS and
NORBERT3-LARGE differ only in their parame-
ter sizes, but they showed different improvement
trends. We hypothesize that contextual information
can compensate for gaps in world knowledge as
required by coercion resolution. Consequently, con-
text may not generally boost performance but rather

benefits most the weaker models: stronger models
show little change in their performance as they may
have already reached a performance plateau, which
cannot be improved by the integration of additional
contextual information. This hypothesis is partially
confirmed by the general improvement trend in
results observed in Table 3.

Although contextual information generally led
to better performance, LMs still show difficulties in
interpreting complement coercion sentences. This
aligns with the conclusions of earlier studies, such
as Rambelli et al. (2020) and Ye et al. (2022) in
English. It has been often observed that LMs lack
a capacity for common sense reasoning based on
plausible world models. This would also apply to
natural language interpretation, in that current LMs
have limited linguistic common sense: they lack the
capacity to retrieve and exploit the kind of linguis-
tic and world knowledge that would allow them to
reliably make sense of complex, underspecified in-
puts (Lascarides and Copestake, 1998; Piñango and
Deo, 2016; Baggio, 2018; Rambelli et al., 2024).

A closer look at our results sheds light on how
and to what extent the behavior of Transformer
models aligns with expectations based on different
theoretical accounts on complement coercion. At
first glance, the improvements seen for most mod-
els appear compatible with the pragmatic hypothe-
sis: context and world knowledge can modulate or
restrict coercion interpretations according to infor-
mation that is not necessarily available from con-
stituent meanings. However, such improvements
were only seen for those models that were shown
to be weaker in context-neutral scenarios, presum-
ably due to a limited encoding of semantics in the
learned embeddings. More semantically robust
LMs were less influenced by context, suggesting
that at least some relevant event information is en-
coded in the embeddings: this is more consistent
with the lexical and Generalized Event Knowledge
(GEK) hypotheses than with pragmatic accounts.
On the other hand, our results cannot confirm the
lexical hypothesis either, as context still has an ef-
fect in changing prediction distributions. Moreover,
if models had learned and used lexically-bound rep-
resentations such as qualia, we would not expect to
see as outputs events that belong to incorrect Ak-
tionsart, as in the example above. In addition, high
performing models like NORLLAMA were even neg-
atively influenced, suggesting a complex role of
context in this task.
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Maria Mercedes Piñango and Ashwini Deo. 2016. Re-
analyzing the Complement Coercion Effect through
a Generalized Lexical Semantics for Aspectual Verbs.
Journal of Semantics, 33(2):359–408.

James Pustejovsky. 1991. The Generative Lexicon.
Computational Linguistics, 17(4):409–441.

James Pustejovsky. 1995. The Generative Lexicon. MIT
Press.

James Pustejovsky. 1998. Generativity and explanation
in semantics: A reply to Fodor and Lepore. Linguis-
tic Inquiry, 29(2):289–311.

James Pustejovsky and Pierrette Bouillon. 1995. As-
pectual Coercion and Logical Polysemy. Journal of
Semantics, 12(2):133–162.

Liina Pylkkänen and Brian McElree. 2007. An MEG
study of silent meaning. Journal of Cognitive Neuro-
science, 19(11):1905–1921.

Matteo Radaelli, Emmanuele Chersoni, Alessandro
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Abstract

Unlike English, which uses distinct forms (e.g.,
had, has, will have) to mark the perfect aspect
across tenses, Chinese and Japanese lack sep-
arate grammatical forms for tense within the
perfect aspect, which complicates Natural Lan-
guage Inference (NLI). Focusing on the per-
fect aspect in these languages, we construct a
linguistically motivated, template-based NLI
dataset (1,350 pairs per language). Experi-
ments reveal that even advanced LLMs strug-
gle with temporal inference, particularly in de-
tecting subtle tense and reference-time shifts.
These findings highlight model limitations and
underscore the need for cross-linguistic evalua-
tion in temporal semantics. Our dataset is avail-
able at https://github.com/Lujie2001/
CrossNLI.

1 Introduction

Recent advances in large language models (LLMs)
have raised important questions about the depth and
limits of their language understanding. While these
models perform well on many standardized bench-
marks, most such evaluations are heavily centered
on English and often overlook linguistic features
that are specific to other languages.

This paper focuses on whether LLMs have
human-like understanding of the perfect aspect of
punctual verbs in Chinese and Japanese. Although
both languages exhibit features that differ from
English (See Section 2.1), there has been no sys-
tematic investigation of how the perfect aspect is
represented or interpreted in these languages within
the NLI framework.

To address this gap, we construct a challenging
dataset targeting the interpretation of the perfect as-
pect with punctual verbs (e.g., die) in Chinese and
Japanese. Our dataset is linguistically motivated,
template-based, and contains 1,350 sentence pairs
per language.

Our contributions are as follows:

1. We construct a bilingual NLI dataset focused
on perfect aspect in Chinese and Japanese.

2. Our analysis reveals that even the current state-
of-the-art LLMs repeatedly fail on specific
types of problems in our dataset, indicating
that they have not fully acquired a robust or
generalizable understanding of the perfect as-
pect in Chinese and Japanese.

2 Background

2.1 Perfect Aspect in Chinese and Japanese
Following Reichenbach (1947), we analyze the
temporal interpretation of the perfect aspect by ap-
pealing to a three-way temporal distinction: Speech
Time (S), Event Time (E), and Reference Time (R).
In Reichenbach’s framework, different tenses can
be interpreted as different relations between S, E,
and R. In the past, R occurs before S; in the present,
R and S are simultaneous; in the future, R is after
S. Furthermore, in the perfect aspect, E always oc-
curs before R, regardless of tense. In Example (1),
E (“Hanako graduates”) precedes R (“Taro gets
PhD”), thus the overall temporal relation of the
sentence is (S < E < R). Here, A < B signifies that
A takes place before B.

(1) When Taro gets his PhD next year, Hanako
will have graduated from college.

In addition, the time interval between E and R is
specified by adding temporal adverbs in the main
clause (e.g., “When Taro gets his PhD next year,
Hanako will have graduated from college 3 months
ago”).

In English, the perfect aspect is marked differ-
ently depending on tense (e.g., had, has, will have).
However, Chinese and Japanese do not morpho-
logically vary aspect markers across tenses. Chi-
nese typically uses the marker “-le(了)”(Klein et al.,
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2000; Mochizuki, 1997) to indicate the perfect as-
pect regardless of tense and relies on temporal ad-
verbs or context to convey temporal information.
Japanese expresses the perfect aspect using the aux-
iliary “-tei-(-てい-)”(Kudo, 1995; Iori, 2001), com-
bined with either the past “-tei-ta(-てい-た)” or
non-past “-tei-ru(-てい-る)” form, reflecting its
binary tense system.1

These aspect markers are also used in other con-
texts and are not exclusively used to express the
perfect aspect. For example, Chinese “le” may also
serve as a modal particle to express urgency or emo-
tional emphasis (e.g., “太好了!” means “great!”).
Because such non-perfect uses dominate everyday
usage, we hypothesized that LLMs may struggle
to generalize the meaning of the perfect aspect in
these languages.

2.2 Temporal NLI Datasets
There are already some NLI datasets that focus on
aspect (Kober et al., 2019; Pruś et al., 2024). Kober
et al. (2019) introduced a carefully curated NLI
dataset with a specific focus on tense and aspect.
However, these studies focus only on English.

Several studies (Hu et al., 2020; Yanaka and Mi-
neshima, 2021, 2022; Sugimoto et al., 2024) have
addressed NLI tasks involving challenging linguis-
tic phenomena in Japanese and Chinese, but they
rarely involve NLI tasks focusing on the perfect
aspect. OCNLI (Hu et al., 2020) is a Chinese NLI
dataset, and JaNLI (Yanaka and Mineshima, 2021)
and JSICK (Yanaka and Mineshima, 2022) are
Japanese NLI datasets. However, they scarcely ad-
dress temporal inference. Jamp sp (Sugimoto et al.,
2024) is a Japanese temporal inference dataset,
but it does not systematically investigate inference
tasks concerning the perfect aspect.

3 Dataset

Based on tense (past (Pst), present (Pres), future
(Fut)) and the presence (t) or absence (None) of
a temporal adverb in the main clause discussed
in Section 2.1, we designed six Japanese sen-
tence templates based on linguistic literature (Kudo,
1995) and created corresponding Chinese templates.
By using these sentence templates as premises and
hypotheses, we constructed 30 premise–hypothesis
pairs (P,H) of NLI problems for Japanese and

1Other markers such as “guo” (Chinese), “zhe” (Chinese),
and “-ta” (Japanese) may express perfect meanings; however,
this paper primarily focuses on the prototypical “-le” and
“-tei-”.

Chinese, respectively. Since the perfect aspect with
punctual verbs expresses a stable temporal relation
in sentences, each (P,H) pair is theoretically ex-
pected to have a unique correct label (entailment
or non-entailment) under various punctual verb
phrases (See a and b in Example (2)). This en-
ables us to generate a large number of (P,H) pairs
with entailment labels by inserting different lexical
items semi-automatically.

(2) a. Pres(t): Hanako has already been dead
for 3 months.
⇒ Pres: Hanako has already been dead.

b. Pres(t): Hanako has already graduated
from college for 3 months.
⇒ Pres: Hanako has already graduated
from college.

The examples of sentence templates with labels
for Chinese are shown in Table 1. Full examples
of (P,H) pairs (Table 5) and sentence templates in
Chinese and Japanese (Tables 6 and Table 7) can
be found in Appendix B.

We manually collected 45 sets of common lexi-
cal items (nouns and punctual verbs) and clauses
to fill our templates. To minimize semantic influ-
ence, the items were designed to maintain one-to-
one semantic correspondence between Chinese and
Japanese. In total, we generated 1,350 (P,H) pairs
for each language, comprising 405 instances la-
beled as entailment and 945 instances labeled as
non-entailment.

Some studies have noted that uncertainty
may arise in NLI tasks when temporality is
involved (Kober et al., 2019; Pavlick and
Kwiatkowski, 2019). To address this issue, we
limited the verb types to punctual verbs that denote
irreversible changes (e.g., die).

To validate the reliability of the sentences, all
instances in the dataset underwent rigorous review
and were refined by native speakers. Additionally,
to ensure labeling reliability, multiple native speak-
ers independently annotated 30 different (P,H)
pairs. Under a majority voting scheme, their judg-
ments consistently matched the gold labels, demon-
strating high inter-annotator agreement.2

2We collected answers from seven native Chinese speakers
and three native Japanese speakers. The average match rate
between the Chinese responses and the golden label is 94%,
while Japanese is 100%.
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Categories Template Example

P: Pst(t) [Event-Past]的时候, [NP]已经 [VP] [TIME]了.
(E < R < S) 太郎去年取得博士学位的时候,花子已经死三个月了.

“When Taro got his PhD last year, Hanako had already been dead for 3 months.”
⇒ H1: Pst [Event-Past]的时候, [NP]已经 [VP]了.
(E < R < S) 太郎去年取得博士学位的时候,花子已经死了.

“When Taro got his PhD last year, Hanako had already been dead.”
̸⇒ H2: Pres(t) [NP]已经 [VP] [TIME]了.
(E < S = R) 花子已经死三个月了.

“Hanako has already been dead for 3 months.”
⇒ H3: Pres [NP]已经 [VP]了.
(E < S = R) 花子已经死了.

“Hanako has already been dead.”
̸⇒ H4: Fut(t) [Event-Future]的时候, [NP]已经 [VP] [TIME]了.
(S < E < R) 太郎明年取得博士学位的时候,花子已经死三个月了.

“When Taro gets his PhD next year, Hanako will have already been dead for 3 months.”
⇒ H5: Fut [Event-Future]的时候, [NP]已经 [VP]了.
(S < E < R) 太郎明年取得博士学位的时候,花子已经死了.

“When Taro gets his PhD next year, Hanako will have already been dead.”

Table 1: Template examples of premise and hypothesis sentences in Chinese. In category column, the symbol (t)
indicates the presence of a temporal adverb in the main clause. The slot [Event-Past] and [Event-Future]
is a subordinate clause containing a temporal expression referring to the past or future, such as “太郎去年取得博
士学位” (“Taro got his PhD last year”). ⇒ indicates entailment and ̸⇒ indicates non-entailment.

4 Experimental Setup

We conducted experiments on multilingual LLMs
and LLMs with enhanced monolingual capabil-
ity with varying parameter scales. The multi-
lingual models we used include GPT-4 (gpt-4-
0613), Claude 3.5 (claude-3-5-sonnet-20241022),
Deepseek-V3 (deepseek-chat), and Llama3.13 (8B
and 70B). The LLMs with enhanced monolingual
capability include the Chinese models Qwen34 (8B
and 32B) and the Japanese models Swallow5 (9B
and 27B). These models cover both multilingual
and language-specialized types.

Each model received every premise–hypothesis
pair in the corresponding language, together with
an instructional prompt that introduces the NLI task
and asks whether the premise entails the hypothe-
sis. Model predictions were then compared with
gold labels to compute classification accuracy. All
experiments were conducted in a zero-shot setting.
Our Japanese prompts were adapted from (Sugi-
moto et al., 2024) and then translated into Chinese
by native speakers. The full Chinese and Japanese
prompts are provided in Appendix A.

3hf.co/collections/meta-llama/
llama-31-669fc079a0c406a149a5738f

4hf.co/collections/Qwen/
qwen3-67dd247413f0e2e4f653967f

5hf.co/collections/tokyotech-llm/
gemma-2-swallow-67f2bdf95f03b9e278264241

Figure 1: Detailed results from GPT-4 in Chinese and
Japanese.The overall accuracy is shown in the title.
E/N:number in cells shows the gold label and the accu-
racy for each (P,H) pair.

5 Results and Discussion

Table 4 shows the average accuracy of tested mod-
els on our dataset. Figure 1 shows the detailed
results of GPT-4. See Appendix C for detailed
results of other models.

Comparison between models As shown in Ta-
ble 4, Claude 3.5 achieved the best overall per-
formance, outperforming GPT-4—the second-best
model—by over 10% in both Chinese and Japanese.

Most models performed similarly on Chinese
and Japanese, with accuracy differing by less than
5%. However, Llama-8B was a notable outlier,
showing a large performance gap of 26.2% (Chi-
nese: 37.3%, Japanese: 65.6%). Notably, Llama-
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Tense of (P,H) Label GPT-4 Claude3.5 Deepseek-v3 Llama-8B Llama-70B Qwen3-8B Qwen3-32B Swallow-9B Swallow-27B
(Pst(t), Pres(t)) N 0.0/0.0 77.8/2.2 0.0/0.0 0.0/17.8 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0
(Pst(t), Pres) E 100.0/100.0 100.0/97.8 100.0/100.0 100.0/57.8 100.0/95.6 100.0/100.0 100.0/100.0 95.6/62.2 100.0/62.2
(Pst, Pres(t)) N 100.0/100.0 100.0/100.0 100.0/100.0 0.0/100.0 93.3/80.0 91.1/62.2 51.1/75.6 93.3/62.2 15.6/62.2
(Pst, Pres) E 100.0/100.0 95.6/84.4 100.0/100.0 100.0/62.2 100.0/88.9 100.0/100.0 100.0/100.0 100.0/60.0 100.0/60.0
(Fut(t), Pres(t)) N 6.7/0.0 91.1/24.4 0.0/0.0 0.0/51.1 8.9/8.9 0.0/0.0 0.0/2.2 0.0/0.0 0.0/0.0
(Fut(t), Pres) N 0.0/0.0 53.3/20.0 0.0/0.0 2.2/62.2 0.0/37.8 0.0/0.0 2.2/2.2 13.3/4.4 6.7/8.9
(Fut, Pres(t)) N 100.0/97.8 100.0/100.0 100.0/100.0 11.1/95.6 97.8/93.3 97.8/46.7 48.9/82.2 97.8/62.2 51.1/60.0
(Fut, Pres) N 0.0/0.0 86.7/42.2 2.2/0.0 0.0/51.1 0.0/73.3 0.0/0.0 0.0/33.3 0.0/24.4 2.2/15.6

Table 2: Model accuracy (%) when the premise is in the past or future, and the hypothesis is in the present tense.
Left side of “/” shows accuracy in Chinese cases, and the right side shows Japanese cases. E indicates entailment
labels and N indicates non-entailment labels. The rows in boldface indicate the questions with lexical overlap.

Model Language Accuracy (E / N)
Llama-8B CN 92.6% / 13.5%

JA 45.2% / 71.3%
Qwen3-8B CN 44.6% / 74.6%

JA 62.7% / 71.4%
Swallow-9B CN 46.9% / 80.2%

JA 32.6% / 48.4%

Table 3: The differences in accuracy between entailment
and non-entailment cases for Llama-8B, Qwen3-8B and
Swallow-9B.

Model Accuracy (CN / JA)
GPT-4 80.6% / 72.3%
Claude3.5 91.5% / 76.7%
Deepseek-v3 77.3% / 70.1%
Llama-8B 37.3% / 65.6%
Llama-70B 75.8% / 72.3%
Qwen3-8B 74.2% / 68.8%
Qwen3-32B 51.4% / 56.6%
Swallow-9B 70.2% / 43.6%
Swallow-27B 54.9% / 42.7%

Table 4: Overall accuracy of each model on our dataset.

8B shows an accuracy gap of nearly 80% between
instances labeled as entailment and those labeled
as non-entailment (See Table 3). Given that the
contexts in which the perfect aspect appears in Chi-
nese are more homogeneous, this result suggests
that multilingual models with smaller parameter
sizes may struggle to generalize the meaning of the
perfect aspect in Chinese.

Furthermore, LLMs with enhanced monolingual
capability (Qwen3 and Swallow) exhibit a negative
correlation between accuracy and model size. We
aim to explore this phenomenon in greater depth in
future studies.

Comparison based on linguistic phenomena
When the tense of the premise and the hypothesis
is the same, models with parameter sizes over 32
billion achieve near-perfect accuracy, while those
with lower parameter sizes still struggle with it.
Example (3) shows a case of (P : Pst(t), H: Pst).

(3) Pst(t): 太郎上周回到家的时候，花子已
经死三天了。
“When Taro came home last week, Hanako
had already been dead for 3 days.”
̸⇒ Pst: 太郎上周回到家的时候，花子
已经死了。
“When Taro came home last week, Hanako
had already been dead.”

This demonstrates that models with larger param-
eter sizes can capture the semantic nuances intro-
duced by temporal adverbs.

However, when the tense of the premise and the
hypothesis differ, the situation becomes more com-
plex. In cases where the premise is the past or fu-
ture and the hypothesis is the present (e.g., (P : Fut,
H: Pres), we found all models except Claude3.5
consistently predict entailment (See Table 2). One
possible reason is that the models rely on lexi-
cal overlap heuristics mentioned in (McCoy et al.,
2019) to solve these problems. In Chinese, since
the aspect marker “le” applies across all tenses, lex-
ical overlap naturally occurs. In Japanese, sentence
pairs where both the premise and the hypothesis use
the same perfect aspect marker (e.g., (Fut, Pres))
involve lexical overlap. Examples (4) and (5) illus-
trate cases where lexical overlap occurs.

(4) Fut:太郎明年大学毕业的时候，花子已
经辞职了。
“When Taro graduates from college next
year, Hanako will have already quit her
job.”
̸⇒ Pres: 花子已经辞职了。
“Hanako has already quit her job.”

(5) Fut: 太郎が来年大学を卒業するとき、
花子はとっくに会社を辞めている。
“When Taro graduates from college next
year, Hanako will already have quit her
job.”
̸⇒ Pres: 花子は会社を辞めている。
“Hanako has already quit her job.”

92



To our surprise, in Japanese cases where the
premise and hypothesis use different tense markers,
models still tend to incorrectly predict entailment,
as illustrated by Example (6), in which “-tei-ta” is
used in the premise and “-tei-ru” in the hypothe-
sis. This result may suggest that the models’ low
accuracy in handling the perfect aspect in both Chi-
nese and Japanese is not merely a consequence of
heuristic biases, but also reflects their incomplete
understanding of the semantic distinction between
the Japanese perfect aspect marker “-tei-ta” and the
simple past marker “-tei-ru”.

(6) Pst(t): 太郎が先週に家に帰ったとき、
花子は既に三日前に死んでいた。
“When Taro came home last week, Hanako
had already been dead for 3 days.”
̸⇒ Pres(t): 花子は三日前に死んでい
る。
“Hanako has already been dead for 3 days.”

6 Conclusion

In this study, we presented a bilingual NLI dataset
targeting the interpretation of the perfect aspect
with punctual verbs in Japanese and Chinese. Our
results show that even state-of-the-art LLMs of-
ten fail to capture the correct temporal relations,
especially when tense and reference times differ
between sentences. Our findings highlight the need
for evaluation benchmarks that are both linguisti-
cally diverse and sensitive to temporal inference.

7 Limitation and Future Work

One limitation of this study is that our experiments
deliberately include only punctual, irreversible
verbs (e.g., die) to avoid truth-conditional ambi-
guities. Consequently, our findings do not yet gen-
eralize to verbs that occur in perfect-progressive
constructions. Extending coverage to such verb
classes is left for future work.

Another limitation is that our experiments are
only performed in a zero-shot setting. We plan to
expand the range of prompt formats used in future
experiments.

Finally, some phenomena highlighted in Section
5 remain speculative, most notably the negative
scaling trend observed for the Qwen3 series and
the Swallow series. We will design additional con-
trolled experiments to validate or refute these hy-
potheses.
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Katarzyna Pruś, Mark Steedman, and Adam Lopez.
2024. Human temporal inferences go beyond as-
pectual class. In Proceedings of the 18th Confer-
ence of the European Chapter of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1913–1923, St. Julian’s, Malta. Association
for Computational Linguistics.

Hans Reichenbach. 1947. Elements of Symbolic Logic.
Macmillan.

Tomoki Sugimoto, Yasumasa Onoe, and Hitomi Yanaka.
2024. Jamp sp : A controlled japanese temporal
inference dataset considering aspect. Journal of Nat-
ural Language Processing, 31(2):637–679.

Hitomi Yanaka and Koji Mineshima. 2021. Assess-
ing the generalization capacity of pre-trained lan-
guage models through Japanese adversarial natural
language inference. In Proceedings of the Fourth
BlackboxNLP Workshop on Analyzing and Interpret-
ing Neural Networks for NLP, pages 337–349, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Hitomi Yanaka and Koji Mineshima. 2022. Compo-
sitional evaluation on Japanese textual entailment
and similarity. Transactions of the Association for
Computational Linguistics, 10:1266–1284.

94

https://arxiv.org/abs/2010.05444
https://arxiv.org/abs/2010.05444
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.1162/tacl_a_00293
https://doi.org/10.1162/tacl_a_00293
https://doi.org/10.5715/jnlp.31.637
https://doi.org/10.5715/jnlp.31.637
https://doi.org/10.18653/v1/2021.blackboxnlp-1.26
https://doi.org/10.18653/v1/2021.blackboxnlp-1.26
https://doi.org/10.18653/v1/2021.blackboxnlp-1.26
https://doi.org/10.18653/v1/2021.blackboxnlp-1.26
https://doi.org/10.1162/tacl_a_00518
https://doi.org/10.1162/tacl_a_00518
https://doi.org/10.1162/tacl_a_00518


A Prompts

Chinese:
指示: 从 entailment, non-entailment中回答前提
和假设的关系.不需要给出解释.
限制：
-如果能够通过逻辑知识或常识性知识从前提
推导出假设，则输出 entailment.
- 如果前提成立无法保证假设成立,则输出
non-entailment.
-前提和假设中没有省略任何时间成分.
-前提和假设的发话时点为现在.
前提: {premise}
假设: {hypothesis}
答案:
———————————
Japanese:
指示: 前提と仮説の関係を entailment,non-
entailmentの中から回答してください.説明は
不要です.
制約：
-前提から仮説が,論理的知識や常識的知識を
用いて導出可能である場合は entailmentと出
力

-前提が成り立つとしても仮説が必ずしも成
り立たない場合は non-entailmentと出力
-前提と仮説には,時間的な成分を省略してい
ない
-前提と仮説の発話時を現在とする
前提: {premise}
仮説: {hypothesis}
答え:
————————————
English translation:
Instruction: Answer the relationship between
the premise and the hypothesis with one of the
following: entailment or non-entailment. No
explanation is needed.
Constraints:
- If the hypothesis can be deduced from the premise
through logical reasoning or common sense
knowledge, output entailment.
- If the truth of the premise does not guarantee the
truth of the hypothesis, output non-entailment. -
There is no omission of any temporal information
in both the premise and hypothesis.
- The utterance time for both the premise and
hypothesis is the present.
Premise: {premise}
Hypothesis: {hypothesis}
Answer:

B Templates

Table 5 shows all (P,H) templates and their labels
in our dataset. Table 6 and Table 7 show Chinese
and Japanese sentence templates used to create our
dataset.

C Detailed Results

Figure 2 and Figure 3 show detailed results of all
models under our dataset.
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Premise Hypothesis Example Label
Pst(t) When Taro got his PhD last year, Hanako had already been dead for 3 months.

Pst When Taro got his PhD last year, Hanako had already been dead. Entailment
Pres(t) Hanako has already been dead for 3 months. Non-Entailment
Pres Hanako has already been dead. Entailment
Fut(t) When Taro gets his PhD next year, Hanako will have already been dead for 3 months. Non-Entailment
Fut When Taro gets his PhD next year, Hanako will have already been dead. Entailment

Pst When Taro got his PhD last year, Hanako had already been dead.
Pst(t) When Taro got his PhD last year, Hanako had already been dead for 3 months. Non-Entailment
Pres(t) Hanako has already been dead for 3 months. Non-Entailment
Pres Hanako has already been dead. Entailment
Fut(t) When Taro gets his PhD next year, Hanako will have already been dead for 3 months. Non-Entailment
Fut When Taro gets his PhD next year, Hanako will have already been dead. Entailment

Pres(t) Hanako has already been dead for 3 months.
Pst(t) When Taro got his PhD last year, Hanako had already been dead for 3 months. Non-Entailment
Pst When Taro got his PhD last year, Hanako had already been dead. Non-Entailment
Pres Hanako has already been dead. Entailment
Fut(t) When Taro gets his PhD next year, Hanako will have already been dead for 3 months. Non-Entailment
Fut When Taro gets his PhD next year, Hanako will have already been dead. Entailment

Pres Hanako has already been dead.
Pst(t) When Taro got his PhD last year, Hanako had already been dead for 3 months. Non-Entailment
Pst When Taro got his PhD last year, Hanako had already been dead. Non-Entailment
Pres(t) Hanako has already been dead for 3 months. Non-Entailment
Fut(t) When Taro gets his PhD next year, Hanako will have already been dead for 3 months. Non-Entailment
Fut When Taro gets his PhD next year, Hanako will have already been dead. Entailment

Fut(t) When Taro gets his PhD next year, Hanako will have already been dead for 3 months.
Pst(t) When Taro got his PhD last year, Hanako had already been dead for 3 months. Non-Entailment
Pst When Taro got his PhD last year, Hanako had already been dead. Non-Entailment
Pres(t) Hanako has already been dead for 3 months. Non-Entailment
Pres Hanako has already been dead. Non-Entailment
Fut When Taro gets his PhD next year, Hanako will have already been dead. Entailment

Fut When Taro gets his PhD next year, Hanako will have already been dead.
Pst(t) When Taro got his PhD last year, Hanako had already been dead for 3 months. Non-Entailment
Pst When Taro got his PhD last year, Hanako had already been dead. Non-Entailment
Pres(t) Hanako has already been dead for 3 months. Non-Entailment
Pres Hanako has already been dead. Non-Entailment
Fut(t) When Taro gets his PhD next year, Hanako will have already been dead for 3 months. Non-Entailment

Table 5: All (P,H) templates and their labels. Here, we only present the English translation of one example to
illustrate the correspondence between the (P,H) pair and their label in our dataset. As mentioned in Section 3, the
label remains unchanged even when different punctual verbs are used.

Category Template Example

Pst(t) [Event-Past]的时候，[NP]已经[VP][TIME]了 田中上周搬家的时候，山本已经合格大学一周了
Pst [Event-Past]的时候，[NP]已经[VP]了 田中上周搬家的时候，山本已经合格大学了
Pres(t) [NP]已经[VP][TIME]了 山本已经合格大学一周了
Pres [NP]已经[VP]了 山本已经合格大学了
Fut(t) [Event-Future]的时候，[NP]已经[VP][TIME]了 佐藤下个月工作的时候，山本已经合格大学一周了
Fut [Event-Future]的时候，[NP]已经[VP]了 佐藤下个月工作的时候，山本已经合格大学了

Table 6: Sentence Templates for Chinese.

Category Template Example

Pst(t) [Event-Past]とき、[NP]は[TIME]前にすでに[V-teita] 田中が先月引っ越したとき、山本は一週間前にすでに大学に合
格していた

Pst [Event-Past]とき、[NP]はすでに[V-teita] 田中が先月引っ越したとき、山本はすでに大学に合格していた
Pres(t) [NP]は[TIME]前に[V-teiru] 山本は一週間前に大学に合格している
Pres [NP]は[V-teiru] 山本は大学に合格している
Fut(t) [Event-Future]とき、[NP]は[TIME]前に[V-teiru] 佐藤が来月転職するとき、山本は一週間前に大学に合格してい

る
Fut [Event-Future]とき、[NP]はとっくに[V-teiru] 佐藤が来月転職するとき、山本はとっくに大学に合格している

Table 7: Sentence Templates for Japanese.
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Figure 2: Results on our Chinese dataset. The overall accuracy is shown in the title. E/N:number in cells shows the
gold label and the accuracy for each (P,H) pair.

Figure 3: Results on our Japanese dataset. The overall accuracy is shown in the title. E/N:number in cells shows the
gold label and the accuracy for each (P,H) pair.
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Abstract

We present a new benchmark to evaluate the
lexical competence of large language models
(LLMs), built on a hierarchical classification
of lexical functions (LFs) within the Meaning-
Text Theory (MTT) framework. Based on a
dataset called French Lexical Network (LN-
fr), the benchmark employs contrastive tasks
to probe the models’ sensitivity to fine-grained
paradigmatic and syntagmatic distinctions. Our
results show that performance varies signifi-
cantly across different LFs and systematically
declines with increased distinction granularity,
highlighting current LLMs’ limitations in rela-
tional and structured lexical understanding.

1 Introduction

Large language models (LLMs) like GPT-4 (Ope-
nAI et al., 2024), Qwen (Bai et al., 2023), or
LLaMA (Touvron et al., 2023) do not merely gen-
erate coherent text. They can be prompted to solve
a wide range of linguistic and cognitive tasks, such
as question answering, information extraction, or
machine translation, with remarkable performance
(Zhao et al., 2025). As a result, works on LLMs’
evaluation have shifted focus away from grammati-
cality and coherence, towards reasoning capacities,
factual consistency, bias, or other extra-linguistic
properties (Chang et al., 2023).

Yet, there remain essential questions about the
nature and depth of linguistic knowledge captured
by these models and their ability to introspectively
access and share this knowledge. While LLMs ap-
pear to “use language” fluently, the amount of lin-
guistic structure they “understand” is not clearly cir-
cumscribed, nor is their ability to reason abstractly
about linguistic objects.

The lexicon is a case in point. A proper under-
standing of language necessarily entails a grasp of
its lexicon—not as a mere inventory of words and
their definitions, but as a structured system wherein

lexical units are interconnected through a variety
of relations (like synonymy, antonymy, morpho-
logical derivations, intensification, and others) that
recur across most (if not all) languages. Leveraging
such relations to assess linguistic competence has
long been an attractive idea: they are, for instance,
at the heart of popular analogical benchmarks (Tur-
ney et al., 2004; Mikolov et al., 2013; Gladkova
et al., 2016, inter alia) which have become a staple
of the evaluation of distributional representations.
However, these analogical datasets arguably lack
both theoretical grounding and coverage in some
areas. For instance, the Bigger Analogy Test Set
(Gladkova et al., 2016), one of the most balanced,
diverse and challenging benchmarks, covers very
few syntagmatic (i.e. related to word combinations
rather than word substitutions) lexical relations and
leaves out many aspects related to meaning rather
than strict morphology (like the analogy between
the pairs continue:continuation::sell:sale).

We therefore wish to ground an evaluation bench-
mark on a well-established lexicographic theory:
the Meaning-Text Theory (MTT) (Mel’čuk, 1973,
1996, 2016; Mel’čuk and Polguère, 2021). MTT
places the lexicon and its combinatorial properties
at the core of linguistic modeling. To formally
model the structure of the lexicon, MTT uses a
system of Lexical Functions (LFs), which repre-
sent consistent and recurrent paradigmatic or syn-
tagmatic relations between lexical units—that is,
words taken in a specific sense. Each LF encodes
a specific semantic or syntactic relation between a
lexical unit (its keyword) and a set of lexical units
(its value). The following examples illustrate some
of the most common LFs1 :

1In line with MTT’s notational conventions, we overload
the = symbol to denote set membership rather than equality.
Thus f(a) = b means in fact b ∈ f(a), as an LF typically
associates a keyword with more than one value. One has for
instance Syn(film) = movie and Syn(film) = picture.
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• Syn(film) = movie (synonym)
• Magn(awake) = wide [∼] (intensifier)
• Oper2(criticism) = (to) face [∼] (support verb)2

The question we ask is how accurately LLMs can
be prompted to recognize whether a pair of French
words instantiates a given type of lexical relation.
To answer this question, we build on MTT and
define a set of target LFs of interest, capturing lexi-
cal knowledge at different levels of granularity.
For instance, at a coarse level, we test whether the
LLM can tell apart instances of adjectival deriva-
tions (of any kind) from instances of other type
of derivations (e.g. nominal, or verbal ones), and
at a finer level, whether it can discriminate rather
semantically neutral adjectival derivations (like de-
stroy–destructive) from those involving a stronger
meaning shift (like destroy–destructible). To this
aim, we associate each target LF with a set of con-
trastive LFs, so that each contrastive LF both share
a common property with the target (e.g. both cor-
respond to some kind of adjectival derivation) and
are distinguished by another property (e.g. they
correspond to different degrees or types of mean-
ing shifts), and ask LLMs to recognize the pairs
of words obtained from the target and reject those
obtained from its contrastive LFs. To automatically
obtain the pairs of words, we leverage a high qual-
ity French lexicographic resource, the French Lexi-
cal Network (Lux-Pogodalla and Polguère, 2011;
ATILF, 2024, henceforth, LN-fr), which offers ex-
tensive coverage and is closely aligned with the
theoretical framework adopted here. Although we
use French data, the lexical relations we target are
universal. We work from the assumption that if a
model performs well on French, it should perform
about as well on other languages similarly covered
by its pretraining material.

We thus contribute a hierarchy of LFs, wherein
each intermediate level corresponds to some coarse-
grained lexical relation (such as ‘verbal colloca-
tion’), and immediate descendants correspond to
distinct sub-relations of the former (such as ‘sup-
port verbs’ and ‘semantically loaded verbal colloca-
tions’). We propose a benchmark of polar questions
to test LLMs’ ability to specifically recognize these
contrasts, and assess several open-weights LLMs
on this benchmark, as well as the effect of different
prompting configurations. We also investigate the

2Support verbs serve to build a syntactically well-formed
structure without contributing additional meaning (Mel’čuk
and Polguère, 2021; Ramos and Tutin, 1996).

impact of surface cues on the LLM’s behavior.

2 Related work

The semantic abilities of computational models
have often been measured by their ability to recog-
nize or perform analogies. Analogical datasets such
as SAT (Turney et al., 2004), the Google analogy
test set (Mikolov et al., 2013), and BATS (Glad-
kova et al., 2016) have become popular bench-
mark of this capacity. They also have been ap-
plied to the evaluation of recent LLMs’ seman-
tic abilities: Ushio et al. (2021) evaluate LLMs
on well-established analogical benchmarks using
prompts and their completion probabilities, and
show, among many other things, that the lexical
analogies of BATS are more difficult for the models
than the morphological or encyclopedic ones. Yuan
et al. (2024) show that automatically extracting
analogies from a knowledge graph can be used to
enhance LLMs performance on analogical bench-
marks via fine-tuning or few-shot learning.

Some new benchmarks have also been devel-
oped: Wijesiriwardene et al. (2023) introduce a
benchmark of analogies between longer texts, tar-
geting concepts such as entailment or explanation,
and Chen et al. (2022) introduce a benchmark of
exam problems and associated analogical reason-
ing. While these resources are important tools
to assess higher level linguistic and reasoning ca-
pabilities, they also steer away from evaluating
the sheer lexical competence of language models.
Other approaches have taken inspiration from psy-
cholinguistic methods like cloze completion tasks.
Some of the tasks considered in (Ettinger, 2020)
directly concerns lexical knowledge. They find that
BERT (Devlin et al., 2019) is better at recognizing
hypernyms than distinguishing semantic roles.

While models’ mastery of paradigmatic rela-
tions such as synonymy or hyponymy is extensively
tested in the aforementioned works, the type of
knowledge underlying support or light verb con-
structions (like chance and take), or tied to the
argument structure (doctor and patient) is more of-
ten overlooked. Our work addresses this gap with a
benchmark exclusively centered around the lexicon,
allowing a systematic and granular exploration of
LLMs’ ability to recognize the whole range of lex-
ical functions formally defined by Meaning-Text
linguists. It is akin to the recent work of Petrov
et al. (2025), who have also leveraged instances of
LFs from LN-fr to diagnose lexical competence,
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but supplements theirs in several respects. Petrov
et al. (2025) designed a challenging analogy-based
benchmark of 2,600 fine-grained lexical analogies
using 25 common LFs (21 paradigmatic and 4 syn-
tagmatic), and showed that moderately-sized LLMs
achieve particularly strong performance on deriva-
tional morphology but struggle more with syntag-
matic relations and distinguishing event-participant
roles. In contrast, we organize relations in a sys-
tem of hierarchical clusters, grouping specific rela-
tions into broader categories, and examine models’
ability to make distinctions with variable levels of
specificity. Rather than directly requesting models
to solve a given analogical equation (an open ques-
tion), we use closed yes/no questions with more
elaborate contexts. While this arguably makes the
task less challenging, it also circumvents important
shortcomings of bare analogical equations regard-
ing the amount of information provided to LLMs,
and makes it easier to avoid false negatives in the
evaluation. In particular, it enables us to include
information pertaining to word sense clarification
and/or semantic roles indices in the prompts, and
thereby study a wider and more balanced range of
lexical relations.

3 Evaluation Framework

This section outlines the evaluation framework de-
signed for our study, including our proposal of a
hierarchical organization of LFs, the lexical dataset,
and the construction of contrastive prompts.

3.1 Hierarchical structure of LFs

In the MTT framework and its associated resources,
the instances of LFs are highly specific. For ex-
ample, S0(produceV) refers to the abstract activ-
ity denoted by the verb itself, yielding the nomi-
nal form production, and thus represents a deriva-
tion without added semantic content. In contrast,
S1(produceV) yields producer, designating the
agent of the activity—the first argument of the pred-
icate ‘produceV’. Similarly, S2(produceV) yields
product, referring to the result of the activity—the
second argument of the predicate.

This illustrates two levels of semantic distinc-
tion: while S1 and S2 are both argument-oriented
derivations and thus semantically close, they dif-
fer based on which argument role they instantiate.
S0, on the other hand, is more distinct as its value
encodes the event itself without any further seman-
tic shift. In the present study, we are particularly

interested in whether LLMs are sensitive to distinc-
tions among LFs at varying levels of granularity.
To systematically assess their lexical competence
in this regard, a structured classification scheme is
required for explicitly modeling such fine-grained
distinctions.

Building on the theoretical foundations of LFs
in MTT (Mel’čuk, 1996; Ramos and Tutin, 1996;
Jousse, 2010; Mel’čuk and Polguère, 2021), we
first classify the full set of Simple Standard LFs ac-
cording to their semantic and syntactic properties.
At the top level, we distinguish between paradig-
matic LFs (encoding derivational or synonymic
relations) and syntagmatic LFs (encoding colloca-
tion patterns). Each group is further subdivided by
the part of speech (POS) of the keyword and the
value. Within these groups, finer-grained categories
are defined according to specific semantic proper-
ties. In particular, certain distinctions between LFs
arise from subtle syntactic differences in the real-
ization of the semantic arguments associated with
the keyword. These cases are categorized more
finely. For example, within the category of Nomi-
nal Derivation, S0 denotes purely syntactic deriva-
tion without any semantic enrichment, whereas Si
represents the noun that refers to typical semantic
arguments of the keyword. The Si category itself
can be further subdivided. In particular, S1 returns
the name of the first semantic argument of the key-
word, e.g., S1(sell) = seller, while S2 corresponds
to the second, e.g., S2(sell) = merchandise. This
hierarchical classification of LFs, as illustrated in
Figure 1, is structured at multiple levels of granular-
ity and serves as the foundation for our evaluation
of lexical competence in LLMs.

3.2 Data

The MTT framework has given rise to a sub-
stantial body of lexicographic work, including
Mel’čuk et al. (1995); Apresjan (2000); Mel’čuk
et al. (1999); Mangeot (2000); Polguère (2014);
Alonso Ramos (2015); L’Homme et al. (2009);
Barrios Rodrı́guez (2024). Among them, the
French Lexical Network (LN-fr) (Lux-Pogodalla
and Polguère, 2011; ATILF, 2024) stands out as a
large-scale lexical network where nodes represent
French lexical units and edges encode syntagmatic
or paradigmatic LFs, as Figure 2 demonstrates. In
the present study, prompt generation for model eval-
uation relies on the lexicographic resource LN-fr
(Lux-Pogodalla and Polguère, 2011; ATILF, 2024).
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Figure 1: Hierarchical classification of Simple Standard LFs. LFs shown in grey are theoretically part of the
hierarchy but are excluded from the evaluation due to insufficient instances in the dataset. For details on definitions
of terminal-node LFs, see (Mel’čuk and Polguère, 2021)
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Figure 2: LN-fr example for lexical unit amour ‘love’
and its relations with other lexical units.

Built according to the methodological principles of
Explanatory Combinatorial Lexicology (Mel’čuk
et al., 1995), it comprises ∼30k lexical units cover-
ing ∼19k lemmas in French. In addition to proposi-
tional forms and usage examples, LN-fr includes
over 66k annotated instances of LFs, forming a rich
network of paradigmatic and syntagmatic relations.

A node in our hierarchical structure corresponds
to a group of LF instances drawn from the LN-fr
dataset. We retained only instances with complete
information, including the LF identifier, the key-
word (input lexical unit), and the value (output lex-
ical unit). Any instance missing one of these fields
was excluded. The resulting filtered dataset served
as the sampling pool for prompt construction dur-
ing evaluation. To ensure sufficient coverage and

statistical reliability, we further excluded all LF
nodes with fewer than 30 valid instances from
the final evaluation set, which are represented in
grey in Figure 1. The full hierarchical structure,
including both terminal and intermediate nodes, is
specified in a dedicated configuration file, follow-
ing the theoretical principles outlined in Mel’čuk
et al. (1995); Mel’čuk and Polguère (2021).

3.3 Contrastive Sampling and Prompting

Building on the Natural Instructions paradigm,
which enables model interaction through prompt-
based question answering enriched with few-shot
demonstrations and contrastive examples (Mishra
et al., 2022; Chang et al., 2023), we adopt a con-
trastive sampling strategy to evaluate LLMs’ abil-
ity to distinguish lexical relations. Grounded in
our hierarchical classification of LFs, each prompt
presents a balanced set of positive and negative
examples centered on a target LF category.

To generate negative examples, we sample con-
trasting instances from sibling nodes under the
same parent within the LF hierarchy, ensuring
functional but structurally proximate distinctions,
as shown in Figure 3. For example, if the node
Substitutive in our hierarchy (see Figure 1)
is selected as the target, all its sibling nodes (e.g.
Deriv N, Deriv Adj) are considered contrasts.

Prompt Our evaluation strategy follows the
paradigm of Prompt Engineering (Schulhoff et al.,
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Target

Figure 3: Contrastive sampling: positives from the tar-
get LF (green); negatives from yellow nodes as con-
trasts.

2025), in particular the Natural Instructions frame-
work (Mishra et al., 2022), where models are
prompted with structured input-output examples in
natural language. For each target LF, we construct
multiple prompts, each of which encodes a distinct
contrastive setup based on instance sampling.

As a linguist expert in the Meaning-Text Theory,
you will be given a definition of a lexical
function, along with a set of positive and negative
examples. Then, you will be presented with a new
pair of keyword and value, and your task is to
answer ‘Yes’ if the pair corresponds to the target
LF, or ‘No’ if it does not [...]

Listing 1: System Prompt

As illustrated in Listings 1 and 2, the System
prompt provides the overall task description and
specifies the expected output format. The User
prompt, in turn, introduces the target LF through a
formal definition, followed by a set of positive and
negative examples. For each example, we present
the surface forms of the keyword and its value,
along with the propositional form of the keyword.
Optionally, the prompt also includes a KWIC (key-
word in context) snippet for the keyword—a 13-
word window centered on the keyword—and the
propositional form of the value. The propositional
form is a minimal example phrase involving the
keyword and numbered placeholders, whose pur-
pose is to describe the conventional numbering of
semantic arguments and their correspondence with
syntactic positions in an example. For instance, the
propositional form for sale could be ∼ carried out
by $1 to $2 for the amount $3 (where ∼ links to
the keyword, sale). This propositional form would

Oper_1 is a lexical function which, given a lexical
unit as a keyword, selects another one as a
collocate in order to form a lexical collocation...

Here are some positive examples of this function:
fatigue -> éprouver
Propositional form of the keyword: ∼de $1 causé par
$2
KWIC context of the keyword: ...
Answer: Yes
...

Here are some negative examples of this function:
cheveu -> soigner
Propositional form of the keyword: ∼de $1
KWIC context of the keyword: ...
Answer: No
...

QUESTION:
football -> jouer
Propositional form of the keyword: ∼pratiqué par $1
KWIC context of the keyword: ...

Does the above word pair also constitute a valid
example of this class of lexical function?

Listing 2: User Prompt

indicate that the seller is conventionally considered
the first semantic argument, the buyer the second,
and the amount of the transaction the third. Both
the KWIC and the propositional form are extracted
from LN-fr. Finally, the actual question is posed,
featuring a new keyword–value pair to be evaluated
by the model.

To ensure the reliability of the keyword-value
pairs used as query instances, we apply the follow-
ing sampling constraints when generating prompts:
(i) the keyword-value pairs used in the few-shot
examples do not appear in the target query; (ii) no
duplicate instances are included within the same
prompt.

3.4 Evaluation

We evaluated three competitive instruction-tuned
LLMs from Transformer (Wolf et al., 2020):
QWEN-14B-INSTRUCT-1M (hereafter QWEN),
LLAMA-3.1-8B-INSTRUCT (hereafter LLAMA),
and MISTRAL-7B-INSTRUCT-V0.3 (hereafter
MISTRAL). A total of 81 valid LFs nodes were
selected from our classification hierarchy. For each
node, we generated 20 questions per contrastive
sampling—10 positive ones (based on examples
from the target LF) and 10 negative ones (from con-
trastive LFs)—ensuring a balanced dataset. Each
question was posed five times to each model using
distinct random seeds, ensuring both reproducibil-
ity and the observation of model variance.

In addition, our experimental setup takes into
account three parameters, as summarized in Table 1.
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Param Description

k Number of examples per prompt (k ∈ {2,6,10}).
kw-ctx Whether the example’s keyword includes a KWIC

context (boolean, T for True and F for False).
vl-pfm Whether the example’s value includes its proposi-

tional form (boolean, T for True and F for False).

Table 1: Experimental parameters.

Model kw-ctx vl-pfm k = 2 k = 6 k = 10
Acc F1 Acc F1 Acc F1

QWEN F F 61.2 59.4 64.6 63.2 66.7 65.7
F T 61.5 59.6 65.0 63.9 67.5 66.6
T F 57.9 53.2 62.1 59.1 64.1 62.0
T T 58.4 53.6 62.5 59.8 64.6 62.7

LLAMA F F 55.7 49.6 58.2 54.3 59.3 55.8
F T 54.5 46.4 56.8 51.4 57.3 52.1
T F 54.6 47.5 57.0 52.7 56.7 51.4
T T 53.1 43.2 55.0 47.7 54.4 46.4

MISTRAL F F 52.5 44.8 53.1 44.0 53.4 44.4
F T 53.0 45.8 55.1 48.9 55.5 49.5
T F 50.3 37.0 50.9 37.9 51.6 40.4
T T 51.2 40.8 52.6 43.5 52.1 41.5

Table 2: Performance (accuracy and F1 score) of three
models under different configurations.

4 Results and discussion

4.1 Global Performance Across Models

General performance overview As shown in
Table 2, the overall performance of the three tested
models remains relatively modest. Both LLAMA
and MISTRAL achieve slightly above the expected
accuracy of random guessing in a binary classifica-
tion task. Even the best-performing model, QWEN,
falls short of the 70% threshold, indicating that the
lexical relationships involved in this task pose a
substantial challenge for these LLMs.

Response polarity bias Given that our evalua-
tion set is strictly balanced, with an equal number
of positive (‘Yes’) and negative (‘No’) gold labels,
any asymmetry in the distribution of predicted la-
bels may reveal a systematic bias in model out-
puts. As shown in Figure 4, LLAMA and QWEN

exhibit a marked preference for predicting ‘No’,
while MISTRAL tends to over-predict ‘Yes’. These
tendencies suggest distinct response heuristics or
inductive biases learned during training, which may
influence lexical decision-making in binary setups.

Yes No

Ye
s

N
o

44828 3772

41637 6963

Mistral

Yes No

Ye
s

N
o

19380 29220

14526 34074

LLaMA

Yes No
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s

N
o

20277 28323

8121 40479

Qwen

Prediction

Tr
ut

h

Figure 4: Confusion matrices for the three evaluated
models. Rows indicate gold labels, columns show pre-
dicted labels. Differences in false positives and false
negatives highlight systematic response biases.

4.2 Impact of Experimental Conditions
The three models evaluated in this study exhibit
both commonalities and divergences in their per-
formance across experimental conditions. QWEN

consistently outperforms the others, followed by
LLAMA, with MISTRAL showing comparatively
lower accuracy.

Impact of k-shot Table 2 shows that both QWEN

and LLAMA demonstrate clear sensitivity to the k-
shot instances of target LF provided in the prompt:
performance improves steadily as k increases. This
suggests that exposure to a greater number of exam-
ples enhances the model’s ability to recognize and
generalize the lexical relation encoded by the target
LF. In contrast, MISTRAL’s performance remains
largely unaffected by changes in k-shot settings, in-
dicating that it may rely less on provided examples
into its predictions.

Impact of kw-ctx and vl-pfm As listed in
Table 1, these two parameters are introduced to
test their potential role as linguistic cues for dis-
ambiguation. However, we observe that none of
the three models tested appears to benefit from the
inclusion of kw-ctx; on the contrary, its presence
sometimes leads to even worse performance. On
the other hand, vl-pfm shows a modest positive
effect for both QWEN and MISTRAL, while hav-
ing little to no impact on LLAMA. It is important
to note that the lack of performance improvement
from certain prompt components, like kw-ctx,
does not imply that these types of information are
irrelevant to lexical relations. Rather, it indicates
that the models, in their current form, fail to effec-
tively leverage such information in making lexical
identification.

In the following sections, we focus our subse-
quent analysis on each model’s best-performing
configuration (bolded in Table 2), in order to mini-
mize confounding effects from multiple variables.
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Figure 5: Accuracy of three models (Qwen, LLaMA,
Mistral) across selected LFs categories. The upper chart
shows performance on a representative set of paradig-
matic LFs, while the lower shows performance on syn-
tagmatic LFs.

4.3 Performance Across Lexical Functions

4.3.1 Disparities Among LFs
Since the LFs serve as the central testing material
in our task, we begin our analysis by abstracting
them away from the hierarchical organization, and
examining models performance at the individual
LF node. This flat perspective allows us to assess
whether the models demonstrate variant accuracy
across them.

As illustrated in Figure 5, models generally ex-
hibit accuracy disparities across different target
LFs.3 Some LFs appear easier for the models to
learn, particularly when the distinctions are limited
to part-of-speech (POS) differences. For instance,
Deriv Adv refers to LFs that, given a lexical unit
as the keyword, return an adverbial lexical unit de-
rived from it while preserving the semantics, and
it is contrasted with other derivations (nominal, ad-
jectival, etc.) as counter examples. The results
suggests that, when prompted to decide whether a
pair such as (rapide ‘rapid’, rapidement ‘rapidly’)
fits this pattern, models often respond with high
accuracy, with QWEN even hitting perfect scores
on this LF with some configurations.

Conversely, some LFs are considerably more
challenging for the models, particularly when they

3Figure 5 illustrates a representative sample from the full
set of 81 targets.

involve semantic argument structures. For ex-
ample, Func2 is defined as an LF that, given a
non-verbal keyword, returns a support verb, al-
lowing to build a construction that functions as
a verb without altering the meaning of the key-
word, and in this structure, the keyword functions
as the subject of the verb, and its semantic argu-
ment 2 becomes the direct object of the verb. For
example, Func2(blowN) returns fallV as seen in
the collocation the blow falls upon y. In our ex-
periments, Func2 is contrasted with Func0 (e.g.
Func0(silenceN) = reignV), which shares the same
syntactic and semantic properties but lacks an ad-
ditional argument serving as the verb’s object, and
Func1 (e.g. Func1(blowN) = come—as in the
blow comes from x), in which the keyword’s se-
mantic argument 1 becomes the direct object of the
verb.4 The models consistently struggle to distin-
guish such nuanced semantico-syntactic patterns,
with performance occasionally dropping below ran-
dom level.

This disparity is similar to the observation in
the ALF study (Petrov et al., 2025) and suggests
that LLMs have varying degrees of understanding
across different types of LFs. Below, we examine
whether these disparities may be shaped by our
hierarchical organization of LFs (cf. §3.1).

4.3.2 Hierarchical Patterns in LF-Specific
Performance

To gain deeper insight into the observed disparities
(§4.3.1), we regroup all LFs based on their depth
in the hierarchy (cf. Figure 1) and analyze how
model performance varies across different levels of
abstraction.

As illustrated in Figure 6, models indeed demon-
strate systematic performance disparities in per-
formance across LFs by their depth levels. For
both QWEN and LLAMA, deeper LFs—which
denote more specific distinctions—are associated
with greater classification difficulty, with QWEN

displaying a particularly marked decline. While
MISTRAL exhibits a certain degree of insensitivity
to depth at higher hierarchical levels, substantial de-
cline in accuracy is evident at the lowest tiers of the
structure. By linking these depth levels in the hier-
archy to the disparities introduced earlier, we find
that LFs associated with clearer distinctions in part-
of-speech—such as Deriv Adv—correspond to
the top-level (depth = 1), where models generally

4See Mel’čuk and Polguère (2021); Mel’čuk (1996) for a
comprehensive overview of these LFs.
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Figure 6: Performance trends across lexical functions
grouped by their depth in the hierarchical classification
(with 1 denoting the top-level LF nodes and 5 denoting
the most fine-grained nodes). Each curve represents one
model’s average performance on target LFs at a given
depth in the hierarchy, measured by accuracy.

LF group QWEN LLAMA MISTRAL Mean

S1, S2, . . . 0.58 0.57 0.53 0.56
Sres, Sloc, . . . 0.76 0.63 0.58 0.65

Table 3: Example of performance contrast: Si (with in-
dices referring to arguments) versus Sres, etc. (without
such indices)

perform well. In contrast, more challenging LFs
such as Func2 are situated deeper in the hierarchy,
where classifications become more fine-grained.
This observation supports our earlier hypothesis
that disparities in model performance are partially
shaped by the hierarchical organization of LFs.

4.3.3 Challenges of Argument-Aware LFs
While hierarchical depth plays an important role in
shaping performance differences, we also observe
another layer of complexity arising from the argu-
ment structures encoded in certain LFs. One plau-
sible explanation lies in the conventional, rather
than absolute, nature of semantic arguments: their
interpretation often depends on norms among lin-
guists rather than fixed rules. For instance, S1 and
S2, introduced in §3.1, belong to LFs that refer to
the argument structure of the keyword. However,
when compared to nodes like Sinstr or Sres at
similar depths without argument indices, model
performance varies considerably, despite their sim-
ilar hierarchical depth.

As contrasted in Table 3, LFs characterized by
clearer semantic interpretations—without reliance
on semantic argument numbers—tend to be more

consistently recognized. This may help explain
why the vl-pfm parameter improves accuracy for
models like QWEN and MISTRAL, as it provides
disambiguating signals that compensate for such
variability.

4.4 Impact of Morphological Similarity
between Keywords and Values

Semantic and syntactic relations form the core of
the LFs linking two lexical units. In French LF
examples, however, these relations are often ac-
companied by morphological similarity between
the keyword and its value. To assess whether mod-
els rely on surface-form resemblance rather than
structural understanding of LFs, we measured the
similarity of pair of words using scores between
word pairs using the Levenshtein ratio()
function from the python-Levenshtein library.5 Un-
like the raw Levenshtein distance (Levenshtein,
1966) which counts the minimum number of single-
character edits needed to transform one string into
another, this function returns a normalized similar-
ity score between 0 and 1, providing a convenient
proxy for morphological relatedness.

4.4.1 Correlation between Morphological
Similarity and Models’ Responses

We first hypothesize that models’ responses
(Yes/No) may be influenced by the morphologi-
cal similarity of the keyword-value pair in posed
questions; higher similarity might bias the model
toward a specific polarity. To delve into this inquiry,
we measured the correlation between the morpho-
logical similarity of each keyword–value pair and
the response polarity (Yes/No) using the Pearson
Correlation Coefficient. The results, shown in Fig-
ure 7, reveal that this correlation varies across LFs
too.

Model A0 Contr Pred V0

LLAMA 0.70 0.52 0.66 0.79
MISTRAL 0.63 0.42 0.46 0.76
QWEN 0.80 0.40 0.90 0.74

Table 4: Accuracy scores for selected lexical functions
across models.

For V0 (e.g., V0(drivingN)=driveV), the high
positive value in the light-red bar indicates that
higher pair similarity is associated with Yes an-
swers; all 3 tested LLMs align to varying degree to

5https://github.com/ztane/
python-Levenshtein
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Figure 7: Correlation between the morphological sim-
ilarity of each keyword–value pair and the response
polarity (yes/no). The light-red background shows the
correlation of this similarity with ground-truth response,
and the colored bars (blue, orange, green) show the cor-
relation with each LLM’s predictions. As the polarity
(yes/no) was binarized to +1 and −1, values close to +1
indicate that higher similarity is associated with yes re-
sponses, values close to −1 indicate association with no
responses, and values near 0 indicate little correlation.

this trend. When a model’s prediction correlation
matches the ground truth, it suggests reliance on
surface similarity, often with higher accuracy (see
Table 4). For Pred (e.g., Pred(beer)=drinkV),
the negative value indicates that similarity is more
associated with No answers; QWEN aligns and
performs best, while MISTRAL shows no such
alignment and performs worst. For Contr (e.g.,
Contr(sun)=moon), none of the models align
with the ground truth, and overall performance is
weak. These observations suggest that the evalu-
ated LLMs do make use of morphological simi-
larity as a cue for inference, but in ways that vary
across LFs.

4.4.2 Prompt Contrast as a Source of
Similarity Bias

LLMs’ reliance on morphological similarity, as ob-
served in Section §4.4.1 was limited to the keyword-
value pairs in the questions, we further explore
whether this reliance may also be related to the
pairs in positive and negative examples (k-shot).
For each LF, we first computed the correlation be-
tween question-pair similarity and the model’s pre-
dictions (as defined in the previous section), and
then calculated the difference between the average
similarity of positive and negative examples in its
k-shot context. Figure 8 visualizes the relationship
between these per-LF correlations and similarity
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Figure 8: For each LF, relationship between (i) the cor-
relation of question-pair similarity with answer polarity
(defined in Section §4.4.1) and (ii) the difference be-
tween the average similarity of positive and negative
k-shot examples (positive values indicate higher similar-
ity for positives). Each point represents one LF; colors
denote models, and regression lines show the fitted rela-
tionship for each model.

difference.

All three regression lines have a clear upward
slope, supporting our hypothesis that when posi-
tive examples are more similar than negative ones,
models tend to answer yes; the opposite pattern
leads to no. Notably, MISTRAL shows a shallower
slope, whereas QWEN’s is steeper, suggesting that
QWEN is relatively more capable of capturing the
morphological similarity contrast between positive
and negative examples in the k-shot and using it to
guide its Yes/No responses. The relative ordering
of the slopes aligns with their global performance
reported earlier in §4.1.

5 Conclusion

In this study, we introduce a structured bench-
mark for evaluating LLMs’ lexical competence,
grounded in a semantic–syntactic hierarchical clas-
sification of LFs. Using contrastive prompts, we
find that models can leverage lexical cues but strug-
gle with deeper distinctions. They perform better
on surface-level PoS contrasts, while finer-grained
or syntactically nuanced LFs pose greater chal-
lenges. Moreover, model responses are partly
driven by morphological similarity between word
pairs, especially when such cues are amplified by
the prompt design.
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Limitations

Our present evaluation is restricted to three mid-
sized open-weight LLMs, and we plan to extend
the benchmark to larger and more diverse mod-
els. In addition, the LF classification follows a
semantics-to-syntax ordering which, while theoret-
ically grounded, may not reflect alternative orga-
nizational perspectives; exploring alternative LF
classifications could help assess structural effects.
Furthermore, human evaluation—both with par-
ticipants familiar and unfamiliar with LF theory—
could serve as a valuable baseline for comparing
LLM performance; yet this approach has not been
widely tested with human participants. In this re-
gard, Petrov et al. (2025) offer a useful point of
reference.
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Igor A. Mel’čuk, André Clas, and Alain Polguère. 1995.
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Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2022. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
In ACL 2022 - 60th Annual Meeting of the Associa-
tion for Computational Linguistics, Proceedings of
the Conference (Long Papers), pages 3470–3487. As-
sociation for Computational Linguistics (ACL).

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button,
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany
Carey, Chelsea Carlson, Rory Carmichael, Brooke
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai,
Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott

Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
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Abstract

We present a novel German Winograd-style
dataset for direct comparison of human and
model behavior in coreference resolution. Ten
participants per item provided accuracy, con-
fidence ratings, and response times. Unlike
classic WSC tasks, humans select among three
pronouns rather than between two potential
antecedents, increasing task difficulty. While
majority vote accuracy is high, individual re-
sponses reveal that not all items are trivial and
that variability is obscured by aggregation. Pre-
trained language models evaluated without fine-
tuning show clear performance gaps, yet their
accuracy and confidence scores correlate no-
tably with human data, mirroring certain pat-
terns of human uncertainty and error. Dataset-
specific limitations, including pragmatic rein-
terpretations and imbalanced pronoun distribu-
tions, highlight the importance of high-quality,
balanced resources for advancing computa-
tional and cognitive models of coreference res-
olution.

1 Introduction

Coreference resolution is a central task in NLP (for
a review see Zhang et al., 2021), with most work
focusing on fine-tuning models for benchmark per-
formance (e.g., Wang et al., 2019). In contrast,
we directly compare the behavior of humans and
pretrained language models (PTLMs) on a task re-
quiring coreference resolution. Prior work shows
that PTLMs encode coreference-relevant biases –
such as preference for form similarity, recency, and
grammatical agreement – when probed via contex-
tual embeddings (Sorodoc et al., 2020), mirroring
patterns found in human anaphora resolution (e.g.,
Ariel, 2001; Stevenson et al., 1995). Yet for direct
human–machine comparison, analyzing PTLM be-
havior during sentence processing offers more in-
sight than diagnostic probing. Following Ettinger

(2020), we therefore assess PTLMs in a psycholin-
guistic setup.

We investigate how humans and PTLMs pro-
cess German Winograd Schemas coreference prob-
lems designed to test commonsense reasoning and
named after an example in Winograd (1972). The
Winograd Schema Challenge (WSC) (Levesque
et al., 2012) was proposed as a more demanding al-
ternative to the Turing Test (Turing, 1950).1 WSC
items involve ambiguous pronouns whose resolu-
tion requires commonsense reasoning, and they are
generally regarded as easy for humans but difficult
for machines. A classic Winograd Schema (WS)
consists of a pair of sentences differing only in a
single critical word, that flips the intended referent
of the pronoun. The classic task was to identify the
correct antecedent:

(1) Jane gave Joan candy because she was hungry.
Jane gave Joan candy because she wasn’t hun-
gry.
Who [was/wasn’t] hungry? [( ) Jane; ( ) Joan]

In parallel experiments, we compare how hu-
mans and machines differ in processing corefer-
ence. Specifically, we investigate (1) whether
the same items are perceived as difficult by both
groups, (2) which group performs better overall,
and (3) whether model-based confidence measures
(e.g., softmax probabilities) align with human self-
assessed confidence ratings or response times. To
ensure comparability, both groups perform the
same task on the same data. Since we are interested
in the linguistic knowledge encoded by pretrained
models rather than in their capacity for fine-tuning,
we deliberately refrain from additional training. In-
stead, we construct a dedicated dataset that allows

1The original Turing Test (judging whether a conversa-
tional partner is human or not) has been criticized as too easy
to pass through shallow mimicry rather than genuine under-
standing (Weizenbaum, 1966).
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direct human–machine comparison on items reflect-
ing tasks already encountered during pretraining.

2 Experiments

The key idea of our approach is to directly compare
human and machine behavior on coreference res-
olution using a cloze-style task in German based
on WSC items (see Fig. 1 for an example). The
original WSC dataset (WSC273)2 comprises 273
manually constructed WSC pairs like those in (1),
where the task is to choose between two potential
antecedents. The pairs are designed to meet three
criteria: (a) the correct referent is unambiguous for
humans; (b) resolution cannot rely solely on selec-
tional restrictions; and (c) frequency-based heuris-
tics are insufficient. Due to their difficulty and
significance for machine translation and anaphora
resolution, several larger WSC-style datasets have
since been created. Among them, WinoGrande
(Sakaguchi et al., 2021) is the most prominent, con-
taining around 44,000 sentence pairs developed and
validated via crowdsourcing. These are presented
in cloze format, with the ambiguous pronoun re-
placed by a blank to be filled in, and two candidate
antecedents provided as answer options. Reported
human accuracy on these datasets typically exceeds
90% or even 95% (Kocijan et al., 2023).

Our approach is related to Abdou et al. (2020),
who tested the robustness of humans and PTLMs
on perturbed WSC items in cloze format (e.g.,
voice or tense changes), comparing majority vote
(humans) and softmax predictions (PTLMs). While
they focused on accuracy and stability, we go fur-
ther by comparing confidence levels. To ensure
comparability between the human and machine ex-
periments we (1) avoid task priming by using fillers
(humans) and no fine-tuning (machines), and (2)
present structurally identical items to both groups.

2.1 Materials and task

We curated a set of 50 German WSC pairs satis-
fying two conditions: (i) each sentence contains
two singular noun phrases of different grammati-
cal gender and a gap to be filled with a nomina-
tive singular pronoun; (ii) both sentences differ in
one critical word that determines the correct refer-
ent. Twenty-five pairs were randomly drawn from
the lm en de subset of MT-Wino-X (Emelin and
Sennrich, 2021, here: Wino-X), a multilingual ex-

2https://www.tensorflow.org/datasets/
catalog/wsc273

tension of WinoGrande for machine translation.
The remaining 25 were translated from WSC273
using DeepL and manually revised to ensure gram-
maticality, naturalness, and a nominative singular
pronoun gap. In cases where the gender of the
two candidate referents did not differ, we adapted
the referents accordingly (see (2), based on (1);
for more details on the data adaption process see
Appendix A).

(2) Janmasc gab Annefem Süßigkeiten, weil
satt/hungrig war.

The final dataset comprises 100 Winograd items
(50 pairs): 42 with ‘sie’ (she) as the gold answer,
39 with ‘er’ (he), and 19 with ‘es’ (it). It was used
in both experiments (humans and machines).

2.2 Human behavioral experiment

Using the dataset described in 2.1, we created ten
experimental lists. Each list contained ten different
WSC items (five from Wino-X, five from translated
WSC273) and fifteen filler items, each presented
as a cloze task (see Fig. 1). For no WSC pair
both items belong to the same list. Filler items
were designed to obscure the logical structure of
the WSC-problems. As fillers we used sentences
with only one potential antecedent, including en-
tities with fixed (grammatical) gender (e.g., ‘der
Tisch’) and ambiguous gender (e.g., brand names
like ‘Nutella’, proper names like ‘Alex’ or foreign
words like ‘Laptop’).

Participants selected the fitting German pronoun
(er, sie, es) for each gap and rated their confidence
on a 1–5 scale (see Fig. 1). Reaction times were
recorded for both decisions. We tested 100 na-
tive German speakers (aged 18–55), collecting ten
responses per WSC item. The experiment was con-
ducted online using PsychoPy (Peirce, 2007) and
distributed with via Clickworker. The experiment
took 10-15 minutes, and participants received a
small monetary compensation of 2.50C.

2.3 Pretrained language models (PTLMs)
behavioral experiment

Our goal is to compare human and machine be-
havior on WSC items as directly as possible. We
therefore evaluate PTLMs on the same cloze-style
tasks used in the human experiment, without task-
specific fine-tuning. This allows us to assess their
inherent capabilities for coreference resolution
based solely on their masked language modeling
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Choose the fitting pronoun
Jan gab Anne Süßigkeiten, weil hungrig war.

er sie es

How confident are you in your decision?

weak strong

Figure 1: Human behavioral experiment: Pronoun
choice and confidence rating, presented at two consecu-
tive screens.

(MLM) pretraining.
We include three BERT-based mod-

els: bert-base-german-cased,
gbert-large (Chan et al., 2020), and
xlm-roberta-large (Conneau et al., 2020).
Each WSC item is converted into fill-mask format
using the appropriate mask token. Softmax-
normalized scores over the token vocabulary are
interpreted as the model’s confidence in a token
being the correct filler.

A key challenge is the mismatch between the
tasks: humans are forced to choose one of three
given pronouns (er, sie, es), while PTLMs predict
freely from the entire vocabulary. To address this,
we implement three configurations:

In the pron-configuration, only the three target
pronouns are considered. The highest-scoring to-
ken among er, sie, and es defines the model’s pre-
diction and its confidence. The score for the gold
answer serves as the target confidence. This setup,
however, disregards other high-scoring tokens that
may function as pronoun synonyms in context.

The topk-configurations approximate the human
task by including pronoun variants. The model’s
top-k predictions are mapped to gendered pronoun
classes (masc, fem, neut, other) using curated lists.3

The softmax scores of all top-k tokens belonging to
each class are summed; the class with the highest
total defines the model’s prediction and its confi-
dence. We test k = 10 and k = 1, using either the
summed gold-class score (top10) or the top-scoring
gold-class token (top1) as target confidence.

Each configuration yields: (i) the model’s pre-
diction, (ii) its correctness, (iii) its confidence in
its given answer, and (iv) its target confidence (i.e.,
how strongly it favors the gold answer).

3E.g., masc: der, er, dieser, jener, etc.

3 Results and Discussion

In the behavioral experiment, we find a mod-
erate inter-annotator agreement among humans
(κ = 0.562), with only 28 items answered unan-
imously. This relatively low agreement is itself an
important finding. First, it challenges the common
assumption that WSC items are straightforward for
humans and thus constitute a reliable benchmark
for evaluating machines. Second, it raises concerns
about the widespread practice of defining the hu-
man “gold” response via majority vote from as
few as three annotators per item (see Kocijan et al.,
2023, for a survey). The observed lack of high inter-
annotator agreement suggests that majority votes
based on larger samples may yield substantially
different outcomes. Notably, for 21 items all three
pronouns were chosen by at least one participant.
At the same time, high agreement (≥7 of 10 partic-
ipants selecting the same pronoun) was reached for
82 items, showing that while some items elicited
highly consistent responses, a substantial number
provoked genuinely ambiguous interpretations.

Table 1 summarizes model and human per-
formance on our referential pronoun resolu-
tion task. Among models, GBERT-large
and XLM-RoBERTa-large perform compara-
bly (accuracy ≈ 0.56), both outperforming the
smaller bert-base-german-cased (accu-
racy ≈ 0.53). Between configurations, accu-
racy remains largely stable, with top10 show-
ing the highest target confidence, closely fol-
lowed by pron, while top1 exhibits a notable
drop. XLM-RoBERTa-large achieves slightly
higher target confidence than GBERT-large and
is therefore used in subsequent analyses. Overall,
model accuracy is somewhat lower than previously
reported results on English WSC data (∼60%, Ko-
cijan et al., 2023), likely due to the increased com-
plexity of our task: models perform free-form gen-
eration over the full token vocabulary and humans
choose among three options (rather than two in
classic WSC).

Human performance is considerably higher than
model performance, but also reveals striking vari-
ability. While majority vote accuracy is relatively
high (0.87), individual accuracy is markedly lower
(mean = 0.729). This challenges the assumption
that WSC-style problems are trivial for humans and
highlight the limitations of majority-based metrics,
potentially masking individual uncertainty.

A breakdown by dataset reveals a strong qual-
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Model Accuracy Target Conf.
top1 top10 pron top1 top10 pron

XLM-RoBERTa 0.56 0.57 0.55 0.411 0.495 0.414
GBERT-large 0.56 0.56 0.56 0.397 0.481 0.410
BERT-base-german 0.53 0.52 0.53 0.342 0.412 0.350

Human
(indiv.)

0.729 –

Human
(majority)

0.870 –

Table 1: Model and human performance on Winograd
cloze tasks. Accuracy refers to the proportion of correct
predictions. Target confidence corresponds to the soft-
max score assigned to the gold token.

ity gap: performance on Winograd-style expert-
curated items (WSC273) is substantially higher
than on Wino-X items, which are based on crowd-
generated and machine translated data. Human
majority vote accuracy is perfect on WSC273 but
drops to 0.74 on Wino-X. Individual accuracy fol-
lows the same pattern (0.85 vs. 0.61). Model per-
formance mirrors this trend (pron: 0.60 vs. 0.50),
underscoring the importance of data curation.

In our analysis of human behavioral correlations,
items with lower mean accuracy elicited longer
mean response times (r = −0.194, p < .001)
and lower mean confidence ratings (r = 0.256,
p < .001). For the most extreme deciles mean
accuracy raises from 0.65 for the slowest 10% of
responses to 0.71 for the fastest, and from 0.49 for
the lowest-rated items to 0.79 for the highest-rated
ones, reinforcing the validity of these behavioral
metrics. At the participant level, response time and
confidence are themselves negatively correlated
(r = −0.142, p < .001), indicating that individu-
als tended to take longer when less certain.

Comparing human and model behavior, we first
note that all models predict the human majority
vote more accurately than the gold answer (Table 5
in the appendix vs. Table 1). This suggests that
models partially mirror human error patterns and
produce judgments that align with aggregated hu-
man preferences.

Correlations between model confidence (mea-
sured as softmax scores for both the gold and given
answer) and human behavioral measures are shown
in Table 2. Unsurprisingly, due to the higher ac-
curacy of human answers, model confidence in
the gold answer correlates more strongly with hu-
man accuracy than confidence in the given answer.
The same pattern is observed for correlations with
human confidence ratings and response times, al-

Model conf. Acc. Rating RT

top1 (gold) 0.418 0.263 -0.245
top10 (gold) 0.410 0.280 -0.247
pron (gold) 0.486 0.307 -0.310

top1 (given) 0.222 0.260 -0.214
top10 (given) 0.120 0.225 -0.127
pron (given) 0.287 0.360 -0.253

Table 2: Pearson correlations between model confidence
scores in gold and given answer and human measures
(Acc. = correlation with mean human accuracy, Rating
= correlation with mean human confidence ratings, RT
= correlation with mean human reaction times). All
p-values < 0.001.

Model config. V (indiv.) V (maj. vote)

top1 0.433 0.503
top10 0.428 0.520
pron 0.441 0.503

Table 3: Cramér’s V between model predictions and
human responses (individual and majority vote).

though the difference between gold and given an-
swer is much smaller in this case. While our orig-
inal aim was to approximate model confidence
via the given answer, gold-answer confidence ul-
timately shows the closest alignment with human
behavior. Finally, despite its weak accuracy (see Ta-
ble 1), the pron configuration shows the strongest
correlations with human data across all configu-
rations. Thus, despite lower correctness, its con-
fidence estimates align more closely with human
uncertainty and difficulty.

Complementing this, Cramér’s V analysis
(Cramér, 1946) reveals moderate alignment be-
tween model outputs and individual human re-
sponses (Table 3). Again, pron shows the high-
est similarity to individual human response pat-
terns, underscoring its ability to capture human-like
behavior despite lower correctness. Additionally,
model confidence in given answer correlates posi-
tively with human agreement (for pron: Spearman
r = 0.359, p < .001; see Fig. 2 in the appendix),
indicating that models are more confident when
humans agree.

We observe several notable human and model
error patterns. First, humans frequently select es
to refer to an entire situation rather than one of the
intended antecedents. Excluding items with wrong
majority vote es, majority vote accuracy rises to
0.97 and individual accuracy to 0.80, indicating
that many apparent ‘errors’ are due to pragmatic
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reinterpretation (see Appendix B for examples).
Second, models show markedly less variability

across paired items. While humans gave identical
answers to both items of a pair in 10 cases, models
did so over 35 times (e.g., 37 in pron). This sug-
gests a tendency to being biased and ignore subtle
contextual shifts that differentiate minimal pairs.

Third, both humans and models exhibit system-
atic biases in antecedent selection.4 Human re-
sponses show a slight preference for the first an-
tecedent (515 vs. 424), while models exhibit a
stronger bias toward the second antecedent (e.g.,
pron: 57 vs. 41), reflecting the recency bias ob-
served in probing studies (Sorodoc et al., 2020).
Model accuracy is higher when the correct referent
is the first antecedent (e.g., pron: 0.59 vs. 0.54),
while humans perform better when the correct an-
swer is in the second position (0.74 vs. 0.81). This
asymmetry is challenging to interpret, as pronoun
types are not evenly distributed across positions
and gender biases may influence performance. For
instance, models perform best on es (pron: 0.68),
followed by sie (0.57) and er (0.46), while humans
show a minor difference between er (0.72) and sie
(0.71), and a pronounced advantage for es (0.80).

4 Conclusion

We presented a novel German Winograd-style
dataset and collected fine-grained human data, in-
cluding accuracy, confidence ratings, and response
times, with 10 participants per item.5 This resource
provides a rich empirical basis for studying refer-
ential resolution in German and evaluating model
behavior. Thereby our task setup is more chal-
lenging than previous WSC formulations: humans
must choose among three pronouns, and models
face open-ended generation over the entire vocab-
ulary. Despite this, our results show clear hu-
man–machine performance gaps, alongside intrigu-
ing similarities in uncertainty and error patterns.

At the same time, our analysis reveals limita-
tions in the dataset itself: some ‘errors’ reflect
pragmatic reinterpretations rather than misunder-
standing. Moreover, pronoun distribution is un-
even across antecedent positions, suggesting room
for improvement in future dataset design. Taken
together, our findings reinforce the critical impor-
tance of high-quality, carefully constructed data

4Note that the WSC pairs are balanced such that each
antecedent position is correct equally often.

5The dataset is available from the authors upon request.

for both cognitive and computational modeling of
reference resolution.
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A Details: Adaption of German WSC
items for experiments

Half of the WSC items used in our experiments
were drawn from the Wino-X dataset; the other half
are adaptations of items from the original WSC273
set.

The lm en de subset of Wino-X is a subset of
WinoGrande containing the English pronoun ‘it’.
These were automatically translated into German,
with ‘it’ replaced by a gap. Sentence pairs in which
both versions required a pronoun of the same gram-
matical gender in German were excluded. For our
study, we randomly selected 25 sentence pairs from
this subset, ensuring only that the blank required a
nominative singular pronoun. No further manual
filtering or quality control was applied.

For the remaining 25 items, we randomly se-
lected examples from WSC273 and translated them
into German using DeepL. We then replaced the
pronoun position with a blank and manually ad-
justed the sentences to (i) ensure grammatical flu-
ency, (ii) require a nominative singular pronoun,

and (iii) introduce two potential antecedents with
different grammatical genders.

An example adapted from an original WSC pair
is shown below:

(3) a. original: The firemen arrived before the
police because they were coming from so
far away.

b. German adaption: Der
Krankenwagenmasc kam vor der
Polizeifem, weil so einen weiten
Weg hatte.
The ambulance came before the police
because had such a long way.

(4) a. original: The firemen arrived after the po-
lice because they were coming from so
far away.

b. German adaption: Der
Krankenwagenmasc kam nach der
Polizeifem, weil so einen weiten Weg
hatte.
The ambulance came before the police
because had such a long way.

The original English pair used the plural pronoun
‘they’, which was incompatible with our singular-
pronoun setup. The automatic DeepL translation
rendered the feminine singular nouns ‘fire depart-
ment’ (‘Feuerwehr’) and ‘police’ (‘Polizei’). To in-
troduce a gender contrast, we replaced ‘Feuerwehr’
with ‘Krankenwagen’ (‘ambulance’, masculine),
enabling unambiguous pronoun resolution.

All item adaptions followed a similar procedure.
Plural noun phrases were converted to singular, and
gender-specific alternatives were introduced where
necessary. Original WSC273 pairs typically in-
volved ambiguous pronouns and names matched
for gender. To ensure disambiguation via gram-
matical gender in German, we replaced personal
names with frequent German names stereotypically
associated with different genders.

B Human Majority Vote Errors

We begin by examining those 13 WSC items (out
of 100) where the human majority vote diverged
from the expected response. These instances high-
light potential flaws in the item design, calling
into question the claim that WSC-style problems
are straightforward for humans. Fig. 2 shows that
wrong majority votes occur across all agreement
levels.

Several sources of confusion were identified:
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Perspective shift: Some items allow for both pro-
nouns to result in a coherent sentence by shifting
the perspective on the critical word.

(5) “Die Frau kaufte eine Muschelfem, um sie ins
Aquariumneu zu stellen, weil schlicht aus-
sah.”
majority vote: sie expected response: es
The woman bought a shell to put into the aquar-
ium because looked plain.

Both interpretations are plausible: either the shell is
plain (sie) – and the women likes plain and simple
things – or the aquarium is perceived as looking
too plain without it (es).
Situational reference: Frequently, participants
chose es to refer not to a noun, but to the entire
situation. 50 times a participant answered es al-
though neither the first nor the second antecedent
had neuter gender.

(6) Clara beschloss, Gemüse im Ofenmasc anstatt
in der Mikrowellefem zu kochen, weil das
Gemüse saftiger schmecken ließ.
majority vote: es expected response: er
Clara decided to cook vegetables in the oven
rather than the microwave because made
them taste juicier.

Here, es refers to the preparation process rather
than a specific instrument.

This is the only example where both items in a
WSC pair diverged from the expected response.
Gender error: German speakers are often uncer-
tain about the grammatical gender of loanwords or
less familiar nouns.

(7) 3 Autos konnten in der Garage parken, aber
nur 2 im Carport, da kleiner war.
majority vote: es expected response: er
3 cars could park in the garage, but only 2 in
the carport, because was smaller.

Note that Carport is masculine, though even Wik-
tionary once mistakenly listed it as neuter.6

Complexity: Items can be complex due to too
many potential antecedents.

(8) Er konnte das Lenkrad in seinem Auto nicht
vom Sitz aus erreichen, weil zu niedrig war.
majority vote es expected response er

6https://de.wiktionary.org/wiki/
Diskussion:Carport

Item E/M Error

Die Frau kaufte eine Muschel, um sie ins
Aquarium zu stellen, weil schlicht aus-
sah.

es/sie persp.

Clara beschloss, Gemüse im Ofen anstatt
in der Mikrowelle zu kochen, weil das
Gemüse knuspriger schmecken ließ.

er/es sit.

Clara beschloss, Gemüse im Ofen anstatt
in der Mikrowelle zu kochen, weil das
Gemüse saftiger schmecken ließ.

sie/es sit.

Es war eine Herausforderung, den Kochtopf
im Spülbecken zu waschen, da flach war.

es/er ?

James ging in der Kälte mit einer Jacke
anstelle eines Mantels zum Vorstellungsge-
spräch, weil professionell aussah.

sie/es sit.

Der Autor wollte den Monolog in der
Geschichte verwenden, aber war zu kurz.

sie/er persp.

Ihre Beziehung verschlechterte sich auf dem
Land, frischte jedoch in der Stadt auf, da
für sie eine so belebende Atmosphäre war.

sie/es sit.

Ron wollte das Hühnerfleisch mit einer
Gabel anstelle eines Messers zerkleinern,
weil besser funktionieren würde.

sie/es sit.

Sie ging zum Strand und schwamm im
Wasser, weil es so ein sonniger Tag war und

heiß war.

er/es sit.

Eva stellte fest, dass die Pflanzen im
Gewächshaus durch den Frost gediehen,
während die im Garten starben, weil
kälter war.

er/es sit.

Ich fühlte mich wohler, als ich meinen
Freund im Haus küsste als im Park, weil

ein öffentlicher Ort war.

er/es sit.

Er konnte das Lenkrad in seinem Auto nicht
vom Sitz aus erreichen, weil zu niedrig
war.

er/es compl.

3 Autos konnten in der Garage parken, aber
nur 2 im Carport, da kleiner war.

er/es gender

Table 4: Items with diverging majority vote and ex-
pected response (E/M), including error classification
(sit.: situational reference, persp.: perspective shift, gen-
der: gender error, compl.: complexity, ?: unclear error
source).

He couldn’t reach the steering wheel in his car
from his seat because was too low.

The item contains not just two, but four possible
antecedents, namely he, steering wheel, car, and
seat, for two of them it is plausible to be too ‘low’
in the context (he and seat), and only three are
possible by the selectional restrictions of ‘niedrig’
(low), namely car, seat and steering wheel.

Table 4 summarizes all 13 cases. Notably, all
problematic items come from the Wino-X dataset,
not our adapted WSC273 items. This may be due
to the fact that WSC273 problems were carefully
crafted and reviewed by experts, while Wino-X
items stem from crowdsourced WinoGrande prob-
lems and may lack this level of precision.
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C Additional Tables and Graphs

Model top1 top10 pron

XLM-RoBERTa 0.640 0.650 0.640
GBERT-large 0.620 0.650 0.640
BERT-base-german-cased 0.580 0.590 0.600

Table 5: Accuracy of each model configuration in pre-
dicting the human majority vote.

Figure 2: Model confidence (pron configuration) as
a function of human agreement (maximum number of
votes for a pronoun out of 10). Items where the majority
vote is incorrect are shown in red.
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Abstract

The paper outlines an account of how the brain
might process questions and answers in linguis-
tic interaction, focusing on accessing answers
in memory and combining questions and an-
swers into propositions. To enable this, we pro-
vide an approximation of the lambda calculus
implemented in the Semantic Pointer Architec-
ture (SPA), a neural implementation of a Vec-
tor Symbolic Architecture. The account builds
a bridge between the type-based accounts of
propositions in memory (as in the treatments of
belief by Ranta, 1994 and Cooper, 2023) and
the suggestion for question answering made
by Eliasmith (2013), where question answer-
ing is described in terms of transformations of
structured representations in memory provid-
ing an answer. We will take such representa-
tions to correspond to beliefs of the agent. On
Cooper’s analysis, beliefs are considered to be
types which have a record structure closely re-
lated to the structure which Eliasmith codes in
vector representations (Larsson et al., 2023).
Thus the act of answering a question can be
seen to have a neural base in a vector trans-
formation translatable in Eliasmith’s system to
activity of spiking neurons and to correspond to
using an item in memory (a belief) to provide
an answer to the question.

1 Introduction

Understanding how semantic representations are
instantiated in biological neural networks remains
a fundamental challenge in cognitive science. The
Semantic Pointer Architecture (SPA) has been used
to build what is currently the world’s largest func-
tional brain model (Spaun; Eliasmith, 2013; Elia-
smith et al., 2012; Voelker and Eliasmith, 2023),
which includes perception, decision making, and
motor control systems integrated in a cognitive
model that is implemented in spiking neurons
and captures detailed anatomical and physiolog-
ical characteristics of the mammalian brain. The

SPA’s structured representations are a neural im-
plementation of a Vector Symbolic Architecture
(VSA; Gayler, 2003; Schlegel et al., 2022). The
basic strategy of the SPA, as we explain below, is
to combine a VSA’s algebraic structure on a vec-
tor space, with coding and decoding operations
into ensembles of neurons. In this way, one can
retain compositional analyses of natural language
in a transparent way that contrasts with LLM ap-
proaches, while retaining the robustness and the
continuity vectors provide in semantic space. In
this paper, we begin to address this challenge by fo-
cussing on the processing of questions and answers
within a VSA approach, using a VSA approxima-
tion of the lambda calculus, and how it can be
imlemented in neural network simulations.

Plate (2003, §3.4) and Eliasmith (2013, §4.4)
discuss how structured representations encoded as
vectors can be manipulated to support reasoning.
In particular, on pp. 135ff Eliasmith gives a sim-
ple suggestion of how some aspects of question
answering could work. In terms of vectors it in-
volves a convolution of a proposition expressed as
superpositions of role–filler pairs with another vec-
tor corresponding to the question in order to obtain
a vector which approximately encodes the answer.
However, as Eliasmith (p. 139 2013) himself notes,
this model “does not have a solid linguistic justifi-
cation”. Accordingly, VSA approaches to date lack
a semantically motivated representation of ques-
tion and question answering (QA). In particular,
some aspects of question and answer processing
are still missing, specifically (1) how a proposition
containing an answer to a question can be found in
memory and (2) how a question and an (elliptical)
answer can be combined into a proposition upon
hearing the answer. Here we attempt to fill this gap
by bridging between a type-based semantic theory
of questions and the computational neuroscience
VSA approach of the SPA.

The memory which is being probed for answers
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can be thought of as a collection of proposition
encodings – in some cases long term memory (e.g.,
(1a)), in others working memory, at times a combi-
nation thereof (e.g., (1b)).

(1) a. What is the capital of Togo?
b. Are you aware of the wasp on your nose?

Of course, we may not have precisely the propo-
sition we need in memory but may need to reason
from a proposition we have to the proposition we
need to answer the question.

In this paper we will first explain the formal and
conceptual backgrounds that are synthesized in this
paper (section 2), including SPA and Type Theory
with Records, the semantic framework whose en-
tities underpin our discussion here. We will then
explain the previous work on question answering
in terms of flat role–filler structures (section 3). Fi-
nally, we propose a more comprehensive account
of questions and answers using our type-based ap-
proach, where we use a SPA approximation of the
lambda calculus to handle both question answering
and semantic ellipsis resolution (section 4). Sec-
tion 5 presents a toy model implementation that
illustrates and evaluates some features of the SPA-
TTR hybrid approach to QA. We conclude in sec-
tion 6.

2 Background

In this section we describe vector symbolic ar-
chitectures that mediate between symbolic and
distributive representations, neural networks that
implement such representations, and finally type-
theoretic semantics, specifically the framework
Type Theory with Records. In the following, we
briefly discuss each of these backgrounds.

2.1 Holographic Reduced Representations
(HRR)

Holographic Reduced Representations (HRR;
Plate, 2003) are a particular implementation of
compressed representations, that is, (higher-order)
semantic representations that are obtained by “com-
pressing” (lower-level) semantic representations
(Hinton, 1990). HRR achieve this by circular con-
volution: a multiplication operation that binds high-
dimensional vectors of dimension d into a new
vector of dimension d. Thus, HRR is a true-to-
dimension instance of a Vector Symbolic Archi-
tecture (VSA; Gayler, 2003), in contrast to, for
instance, tensor products (Smolensky, 1990).

The vector algebra of HRR includes the follow-
ing operators (a, b, . . . are vectors, i.e., lists of
numbers of length d, the dimension of the vector;
in the following we usually assume normalized unit
vectors, i.e. vectors whose length is 1)1:

• +: a+b = [a0+b0,a1+b1, . . . ,ad−1+bd−1]
• −: a−b = [a0−b0,a1−b1, . . . ,ad−1−bd−1]

• ⊛: c = a⊛b : c j =
d−1
∑

k=0
akb j−k (mod d)

• inverse: a′ = [a0,ad−1,ad−2,ad−3, . . . ,a1]

Basic properties of HRR vector manipulations
(Plate, 2003): Circular convolution can be regarded
as a multiplication operator for vectors. It has many
properties in common with both scalar and matrix
multiplication. It is commutative, associative, and
bilinear. There is an identity vector and a zero
vector and each vector has an approximate inverse
(‘involution’). Involution distributes over addition
and convolution, and is its own inverse. It is note-
worthy that the true-to-dimension HRR vector ma-
nipualtions are lossy: in particular the inverse a′
of a vector a is not the exact inverse but approxi-
mates it. This “lossiness” introduces the need for
clean-up memories when using it in cognitive VSA
architectures like the SPA (see below).

2.2 Neural Engineering Framework (NEF)
The Neural Engineering Framework (NEF; Elia-
smith and Anderson, 2003) implements vectorial
representations and manipulations in neural simu-
lations.2 The basic idea is that high-dimensional
vectors figure as the currents that are processed
(encoded and decoded) by ensembles of neurons in
real time.

2.3 Semantic Pointer Architecture (SPA)
Semantic pointers (Eliasmith, 2013) are structured
representations (they can be “dereferenced” to ac-
cess the more extensive information folded into
them) in a (high-dimensional) vector space that
function as symbols in cognitive processing and are
processed as activity patterns in neural networks.
In implementational terms, a semantic pointer can
be conceived as a “vector with a name” (it can
be addressed); the collection of semantic pointers
in this sense make up a “dictionary”. In the Se-
mantic Pointer Architecture (SPA; Eliasmith, 2013)

1The Euclidian length, ∥ · ∥, of a vector is the square
root of the sum of the squares of its dimension: ∥a∥ =√

a2
0 + . . . +a2

d−1.
2See https://www.nengo.ai/.
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of cognitive functions, questions and answers are
modeled as semantic pointers (see section 3). SPA
uses HRR as default operation for binding (denoted
by “⊛”) and unbinding (i.e., binding with the in-
verse vector, below notated with a prime) vectors
(see section 2.1), though other algebras can be used
in the SPA as well.

Since HRR is lossy (see above), processing with
circular convolution “degrade[s] gracefully in the
presence of noise” (Plate, 2003, p. 141). To dis-
tinguish random noise from “allowable represen-
tations”, the high-dimensional vectors that are ob-
tained from vector manipulations (carried out by
ensembles of neurons in NEF, see section 2.2) are
compared to “valid representations” from the vo-
cabularies of semantic pointers (Eliasmith, 2013,
§4.6). This validation is derived from inclusion in
clean-up memory: the noisy processed vector is
validated against the semantic pointers (now con-
ceived as vectors) in the vocabulary of semantic
pointers. Technically this is spelled out as the dot
product (the standard measure of vector similarity)
of the processed vector and the named vectors in
the semantic pointer vocabulary.

Clean-up memories are a natural component of
lossy VSAs. While the need for long-term clean-
up memories is uncontroversial, it is only used
sparingly in biological systems because its mainte-
nance is neurologically costly (Stewart et al., 2011).
A clean-up memory call replaces a noisy process-
ing vector with its most similar semantic pointer
vector from the semantic pointer vocabulary. We
indicate the need (or at least the benefit) and the
use of clean-up memory as Clean(·) (or CleanD(·)
where D indicates the domain of the cleanup func-
tion, i.e. the vocabulary which the cleanup function
compares with) in the following.

Although being noisy, HRRs involve, among
other things, an associative and commutative vec-
tor combinatory operation, which is not necessarily
the case with other algebraic systems (e.g., Vector-
Derived Transformation Binding (Gosmann and
Eliasmith, 2019), which can nevertheless be neu-
rally efficient). Futhermore, the SPA (via NEF)
relates symbolic, distributional and neural levels.
For this reasons, we formulate our approach in
terms of the SPA and its default HRR algebra.

2.4 Type Theory with Records (TTR)
We give a brief sketch of those aspects of TTR
which we will use in this paper. For more detailed
accounts see Cooper (2023).

s : T represents a judgement that s is of type
T . Types may be either basic or complex (in the
sense that they are structured objects which have
types or other objects introduced in the theory as
components). One basic type that we will use is
Ind, the type of individuals; another is Real, the
type of real numbers.

Among the complex types are ptypes which are
constructed from a predicate and arguments of ap-
propriate types as specified for the predicate. Ex-
amples are ‘man(a)’, ‘see(a,b)’ where a,b : Ind.
The objects or witnesses of ptypes can be thought
of as situations, states or events in the world which
instantiate the type. Thus s : man(a) can be glossed
as “s is a situation which shows (or proves) that a
is a man”.

Another kind of complex type are record types.
In TTR records are modelled as a labelled set con-
sisting of a finite set of fields. Each field is an
ordered pair, ⟨ℓ,o⟩, where ℓ is a label (drawn from
a countably infinite stock of labels) and o is an ob-
ject which is a witness of some type. No two fields
of a record can contain the same label. Importantly,
o can itself be a record.

A record type is like a record except that the
fields are of the form ⟨ℓ,T ⟩ where ℓ is a label as
before and T is a type. The basic intuition is that
a record, r is a witness for a record type, T , just
in case for each field, ⟨ℓi,Ti⟩, in T there is a field,
⟨ℓi,oi⟩, in r where oi : Ti. (Note that this allows
for the record to have additional fields with labels
not included in the fields of the record type.) The
types within fields in record types may depend on
objects which can be found in the record which is
being tested as a witness for the record type. We
use a graphical display to represent both records
and record types where each line represents a field.
Example (2) represents the type of records which
can be used to model situations where a man runs.

(2)




ref : Ind
cman : man(ref)
crun : run(ref)




A record of this type would be of the form

(3)




ref = a
cman = s
crun = e
. . .




where a : Ind, s : man(a) and e : run(a).
Detailed accounts of questions in TTR can be

found in (Ginzburg, 2012; Ginzburg et al., 2014,
2022). These are based on viewing questions as
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akin to propositional abstracts. This approach is
the basis for the most detailed discussion of the
response space of questions (Ginzburg et al., 2022)
that we are aware of. Another reason for using TTR
is that all complex TTR objects are constructed
from labelled sets, which correspond to the rep-
resentation of structured objects which Eliasmith
achieves using superposition and circular convolu-
tion (Larsson et al., 2023).

2.5 Mapping TTR onto SPA
First steps towards a hybrid of formal and neural
semantics by mapping TTR to the SPA have been
taken by Larsson et al. (2023). The basic idea
was to relate type judgments (not just types) to
neural events. By this means, basic types, percep-
tual and cache-based judgements, singleton types,
record types, meet types and merging of record
types, ptypes, and subtyping have been accounted
for. However, this previous work had little to say
about functions, which we address in the following
by example of Wh-questions.

3 Previous work on question answering in
HRR and SPA

Modelling questions in the NEF-SPA means con-
structing a (biocognitive inspired) network that
models a question-related task. Eliasmith (2013)
illustrates such a network with question answer-
ing (QA). The idea is that the visual cortex pro-
vides statements and questions, both supplied as
semantic pointers. Statement pointers (e.g., “red⊛
circle”) represent “the world” and are sent to a
memory population of neurons (working memory).
Question pointers pose questions to memory con-
tent (e.g., “red′” ≈ “What is red?”). Basal ganglia
monitors input and determines what kind of routing
is appropriate to answer the question. The answer
is sent to the clean-up memory and the memory
item with highest similarity is sent to motor cor-
tex (i.e., the answer is given). For instance, the
simple statement “dog52 chases cat43” could be
represented as a flat role–filler structure as follows:

(4) agent ⊛ dog52 + frame ⊛ chase + theme ⊛
cat43

A fixed set of semantic role labels provides infor-
mation about where to find the desired information
in semantic pointers and can be used for modeling
questions. For example, Who-questions address
entities (persons, or animate beings in general) as-
sociated with a certain role in role–filler represen-

tations, where addressing is captured in terms of
unbinding.

Accordingly, asking the given statement (4)
“Who does dog52 chase?” amounts to unbinding
(4) with theme′ and thereby retrieving an answer:

(5) (4) ⊛ theme′ ≈ cat43

There are obvious ways to make this QA network
more complex. Firstly, more complex models need
to employ more semantic roles (e.g., location, time,
colour, shape, manner, . . . ), in particular to deal
with embedded clauses.

Secondly, a long-term memory along with the
working memory will be used. Routing through
basal ganglia will then decide when to look into
working or long-term memory to find an answer to
a given question.

QA with flat role–filler structures in the SPA
according to the pattern outlined above offers two
insights:

1. The structures of questions and answers have
to match closely: the statement pointer that is
enquired by a question pointer needs to be tai-
lored to the question asked. In this sense, the
answering statement has to be given/known in
advance.

2. QA is dynamic: regardless of the knowledge
source of the answer (e.g., actual perception
or long term memory retrieval), both the ques-
tion and the answer are rehearsed in working
memory for QA.

The first issue seems to be a limiting conse-
quence of using the inverses of “label pointers”
within flat role–filler structures as models for ques-
tions. This assumption is not shared in linguistic
semantics, which instead uses functions. Linguistic
semantics in turn ignores the dynamicity of knowl-
edge source retrieval and QA rehearsal in working
memory. Here we aim to reconcile this gap be-
tween neuro-computational and formal semantics.

4 Dealing with questions using Lambda
calculus in SPA-TTR

The role-filler approach to simple question answer-
ing outlined in section 3 assumes that you have
already found the proposition which provides the
answer and tells you where to look to find the an-
swer within the proposition. A natural language
question has to in addition give you material to find
the proposition in memory. Also, since answers
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are often semantically underspecified (and syntac-
tically elliptical) and thus need to be understood
in the context of a specific question, it must be
possible to combine questions and (underspecified)
answers into full propositions.

An account of question and answer processing
thus needs to address the following:

• How are questions and answers combined to
propositional types (ptypes)?

• How can answers to a question be found in
memory?

We address these questions in sections 4.1 and
4.5, respectively. Along the way, we also cover
typechecking of answer candidates in section 4.2,
double abstraction (“Who chases who?”) in sec-
tion 4.3, and as a preparation for section 4.5 we
also adapt the role-filler approach to extracting an
answer from a question and a ptype, in section 4.4.

We will represent questions as functions. The
body of the function tells you what would be an
appropriate proposition to find in memory. The
abstraction in the function tells you where to look
in that proposition.

4.1 Combining question and answer into a
ptype

We will start by showing how a question and a
semantically underspecified (elliptical) answer can
be combined into a TTR ptype. For simplicity, we
will assume that referents have been identified, so
that we write dog52 (a specific dog) instead of “the
dog” or “that dog”. Suppose we have the following
exchange:

(6) Q: “Who does dog52 chase?” A:“cat43”

In TTR, this would be handled by applying a ques-
tion q to an answer a to arrive at a ptype p:

(7) a. q = λv : Ind.chase(dog52,v)
b. a = cat43

c. p = q(a) = chase(dog52,cat43)

To convert this into SPA-TTR, we use the
fact that in TTR, λv : Ind.chase(dog52,v) is the
labelled set

(8)





⟨lambda,Ind⟩,

⟨body ,




⟨pred,chase⟩
⟨arg1,dog52⟩
⟨arg2,‘body.arg2’⟩



⟩





In SPA-TTR, we modify this slightly. Firstly, we
let the value of the abstracted field be I, the iden-
tity vector. Secondly, we add a field lambdapath
containing a path in the question body leading to
the abstracted field.

(9) Q =




lambdapath⊛arg2+
lambdatype⊛ Ind+

body⊛




pred⊛ chase+
arg1⊛dog52+
arg2⊛ I







with I the identity vector I = [1,0,0, . . .], such that
for any vector x, I⊛x = x. This is a variant of de
Bruijn indexing (de Bruijn, 1972), coding lambda
terms without using variables but using paths to
mark positions instead. (For a different variant
using paths see Cooper, 2023.)

For an answer like the one in (10), we want to
get the ptype in (11).

(10) A = cat43

(11) P =




pred⊛ chase+
arg1⊛dog52+
arg2⊛ cat43




In SPA-TTR, Q and A are inputs to a network for
lambda function application that combines them
into a proposition by realizing the SPA function
below:3

(12) f (Q,A) = Q⊛body′−Path+Path⊛A
where Path = Q⊛ lambdapath′

For our example above, this gets us

(13) P≈ f (Q,A) = Q⊛body′−arg2+arg2⊛
A

This function outputs the body of the question
with the lambda abstracted variable replaced by the
argument.

For the specific Q = Q and A = A given above,
Path = Q ⊛ lambdapath′ evaluates (with some
noise) to arg2, yielding

(14) P =




pred⊛ chase+
arg1⊛dog52+
arg2⊛ I


 − arg2 + arg2⊛cat43≈




pred⊛ chase+
arg1⊛dog52+
arg2⊛ cat43




as desired. To reduce noise, we can add a Clean()
operation over the domain of possible paths:

(15) Path = CleanPaths(Q ⊛ lambdapath′)
where Paths = {arg1,arg2,pred}

3We would like to thank Chris Eliasmith for help with this
formulation.
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4.2 Typechecking

Above, we have been ignoring the typechecking
specified in (7) . One strategy for including it is to
prefix the function f in (12) with a term that returns
the identity vector I if typechecking is successful
and noise otherwise. This would mean that f re-
turns noise if typechecking fails, but if it succeeds
the result will be identical to using the definition in
(12). To achieve this, we can use the fact that the
result of binding a vector to its own (approximate)
inverse is similar to the identity vector:

(16) A′⊛A≈ I

The idea is then to use this to compare the
type of the answer to the type specified by Q⊛
lambdatype′. To get the type of the answer, we
assume there is a vector FT which binds objects to
their types, so that that FT⊛A′ for some object A
returns the type of A (assuming for now that each
object is of exactly one type in FT):

(17) FT = . . .+ cat45 ⊛ Ind+ . . .

The typechecking needed for applying a lambda
function Q to an argument A can now be handled
by binding with

(18) (FT⊛A′)⊛ (Q⊛ lambdatype′)′

which for (12) gets us

(19) f (Q,A) =
((FT⊛A′)⊛ (Q⊛ lambdatype′)′)⊛
(Q⊛body′−Path+Path⊛A)

For Q and A as in (9) and (10), respectivly, we
have that FT⊛cat′45≈ Ind and Q⊛ lambdatype′≈
Ind, so that (18) evaluates to

(20) Ind⊛ Ind′ ≈ I

Since operations such as (18) and (19) introduce
a lot of noise, it might be necessary to support them
with clean-up steps. For instance, in a simple im-
plementation (see section 5) the similarity of (20)
drops to 0.39. If the two unbinding sub-steps in-
volved in (18) are cleaned-up in a memory of basic
types first, it reaches 1. In both cases, however, the
type Ind is the most similar base type for the un-
bound types of question and answer. If we assume
that abstracted arguments are of basic types4 and
take BType to be the SPA-TTR implementation of
TTR basic types, we thus replace (18) with (21).

4This assumption is not generally true, e.g. for "why"-
questions. We leave such cases for future work.

(21) CleanBType(FT⊛A′)⊛
CleanBType(Q⊛ lambdatype′)′

This provides a general method for doing type-
checking for SPA-TTR lambda functions. For
brevity, we will exclude typechecking below.

4.3 Double abstraction
What about questions with double abstraction,
such as “Who chased who?”? In TTR, this
is done as a double lambda term λv1,v2 :
⟨Ind, Ind⟩.chase(v1,v2). We can construct an fsim2
(along the lines of the definition of f above) to
work directly on that:

(22) Q2 =




lambdapath1⊛arg1+
lambdatype1⊛ Ind+
lambdapath2⊛arg2+
lambdatype2⊛ Ind+

body⊛




pred⊛ chase+
arg1⊛ I+
arg2⊛ I







(23) fsim2(Q,A1,A2) = Q ⊛ body′ − Path1 +
Path1 ⊛A1−Path2 +Path2 ⊛A2

where Path1 = Q⊛ lambdapath1′,
Path2 = Q⊛ lambdapath2′

As a side note, it is also possible to abstract
over the same variable more than once, as in “Who
chases herself?”, in TTR λv : Ind.chase(v,v), as
shown in (24).

(24) Q3 =




lambdapath⊛ (arg1+arg2)+

body⊛




pred⊛ chase+
arg1⊛1+
arg2⊛1







Using our original function f in (12) to apply this
question to a single argument yields an instantiated
ptype as desired:

(25) f (Q3,cat45) =



pred⊛ chase+
arg1⊛1+
arg2⊛1


−(arg1 + arg2) +

(arg1+arg2)⊛ cat45 =

pred ⊛ chase + arg1 ⊛ cat45 + arg2 ⊛
cat45 =



pred⊛ chase+
arg1⊛ cat45+
arg2⊛ cat45




In a general account of functions and function ap-
plication, one would also like to include recursive
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function application. In SPA-TTR, a recursively
applicable function would correspond to a network
that can be applied twice, once for each argument.
We leave the specification of recursive function
application for future work.

4.4 Extracting answer from question and
ptype

If we have a ptype P that we know contains the an-
swer to a question Q, we can use a slightly modified
version of Eliasmith’s method outlined in section 3.

First, we note that the representation in example
(4) corresponds closely to our current represen-
tation of ptypes, except for the names of the la-
bels (pred instead of frame, arg1 instead of agent,
arg2 instead of theme).

However, representing the whole question as
theme does not help us in combining questions and
answers into ptypes, so instead we use the more
elaborate question seen above. Here, lambdapath
in Q is bound to arg1, and by unbinding it we end
up doing the exact same operation as suggested by
Eliasmith.

(26) fqp(Q,P) = P⊛ (Q⊛ lambdapath′)′

Using the Q and A from (9) and (10), this gets us

(27) A = fqp(Q,P) = P ⊛ (Q ⊛
lambdapath′)′ = P⊛ (arg2)′ = cat43

4.5 Extracting the answer from the question
and memory

In the general case of question answering, however,
we cannot assume we have found the ptype. The
real challenge is then to find the answer to a ques-
tion in LTM, and if you only represent the question
as theme′, this will not be possible. It needs to also
include chase and dog. Since we also have these
in our representation of the question, we can find
relevant ptypes in LTM.

We should instead only assume there is a record
with many different ptypes, one (or several) of
which may contain an answer. Previous work
(Cooper et al., 2015) developed a notion of a judge-
ment history consisting of a set of Austinian propo-
sitions encoding judgements that situations s are of
types T , s : T . Inspired by this but simplifying mat-
ters somewhat, we will here use M as a name for a
labelled set of ptypes indexed by natural numbers:

(28) M = 1⊛P1+2⊛P2+ . . .+n⊛Pn
where Pi is a SPA ptype. Given this, we can outline
a procedure for finding the answer A in M to a
question Q:

1. B = Q⊛body′

2. Find a P which is similar to B; since A+B is
similar to A and to B and to any bundle A+C,
then if for (the SPA representation of) some
natural number n we have M⊛n′ ≈ B we can
conclude that P≈M⊛n′ is a subtype of B

3. Let A be the value of Q⊛ lambdapath′ in P,
i.e. A = P⊛ (Q⊛ lambdapath′)′ (unless it’s
noise)

As an example, assume Q = Q as in (10) above
and 434⊛P is in M. Then

(29) a. B =




pred⊛ chase+
arg1⊛dog52+
arg2⊛ I




b. F = Q⊛ lambdapath′ ≈ arg2

Now, since there is an n = 423 for which M⊛n′ ≈
B, we conclude that

(30) P≈M⊛423′

A = P⊛arg2′ ≈ cat

However, the above is not quite sufficient since
it does not specify a SPA mechanism for searching
M. To address this, we can use the fact that SPA
does not distinguish TTR labels from values, so to
find the n we are looking for, we can use B as an
approximation of the ptype P we are looking for;

(31) n = M⊛B′

or more robustly

(32) n = CleanNat(M⊛B′)

so that we can define a lookup function that returns
the ptype in M which is the most similar to some
other ptype L:

(33) SearchM(L) = M⊛ (CleanNat(M⊛L′))′

so that we can get an answer A:

(34) A = SearchM(B)⊛arg2′

Based on this, we can define a function fqm(Q)
returning an answer to a question Q from M:

(35) fqm(Q) ≈ SearchM(Q ⊛ body′) ⊛ (Q ⊛
lambdapath′)′

This solution is sensitive to noise, and apply-
ing cleanup over a limited domain will help. For-
tunately, our question representation provides a
type constraint on the possible answers (the lamb-
datype field) that we can use to specify the cleanup
domain:
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(36) fqm(Q)≈CleanQ⊛lambdatype′(SearchM(Q⊛
body′)⊛ (Q⊛ lambdapath′)′)

Exploring whether this retrieval mechanism
works similarly to human associative memory is a
topic for future research.

5 A simple proof-of-concept model

To see if λ -abstracted question answering is fea-
sible with neurons, we implemented the key steps
from Section 4.5 in Nengo (https://www.neng
o.ai/).5 The “knowledge base” M from which
an answer is to be found consists of six role-filler
semantic pointers (vectors of 128 dimensions) that
correspond to the statements P1 = dog chases cat,
P2 = dog chases cow, P3 = dog sees mouse, P4 =
mouse sees cow, P5 = cat likes mouse, P6 = dog
likes cow. The inputs to the network are three ques-
tions, posed one after the other: 1. Who does the
cat like? 2. Who does the dog chase? 3. Who likes
the cow? An answer for 1. can be found in P5 (i.e.,
mouse), an answer for 3. can be found in P6 (i.e.,
dog). 2., however, is ambiguous: possible answers
are provided by P1 and P2 (i.e., cat or cow).

The networks unbinds the body and the lambda-
path from the question, substracts the lambdapath,
and involutes both to retrieve the fragment answer
(i.e., compares the resulting vector to the semantic
pointers in clean-up memory). The result is shown
in the bottom row in fig. 1 (“Answer without Mem-
ory Clean-up”) and shows that the model does not
perform well: the semantic pointer corresponding
to mouse is always returned as the answer, which
is wrong in all but one case. Apparently, the convo-
lution operations introduce too much noise.

To compensate for the noise, we introduced a
memory clean-up step over the ptypes P1-P6 af-
ter unbinding the questions’ bodies. The vector
that is fed into an autoassociative clean-up memory
over time is most similar to the propositions shown
in the top row of fig. 1 (“Memory Input”). The
clean-up step reinforces this input (see “Memory
Output”). As a consequence, the network now re-
turns vectors that are indeed most similar to the
expected items (i.e., mouse, cow or cat, and dog,
see “Answer with Memory Clean-up”). Note that
the last answer is in close competition with the
wrong fragment mouse, so a final cleanup may be
required.

5The model can be obtained from https://github.com
/aluecking/QA-SPA-TTR.
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Figure 1: Retrieving a fragment answer according to sec-
tion 4.5 from a neural simulation. The neural simulation is
dynamic because it runs in real time. The elapsed time in sec-
onds is shown on the x-axis. The input to the network changes
over time: from 0s to 0.25s the input is a semantic pointer
that corresponds to the question Who does the cat like?, from
0.25s to 0.5s to the question Who does the dog chase?, and
from 0.5s to 0.72s to Who likes the cow? (no input in the
remaining quarter of a second).

6 Conclusions and Future Work

In this paper we have sketched an approach to ab-
straction, questions, and answering in SPA which
allows us to maintain compositional semantic
analyses within a biologically plausible cognitive
framework. This is of course just the first step for
such an account which one should enhance with
networks assessing whether a proposition resolves
a question or constitutes a partial or indirect an-
swer.
Work in VSAs has not to date addressed quantifica-
tion, but we take this as a first step to showing that
this can be done. We hypothesize that the non-
Generalized Quantifier TTR-based approach to
quantification developed in (Lücking and Ginzburg,
2022) affords a feasible path to this aim. Another
important step involves providing an account of
working memory, in order to integrate the cur-
rent insights of dynamic dialogical semantic frame-
works such as KoS (Ginzburg, Eliasmith, and Lück-
ing, 2024), MSDRT (Kamp, 2024), and SDRT
(Asher and Lascarides, 2003).
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Abstract

Large Language Models (LLMs) perform re-
markably well in Natural Language Inference
(NLI). However, NLI involving numerical and
logical expressions remains challenging. Com-
paratives are a key linguistic phenomenon re-
lated to such inference, but the robustness of
LLMs in handling them, especially in lan-
guages that are not dominant in the models’
training data, such as Japanese, has not been
sufficiently explored. To address this gap, we
construct a Japanese NLI dataset that focuses
on comparatives and evaluate various LLMs
in zero-shot and few-shot settings. Our re-
sults show that the performance of the mod-
els is sensitive to the prompt formats in the
zero-shot setting and influenced by the gold
labels in the few-shot examples. The LLMs
also struggle to handle linguistic phenomena
unique to Japanese. Furthermore, we observe
that prompts containing logical semantic repre-
sentations help the models predict the correct
labels for inference problems that they struggle
to solve even with few-shot examples.

1 Introduction

In recent years, Large Language Models (LLMs)
have demonstrated high performance across a wide
range of tasks, including Natural Language Infer-
ence (NLI; Bowman et al. 2015). However, in-
ference with numerical and logical expressions re-
mains challenging for LLMs (She et al. 2023, Liu
et al. 2023a, Parmar et al. 2024). In particular, NLI
involving comparatives is important, as it requires
a proper understanding of such expressions. In-
deed, there are English benchmarks focusing on
comparatives for pre-trained models and inference
systems (Haruta et al. 2022, Liu et al. 2023b).

However, it has not been thoroughly investigated
how robust LLMs are in handling various types of
inference involving comparatives, regardless of the
prompt formats or the few-shot example selection.

Moreover, there is growing attention to analyzing
the robustness of inference in languages that are
not dominant in the pre-training data.

Given these motivations, we construct an NLI
dataset focusing on Japanese comparatives by cre-
ating templates from an existing Japanese NLI
dataset and filling in them with words.1 Using
this dataset, we evaluate five LLMs, including both
open and commercial models. We analyze how
robustly LLMs can perform inference on compar-
atives regardless of the way prompts are given in
zero-shot and few-shot settings. We also compare
LLMs with ccg-jcomp2 (Mikami et al. 2025), a log-
ical inference system for Japanese comparatives.

The experimental results suggest that the prompt
formats impact the model behavior in the zero-shot
settings, and that the few-shot performance is influ-
enced by the gold labels in the few-shot examples.
In addition, prompts with semantic representations
from ccg-jcomp can improve model accuracy on
problems that remain difficult even with standard
few-shot settings.

2 Related Work

In this section, we describe existing datasets that
contain inference problems involving comparatives.
JSeM (Kawazoe et al. 2017) is a Japanese NLI
dataset, constructed from the English NLI dataset
FraCaS (Cooper et al. 1996) with some additional
problems that cover inference unique to Japanese.
The problems are divided into sections based on se-
mantic phenomena, including comparatives, which
allows us to evaluate the strengths and weaknesses
of models with respect to individual phenomena.
However, since JSeM is limited in vocabulary and
small in scale, we create templates from the dataset

1Our dataset is available on https://github.com/
ynklab/comparativeNLI_dataset

2https://github.com/ynklab/ccg-jcomp
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ID Category Template Example Label

jsem-570

P
X-wa Y-yori A. Taro-wa Hanako-yori omoi.

unk

X-TOP Y-than A Taro-TOP Hanako-than heavy
basic (X is more A than Y) (Taro is heavier than Hanako)
comparative

H
X-wa A. Taro-wa omoi.
X-TOP A Taro-TOP heavy
(X is A) (Taro is heavy)

jsem-577 equative

P
X-wa Y-to onaji-kurai-no NA-da. Taro-wa Jiro-to onaji-kurai-no omosa-da.

unk

X-TOP Y-COM as NA-COP Taro-TOP Jiro-COM as weight-COP
(X is as A as Y) (Taro is as heavy as Jiro)

H
X-wa Y-yori A. Taro-wa Jiro-yori omoi.
X-TOP Y-than A Taro-TOP Jiro-than heavy
(X is more A than Y) (Taro is heavier than Jiro)

jsem-620 presupposition

P
X-wa Y izyoo-ni A. Taro-wa Hanako izyoo-ni omoi.

yes

X-TOP Y than A Taro-TOP Hanako than heavy
(X is more A than Y) (Taro is heavier than Hanako)

H
Y-wa A. Hanako-wa omoi.
Y-TOP A Hanako-TOP heavy
(Y is A) (Hanako is heavy)

Table 1: Examples of categories and their corresponding templates. P and H denote the premise and the hypothesis,
respectively. X (Y), A, and NA are a proper noun, an adjective, and the noun form of an adjective, respectively. ID
indicates the ID in the original JSeM dataset. unk stands for the unknown label.

and generate new problems by filling in the tem-
plates with various words.

CAD (Haruta et al. 2022) is a dataset on English
adjectives, comparatives, adverbs, and quantifiers.
The authors chose inference examples from linguis-
tic papers and constructed new problems by apply-
ing transformations such as adding negation and
replacing words. Adjective Scale Probe (Liu et al.
2023b) is a dataset designed to investigate how well
language models understand degree semantics. It is
semi-automatically generated based on templates.
While these studies evaluate the extent to which
pre-trained language models perform inference in-
volving comparatives in fine-tuned settings, they do
not specifically focus on the robustness of the infer-
ence in in-context learning settings. To address this
gap, we provide a scalable NLI dataset involving
Japanese comparatives based on templates created
from existing hand-crafted NLI problems.

3 Dataset Creation

To analyze the extent to which LLMs robustly per-
form inference involving Japanese comparatives,
we create an NLI dataset based on the comparatives
section of JSeM. Our dataset construction process
is composed of (i) template creation based on JSeM
and (ii) problem creation using the templates.

3.1 Template Creation

First, for each problem in JSeM, we manually con-
struct a template containing blanks for adjectives,
verbs, numerals, and nouns. Each template has at

least one premise and one hypothesis. The gold
labels are yes, no, and unknown, corresponding to
entailment, contradiction, and neutral, respectively.

The templates are classified into ten categories
based on JSeM: basic comparative, equative,
clausal comparative, numerical, ambiguous, tempo-
ral, quantifier, absolute adjective, presupposition,
and superlative. One problem may have multiple
categories.

Table 1 shows some examples of categories and
their corresponding templates. In what follows, we
will refer to a template with its original ID in JSeM,
which is shown in the leftmost column. First, jsem-
570 involves a basic comparative expression yori.
Second, jsem-577 targets the equative construction,
with its premise meaning that the degree of prop-
erty A is almost the same for X and Y. Since the
premise does not specify which degree is greater,
its gold label is unknown. Third, jsem-620 is one
of the problems focusing on the fact that some
Japanese comparative expressions trigger a presup-
position (Kubota 2012, Hayashishita 2007). Here,
the phrase “izyoo-ni” makes the premise presup-
pose that Y is A, as a result of which the premise
entails the hypothesis.

3.2 Problem Creation

We create new problems by filling in the templates
with words corresponding to each part of speech,
in order to see whether the models can consistently
capture the inference patterns independently of spe-
cific content words. The words to be inserted into
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the templates are carefully chosen by the authors,
who are native speakers of Japanese, for their nat-
uralness. In what follows, we detail the concrete
procedure for word insertion.

As for a placeholder for an adjective, we insert
gradable adjectives in a way that the gold label
remains unchanged. More specifically, we avoid
using a certain class of adjectives called absolute
adjectives (Kennedy and McNally 2005), which
allow inference from “X is more A than Y” to “Y
is A” (e.g., “wet”). Since this property may lead
to undesirable changes to the gold label in some
templates, we make sure that the inserted word is
not an absolute adjective.

In addition, we adopt different strategies depend-
ing on whether the placeholder involves the pred-
icative or attributive use. With the predicative use,
we insert only adjectives that can take a person
as their subject. When the placeholder for an ad-
jective involves the attributive use, in which case
the whole template also contains placeholders for
a noun and a verb, we construct and apply a list of
plausible adjective-noun-verb combinations. More
concretely, we first input the template into GPT-
4o to generate some adjective-noun-verb combi-
nations. Then, we manually select natural ones
from them. To illustrate, consider the template
“Taro [verb] a more [adjective] [noun] than Jiro”
(for expository purposes, we write the template in
English). If the LLM produces the combinations ex-
pensive-car-bought and expensive-backpack-drank,
we choose the first output but not the second, since
only the first combination results in a semantically-
natural sentence when inserted.

Finally, for templates involving numerals, we
set a natural range of numerical values compatible
with the lexical item for each problem and select the
numbers to fill in the templates within that range.
For instance, in the template “Taro ate [number]
apples,” we choose numbers less than 5.

With these strategies, we generate approximately
60 problems from each template. As a result, the
total number of problems is 4304, and the distri-
bution of the gold labels is (yes/no/unknown) =
(2524/466/1314).

4 Evaluation of Zero-shot NLI

First, we analyze how consistent the performance
of the LLMs is regardless of the prompts in the
zero-shot prompt setting, compared with a logical
inference system.

Figure 1: Accuracies on our dataset in the zero-shot set-
ting (average and standard deviation of nine prompts).
“Majority” indicates the accuracy achieved by answer-
ing yes, the most frequent label in the dataset, for all
problems.

4.1 Experimental Setting
Models We evaluate five LLMs: GPT-4o3,
Llama-3.1-8B/70B4 (Llama8B/70B), instruction-
tuned Llama-3.1-8B/70B (Grattafiori et al. 2024),
Llama-3.1-Swallow-8B/70B5 (Swallow8B/70B),
and instruction-tuned Llama-3.1-Swallow-
8B/70B (Fujii et al. 2024). Llama 8B/70B are
open-source and multilingual models but do not
officially support Japanese. Swallow is a model
obtained by performing continual pre-training on
Llama with a large Japanese corpus to enhance
Japanese language capabilities.

Prompts We conduct experiments using nine dif-
ferent prompts.6 We create the prompts based on
the templates in the FLAN collection (Longpre
et al. 2023), which compiles instruction tuning data
and methods. The templates contain multiple eval-
uation instructions, so we use them to examine the
models’ robustness to prompts. The details of the
prompts are shown in Appendix A.

Logical Inference System We also evaluate ccg-
jcomp (Mikami et al. 2025), a logical inference
system for Japanese comparatives. This system
derives semantic representations of the input sen-
tences and performs theorem proving to judge the
entailment relation.

4.2 Results and Discussion
Figure 1 presents the accuracy of each system. As
shown, GPT-4o demonstrated the best performance

3https://openai.com/index/gpt-4o-system-card/
4https://huggingface.co/collections/

meta-llama/llama-31-669fc079a0c406a149a5738f
5https://huggingface.co/

collections/tokyotech-llm/
llama-31-swallow-66fd4f7da32705cadd1d5bc6

6The experiments were conducted in May and June 2025.
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of all the LLMs. Among the open-source mod-
els, Swallow, which specifically targets Japanese,
outperformed Llama. In addition, larger models
performed better, and instruction-tuned models out-
performed their non-tuned counterparts of the same
size. All models had variations depending on the
prompt, and these variations were particularly large
for Llama8B-inst and Swallow70B.

LLMs tended to produce incorrect answers even
for relatively simple problems. For instance, they
often incorrectly answered yes to the problems gen-
erated from jsem-570 in Table 1, possibly due to
the lexical overlap between the premise and the hy-
pothesis. Previous studies have suggested that there
are lexical overlap heuristics or order-preserving
subset heuristics in pre-trained models performing
NLI tasks (McCoy et al. 2019, Yanaka and Mi-
neshima 2021). The experimental result indicates
that such heuristics may also be present in LLMs.

We also highlight that the LLMs struggled to
handle linguistic phenomena that exist in Japanese
but not in English. GPT-4o failed to correctly an-
swer the problems related to presupposition (e.g.,
jsem-620), which is unique to Japanese compara-
tives. About Llama and Swallow, they tended to
incorrectly answer yes to problems such as (1), in
which (1a) is the premise and (1b) is the hypothesis.

(1) a. Taro-wa
Taro-TOP

Jiro
Jiro

ka
or

Saburo-yori
Saburo-than

omoi.
heavy

“Taro is heavier than Jiro or Saburo.”
b. Taro-wa

Taro-TOP
Jiro-yori
Jiro-than

omoi.
heavy

“Taro is heavier than Jiro.”

Here, the gold label is unknown because the dis-
junction in (1a) cannot have narrow scope below
than. In contrast, its English counterpart does al-
low such a reading (i.e., Taro is heavier than both
Jiro and Saburo), making the label yes. It is pos-
sible that the errors of the models are due to this
difference between the two languages.

5 Evaluation of Few-shot NLI

Next, we analyze the extent to which model predic-
tions change depending on how few-shot examples
related to the problem category are given.

5.1 Experimental Setting
For GPT-4o, Llama70B-inst, and Swallow70B-inst,
we conduct two types of few-shot experiments with
the prompt that showed the highest accuracy in
Section 4.

Few_normal For each problem, we give the mod-
els one few-shot example generated from the same
template. For instance, we show an example gener-
ated from jsem-570 to a model, and then evaluate
it on a modified version where at least one of X, Y,
and A is replaced with a different word.

Few_adversarial For each problem, we give the
models an example that is closely related to the
problem but has a different gold label. For example,
when evaluating a model on jsem-577, we give it an
example whose premise is augmented with “Y-wa
A” (Y is A). This revision changes the gold label to
yes. Note that we conduct this experiment only for
categories with more than one kind of gold label.

5.2 Results and Discussion

Figure 2 shows the accuracies of the three models
in each setting. In FEW_NORMAL, all the models
showed improved accuracy compared to the zero-
shot setting. In particular, Swallow70B-inst exhib-
ited a significantly larger improvement than the
other two. In FEW_ADVERSARIAL, the accuracy
of GPT-4o showed a slight improvement, whereas
Llama70B-inst and Swallow70B-inst exhibited per-
formance degradation, which was especially no-
table in Swallow70B-inst.

The results of the two experiments indicate that
Swallow70B-inst is highly susceptible to the gold
labels of few-shot examples. The other two models
effectively leveraged the few-shot examples with
the same label, and also were not greatly affected
when given examples with a different label.

Although the models avoided many of the errors
in the zero-shot experiment with the prompts in
FEW_NORMAL, the accuracy did not improve suf-
ficiently in some cases. For example, GPT-4o still
failed to correctly answer the problems that require
an understanding of presuppositions. In addition,
the accuracy of Llama70B-inst for the problems
such as (1) was zero.

5.3 Analysis with Semantic Representation
Prompts

Inspired by Ozeki et al. (2024), we construct few-
shot prompts with not only example problems, but
also their semantic representations obtained via
ccg-jcomp (see Appendix D for details). We in-
struct LLMs to generate semantic representations
of sentences and then infer the entailment label.
We conduct experiments on problems with which
each model showed low accuracy even with the
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Figure 2: Accuracies of three LLMs in each experimen-
tal setting (blue: zero-shot; orange: FEW_NORMAL;
green: FEW_ADVERSARIAL)

FEW_NORMAL prompt: namely, presupposition
(e.g., jsem-620) for GPT-4o and disjunctive sen-
tences (e.g., (1)) for Llama70B-inst. As a result, the
accuracy of GPT-4o and Llama70B-inst increased
from 0.049 to 0.230 and from 0.0 to 0.148, respec-
tively. This result suggests that providing semantic
representations can improve model performance.

6 Conclusion

In this study, we constructed an NLI dataset focus-
ing on Japanese comparatives, and analyzed how
robustly LLMs can perform inference involving
comparatives in zero-shot and few-shot settings.
The zero-shot experiment revealed that the models’
performance varies depending on the prompts, and
each model exhibited a distinctive pattern of er-
rors. In the few-shot experiments, we observed that
some models, such as Swallow70B-inst, showed
a decrease in accuracy when given adversarially
designed examples. This observation suggests that
some models may be overly sensitive to the spe-
cific labels included in the few-shot examples. For
problems that the models struggled to solve in the
few-shot settings, we found that the accuracy can
be improved by making the models predict the se-
mantic representations of the sentences.
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A Prompt Templates

Table 2 shows the prompt templates used in Sec-
tions 4 and 5. They are translations of the templates
in FLAN related to NLI.

B Results by Category in Zero-shot
Experiments

Figure 3 shows the accuracies of each LLM and
ccg-jcomp across categories.

C Errors of LLMs in the Zero-shot
Experiments

In addition to the errors described in Section 4.2,
the LLMs also failed to correctly answer the prob-
lems related to equatives such as jsem-577-1 in
Table 1. They tended to answer no, which suggests
that they interpret the premise as meaning that the
degrees of the two people are exactly equal.

D Details of the Experiment with
Semantic Representation Prompts

Table 3 shows the instruction and a few-shot exam-
ple used in Section 5.3. It provides the semantic
representations adopted in ccg-jcomp.

As for the experimental results, although the
accuracy of Llama 70B Instruct was still low com-
pared to other models, the semantic representations
it predicted were correct in most problems. Most
of the errors stemmed from the reasoning step. Ta-
ble 4 is an example of reasoning errors. The se-
mantic representations are correct; the model suc-
cessfully interpreted the premise as “Taro is kinder
than Jiro, or Taro is kinder than Saburo.” However,
it incorrectly concluded that the hypothesis follows
the premise.
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Template Translation
{premises}
選択肢付きの質問です：上記の段落に基づいて
「{hypothesis}」と結論付けることはできますか。
選択肢：含意、矛盾、中立
回答：

({premises}
Question with options: Based on the paragraph above
can we conclude that “{hypothesis}”?
options: entailment, contradiction, neutral
answer:)

{premises}
この段落に基づいて、下の文が真であると結論付
けることはできますか。
{hypothesis}
選択肢：含意、矛盾、中立
回答：

({premises}
Based on that paragraph can we conclude that the sen-
tence below is true?
{hypothesis}
options: entailment, contradiction, neutral
answer:)

{premises}
選択肢付きの質問です：以下の結論を導くことは
できますか。
{hypothesis}
選択肢：含意、矛盾、中立
回答：

({premises}
Q with options: Can we draw the following conclusion?
{hypothesis}
options: entailment, contradiction, neutral
answer:)

{premises}
前の文が与えられたとき、この次の文は従います
か。
{hypothesis}
選択肢：含意、矛盾、中立
回答：

({premises}
Does this next sentence follow, given the preceding text?
{hypothesis}
options: entailment, contradiction, neutral
answer:)

{premises}
選択肢：含意、矛盾、中立
問題：次の文を推論できますか。
{hypothesis}
回答：

({premises}
options: entailment, contradiction, neutral
Question: Can we infer the following?
{hypothesis}
answer:)

次の段落を読んで仮説が真かどうかを決定してく
ださい。最後の選択肢の中から選んでください：
{premises}
仮説：hypothesis
選択肢：含意、矛盾、中立
回答は

(Read the following paragraph and determine if the hy-
pothesis is true. Select from options at the end:
{premise}
Hypothesis: {hypothesis}
options: entailment, contradiction, neutral
answer:)

テキストを読んで文が真かどうかを決定してくだ
さい：
{premises}
文：{hypothesis}
選択肢：含意、矛盾、中立
回答：

(Read the text and determine if the sentence is true:
{premises}
Sentence: {hypothesis}
options: entailment, contradiction, neutral
answer:)

選択肢付きの質問です：以下の文脈から仮説を導
くことはできますか。
文脈：
{premises}
仮説：{hypothesis}
選択肢：含意、矛盾、中立
回答：

(Question with options: can we draw the following hy-
pothesis from the context?
Context:
{premises}
Hypothesis: {hypothesis}
options: entailment, contradiction, neutral
answer:)

次の文が真かどうかをその下のテキストに基づ
いて決定してください。選択肢から選んでくださ
い。
{hypothesis}
{premises}
選択肢：含意、矛盾、中立
回答：

(Determine if the sentence is true based on the text below.
Choose from options.
{hypothesis}
{premises}
options: entailment, contradiction, neutral
answer:)

Table 2: Prompt templates used in Section 4

134



Figure 3: Accuracies of each model and system across categories.
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与えられた前提と仮説の間の正しい論理関係を決定してください。
-仮説が前提から論理的に導かれる場合は「含意」と答えてください。
-前提と仮説が論理的に両立しない場合は「矛盾」と答えてください。
-「含意」でも「矛盾」でもない場合は「中立」と答えてください。

##入力
前提：太郎は次郎か三郎より明るい。
仮説：太郎は次郎より明るい。

##述語論理への翻訳
前提：∃d (明るい(太郎, d) ∧￢明るい(次郎, d)) ∨∃d (明るい(太郎, d) ∧￢明るい(三郎, d))
仮説：∃d (明るい(太郎, d) ∧￢明るい(次郎, d))

##推論
[その答えに対する理由を説明してください]

##回答
[含意、矛盾、中立のいずれかを答えてください]

(Determine the correct logical relationship between the given premises and the hypothesis.
- Answer “entailment” if the hypothesis follows logically from the premises.
- Answer “contradiction” if the premises and the hypothesis are logically incompatible with each other.
- Answer “neutral” if the relationship is neither “entailment” nor “contradiction.”

## Input
Premise: Taro is more cheerful than Jiro or Saburo.
Hypothesis: Taro is more cheerful than Jiro.

## Translation into predicate logic
Premise: ∃d (cheerful(taro, d) ∧￢cheerful(jiro, d)) ∨∃d (cheerful(taro, d) ∧￢cheerful(saburo, d))
Hypothesis: ∃d (cheerful(taro, d) ∧￢cheerful(jiro, d))

## Reasoning
[Explain your reasoning for the answer ]

## Answer
[Answer entailment, contradiction, or neutral ])

Table 3: Instruction and a few-shot example used in the experiment in Section 5.3. The lower part is an English
translation.

Input

前提：太郎は次郎か三郎より優しい。

仮説：太郎は次郎より優しい。
(Premise: Taro is kinder than Jiro or Saburo.
Hypothesis: Taro is kinder than Jiro.)

Semantic
Representations

前提：∃d(優しい(太郎, d) ∧￢優しい(次郎, d)) ∨∃d(優しい(太郎,
d) ∧￢優しい(三郎, d))
仮説：∃d(優しい(太郎, d) ∧￢優しい(次郎, d))
(Premise: ∃d(kind(taro, d) ∧￢kind(jiro, d)) ∨∃d(kind(taro, d) ∧
￢kind(saburo, d))
Hypothesis: ∃d(kind(taro, d) ∧￢kind(jiro, d)))

Reasoning

前提が真であれば、太郎は次郎より優しい、または太郎は三郎
より優しい。仮説が真であれば、太郎は次郎より優しい。した
がって、仮説は前提から論理的に導かれる。
(If the premise is true, then Taro is kinder than Jiro, or Taro is kinder than
Saburo. If the hypothesis is true, then Taro is kinder than Jiro. Therefore,
the hypothesis is logically derived from the premise.)

Table 4: Example of reasoning errors of Llama70B-inst. Semantic representations and reasoning are the output.
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Abstract

Neural semantic parsers have shown good over-
all performance for a variety of linguistic phe-
nomena, reaching semantic matching scores
of more than 90%. But how do such parsers
perform on strongly context-sensitive phenom-
ena, where large pieces of semantic informa-
tion need to be duplicated to form a meaningful
semantic representation? A case in point is
English verb phrase ellipsis, a construct where
entire verb phrases can be abbreviated by a sin-
gle auxiliary verb. Are the otherwise known
as powerful semantic parsers able to deal with
ellipsis or aren’t they? We constructed a corpus
of 120 cases of ellipsis with their fully resolved
meaning representation and used this as a chal-
lenge set for a large battery of neural seman-
tic parsers. Although these parsers performed
very well on the standard test set, they failed in
the instances with ellipsis. Data augmentation
helped improve the parsing results. The reason
for the difficulty of parsing elided phrases is not
that copying semantic material is hard, but that
they usually occur in linguistically complicated
contexts, causing most of the parsing errors.

1 Introduction

Semantic parsing is the task of providing a formal
meaning representation for an input sentence of a
natural language such as English, Dutch, or Italian.
Semantic parsing is crucial for applications that
require the precise translation of unstructured data
(i.e., text and images) into structured data (e.g.,
databases and robot commands). Currently, the
most promising approaches to semantic parsing are
based on neural models (Bai et al., 2022; Wang
et al., 2023; Zhang et al., 2024b, 2025) trained or
fine-tuned on large semantically annotated corpora
(Banarescu et al., 2013; Abzianidze et al., 2017),
reaching high performance with F scores greater
than 90%. Little is known about the ability of
neural semantic parsers to cope with ellipsis, a lin-

guistic construction in which elements are omitted
and are supplied by the discourse context. In this
paper, we will study how neural semantic parsers
deal with Verb Phrase Ellipsis (VPE) in English.
An example of a VPE is shown in (1) together with
its fully expressed surface interpretation in (2).

(1) Ann likes grapes, and Bea does, too.
(2) Ann likes grapes, and Bea does like grapes, too.

As this very simple example already demonstrates,
ellipsis interpretation is a challenging task, for the
only way to recover the elided material is to con-
sider the discourse context. The (computational)
linguistics literature abounds with many more com-
plicated examples of VPE, including sloppy-strict
interpretation of pronouns appearing in the elided
material, cascaded ellipsis, antecedent contained
deletion, gapping, and embedded ellipsis (Dahl,
1973; Williams, 1977; Roberts, 1989; Dalrymple
et al., 1991). Nevertheless, our aim is not to fo-
cus on these linguistically interesting examples
carefully crafted by linguists, but rather to inves-
tigate how data-driven semantic parsers deal with
instances of VPE found in corpora.

As far as we know, this is the first in-depth study
of VPE interpretation in neural semantic parsing.
Related, but taking a different perspective, is work
by Hardt (2023), who found that large language
models have difficulty processing ellipsis.

In Section 2 we give an overview of earlier com-
putational approaches to VPE. In Section 3 we
introduce the Parallel Meaning Bank (PMB) and
a VPE challenge test set distilled from the PMB.
In Section 4 we outline our approach to enhance
the semantic parsing for VPE, while in Section 5
the parsing results are presented, showing that neu-
ral approaches face a difficult time in interpreting
elliptical constructions, even with substantial fine-
tuning, but not for the reasons we initially thought
would cause the difficulty.
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2 Background

VPE interpretation has drawn considerable atten-
tion in formal linguistics (Dahl, 1973; Sag, 1976;
Klein, 1987; Dalrymple et al., 1991). These early
approaches can be summarized as identifying an
antecedent verb phrase in the context, providing
a logical form while abstracting over the sub-
ject, and applying the result to the subject noun
phrase of the elided verb phrase. Computational
approaches were introduced later (Alshawi, 1992;
Kehler, 1993; Bos, 1994; Crouch, 1995; Hardt,
1997), with the landmark paper by Dalrymple et al.
(1991) introducing a set of benchmark VPE exam-
ples and a sophisticated algorithm based on higher-
order unification to construct fully resolved mean-
ing representations for elliptical phrases. These ap-
proaches, although computational of nature, still re-
quired external modules to identify the source verb
phrase and the parallel elements between source
and target phrase.

Data-driven approaches based on annotated cor-
pora (Nielsen, 2005; Bos and Spenader, 2011; Bos,
2016) demonstrated the large gap between theo-
retical ideas and practical implementations (Mc-
Shane and Babkin, 2016; Kenyon-Dean et al., 2020;
Zhang et al., 2019), and were considered to be
specific tasks rather than an integral part of wide-
coverage semantic parsing. In this paper, we take a
different computational perspective and depart with
an overall well-performing general-purpose seman-
tic parsing and investigate how well it succeeds on
ellipsis data.

3 Data

The Parallel Meaning Bank The PMB Abzian-
idze et al., 2017 is a multilingual corpus enriched
with semantic annotations, covering a wide range
of linguistic phenomena. It contains a substan-
tial set of parallel texts, each paired with a formal
meaning representation known as a Discourse Rep-
resentation Structure (DRS) based on Discourse
Representation Theory (DRT, Kamp and Reyle,
1993). While DRSs are typically presented in a
human-readable box format, a clause-based linear
representation was introduced by van Noord et al.
(2018) to enable their use in sequence-based mod-
els. More recently, Bos (2023) proposed Sequence
Box Notation (SBN), a simplified, variable-free ver-
sion of DRS aimed at further facilitating sequence
processing. In this paper we use SBN as meaning
representation format (see Figure 1).

Sentence with VPE: 

   Life never ends but earthly life does.

DRS:
   life.n.11                                      % Life never   [0-10]

            NEGATION <1      %

   end.v.01       Theme -1 Time +1 % ends            [11-15]

   time.n.08     EQU now               % 

                       CONTRAST <2      %

   earthly.a.01 AttributeOf  +1      % but earthly  [16-27] 

   life.n.11                                    % life              [28-32] 

   end.v.01       Theme -1 Time +1 % does.           [33-38]

   time.n.08     EQU now               % 

DRG:

life.n.11

NEGATION

CONTRAST

end.v.01

time.n.08

Theme

Time

now
EQU

earthly.a.01

life.n.11

end.v.01

time.n.08

AttributeOf

Theme

Time

now
EQU

Figure 1: An example sentence with Verb Phrase Ellip-
sis and meaning representation in sequence notation and
drawn as a directed acyclic graph.

Annotated VPE Instances As occurrences of
VPE are relatively rare (Bos and Spenader, 2011),
it is rather challenging to yield a reasonably sized
corpus. A total of 120 cases were identified in the
PMB and their corresponding meaning representa-
tions manually corrected. Slightly more than half
of the cases (71) contained some kind of negation
in the elided construction (e.g., ”and neither am I”,
”Greenland is not”, ”but she didn’t”). Half of the
instances are accompanied by the auxiliary verb
to do, a third by to be, and the remaining cases
are formed by other auxiliary verbs, the infinitival
particle to or instances of gapping. An annotated
example taken from the corpus is shown in Fig-
ure 1, where the elliptical phrase ”life does” is
semantically interpreted as ”life does end”.

4 Experimental Setup

Training Sets For training our neural semantic
parsers, we consider two settings: (1) the Stan-
dard Training Set, the default training data pro-
vided by PMB version 5.1.0, with all texts that are
included in the VPE test set removed; and (2) the
Augmented Training Set, an augmented dataset to
enhance the model’s ability to handle verb phrase
ellipsis. We construct the augmented dataset apply-
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ing the following data augmentation strategies:

• We employ GPT-4 to generate 600 sentence
pairs, each consisting of a sentence containing
VPE and its corresponding resolved version
(i.e., the full sentence with the elided verb
phrase explicitly restored in the surface text).

• We use the state-of-the-art DRS parser
from Zhang et al. (2024a) to generate DRSs
for the resolved sentences. These DRSs are
then paired with the original VPE sentences
as their target semantic representations.

• We incorporate the generated VPE data into
the standard training set in varying quantities
(from 100 up to 600) to examine how the scale
of augmentation affects model performance
and to identify the point at which performance
improvements begin to converge.

Test sets We evaluate the trained parsers on two
test sets: the Standard Test Set, which serves as
a general, broad-coverage set for comparison, and
VPE120, a targeted test set focusing on VPE, as
described in Section 3.

Evaluation We evaluate model performance us-
ing two metrics: Smatch1 and Ill-Formed Rate
(IFR). Smatch (Cai and Knight, 2013; Opitz, 2023)
measures the similarity between the predicted
and reference semantic graphs by converting each
graph into a set of triples and computing the opti-
mal variable mapping via a hill-climbing algorithm.
Precision (P), recall (R), and F1 score are calcu-
lated as follows:

P =
m

p
, R =

m

g
, F1 =

2 · P · R
P + R

, (1)

where m denotes the number of matching triples,
p is the number of predicted triples, and g is the
number of gold-standard triples.

To assess the structural validity of generated
graphs, we additionally report the Ill-Formed Rate
(IFR). A graph is considered ill-formed if it ex-
hibits structural defects such as cyclic dependen-
cies, isolated nodes, or dangling edges referenc-
ing non-existent elements. Graphs identified as ill-
formed are assigned a Smatch score and F1 score of
zero, thereby contributing to a quantitative measure
of structural failure.

1We adopt the Smatch++ implementation (Opitz, 2023),
which uses Integer Linear Programming (ILP) instead of the
standard hill-climbing approach.

Models We evaluated three encoder–decoder
models–mBART (Liu et al., 2020), mT5 (Xue et al.,
2021), and ByT5 (Xue et al., 2022), as well as four
decoder-only models: Qwen2.5-7B (Yang et al.,
2024), Ministral-8B, LLaMA3.1-8B (Grattafiori
et al., 2024), and Gemma2-9B (Team et al., 2024).

5 Results and Analysis

The performance of models on both test sets is
presented in Table 1. Overall, sentences containing
VPE instances pose significantly greater challenges
for semantic parsing, as evidenced by substantially
lower Smatch scores and elevated ill-formed rates
(IFR). We analyze these results in detail below.

Table 1: Smatch and IFR performance on the Standard
Test Set and VPE120 for models trained with the Stan-
dard Training Set, Aug300, and Aug600.

Model Train set Standard Test VPE120

Smatch IFR Smatch IFR

mBart-Large Standard 83.50 6.95 70.90 33.17
Aug300 85.40 7.00 77.90 27.33
Aug600 85.00 6.60 78.10 24.83

mT5-Large Standard 82.61 11.20 70.38 29.83
Aug300 84.50 9.80 75.20 24.83
Aug600 84.00 9.20 75.50 24.00

ByT5-Large Standard 91.40 8.73 66.22 27.33
Aug300 92.50 7.50 73.00 22.33
Aug600 92.90 7.00 72.50 22.33

Qwen2.5-7B Standard 94.19 5.34 77.09 17.33
Aug300 94.35 5.17 85.31 9.83
Aug600 95.50 5.09 84.64 12.33

Ministral-8B Standard 95.45 4.67 82.77 13.17
Aug300 95.50 4.25 89.00 6.50
Aug600 95.42 4.59 90.61 6.50

LLaMA3.1-8B Standard 95.56 4.51 83.11 12.33
Aug300 95.32 5.18 88.89 12.33
Aug600 95.44 4.76 89.21 8.17

Gemma2-9B Standard 96.31 4.59 78.09 17.33
Aug300 96.46 4.42 88.52 7.33
Aug600 96.59 4.09 89.20 8.17

Performances on Standard Test Decoder-only
architectures consistently outperform encoder–
decoder models on the Standard Test set. Gemma2-
9B achieves the highest performance with a Smatch
score of 96.59 following augmentation (compared
to 96.31 on the standard training set). Other
decoder-only models demonstrate similarly strong
performance: LLaMA3.1-8B (95.44), Ministral-
8B (95.50), and Qwen2.5-7B (95.50) all maintain
scores above 95. In contrast, encoder–decoder ar-
chitectures (mBART-Large, mT5-Large, and ByT5-

139



Large) achieve lower performance, with standard
scores ranging from 82.61 to 91.40. This per-
formance disparity likely stems from both archi-
tectural differences and parameter scale advan-
tages, where larger decoder-only models may ben-
efit from more stable fine-tuning dynamics and
in-context learning capabilities.

Performances on VPE120 All models exhibit
substantially degraded performance on VPE120
relative to the Standard Test, confirming the in-
herent difficulty of parsing elliptical constructions
semantically. When trained solely on the standard
dataset, models achieve VPE120 Smatch scores be-
tween 66.22 and 83.11, accompanied by markedly
increased IFR (e.g., 33.17% for mBART-Large and
29.83% for mT5-Large), indicating frequent gener-
ation of malformed outputs.

VPE-specific data augmentation yields sub-
stantial improvements across all architectures.
Ministral-8B achieves the highest score of 90.61
with Aug600, closely followed by LLaMA3.1-
8B (89.21) and Gemma2-9B (89.20). These top-
performing models also demonstrate the most sig-
nificant IFR reductions (e.g., Ministral-8B: 13.17%
→ 6.50%). Encoder–decoder models also bene-
fit from augmentation: mBART-Large improves
from 70.90 (standard) to 78.10 (Aug600), while
mT5-Large advances from 70.38 to 75.50. No-
tably, ByT5-Large shows improvement from 66.22
to 73.00 with Aug300.

These findings demonstrate that VPE-specific
data augmentation effectively narrows the perfor-
mance gap between the Standard and VPE test
sets, particularly for larger decoder-only models.
The convergence of performance scores beyond
Aug300 (see Figure 2) suggests diminishing gains
from additional augmentation data, indicating that
current models may be approaching their capac-
ity limits for ellipsis resolution. This shows the
need for more advanced architectures or special-
ized training strategies to further improve perfor-
mance on complex elliptical phenomena.

Qualitative Analysis The previous section
showed that sentences with ellipsis are a lot harder
to parse for the neural semantic models. But why
is this the case? Is this because they are a bad at
copying semantic information, or is it something
else? In order to answer we examined the output of
the best performing model and manually inspected
the results.
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Figure 2: Model performance on VPE120 with increas-
ing augmentation sizes (100 to 600).

Surprisingly, what we thought would be hard for
the models, copying semantic material from the
source to the target, was not hard at all. Only in
three of the 120 cases did this not happen. Actually,
what contributed to the low score was the wrong
choice of discourse relation (22% of overall errors),
the wrong attachment of a discourse relation (20%),
incorrect scope order between tense and negation
(16%), incorrect choice of word sense (16%), in-
correct choice of thematic role (10%), incorrect
choice of concept (10%), and incorrectly resolved
anaphora (4%).

One reason why selecting the correct VP an-
tecedent might have to do with the amount of am-
biguity, or lack thereof. For instance, in the VPE
example in Figure 1 there is only one potential verb
phrase that could serve as antecedent for the ellipti-
cal phrase. Closer inspection of the dataset reveals
that most (81%) of the texts with VPE are relatively
short and provide only one verb phrase that could
act as antecedent; only 23 examples provide two or
more potential verb phrase antecedents, as in (3).

(3) Ann hoped to succeed, but she didn’t.

Here there are two verb phrases in the context: hope
to succeed and succeed. For most of these cases
picking the most recent verb phrase usually yields
the correct interpretation.
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6 Conclusion

Although open-domain semantic parsing achieves
good overall performance on the standard test sets,
its shortcomings arise at the surface when looking
at more complex linguistic phenomena. We demon-
strated this by looking specifically at how neural
parsing models deal with cases of English VP Ellip-
sis. Although we observed a drop in performance,
the reason for the drop was not the context-sensitive
nature of ellipsis, but rather the fact that ellipti-
cal phenomena are often surrounded by complex
phenomena such as tense, negation, and discourse
structure, causing parsing errors. So, is neural se-
mantic parsing good at ellipsis resolution? Yes, it
is!
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Shahriari, Alexandre Ramé, et al. 2024. Gemma 2:
Improving open language models at a practical size.
arXiv preprint arXiv:2408.00118.

Chunliu Wang, Huiyuan Lai, Malvina Nissim, and Jo-
han Bos. 2023. Pre-trained language-meaning mod-
els for multilingual parsing and generation. In Find-
ings of the Association for Computational Linguistics,
page 5586–5600. Association for Computational Lin-
guistics (ACL).

Edwin Williams. 1977. Discourse and logical form.
Linguistic Inquiry, 8(1):101–139.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2022. ByT5: Towards a token-free
future with pre-trained byte-to-byte models. Transac-
tions of the Association for Computational Linguis-
tics, 10:291–306.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483–498, On-
line. Association for Computational Linguistics.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech-
nical report. arXiv e-prints, pages arXiv–2412.

Wei-Nan Zhang, Yue Zhang, Yuanxing Liu, Donglin
Di, and Ting Liu. 2019. A neural network ap-
proach to verb phrase ellipsis resolution. Proceed-
ings of the AAAI Conference on Artificial Intelligence,
33(01):7468–7475.

Xiao Zhang, Gosse Bouma, and Johan Bos. 2025. Neu-
ral semantic parsing with extremely rich symbolic
meaning representations. Computational Linguistics,
51(1):235–274.

Xiao Zhang, Qianru Meng, and Johan Bos. 2024a.
Retrieval-augmented semantic parsing: Using large
language models to improve generalization. arXiv
preprint arXiv:2412.10207.

Xiao Zhang, Chunliu Wang, Rik van Noord, and Jo-
han Bos. 2024b. Gaining more insight into neu-
ral semantic parsing with challenging benchmarks.
In Proceedings of the Fifth International Workshop
on Designing Meaning Representations @ LREC-
COLING 2024, pages 162–175, Torino, Italia. ELRA
and ICCL.

142

https://doi.org/10.18653/v1/2020.emnlp-main.681
https://doi.org/10.18653/v1/2020.emnlp-main.681
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.33011/lilt.v13i.1385
https://doi.org/10.33011/lilt.v13i.1385
https://doi.org/10.1162/tacl_a_00241
https://doi.org/10.1162/tacl_a_00241
https://doi.org/10.18653/v1/2023.findings-eacl.118
https://doi.org/10.18653/v1/2023.findings-eacl.118
https://doi.org/10.18653/v1/2023.findings-acl.345
https://doi.org/10.18653/v1/2023.findings-acl.345
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.1609/aaai.v33i01.33017468
https://doi.org/10.1609/aaai.v33i01.33017468
https://doi.org/10.1162/coli_a_00542
https://doi.org/10.1162/coli_a_00542
https://doi.org/10.1162/coli_a_00542
https://aclanthology.org/2024.dmr-1.17/
https://aclanthology.org/2024.dmr-1.17/


Proceedings of the 16th International Conference on Computational Semantics, pages 143–155
September 22-23, 2025, Licensed under the Creative Commons Attribution 4.0 International License

Extracting Behaviors from German Clinical Interviews in Support of
Autism Spectrum Diagnosis

Margareta A. Kulcsar
École Normale Supérieure Paris-Saclay

margareta.kulcsar@ens-paris-saclay.fr

Ian Paul Grant
Queen Mary University London

i.p.grant@qmul.ac.uk

Massimo Poesio
Queen Mary University London

Utrecht University
m.poesio@qmul.ac.uk

Abstract

Accurate identification of behaviors is essen-
tial for diagnosing developmental disorders
such as Autism Spectrum Disorder (ASD). We
frame the extraction of behaviors from text as a
specialized form of event extraction grounded
in the TimeML framework and evaluate two
approaches: a pipeline model and an end-to-
end model that directly extracts behavior spans
from raw text. We introduce two novel datasets:
a new clinical annotation of an existing Reddit
corpus of parent-authored posts in English and
a clinically annotated corpus of German ASD
diagnostic interviews. On the English dataset,
the end-to-end BERT model achieved an F1
score of 73.4% in binary behavior classifica-
tion, outperforming the pipeline models (F1:
66.8% and 53.65%). On the German clinical
dataset, the end-to-end model reached an even
higher F1 score of 80.1%, again outperform-
ing the pipeline (F1: 78.7%) and approaching
the gold-annotated upper bound (F1: 92.9%).
These results demonstrate that behavior clas-
sification benefits from direct extraction, and
that our method generalizes across domains and
languages. We release our code and dataset at
: https://github.com/MaggieK410/Behavior_

Extraction_from_Clinical_Interviews.git

1 Introduction

Accurate identification of behaviors and symptoms
is essential for diagnosing developmental disor-
ders such as Autism Spectrum Disorder (ASD),
where behavior markers like repetitive movement,
avoidant behaviors or absence of socially impor-
tant behaviors are key diagnostic criteria (World
Health Organization, 2023; American Psychiatric
Association, 2013). However, existing tools for
behavior and symptom identification rely heavily
on qualitative analysis techniques (e.g., interviews,
observations) that are time-consuming and subject

to interpretation and whereby valuable information
can be overlooked (Rutter et al., 2003; National
Institute for Health and Care Excellence, 2023).

Although Event Extraction (EE) methods in NLP
have been used in clinical contexts, such as ex-
traction of symptoms and treatment decision in
clinical records of medical disorders (Viani et al.,
2020; Tung and Lu, 2016; Guzman-Nateras et al.,
2022), general EE is ill-suited for ASD due to its
heterogeneity and the nuanced presentation of be-
haviors and symptoms. Standard EE approaches
identify general events, but not all events repre-
sent human behavior, particularly those that lack
agentive or embodied action (Drury et al., 2022;
Skinner, 1938). To support ASD diagnosis with
behavior extraction, it is thus necessary to spec-
ify which events count as behaviors in the clinical
sense. In this work, we frame binary behavior ex-
traction as a specialized form of EE, and apply it to
the analysis of actual clinical interviews in a novel
corpus. Our contributions are threefold:
(1) We define a binary behavior classification
scheme that embeds behavioral definitions within
the TimeML framework.
(2) We present two new datasets for binary ASD
behavior classification from events, annotated with
our novel scheme: an English Reddit dataset from
parents of autistic children and a German clinical
interview corpus.
(3) We develop and compare pipeline and end-to-
end models for behavior extraction both in English
and German.
Our results show that end-to-end models trained di-
rectly on annotated behaviors outperform pipeline
approaches.

In Section 2 we explore previous work on event
extraction in clinical applications, in particular for
behavior classification in ASD. We then describe
the methods applied to both the English pilot study
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and the German clinical data, including data pre-
processing, the pipeline, and the direct classifica-
tion approach for behavior analysis. In the sub-
sequent Section 5 about the English pilot study,
we detail datasets, considered models, training and
results for EE, and behavior classification. We
conclude Section 5 with learned lessons from the
pilot study. Next, we focus on our experiments
with German data in Section 6, which is structured
in the same way as Section 5 and details the new
dataset, models, training, results and discussion.
We present our conclusions in Section 7 and the
limitations of our work in Section 8.

2 Previous Work

2.1 Event Extraction and Clinical
Applications

EE is a subtask of Information Extraction that fo-
cuses on identifying and categorizing events, de-
fined as actions or occurrences situated in time
and space. EE models typically extract event trig-
gers and associated arguments (e.g., agents, ob-
jects, time). Benchmark datasets include ACE 2005
(LDC, 2005), which categorizes events across pre-
defined types (e.g., Life, Movement, Conflict), and
TimeBank (Pustejovsky et al., 2003a), which em-
phasizes temporal properties of events. TAC-KBP
(Ellis et al., 2015) extends these with knowledge
base population objectives. These corpora are pri-
marily based on newswire or forum data, limiting
their direct applicability to clinical language.

EE has successfully been applied in medical
NLP, where it supports the extraction of symptoms,
clinical events, and diagnostic information from
unstructured texts such as electronic health records
(EHRs) and clinical notes. For instance, EE has
been used to detect negative emotions, thoughts,
and symptoms from patient narratives and social
media (Tung and Lu, 2016; Guzman-Nateras et al.,
2022). However, such applications often focus
on mood disorders, such as depression or anxiety,
where symptom expressions are relatively homoge-
neous, for example, fatigue, reduced activity, and
increased sleep. In contrast, symptoms of ASD
can strongly vary by patient: While one patient
can be highly verbal and socially eager, another pa-
tient can be non-verbal and seeking sensory input
through self-stimulatory behaviour.

2.2 Event Extraction and ASD Detection

ASD presents unique challenges for automated
analysis due to the heterogeneity of symptom pre-
sentation and atypical use of language.

Most digital tools for behavior and symptom
identification in ASD remain underdeveloped.
Standard NLP pipelines often fail to accommo-
date the idiosyncratic and context-dependent na-
ture of autism-related behaviors (Calvo et al., 2017;
Themistocleous et al., 2024).

Existing EE models assume relatively consistent
linguistic patterns across populations, which makes
them poorly suited for capturing the diverse behav-
ioral descriptions in ASD, particularly from care-
giver accounts (Zhang et al., 2022; Jurafsky and
Martin, 2013). Due to data protection constraints,
most text-based ASD studies rely on social media
corpora (e.g., Reddit, Twitter) (Zirikly et al., 2019;
Amir et al., 2019), which differ markedly from
clinical interviews or third-party reports.

Although some work has focused on detecting
discrete behaviors from text (Yates et al., 2017;
Tadesse et al., 2019), these are typically surface-
level behaviors and not grounded in a conceptual
model of behavior relevant to developmental disor-
ders (Skinner, 1938). Despite the similarity in the
conception of events and behaviors, there exists a
research gap in applying EE specifically to behav-
ior detection for ASD within diagnostic settings.

2.3 Temporal Annotation with TimeML

TimeML is an annotation framework that supports
fine-grained event labeling, including temporal cat-
egories (Pustejovsky et al., 2003b). Its application
in mental health NLP has enabled the construc-
tion of patient timelines (e.g., tracking the duration
of untreated psychosis from EHRs) (Viani et al.,
2020). These tools help model behavioral onset
and change over time, which is highly relevant for
developmental disorders. While our work does
not yet focus on temporal reasoning, TimeML’s
structured event taxonomy forms the basis of our
behavior classification system.

2.4 Behavior Extraction and ASD

Our approach addresses this gap by adapting EE
to behavior extraction, using third-party reports
(e.g. transcripts of parent interviews) and applying
a behavior-specific classification scheme grounded
in TimeML, supporting the extraction of diagnosti-
cally relevant information for ASD.
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3 Defining Behaviors in Terms of Events

Behaviors and events share key properties: they are
observable, unfold over time, involve agents, and
can be causally linked to outcomes. However, not
all events describe behaviors. For behavior extrac-
tion in text, we require a more specific definition
grounded in linguistic and psychological theory.

The TimeML annotation framework (Puste-
jovsky et al., 2003b) categorizes events into types
such as Occurrence (actions that happen), Percep-
tion (sensory experiences), Reporting (communi-
cation acts), Aspectual (beginning, ending, or con-
tinuing another event), I_Action/I_State (intentions
or mental states), and State (persistent conditions).
These categories offer a rich base for distinguishing
between behaviors and other event types.

Our behavior annotation follows a two-step pro-
cess: (1) identify TimeML-style events in text; and
(2) classify which of these constitute behaviors and
which do not in a binary fashion. For instance,
only agentive and embodied actions (e.g., a child
“makes eye contact” or “repeats phrases”) qualify
as behaviors. In contrast, mental states or results of
actions (e.g., “was upset”, “was ignored”) are ex-
cluded. Some event types like State and Aspectual
never meet the definitional criteria for behavior as
action by definition.

This filtered annotation is used to train both
the pipeline and end-to-end behavior classification
models. By grounding our behavior definition in
the TimeML schema, we bridge the gap between
generic event detection and clinically meaningful
behavior identification.

4 Methods

We experiment with two datasets: a publicly avail-
able English Reddit dataset newly annotated for
events and behaviors, and a novel German clinical
interview dataset. The first enables comparison
with existing methods, while the second provides
real-world clinical insights. We discuss here the
common aspects of the methods used in the two
experiments.

4.1 Pre-processing

The pre-processing for both English and German
data is identical and differs only by task and model.
The BERT model classifies each token of the input,
while generative models such as T5 and Phi3 get
textual input with prompts and generate an output

sequence. Since the generative models might pro-
duce outputs of different length than the input, we
chose to set the maximum output length to be equal
to length of the input sentence plus one additional
token. This constraint promotes precision by ex-
cluding tokens beyond the input length from the
loss calculation, thereby increasing the influence
of earlier errors in the sequence.

For the EE task, both BERT and T5 receive a
raw sentence as input. We embed the input sen-
tence into one of two prompt templates with vary-
ing amounts of contextual information about events,
and examples for Phi3 model (see Appendix A.1).
The outputs are post-processed to ensure consis-
tency for evaluation. The BERT token classifica-
tion model outputs a predicted class label for each
input token. The generative T5 and Phi-3 models
produce event-tagged sentences that include event
delimiters. An example of the raw input sentence,
the desired event-tagged sentence and the token-
wise classifications by BERT is given below:

Raw input sentence: Aber wir beginnen mal.
(Translation: "But let’s get started.")
Event-tagged sentence: Aber wir [ASPECTUAL]
beginnen [END ASPECTUAL] mal.
Tokenized raw sentence:["Aber", "wir", "begin-
nen", "mal"]
List of token event classifications: [0, 0, 3, 0, 0]

Behavior classification can be approached either
end-to-end, using the raw input sentence, or in a
pipeline setting, using an event-tagged sentence as
input. In behavior classification using BERT as a
token classifier (BERT BC), each token is labeled
as either not an event (number 2), an event but
not a behavior (number 0), or an event and also a
behavior (number 1). For the Phi3 behavior clas-
sification model (Phi3 BC), we add definition of
behavior, extract the mentions in the tagged sen-
tence and instruct it to classify each mention into
behavior and non-behavior (see Appendix A.2).
Phi3 outputs a list of mentions and their corre-
sponding classifications. For evaluation, we dis-
regard specific event categories by replacing them
with "[EVENT]", "[END EVENT]" and "[EVENT,
Bx]", since the end-to-end model can only classify
into behavior and non behavior tokens. "[EVENT,
Bx]" refers to the beginning of an event that is also
a behavior, while "[EVENT]" marks the beginning
of an event that is not a behavior. "[END EVENT]"
is the end delimiter for both types of behaviors.
This is illustrated in the following example:
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Behavior annotated event-tagged sentence:
Er [OCCURRENCE, Bx] spricht [END OC-
CURRENCE] mit dem Hund meiner Schwester
Englisch. (Translation: "He speaks English with
my sister’s dog")
Event-tagged input sentence: Er [OCCUR-
RENCE] spricht [END OCCURRENCE] mit dem
Hund meiner Schwester Englisch.
Tokenized event-tagged sentence: [’Er’,
’[OCCURRENCE]’, ’spricht’, ’[END OCCUR-
RENCE]’, ’mit’, ’dem’, ’Hund’, ’meiner’,
’Schwester’, ’Englisch
Gold token map: [2, 2, 1, 2, 2, 2, 2, 2, 2, 2]

4.2 Behavior Classification: Pipeline vs.
End-to-End

Figure 1: Overview of our experiment design with both
English and German data.

For pipeline models, we consider only events
as potential behaviors: we first extract events us-
ing the BERT EE token classification model, and
then classify some of these events as behaviors in
a second step with either BERT BC or Phi3 BC as
the behavior classification model. By incorporat-
ing semantic information about event classes and
mentions, the pipeline approach allows the behav-
ior classifier to benefit from correlations between
behaviors and specific event types. We investigate
whether these benefits transfer equally across struc-
turally different languages, such as German and
English.

In the end-to-end model, each token in the raw
input sentence is classified without any information
about events. While the raw input provides no ad-
ditional event information to the behavior classifier,
avoiding a pipeline architecture reduces the risk of
error propagation.

In a pilot study on publicly available english
data, we compare generative models with token
classifiers at both event extraction and behavior
classification level in our pipeline. We contrast
the pipeline approach with direct behavior clas-
sification on token level. The pilot study allows
us to draw preliminary conclusions about which
model types are successful before applying them
to German clinical data. Figure 1 shows a visual
overview of the pipeline and the direct approach
to the behavior classification task and highlights,
which models were trained with English data and
which with German clinical data.

4.3 Post-Processing and Evaluation

Our evaluation for both tasks focuses on the men-
tions that are extracted from a model output. Eval-
uating EE models is inherently challenging due to
the possibility of partial correctness, for example,
extracting the correct text span but assigning the
wrong event class (Peng et al., 2023; Zheng et al.,
2021). Generative models such as Phi3 and T5
introduce additional complexity. While they are
effective for tasks without strict output constraints,
they are prone to hallucinating mentions or entire
event classes.

In our EE evaluation, we employ F1, precision,
and recall to evaluate the models’ performances
in identifying event classes, mentions, and spans.
We extract mentions by aligning the model’s token
map outputs with the original sentences for BERT
and extract mentions using regex from the tagged
sentences generated by Phi3 and T5.

As mentioned in Section 4.1, we disregard spe-
cific event classes in the behavior classification task.
Instead, we introduce the "Bx" addition ([EVENT,
Bx]) to the class-neutral event delimiter [EVENT]
to indicate that an event has been classified as a
behavior. We then compare the extracted mentions,
their spans, and the associated behavior classifica-
tions. Additionally, we compare the EE part of the
pipeline to the end-to-end model by omitting the
"Bx" addition and place a delimiter wherever the
token map has a value that is not 2.

5 Pilots with Existing (English) Data

While developing the new German clinical dataset,
we piloted our approach on an existing English
dataset of non-clinical texts, which was newly an-
notated for behaviors and events by our clinical
collaborators. This allowed us to evaluate different
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Figure 2: Normalized counts of false positives, false negatives, and true positives by class. We exclude "None"
classifications, which refer to tokens that do not correspond to any event, since all models handle this majority class
similarly. Phi3 shows the highest rate of false positives due to hallucinations and also the most false negatives,
particularly in the Occurrence class.

methods in comparison to existing event extraction
approaches. We report these preliminary experi-
ments in this section.

5.1 TimeML Event Extraction
As a pilot experiment on English data, we evaluate
a diverse set of model families to assess their suit-
ability for downstream application to the German
dataset. Specifically, we compare generative mod-
els Phi3-mini-128k-instruct (referred to as Phi3
hereafter)1 and T5-base2, with token classification
model BERT-base-cased3.

5.1.1 Data
For training and testing EE on English data we
used CausalTimebank,4 a freely available subset
of the TimeML-annotated TimeBank dataset. We
split the 6811 articles into 2655 sentences and pro-
duce train, test and validation sets with a 8:1:1
ratio (2123, 266, 266 sentences). All TimeML
event classes are present in the dataset. These are
Occurrence, Reporting, I_Action, State, I_State,
Aspectual and Perception. This mirrors our Ger-
man clinical dataset, which also includes all event
classes.

5.1.2 Models and Training
We train the BERT-base-cased model for ten epochs
on our pre-processed CausalTimebank dataset us-

1https://huggingface.co/microsoft/
Phi-3-mini-128k-instruct

2https://huggingface.co/google-t5/t5-base
3https://huggingface.co/google-bert/

bert-base-cased
4https://github.com/paramitamirza/

Causal-TimeBank

ing the token classification objective with a learn-
ing rate of 2e-5. The generative models T5 and
Phi3 are trained over 5 epochs. For Phi3 we set the
learning rate to 2e-5 and the maximum length of
the output to 1500 characters to accommodate the
prompts. We set the learning rate to 5e-5 for T5.
All models were trained on a single A40 GPU with
48GB RAM.

5.1.3 Results and Discussion
In Table 1 we report the performance of the models
based on exact matches of mention, span and event
class. We compared the weighted true positive,
false positive, and false negative counts by event
class for the BERT and T5 models with the Phi3
model using template 2 in Figure 2.

Model Prec. Rec. F1
BERT-base-cased (BERT EE) 69.90% 72.19% 71.41%
T5 65.15% 56.12% 60.27%
Phi3 + template 1 72.61% 59.55% 65.08%
Phi3 + template 2 73.56% 65.63% 69.37%

Table 1: Recall, precision and F1 values for exact match
for span, mention and event class for the models em-
ployed.

The results show BERT outperforming T5 and
Phi3 in F1 and recall value. While Phi3 achieves
slightly higher precision values then BERT and
T5, but lower recall values lead to overall lower
F1 values. The T5 model is outperformed by both
Phi3 and BERT. The two template variants of Phi3
alter the F1 score by 4% and have a greater effect
on recall, and consequently on the false negative
rate, than on precision. This difference in perfor-
mance highlights the importance of prompt engi-
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neering. Recent research (Shiri et al., 2024) shows
that providing more event information improves
model performance. However, this approach in-
creases training time and memory costs. Reward
functions have also been shown to enhance LLM
performance in EE (Gao et al., 2024) and could be
a starting point for future work.

Elevated levels of false positives in Figure 2 in-
dicate that generation errors influence the results
of T5 and Phi3. The generative models also ex-
hibit higher false negative counts especially in the
high occurring classes compared to BERT. BERT
achieves the highest true positive rate for the most
common class Occurrence. T5 underperforms on
the Occurrence class and shows higher false pos-
itive rates across all classes, a pattern even more
pronounced in the Phi3 results. Phi3 includes more
false negatives in the Occurrence class, but has
similar false negatives levels in the rarer classes,
showing that the performance difference mainly
stems from the most prevalent Occurrence class.
Limiting output to the input length plus one token
simplifies alignment and prevents drifting, but may
lower the number of true positives in T5. When
false positives are generated at the beginning of the
sentence, the cutoff potentially eliminates correctly
tagged mentions later in the sentence.

5.2 Behavior Classification

We train BERT BC and Phi3 BC as behavior clas-
sifiers on our English Reddit dataset and compare
a pipeline approach with an end-to-end approach.

5.2.1 Data
Although our primary evaluation uses German clin-
ical data, access to high-quality medical datasets
is often limited. To train models for behavior an-
notation in English, we use the publicly available
Reddit dataset5 with posts collected between De-
cember 2022 and March 2024 from Autism related
subreddits. These posts, primarily written by par-
ents detailing their autistic children’s behaviors and
experiences, are shorter and less structured than
professional consultations, but serve as a valuable
resource for testing the abilities of models to extract
useful information from third-party descriptions
of behavior. Leveraging publicly available data,
shows that our approach generalizes to non-clinical
settings and may enable future cross-lingual analy-
ses.

5https:\/\/huggingface.co\/datasets\/Osondu\
/reddit_autism_dataset

Two clinical psychology experts, trained in the
TimeML scheme, classified events and behaviors in
1,000 posts from raw text, creating a new English
dataset used for the experiments in this section.
We obtained a Fleiss kappa value of 0.53 for inter
annotator agreement, which in the psychological
literature is considered fair to good.

We consider the 743 sentences that contain
events, and obtain a total of 2159 events from the
annotated Reddit data. The data was split into train,
test and validations splits with a ratio of 8:1:1 re-
sulting in 216, 221 and 1722 mentions for test,
validation and training, respectively.

This Reddit dataset, the first behavior classifi-
cation dataset grounded in the psychological defi-
nition of behavior, will be released alongside this
paper.

5.2.2 Models and Training
For the pipeline behavior extractor, we trained
BERT for token classification (BERT BC) and
Phi3 (Phi3 BC) for mention-level classification (see
Appendix A.2) on our expert-annotated event sen-
tences, using 10 epochs and a learning rate of 2e-5.
For evaluation, we combine BERT BC with human-
annotated events to estimate an upper bound, and
use both Phi3 BC and BERT BC with events ex-
tracted by the BERT EE model from our previ-
ous experiment. We compare these pipeline mod-
els with an end-to-end BERT token classification
model, predicting behaviors directly from the raw
input.

5.2.3 Results and Discussion
We report precision, recall and F1 values for ex-
act match of span and mention with and without
behavior classification in Table 2. We also display
an error analysis on token level using confusion
matrices for each classification in Figure 3 for the
two best performing pipeline models. Overall, the
end-to-end BERT model outperforms the pipeline
approach with a BERT EE model and a subsequent
BERT BC or Phi3 BC behavior classifiers. The
upper bound results using gold event annotations
show that with a perfect event extraction model,
a pipeline approach would significantly improve
behavior classification over an end-to-end model.
This suggests that the semantic information carried
in the tagged events could enhance performance if
captured accurately with the EE model. However,
the performance gap between pipelines using gold
versus predicted events illustrates the difficulty of
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accurate event extraction and how errors in this
step reduce the pipeline’s overall effectiveness. Ad-
ditionally, Phi3 BC performed poorly as a behavior
classifier and introduced further errors, possibly
due to the limited size of the Reddit dataset or a
suboptimal prompt.

The confusion matrices indicate that models can
learn to distinguish behaviors from non-behaviors,
which indicates the presence of identifiable patterns
that make behavior extraction statistically feasible.

With behavior classification
Model Prec. Rec. F1
Gold EE + BERT BC 82.50% 82.50% 82.50%
End-to-end: BERT BC 73.27% 73.61% 73.44%
BERT EE+BERT BC 67.17% 66.50% 66.83%
BERT EE+Phi3 BC 54.56% 52.78% 53.65%

Without behavior classification
Model Prec. Rec. F1
End-to-end: BERT BC 85.25% 85.65% 85.45%
BERT EE+BERT BC 83.73% 81.02% 82.35%

Table 2: Recall, precision and F1 value for exact match
of span and mention with and without behavior classifi-
cation on the English Reddit dataset.

5.3 Lessons Learned

Our experiments show that generative models are
less suited for EE, as they often produce false pos-
itives and hallucinations that compromise perfor-
mance and complicate evaluation. We compared a
pipeline using BERT EE for event extraction and
BERT BC or Phi3 BC for behavior classification
with an end-to-end BERT model that labels tokens
directly. We find that while the pipeline approach
can outperform direct token classification under
perfect EE, errors from the EE step accumulate
and degrade performance. Additionally, since large
clinical datasets are often unrealistic in real-world
settings and BERT performs significantly better,
we use BERT for downstream analysis on the Ger-
man data. We conclude that token level behavior
classification from raw input sentences performs
best on the English dataset. To assess how well our
approach generalizes across languages, we apply it
to structurally different German data, by compar-
ing a behavior classification pipeline (using both
gold and BERT-extracted events) to an end-to-end
BERT token classification model.

6 Experiments on German Clinical Data

Our main experiment involves the same steps as
the pilot with English data, but this time applied to

Figure 3: Normalized confusion matrices for behavior
classification with BERT event annotations (top) and
the gold annotations (bottom) on the Reddit dataset.

real clinical data in German.

6.1 A New Dataset

The English pilot study only includes newspaper
articles from CausalTimebank (for EE) and non-
clinical Reddit posts (for behavior extraction). For
proper evaluation in a clinical setting, we create
and annotate four transcribed sessions with parents
of autistic children and qualified psychologists ask-
ing directed questions about the child’s behavior
and development using the ADI-R interview. This
data was first TimeML annotated by the same clini-
cal experts that annotated the English dataset, and
subsequently behavior annotated using the same
scheme used for the Reddit dataset. In total, the
dataset contains 6566 events. We split our data by
patient since we want to be able to generalize to
other patients and simulate a realistic training en-
vironment. We select two patients for the training
dataset, leading to 4,254 events, and the two re-
maining ones for test and validations set, with 1123
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and 1189 events, respectively. We have enough
events to train an EE model and a subsequent be-
havior classification model, as well as a end-to-end
model on this data.

This second clinical dataset will also be made
publicly available after publication.

6.2 Models and Training

Based on our experiments on English data,
we select BERT-base-multilingual-cased6 for the
pipeline, and compare it with end-to-end classi-
fication from raw input. We do not use genera-
tive models, as we saw on the English data that
they achieve lower performance compared to the
token classification models. We prepare three dis-
tinct versions of the dataset for our experiments:
(1) one with raw inputs and event-tagged outputs
for training EE models; (2) one with raw inputs
and behavior-tagged outputs for training the direct
behavior classification model; and (3) one with
event-tagged inputs and behavior-tagged outputs
for training the behavior classification model us-
ing extracted event information. All models were
trained for 5 epochs.

6.3 Results and Discussion

Table 3 reports the results for four setups: (1) the
end-to-end BERT model, (2) a pipeline using BERT
for event extraction (EE) and either BERT or (3)
Phi3 for behavior classification, and (4) behavior
classification on human-annotated sentences.

The best performing model from raw inputs
is the end-to-end model, while the pipeline ap-
proaches suffer from error accumulation and perfor-
mance decline. The upper bound for the subsequent
behavior classification model is set by the EE com-
ponent of the pipeline, which explains the weaker
overall performance of the full pipeline.

The results on the clinical German data reflect
the same pattern found in the English piloting
experiment, which shows that the pilot on non-
clinical, easily available data did yield valuable
insights for this task that can be expanded to other
languages.

However, we observed a notable improvement
of ∼ 10% across all metrics in the German dataset
compared to the English dataset. This is most likely
due to the fact that our large clinical dataset con-
tains three times as many events as the English

6https://huggingface.co/google-bert/
bert-base-multilingual-cased

Reddit dataset, enabling more reliable learning for
the behavior classification model and resulting in
better downstream performance, particularly evi-
dent in the BERT BC using human annotations.
Additionally, its size of 6,566 events is of a similar
scale to the 6,811 events in the CausalTimeBank
dataset, allowing the German event extraction mod-
els to perform similarly to their English counter-
parts. A more detailed comparison between the
German clinical dataset and CausalTimebank can
be found in Figure 4. Since we split the German
data by patient to ensure a more realistic clinical
setting, event class distributions vary, potentially
affecting the EE model’s performance on the test
set.

With behavior classification
Model Prec. Rec. F1
Gold EE + BERT BC 92.93% 92.93% 92.93%
End-to-end: BERT BC 79.13% 81.11% 80.10%
BERT EE+BERT BC 77.48% 79.98% 78.71%

Without behavior classification
Model Prec. Rec. F1
BERT EE 89.16% 92.03% 90.57%

Table 3: Recall, precision and F1 value for exact match
of span and mention with and without behavior classifi-
cation on the German clinical dataset.

7 Conclusions

We introduce a novel approach for identifying be-
haviors in text to support ASD diagnosis, by for-
mulating behavior classification as a refinement of
EE. Our analysis focuses on ASD behaviors which
are described in third person by caretakers. Our
approach was tested both on a newly created Ger-
man dataset of clinical interviews with caretakers
of potential ASD patients–to our knowledge, the
first clinical German dataset with event and behav-
ior annotations–as well on an existing, publicly
available English dataset, which we also newly an-
notated using the same scheme.

Both of the new behavior classification datasets
created for this work, and annotated by psycholo-
gists with extensive training in TimeML annotation,
will be released.

Our results on both datasets show that the end-
to-end model outperforms pipeline models that use
an EE model followed by a behavior classifier, pri-
marily due to error accumulation in the EE step.
However, with optimal annotations in the EE step,
a pipeline approach can outperform the end-to-end
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Figure 4: Frequencies of different event classes in the English CausalTimebank dataset and our German clinical
dataset. The German data contains a more mixed profile, since we split by patients and not in a stratified way like
we did in for CausalTimebank.

model. These results are similar in both English
and German, suggesting that our approach is rooted
in semantics of events and behaviors.

We can also infer from the results that the appli-
cation of LLMs in the EE field is still challenging.
Overall, Phi3 outperformed T5 with a slight mar-
gin, but different prompts for Phi3 had a notable
impact on the performance indicating that prompt
engineering needs to be further improved. On be-
havior classification, Phi3 performed notably worse
than on EE, possibly because of the smaller dataset
and an non-optimized prompt.

These results show that the extraction of behav-
iors conceptualized in terms of EE especially cou-
pled with token classification has promise for the
further development of this technology as well as
implications for the development of clinical tool
for disorders with idiosyncratic descriptions of be-
haviors. For example, we presented a prototype
visual platform at HealTac2025, where clinicians
can upload texts such as session transcripts, and our
models extract and highlight events and behaviors
in the submitted text.

8 Limitations

Our work explores the application of NLP in area
of behavior classification in support of behavior
analysis and is aimed at descriptions by parents of
autistic children. Although we hope this work helps
clinicians focus on important parts of the treatment
and save time looking over transcripts and notes,
we emphasize that these models do not have a per-
fect accuracy and are subject to not highlighting
important parts of the text. Therefore, close analy-
sis of the outputs by clinicians remains crucial.

Our work covers English and German data, but
leaves many languages that might be syntactically
different, and therefore more difficult to annotate,
open for future work. Especially agglutinative lan-
guages might highlight the propagation of errors
in EE. Additionally, we release the first German
clinical dataset for behavior and event annotations,
but there is currently a lack of large scale clini-
cal datasets analyzing behavior and events in other
languages.
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A Appendix

A.1 EE prompt
The first prompt template (referred to as template
1 in the paper) includes no extra information about
the events and is similar to the T5 input, apart from
it containing a simple instruction:

′′<|user|>Your task is to extract the events in
a sentence. There are 7 event types to consider:
OCCURRENCE, I_ACTION, I_STATE, ASPEC-
TUAL, REPORTING, STATE, PERCEPTION. In
the following sentence, please extract all the events
based on the above classes. Remember, there can
be multiple events in a sentence:′′

We add the sentence, followed by
<|end|><|assistant|> as instructed on the model’s
webpage to generate the outputs. This prompt
yielded the best results.
The second prompt (template 2) includes example
annotations for each class and performed slightly
worse than template 1.

′′<|user|>Your task is to extract the events in
a sentence. There are 7 event types to consider:
OCCURRENCE, I_ACTION, I_STATE, ASPEC-
TUAL, REPORTING, STATE, PERCEPTION.
EXAMPLES:
REPORTING:<|user|>He said that the volcano was
spewing gases.<|end|> <|assistant|>He [REPORT-
ING]said[END REPORTING] that the volcano
was spewing gases.<|end|>

OCCURRENCE:<|user|>Two moderate erup-
tions shortly before 3 p.m. Sunday appeared to
signal a larger explosion<|end|>
<|assisstant|> Two moderate [OCCUR-
RENCE]eruptions[END OCCURRENCE]
shortly before 3 p.m. Sunday appeared to
[OCCURRENCE]signal[END OCCURRENCE] a
larger [OCCURRENCE]explosion[END OCCUR-
RENCE]<|end|>

I_ACTION:<|user|>Israel has been scrambling
to buy more masks abroad.<|end|>
<|assistant|>Israel has been
[I_ACTION]scrambling[END I_ACTION]
to buy more masks abroad.<|end|>

STATE: <|user|>No injuries were reported over
the weekend.<|end|>

<|assistant|>No [STATE]injuries[END STATE]
were reported over the weekend<|end|>

I_STATE:<|user|>The agencies fear they will be
unable to crack those codes to eavesdrop on spies
and crooks.<|end|>
<|assistant|>The agencies [I_STATE]fear[END
I_STATE] they will be unable to crack those codes
to eavesdrop on spies and crooks.<|end|>

ASPECTUAL:<|user|>The volcano began
showing signs of activity in April for the first time
in 600 years.<|end|>
<|assistant|>The volcano [ASPEC-
TUAL]began[END ASPECTUAL] showing
signs of activity in April for the first time in 600
years<|end|>

PERCEPTION:<|user|>Witnesses tell Birming-
ham police they saw a man running.<|end|>
<|assistant|>Witnesses tell Birmingham police they
[PERCEPTION]saw[END PERCEPTION] a man
running.<|end|>

In the following sentence, please extract all the
events based on the above class descriptions.′′

After this, we add the desired sentence followed
by <|end|><|assistant|>. The model performed
slightly worse with this prompt. A possible ex-
planation could be the lost in the middle problem,
where elements in the middle of a long prompt are
forgotten.

A.2 Behavior Classification Prompt

We experiment with only one prompt for behavior
classification. It includes a psychological definition
and three example sentences:

′′Behavior in psychology is defined as: ”That
portion of an organism’s interaction with its
environment that is characterized by detectable
displacement in space through time of some part
of the organism and that results in a measurable
change in at least one aspect of the environment”

Examples:
<|user|> My son is 5 years old & is said to have
level 1 autism In this sentence, does "said" describe
behavior?<|end|>
<|assistant|> said: yes<|end|>
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<|user|> Key words I should be looking for
on their websites that are green flags or red
flags? In this sentence, does "looking" describe a
behavior?<|end|>
<|assistant|> looking: no<|end|>

<|user|> He also likes books and reads books to
himself in his own " In this sentence, do "likes"
and/or "reads" describe behavior?<|end|>
<|assistant|> likes: no: yes<|end|>′′

To integrate the sentences from the dataset, we
extract the mentions and create a sentence listing
them as in the example. We exclude the three ex-
ample sentences from the dataset.
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Abstract

Existing datasets for semantic parsing lack ade-
quate representations of potentially idiomatic
expressions (PIEs), i.e., expressions consisting
of two or more lexemes that can occur with
either a literal or an idiomatic reading. As a
result, we cannot test semantic parsers for their
ability to correctly distinguish between the two
cases, and to assign appropriate meaning rep-
resentations. We address this situation by com-
bining two semantically annotated resources to
obtain a corpus of German sentences contain-
ing literal and idiomatic occurrences of PIEs,
paired with meaning representations whose
concepts and roles reflect the respective literal
or idiomatic meaning. Experiments with a state-
of-the-art semantic parser show that given ap-
propriate training data, it can learn to predict
the idiomatic meanings and improve perfor-
mance also for literal readings, even though
predicting the correct concepts in context re-
mains challenging. We provide additional in-
sights through evaluation on synthetic data.

1 Introduction

Meaning representations such as Minimal Recur-
sion Semantics (Copestake et al., 2005), Abstract
Meaning Representations (Banarescu et al., 2013)
or Discourse Representation Structures (Kamp and
Reyle, 1993) form a link between natural language
and the realm of symbolic computation, including
ontologies and logical reasoning. They have uses
in tasks such as information extraction, dialogue
systems, and computer-assisted study of natural
language semantics (Sadeddine et al., 2024). Mean-
ing representations have traditionally been con-
structed from text using rule-based precision gram-
mars or combinations of statistical syntactic parsers
and rule-based interpretation systems (Copestake
and Flickinger, 2000; Curran et al., 2007). More
recently, larger quantities of annotated sentence-
meaning pairs have made it possible to perform ac-

Decomposable verbal idiom: Don’t spill the beans!

¬
x e
spill.v.05(e) Agent(e, hearer)
Theme(e, x) secret.n.01(x)

Non-decomposable verbal idiom:
Are you pulling my leg?

e
pull the leg of(e) Agent(e, hearer)
Theme(e, speaker)

Literal occurrence of a verbal potentially idiomatic
expression: They like playing games on the
PlayStation 2.

x e f y z
person.n.01(x) like.v.02(e) Experiencer(e, x)
Stimulus(e, f) play.v.01(f) Agent(f, x)
Theme(f, y) Instrument(f, z) game.n.01(y)
entity.n.01(z) Name(z, “PlayStation 2”)

Figure 1: Discourse representation structures for three
sentences, containing different occurrences of poten-
tially idiomatic expressions (PIEs). The bolded words
are the components of the PIEs, the bolded concepts
express their meanings in the respective context.

curate data-driven text-to-meaning parsing (seman-
tic parsing) and meaning-to-text generation (e.g.,
Flanigan et al., 2014; van Noord et al., 2020; Wang
et al., 2023).

Datasets that have been constructed using com-
putational grammars typically have a more or less
strong built-in assumption that each occurrence of
a content word is associated with exactly one oc-
currence of a concept (i.e., of a word sense from
an ontology such as WordNet; Fellbaum, 1998).
Furthermore, one typically assumes that while lex-
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emes can be ambiguous, their senses do not depend
on co-occurrence with specific other lexemes.

These assumptions break down in the case
of phrasemes or multiword expressions (MWEs),
i.e., combinations of two or more words ex-
pressing a single sense (e.g., pull someone’s leg:
kid.v.01), or being associated with different but
specific senses when occurring together (e.g., spill
the beans: talk.v.04 and secret.n.01).
MWEs occur in a variety of forms (Baldwin and
Kim, 2010). In this paper, we focus on verbal
MWEs, i.e., MWEs whose syntactic head is a verb.
In particular, we focus on the subtype of verbal
idiom. Ramisch et al. (2018) define verbal idioms
(VIDs) as MWEs with at least two lexicalized com-
ponents including the head verb and at least one of
its dependents, excluding special cases like light
verb constructions, verb-particle constructions, in-
herently adpositional verbs or inherently reflexive
verbs. Following Nunberg et al. (1994), we further
distinguish two subtypes of verbal idioms: decom-
posable VIDs such as spill the beans where the lex-
icalized components still have individual meanings
even though they are specific to the combination,
and nondecomposable VIDs such as pull someone’s
leg where all lexical components express a single
concept together. Note also that even when two or
more lexemes can form a VID together, they can
still occur in the same syntactic configuration with
a literal, non-idiomatic, compositionally derivable
meaning. For example, the phrase playing games
can occur with an idiomatic but also with a literal
meaning. We are therefore dealing with potentially
idiomatic expressions (PIEs; Haagsma, 2020) with
both idiomatic and literal occurrences. It should be
noted that PIE occurrences need not be contiguous
but exhibit syntactic flexibility as in the beans were
spilled or the games that we played.

In the context of semantic parsing, PIEs present
specific challenges: 1) on encountering a PIE, the
parser has to decide whether it indeed has the id-
iomatic meaning in this context, and 2) if so, it
must produce the correct meaning representation,
meaning one or more concepts that are specific
to the idiom, and no additional concepts for ad-
ditional components of non-decomposable idoms
(see Figure 1).

In this paper, we demonstrate that existing se-
mantic parsers for discourse representation struc-
tures underperform on sentences containing literal
and idiomatic PIEs. We also show a way to remedy

this situation. To this end, we combine two seman-
tically annotated resources, the Parallel Meaning
Bank (PMB; Abzianidze et al., 2017, 2020) and
the dataset of Ehren et al. (2024), to obtain a cor-
pus of German sentences containing literal and id-
iomatic occurrences of PIEs, annotated with mean-
ing representations that reflect the correct meaning
in context (Section 2). We then show that enriching
the training data of a DRS parser with such data
improves its performance on sentences containing
idiomatic occurrences of PIEs, and in some cases
its performance overall. Nevertheless, it remains
challenging for the parser to reliably distinguish be-
tween literal and idiomatic uses, and also to choose
the correct concepts for idioms (Section 3). We pro-
vide further insights with an evaluation on synthetic
data (Section 4). We conclude in Section 5.

Besides these experimental designs and findings,
our contributions include several reusable datasets
which will be released upon publication, including
an adjudicated version of Ehren et al.’s semanti-
cally annotated idiom dataset, an accordingly rean-
notated version of sentences containing PIEs in the
Parallel Meaning Bank, and a synthetic dataset con-
taining the annotated idioms isolated in canonical
form, annotated with meaning representations.

2 Data

2.1 The Parallel Meaning Bank

The Parallel Meaning Bank (PMB; Abzianidze
et al., 2017, 2020) is a partially parallel corpus
of English, German, Italian, and Dutch texts, an-
notated with discourse representation structures
(DRS) following Discourse Representation Theory
(Kamp and Reyle, 1993), including word senses,
semantic roles, discourse connectives, scope, coref-
erence, etc. The annotations were created by an
NLP pipeline and hand-corrected by human an-
notators. Completely checked documents have
the status “gold”, partially checked ones, “silver”,
and unchecked ones, “bronze”. Even silver and
bronze documents have been shown to be useful
for training data-driven DRS parsers (van Noord
et al., 2018).

In the PMB, a document consists of one or
more sentences, paired with one DRS. Tradition-
ally, DRSs are drawn as boxes as shown in Fig-
ure 2a. The top part of a box contains the discourse
referents, which represent events, things, and other
entities. The bottom part contains conditions, in-
cluding a concept condition for each discourse ref-
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x
person.n.01(x) x = speaker

¬
e t y
time.n.08(t) t = now
sell.v.01(e) Agent(e, x) Time(e, t) Theme(e, y)
entity.n.01(y)

(a)

sell.v.01

time.n.08entity.n.01 person.n.01

speaker now

¬

Time
Theme Agent

= =

(b)

person.n.01 EQU speaker % I am not

NEGATION <1

time.n.08 EQU now

sell.v.01 Agent -2 Time -1 Theme +1 % selling

entity.n.01 % anything

(c)

Figure 2: DRS for the sentence “I am not selling anything” in (a) box notation, (b) graph notation, and (c) sequence
notation. The sequence notation additionally shows concept-token alignment information. Adapted from Wang et al.
(2023).

erent, saying what type of entity it is, relation con-
ditions encoding semantic roles and other relations
between entities, equality conditions linking refer-
ents to discourse constants such as speaker or
now, and complex conditions consisting of a log-
ical connective such as negation and one or two
embedded boxes. DRSs can also be represented as
discourse representation graphs (DRGs) as shown
in Figure 2b. Here, boxes and discourse referents
are represented as nodes. Referent nodes are la-
beled with their concepts. Box nodes have outgo-
ing edges to the introduced referents and complex
conditions, the latter labeled with discourse con-
nectives. Relation conditions are encoded as edges
between the referent nodes. Constants are encoded
as nodes with incoming edges labeled =. Finally,
this graph structure can be linearized as a sequence
of tokens (Bos, 2023) as shown in Figure 2c. Here,
nodes are encoded by their label, and edges are
encoded following their source node by their label
followed by a pointer indicating the relative posi-
tion of the sink node. Concept nodes are aligned to
the natural-language tokens that evoke them, also
shown in Figure 2c.

2.2 German Verbal PIE Data

Ehren et al. (2024) argue that idioms are underrep-
resented in the gold part of the PMB, and they re-
leased a dataset of 6 187 sentences from the PMB’s
German part that contain verbal potentially id-

iomatic expressions (PIEs), annotated for whether
the instance is idiomatic, and if so, for its sense,
assigned roles, and, in the case of decomposable
idioms, internal senses and roles. The following
are examples of the annotations in this dataset. (1)
is a PIE annotated as literal, (2) is a decomposable
idiom annotated with senses and internal and ex-
ternal roles, and (3) is a non-decomposable idiom
annotated with a sense and external roles.

(1) Tom
Tom

lag
lay

bewusstlos
unconscious

auf
on

dem
the

Operationstisch
operating table

PIE: auf dem Tisch liegen (“to be available; shown,
offered”)
Reading: literal

(2) Ich [Theme]
I

sitze [be.v.01]
sit

im []
in the

selben []
same

Boot [Attribute] [situation.n.02]
boat

wie
as

du
you

PIE: im selben Boot sitzen (“to be in the same boat”)
Reading: idiomatic

(3) Tom [Theme]
Tom

kämpft,
fights,

um
to

über []
over

die []
the

Runden []
rounds

zu
to

kommen [survive.v.03]
come

PIE: über die Runden kommen (“to support oneself”)
Reading: idiomatic

2.3 Adjudication

We extracted from Ehren et al.’s dataset the 2 204
sentences with a PIE annotated by at least one an-
notator as idiomatic, and thus with a semantic an-
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Table 1: Four types of adjudication decisions, with examples. Struck out lines represent annotations that were
discarded in favor of the other annotation. Struck out (underlined) spans represent parts of selected annotations that
were removed (added) by the adjudicator. Annotations without struck out or underlined spans represent annotations
that were approved unchanged in adjudication, shown here for comparison.

Consistent concepts and roles per sentence and per PIE type:
Das abgestürzte Flugzeug [Patient] ging [go up.v.06] in [] Flammen [] auf []
Das abgestürzte Flugzeug [Patient] ging [go up.v.01] in [] Flammen [] auf []
“The crashed plane went up in flames”

Die ,, Hindenburg [Patient] “ ging [go up.v.0106] plötzlich in [] Flammen [] auf []
“The ‘Hindenburg’ suddenly went up in flames”

Marking negation as part vs. not part of the idiom:
Käse [Theme] und andere Milchprodukte [Theme] bekommen [agree.v.06] mir [Attribute] nicht []
“Cheese and other dairy products do not agree with me”

Ich [Experiencer] kann [] sie [Stimulus] nicht [] ausstehen [loathe.v.01]
“I cannot stand her/them”

Treatment of auxiliary (including modal) verbs as not head of clause:
Ich [Experiencer] kann [interest.v.01] mit [] diesem Test [Stimulus] nichts anfangen [interest.v.01]
“I am not interested in this text” (lit. “I cannot begin anything with this text”)

Treatment of adjective copula and auxiliary sein as not part of idiom:
Du [Agent] musst auf alles [Beneficiary] gefasst [prepare for.v.01] sein [prepare for.v.01]
“You have to be prepared for anything”

notation. This results in a total of 4 600 annota-
tions (the number of annotations per sentence is
slightly above 2), across 957 different PIEs. The
first author went through the dataset manually and
resolved divergent annotations according to Ehren
et al.’s annotation manual. We also made sure that
the same PIE was annotated consistently across oc-
currences, using the same WordNet sense and the
same VerbNet roles for corresponding arguments.
Because it was a frequent source of disagreement
and affects automatic combination with the PMB
data through word-concept alignment information
(see next section), we made special adjudication
passes to ensure conformance with the annotation
guidelines wrt. the treatment of copulas, auxiliary
verbs, and negation words like nicht “not”. Exam-
ples are shown in Table 1.

2.4 Combining the Annotations with the PMB
Data

The resulting unique annotations were automati-
cally combined with the PMB 5.1.0, matching the
annotations by sentence, using the alignment be-
tween tokens and concepts provided with the PMB.
Examples are shown in Figure 3. For tokens an-
notated with a sense, the corresponding node was
relabeled with that sense. For tokens annotated

with a role, the incoming edge was relabeled with
that role. For tokens annotated with an empty pair
of brackets, the corresponding node and its incom-
ing and outgoing edges were removed. As a result,
we obtained 2 186 reannotated sentence-DRS pairs
with idiomatic readings of PIEs.

2.5 Datasets

We prepared the following datasets for training and
evaluating DRS parsers:
I: the 2 186 automatically reannotated sentences

containing idiomatic PIE instances, as described in
Section 2.4.
L: the 455 sentences marked by at least one

annotator in Ehren et al.’s dataset as containing a
literal reading of a PIE.

Note that both datasets may contain errors, as
most of them are “bronze” or “silver”, and reanno-
tation only fixes the annotation of the PIE instance.

3 Targeted Training on PIE Instances

We assess the performance of a seq2seq parser on
PIEs, comparing four different training conditions:
training on the unmodified PMB data (baseline),
adding available PIE instances into the training data
(enhanced), adding a balanced mix of literal and
idiomatic PIE instances into the training data (bal-
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Er [Experiencer] schwimmt [buck.v.02] gegen [] den [] Strom [Stimulus] [trend.n.01]
“He bucks the trend” (lit. “He swims against the tide”)

male.n.02 % Er

schwimmt.v.01buck.v.02 AgentExperiencer -1 Time +1 LocationStimulus +2 % schwimmt gegen den

time.n.08 EQU now %

tide.n.01 % Strom.

Sie steckt [despair.v.01] [Experiencer] den [] Kopf [] in [] den [] Sand []
“She despairs” (lit. “She puts the head into the sand”)

female.n.02 % Sie

steckt.v.01despair.v.01 AgentExperiencer -1 Time +1 Theme +3 Location +4 % steckt

time.n.08 EQU now %

female.n.01 % den

head.n.01 Participant -1 % Kopf in den

sand.n.01 % Sand.

Figure 3: Automatic combination of semantic idiom annotations with the PMB data via concept-token alignment.
The meaning representations are discourse representation structures in sequence notation (cf. Section 2.1). Struck
out (underlined) spans represent parts of the meaning representation that were removed (added) compared to the
original PMB data. Note that some of the replaced senses, such as steckt.v.01 or schwimmt.v.01, would
be incorrect even in a literal reading, since they are not WordNet senses but artifacts of the bootstrapping process for
the German DRS data.

anced), and weighing PIE instances more strongly
than other training instances (balanced×4).

3.1 Model and Evaluation Metric

We use the seq2seq parser of Wang et al. (2023) as
implemented by Zhang et al. (2024), with the pre-
trained ByT5 language model (Xue et al., 2022).
We further pre-train on PMB gold, silver, and
bronze data for 3 epochs, then fine-tune on gold
data (plus PIE data) for 10 epochs. We also fol-
low these papers by using Smatch (Cai and Knight,
2013), adapted to DRS, as the evaluation metric.

3.2 Data Splits

We split I and L randomly into five equal parts and
use a different part in each run for testing, reporting
results as the median of five runs. We call this part
Itest (Ltest ) and the remainder Itrain (Ltrain ).

For pre-training the baseline model, we use the
PMB 5.1.0 German bronze, silver, and gold train-
ing portions, but with sentences in Itest and Ltest
removed. For fine-tuning the baseline model, we
use the PMB 5.1.0 German gold training portion,
which does not overlap with Itest or Ltest .

For pre-training the enhanced model, we use
the same pre-training data as above except that sen-
tences in Itrain have their annotations replaced by
the modified ones. For fine-tuning, we additionally
add Itrain and Ltrain to the fine-tuning data.

For fine-tuning the balanced model, we do the

same but add Ltrain five times so that the count of
idiomatic and literal training instances is approxi-
mately equal.

For fine-tuning the balanced×4 model, we again
multiply all the idiomatic and literal training in-
stances by 4, thus weighting idiomatic PIE in-
stances 4 times and literal ones 20 times as heavily
as the standard training data. The value 4 was
found in preliminary experimentation to improve
accuracy for parsing idioms compared to 2 and to
be on par with 8.

We then evaluate 1) on the PMB 5.1.0 standard
gold test and dev sets; 2) on Itest and various sub-
sets, viz. sentences with idioms seen in training,
sentences with idioms not seen in training, and sen-
tences sampled from shortest to longest to have the
same mean length (in characters) as the standard
test set; 3) on Ltest . The output DRSs are evalu-
ated against the corresponding DRSs in the test sets
using the Smatch metric.

3.3 Results

Results are shown in Table 2. We see that, com-
pared to the baseline model, the enhanced model
improves scores significantly even on the standard
test and dev sets. This could be due to additional
data helping even when it is not gold and does
not directly address phenomena found in the test
set. We see that compared to the standard dev and
test sets, both models perform much worse on sen-
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baseline enhanced balanced balanced×4

standard test .815 .828* .824* .810
standard dev .827 .835* .832* .819
idiomatic .520 .572* .567* .606*
idiomatic seen .530 .580* .568* .604*
idiomatic unseen .518 .550* .522* .555*
idiomatic short .614 .679* .670* .739*
literal .650 .642 .658 .613

Table 2: Performance comparison of different models on the PMB 5.1.0 official test/dev data, on sentences with
idioms, on sentences with seen and unseen idioms, on short sentences with idioms, and on sentences with literal
PIE occurrences. Scores are macro-averages (mean) over the Smatch scores of the sentences; averaged (median)
over five runs, each with a different test fold of idiom and literal sentences. * indicates statistically significant
improvement over the baseline (p ≤ 0.05) according to a permutation test (Dror et al., 2018).

tences containing PIEs and especially idiomatic
occurrences, even when we downsample the lat-
ter to only contain idioms seen in training, or to
contain only short sentences. This is partly due
to idioms being challenging to handle, but also
points to the test sentences’ bronze/silver status,
which we address in Section 4. But we also see
that the enhanced model, additionally trained on
reannotated idiomatic instances as well as literal
PIE instances, performs several percentage points
better on the idiomatic instances. As may be ex-
pected, the improvement on idioms that have not
been seen in training is comparatively small. Per-
formance on literal PIE instances is worse than
the baseline model, suggesting that the enhanced
model is biased towards idiomatic readings. This
is not very surprising given the much larger size of
I compared to L. By contrast, the balanced model
avoids degradation on literal instances and in fact
improves accuracy (though not significantly) while
also still improving over the baseline significantly
on all other test sets, albeit slightly less than the
enhanced model. It is worth noting that targeted
training on PIEs can thus maintain performance
on literal instances although literal interpretations
are the default case in the standard training data.
Finally, the balanced×4 model achieves the best ac-
curacy on idiomatic readings, but performs worse
than the baseline on literal readings, and also de-
grades on the standard test sets.

4 Evaluation on Synthetic Data

The data in I and L is based on bronze and silver
documents in the PMB and thus contains errors,
even though concepts and roles representing the
meanings of idioms have been automatically fixed

in I. The above experiments thus give a some-
what misleading view of the parsers’ performance.
To better understand the performance on idioms
without any unrelated error sources, we perform
an evaluation on a synthetic ‘test set’ of minimal
sentences containing idioms, paired with DRSs that
are correct by construction, assuming the idiomatic
reading.

4.1 Construction of the Synthetic Dataset

We went through the adjudicated idiom sentences
and reduced each idiom to a natural-language
canonical form, similar to Odijk and Kroon (2024).
In our case, canonical forms are main clauses, man-
ually chunked, and decorated with senses and roles.
DRSs can be automatically generated from the
canonical forms by mapping placeholder words
such as etwas “something”, irgendwie “somehow”,
irgendwohin “somewhere”, or jemand “somebody”
to arbitrary fillers; we simply use general con-
cepts representing the meaning of the placeholders,
viz. entity.n.01, manner.n.01, location.n.01,
and person.n.01, respectively. For example:

(4) [ Jemand ]Patient
somebody

kommtdie.v.01
comes

[ ums
around

Leben ]
the life

“Somebody dies”
person.n.01 die.v.01 Patient -1 Time

+1 time.n.08 EQU now

(5) [ Etwas ]Stimulus
something

gehtannoy.v.01
goes

[ jemandem ]Experiencer
somebody

[ auf
on

die
the

Nerven ]
nerves

“Something annoys somebody”
entity.n.01 annoy.v.01 Stimulus -1

Time +1 Experiencer +2 time.n.08 EQU

now person.n.01
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baseline enhanced

dev .695 .767*
test .689 .765*

dev decomposable .706 .722*
dev non-decomposable .678 .752*

test decomposable .720 .736*
test non-decomposable .692 .757*

Table 3: Results on synthetic test data. * indicates
statistically significant improvement over the baseline
(p ≤ 0.05) according to a permutation test (Dror et al.,
2018).

(6) [ Etwas ]Patient gehtcome.v.04 [ in Erfüllung
]true.a.01
something goes into fulfillment
“Something comes true”
entity.n.01 come.v.04 Patient -1 Time

+1 Result +2 time.n.08 EQU now

true.a.01

We obtained 890 sentence-DRS pairs in this way
and split them randomly into an even-sized devel-
opment set and test set.

4.2 Experiments

We use the baseline model and the enhanced model
from Section 3.2. Now, instead of 5-fold cross
validation, we add all of I and L to the fine-tuning
data and evaluate on the synthetic data.

4.3 Results

Results are shown in Table 3. With the syntactic
structure and the interpretation of arguments trivial
in the synthetic data, scores now almost exclusively
reflect the model’s ability to map the idiom to the
correct sense(s) and roles. Again, the enhanced
model does significantly better than the baseline
model.

We also see that the baseline model does bet-
ter on decomposable than on non-decomposable
idioms. This makes sense, as the correct interpre-
tations of decomposable idioms are structurally
closer to literal readings, with two senses rather
than one. In the enhanced model, this is reversed:
it does better on non-decomposable idioms. This
shows that the model has learned to predict the
non-canonical structure of non-decomposable id-
ioms. The better scores are probably also due to
one sense being statistically easier to predict cor-

rectly than two, and to the stronger representation
of non-decomposable idioms in our training data.

We show here some examples that the baseline
model parses wrongly and the enhanced model
parses correctly:

(7) Jemand
Somebody

macht
makes

sich
themself

über
about

jemanden
somebody

lustig
funny
“Somebody mocks somebody”
Baseline: person.n.01 make.v.01 Agent -1
Time +1 Product +2 Theme +3 time.n.08
EQU now male.n.02 person.n.01
funny.a.01 AttributeOf -1
Enhanced: person.n.01 mock.v.01 Agent
-1 Time +1 Theme +2 time.n.08 EQU now
person.n.01

(8) Jemand
Somebody

setzt
sets

jemanden
somebody

über
about

etwas
something

in
in

Kenntnis
knowledge
“Somebody informs somebody”
Baseline: person.n.01 put.v.01 Agent -1
Time +1 Theme +2 Theme +3 time.n.08
EQU now person.n.01 entity.n.01
Enhanced: person.n.01 inform.v.01 Agent
-1 Time +1 Recipient +2 Topic +3
time.n.08 EQU now person.n.01
entity.n.01

(9) Etwas
Something

geht
goes

vor
before

sich
itself

“Something happens”
Baseline: entity.n.01 go.v.01 Theme -1
Time +1 time.n.08 EQU now
Enhanced: entity.n.01 happen.v.01 Theme
-1 Time +1 time.n.08 EQU now

(10) Jemand
Somebody

weiß
knows

etwas
something

zu
to

schätzen
value

“Somebody appreciates something”
Baseline: person.n.01 know.v.01
Experiencer -1 Time +1 Stimulus +2
time.n.08 EQU now entity.n.01
appreciate.v.01 Agent -4 Theme -1
Enhanced: person.n.01 appreciate.v.01
Experiencer -1 Time +1 Stimulus +2
time.n.08 EQU now entity.n.01

As for the effect of the frequency of an idiom
in the training data, a scatterplot (Figure 4) shows
that although high scores on the synthetic data are
already achieved with as little as one training ex-
ample, reliably decent scores are only seen around
10 or more training examples.

5 Conclusions, Limitations, and Future
Work

Potentially idiomatic expressions (PIEs) present a
special challenge in semantic parsing due to their
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Figure 4: Scatterplot of idiom frequency in the training
data against smatch score in the synthetic development
data.

idiomatic meanings in some contexts, often with a
single concept expressed by two or more content
words. For an existing state-of-the-art system for
parsing German text to discourse representation
structures, we have shown that it struggles with
sentences containing verbal PIEs more than with
the average sentence. We have also shown that the
gap can be partially closed without changing the
parser’s sequence-to-sequence architecture, simply
by injecting sentences with PIEs into the training
data, where sentences with idiomatic readings have
been reannotated to reflect these.

Our contributions also include an adjudicated
version of Ehren et al.’s German semantically an-
notated verbal PIE dataset, a correspondingly re-
annotated version of 2 186 German sentences in
the Parallel Meaning Bank which we intend to sub-
mit for inclusion into the next release of the PMB,
and a synthetic dataset of 890 idioms in isolated
canonical form, with corresponding meaning repre-
sentations.

There are two main limitations: the first concerns
evaluation. Because we had only partially corrected
test data at our disposal, we still only have an ap-
proximate picture of how accurately models handle
PIEs. We partially addressed this by evaluating
on synthetic data, but future work should aim to
get an accurate picture on idiom semantic parsing
accuracy on real data.

The second limitation applies to semantic pars-
ing in general: meaning representations are expen-
sive to annotate, thus the training data is limited in
quantity and quality, with model training having
to rely on partially corrected data. Although we

achieved improved scores on sentences containing
idioms, in many cases the models still struggle to
pick the correct sense. As performance grows on
idiomatic instances, it goes down on literal ones,
suggesting that models seem to prefer one or the
other and struggle with distinguishing between lit-
eral and idiomatic occurrences in context.

Future work should build on our synthetic
dataset by using it not just for testing but also for
training, automatically generating from the canoni-
cal forms sentences more varied in clause type, em-
bedding complexity, fillers for placeholders, nega-
tion, modality, tense, etc. In addition, it may be
worth making the decision between idiomatic and
literal readings explicit and delegating it to a spe-
cialized model.
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Abstract

An understanding of natural language correc-
tions is essential for artificial agents that are
meant to collaborate and converse with hu-
mans. We present some preliminary experi-
ments using language-to-action models investi-
gating whether discourse structure, in particular
CORRECTION relations, improves the action
prediction capabilities of language-to-action
models for simple block world tasks. We focus
on scenarios in which a model must correct a
previous action, and present a corpus of syn-
thetic dialogues to help explain model perfor-
mance.

1 Introduction

In order to successfully complete a shared task,
such as building a block structure in a shared envi-
ronment, participants must accumulate a body of
shared information about the goal of the task, the
changing state of play, and their beliefs and inten-
tions, collectively referred to as common ground
(Clark, 1996). Errors are integral to the process
of building common ground, as participants natu-
rally explore and test their strategies through trial
and error (Thomaz et al., 2019). When natural
language is among the modes of communication
available to participants, corrective speech acts pro-
vide an efficient and information-rich mechanism
with which they can identify and quickly resolve
errors (Benotti and Blackburn, 2021). For artifi-
cial agents that can collaborate with humans using
natural language, the ability to understand and use
corrections is essential.

While most speech acts entail a monotonic up-
date of the common ground (elaborations or ac-
knowledgments, for example), a correction entails
a revision to the common ground, and is an exam-
ple of a divergent speech act (Asher and Lascarides,
2003). An agent that understands corrections must:

Action α

Instruction β

Action γ

CORRECTION(α, β)

CORRECTION(α, γ)

RESULT(β, γ)

Figure 1: A Correction Triangle is formed by two
CORRECTION relations and a RESULT relation, and
appears in dialogues where an initial correction to an
action results in a new action.

1. Recognize an utterance as an instance of a
divergent speech act.

2. Determine the content of the correction by
identifying the parts of the previous dialogue
and/or shared environment it refers to.

3. Revise the common ground according to 1
and 2, and make any required changes to the
shared environment.

The Minecraft Dialogue Corpus (MDC)
(Narayan-Chen et al., 2019) features interactions
in which two humans, playing the roles of Builder
and Architect, collaborate to construct block struc-
tures in a simulated 3D environment. Architect
and Builder communicate via chat window, where
Architect describes the structure to Builder, who
may then place and remove blocks on the grid.
The MDC provides paradigmatic examples of
collaborative conversation situated in a shared
environment, wherein the players’ linguistic
contributions and the non-linguistic Builder
actions are highly interdependent, particularly
when Builder performs an erroneous action which
the Architect must then verbally correct. The
Minecraft Structured Dialogue Corpus (MSDC)
(Thompson et al., 2024b) adds an annotation layer
to the MDC, drawing semantically-typed relations
(Asher and Lascarides, 2003) between player utter-
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ances and actions, which elucidate the overarching
semantic structure—or discourse structure—of the
interaction. In the MSDC, correction scenarios
are captured in substructures called Correction
Triangles: an Architect instruction β stands in the
CORRECTION relation to the previous erroneous
action α, eliciting a new action γ, which is the
RESULT of the Architect correction and also a
CORRECTION of the erroneous action (Figure 1).

The MSDC discourse structures, including Cor-
rection Triangles, were shown to be automatically
retrievable with state-of-the-art accuracy using the
Llamipa discourse parser (Thompson et al., 2024a).
Presumably, an agent utilizing the output of this
parser would have at least a partial understanding
of correction scenarios, since predicting the rela-
tion CORRECTION(α, β), amounts to identifying
utterance α as a correction (”no, I said add a blue
block” (1), and connecting it to the previous con-
text β (Builder places red block) (2). However, the
question we want to address in this paper is whether
an agent can leverage the discourse structure of an
interaction to inform its subsequent manipulation
of the environment. This goes beyond the pars-
ing task: given a dialogue context and its semantic
structure, including CORRECTION(α, β), we want
to know whether the presence of the structure im-
proves agent predictions of the action sequence γ
that would appropriately complete the Triangle.

In what follows, we briefly discuss current work
relevant to our question. We then describe the
language-to-action model that will serve as our
agent for action prediction experiments using the
MSDC. We explain how our preliminary results
incentivize the creation of synthetic correction di-
alogues, which allow for more tightly controlled
experiments. We then discuss model performance
on synthetic correction dialogues and directions for
future work.

2 Related Work

Previous approaches to building agents that un-
derstand corrections in collaborative tasks differ
with respect to model architectures. Rubavicius
et al. (2024) and Appelgren and Lascarides (2020)
build agent models based on pared down cognitive
architectures for interactive task learning (Laird
et al., 2017), where a corrective utterance generates
symbolically encoded, probabilistically weighted
hypotheses, and is used to update the agent’s be-
lief state and inform an action plan. Alternatively,

Chiyah-Garcia et al. (2024) create a language-to-
action model by fine-tuning a large vision language
model (VLM) on instruction-action pairs from a
block world dataset (Bisk et al., 2016). They aug-
ment the instructions with third position repairs
(Schegloff, 1992), and use masking techniques dur-
ing finetuning to encourage the model to recog-
nize the repair. In our experimental setup, we
also use an LLM-based language-to-action model:
our agent model is based on Nebula (Chaturvedi
et al., 2024), a Llama3 architecture fine-tuned on
the MDC dialogue-to-action corpus. Furthermore,
we use the discourse structure annotations from the
MSDC, which make corrections explicit, whereas
the repairs in Chiyah-Garcia et al. (2024) were un-
marked.

Discourse parsing predicts the semantic relations
that hold between the elementary units of a dia-
logue, and produces a structural representation of
the interaction. The most recent approaches to pars-
ing based on LLMs formulate the structure predic-
tion task as a sequence-to-sequence generation task
(Li et al., 2024), where the parser takes the dialogue
units as input, and outputs the discourse structure
as a sequence of typed tuples. The Llamipa parser
(Thompson et al., 2024b) provides state-of-the-art
results on the MSDC using this approach. Our
agent model uses the Llamipa structure representa-
tion, in which the discourse graph is flattened into a
string of typed tuples, where each tuple represents
a single relation (see Figure 2).

Discourse structure has been used to improve
performance on various downstream tasks. Deva-
tine et al. (2023) leverages discourse information to
predict political orientation of news articles, while
Rennard et al. (2024) uses it to improve extrac-
tive meeting summarization. Sharma et al. (2025)
demonstrate that discourse structure can improve
a model’s performance on mathematical reasoning
tasks. The experiments described in this paper are
the first to use discourse structure to improve action
prediction in situated collaborative tasks.

Finally, data synthesis has been increasingly
used to provide high-quality training data for LLMs
and LLM-based agents (Liu et al., 2024; Shichman
et al., 2024), as well as to perform targeted tests
of LLM knowledge (Wu et al., 2024). Synthetic
data has been shown to be especially helpful in de-
termining which concepts an agent trained on the
MDC’s ambiguous natural language instructions
actually learned (Chaturvedi et al., 2024; Jayan-
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MDC (F1) SynthCorr300 (Accuracy) [Action error/ Site error]

All relations Correction Overall D1 D3 D5

Nebula 0.39 0.57 0.79 [0.18/0.03] 1.00 [0/0] 0.73 [0.07/0.02] 0.64 [0.1/0.02]
Nebulipa 0.37 0.50 0.80 [0.17/0.02] 1.00 [0/0] 0.75 [0.06/0.02] 0.66 [0.1/0.01]
Nebulipa-E 0.37 0.52 0.67 [0.29/0.04] 0.98 [0.01/0] 0.57 [0.12/0.02] 0.46 [0.17/0.01]

Table 1: Performance of the context-aware (Nebula) and structure-aware (Nebulipa) models. Nebulipa-E(mpty)
shows the results of an ablation in which structure is removed from the test samples. Column 1 shows the net
action F1 scores on the MDC test set using all relation types; Column 2 shows F1 calculated on just those MDC
validation samples whose predicted action sequence is mediated by a CORRECTION relation (see Figure 3). For a
full breakdown of MDC splits see Appendix C. Columns 3-6 give the accuracy scores on the 300 synthetic correction
dialogues broken down by the CORRECTION distance.

navar et al., 2025). This work is the first to create
synthetic dialogues with discourse annotations to
test the efficacy of discourse structure in a down-
stream task.

3 A structure-aware language-to-action
model

The Nebula language-to-action model (Chaturvedi
et al., 2024), was trained using the MDC to predict
a Builder action sequence given the previous dia-
logue, and was evaluated using the same net action
F1 metric as the baseline MDC model (Jayannavar
et al., 2020). Given a completed action sequence,
net action F1 is computed on newly placed blocks
that exactly match the color and position of those
in the corresponding gold action sequence. Nebula
leveraged the large context window of the Llama3-
8b architecture (Dubey et al., 2024), which allowed
it to predict an action sequence using the entire
previous dialogue context, resulting in a context-
aware model that doubled the baseline F1 on the
MDC.

In order to see whether the addition of discourse
structure might further improve performance on the
action prediction task, we augmented each MDC
training sample with the gold1 discourse structure
from the MSDC. We formatted the structure as a
sequence of typed tuples, and appended it to the
dialogue context (see Figure 2). Following the Neb-
ula training regime, we finetuned Llama3-8b using
QLoRA (Dettmers et al., 2023) for 3 epochs on
the augmented data (training parameters shown in
Appendix A). The result was Nebulipa, a structure-
aware language-to-action model.

The leftmost column of Table 1 compares the

1Since the purpose of these experiments is to see whether
the inclusion of structure makes any difference at all, we use
the gold annotations. Of course, a fully autonomous agent
would predict actions as well as structure.

net action F1 scores of Nebula and Nebulipa on the
MDC augmented with the full MSDC structures;
i.e., all 17 relation types (Thompson et al., 2024b).
Nebulipa-E (“Nebulipa-Empty”) shows the result
of an ablation in which the structure was removed
from the test samples, in order to provide some fur-
ther indication of whether Nebulipa, trained with
structure, learned to use it. We see that this brute
inclusion of structure hinders rather than improves
model performance, as F1 drops two points. Also,
Nebulipa-E shows no change with respect to Nebu-
lipa. If Nebulipa were using discourse information
for action prediction, we would expect its removal
to result in a drop in F1; yet this result indicates
that, overall, training with structure did not lead to
the model to exploit it.

4 Focusing on Correction Triangles

The preliminary result above shows that includ-
ing full discourse structures, containing many dif-
ferent relation types, does not improve language-
to-action model performance on the MDC action
prediction task. We note that the relational struc-
ture presents each relation uniformly, even though
some types are more informative than others, given
the discourse context. As mentioned in Section 1,
CORRECTIONS describe revisions to the common
ground, and so are often more informative than
other relation types holding between less salient
parts of the context: COMMENT, ACKNOWLEDGE-
MENT, etc.

To test this, we took a subset of MDC samples2

in which the final action sequence to be predicted
by the model is the result of an Architect correction,
i.e. where a CORRECTION relation is critical to the
final prediction (Figure 3). The second column of

2For this test we looked at a subset of the MDC validation
set, 149 of 1051 samples. See Appendix C for a description
of MDC splits.
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Table 1 shows that F1 improves on the subset, but
is still higher for Nebula, thus corroborating the
first result. Further, F1 improves when structure is
removed (Nebulipa-E), suggesting that the addition
of structure hinders performance.

Nevertheless, we maintain that this result must
not be taken as decisive for three reasons. The
first is that the longer dialogue contexts feature a
dense relational structure (with uniform relations,
as just mentioned), presenting the possibility that
the signal provided by more informative relation
types, such as CORRECTION, is greatly diminished;
this is illustrated in Appendix B. Second, the MDC
instructions contain highly context-dependent lan-
guage, rich in anaphora and ellipsis, which often
does not indicate a single correct action sequence.
For example, we see in Figure 3 that Nebulipa
performs the correct net action given the previous
dialogue, but then places additional blocks—yet
there is nothing in the dialogue that prohibits this.
The second reason, already mentioned above, is
that the contexts are long and can be very dense.
Lastly, since the net action F1 metric requires ac-
tion sequences match the exact positions of the gold
sequences, it unjustly discounts actions that are the
result of instructions that are naturally ambiguous,
e.g. put a block in a corner, and thus obscures the
model’s true performance.

Taking these factors into consideration, we de-
termined that a set of short dialogues in simple
correction scenarios, in which we could zero in on
Correction Triangles, would help us more clearly
assess whether structure can be leveraged for action
prediction. To this end, we synthetically generated
SynthCorr300, a set of 300 short dialogues3. In
each dialogue, Architect gives three instructions
for simple shapes, one of which Builder botches,
eliciting a correction in Architect’s final turn (Fig-
ure 2). The shapes are towers and rows, which
Nebula was shown to build with high accuracy
(Chaturvedi et al., 2024), as well as single blocks,
which Nebula was able to place and remove on
rows and towers already present on the grid. For
each instruction, a shape and its parameters were
chosen randomly: one of six possible colors and
a size (for towers and rows) of 3, 4, or 5 blocks.
Repeated colors, shapes, or sizes occurs in a major-
ity of the dialogues (Table 2), however, each shape
is disambiguated by its location descriptor (centre,

3The SynthCorr300 data, and the code used to gen-
erate it, are available at https://huggingface.co/
datasets/linagora/synthetic_corrections

Figure 2: A SynthCorr300 dialogue example in which
the given CORRECTION connects the Architect at turn
8 with the Builder error at turn 3, and so is of dis-
tance 5 (D5). NB: the SynthCorr300 dialogues use
the Llamipa structure representation (Thompson et al.,
2024a), where the relations are typed tuples appended
after the dialogue in a “Structure” field.

corner edge). To botch an instruction for a tower or
row, we randomly chose whether to remove or add
(+1 or -1) a single block from the number of blocks
given by Architect. For single block placement in-
structions, we changed the color of the block given
by Architect by randomly choosing from the five
remaining colors.

We generated 100 dialogues for each of the three
possibilities for Builder error: after the first, sec-
ond, or third instruction. We also generated the
discourse structure, which was identical for each
dialogue except for the first relation of the Cor-
rection Triangle CORRECTION(α, β). This latter
varied with the position of the error, e.g. if it was
after the first instruction, the CORRECTION would
reach farther back into the dialogue context (dis-
tance 5) than it would if it was after the second
(distance 3) or third (distance 1) instruction.

SynthCorr300 tests whether a model can accu-
rately produce the action sequence γ which would
effectively complete the Correction Triangle, and
whether the addition of discourse structure im-
proves its performance. The correct action se-
quence for each dialogue is clearly defined and
can be checked automatically.
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Figure 3: MDC sample where the predicted sequence
is the RESULT of Architect CORRECTION in 65 and a
CORRECTION of the action sequence in 63.
NB: to conserve space we truncated the dialogue context of
this sample, shown in full in Appendix B.

D1 D3 D5 All
No ambiguity 17 12 13 42
Color only 7 11 9 27
Shape only 41 39 43 123
Color and shape 35 38 35 108

Table 2: Sample counts by relation distance D between
the CORRECTION source and target, and ambiguity type:
Color only: shapes are all different, but colors are re-
peated; Shape only: colors are different but shapes are
repeated.

5 Results

There was only a one-point difference between
Nebula and Nebulipa on SynthCorr300 (Table 1),
but unlike on MDC tests, Nebulipa was in the
superior position. Furthermore, Nebulipa-E ab-
lation conformed to previous expectations: accu-
racy dropped substantially when the structure was
removed, indicating that a model trained with struc-
ture does learn to leverage it. When we look at
the performance by CORRECTION distance, we see
that the pattern holds at longer distances, although
performance degraded for all models as distance
increased, which is unsurprising given that the ma-
jority of CORRECTIONS in the MSDC training data
(∼ 70%) are of distance 3 or less.

To consider another angle of comparison, we
looked at two ways in which models failed to gen-
erate the correct action sequences. Action errors
occurred when the model correctly identified the
shape to be changed (after the first, second, or third
instruction), but did not perform the correct actions
to do so. Site errors occurred when the model
changed a shape that was not indicated by the COR-
RECTION, misidentifying the botched sequence.

Returning to the discussion in Section 1 of what is
in involved in understanding corrections, we can
roughly align Site errors with the failure to identify
what portion the previous dialogue the CORREC-
TION refers to (2), e.g. which instruction. We can
align Action errors with the failure to properly re-
vise the common ground (3), e.g. to perform the
correct block placements and removals.

Table 1 gives action errors and site errors as a
proportion of total samples. There was little differ-
ence in error rates between Nebula and Nebulipa,
although with Nebulipa-E we saw an increase in
Action errors. Since a CORRECTION representation
Corr(x,y) effectively acts as a pointer to the botched
sequence x, we would expect an increase in Site er-
rors once the pointer was taken away. Instead, there
was a greater incidence of Action errors. While the
SynthCorr300 data is too small to support conclu-
sions on the relationship between error types, the
preliminary indication here is that the CORREC-
TION relations are not used to pick out the error
site (perhaps the model can already do this using
linguistic context) but rather to provide important
semantic information about what the model is sup-
posed to do at the site. For instance, it is possible
the Architect utterance “The tower ... should be 3
blocks.” might only lead to model to correctly infer
the correct actions (i.e., remove one block from the
tower) when combined with a semantic marker for
CORRECTION. Possible future work might thus
involve varying the synthetic dialogues by replac-
ing the final CORRECTIONS with a different but
coherent relation type such as ELABORATION, and
testing for changes in Action errors.

6 Conclusion

In this paper we broach a question in discourse that
has gotten relatively little attention—can discourse
structure guide action predictions?—and explore
a particular LLM-based approach for an initial in-
vestigation. The results of our synthetic dialogue
experiments showed that, overall, access to large
contexts overrides the effects of adding explicit dis-
course representations. However, there was some
indication that models trained with structure did
learn to exploit CORRECTIONS, using them to cor-
rect relevant parts of the discourse context with
higher accuracy. In future work, we will enlarge
the synthetic data in order to further investigate the
action error results, as well as consider more varied
correction scenarios.
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7 Limitations

This work explores the role of discourse structure
in conversational instruction following scenarios
where the agent’s goal is to perform the correct
action sequences in a shared environment. It only
considers one instantiation of such a scenario, in
which the agent builds block structures on a 3D
grid. The experimental results are obtained using
agent models based on generative LLMs, where
the discourse structure is represented as a string
of typed tuples, and appended after the dialogue
text in the model inputs. Certainly there are other
ways to represent and feed structure into the agent
model—or perhaps to integrate structural informa-
tion into the model architecture rather than the data
inputs—as well as other model architectures which
would be worth exploring, such as graph neural
networks. The synthetic data generated is small,
and covers only a portion of the variation possible
in correction dialogues with respect to the source
and complexity of the Builder action errors, and to
the referential ambiguity of correction language.
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A Model Parameters

GPUs

4 NVIDIA Volta V100

Hyperparameters

Training epochs 3
batch size 4
optimizer Adam
learning rate 2e-4

learning rate scheduler linear warm-up and
cosine annealing

warm-up ratio 0.03
gradient clipping 0.3
lora r 64
lora (alpha) 16
lora dropout ratio 0.1

lora target modules Only Attention Blocks
(q proj, v proj)

quantization for Llama3 4-bit NormalFloat

Table 3: Details on computing resources and hyperpa-
rameters for finetuning Llamipa.

Table 3 gives the hyperparameters used for fine-
tuning Nebula and Nebulipa, along with the com-
puting resources. We adapt the finetuning code
from the following repository4.

4https://github.com/mlabonne/
llm-course/blob/main/Fine_tune_Llama_
2_in_Google_Colab.ipynb

B MDC sample

Figure 4: MDC sample where the predicted sequence
is the RESULT of Architect CORRECTION in 65 and a
CORRECTION of the action sequence in 63. The full
discourse structure is given with CORRECTIONS high-
lighted. The Correction Triangles are superimposed on
the context for reference.
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C MDC data

MDC test MDC validation

# samples F1 # samples F1 # Correction samples F1

Nebula 1615 0.39 1335 0.39 149 0.57
Nebulipa 1471 0.37 1194 0.355 149 0.50
Nebulipa-E 1471 0.37 1194 0.363 149 0.52

Table 4: Number of samples and model F1 for the MDC test and validation splits. The Correction set discussed in
Section 4 is a subset of the validation set.

The Nebula language-to-action model predicts Builder actions given the entire previous dialogue
context. We prepared the MDC dialogues for training and testing Nebula by dividing it into dialogue-
action pairs. Thus the number of data samples in a split is equal to the total number of Builder actions
across all dialogues in that split. The 100 validation dialogues contain 1335 action sequences, and the 101
test dialogues contain 1615 action sequences—the dialogues in test were on average longer (had greater
number of utterances) than those in validation (Thompson et al., 2024b).

The MSDC 5 provides complete dialogue structure annotations for all MDC dialogues. Adding structure
from the MSDC to the MDC samples for Nebulipa training was not straightforward. During the MSDC
annotation campaign, some of the Builder action sequences were fused together into Complex Discourse
Units (see Figure 1 in Thompson et al. (2024b)), which lead to a reduction in the overall number of
separate action sequences, as can be seen in Table 4. When the action sequences were combined, the
dialogue moves between them also shifted. As a result, the MDC data used for Nebulipa is not identical
to the data used for Nebula (ignoring the addition of structure to the Nebulipa data). However, the overlap
between them is large enough to warrant their comparison: 116 of the 1194 ( ∼ 9%) samples in the
Nebulipa validation set were not present in the Nebula set, and 99 out of 1471 ( ∼ 7%) of samples in the
test set.

In Section 4 we isolated the samples in the validation set where the action sequence to be predicted was
the target of a CORRECTION relation. There were 182 such samples in the Nebulipa data, but only 149 of
these were also present in the Nebula data.

5https://huggingface.co/datasets/linagora/MinecraftStructuredDialogueCorpus
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Abstract

Word associations have a longstanding tradition
of being instrumental for investigating the or-
ganization of the mental lexicon. Despite their
wide application in psychology and psycholin-
guistics, analyzing word associations remains
challenging due to their inherent heterogeneity
and variability, shaped by linguistic and ex-
tralinguistic factors. Existing word-association
taxonomies often suffer limitations due to a
lack of comprehensive frameworks that capture
their complexity. To address these limitations,
we introduce a linguistically motivated taxon-
omy consisting of co-existing meaning-related
and form-related relations, while accounting
for the directionality of word associations. We
applied this taxonomy to a dataset of 1,300
word associations (FAMWA) and assessed it
using various LLMs, analyzing their ability to
classify word associations. The results indicate
higher inter-annotator agreement with our tax-
onomy compared to previous studies (κ = .60
for meaning and κ = .58 for form). However,
models such as GPT-4o perform only modestly
in relation labeling (with accuracies of 46.2%
for meaning and 78.3% for form), which calls
into question their ability to fully grasp the
underlying principles of human word associa-
tions.

1 Introduction

The word association task is a classic psychological
experiment in which participants respond sponta-
neously with the first word(s) that come to mind
(e.g., cat, bark, bone) when presented with a spe-
cific cue word (e.g., dog). For more than a century,
word associations have been used by psychologists
and psychiatrists to investigate cognitive processes,
psychological behavior patterns, mental disorders,
language acquisition, multilingualism, and the over-
all structure of the mental lexicon (see Galton 1879;
Jung 1910; Kent and Rosanoff 1910; Deese 1965;

Riegel and Zivian 1972; Meara 1983; a.o.). Exper-
iments conducted across multiple languages have
shown that word associations are characterized by
both heterogeneity and variability. On the one hand,
responses may be influenced by a wide range of re-
lationships between cues and responses, depending
on formal, semantic, and syntactic properties, as
well as extralinguistic knowledge and cultural fac-
tors. On the other hand, there is considerable vari-
ation in responses across individuals, with greatly
varying degrees of convergence depending on the
cue word. This diversity poses challenges for lin-
guistic analysis, and various taxonomies of word-
association relations have been proposed to accu-
rately account for word associations.

Although common elements of classification
emerge from previous studies, there is no uni-
versally accepted framework for describing word-
association relations, as existing taxonomies
present various limitations. The categories used
to analyze associations are not always explicitly de-
fined, and some taxonomies focus only on a single
aspect of word-association relations (e.g., seman-
tic characteristics), while others merge semantic
and formal relations into flat hierarchies, poten-
tially leading to conflicting or incomplete descrip-
tions. In addition, directionality is rarely consid-
ered, although the cue-response sequencing and
the non-reciprocal nature of word associations call
for a specific account of asymmetrical relations.
Finally, taxonomies are seldom evaluated through
inter-annotator agreement or computational mod-
els, limiting their validation and reliability.

In this study, we propose a linguistically mo-
tivated taxonomy of word-association relations
based on a critical examination of previous classi-
fications. The taxonomy includes two co-existing
levels of linguistic analysis related to form and
meaning, and takes into account the directional-
ity of word associations. We apply this taxonomy
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on a dataset of 1,300 word associations in English
using a well-defined annotation protocol, while as-
sessing annotation quality through inter-annotator
agreement. Furthermore, we evaluate the ability
of generative language models to classify word as-
sociations according to our taxonomy, exploring
how well they capture the diversity of relations in
word associations, and providing a detailed analy-
sis of model performance. Overall, the main con-
tributions of the study include (i) a theoretical and
methodological reflection on the analysis of word-
association relations, (ii) the creation of a finely
annotated dataset of word associations covering
formal and semantic relations, and (iii) a discussion
of how language models handle the heterogeneity
of lexical relations within word associations.

2 Background

2.1 Linguistic description of word associations

A close examination of word associations reveals
that they are not restricted to lexical relations,
which alone cannot account for the full range of
relationships observed between cues and responses
(see, e.g., Schulte im Walde et al. (2008) for Ger-
man). Across the literature, linguistic descriptions
addressing specifically word associations often dis-
tinguish between syntagmatic, paradigmatic, and
clang associations (see, e.g., Deese 1962; Glanzer
1962). Syntagmatic associations are observed be-
tween words that may cooccur in context (e.g.,
friend-best), whereas paradigmatic associations in-
volve words from the same lexical class with re-
lated meanings (e.g., certain-sure), and clang as-
sociations are based on phonological similarities
between cues and responses (e.g., hat-cat). Tra-
ditionally, these categories have been considered
as mutually exclusive, which presents challenges
when analyzing word pairs that could belong to
multiple categories. More broadly, the tripartite
classification between syntagmatic, paradigmatic,
and clang associations has been criticized for being
too coarse-grained, while still failing to account for
all word associations, and relying on overly vague
category definitions.

To address these challenges, more fine-grained
analyses of word-association relations have been
proposed. Fitzpatrick (2006, 2007) introduced a
taxonomy based on 4 main categories (meaning-
based, position-based, form-based, and erratic),
further divided into 17 subcategories for a more
detailed classification. Similarly, Santos et al.

(2011) used 10 basic categories to describe re-
sponse words, notably accounting for the direc-
tionality of associations (Tversky, 1977). For in-
stance, they distinguished between “domain higher
category” and “domain lower category” to differ-
entiate cases in which the response represents a
superordinate or a subordinate concept relative to
the cue. However, these fine-grained taxonomies
still conflate the formal and semantic aspects of
word-association relations into a single classifica-
tion, implying a complementary distribution that
does not always apply in practice.

Another classification approach is based on the
system proposed by Wu and Barsalou (2009),
originally designed to analyze concept represen-
tations, but later applied to semantic feature norm-
ing (Bolognesi et al., 2017; Vivas et al., 2022) and
word associations (Liu et al., 2022; De Deyne et al.,
2024). This framework distinguishes between tax-
onomic, situational, entity, and introspective prop-
erties, with the potential for further division into
more detailed classes (see, e.g., McRae et al. 2012).
However, an inherent limitation of this taxonomy is
that not all relations in word associations are based
on property descriptions, nor are they always deter-
mined semantically. As a result, restricting the anal-
ysis to this taxonomy may lead to an incomplete
characterization of word associations, particularly
by overlooking their more formal aspects.

Three key observations emerge from the discus-
sion above. First, both formal (i.e., morphological
and phonological) and semantic relations can drive
word associations, and a comprehensive taxonomy
should integrate both aspects to fully capture word-
association relations. Second, while formal and
semantic relations should be distinguished, they
should not be treated as mutually exclusive, as
there is no logical incompatibility in formal and
semantic motivations for word associations. A mul-
tilevel analysis is necessary to reflect both the lin-
guistic relations underlying word associations and
the complexity of the cognitive processes involved.
Third, a detailed analysis of word-association re-
lations must account for both symmetrical (e.g.,
synonymy, phonological resemblance) and asym-
metrical relations (e.g., hyponymy, morphologi-
cal derivation). Given that word associations are
by definition oriented from cues to responses, and
reciprocity between them is rarely observed, tax-
onomies including directional classes are essential
to provide a fine description of word associations.
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2.2 Existing datasets

Word associations have been collected for various
languages, on a growing scale over the years (see,
e.g., Kiss et al. 1973; Nelson et al. 2004 for En-
glish). SWOW is currently the largest multilingual
word-association dataset, covering 19 languages1.
In this paper, we focus on its English part, which
was collected via crowdsourcing (De Deyne et al.,
2019). For each of 12,282 English cues, 100 par-
ticipants were asked to answer the first 3 words
coming to their mind, resulting in a dataset of over
150k unique cue-response pairs, each associated
with the number of participants who answered the
response at each position (hereafter R1, R2, and
R3). De Deyne et al. (2019) checked that the contin-
ued response paradigm of the English SWOW and
the more heterogeneous participant sample did not
affect properties compared to other single-response
English datasets, and observed small evidence for
response chaining—cases of R2 being influenced
by R1 response.

Smaller word association datasets include the
labeling of cue-response pairs into categories, pos-
sibly based on participants’ explanations for the
associations. For example, Fitzpatrick (2006) col-
lected single-response associations from 40 partic-
ipants for 60 cues, conducted retrospective inter-
views, and categorized the associations according
to the participants’ explanations. Similarly, Liu
et al. (2022) asked participants to both produce as-
sociations and explain their responses, compiling
the WAX dataset, which contains 15k unique cue-
response pairs and 19k cue-response-explanation
triples. Among these, 1,602 triples were classi-
fied into 16 word-association categories, half man-
ually by humans and half automatically, based on
the identification of explanation patterns associated
with certain labels—a method that may affect the
reliability of the classification. The inter-annotator
agreement for the human classification was mea-
sured but found to be only moderate (Cohen’s κ =
.42). A possible limitation of the explanation-based
approach is that, although prompting participants
to provide explanations for their associations may
help clarify the cue-response relation, it can also in-
troduce bias by making responses less spontaneous,
as already observed by Woodworth (1938).

1https://smallworldofwords.org/en/
project/home

2.3 Computational approaches to word
associations

Studies on word associations using pre-trained lan-
guage models have developed recently, following
three lines of research. Some researchers have com-
pared the properties of word associations with those
of word embeddings. For instance, A. Rodriguez
and Merlo (2020) found that the top-K neighbors
of a cue encoded with BERT (Devlin et al., 2019)
often contain human responses.

Computational models have also been employed
to mimick the word association task. Vintar et al.
(2024) prompted encoder-decoder language mod-
els to provide an unlimited list of response words
given a cue in Slovene and English, from the En-
glish and Slovene SWOW datasets. Abramski et al.
(2025) prompted three decoder-only large language
models (LLMs) to produce three word associations,
using the English SWOW cues. While both works
report relatively low overlap between the human
and models’ associations, Abramski et al. (2025)
found that human and models’ responses do share
semantic properties: when building a semantic net-
work based on the associations (one network for
human associations, and one network per prompted
LLM), the authors report the same strong corre-
lation level between the ease of lexical retrieval
for human participants and the closeness in the se-
mantic word association network2, for all the four
networks (one human, and three LLM-based).

A third line of research focuses on learning or
using models to classify cue-response relations.
For example, Liu et al. (2022) used the WAX
dataset, which contains cue-response-explanation
triples, and designed various tasks to assess how
well language models capture the underlying re-
lations between cues and responses. In particular,
they trained relation classifiers based on BERT and
BART (Lewis et al., 2020), but reported relatively
low performance (weighted F1 = 48%). Similarly,
De Deyne et al. (2024) prompted GPT-4 to classify
a fraction of the human-labeled part of the WAX
dataset (among other datasets3). They reported a
classification F-score of 47%, indicating that the

2There is a negative correlation between the reaction time
of participants to a lexical decision task and the distance of
input-target pairs within the semantic network.

3Three other datasets were used: two related to concept-
feature pairs, and a labeled word-association dataset cited as
”Chen et al. (2024)”, but whose reference is erroneous and
cannot be found online. The dataset is reported to have a
surprisingly high Cohen’s κ (.81, twice as much as for WAX),
but it cannot be found either.
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Round Sample Meaning Form # pairs

1 1 .23 - 100

2 2 .39 - 100

3
3 .36 .45 50
4 .65 .46 50
5 .63 .58 50

4
6 .54 .55 50
7 .54 .64 50
8 .37 .60 50

5
9 .67 .55 50
10 .75 .63 50
11 .56 .62 50

3-5 3-11 .60 .58 450

Table 1: Inter-annotator agreement (Cohen’s kappa)
across annotation rounds for double-annotated samples.

model struggles with either the task, the taxonomy
of word-association relations, or both.

In this paper, we propose a linguistically moti-
vated inventory of cue-response relations meeting
the requirements outlined in Section 2.1. We evalu-
ate the relation taxonomy through inter-annotator
agreement on a sample of English word associ-
ations extracted from SWOW. Additionally, we
investigate word association classification using
LLMs, both on our dataset and relation inventory,
and on the WAX dataset and inventory (Liu et al.,
2022). The relatively low performance observed
for both leads us to discuss whether models have
sufficient knowledge of the principles underlying
human word associations.

3 A taxonomy of cue-response relations

This section presents the taxonomy we used to clas-
sify word-association relations, along with a la-
beled dataset of cue-response pairs. Crucially, we
employed a dual-level classification, where the re-
lation between a cue and a response is annotated
for both meaning and form. We also took the direc-
tionality of the relations into account to reflect the
asymmetry of the associations.

3.1 Methodology

We adopted an inductive approach to develop our
taxonomic model, starting with basic linguistic cat-
egories that distinguish lexical relations, semantic
features, argumental relations, and modification for
the semantic part of the classification, and phono-
logical and morphological relations for the formal
part. These classes were explicitly defined and
subsequently refined through multiple rounds of

annotation and adjudication. Annotation guide-
lines were established, including a decision tree to
systematize the annotation process4.

Three expert annotators conducted double-blind
annotation and adjudication over 5 rounds, on ran-
domly selected samples from SWOW, focusing
on associations between cues and R1 responses
provided by at least three participants5. The anno-
tation guidelines were revised after each round,
and the process continued until a satisfactory
inter-annotator agreement was reached. Sample
sizes and inter-annotator agreement (IAA, Cohen’s
kappa scores) for each round of annotation are pro-
vided in Table 1.

The multi-level annotation with co-existing la-
bels for meaning and form was introduced after
Round 2, following the observation that a single
label was insufficient to capture the complexity
of association relations. For example, in the pair
pickup-truck, the cue is a hyponym of the response
(semantic label), and cue and response also form
the compound word pickup truck (formal label). As
can be seen in Table 1, the IAA increased signif-
icantly following the introduction of the two sep-
arate taxonomies (in Round 3), but remained sta-
ble in subsequent rounds, despite continued refine-
ment of the annotation guidelines. Calculating IAA
across all samples after taxonomy split (Rounds
3-5, Samples 3-11, totalling 450 instances), we
obtained a Cohen’s kappa of .60 for the Meaning
taxonomy (34 labels) and .58 for Form (6 labels),
representing a notable improvement over the results
reported by Liu et al. (2022) for WAX (κ = .42,
across 16 labels).

On top of the 450 double-annotated pairs, we
sampled additional pairs from the SWOW dataset,
annotated by a single expert. We obtained a
dataset of 1,300 cue-response pairs, annotated for
both form and meaning relations (hereafter the
Form And Meaning Word Associations (FAMWA)
dataset). The distribution of Meaning labels in
FAMWA is provided in Figure 16. Importantly,
these 1,300 cue-response pairs were randomly sam-
pled from the SWOW dataset, as an attempt to pre-

4The dataset and the guidelines are available at https:
//github.com/mariro8/FAMWA.

5We deliberately excluded words given only as second
(R2) or third responses (R3) to better align with the standard
single-word association task.

6The distribution for Form labels is quite skewed, with
1,070, 70, 98, 23, 23, and 16 items for ‘none’, ‘compo R+C’,
‘compo C+R’, ‘in mwe’, ‘similar’, and ‘morpho’ labels, re-
spectively.
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Figure 1: Distribution of Meaning labels in FAMWA.
The various C/R:role x categories are grouped into 2
single C/R:role categories, resulting in 20 labels.

serve the natural distribution of word association
categories. This contrasts with the WAX dataset, as
will be detailed when analyzing LLM classification
in Section 4.

3.2 Resulting taxonomy
The final taxonomies for Form and Meaning consist
of 34 and 6 categories, respectively (see Appendix
B for the two lists of categories and their descrip-
tion). The Meaning taxonomy includes both lexi-
cal relations (i.e., synonymy, antonymy, hyponymy,
etc.) and non-lexical relations (i.e., semantic fea-
tures, semantic roles in predicate-argument rela-
tions7, modifiers, etc.). The Form taxonomy distin-
guishes between phonological similarity, morpho-
logical relations (affixation or compounding), and
multi-word expressions (when the cue and the re-
sponse are part of a complex lexicalized expression
involving other components). Both taxonomies in-
clude a ”none” relation, which applies when the cue
and response are unrelated in meaning or form, as
well as an ”other” label in the Meaning taxonomy
to account for idiosyncratic relations.

Importantly, both the semantic and the formal
categories are oriented, in order to capture asym-
metrical relations. For instance, semantic roles
were annotated when the cue is a typical argu-
ment of the response or vice-versa. A pair such
as promise-keep was thus coded as C:role theme,
since the cue promise is the argument of keep with
the role Theme, while the inverse pair would be
analyzed as R:role theme. Similarly, the sequences
C+R and R+C were distinguished when cues and

7We used the semantic role tagset from Verbnet (Kip-
per et al., 2006), following the associated guidelines
(https://verbs.colorado.edu/verb-index/
VerbNet_Guidelines.pdf), and annotated semantic
roles with the lowest possible role in the hierarchy.

responses form compound words. For example, the
pair shopping-bag was annotated as a C+R com-
pound whereas the inverse pair would be classified
as an R+C compound.

4 Ability of language models to classify
associations

We now focus on examining the extent to which
language-model-based systems are able to clas-
sify word associations, using human-designed lin-
guistic classifications. Previous works have pro-
vided abundant evidence that LLMs have linguistic
knowledge, and in particular lexical knowledge
(see, e.g., Kello and Bruna 2024 and Hayashi 2025,
who showed LLMs’ ability to accurately detail lex-
ical properties of words and to distinguish word
senses in context). De Deyne et al. (2024) re-
ported that GPT-4 performed poorly in classifying
word associations with the WAX dataset and rela-
tion inventory, achieving an accuracy of only 47%.
We hypothesize that a dataset with better IAA can
lead to improved model performance. To test this
hypothesis, we prompted various LLMs to label
cue-response pairs and evaluated their performance
on the FAMWA dataset. We also compared per-
formance using the WAX dataset and taxonomy,
which highlights the impact of category distribu-
tion.

4.1 Adjustments in taxonomies

To compare the classifications using taxonomies
of roughly equal size, we merged some of the la-
bels in our Meaning taxonomy—more precisely
we merged all the C:role x and R:role x labels into
C:role and R:role, respectively—and we dropped
the labels with less than 10 instances8, as well as
the corresponding instances (10 instances in total).
This resulted in a dataset used for classification of
1,290 instances (hereafter FAMWA-1290) with a
Meaning relation inventory of 17 labels (shown as
the first 17 bars in Figure 1), comparable in size to
the 16 labels of the WAX taxonomy.

4.2 Models

Among the ever-growing list of available LLMs, we
selected GPT-4o-mini, Llama.-3.1-70B and GPT-
4o, namely three models of small, medium and
large size.

8C/R:quant (C (resp. R) can be used as a quantifier of R
(resp. C)) and conv (C and R are converse words)
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4.3 Evaluation datasets

We tested the selected LLMs on FAMWA-1290
for Meaning labels and then proceeded to evalu-
ate the best model only (GPT-4o) on other taxon-
omy/dataset pairs: FAMWA-1290 for Form labels,
the complete labeled WAX (consisting of 1,602
instances), and the human-labeled WAX (725 in-
stances). Notably, for more than half of the labeled
instances, gold WAX labels were automatically ob-
tained using patterns found in the explanations that
participants provided during the word association
task9. Since the automatically labeled instances
are biased towards categories for which reliable
patterns could be designed, they do not reflect the
true distribution of categories among SWOW cue-
responses. Hence, we also provide results on the
human-labeled part of WAX.

4.4 Experimental protocol

We tested each model in three settings: zero-shot,
few-shot (with exactly one example per label), as
well as “implicit” few-shot, in which the descrip-
tion of a given category is accompanied by an ex-
ample in parentheses. The same examples were
used in few-shot and implicit few-shot settings,
and throughout the experiments.

Our prompts included three distinct elements:
the task description, the list of labels and their de-
scriptions, and the input/output format. A fourth
section is added in the few-shot setting, provid-
ing one example of input and expected output per
label, in the desired format. We performed prelim-
inary tests with a few formulations, for the task
description and the input/output format (see the
variants of each section in Appendix C). In these
preliminary experiments, we tested 3 variants for
the input/output format section (see Table 8 in Ap-
pendix C), which resulted in marginal performance
differences. We then retained 4 formulations for the
task description section, and a single formulation
for the other sections of the prompt, resulting in
4 prompt variants which we tested in a systematic
way for all the models, datasets and settings.

We used a zero temperature for all the experi-
ments, hence forcing the models to always generate
the most probable token at each position. When
parsing the models’ answers, we removed any sym-
bols and converted the text to lowercase to match

9For instance, searching the pattern ”opposite” within the
explanations allowed Liu et al. (2022) to automatically classify
76 instances into the Antonym category.

the answer with the label names. We counted the
answers containing no known labels as incorrect.

In the few-shot and implicit few-shot settings,
we removed the instances used as examples from
the testing instances.

Labels: FAMWA Meaning

Instances: FAMWA-1290

Models Zero Impl. Few

GPT-4o-mini 32.1 (4) 27.2 (2) 36.6 (1)

Llama-3.1-70B 41.0 (3) 41.2 (3) 42.3 (3)

GPT-4o 45.1 (3) 46.2 (2) 46.0 (1)

Labels: WAX

Instances: full WAX (1602)

GPT-4o 52.1 (3) 53.8 (4) 57.5 (1)
Instances: WAX human-labeled (725)

GPT-4o 41.7 (1) 45.1 (3) 46.1 (3)

Labels: FAMWA Form

Instances: FAMWA-1290

GPT-4o 78.3 (1) 76.6 (3) 75.0 (3)

Table 2: Accuracies for cue-response pair classification
across datasets, models and settings (zero-shot, implicit
few-shot, and few-shot). The best accuracy for the 4
prompt variants is reported, with their preferred task
variant in the prompt indicated in parentheses (see Table
6 in Appendix C).

4.5 Results

The results of the experiment are provided in Ta-
ble 2. Analysis of the results on FAMWA-1290 for
Meaning labels reveals a consistent and expected
trend: performance improves systematically with
increasing model size across all prompt settings
(zero, implicit few-shot, and few-shot). However,
even in the best-performing setup—the implicit
few-shot configuration—the accuracy reaches only
46.2%, showing that the overall performance of the
best model is still limited.

Concerning prompt settings, providing exam-
ples, either in implicit few-shot or few-shot, system-
atically elicited better results than zero-shot. This
suggests that, given the technical nature of the la-
bels, the models struggle to “understand” them and
their descriptions, and benefit from the inclusion
of examples. In general, the implicit few-shot set-
ting provided slightly lower performance than the
few-shot approach, suggesting that the models take
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advantage of examples presented in the expected
input/output format. Still, this pattern did not apply
to the FAMWA-1290 dataset with GPT-4o, since
the best settings for Meaning and Form were the
implicit few-shot and zero-shot, respectively.

We also compared the automatic classification
of cue-response pairs between WAX and FAMWA-
1290 Meaning inventories10. However, the com-
parison is limited by differences in evaluation in-
stances and category distribution in the datasets.
The classification task proved to be easier with the
full set of WAX instances than with the FAMWA-
1290 instances, since GPT-4o in few-shot set-
ting achieved an accuracy of 57.5% on full WAX
(vs. 46.2% on FAMWA-1290 Meaning labels in im-
plicit few-shot). Yet, the performance dropped to
46.1% on the human-labeled part of WAX, which
more accurately represents the distribution of cate-
gories found in SWOW cue-response pairs, similar
to the performance on the FAMWA-1290 Meaning
instances11.

The accuracy was higher for the predictions of
the FAMWA-1290 Form labels (78.3%), but this
is largely attributable to the highly imbalanced dis-
tribution of classes, as will be discussed in the
analysis of the performance across categories.

Performance across categories The overall ac-
curacies presented in the previous section conceal
substantial variation in both model performance
and category prevalence. In this section, we in-
vestigate these differences on FAMWA-1290, as a
dataset that reflects the category distribution ob-
served in SWOW. Focusing on GPT-4o in the
implicit few-shot setting, as the best-performing
model and configuration, we examine the F1-score
and number of instances for each of the FAMWA-
1290 Meaning labels in Figure 2. The results
show substantial variation across categories, rang-
ing from F1 = 77.4 for the Antonym label to null
performance for several others. It is worth noting
that this performance ranking does not correspond
to the frequency ranking in FAMWA (see Figure
1). For instance, Antonym was predicted more ac-
curately than Synonym despite being ten times less
frequent in FAMWA, while R:role, which appears

10Note the WAX inventory does include a category “com-
mon phrase” which pertains to a formal classification, but most
labels in WAX are semantic, hence the WAX inventory is more
comparable to FAMWA Meaning than to FAMWA Form.

11De Deyne et al. (2024) obtained 47.1% on a fraction of
the human-labeled WAX dataset when prompting an under-
specified version of GPT-4.

Figure 2: GPT-4o performance in the implicit setting
on the FAMWA-1290 Meaning labels (excluding 17
instances used in prompt examples and 3 unpredicted
relations). Lexical relations are shown in red and non-
lexical relations in blue.

three times more often than Antonym (80 vs. 26
instances), was not predicted at all by GPT-4o.

The best classified relations were lexical ones
(Antonym, Synonym, as well as R:hyper and Co-
hyponym to a lesser extent). Hyponymy was easier
to detect when the response was a hypernym of
the cue (F1 = 43.7 for R:hyper) than vice-versa
(F1 = 21.8 for R:hypo), which is surprising given
the reciprocal nature of the relation. This under-
scores the usefulness of using oriented categories
when analyzing model performance. The Typical
and R:feature categories are the only non-lexical
relations that were predicted with moderate suc-
cess (F1 > 40%), whereas the performance on all
other relations remains poor (F1 < 40%). More-
over, in symmetric relations such as R:feature and
C:feature, the R:x categories were consistently pre-
dicted more accurately than the C:x categories—
for example, the prediction was better for R:feature
and R:modifier than for C:feature and C:modifier.
This suggests increased difficulty when the re-
sponse is more central than the cue12.

Turning to the breakdown by Form labels (Ta-
ble 3), the model mostly predicted the absence of

12The breakdown per WAX label is provided in Table 9
in Appendix D, together with rough mappings with the
FAMWA labels when applicable. It too shows varying per-
formance across categories, and the same two best predicted
categories (Antonym and Synonym).
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Figure 3: Accuracy of GPT-4o predicted Meaning la-
bels, on FAMWA-1290, broken down across bins of
associative strength of the pairs.

a formal relation—unsurprisingly given its preva-
lence in the dataset—but performed poorly across
all other categories. We note though a relative
ability to detect morphological relations, counter-
balanced by a tendency to overpredict this category
(P = 23.1, R = 1.0, F1 = 37.5). Moreover, identify-
ing compounds proved more challenging for R+C
compounds (F1 = 25.5) than for C+R compounds
(F1 = 45.8), highlighting the model’s difficulty in
learning a pattern where the linguistic order (R then
C) differs from that presented in the prompt (C then
R).

Label P R F1 Nb

none 90.3 88.0 89.1 1062
compo C+R 63.6 35.7 45.8 98
morpho 23.1 1.0 37.5 15
similar 33.3 30.4 31.8 23
compo R+C 34.1 20.3 25.5 69
in mwe 5.6 17.4 8.4 23

Table 3: Performance of GPT-4o in zero-shot setting,
for each of the FAMWA-1290 Form labels.

Performance across associative strengths We
additionally examined whether cue-response pairs
that are frequently provided by humans are easier
for the models to classify. We used the concept
of associative strength (De Deyne et al., 2019),
defined for a cue-response pair (c, r) as the number
of participants who gave r (as R1) in response to
c, normalized for the total number of participants
who provided at least one response for the cue c.

Figure 3 shows the performance of GPT-4o for
the FAMWA-1290 Meaning labels, broken down
by associative strength. There is no clear correla-

tion between associative strength and classification
accuracy, which varies across bins. However, bins
with an associative strength above .55 generally
exhibit higher accuracy compared to those with
lower strength. Interestingly, this shift aligns with
lexical relations surpassing non-lexical relations
within the gold data13. Yet, it should be noted that
the number of instances per bin, from where this
shift happens up to the strongest bin, is lower than
20 (with the last 5 bins having between 3 and 10
instances). Consequently, any conclusions based
on these bins should be interpreted cautiously due
to the limited sample size.

5 Conclusion

Our efforts to develop a linguistically motivated
taxonomy of word-association relations proved
effective, as we achieved higher inter-annotator
agreement than comparable studies using differ-
ent analytical frameworks. Integrating a dual-level
analysis of formal and semantic relations, while
also accounting for directionality in associations,
is not only more satisfactory from the perspective
of linguistic description, but also ensures greater
stability and consistency in annotation quality, at
least with expert annotators. Nevertheless, the ob-
served agreement remains moderate, highlighting
the inherent challenge of producing a metalinguis-
tic analysis of word associations. This difficulty
is frequently noted by researchers who attempt to
classify word associations, and it contrasts with
the naturalness of the word association task itself,
which is effortless as it relies only on the existence
of the mental lexicon. Arguably, the basic task of
generating word associations and the metalinguis-
tic task of analyzing them involve fundamentally
distinct cognitive processes and engage contrasting
aspects of the language faculty.

While expert human annotators achieve only
moderate agreement, even advanced models like
GPT-4o exhibit mediocre performance in analyz-
ing semantic relations between cues and responses,
despite their well-documented linguistic capaci-
ties. This is congruent with the previous conclu-
sion that the word association task and its analysis
leverage different types of capabilities. Moreover,
LLMs’ ability to classify word associations is not
improved by refinements in descriptive frameworks
and varies considerably across relation classes. The

13The bin with strength between .90 and .95 is the only ex-
ception, both in accuracy and number of non-lexical relations.
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limited performance of LLMs in labeling word
associations should be analyzed in light of their
ability to produce them. The inherent heterogene-
ity and variability of word associations pose chal-
lenges not only for their metalinguistic analysis,
but also for their generation by language models.
Future research should explore this generative ca-
pacity in greater depth, for example through de-
tailed analysis of the LLM-generated association
norms reported in LWOW (Abramski et al., 2025).
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Limitations

While this study provides insights into the clas-
sification of word associations, some limitations
should be acknowledged.

First, we used exclusively English, which re-
stricts the generalizability of the findings to other
languages. Word associations are known to be in-
fluenced by linguistic and cultural aspects, thus,
it can be interesting to explore whether the pro-
posed taxonomy and observed patterns hold across
different languages.

Second, the dataset used was relatively small,
consisting of only 1,300 instances. While this al-
lowed for detailed annotation and analysis, expand-
ing the dataset would improve the robustness of the
taxonomy and enable more reliable evaluation of
model performance.

Finally, this study was conducted on a small
scale due to the limited availability of expert an-
notators and the highly time-consuming nature of
the annotation process. The reliance on a small
group of experts, while ensuring high-quality anno-
tations, may introduce biases or limit the diversity
of perspectives in the classification process.

A Examples of form-meaning annotation
for word associations

Figure 4: Examples of Meaning and Form annotations
for word associations.

B Form taxonomy and Meaning
taxonomy

We detail the FAMWA inventory for Form (Table
4) and Meaning (Table 5) labels with their descrip-
tions. Short labels were used in the human an-
notation while their extended form was used for
prompts.

C Prompts for labeling word associations

We provide below the various forms of prompts
we tested on Llama-3.1-8B/70B. A single prompt

is made of a description of task (4 variants shown
in Table 6), the list of labels with their description
(Table 7), and the description of the expected output
format (Table 8).

D GPT-4o performance on WAX
human-labeled dataset broken down
per WAX label

We detail the performance of GPT-4o on the human-
labeled part of the WAX dataset (725 instances).
We provide the WAX label and the corresponding
FAMWA label, if a mapping is possible, with the
F1-score performance and the total number of in-
stances per class (see Table 9).
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Short labels Prompt labels Definitions Examples
compo C+R compound cue response the sequence C R forms a compound hermit-crab

compo R+C compound response cue the sequence R C forms a compound rights-human

in mwe multiword expression R and C belong to the same multiword ex-
pression, containing other elements

pedal-metal

morpho morphological relation R and C belong to the same derivational or
inflectional paradigm

gave-gift

similar similar C and R are similar in graphical or phono-
logical form but not morphologically re-
lated

hat-cat

none no relation No formal relationship roof-house

Table 4: FAMWA Form inventory: short labels, corresponding labels used in prompts, short definitions, and
corresponding examples.

Short labels Prompt labels Definitions Examples
syno synonym The cue and the response are synonyms belly-stomach

anto antonym The cue and response are antonyms large-small

transpo transposition The cue and the response are synonyms but
they have a different part-of-speech

smelly-stink

cohypo cohyponym The cue and the response have a close common
hypernym but they are not synonyms

weight-height

typical typical There is an obvious (and implicit) predicate
that links the cue and the response or when
the eventuality denoted by the cue typically
cooccurs with that denoted by the response (or
vice versa)

honey-bee

R:hyper hypernym The response is a hypernym of the cue labrador-dog

R:hypo hyponym The response is a hyponym of the cue pets-cat

R:holo holonym The response is a holonym of the cue roof-house

R:mero meronym The response is a meronym of the cue universe-stars

C:feature response’s feature The cue is a semantic feature of the response green-grass

R:feature cue’s feature The response is a semantic feature of the cue sauna-hot

C:modifier response’s modifier The cue is used as a modifier of the response metallic-paint

R:modifier cue’s modifier The response is used as a modifier of the cue debt-school

C:role x response’s argument C is an argument of R with semantic role x pillow-sleep

R:role x cue’s argument R is an argument of C with semantic role x hike-woods

C:quant response’s quantifier C can be used as a quantifier of R bunch-grapes

R:quant cue’s quantifier R can be used as a quantifier of C item-one

conv converse C and R are converse words prey-predator

other other relation The cue and the response are in a semantic re-
lation of different type than those listed above

trip-vacation

none no relation No semantic relation between cue and response shall-we

Table 5: FAMWA Meaning inventory: short labels, corresponding labels used in prompts, short definitions and
corresponding examples. C/R:quant and conv labels were discarded in the evaluation.
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Tasks Description

Variant 1 Objective: Given a word association, consisting of a pair of cue and response, label the
semantic relation between these pairs with a label based on the specified criteria.

Variant 2 Objective: Given a word association task where a cue word elicits a response word,
classify the semantic relation between the cue word and the response word using one
of the labels described in the specified criteria.

Variant 3 Objective: You’re a linguist interested in semantic relations between words. Given a
pair of words, a cue word and a response word, classify the semantic relation between
the cue and the response using one of the labels described in the specified criteria.

Variant 4 Objective: You’re a linguist interested in semantic relations between words. Given a
pair of words, composed by a cue and a response, classify the pair into its corresponding
semantic relation using the labels described in the specified criteria.

Table 6: Variants for the first section of the prompts: description of the task to perform.

Criteria:
Synonym: The cue and the response are synonyms (CUE:recycle, RESPONSE:reuse)
Antonym: The cue and the response are antonyms (CUE:outside RESPONSE:inside)
Hypernym: The response is a hypernym of the cue (CUE:piano, RESPONSE:instrument)
Hyponym: The response is a hyponym of the cue (CUE:mammal, RESPONSE:human)
Meronym: The response is a meronym of the cue (CUE:face, RESPONSE:nose)
Holonym: The response is a holonym of the cue (CUE:plant, RESPONSE:garden)
Transposition: The cue and the response are synonyms but they have a different part-of-speech
(CUE:anger, RESPONSE:mad)
Cohyponym: The cue and the response have a common hypernym but they are not synonyms
(CUE:discourse, RESPONSE:conversation)
Response’s argument: The cue is a syntactic argument of the response (CUE:rabbit, RESPONSE:hop)
Cue’s argument: The response is a syntactic argument of the cue (CUE:filled, RESPONSE:cup)
Response’s feature: The cue is a semantic feature of the response (CUE:explosive, RESPONSE:dynamite)
Cue’s feature: The response is a semantic feature of the cue (CUE:sunset, RESPONSE:orange)
Response’s modifier: The cue is used as a modifier of the response (CUE:custard, RESPONSE:pudding)
Cue’s modifier: The response is used as a modifier of the cue (CUE:friend, RESPONSE:best)
Typical: There is an obvious (and implicit) predicate that links the cue and the response or when the
eventuality denoted by the cue typically cooccurs with that denoted by the response (or vice versa)
(CUE:incense, RESPONSE:church)
No relation: No semantic relation between the cue and the response (CUE:rally, RESPONSE:pep)
Other relation: The cue and the response are in a semantic relation of different type than those listed in our
labels (CUE:saucy, RESPONSE:sauce)

Table 7: Section 2 of the prompts, listing the labels, each accompanied by a description, and an example. The
examples are provided only in the “implicit few-shot” setting.
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Type format Description

Format 1 Input and Output format: The input follows the format: ’Input: CUE:cue word,
RESPONSE:response word’ where cue word is the cue word and response word
is the response word. The output follows the format: ’Output: CUE:cue word,
RESPONSE:response word, LABEL:label’ where cue word is the cue word and
response word is the response word and label is one of the labels in the specified
criteria. Generate only the content without explanations following strictly the output
format.

Format 2 Input and Output format: The input follows the format: ’CUE:cue word, RE-
SPONSE:response word’ where cue word is the cue word and response word
is the response word. The output follows the format: ’CUE:cue word, RE-
SPONSE:response word, LABEL:label’ where cue word is the cue word and re-
sponse word is the response word and label is one of the labels in the specified
criteria. Generate only the content without explanations following strictly the output
format.

Format 3 Input and Output format: The input is a pair of words that follows the format:
’CUE:cue word - RESPONSE:response word’ where cue word is the cue word and
response word is the response word. As output, return the corresponding label.
Generate only the content without explanations following strictly the output format.

Table 8: Variants for the Section 3 of the prompts: desired input/output formats. The Format 3 variant was retained
after tests on the Llama models.

Label (Corresp.) F1 Nb

antonym (= Antonym) 55 8
synonym (= Synonym) 78 122
material made of (⊂ R/C:modifier) 40 2
has property (⊂ R/C:feature) 69 81
location (⊂ R/C:role) 34 43
category exemplar (⊂ R:hyper+R:hypo) 35 42
function 44 52
part of (⊂ (R:holo+R:mero)) 37 38
common phrase 52 69
action (⊂ R:role) 27 104
emotion evaluation 26 18
time 46 19
result in 25 49
has prerequisite 23 22
thematic (⊂ R:role) 23 44
same category (= cohyponym) 18 12

Table 9: GPT-4o F1-scores and number of instances in the human-labeled WAX dataset (for each WAX label).
Rough correspondence to FAMWA labels is indicated in parentheses, when applicable.
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Abstract

This paper introduces a suite of computational
semantic tools for Glue Semantics, an approach
to compositionality developed in the context of
Lexical Functional Grammar (LFG), but appli-
cable to a variety of syntactic representations,
including Universal Dependencies (UD). The
three tools are: 1) a Glue Semantics prover, 2)
an interface between this prover and a platform
for implementing LFG grammars, and 3) a sys-
tem to rewrite and add semantic annotations to
LFG and UD syntactic analyses, with a native
support for the prover. The main use of these
tools is computational verification of theoreti-
cal linguistic analyses, but they have also been
used for teaching formal semantic concepts.

1 Introduction

This paper introduces a suite of tools related to
Glue Semantics (Dalrymple 1999, Asudeh 2022,
2023), an approach to compositionality based on
the idea of resource sensitivity, for a wider com-
putational semantic audience.1 On this approach,
the compositional process is not necessarily de-
termined directly by phrasal constituency (as in,
for example, Heim and Kratzer 1998), but is rather
guided by pairing (partial) semantic representations
with linear logic formulas referring to parts of syn-
tactic representations. While Glue Semantics has
been most extensively applied in the context of
Lexical Functional Grammar (LFG; Kaplan and
Bresnan 1982, Bresnan et al. 2015, Dalrymple et al.
2019, Dalrymple 2023), it has also been success-
fully combined with other syntactic formalisms,
including Universal Dependencies (e.g., Gotham
and Haug 2018), Lexicalized Tree Adjoining Gram-
mar (Frank and van Genabith 2001), Head-driven
Phrase Structure Grammar (Asudeh and Crouch

1Early versions of two of these tools have been presented
LFG-internally, the third is presented here for the first time.

2002), and Minimalism (Gotham 2018). It is com-
patible with various formal meaning representa-
tions, including predicate logic with lambdas and
DRT (Kamp and Reyle 1993).

Within LFG, computational research evolves
around the Xerox Linguistics environment (XLE;
Crouch et al. 2017), a platform that has been pri-
marily tailored towards the modeling of syntax.
Although XLE grammars are being developed all
across the world, the investigation of semantic is-
sues in LFG from a computational perspective re-
ceived impetus with the introduction of an early
version of the Glue Semantics Workbench (GSWB;
Meßmer and Zymla 2018).2 This paper presents
new contributions to GSWB and two recently de-
veloped resources that make use of it.3

The central resource presented in this paper is
the Glue Semantics Workbench (GSWB), a modu-
lar system for calculating Glue Semantics (hence-
forth, Glue) proofs. It provides three different Glue
provers and is designed to permit the implementa-
tion of additional provers based on varying linear
logic fragments and meaning languages (e.g., pred-
icate logic with lambdas, DRT, etc.).

The second tool, XLE+Glue, implements an in-
terface between GSWB and XLE.4 This tool allows
users to specify semantic contributions of lexical
items and syntactic rules in XLE grammars, which
can then be fed into GSWB for semantic calcula-
tion. The system has been mainly developed to
explore what is called a “co-descriptive approach”
to Glue (explained in §2.2). XLE+Glue also il-
lustrates the possibility of GSWB to work with
different meaning languages.

2Earlier works in computational semantics related to LFG
include Asher and Wada 1988, Crouch 2005, Crouch and King
2006, Bobrow et al. 2007, Lev 2007.

3See §3 for links to Github repositories of these resources.
4The original idea is presented in Dalrymple et al. 2020.

This paper presents further developments.
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The third tool presented in this paper is a sys-
tem for linguistic graph expansion and rewriting
(LiGER). It is inspired by the original XLE transfer
system, which was initially used for machine trans-
lation (Frank 1999) and later mainly for semantic
parsing (Crouch 2005, Crouch and King 2006), but
also as a full-fledged reasoning engine (Bobrow
et al. 2007), indicating its versatility. LiGER has
been developed because the original transfer com-
ponent of XLE is no longer supported by XLE.
Like the original transfer system, LiGER can be
used to enrich XLE analyses with information from
other linguistic resources. With respect to semantic
analysis, it provides the possibility of exploring the
second major approach to deriving Glue represen-
tations, “description-by-analysis” (see §2.2), and
thus complements XLE+Glue.

Overall, the tools presented here allow re-
searchers to experiment with different settings
within the Glue framework, including the choice
of a suitable linear logic fragment, the choice of
meaning language, and the choice of co-description
vs. description-by-analysis approaches to deriving
meaning representations. The goal of this paper is
to illustrate the capabilities of these tools and how
they can be used for verifying theoretical analyses
and for exploring formal semantic concepts. Sec-
tion 2 explains the LFG architecture, focusing on
two aspects: the projection structure and Glue. Sec-
tion 3 describes the three tools in more detail, while
§4 mentions some use cases. Section 5 concludes.

2 Background

Within the LFG community, the development of
XLE grammars, as well as associated resources
such as treebanks, is carried out mainly in the
scope of the Parallel Grammar (ParGram) project
(Butt et al. 2002, Sulger et al. 2013). Such gram-
mars have been developed for a wide variety of
typologically diverse languages, demonstrating the
cross-linguistic and formal validity of LFG’s (mor-
pho)syntactic component.5 The work presented in
this paper aims to facilitate extending such syntac-

5Some of the grammars that are publicly available for test-
ing via INESS (https://clarino.uib.no/iness/xle-web;
Rosén et al. 2012), and some that are not yet publicly available
(in parentheses), are:
(i) Larger grammars for English, German, French, Nor-

wegian, and Polish (as well as Chinese and Japanese)
(ii) Smaller grammars for Georgian, Indonesian, Mala-

gasy, Turkish, Welsh, Wolof, and Urdu (as well as
Greek and Hungarian)

John loves Mary.
(input)

IP

I′

NP

Mary

I

loves

NP

John

(c-structure)




PRED ‘LOVE⟨SUBJ,OBJ⟩’
SUBJ

[
PRED ‘JOHN’

]

OBJ
[

PRED ‘MARY’
]




(f-structure)

π

π
−1

ϕ

ϕ−1

ϕ ◦ π

π −1◦ ϕ −1

Figure 1: LFG correspondence structure as imple-
mented in XLE

tic work to semantics. This section first describes
the underlying concepts of the LFG formalism, and
then the LFG approach to semantics.

2.1 LFG projection architecture
LFG is developed around the idea of mutually con-
straining parallel representations. The two syn-
tactic representations, implemented in XLE, are
c(onstituent)-structure and f(unctional)-structure
(cf. Figure 1). While c-structure encodes the
surface structure in terms of a constituent parse
that preserves linear word order, f-structure en-
codes functional information, primarily grammati-
cal functions and morphosyntactic features, in an
attribute-value matrix. Grammars encode both
structures simultaneously. C-structures are con-
strained by phrase structure rules (as in the first
row in (1)), with categories specified in lexical en-
tries (see “N” in (2)). F-structures are constrained
using functional annotations (usually equations) in
phrase-structure rules and lexical entries.

(1) IP → NP I′

(↑ SUBJ) = ↓ ↑ = ↓
(2) John N (↑ PRED) = ‘JOHN’

This simultaneous specification of two levels is
called local co-description (Bresnan et al. 2015). In
this architecture, the different structures are related
via projection functions. This ensures structural
correspondence between different levels of analysis
and entails mutual accessibility of projections.

Consider Figure 1. The c-structure is generated
from the input via the π-projection – a constituent
parse. The f-structure is specified based on con-
straints that are annotated on c-structure nodes and
specified in the lexicon. The corresponding map-
ping function from c- to f-structure is encoded in
the ϕ-projection. The mapping from the input to
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f-structure is a combination of the two projections:
the ϕ ◦ π mapping.6 LFG also assumes an inverse
of each mapping function; while such inverse map-
pings are less often discussed, they play a role in
the possibility of generation, as explored in early
work within XLE.7

The next section discusses two ways of integrat-
ing semantics into the LFG projection architecture.

2.2 Semantics in LFG
Adding any projection that preserves the kind of
bi-directionality described in the previous section
to this framework is a challenge, and this also holds
for the semantic projection. It is beyond the scope
of this paper to delve into all the fine details of se-
mantics in LFG, but we briefly address some of the
main challenges that the tools presented here may
help address. For this purpose, we first provide
a quick introduction to Glue, which is a seman-
tic formalism that has been developed for LFG
but is generally applicable to different linguistic
frameworks, making the present tools interesting
for projects that go beyond LFG as well.

The formalism of Glue is modeled around the
idea of resource sensitivity (Dalrymple 1999). Re-
source management is ensured by the use of a frag-
ment of the resource-sensitive linear logic (Girard
1987) that is paired with a meaning representa-
tion, forming a meaning constructor. Example
(3) shows meaning constructors for all words in
John loves Mary. In this example, each word in
the sentence introduces a single meaning construc-
tor.8 In (3), the meaning representation j of the
subject John is associated with the resource g, the
meaning m of the object Mary is associated with
the resource h, and the more complex meaning of
the verb loves is associated with the linear logic
formula g ⊸ (h ⊸ f). This formula uses the

6The projection structure is usually depicted in linear or-
der on a form-to-meaning mapping (Kaplan 1995, Asudeh
2006); however, to avoid directionality, we present the projec-
tion structure as a (complete) graph, with no order between
nodes since the order might well change depending on specific
processing tasks (Jackendoff 2010).

7Both parsing and generation are in principle undecidable
in LFG and require additional constraints on the formalism to
be made workable (Kaplan and Bresnan 1982). See Wedekind
1988 for early LFG work on generation from a separate se-
mantic structure, i.e., involving an inverse of the mapping
from semantics to the surface string, and Wedekind and Ka-
plan 2020 and Kaplan and Wedekind 2019 for more recent
work. Such work motivates the existence of inverse projection
mappings, and such mappings are assumed in this paper.

8This is not a rule; a word can introduce any number of
meaning constructors, and meaning constructors may also be
introduced by syntactic rules.

linear implication ⊸ to indicate that it requires
the resource in its antecedent to produce the re-
source in its consequent. Thus, by consuming the
subject resource g, we can produce the resource
(h ⊸ f), which in turn consumes the object re-
source h to produce the final result f correspond-
ing to the meaning of the full sentence; see the full
Glue proof in (4). In line with the Curry-Howard
isomorphism (CHI), modus ponens on the linear
logic side corresponds to function application on
the meaning side.

(3) John j : g
Mary m : h
loves λx.λy.love(x, y) : g ⊸ (h ⊸ f)

(4) λx.λy.love(x, y) : g ⊸ (h ⊸ f) j : g

λy.love(j, y) : h ⊸ f m : h

love(j,m) : f

This relation between resource consumption and
semantic composition is the foundation of Glue. As
long as the CHI is preserved, different fragments
of linear logic can be paired with different mean-
ing representations, resulting in two dimensions of
variation.

Additionally, as mentioned above, Glue has been
combined with different syntactic theories, assum-
ing different approaches to the syntax/semantics
interface. In this paper, we briefly discuss the
two main such approaches explored in LFG: co-
description (Kaplan and Wedekind 1993) and de-
scription by analysis (Halvorsen and Kaplan 1988).

In the co-descriptive approach, particular to LFG,
meaning constructors are introduced in lexical en-
tries (and, possibly, grammatical rules), in parallel
with categorical and functional information. This
is illustrated on the left-hand side of Figure 2. The
lexical entries use the ↑-variable to refer to specific
elements in the f-structure. The nominal entries
specify the semantics for the substructures they
contribute (corresponding to g and h at the bottom
of the figure). The inflected verb uses the func-
tional descriptions (↑ SUBJ) and (↑ OBJ) to retrieve
these substructures via their indices to form the
meaning constructor of the verb.

On the other hand, description-by-analysis uses a
fully assembled f-structure as input to derive mean-
ing constructors. This is usually done by rules that
match partial f-structure descriptions and introduce
corresponding meaning constructors; see the right-
hand side of Figure 2. There, #f, #g, and #h are
variables referring to f-structures (see the corre-
sponding f , g, and h at the bottom of Figure 2),
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co-description:

John N (↑ PRED) = ‘JOHN’
j : ↑

Mary N (↑ PRED) = ‘MARY’
m : ↑

loves I (↑ PRED) = ‘LOVE⟨SUBJ,OBJ⟩’
λx.λy.love(x, y) :

(↑ SUBJ) ⊸ ((↑ OBJ) ⊸ ↑)

description-by-analysis:

#f SUBJ #g PRED %g ==> #g GLUE %g : #g.

#f OBJ #h PRED %h ==> #h GLUE %h : #h.

#f SUBJ #g & #f OBJ #h & #f PRED %f
==> #f GLUE %f : #g -o (#h -o #f).

result (for both approaches):

f




PRED ‘LOVE⟨SUBJ,OBJ⟩’
SUBJ g

[
PRED ‘JOHN’

]

OBJ h
[

PRED ‘MARY’
]




j : g
m : h
λx.λy.love(x, y) : g ⊸ (h ⊸ f)

Figure 2: Co-descriptive lexicon vs. description-by-analysis rules

used as resources in the linear logic side of the in-
troduced meaning constructors, while %f, %g, and
%h refer to the corresponding PRED values and are
used in the meaning sides. The first two rules intro-
duce resources for the subject and the object, while
the rule for the verb specifies the meaning construc-
tor in a way similar to the co-descriptive approach.
This means that both approaches generally map the
same kind of nodes onto meaning constructors as
indicated by the f-structure and the corresponding
instantiated meaning constructors to its right (see
the indices g, h, and f there).

Both co-description and description-by-analysis
are currently in use in theoretical LFG work; it
might well be the case that it is best to combine
the two approaches to deal with different kinds of
semantic phenomena.9 The present tool suite is
designed to allow for this.

2.3 Semantic autonomy
The flexibility in modeling the syntax/semantics
interface is due to one of the key advantages of
Glue Semantics: a high level of semantic auton-
omy (Asudeh 2004). As Figure 2 suggests, seman-
tic composition does not rely on word order – it
relies instead on more general concepts such as
grammatical functions. Furthermore, semantic au-
tonomy provides a purely semantic treatment of
quantification, one that is independent of syntactic
considerations such as, for instance, quantifier rais-
ing (Heim and Kratzer 1998). This is illustrated in
Figure 3 on the basis of quantifier scope ambiguity.
For a more in-depth discussion on quantifier scope,

9It seems that description-by-analysis may be more suit-
able for the semantic interpretation of functional features,
whereas phenomena involving information structure are more
suitably encoded in a co-descriptive fashion (Andrews 2008).

see, e.g., Gotham (2019, 2021), Dalrymple et al.
(1999). Semantic autonomy provides a unique view
on formal semantics that can be explored using the
tools presented in this paper.

2.4 Related work

The tools presented here are inspired by work in
grammar engineering (e.g., Flickinger et al. 2017)
and semantic annotation (e.g., Basile et al. 2012).
There is also some overlap with toolkits such as the
NLTK (Bird et al. 2009). The main difference is
a focus on Glue Semantics and its compositional
properties, as well as its relation to various syn-
tactic approaches, especially LFG and Universal
Dependencies (UD). The present tools have not yet
been employed in large-scale grammar engineering
efforts, but rather at the interface between formal
and computational linguistics to verify analyses
(but see Zymla et al. 2025, Findlay et al. 2023).

3 The tools

The ParGram project provided a cross-
linguistically informed approach to syntactic
and semantic parsing, though the latter was
mostly worked out for English, while concrete
implementations for other languages were of
limited scope. This is largely due to the fact that
the semantics relied heavily on various external re-
sources that were not available cross-linguistically.
Semantic parsing relied on ordered rewriting
rules implemented as part of a transfer system
in XLE (Crouch and King 2006, Bobrow et al.
2007). Another important issue addressed with the
present tools is that the existing transfer system
is neither publicly available nor compatible with
the currently available XLE releases provided by
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Every monkey likes a banana.

a. λx.λy.like(x, y) :
mσ ⊸ (bσ ⊸ fσ)

b. λP.∀x[monkey(x) → P (x)] :
(mσ ⊸ fσ) ⊸ fσ

c. λQ.∃y[banana(y) ∧ Q(y)] :
(bσ ⊸ fσ) ⊸ fσ

λP.∀x[monkey(x) → P (x)] :
(me ⊸ ft) ⊸ ft

[X : me]
1 λx.λy.like(x, y) :

me ⊸ (be ⊸ ft) ⊸E
λy.like(X, y) : be ⊸ ft

λQ.∃y[banana(y) ∧ Q(y)] :
(be ⊸ ft) ⊸ ft ⊸E∃y[banana(y)∧ like(X, y)] : ft ⊸I,1

λx.∃y[banana(y)∧ like(x, y)] :
me ⊸ ft ⊸E∀x[monkey(x)→ ∃y[banana(y)∧ like(x, y)]] : ft

Figure 3: Quantification in Glue: Quantifier scope falls out naturally from the properties of linear logic, giving
appropriate typings. Implication introduction (lambda abstraction) allows to capture flexible scope configurations
(the alternative reading for this example is shown in Figure 7 in appendix A).

the University of Konstanz.10 The tools described
below are open source and compatible with various
systems, including XLE, and they are designed to
be useful in theoretical linguistic work as well as
in investigation of general issues of integrating
semantics into the LFG projection architecture.

3.1 The Glue Semantics Workbench

The Glue Semantics Workbench (GSWB)11 is a
modular system for deriving Glue proofs. To this
end, it provides the possibility of using different
provers as well as different input formats for mean-
ing languages, with a built-in parser for formulas
based on typed lambda-calculus, and support for
meaning representations written in Prolog (in par-
ticular, those developed on the basis of Blackburn
and Bos 2005, i.e., untyped lambda calculus and
λ-DRT). Furthermore, functionality was recently
added that allows users to interface GSWB with
NLTK’s (Bird et al. 2009) semantic capabilities
(Klein 2006).

GSWB uses a string format for linear logic and
semantic representations that is close to actual Glue
semantic representations, as illustrated in (5).

(5) john : g
mary : h
[/x_e.[/y_e.love(x,y)]] :

(g -o (h -o f))

There, the meaning side is on the left of :, and the
linear logic side is on the right. The entry for the
verb shows the encoding of complex linear logic
formulas and lambda expressions which can be
computed using the basic tools for function appli-

10ling.sprachwiss.uni-konstanz.de/pages/xle/
11https://github.com/Mmaz1988/GlueSemWorkbench_

v2

cation (Blackburn and Bos 2005).
To ensure flexibility, the meaning side of a mean-

ing constructor can be replaced with any semantic
representation that can be encoded as a string. In
this case, users can specify procedures that pre-
serve CHI, by implementing function application
directly in GSWB or by feeding the output to a sep-
arate system.12 The latter option is used to integrate
GSWB with a modified version of the DRT part
of Boxer tools (Bos 2008; based on Blackburn and
Bos 2005) and with NLTK (Findlay et al. 2023).

GSWB contains three different provers for the
implicational fragment of linear logic: one with
linear quantification (prover 1) and two variants of
a prover without linear quantification (prover 2).
Both variants of prover 2 are based on Hepple 1996
and Lev 2007, but one is extended with a notation
for conducting multistage proving (Findlay and
Haug 2022), a process that essentially allows for
the grouping of meaning constructors to constrain
the order of application. This is one way of account-
ing for restrictions on scope-taking expressions like
quantifiers, embedding verbs, etc.

These provers provide separate additional func-
tionalities for exploring the resulting Glue deriva-
tions, including reasons why a derivation might fail.
Specifically, prover 1 has two functionalities. First,
it allows for a depth-first search of intermediate
results in a failed proof, extracting those partial
solutions that would need to be combined to find a
successful proof. Second, it allows the proofs to be
given in natural deduction form. This is illustrated
in Figure 4 based on (5).

The two variants of prover 2 also allow users
to visualize a derivation. More specifically, they

12For a string a corresponding to a function and an argument
string b, the default procedure produces the string a(b).
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[ / x e . [ / y e . l o v e ( x , y ) ] ] : ( g −o ( h −o f ) ) j ohn : g
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−E

[ / x e . [ / y e . l o v e ( x , y ) ] ] ( j ohn ) : ( h −o f ) mary : h
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−E

[ / x e . [ / y e . l o v e ( x , y ) ] ] ( j ohn ) ( mary ) : f

Figure 4: Natural deduction proof by GSWB, based on meaning constructors in (5)

Figure 5: Successful derivation graph for the proof in (4) and an alternative failed derivation graph: The
graph on the left presents input meaning constructors and combination steps as blue nodes and highlights the goal
category in yellow. The graph on the right is based on an erroneous input that is superficially similar to (4) . Missing
resources (leaves of the graph) and failed derivation steps are marked in red so as to make it easier to debug the
proof. The proof fails since h is required by the verb as a resource corresponding to the object. However, in this
unsuccessful proof the object was assigned the resource i, which is a dangling node since it has no consumer.

produce a derivation graph. This graph roughly
corresponds to a proof tree but highlights cyclic el-
ements in the derivation (indicating compositional
ambiguities), if present (cf. Lev 2007: ch. 6). Fig-
ure 5 illustrates the visualization. (The derivation
there does not have any cyclic elements.)13

Current and future developments of GSWB are
mainly geared toward the interpretability of the out-
put of GSWB, as illustrated in Figures 4–5, as well
as the integration in broader processing pipelines.
This is illustrated by reference to the next two tools,
which use the capabilities presented above.

3.2 XLE+Glue

XLE+Glue has been developed as an inter-
face between XLE and GSWB corresponding to
LFG+Glue in the theoretical literature. It is inte-
grated into the XLE user interface and can be used
out of the box.

The original version14 consists of a specification
for Glue meaning constructors in terms of attribute-
value matrices that can be represented as part of

13While this example is trivial, finding errors in more com-
plex proofs can be difficult, especially when manually working
with the GSWB.

14https://github.com/Mmaz1988/
xle-glueworkbench-interface

f-structures (Dalrymple et al. 2020).

Example (7) illustrates the encoding of the Glue
meaning constructor in (6) as an AVM in an f-
structure. As shown there, linear logic resources
are added via the GLUE attribute, whose value is
a set of semantic representations. These are de-
scribed in terms of AVMs encoding their MEANING

side (simply a string corresponding to the meaning)
and their linear logic side. The latter uses nested
expressions to reflect linear implication: ARG1 and
ARG2 refer to linear logic resources (not semantic
arguments) that need to be consumed to produce
the resource f with type t.

(6) love : ge ⊸ (he ⊸ ft)

(7) f




PRED ‘LOVE<SUBJ,OBJ>’
SUBJ g [ ]

OBJ h [ ]

GLUE








MEANING LOVE

ARG1
[

RESOURCE g

TYPE e

]

ARG2
[

RESOURCE h
TYPE e

]

RESOURCE f

TYPE t










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More recently, a version with an alternative nota-
tion for meaning constructors has been developed15

that is closer to their representation in formal se-
mantic theory. The alternative notation is similar
to that of GSWB but uses references to f-structure
nodes, as in Figure 2 on the left. This is illustrated
in (8).

(8) [/x_e.[/y_e.P(x,y)]]:
((^SUBJ)_e -o ((^OBJ)_e -o ^_t))

While the notation is different, the implementation
boils down to the idea of the original XLE+Glue.
However, now, when loading a grammar in XLE,
meaning constructors written as in (8) are auto-
matically translated into AVM representations by
a script, making the grammars leaner. Further-
more, such meaning constructors may be easier to
read than the nested templates necessary to encode
meaning constructors in the original approach.

This approach is, in principle, an implementa-
tion of the co-descriptive approach to Glue since
the templates are generally called from the lexicon.
The XLE+Glue repository provides several sample
XLE grammars containing templates that produce
the corresponding meaning constructors. These
grammars exhibit the various parameters along
which XLE+Glue can be tweaked: it allows for
exploring different meaning languages (currently,
first-order logic and λ-DRT), and it enables the user
to specify meaning constructors in the f-structure
or in a separate semantic structure. Furthermore,
although the current paper presents XLE+Glue as
a venue for exploring co-descriptive approaches to
Glue, it is, in fact, more flexible, since the Glue
AVMs corresponding to meaning constructors need
not be specified in the lexicon. They could be spec-
ified via rewrite rules or, possibly, in other ways.
However, since it is the only resource in this paper
making a concrete proposal for exploring semantic
co-description, it is unique in this regard.

On the technical side, XLE+Glue consists of an
extension to the XLE user interface and a transla-
tion component that rewrites the specified mean-
ing constructors into a format compatible with
GSWB.16 Thus, XLE+Glue is, essentially, an inter-
face between XLE and GSWB.

15https://github.com/Mmaz1988/xleplusglue
16The original translation component was written in Prolog.

For the new system, the scripts have been moved to a Java
implementation.

3.3 Linguistic Graph Expansion and
Rewriting

The Linguistic Graph Expansion and Rewriting
(LiGER)17 tool allows for the specification of rules
that rewrite and expand f-structure nodes, as shown
in Figure 2 on the right. The system is based
on graph matching techniques, but also provides
tools to check for certain LFG-specific relations
such as (inside-out) functional uncertainty. The
graphs are described in terms of queries inspired
by corpus search engines, in particular the one de-
signed for LFG within INESS (Rosén et al. 2012;
https://clarino.uib.no/iness/). Before querying,
the system translates f-structures into more general
graph structures. This mechanism is inspired by the
original XLE transfer system (Crouch et al. 2017,
Ide and Bunt 2010), but it is applicable beyond the
annotations provided by the XLE. For example, it
provides an interface to the Stanford Universal De-
pendency parser (Manning et al. 2014). Generally
speaking, it is mainly geared towards the analy-
sis of directed (acyclic) graphs that underlie many
syntactic analyses.

Figure 6 illustrates normalization from syntac-
tic representations to directed graphs. Given this
kind of normalization, the system can be combined
with various linguistic resources to either specify
structural correspondences or expand graphs with
additional information. The primary use of the
system is currently the specification of semantic
rules inspired by the description-by-analysis tra-
dition in Glue (Kaplan and Wedekind 1993). It
combines insights from computational approaches,
e.g., Crouch 2005 and Crouch and King 2006, with
more recent theoretical approaches (Andrews 2008,
2010). The former employ a destructive approach
during which a given f-structure is taken as input
to a set of ordered rewrite rules. These rules incre-
mentally consume parts of the f-structure to pro-
duce semantic constraints, sometimes involving
intermediate representations and access to external
resources (e.g., for lexical semantics). Thus, the
inverse mapping from semantics to syntax is not
trivially recoverable.18 By contrast, the theoreti-
cal approach involves working towards a structure-
preserving implementation, i.e., a monotonic ap-
proach to description-by-analysis, more clearly
maintaining LFG’s bi-directionality. This choice is

17https://github.com/Mmaz1988/
abstract-syntax-annotator-web

18See Zarrieß and Kuhn (2010) for discussion.
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UD structure:

John loves Mary
NNP/1/g VBD/2/f NNP/3/h

objnsubj

root

LFG structure:

f




PRED ‘LOVE⟨SUBJ,OBJ⟩’
SUBJ g

[
PRED ‘JOHN’

]

OBJ h
[

PRED ‘MARY’
]




Abstract syntactic graph:

2

1 3

subject object

Figure 6: Parallelized syntax for: John loves Mary

not constrained by LiGER, but rather by how the
system is used. Thus, it is well-suited to explore
the notion of description-by-analysis.

LiGER is implemented in Java as an application
and a web service in parallel, so it can be used in
web-based applications and more traditional anno-
tation pipelines. As indicated above, it is compati-
ble with Universal Dependencies (as provided by
Stanford CoreNLP) and XLE representations. It
can also be used to call the corresponding parsers
from their respective resources.

4 Use cases

At this stage of development, XLE+Glue and
LiGER have not been widely used for broad cover-
age semantic parsing (but see Findlay et al. 2023
for a broad coverage use of the GSWB). However,
they have already been employed for verification
of theoretical LFG+Glue analyses (see §4.1), for
a teaching grammar (see §4.2), and for research on
ambiguity management (see §4.3).

4.1 Verification of theoretical analyses

The tools described above have been used to ver-
ify theoretical analyses. For example, GSWB has
been employed in an investigation of scope inter-
actions between nominal and verbal quantifiers
(Zymla and Sigwarth 2019), LiGER in an anal-
ysis of Greek tense and aspect (Zymla and Fiotaki
2021), and XLE+Glue in an account of gapping
(Przepiórkowski and Patejuk 2023).

In particular, Przepiórkowski and Patejuk 2023
propose a theoretical LFG+Glue analysis of gap-
ping, as in English Marge saw Lisa and Homer
Bart, with the second conjunct meaning ‘Homer
saw Bart’. The analysis crucially relies on Cham-
pollion’s (2015) compositional treatment of event
semantics and is relatively complex, to the extent
that it is not trivial to manually verify its predic-
tions for more complex cases, such as (9), which is
expected to have the two readings in (10)–(11).

(9) Tracy introduced Lisa to Marge and Bart to
Homer.

(10) [∃e. introduce(e) ∧ agent(e, t) ∧
theme(e, l) ∧ beneficiary(e,m)] ∧

[∃e. introduce(e) ∧ agent(e, t) ∧
theme(e, b) ∧ beneficiary(e, h)]

‘Tracy introduced Lisa to Marge and Tracy
introduced Bart to Homer.’

(11) [∃e. introduce(e) ∧ agent(e, t) ∧
theme(e, l) ∧ beneficiary(e,m)] ∧

[∃e. introduce(e) ∧ agent(e, b) ∧
theme(e, l) ∧ beneficiary(e, h)]

‘Tracy introduced Lisa to Marge and Bart
introduced Lisa to Homer.’

However, using XLE+Glue, the formal analysis
was implemented as an XLE grammar and all read-
ing were derived automatically. In the case of (9),
they all turned out to be equivalent to (10) or (11).

4.2 Teaching grammar

A different application of the presented suite of
Glue tools concerns a teaching grammar imple-
menting analyses of some phenomena encountered
in a grammar development class, especially tense
and aspect.

Using GSWB and LiGER, the grammar pro-
duces DRT representations based on the Boxer
tools exemplifying a Neo-Davidsonian event se-
mantics. An example is shown in (12). There, x1
refers to an event with two arguments, x2 and x3.
These are enumerated based on an argument hierar-
chy (Bresnan and Kanerva 1989). For the purpose
of this paper, arg1 generally refers to an agentive
role, arg2 refers to a theme/patient role, and arg3
generally refers to a recipient/goal role.19

(12) Mary hugged a bear.

19Thus, the argument roles are comparable to those in the
PropBank (Palmer et al. 2005), but they are not verb-specific.

196



_____________
| x2 x3 x1 |
|-------------|
| bear(x2) |
| x3 = Mary |
| hug(x1) |
| arg1(x1 ,x3) |
| arg2(x1 ,x2) |
|_____________|

Appendix B contains additional examples of DRSs
produced by the grammar on the basis of meaning
constructors derived by LiGER from f-structures.

For example, we have added to the grammar
some basic LiGER rules for tense/aspect interpre-
tation. In this case, the importance of LiGER lies
in contextualizing tense/aspect features according
to their morphosyntactic context and beyond. This
is illustrated in example (13) below, where the in-
terpretation of the embedded tense is constrained
by the matrix tense. To put it concisely, the embed-
ded tense must be evaluated relative to the matrix
tense and it may only be evaluated as simultaneous
or anterior to it as indicated by the two readings
of (13) shown in (14)–(15). This is explained in
more detail in Zymla 2017, 2018. Furthermore, this
example illustrates differences between perfective
(bounded) and imperfective (ongoing) grammatical
aspect in the matrix clause and embedded clause
respectively (see Zymla 2019 for details).

(13) Mary said that Susan was hugging a bear.

(14) Mary said: Susan is hugging a bear.

(15) Mary said: Susan was hugging a bear.
__________________________________________________

| x9 x8 x7 x6 |
|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
| x9 = now |
| b e f o r e ( x8 , x9 ) |
| x7 = Mary |
| bounded ( x6 , x8 ) |
| s ay ( x6 ) |
| a r g1 ( x6 , x7 ) |
| __________________________________________ |
| | x5 x4 x2 | |
| |−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−| |
| s ay | b e a r ( x5 ) | |
| | x4 = Susan | |
| | n o n f u t ( x2 , x6 ) | |
| | ________________ _______________ | |
| | | x1 | | x3 | | |
| | |−−−−−−−−−−−−−−−−| |−−−−−−−−−−−−−−−| | |
| | | ongo ing ( x1 , x2 ) | ==> | p a r t O f ( x3 , x1 ) | | |
| | | ________________ | | hug ( x3 ) | | |
| | | a rg2 ( x3 , x5 ) | | |
| | | a rg1 ( x3 , x4 ) | | |
| | | _______________ | | |
| | __________________________________________ | |
| __________________________________________________ |

As these examples show, the teaching grammar
combined with LiGER allows us to capture im-
portant syntactic and semantic generalizations and,
thus, explore substantial insights into the interplay
between syntax and semantics. Importantly, the
grammar also illustrates the distinction between

co-description and description-by-analysis pointed
out in the previous sections.

4.3 Exploring the cross-linguistic variability
of semantic ambiguities

Moot and Retoré (2012) point out that semantic
composition does not fall into one neatly catego-
rized logic but rather moves on a spectrum of con-
strainedness of the underlying logic. Works like
Gotham 2019, 2021, building on Barker 2022, ex-
plore subtle cross-linguistic differences in the flexi-
bility of scope-taking semantic operators that high-
light this issue. Constraints on semantic composi-
tion have been explored in the context of computa-
tional grammars and Glue semantics in Findlay and
Haug 2022 and Zymla 2024 using the GSWB. This
research not only improves the formal adequacy of
LFG, but potentially also allows for more precise
statements about the logic of composition more
generally and its interaction with other modules
of grammar, particularly, from a cross-linguistic
perspective. Relatedly, Butt et al. (2024) present an
approach to disambiguating questions via prosodic
information that is computationally implemented
in combination with XLE+Glue.

5 Summary

This paper has presented a suite of computational
tools for Glue Semantics. It has established their
relevance for exploring various important concepts,
particularly how to embed a semantic component
in the LFG projection architecture as implemented
within XLE. In this regard, both a co-descriptive
and a description-by-analysis approach have been
presented, covering the two major proposals for
semantic analysis in LFG.

The tools presented in this paper contribute to a
growing ecosystem of LFG-based CL tools which
are actively developed on multiple fronts. They
receive regular updates and new features.

However, it is not only the LFG community that
may benefit from these tools. Glue Semantics is
compatible with various kinds of syntactic and se-
mantic analyses. From the perspective of NLP,
one of the most interesting prospects may be its
compatibility with Universal Dependencies (Haug
and Findlay 2023), but even beyond that, the tools
presented in this paper provide an exciting avenue
for research on formal semantics in computational
linguistics.
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A Additional proofs

λP.∀x[monkey(x) → P (x)] : (me ⊸ ft) ⊸ ft

[X : me]
1 λx.λy.like(x, y) : me ⊸ (be ⊸ ft) ⊸E

λy.like(X, y) : be ⊸ ft [Y : be]
2

⊸E
like(X,Y ) : ft ⊸I,1

λx.like(x, Y ) : me ⊸ ft ⊸E∀x[monkey(x) → like(x, Y )] : ft ⊸I,2
λy.∀x[monkey(x) → like(x, y)] : be ⊸ ft λQ.∃y[banana(y) ∧ Q(y)] : (be ⊸ ft) ⊸ ft ⊸E∃y[banana(y) ∧ ∀x[monkey(x)→ like(x, y)]] : ft

Figure 7: Glue proof: Every monkey likes a banana inverse scope

B Worked out examples

(16) Mary hugged a bear.

_____________
| x2 x3 x1 |
|−−−−−−−−−−−−−|
| b e a r ( x2 ) |
| x3 = Mary |
| hug ( x1 ) |
| a r g1 ( x1 , x3 ) |
| a r g2 ( x1 , x2 ) |
| _____________ |

Produced meaning constructors:

{
lam (V, lam (X, lam ( E , merge ( app (V, E ) , d r s ( [ ] , [ r e l ( arg2 , E ,X ) ] ) ) ) ) ) :

( ( 6 _v −o 6 _ t ) −o (4 _e −o (6 _v −o 6 _ t ) ) ) | | noscope
lam (X, d r s ( [ ] , [ eq (X, ' Mary ' ) ] ) ) : (8 _e −o 8 _ t )
lam (X, d r s ( [ ] , [ p r ed ( bear ,X ) ] ) ) : (4 _e −o 4 _ t )
lam (V, lam (X, lam ( E , merge ( app (V, E ) , d r s ( [ ] , [ r e l ( arg1 , E ,X ) ] ) ) ) ) ) :

( ( 6 _v −o 6 _ t ) −o (8 _e −o (6 _v −o 6 _ t ) ) ) | | noscope
lam ( P , lam (Q, merge ( d r s ( [X ] , [ ] ) , merge ( app ( P ,X) , app (Q,X ) ) ) ) ) :

( ( 8 _e −o 8 _ t ) −o ( ( 8 _e −o 5 _ t ) −o 5 _ t ) ) | | noscope
lam (V, d r s ( [ ] , [ p r ed ( hug ,V ) ] ) ) : (6 _v −o 6 _ t )
lam ( P , lam (Q, merge ( d r s ( [X ] , [ ] ) , merge ( app ( P ,X) , app (Q,X ) ) ) ) ) :

( ( 4 _e −o 4 _ t ) −o ( ( 4 _e −o 5 _ t ) −o 5 _ t ) )
lam (V, merge ( d r s ( [ E ] , [ ] ) , app (V, E ) ) ) : ( ( 6 _v −o 6 _ t ) −o 5 _ t )
}

F-structure:

"Mary hugged a bear"

'hug<[1:Mary], [26:bear]>'PRED

'Mary'PRED

CASE nom, GEND fem, NTYPE name, NUM sg, PERS 3

68

66

1

SUBJ

'bear'PRED

'a'PREDDETSPEC

CASE acc, DEF -, NTYPE count, NUM sg, PERS 3

104

34

26

102

35

OBJ

MOOD indicative, PERF -_, PROG -_, TENSE pastTNS-ASP

-PASSIVE124

122

108

78

14

201



(17) Mary was hugged by a bear.

_____________
| x3 x2 x1 |
|−−−−−−−−−−−−−|
| b e a r ( x3 ) |
| x2 = Mary |
| hug ( x1 ) |
| a r g1 ( x1 , x3 ) |
| a r g2 ( x1 , x2 ) |
| _____________ |

Produced meaning constructors:

{
lam (V, merge ( d r s ( [ E ] , [ ] ) , app (V, E ) ) ) : ( ( 6 _v −o 6 _ t ) −o 5 _ t )
lam (V, lam (X, lam ( E , merge ( app (V, E ) , d r s ( [ ] , [ r e l ( arg2 , E ,X ) ] ) ) ) ) ) :

( ( 6 _v −o 6 _ t ) −o (8 _e −o (6 _v −o 6 _ t ) ) ) | | noscope
lam (X, d r s ( [ ] , [ eq (X, ' Mary ' ) ] ) ) : (8 _e −o 8 _ t )
lam (X, d r s ( [ ] , [ p r ed ( bear ,X ) ] ) ) : (4 _e −o 4 _ t )
lam (V, lam (X, lam ( E , merge ( app (V, E ) , d r s ( [ ] , [ r e l ( arg1 , E ,X ) ] ) ) ) ) ) :

( ( 6 _v −o 6 _ t ) −o (4 _e −o (6 _v −o 6 _ t ) ) ) | | noscope
lam ( P , lam (Q, merge ( d r s ( [X ] , [ ] ) , merge ( app ( P ,X) , app (Q,X ) ) ) ) ) :

( ( 8 _e −o 8 _ t ) −o ( ( 8 _e −o 5 _ t ) −o 5 _ t ) ) | | noscope
lam (V, d r s ( [ ] , [ p r ed ( hug ,V ) ] ) ) : (6 _v −o 6 _ t )
lam ( P , lam (Q, merge ( d r s ( [X ] , [ ] ) , merge ( app ( P ,X) , app (Q,X ) ) ) ) ) :

( ( 4 _e −o 4 _ t ) −o ( ( 4 _e −o 5 _ t ) −o 5 _ t ) )
}

F-structure:

"Mary was hugged by a bear"

'hug<[38:bear], [1:Mary]>'PRED

'Mary'PRED

CASE nom, GEND fem, NTYPE name, NUM sg, PERS 3

89

87

1

SUBJ

'bear'PRED

'a'PREDDETSPEC

DEF -, NTYPE count, NUM sg, PERS 3, PFORM by, PTYPE nosem

138

46

38

134

55

47

132

56

OBL-AG

PERF -_, PROG -_, TENSE pastTNS-ASP

PARTICIPLE past, PASSIVE +152

150

140

15

14

101

26

202



(18) Susan was given the bear by Mary.

_____________
| x2 x3 x4 x1 |
|−−−−−−−−−−−−−|
| b e a r ( x2 ) |
| x3 = Mary |
| x4 = Susan |
| g i v e ( x1 ) |
| a r g3 ( x1 , x4 ) |
| a r g1 ( x1 , x3 ) |
| a r g2 ( x1 , x2 ) |
| _____________ |

Produced meaning constructors:

{
lam (V, merge ( d r s ( [ E ] , [ ] ) , app (V, E ) ) ) : ( ( 4 _v −o 4 _ t ) −o 3 _ t )
lam ( P , lam (Q, merge ( d r s ( [X ] , [ ] ) , merge ( app ( P ,X) , app (Q,X ) ) ) ) ) :

( ( 6 _e −o 6 _ t ) −o ( ( 6 _e −o 3 _ t ) −o 3 _ t ) ) | | noscope
lam (V, lam (X, lam ( E , merge ( app (V, E ) , d r s ( [ ] , [ r e l ( arg3 , E ,X ) ] ) ) ) ) ) :

( ( 4 _v −o 4 _ t ) −o (8 _e −o (4 _v −o 4 _ t ) ) ) | | noscope
lam ( P , lam (Q, merge ( d r s ( [X ] , [ ] ) , merge ( app ( P ,X) , app (Q,X ) ) ) ) ) :

( ( 2 _e −o 2 _ t ) −o ( ( 2 _e −o 3 _ t ) −o 3 _ t ) ) | | noscope
lam (X, d r s ( [ ] , [ p r ed ( bear ,X ) ] ) ) : (2 _e −o 2 _ t )
lam (V, lam (X, lam ( E , merge ( app (V, E ) , d r s ( [ ] , [ r e l ( arg2 , E ,X ) ] ) ) ) ) ) :

( ( 4 _v −o 4 _ t ) −o (2 _e −o (4 _v −o 4 _ t ) ) ) | | noscope
lam (X, d r s ( [ ] , [ eq (X, ' Susan ' ) ] ) ) : (8 _e −o 8 _ t )
lam (V, lam (X, lam ( E , merge ( app (V, E ) , d r s ( [ ] , [ r e l ( arg1 , E ,X ) ] ) ) ) ) ) :

( ( 4 _v −o 4 _ t ) −o (6 _e −o (4 _v −o 4 _ t ) ) ) | | noscope
lam ( P , lam (Q, merge ( d r s ( [X ] , [ ] ) , merge ( app ( P ,X) , app (Q,X ) ) ) ) ) :

( ( 8 _e −o 8 _ t ) −o ( ( 8 _e −o 3 _ t ) −o 3 _ t ) ) | | noscope
lam (V, d r s ( [ ] , [ p r ed ( g ive ,V ) ] ) ) : (4 _v −o 4 _ t )
lam (X, d r s ( [ ] , [ eq (X, ' Mary ' ) ] ) ) : (6 _e −o 6 _ t )
}

F-structure:

"Susan was given the bear by Mary"

'give<[87:Mary], [53:bear], [1:Susan]>'PRED

'Susan'PRED

CASE nom, GEND fem, NTYPE name, NUM sg, PERS 3

127

125

1

SUBJ

'bear'PRED

DEF +, NTYPE count, NUM sg, PERS 3

165

71

53

163

72

OBJ2

'Mary'PRED

GEND fem, NTYPE name, NUM sg, PERS 3, PFORM by, PTYPE nosem

183

95

87

179

177

96

OBL-AG

pastTENSETNS-ASP

DATIVE-SHIFT +, PARTICIPLE past, PASSIVE +204

202

188

15

14

139

26

203



(19) Mary hugged herself.

_____________
| x2 x3 x1 |
|−−−−−−−−−−−−−|
| hug ( x3 ) |
| a r g2 ( x3 , x2 ) |
| a r g1 ( x3 , x1 ) |
| f e ma le ( x2 ) |
| x1 = x2 |
| x1 = Mary |
| _____________ |

Produced meaning constructors:

{
lam (X, d r s ( [ ] , [ eq (X, ' Mary ' ) ] ) ) : (6 _e −o 6 _ t )
lam (A, a l f a (B , r e f l , p r ed ( female , B) , merge ( app (A, C) , d r s ( [ C] ,

[ p r ed ( female , C) , eq (B , C ) ] ) ) ) ) : ( ( 2 _e −o 3 _ t ) −o 3 _ t )
lam (V, lam (X, lam ( E , merge ( app (V, E ) , d r s ( [ ] , [ r e l ( arg1 , E ,X ) ] ) ) ) ) ) :

( ( 4 _v −o 4 _ t ) −o (6 _e −o (4 _v −o 4 _ t ) ) ) | | noscope
lam ( P , lam (Q, merge ( d r s ( [X ] , [ ] ) , merge ( app ( P ,X) , app (Q,X ) ) ) ) ) :

( ( 6 _e −o 6 _ t ) −o ( ( 6 _e −o 3 _ t ) −o 3 _ t ) )
lam (V, d r s ( [ ] , [ p r ed ( hug ,V ) ] ) ) : (4 _v −o 4 _ t )
lam (V, merge ( d r s ( [ E ] , [ ] ) , app (V, E ) ) ) : ( ( 4 _v −o 4 _ t ) −o 3 _ t )
lam (V, lam (X, lam ( E , merge ( app (V, E ) , d r s ( [ ] , [ r e l ( arg2 , E ,X ) ] ) ) ) ) ) :

( ( 4 _v −o 4 _ t ) −o (2 _e −o (4 _v −o 4 _ t ) ) ) | | noscope
}

F-structure:

"Mary hugged herself"

'hug<[1:Mary], [23:herself]>'PRED

'Mary'PRED

CASE nom, GEND fem, NTYPE name, NUM sg, PERS 3

63

61

1

SUBJ

'herself'PRED

CASE acc, NTYPE pron, NUM sg, PERS 3, PRON-TYPE pers

86

24

23

OBJ

MOOD indicative, PERF -_, PROG -_, TENSE pastTNS-ASP

-PASSIVE105

102

88

73

14

204



(20) Mary tried to hug a bear.

_____________________
| x3 |
|−−−−−−−−−−−−−−−−−−−−−|
| x3 = Mary |
| _____________ |
| | x2 x1 | |
| |−−−−−−−−−−−−−| |
| t r y | b e a r ( x2 ) | |
| | hug ( x1 ) | |
| | a r g1 ( x1 , x3 ) | |
| | a r g2 ( x1 , x2 ) | |
| | _____________ | |
| _____________________ |

Produced meaning constructors:

{
lam (V, lam (X, lam ( E , merge ( app (V, E ) , d r s ( [ ] , [ r e l ( arg2 , E ,X ) ] ) ) ) ) ) :

( ( 1 1 _v −o 11 _ t ) −o (9 _e −o (11 _v −o 11 _ t ) ) ) | | noscope
lam (X, d r s ( [ ] , [ p r ed ( bear ,X ) ] ) ) : (9 _e −o 9 _ t )
lam (X, d r s ( [ ] , [ eq (X, ' Mary ' ) ] ) ) : ( 2 _e −o 2 _ t )
lam (V, lam (X, lam ( E , merge ( app (V, E ) , d r s ( [ ] , [ r e l ( arg1 , E ,X ) ] ) ) ) ) ) : (

(11 _v −o 11 _ t ) −o (2 _e −o (11 _v −o 11 _ t ) ) ) | | noscope
lam ( P , lam (Q, merge ( d r s ( [X ] , [ ] ) , merge ( app ( P ,X) , app (Q,X ) ) ) ) ) :

( ( 2 _e −o 2 _ t ) −o ( ( 2 _e −o 3 _ t ) −o 3 _ t ) ) | | noscope
lam (V, d r s ( [ ] , [ p r e d ( hug ,V ) ] ) ) : (11 _v −o 11 _ t )
lam (X, lam ( P , d r s ( [ ] , [ t r y ( app ( P ,X ) ) ] ) ) ) : (2 _e −o ( ( 2 _e −o 10 _ t ) −o 3 _ t ) )
lam ( P , lam (Q, merge ( d r s ( [X ] , [ ] ) , merge ( app ( P ,X) , app (Q,X ) ) ) ) ) :

( ( 9 _e −o 9 _ t ) −o ( ( 9 _e −o 10 _ t ) −o 10 _ t ) )
lam (V, merge ( d r s ( [ E ] , [ ] ) , app (V, E ) ) ) : ( ( 1 1 _v −o 11 _ t ) −o 10 _ t )
}

F-structure:

"Mary tried to hug a bear"

'try<[1:Mary], [29:hug]>'PRED

'Mary'PRED

CASE nom, GEND fem, NTYPE name, NUM sg, PERS 3

97

95

1

SUBJ

'hug<[1:Mary], [55:bear]>'PRED

[1:Mary]SUBJ

'bear'PRED

'a'PREDDETSPEC

CASE acc, DEF -, NTYPE count, NUM sg, PERS 3

150

63

55

148

64

OBJ

PASSIVE -, VFORM inf168

37

29

154

124

39

XCOMP

MOOD indicative, PERF -_, PROG -_, TENSE pastTNS-ASP

infVFORM175

173

170

107

14

205



(21) Mary saw the bear with the telescope
_______________

| x2 x3 x4 x1 |
|−−−−−−−−−−−−−−−|
| b e a r ( x2 ) |
| x3 = Mary |
| t e l e s c o p e ( x4 ) |
| w i t h ( x1 , x4 ) |
| s e e ( x1 ) |
| a rg1 ( x1 , x3 ) |
| a rg2 ( x1 , x2 ) |
| _______________ |

_______________
| x3 x2 x4 x1 |
|−−−−−−−−−−−−−−−|
| b e a r ( x3 ) |
| x2 = Mary |
| t e l e s c o p e ( x4 ) |
| w i t h ( x3 , x4 ) |
| s e e ( x1 ) |
| a r g2 ( x1 , x3 ) |
| a r g1 ( x1 , x2 ) |
| _______________ |

Produced meaning constructors:
{
lam (X, d r s ( [ ] , [ p r ed ( t e l e s c o p e ,X ) ] ) ) : (4 _e −o 4 _ t )
lam (V, merge ( d r s ( [ E ] , [ ] ) , app (V, E ) ) ) : ( ( 6 _v −o 6 _ t ) −o 5 _ t )
lam (V, lam (X, lam ( E , merge ( app (V, E ) , d r s ( [ ] , [ r e l ( arg2 , E ,X ) ] ) ) ) ) ) :

( ( 6 _v −o 6 _ t ) −o (9 _e −o (6 _v −o 6 _ t ) ) ) | | noscope
lam ( P , lam (Q, merge ( d r s ( [X ] , [ ] ) , merge ( app ( P ,X) , app (Q,X ) ) ) ) ) :

( ( 4 _e −o 4 _ t ) −o ( ( 4 _e −o 5 _ t ) −o 5 _ t ) ) | | noscope
lam (X, d r s ( [ ] , [ eq (X, ' Mary ' ) ] ) ) : (11 _e −o 11 _ t )
lam (V, lam (X, lam ( E , merge ( app (V, E ) , d r s ( [ ] , [ r e l ( arg1 , E ,X ) ] ) ) ) ) ) :

( ( 6 _v −o 6 _ t ) −o (11 _e −o (6 _v −o 6 _ t ) ) ) | | noscope
lam ( P , lam (Q, merge ( d r s ( [X ] , [ ] ) , merge ( app ( P ,X) , app (Q,X ) ) ) ) ) :

( ( 1 1 _e −o 11 _ t ) −o ( ( 1 1 _e −o 5 _ t ) −o 5 _ t ) ) | | noscope
lam (X, d r s ( [ ] , [ p r ed ( bear ,X ) ] ) ) : (9 _e −o 9 _ t )
lam ( P , lam (Q, merge ( d r s ( [X ] , [ ] ) , merge ( app ( P ,X) , app (Q,X ) ) ) ) ) :

( ( 9 _e −o 9 _ t ) −o ( ( 9 _e −o 5 _ t ) −o 5 _ t ) ) | | noscope
lam (Y, lam (X, d r s ( [ ] , [ r e l ( wi th , X,Y ) ] ) ) ) :

(4 _e −o (6 _v −o 7 _ t ) )
lam (U, lam (V, lam ( E , merge ( d r s ( [ ] , [ ] ) , merge ( app (U, E ) , app (V, E ) ) ) ) ) ) :

( ( 6 _v −o 7 _ t ) −o ( ( 6 _v −o 6 _ t ) −o (6 _v −o 6 _ t ) ) )
lam (V, d r s ( [ ] , [ p r ed ( see ,V ) ] ) ) : (6 _v −o 6 _ t )
}

{
lam (X, d r s ( [ ] , [ p r ed ( t e l e s c o p e ,X ) ] ) ) : (5 _e −o 5 _ t )
lam (V, merge ( d r s ( [ E ] , [ ] ) , app (V, E ) ) ) : ( ( 7 _v −o 7 _ t ) −o 6 _ t )
lam (U, lam (V, lam ( E , merge ( d r s ( [ ] , [ ] ) , merge ( app (U, E ) , app (V, E ) ) ) ) ) ) :

( ( 9 _e −o 8 _ t ) −o ( ( 9 _e −o 6 _ t ) −o (9 _e −o 6 _ t ) ) ) | | noscope
lam (V, lam (X, lam ( E , merge ( app (V, E ) , d r s ( [ ] , [ r e l ( arg2 , E ,X ) ] ) ) ) ) ) :

( ( 7 _v −o 7 _ t ) −o (9 _e −o (7 _v −o 7 _ t ) ) ) | | noscope
lam ( P , lam (Q, merge ( d r s ( [X ] , [ ] ) , merge ( app ( P ,X) , app (Q,X ) ) ) ) ) :

( ( 5 _e −o 5 _ t ) −o ( ( 5 _e −o 6 _ t ) −o 6 _ t ) ) | | noscope
lam (X, d r s ( [ ] , [ eq (X, ' Mary ' ) ] ) ) : (11 _e −o 11 _ t )
lam (V, lam (X, lam ( E , merge ( app (V, E ) , d r s ( [ ] , [ r e l ( arg1 , E ,X ) ] ) ) ) ) ) :

( ( 7 _v −o 7 _ t ) −o (11 _e −o (7 _v −o 7 _ t ) ) ) | | noscope
lam ( P , lam (Q, merge ( d r s ( [X ] , [ ] ) , merge ( app ( P ,X) , app (Q,X ) ) ) ) ) :

( ( 1 1 _e −o 11 _ t ) −o ( ( 1 1 _e −o 6 _ t ) −o 6 _ t ) ) | | noscope
lam (X, d r s ( [ ] , [ p r ed ( bear ,X ) ] ) ) : (9 _e −o 9 _ t )
lam ( P , lam (Q, merge ( d r s ( [X ] , [ ] ) , merge ( app ( P ,X) , app (Q,X ) ) ) ) ) :

( ( 9 _e −o 9 _ t ) −o ( ( 9 _e −o 6 _ t ) −o 6 _ t ) ) | | noscope
lam (Y, lam (X, d r s ( [ ] , [ r e l ( wi th , X,Y ) ] ) ) ) : (5 _e −o (9 _e −o 8 _ t ) )
lam (V, d r s ( [ ] , [ p r ed ( see ,V ) ] ) ) : (7 _v −o 7 _ t )
}

F-structures:
"Mary saw the bear with the telescope"

'see<[1:Mary], [37:bear]>'PRED

'Mary'PRED

CASE nom, GEND fem, NTYPE name, NUM sg, PERS 3

138

136

1

SUBJ

'bear'PRED

CASE acc, DEF +, NTYPE count, NUM sg, PERS 3

174

55

37

172

56

OBJ

'with<[86:telescope]>'PRED

'telescope'PRED

CASE acc, DEF +, NTYPE count, NUM sg, PERS 3

195

104

86

193

105

OBJ

semPTYPE199

85

71

ADJUNCT

MOOD indicative, PERF -_, PROG -_, TENSE pastTNS-ASP

-PASSIVE220

218

204

148

14

"Mary saw the bear with the telescope"

'see<[1:Mary], [37:bear]>'PRED

'Mary'PRED

CASE nom, GEND fem, NTYPE name, NUM sg, PERS 3

138

136

1

SUBJ

'bear'PRED

'with<[86:telescope]>'PRED

'telescope'PRED

CASE acc, DEF +, NTYPE count, NUM sg, PERS 3

195

104

86

193

105

OBJ

semPTYPE199

85

71

ADJUNCT

CASE acc, DEF +, NTYPE count, NUM sg, PERS 3201

55

37

172

56
OBJ

MOOD indicative, PERF -_, PROG -_, TENSE pastTNS-ASP

-PASSIVE220

218

204

148

14

206



(22) Mary said that Susan was hugging a bear.
__________________________________________________

| x9 x8 x7 x6 |
|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
| x9 = now |
| b e f o r e ( x8 , x9 ) |
| x7 = Mary |
| bounded ( x6 , x8 ) |
| s ay ( x6 ) |
| a r g1 ( x6 , x7 ) |
| __________________________________________ |
| | x5 x4 x2 | |
| |−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−| |
| s ay | b e a r ( x5 ) | |
| | x4 = Susan | |
| | n o n f u t ( x2 , x6 ) | |
| | ________________ _______________ | |
| | | x1 | | x3 | | |
| | |−−−−−−−−−−−−−−−−| |−−−−−−−−−−−−−−−| | |
| | | ongo ing ( x1 , x2 ) | ==> | p a r t O f ( x3 , x1 ) | | |
| | | ________________ | | hug ( x3 ) | | |
| | | a r g2 ( x3 , x5 ) | | |
| | | a r g1 ( x3 , x4 ) | | |
| | | _______________ | | |
| | __________________________________________ | |
| __________________________________________________ |

Produced meaning constructors:
{
/ / L i g e r
lam ( S , lam ( T , d r s ( [ ] , [ r e l ( ongoing , T , S ) ] ) ) ) : (207 _s −o (209 _s −o 205 _ t ) )
lam ( S , lam ( T , d r s ( [ ] , [ r e l ( bounded , T , S ) ] ) ) ) : (208 _s −o (210 _s −o 206 _ t ) )
lam (M, lam ( P , lam ( S , d r s ( [ ] , [ imp ( merge ( d r s ( [ Z ] , [ ] ) , app ( app (M, S ) , Z ) ) , app ( P , Z ) ) ] ) ) ) ) :

( ( 2 0 7 _s −o (209 _s −o 205 _ t ) ) −o ( ( 1 0 _s −o 6 _ t ) −o (11 _s −o 6 _ t ) ) )
lam (M, lam ( P , lam ( S , merge ( d r s ( [ Z ] , [ ] ) , merge ( app ( app (M, S ) , Z ) , app ( P , Z ) ) ) ) ) ) :

( ( 2 0 8 _s −o (210 _s −o 206 _ t ) ) −o ( ( 1 9 _s −o 18 _ t ) −o (8 _s −o 18 _ t ) ) )
lam ( T , lam ( T2 , d r s ( [ ] , [ r e l ( b e f o r e , T , T2 ) ] ) ) ) : (8 _s −o (9 _s −o 8 _ t ) )
lam ( T , lam ( T2 , d r s ( [ ] , [ r e l ( non fu t , T , T2 ) ] ) ) ) : (11 _s −o (12 _s −o 11 _ t ) )
lam ( T , lam ( P , lam ( S , merge ( d r s ( [ R ] , [ ] ) , merge ( app ( app ( T , R) , S ) , app ( P , R ) ) ) ) ) ) :

( ( 1 1 _s −o (12 _s −o 11 _ t ) ) −o ( ( 1 1 _s −o 6 _ t ) −o (12 _s −o 6 _ t ) ) )
lam ( T , lam ( P , lam ( S , merge ( d r s ( [ R ] , [ ] ) , merge ( app ( app ( T , R) , S ) , app ( P , R ) ) ) ) ) ) :

( ( 8 _s −o (9 _s −o 8 _ t ) ) −o ( ( 8 _s −o 18 _ t ) −o (9 _s −o 18 _ t ) ) )
/ / Grammar
lam (X, d r s ( [ ] , [ eq (X, ' Susan ' ) ] ) ) : (14 _e −o 14 _ t )
lam (X, d r s ( [ ] , [ eq (X, ' Mary ' ) ] ) ) : (17 _e −o 17 _ t )
lam ( P , lam (Q, merge ( d r s ( [X ] , [ ] ) , merge ( app ( P ,X) , app (Q,X ) ) ) ) ) :

( ( 5 _e −o 5 _ t ) −o ( ( 5 _e −o 6 _ t ) −o 6 _ t ) )
lam (X, d r s ( [ ] , [ p r ed ( bear ,X ) ] ) ) : (5 _e −o 5 _ t )
lam ( P , lam (Q, merge ( d r s ( [X ] , [ ] ) , merge ( app ( P ,X) , app (Q,X ) ) ) ) ) :

( ( 1 7 _e −o 17 _ t ) −o ( ( 1 7 _e −o 18 _ t ) −o 18 _ t ) ) | | noscope
lam (V, lam (X, lam ( E , merge ( app (V, E ) , d r s ( [ ] , [ r e l ( arg2 , E ,X ) ] ) ) ) ) ) :

( ( 7 _v −o 7 _ t ) −o (5 _e −o (7 _v −o 7 _ t ) ) ) | | noscope
lam ( P , merge ( d r s ( [ T ] , [ eq ( T , now ) ] ) , app ( P , T ) ) ) :

( ( 9 _s −o 18 _ t ) −o 18 _ t ) | | noscope
lam ( P , lam (Q, merge ( d r s ( [X ] , [ ] ) , merge ( app ( P ,X) , app (Q,X ) ) ) ) ) :

( ( 1 4 _e −o 14 _ t ) −o ( ( 1 4 _e −o 6 _ t ) −o 6 _ t ) ) | | noscope
lam (V, lam (X, lam ( E , merge ( app (V, E ) , d r s ( [ ] , [ r e l ( arg1 , E ,X ) ] ) ) ) ) ) :

( ( 7 _v −o 7 _ t ) −o (14 _e −o (7 _v −o 7 _ t ) ) ) | | noscope
lam (V, d r s ( [ ] , [ p r ed ( hug ,V ) ] ) ) : (7 _v −o 7 _ t )
lam ( P , lam (X, lam ( S , merge ( d r s ( [ ] , [ p r ed ( say , S ) , r e l ( arg1 , S ,X ) ] ) , d r s ( [ ] , [ say ( app ( P , S ) ) ] ) ) ) ) ) :

( ( 1 2 _s −o 6 _ t ) −o (17 _e −o (19 _s −o 18 _ t ) ) )
lam (V, lam ( S , merge ( d r s ( [ E ] , [ r e l ( pa r tOf , E , S ) ] ) , app (V, E ) ) ) ) :

( ( 7 _v −o 7 _ t ) −o (10 _s −o 6 _ t ) )
}

F-structure:

"Mary said that Susan hugged a bear"

'say<[1:Mary], [23:hug]>'PRED

'Mary'PRED

CASE nom, GEND fem, NTYPE name, NUM sg, PERS 3

125

123

1

SUBJ

'hug<[58:Susan], [83:bear]>'PRED

'Susan'PRED

CASE nom, GEND fem, NTYPE name, NUM sg, PERS 3

157

155

58

SUBJ

'bear'PRED

'a'PREDDETSPEC

CASE acc, DEF -, NTYPE count, NUM sg, PERS 3

193

91

83

191

92

OBJ

MOOD indicative, PERF -_, PROG -_, TENSE pastTNS-ASP

COMP-FORM that, PASSIVE -213

57

23

211

197

167

71COMP

MOOD indicative, PERF -_, PROG -_, TENSE pastTNS-ASP

+ROOT220

218

215

135

14

207
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Abstract

Word associations are commonly applied in
psycholinguistics to investigate the nature and
structure of the human mental lexicon, and at
the same time an important data source for mea-
suring the alignment of language models with
human semantic representations.

Taking this view, we compare the capacities of
different language models to model collective
human association norms via five word asso-
ciation tasks (WATs), with predictions about
associations driven by either word vector sim-
ilarities for traditional embedding models or
prompting large language models (LLMs).

Our results demonstrate that neither approach
could produce human-like performances in all
five WATs. Hence, none of them can suc-
cessfully model the human mental lexicon yet.
Our detailed analysis shows that static word-
type embeddings and prompted LLMs have
overall better alignment with human norms
compared to word-token embeddings from pre-
trained models like BERT. Further analysis sug-
gests that the performance discrepancies may
be due to different model architectures, espe-
cially in terms of approximating human-like
associative reasoning through either semantic
similarity or relatedness evaluation1.

1 Introduction

Artificial intelligence, particularly large language
models (LLMs), functionally emulates the way we
humans perceive and conceptualize the physical
reality, as well as how we understand and process
multifaceted information (Löhn et al., 2024). Yet a
pivotal open question remains unsolved: to what ex-
tent do LLMs align with the conceptual knowledge
hierarchically encoded in human cognition as their
capabilities advance? This is where the “machine
psychology” comes into play to scrutinize LLMs’
“behavioral traits” and “thinking patterns” through

1Our codes and data are publicly available at
https://github.com/florethsong/word_association
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Figure 1: Illustration of Common Word Association
Tasks. These tasks evaluate semantic alignment between
computational models (word embeddings vs. LLM
prompting) and human-like associative reasoning.

psychological tests adapted from interpretable re-
search on human (Hagendorff, 2023).

Successful modeling of the human mental lexi-
con can be viewed as an essential step in verifying
human-like intelligence. Human mental lexicon,
in contrast to electronic lexica, is extremely versa-
tile in supporting the association and generation of
new concepts. Indeed word association norms is
a typical method of investigation: a stimulus word
is presented to a human participant, who is sim-
ply required to produce the first word coming to
mind (McRae et al., 2012; De Deyne et al., 2019).
Semantic similarities and relatedness that underlie
the core of human mental lexicon is hereby quan-
tified as collective linguistic norms. Since distri-
butional similarity between words is an important
factor explaining associations, traditional studies
extensively adopted Distributional Semantic Mod-
els (DSMs) and word embeddings to predict human
word associations (Mandera et al., 2017; Evert and
Lapesa, 2021; Kwong et al., 2022; A et al., 2024).
On the other hand more recent studies, based on
LLMs, proved that such systems can align, to a
considerable extent, with human patterns of asso-
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ciating words (De Deyne et al., 2024; Abramski
et al., 2025; Bai et al., 2025). An open question
arisen is which one of these methods delivers better
results in approximating human norms.

Besides the theoretical interest of the problem,
the results are relevant to the problem of reverse
dictionary, where a user tries to retrieve a word
given a set of associates or a dictionary definition
(Almeman and Espinosa-Anke, 2024). Reverse
dictionary applications, which can be seen as the
information retrieval modeling side of human lexi-
cal access (the so-called tip-of-the-tongue, anomia
or dysnomia problem, see Zock (2002) and Rapp
and Zock (2014)) can be helpful tools for writers
and translators, and in this sense, generative LLMs
show a lot of promise, as they could help a user by
retrieving and generating a target word simply on
the basis of a prompt with some lexical cues. From
a psychological standpoint, word associations are
also a fundamental indicator for human creativ-
ity and divergent thinking, as research indicates a
consistent positive correlation between high levels
of human creativity and the capacity to generate
word associates that are distant in the lexical net-
work (Kenett and Faust, 2019; Yang et al., 2022;
Johnson and Hass, 2022; Wang et al., 2024).

As illustrated by the task types in Figure 1 fo-
cusing on semantic similarity and relatedness, this
study designs a protocol of five-stage word asso-
ciation tasks (WATs) to evaluate models against
human norms. By taking the majority of human
responses across various WATs as a main proxy
of human mental lexicon, this study compare the
word association abilities of vectors from tradi-
tional static word-type embedding models (WEMs),
mean-pooled word-token embeddings from repre-
sentative pretrained language models (PLMs), and
prompting strategies with mainstream LLMs. Re-
sults show that although none of these models align
fully with human mental lexicon and hence model
effectively the versatility of the human cognitive
ability, WEMs and LLMs can better mimic hu-
man associations than PLMs: LLMs outperform
competitors in word retrieval tasks (with a focus
on capturing semantic similarities, i.e., lexical in-
terchangeability), while WEMs perform better in
concept pairing (emphasizing the identification of
semantic relatedness, that is, detecting mutual con-
ceptual relations). While scaling-up and contextual-
ization often helps embedding models, PLMs show
more architecture- and task-dependent trade-offs.

2 Related Work

WATs with Humans Word associations are
grounded in Firthian’s “word in company” tradi-
tion that lexemes with resembling behavioral pro-
files (like, shared collocational patterns or syntactic
structures) encode similar paradigmatic or syntag-
matic relations in meaning and cognition (Firth,
1957; Church and Hanks, 1990). They function as
prototypical and advantageous tools in psycholin-
guistics to tap directly into semantic memory and
conceptual knowledge reflected in human think-
ing, reasoning, and language use. As a classical
paradigm, the free word association task and its
variants based on word clustering or relationship
identification accelerate quantitative exploration
of human cognitive phenomena, such as language
acquisition (Citraro et al., 2023), metaphor and
analogy comprehension (Lu et al., 2022), and cre-
ativity (Beaty and Kenett, 2023; Wang et al., 2024).

Various human association norms originally de-
signed to access preexisting word knowledge in
the human mind and detect different aspects of
cognitive development and competencies, such as
EAT (the Edinburgh Associative Thesaurus, Kiss
et al., 1973), USF (the University of South Florida
Free Association Norms, Nelson et al., 2004), and
SWOW (the Small World of Words, De Deyne
et al., 2019), can be applied in conjunction as a
comprehensive benchmark for facilitating the mea-
surement of the alignment between human internal
semantic cognition and external word embeddings.

WATs with Word Embeddings WATs have sig-
nificantly contributed to benchmarking models’ se-
mantic representations and conceptual structures
against human mental lexicon shown in diverse
human-generated norms, both in theory and prac-
tice (Rapp and Zock, 2014; De Deyne et al., 2016).
They provide a powerful means to probe into two
fundamental dimensions of distributional seman-
tics: similarity (interchangeability of words, e.g.,
car/van) and relatedness (shared conceptual rela-
tions between words, e.g., car/wheel) (Fodor et al.,
2023). Existing work (Lenci et al., 2022; Fodor
et al., 2023; A et al., 2024, etc.) has been exten-
sively devoted to thorough comparisons across a
wide spectrum of DSMs from count (e.g., Dissect
PPMI, Baroni et al., 2014) and predict models (e.g.,
word2vec, Mikolov et al., 2013) at early static-
embedding generation to recent transformer-based
contextual embedding models (e.g., BERT, Devlin
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et al., 2019). These studies consistently demon-
strated the superior performance of static embed-
dings in out-of-context WATs, while highlighting
contextual embeddings’ advantages in tasks requir-
ing contextual sensitivity. Collectively, they re-
vealed the nuanced interplay between model de-
sign, task requirements, and cognitive plausibility
of language representations.

WATs with LLMs Recent work expanded the
use of WATs into dissecting the behaviors of LLMs
as black-box systems to better understand their
advantages and limitations in semantic-aware rea-
soning. Abramski et al. (2025) established LLM-
generated free association norms by prompting
popular LLMs and found that LLM-generated
associations exhibit weaker concreteness effects
and stronger societal biases compared to human
norms. Cazalets and Dambre (2025) demonstrated
GPT-series’ ability to synchronize with human
players in game-like free association interactions.
Beyond free association tasks, structured variants
such as ontological classification (De Deyne et al.,
2024), connection tasks (Samdarshi et al., 2024),
and similarity judgments on triads (Linhardt et al.,
2025) have assessed LLMs’ ability to identify
underlying internal relations or cluster words by
shared characteristics. Increasing interest has been
in using WATs to reveal both explicit and implicit
societal biases encoded in LLMs. For example,
studies by Ethayarajh et al. (2019), Abramski et al.
(2025), and Bai et al. (2025) presented how WATs
can uncover attitude disparities between model out-
puts and human responses, highlighting their utility
in addressing ethical issues of language models.

Such studies stress WATs’ dual role in illuminat-
ing human and models’ semantic networks; how-
ever, existing work mainly relied either on prompt-
based strategies with LLMs or on embedding simi-
larity, without any systematic comparison between
the two. Also, previous studies were limited in
scope, focusing only on one type of WAT, therefore
a more comprehensive evaluation is necessary.

3 Experimental Settings

According to Abramski et al. (2025), probing into
the conceptual knowledge encoded within language
models by examining the embedding space works
well for traditional models, but it is less effective
and practical for LLMs. This is due to the fact that
embeddings from LLMs exhibit severe anisotropy
in their vector spaces, which can significantly dis-

tort similarity estimates (e.g., Ethayarajh, 2019;
Zhang et al., 2020; Biś et al., 2021; Timkey and
van Schijndel, 2021; Nie et al., 2025; Feng et al.,
2025). Therefore, a shift from the conventional
approach of accessing the embedding space to a
top-down approach in the context of LLMs was
proposed, which means directly prompting LLMs
with specific tasks and using their outputs to infer
the knowledge in their vector spaces.

Therefore, we examine the capabilities of dif-
ferent models by employing two methodologies:
embedding and prompting, which align with their
default typical approaches to WATs at hand. A ba-
sic assumption of embedding-based tests is that the
strength of word associations increases with the
cosine similarity of their embeddings (Clark, 2015;
Fodor et al., 2023), reflecting graded semantic re-
lationships in vector spaces. For WEMs, we ex-
tracted static word-type embeddings and calculated
the cosine similarities as the basis for their out-
puts. In terms of PLMs, both non-contextualized
and contextualized word embeddings were mean-
pooled from the last hidden layers and cosine simi-
larities were computed. Regarding LLMs, we uti-
lized zero-shot prompts to obtain direct responses.

3.1 Task Design

We tested our models on five complementary and
progressively challenging tasks built on the well-
established datasets, as summarized in Table 1.
Each task stresses distinct capabilities of language
models in terms of processing semantic similar-
ity versus relatedness, with extended discussion
provided in Appendix A.

Task 1: Multiple-Choice Associations FAST
dataset (Evert and Lapesa, 2021) is leveraged in
this task, which provides quadruples of a stimulus
and three candidate words: “FIRST, HAPAX, RAN-
DOM” where FIRST is the most frequent associate
response from humans, HAPAX is a response that
has been mentioned only once, and RANDOM is
a randomly selected control candidate with mini-
mal semantic association strength to the stimulus.
For each stimulus, a model has to choose the most
strongly associated word (i.e., for embedding mod-
els, the one with the largest semantic similarity). It
is worth noticing that HAPAX is also a word with
weak semantic association with the stimulus, and
thus it works as a strong distractor.

Performance is measured using Accuracy, i.e.,
the percentage of items in which the model cor-
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Table 1: Overview of Datasets for the Five Association Tasks. In the “Structure” column, underlined elements
indicate the information presented to the evaluated models, while bolded elements are used as the ground truth.

Task Dataset Structure Size2 Word List Metrics3

1 FAST
<stimulus, FIRST, HAPAX, RANDOM>

(e.g., accept, receive, love, souls)
11,431 (12,329) Accuracy

2 FAST
<stimulus, FIRST, HAPAX, RANDOM>

(e.g., achievement, success, degree, round)
11,431 (12,329) ✓ Top-1 Accuracy, Mean Rank (threshold = 4)

3 CogALex
<Target, a1, a2, a3, a4, a5>

(e.g., air, plane, fresh, water, breathe, force)
3,650 (4,000) ✓ Top-1 Accuracy, Mean Rank (threshold = 4)

4 Concrete-Abstract Triad
<A, B, C> (PAB, PAC, PBC)

(concrete e.g., banana, cherry, pineapple (0.18, 0.65, 0.18))
(abstract e.g., darling, hero, thinker (0.48, 0.13, 0.40))

100 + 100 Accuracy (Total, Concrete, Abstract)

5 Remote Triad
<A, B, C> (PAB, PAC, PBC)

(e.g., fence, mask, salt (0.80, 0.05, 0.15))
100 Accuracy

rectly picks the FIRST associate ([0%, 100%]),
with a random-choice baseline of 33.3%. To miti-
gate potential positional bias, the elements in each
candidate list were shuffled during LLM prompt-
ing.

Task 2: Open-Vocabulary Associations This
task also relies on the FAST dataset but differs in
that it presents no fixed set of candidates. Instead,
models are asked to generate the most associated
word in an open-vocabulary setup which further
simulates the way humans access their mental lexi-
con in a natural association task.

In the current study, we create a “pseudo-open
vocabulary” condition for WEMs and PLMs where
models are tasked with ranking associations for a
given stimulus over a large-scale word list, which
covers all FIRST words and restricts the range of
potential choices. The tailored word list applied in
this study is a concatenation of vocabularies from
word2vec (Mikolov et al., 2013), GloVe (Penning-
ton et al., 2014), and FastText (Joulin et al., 2017)
models, totaling 101,607 word types, effectively
serving the goals of the task. While LLMs are

2Since word2vec, GloVe, and FastText models underper-
form when faced with out-of-vocabulary words, we manually
excluded any missing items if a word in our specific word set
is not included in any of these three baseline models. As a
result, we obtained 11,431 out of 12,329 items from the orig-
inal FAST dataset for Tasks 1 and 2, and 3,650 out of 4,000
items from the original CogALex dataset for Task 3. For both
triad datasets corresponding to Tasks 4 and 5, no items were
removed from the original datasets.

3To ensure reliable and effective comparisons, we con-
ducted two types of significance tests, depending on the eval-
uation metrics. For accuracy scores in Tasks 1–5, we ap-
plied McNemar’s test (McNemar, 1947) corrected with Ben-
jamini–Hochberg procedure (Benjamini and Hochberg, 1995)
across all model pairs to determine whether the observed ac-
curacy differences are statistically significant. For mean rank
results in Tasks 2 and 3, we used the Wilcoxon signed-rank
test (Wilcoxon, 1945) to evaluate whether the rankings of the
FIRST or Target words in the given instances produced by
different models differed significantly. More details can be
found in Figures 8-12 in the Appendices.

asked to directly provide 30 words associated with
the stimulus, ordered by their association strength.

Two statistical metrics are reported based on the
word ranking list for each stimulus (i.e., the word
list sorted by decreasing cosine similarity based on
embedding-based models, and the ranked word list
generated by LLMs): 1) Top-1 Accuracy: how fre-
quently a model ranks the FIRST human response
as the top 1 result ([0%, 100%]), positively corre-
lated with model-human semantic alignment; and
2) Mean Rank (threshold = 4): the average posi-
tion of the FIRST word in the rankings by a certain
model. We set 4 as the threshold, that is, if the rank
of the FIRST word in a given ranking list is 3 or
lower, we assign this actual rank as the score for
the given instance, otherwise we assign a score of 4.
This is in line with the convention of shared tasks
using mean rank to mitigate excessive penalty on in-
stances with high-rank outliers (Camacho-Collados
et al., 2018; Mansar et al., 2021). The final scores
are mean ranks falling in [1, 4], which are nega-
tively correlated with the performance of models
in lexical alignment with humans.

Task 3: Reverse Associations Based on the Co-
gALex shared task dataset (Rapp and Zock, 2014),
this task evaluates the models’ ability to simul-
taneously integrate multi-layered relations across
multiple stimuli. The logic of this task is closely
related to the tip-of-the-tongue phenomenon. Each
item features a Target word defined as the human-
generated response to five given cue words, which
are all interconnected with the Target at a certain
conceptual level.

The objective is to retrieve the Target word that
semantically connects the five cue words, within a
pseudo-open vocabulary of candidates. For WEMs
and PLMs, we compute the average vector of the
five cue words and measure the association strength
(i.e., cosine similarity) between it and each candi-
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date word in a list of 101,607 words (identical to
that used in Task 2) to produce a ranked list of
target words, while LLMs are required to directly
generate a list of 30 potential targets. Performance
is evaluated using the same two metrics as in Task
2. This task emphasizes reverse reasoning ability
and tests whether models can reconstruct a unifying
concept from distributed cues.

Task 4: Concrete-Abstract Association Triads
This task presents triads of words to models, where
any two can be paired based on varying semantic
features. The goal is to select the most semanti-
cally related pair in each triad. The dataset, in-
troduced by De Deyne et al. (2021) is employed,
which can be split into two subsets: 1) Concrete
Triad Dataset focusing on physical entities and
events; 2) Abstract Triad Dataset focusing on
psychological and conceptual relationships.

Models’ outputs are compared against human
preferences with percentages provided in the
dataset. Specifically, for each instance, WEMs and
PLMs select the word pair with the highest cosine
similarity among the three candidate pairs based
on their word embeddings, whereas the top-ranked
pair from all three pairs is regarded as LLMs’ final
choice. We report respectively the accuracies on
total, concrete, and abstract triads, all ranging in
[0%, 100%] and positively correlated with model-
human alignment. In cases where humans do not
produce a single dominant pairing (e.g., two pair-
ings have equal frequencies chosen by humans), a
model’s choice is considered correct if it matches
one of the most frequent human choices.

Task 5: Remote Association Triads Similar
to the structure in Task 4 but significantly more
challenging, this task utilizes the Remote Triad
dataset (De Deyne et al., 2016) and requests mod-
els to identify the most related pairing with more
distant and creative semantic links among words.
As in Task 4, we measure accuracy based on human
preferences provided in the original dataset. Due to
the subtlety of the associations involved, this task
offers deeper and informative insights into the ex-
tent to which models can capture latent and implicit
conceptual relations beyond immediate meaning
similarity between words.

3.2 Model Selection
We evaluate representative and state-of-the-art lan-
guage models across three architectural paradigms
and development stages, further dividing them into

“Smaller” (with around 1B or fewer parameters)
and “Larger” (with over 1B parameters) categories
based on parameter scale. No post hoc modifica-
tions were conducted to the vanilla models and
their embeddings with the intention to assess the
intrinsic quality of their representations.

The first group covers five static WEMs:
word2vec (Mikolov et al., 2013) pretrained on
100B tokens of Google News, GloVe (Pennington
et al., 2014) trained on 6B tokens of Wikipedia
2014 and newspapers as well as GloVe-CC on 840B
tokens of Common Crawl (CC) Web data, and Fast-
Text (Joulin et al., 2017) trained on 16B tokens of
Wikipedia 2017 and other webbase corpus as well
as FastText-CC on 600B tokens of CC. All models
were tested with 300-dimensional embeddings.

The second group includes six PLMs: BERT-
base and -large (Devlin et al., 2019), GPT-2 and
-xl (Radford et al., 2019), and T5-small and -
3B (Raffel et al., 2020), from which we extracted
non-contextualized (the input is a single word, like
“accept”) as well as contextualized (the input is a
fixed simple sentence containing the key word, like
“My target word is accept”) word embeddings by
mean-pooling the subword representations in the
last layers.

The third group composes three LLMs, i.e.,
GPT-4.13, DeepSeek-V3 (-0324) (DeepSeek-AI,
2024), and Qwen3 (-238B-A22B) (Yang et al.,
2025). We ran additional experiments (cf. Ap-
pendix G) to test how different temperature settings
(0.01 vs. 0.5 vs. 1), prompt strategies (simple zero-
shot vs. enhanced few-shot), and reasoning modes
(standard vs. reasoning) impact LLM effectiveness
across different WATs. While results indicate that
most LLMs achieve marginally better performance
at temperature 0.5 using detailed few-shot prompts
with reasoning, optimal configurations vary across
tasks and models. To obtain consistent and com-
parable patterns from LLMs, we standardized our
configurations: temperature was maintained at 0.01
using zero-shot prompts, and reasoning ability was
not activated for the reasoning model—Qwen3.

4 Results and Analysis

This section reports the empirical results and find-
ings obtained from operationalizing the series of
tasks and metrics defined in Section 3.1. The statis-
tics corresponding to each task and significance
test results are displayed in Appendices B-F.

2https://openai.com/index/gpt-4-1/
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4.1 Multiple-Choice Association

Figure 2 illustrates the performance of various lan-
guage models in Task 1, that is, identifying the
most interchangeable word or near-synonyms to
a given cue from a restricted set of candidates.
With the only exception of GPT-2 (non-ctx), all
models achieve an accuracy vastly better than the
chance-level baseline. Notably, WEMs and LLMs
significantly outperform PLMs proved by Figure 8,
frequently reaching accuracies of 80% or higher.
This suggests that static word-type representations
derived from WEMs and prompted LLMs are more
effective at capturing direct semantic similarities
between near-synonyms or conceptually related
words. In contrast, token-level embeddings mean-
pooled from PLMs show substantially reduced ef-
fectiveness, indicating a difficulty in abstracting a
type-level representation, which would be neces-
sary for this task. Our findings are consistent with
Lenci et al. (2022), Apidianaki (2023), and A et al.
(2024), who claimed that word-token representa-
tions complicate the investigation of lexical seman-
tic knowledge anchored at the word-type level.

Figure 2: Plot of Model Accuracies in the Multiple-
Choice Association Task. Fillings and shapes are used
to distinguish the context types and the magnitudes of
models. Hollow markers indicate smaller models, while
solid ones represent larger ones. Non-contextualized
(non-ctx) PLMs are shown as circles, in contrast to
contextualized (ctx) PLMs marked with triangles. Note:
the visual markers in the subsequent figures maintain
consistent meanings throughout this paper.

Additionally, when comparing the efficiency of
non-contextualized embeddings to contextualized
ones within PLMs, it is interesting to note that
extra contexts benefit both GPT-2 and T5, though
to varying degrees, while BERT-base and BERT-
large models do not display the same enhancement.

Comparisons between smaller and larger models
reveal that, for most WEMs and PLMs, increasing
parameter count correlates with improved model-
ing of lexical semantics and conceptual relation-
ships. Larger models tend to outperform smaller
ones, aligning with established Scaling Laws (Ka-
plan et al., 2020), with the exception of BERT,
whose larger variant is worse than the smaller one,
pointing to its potential architectural or training-
related limitations in preserving word-type knowl-
edge during scaling-up.

Figure 3 reveals distinct error patterns across dif-
ferent model types. The errors align with overall
accuracy trends: WEMs and LLMs predominantly
select HAPAX, indicating a relatively strong sensi-
tivity to weak associations, while making few RAN-
DOM selections. This suggests that such models
can at least effectively distinguish between weak
and non-existent associations, while in contrast
PLMs and particularly GPT-2 (non-ctx) are more
frequently misled by RANDOM distractors. Fur-
thermore, LLMs occasionally encountered OTHER
errors, particularly involving incorrect formats or
range misinterpretations under zero-shot prompt-
ing. For example, LLMs may output stock in
response to garters with the candidate list [lace,
sweaters, stockings], reflecting possible failures
in instruction following that manifest as hallucina-
tions or misalignment with task requirements.

4.2 Open-Vocabulary Association

Task 2 introduces a more demanding evaluation
scenario, placing models under empirically unre-
stricted “free” association conditions, therefore re-
sulting in universally lower performance across
all models as evidenced in Figure 4. This task
probes the models’ global semantic organization
and broader vector space in that they mirror human-
like associative knowledge. Remarkably, the stark
disparities in top-1 accuracies and mean ranks
between WEMs/PLMs and LLMs (the majority
of these differences are statistically significant as
shown in Figure 9) highlight that LLMs can more
reliably identify human-preferred associative tar-
gets by frequently retrieving and prioritizing near-
synonyms of high-frequency co-occurring lexemes
for the given stimulus (e.g., really for actually, de-
parture for arrival).

Interestingly, the effect of model size is heteroge-
neous and model-dependent. Specially, scaling-up
yields marginal performance gains for GloVe, Fast-
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Figure 3: Error Percentages for Various Types of Wrong Hits in the Multiple-Choice Association Task. Blue bars
show the percentage of HAPAX models deemed the most associated word with the stimulus, orange bars represent
RANDOM hits, and green bars indicate other error types (e.g., multiple-word or out-of-choice generations).

Text, and GPT-2, but not for BERT or T5. This
indicates that semantic-cognitive alignment relies
more on architecture than on scale. It further sug-
gests that parametric scaling laws interact differ-
ently with task-specific requirements.

Figure 4: Top-1 Accuracies (above) and Mean Ranks
(below) in the Open-Vocabulary Association Task.

4.3 Reverse Association

Task 3 requires two-step reasoning: first identify-
ing the conceptual commonality among five related
hint words, and then finding the target word con-
necting them from a broad candidate pool.

As shown in Figure 5 and 10, the results largely
mirror the overall performance trends observed
in Tasks 1 and 2, while further confirming that
LLMs exhibit better alignment with human seman-
tic knowledge. Specifically, LLMs achieve over

25% top-1 accuracies and demonstrate consistently
lower mean ranks for the correct Target words as
judged by humans. This suggests that LLMs are
better equipped to handle tasks requiring abstract
generalization and lexical retrieval.

Notably, static embeddings from WEMs also
show relatively strong performance, achieving
higher accuracy and lower average ranks compared
to all PLMs. As for the vector representations from
the latter type of models, it is possible that they
are just too context-specific for tasks requiring to
capture the semantics of word types.

Figure 5: Top-1 Accuracies (above) and Mean Ranks
(below) in the Reverse Association Task.

4.4 Concrete-Abstract Association
This task probes semantic space by comparing
the strengths of inter-word semantic relationships
within triads. As shown in Figure 6 and 11,
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Figure 6: Accuracies in the Concrete-Abstract Association Task on Total, Concrete, and Abstract Datasets.

experimental results highlight the superior per-
formance of WEMs, which significantly outper-
form embeddings from most PLMs, regardless of
whether the word pairs are concrete or abstract.
Moreover, regarding LLMs, the results also reveal
that employing prompt-based methods on GPT-
4.1 in this task achieves accuracy comparable to
static embeddings derived from WEMs. In con-
trast, both DeepSeek-V3 and Qwen3 perform sig-
nificantly worse—especially compared to larger
WEMs, namely, GloVe-CC and FastText-CC, and
their performance aligns more closely with that of
T5 models among PLMs.

Interestingly, WEMs and LLMs show somewhat
stronger performance on concrete triads than on
abstract ones, while PLMs (like BERT and T5)
exhibit the opposite pattern. This contrast may re-
flect their differing sensitivities to concreteness ef-
fects (Hill et al., 2014; Knupleš et al., 2023; Abram-
ski et al., 2025), which describes that concrete
words tend to evoke stronger but fewer associations,
whereas abstract words elicit weaker but more dif-
fuse associations. In this light, WEMs and LLMs
are more effective at leveraging the focused, robust
relationships typical of concrete concepts, whereas
token-based embeddings from PLMs show fairly
poor capability of adapting to such associations.

At last, we observe that incorporating contex-
tual information during embedding extraction from
PLMs leads to little performance degradation in
BERT models but a slight improvement in GPT-2
and T5 models. However, these differences stem-
ming from their distinct model architectures (Qiu
et al., 2020) are not significant in this task. Besides,
while scaling has minimal impact on PLMs’ per-
formance, it significantly enhances that of WEMs.

4.5 Remote Association

Contrary to expectations, the increased concep-
tual distances for the triads in Task 5, which
may present greater challenges for human partic-
ipants, have only a limited impact on the accu-
racies achieved by most language models when
compared to the baseline results in Task 4. The
results in Figure 12 indicate that significant accu-
racy differences arise only between WEMs and
two types of PLMs (BERT and GPT-2), as well
as two LLMs (DeepSeek-V3 and Qwen3). The
top-performing models in each group remain con-
sistent with those identified in other tasks, namely,
FastText-CC among WEMs, T5-3B among PLMs,
and GPT-4.1 among LLMs.

Figure 7: Accuracies in the Remote Association Task.

For this task, neither model size nor contextual-
ization substantially affects the ability of WEMs
and PLMs to identify intricate relational abstrac-
tions. Two primary factors may explain this finding.
The first is the limited dataset size of 100 items,
which may restrict generalization and robust sta-
tistical analysis. Second, theoretically, the remote
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associations present in these triads generate sce-
narios that extend beyond textual information by
incorporating not only perceptual but multimodal
concerns, which may reduce the influence of dif-
ferences in textual data. For instance, in the triad:
A-fear, B-guest, C-price (PAB=0.275, PAC=0.425,
PBC=0.300), models with limited abstraction ca-
pabilities fail to identify the most human-like con-
nection between fear and price, a subtle relation-
ship that likely reflects real-world consumption and
market experiences but is uncommon in training
data. In such cases, evaluating atypicality by an-
alyzing the distribution of model choices across
both typical and atypical human responses, rather
than relying solely on accuracy based on the most
frequent human response, may yield a more infor-
mative comparison.

5 Conclusion

This study systematically evaluates the intrinsic
semantic capabilities of diverse language models,
including WEMs, PLMs, and LLMs, by leveraging
their typical operational modes (e.g., word embed-
dings vs. prompt-based generation). Through the
adaptation and integration of five kinds of classical
psycholinguistic WATs, we assess how well these
models perform on cognitively motivated bench-
marks. The results reveal distinct performance and
limitations across architectures and configurations.

First, WEMs and LLMs demonstrate better
alignment with human association norms com-
pared to PLMs, particularly in tasks requiring sta-
ble type-level semantic representations. Notably,
LLMs outperform the other models in word re-
trieval (Tasks 1–2, similarity-dominant; Task 3,
considering both similarity and relatedness), while
WEMs do better in concept pairing (Tasks 4–5,
relatedness-dominant), highlighting their comple-
mentary strengths across model architectures and
the fact that human mental lexicon is good at syner-
gizing similarity and relatedness, but not artificial
systems. For WMEs, increasing model size gen-
erally improves performance. However, PLMs ex-
hibit architecture-dependent behaviors in terms of
scaling and contextualization: encoder-only mod-
els like BERT often degrade with larger scales and
added contexts but decoder-only models (e.g., GPT-
2) tend to benefit from both. For encoder–decoder
models (e.g., T5), the impacts are task-specific.
Their performance notably improves in Tasks 1
and 3 in these two settings but declines in Task 2.

LLMs’ partial success in some WATs by mim-
icking human semantic behaviors demystifies the
claim of their human-like intelligence. Yet they
still struggle to fully replicate the versatility of the
human mental lexicon, particularly in associating
remote or abstract concepts. This suggests a ten-
sion between accuracy and creativity in language
modeling, warranting deeper exploration. Together,
these findings provide comprehensive insights into
the alignment between language models and hu-
man cognition and highlight the value of psycholin-
guistic data for diagnosing model capabilities and
biases.

Limitations

While this work provides broad insights into the
semantic quality of different language models, it is
limited by a few reasons for further improvement
in the future.

A primary limitation of this study is the use of
different evaluation methods across model types:
cosine similarity for WEMs and PLMs, versus
prompting for LLMs. While these approaches re-
flect typical usage patterns, the inconsistency chal-
lenges the validity of direct comparisons. Embed-
ding similarity may capture relations beyond asso-
ciative knowledge in some cases, whereas prompt-
ing can advantage LLMs by providing task-specific
guidance. Consequently, some performance differ-
ences may reflect evaluation methods rather than in-
trinsic disparities in model knowledge. Future work
should seek to standardize protocols, for example,
by incorporating embedding-based measures for
LLMs.

Additionally, while cosine distances are the most
commonly used method for measuring semantic
similarity between vectors, it has been criticized for
potentially yielding arbitrary and meaningless “sim-
ilarities” (Steck et al., 2024). Meanwhile, it may
underestimate the actual similarity between con-
textualized embeddings (Wannasuphoprasit et al.,
2023; Ijebu et al., 2025) and does not reliably in-
dicate human associations due to its symmetric
nature (Abramski et al., 2025). This limitation may
impact our findings regarding the alignment be-
tween human assessments and the embeddings of
WEMs and PLMs. Therefore, alternative methods,
such as the soft cosine similarity proposed by Ijebu
et al. (2025) or rank-based metrics (Santus et al.,
2016, 2018; Zhelezniak et al., 2019), could be ex-
plored for a more robust investigation.
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Also, our analysis of PLM models focused only
on final-layer embeddings obtained through mean
pooling, overlooking potential variations across
transformer layers. Previous research suggested
that intermediate layers may better capture lexical
semantics (Ormerod et al., 2024). Additionally, it
could be the case that our generic contexts were
not informative enough to create robust represen-
tations, and better results might be achieved by
sampling random sentence contexts with the target
word from a large-scale corpus to represent and by
averaging the corresponding embeddings (Bom-
masani et al., 2020; A et al., 2024; Nie et al., 2025).
We will examine more layer-wise semantic proper-
ties and assess methods for distilling contextualized
embeddings into static ones in the future. On the
other hand, we also believe that this issue confirms
that PLMs are probably not the best choice for the
automatic collection of word associations, com-
pared to WEMs and LLMs, given that researchers
would have to perform the additional steps of con-
text sampling and selection of the optimal layers.

Furthermore, the current study primarily focused
on English WATs and did not adequately address
advanced reasoning models and better configura-
tions for prompting LLMs, which require further
examination and comparison, including in multilin-
gual and low-resource language contexts.

Finally, this study was conducted solely on
semantic-level word associations. To gain a more
in-depth understanding of language associations,
future work can incorporate perspectives from
other linguistic dimensions, such as morphological
and phonological associations.
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A Discussion on the Properties of
Different WATs

Studies of semantic knowledge in vector spaces
typically use two key metrics: semantic similarity
and semantic relatedness (Fodor et al., 2023). The
former means the degree of interchangeability be-
tween words based on their core meanings (Miller
and Charles, 1991), as exemplified by accept and
receive due to their overlapping meanings. In con-
trast, the latter encompasses broader conceptual
connections, including functional, contextual, or
psychological associations, even when words ex-
hibit minimal semantic overlap (Gladkova et al.,
2016). For instance, air and plane demonstrate
high relatedness despite low similarity. These di-
mensions are rooted in lexical networks together,
with different word association tasks highlighting
distinct aspects.

Tasks 1 and 2 primarily assess semantic simi-
larity, as they require models to identify the most
semantically proximate word to a given stimulus.
In Task 1, the FIRST response exhibits high in-
terchangeability with the given stimulus (e.g., re-
ceive for accept), conforming to Miller and Charles
(1991)’s definition of semantic similarity. While
Task 2 employs an open-vocabulary paradigm, it
requires the generation or selection of maximally
similar words, maintaining its focus on direct mean-
ing alignment. Both tasks prioritize paradigmatic
relations (synonymy or near-synonymy).

Tasks 4 and 5 are relatedness-focused ones due
to their emphasis on detecting implicit conceptual
connections beyond semantic interchangeability.
The triad tasks (Concrete-Abstract and Remote)
evaluate models’ ability to identify word pairs
based on latent relational features. For instance,
[banana, cherry, pineapple] in Task 4 (banana and
pineapple are regarded as the most related con-
cepts, but they have totally different denotations),
and [fence, mask, salt] in Task 5 (the first two words
are most related but non-interchangeable).

Different from the aforementioned tasks, Task
3 requires models to simultaneously make judg-
ments on semantic similarity and relatedness, as
illustrated through examples from the CogALex
dataset (Rapp and Zock, 2014). The case of [plenty,
many, lots, around, leap → abound] demonstrates
similarity-driven processing, where identifying the
Target depends on recognizing shared core mean-
ings of quantitative abundance. In contrast, the
example [plane, fresh, water, breathe, force → air]
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reveals their internal relatedness through its web of
diverse associations, including functional, ecologi-
cal, physical, and perceptual connections.

Our findings echo prior work (Lenci et al., 2022;
A et al., 2024) on the semantic representation ca-
pabilities of WEMs versus contextualized models
(PLMs/LLMs). We found that the distinction be-
tween association tasks via semantic similarity and
relatedness is highly significant as it offers a clearer
framework for comparing architectures, emphasiz-
ing that human cognition seamlessly combines sim-
ilarity and relatedness, while language models lag
behind and show different limitations.

B Results of Multiple-Choice Association

Table 2: Accuracies (Acc.) and Frequencies of Incorrect
Responses (HAPAX, RANDOM, and OTHER) in Task 1.

Types Settings Models Acc. (%) HAPAX RANDOM OTHER

WMEs embeddings

word2vec 77.90 2,203 322
GloVe 79.31 2,072 292
GloVe-CC 80.28 2,092 161
FastText 82.07 1,904 145
FastText-CC 83.34 1,783 120

PLMs

non-contextualized
embeddings

BERT-base 58.26 3,150 1,621
BERT-large 52.81 3,409 1,985
GPT-2 34.23 3,215 4,303
GPT-2-xl 52.42 3,094 2,344
T5-small 65.89 2,801 1,097
T5-3B 67.05 2,944 822

contextualized
embeddings

BERT-base 52.01 3,352 2,134
BERT-large 45.46 3,374 2,860
GPT-2 52.25 3,203 2,255
GPT-2-xl 62.55 2,666 1,615
T5-small 67.47 2,583 1,135
T5-3B 71.34 2,373 903

LLMs prompt
GPT-4.1 86.77 1,408 80 24
DeepSeek-V3 86.72 1,420 84 14
Qwen3 79.53 2,077 233 30

Figure 8: Pairwise McNemar’s Tests on Task 1 (p <
0.05). Colored cells denote the significantly stronger
models based on accuracies: red for Model_A and blue
for Model_B. Dashes indicate non-significant differ-
ences.

C Results of Open-Vocabulary
Association

Table 3: Top-1 Accuracies (Top-1 Acc.) and Mean
Ranks with the Threshold of 4 (MR/4) in Task 2.

Types Settings Models Top-1 Acc. (%) MR/4

WMEs embeddings

word2vec 4.59 3.76
GloVe 5.78 3.69
GloVe-CC 4.79 3.71
FastText 5.14 3.70
FastText-CC 5.49 3.66

PLMs

non-contextualized
embeddings

BERT-base 3.19 3.85
BERT-large 2.13 3.90
GPT-2 0.78 3.97
GPT-2-xl 0.86 3.96
T5-small 4.99 3.76
T5-3B 4.17 3.79

contextualized
embeddings

BERT-base 2.74 3.89
BERT-large 2.13 3.90
GPT-2 1.84 3.92
GPT-2-xl 2.41 3.89
T5-small 4.11 3.77
T5-3B 2.12 3.87

LLMs prompt
GPT-4.1 30.07 2.85
DeepSeek-V3 35.56 2.69
Qwen3 32.40 2.81

Figure 9: Pairwise McNemar’s Tests (above) and
Wilcoxon Signed-Rank Tests (below) on Task 2 (p <
0.05). For the plot above, colored cells denote the signif-
icantly stronger models based on top-1 accuracies: red
for Model_A and blue for Model_B. For the below one,
colored cells denote significant differences on FIRST
ranks. Dashes indicate non-significant differences.
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D Results of Reverse Association

Table 4: Top-1 Accuracies (Top-1 Acc.) and Mean
Ranks with the Threshold of 4 (MR/4) in Task 3.

Types Settings Models Top-1 Acc. (%) MR/4

WMEs embeddings

word2vec 16.99 3.28
GloVe 16.27 3.34
GloVe-CC 18.52 3.26
FastText 21.26 3.14
FastText-CC 24.14 3.03

PLMs

non-contextualized
embeddings

BERT-base 5.53 3.78
BERT-large 3.04 3.87
GPT-2 0.25 3.99
GPT-2-xl 1.04 3.95
T5-small 10.90 3.57
T5-3B 12.11 3.52

contextualized
embeddings

BERT-base 2.38 3.90
BERT-large 3.34 3.87
GPT-2 0.63 3.97
GPT-2-xl 2.08 3.91
T5-small 14.14 3.44
T5-3B 13.51 3.43

LLMs prompt
GPT-4.1 35.53 2.73
DeepSeek-V3 29.37 2.95
Qwen3 27.45 3.03

Figure 10: Pairwise McNemar’s Tests (above) and
Wilcoxon Signed-Rank Tests (below) on Task 3 (p <
0.05). For the plot above, colored cells denote the signif-
icantly stronger models based on top-1 accuracies: red
for Model_A and blue for Model_B. For the below one,
colored cells denote significant differences on Target
ranks. Dashes indicate non-significant differences.

E Results of Concrete-Abstract
Association

Table 5: Accuracies (Acc.) on Total (T), Concrete (C),
and Abstract (A) datasets in Task 4.

Types Settings Models T-Acc. (%) C-Acc. (%) A-Acc. (%)

WMEs embeddings

word2vec 62.00 67.00 57.00
GloVe 60.50 64.00 57.00
GloVe-CC 66.50 77.00 56.00
FastText 61.50 65.00 58.00
FastText-CC 69.00 74.00 64.00

PLMs

non-contextualized
embeddings

BERT-base 44.00 40.00 48.00
BERT-large 41.50 39.00 44.00
GPT-2 37.00 38.00 36.00
GPT-2-xl 44.00 45.00 43.00
T5-small 47.50 45.00 50.00
T5-3B 46.50 43.00 50.00

contextualized
embeddings

BERT-base 41.00 34.00 48.00
BERT-large 36.00 32.00 40.00
GPT-2 37.50 38.00 37.00
GPT-2-xl 54.00 54.00 54.00
T5-small 52.00 47.00 57.00
T5-3B 48.50 45.00 52.00

LLMs prompt
GPT-4.1 62.00 65.00 59.00
DeepSeek-V3 51.00 57.00 45.00
Qwen3 51.50 54.00 49.00

Figure 11: Pairwise McNemar’s Tests on Task 4 (p <
0.05). Colored cells denote the significantly stronger
models based on t-accuracies: red for Model_A and
blue for Model_B. Dashes indicate non-significant dif-
ferences.

F Results of Remote Association

G Ablation Studies on Prompting LLMs

We conducted exploratory experiments to examine
how external (prompt design) and internal factors
(temperature settings, reasoning modes) influence
LLM performance across different WATs. Datasets
applied here were randomly sampled from our main
evaluation data as introduced in Table 1, with 200
items per task for Tasks 1-3, and full sets for Task
4 (200 items) and Task 5 (100 items).
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Table 6: Accuracies (Acc.) in Task 5.

Types Settings Models Acc. (%)

WMEs embeddings

word2vec 62.00
GloVe 65.00
GloVe-CC 64.00
FastText 66.00
FastText-CC 63.00

PLMs

non-contextualized
embeddings

BERT-base 36.00
BERT-large 36.00
GPT-2 44.00
GPT-2-xl 48.00
T5-small 49.00
T5-3B 51.00

contextualized
embeddings

BERT-base 34.00
BERT-large 34.00
GPT-2 42.00
GPT-2-xl 53.00
T5-small 58.00
T5-3B 57.00

LLMs prompt
GPT-4.1 63.00
DeepSeek-V3 46.00
Qwen3 38.00

Figure 12: Pairwise McNemar’s Tests on Task 5 (p <
0.05). Colored cells denote the significantly stronger
models based on t-accuracies: red for Model_A and
blue for Model_B. Dashes indicate non-significant dif-
ferences.

G.1 Different Prompts: Zero-shot vs.
Few-shot

Two sets of prompt instructions were designed by
referring to those in the study of De Deyne et al.
(2024), namely, 1) simple zero-shot prompts and
2) enhanced few-shot ones, detailed in Figures 13
to 18. The exemplars for few-shot prompts were
sourced from established association norms such as
EAT (Kiss et al., 1973), USF (Nelson et al., 2004),
and SWOW (De Deyne et al., 2019), excluding any
items overlapping with our evaluation datasets to

prevent contamination. The temperature for this
subexperiment was fixed at 0.01 and the reasoning
mechanism was disabled to isolate prompt efficacy.

Results in Table 7 exhibit that detailed few-shot
prompts consistently enhance LLM performance
except in Task 2. For instance, GPT-4.1 achieves
over 5% accuracy gains in Tasks 3 and 4, and
DeepSeek-V3 and Qwen3 show even more than
10% improvements. However, the benefits of de-
tailed few-shot prompting are model- and task-
dependent, as evidenced by GPT-4.1’s performance
in Task 2, where such prompts had marginal or even
negative effects.

G.2 Different Temperatures: 0.01 vs. 0.5 vs. 1
The temperature is a built-in parameter of LLMs
to control the randomness and the so-called cre-
ativity of their outputs (Peeperkorn et al., 2024). It
spans [0, 2] with higher values corresponding to
increased diversity, while lower values yield more
focused and deterministic outputs. It is assumed to
have effects on models’ semantic association capa-
bilities, potentially mapping cognitive factors in hu-
man associative behavior. Therefore, we conducted
subexperiment on comparing three temperatures:
0.01, 0.5, and 1 with simple zero-shot prompts and
without the thinking mode.

Although the current test was limited to half of
the full temperature range, Table 8 demonstrates
two key observations: 1) Temperature effects vary
across models and tasks, such as, GPT-4.1 achieves
optimal performance at 0.01 and 0.5, DeepSeek-V3
benefits most from 0.5, Qwen3 performs better at
0.5 and 1, and Tasks 2 and 3 show robustness to
0.5 compared to other tasks; 2) Performance dif-
ferences induced by different temperatures remain
subtle (less than 5%) across all assessed models
and tasks.

G.3 Different Modes: Standard vs. Reasoning
To investigate potential advantages of reasoning
mechanisms, we conducted a subexperiment on
Qwen3 with reasoning activation as the only vari-
able, using zero-shot prompts and a fixed temper-
ature of 0.01. Surprisingly, the reasoning is not
advantageous in all WATs. Notably, in Tasks 2 and
4—abstract word pairing, enabling reasoning may
lead to overthinking and hence misjudgments in
semantic similarity and relatedness assessments.

Together above results unveil the versatility of
the human associative ability, which cannot be fully
reproduced by LLM configurations.
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Table 7: Comparisons of LLM Results across Different Prompt Strategies. Boldface values indicate the highest
performance achieved by the model on a given task across all strategies.

Tasks Metrics GPT-4.1 DeepSeek-V3 Qwen3

zero-shot few-shot zero-shot few-shot zero-shot few-shot

Task 1 Acc. (%) 90.00 91.00 89.50 90.50 84.50 89.50

Task 2 Top-1 Acc. (%) 31.00 30.50 35.50 36.50 32.50 35.00
MR/4 2.75 2.76 2.68 2.53 2.78 2.61

Task 3 Top-1 Acc. (%) 32.50 37.00 26.00 37.50 23.00 34.00
MR/4 2.86 2.72 3.03 2.71 3.19 2.82

Task 4
T-Acc. (%) 62.00 67.50 50.50 75.00 51.50 61.50
C-Acc. (%) 65.00 66.00 56.00 80.00 54.00 58.00
A-Acc. (%) 59.00 69.00 45.00 70.00 49.00 65.00

Task 5 Acc. (%) 63.00 68.00 46.00 60.00 38.00 43.00

Table 8: Comparisons of LLM Results across Different Temperature Settings. Boldface values indicate the highest
performance achieved by the model on a given task across all settings.

Tasks Metrics GPT-4.1 DeepSeek-V3 Qwen3

0.01 0.5 1 0.01 0.5 1 0.01 0.5 1

Task 1 Acc. (%) 90.00 89.50 88.50 89.50 88.50 88.50 84.50 86.50 86.00

Task 2 Top-1 Acc. (%) 31.00 32.00 30.00 35.50 37.00 34.50 32.50 35.00 32.00
MR/4 2.80 2.78 2.81 2.68 2.60 2.66 2.78 2.71 2.71

Task 3 Top-1 Acc. (%) 32.50 36.00 33.00 26.00 31.50 29.00 23.00 26.50 26.50
MR/4 2.83 2.76 2.80 3.03 2.93 2.98 3.19 3.11 3.06

Task 4
T-Acc. (%) 62.00 57.00 59.00 51.00 51.50 51.00 51.50 52.50 52.50
C-Acc. (%) 65.00 58.00 63.00 57.00 56.00 57.00 54.00 55.00 52.00
A-Acc. (%) 59.00 56.00 55.00 45.00 47.00 45.00 49.00 50.00 53.00

Task 5 Acc. (%) 63.00 67.00 63.00 46.00 43.00 45.00 38.00 39.00 35.00

Table 9: Comparisons of Qwen3 Results with Different
Thinking Modes. Boldface values indicate the highest
performance achieved by the model on a given task
within two modes.

Tasks Metrics Qwen3

standard reasoning

Task 1 Acc. (%) 84.50 89.00

Task 2 Top-1 Acc. (%) 32.50 28.50
MR/4 2.78 2.84

Task 3 Top-1 Acc. (%) 23.00 28.00
MR/4 3.19 3.01

Task 4
T-Acc. (%) 51.50 52.00
C-Acc. (%) 54.00 57.00
A-Acc. (%) 49.00 47.00

Task 5 Acc. (%) 38.00 45.00
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*** Simple Zero-Shot Prompt ***

System: You are a native speaker of English participating in a psycholinguistic test about word meaning.

User:

** Task 1 **
- You will be presented with a list of words separated by "-" that consists of a cue (the first one) and three

candidates.
- You are asked to choose one target candidate from the three given candidates that is most closely associated

with the cue.
- Remember to only respond with one target candidate word and do not further elaborate on your response.
- Format your response as json: {cue-candidate1-candidate2-candidate3: target candidate}.
----------
- Input:{input}
- Output:

** Task 2 **
- You will be presented with a cue word.
- You are asked to output a list consisting of thirty words that are most closely associated with the cue word.
- Rank all thirty words according to their strength of association with the cue words in descending order.
- Remember to only respond with one list of ranked words and do not further elaborate on your response.
- Format your response as json: {cue: [response1, response2, ..., response30]}.
----------
- Input:{input}
- Output:

** Task 3 **
- You will be presented with five hint words seperated by "-".
- You are asked to output a list consisting of thirty words that are most closely associated with the given five

hint words
- Rank all thirty words according to their strength of association with all five hint words in descending order.
- Remember to only respond with one list of ranked words and do not further elaborate on your response.
- Format your response as json: {word1-word2-word3-word4-word5: [response1, response2, ..., response30]}.
----------
- Input:{input}
- Output:

** Task 4 **
- You will be presented with a triplet of words that can be marked as "A", "B", "C" in sequence.
- You are asked to output a list consisting of three alphabetic pairs that are ranked with the strength of word

association within their corresponding word pairs.
- Remember to only respond with one list of ranked pairs and do not further elaborate on your response.
- Format your response as json: {wordA-wordB-wordC:["AB", "BC", "AC"]}.
----------
- Input:{input}
- Output:

** Task 5 **
- You will be presented with a triplet of words that can be marked as "A", "B", "C" in sequence.
- You are asked to output a list consisting of three alphabetic pairs that are ranked with the strength of word

association within their corresponding word pairs.
- Remember to only respond with one list of ranked pairs and do not further elaborate on your response.
- Format your response as json: {wordA-wordB-wordC:["AB", "BC", "AC"]}.
----------
- Input:{input}
- Output:

Figure 13: Simple Zero-shot Prompt Instructions for LLMs across Five WATs.
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*** Enhanced Few-Shot Prompt – Task 1 ***

System: You are functioning as a native English speaker with unimpaired lexical access capabilities participating in a

controlled psycholinguistic experiment. Your task requires making semantic association judgments through systematic

cognitive operations.

User:

- This test is called "Multiple-Choice Word Association”, designed to measure your ability to associate words with each

other from a restricted list.

- You will be presented with a list of words separated by "-" that consists of a cue (priming lexical item) in the first

position and three candidates (a triplet of potential association targets) in the second to fourth positions.

- You are asked to choose one target candidate from the three given candidates that is most closely associated with the

cue in consideration of semantic (denotative overlap), conceptual (connotative alignment) and cognitive (co-

occurrence frequency) association strengths.

- Remember to only respondwith one target candidate word and do not further elaborate on your response.

- Format your response as json: {cue-candidate1-candidate2-candidate3: target candidate}.

----------

- Here are some examples:

- {

- "input": "fibre-moral-glass-cries",

- "output": {"fibre-moral-glass-cries": "glass"}

- },

- {

- "input": "alert-jagger-inactive-awake",

- "output": {"alert-jagger-inactive-awake": "awake"}

- },

- {

- "input": "poison-arsenic-milford-shakespeare",

- "output": {"poison-arsenic-milford-shakespeare": "arsenic"}

- }

----------

- Input:{input}

- Output:

Figure 14: Extended Few-shot Prompt Instructions for LLMs in Task 1: Multiple-Choice Association.

226



*** Enhanced Few-Shot Prompt – Task 2 ***

System: You are functioning as a native English speaker with unimpaired lexical access capabilities participating in a

controlled psycholinguistic experiment. Your task requires making semantic association judgments through systematic

cognitive operations.

User:

- This test is called "Open-Vocabulary Word Association", designed to measure your ability to perform deep semantic

network traversal.

- You will be presented with a cue word.

- You are asked to output a list consisting of thirty words that are most closely associated with the cue word in

consideration of semantic (denotative overlap), conceptual (connotative alignment) and cognitive (co-occurrence

frequency) association strengths.

- Rank all thirty words according to their strength of associationwith the cue words in descending order.

- Remember to only respondwith one list of ranked words and do not further elaborate on your response.

- Format your response as json: {cue: [response1, response2, ..., response30]}.

----------

- Here are some examples:

- {

- "input": "fibre",

- "output": {{"fibre":["food", "cloth", "cereal", "fabric", "optic", "diet", "cotton", "glass", "poop", "internet", "bread",

"bran", "optics", "material", "hair", "thread", "health", "strength", "rope", "wheat", "clothes", "grain", "wool", "clothing",

"textile", "wire", "healthy", "paper", "digestion", "laxative"]}

- },

- {

- "input": "alert",

- "output": {{"alert":["awake", "alarm", "red", "aware", "fire", "siren", "warning", "ready", "warn", "danger",

"attention", "attentive", "coffee", "light", "notice", "conscious", "morning", "observant", "sharp", "tense", "lights", "know",

"keen", "emergency", "high", "caution", "mind", "tell", "reminder", "vigilant"]}

- },

- {

- "input": "poison",

- "output": {{"poison":["death", "Ivy", "kill", "apple", "arsenic", "liquid", "bottle", "bad", "snake", "drink", "venom",

"deadly", "green", "rat", "dart", "dangerous", "chemical", "frog", "danger", "sickness", "mushroom", "murder", "toxic",

"food", "fish", "band", "die", "rats", "evil", "crossbones"]}

- }

----------

- Input:{input}

- Output:

Figure 15: Extended Few-shot Prompt Instructions for LLMs in Task 2: Open-Vocabulary Association.
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*** Enhanced Few-Shot Prompt – Task 3 ***

System: You are functioning as a native English speaker with unimpaired lexical access capabilities participating in a

controlled psycholinguistic experiment. Your task requires making semantic association judgments through systematic

cognitive operations.

User:

- This test is called "Reverse Word Association", designed to measure your ability to address the word access problem

by predicting the trigger based on the commonality between given words.

- You will be presented with five hint words separated by "-".

- You are asked to output a list consisting of thirty words that are most closely associated with the given five hint words

in consideration of semantic (denotative overlap), conceptual (connotative alignment) and cognitive (co-occurrence

frequency) association strengths.

- Rank all thirty words according to their strength of associationwith all five hint words in descending order.

- Remember to only respondwith one list of ranked words and do not further elaborate on your response.

- Format your response as json: {word1-word2-word3-word4-word5: [response1, response2, ..., response30]}.

----------

- Here are some examples:

- {

- "input": "together-joined-effort-harvester-honours",

- "output": {{"together-joined-effort-harvester-honours":["combined", "mixed", "mix", "added", "two", "bound",

"sum", "multiple", "joint", "total", "linked", "stuck", "join", "harvester", "pair", "words", "with", "connected", "baking",

"score", "paired", "grouped", "eggs", "combine", "associated", "amalgamation", "amalgamated", "one", "attached",

"integration"]}}

- },

- {

- "input": "centre-end-earth-East-man",

- "output": {{"centre-end-earth-East-man":["middle", "child", "average", "central", "between", "median", "name",

"age", "school", "class", "finger", "top", "last", "bottom", "waist", "road", "medium", "ages", "half", "ground",

"compromise", "start", "stuck", "sister", "surrounded", "sandwich", "muddle", "first", "amid", "inside"]}}

- },

- {

- "input": "to-should-not-must-nought",

- "output": {{"to-should-not-must-nought":["ought", "zero", "need", "will", "would", "obligation", "might", "guilt",

"obligated", "eight", "right", "could", "require", "shall", "thought", "responsibility", "proper", "old", "fashioned",

"nothing", "can", "caught", "grandfather", "go", "duty", "supposed"]}}

- }

----------

- Input:{input}

- Output:

Figure 16: Extended Few-shot Prompt Instructions for LLMs in Task 3: Reverse Association.
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*** Enhanced Few-Shot Prompt – Task 4 ***

System: You are functioning as a native English speaker with unimpaired lexical access capabilities participating in a

controlled psycholinguistic experiment. Your task requires making semantic association judgments through systematic

cognitive operations.

User:

- This test is called "Concrete and Abstract Word Association", designed to measure your ability to capture and bridge

the meaning and relationship between the given concrete or abstract words.

- You will be presented with a triplet of words separated by "-", which can be marked as "A", "B", "C" in sequence.

- You are asked to output a list consisting of three alphabetic pairs that are ranked with the strength of word association

within their corresponding word pairs in consideration of semantic (denotative overlap), conceptual (connotative

alignment) and cognitive (co-occurrence frequency) association strengths.

- Remember to only respondwith one list of ranked pairs and do not further elaborate on your response.

- Format your response as json: {wordA-wordB-wordC:["AB", "BC", "AC"]}.

----------

- Here are some examples:

- {

- "input": "apple-fruit-pie",

- "output": {{"apple-fruit-pie":["AB", "AC", "BC"]}}

- }

- {

- "input": "vibe-aura-felling",

- "output": {{"vibe-aura-felling":["AC", "AB", "BC"]}}

- }

- {

- "input": "foresight-intuition-cognition",

- "output": {{"foresight-intuition-cognition":["BC", "AB", "AC"]}}

- }

----------

- Input:{input}

- Output:

Figure 17: Extended Few-shot Prompt Instructions for LLMs in Task 4: Concrete-Abstract Association.
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*** Enhanced Few-Shot Prompt – Task 5 ***

System: You are functioning as a native English speaker with unimpaired lexical access capabilities participating in a

controlled psycholinguistic experiment. Your task requires making semantic association judgments through systematic

cognitive operations.

User:

- This test is called "Remote Word Association", designed to measure your ability to capture and bridge the meaning and

relationship between the given weakly-related words.

- You will be presented with a triplet of words separated by "-", which can be marked as "A", "B", "C" in sequence.

- You are asked to output a list consisting of three alphabetic pairs that are ranked with the strength of word association

within their corresponding word pairs in consideration of semantic (denotative overlap), conceptual (connotative

alignment) and cognitive (co-occurrence frequency) association strengths.

- Remember to only respondwith one list of ranked pairs and do not further elaborate on your response.

- Format your response as json: {wordA-wordB-wordC:["AB", "BC", "AC"]}.

----------

- Here are some examples:

- {

- "input": "hate-morning-test",

- "output": {{"hate-morning-test":["BC", "AC", "AB"]}}

- }

- {

- "input": "bear-hat-angel",

- "output": {{"bear-angel-hat":["BC", "AB", "AC"]}}

- }

- {

- "input": "shot-heat-darkness",

- "output": {{"shot-heat-darkness":["AB", "AC", "BC"]}}

- }

----------

- Input:{input}

- Output:

Figure 18: Extended Few-shot Prompt Instructions for LLMs in Task 5: Remote Association.
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Abstract

Following the Yellow Vest crisis that occurred
in France in 2018, the French government
launched the Grand Débat National, which
gathered citizens’ contributions. This paper
presents a semantic analysis of these contribu-
tions by segmenting them into sentences and
identifying the topics addressed using cluster-
ing techniques. The study tests several combi-
nations of French language models and commu-
nity detection algorithms, aiming to identify the
most effective pairing for grouping sentences
based on thematic similarity. Performance is
evaluated using the number of clusters gener-
ated and standard clustering metrics. Princi-
pal Component Analysis (PCA) is employed to
assess the impact of dimensionality reduction
on sentence embeddings and clustering quality.
Cluster merging methods are also developed to
reduce redundancy and improve the relevance
of the identified topics. Finally, the results help
refine semantic analysis and shed light on the
main concerns expressed by citizens.

Keywords: Semantic analysis . Language
models . Community detection . Clustering
. Dimensionality reduction . Cahiers Citoyens

1 Introduction

As an answer to the Yellow Vest crisis, in January
2019, the French government launched the Grand
Débat National1 [in English, Large National De-
bate] (GDN) offering both a dematerialized digi-
tal platform and physical supports, called Cahiers
Citoyens [Citizens’ Notebooks], leaved in various
public places (town halls, roundabouts, hospitals,
prisons, etc.). These notebooks enabled citizens to
freely express their views on topics of their choice,

1https://granddebat.fr/

choosing the format (letters, paragraphs, emails,
bullet lists, petitions) and length (ranging from
a few words to several pages) that suited them.
At the GDN close, in mid-March 2019, Cahiers
Citoyens gathered 225,224 contributions located
to the place where each one had been written or
deposited. Among the 34,970 municipalities in
France in 2019, 17,014 proposed at least one note-
book.

A team has been formed to conduct a semantic
analysis of the content of Cahiers Citoyens, and this
paper is part of the project’s framework. The anal-
ysis is based on both the text of the contributions
and their location.2 Due to the volume of contribu-
tions, the adopted approach consisted in identifying
the topics they addressed (Guembour, 2024). To
achieve this, clustering was applied to the texts of
the contributions using community detection algo-
rithms. However, the first clustering results varied
widely in number of clusters and of unclassified cit-
izens’ contributions, making necessary to explore
various combinations of parameters (algorithms,
hyperparameters, language models, etc.) and post-
treatments. After a presentation of related works
in Section 2 and the corpus of Cahiers Citoyens in
Section 3, this article describes the end-to-end pro-
cess implemented to identify the contributions’ se-
mantic organization, combining text representation
models and community detection algorithms. Sec-
tion 4 presents the tested combinations and Section
5 evaluates them through different indexes. Section
6 introduces post-treatments intended to enhance
clustering performance, while Section 7 provides
a detailed assessment of these methods along with

2One hypothesis, supported by numerous previous soci-
ological studies, is that citizen expression depends on the
location where it is produced.
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the final results. Finally, Section 8 presents the
main conclusions of this study and discusses the
perspectives opened by this work.

2 Related Works

Community detection in graphs constructed from
textual data has emerged as a widely adopted tech-
nique in text mining, enabling the unsupervised
discovery of latent thematic structures. Among the
most commonly used algorithms, Louvain (Blondel
et al., 2008) and the Label Propagation Algorithm
(LPA) (Zhu and Ghahramani, 2003) are particu-
larly prominent for their ability to identify coherent
clusters within semantic graphs.

Several studies have employed the Louvain algo-
rithm specifically for topic modeling across large
textual corpora. For example, (Marco et al., 2024)
used Louvain to improve the semi-supervised clus-
tering of customer reviews in the domain of cus-
tomer services. (Monnet and Loı̈c, 2024) com-
bined doc2vec representations with Louvain, k-
means, and spectral clustering to enhance topic
classification across a broad document collection.
(Chowdhury et al., 2023) reformulated the topic
modeling task as a community detection problem
in a word co-occurrence graph generated from a
text corpus. Similarly, (Wang et al., 2021) applied
Louvain to cluster COVID-19-related articles by
thematic similarity, following an automatic sum-
marization process. In all these cases, Louvain
demonstrated strong capabilities in uncovering se-
mantically meaningful clusters from unstructured
textual data. (Boutalbi et al., 2022) introduced an
innovative method, IEcons (Implicit and Explicit
Consensus), which combines multiple textual rep-
resentations —including TF-IDF, Word2Vec, and
BERT embeddings— to improve the robustness of
clustering. Their approach uses a dual consensus
strategy: explicit consensus through the aggrega-
tion of clustering results obtained from each rep-
resentation independently, and implicit consensus
through the fusion of similarity matrices into a uni-
fied similarity tensor. For the final clustering step,
several algorithms are evaluated, including Lou-
vain, which is particularly effective in extracting
dense communities from the resulting weighted
graph. In a different application, (Abdine et al.,
2022) leveraged the Louvain algorithm to detect
political communities from a user graph built from
French tweets, where edges are defined by retweet
behavior. Although the graph structure is based on

user interaction rather than content similarity, this
work reflects a growing interest in combining com-
munity detection techniques with language models
such as RoBERTa and CamemBERT, which the
authors use for offensive language detection.

In parallel, the Label Propagation Algorithm
(LPA) has also received attention due to its simplic-
ity and computational efficiency on large graphs.
(Tang et al., 2022) proposed a classification frame-
work for scientific and technical documents (e.g.,
patents and academic papers) using Word2Vec
embeddings and a consensus clustering approach
based on LPA. (Pawar et al., 2018) developed an
LPA-based method for weakly supervised text clas-
sification, where documents are modeled as nodes
in a similarity graph, and labels are propagated
through the network. (Han et al., 2016) focused
on improving LPA itself, introducing a modified
version, LPAf, that enhances the quality of detected
communities in large-scale networks. These contri-
butions illustrate LPA’s suitability for fast, scalable
classification and clustering tasks over vast docu-
ment sets.

Beyond Louvain and LPA, other methods have
been proposed that integrate semantic information
directly into the graph structure. For instance, a
community detection method was developed by
(Ruan et al., 2013), incorporating both network
connectivity and TF-IDF scores of textual content,
demonstrating improved thematic coherence in the
resulting communities. Similarly, (Gao et al., 2023)
proposed a sentiment-aware community detection
framework, where TF-IDF vectors and sentiment
scores are jointly used to construct a weighted
graph reflecting both topical and emotional affini-
ties between users in social networks. This ap-
proach enhances the identification of semantically
and emotionally coherent communities.

To facilitate the application of community de-
tection algorithms, several studies have introduced
dimensionality reduction techniques, particularly
when working with high-dimensional vector rep-
resentations of textual data. These methods aim
to project the original graph or embedding space
into a lower-dimensional representation while pre-
serving the essential topological or semantic prop-
erties of the data. For instance, (Aman et al., 2021)
employ structural embedding methods such as
DeepWalk and Node2Vec to learn low-dimensional
node embeddings, enabling more efficient commu-
nity detection. Unlike semantic-based approaches,
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these methods focus exclusively on the structural
properties of the network.

While most studies focus on general-purpose cor-
pora or domains such as customer reviews or social
media, few works have addressed the analysis of de-
liberative citizen-generated content. Yet, this type
of corpus —as exemplified by the Cahiers Citoyens
or participatory platforms— raises important chal-
lenges due to its thematic diversity, variability in
writing quality, and lack of structure.

A government-commissioned report by the
Roland Berger firm (Berger and Bluenove, 2019),
in collaboration with the agency Cognito Consult-
ing3, served as a starting point for the analysis
of the Cahiers Citoyens. The approach relied on
semantic mapping to cluster textual contributions
into eight major themes: democracy and citizenship
(144,071 ideas), ecological transition (89,103), tax-
ation and public spending (138,667), state organiza-
tion and public services (62,597), economy and em-
ployment (26,686), education and training (9,638),
purchasing power (75,652), and health, solidarity,
and integration (63,574). However, the methodol-
ogy has been criticized for its lack of transparency,
particularly regarding the definition of what con-
stitutes an “expressed idea”, the algorithmic proce-
dures used, and the rapidity with which the results
were delivered — all of which raise questions about
the robustness and interpretability of the findings.

(Ray, 2023) explored topic extraction methods
such as BERTopic (Grootendorst, 2022) and Latent
Dirichlet Allocation (LDA) (Blei et al., 2003) to an-
alyze the contributions from the Cahiers Citoyens
corpus. The objective was to compare the ex-
tracted thematic structures with those identified
in the Roland Berger firm report. This approach
provides a renewed perspective on the thematic di-
versity present in citizen contributions. The most
salient clusters uncovered by the analysis relate to
issues such as pension increases, rural life, educa-
tion, ecology and agriculture, electoral processes
including recognition of blank votes, speed limita-
tions on highways, and taxation.

(Monnier, 2023) conducted an in-depth study on
the theme of wind power based on the Cahiers
Citoyens corpus. Her work adopts a cross-
disciplinary perspective in the social sciences, com-
bining linguistic and geographical approaches. The
analysis focused on three departments where wind-
related concerns were particularly salient, allow-

3https://www.cognito.fr/

ing for a territorialized interpretation of contribu-
tions based on the natural and social characteristics
specific to each region. Spatialized text extrac-
tions were visualized through map-based represen-
tations.

While previous research has explored a wide
range of textual representations — from traditional
models such as TF-IDF and Word2Vec to more
advanced embeddings from BERT— none, to the
best of our knowledge, have leveraged pretrained
Transformer-based language models specifically
designed for French (such as CamemBERT) to rep-
resent texts, followed by dimensionality reduction
of these vectors to construct an optimized semantic
graph, on which community detection algorithms
are applied. This is the approach proposed here in
order to reveal latent topics in large-scale citizen-
generated content from the Cahiers Citoyens.

3 Corpus of Cahiers Citoyens

The notebooks of Cahiers Citoyens were made up
of handwritten and/or typed texts, emails sent di-
rectly to the city councils, files sometimes includ-
ing attachments, as well as collective petitions, and
reflect a diversity of citizen concerns. A textomet-
ric and spatialized analysis of the corpus is pre-
sented in detail in (Dominguès and Jolivet, 2024).

3.1 Contribution Segmentation into Sentences

Previous topic modeling analyses of Cahiers
Citoyens (Ray, 2023) revealed that a single con-
tribution often addresses multiple topics. Conse-
quently, the contribution could not serve as the unit
of semantic analysis. Therefore, the contributions
were segmented into sentences, resulting in a cor-
pus of 4,200,831 sentences, hereafter referred to
as CC. This finer granularity was intended to facil-
itate the identification of meaning units and their
grouping into clusters. This segmentation was per-
formed using the Spacy model (Honnibal et al.,
2020) based on transformers.4 This choice was
based on two main criteria:

• Model performance: This model achieved the
highest performance among those available in
Spacy, with a sentence segmentation accuracy
of 0.92;

• Adaptability to the specificities of the corpus:
the contributions of CC come from citizens

4fr dep news trf : https://spacy.io/models/
fr#fr_dep_news_trf
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with varied profiles, leading to typographi-
cal variations, such as the absence of capi-
tal letters at the beginning of sentences and
the lack of strong punctuation marks at the
end of sentences in numerous contributions.
This model has proven capable of segmenting
sentences effectively, even when these typo-
graphic markers are absent.

3.2 Sentence Preprocessing

The segmentation of contributions into sentences
revealed that a number of them are frozen or fixed,
in the sense they contain no information about the
themes and topics raised by citizens in their contri-
butions. These sentences include elements such as
contribution dates, contributor names, recipients,
polite expressions, etc. (e.g., Je vous prie d’agréer,
Monsieur, mes sincères salutations [Please accept,
Sir, my sincere greetings], Mardi 18 décembre
2018 [Tuesday, December 18, 2018]). In order
to prevent them from affecting the semantic anal-
ysis, they were removed during a preprocessing
phase. This filtering step helps reduce memory
consumption and speeds up clustering computa-
tions by eliminating non-informative sentences for
topic modeling. The method used is based on two
complementary approaches:

• Detection based on syntactic patterns: identifi-
cation of specific linguistic structures such as
dates, email addresses, phone numbers, etc.

• Clustering by semantic similarity: use of
the Fast Clustering algorithm to automati-
cally identify formatted sentences by grouping
them according to their similarity (for exam-
ple, one cluster for dates and another for polite
expressions).

Through this preprocessing phase, the total number
of sentences was reduced to 2,789,465, resulting in
a refined corpus referred to as filtered-CC. However,
due to limited computational resources (in terms
of both memory and processing time), it was not
feasible to process the entire corpus. Therefore, a
random sample of 50,000 sentences5 was selected
from filtered-CC to conduct the study. Table 1
presents the different versions of the corpus.

5Statistical tests were conducted to assess the representa-
tiveness of the sample with respect to the full corpus. Results
indicate that the sample is representative in terms of sentence
length and morphosyntactic distribution.

Table 1: Table detailing the different corpus versions

Corpus Unit Count
Cahiers Citoyens Contribution 225,224
CC Sentence 4,200,831
filtered-CC Sentence 2,789,465
Sample of filtered-CC Sentence 50,000

4 Combinations of Language Models and
Community Detection Algorithms

As stated in Section 1, the proposed method con-
sists in representing sentences as embeddings (vec-
tors) using language models, then applying clus-
tering algorithms to these embeddings to obtain
clusters. The objective is to compare different com-
binations of language models and clustering algo-
rithms in order to identify the one that provides the
best clustering of sentences and, consequently, the
most accurate identification of topics. In addition,
each combination is tested both with and without di-
mensionality reduction using Principal Component
Analysis (PCA) (Hotelling, 1933). The purpose of
applying PCA is to evaluate the impact of dimen-
sionality reduction on sentence embeddings and
clustering quality. For sentence vector representa-
tions, three language models were selected due to
their high performance in French: CamemBERT-
large (Reimers and Gurevych, 2019; Martin et al.,
2020), Solon-large6, and Distil-CamemBERT (De-
lestre and Amar, 2022). Regarding clustering, since
the exact number of topics (clusters) discussed in
Cahiers Citoyens is unknown, we opted for com-
munity detection algorithms, which are designed
to uncover structure in graphs without requiring a
predefined number of clusters. To do this, a graph
has been constructed where each sentence embed-
ding represents a node, and an edge is established
between two nodes if their cosine similarity ex-
ceeds the threshold of 0.68 (this threshold was cho-
sen based on a comparative analysis conducted by
(Guembour, 2024), which examined various pairs
of sentences).7 Community detection algorithms
are then applied to the graph to obtain clusters. The
algorithms have been selected from related works
(in Section 2): LPA (Label Propagation Algorithm)
and the Louvain algorithm.
With three models, mixed or not with dimension-

6https://huggingface.co/OrdalieTech/Solon-embeddings-
large-0.1

7The study showed that, in the corpus, some expressions
appear either in their full form or as acronyms, and that a
threshold of 0.68 effectively groups together these variations
when they occur in similar contexts.
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ality reduction, and two algorithms, we obtain 12
combinations to compare. Algorithm 1, presented
below, describes the process of applying these com-
binations, while Table 2 shows that PCA enables to
substantially reduce the number of embedding di-
mensions while retaining a large part of the inertia
(90%).

Algorithm 1 Application of Language Model and
Community Detection Algorithm Combinations
Input: Sample of 50,000 sentences from filtered-
CC
Output: Sentence clusters

1: Select a language model m
2: Compute sentence embeddings using model m
3: Apply PCA to the sentence embeddings or not,

retaining 90% of the inertia
4: Construct a graph G where each node repre-

sents a sentence embedding
5: Connect two nodes (i, j) if similarity(i, j) ≥

0.68
6: Select a community detection algorithm a
7: Apply a on G to detect communities
8: Evaluate the quality of the obtained clustering

Table 2: Number of embedding dimensions before and
after PCA

Model Initial Dimensions With PCA
CamemBERT-large 1024 382

Solon-large 1024 334
Distil-CamemBERT 768 165

5 Evaluation and Interpretations of the
Combinations

Evaluation: The performance of each combi-
nation (model, algorithm) is measured through the
quality of the clustering. Several metrics adapted to
unsupervised clustering and community detection
have been selected: the Calinski-Harabasz index
(CHI) (Caliński and Harabasz, 1974), the Davies-
Bouldin index (DBI) (Davies and Bouldin, 1979),
and Modularity (Newman, 2006). These metrics as-
sess the internal cohesion of groups, the separation
between clusters, and the structure of communities
within the resulting graph. The CHI and the DBI
assess clustering quality by measuring the separa-
tion and compactness of clusters, with a high value
being desirable for the former and a low value for
the latter. Modularity, on the other hand, measures

the density of connections within communities in
a graph, with a high value indicating well-defined
communities. Table 3 provides the index values
for each of the 12 combinations. In our case, since
the objective is to identify the largest number of ad-
dressed topics, we consider that a good clustering
is characterized by a high number of classified sen-
tences and optimal evaluation metrics, particularly
the CHI, the DBI, and modularity. The number of
classified sentences corresponds to the number of
nodes in the graph, as each sentence is represented
by an embedding and becomes a node of the graph
built for community detection. Thus, the more simi-
lar (in the sense of the semantic similarity measure)
embeddings the model generates, the more nodes
will be connected in the graph. Conversely, sen-
tences that do not exhibit any link with others are
not included in the graph.

Interpretations: Table 3 shows that the lan-
guage model classifying the highest number of
sentences is CamemBERT-large. The Distil-
CamemBERT model classifies slightly fewer sen-
tences than the CamemBERT-large model, indicat-
ing that it retains a good ability to capture simi-
larities between sentence embeddings. In contrast,
Solon-large classifies significantly fewer sentences,
suggesting that its embeddings are less homoge-
neous and less effective at linking sentences within
the graph, thereby reducing the number of nodes.
For all three models, using embeddings without
dimensionality reduction allows for a higher num-
ber of classified sentences compared to when PCA
is applied. This means that dimensionality reduc-
tion via PCA decreases the model’s ability to cap-
ture similarities between embeddings. Applying
the Louvain algorithm to CamemBERT-large em-
beddings produces the smallest number of clus-
ters, demonstrating a better ability to group sim-
ilar elements than the LPA algorithm. Louvain
generates approximately 1,000 fewer clusters with
CamemBERT-large and Distil-CamemBERT, and
approximately 500 fewer with Solon-large, suggest-
ing that it better captures global thematic structures.
In contrast, using PCA generally results in an in-
crease in the number of clusters, as it reduces the
similarity between embeddings, preventing them
from being grouped together. This means that ini-
tially similar sentences may be considered dissimi-
lar after reduction.

The CHI shows that CamemBERT-large deliv-
ers the best performance among the tested mod-
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Table 3: Table detailing the performance of each combination. w/o PCA = without PCA; w PCA = with PCA. Bold
values represent the best performances without PCA. Underlined values represent the best performances with PCA.

Metric CamemBERT-large
+ Louvain

CamemBERT-large
+ LPA

Distil-CamemBERT
+ Louvain

Distil-CamemBERT
+ LPA

Solon-large
+ Louvain

Solon-large
+ LPA

w/o PCA w PCA w/o PCA w PCA w/o PCA w PCA w/o PCA w PCA w/o PCA w PCA w/o PCA w PCA
# Classified
Sentences

23,375 22,050 23,375 22,050 23,155 22,189 23,155 22,189 17,721 14,231 17,721 14,231

# Clusters 2,398 2,449 3,300 3,279 2,425 2,591 3,560 3,647 2,571 2,551 3,163 2,909

CHI 7.25 7.76 7.08 7.48 6.34 6.59 6.09 6.25 5.19 5.31 4.98 5.07

DBI 1.26 1.21 1.19 1.13 1.28 1.28 1.23 1.17 1.21 0.99 1.14 0.91

Modularity 0.88 0.89 0.86 0.87 0.90 0.92 0.87 0.90 0.92 0.92 0.90 0.90

els. This model produces well-separated and
compact clusters, as reflected by its high CHI
values. Although Distil-CamemBERT performs
well, its results are slightly lower, suggesting that
CamemBERT-large captures finer semantic rela-
tionships and thus provides better vector represen-
tations. Solon-large, with even lower CHI scores,
appears less suited for this clustering task.
Regarding community detection algorithms, Lou-
vain outperforms LPA across all three language
models tested. Louvain generates better-separated
and more homogeneous clusters, confirming its
ability to identify distinct communities by min-
imizing cuts between them and producing more
coherent clusters. The impact of PCA on clustering
quality is also significant. All combinations with
PCA show higher CHI than those without dimen-
sion reduction. PCA reduces dimensionality while
enhancing cluster separation and compactness, al-
though it can sometimes decrease the similarity
between embeddings, preventing their clustering.

As mentioned before, a low DBI value indicates
better clustering with more compact clusters, where
cluster points are closer to their centroid. The ob-
tained values show that the Solon-large model pro-
duces more compact clusters than CamemBERT-
large and Distil-CamemBERT, at the cost of a
smaller number of classified sentences, which re-
duces intra-cluster dispersion.
Concerning the algorithms,The LPA generates clus-
ters with a lower DBI than Louvain for all models,
indicating more cohesive and less dispersed groups.
For all combinations, the use of PCA systematically
reduces DBI values, confirming that dimensional-
ity reduction improves cluster cohesion by limiting
their internal dispersion.

In terms of modularity, the results show that
Solon-large achieves slightly higher modularity be-
cause it classifies fewer sentences, reducing the
density of the graph. Clustering with Louvain en-

sures better modularity than LPA, meaning that
the detected communities are better defined. PCA
has a very limited impact on the modularity of the
CamemBERT-large and Distil-CamemBERT mod-
els. Indeed, although applying PCA to the embed-
dings of these two models reduces the number of
nodes in the graph, it nevertheless remains dense.

In summary, the most suitable combination for
our corpus appears to be CamemBERT-large paired
with the Louvain algorithm. This configuration
maximizes similarity between embeddings, groups
more sentences into fewer clusters, and has the best
CHI value. Although its DBI is not the lowest, it re-
mains close to the values obtained with other com-
binations. Similarly, while some configurations
show slightly better modularity, the difference re-
mains marginal. Finally, PCA improves CHI, DBI,
and modularity scores. However, it reduces the
number of classified sentences, as it decreases the
model’s ability to capture similarities between sen-
tence embeddings, thereby limiting the formation
of clusters grouping semantically close sentences.

6 Post-Treatments to Merge Redundant
Clusters

In Section 5, we identified the most effective
combination for clustering, namely the use of
CamemBERT-large for sentence embeddings and
the Louvain algorithm for community detection.
This configuration enables classifying the largest
number of sentences while ensuring good cluster
cohesion. However, the number of clusters ob-
tained remains very high (2,394 without PCA and
2,446 with PCA). Yet, some clusters could be re-
dundant in the sense they might address similar top-
ics. So, optimizing clustering results could mean
reducing the number of clusters and obtaining more
populated clusters while improving performance
according to CHI, DBI, and modularity.

To achieve this, we developed three approaches

236



designed to merge redundant clusters:

• Merging clusters sharing the three most fre-
quent stems;

• Merging clusters with identical DBI values;

• Merging clusters using Hierarchical Cluster-
ing (HC) (Johnson, 1967).

The evaluation of these approaches, as well as the
presentation of the results of the best-performing
approach, are detailed in section 7.

6.1 Merging Clusters Sharing the Three Most
Frequent Stems

The first approach to grouping redundant clusters
is based on the analysis of the three most fre-
quent stems. For this, the sentences of each cluster
were tokenized, and the stems of the words were
extracted before being sorted by descending fre-
quency. Clusters sharing the three most frequent
stems were merged, after removing stop words,
whose stems were not considered in this operation.

6.2 Merging Clusters with Identical DBI
Values

The second approach is based on the DBI. In Sec-
tion 5, we used this measure to evaluate the quality
of the clustering and observed that some clusters
with the same DBI value deal with similar topics.
Based on this, we hypothesized that if two clusters
have exactly the same DBI value, they are likely to
be close in terms of thematic content. Indeed, the
DBI of a cluster reflects its proximity to the most
similar cluster. Therefore, all clusters sharing an
identical DBI value were merged.

6.3 Merging Clusters Using Hierarchical
Clustering

The last proposed approach aims to reduce the num-
ber of clusters by applying HC to the clusters de-
tected by the Louvain algorithm. This approach
allows for merging clusters whose Euclidean dis-
tance is less than or equal to 0.32. This threshold
was chosen to align with the cosine similarity of
0.68 used when constructing the initial clusters
(with the Euclidean distance approximately equal
to 1 - cosine similarity).

In this approach, each cluster is represented by
its centroid, defined as the node closest to the other
cluster nodes, according to the closeness centrality

measure (Bavelas, 1950; Sabidussi, 1966).8 This
central node is therefore the one that is, on average,
closest to the other elements of the cluster, making
it a good representative of its structure. HC was
then applied to these centroids, allowing the identi-
fication and merging of clusters deemed sufficiently
close by the algorithm.

7 Semantic Analysis of Cahiers Citoyens
through the Clusters

Evaluation of the Clustering after Merging
Clusters:

The CHI, the DBI, and modularity must be recal-
culated after applying merging methods. Table 4
presents the new values as well as the number of
clusters obtained after merging.

The merging of clusters sharing the three most
frequent stems slightly improves the CHI as well
as the DBI. However, this approach results in
a minimal reduction in the number of clusters,
decreasing to 13 clusters without PCA and 19
clusters with PCA. Modularity remains unchanged,
both with and without PCA. This stability is
explained by the slight reduction in the number of
clusters, which limits the impact on the overall
clustering structure. In summary, although this
approach slightly enhances some quality indices,
it does not lead to a significant reduction in the
number of clusters.

The merging of clusters sharing an identical
DBI also results in a modest reduction in the
number of clusters, with 18 clusters without PCA
and 14 with PCA. Although this approach slightly
decreases the number of clusters, the quality of
cluster separation deteriorates, as evidenced by
the decline in the CHI in both cases (with and
without PCA). Furthermore, the values of the DBI
and modularity remain unchanged, indicating that
this method does not significantly improve cluster
compactness or modularity.

The best-performing approach is to merge clus-
ters using HC, which reduces the number of clus-
ters by approximately 38 when dimensionality is
not reduced, and by 37 when PCA is applied. This

8The closeness centrality of a node is the inverse of the
sum of the shortest path distances from this node to all other
nodes in the network, indicating how close a node is to all
others. A higher closeness centrality means the node is more
central within the cluster.
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Table 4: Table detailing the performance of each merging approach. w/o PCA = without PCA; w PCA = with PCA.
Bold values represent the best performances without PCA. Underlined values represent the best performances with
PCA.

Metric
CamemBERT-large

+ Louvain
(before merging)

Merging clusters
sharing the three

most frequent stems

Merging clusters
sharing an identical

DBI value

Merging clusters
using HC

w/o PCA w PCA w/o PCA w PCA w/o PCA w PCA w/o PCA w PCA

# Clusters 2,398 2,449 2,386 2,430 2,380 2,435 2,360 2,412

CHI 7.25 7.76 7.29 7.77 7.06 7.49 7.35 7.83

DBI 1.26 1.22 1.25 1.21 1.26 1.22 1.25 1.21

Modularity 0.88 0.89 0.88 0.89 0.88 0.89 0.88 0.89

reduction improves the CHI, reflecting better clus-
ter separation. Additionally, the merging leads to
a decrease in the DBI, indicating that the clusters
are now more compact, with points closer to their
centroid and reduced intra-cluster dispersion. Al-
though odularity remains largely unchanged, likely
due to the limited reduction in cluster count, sug-
gesting a stable overall graph structure. In sum-
mary, this approach enhances cluster cohesion
while maintaining adequate separation.

Results of the Semantic Analysis:

The semantic analysis of the corpus was performed
using the most effective combination, namely
CamemBERT-large for sentence vector represen-
tation and Louvain for community detection, op-
timized by the most efficient merging approach:
HC. Table 5 presents the 10 most compact clusters,
which achieve the highest individual CHI values
corresponding to each cluster. It is important to
note that the individual CHI values are weighted
by the number of sentences in each cluster, thereby
highlighting clusters that are both compact and
large in size. In this table, the topic of each clus-
ter is identified through its central sentence, deter-
mined using the closeness centrality measure. The
t-SNE (Maaten and Hinton, 2008) projection of
these clusters is shown in Figure 1.

The analysis of the results in Table 5 reveals
a strong concentration of discussions around key
topics, with variations in the size and coherence of
the groups, as reflected in their individual CHI.

Clusters 779 and 681 address the revaluation
of retirement pensions and the reinstatement of
the ISF (Solidarity Wealth Tax). They stand out
due to their large size and high CHI, at 548.26
and 380.46, respectively. These results indicate a
strong homogeneity within these clusters, with sen-
tences closely related to widely shared economic

Figure 1: t-SNE Projection of CamemBERT-large Em-
beddings Reduced by PCA – Louvain Clustering (Top
10 Clusters)

and social concerns. The importance of pension
and tax-related issues is reflected in the high num-
ber of sentences (1,066 for cluster 779 and 533 for
cluster 681).

Cluster 1027, which focuses on reducing the
number of deputies, also has a high CHI (330.88)
and comprises 807 sentences. This topic, related
to institutional reforms, demonstrates citizens’ con-
cerns about political representation and the func-
tioning of institutions.

Other clusters, such as those addressing the re-
moval of the CSG (General Social Contribution)
tax on retirement pensions (cluster 768) and manda-
tory voting (cluster 982), focus on specific fis-
cal and democratic issues. Their respective sizes
(588 and 378 sentences) reflect significant inter-
est in these reforms, though to a lesser extent than
broader economic and institutional topics.

Additional concerns also emerge, though in a
more diverse manner. Tax reduction (cluster 726)
and taxation of all incomes (cluster 691) highlight
a broader debate on fiscal policies. The abolition
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Table 5: Top 10 clusters with their CHI and central phrases

Cluster Index # of Sentences Individual CHI Central Phrase (Translated)

779 1,066 548.26 Revaluation of retirement pensions

681 533 380.46 Reinstatement of the ISF (N/A: ISF is a Wealth Tax)

1027 807 330.88 Reduction in the number of deputies

768 588 297.72 Remove the CSG on retirement pensions (N/A: CSG is a Social Tax)

982 378 280.86 Mandatory voting

726 869 251.74 Lower taxes

691 708 246.43 TAXATION Taxes on all incomes

1546 796 236.83 Abolition of privileges for politicians

995 474 230.63 Citizen consultation by referendum (RIC)

861 635 212.52 Salary increase

of political privileges (cluster 1546) and citizen
consultation via referendum (cluster 995) reflect
a desire for systemic transformation and greater
democratic participation. Finally, salary increases
(cluster 861), though present, generate a more het-
erogeneous and less structured discussion.

In summary, these clusters illustrate main citizen
concerns, with a predominance of economic and fis-
cal issues, followed closely by institutional reforms
and citizen participation. The CHI, which remains
relatively high in most clusters, indicates a clear
separation between groups, confirming that con-
cerns are structured around well-defined domains.

As discussed in section 2, the Roland Berger
report (Berger and Bluenove, 2019) categorized
citizen concerns into eight thematic areas. Our
findings partially confirm these broader categories,
while offering more granular insights into specific
concerns raised by citizens. For instance, issues
related to purchasing power and taxation emerge
in our results through distinct clusters focusing on
pension revaluation, the reinstatement of the ISF,
or the removal of the CSG tax. Similarly, the de-
mand for institutional reforms, present in Berger’s
category Democracy and Citizenship, is reflected
in our clusters through topics such as reducing the
number of deputies or implementing mandatory
voting. Unlike the Berger synthesis, wwhich relied
on opaque methods and broad predefined themes,
our graph-based clustering approach reveals more
specific, bottom-up topics that better capture the
fine structure of citizens’ discourse.

8 Conclusions and Prospects

This study presented a semantic analysis of a real-
world corpus collected during a period of social

unrest, aiming to understand citizens’ concerns
through the comparison of several combinations
of language models with community detection al-
gorithms. We found that the most effective com-
bination for this purpose was CamemBERT-large
for sentence representation paired with the Louvain
algorithm for community detection. PCA played
a beneficial role by enhancing cluster separation
and reducing intra-cluster dispersion, as shown by
the decrease in the DBI and the increase in the
CHI. Given the large number of redundant clusters,
a merging strategy was attempted: HC proved to
be the most effective, grouping clusters on similar
themes while improving compactness and homo-
geneity, thus strengthening clustering quality.

The cluster analysis revealed that citizen con-
cerns focus mainly on economic, fiscal, and politi-
cal issues. Recurring topics include pension reform
(pension revaluation, removal of the CSG tax), tax-
ation (restoration of the ISF, tax reduction), and
institutional reforms (reduction in the number of
deputies, removal of political privileges). Citizen
participation, notably through citizens’ initiative
referendums (RIC) and compulsory voting, is also
a major concern. Wage increases constitute another
point of interest, though more diverse.

Looking forward, a key perspective is to extend
this analysis to the full CC corpus using supercom-
puters to overcome computational limitations. This
would provide a more precise overview of French
citizens’ concerns during the Yellow Vest crisis
and just before the COVID lockdown. Moreover,
a detailed analysis of raw texts within each cluster
would refine semantic interpretations and improve
understanding of the underlying themes.
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monte de la Clergerie, Djamé Seddah, and Benoı̂t
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Nathan Monnet and Maréchal Loı̈c. 2024. Clustering
doc2vec output for topic-dimensionality reduction:
A MITRE ATT&CK calibration. arXiv preprint,
arXiv:2410.11573.

Matilde Monnier. 2023. L’analyse spatiale des cahiers
citoyens appliquée au thème de l’écologie.

Mark EJ Newman. 2006. Modularity and community
structure in networks. Proceedings of the National
Academy of Sciences, 103(23):8577–8582.

Sachin Pawar, Nitin Ramrakhiyani, Swapnil Hingmire,
and Girish K Palshikar. 2018. Topics and label prop-
agation: Best of both worlds for weakly supervised

240

https://doi.org/10.1121/1.1906679
https://doi.org/10.1121/1.1906679
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1080/03610927408827101
https://doi.org/10.1080/03610927408827101
https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1109/TPAMI.1979.4766909
https://hal.science/hal-03674695
https://hal.science/hal-03674695
https://hal.science/hal-03674695
https://hal.science/hal-04738402
https://hal.science/hal-04738402
https://aclanthology.org/2024.jeptalnrecital-recital.2/
https://aclanthology.org/2024.jeptalnrecital-recital.2/
https://doi.org/10.1140/epjb/e2016-70264-6
https://doi.org/10.1140/epjb/e2016-70264-6
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://api.semanticscholar.org/CorpusID:930698
https://api.semanticscholar.org/CorpusID:930698
https://doi.org/10.1016/j.bdr.2024.100474
https://doi.org/10.1016/j.bdr.2024.100474
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1007/978-3-319-75487-1_35
https://doi.org/10.1007/978-3-319-75487-1_35


text classification. In European Conference on In-
formation Retrieval (ECIR), pages 396–408, Cham.
Springer.

Marjolaine Ray. 2023. Analyse sémantique et spa-
tialisée des sentiments exprimés dans les Cahiers
citoyens.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
https://arxiv.org/abs/1908.10084.

Yiye Ruan, David Fuhry, and Srinivasan Parthasarathy.
2013. Efficient community detection in large net-
works using content and links. In Proceedings of the
22nd International Conference on World Wide Web
(WWW), pages 519–528, New York, USA. ACM.

Gert Sabidussi. 1966. The centrality index of a graph.
Psychometrika, 31:581–603.

Yuqi Tang, Wenyan Song, Caibo Zhou, Yue Zhu,
Zheng Jianing, and Rong Wan. 2022. A consensus
clustering-based label propagation method for classi-
fication of science & technology resources. In IEEE
International Conference on Industrial Engineer-
ing and Engineering Management (IEEM), Kuala
Lumpur, Malaysia.

Xiangpeng Wang, Michael Lucic, Hakim Ghazzai, and
Yehia Massoud. 2021. Topic modeling and progres-
sion of american digital news media during the onset
of the covid-19 pandemic. IEEE Transactions on
Technology and Society.

Xiaojin Zhu and Zoubin Ghahramani. 2003. Learning
from labeled and unlabeled data with label propaga-
tion.

241

https://doi.org/10.1007/978-3-319-75487-1_35
https://doi.org/10.1145/2488388.2488483
https://doi.org/10.1145/2488388.2488483
https://api.semanticscholar.org/CorpusID:119981743
https://doi.org/10.1109/TTS.2021.3088800
https://doi.org/10.1109/TTS.2021.3088800
https://doi.org/10.1109/TTS.2021.3088800


Proceedings of the 16th International Conference on Computational Semantics, pages 242–253
September 22-23, 2025, Licensed under the Creative Commons Attribution 4.0 International License

Neurosymbolic AI for Natural Language Inference in French : combining
LLMs and theorem provers for semantic parsing and natural language

reasoning

Maximos Skandalis
LIRMM

CNRS & University of Montpellier

Montpellier, France

maximos.skandalis@lirmm.fr

Lasha Abzianidze
Institute for Language Sciences

Utrecht University

Utrecht, the Netherlands

l.abzianidze@uu.nl

Richard Moot
LIRMM

CNRS & University of Montpellier

Montpellier, France

richard.moot@lirmm.fr

Christian Retoré
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Abstract
In this article, we describe the first compre-
hensive neurosymbolic pipeline for the task of
Natural Language Inference (NLI) for French,
with the synergy of Large Language Models
(CamemBERT) and automated theorem provers
(GrailLight, LangPro). LLMs prepare the in-
put for GrailLight by tagging each token with
Part-of-Speech and grammatical information
based on the Type-Logical Grammar formalism.
GrailLight then produces the lambda-terms
given as input to the LangPro theorem prover, a
tableau-based theorem prover for natural logic
originally developed for English. Currently, the
proposed system works on the French version
of SICK dataset. The results obtained are com-
parable to the ones on the English and Dutch
versions of SICK with the same LangPro the-
orem prover, and are better than the results of
recent transformers on this specific dataset. Fi-
nally, we have identified ways to further im-
prove the results obtained, such as giving ac-
cess to the theorem prover to lexical knowledge
via a knowledge base for French.

1 Introduction

In Natural Language Processing (NLP), the classi-
fication task of predicting, for a given pair of sen-
tences, the correct label between two (entailment,
not entailment) or, better, three (entailment, neutral,
contradiction) given ones is conventionally called
Natural Language Inference (NLI) or Recognising
Textual Entailment (RTE).

The code for the paper’s pipeline is available on
github. The datasets are all available on github and on
huggingface.

Deep learning methods have proven effective for
the task, with quickly improving performance over
the last years. However, they lack explainability,
and they might predict a correct inference label
based on heuristics that has little to do with
reasoning but heavily relying on the nature of the
training datasets (McCoy et al., 2019; Gururangan
et al., 2018; Poliak et al., 2018). On the other
hand, symbolic methods include using theorem
provers for rule-based reasoning between the two
sentences provided. In this case, the input has
to be clearly structured. To get the best of both
worlds, neurosymbolic AI methods can be used,
where deep learning methods can be leveraged to
prepare the input by converting the sentences to
their logical form for the theorem prover, which
is then used for reasoning on the sentences and
outputs its label prediction as well as the proof
with the rules it applied to reach this prediction.

After having introduced the context of the task
and of the methods adopted, the article follows the
structure below:

- We present already conducted research, first
for English (Section 2.1), then for French (Sec-
tion 2.2), both on the NLI datasets and on the
neurosymbolic methods for NLI (Section 2.3
for preparing the input, and 2.4 for the logical
methods for NLI).

- Section 3 lists and describes the steps for us-
ing neurosymbolic methods for NLI in French,
providing the first pipeline for such use for
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French.

- In Section 4.2, we analyse the work of adapt-
ing the tools for the case of French, due to the
interlinguistic syntactic differences between
the source language of the NLI theorem prover
(English) and the target language (French).

- Some next steps for further improvement are
outlined in Section 5.

2 Related work

2.1 Datasets in English
Numerous datasets exist in English for the task of
NLI, namely FraCaS (Cooper et al., 1996), RTE1-8
(Dagan et al., 2006) (Dzikovska et al., 2013), SICK
(Marelli et al., 2014), SNLI (Bowman et al., 2015),
MultiNLI (Williams et al., 2018), XNLI (Con-
neau et al., 2018), BreakingNLI (Glockner et al.,
2018), ANLI and NLI-style FEVER (Nie et al.,
2020), LingNLI (Parrish et al., 2021), GQNLI (Cui
et al., 2022), WANLI (Liu et al., 2022), SpaceNLI
(Abzianidze et al., 2023), the GLUE (Wang et al.,
2018) and SuperGLUE (Wang et al., 2019) bench-
marks. HANS (McCoy et al., 2019) and MED
(Yanaka et al., 2019a) have only two labels, entail-
ment and non-entailment.

In particular for logical reasoning with the nat-
ural language, eSNLI (Camburu et al., 2018) also
contains natural language explanations for every
label attributed. Finally, HELP (Yanaka et al.,
2019b), ProofWriter (Tafjord et al., 2021), and FO-
LIO (Han et al., 2024) include First-Order Logical
formulas for the sentences provided.

2.2 Datasets for French
For the task of NLI in French, significantly less
datasets are available, despite some recent releases.

Table 1 gives the number of sentence pairs per
class, for all the NLI datasets available in French,
the first one, in order of release time, being XNLI
(Conneau et al., 2018), FraCaS-FR(Amblard et al.,
2020), then DACCORD (Skandalis et al., 2023),
RTE3-FR, GQNLI-FR, and SICK-FR (Skandalis
et al., 2024).

Because of the underrepresentation of con-
tradictions in the widely used NLI datasets, it
was recently proposed by Skandalis et al. (2023,
2024) to also work specifically on the labels
contradiction/non-contradiction, with a new ded-
icated 2-class dataset for French, called DAC-
CORD.

Dataset Entailment Neutral Contradiction

SICK-FR
train 1274 2524 641
dev 143 281 71
test 1404 2790 712

FraCaS-FR test 204 98 33

RTE3-FR
dev 412 299 89
test 410 318 72

GQNLI-FR test 97 100 103

XNLI-FR
dev 830 830 830
test 1670 1670 1670

DACCORD
Rus-Ukr war 215 257
Covid-19 251 199
Climate change 49 63

Table 1: Breakdown by label for NLI datasets for French

2.3 Lambda-term or FOL formula extraction

In order to obtain the lambda-terms corresponding
to a natural language sentence, one needs to first
tag the tokens of the sentence with grammatical
information. Categorial grammars are suited by
design to producing lambda terms. While Com-
binatory Categorial Grammars (Steedman, 2000)
have often been used in this context — for En-
glish notably the C&C (Clark & Curran) Parser
(Clark and Curran, 2007) and EasyCCG (Lewis
and Steedman, 2014) — we choose to use Type-
Logical Grammars (TLG) instead. Type-Logical
Grammars have the advantage of being purely logi-
cal formalisms, where lambda-terms are obtained
by the Curry-Howard isomorphism. More pragmat-
ically, our supertag models have been trained on
the TLGbank for French, which uses Type-Logical
Grammars as well. After the supertagger assigns
formulas to each word, a parser is used to find the
most likely parse for the given supertags.

These parses are then converted either to
Lambda Logical Forms (LLFs), via components
such as LLFgen (Abzianidze, 2017) or ccg2lambda
(Martı́nez-Gómez et al., 2016), or to FOL formulas,
usually with the intermediate step of the DRS (Dis-
course Representation Structure) formalism (Bos,
2008; Le, 2020). Lambda Logical Forms are sim-
ply typed λ-terms built up from variables and con-
stant lexical terms with the help of two operations,
function application and λ-abstraction.

More recently, Olausson et al. (2023) used Star-
coder+ (Li et al., 2023) directly for FOL formula
generation. The problem with this solution is that,
unlike English, there were no datasets with sen-
tences and their corresponding FOL representation
for French, thus LLMs have not been previously
exposed to such a task for French, in order to be
able to handle it in some way.
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For French, there are two main models for
lambda-term extraction: DeepGrail and GrailLight
(Moot, 2017). DeepGrail consists of both a su-
pertagger and a parser, and the DeepGrail supertag-
ger has been designed to integrate seamlessly with
GrailLight. We have chosen to combine the Deep-
Grail supertagger with the GrailLight parser be-
cause this combination is the easiest to extend to a
multi-tagger, as we will show in Section 3.1.5.

2.4 Theorem provers for natural language
Different theorem provers have been used for rea-
soning on natural language, specifically English:

- Coq (Chatzikyriakidis, 2015; Chatzikyri-
akidis and Bernardy, 2019; Bernardy and
Chatzikyriakidis, 2021; Mineshima et al.,
2015; Martı́nez-Gómez et al., 2017);

- LangPro (Abzianidze, 2015, 2017);

- Vampire (Bos, 2009; Bjerva et al., 2014;
Haruta et al., 2022);

- Agda (Bekki and Satoh, 2015; Zwanziger,
2019);

- Prover9 (Olausson et al., 2023): Prover9 (Mc-
Cune, 2005) is a theorem prover that attempts
to solve theorems by contradiction and Mace4
attempts to find a counter-example to theo-
rems.

A summary of their use on NLI can be found in
Table 2.

2.4.1 LangPro theorem prover
LangPro (Abzianidze, 2017) is an automated the-
orem prover for natural logic (Muskens, 2010). It
is written in Prolog, and makes use of the analytic
tableau proof method. LangPro needs CCG (Com-
binatory Categorial Grammar) derivations of the
linguistic expressions in order to obtain Lambda
Logical Forms (LLFs) from them via the LLFgen
(LLF generator) component. Otherwise, lambda
terms that follow the following BNF syntax are
the native format for the LangPro theorem prover
itself:
TERM = (tlp(pl_atom_for_token,

pl_atom_for_lemma,
pl_atom_for_POS_tag,
pl_atom_for_chunking_tag,
pl_atom_for_named_entity_tag), TYPE
| ( TERM @ TERM , TYPE ) | (abst(

VAR, TERM ), TYPE )
VAR = (pl_var, TYPE)

TYPE = TYPE → TYPE | primitive_TYPE |
featured_TYPE

primitive_TYPE = pr | pp
featured_TYPE = n:FEAT | s:FEAT | np:

FEAT
FEAT = pl_var | dcl | ng | nb | pss |

thr | adj | b | to | pt | rm | num
| expl

n is the featured type assigned to nouns, np
the type assigned to noun phrases, and s the type
assigned to sentences.

In order to establish a certain logical relation
between one or more premises and a hypothesis,
the natural tableau method systematically searches
for a counterexample that would invalidate the re-
lation. The relation is considered proven if no such
counterexample can be constructed; otherwise, the
relation is refuted.

3 Pipeline Setup

3.1 Obtaining the input for the NLI theorem
prover

3.1.1 POS-tagging
GrailLight theorem prover, which is used for the
proof generation step, accepts Part-of-Speech tags
from the TreeTagger tagset1. These POS-tags are
also used for the semantics inferences by LangPro.

For TreeTagger POS-tags, three tools have been
identified, either the original TreeTagger (Schmid,
2013) (which is now outdated) with a Python wrap-
per2 for convenience, RNNTagger (Schmid, 2019),
or the POS-tagger of the ELMo/bi-LSTM version
of DeepGrail (Moot, 2021), which uses the model
from Che et al. (2018). The latter one proved to be
the best performing for this task.

Table 3 provides details on the number of oc-
currences of each POS-tag at the token level for
French SICK dataset, as well as their partial corre-
spondence with the tags in MELt tagset.

3.1.2 CG-supertagging with DeepGrail
The more recent Transformer version of the Deep-
Grail supertagger3 uses CamemBERT (Martin
et al., 2020), itself a French version of RoBERTa
(Liu et al., 2019), for token embeddings. It
is trained on the French Type-Logical Treebank

1https://www.cis.uni-muenchen.
de/˜schmid/tools/TreeTagger/data/
french-tagset.html.

2https://treetaggerwrapper.readthedocs.
io/en/latest.

3https://gitlab.irit.fr/pnria/
global-helper/deepgrail_tagger.
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System Proof strategy Logic Prover Semantic parser Abduction Arithmetic Datasets covered

Mineshima et al. (2015) Ad hoc tactics HOL Coq CCG Parser (C&C) FraCaS

Abzianidze (2015, 2017) Tableau Natural logic / HOL LangPro
C&C, and EasyCCG,

then LLFgen
✓ FraCaS, SICK

Martı́nez-Gómez et al. (2017) Ad hoc tactics FOL Coq C&C, and EasyCCG ✓ SICK
Chatzikyriakidis and Bernardy (2019),

Ad hoc tactics HOL Coq Grammatical Framework ✓ FraCaS
Bernardy and Chatzikyriakidis (2021)

Haruta et al. (2022) Resolution Typed FOL Vampire
C&C, EasyCCG, and

depccg
✓ (WordNet and

VerbOcean)
✓

FraCaS, MED, SICK,
HANS & CAD

Olausson et al. (2023) Resolution/model building FOL Prover9/Mace4
LLM (StarCoder+, GPT

3.5, GPT 4)
FOLIO & ProofWriter

Table 2: Existing methods based on theorem provers for NLI on English datasets

Number of
occurences

TreeTagger tags MELt tags

50725 NOM NN (NNS?)
35984 DET:ART DT
24269 PRP IN
20471 VER:pres VB
9416 ADJ JJ
5447 ADV RB
3886 KON CC
3394 PRP:det
3388 PRO:PER PRP
3201 VER:pper VBN
1876 NUM CD
1461 PRO:REL WP
832 PRO:IND
645 VER:infi VB
636 VER:ppre VB
581 DET:POS PRP$
398 PUN
139 NAM NNP
29 ABR
24 PRO PRP
23 PRO:DEM DT
21 VER:simp VBD
18 VER:impf
14 VER:futu
2 VER:subp
2 SYM

Table 3: Occurrences of each POS-tag in French SICK
dataset for TreeTagger POS-tags and MELt POS-tags.

(Moot, 2015) to produce supertags (type-logical
formulas) for each word in a sentence. DeepGrail
is a loose adaptation of the work of Kogkalidis
et al. (2020) to French. The supertagger assigns the
correct formula to a word 96,1% of the time.

3.1.3 Lemmatisation

There are three tool options for lemmatisation for
French, namely spaCy (Honnibal et al., 2020),
Stanza (Qi et al., 2020), or Lefff (Sagot, 2010).
Lemmas do not have an impact on the lambda-term
extraction step, but they do have on the reasoning
step with LangPro at the end. After inspecting the
lemmatisation output, we concluded that Stanza’s
lemmatiser is comparatively the best among the

three. For example, both spaCy and Lefff mistak-
enly gave as lemma luire for the word lui in the
phrase derrière lui. On the other hand, Stanza
gives the disjunctive pronoun lui as lemma for the
subject pronoun il, indicating maybe that it groups
pronominal forms together.

3.1.4 Proof and lambda-term generation with
GrailLight

GrailLight (Moot, 2017) is a supertag-factored
chart parser for multimodal type-logical grammars.
It outputs a natural deduction proof for the highest-
probability sequence of formulas for which a proof
exists. A lambda-term for this proof is obtained by
the Curry-Howard isomorphism.

Finally, we convert GrailLight’s output lambda-
term to LangPro’s native input format shown in
Section 2.4.1.

3.1.5 Evaluating the pipeline and improving
the coverage

Dataset Total
sentences

Number of
sentences

parsed

Percentage
of the

sentences
parsed (%)

Number of
sentences

failed to be
parsed

SICK-FR 19,680 18,294 92,96 1,386
FraCaS-FR test 882 838 95,01 44
GQNLI-FR test 703 667 94,88 36

RTE3-FR test 1,828 1,496 81,84 332
dev 1,959 1,593 81,32 366

XNLI-FR test 10,409 8,128 78,09 2,281
dev 5,151 3,956 76,8 1,195

DACCORD 2,341 1,773 75,74 568

Table 4: Parsing results per dataset with 1 formula per
token

In order to improve coverage from GrailLight,
we used the 2022 Transformer version of Deep-
Grail Supertagger as a base, adding the beta value
assignment introduced by Clark and Curran (2004)
and already included in the 2021 ELMo/bi-LSTM
version of DeepGrail (Moot, 2021).

For P (xi): the probability of predicted formula
xi,

xbest = argmaxx P (x): the formula with the
highest predicted probability,
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β: the beta value (a scalar between 0 and 1),

T = β · P (xbest): the threshold probability.

DeepGrail includes in its output, for every token,
all formulas xi such that:

P (xi) ≥ β · P (xbest)

It is to be noted that the beta value is not impor-
tant per se; what matters is the resulting average
number of predicted formulas per token.

Thus, without changing the pipeline (ELMo/bi-
LSTM DeepGrail for POS-tagging, Stanza for lem-
matisation, CamemBERT DeepGrail for CG su-
pertagging), but with the beta value set to 0.01 and
0.0001 now (instead of set to 1.0 as in Table 4, or
before in Skandalis et al. (2025)), which gives ex-
actly one prediction per token), the number and per-
centage of proofs generated by GrailLight (whether
these proofs are correct or not) are improved (see
Tables 5 and 6).

Dataset Total
sentences

Number of
sentences

parsed

Percentage
of the

sentences
parsed (%)

Number of
sentences

failed to be
parsed

Average
number of
formulas
per token

SICK-FR 19,680 19,564 99,41 116 1,0618
FraCaS-FR test 882 869 98,53 13 1,0819
GQNLI-FR test 703 688 97,87 15 1,0562

RTE3-FR-FR test 1,828 1,775 97,1 53 1,15
dev 1,959 1,890 96,48 69 1,176

XNLI-FR test 10,409 9,748 93,65 661 1,1807
dev 5,151 4,824 93,65 327 1,1913

DACCORD 2,341 2,196 93,81 145 1,1978

Table 5: Parsing results and formula density per dataset
for beta value set to 0,01

Dataset Total
sentences

Number of
sentences

parsed

Percentage
of the

sentences
parsed (%)

Number of
sentences

failed to be
parsed

Average
number of
formulas
per token

SICK-FR 19,680 19,644 99,82 36 1,4157
FraCaS-FR 882 881 99,89 1 1,8624
GQNLI-FR 703 698 99,29 5 1,2444

Table 6: Parsing results and formula density per dataset
for beta value set to 0,0001

For comparison, Abzianidze and Kogkalidis
(2021) report 95,9% of the sentences parsed for the
dutch version of SICK with the Neural proof nets
model from Kogkalidis et al. (2020), and 98,1%
with the dutch Alpino parser (van Noord and Mal-
ouf, 2001).

3.2 Using LangPro for NLI for French
The LangPro has been initially developed for En-
glish but later adapted to Dutch (Abzianidze and
Kogkalidis, 2021). We follow the previous work
and in a similar style adapt the theorem prover
to French. The main idea of the adaptation is to

make the French terms somewhat similar to En-
glish terms as LangPro already has inference rules
specialized for the latter ones. Such approach pre-
vents us from making inference rules that specialize
for French function words such as determiners and
connectives. A brief illustration of transforming
French terms into English-like terms is given be-
low for the SICK NLI problem 3514, where the
terms use lemmas of the corresponding words and
non-French function words are highlighted in red.

(3514) P-FR: Une femme danse
a femme danser

H-FR: Il n’y a pas de femme qui danse
neNIL

(
λy.no(who danser femme)(λx.be x y)

)
there

P-EN: A woman is dancing
a woman (be dance)

H-EN: There is no woman dancing
no(who dance woman)(λx. be x there)
Label: Contradiction

More details on the adaptation is provided in Sec-
tion 4.2. The entire pipeline of the French neu-
rosymbolic NLI is concisely visualised in Figure 1.

4 Score and discussion

4.1 Score
We first evaluated some recent Transformer mod-
els on the French and English versions of SICK
dataset. The results can be seen in Table 7. All
NLI Transformer models for French are, in general,
trained on the machine-translated from English to
French train subset of XNLI. Thus, the evaluation
of the LLMs is done here in cross-domain settings.

Model
SICK-EN SICK-FR

Accuracy Precision Accuracy Precision

DistilmBERTBase-cased 52 61,25 48,43 54,01

XLM-RBase - - 49,86 61,22

CamemBERTBase, 3-class - - 52,89 63,63

mDeBERTa-v3Base, XNLI 57,34 67,36 59,09 64,43

mDeBERTa-v3Base, NLI-2mil7 68,3 68,9 66,94 66,76

XLM-RLarge 53,12 64,57 54,81 63,08

CamemBERTLarge, 3-class - - 58,3 64,83

Table 7: Results of label prediction by Transformers on
SICK-EN and SICK-FR

Table 8 reports the results currently obtained on
SICK-FR with LangPro theorem prover, with ab-
duction and without the use of a dedicated French
Knowledge base. It also gives for comparison the fi-
nal results on SICK-EN and SICK-NL as reported
by Abzianidze and Kogkalidis (2021), with the
same theorem prover.
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Figure 1: The pipeline for neurosymbolic NLI in French, with an example of conversion, which consists of the
following steps: 1) POS-tagging and CG supertagging, 2) lemmatisation, 3) proof generation and lambda-term
extraction, 4) theorem prover input.

Dataset Accuracy Precision

SICK-EN 84,4 94,3
SICK-NL (Abzianidze and Kogkalidis, 2021) 78,8 84,2

SICK-FR (present article) test 71,1 96,8
train-trial 76,9 98,6

Table 8: Precision and accuracy of LangPro for different
languages

4.2 Handling inter-linguistic differences

Existential sentences with negation Historically
in French, the word ne was the bearer of the sense
of negation, and was followed by the word point,
for emphasis. But nowadays, the negation is borne
by the word pas, evolution of the word point.
There are some occurrences where the word ne

can appear without the pas to express the negation,
but this is not with existential sentences. So for
existential sentences, in order to align more easily
the tree structures between there exists/is no

and il n’y a pas de, we put together pas de

as a quantifier, and correspond it to no as illus-
trated in 3514. While ne is still present in the
corresponding term, it is marked with a specific
NIL tag, indicating the semantic vacuousness for
theorem proving.

Insert a WH-pronoun for VPs of type np→n→n
To prove the contradiction such as the one
in 3720, one needs to relate épluche:np→np→s

to épluchant:np→n→n but it is difficult because
of their different types. We convert personne

épluchant:np→n→n un oignon into personne

WHICH:np→s→(n→n) épluchant:np→np→s un

oignon, which makes the connection between the
verbs more transparent.

(3720) P-FR: Une personne épluche:np→np→s un

oignon
H-FR: Il n’y a pas de personne

épluchant:np→n→n un oignon

P-EN: A person is peeling an onion
H-EN: There is no person peeling an onion
Label: Contradiction

Attach remote “ne” to “personne” In sentences
such as the premise in the example 4816, ne is
renamed to no and attached to personne, so that
the underlying logical form is be (no (who ...)

personne) there, where closed-class words are re-
placed with English. With this, it is possible to
prove the contradiction below.

(4816) P-FR: Il n’y a personne qui coupe un peu de

gingembre
H-FR: Une personne coupe un peu de gingem-

bre
P-EN: There is no person cutting some ginger
H-EN: A person is cutting some ginger
Label: Contradiction

Predicative adjectives In the English CCG, be
green is analysed as be:(np→s:adj)→np→s:

dcl green:np→s:adj, while in French TLG be

:(n→n)→np→s:dcl green:n→n seems to be a
preferred analysis. To accommodate the latter,
the initial LangPro tableau rule empty mod is
extended, which discards be:(n→n)→np→s:dcl,
and changes the type of green to np→s:adj. The
analysis is intuitive, that’s why it was accommo-
dated in the inference rules rather than rewriting
the French terms in the English style. This addition
solves problems such as 3812 below:

(3812) P-FR: Une femme tranche un poivron qui est

vert
H-FR: Une femme tranche un poivron vert
P-EN: A woman is slicing a pepper which is

green
H-EN: A woman is slicing a green pepper
Label: Entailment
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Normalise French terms Because of particulari-
ties of the chart rules, the French terms generated
by GrailLight need not be in beta normal form.

(819) P-FR: Une personne en équipement de vélo

est debout régulièrement en face de

certaines montagnes
P-EN: A person in biking gear is standing

steadily in front of some mountains
Label: Contradiction

The lambda-term for the exam-
ple 819 above includes the subterm
(λ x. régulièrement(est debout x))

Une personne en équipement de vélo.
Before fixing any issues in the terms, first they

are normalized.

Running abduction Abductive learning was in-
troduced in LangPro by Abzianidze (2020). Abduc-
tive learning is run on the train and trial subparts
of SICK, where LangPro has access to the gold
inference labels and exploits them to learn useful
lexical knowledge, i.e., relations over lexical items.
In particular, LangPro induces the lexical knowl-
edge that contributes to the proofs for entailment
and contradiction problems. The learned lexical
knowledge is later use to prove problems from the
SICK-test subset.

Adding a knowledge base for access to lexical
knowledge Results can be improved if we give
access to the theorem prover to lexical relation-
ships, such as hypernyms, synonyms, antonyms, ge-
ographical relations. For English, LangPro uses re-
lations taken from WordNet 3.0 (Abzianidze, 2017).
Knowledge bases, which could be used for this pur-
pose for French, include the multilingual Babel-
net (Navigli and Ponzetto, 2012), the monolingual
French version of Wordnet WOLF (Sagot and Fišer,
2008), or JeuxDeMots (Lafourcade, 2007). Addi-
tional common sense knowledge, whose inclusion
could be useful to test next, are listed in LoBue and
Yates (2011).

As a first step here, we extracted the hypernyms
(isa) and the antonyms from a 2013 version of
JeuxDeMots, and converted them into Prolog for-
mat. This version contains 49.812 hypernyms, and
12.802 antonyms. Without further manipulation
on the system, LangPro was able to prove some
52 additional problems from the train subset of
SICK-FR with these relations. The example 5752
is one of these 52 cases, mentioning in sys1 the
prediction without access to the knowledge base,

and in sys2 the prediction that employs relations
from JeuxDeMots.

(5752) P-FR: Le rhinocéros broute sur l’herbe
H-FR: L’animal broute sur l’herbe
P-EN: The rhino is grazing on the grass
H-EN: The animal is grazing on the grass
Label: Entailment
sys1: neutral
sys2: entailment, using isa(rhinocéros,animal)

We also extracted the same relations from a more
recent version of JeuxDeMots (2024), amounting
to 28.760.688 hypernyms and 131.813 antonyms,
and plan on conducting tests with these versions,
too.

Labels affected by translation Since this first
version of SICK for French is machine-translated
from English, some examples might need correc-
tions in their translation after inspection, so that the
initial label remains true.

(3181) P-FR: Un homme marche dans les bois
H-FR: L’homme ne marche pas dans les bois
P-EN: A man is trekking in the woods
H-EN: The man is not hiking in the woods
Label: Neutral

The example 3181 could be better translated,
with an anglicism, as:

(3181) P-FR: Un homme fait un trek dans les bois
H-FR: L’homme ne fait pas de randonnée

dans les bois
Label: Neutral

Finally, we applied manual corrections to the
translations of certain sentences, the mistranslation
of which may not impact the truth value of the la-
bel, or for which access to a knowledge base would
now be needed in order for the label to remain truth-
ful (e.g. poivron vert for green pepper, instead of
poivre vert in the machine translation). These cor-
rections are incorporated into the version of SICK-
FR available on github and on huggingface.

5 Conclusion and perspectives

In this paper, we have presented the first combi-
nation of Transformers with automated theorem
provers applied to the task of Natural Language
Inference for French. The task of NLI with neu-
rosymbolic methods can be split into two subparts:
semantic parsing and natural language reasoning.
The first one is necessary in order to convert the
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sentences to a form that can be processed by the
theorem prover, that is, in the form of lambda
terms or first-order logical formulae. In the case of
French, to achieve this, one first needs to add Part-
of-Speech and Type-Logical Grammar tags to the
tokens of the sentences with the help of DeepGrail,
then feed this to the Graillight logical parser. The
LangPro theorem prover, that we chose here to use
for the natural language reasoning, accepts lambda-
terms as an input. We adapted it from English
to French, mainly by aligning French linguistic
structures to their equivalents in English, and by
mapping words that can modify meaning to their
English translations. The current performance of
the model is promising, surpassing the performance
of recent Transformer encoder models evaluated
on the French SICK dataset. It is on par with the
results obtained by LangPro on the English and
Dutch versions of SICK, as long as more lexical
knowledge is added for French as well. Finally, the
present work also resulted in the first (NLI) datasets
with sentences and their lambda-term representa-
tions available for French.

For the future, we plan to adapt and evaluate
alternative semantic parsers, notably by using the
DeepGrail parsers and by adapting Spindle (Kogka-
lidis et al., 2023) to generate lambda-terms for our
French datasets. We also plan to extend the cov-
erage of LangPro for French, so that it can handle
FraCaS and GQNLI, as well. Finally, we aim at
establishing another method based on a second the-
orem prover, for comparison reasons.
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Actes de la 22e conférence sur le Traitement Automa-
tique des Langues Naturelles. Articles courts, pages
7–13, Caen, France. ATALA.

Stergios Chatzikyriakidis and Jean-Philippe Bernardy.
2019. A wide-coverage symbolic natural language
inference system. In Proceedings of the 22nd Nordic
Conference on Computational Linguistics, pages 298–
303, Turku, Finland. Linköping University Electronic
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Abstract
Despite the abundance of datasets for proce-
dural texts such as cooking recipes, resources
that capture full process narratives, paragraph-
long descriptions that follow how multiple enti-
ties evolve across a sequence of steps, remain
scarce. Although synthetic resources offer use-
ful toy settings, they fail to capture the lin-
guistic variability of naturally occurring prose.
ProPara remains the only sizeable, naturally oc-
curring corpus of process narratives, yet ambi-
guities and inconsistencies in its schema and an-
notations hinder reliable evaluation of its core
task Entity State Tracking (EST). In this paper,
we introduce a Canonical Referent Tracking
Schema (CRTS) that assigns every surface men-
tion to a unique, immutable discourse referent
and records that referent’s existence and loca-
tion at each step. Applying CRTS to ProPara,
we release the re-annotated result as ProPara-
CRTS. The new corpus resolves ambiguous par-
ticipant mentions in ProPara and consistently
boosts performance across a variety of models.
This suggests that principled schema design
and targeted re-annotation can unlock measur-
able improvements in EST, providing a sharper
diagnostic of model capacity in process nar-
ratives understanding without any changes to
model architecture.

1 Introduction

Comprehending changes in a dynamic world is
difficult. It requires the model not only to reason
about state transitions across multiple steps but also
to infer from knowledge of the world.

There has been considerable recent progress in
understanding naturally occurring procedural texts,
such as cooking recipes, WikiHow, etc. (Bosselut
et al., 2017; Tandon et al., 2020), and establishing
benchmarks over these datasets has helped drive
research in this area of NLP.

Unlike procedural texts, process narratives de-
scribe a process in sequential steps in descrip-

Figure 1: An annotated paragraph in ProPara. Each
row shows the existence and location of participants
before and after each step (“?” denotes “unknown”, “-”
denotes “not exist”). This example demonstrates the
problem of referential confusion where the participant
“tadpole” can refer to more than one entity. Red denotes
the paragraph and annotation we find problematic, green
denotes the annotation based on our new schema.

tive narratives rather than instructional, imperative
steps. Consequently, the boundaries between “ac-
tions” are fuzzy, temporal ordering is not always
explicit, and many state changes must be inferred
from world knowledge rather than extracted from
verb–object pairs. These characteristics make pro-
cess narratives a stricter test of a model’s capacity
for dynamic, discourse-level reasoning than the for-
mulaic language of recipes or instructional bullet
points.

Although there exist a few datasets related to
process narratives, many of them are not in natu-
ral language but are synthetic texts (Weston et al.,
2015; Long et al., 2016). Recently there have been
more datasets using natural language, but due to the
rarity of the real-world data and expert knowledge
needed to create these sets, most of these datasets
are in a specific domain (Berant et al., 2014; Bosse-
lut et al., 2017; Tandon et al., 2020; Fang et al.,
2022; Rim et al., 2023; Zhang et al., 2024).

ProPara (Mishra et al., 2018; Tandon et al., 2018)
is the only existing dataset of process narratives in
natural language, covering diverse domains. It is
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a dataset of human-authored paragraphs of real-
world processes, along with annotations about the
changing states (existence and location) of entities
in these processes. Figure 1 shows an annotated
paragraph in ProPara. Annotators first construct the
process steps given the prompt “Describe the life
cycle of a frog”. Then they select entities of inter-
ests of the process as participants. Later, annotators
track the existence (i.e., Create, Destroy, and None)
and location changes of the participants. The result-
ing benchmark underpins the Entity State Tracking
(EST) task, which requires models to predict those
step-wise state transitions.

Despite its value as a comparatively large re-
source in a data-scarce genre, ProPara’s original
annotation schema is not fully aligned with the
formal requirements of EST evaluation. In par-
ticular, the schema tolerates referential ambiguity
and allows multiple surface mentions to be con-
flated under a single participant label, leading to
inconsistent state chains. Figure 1 illustrates the
problem: the label tadpole is used for two distinct
entities introduced in Step 1 and Step 5, but both
are erroneously merged. Consequently, a system
that correctly predicts the destruction of the first
tadpole is penalized because the gold annotation
wrongly asserts that tadpole is (re)created later in
the narrative. Such annotation artifacts obscure true
model performance and impede principled analyses
of reasoning errors.

To address these problems, we propose a
Canonical Referent Tracking Schema (CRTS) and
introduce a re-annotated dataset ProPara-CRTS.
CRTS is a tightly specified annotation framework
that assigns every surface mention in a process
narrative to a unique, immutable discourse refer-
ent and obliges annotators to record that referent’s
existence and location at every step in the text.

The re-annotation proceeds in three intercon-
nected stages. First, at the paragraph level, we ap-
ply Dense Paraphrasing (Tu et al., 2023) to rewrite
or split sentences so that every entity mention is
self-contained, eliminating referential ambiguity
in the running text. Next, at the participant level,
we merge coreferential mentions and assign each
cluster a single canonical name—its CRTS refer-
ent—thereby establishing a strict one-to-one corre-
spondence between discourse entity and participant
label. Finally, at the state-label level, we traverse
the revised step sequence and re-annotate existence
and location, adding previously implicit transitions,

sharpening coarse location spans, and guarantee-
ing that each referent experiences at most one state
change per step.

To investigate the effectiveness of our re-
annotation on the evaluation of the EST task, we
train the state-of-the-art models on the re-annotated
data and are able to achieve higher performances
and the predictions are more reasonable based on
human inspection.

We evaluate LLMs with a range of reasoning
scaffolds and observe modest but consistent gains
on ProPara-CRTS relative to the original corpus.
This suggests that the cleaner reference mapping re-
moves label noise that previously suppressed zero-
shot scores. Even with best performing prompt-
ing, however, the model still trails supervised sys-
tems by a large margin. When we fine-tune a
parameter-efficient Llama-3-8B on the CRTS train-
ing split, the model surpasses zero-shot LLMs and
approaches the performance of fully supervised
baselines, confirming that LLMs can internalize
canonical referent tracking once given sufficient
task-specific examples. 1

2 Related Work

Procedural texts comprehension WIQA (Tan-
don et al., 2019) evaluates models’ performance
on “What if” questions regarding procedural texts.
TRIP (Storks et al., 2021) is a dataset created to
evaluate the reasoning ability of language models
related to procedural physics texts. MARS (Wang
and Song, 2024) evaluates the understanding of
event and state changes in processes and how meta-
physical changes to certain aspects of the process
impact the process.

Entity state tracking Ma et al. (2022) propose
a new model, CGLI, that builds local and global
representations to track entities in procedural texts
showing improvement on ProPara and TRIP. Other
datasets focusing on the EST task include OpenPI
(Tandon et al., 2020) and its derivations and itera-
tions, OpenPI-C (Wu et al., 2023), and OpenPI2.0
(Zhang et al., 2024). At each step of a process,
these datasets ask models to produce the entities
involved in that step, the states about them that
change, and the before and after states. Elazar et al.
(2022) propose a new task, TNE (Text-based NP
Enrichment) which aims to collect all relevant infor-
mation about an NP from a paragraph. Throughout

1The source code and dataset is available at https://
github.com/brandeis-llc/ProPara-CRTS.

255

https://github.com/brandeis-llc/ProPara-CRTS
https://github.com/brandeis-llc/ProPara-CRTS


a given text, this task challenges models to track the
attributes of and participation of entities in events.
EST is both a complement to and a component of
this task.

Linguitically enriched reannotation High-
quality annotation is needed for models to improve
performance on tasks related to procedural text
comprehension and EST. This is because they
require a high level of semantic knowledge about
the events and how the entities are involved.
These tasks test models on their knowledge of
the real-world intricacies of these events and how
entities are created, moved, or destroyed through
these processes.

Ménard and Mougeot (2019) and Tu et al. (2024)
propose heuristics to recognize common annotation
errors including typos, expert knowledge errors,
protocol ambiguity, etc. These authors propose
automatic processes for recognizing common an-
notation errors to create datasets of higher quality.
Rezayi et al. (2021) uses external text to enrich
graph representations which suffer from sparsity
issues. The enhancement of this additional infor-
mation improves performance on multiple datasets.
Li et al. (2022) enhances social media posts with
post metadata appended onto the post text. The au-
thors show improvement over methods using non-
enhanced text by fine-tuning a pre-trained language
model using the enhanced data.

3 Canonical Referent Tracking Schema

Canonical Referent Tracking Schema (CRTS) is
an annotation framework that maps every surface
mention to a unique and immutable discourse ref-
erent—the single authoritative or canonical repre-
sentation of that entity, corresponding to the partic-
ipant in ProPara—and obliges annotators to record
that referent’s existence and location at every step
in the discourse. Three constraints follow: (i) ref-
erent uniqueness—a one-to-one mapping between
participants and mentions, so that referent of dis-
tinct entities are never conflated; (ii) temporal
atomicity—a referent can undergo at most one
state transition per step; and (iii) complete state
accounting-consistent state and location values are
obligatory for every mention at every step, includ-
ing transitions that are only implicit in the text.
When any of these constraints is violated, gold an-
notations no longer reflect the ground-truth reason-
ing problem, and evaluation scores conflate model
error with annotation noise.

In this section, we show how ProPara systemati-
cally violates each principle and why those viola-
tions obscure a model’s true competence in EST.

3.1 Violations of Referent Uniqueness

In the EST task, to successfully track the state
change of a participant p, given an entity set E
of the paragraph, a first and foremost premise is
that we know which entity p refers to. Otherwise,
our systems can be tracking the states of completely
different entities than ProPara intends to.

The original ProPara annotations frequently
breach the CRTS requirement of referent unique-
ness, producing an ambiguous, non-canonical map-
ping from the participant list P to the underlying
entity set E. These violations manifest in several
recurring patterns:

Name confusion Many processes in ProPara are
continuous. In a cycling process, it is common to
see multiple entities with the same name undergo
different actions (i.e., state and location changes).
For the purpose of EST, if a participant shares the
same name with all these entities, then it is impos-
sible to ascertain which entity is of interest here.

In Figure 1, the paragraphs describe the process
of the life cycle of a frog. There are two mentions
of tadpole in the paragraph in Step 1 and Step 5
respectively, and the two mentions are parent tad-
pole and baby tadpole – two different entities. The
annotator chooses the first “tadpole” as the entity
of interest and put the name “tadpole” in the par-
ticipant set then starts labeling its state changes.
What seems fine from an annotator’s point of view
becomes confusing when it comes to someone who
wants to use the date to do state tracking. When
you asked about what the state of the participant

“tadpole” is, it is impossible to know which tad-
pole we want to track without looking at the gold
annotation, which is inaccessible during inference.

This also makes annotation error-prone as it is
easy to confuse mentions of the same name as one
entity. The annotation for participant “tadpole”
in state 5 is such an example. According to the
annotation, the tadpole becomes a frog and then
transforms into a tadpole again, which is counter-
factual.

Part-whole splits This happens when an entity e
undergoes some state changes and splits to a few
new entities where each resulting entity holds a
part-whole relation with e. Each new split still
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shares the same name of e. This will also cause
reference confusion when doing EST.

(1) Step t: Water washes the sediment back.

Step t+1: Some sediment is left as sand.

In example 1, sediment is partially moved in step
t. The sediment in step t and step t + 1 are not
the same entity, neither of which is the same as
the sediment before. But since they share the same
name, one cannot tell which one the participant

“sediment” refers to. Furthermore, a situation like
this makes annotating the split entities difficult.

Conditional branches Similar to part-whole
splits, conditional sentences would create possi-
ble worlds where in each world there is a copy of
the entity e. When asked about the state of entity
e, one cannot tell which possible world the entity
belongs to.

(2) Step t: If the magma building is thick and
sticky it will result in an explosive eruption.

Step t+1: If the magma is thin and
runs, the magma results in a low-pressure
flow instead of a violent eruption.

In example 2, the changes of the entity magma are
conditional in step t and step t + 1. When there
is only one participant under the name “magma”,
one cannot tell which magma should be linked to
participant “magma”.

In each of the cases, referential drift distorts
accurate evaluations by scoring correct inferences
as errors.

3.2 Violations of Temporal Atomicity

Violations of temporal atomicity further erode eval-
uation fidelity. It is usually demonstrated in the
following two ways.

Multiple transition Since EST is a step-wise
prediction task, one entity can only undergo one
action (transformation or location change) at each
step. To properly evaluate EST on the sentence-
level, there should be only one action per step for
each entity.

(3) Fallen rain or snow collects into surface water
which will evaporate into water vapor again.

In example 3, the entity surface water is assigned
with two actions in one step, i.e., created from
rain or snow and transformed into vapor by the
annotators. A single timestep now contains two
incompatible gold labels. Any model forced to
choose one incurs a false negative on the other,
capping maximum attainable performance.

Duplicate transition Sometimes, the same
change is described across more than one step.

(4) Step t: The light energy is used to convert
carbon dioxide.
...
Step t+2: The plant uses carbon dioxide in
the air to produce glucose.

In example 4, step t and step t + 2 together de-
scribe the creation of glucose. Annotating CRE-
ATE in both steps does not correctly represent the
state changes of the involved entities. Models that
avoid double-counting a one-off event are scored
as under-predicting, while models that parrot the
duplication are rewarded.

3.3 Violations of Complete State Accounting
Finally, ProPara often omits or mis-codes required
state information.

Overgeneralized locations When annotating the
location of a participant, the annotations sometimes
are too general when there is a more specific men-
tion of the location.

(5) Blood returns to left side of your heart.

In example 5, the location of “blood” is anno-
tated as heart, which is technically correct but is
not informative enough. So a model that predicts
the finer span is marked wrong

Inconsistent state coding The same action does
not always get the same annotation. For exam-
ple, the event “die” is sometimes annotated as DE-
STROY and sometimes annotated as NONE since
the annotators think the remains of that entity still
exist.

Missing implicit transition When an action can
only be inferred from the context or when the in-
put/output is not explicitly stated, the correspond-
ing state transition can be overlooked by the annota-
tors. This happens most frequently when there is a
transformation that involves multiple inputs where
some inputs being explicitly mentioned while the
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others not. The state changes of the entities that do
not get mentioned explicitly are usually missing in
the annotations.

(6) Step t: A larvae matures inside of the egg.

Step t+1: The caterpillar hatches from
the egg.

In example 6, a transformation of larvae to cater-
pillar happens in step t + 1. However, since the
action is not explicitly mentioned in the paragraph,
the annotators miss to annotate the state of “lar-
vae” as DESTROY. Thus a model that infers the
disappearance of the larva is scored as incorrect,
disincentivizing genuine causal reasoning

4 Re-annotating ProPara

To align ProPara with the CRTS constraints in §3,
we perform a systematic re-annotation based on
the Dense Paraphrasing (DP) technique (Ye et al.,
2022; Tu et al., 2023). We treat DP as a truth-
preserving textual enrichment strategy ϕ that maps
a textual unit u (clause/sentence) to an enriched
form u+ = ϕ(u) in which otherwise implicit event
roles, entity distinctions, and state transitions li-
censed by local lexical and discourse context are
made explicit, with semantic fidelity u+ ⇒ u. In
this work, DP targets explicitness over economy by
realizing missing arguments/roles, canonicalizing
discourse referents, and expressing step-level state
changes that are only implicit in u.

4.1 Re-annotation Actions
Resolving referent confusions via DP In the
schema of ProPara-CRTS, we leverage DP to man-
ually enrich entities with the same mention name
so that their names become distinguishable while
also reflecting the contexts. These enriched names
establish a one-to-one mapping from the partici-
pant set P to the discourse-entity set E, ensuring
that every participant has a single canonical refer-
ent and that no reference confusion can arise when
models predict its state.

Whenever two lexically identical mentions de-
noted distinct discourse entities, the annotators
should enrich these entities in DP style so that the
names of these entities become distinct and can be
easily linked to their corresponding entities. The
names in the participant sets are subject to change
per the names of entities they refer to. If necessary,
the annotators will also add more participants to

the participant set in one-to-many split situations
like part-whole splits and conditional sentences.

In Figure 1, the “tadpole” in Step 5 should be
re-annotated according to our new schema. It is re-
annotated as “new tadpole” distinguishing it from
the “tadpole” in Step 1. Also, “new” suggests that
it is chronologically created in later steps.

Enforcing temporal atomicity Sentences that as-
sign multiple transitions to one referent are divided
into separate steps, or additional DP-distinguished
referents are introduced so that each step contained
exactly one action per entity. Duplicate transitions
express across steps are merged into a single canon-
ical event.

Completing state accounts For every referent
at every step annotators record both an existence
value and the most specific location span available.
Missing implicit transitions (e.g. DESTROY of
larva in the larva → caterpillar transformation) are
inserted. Inconsistent action labels are also cor-
rected.

Paragraph Issues Some paragraphs in ProPara
are not a description of a process. One example
describes how liver works with each sentence ex-
plaining a function of the liver. This kind of para-
graphs are usually explanations where steps are
not in order and few state or location changes are
mentioned rather than process narratives. We be-
lieve these paragraphs do not qualify as process
narratives and should not be included in the dataset.
There are 36 paragraphs that fit in this category,
and we exclude them from ProPara-CRTS.

4.2 Annotation Protocol and Qualiaty Control

Three trained graduate students with a background
in Computational Linguistics annotate each para-
graph in two passes. In Pass 1 the text is screened
for non-process narratives; rejected paragraphs are
removed. In Pass 2 manual error identification and
CRTS corrections are applied, with DP edits logged
and adjudicated when necessary. On a stratified
sample of 100 paragraphs, we achieve a pairwise
Cohen’s κ of 0.72 for state labels and a pairwise F1
of 0.56 for location agreement.

4.3 Corpus Statistics

The re-annotated dataset, ProPara-CRTS, consists
of 452 paragraphs and 13,417 state annotations. A
total of 1,661 re-annotations were performed, en-
compassing updates to paragraphs, states, and par-
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Group Error type Count %

Referent Uniqueness

Name confusion 198 25.1
Part–whole split 50 6.3
Conditional branch 63 8.0
Subtotal 311 39.4

Temporal Atomicity
Multiple transitions 40 5.1
Duplicate transitions 45 5.7
Subtotal 85 10.8

Complete State Accounting

Missing implicit transition 209 26.5
Overgeneralized location 81 10.3
Inconsistent state coding 67 8.5
Subtotal 357 45.2

Paragraph Issues Non-process paragraph 36 4.6
Subtotal 36 4.6

Total 789 100

Table 1: Distribution of error types corrected during the Canonical Referent Tracking re-annotation of ProPara.
Groups correspond to the three CRTS principles plus non-process paragraph issues.

ticipants, representing approximately 11% of the
annotations in the original ProPara dataset. Most
corrections in ProPara-CRTS address missing im-
plicit changes, which accounts for 26.5% of all cor-
rected errors. Name confusion and overgeneralizd
location are the next two most frequent issues. The
dataset maintains the same data splits as ProPara,
with each partition corresponding to a subset of
the original dataset partitions. Table 1 shows the
statistics of corrected errors in ProPara-CRTS.

By integrating DP into the CRTS workflow, the
new corpus removes referential drift without al-
tering the underlying prose, thereby providing a
sharply defined benchmark for measuring genuine
model capacity in EST.

5 Experiments

In order to investigate the effectiveness of the new
annotation, we evaluate different models against
ProPara-CRTS and compare the results with those
of the original ProPara dataset.

5.1 LLM Prompting

Considering the moderate modifications made to
the original ProPara dataset, we believe that utiliz-
ing LLMs to perform inference on both test sets
provides a valid basis for comparison.

We follow the experiment setups in MeeT (Singh
et al., 2023) and frame EST into two subtasks: 1.
A multi-choice problem where we ask the LLMs to
select the state change of an entity from a fixed
label set in step t. Similar to previous works
(Zhang et al., 2021; Ma et al., 2022), we define six

state types CREATE, NOT_CREATED, EXIST,
MOVE, DESTROY, and WAS_DESTROYED.
During evaluation, label NOT_CREATED, EX-
IST and WAS_DESTROYED will be mapped
back to NONE. This enrichment of state label
space helps the model differentiate the NONE
types. 2. An extractive QA task that asks LLMs
to extract the location of an entity in step t from
the paragraph. Specifically, for each participant p,
at each step t in the paragraph, we ask the LLMs
two questions: 1) What is the state of p in step
t? 2) Where is p located in step t? To preclude
information leakage, the paragraph passed to the
model is truncated at step t.

We compare four prompting strategies that differ
only in the reasoning scaffold they present to the
LLM while leaving the task formulation unchanged.
The direct prompt elicits a terse answer and is de-
coded greedily with temperature 0. A Chain-of-
Thought (CoT) variant adds the instruction “think
step by step” and uses temperature 0.2 to encour-
age mild lexical diversity. The Self-Consistency
setting draws eight independent CoT completions
at temperature 0.7 and returns the state chosen by
majority vote; when location spans disagree, the
longest common subsequence is selected. Finally,
a Few-Shot prompt supplies two worked examples
drawn from the training split, each consisting of a
short paragraph, the target entity, and the gold state
and location pair.

We run the experiments using GPT-4o-mini
and GPT-4o on the test sets of both ProPara and
ProPara-CRTS. The detailed prompting queries to
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Prompt Dataset Sent-level Doc-level

Direct ProPara 37.1 59.6
ProPara-CRTS 37.5 58.8

CoT ProPara 38.4 60.8
ProPara-CRTS 40.9 61.4

Self-Cons. ProPara 40.2 62.1
ProPara-CRTS 41.9 63.5

Few-Shot ProPara 39.0 61.3
ProPara-CRTS 40.0 62.2

Table 2: Sentence-level and document-level F1 obtained
by GPT-4o under four prompting scaffolds tested on
ProPara and ProPara-CRTS test sets respectively.

the LLMs are shown in Appendix A.2.

5.2 LLM Fine-tuning

We also try fine-tuning LLMs for the EST task on
the ProPara datasets. Due to the limitation of com-
puting resources, we decide to fine-tune a smaller
model Llama 3.1 8B2 twice: once on ProPara
and once on ProPara-CRTS. We fine-tune using
the training sets of each dataset and evaluate their
performance on the test sets of each dataset.

To fine-tune Llama 3.1, we make several adjust-
ments to improve efficiency. We use 4-bit quan-
tized models and LoRA (Hu et al., 2021) layers on
all seven target modules available on Llama mod-
els. In addition, we use the unsloth method for
gradient checkpointing. We use the CoT prompt
during fine-tuning and Self-Consistency prompt for
inference. Full fine-tuning hyperparameter set is
reported in Appendix A.1.

5.3 Supervised Learning Models

We evaluate ProPara-CRTS with two supervised
learning models MeeT (Singh et al., 2023) and
CGLI (Ma et al., 2022), which are the top 2 models
on the ProPara leaderboard3. MeeT formulates
the EST into two subtasks: state prediction and
location prediction. Then it fine-tunes the T5 model
on both tasks. CGLI uses RoBERTa and leverages
a decoding strategy that considers the context of
each step on both local and global levels. We reuse
the hyperparameters and settings reported by the
authors to train the two models on ProPara-CRTS.

6 Results

Table 2 reports GPT-4o’s performance under four
prompting scaffolds, while Table 3 places those re-

2unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit
3https://leaderboard.allenai.org/propara/submissions/public

Model Dataset Sent-level Doc-level

GPT-4o-mini ProPara 24.8 55.0
ProPara-CRTS 23.2 55.6

GPT-4o ProPara 40.2 62.1
ProPara-CRTS 41.9 63.5

FT Llama 3.1 ProPara 59.5 64.9
ProPara-CRTS 63.6 65.9

MeeT ProPara 54.9 69.4
ProPara-CRTS 61.9 70.8

CGLI ProPara 65.4 72.4
ProPara-CRTS 69.5 75.1

Table 3: Sentence-level and document-level evaluation
results (F1) of models tested on ProPara and ProPara-
CRTS test sets respectively.

sults alongside parameter-efficient fine-tuning and
fully-supervised baselines.

Evaluation scheme Following the original
ProPara setup, models are judged by their abil-
ity to answer three QA categories derived from
an entity–step grid: (Cat1) whether an entity is
created/destroyed/moved, (Cat2) at which step the
change occurs, and (Cat3) where it occurs (Dalvi
et al., 2018). In our reporting, sentence-level scores
evaluate these predictions at the granularity of
entity–step pairs, aggregated as macro/micro F1

over Cat1–3. Complementarily, document-level
scores treat all answers for a paragraph as a set
of predicted tuples (entity, change-type, step, loca-
tions) and compute precision/recall/F1 against the
gold set, emphasizing global consistency across the
whole process (Tandon et al., 2018).

Effect of canonical reference Across all set-
tings ProPara-CRTS yields higher F1 scores than
the original annotation except for GPT-4o-mini
at sentence-level. For GPT-4o the absolute gain
ranges from +0.4 points with the direct prompt to
+1.7 points with self-consistency. The trend is even
clearer for trained models: Llama-3-8B fine-tuned
on CRTS improves by +4.1 points at the sentence
level and by +1.0 points at the document level;
CGLI and MeeT register gains of +4.1 and +7.0
points respectively. These consistent improvements
confirm that enforcing a canonical, one-to-one ref-
erent mapping removes annotation noise that previ-
ously capped model scores.

Impact of reasoning scaffolds Moving from
the direct question to Chain-of-Thought (CoT) in-
creases GPT-4o’s sentence-level score from 37.1 to
38.4 on ProPara and from 37.5 to 40.9 on CRTS.
Adding self-consistency sampling delivers a further

260



gain, reaching 41.9 / 63.5 on CRTS—the best zero-
shot result in our study. Few-shot prompting also
helps, though its improvement is slightly smaller
than that of self-consistency. The pattern suggests
that canonical referent tracking particularly bene-
fits prompts that require multi-step inference: once
referential ambiguity is removed, the model’s ex-
plicit reasoning is more likely to be correct and
internally consistent.

Prompting versus training Even with the
strongest scaffold, GPT-4o remains 22 points below
the best supervised model (CGLI) at the sentence
level and 12 points below at the document level.
Fine-tuning a relatively small 8-billion-parameter
Llama eliminates more than half of that gap, sur-
passing the older supervised systems MeeT and
CGLI on the original corpus and approaching them
on CRTS. These results indicate that canonical ref-
erent tracking narrows but does not erase the differ-
ence between prompt-only and parameter-updated
approaches; models still gain substantially from
task-specific training.

Canonical referent tracking lifts every method
we tested, but the magnitude of the lift is modu-
lated by the model’s ability to exploit richer rea-
soning scaffolds or supervised updates. Prompt-
engineering alone can reach the mid-40s F1 at the
sentence level, yet fine-tuning remains essential
for closing the gap to state-of-the-art supervised
systems. We show the full results in Appendix A.3.

Sent-level Doc-level

Model ProPara ProPara-CRTS ProPara ProPara-CRTS

FT Llama 3.1 61.9 63.6 65.0 65.9
MeeT 59.9 61.9 70.2 70.8
CGLI 67.2 69.5 71.1 75.1

Table 4: Cross-dataset evaluation results (F1) of models
trained on the training sets of ProPara and ProPara-
CRTS and tested against ProPara-CRTS test set.

Sent-level Doc-level

Model ProPara ProPara-CRTS ProPara ProPara-CRTS

FT Llama 3.1 62.3 64.6 65.4 67.5
MeeT 60.8 62.8 70.8 71.3
CGLI 68.3 71.2 73.3 76.5

Table 5: Cross-dataset evaluation results (F1) of models
trained on the training sets of ProPara and ProPara-
CRTS and tested against the shared slice of ProPara and
ProPara-CRTS test sets.

7 Analysis

To further investigate the effectiveness of the re-
annotation, we look into the prediction differences
in ProPara and ProPara-CRTS and see if the mod-
els trained on ProPara-CRTS understand process
narratives better.

7.1 Cross-Dataset Evaluation

We perform a cross-dataset evaluation by training
identical models on the training sets of ProPara
and ProPara-CRTS, and then assessing their perfor-
mance on ProPara-CRTS test set. Notably, models
trained on ProPara all exhibit a decline in accuracy
compared to those trained and tested exclusively
on ProPara-CRTS, underscoring the critical value
of high-quality training data and the advantages
offered by ProPara-CRTS. The main findings are
presented in Table 4.

We further evaluate models on the shared slice
of both ProPara and ProPara-CRTS test sets, where
no additional CRTS-only annotations are available.
The intersection test set contains 42 paragraphs out
of 52 of the original ProPara test set. The results
are shown in Table 5. Training on ProPara-CRTS
improves performance even when evaluation is re-
stricted to the intersection of both test sets. Gains
are consistent across all architectures. Because the
test slice excludes CRTS-specific enrichment, these
improvements indicate better generalization from
cleaner training signals rather than artifacts of a
richer label space.

Comprehensive results of both experiments are
reported in Appendix A.3.

7.2 Qualitative Analysis

Qualitatively, we compare model predictions ob-
tained from training on both datasets and observe
that models trained on ProPara-CRTS effectively
mitigate the shortcomings inherent in the original
annotations. As illustrated in Figure 2a, we show
the same paragraph in ProPara and ProPara-CRTS
with different state annotations. In Step 4, the en-
tity plant remains undergoes a transformation and
forms into peat. The annotation in ProPara misses
this transition because the input entity, plant re-
mains, is not explicitly stated. The annotation in
ProPara-CRTS corrects it. The prediction from
GPT-4o on Step 4 is NONE as it fails to identify
this implicit action as well. This mistake is also re-
garded as correct when evaluating against ProPara.
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(a) State predictions of entity plant remains by GPT-4o.

(b) State predictions of entities animals and remains by CGLI.

Figure 2: State predictions on the same paragraphs or their re-annotated counterparts in ProPara and ProPara-CRTS.
The check denotes that the predictions match the gold. The cross denotes a mismatch with the gold. Green
background of the prediction means it is factually correct, red otherwise.

This shows that if the gold annotations are prob-
lematic, the evaluation results can be misleading.

Figure 2b demonstrates an example where the
re-annotation help CGLI better predict the states.
In the example, CGLI is asked to track the state
of participant “animals”. However, CGLI fails to
identify that die is an action of DESTROY, and
predicts that there is no state change for “animals”
in Step 1. We suspect that this is because there is
another mention of “animals” in Step 2 so CGLI
assumes that the animals are still alive in Step 1.
This is a mistake caused by reference confusion
where the “animals” in Step 1 refers to living ani-
mals while the mention in Step 2 refers to animal
remains, which should be differentiated in EST.
Hence, CGLI is actually tracking the states of the
wrong entity. By decontextualizing the “animals”
in Step 2, we distinguish the two entities which
share the same name. And the example shows that
CGLI is able to predict the states of both partici-
pants correctly. This indicates that the canonical
referent tracking schema help model to better com-
prehend process narratives.

8 Conclusion

We have presented ProPara-CRTS, a rigorously re-
annotated version of the ProPara corpus that re-

places the original, ambiguity-prone schema with
a Canonical Referent Tracking Schema. CRTS en-
forces one-to-one mention–referent mapping, step-
wise atomicity, and exhaustive state accounting.
DP supplies the minimal lexical edits needed to
make colliding mentions distinguishable while pre-
serving the original prose. During re-annotation
we also corrected recurrent paragraph and state-
label errors, yielding 452 paragraphs with 13,417
noise-free state triples. Experiments spanning from
LLM prompting, LLM fine-tuning and supervised
models show consistent gains on CRTS. The results
confirm three claims: (i) referential canonicaliza-
tion removes label noise that previously suppressed
scores; (ii) prompts that elicit multi-step reason-
ing profit most from the cleaner supervision; and
(iii) despite these gains, EST remains challeng-
ing—supervised models still outperform purely
prompted LLMs, underscoring the importance of
dedicated training data. We release ProPara-CRTS,
annotation guidelines, and validation scripts to fa-
cilitate future work on robust, semantics-aware
evaluation of EST in natural-language process nar-
ratives.
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9 Limitation

Due to resource constraints, only a subset of
100 paragraphs from ProPara underwent dual re-
annotation, while the remaining paragraphs were
subjected to single re-annotation. Consequently,
the inter-annotator agreement was calculated solely
based on this limited sample. Furthermore, for each
paragraph, both the re-annotation of the paragraph
text and the state labels were conducted by the
same annotator, which could introduce potential
bias into the annotations. Despite the involvement
of three specially-trained annotators, the possibil-
ity of unintentional errors or subjective judgments
remains.
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rank 16
lora_alpha 16
lora_dropout 0
target_modules q_proj, k_proj,

v_proj, o_proj,
gate_proj,
up_proj,
down_proj

max_seq_length 2048
use_gradient_checkpointing unsloth
per_device_train_batch_size 2
gradient_accumulation_steps 4
warmup_steps 5
num_train_epochs 1
learning_rate 2e-4
optim adamw_8bit
weight_decay 0.01
lr_scheduler_type linear

Table A1: Hyperparameters for Unsloth fine-tuning.

A Appendix

A.1 LLMs Fine-tuning

We report the hyperparameters for fine-tuning in
Table A1. During fine-tuning Llama 3.1 on both
datasets, the loss quickly decreases and then stabi-
lizes during the first epoch of training. Therefore,
we stop fine-tuning after one epoch. As shown in
Figure A1, the loss functions for both datasets are
nearly identical. This is expected as the task itself
is not changing. The average loss for ProPara is
0.06618. For ProPara-CRTS, it is 0.06341, only a
4% difference.

While it is not a difficult task for humans, LLMs
struggle to be competitive on the EST task. We
believe this is due to the ambiguity associated with
the task. Even with a limited set of responses,
annotators will interpret these labels differently.
The sharp initial decrease in loss is where the model
learns the expected format of the answers. Very
soon after starting training, the model produces
correctly formatted responses, but they are less
accurate than those collected after fine-tuning has
concluded.

A.2 Prompts

Figure A2 illustrates the direct prompts we feed
to LLMs for inference. Figure A3 demonstrates
the CoT prompts we use for LLMs inference and
fine-tuning. We also use the same prompt for self-

Figure A1: Fine-tuning loss on ProPara and ProPara-
CRTS using Llama 3.1.

consistency setting. Figure A4 shows the few-shot
prompts for LLMs inference.

A.3 Results
We report the full sentence-level and document-
level evaluation results of models on ProPara and
ProPara-CRTS in Table A2. We report the cross-
dataset evaluation results in Table A3 where EST
models are trained on ProPara and ProPara-CRTS
training sets respectively and tested on ProPara-
CRTS test set. We report the cross-dataset evalua-
tion results in Table A4 where EST models are
trained on ProPara and ProPara-CRTS training
sets respectively and tested on the shared slice of
ProPara and ProPara-CRTS test sets.
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Model / Train set Sentence-level Document-level

Model Train Cat1 Cat2 Cat3 Macro Micro P R F1

GPT-4o-mini
ProPara 59.3 9.5 0.6 23.4 24.8 70.2 44.2 55.0
ProPara-CRTS 53.7 10.8 0.6 21.7 23.2 68.2 41.9 55.6

GPT-4o
ProPara 70.8 36.4 11.5 39.6 40.2 63.1 61.2 62.1
ProPara-CRTS 67.7 36.5 13.8 39.3 41.9 62.3 53.4 63.5

FT Llama 3.1
ProPara 78.1 55.2 45.6 59.6 59.5 66.4 63.5 64.9
ProPara-CRTS 79.9 61.6 50.2 63.9 63.6 64.9 66.9 65.9

MeeT
ProPara 77.0 50.8 37.8 55.1 54.9 79.0 61.9 69.4
ProPara-CRTS 81.1 62.6 43.9 62.5 61.9 78.5 64.5 70.8

CGLI
ProPara 81.1 61.7 53.8 65.5 65.4 74.9 70.0 72.4
ProPara-CRTS 83.9 70.5 55.6 70.0 69.5 80.3 70.6 75.1

Table A2: Sentence-level and document-level evaluation results of models on ProPara and ProPara-CRTS.

Model / Train set Sentence-level Document-level

Model Train Cat1 Cat2 Cat3 Macro Micro P R F1

FT Llama 3.1
ProPara 77.2 58.0 50.8 62.0 61.9 68.1 62.2 65.0
ProPara-CRTS 79.9 61.6 50.2 63.9 63.6 64.9 66.9 65.9

MeeT
ProPara 78.6 55.6 46.0 60.0 59.9 81.3 61.7 70.2
ProPara-CRTS 81.1 62.6 43.9 62.5 61.9 78.5 64.5 70.8

CGLI
ProPara 81.6 65.5 55.3 67.5 67.2 75.7 67.0 71.1
ProPara-CRTS 83.9 70.5 55.6 70.0 69.5 80.3 70.6 75.1

Table A3: Cross-dataset evaluation results of the setting where EST models are trained on ProPara and ProPara-
CRTS respectively and tested on ProPara-CRTS.

Model / Train set Sentence-level Document-level

Model Train Cat1 Cat2 Cat3 Macro Micro P R F1

FT Llama 3.1 ProPara 78.8 58.4 50.6 62.6 62.3 67.8 63.1 65.4
ProPara-CRTS 78.5 61.5 52.3 64.1 64.6 69.2 65.9 67.5

MeeT ProPara 79.1 56.2 46.3 60.6 60.8 81.0 62.9 70.8
ProPara-CRTS 81.3 63.4 44.7 63.1 62.8 78.2 65.4 71.3

CGLI ProPara 82.3 68.0 55.3 68.5 68.3 77.8 69.2 73.3
ProPara-CRTS 84.4 72.3 57.9 71.5 71.2 79.2 73.9 76.5

Table A4: Cross-dataset evaluation results of the setting where EST models are trained on ProPara and ProPara-
CRTS respectively and tested on the shared slice of ProPara and ProPara-CRTS test sets.
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Figure A2: Direct prompt for LLMs inference.

Figure A3: CoT Prompt for LLMs inference and fine-tuning.
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Figure A4: Few-shot prompt for LLMs inference.
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Abstract

We examine the cases of failed communica-
tion in sarcasm, defined as ‘the discrepancy
between what speakers and observers perceive
as sarcasm’. We identify factors that are associ-
ated with such failures, and how those difficult
instances affect the detection performance of
encoder-only and decoder-only generative mod-
els. We find that speakers’ incongruity between
their felt annoyance and sarcasm in their utter-
ance is highly correlated with sarcasm that fails
to be communicated to human observers. This
factor also relates to the drop of classification
performance of large language models (LLMs).
Additionally, disagreement among multiple ob-
servers about sarcasm is correlated with poorer
performance of LLMs. Finally, we find that
generative models produce better results with
ground-truth labels from speakers than from
observers, in contrast to encoder-only models,
which suggests a general tendency by genera-
tive models to identify with speakers’ perspec-
tive by default.

1 Introduction

An utterance that is intended to be sarcastic by the
speaker is sometimes not understood as such by the
listener or external observers, or vice versa (Fox
Tree et al., 2020). Consider the example below.

About two years ago, Steve spent half a year in
Japan, where he learned a lot about Japanese food
culture. Ever since then, whenever Steve and John
eat something together, Steve says some version
of, “you know, in Japan, people do it this way.”
And John says, “that’s cool to hear!”

In this situation, if an external observer thinks
that John is being sarcastic, but John intended to
be literal, there is a discrepancy between intended
and perceived sarcasm.1 This type of communica-
tion failure can occur in numerous communicative

1In this work, the discrepancy we address is between
speaker and observer rather than speaker and listener. An

scenarios, especially those requiring layers of in-
ferences, which are common features of sarcasm
(Bryant, 2023). Discussing the divergence between
intended and perceived sarcasm is not new. Prior
work in psycholinguistics has widely discussed the
differences in what speakers intend with sarcastic
utterances and how listeners or observers interpret
them (Pexman and Olineck, 2002). NLP tasks and
datasets are also affected by such discrepancies.
For instance, Oprea and Magdy (2020) demon-
strated that there are many instances for which
external annotators provide different sarcasm judg-
ments from the producers of the utterances. Sar-
casm detection by language models, especially
BERT-like models, also show different classifica-
tion performances according to ground-truth labels
based on self-evaluation versus external evaluation
(Abu Farha et al., 2022; Jang and Frassinelli, 2024;
Oprea and Magdy, 2019; Plepi and Flek, 2021).
Since the capacity of (large) language models has
increased exponentially over the years with the ad-
vent of generative models, which are often placed
in direct conversations with human users, it has
become an important question to ask how language
models navigate different perspectives in commu-
nication involving sarcasm.

Although it is evident that sarcasm judgment is
contingent on the different perspectives of speakers
and observers (Oprea and Magdy, 2020), there is
a lack of systematic investigation on what factors
contribute to the general difficulty of the task for
LLMs as well as for human observers. One of the
numerous keys to identifying the source of such
discrepancy between speakers and observers is to
think about why sarcasm is used in the first place.

observer is a non-participant of a conversation who evaluates
the interaction from an external perspective. Though this is
less natural for real communication, it is more relevant for
computational linguistics, as data are often created with evalu-
ation by external observers.
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Sarcasm is used to convey specific communicative
intentions, such as to mock the addressee (Gibbs,
2000), which in turn is motivated by speaker’s emo-
tion in a given communicative situation (Jang et al.,
2023). The strong link between emotion and sar-
casm has long been identified and discussed in
numerous previous studies (e.g., Filik, 2023; Jang
et al., 2023; Veale, 2023). As such, we focus on
the close connection between sarcasm and emotion
to examine the discrepancy between speakers and
external observers in the use of sarcasm. Specifi-
cally, we focus on annoyance, an emotion shown
to strongly influence sarcasm production and iden-
tification (Jang et al., 2023). Though annoyance is
not the only reason why a speaker chooses to use
sarcasm, we focus on annoyance in this work based
on Jang et al. (2023), who report that a strong con-
nection is observed between speaker’s annoyance
and the level of sarcasm in their utterance, and that
external observers are also able to capture this con-
nection. The availability of such information in the
dataset described in Section 3.1 also motivates such
research design.2 We demonstrate which factors
are associated with the divergence of sarcasm judg-
ment between speakers and observers and how this
affects (L)LM performance on sarcasm detection.

2 Related work

2.1 Intended vs. perceived sarcasm
Numerous previous studies exist on sarcasm de-
tection, but very few of them address the perspec-
tive divergence between speakers and external ob-
servers (Dadu and Pant, 2020; Khodak et al., 2018;
Kumar and Anand, 2020; Misra and Arora, 2023).
In fact, an absolute majority of sarcasm datasets
contain labels annotated by third-party annotators
(Castro et al., 2019; Khodak et al., 2018; Oraby
et al., 2016), or a combination of self-labels and
third-party labels (Khodak et al., 2018; Van Hee
et al., 2018). Some datasets provide only author la-
bels without third-party labels (Oprea and Magdy,
2020). Only a small body of work addresses the
difference between intended and perceived sarcasm
(Jang et al., 2023; Jang and Frassinelli, 2024; Oprea

2We further tested the validity of annoyance as a
relevant emotion to sarcasm in a separate preliminary exper-
iment using an emotion classification model (https://
huggingface.co/bsingh/roberta_goEmotion)
fine-tuned on the GoEmotions dataset (Demszky et al.,
2020). When using this model, the logits of the top 20%
of most important emotions (out of 28 categories) for
sarcastic utterances from CSC were annoyance, admiration,
amusement, approval, and curiosity.

and Magdy, 2020; Plepi and Flek, 2021; Shmueli
et al., 2020). They report that there is a noticeable
difference in LM performance depending on the
source of ground-truth labels. But the discussion
of which factors may contribute to such difference,
or how the difference can be used to evaluate LLM
performance has not been extensively addressed in
the literature.

2.2 The connection between sarcasm and
emotion

Previous work has identified numerous reasons for
which human communicators use sarcasm. Sar-
casm can be used to express an attitude (Colston,
2023), to cause certain emotional reactions in the
listener (Filik, 2023), or to achieve specific com-
municative goals such as to be humorous (Gibbs,
2000), appear emotionally controlled (Dews et al.,
1995), or mock the addressee (Pexman and Oli-
neck, 2002). These communicative functions are
often motivated by the emotion in reaction to an
experience (Jang et al., 2023). Sarcasm as such
is strongly related to emotions, whether sarcasm
serves as the trigger for emotional reactions or is
itself triggered by them.

3 Method

3.1 Data

We used the publicly available Conversational Sar-
casm Corpus (CSC; Jang and Frassinelli, 2024)3

to analyze misaligned cases between intended and
perceived sarcasm. CSC provides a good opportu-
nity to examine divergences in sarcasm judgment
because it provides evaluations of two concepts
(sarcasm & emotion) reported by both speakers
and multiple external observers (4-6 per speaker).
Specifically, it contains contexts and utterances (N
= 7,036), ratings for sarcasm and annoyance felt by
the speaker that are judged by two parties (speaker
& observers). The original ratings provided in the
dataset are text-coded as 1 (not at all) - 2 (mostly
not) - 3 (not so much) - 4 (somewhat) - 5 (mostly)
- 6 (completely), which makes both numerical ma-
nipulation and binarization possible.

3.2 Hypotheses

We identified two potential sources of gap for
which observers reach a different judgment about
sarcasm than the speakers:

3https://github.com/CoPsyN/CSC
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Type Text Sarc(S) Sarc(O) Ann(S) Ann(O)

H1: Speaker’s annoyance-
sarcasm incongruity

Context: You got a date this evening. When you tell Steve
you got a date, he asks, “oooh, what’s the plan?”

Response: We’re going for Malaysian and then a gig.
6 1 2 1

H2: Speaker-observer
annoyance misalignment

Context: About two years ago, Steve spent half a year in Japan,
where he learned a lot about Japanese food culture. Ever since then,
whenever you eat something together, Steve says some version of,

“you know, in Japan, people do it this way.”
Response: That’s cool to hear!

1 6 1 6

Table 1: Examples of speaker’s annoyance-sarcasm incongruity ( boxed ) and speaker-observer annoyance mis-
alignment (underlined) associated with sarcasm failure (6 vs. 1). Sarc=Sarcasm ratings, Ann=Annoyance ratings,
S=Speaker, O=Observer.

• H1: speakers’ annoyance-sarcasm incongruity:
An incongruity between a speaker’s annoyance
and the level of sarcasm in the output utterance
causes misalignment between self-rated and
other-rated sarcasm.

• H2: observers’ failure to detect annoyance:
A failure by observers to identify the annoyance
a speaker felt in a given situation causes the
misaligned sarcasm judgment between speakers
and observers.

Table 1 shows the cases from the data that exem-
plify either H1 or H2. In both cases, sarcasm has
failed to be communicated, since the ratings given
by the speakers and observers are substantially dif-
ferent (6 vs. 1). However, in each case, different
factors stand out as being associated with the fail-
ure. In H1, we hypothesize that the gap between
the sarcasm rating and annoyance rating given by
the speaker ( 6 vs. 2 ) may be associated with
the failure of communicating sarcasm (speaker’s
annoyance-sarcasm incongruity). In H2, we hy-
pothesize that the discrepancy between the annoy-
ance ratings given by the speaker and observer (1
vs. 6) is linked to the failure of communication (ob-
servers’ failure to identify speaker’s annoyance).

4 Experiment 1: Sarcasm detection by
human observers

The first experiment inspected the factors related
to sarcasm communication failure between human
speakers and observers, by testing two hypotheses
described in Section 3.2.

4.1 Quantifying variables

Sarcasm alignment: We quantified the alignment
between the sarcasm scores given by a speaker and
multiple observers using the inverse of normalized

mean absolute error (MAE).4 We define alignment
as:

1− 1

n

n∑

i=1

|y − ŷ|

where y is the rating by the speaker, ŷ is the rating
from an observer for the same instance, and n is the
total number of speaker-observer pairs considered.
Values closer to 1 indicate stronger agreement. Sar-
casm alignment score is the dependent variable in
our following statistical analysis.
Annoyance alignment: The alignment between
annoyance scores given by a speaker and multiple
observers is computed using the same formula as
above. This measure is one of the main predictors
in our statistical analyses.
Speaker congruity: To quantify the congruity be-
tween sarcasm and annoyance expressed by the
speaker we assigned a value of 1 (congruous) if the
speaker rated sarcasm and annoyance levels as both
negative (1-not at all, 2-mostly not, 3-not so much)
or positive (4-somewhat, 5-mostly, 6-completely).
If the speaker gave a negative rating to sarcasm (1,
2, 3) but a positive rating to annoyance (4, 5, 6),
and vice versa, we assigned a value of 0 (incongru-
ous). Together with annoyance alignment, this is
the second main predictor in our statistical analysis.

SP OB1 OB2 OB3 OB4 OB5 OB6 Avg Alignment

Ex.1 4 5 4 5 4 4 1 3.83 0.86
Ex.2 4 5 6 4 3 2 3 3.83 0.81

Table 2: Examples with the same average score (Avg)
but with different alignment scores between speaker and
observers.

4Though a conventional measure for quantifying errors
is the mean squared error (MSE), the mean absolute error
(MAE) aligns with the purpose of our task better, because the
MAE does not penalize outliers among observers as harshly
as the MSE. A single outlier is not much of a communication
failure as long as the majority of the observers make judgments
similar to the speaker’s original intention.
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The two examples in Table 2 have the same aver-
age score, but in Example 1, most observers agreed
with the speaker except for one major outlier, while
Example 2 shows less alignment overall between
the observers and the speaker. Therefore, Exam-
ple 1 gets a higher alignment score of 0.86 and
Example 2 gets a lower score of 0.81.

We tested our hypothesis using a linear mixed-
effects model (Barr et al., 2013) that predicted sar-
casm alignment given the annoyance alignment
in interaction with speaker’s annoyance-sarcasm
congruity, with by-item and by-participant random
intercepts.
4.2 Results

The speaker’s annoyance-sarcasm congruity
showed a statistically significant positive effect
on speaker-observer sarcasm alignment (β =
0.15, p < 0.001). Importantly, we found a strong
positive interaction effect between the two pre-
dictors: In cases where the speaker’s annoyance-
sarcasm congruity was preserved, the annoyance
alignment judgment between speakers and ob-
servers led to higher sarcasm alignment judgment
(β = 0.42, p < 0.001). However, when this con-
gruity was not maintained, the observer’s correct
identification of speaker’s annoyance no longer con-
tributed to the alignment in sarcasm judgment be-
tween speaker and observers.

To summarize, when the utterance of the speaker
does not seem matched with the level of annoyance
they may have felt in that context, observers are
more likely to provide a sarcasm judgment that di-
verges from the speaker’s own judgment (H1). If
the speaker’s underlying annoyance is congruous
with their sarcastic utterance, the correct identifi-
cation of speaker’s annoyance by observers helps
align observers’ judgment of sarcasm with that of
the speaker (H2). Therefore, in the next sections,
based on H1, we conduct experiments using LLMs
to examine the influence of speaker’s annoyance-
sarcasm congruity on sarcasm detection.

5 Experiment 2: Sarcasm detection by
LLMs

In Section 4, we showed that speaker’s annoyance-
sarcasm congruity is highly correlated with sar-
casm being correctly transmitted to human ob-
servers. Based on these results, we examined
whether the same factor influences the sarcasm
detection performance of LLMs. We conducted a
classification experiment with encoder-only mod-

els and decoder-only models. The encoder-only
models are classical observer models suitable for
the task of sarcasm detection, and the decoder-only
models are generative models that have shown their
impressive capabilities to handle numerous NLP
tasks. We used the fine-tuning settings for the
encoder-only models, because they tend to require
task-specific tuning to ensure a reasonable level
of performance (Lyu et al., 2024). We used zero-
shot settings for the generative models, without
additional fine-tuning that requires substantial com-
putational resources. We binary-coded the original
sarcasm ratings by both sources – speakers and
observers (averaged) – by using the midpoint of
the scale (3.5) as the cut-off point. We downsam-
pled CSC to have an equal number of sarcastic and
non-sarcastic instances (N = 2,210 vs. 2,398).

5.1 Encoder-only models

We fine-tuned bert-base-uncased
(110M parameters; Devlin et al., 2019) and
roberta-base (125M parameters; Liu et al.,
2019) on CSC to perform binary sarcasm classi-
fication (See Appendix A for setup details). For
each language model, we obtained predictions on
the test set.
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Figure 1: Macro F-scores (y-axis) for sarcasm detection
by encoder-only models, according to ground-truth la-
bels by observers or speakers. Results shown in two con-
ditions - instances with speaker’s annoyance matching
the level of sarcasm (congruous) or not (incongruous).

Figure 1 shows sarcasm prediction performance
by encoder-only models given the different condi-
tions of speakers’ annoyance-sarcasm congruity. In
general, the instances for which speaker’s annoy-
ance level was not matching the level of sarcasm
of their subsequent responses (incongruous) show
lower F-scores. These results are compatible with
the results about human observers described in Sec-
tion 4: Cases in which sarcasm fails to be commu-
nicated to observers are related to cases in which
the speaker says something that is disproportion-
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ate to their emotional motivation (low annoyance-
sarcasm congruity). Likewise, also for encoder-
only models, sarcasm is more difficult to detect
when the speaker’s annoyance level is unmatched
with the output utterance. We further find that these
models show better detection with observer ground-
truth labels than speaker ground-truth labels, which
suggests their inclination to play the observer’s role
(Jang and Frassinelli, 2024).

5.2 Decoder-only models

We prompted smaller (≈ 3B parameters)
and bigger (≈ 7-8B parameters) open-source
instruction-tuned generative LLMs, in zero-shot
settings5: Llama3.2-3B, Llama3.1-8B,
Qwen2.5-3B, Qwen2.5-7B. (See Appendix B
for full prompts).
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Figure 2: F-scores for sarcasm detection by generative
LLMs in zero-shot settings (y-axis). Models with 3B pa-
rameters (top) or 7-8B parameters (bottom), according
to ground-truth labels by observers or speakers. Results
shown in two conditions - instances with speaker’s an-
noyance matching the level of sarcasm (congruous; left)
or not (incongruous; right).

Figure 2 shows sarcasm prediction performance
by the generative models given different conditions
of speakers’ annoyance-sarcasm congruity. The
best performing model is Llama3.1-8B, with
speaker ground-truth, in the congruous condition.
In general, all the generative models also struggle
to detect sarcasm when the utterance is incongruous

5Though we also experimented with few-shot prompting,
we only report results from the zero-shot experiments, as the
results were comparable in both settings.

with the speaker’s annoyance level, in line with the
previous results from Section 5.1.

On the other hand, we see an interesting dif-
ference between the generative models and the
encoder-only models. In the congruous condition,
the generative models perform better with speaker
ground-truth than observer ground-truth (e.g., F-
scores of 0.64 vs. 0.59 for Qwen2.5-3B in Fig-
ure 2). This is in contrast to the results in Sec-
tion 5.1, in which the encoder-only models per-
form better with observer ground-truth (F-scores
of 0.77 vs. 0.72 for bert-base-uncased in
Figure 1). In the incongruous condition, though,
the performance of the generative models drops
to about the same level between speaker ground-
truth and observer ground-truth (e.g., F-score of
0.56 for observer and speaker ground-truth for
Llama3.1-8B in Figure 2).

We observe model-specific variations as
well. The Llama3.1-8B performs better than
its smaller version Llama3.2-3B, whereas
Qwen2.5-7B underperforms its smaller version
Qwen2.5-3B. Also, between the congruous
versus incongruous conditions, the performance
drop by Qwen2.5-7B is steeper (0.59 to 0.36)
than that by Qwen2.5-3B (0.64 to 0.52), which
suggests its relatively lower robustness against
speaker’s incongruity.

6 Decoder-only vs. encoder-only:
Identification with speaker’s
perspective

In Sections 6 and 7, we conduct further experi-
ments to examine the difference between encoder-
only and decoder-only models. In Section 5.2, the
decoder-only generative models showed better per-
formance with speaker ground-truth labels than
observer ground-truth labels in the congruous con-
dition. This pattern is in contrast to the pattern we
observed with encoder-only models, which demon-
strated better performance with labels judged by
the observers (Section 5.1).

One possible explanation for such difference is
that generative models are more sensitive in in-
terpreting speakers’ “point-of-view” than encoder-
only models. In Section 5.2, the prompt for the gen-
erative models asking “how sarcastic is someone’s
response” could have biased the models to take the
speaker’s perspective by default. We investigated
whether prompting the LLMs with more explicit
instructions to take the perspective of an observer
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Figure 3: Macro F-scores (y-axis) for sarcasm detection
by generative LLM models when explicitly prompted
to take observer’s perspective. Results shown in two
conditions (congruous vs. incongruous).

would provide more information about why the gen-
erative LLMs perform better with speaker ground-
truth than observer ground-truth (See Appendix B
for the full prompt). We prompted Llama3.2-3B
and Qwen2.5-3B with the new prompt.

Figure 3 shows the prediction results of
Llama3.2-3B and Qwen2.5-3B explicitly
prompted to take the perspective of an external
observer. For both models, the prediction perfor-
mance does not increase with the new prompting
method. When we manually inspect the responses
by the LLMs, the general tendency of these models
is that they provide plenty of descriptions about
the emotions that the speaker would be experienc-
ing, or the message that the speaker is trying to
express (see Appendix C for sample responses by
the LLMs). Even when instructed to take the ob-
servers’ perspective, the models still focus on the
speaker’s experience in the conversation, and use
the conclusion about this as a basis to determine
an external observer’s sarcasm judgment.6 Given
these results, we detect a tendency that generative
models identify with the speaker’s perspective by
default rather than observer’s perspective.

7 Decoder-only vs. encoder-only:
Sensitivity to disagreement among
observers

In investigating the reason why generative models
perform better with speaker ground-truth labels,
another possibility is that generative models are
more sensitive to the disagreement among multi-
ple observers and therefore may struggle to per-

6Though a human observer is also expected to speculate
about the speaker’s emotions and communicative intentions
before judging the level of sarcasm in their utterances, we
think this may partially depend on the theory of mind capacity,
which varies across individuals (Zhu and Wang, 2020).

form at their best when the ground-truth labels are
the result of simple averaging. If true, the sen-
sitivity would have influenced the results in Sec-
tion 5.2, in which the sarcasm labels by observers
were averaged and binary-coded, which discards in-
formation about potential disagreement among the
observers. Annotator-wide disagreement in gen-
eral is considered as an important topic in NLP, as
ground-truth labels cannot always come down to
one single judgment (Cabitza et al., 2023; Knupleš
et al., 2023; de Marneffe and Manning, 2012; Plank
et al., 2014; Weber-Genzel et al., 2024). To test this,
we examined whether the disagreement among the
observers influences the performance of the gen-
erative LLMs more than that of the encoder-only
models.

We quantified the level of disagreement among
different observers using the normalized MAE de-
scribed in Section 4.1. For the purpose of visual
inspection, we split the scores we obtained using
this formula at the mean value into low versus high.
We inspected F-scores of both encoder-only mod-
els and generative models in the two groups of
disagreement (low vs. high).
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Figure 4: Macro F-scores (y-axis) for sarcasm detection
by encoder-only models, per ground-truth labels by ob-
servers (left panel) and speakers (right panel). Results
divided according to disagreement among observers
(low vs. high).

Both encoder-only models and generative mod-
els show better performance when human anno-
tators agree on the sarcasm judgment (Figures 4
and 5). For encoder-only models, the difference in
F-score between the two groups (low vs. high) is
comparable for both ground-truth labels (e.g., 0.80
vs. 0.57 in the left panel≈ 0.76 vs. 0.61 in the right
panel of Figure 4). In contrast, for all generative
models, the difference in F-score is larger for ob-
server ground-truth when the disagreement is low
versus high (e.g., 0.71 vs. 0.53 on bottom left panel
in Figure 5), than it is for speaker ground-truth
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Figure 5: Macro F-scores (y-axis) for sarcasm detec-
tion by generative models, per ground-truth labels by
observers (left panel) and speakers (right panel). Re-
sults divided by disagreement among observers (low vs.
high).

(0.70 vs. 0.58 on bottom right panel in Figure 5).
This difference is bigger for LLMs with a larger
number of parameters, which suggests their higher
sensitivity to disagreement among observers.

These results suggest that both types of language
models are influenced by the disagreement among
the observers. But in the face of this challenge,
the generative models, especially those with more
parameters, show a somewhat higher sensitivity by
reacting against observer ground-truth to a greater
extent than speaker ground-truth, which is in prin-
ciple an expected behavior (i.e., in an ideal sce-
nario, the performance with speaker ground-truth
should see no change). This contrasts with encoder-
only models, which show an equal drop against
both sources of ground-truth labels and therefore
demonstrates fragility to challenges stemming from
human disagreement.

8 Experiment 3: Sarcasm detection by
LLMs with additional information

Sections 4 and 5 showed that speaker’s annoyance-
sarcasm congruity influences the judgment of sar-
casm both by human observers and LLMs. Here
we tested whether adding information about the
speaker’s annoyance to LLMs would then improve
the classification results.

8.1 Encoder-only models
We added information about speaker’s annoyance
in the form of logits to sarcasm detection models.
We assessed if the added information contributes
to better sarcasm detection to different degrees in
congruous versus incongruous conditions. We fine-
tuned bert-base-uncased on CSC for annoy-
ance detection (annoying vs. not annoying). We
obtained the prediction logits for annoyance on
the test set, and concatenated them to the embed-
dings obtained from the sarcasm detection models
described in Section 5.1. This concatenation strat-
egy was inspired from the experiment in Yeo et al.
(2024), which combined information about multi-
ple dimensions into a single prediction model based
on theoretical grounds. We made sure that sarcasm
fine-tuning and annoyance fine-tuning would be
done with the same training and test split settings
to avoid the models being exposed to the same fine-
tuning data for annoyance detection and sarcasm
detection. We used the fine-tuned sarcasm detec-
tion models to extract embeddings as text represen-
tation, to which we added annoyance information
in the form of logits. We then used a logistic regres-
sion classifier (with a ‘liblinear’ solver that works
better for high-dimension data, and the maximum
iteration of 500) on the remaining test set with a
5-fold cross-validation.

Table 3 shows the results on sarcasm classifica-
tion and the improvement in performance with the
addition of annoyance information. Additional an-
noyance information is not helpful for the encoder-
only models when predicting sarcasm based on ob-
server labels, regardless of the congruity between
the sarcasm and the underlying annoyance. In con-
trast, when the models predict sarcasm based on
speaker labels, in the incongruous condition, help-
ing the models with additional annoyance informa-
tion leads to better results (5-6%).

8.2 Decoder-only models
We prompted Llama3.2-3B , Llama3.1-8B ,
Qwen2.5-3B and Qwen2.5-7B with direct in-
formation about speaker’s annoyance level (See
Appendix B for the full prompt).

The patterns by which the added information
about the speaker’s annoyance helped the models
varied across LLMs (See Table 3). Qwen2.5-3B
showed comparable patterns with encoder-only
models, in which adding the annoyance informa-
tion increased the F-score for speaker ground-truth
by a bigger margin (+0.12/+0.14) compared to ob-
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Encoder-only Generative

G.T Congruity BERT RoBERTa Llama-3B Llama-8B Qwen-3B Qwen-7B

Speaker
Congruous +0.01 +0.02 -0.04 +0.02 +0.12 +0.05

Incongruous +0.05 +0.06 +0.02 -0.07 +0.14 -0.05

Observer
Congruous +0.00 -0.01 -0.01 +0.02 +0.05 +0.00

Incongruous +0.00 +0.00 +0.02 -0.02 +0.07 -0.03

Table 3: Improvement in F-score for sarcasm detection performance by different LLMs when annoyance infor-
mation was additionally supplied in the form of logits (encoder-only models) and prompting (generative models).
Improvement of 5% and higher marked in bold.

server ground-truth (+0.05/+0.07), and the increase
being higher for incongruous condition (+0.14)
than the congruous condition (+0.12). None of
the other models show any consistent improvement
when information about the underlying annoyance
of the speakers was supplied in the prompt. We
suspect that it may be because models with a larger
number of parameters are less likely to be influ-
enced by added information from one dimension
only (annoyance). Nevertheless, given the incon-
clusive results of this experiment, further exam-
ination would be needed about the influence of
assistive information for LLM performance.

9 General discussion

When speakers use sarcasm without any noticeable
emotional cues, external observers lose an impor-
tant source of information for judging the level of
sarcasm in the provided utterance (H1). This ten-
dency in human observers is also reflected in LLMs.
For both humans and LLMs, sarcasm is difficult
to detect when the speakers’ annoyance seems un-
matched with the output utterance. In contrast, in
sarcastic utterances where proportional annoyance
can be perceived as an underlying motivation, mod-
els are better at detecting sarcasm. Some differ-
ences are observed between encoder-only models
and generative models, in terms of which source
of ground-truth labels (speaker vs. observer) they
match better. Encoder-only models show better
performance with observer ground-truth, in line
with prior work (Abu Farha et al., 2022; Jang and
Frassinelli, 2024). However, generative models
show better performance with speaker ground-truth.
A further analysis suggests that generative models
may impersonate speakers’ perspective by default
compared to encoder-only models. This aligns with
the capabilities that these models are expected to
have, exemplified by one of the evaluation suites for
Llama-3 models “inhabiting a character/persona”.7

7https://ai.meta.com/blog/meta-llama-3/

Nevertheless, speaker’s incongruity in their under-
lying emotion and utterance still poses a challenge
for LLMs. This is a factor worth considering for
the inspection of linguistic competence of LLMs,
because investigating a linguistic output by humans
often requires understanding the factors that led up
to it (e.g., speaker’s motivation). Another obstacle
that hinders good performance by LLMs is higher
disagreement among observers (annotators). It is
important for the evaluation of LLM capabilities to
investigate the patterns by which LLMs navigate
through varying linguistic judgments by humans,
especially on heavily subjective topics such as sar-
casm. The findings in this work also suggest that
future research should address both perspectives of
conversational partners (speaker vs. listener) when
evaluating LLM output. Examining which perspec-
tive is reflected in the output of LLMs would help
understand the competence of LLMs in more depth.

10 Conclusion

We showed that speaker’s incongruity between
their utterance and the annoyance they felt is associ-
ated with their judgment of sarcasm diverging from
the judgment by external observers. This factor,
as well as disagreement among the observers, also
presented challenges to language models (both gen-
erative and encoder-only). Lastly, we discovered
that the generative models are more likely to imper-
sonate speakers’ perspective more than observers’
perspective, in contrast to encoder-only models.

Limitations

The main limitation of this work is that only two
factors were considered as intermediary elements
contributing to sarcasm failure, as mentioned in
Section 3.2. We acknowledge that sarcasm can
fail to be communicated for several reasons other
than the mismatch between annoyance and sarcasm,
given its complexity mentioned in the literature e.g.,
Gibbs and Colston (2023). Examining more factors
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such as multimodal and other contextual factors
in addressing the causes for failure of sarcastic
communication is left to future work.

Another limitation of this work is that only one
dataset was used for our experiments, because this
is the only dataset we found to have both speaker
and observer labels on multiple related dimensions
(e.g., sarcasm and annoyance). Replications of
our findings with other datasets and topics would
strengthen our findings about communication fail-
ure in general. The use of larger language models
than reported in this paper may also be considered
for more conclusive insights about this topic.

Lastly, the ways of integrating annoyance infor-
mation to LLMs were limited. Annoyance infor-
mation was integrated with a simple concatenation
of embeddings and logits for encoder-only models,
and with prompting for generative models. With
the results from this preliminary work, other forms
of information integration will need to be tested in
future work.
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A Fine-tuning details for Section 5.1

We used 80% of the downsampled data for fine-
tuning in a 5-fold split (model initialization seeds:
10, 20). We fine-tuned each model for 2 epochs
with a batch size of 16, and a learning rate of 5e-5.
The fine-tuning was implemented using the Trans-
formers class from the Hugging Face library, and
was conducted on an NVIDIA A100 GPU with
a total memory of 40GB. The reported results in
Section 5.1 are the average of all seeds and folds.

B Prompts for generative models

The prompting was implemented using the Trans-
formers class from the Hugging Face library, and
was conducted on an NVIDIA A100 GPU with a
total memory of 40GB.

B.1 Base prompt
“Analyze each situation between Steve and John.
In each situation, judge if John’s response is sar-
castic or not. Say 1 if John’s response is sarcastic
and 0 if it is not sarcastic. Only respond with 1
or 0 and nothing else: [context]. And John says
[response].”.

B.2 Prompt with explicit instructions to take
the observer’s perspective

**We also used a prompt with the proper name of
Sarah removed, and the results were comparable to
using the above prompt.

“Sarah is analyzing conversations between Steve
and John. In each situation, Sarah will judge if
John’s response is sarcastic or not. Sarah will say
1 if John’s response is sarcastic and 0 if it is not
sarcastic. What would Sarah say in this situation,
1 or 0?: [context]. And John says [response].”

B.3 Prompt with annoyance information
“Read each situation between Steve and John. Judge
if John’s response is sarcastic or not. Say 1 if
John’s response is sarcastic and 0 if it is not sarcas-
tic: [context]. And John says [response]. In this
situation, on a scale of 1 to 6, John’s annoyance
was at [annoyance-rating]”.

C Reasoning provided by LLMs in
Section 6

Llama3.2-3B:

• In this situation, Sarah would say 0. John’s
response seems to be a supportive and under-
standing comment, rather than a sarcastic one.
He’s acknowledging Steve’s frustration and
offering a sympathetic ear, which suggests
that John is not being sarcastic.

• Based on the conversation, Sarah would say
1. Although John’s response seems to be a
straightforward explanation (”it’s just because
I want to pick your girlfriend up later!”), the
initial response (”come on, why can’t I bor-
row it? Don’t you trust me?”) has a tone of
sarcasm and implies that John is questioning
Steve’s trust, which is a common characteris-
tic of sarcastic responses.

• In this situation, Sarah would say 0. Although
John’s response seems to be slightly negative
towards social media, it does not appear to be
sarcastic. John’s statement ”Life’s too short”
is a genuine expression of his opinion, and his
offer to help Steve with posting a picture is
not sarcastic.

Qwen2.5-3B:

• In this scenario, John’s statement ”In about an
hour” does not appear to be sarcastic. Steve’s
initial response indicates that he is genuinely
interested in joining the party and wants to
know when it starts. John’s reply simply con-
firms the timing of the party without any in-
dication of sarcasm. Therefore, Sarah would
say: 0.

• In this scenario, John’s response seems gen-
uine rather than sarcastic. John is compli-
menting the watch and even going so far as
to suggest that it has become even more shiny
since he last saw it. This implies that he finds
the watch impressive and possibly in better
condition now. Therefore, Sarah would judge
this response as **0** (not sarcastic).

• In this situation, John’s response can be inter-
preted as somewhat sarcastic. John acknowl-
edges Steve’s offer to lend him a shirt but then
suggests he already has another shirt that isn’t
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tight. This could imply that John feels his cur-
rent shirt is tight and that he doesn’t need to
accept the offer, which might be seen as a sub-
tle rejection or at least an attempt to downplay
Steve’s offer. Given this context, Sarah would
likely judge John’s response as sarcastic. So,
Sarah would say **1**.
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Abstract

In a successful dialogue, participants come to
a mutual understanding of the content being
communicated through a process called con-
versational grounding. This can occur through
language, and also via other communicative
modalities like gesture. Other kinds of actions
also give information as to what has been under-
stood from the dialogue. Moreover, achieving
common ground not only involves establish-
ing agreement on a set of facts about discourse
referents, but also agreeing on what those enti-
ties refer to in the outside world, i.e., situated
grounding. We use examples from a corpus of
multimodal interaction in a task-based setting,
annotated with Abstract Meaning Representa-
tion (AMR), to explore how speech, gesture,
and action contribute to the construction of
common ground. Using a simple model of in-
formation state, we discuss ways in which exist-
ing annotation schemes facilitate this analysis,
as well as information that current annotations
do not yet capture. Our research sheds light on
the interplay between language, gesture, and
action in multimodal communication.

1 Introduction

In dialogue, the concept of common ground refers
to the set of presuppositions held by the partici-
pants, propositions that they agree to treat as true
(Stalnaker, 1978). The process by which common
ground is constructed over a dialogue is known
as (conversational) grounding (Clark and Brennan,
1991). Formal models of dialogue have been devel-
oped to track how common ground (and more gen-
erally, information state) evolves over the course
of an interaction (Poesio and Traum, 1997; Cooper
and Larsson, 1999; Ginzburg, 2012).

Much work examining the role of non-linguistic
modalities in communication focuses on gesture
(Kendon, 2004; McNeill, 2008; Lascarides and

Figure 1: Example of multimodal communication in
a task-based setting (Wang et al., 2017). On the left,
the signaler describes part of the structure to be built:
he says, “It starts in the top left; there’s a block”, and
makes a deictic gesture with his left hand. On the right,
the actor puts a block in the top left corner of the table
(note that both videos are mirrored).

Stone, 2009). This includes analyses of the seman-
tic contents of gestures (Ebert and Ebert, 2014;
Schlenker, 2018), and proposals for integrating
gesture into models of dialogue (Lücking and
Ginzburg, 2020).

More general types of actions can also affect
dialogue context, especially in real-world or em-
bodied settings (Tam et al., 2023). Within these
settings, referential grounding is the process by
which interlocutors anchor linguistic expressions
to actual entities, relations, or events in the shared
environment. When considering the perception and
embodiment of participants, situated grounding is
used (Kordjamshidi et al., 2025). In other words,
while conversational grounding focuses on “what
was said”, referential grounding ensures everyone
agrees on “what is being talked about”.

In this paper, we present a simple information
state model of dialogue that integrates both propo-
sitional updates (conversational grounding) and ref-
erential anchoring (situated grounding). We walk
through a dialogue fragment from a corpus of task-
based multimodal interaction (Lai et al. (2024);
Wang et al. (2017); an example is shown in Fig-
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ure 1), annotated with AMR (Banarescu et al.,
2013) for speech and gesture (Brutti et al., 2022;
Donatelli et al., 2022), illustrating how speech,
gesture, and object-directed actions co-construct
and update the common ground. We assess the
strengths and limitations of current annotations for
capturing multimodal grounding phenomena, and
argue for the importance of situational information
in dialogue interpretation.

2 Related Work

Information state theories of dialogue are based on
the idea that dialogue acts change the context avail-
able to participants (Fernández, 2022). At the most
basic level, this includes the common ground, or
shared assumptions of the participants (Stalnaker,
1978). Over time, the scope of the information state
has expanded to handle different types of utterances
beyond assertion; interrogatives are commonly han-
dled via a set or stack of questions under discussion
(Roberts, 2012), while there are various theories
for the meaning of imperatives (Kaufmann, 2012;
Portner, 2004; Barker, 2012). Formal information
state theories include Poesio and Traum (1997);
Cooper and Larsson (1999); and Ginzburg (2012).

Several dialogue corpora analyze the conversa-
tional grounding process and the impact of situated
grounding or information about the shared environ-
ment. Among them, Mohapatra et al. (2024) anno-
tate two corpora with (conversational) grounding
acts and grounding units (Traum, 1995). The STAC
corpus contains multi-party Settlers of Catan chats
annotated with discourse structure and dialogue
acts (Asher et al., 2016); Martinenghi et al. (2024)
experiment with using large language models to
predict the dialogue acts. Zhu et al. (2023) present
the FIREBALL dataset of Dungeons & Dragons
games, showing that adding game state informa-
tion to the dialogue history can improve narration
generation. Kruijt et al. (2024) develop the SPOT-
TER framework to investigate linguistic convention
formation in a task referentially grounded in vi-
sion. The SCOUT corpus of situated human-robot
dialogues (Lukin et al., 2024) is annotated with
Dialogue-AMR (Bonial et al., 2020) and relations
between utterances (Carletta et al., 1996; Traum
et al., 2018). The Weights Task Dataset of situated
interaction is annotated with several modalities in-
cluding speech and gesture (Khebour et al., 2024a);
Khebour et al. (2024b) perform common ground
tracking, focusing on the emergence of facts.

3 Analyzing Multimodal Interaction

3.1 Setting
We draw examples in this paper from the EGGNOG
corpus of task-based multimodal communication
(Wang et al., 2017). Two participants are located in
separate rooms, connected through video and audio.
One person, the signaler, has an image of a block
structure, and instructs the other person, the actor,
on how to build the structure. For part of the corpus,
Lai et al. (2024) annotated the signaler’s speech and
gesture with AMR (Banarescu et al., 2013; Brutti
et al., 2022; Donatelli et al., 2022). While they did
not annotate the actor’s actions, our examples use
another AMR extension, Action AMR (Tam et al.,
2023), to describe them.

3.2 Information State
We use a simple model of information state, in-
spired by Ginzburg (2012)’s dialogue gameboard.
Our model M = (C,Q, Ts, Ta, E, g) contains the
common ground C, which we assume to have a
similar structure to a file card (Heim, 1982) or
Discourse Representation Structure (Kamp, 2002),
namely, that it stores a set of discourse referents
and facts or shared beliefs about them. It also con-
tains a set of questions under discussion Q. We
take imperatives to denote actions; while Barker
(2012) does not prescribe any specific data struc-
ture for these, we adopt Portner (2004)’s concept
of a To-Do List T (one each for the signaler s and
actor a) to handle actions. To describe the environ-
ment in which the participants are situated, we use
a list E containing the objects in the environment
(including the agents themselves), and the previ-
ous actions performed, both communicative and
not; this is similar to the “common ground struc-
ture” in Pustejovsky and Krishnaswamy (2021) and
Lai et al. (2021). Finally, to represent the situated
grounding of objects and actions to the environ-
ment, we use an embedding or grounding function
g. This is similar to the notion of an embedding in
Discourse Representation Theory (Kamp, 2002), a
function mapping discourse referents to elements
in a model; here, the “model” comprises the envi-
ronment E in which the agents are situated. For
simplicity, we assume that the information state
is an objective structure (i.e., not relative to any
particular agent), and that all of its components
are public; while each agent is assigned their own
To-Do List, they also have access to the other par-
ticipant’s list.
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Figure 2: Initial state for our example.

3.3 Example

We illustrate the dynamics of our information state
using an example from the corpus. We note that
because of the task-based nature of the interaction,
the state does not begin empty. Both participants
have prior information about the task, given by the
experimenter or from previous trials; the common
ground begins with these task-based presupposi-
tions (see additional discussion in Section 4). Sim-
ilarly, “what is the shape of the structure?” can be
seen as an overarching question that begins in Q,
the signaler has the task of communicating how
to build the structure in Ts, and the actor has the
task of actually building the structure in Ta. The
environment contains the participants, the actor’s
table1, and the blocks, at least2. Finally, our exam-
ple begins with the signaler already having given
one instruction and the actor having put a block on
the table, as shown in Figure 2.

In the corpus, signalers generally communicate
their instructions through a combination of direct
commands, and/or describing some aspect of the
eventual structure. Here, the signaler does the for-
mer, issuing the imperative “Take another block;
put it next to it” and gesturing towards a location
on his table, as shown in Figure 3 (an example
of the latter follows in Section 4). The signaler’s
communicative act adds discourse referents to the
common ground and actions to the actor’s To-Do
List; the communicative act is itself recorded in

1The signaler and actor being in different rooms compli-
cates things somewhat. The signaler and actor both have tables
in their rooms, and the signaler often uses locations on their ta-
ble to refer to locations on the actor’s table, raising interesting
questions of perspective and frame of reference. Ultimately,
the actor’s table and the locations on it are the ones relevant to
the completion of the task.

2One could argue that the environment should also include
the locations in space available to the participants. Assum-
ing a continuous space, enumerating every possible location
would not be possible, so we allow for actions to dynami-
cally generate locations as needed, a strategy employed by
Krishnaswamy and Pustejovsky (2021).

(1) “Take another block; put it next to it.”
(a / and
:op1 (t / take-01 :mode imperative

:ARG0 (y / you)
:ARG1 (b / block

:mod (a2 / another)))
:op2 (p / put-01 :mode imperative

:ARG0 y
:ARG1 b
:ARG2 (n / next-to

:op1 (i / it))))

(2) Gesture for “put here”.
(g / gesture-unit
:op1 (d / deixis-GA

:ARG0 (s / signaler)
:ARG1 (l / location)
:ARG2 (a / actor))

:op2 (i / icon-GA
:ARG0 s
:ARG1 (p / put-01)
:ARG2 a))

Figure 3: The signaler gives the actor an instruction
using speech (1) and gesture (2). Colors denote corefer-
ence relations between the AMRs.

the environment. These discourse referents and
actions come from the speech and gesture AMRs,
also shown in Figure 3. In this case, the signaler
references a new block b to be placed at a new
location l, and places take (t) and put (p)
actions into Ta.

The actor shows her understanding of the sig-
naler’s instructions by performing the referenced
actions. The action and its corresponding AMR are
shown in Figure 4. In the action AMR, note that the
action and its arguments are not discourse objects,
but rather objects in the world, that is, they are ele-
ments of E; for clarity, we use capital letters in the
action AMR to mark this distinction. In perform-
ing the action, the actor identifies entities in the
discourse with entities in the world, and proposes
this identification to the signaler. That is, she is sug-
gesting that g(b) = B2, g(l) = L2, g(p) = P2,
and (given a suitably subevent structure for put,
such as in Krishnaswamy and Pustejovsky (2021)),
g(t) is a subevent of P2.

Note that the actor’s action does not automati-
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(3) Actor puts another block next to the first block.

(P2 / put-01
:ARG0 (A / actor)
:ARG1 (B2 / block)
:ARG2 (L2 / location))

Figure 4: The actor carries out the signaler’s instruc-
tion. Proposed situated grounding between the action
AMR and the communicative act is shown with the same
colors as above (a subevent of the actor’s put action
corresponding to the signaler’s take instruction).

cally update the situated grounding function g; it
is now up to the signaler to accept or reject the ac-
tor’s proposals. Mirroring Ginzburg (2012)’s treat-
ment of statements yet to be accepted, the actor’s
suggestions become questions under discussion,
(g(b) = B2)?, and so on. If the signaler is satisfied
with the actor’s action, they can either give explicit
positive acknowledgment, or implicitly accept by
moving on to the next instruction; either way it
is the signaler’s acceptance that updates g. Other-
wise, if there is something wrong, the signaler can
either say or gesture so, and/or provide additional
instruction to correct the misunderstanding.

In this example, the speaker’s next communica-
tive act is the utterance “Spread them apart a little
bit but not as wide as a full block”, with a corre-
sponding “spread apart” gesture. While the actor’s
choice of block may have been appropriate, and
(g(b) is thus set to B2), the signaler intended there
to be a gap between the blocks, and the actor’s pro-
posal of (g(l) = L2)? is not accepted. The actor
responds by moving both blocks to new locations a
suitable distance apart; this represents a proposal
not only to set the location of the second block,
but also to update the location of the first block.
The new proposals are eventually accepted by the
signaler, and the dialogue continues.

4 Discussion and Conclusion

Within the corpus, some signalers use what we can
call the result present tense, describing the con-
figuration resulting from an action in the present,
rather than giving an imperative. In fact, exclud-

ing one-word utterances, declarative sentences out-
number imperatives by almost two to one (191 to
97). In one example, the signaler says “Starting
from the top, moving to your left, down four di-
agonally a row with the corners touching.” The
analysis of such utterances can be formalized in a
number of ways. One approach, suggestive of Ross
(1970)’s performative analysis, is to treat them like
implicit imperatives: one could imagine each state-
ment beginning with a covert “Make it true that...”.
These instructions would then be added to the ac-
tor’s To-Do List, in the same way as explicit im-
peratives3. Another approach is to treat them as
standard declaratives, with the actor’s subsequent
actions determined by pragmatic effects. Following
Ginzburg (2012), declarative statements are offered
as questions under discussion, which the actor can
either accept or reject. Without an imperative, there
is no direct update to the actor’s To-Do List; how-
ever, assuming that they accept the statement, and
the initial overarching task of building the struc-
ture remains in Ta, they will change the state of
the world (i.e., move blocks around) to make the
signaler’s description true.

The challenge of ambiguous statements that re-
quire context for correct interpretation are well-
established in dialogue literature (Grice, 1975). In
sampling our corpus, we encounter two distinct
kinds of ambiguity that require situated informa-
tion to arrive at the correct interpretation. First, we
notice several instances of presuppositions that are
connected to the setup of the block-building task.
These presuppositions are triggered with canonical
utterances such as “again”, “the same”, or “also”
(Frege, 1892; Strawson, 1950; Stalnaker, 1975).
In one interaction, the signaler begins with the
statement, “so you will begin with a grid structure
again”, referencing a previous interaction that re-
quired a grid-like spatial understanding of the block
orientation on the table. We notice this throughout
interactions: both signalers and actors approach
the task with an implicit and often shared under-
standing of constraints on block structures and their
orientation in the physical space.

In the same interaction, the signaler instructs the
actor to create “the same pattern” with blocks in a
new area of the table. Here, we encounter a second,
partially overlapping challenge of multimodal am-
biguity: multimodal coreference. In the case of the
block pattern, the instruction and subsequent action

3We thank an anonymous reviewer for this suggestion.
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are potential instances of the so-called sloppy iden-
tity effect (Ross, 1967), in which the same phrase
can be interpreted with different arguments, i.e.,
blocks (Partee, 1975; Webber, 1978; Carnie, 2021).
Such multimodal coreference can also be under-
stood as coreference under transformation (Rim
et al., 2023), a category easier to annotate and help-
ful in understanding sequences of events. Here,
while the concept of a block pattern is stable in
identity, the concept is applied to a new instance
that requires situated knowledge to enact correctly.

Using AMR for both speech and gesture allows
multimodal coreference relations throughout the di-
alogue and between the modalities to be marked us-
ing Multi-sentence AMR (O’Gorman et al., 2018).
Meanwhile, using AMR for action facilitates align-
ment and binding from the communicative modal-
ities to the local environment, allowing for easier
identification of situated grounding. However, as
the Lai et al. (2024) corpus annotates only commu-
nication from the signaler, there are certain aspects
of conversational grounding, such as the signaler’s
understanding of the actor’s communicative acts,
that the annotations do not capture yet. A complete
analysis of bidirectional grounding processes will
require the rest of the corpus to be annotated with
the actor’s actions, in addition to their speech and
gesture. Our model, focusing on describing what
identifications are made between discourse entities
and objects in the real world, sidesteps the question
of how agents make these identifications. Ken-
nington and Schlangen (2015) describe a “words
as classifiers” approach to situated grounding of
words and phrases in perceptual scenes. Further-
more, our findings are limited to a single corpus,
and applying this approach to other dialogue types
will reveal new insights. For example, in the block
structure-building task, the signaler knows what
structure is to be built, and the actor knows this,
and therefore accepts the signaler as an authorita-
tive source of information. Additionally, the task-
specific presuppositions that define the initial dia-
logue state require knowledge of each new context.
These factors point to clear next steps for extending
multimodal semantic annotation for the analysis of
situated dialogue.
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Abstract

We explore how neural network-based agents
learn to map continuous sensory input to dis-
crete linguistic symbols through interactive lan-
guage games. One agent describes objects in
3D scenes using invented vocabulary; the other
interprets references based on attributes like
shape, color, and size. Learning is guided by
feedback from successful interactions. We ex-
tend the CLEVR dataset with more complex
scenes to study how increased referential com-
plexity impacts language acquisition and sym-
bol grounding in artificial agents.

1 Introduction and Background

How do cognitive systems bridge the gap be-
tween rich, continuous sensory experiences and the
sparse, discrete symbols used in communication?
While perception operates through continuous sig-
nals, linguistic communication relies on finite vo-
cabularies that must ground meaning about the per-
ceived world (Regier, 1996; Roy, 2005; Cooper,
2023). This representational challenge, known as
the symbol grounding problem (Harnad, 1990), be-
comes particularly acute in artificial systems where
discrete symbols must acquire meaning through in-
teraction rather than pre-programmed associations.

Referring expressions require systems to map
visual attributes onto linguistic descriptions that
uniquely identify target objects and thus can be
used to study symbol grounding. Dale and Reiter
(1995) formalized this process through an incre-
mental generation algorithm that constructs descrip-
tions by systematically adding distinguishing prop-
erties in order of salience until achieving unique
identification. By this, referring expression only
contain attributes that are necessary to discriminate
the target from the surroundings.

Research in this area investigates how artificial
agents can develop referential abilities through lan-

guage games - interactive scenarios where commu-
nication protocols emerge from repeated coordina-
tion attempts (Clark, 1996; Bartlett and Kazakov,
2005; Kirby et al., 2008; Steels and Loetzsch, 2009;
Kharitonov et al., 2019; Lazaridou et al., 2017).
Modern implementations use deep neural networks
as agents that exchange discrete messages to solve
visual discrimination tasks, allowing systematic
study of how symbol meaning emerges from inter-
action.

This paper examines emergent referential com-
munication in neural agents tasked with identifying
objects in 3D visual scenes. Using a highly con-
trolled extension of the CLEVR dataset (Johnson
et al., 2017a), we are able to manipulate the bias the
neural agents are able to use in the emergent com-
munication. We are able to vary the complexity of
referential scenarios to understand the constraints
governing successful symbol grounding. Our work
is a study of how increasing the complexity of the
scene (and therefore the space of potential refer-
ential expressions to be learned) affects learning
through interaction of particular configurations of
neural networks.

2 Dataset

We extend the original CLEVR framework (John-
son et al., 2017a) to have more control over the
generated scenes.1 By this, the objects in the gener-
ated images are controlled to have different human-
recognizable attributes, namely the shape, size and
color. These attributes also correspond to referring
expressions in natural language such as English
which effectively biases the agents to learn a lan-
guage that is comparable to a human language.

The objects in the scene are separated into two
categories: one target object and a controlled num-

1github.com/DominikKuenkele/MLT Master-
Thesis clevr-dataset-gen

289

https://github.com/DominikKuenkele/MLT_Master-Thesis_clevr-dataset-gen
https://github.com/DominikKuenkele/MLT_Master-Thesis_clevr-dataset-gen
https://creativecommons.org/licenses/by/4.0/


(a) ’CLEVR color’, small brown cylin-
der

(b) ’Dale-2’, small green cylinder (c) ’Dale-5’, large purple cylinder

Figure 1: Example images of each dataset, with the target object specified.

ber of distractor objects. The target object is the
main object in the scene and the models are trained
to identify and communicate it between each other.
This object is unique in the scene in respect to the
attributes. The distractor group contains objects
that can share a maximum of two attributes per
object. Distractors are not required to be unique.

Using these rules, we generate three datasets
with the following constraints: (i) the size of the
generated images is 480×320 pixels; (ii) 10.000
images are created for each of the datasets; (iii)
each image contains a maximum of 10 objects,
that are not intersecting, have the same minimum
distance between objects and are at least partially
visible from the camera.

2.1 CLEVR color

The first generated dataset is called ’CLEVR color’,
in which the target object is identifiable by just the
color. Both shape and size of all distractors are
shared with the target object. The distractor group
can contain in between 6 and 9 objects.

As seen in Figure 1(a), the small brown cylinder
is unique. By this, it is possible to refer to the tar-
get object using the attributes with four different
combinations: the brown object, the brown cylin-
der, the small brown object and the small brown
cylinder.

2.2 CLEVR Dale datasets

The above described dataset is very restrictive in
the relation between the objects, where only one
attribute is used to disambiguate them. The num-
ber and the type of shared attributes are controlled
exactly. In the real world, objects have overlapping
attributes and hence objects can often be identified
by an intersection of multiple attributes. For this,
we created a dataset that allows almost any relation
between a target object and the distractors. The

creation is inspired by the incremental algorithm
for the Generation of Referring Expressions (GRE)
described in (Dale and Reiter, 1995) who observe
that attributes in descriptions occur in certain order
and are added incrementally in a certain hierarchy.
This algorithm ensures that every scene contains a
unique object in respect to its and the distractors’
attributes. Using the algorithm, one can refer to an
object using its attributes to discriminate it from
all other objects as efficiently as possible. In other
words, the object is described unambiguously using
the lowest number of words. On the other side, it
is not controlled which attributes are shared; they
are assigned randomly.

Two datasets following these rules are created.
The ’Dale-2’ dataset contains one target object and
one distractor (see Figure 1(b)), while the Dale-5
dataset contains one target object and exactly four
distractors. Consider Figure 1(c), with the target
object being the large purple cylinder. The large
purple sphere shares the size and color, the two
cubes only share the size, and the small turquoise
sphere doesn’t share any attribute.

3 Method

3.1 Image processing
To extract the features and process the images of
the datasets, we build upon the proposed archi-
tecture in Johnson et al. (2017b) which was used
to train baseline models on the original CLEVR
dataset. Hereby, the image is first passed through
a frozen ResNet-101 model (He et al., 2016). Two
convolutional layers with subsequent ReLU non-
linearities condense the important information from
the output of the feature extractor. The convolu-
tional layers reduce the channels to 128 channels,
using a kernel size of 3 and a stride and padding of
1. This matrix represents the encoded image with
its extracted features.
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3.2 Language Games

The goal of this research is to run and compare dif-
ferent setups of language games systematically. To
do this, all experiments rely on the Emergence of
lanGuage in Games (EGG) framework (Kharitonov
et al., 2019). This framework allows the implemen-
tation of language games in code, where two neural
models agents communicate through a unidirec-
tional discrete channel. A sender agent processes
visual input. The result is used as the initial hidden
state for the encoder LSTM. This LSTM is then
producing symbols until it generates an <eos> sym-
bol. The receivers’ decoder LSTM processes the
message symbol by symbol with a randomly ini-
tialized hidden state. After each time, a symbol is
processed by the LSTM, the resulting new hidden
state is passed to the receiver’s neural model as the
parsed message. The receiver agent is combining
it with its representation of the image input and is
predicting an output. In other words the receiver
agent produces as many outputs as symbols are
present in the message. The loss is calculated for
each of these outputs separately. These losses are
summed up to a total loss that is used to adapt the
weights in both agents as well as in both LSTMs.
As the discrete sampled categorical distribtion of
the message can’t be differentiated, we use Gumbel-
Softmax relaxation (Jang et al., 2017) to turn it into
a continuous distribution, thus allowing backpropa-
gation through the whole language game.

4 Experiments

4.1 Attending in a language game

Setup
Two agents are tasked to solve a referring prob-
lem together. The receiver needs to ’point’ to the
target object in the visual scene that the sender is
describing. However, only the sender is aware of
which of the shown objects is the target object. To
solve the task correctly the sender is required to
generate a referring expressions about the target
object through the discrete channel while the re-
ceiver needs to resolve it. The experiment is set
up in a way that avoids explicit human language
information as e.g. human referring expressions or
one-hot encoded attributes. Messages by the sender
can only be based on the highly controlled implicit
bias in the visual scenes.

Figure 2 shows the simplified architecture of
the language game. The sender is given a set of

Figure 2: Simplified architecture of the attention predic-
tor game.

bounding boxes of all objects in the scene, where
the target object is always the first bounding box
and the distractors are shuffled. The features of
each bounding box are extracted using ResNet-101,
combined and passed to the LSTM to produce a
message. The receiver is shown the whole scene in-
cluding the spatial information. Given the sender’s
message, the task is to predict the region around
target object. For this, the image is divided into
14×14 regions. The target area is located around
the center of the target object, consisting of 3×3
regions. The model is then tasked to predict the
matrix A = (aij), where:

aij =

{
1, if region i, j in target area
0, otherwise

The image is encoded using a combination
of ResNet-101 and several convolutional layers
described in Section 3.1. The resulting matrix
has 128×14×14 dimensions, corresponding to the
14×14 regions.

The sender’s message is decoded using an LSTM
and the dot product is calculated between each en-
coded region of the image and the encoded mes-
sage. The softmax function is applied subse-
quently, which results in a 14×14 matrix. This
emphasizes the correlation between the message
and each region. A high dot product for a region
indicates a high correlation between the message
and the specific region, while a low dot product
indicates the opposite. Training the agents like this
should therefore highlight the regions in the im-
age that are described by the sender, namely the
region around the target object. To calculate the
loss, the softmax function is applied over the pre-
diction and compared to the ground truth matrix
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A using binary cross entropy. More details can be
found in Appendix A. A total of 128.000 games are
played. Furthermore, we allow message lengths of
n ∈ {1, 2, 3, 4, 6} and provide vocabulary sizes of
|V | ∈ {2, 10, 16, 50, 100}.

The agents are evaluated on the summed pre-
dicted probability for the regions in the target area,
the probability mass. In particular, the predicted
matrix, consisting of probabilities for each region is
multiplied with the ground truth matrix A, consist-
ing of only ones and zeros. The result is summed
and returns the probability mass for the target area.
If the model predicts the target area perfectly, the
probabilities in the target area sum to 1. If the
model for instance focuses on the wrong object,
the probability mass in the target area is lower.

All results are compared to a baseline in which
the sender is generating random messages, so that
the receiver needs to solve the task on its own. Any
increase in performance requires information being
transferred between the agents and the emergence
of a language.

Results
The learning curves are shown in Figure 3. As
can be seen, the agents are able to solve the task
across all datasets, but with different consistency.
However, when the agents start to learn to commu-
nicate, the probability mass is boosted instantly to a
higher level, where it again learns at a slower speed
parallel to the baseline. On the ’Dale-2’ dataset,
the boost is around 40% points. Most of the learn-
ing takes place in the first 40.000 games, but there
are also two configurations that increase the perfor-
mance very late after 70.000 and 105.000 games
respectively. Hereby, agents tend to learn faster the
smaller their vocabulary size is. Using the ’Dale-5’
dataset, the probability masses are boosted around
30% points when the agents start to communicate
successfully. Compared to the ’Dale-2’ dataset,
fewer configurations start to converge, while most
achieve performances close to the baseline. The
smaller number of learning curves makes the anal-
ysis more difficult, but the same trend about the
vocabulary size is still visible. Interestingly, only
one configuration with |V | = 2 beats the baseline,
but behaves relatively unstable over the remaining
training. On the other hand no configuration with
|V | = 100 is successful. This indicates that one
symbol is too few to encode all meaning, but too
many symbols pose a too high difficulty to learn.
This hypothesis is amplified by the results on the

’CLEVR color’ dataset. Only two configurations
beat the baseline, both with a medium-sized vocab-
ulary size and message length. In both cases, the
learning takes place relatively late, after 15.000 and
30.000 games respectively.

Dale-2 Dale-5 color

n |V | P mass P mass P mass

baseline 62,16% 49,61% 41,68%

2 2 92,27% 52,15% 33,64%
3 2 94,52% 51,97% 37,09%
4 2 89,15% 51,98% 39,68%
6 2 59,68% 53,57% 38,43%
2 10 96,16% 80,26% 36,53%
3 10 94,9% 53,47% 38,24%
2 16 95,84% 84,03% 39,65%
4 10 96,08% 48,03% 64,31%
3 16 94,59% 81,46% 67,88%
6 10 63,46% 82,12% 40,11%
4 16 94,14% 49,81% 40,84%
6 16 95,86% 50,71% 40,61%
2 50 93,78% 52,24% 39,56%
3 50 93,88% 79,65% 40,36%
2 100 92,43% 53,23% 37,68%
4 50 96,24% 48,79% 43,61%
3 100 95,25% 48,52% 42,55%
6 50 91,27% 52,55% 40,21%
4 100 95,55% 49,65% 42,85%
6 100 60,27% 46,92% 41,98%

Table 1: Probability masses of the attention reference
resolver after 128.000 games: n are different maximum
message lengths and |V | are different vocabulary sizes.
Results in red didn’t pass the baseline. The results are
sorted by the product of n and |V | which corresponds
to available space for the message. The best results are
achieved with a medium-sized message space across all
datasets.

The final probability masses after 128.000 games
are summed up in Table 1. Interestingly, the base-
line can already find and attend to the correct re-
gions in many cases without the help of the sender.
The probability mass is higher than a uniform dis-
tribution (≈ 4,6%) and a random guess of an ob-
ject. It reaches 62,16% on the ’Dale-2’ dataset,
49,61% on the ’Dale-5’ dataset and 41,68% on the
’CLEVR color’ dataset. Looking at the ’Dale-2’
dataset, almost all configurations beat the baseline
and achieve performances of over 90%, the best
configurations reach even 96%. Only three config-
urations stay on the level of the baseline. When
comparing the results, mostly the message length
n seems to have an influence on the performance.
While configurations with n = 6 can perform well,
this is not constant. All three configurations that
don’t pass the baseline are allowed to produce mes-
sage with n = 6. n ∈ {3, 4} seem to help the
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(a) ’Dale-2’ dataset with different |V |
highlighted

(b) ’Dale-5’ dataset with different |V |
highlighted

(c) ’CLEVR color’ dataset with differ-
ent |V | highlighted

Figure 3: Learning curves of all language games on each dataset. The colors correspond to different vocabulary
sizes |V |. The baseline is marked in black.

agents the most to perform consistently well, but
the difference to configurations with n = 2 is very
small. In both cases, the target object is unambigu-
ously identified. The small number of experiments
doesn’t allow definite conclusions on the influence
of the vocabulary size |V |, though |V | = 2 per-
forms slightly worse than the remaining vocabu-
lary sizes. A correlation between n and |V | is not
identifiable.

On the ’Dale-5’ dataset, the agents already have
bigger problems to beat the baseline. Only 8 out
of 30 configuration perform better and reach prob-
ability masses around 76% to 84%. However, the
increase compared to the baseline is as high as
on the ’Dale-2’ dataset, with around 30% points.
Smaller message lengths (n ∈ {2, 3}) as well as
a medium-sized vocabulary (|V | ∈ {10, 16, 50})
tend to help the agents more, to solve the task suc-
cessfully. As before, no correlation is visible with
the few successful games. That the agents strug-
gle more with the ’Dale-5’ dataset is not surprising.
First, the larger number of distractors makes it more
difficult for the receiver to focus, as can be seen
already in the baseline performances. Additionally,
the larger number of objects also influences the
referring expression needed to uniquely describe
the target object. With an increasing number of dis-
tractors, the probability rises that the target object
shares attributes with any distractor. Therefore, it is
more likely that the sender needs to use two or three
attributes to describe the target object on the ’Dale-
5’ dataset compared to the ’Dale-2’ dataset. This
is naturally more complex to learn for the agents.
Finally, since more objects are present, they are
more likely clustered closer together, which can
result in the identification of adjacent regions to the
target regions.

The agents struggle the most on the ’CLEVR
color’ dataset. In this case, only two configura-
tions perform better than the baseline and reach a
probability mass of around 64% to 67%. Both uti-
lize a medium message length of n ∈ {3, 4} and a
medium-sized vocabulary of |V | ∈ {10, 16}. Inter-
estingly, several configurations with short message
lengths of n = 2 perform worse than the baseline.
This indicates that there is communication between
the agents, but it rather distracts the receiver from
the target object towards the distractors. The same
point for a more difficult task when more objects
are involved can be made for the ’CLEVR color’
dataset. This dataset includes even up to 10 objects
present in the scene which increases the likelihood
that the receiver focuses on a wrong object.

Figure 4 shows examples of the wrongly iden-
tified regions on each dataset. These are predic-
tions by the agents that are wrong even though a
language emerged successfully. Main problems
seemed to be target objects not being in the actual
frame of the scene that the receiver was processing.
This happens due to center cropping the image to
prepare it as input for the ResNet model. However,
in several cases (as in the central image), especially
for the ’Dale-5’ dataset, all objects are visible, and
the agents still don’t attend solely on the target ob-
ject. Rather than choosing one of the distractors,
the agents usually attend to both objects relatively
equally. This indicates that the receiver is uncertain
which object the sender is describing. In contrast,
the share of errors of the latter type is drastically
higher. While a general pattern is difficult to iden-
tify, the receiver tends to confuse the target object
with distractors that share multiple attributes with
each other. In the central and right image, the
wrongly identified distractors share both size and
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(a) ’Dale-2’

(b) ’Dale-5’

(c) ’CLEVR color’

Figure 4: Examples of the predictions in language
games with successful communication with a proba-
bility mass lower than 50% on the ’Dale’ and ’CLEVR
color’ datasets. The black rectangle shows the cropped
section the model is actually seeing after the image is
preprocessed for ResNet-101. The green rectangle sur-
rounds the target region that needs to be predicted while
the red regions show the actual predictions of the model.
The more intense the red, the higher is the probability
that the model assigned to this region.

shape with the target object.

4.2 Sender and receiver with natural
language referring expressions

Two further experiments are conducted to have a
closer look at the sender and receiver models. More
precisely, we evaluate how introducing explicit nat-
ural language bias into the models changes the
training and ability to solve the tasks. This is done
by training both the sender and receiver models
separately outside a language game context, while
the architecture stays the same. Instead of generat-
ing and respectively understanding a message of an
emergent language, natural language referring ex-
pressions are used. Here, we know that the symbols
are grounded in the visual scenes and correspond
to attributes of the objects.

4.2.1 Referring expression generation
(sender)

First, instead of generating a message for the re-
ceiver, the sender is now tasked to generate natural
language referring expressions. The referring ex-
pressions for the target object are generated using
the incremental GRE-algorithm (Dale and Reiter,

1995). By this, the model needs to describe the
target object with respect to the distractor objects.

During testing, the LSTM is always forced to
generate three tokens, with an embedded <sos>
token as first input to the LSTM. Each token in
the sequence is determined greedily, by selecting
the highest logit in the output of each step in the
LSTM. Training is done for 30 epochs and with a
learning rate of 2 × 10−4. The loss is calculated
using cross entropy.

This task can be interpreted as a classification
task rather than a natural language generation task,
as the model is tasked to assign specific attributes
to the target object instead of producing free text
with a large vocabulary. Furthermore, the model’s
success is validated on accuracy, recall and preci-
sion scores. The overall accuracy is a measure
if the model predicted every word in the referring
expression correctly.

Accuracy F1-Score

Dale-2 99% 98,57%
Dale-5 69% 89,53%

CLEVR color 93% 95,17%

Table 2: Overall accuracies (Accuracy) and F1-Scores
after 30 epochs with embedding size e = 100,
LSTMo = 500 and LSTMe = 30.

Table 2 shows the overall accuracy and F1
scores for each word. As can be seen, the overall
accuracies, in other words perfect matches of the
generated referring expression depend very much
on the dataset. With the ’Dale-2’ and ’CLEVR
color’ dataset, the model can achieve high scores
of 99% and 93% if the samples. In contrast, the
model can only generate perfect referring expres-
sions in 69% of the samples of the ’Dale-5’ dataset.

Tables 3 and 4 give a more detailed insight in the
results and especially what mistakes the model is
making for both the ’Dale-5’ and ’CLEVR color’
datasets. The tokens are grouped by attribute and
also show the metrics averaged over each of the
attributes. The metrics of the <pad> token indi-
cate if the model produced the correct length of
the referring expression, in other words if it was
able to determine which attributes are necessary
to discriminate the target object from the distrac-
tors. For the ’CLEVR color’ dataset, the scores are
perfect. This is not surprising, since all referring
expressions for the ’CLEVR color’ dataset consist
of exactly two attributes, shape and color, and the
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small large size cube cylinder sphere shape <pad>

Dale-2 Precision 99,17 98,29 98,73 99,86 99,71 99,67 99,75 99,64
Recall 97,54 94,26 95,9 100 99,56 99,67 99,74 99,77

Dale-5 Precision 69,65 69,21 69,43 98,19 98,32 98,39 98,3 82,22
Recall 62,11 66,15 64,13 98,79 97,87 98,25 98,3 84,59

CLEVR
color

Precision - - - 100 100 100 100 100
Recall - - - 100 100 100 100 100

Table 3: Precision and Recall in % for <pad>, size and shape tokens with e = 100, LSTMo = 500 and LSTMe =
30. The columns shape and size show the average across all tokens of the respective attribute.

blue brown cyan gray green purple red yellow color

Dale-2 Precision 94,51 98,77 97,59 98,68 98,89 98,8 97,47 100 98,09
Recall 97,73 100 98,78 97,4 96,74 98,8 100 98,8 98,53

Dale-5 Precision 92,12 93,82 89,13 89,12 92,63 91,12 97,24 94,36 92,44
Recall 92,12 89,78 94,91 94,51 95,71 92,42 89,34 94,85 92,95

CLEVR
color

Precision 93,46 92,37 94,47 93,86 92,04 91,13 90,07 94,7 92,76
Recall 92,75 92 95,98 89,92 94,12 91,13 94,23 91,91 92,76

Table 4: Precision and Recall in % for color tokens with e = 100, LSTMo = 500 and LSTMe = 30. The column
color shows the average across all colors.

first generated token will always be the only <pad>
token in the referring expression (corresponding to
the unspecified size). The <pad> token is therefore
easy to learn. For the ’Dale-5’ dataset, the model
struggles more to predict the correct length of the
referring expression.

The shape can be identified very well across
all datasets. The model predicts the correct shape
for all samples using the ’CLEVR color’ dataset,
while both precision and recall lie around 98,3%
when using the ’Dale-5’ dataset. Even though the
score is almost perfect, the slight difference might
stem from the fact that all distractors have the same
shape in the first case, while distractors can be dif-
ferent in the second case. Consequently, the model
is only exposed to one shape at a time for each
sample, which might simplify its identification.

For the color attribute, the metrics drop signifi-
cantly for both ’Dale-5’ and ’CLEVR color’ to an
average of around 93%. Hereby, no meaningful
difference can be seen across the datasets, but there
are differences between the colors. Some colors are
predicted with precision and recall around 95% to
96%, while others are only around 90%. However,
these differences are not reproducible across mul-
tiple runs and configurations. The best and worst
predicted colors vary and no conclusions can be

drawn which colors are easier to predict for the
model.

Finally, the size is the most difficult attribute to
predict for the model. Apart from the ’CLEVR
color’ dataset, where a size never needs to be pre-
dicted and also is never predicted, the metrics for
the prediction of size tokens are the lowest across
all tokens. They are the only mistakes, the model
makes, when exposed to the ’Dale-2’ dataset and
the average precision lies around 23% below the
average of predictions of the color for the ’Dale-5’
dataset, while the average recall lies around 28,82%
below. The reason why the precision is higher than
the recall is the <pad> token, which is predicted
very often instead of a token specifying the size. In
fact, the opposite relationship is visible for the pre-
cision and recall for said token. The much higher
absolute number of <pad> tokens leads to a smaller
relative difference of %-points shown in the ta-
ble. Again, no conclusion can be drawn if larger
or smaller objects are easier to predict, since the
results vary across runs and configurations.

In conclusion, the model successfully extracts
discriminative features and produces referring ex-
pressions, though performance depends heavily on
the number of distractors. Shape attributes are most
easily identified, while size attributes prove most
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challenging.

4.3 Referring expression resolution (receiver)

As before, the setup of the receiver model stays the
same for this experiment, but instead of interpreting
the sender’s message, natural language referring
expressions are passed to the model. As we know
that the referring expressions are grounded in the
scene, we can now compare the results to the lan-
guage games, where the agents needed to learn and
ground the arbitary vocabulary first.

Probability mass

Dale-2 95,16%
Dale-5 92,19%

CLEVR color 95,33%

Table 5: Probability masses of the model after 20 epochs
with LSTMe = 15 and LSTMo = 1500.

The results are shown in Table 5. Across all
datasets, the model is able focus on the correct
region in the image with high precision of over
90%. Interestingly, a different pattern emerges
when comparing the results to the language games.
While both agents and the single model achieved
the best scores with the ’Dale-2’ dataset, the single
model can achieve similar results on the ’CLEVR
color’ dataset. On the ’Dale-5’ dataset, the perfor-
mance is slightly worse. In contrast, the agents
achieved better results on the ’Dale-5’ dataset, and
struggled mostly with learning and grounding col-
ors.

5 Discussion and Conclusion

We demonstrate a method for conducting focused
experiments on artificial data through which we
gain valuable insights what particular models are
capable of learning from data and their dependence
on the structure and representations in the data in
the context of linguistic coordination and learn-
ing over a visual scene. This knowledge can be
transferred to the design of larger systems that are
trained on real data to gain insights about learn-
ing architectures, representations of features and
datasets. They can also be used as a diagnostic
probes for systems trained on real data.

Our language games revealed that agents can
successfully develop communication protocols,
achieving substantial performance gains over base-
lines. However, emergent communication faces

constraints: medium-sized vocabularies and mes-
sage lengths proved most effective. Scene com-
plexity significantly impacts learning, with simpler
scenes enabling near-perfect communication while
complex scenes challenged most configurations.

The natural language experiments provided cru-
cial insights into these limitations. When gener-
ating referring expressions, models achieved high
accuracy on simple scenes but struggled with com-
plex discriminations. Critically, the size attributes
proved most difficult to learn across all tasks, fol-
lowed by the color, while the shape was consis-
tently well-identified. This indicates that humans
and artificial neural networks have quite different
learning biases that facilitate learning for humans
(e.g. pragmatic referring described in the Dale-
Reiter algorithm) is difficult to learn for systems.
The experiments demonstrate that once we add
such learning biases (e.g. modelling focused atten-
tion) learning becomes more successful. Overall,
the results indicate that to be successful, learning
language and vision models needs to go beyond
mere observation of pixels and words.

Future work should investigate the linguistic
properties of the emergent languages to better un-
derstand how agents encode visual attributes in
their communicative protocols. Detailed analysis
of message patterns could reveal whether emergent
languages develop similar structures seen in natural
languages.
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A Technical details of the language games

The sender extracts the features of each bound-
ing box using ResNet-101 and projects them to
an image embedding dimension er = 100 with
a linear layer. All encoded bounding boxes are
concatenated and again compressed to the decoder
output dimension hs = 500 using another linear
layer. This representation of all objects serves as
the initial hidden state of an LSTM, which gener-
ates the referring expression. Tokens used in the
LSTM are embedded with embedding dimension
LSTMs,e = 100. During training, teacher forcing
is applied by using embeddings of the ground truth
tokens as the input sequence for the LSTM, instead
of the output of the LSTM.

The receiver decodes the sender’s message using
an LSTM with a hidden size hr = 500 and token
embedding dimension of LSTMr,e = 100. The
image is encoded using a combination of ResNet-
101 and several convolutional layers described in
Section 3.1. Both encodings are passed through a
tanh non-linearity, and the results are combined
using a dot product. The resulting vector is passed
through a softmax function to produce a proba-
bility distribution over the 14×14 regions of the
image.

The experiments are conducted with the follow-
ing hyperparameters: a learning rate of 2× 10−4, a
temperature for the Gumbel-Softmax relaxation of
1 and Adam (Kingma and Ba, 2015) as optimizer.

The source code for all experiments is available
at github.com/DominikKuenkele/MLT Master-
Thesis.
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Abstract
Theory of Mind presents a fundamental
challenge for Large Language Models (LLMs),
revealing gaps in processing intensional
contexts where beliefs diverge from reality.
We analyze six LLMs across 2,860 annotated
stories, measuring factors such as idea density,
mental state verb distribution, and perspectival
complexity markers. Notably, and in contrast
to humans, we find that LLMs show positive
correlations with linguistic complexity. In fact,
they achieve high accuracy (74-95%) on high
complexity stories with explicit mental state
scaffolding, yet struggle with low complexity
tasks requiring implicit reasoning (51-77%).
Furthermore, we find that linguistic markers
systematically influence performance, with
contrast markers decreasing accuracy by 5-9%
and knowledge verbs increasing it by 4-10%.
This inverse relationship between linguistic
complexity and performance, contrary to
human cognition, may suggest that current
LLMs rely on surface-level linguistic cues
rather than genuine mental state reasoning.

1 Introduction

While Large Language Models (LLMs) demon-
strate remarkable capabilities in code generation
(Jiang et al., 2024), multilingual translation (Zhu
et al., 2024), and long-context conversational
memory (Liu et al., 2024), their performance
on social reasoning tasks remains fundamentally
unreliable. Although LLMs are approaching
human accuracy on simple false-belief tests
(Moghaddam and Honey, 2023; Kosinski, 2024),
their inconsistent patterns on more sophisticated
tasks requiring social reasoning (Sap et al., 2022;
Kim et al., 2023), suggest they rely on mechanisms
fundamentally different from human cognition.

At the heart of this reasoning lies Theory of
Mind (ToM), the human ability to model others’

∗This research was conducted while visiting ETH Zürich.

mental states, especially when their beliefs contra-
dict reality (Premack and Woodruff, 1978). Clas-
sic false-belief tasks, such as the Sally-Anne test,
probe this ability by requiring a model to predict
an agent’s actions based on their incorrect beliefs.
Computationally, this requires processing inten-
sional contexts created by attitude verbs like “be-
lieve,” where the truth of a proposition is evalu-
ated relative to a subjective perspective rather than
objective reality (Montague, 2008). Recent find-
ings reveal that LLMs capable of passing standard
false-belief tests often fail on their minor varia-
tions (Ullman, 2023). This suggests they lack a
robust understanding of how mental state verbs cre-
ate distinct semantic contexts that block standard
entailment (Karttunen, 1973).

In this paper, we empirically analyze six LLMs
on ToM tasks to understand their failure patterns
on tasks requiring semantic reasoning. We exam-
ine 2,860 stories by quantifying linguistic features
related to information structure (idea density) and
lexical patterns (mental state verb density). We
also manually annotate each story for its level of
perspectival complexity and linguistic markers. We
address three key research questions: (RQ1) To
what extent do idea density and mental state verb
density correlate with LLM performance on mental
state reasoning? (RQ2) How do linguistic markers
of perspectival complexity influence model perfor-
mance on ToM tasks? (RQ3) What systematic fail-
ures emerge across different model architectures?

We find that LLMs exhibit opposite correlations
to humans in terms of linguistic complexity, yet
paradoxically achieve the highest accuracy on
high-complexity stories with explicit mental state
scaffolding. These findings suggest that LLMs
rely on surface linguistic cues rather than genuine
perspective-tracking.
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2 A Semantic Framework for Theory of
Mind

To formally analyze ToM, the capacity to attribute
beliefs, desires, and intentions to oneself and oth-
ers, and to recognize that these states may diverge
from reality (Premack and Woodruff, 1978; Asting-
ton, 1993), we ground our analysis in a multi-agent
epistemic–doxastic logic (Hintikka, 2005; Fagin
and Halpern, 1994). This framework provides a
precise language for representing nested perspec-
tives and allows for systematic categorization of
the perspectival complexity of social reasoning sce-
narios (Karttunen, 1971; Giannakidou, 1998).

A mental-state representation in our framework
consists of an agent a ∈ A from a set of story
participants, an attitude (e.g., knowledge K, belief
B), and a content formula φ expressing a proposi-
tion about events or states. Our formal language
L[1][2]...[n] extends propositional logic L with a set
of modal operators [i], each corresponding to a
mental attitude held by a specific agent. For in-
stance, for agents a, b ∈ A, the formula Kaφ ex-
presses “a knows φ,” and Bbφ expresses “b be-
lieves φ.” These operators can be nested to repre-
sent higher-order ToM, as in KaBb¬p (“a knows
that b believes that p is false”).

The semantics are defined using a generalized
Kripke model (Voorbraak, 1992), a tuple

M = ⟨w0,W, {Σ1,Σ2, . . . ,Σm},
⟨σ1, σ2, . . . , σm⟩,
⟨F1, F2, . . . , Fm⟩,⊨⟩

where W is a set of possible worlds, Σi is a
non-empty set of epistemic states for attitude i,
σi : W → Σi maps each world to an epistemic
state, Fi is a set of projection functions that ex-
tract information from an epistemic state, and ⊨ is
the valuation function, where ⊨ (w, [i]φ) depends
on the epistemic state σi(w). The key insight of
the generalized Kripke models is that epistemic
states are explicitly represented as atomic entities,
not sets of worlds, with nonstandard valuation for
modal operations.

We instantiate this general framework for two
attitudes: objective knowledge and rational belief.
Objective Knowledge. Modeled as an S5
modality, objective knowledge corresponds to
truthful, introspective information. In an objective
knowledge (OK) model, the truth condition for

Kaφ is given as:

w ⊨ Kaφ iff ∀w′ ∈W
(
κ(w′) = κ(w)⇒ w′ ⊨ φ

)

where κ(w) is the information state at world w.
This states that φ is true in all worlds that are
informationally indistinguishable from w.
Rational Belief. Modeled as a KD45 modality,
rational belief is not necessarily true but is consis-
tent and introspective. In a rational belief (RIB)
model, the belief set ∥β(w)∥B for a state β(w) is
non-empty (consistency) and constant across all
worlds within that set (introspection). The truth
condition for Baφ is:

w ⊨ Baφ iff ∀w′ ∈ ∥β(w)∥B w′ ⊨ φ.

This states that φ is true in all worlds compatible
with the agent’s beliefs.

Veridicality. Following Karttunen (1971, 1973)
and Giannakidou (1998), we classify attitude verbs
by their entailment properties. An operator is
veridical if it entails its complement φ in the actual
world (e.g., “know”, “realize”), non-veridical
if it carries no such entailment (e.g., “believe”,
“suspect”), and anti-veridical if it entails ¬φ (e.g.,
“pretend”, “imagine”). As a subset of non-veridical
operators (Giannakidou, 2013), an operator F
is anti-veridical if Fφ is false in an agent’s
epistemic model M(x), i.e., M(x) ∩ JφK = ∅.
We note that this distinction can be modeled within
the non-veridical RIB framework by adding a
constraint that all accessible worlds satisfy ¬φ
(e.g., for attitudes like “pretend” or “imagine”);
however, our analysis focuses on the core attitudes
of knowledge and belief.

Perspectival Complexity. We quantify complex-
ity based on the nesting depth of modal operators
and the number of distinct agents. Depth 0 (no
operators) is simple. Depth 1 with a single agent is
low complexity. Depths 2 with multiple agents are
medium, and depths of 3+ with at least three agents
are high. We also annotate linguistic markers, in-
cluding explicit contrasts (Baφ∧¬φ) and displace-
ment (a proposition φ appearing only within the
scope of an operator).

3 Methodology

3.1 Data
For our analysis, we use the English portion
of ToMBench (Chen et al., 2024), a benchmark
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designed to assess ToM capabilities in LLMs.
ToMBench covers 31 distinct aspects of social cog-
nition organized into six categories: beliefs (rea-
soning about divergent or false mental states), emo-
tions (understanding situational feelings), inten-
tions (recognizing goal-directed actions), knowl-
edge (tracking access to information), non-literal
communication (interpreting indirect meaning),
and desire (identifying subjective wants). Repre-
sentative examples from the dataset are provided
in the App. A in Tab. 1. Every instance of the
ToMBench contains a story, followed by a ques-
tion, and four plausible options (A, B, C, D) where
only one answer is correct and the others are high-
quality but misleading wrong answers.

Data annotation. We manually annotated each
instance in the dataset for two key properties:
perspectival complexity and the presence of
specific linguistic markers. We categorized stories
into four levels based on mental state attribution
patterns: simple story (no explicit mental state
attributions), low (single agent with mental
state), medium (multiple agents or belief-reality
contrasts), and high (nested mental states or
three+ agents with contrastive structures). We
tracked three types of linguistic markers: (1)
contrast markers signaling belief-reality divergence
(“but actually,” “however”), (2) displacement
markers indicating perspective shifts (“from X’s
perspective”), and (3) verb types distinguishing
factive (knows, sees) from non-factive (thinks,
believes) mental states. While this surface-level
annotation simplifies true intensional complexity,
which would require analyzing scope ambiguities,
de re/de dicto distinctions, and semantic properties
of embedded clauses, it captures identifiable
correlates that may proxy for deeper semantic
complexity. This approach tests whether LLMs
are sensitive to surface markers of perspective
complexity, even if we cannot directly assess their
handling of formal intensional semantics.
The annotation was performed by a linguistics ex-
pert and validated by a second expert, both au-
thors of this work. All discrepancies were re-
solved through discussion, resulting in a high inter-
annotator agreement (Cohen’s κ = 0.90 for com-
plexity and κ = 0.95 for markers). A detailed
guide to our annotation criteria is available in
App. A. Additionally, we automatically computed
Idea Density and lexical patterns via Mean Syn-
tactic Verb Dependency for each instance using

Figure 1: Heatmap of performance (%) for LLMs and
humans across six ToM categories with the average idea
density and MSVD for stories in each category.

custom scripts based on spaCy.1

Idea Density (ID). Idea density measures the rate
of elementary propositions in a text, normalized
by its length. It serves as a metric for informa-
tional complexity, where lower density has been
linked to cognitive decline and an increased risk of
Alzheimer’s disease (Sirts et al., 2017). The idea
density for a given text is calculated as:

Idea Density =
Number of Propositions

Number of Words
(1)

Mean Syntactic Verb Dependency (MSVD). To
capture the expression of characters’ internal states,
which is a key component of ToM (Astington,
1993), we measure the density of state verbs. State
verbs (e.g., think, know, believe, want, feel) de-
scribe cognitive or emotional states rather than
physical actions. A higher frequency of these verbs
can indicate a greater focus on intentionality and
mental representation within a story. For a story S,
we calculate MSVD as:

MSVD(S) =
|Vstate(S)|
Nwords(S)

(2)

where Vstate(S) is the set of lemmatized state verbs
in the text and Nwords(S) is the total word count.

3.2 Models
We evaluate several state-of-the-art LLMs on the
ToMBench benchmark, ranging from 1.8B to 70B

1https://spacy.io/
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Figure 2: Pearson correlation between idea density and
task performance. A strong negative correlation is ob-
served for humans, in contrast to most models.

parameter count: LLama-3.1-70B (Touvron et al.,
2023), Qwen-2.5-32B (Team, 2025), OLMo-2-
13B (OLMo et al., 2024), Mistral-7B-Instruct-v0.3
(Jiang et al., 2023), Phi-3-Mini-4k-Instruct (Ab-
din et al., 2024), and InternLM-2.5-1.8 (Cai et al.,
2024). To this end, we prompt these models to
answer the tasks from the dataset discussed above
in the multiple-choice setup.

4 Experiments and Results

RQ1: To what extent do idea density and mental
state verb density correlate with LLM perfor-
mance on mental state reasoning? We first ex-
amine performance across the six ToM categories
shown in Fig. 1, revealing a consistent human ad-
vantage across all categories. To investigate the
relationship between linguistic features and suc-
cess on mental state reasoning tasks, we analyze
the correlation between performance on ToMBench
and two textual features: idea density and MSVD.
We compute the Pearson correlation between these
features and task performance across both the hu-
man baseline and the suite of evaluated LLMs. The
human performance data is derived from the orig-
inal study involving 20 graduate students (Chen
et al., 2024). Our analysis reveals a stark, opposing
relationship between these linguistic features and
performance for humans versus LLMs. In Fig. 2,
we observe a negative correlation for human per-
formance with both ID (r = −0.536) and MSVD
(r = −0.215). This indicates that as texts become
more informationally dense or contain more ex-
plicit mental state verbs, human performance on
the ToM tasks tends to decrease. In direct contrast,
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Figure 3: Pearson correlation between MSVD and task
performance for humans and LLMs. A negative correla-
tion is observed for humans (r = −0.215), while most
models exhibit a positive correlation.
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Figure 4: LLMs performance across perspectival com-
plexity categories.

LLMs consistently show a positive correlation with
these same features. The correlation between per-
formance and ID is positive across most models,
ranging to a moderate r = 0.464. A similar posi-
tive trend is observed for MSVD (see Fig. 3). This
suggests that, unlike humans, LLM performance
and comprehension are enhanced through increased
linguistic scaffolding.

RQ2: How do linguistic markers of perspecti-
val complexity influence model performance on
ToM tasks To investigate the impact of narrative
structure, we evaluated LLM accuracy across four
levels of perspectival complexity (Fig. 4). Our re-
sults reveal a “complexity paradox:” contrary to
expectations, models achieve peak performance
(74-95% accuracy) on high complexity stories with
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Figure 5: A Jaccard similarity matrix illustrating the
degree of overlap in errors between model pairs, where
higher values signify more similar failure modes.

nested mental states, while struggling most with the
low complexity category (51-77%). This suggests
that explicitly complex narrative structures may
provide a form of linguistic scaffolding that aids
model reasoning more than the subtler challenges
of medium-complexity texts.

RQ3: What systematic failures emerge across
different model architectures? To identify sys-
tematic failures across architectures, we computed
the Jaccard similarity of incorrect responses for
all model pairs, as shown in Fig. 5. The results
reveal a clear cluster of smaller models (Mistral
7B, Phi-3 Mini, OLMo 13B) that exhibit high error
overlap (J ≈ 0.5 − 0.55), suggesting they share
a common failure mode. In contrast, the largest
models show more idiosyncratic errors, indicating
they may overcome some specific systematic chal-
lenges. Moreover, we identified 245 stories (8.6%),
where all models fail universally, concentrated in
low (9.7%) and medium (6.9%) complexity levels.
These systematic failures occur despite the pres-
ence of linguistic markers: stories with contrast
markers, knowledge verbs, or moderate MSVD
still cause universal failure when they require rea-
soning beyond surface cues. This pattern reinforces
our finding that LLMs rely on explicit linguistic
scaffolding: they fail systematically when answer-
ing correctly requires inference rather than pattern-
matching on mental state markers.

This aligns with Ross and Pavlick (2019),
who showed NLI models like BERT fail on non-
veridical verbs (e.g., “think”, “believe” ) due to
pattern-matching biases rather than true inference.

In our universal failure cases, similar non-veridical
mental state verbs dominate low-complexity
stories requiring implicit reasoning, while veridical
“knowledge verbs” provide insufficient scaffolding,
extending their veridicality bias to ToM contexts.

5 Related Work

Early ToM evaluations revealed superficial success
on classic false-belief tasks, such as the Sally-Anne
test (van Duijn et al., 2023), prompting more rig-
orous benchmarks. Recent work like ToMBench
(Chen et al., 2024) and EPITOME (Jones et al.,
2024) benchmarks show a recurring pattern of mod-
els handling basic belief-tracking but failing on
tasks requiring pragmatic or social inference.

This weakness in compositional reasoning, also
probed by procedurally generated narratives in
ExploreToM (Sclar et al., 2025), suggests models
exploit statistical shortcuts rather than genuinely
tracking mental states. Other work reveals failures
in more fundamental capabilities, such as the
Two Word Test study (Riccardi and Desai, 2023).
A common finding across these methods is that
models often succeed by exploiting statistical
patterns rather than by genuinely tracking mental
states. However, prior work has not systematically
distinguished between tasks with low and high
intentionality (i.e., simple belief attribution versus
complex deception) or investigated how specific
linguistic features influence LLM performance on
ToM tasks. Our work aims to address these gaps.

6 Conclusions

We analyzed linguistic features in LLM perfor-
mance on ToM tasks, revealing surprising patterns:
(1) LLMs show positive correlations with idea den-
sity and MSVD, opposite to humans’ negative cor-
relations, (2) Models paradoxically excel on high
complexity stories (74-95%) while struggling with
low complexity (51-77%), and (3) All models fail
systematically when implicit reasoning is required.
These patterns suggest LLMs may leverage explicit
linguistic markers rather than genuine mental state
reasoning, though our correlational analysis cannot
prove causation. The complexity paradox, where
explicit mental state scaffolding aids performance,
warrants further causal investigation to understand
whether models truly rely on surface cues or de-
velop deeper representations.
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7 Limitations

While this study provides novel insights into the
relationship between linguistic features and LLM
performance on ToM tasks, we acknowledge sev-
eral limitations that frame avenues for future re-
search. First, our primary metrics, Idea Density and
MSVD, are by design surface-level proxies for in-
formational and perspectival complexity. While ef-
fective for establishing high-level correlation, these
features do not capture the fine-grained syntac-
tic and semantic structures that underpin inten-
sional reasoning. Future work should augment
this analysis with more structurally aware features.
Second, our four-level classification of perspecti-
val complexity may simplify a multifaceted phe-
nomenon into discrete categories. However, this
operationalization was necessary to analyze per-
formance trends. A more fine-grained, continuous
complexity score could enable a more nuanced re-
gression analysis in future studies. Finally, our con-
clusion that LLMs rely on “linguistic scaffolding”
and heuristics is drawn from the observed perfor-
mance patterns and correlations. This study demon-
strates that models behave in a way consistent with
heuristic-based processing, but does not isolate the
precise nature of these heuristics. A crucial next
step, is to move from correlation to causation.
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ported by ETH AI Center postdoctoral fellowships.

References
Marah I Abdin, Sam Ade Jacobs, Ammar Ahmad

Awan, Jyoti Aneja, Ahmed Awadallah, Hany Has-
san Awadalla, Nguyen Bach, Amit Bahree, Arash
Bakhtiari, Harkirat Behl, Alon Benhaim, Misha
Bilenko, Johan Bjorck, Sébastien Bubeck, Martin
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Story: Xiao Ming receives a bicycle on his birthday.

Ability: Emotion

Question-1: What is Xiao Ming’s emotion?
(A) Embarrassed (B) Happy (C) Disappointed (D) Regretful

Ability: Belief

Question-2: He should be very happy, but he is very disappointed, why?
(A) Xiao Ming worries that riding a bicycle affects his studies. (B) Xiao Ming fears that riding
a bicycle to school makes his classmates laugh at him. (C) Xiao Ming thinks the color of the
bicycle does not match his clothes. (D) Xiao Ming hopes for a computer as a gift, not a
bicycle.
Ability: Emotion

Question-3: Xiao Ming is having a birthday, he hopes for a computer or a new game as a
birthday gift, on his birthday he receives a bicycle. What is Xiao Ming’s emotion at this time?
(A) Embarrassed (B) Happy (C) Disappointed (D) Regretful
Story: Almost every letter to Laura Company contains a check. Today, Laura receives 5 letters.
Laura tells you on the phone “I look at 3 out of 5 letters. There are checks in 2 of the letters.”
Ability: Knowledge

Question-1: Before Laura calls you, how many of these 5 letters do you think contain checks?
(A) 0 (B) 1 (C) 2 (D) 4

Question-2: After Laura calls you, how many of these 5 letters do you think contain checks?
(A) 0 (B) 1 (C) 2 (D) 4

Table 1: Example of the theory of mind questions from the ToMBench.

A Additional Data Details

In Tab. 1, we show a few examples from the ToMBench that we use for the analysis.
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Abstract
This study examines socially-conditioned vari-
ation within semantic domains like kinship and
weather using thirteen Indian cities as a case-
study. Using bilingual social media data, we
infer six semantic domains from corpora repre-
senting individual cities with a lexicon includ-
ing terms from English, Hindi and Transliter-
ated Hindi. The process of inferring semantic
domains uses character-based embeddings to
retrieve nearest neighbors and Jaccard similar-
ity to operationalize the edge weights between
lexical items within each domain. These rep-
resentations reveal distinct regional variation
across all six domains. We then examine the
relationship between variation in semantic do-
mains and external social factors such as liter-
acy rates and local demographics. The results
show that semantic domains exhibit systematic
influences from sociolinguistic factors, a find-
ing that has significant implications for the idea
that semantic domains can be studied as abstrac-
tions distinct from specific speech communities.

1 Introduction

India is a country with many diverse cultures and
languages. This creates interactions between lan-
guages, particularly Hindi and English in the North-
ern regions of India and between Hindi and other
languages elsewhere. This paper asks whether such
longstanding linguistic and cultural contact changes
the character of semantic domains present within
thirteen Indian cities. Much previous work views
semantic domains as language-specific, so that a
language like Hindi has a single semantic map for a
domain like kinship. The contribution of this paper
is to show that social factors like language contact
have a systematic influence on the structure of se-
mantic domains. India provides an ideal case-study
because of these longstanding contact situations.

We focus on six semantic domains: weather, kin-
ship, emotion, animals, professions and temporal

units. These domains were chosen because of their
known variation in lexical granularity between En-
glish and Hindi. For example, Hindi distinguishes
between paternal and maternal grandfathers lexi-
cally, whereas English uses the same term for both
relationships. Additional modifiers (paternal, ma-
ternal) are used in English when necessary. In con-
trast, Hindi uses the same term for yesterday and
tomorrow, disambiguating based on verb tense and
context; English uses distinct words for these two
concepts. These examples show how languages
can encode conceptual distinctions with differing
levels of granularity. A speaker’s lexical choices
are shaped by grammatical and cultural systems
enforced in the lexicon. Our question here is the de-
gree to which linguistic and cultural contact create
variation within semantic domains within the same
languages.

To investigate this question, we analyze data from
Indian social media. This kind of spontaneous,
everyday language use provides insight into how
different populations lexicalize these six semantic
domains. Social media offers a large-scale, nat-
uralistic corpus to capture regional variation. In
particular, it allows us to ask whether the same se-
mantic concepts are realized with consistent lexical
patterns across cities or whether these patterns di-
verge due to differences in language contact and
social environment. We develop a corpus of over
50 million samples containing a mix of English and
Hindi usage across thirteen Indian cities as a means
of observing semantic domains across regional pop-
ulations.

Given population-specific corpora, we need to
infer a representation of these semantic domains in
order to compare them across populations. We take
a data-driven approach based on non-contextual
character embeddings from fastText, learning a sep-
arate model from each city-specific corpus. These
embeddings can be seen as approximations of con-
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ceptual structure in which lexical items from the
same domain form a neighborhood within the em-
bedding space. This approach to operationalizing
a semantic domain as similarities within an em-
bedding space aligns with an opposition theory ap-
proach to signs (de Saussure, [1916] 1983). This
approach posits that the value of a concept is deter-
mined by its contrasting relations within the system
of language, particularly how it contrasts with other
similar terms. Therefore, embeddings offer a way
to operationalize the structure of these semantic
domains which can then be used to measure the
degree to which these domains vary across speech
communities.

Importantly, many concepts in these six domains
exhibit co-lexification: there is not a one-to-one
mapping between form and meaning. For exam-
ple, the cases of paternal/maternal grandfather (in
English) and of yesterday/tomorrow (in Hindi) are
instances in which one language co-lexifies what
the other splits into two separate items. In our bilin-
gual corpus data, however, a speaker is not limited
to the co-lexification patterns of either language.
We hypothesize that this provides additional flexi-
bility to the mapping between form and meaning
within lexical items, allowing them to vary system-
atically across populations due to sociolinguistic
conditions. If this is the case, we would expect that
the operationalizations of these semantic domains,
created using an embedding space, will also differ
across regions in predictable ways.

This paper makes three main contributions: First,
we show that these semantic domains, as inferred
from corpora, vary significantly across Indian cities
in way that corresponds with different levels of over-
all language contact. Second, we show that these
variations are relatively stable across all six domains
and are not artifacts within only a single domain.
And, third, we show that these variations are not
simply random but are significantly related to so-
cial and demographic factors. Taken together, these
findings suggest that semantic domains are not a
single entity shared by all speakers of a language
but rather systems which are influenced by social
factors like differing degrees of language contact.

After reviewing related work in semantic do-
mains and social factors in Section 2, we present a
dataset derived from Twitter/X posts from various
Indian cities in Section 3. This dataset contains
samples in English, Hindi and Transliterated Hindi.
Our method for operationalizing semantic domains

using an embedding space is detailed in Section 4,
along with the social factors used for later analy-
sis. The analysis of variation in semantic domains
across cities is presented in Section 5, with a special
focus on the relationship between these variations
and external social factors like language contact.
We end, in Section 6, by discussing the larger im-
plications of this work on the interface between so-
ciolinguistics and computational semantics. While
previous computational work has abstracted away
from sociolinguistic factors in the representation of
semantic domains, the findings in this paper show
that such idealized representations will not capture
variations within the speech community.

2 Previous Work

2.1 Computational Approaches to Semantic
Analysis

Word embeddings have become a widely used com-
putational method for analyzing contextual relation-
ships between words used in corpus data. Mikolov
et al. (2013) suggests that embeddings allow seman-
tic similarity to be mapped and quantified through
vector proximity in embedding high dimensional
spaces. This is further demonstrated studies such as
in Jatnika et al. (2019) and Jin and Schuler (2015)
which confirm that words which share similar con-
texts tend to cluster together in embedding spaces.

As explained by Lai et al. (2015), these models
generate word vectors based on surrounding con-
text, allowing semantic relatedness to be inferred
by vector proximity. This aligns with opposition
theory (de Saussure, [1916] 1983) as if a vector
gets its value by the opposition vectors, semantic
relatedness can be seen by how close the vectors
are. So one would wonder how semantic domains
can be seen in embedding spaces and how variant
this would be within the domains?

Recent work has focused on applying this frame-
work to study semantic domains. Grand et al.
(2018) used embedding spaces to project out seman-
tic domains (e.g. animals, weather, professions),
showing how humans mentally organize semantic
fields through patterns of usage. However, Anto-
niak and Mimno (2018) cautions the usage of such
frameworks as these results may be sensitive to cor-
pus size and sampling variability which raises con-
cerns about how reproducible and conclusive the re-
sults can be. They suggest bootstrapping over mul-
tiple samples which is used to check stability of the
model in this paper. Similarly, Burdick et al. (2021)

308



report variation in embedding stability across lan-
guages, particularly in morphologically rich con-
texts - an insight which is important to keep in mind
while looking at India’s multilingual landscape.

fastText, developed by Bojanowski et al. (2017)
represents a significant advancement in creating em-
bedding spaces for words in a corpus. The model
has the ability to capture sub-word information
which would help in analyzing morphologically
rich languages like Hindi. Studies such as Rana
et al. (2024) and Thavareesan and Mahesan (2020)
have used fastText embeddings to analyze seman-
tic similarity, confirming the model’s strength in
multilingual environments.

Building on these methods, this study extends
prior work by analyzing semantic domain variation
across cities in India. It uses fastText embeddings to
map word usage onto high dimensional embedding
spaces where each lexical item is represented as a
vector.

Following Grand et al. (2018)’s framework, we
construct semantic domain networks using embed-
dings. We use Jaccard similarity between k nearest
neighbors of the lexical items to detect semantic
similarity as supported by Gonen et al. (2020) as a
stable and interpretable method for detecting seman-
tic relationships. The study innovates by using these
similarities to create a semantic domain structure
to enable a more nuanced analysis of cross-regional
variation. This use of embedding space to show
dialectal and regional differences is seen in Dunn
(2023), which demonstrates that the stability of em-
beddings vary significantly across geographically
distinct corpora. This drives our city wise analysis
of domain structures, allowing us to visualize how
lexical items are used within domains and how this
relations can be similar or different across regions.

2.2 Social Factors

The study of language contact has been studied
through looking at the processes of borrowing,
code-switching, and interference. Current research
looks into how the intermingling of languages in a
multilingual society has led to more complex lan-
guage contact. With more speakers becoming mul-
tilingual, choosing a specific language for commu-
nication can also be linked to social identity (Tajfel,
1979). Therefore, in this study, a person’s choice be-
tween using English, Hindi or Transliterated Hindi
is not only limited to languages they know but can
also extend to this theory of which social group they

prefer to belong to. Factors which could contribute
to this social identity could be social factors such
as education, urbanization and gender. This study
explicitly considers several social factors and how
it impacts language use.

Urbanization: Urban areas are usually more lin-
guistically diverse and have a higher amount of
language contact. This is due to higher migration
into the cities which leads to more contact between
different communities. Furthermore, the more ur-
ban the city, the higher the access of to multilingual
education and connectivity to the internet and mul-
tilingual media. The percentage of urban popula-
tion is therefore a relevant factor in understanding
the prevalence of language mixing on social me-
dia. Language contact has actually also been used
to study urban cities (Chríost and Thomas, 2008;
Peukert, 2013).

Literacy and Education: Higher literacy rates
usually suggest an increased access to and engage-
ment with online platforms. Furthermore, educa-
tion level, especially in India since English is not
everyone’s native language, influences proficiency
in English, impacting it’s degree of use in online
communication (Bhatt, 2008).

Regional Language Influence: India’s diverse
linguistic landscape could influence semantic vari-
ation in online communication. Khubchandani
(1983) emphasizes the role of interference and code
switching in multilingual communication. There-
fore, we include number of Hindi speakers, whether
Hindi is the 1st/2nd or 3rd language of any speakers,
whether English is the 1st/2nd or 3rd language of
any speakers and whether Hindi is the state’s offi-
cial language or not to our analysis. We do focus
on these metrics as we are looking into English and
Hindi data and our census data (2011) has limita-
tions.

Gender and Language: Gender has a role to play
in how language is used and changes over time
are also driven by gender (Gordon, 2003; Eck-
ert and McConnell-Ginet, 2003, 2013). Therefore,
this study considers the gender distribution among
Hindi speakers, sex ratio of the city and literacy
rate by gender as important factors to understand
the language use on social media.

3 Data

This study uses a large scale social media cor-
pus containing 49,801,176 English tweets and
5,545,724 Hindi tweets, all originating from India.
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It is important to note that the English corpus con-
tains a huge amount of Transliterated Hindi data
which is often used by people in the region espe-
cially for online communication. To analyze the
data, we combined the two corpora into a single em-
bedding space to capture semantic representations
across languages. The resulting corpus contains
approximately 55 million documents.

3.1 Cities
Each tweet in the corpus includes geo-location
metadata, which we will use to study regional vari-
ation in lexical semantics. However, the full corpus
contains data from 100 cities. To ensure we rep-
resent different regions of India and yet maintain
complexity, we selected 13 cities with the highest
tweet volume. Our thirteen cities are spread across
India as shown in Figure 1. It is important to note
that we also made sure that we chose cities with
a similar level of connectivity with the internet in
order to ensure uniformity. Table 1 shows the doc-
ument count and regional classification for each of
the selected cities.

Figure 1: Map of India with states marked for each of
the thirteen chosen cities.

3.2 Semantic Domains
We analyze six semantic domains: animals, kinship,
weather, professions, emotions and temporal units.
These domains were selected based on their cross

City Location Count
Bengaluru South West 2613502
Mumbai Western Peninsular 2269945
Delhi North 2191038
Chennai South East 1367075
Hyderabad South 1315379
Kolkata East 1297674
Thane Western Peninsular 1126080
Pune Western Peninsular 1020440
Srinagar North 989439
Chandigarh North 967845
Jaipur North West 663712
Patna North East 559755
Lucknow North 545069

Table 1: Count of documents from each of the thirteen
chosen cities.

linguistic variation and sufficient lexical coverage in
the corpus due to high usage in day-to-day life. All
domains include Hindi, English and Transliterated
Hindi lexical terms. The appendix mentions the
whole list of lexical items used for this study.

Table 2 shows the number of unique lexical items
used per semantic domain. We ensured relatively
balanced lexicons across domains to support a more
robust comparison of semantic structures.

Domain Number of Data Points
Kinship 113
Animals 282
Time 158

Professions 191
Weather 133
Emotions 138

Table 2: Number of unique lexical items for each seman-
tic domain.

3.2.1 Kinship

Kinship is a domain in which the Hindi system is
significantly more granular than the English system.
Key difference include different terms for maternal
vs. paternal relatives (e.g. grandparents, aunts, un-
cles), and specific terms for paternal uncles based
on their age relative to the father. Similarly, grand-
children, nieces and nephews are also distinguished
lexically based on lineage.

310



3.2.2 Animals
In the animal domain, Hindi often differentiates
between male and female animals lexically, more
extensively than in English. For example, Hindi
users refer to a male cat as ’billa’ (transliterated)
and a female cat as ’billi’ (transliterated) whereas
English users typically use a gender neutral term,
”cat”.

3.3 Temporal Terms
This domain includes terms used for telling time
such as days of the week, months of the year and
terms to refer to days such as today, yesterday and to-
morrow. A few notable distinctions between Hindi
and English include:

1. ’kal’ is used for both tomorrow and yesterday
in Hindi.

2. ’parso’ (transliterated) is used for both day
after tomorrow and day before yesterday in
Hindi.

3. For time, Hindi has specific words for 1:30
and 2:30 which do not include numerals and
specific words for quarter past, half past and
quarter to.

The remaining domains offer supplementary data
for regional comparison, despite showing less lexi-
cal variation.

4 Methodology

The basic approach in this paper is to infer a repre-
sentation of six semantic domains from population-
specific corpora representing different cities in In-
dia. Once we have inferred these semantic domains,
we compare them to one another in order to quantify
variation and then use regression models to under-
stand the relationship between these variations and
external factors like language contact.

4.1 Inferring Semantic Domains
Because we are interested in the usage of a bilin-
gual speech community, we combine both the Hindi
(in any orthography) and the English data together.
Our baseline dataset contains data from over one
hundred Indian cities; this is used to infer average
or non-population-specific semantic domains. Our
test datasets, on the other hand, are drawn from
thirteen individual cities. The idea is to compare
these city-specific domains to the average domain

as a means of quantifying the amount of semantic
variation within these domains.

Given these corpora (the baseline corpus and
the thirteen city-specific corpora), we then learn
character-based embeddings using fastText in order
to represent general semantic relationships between
lexical items. We do not use pre-trained LLMs for
creating these embeddings spaces because there is
not sufficient data to do so while representing only
city-level populations. Relying on models trained
on outside data would risk contaminating the city-
level semantic domains with information derived
from the broader population.

At this stage we have distinct embedding spaces
for each city-level population and for the country as
a whole. The next task is to create maps or networks
representing each of the six semantic domains using
this embedding space. First, we manually curate
the lexical items for each domain, drawing from
both English and Hindi. These terms are found
in Appendix A. For example, the kinship domain
includes both English terms like grandmother and
aunt as well as Hindi terms like parivaar andmausa.
We create a network out of this domain-specific vo-
cabulary using Jaccard similarity: each lexical item
is a node in the network and the Jaccard similarity
quantifies the edge weights between nodes. For in-
stance, we would expect that grandfather is closer
to grandmother than it is to niece. Jaccard simi-
larity in this context is calculated by using cosine
similarity to retrieve the n nearest neighbors for
each word (here, n = 1000). High set similarity is
then reflecting the fact that two words are located
in the same neighborhood within the domain.

From a Saussurian perspective (de Saussure,
[1916] 1983), the meaning and value of each word
can be taken from the relationships within this
graph. In other words, the meaning of grandfather
is derived purely from its relationships with other
items in the same kinship domain. These domains
are then jointly defined by (i) using prior knowledge
to select the relevant lexical items and (ii) using an
embedding space to estimate edge weights.

To summarize, then, we operationalize semantic
domains as networks by, first, learning a character-
based embedding from each city-specific corpus
and, second, using nearest neighbors in this em-
bedding space to calculate the distance between
nodes, where a node is a domain-specific lexical
item. One challenge with character-based embed-
dings is that they can exhibit instability, reaching
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different neighborhoods across multiple random ini-
tializations. We thus conduct a stability analysis
to ensure that these inferred networks are reliable
representations of each domain.

To test robustness, we re-ran the full pipeline
for each city and each semantic domain ten times
taking different sub samples of the data. Across all
runs, the models consistently produced the highly
similar network maps, with only minimal variation.
This indicates that the inferred networks are stable.

4.2 Comparing Cities

Once we attained the Jaccard similarity between
lexicon items for each domain for each city, we
compared the similarity matrix between cities by
calculating the mean square difference. This gave
us a quantifiable difference between the structures,
making it easier to group cities as being similar
or different from each other. This resulted in a
matrix which contained the mean square difference
between the cities. We took the correlation of this
matrix and then compared this between domains
to see whether cities which have similar domain
structures for one domain have similarity in lexicons
across domains or not.

4.3 Social Features

After getting a matrix of similarities between cities
across domains, we look at social features which
could cause certain cities to have similar structures.
Social features included the percentage of English
(as a 1st, 2nd or 3rd language) and Hindi (as a 1st,
2nd or 3rd language as well as just as the mother
tongue) speakers in the city, literacy rates and per-
centage of urban area/population. For the num-
ber of Hindi speakers and literary rates, we further
got gendered data. This data is extracted from the
Census of India (2011) which was published in
2018 (where city data is not available state data was
used). Linear regression was conducted to see how
these factors correlated to similarities/differences
between the cities and the national average semantic
structure.

5 Analysis

Figure 2 shows us the average correlation matrix
for the mean square differences in the mappings
between cities for our six domains. Here i is the
taken as the national average. A correlation close
to 1 shows high positive correlation shown by dark
red. This signifies that the two cities had similar

mean square differences for that domain suggesting
a similar structure. A correlation close to -1 shows
high negative correlation between the cities shown
by dark blue. This shows that the cities have very
different structures as their mean square differences
compared to other cities in our matrix are not very
similar and are quite contrasting. A value close to
0 suggests that there is no correlation between the
cities. We want to observe whether there are any
significant differences in the structure of semantic
domains as operationalized. This would be seen if
our correlation matrix has a range of values from -1
to 1 as this would suggest that each city has some
difference in structure. However, if we see the same
very extreme values that would suggest that all cities
are correlated meaning that all structures look the
same (uniformity in semantic structures). On the
other hand, if we see no correlation (values just
ranging near 0), that would suggest that there is no
commonality in any of the structures and all cities
have a very different way to portray the lexicon
in the embedding space. We decided to average
out and create one matrix for our analysis. This
is because the matrices for each of the domains
had similar values. These matrices can be seen in
appendix.

5.1 Across Domains
Across domains, we see the following clusters:

1. Bengaluru, Hyderabad, Kolkata, Pune and
Thane

2. Delhi, Jaipur, Lucknow and Patna

3. Chennai and Srinagar

4. Chandigarh and Mumbai

5. Mumbai and Thane

Figure 3 shows these clusters. It is important to note
that the map marks the states instead of the cities to
show neighboring states in an easier manner. We
also see a pattern of Chennai having the most cor-
related structures to the national average and Pune
having the least correlated structures. Our analy-
sis shows that the domain structure changes across
regions. This could be due to language contact
with other languages which occurs in those states
and also bleeds to neighboring states. Overall, this
suggests that there is a meaningful difference in
the structure of different cities and this difference is
seen uniformly across domains as our clusters rarely
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Figure 2: Average Correlation Matrix showing similarities and differences between cities across all domains. Here a
value close to -1 suggests negative correlation between those cities (very different mappings) and a value close to +1
suggests positive correlation between those cities (very similar mappings). Here i refers to the national average.

Figure 3: Groupings of positive correlation across do-
mains on the Indian map. Here different color suggests
that they have different semantic mappings and same
color suggests that they have very similar semantic map-
pings

change in our analysis of the six domains. This
suggests that geographic distance between cities
impacts semantic representations.

5.2 Social Factors
We performed linear regression to examine whether
a city’s deviation from the national average in se-
mantic structure could be explained by social fac-
tors. Prior to regression, all social variables were
normalized to ensure comparability across scales,
especially between large values (e.g. population)
and percentage-based features (e.g. literacy rate).
Across our domains several social features consis-
tently contributed to predicting semantic similar-
ity/conformity to national average in our linear re-
gression model. These features include:

• Literacy Rate (Overall): Consistently the
strongest positive predictor across all domains.
Higher overall literacy in the city is strongly
associated with greater semantic conformity
to the national average.

• Literacy Rate (Male and Female): When
overall literacy is excluded, male and female
literacy show large but opposing effects - male
literacy is strongly positive while female liter-
acy is strongly negative. This suggests male
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Figure 4: Social predictors of semantic conformity to the national average across domains. Positive values indicate
that an increase in the feature contributes to semantic similarity with the national average.

literacy reinforces conformity, while higher fe-
male literacy correlates with divergence, con-
sistent with the idea that women may innovate
away from norms. The opposing effects also
underscore multicollinearity with overall liter-
acy.

• Male Hindi Speakers: Strong and consis-
tent positive predictor - cities with more male
Hindi speakers show greater semantic similar-
ity to national patterns.

• Female Hindi Speakers: Strong negative pre-
dictor - possibly indicating gendered variation
in language use and exposure that diverges
from national norms.

• Percentage of Hindi Speakers: A clear pos-
itive influence - more Hindi presence overall
contributes to semantic conformity.

• State and City Population: Population ef-
fects are domain -specific. Larger cities gen-
erally show a positive effect, suggesting that
urban centers mirror national semantic pat-
terns. By contrast, state population often has
a negative effect in domains such as Kinship
and Professions, likely reflecting the greater
rural urban diversity within populous states.
Thus, while cities may exert a homogenizing

influence, states capture broader variation that
diverges from national norms.

• 1st Language as Hindi: Moderate negative
effect - cities with Hindi as a first-language are
somewhat less similar to the national average.

• English (1st/2nd/3rd Language): Mild pos-
itive correlation - increased multilingualism
including English is weakly associated with
conformity.

These results suggest that social variables - partic-
ularly literacy, language exposure, and city/state
population size - significantly shape how closely
a city’s semantic patterns align with the national
average. The gendered contrast between male and
female Hindi speakers and literacy rates, in particu-
lar, reveals complex sociolinguistic dynamics and
do agree with the idea that woman diverge from
norms and hence could be the drivers for language
change and regional language usage.

6 Conclusion

This study investigated how the mapping between
concepts and lexical items within specific semantic
domains varies across geographical regions within
India. Our analysis revealed that semantic map-
pings do vary across regions, offering insight into
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language contact and multilingual variation in on-
line communication. It showed consistent clusters
of cities which had similar semantic structures. This
suggests that geographic proximity influences vari-
ation in these representations. These clusters show
that semantic similarity is influenced by spatial and
social features. Notably, Chennai, despite not being
Hindi-dominant, showed the highest similarity to
the national average, while Pune showed the least,
indicating that the national semantic norm reflects
more than just northern, Hindi-speaking patterns.

The linear regression model showed that social
features correlate closely with semantic conformity
of a domain structure to the national average.

1. Literacy rates and Number of Hindi speak-
ers both showed gendered divergence. High
male rates correlated with a strong positive
effect on semantic conformity, while female
rates shows a strong negative effect. These
opposing effects suggest distinct linguistic net-
works across gendered populations. Further-
more, it suggests that male population con-
forms to national average whereas female pop-
ulation might be driving diverse language
change.

2. State and city population effects diverge
across domains: City population generally
shows a mild positive effect on semantic con-
formity in most domains (e.g., Kinship, Time),
suggesting that larger urban centers may trend
toward standardized usage. In contrast, state
population shows a more inconsistent or even
negative effect in domains like Kinship and
Professions, indicating that broader regional
demographics do not always align with na-
tional patterns and reflect greater internal lin-
guistic diversity.

Overall, this study contributes to our understanding
of how language contact and social features shape
semantic domain structure and lexical semantics
in multilingual online spaces. Our methodology -
creating semantic networks from embedding spaces
and enriching them with social predictors - offers
a novel framework for studying semantic variation
especially in multilingual settings. By offering a
structured approach to examining how semantic
variation aligns with regional and social character-
istics in multilingual settings, this study can inform
more personalized language technologies and edu-
cational resources.
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A Appendix

A.1 Lexicon
A.1.1 Kinship Terms
English: grandmother, grandfather, aunt, uncle,
mother, father, sister, brother, niece, nephew, daugh-
ter, son, granddaughter, grandson, cousin, husband,
wife, father-in-law, mother-in-law, brother-in-law,
sister-in-law, children, brother-in-law’s wife, son-
in-law, daughter-in-law

Transliterated Hindi: parivaar, nani, nana, dadi,
masi, mausa, mummy, pita, papa, bua, chacha,
bhua, tau, tauji, behen, bhai, didi, bhaiya, bhaanji,

bhaanja, bhajiti, bhatija, beti, beta, naatin, naati,
pota, poti, pati, patni, sasur, saas, devar, nanad, bac-
che, jeeja, devrani, saala, daamaad, bahu

Hindi: नानी, नाना, दादी, दादा, मासी, मौसी, मामा,
मम्मी, माँ, िपता, पापा, बुआ, चाचा, ताऊ, बडे़ पापा,

बहन, भाई, दीदी, भयैा, भांजी, भांजा, भतीजी, भतीजा,

बेटी, पुत्री, बेटा, पुत्र, नितनी, नाितन, नाती, पोती,

पोता, पित, पत्नी, ससुर, सास, देवर, ननद, बच्चे, जीजा,

देवरानी, साला, दामाद, बहू

A.1.2 Animal Terms
English: Hyena, Dove, goat, Snail, monkey,
Mosquito, Crocodile, Lizard, Earthworm, camel,
Tortoise, Myna, Turtle, Fish, Caterpillar, Bugs,
Birds, Deer, Leopard, Lioness, Sheep, Goose, Pig,
Wolf, Seahorse, Bat, mouse, Insect, Bear, Panther,
Sealion, Fox, Donkey, Spider, Housefly, elephant,
Honeybee, Butterfly, Snake, Gander, Cuckoo, Mon-
goose, Buffalo, Grasshopper, Hen, Lion, Animal,
Aquatic, Kite, Weaverbird, Rabbit, Duck, Alligator,
Woodpecker, Chameleon, Squirrel, Eagle, Octopus,
Cricket, Pet, Guinea pig, Cow, Giraffe, Tiger, Ti-
gress, Pigeon, Prawns, Whale, Dolphin, dog, Horse,
Bird, Shark, Hawk, Parrot, Insects, Hippopota-
mus, Owl, cat, Jellyfish, Oyster, Mammals, Vulture,
Cockroach, Ant, Frog, Crow, Rooster, Wild

Transliterated Hindi: tidda, lomdi, chipakali,
madhumakkhii, jiraaf, shernii, hiran, sher, ghong-
haa, totaa, safed kabuuTar, kiida, bhaalu, mend-
hak, gae, chidiyaa, suar, bakri, hathinii, saanp, chu-
uhaa, haangar, ashtabahu, kauvaa, battakh, murgii,
chuhiya, lakadbagghaa, baaz, jhiingur, gini pig, titli,
bhed, billi, kabuuTar, paaltoo, bandariya, bakraa,
jeliifish, ullu, jhiinga machhli, gauraiyaa, tilaccha-
ttaa, vhel, jalsinh, samudri ghodaa, oont, makri,
girgit, kharagosh, oontnii, bhediyaa, siip, giddh,
daryaai ghodaa, haathi

Hindi: घोघंा, भेड़, पालतू, कीड़ा, हाथी, कछुआ, ज-ं

गली, साँप, मुर्ग़ा, ऊँटनी, लोमड़ी, मक्खी, िसयार, कंे-

चुआ, ितलचट्टा, घिड़याल, गधा, चुिहया, बदंिरया, ह-ं

िसनी, मधुमक्खी, ख़रगोश, घोड़ा, बया, बकरी, िगदध्,

िबल्ली, कीडे़, बाघ, भालू, जेलीिफ़श, बदंर, िततली, ऊँट,

मकड़ी, िगरिगट, बकरा, झीगंा मछली, व्हेल, कुत्ता, भे-

िड़या, हाँगर, चील, चूहा, मनैा, तेदंआु, बत्तख़, गौरयैा,

समुदर्ी घोड़ा, भैसं, शेरनी, िबल्ला, गाय, मेढंक, मछली,

िगनी िपग, चींटी, कबूतर, िजराफ़, मच्छर, लकड़बग्घा,

तारामीन, िगलहरी, िछपकली, जानवर, कुितया, मुर्ग़ी,

सुअर, मगरमच्छ, हिथनी, शेर, दिरयाई घोड़ा, जलिसंह,

िचिड़या, िहरण, इल्ली, कठफोड़वा, कौवा, अष्टबाहु, झी-ं

गुर, नेवला, कोयल, तोता, हसं, स्तनधारी, समुदर्ी, सूंस,

बािघन, सफे़द कबूतर, चमगादड़, सीप, बाज, उल्लू, िट-
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ड्डा

A.1.3 Time Terms
English: Second, Minute, Hour, Day, Week,
Month, Year, Sunday, Monday, Tuesday, Wednes-
day, Thursday, Friday, Saturday, January, February,
March, April, May, June, July, August, September,
October, November, December, Morning, After-
noon, Evening, Night, Midnight, Yesterday, Today,
Tomorrow, Day before yesterday, Day after tomor-
row, Now, Later, Earlier, O’clock, Half past, Quar-
ter past, Quarter to, Always, Often, Sometimes,
Rarely, Never, For a short time, For a long time,
Since, Until

Transliterated Hindi: sekand, minat, ghanta,
din, saptah, saptaah, mahina, saal, varsh, ravivar,
somvar, mangalvar, budhvar, guruvaar, shukravar,
shanivar, janavari, pharavari, march, aprail, joon,
julai, agast, sitambar, aktoobar, navambar, disam-
bar, subah, dophar, shaam, raat, aadhi raat, kal, aaj,
kal, parson, abhi, baad mein, pehle, baje, saade,
sava, paune, hamesha, aksar, kabhi-kabhi, shayad
hi kabhi, kabhi nahi, thodi der ke liye, lambe samay
tak, se, tak

Hindi: सेकंड, िमनट, घटंा, िदन, सप्ताह, महीना,

साल, रिववार, सोमवार, मगंलवार, बुधवार, गुरुवार, शु-

क्रवार, शिनवार, जनवरी, फरवरी, मार्च, अप्रलै, मई,

जून, जुलाई, अगस्त, िसतबंर, अक्टूबर, नवंबर, िदसंबर,

सुबह, दोपहर, शाम, रात, आधी रात, कल, आज, कल,

परसों, परसों, अभी, बाद मे,ं पहले, बजे, साढे़, सवा, पौने,

हमेशा, अक्सर, कभी-कभी, शायद ही कभी, कभी नही,ं

थोड़ी देर के िलए, लबें समय तक, से, तक, वर्ष

A.1.4 Weather Terms
English: Sun, Rain, Wind, Snow, Cloud, Weather,
Hot weather, Cool weather, Pleasant weather,
Weather change, Weather forecast, Seasons, Spring,
Winter, Summer, Autumn, Rainy, Temperature, Hot,
Humid, Cold, Moisture, Scorching, Sunshine, Sun-
rise, Sunset, Sky, Cloudy, Rainbow, Drizzle, Storm,
Cyclone, Lightning, Fog, Dew, Snowfall, Hail

Transliterated Hindi: Sooraj, Baarish, Hawaa,
Baraf, Baadal, Mausam, Garam Mausam, Thanda
Mausam, Suhaana Mausam, Mausam Parivartan,
Mausam Purvaanumaan, Rituyen, Vasant Ritu,
Sardi, Thand, Shishir, Sheet Ritu, Grishm Ritu,
Patjhad, Sharad Ritu, Barsaat, Varsha Ritu, He-
mant Ritu, Taapmaan, Paara, Aardrataa, Thandak,
Nami, Chilchilaatii, Dhuup, Suryodaya, Suryaast,
Aasmaan, Aakaash, Boondaabaandi, Phuhaar, Tu-
faan, Chakravaat, Bijli, Kohraa, Os, Barfbari, Ola
Vrishti

Hindi: सूरज, बािरश, हवा, बरफ, बादल, मौसम,

गर्म मौसम, ठंडा मौसम, सुहाना मौसम, मौसम पिरव-

र्तन, मौसम पूर्वानुमान, ऋतुएं, मौसम, वसंत ऋतु, सर्दी,

ठंड, िशिशर, शीत ऋतु, गर्मी, ग्रीष्म ऋतु, पतझड़, शरद्

ऋतु, बरसात, वर्षा ऋतु, हेमतं ऋतु, तापमान, पारा,

गर्मी, उमस, आर्दर्ता, ठंडक, नमी, िचलिचलाती, धूप,

सूर्योदय, सूर्यास्त, आसमान, आकाश, बदली, इदंर्ध-

नुष, बूदंाबांदी, फुहार, तूफ़ान, चक्रवात, िबजली, कोहरा,

ओस, बर्फ़बारी, ओला वृिष्ट

A.1.5 Emotion Terms
English: blissful, brave, careful, cautious, clever,
curious, excited, friendly, glad, good, great, happy,
innocent, interesting, optimistic, pleasant, pleased,
proud, quiet, satisfied, sensible, serious, surprised,
angry, arrogant, awful, bad, bored, crazy, disap-
pointed, exhausted, frightened, sad, guilty, help-
less, hurt, lonely, mad, miserable, nervous, shocked,
sheepish, silly, strange, terrible, upset

Transliterated Hindi: anandmay, bahaadur,
saavadhan, satark, chaalak, utsuk, uttejit, mitra-
vat, prashann, achcha, mahaan, khush, nirdosh,
dilchasp, aashavaadi, sukhad, santusht, garvit,
shaant, samajhdaar, gambhir, haeraan, naaraaj, ab-
himaani, daraavana, bura, uba hua, sanki, niraash,
thaka, bhayabhit, dukhi, doshi, asahaay, aahat,
akela, paagal, abhaaga, ghabaraaya hua, haeran,
sharminda, murkh, anokha, bhayaanak, pareshan

Hindi: आनदंमय, बहादरु, सावधान, सतर्क, चालाक,

उत्सुक, उत्तेिजत, िमत्रवत, प्रसन्न, अच्छा, महान,

खशु, िनर्दोष, िदलचस्प, आशावादी, सुखद, सन्तुष्ट,

गिर्वत, शांत, संतुष्ट, समझदार, गभंीर, हरैान, नाराज,

अिभमानी, डरावना, बुरा, ऊबा हुआ, सनकी, िनराश,

थका, भयभीत, दखुी, दोषी, असहाय, आहत, अकेला,

पागल, अभागा, घबराया हुआ, हरैान, शिर्मदंा, मूर्ख,

अनोखा, भयानक, परशेान

A.1.6 Profession Terms
English: Butcher, Florist, Travel agent, Scientist,
Gardener, Mason, Pilot, Librarian, Model, Shop as-
sistant, Bus driver, Real estate agent, Lawyer, Cook,
Fireman, Poet, Poetess, Soldier, Receptionist, De-
signer, Fire fighter, Fisherman, Waitress, Actress,
Author, Dentist, Shop keeper, Traffic warden, Baker,
Journalist, Judge, Actor, Plumber, Secretary, Vet-
erinary doctor, Farmer, News reader, Craftsman,
Lifeguard, Photographer, Taxi driver, Carpenter,
Optician, Accountant, Teacher, Electrician, Post-
man, Tailor, Painter, Policeman, Engineer, Hair-
dresser, Policewoman, Nurse, Doctor, Mechanic,
Translator, Politician, Lecturer, Waiter, Workers,
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Cleaner, Pharmacist
Transliterated Hindi: Machuaara, Anuvaadak,

Chashma Banane Wala, Phoolwala, Naanbai,
Sachiv, Shramik, Samachar Paadak, Vaastukar,
Sramik, Model, Nalsaaj, Maarjak, Sipaahi, Svaa-
gati, Lekhak, Kavi, Vakil, Aushadhajny, Badai, Baa-
yara, Abhinetri, Yaatra Agent, Abhiyanta, Bas Cha-
lak, Daakiya, Vigyaanik, Sainik, Dukan Sahayak,
Sharir Raksak, Rajnitigy, Rajgir, Viman Chalak,
Granthaagarik, Bhumi Bhavan Abhikarta, Nyaayad-
hish, Chitrkar, Abhineta, Kasaai, Mechanic, Shik-
shak, Dukandar, Shilpkar, Naai, Yaatayaat Nirik-
shak

Hindi: बायरी, किवियत्री, डािकया, पत्रकार,

वकील, मॉडल, अिग्नशामक कर्मचारी, दतं िचिकत्सक,

दकुानदार, नानबाई, भूिम भवन् अिभकर्ता, रसोइया, िब-

जली िमस्त्री, बढ़ई, मार्जक, राजगीर, नलसाज, किव,

ग्रथंागािरक, रूपकार, अिभनेत्री, वजै्ञािनक, मुनीम,

औषधज्ञ, िवमान चालक, बायरा, मकेैिनक, सिचव, द-ु

कान सहायक, स्वागती, यात्रा एजेटं, नाई, अिभनेता, िच-

त्रकार, मछुआरा, माली, िशल्पकार, फूलवाला, लेखक,

समाचार पाठक, नर्स, यातायात िनरीक्षक, फोटोग्राफर,

शरीर रक्षक, अनुवादक, पशु िचिकत्सक, श्रिमक, िक-

सान, वास्तुकार, मिहला िसपाही, दर्जी, टैक्सी चालक,

िशक्षक, अिभयन्ता, कसाई, राजनीितज्ञ, सिैनक, िच-

िकत्सक, बस चालक, चश्मा बनाने वाला, न्यायाधीश,

िसपाही, व्याख्याता

A.1.7 Domain wise Analysis
A.2 Domains

Fig. 5 shows the correlation matrices across the
thirteen cities for all six domains.

A.2.1 Time
Time matrix shows positive correlation between
cities of (taking a cut off of 0.81)

1. Bengaluru, Hyderabad, Kolkata, Pune and
Thane

2. Chandigarh and Mumbai

3. Chennai and Srinagar

4. Delhi, Patna, Lucknow and Jaipur

Mumbai and Thane also have high positive corre-
lation but the other members of those groups do
not. Compared to our average (India), Chennai and
Delhi have high positive correlation and Hyderabad
and Kolkata have high negative correlation.

A.2.2 Weather
Weather matrix shows positive correlation between
cities of (taking a cut off of 0.81)

1. Bengaluru, Hyderabad, Kolkata, Pune and
Thane

2. Chandigarh and Mumbai

3. Delhi, Patna, Lucknow and Jaipur

Again, Mumbai and Thane also have high positive
correlation but the other members of those groups
do not. Chennai has high negative correlation with
(a) and Srinagar has no strong correlations with any
groups. Compared to our average (India), Chen-
nai has high positive correlation and Hyderabad,
Bangalore, Pune and Kolkata have high negative
correlation.

A.2.3 Animals
Animals matrix shows positive correlation between
cities of (taking a cut off of 0.81)

1. Bengaluru and Kolkata

2. Chandigarh, Pune and Thane

3. Patna, Lucknow and Jaipur

Again, Mumbai and Thane also have high positive
correlation but the other members of those groups
do not. Compared to our average (India), Chennai
has high positive correlation and Pune has high
negative correlation.

A.2.4 Kinship
Kinship matrix shows positive correlation between
cities of (taking a cut off of 0.81)

1. Kolkata, Pune and Thane

2. Patna, Lucknow and Jaipur

Again, Mumbai and Thane also have high positive
correlation but the other members of those groups
do not. Compared to our average (India), Chennai
has the highest positive correlation and Pune has
highest negative correlation.

A.2.5 Emotions
Emotions matrix shows positive correlation be-
tween cities of (taking a cut off of 0.81)

1. Bengaluru, Hyderabad, Kolkata, Pune and
Thane

318



Figure 5: Correlation matrices of mean square differences for all domains. Here a value close to -1 suggests negative
correlation between those cities (very different mappings) and a value close to +1 suggests positive correlation
between those cities (very similar mappings)
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2. Chandigarh and Mumbai, Thane

3. Chennai and Srinagar, Delhi

4. Delhi, Jaipur, Lucknow and Patna

Compared to our average (India), Chennai and
Delhi have high positive correlation and group (a)
have high negative correlation.

A.2.6 Professions
Professions matrix shows positive correlation be-
tween cities of (taking a cut off of 0.81 with atleast
two cities of the group)

1. Hyderabad, Kolkata, Pune and Thane

2. Chandigarh, Mumbai and Thane

3. Chennai and Srinagar

4. Delhi, Jaipur, Lucknow and Patna

Bengaluru does not have any high correlation with
other cities. Compared to our average (India), Chen-
nai and Srinagar have high positive correlation and
Pune, Kolkata and Hyderabad have high negative
correlation.
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Abstract
To enable finer-grained linguistic analysis, we
propose a method for the separation of lexical
and grammatical information within contextu-
alized word embeddings. Using CamemBERT
embeddings for French, we apply our method
to 14,472 inflected word forms extracted from
the French Lexical Network (LN-fr), covering
1,468 nouns, 202 adjectives, and 299 verbs in-
flected via 14 distinct grammatical feature val-
ues. Our iterative distillation process alternates
two steps until convergence: (i) estimating lex-
ical or grammatical vectors by averaging the
embeddings of words that share the same lex-
eme or grammatical feature value, and (ii) iso-
lating the complementary component of each
word embedding by subtracting the estimated
vector. To assess the quality of the decompo-
sition, we measure whether the resulting lexi-
cal and grammatical vectors form more com-
pact clusters within their respective groups and
whether their sum better reconstructs the orig-
inal word embeddings. All evaluations rely
on euclidean (L2) distance. The observed im-
provements in both clustering and reconstruc-
tion accuracy demonstrate the effectiveness of
our approach.

1 Introduction

Static word embeddings, such as those generated by
word2vec (Mikolov et al., 2013b,a), assign a single,
fixed vector to each word form based on its general
contextual usage. This approach conflates distinct
meanings of polysemous words or homonyms and
fails to capture morphological compositionality, as
it does not model how word forms may share a
common core lexical meaning or how affixes en-
code grammatical features. For morphologically
rich languages, this entanglement can hinder fine-
grained linguistic analysis. Previous work, such as
Lareau et al. (2015), addressed this issue by propos-
ing a method to decompose static embeddings into
lexical and inflectional components, aiming to ob-
tain semantically purer representations.

Contextualized embeddings from pretrained lan-
guage models such as BERT (Devlin et al., 2019)
produce dynamic, context-sensitive vectors that
implicitly encode a range of linguistic informa-
tion, including morphology and syntax. This has
substantially improved the modeling of polysemy,
homonymy, and morphosyntactic variation com-
pared to static embeddings. However, it remains
unclear how lexical and grammatical features are
represented within these embeddings and whether
they can be meaningfully disentangled. In this pa-
per, we revisit the problem of separating lexical and
grammatical information in word embeddings, fo-
cusing on embeddings produced by CamemBERT
(Martin et al., 2020) for French, a language with a
relatively rich morphology.

This work was originally motivated by a sepa-
rate study where we aimed to measure the semantic
idiomaticity of French idioms. Semantic idiomatic-
ity refers to the extent to which the meaning of
an idiom cannot be inferred from its component
words. While CamemBERT is able to distinguish
free simple lexemes from words within idioms, it
struggles with component words within idioms of
different levels of semantic idiomaticity (Liu and
Lareau, 2024). This suggests that the model cap-
tures idiomaticity at a superficial lexical level, but
is not sensitive to the internal semantic structure of
idioms. We hypothesized that this limitation is due
to the entanglement of multiple types of idiomatic-
ity, not only semantic, but also morphological and
syntactic. In order to isolate purely semantic mean-
ing from grammatical interference, we turned to
the problem of disentangling lexical and grammat-
ical components in contextual embeddings. The
current study develops and evaluates a method for
this task, inspired by the methodology proposed by
Lareau et al. (2015).

We assume that a word embedding can be mod-
eled as the linear combination of two components,
a lexical vector capturing its core lexical meaning,
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and a grammatical vector encoding morphosyn-
tactic information. Therefore, we should be able
to isolate one component by subtracting the other.
Our method relies on two assumptions:

1. All inflected forms of a lexeme share a com-
mon core lexical meaning.

2. All words inflected via the same grammatical
feature value (i.e., all plural nouns, or all femi-
nine adjectives) share a common grammatical
meaning, regardless of allomorphy.

Under this framework, the lexical vector of a lex-
eme can be estimated either directly, by averaging
the embeddings of its inflected forms, or indirectly,
by subtracting a shared grammatical vector from
each word embedding. Likewise, grammatical vec-
tors associated with specific feature values can be
derived by averaging over relevant word embed-
dings or by removing lexical content.

To obtain more accurate and disentangled rep-
resentations, we develop an iterative distillation
process that integrates both estimation strategies.
At each step, one component is isolated by subtract-
ing the current estimate of the other, then refined
by averaging over the pertinent group of words
(e.g., all inflected words of a lexeme, or all words
sharing a grammatical feature value). This pro-
cess incrementally improves both components over
successive iterations.

We hypothesize that, after distillation, lexical
vectors belonging to the same lexeme on the one
hand, and grammatical vectors sharing the same
feature value on the other, get closer in the vector
space. We evaluate this by comparing the average
pairwise L2 distances within each group before
and after distillation. We also assess the recon-
struction accuracy of the original embeddings by
measuring the difference between each embedding
and the sum of its distilled lexical and grammatical
components.

In this study, we focus specifically on inflec-
tion and leave aside derivation, as it is often non-
compositional. We worked on French because it
has a sufficiently rich morphology for it to be non-
trivial, and we had access to the data we needed.
However, our method is language-agnostic, and
such data is relatively easy to come by for a variety
of languages.

2 Related work

Recent studies have highlighted that contextualized
word embeddings encode various types of linguis-

tic information in a high entangled form (López-
Otal et al., 2025; Ravfogel et al., 2020). This has
sparked growing interest in disentangling gram-
matical information. However, most existing work
addresses this challenge in the context of down-
stream tasks or model performance, rather than
focusing on extracting grammatically meaningful
representations for linguistic analysis (Huang et al.,
2021; Li et al., 2021; Chen et al., 2019; Ravfogel
et al., 2020; Omrani Sabbaghi and Caliskan, 2022).

To our knowledge, few studies have explicitly
addressed this question from the perspective of lin-
guistic analysis. The work most closely related to
ours that we know of is by Lareau et al. (2015), who
developed a method applied to decompose static
word2vec embeddings in English. Their approach,
based on averaging and subtraction, was tested on
a small-scale dataset of around 20 verbs, with a
primary focus on lexical vectors. Their method
struggled with homonyms due to the static nature
of word2vec embeddings. In contrast, our approach
leverages contextualized embeddings, which miti-
gate this issue. It is also applied to a much larger
and more diverse natural corpus. While inspired by
their methodology, we extend it with an iterative
refinement process and expand the analysis to in-
clude grammatical vectors as well. In addition, we
introduce a broader set of evaluation metrics.

3 Experiment

3.1 Data

For our experiment, we used data from French
Lexical Network (LN-fr) v3 (Polguère, 2009; Lux-
Pogodalla and Polguère, 2011; Polguère, 2014;
ATILF, 2023), an open-access lexical database
manually developed according to the methodologi-
cal principles of explanatory combinatorial lexicol-
ogy (Mel’čuk, 2006). Each entry in LN-fr repre-
sents a disambiguated lexical unit in French, cor-
responding to a distinct and well-defined sense of
a simple lexeme or an idiom. In our study, we
focused exclusively on simple lexemes (hereafter
referred to as lexemes). Each lexeme has a part
of speech (POS) tag; since we studied inflectional
types in French, we extracted only the nouns, ad-
jectives, and verbs, other classes being invariant.

Each lexeme is associated with one or more lexi-
cographic examples sourced from corpora. These
examples were carefully selected by lexicographers
to reflect real-world usage, showcasing the syn-
tax, semantics, and combinatorial properties of the
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lexemes (Lux-Pogodalla, 2014). Furthermore, the
annotation explicitly identifies the position of the
words corresponding to the lexeme within each ex-
ample. These words represent inflected forms of
the lexeme in the sentence. A single lexeme may
be associated with multiple words within an exam-
ple. This can occur through repetitions or analytic
forms (such as past tense, e.g., ai mangé ‘(I) have
eaten’). To simplify the analysis, such cases were
excluded. Only examples containing a single word
corresponding to a lexeme were retained.

Most grammatical features are not annotated in
LN-fr, with the exception of number and gender.
We therefore used Stanza (Qi et al., 2020) to an-
alyze the examples of the lexemes and complete
the annotation of their remaining grammatical fea-
tures. For number and gender, we compared the
LN-fr annotations with those produced by Stanza
and found them to be fully consistent. Given that
nouns and adjectives, the main categories marked
for these features, account for over 86% of our data,
this consistency supports the reliability of Stanza
for morphological annotation and indicates that our
method should work even without annotated data.
To further reduce potential errors, we compared
the POS tags and lemmas returned by Stanza with
the manual annotations in LN-fr, removing 230 lex-
emes where the POS assignments did not match.

We generated word embeddings for lexemes in
our data using CamemBERT (Martin et al., 2020)
for our experiment. CamemBERT is a pretrained
contextualized language model for French, where
each token in the sentence is represented differently
depending on the other tokens in the context. We
used the representations from the last layer. For
words tokenized into sub-word tokens, we sum all
sub-word embeddings to get the word’s embed-
ding. We used example sentences retrieved from
LN-fr as context and generated vectors that repre-
sent the inflected forms of lexemes. We considered
only lexemes with at least four examples in the
database. This ensures more stable and representa-
tive lexical embeddings by averaging over multiple
contexts and helps achieve better coverage of a lex-
eme’s inflectional paradigm. Moreover, to reduce
model-internal bias, we applied mean-centering to
all embeddings, removing common components
unrelated to lexical or grammatical distinctions.

In total, we extracted from LN-fr nearly 2,000
lexemes, with significantly more nouns than adjec-
tives or verbs. Each lexeme is accompanied by its

word forms, example sentences, along with corre-
sponding word embeddings and annotated gram-
matical information. Table 1 summarizes the num-
ber of words associated with each feature value
within each grammatical category. We group nouns,
adjectives, and verbs according to the grammatical
categories they express: nouns by number, adjec-
tives by number and gender, and verbs by number,
tense, mood, finiteness, voice, gender and person.
Words lacking relevant annotation are excluded
from the count, and only feature values with at
least 200 words across lexemes are retained to en-
sure sufficient data for reliable analysis.

Lexemes Words

Noun 1468 11159
sing 8716
plur 2443

Adjective 202 1344
sing 1038
plur 306
masc 837
fem 507

Verb 299 1969
sing 834
plur 359
pres 903
imp 245
ind 1159
inf 715
fin 1182
per-3 1056

Total 1969 14472

Table 1: Lexemes and words (counted by grammatical
feature values) in our dataset. Abbreviations for
grammatical feature values: sing=singular, plur=plural,
masc=masculine, fem=feminine, pres=present,
imp=imperfect, ind=indicative, inf =infinitive, fin=finite,
per-3=third person.

3.2 Methodology
Relying on the assumptions outlined in §1, we pro-
pose an iterative distillation method to decompose
word embeddings into two components: a lexical
vector representing its core lexical meaning and
a grammatical vector encoding morphosyntactic
information.

Let L denote a lexeme with n observed inflected
forms {w1, w2, . . . , wn}. These forms share a com-
mon lexeme vector, estimated by the average of
their word embeddings:

L =
1

n

n∑

i=1

wi
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Similarly, for a grammatical feature value G
that appears in m words {w1, w2, . . . , wm} in our
dataset, we define a shared grammatical vector as:

G =
1

m

m∑

i=1

wi

For example, the lexeme eat includes words such
as eat, eats, ate, etc., whose embeddings share a
lexical component −→eat. The nominal number fea-
ture PLUR applies to words like apples, bikes and
houses, whose embeddings share a grammatical
component −−−→PLURN.

Let w be a word comprising a lexical base l and
a grammatical feature value g, its word embedding
can be approximated as the sum of two compo-
nents:

w ≈ lw + gw

To obtain purer lexical and grammatical embed-
dings, we apply two update steps:

Lexical vector update For each w of a lexeme
L, we initialize its local grammatical vector gw
using its feature value vector G. Then we subtract
this grammatical vector to isolate its current lexical
vector lw. For each lexeme L, we average all its
words’ lw to update the lexeme vector L.

lw = w −G, L← 1

|L|
∑

w∈L
lw

Grammatical vector update Likewise, for each
w, we can initialize its local lexical vector lw using
its lexeme vector L. Then by subtracting this lw
from the word embedding, we get the word’s cur-
rent grammatical vector gw. The average of gw of
all words inflected via G is calculated to update G.

gw = w − L, G← 1

|G|
∑

w∈G
gw

Our approach is an iterative process that alter-
nates between the two updates, where the output of
one step serves as the input for the next. The pro-
cess continues until the difference between succes-
sive updates becomes negligible—typically after
just five or six iterations.

To distill lexical or grammatical vectors of a
word, we can either start with the lexical vector
update by estimating G, or with the grammatical
vector update by estimating L. As subtraction is
central to both steps, the quality of the initial esti-
mate is critical: any noise in the subtracted vector

propagates into the result. Thus, the more accurate
the initial estimate, the better the decomposition. It
should be stressed that this initial estimate is not
random; it is the mean of a set of vectors, and thus
yields the same result every time.

We find that initializing with grammatical vec-
tors is more robust. When estimating a grammati-
cal vector G for a feature value (e.g., PLURN), we
average the embeddings of all words (e.g., apples,
bikes, houses, etc.) that share this feature. Since
these words are typically lexically diverse, their
lexical components tend to cancel each other out,
resulting in a relatively clean approximation of the
grammatical meaning. While estimating a lexeme
vector L (e.g., for lexeme eat), we average a small
number of words inflected from the lexeme (e.g.,
eat, eats, ate). These words often differ in gram-
matical properties and appear in different contexts,
introducing noise that can distort the estimate of
their core lexical meaning.

Furthermore, we extend this idea to handle multi-
feature grammatical information, which is common
in French. While nouns typically carry only one
grammatical feature NUMBER (SING or PLUR), adjec-
tives and verbs express multiple features simultane-
ously. Specifically, adjectives reflect both number
and gender, while verbs can encode tense, mood,
person, number, etc. When extracting a word’s lex-
ical vector, we remove a composite grammatical
vector that corresponds to the full set of feature
values it carries. This vector is estimated by averag-
ing the embeddings of all words sharing the exact
same feature combination. Conversely, in extract-
ing grammatical vectors, we isolate each feature
value independently. For example, to estimate the
vector for present tense, we use all verb forms that
express the present tense, regardless of their other
grammatical properties. This targeted averaging
provides a clearer estimate of the intended gram-
matical dimension.

In summary, our method alternates between sub-
tracting a full grammatical vector to refine lexical
vectors, and subtracting the current lexical vector
to isolate individual grammatical components. We
apply this procedure to verbs, nouns, and adjec-
tives grouped by their feature values, iterating until
convergence.

3.3 Evaluation metrics

To assess the effectiveness of this method, we adopt
two complementary evaluation metrics.
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Internal distance Our evaluation is grounded in
the assumptions outlined earlier: (1) words belong-
ing to the same lexeme differ only in their gram-
matical components, and (2) words that share the
same grammatical components differ primarily in
their lexical meaning. From this, we hypothesize
that once the grammatical components are removed
from the original embeddings, the remaining lex-
ical vectors should form tighter clusters within
each lexeme group, because what is left should be
close to the naked lexical information. Similarly, if
the lexical component is subtracted, the remaining
grammatical vectors should show greater internal
consistency within each feature value group. To
verify this, we measure the internal compactness
of each group before and after distillation.

For each lexeme, we calculate the average pair-
wise distance among the embeddings of its in-
flected words prior to distillation. We then repeat
the measurement using only the lexical components
lw extracted from these words after distillation. A
reduction in distance suggests that the lexical con-
tent has been more effectively isolated.

Similarly, for each feature value, we first cal-
culate the average pairwise distance among the
original embeddings of all words marked with that
value. We then calculate the same measure using
only the grammatical vectors gw corresponding to
the feature value isolated from those words. A
tighter clustering in this space would indicate that
the shared morphosyntactic property has been cap-
tured more clearly.

As a baseline, we compute the average pairwise
distance between random word pairs that do not
share either a lexeme or any grammatical feature
values, applying the same subtraction procedure.
For each run, we sample up to 10,000 such random
pairs; if the total number of admissible pairs is
smaller, we use all available pairs. We repeat this
process 10 times and report the mean across runs.
Since these words are unrelated in both lexical and
grammatical dimensions, their vectors should not
become closer after distillation. This allows us
to verify that any observed distance reduction in
groups defined by shared lexemes or feature values
is not merely an artifact of the subtraction process,
but reflects meaningful linguistic structure.

Reconstruction accuracy We evaluate whether
the lexical and grammatical components can faith-
fully reconstruct the original word embeddings. For
each word, we compare its original embedding with

two reconstructed versions: one using the initial
estimates of its lexical vector and the grammatical
vectors corresponding to its set of feature values,
and another using the distilled vectors obtained. A
lower reconstruction error in the latter case implies
improved preservation of the original embeddings’
structure.

3.4 Distance metric

Both the distillation process and the subsequent
evaluation require a way to quantify how the vec-
tors change under our distillation method. To com-
pare these vectors, we initially calculated both co-
sine similarity and L2 distance.

Cosine similarity is commonly adopted as a met-
ric for semantic similarity in natural language pro-
cessing (NLP), as it captures the angular relation-
ship between vectors while ignoring their magni-
tude. However, our method involves vector subtrac-
tion, which can substantially alter both direction
and length. This makes cosine similarity poten-
tially misleading: in extreme cases, two vectors
may retain the same angle (i.e., yield a high cosine
similarity) while differing greatly in magnitude,
making them appear semantically close even when
they are not. Previous studies have also shown
that cosine similarity can be distorted in contex-
tualized embedding models due to anisotropy and
frequency effects (Ethayarajh, 2019; Timkey and
van Schijndel, 2021; Zhou et al., 2022).

In our evaluation, cosine similarity and L2 dis-
tance often led to divergent conclusions. Since
L2 distance captures both angular and magnitude-
related differences, we consider it to be a more
reliable indicator of the structural changes intro-
duced by our method. Furthermore, we found no
strong theoretical reason to prefer cosine similar-
ity in our setting beyond its popularity in previous
work. Given these considerations, we focus exclu-
sively on L2 distance in the results reported below.

4 Results and Discussion

In this section, we evaluate whether the lexical and
grammatical components extracted from word em-
beddings display greater internal consistency after
distillation. In each comparison, we measure the
target evaluation metric before and after the proce-
dure. In all result tables, the before column reports
results calculated using the original embeddings,
while the after column shows results based on dis-
tilled vectors. The relative change (∆) is calculated
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as after−before
before , reflecting the proportion of the re-

sulting change. All reported results are rounded to
two decimals.

4.1 Lexical vectors become more consistent
after grammatical removal

Table 2 reports the results of the evaluation of the
lexical vector distilled by removing the grammati-
cal component(s).

For each lexeme in our dataset, we select in-
flected words that differ in grammatical features
and calculate the average pairwise L2 distance be-
tween their original embeddings. This distance
serves as a measure of internal lexical dispersion
prior to distillation. We use the same measure on
lexical vectors derived after removing grammati-
cal components. If the grammatical information
has been successfully removed, the resulting lexi-
cal vectors should exhibit lower internal dispersion.
We exclude lexemes with identical feature values,
as their embeddings are already highly similar in
the original space; the procedure would yield negli-
gible effect.

As shown in Table 2, we observe a consistent
decrease in distance across all lexical categories
in the range of around 8% to 14%. This indicates
that the distilled lexical vectors are more tightly
clustered, supporting the effectiveness of our distil-
lation method across different parts of speech.

For baseline comparison, we evaluate random
word pairs drawn from different lexemes that differ
in feature values. These words are not expected to
share a semantic content, so removing grammatical
information should not significantly reduce their
distance. Indeed, the random groupings of the same
part of speech exhibit notably smaller reductions,
with average decreases reaching only about half
of those observed in lexeme-aligned groups. This
confirms that the increased compactness observed
in structured lexeme groups reflects meaningful
decomposition rather than trivial consequence of
mean subtraction or vector manipulation.

4.2 Grammatical vectors get closer after
distillation

In addition to lexical coherence, we also evaluate
the internal consistency of the grammatical vectors,
with results presented in Table 3.

For each feature value, we find words from dis-
tinct lexemes that share this value. The average
pairwise L2 distance between their original em-
beddings measures how dispersed these words are

before distillation. We then compute that distance
using the grammatical vectors extracted after re-
moving lexical components. If the subtraction is
effective, these vectors should converge toward a
representation of the shared grammatical property,
lowering the average distance. Again, we omit
tokens from the same lexeme to avoid trivial reduc-
tions stemming from shared lexical information.

As shown in Table 3, the grammatical vectors
exhibit a substantial reduction in pairwise distance
across all feature values within all grammatical
categories, ranging from approximately 31% to
45%. This level of reduction is markedly higher
than what we observed for lexical vectors. This
stark contrast suggests that grammatical informa-
tion is more effectively disentangled. A possible
explanation lies in the structural difference between
the comparison groups in each evaluation. In the
lexical vector analysis, we compare tokens from
the same lexeme that differ only in grammatical
features. Such tokens already occupy relatively
close positions in the embedding space even be-
fore distillation, leaving limited room for further
convergence. By contrast, in the grammatical vec-
tor analysis, the compared tokens share a gram-
matical feature but are from different lexemes, are
therefore initially more widely dispersed. After
the lexical component is removed, this dispersion
is greatly reduced, as the remaining grammatical
vectors align more closely around the shared gram-
matical property. Moreover, grammatical features
are often shared by a larger number of tokens than
individual lexemes, making the averaged estimates
for grammatical vectors more robust.

To establish a control, we measure distances be-
tween randomly sampled words that differ in both
lexeme and feature value. Since such pairs are
not expected to encode common grammatical infor-
mation, their grammatical vectors should remain
dispersed. This comparison ensures that the ob-
served distance reductions in feature-based groups
cannot be explained by vector subtraction alone.
Table 4 shows reductions in distance consistently
small across all grammatical categories, less than
10%. These values are markedly lower than those
observed in structured feature-based groups (cf. Ta-
ble 3), confirming that the substantial convergence
seen reflects the extraction of meaningful shared
grammatical information.

326



Lexemes Random lexemes

before after ∆ before after ∆

Noun 5.30 4.71 -10.32% 6.70 6.41 -4.24%
Adjective 4.72 4.34 -7.97% 6.78 6.50 -4.03%
Verb 5.66 4.82 -14.07% 7.14 6.48 -9.22%

Table 2: Pairwise distance of lexical vectors before and after distillation. Results are computed over word pairs from
the same lexeme, as well as random word pairs from different lexemes, all inflected with different grammatical
feature values.

before after ∆

Noun
sing 6.08 3.33 -45.18%
plur 7.34 4.23 -42.31%

Adjective
sing 6.33 3.62 -42.85%
plur 7.15 4.35 -39.12%
masc 6.63 3.83 -42.19%
fem 6.54 3.88 -40.70%

Verb
ind 7.09 4.40 -37.89%
per-3 7.02 4.36 -37.88%
sing 6.71 4.13 -38.50%
plur 7.57 4.70 -37.91%
pres 6.66 4.09 -38.51%
imp 7.81 4.77 -38.86%
inf 5.93 3.65 -38.36%
fin 7.06 4.81 -31.94%

Table 3: Pairwise distance of grammatical vectors be-
fore and after the distillation, calculated over word pairs
that share the same grammatical feature value but origi-
nate from distinct lexemes.

before after ∆

N-number 7.10 6.73 -5.20%
Adj-number 7.06 6.77 -4.14%
Adj-gender 6.67 6.55 -1.76%
V-mode 8.07 7.29 -9.66%
V-person 7.36 7.25 -1.42%
V-number 7.45 7.15 -4.08%
V-tense 7.75 7.34 -5.27%
V-finiteness 6.99 6.61 -5.42%

Table 4: Pairwise distance of random grammatical vec-
tors before and after distillation, calculated between ran-
dom word pairs differing in grammatical feature value
and lexeme.

4.3 Word embedding reconstruction

Extending the above evaluations, to assess whether
the distilled components provide more accurate
representations of lexical and grammatical infor-
mation, we evaluate how well they can reconstruct
the original word embeddings. Specifically, we
measure the L2 distance between the original em-
bedding of each token and its reconstructed form,

before after ∆

Noun 2.58 2.52 -2.38%
Adjective 2.89 2.58 -11.40%
Verb 3.50 2.27 -35.28%

Table 5: Reconstruction error of word embeddings from
their lexical and grammatical components before and
after the distillation. Results are averaged over part of
speech.

obtained by summing its lexical vector and the av-
erage of its grammatical vectors corresponding to
each of its feature values.

As a baseline, we first perform reconstruction
using the initial, undistilled estimates of lexical
and grammatical vectors. These initial estimates
are expected to contain overlapping or entangled
information, resulting in higher reconstruction er-
ror. After distillation, however, the components are
refined to better isolate the intended dimensions
of meaning, which should lead to more faithful
reconstructions.

Our results are reported in Table 5. We observe
consistent reductions across all parts of speech.
The improvement is most substantial for verbs,
with an average reduction of over 35%, while ad-
jectives and nouns show smaller but still meaning-
ful improvements (11.4% and 2.4%, respectively).
This pattern may be attributed to differences in mor-
phological complexity and the way grammatical
information is distributed across parts of speech. In
French, both nouns and adjectives typically mark
number and gender using the same surface mor-
phemes (e.g., -s and -x for PLUR; -e,-euse and -trice
for FEM), which are shared between lexemes. While
such suffixes are consistent and formally simple,
they express only a limited set of grammatical fea-
tures, and the shared form across categories may
blur the information, making it more difficult for
the model to disentangle the lexical and grammati-
cal components precisely.

In contrast, French verbs undergo more complex
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inflection, where a single suffix often encodes mul-
tiple feature values simultaneously. For instance,
the ending -ent in ils parlent (‘they speak’) marks
third person, plural, present tense, and indicative
mood all within a single affix. Despite the greater
surface complexity, the richness and density of
grammatical encoding in verbal morphology may
provide a stronger signal, allowing the model to
better isolate and represent grammatical content.
The more pronounced improvement observed in
verbs thus likely reflects this concentrated gram-
matical structure, which becomes more salient and
recoverable after distillation.

5 Conclusion

We aimed to disentangle contextualized word em-
beddings in CamemBERT into lexical and gram-
matical parts. We proposed an iterative distillation
method based on the complementarity of averaging
and subtraction. A word’s lexical vector can be
approximated either by averaging the vectors of all
words that share the same lexical meaning, or by
subtracting the vectors corresponding to its gram-
matical features. Similarly, its grammatical vector
can be obtained either by subtracting the lexical
part from the original embedding, or by averaging
the embeddings of all words that share the same
grammatical feature.

If effectively separated, the lexical and grammat-
ical vectors should be more distinct, with minimal
overlap between their respective contents compared
to their initial estimates. Each vector should convey
more clearly the structural regularities shared with
similar words, resulting in tighter alignment within
their lexical or grammatical groups. As such, they
are better suited to jointly approximate the origi-
nal word embedding. As expected, in our evalua-
tion, the final lexical and grammatical vectors that
we extracted are more clearly clustered with their
structurally similar counterparts, when combined,
reproduce original word embeddings with minimal
loss.

Notably, the reduction in distance is much more
pronounced for grammatical vectors than for lexi-
cal vectors—around 40% versus 10% on average.
Since the initial grammatical vectors are averaged
over a large set of lexemes and contain great lexical
noise, which is removed during distillation, leading
to tighter alignment. The extent of this convergence
is relatively stable across different feature values,
but varies across parts of speech. Verbs, especially,

show a stronger reduction in distance and a larger
drop in reconstruction error compared to nouns and
adjectives. This may be due to the richness of ver-
bal morphology in French, where suffixes often
encode several grammatical features at once, mak-
ing the grammatical signal more prominent and its
removal more effective. Nouns show only minor
reconstruction gains, likely due to limited grammat-
ical variation from number inflection alone. Also,
large number of nouns in our dataset may stabi-
lize their initial estimates, leaving less room for
improvement. Adjectives fall in between, showing
moderate gains.

Another important factor behind these observa-
tions concerns tokenization and the model’s sensi-
tivity to morphological markers. In CamemBERT,
frequent, short, and morphologically informative
tokens are more likely to be consistently encoded or
even assigned special status during training (Rogers
et al., 2021; Clark et al., 2019; Mohebbi et al.,
2021). In contrast, lexical roots often span longer
or rarer sub-word tokens and are more prone to
being split or distorted, especially in low-frequency
contexts. As a result, grammatical information is
already more cleanly separated and clearly encoded
in the model’s internal representations, making it
easier to distill effectively. This also explains why
verbs, whose suffixes encode multiple features in
compact forms, benefit the most from the process.

Future work will further explore how factors
such as word frequency and tokenization affect the
separation of lexical and grammatical vectors. Our
method assumes a linear relationship between lexi-
cal and grammatical vectors; in a follow-up study,
we plan to explore non-linear relationships. Given
that our method does not rely on language-specific
morphological rules, we will apply and evaluate it
across languages. In addition, we are interested in
extending the approach using learning-based meth-
ods, and in incorporating morphology-aware to-
kenizers to improve grammatical representation.
Finally, we aim to assess the practical value of our
decomposition through downstream tasks.

Limitations

One limitation of our study is data imbalance,
which may affect result comparability and robust-
ness. The number of words varies widely across
parts of speech and grammatical features: nouns
are far more numerous, yet have fewer grammati-
cal features. Some feature values are sparsely rep-
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resented, leading to less reliable vector estimates.
Lexemes also vary in the number of inflected forms.
Due to limited data, certain features such as ver-
bal voice and gender were excluded, making the
evaluation less complete.

Source code

This experiment can be reproduced by download-
ing the data we used and our source code from
https://github.com/liliulng/disentangle-wemb.
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