
Headhunter
Headhunter is a novel encoding method for Multi-choice Question Answering. Headhunter can
conduct interception and soft filtering.

knowledge Acquisition

Headhunter applies Elastic Search engine to retrieve knowledge from the Open Mind Common
Sense (OMCS) corpus.

The search results are compressed to HeadhunterOMCS.zip. We attempted to upload
HeadhunterOMCS.zip together with the software. However, the maximum file size allowed to
upload is no more than 50M, and the size of the zip file (including software and
HeadhunterOMCS.zip) is up to about 74M. Therefore, we merely submit the software on softconf
system. Nevertheless, the dataset HeadhunterOMCS.zip can be downloaded by the following
hyperlink (anonymous): https://drive.google.com/file/d/1TsHygMvyoS1KLz0uMe4YTjWjsgsALjuk/vi
ew.

Encoders

Headhunter is respectively coupled with BERT, RoBERTa and Albert which are used as the
encoders. The sequence which is input into the pretrained models is organized as follows.

We employ the vector [CLS] as the knowledge-aware representation. For each pair of question q
and option o, we produce [CLS] using a piece of knowledge. The considered knowledge item is
selected from the search results. [CLS] is fed into Headhunter for computing the final
representation.

Headhunter’s Interceptor

Headhunter’s interceptor is constructed with a self-attention network which is the same with
that in transformer. The interceptor can intercept relevant information from all the retrieved
knowledge items, regardless of whether the knowledge items are qualified or less qualified.

Headhunter’s Soft Filter

Attention pooling layer is used as the soft filter. Using the filter, we can highlight the
representative hidden states and eclipse the unrepresentative ones.

Classifier

A fully-connected layer is used as the final classifier which score the possibilities of options. We
specify the most probable option as the prediction result.

Operation Guides

Training

Training Headhunter on GPU.

[CLS] q [SEP] o [SEP] k [SEP]

python train.py \

 --task_name "rerank_csqa" \

 --save_model_name "your_model_name" \

af://n0
https://drive.google.com/file/d/1TsHygMvyoS1KLz0uMe4YTjWjsgsALjuk/view
af://n16
af://n17

Headhunter also supports the training on TPUs. Use -–tpu to enable TPU training.

Development

Best Setting
Headhunter’s best single model accuracy is 83.3%/78.4% on the dev/test dataset.

Hyperparameters of our best model (Albert plus Headhunter) are set as follows.

 --origin_model "pretrained_model_name" \ # only support BERT, RoBERTa and

Albert

 --cs_mode "QAconcept-Match" \ # only support this cs_mode now

 --learning_rate 2e-5 \

 --cs_len 5 \ # number of search results used during training

 --dev_cs_len 5 \ # number of search results used during development

 --output_dir "your_output_dir"

 --num_train_epochs 5 \

 --train_batch_size 1 \

 --eval_batch_size 1 \

 --gradient_accumulation_steps 20 \

 --check_loss_step 2000 \

 --fp16 \

 --seed 1 \

python train.py \

 --dev \

 --task_name "rerank_csqa" \

 --save_model_name "your_model_name" \

 --origin_model "pretrained_model_name" \ # only support BERT, RoBERTa and

Albert

 --cs_mode "QAconcept-Match" \ # only support this cs_mode now

 --dev_cs_len 5 \

 --output_dir "your_output_dir"

 --eval_batch_size 1 \

 --gradient_accumulation_steps 20 \

 --fp16 \

 --seed 1 \

encoder: albert-xxlarge-v2

device: NVIDIA Tesla V100 SXM2 16GB * 1

max_seq_length: 80 (64 for question & option, 16 for knowledge)

learning_rate: 1e-5

train_batch_size: 2

gradient_accumulation_steps: 10

cs_len: 7

dev_cs_len: 8

optimizer: AdamW

adam_epsilon: 1e-8

training steps: 9742(2 epoch)

tp16: True

af://n21
af://n23

	Headhunter
	Operation Guides
	Training
	Development

	Best Setting

