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Preface

WELCOME to the International Workshop on Parsing Technologies.

The interest and the progress being made in the field of parsing is exciting. The technical
program has been assembled to include all aspects of this technology. We hope it will stimulate
further discussion, research and development in the field.

We hope the emphasis of this workshop will center around the exchange of ideas rather than the
presentation of results. In this workshop, presenters should be prepared to discuss problems and
techniques - with a particular emphasis on work-in-progress and unresolved difficulties.

The program committee has selected a variety of areas for discussion, hoping that you will
choose the set of presentations that best match your interests and specialties. The variety should
encourage discussion and exchange that should benefit all. We hope to encourage participation,
discussion and even argument.

The workshop program and organization have been created through the efforts of a large number
of people who have given generously of their time and talent.

I would like to thank each of the comittee members: Bob Berwick, Harry Bunt, Jaime Carbonell,
Eva Hajicova, Aravind Joshi, Ron Kaplan, Bob Kasper, Martin Kay, Match Marcus, Makoto
Nagao and Yorick Wilks.

In addition, I would like to acknowledge contributions and extend my gratitude to the local
arrangement people. Especially Joan Maddamma, the workshop secretary, who did most of the
administrative work for this volume and the workshop.

Masaru Tomita
Workshop Chairman
Carnegie Mellon University
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UNIFICATION AND CLASSIFICATION:
AN EXPERIMENT IN INFORMATION-BASED PARSING

Robert T. Kasper
USC/Information Sciences Institute
Admiralty Way, Suite 1001
Marina del Rey, CA 90292

When dealing with a phenomenon as vast and complex as natural language, an
experimental approach is often the best way to discover new computational methods and
determine their usefulness. The experimental process includes designing and selecting
new experiments, carrying out the experiments, and evaluating the experiments.  Most
conference presentations are about finished experiments, completed theoretical results, or
the evaluation of systems already in use. In this workshop setting, | would like to depart
from this tendency to discuss some experiments that we are beginning to perform, and
the reasons for investigating a particular approach to parsing. This approach builds on
recent work in unification-based parsing and classification-based knowledge
representation, developing an architecture that brings together the capabilities of these
related frameworks.

l. Background: Two General Frameworks for Representing Information
1.1. Unification-based Grammars

A variety of current approaches to parsing in computational linguistics emphasize
declarative representations of grammar with logical constraints stated in terms of feature
and category structures. These approaches have collectively become known as the
"unification-based" grammars, because unification is commonly used as the primary
operation for building and combining feature structures. Some of the simplest of these
grammatical frameworks, as exemplified by the PATR-II system [Shieber 1984], state
constraints on features entirely in terms of sets of wunifications that must be
simultaneously satisfied whenever a grammatical rule is used. In such systems all
constraints on a rule or lexical item are interpreted conjunctively. Many of the more
recent frameworks also use other general logical connectives, such as disjunction, negation
and implication, in their representation of constraints. The wusefulness of such logical
constraints is abundantly illustrated by linguistic models, including Systemic Grammar
(SG) [Halliday 1976] and Head Driven Phrase Structure Grammar (HPSG) [Pollard&Sag
1987], and by computational tools such as Functional Unification Grammar (FUG) [Kay
1985]. For example, SG and FUG even use disjunctive alternations of features, instead of
structural rules, as the primary units of grammatical organization. While the intuitive
interpretation of these logical constraints is rather straightforward, and they are quite
natural for linguists to formulate, large-scale implementations of them have typically
involved finding a delicate balance between expressive power and computational
efficiency.

Some difficulties can be expected in developing a system for computing with disjunctive
and negative feature constraints, because it has been established that common operations
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on such descriptions, such as unification and subsumption, arc NP-completc and require
exponential time in the worst case. The most common and obvious way to deal with
disjunctive constraints is to expand the grammatical description to disjunctive normal
form (DNF) during a pre-processing step, thereby eliminating disjunction from the rules
that are actually used by the parser. This method works reasonably well for small
grammars, but it is clearly unsatisfactory for larger = grammars, because it actually
requires exponential space and time in all cases. For even modest amounts of disjunction,
the parser is forcedto operate on a huge description, even in many cases where no
exponential expansion would be necessary.

It is possible to avoid exponential expansion for most practical grammars, and several
unification  algorithms for disjunctive feature descriptions have been developed in recent
years. The first of these algorithms was developed by Karttunen [Karttunen 1984]. His
method of representing disjunction allowed value disjunction (i.e. alternative values of a
single feature), but it did not allow general disjunction (i.e. constraints involving multiple
features). Although it is possible to transform any description that contains general
disjunction into a formally equivalent description that contains only value disjunction, this
transformation may sometimes result in loss of efficiency or lack of clarity in the
structures produced by a parser.

Two more recent algorithms [Kasper 1987, Eisele&Doerre 1988] allow general disjunctive
descriptions, and avoid expansion to DNF by exploiting logical equivalences between
descriptions to produce normal forms that allow a more compact representation. Kasper's
algorithm is based on a normal formthat divideseach description into definite and

indefinite components. The definite component contains no disjunction, and the indefinite
component contains a list of disjunctions that must be satisfied. The Eisele&Doerre
algorithm uses a different normal form that guarantees the detection of any
inconsistencies during the normalization process by selectively expanding disjunctions
that might possibly interact with other information in the description. Although a precise
characterization of the differences inperformance between these algorithms involves
many subtleties, the Eisele&Doerre algorithm usually handles value disjunction more
efficiently, and the Kasper algorithm usually handles general disjunction more efficiently.
The crucial technique shared by both algorithms is the use of a normal form that allows
early elimination of alternatives when they are inconsistent with definite information.

The Kasper algorithm was first implemented as an extension to the unification algorithm
of the PATR-Il parser, and it has been further developed to handle conditional
descriptions and a limited type of negation [Kasper 1988a]. These extensions to PATR-II
have been wused to constructan experimental parser for systemic grammars [Kasper
1988b], which has been tested with a large grammar of English.

Although these methods for processing complex feature constraints are generally much
more efficient than expansionto DNF, they still have several significant sources of
inefficiency:

1. a large amount of structure must be copied in order to guarantee correct unification;
2. consistency checks are required between components of a description that do not
share any features in common, because unification cannot determine whether any

dependencies exist between two structures without actually unifying them;

3. repeated computations are often required over sub-expressions of descriptions,
because the results of prior consistency checks are not saved.
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These sources of inefficiency are not unique to one method of parsing with disjunctive
descriptions; similar shortcomings are commonly reported for most unification-based
systems. For example, the Eisele&Doerre algorithm eliminates some redundant
consistency checks, but it generally requires copying significant portions of a description
to do so. The unification literature contains several techniques for reducing the amount of
copying by structure sharing, but these techniques appear to solve only part of the
problem. A more general approach to improving the efficiency of unification may be
available by adopting methods that are used in classification-based systems.

1.2. Classification-based Knowledge Representation

The KL-ONE family of knowledge representation systems organize information about
objects and the relations between them into conceptual hierarchies (a combination of
semantic networks and frames) according to class membership, where X is below Y in
the hierarchy if X is a subclass or instance of the class Y. For example, a hierarchy of
English word classes would probably contain Verbs, Modal-Verbs as a subclass of Verbs,
and the word "'should" as an instance of Modal-Verbs. More formally, the hierarchy is a
subsumption-ordered lattice based upon logical properties that can be deduced from the
definitions of concepts and the facts known about particular objects. In these systems,
classification is the operation that places a new class or object into the lattice according to
the subsumption order. A primary benefit of classification is that it organizes large
collections of knowledge in such a way that properties shared in common by many objects
only need to be represented once, yet they can still be efficiently accessed.

KL-ONE and similar frameworks have been wused for semantic interpretation in some
natural language processing systems, but usually in a way that is quite separate from the
grammatical parsing process. Recent research indicates that it may be advantageous to
make use of a classification-based framework for processing grammatical knowledge as
well.  Many formal properties are shared by the feature descriptions used in unification-
based grammars and the terminological definitions used in KL-ONE. Generally speaking,
linguistic categories correspond to concepts, and their features (or attributes) correspond
to binary relations in the knowledge representation system. The similarity between these
two types of descriptions has been most clearly documented by Smolka [Smolka 1988] in
his development of a logic that integrates a significant combination of their expressive
capabilities.  Smolka has also shown that the subsumption and unification problems for
this logic can be reduced to each other in linear time. Thus, systems based on either term
subsumption or unification can be expected to solve a similar range of problems, although
differing levels of non-asymptotic time/space efficiency can be expected. Theoretical
results have also been based on the observation that feature structures can be implicitly
organized into a subsumption lattice of types according to their information content. In
most unification-based systems the lattice is not explicitly constructed, but a
classification-based system can be used to place the feature structures of a grammar and
lexicon into a structure-sharing lattice, potentially improving both space and time
efficiency.

Despite the underlying similarities between the KL-ONE framework and unification-based
grammars, there are significant differences in the expressive capabilities that are usually
provided. In particular, the knowledge representation systems typically have general
constraints on relations with multiple values, whereas most unification-based systems do
not provide a direct representation for features with set values. On the other hand,
complex logical constraints involving disjunction and negation have been more extensively
developed in unification-based systems than in classification-based systems. The LOOM
system [MacGregor 1988], which has been developed at USC/ISI, appears to be the first in
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the KL-ONE family to have included general disjunction and negation in its concept
definition language. @ The implementation of classification for disjunctive concepts has
been based on the same strategy that was originally developed for unification with
disjunctive feature descriptions [Kasper 1987]. The implementation of classification for
concepts defined by negation is still in progress. With these extensions, the LOOM system
should be able to handle the full range of constraints that have been wused in linguistic
descriptions of feature structures.

2, An Experiment In Classification-based Parsing

In order to explore a strategy for parsing based on classification, our first experiment will
be to emulate the unification component of our parser for a large systemic grammar of
English [Kasper 1988b] within the framework of LOOM. It appears to be straightforward
to convert the feature constraints of the grammar into a set of definitions that can be
processed by LOOM, because of the underlying correspondences between LOOM'’S concept
definitions and linguistic feature descriptions that we have already described. It is also
straightforward to perform an operation that is equivalent to the unification of feature
structures within LOOM. This is accomplished by forming an object which is defined as
the conjunction of the objects corresponding to the feature structures.

Motivating this experiment are two primary goals:

1. to investigate the extent to which classification can be used to organize the knowledge
contained in linguistic descriptions so that it can be more efficiently accessed during
the parsing process;

2. to develop a suitable architecture for integrating semantic information into the parsing
process, in a way that knowledge specific to application domains does not have to be
re-organized for parsing.

2.1. Efficiency Considerations

The classification-based architecture used by LOOM solves a whole class of related
efficiency problems by explicitly constructing and maintaining a subsumption-ordered
lattice of terms with inheritance. In particular, it may provide substantial improvements
for some of the above mentioned sources of inefficiency that have been observed with
unification-based parsers.

2.1.1. Structure Sharing

The organization of objects into a lattice automatically provides a great amount of
structure sharing. Pointers are copied instead of structures whenever objects are defined
or modified.

In most unification-based parsers, it is necessary to make new copies of the feature
structures that are associated with lexical items or grammatical rules whenever they are
used in building a description of a sentence (or one of its constituents). In a classification-
based system the entire structure does not need to be copied, because the description of a
constituent can contain pointers to the classes of objects that it instantiates. This
representation not only saves space, but it also allows the parser to make use of
information that has already been precomputed (during the classification process) for
classes of objects in the grammar and lexicon.
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2.2 Integrating Semantic Information Into the Parsing Process

In order for practical naturallanguage parsers to be produced with less effort per

application, it is desirable for the knowledge base of an application to also be usable by a
general purpose parser. Existing systems often use semantic grammars that are specific to
a particular application domain, or require substantial reorganization of the information

used by an application so thatit can be used by the parser. A moreeffective use of
knowledge sources may be possible if linguistic features and information about an
application'ssemantic domain are defined in the same general knowledge representation
framework. Using a classification-based system, links can be established between terms

of the semantic domain and terms of the linguistic knowledge base that correspond to
them. This approach has already been explored in text generation research [Kasper 1989],
where the links are established by stipulating that terms of the application domain
specialize one or more termsof the linguistic model. This condition generally holds,

because the linguistic model contains primarily abstract features.

Another potential benefit of using an integrated knowledge organization is early
disambiguation according to features of the semantic domain. If objects of the semantic
domain are directly linked in aknowledge base to lexical or grammatical features, the
parser can use information about those objects without any special purpose machinery.

3. Summary

We are developing an  experimental parser using the classification-based architecture of
the LOOM knowledge representation system. The initial goal is to reproduce the
functionality of an existing unification-based parser, using a large grammar of English. If
successful, this experiment should enable a comparison of classification and unification as
mechanisms for parsing. A classification scheme appears to provide a way of
substantially reducing several of the most general sources of inefficiency that arc
observed in current unification-based parsers. However, this conjecture needs to be
examined by performing experiments with several real grammars and applications.
Because the classification mechanism is based on general logical properties of feature
descriptions, it should be applicable to a broad class of grammars, just as unification-
based parsers have been developed for grammars from a diverse range of linguistic
theories and applications. In addition to providing an efficient engine for processing the
constraints  of linguistic feature descriptions, we also expectthis type of information
organization to provide a strong basis for integrating semantic knowledge and knowledge
specific to particular applications into the parsing process.
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2.1.2. Indexing Dependencies

The process of classification also keeps track of dependencies between different objects,
eliminating the need for checking consistency between components of a description that
have no features in common. In effect, an index is incrementally constructed from
features to descriptions that contain them.

In most unification-based systems, feature structures are represented by directed graphs
or terms. These representations effectively provide an index of features possessed by
each object. This type of indexing is generally sufficient if only conjunctive constraints on
features are used. When disjunctive constraints are also used, it becomes useful to keep
track of dependencies between different parts of a complex description, in order to avoid
repeated consistency checks between parts that share no features in common. A reverse
index (from features to objects having those features) can be used to avoid these useless
consistency checks.  This second kind of index is created automatically when feature
structures are classified into an explicit lattice.

2.1.3. Avoiding Redundant Computations

The first time that a component of a description is classified, it is placed into a lattice
containing all other descriptions in the knowledge base. The lattice structure makes full
consistency checks unnecessary between objects that are known to be in a subsumption
relationship. The object-oriented representation of the lattice also makes it possible to
store the results of consistency checks between components of a description, so that they
do not need to be repeated.

2.1.4. Using Classification as a Grammar Compiler

The classification-based architecture is also able to impose a system of type constraints on
feature structures. Constraints may be placed on the sets of features that are required or
prohibited for particular types of objects, and on the types of objects that may occur as
the values of particular features.  Structures that violate one of these constraints are
automatically marked as incoherent. In contrast, many of the unification methods used in
computational linguistics have untyped feature structures. For applications of limited
scale, an untyped unification-based system may provide acceptable results with
somewhat less overhead than a classification-based approach. In particular, an untyped
feature system allows greater flexibility in the early stages of developing a grammar.
However, for applications that are necessarily knowledge-intensive, a classification-based
system is likely to be preferable, because it organizes a large collection of linguistic
knowledge (and related nonlinguistic knowledge) in such a way that it can be more
efficiently processed.

From another perspective, the classification-based system can be seen as carrying out a
compilation procedure on a linguistic knowledge base. The initial loading (or compilation)
of a large grammar into the system may be computationally expensive, but the result is a
parser that may be considerably more efficient at run-time than current unification-based
systems. In the early stages of developing a grammar, when not many sentences are
parsed with a particular version of the grammar before it is substantially revised, the
benefits of compilation may not be appreciated. When the system is actually used in an
application, or tested on a large body of text, it may significantly improve performance.
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Using Restriction to Optimize Unification
Parsing

Dale Gerdemann * *

Department of Linguistics
Cognitive Science Group

Beckman Institute for Advanced Science and Technology
University of Illinois

1 Introduction

Since Shieber (1985), restriction has been recognized as an important operation
in unification parsing. 1 As Shieber points out, the most straightforward adap-
tation of Earley’s algorithm 2 for use with unification grammars fails because
the infinite number of categories in these grammars can cause the predictor step
in the algorithm to go into an infinite loop, creating ever more and more new
predictions (i.e. the problem is that new predictions are not subsumed by pre-
vious predictions). The basic idea of restriction is to avoid making predictions
on the basis of all of the information in a DAG, but rather to take some subset
of that information (i.e. a restricted DAG-henceforth RD) and use just that
information to make new predictions. Since there are only a finite number of
possible RDs the predictor step will no longer go into the infinite loop described
above. The price you pay for this move is that some spurious predictions will be
made, but as Shieber points out, the algorithm is still correct since any spunous
predictions will be weeded out by the completer step.

‘Cognitive Science Group, Beckman Institute, 405 N. Mathews, Urbana, 111 61801;
daleQtanki.cogvci.uiuc.edu

*1 would like to thank Alan Frisch, Erhard Hinrichs, Lucja lvariska, Jerry Morgan, Mike
Mendelson, and Tsuneko Nakatawa for their useful comments. Any deficiencies must rest with
me. Thanks also to the UIUC Cognitive Science/Artificial Intelligence fellowship committee
for the support that made this research possible.

*By unification parsing | mean paning of unification grammars. See Seifert (1988) for a
precise definition of a unification grammar.

31 will assume familiarity with the basic steps of Earley’s algorithm as presented in Earley
(1970). For an introduction to Earley’s algorithm and its relationship to chart parsing in
general see Winograd (1983).
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Shieber’s use of restriction in the predictor step is by now well established.
On the other hand, there has been little discussion of the uses of restriction in
other stages of parsing. In this paper, | will argue that restriction can be used
to advantage in at least three additional ways. First, restriction can be used
to significantly speed up the subsumption check on new predictions. Second, it
can be used in the completer step in order to speed up the process of finding
the correct states in the state sets to be completed. And third, it can be used
to add a lookahead component to the unification parser. | will begin this paper
by briefly reviewing Shieber’s use of restriction and then I will discuss the three
additional uses for restriction mentioned above.

2 Restriction in the Predictor Step

The original motivation for restriction was to avoid infinite cycles in the predic-
tor step of Earley’s algorithm. Shieber illustrates this problem with a “counting
grammar” but the same point can be made using a type of grammar that is some-
what more familiar in recent linguistic theory. Specifically, infinite cycles can
arise in grammars that handle 3ubcategorization with list valued features such
as Head Driven Phrase Structure Grammar (Pollard and Sag, 1987) or PATR
style grammars (Shieber, 1986). To illustrate the problem, suppose that we are
parsing a sentence using a grammar with the PATR style rules in (1,2). The
problem of non-termination can arise with this grammar since rule (2) allows
for lexical items with indefinitely long subcategorization lists.

(1) zO — xI x2

xO [cat s ]
xI [I][cat np ]
cat vp
X2 first [1]
subcat rest  end
2) z0  xl x2
O cat vp
cat vp
11 subcat first [2!1
rest 1] .
x2 12)

The first step in parsing a sentence with this grammar is to find a rule whose
left hand side unifies with the DAG described by the path equation {cat) = s

-0- International Parsing Workshop '89



(i.e. the start DAG). Since the rule in (I) satisfies this requirement, the next
step is to make a prediction for the x| daughter. In Earley’s algorithm as it was
originally formulated (Earley 1970), the prediction for x| would simply be its
category label (i.e. np). In this unification style grammar, however, category
labels are just features like any other feature. Since the DAGs associated with
each of the non-terminals (xO, x1,..., xn) in a rule may express just partial
information about that non-terminal, it is possible that some non-terminals
(such as x2 in the second rule) will not be associated with any category label at
all. The natural solution, then, would be to make a prediction using the entire
DAG associated with a given non-terminal. Suppose, now, that we have parsed
the np in rule (1) and we’re ready to parse x2. The DAG associated with x2
would be (3).

cat vp
first [cat np ]

subcat rest end

When this DAG unifies with the category on the left hand side of (2) we get
the rule shown in (4).

@) xO x| x2

cat vp

X0 subcat 2\
cat vp

« first i
subcat ¢ first [cat np ]

res (21 rest end
ox2 1

Now, following the same procedure, the predictor would next make a pre-
diction for the non-terminal xI in (4). It can easily be seen that when the DAG
associated with xI unifies with the left hand side of rule (2) the predicted rule
is almost the same as (4) except that the value for (subcat rest) in (4) becomes
the value for (subcat rest rest) in the new predict ,i. In fact, the predictor
step can continue making such predictions ad infinitum and, crucially, the new
predictions will not be subsumed by previous predictions.

To solve this problem Shieber proposes that the predictor step should not
use all of the information in the DAG associated with a non-terminal, but rather
it should use some limited subset of that information. Of course, when some
nodes of the DAG tire eliminated the predictor step can overpredict, but this
does not affect the correctness of the algorithm since these spurious predictions
will not be completable. Shieber’s proposal is basically that before the predictor
step is applied, a RD should be created which contains just the information
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associated with a finite set of paths (i.e. a restrictor). 3 In this way, Shieber’s
algorithm allows an infinite number of categories to be divided into a finite
number of equivalence classes. Since the number of possible RDs is finite it
becomes impossible to make the kind of infinite cycle of predictions illustrated
above.

Primarily for notational reasons, | will define restriction in a slightly different
manner from Shieber (1985). For our purpose here we can define the RD D’ of
DAG D to be the least specific DAG D’ C D such that for every path P in the
restrictor if the value of P in D is atomic then the value of P in D’ is the same
as the value of P in D and if the value of P in D is complex then the value of
P in D’ is a variable. This differs from Shieber’s definition in that reentrancies
are eliminated in the RD. Thus the RD is not really a DAG but rather is a
tree and hence it can be represented more easily by a simple list structure. For
example,given the restrictor [(a b), (d e f), (dijf) ] the RD for the DAG in
(5) (from Shieber 1985) will be represented by the indented list shown in (6),
in which variables are indicated by [].4

(6) [[a.[[6.cI]1.
\d, [[«.[[/. Oil],

[i, v [L/7. viinind

3 Restriction in the Subsumption Test

The first use of restriction I will discuss involves the subsumption check on new
predictions. In the original Earley’s algorithm (Earley 1970), a check was made
on each new prediction to see that an identical prediction had not already been
made in the same state set. Of course, if duplicate predictions are retained the
parser can fall into the left recursion trap. In Shieber’s adaptation, however, this
identity check is changed to the more general notion of a subsumption check. If
a new DAG is predicted that is subsumed by a previous (more general) DAG,

aThe question of how to select an appropriate restrictor for greatest efficiency must remain
a question for further research. See the conclusion of this paper for further discussion.

AEliminating reentrancies from RDs may also be a reasonable thing to do from a compu-
tational point of view. Judging from the particular restrictors used in Shieber (1985,1986)
it would appear that reentrancies rarely occur in RDs. However, for some purposes it may
be desirable to include more information in RDs. A possible example would be the use of
parsing algorithms for generation, in which it would be desirable to use as much top down
information as possible.
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the new DAG is not retained since any DAGs that could be predicted on the
basis of the new DAG could already have been predicted on the basis of the
more general DAG. Clearly, the move from an identity check to a subsumption
check is the right sort of move to make, but a subsumption check on arbitrarily
large DAGs can be an expensive operation. This seems to be an ideal area in
which restriction could be used to optimize the algorithm.

The move | propose is the following. Initially, new predictions are made in
the manner suggested by Shieber; i.e. make a RD for the category “to the right
of the Dot” and then collect all the rules from the grammar whose left hand side
category unifies with this RD-these rules then constitute the new predictions.
At this point | suggest that the RD used to find these predictions should be
retained along with the new predictions; that is, a list of RDs that have been
used to make predictions should be kept for each state set. 1will call this list the
RDJList. Then, the next time the parser enters the predictor step and creates
a new RD from which to make new predictions, a subsumption check can be
made directly between this RD and the RD_List. If the new RD is subsumed
by any member of the RD_List then we can immediately give up trying to make
any new predictions from this RD. Any predictions made from th RD would
necessarily already have been made when the predictor encountered the more
general RD in the RDJList. Thus we avoid both the expense of making new
predictions and the expense of applying the subsumption test to weed these new
predictions out. Moreover, since RDs are typically very small (at least given
the sample restrictors given in Shieber (1985,1986)), the subsumption test that
is performed on them can be applied very quickly.

As an example, suppose that some set of predictions has already been made
using the RD, ([cat, np]], then there is no point in making predictions using
[[cat, np],[num, sing]] since any such predictions would necessarily fail the sub-
sumption check; i.e., rules expanding singular noun phrases are more specific
than (or subsumed by) rules expanding noun phrases unspecified for number.
This particular case probably does not arise often in actual parsing, but cases
of left recursion do arise for which this optimization can make a very signifi-
cant difference in processing speed. In fact our experience with the UNICORN
natural language processing system (Gerdemann and Hinrichs 1988), has shown
that for grammars with a large amount of left recursion, this simple optimiza-
tion can make the difference between taking several minutes of processing time
and several seconds of processing time.

4 Restriction in the Completer Step

The next use of restriction | propose involves the completer step. The completer
applies, in Earley’s algorithm, at the point where all of the right hand side of
a rule in some state has been consumed, i.e., the point at which the “Dot” has
been moved all the way to the right in some rule. At this point the completer
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goes back to the state set in which the state to be completed was originally
predicted and searches for a prediction in this state set which has a category
“to the right of the Dot* which can unify with the mother node of the rule in
the state to be completed. This search can be quite time consuming since the
completer must attempt to perform a unification for each state in this state set.

In each state, there is a variable F which indicates in which state set that
stace was predicted so the completer can immediately go back to the Fth state
set in order to make the completion. But there is no variable which indicates
which state in the Fth state set could have been responsible for making that
prediction. And, in fact, it would be quite difficult to implement such a direct
backpointer since in many cases a particular state is really only indirectly re-
sponsible for some prediction in the sense that it would have been responsible
for the prediction if it had not been for the subsumption check. For example,
suppose we try to implement a system of backpointers as follows. Each state
will be a quintuple (Lab,BP,Dot,F,Dag) where Lab is an arbitrary label, BP is
a kind of backpointer which takes as its value the label of the state that was re-
sponsible for predicting the current state and Dot, F, and Dag are as in Shieber’s
adaptation of Earley’s algorithm; i.e., Dot is a pointer to the current position
in the rule represented by Dag, and F is the more general kind of backpointer
which only indicates in which state set the original prediction was made. To
illustrate the problem with this scheme, consider the partial state set in (7), in
which the subscripted t indicates that this is the tth state set.

(7 [Labi, BP 1, Dotl, F1, Dagl], [Lab2,BP2, Dot2, F2, Dag?\,...]

Now suppose the RD for Dagl is [[cat,np]] and that the RD for Dag2 is
[[cat,np],[num,sing]]. When the predictor looks at state Labi it will make
some number of predictions with backpointers to Labi as in (8) (For example,
[Lab3,Labl,0,i,Dag3] is a new state with an arbitrary label, Lab3, a backpointer
to state Labi, the Dot set at O indicating the beginning of the left hand side,
F set to t indicating that the prediction was made in state set i, and Dag3
representing the new rule).

(8) i[... [Labi, BP1,Dotl, FI, Dagl], [Lab2, BP2, Dot2, F2, Dag2],
[LabZz, Labi, DotZ, DagZ], [LabA, Labi, Dot\, FA, Dagi],...]

But when the predictor looks at Lab2 no predictions will be made since its RD
ifl subsumed by the RD of Labi. Thus even though (without the subsumption
check) Lab2 could have been responsible for the predictions Lab3 and Lab4, no
backpointers are created for Lab2.

It is at this point that RDs can again help us out. The idea is that when
the predictor attempts to make predictions on the basis of some state it adds
a RD to that state and to all predictions made from that state as a kind of
marker (or coindexing between a state and the predictions resulting from that
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state). The RD used for this coindexing will be either 1) the RD used to
make the predictions or 2.) if no predictions were made because a more general
RD had already been used to make predictions, then this more general RD
is used as the marker. Now the completion step is greatly simplified. The
completer can go back to the Fth state set and attempt unification only on states
that have identical RD-markers. Clearly this move eliminatesmany attempted
unifications that would be doomed to failure. To implement this idea states
will be defined as quintuples (BP,FP,Dot,F,Dag) where BP is a RD acting as a
backpointer, FP is a RD acting as a forward pointer and F,Dot, and Dag are as
before. Now the analog of (7) will be (9).

) i[...[BP1,FP1,Dotl, FI, Dagl\, [BP2, FP2, Dot2, F2,Dag2]...]

In (99 BPI and BP2 will each be instantiated to the value of the RD re-
sponsible for the prediction which created their respective state. FPI and FP2,
however will be uninstantiated variable since these two states have not yet been
responsible for creating any new predictions. Now assuming that the RDs for
Dagl and Dag2 are as in (7) then when the predictor applies to the first state
shown in (9), the result will be the state set shown in (10).

(10) J[. ..[BPI, [[cat, np]], Dotl, FI, Dagl],
[BP2, FP2,Dot2, F2, Dag?\,
[[[cat, np]], FP3, DotZ, F 3, Dag3],
[[[cat, np]], FPA, DotA, FA, DagAl,...]
Then when the predictor looks at the second state in (10), no predictions

will be made as before, however the predictor will register the attempt to make
a prediction by instantiating the variable FP2 as in (11).

(11) i[. ..[BPI, [[cat, np]], Dotl, F1, Dagl],
[BP2, [[cat, np]], Dot2, F2, Dag2\,
[[[cat, np]], FPZ, Dotz, F 3, Dag3],
[[[cat, np]], FPA, DotA, FA, DagA],...]
Now whenever the descendants of states 3 and 4 are ready to be completed,
it will be easy to go back to this state set and find the states whose forward

pointers are identical to the backpointers of the states to be completed. Thus
many candidates for completion are immediately ruled out.

5 Restriction Used in Lookahead

The final use for restriction that | propose involves lookahead. Lookahead is one
aspect of Earley’s algorithm which clearly needs modification in order to be used
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efficiently with unification grammars or natural language grammars in general.
In the original algorithm, a calculation of lookahead was performed as part of
the prediction step. A simple example can show the problem with Earley’s
version of this procedure. In the S —» NP VP rule, when the predictor makes
a prediction for NP, it is required to add a state for each possible lookahead
string that can be derived from the VP. But given the large number of verbs or
adverbs that can start a VP in a natural language this would require adding a
huge number of states to the state set. Clearly we don’t want to simply list all
the possible lookahead strings, but rather the correct approach would be to find
what features these strings have in common and then add a smaller number of
states with feature based lookaheads.

Aside from the question of what kind of lookahead to calculate, there are
two other questions that need to be considered: first the question of when to
calculate lookahead and second how to calculate it. Beginning with the when
question, it is clear that unification grammars require lookahead to be calculated
at a later point than it is in Earley’s approach. The reason for this is illustrated
by rules like (2) repeated here as (12)

@) xO  xI x2

cat vp
x0 subcat [I]
cat vp
xl 1] first [2]
subcat rest  [I]
x2 [2]

According to Earley’s approach, when a prediction is made for xI, the looka-
head for x2 should be calculated. But in this case, no features for x2 will be
specified until after xI is parsed. This is an extreme situation, but it illustrates
a general problem. It is the normal case in a unification grammar for the result
of parsing one category to affect the feature instantiations on its sister. Clearly,
what needs to be done in this case is to parse x| and then perform a lookahead
on x2. Thus, lookahead should be calculated for a category immediately before
the predictor applies to that category; i.e., lookahead can be considered a quick
check to be made immediately before applying prediction. Unlike Earley’s orig-
inal algorithm, then, it is not necessary to put a lookahead string into a state
to be checked at a later point.

The question, then, is how to calculate lookahead. In Earley’s version of the
algorithm, there is a function, Hk which when applied to a category C returns
a set of k-symbol strings of terminals which could begin a phrase of category
C. When applied to unification grammars, however, the problem of having an
infinite number of categories again appears. We certainly cannot list possible
strings of preterminals that can begin each category. It is clear, then, that some
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form of restriction is again going to be necessary in order to implement any kind
of lookahead. One, relatively simple, way of implementing this idea is as follows.
When the predictor applies to a category C, the first thing it does is make a RD
for C. Then a table lookup is performed to determine what preterminal cate-
gories could begin C. Since there are potentially infinite preterminal categories,
restriction must be applied here too. So more precisely, the table lookup finds
a set of RDs that could unify with whatever actual preterminal could begin a
phrase of category C. Let us call these RDs the preterminal RDs. Then before
the predictor can actually make a prediction a check must be performed to ver-
ify that the next item in the input is an instance of a category that can unify
with one of the preterminal RDs. If the check fails, then the prediction is aban-
doned. All that remains is to specify how the lookup table is constructed. One
way such a table might be constructed would be to run the parser in reverse for
generation as in Shieber (1988) . Thus, for each possible RD (given a particular
restrictor), the generator is used to determine what preterminal RDs can begin
a phrase of this category.

6 Conclusion

I have argued here that restriction can be used in unification parsing to effect
three optimizations. First, it can be used to greatly speed up the subsumption
test for adding new predictions to the state set, second it can be used to speed up
the searching used in the completer step, and finally it can be used to implement
a form of lookahead. The first two of these uses have been fully implemented
within the UNICORN natural language processing system (Gerdemann and
Hinrichs 1988). The use of restriction with lookahead is still under development.

In general, the fact that unification grammars may have categories of in-
definite complexity necessitates some way of focusing on limited portions of
the information contained in these categories. It seems quite likely, then, that
restriction would be useful even in other parsing algorithms for unification gram-
mars. The primary question that remains is what portion of the information
in complex DAGs should be used in these algorithms; that is, the question is
how to choos« a restrictor. Up to now, no general principles have been given for
choosing a restrictor for greatest efficiency. Given the proposals in this paper, it
becomes even more critical to find such general principles since restriction can
affect the efficiency of several steps in the parsing algorithm.
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An Overview of
Disjunctive Constraint Satisfaction
mJohn T. Maxwell Il and Ronald M. Kaplan

Xerox Palo Alto Research Center

Introduction

This paper presents a new algorithm for solving disjunctive systems of constraints. The algorithm
determines whether a system is satisfiable and produces the models if the system is satisfiable. There
are three main steps for determining whether or not the system is satisfiable:
1)turn the disjunctive system into an equi-satisfiable conjunctive system in polynomial time
2) convert the conjunctive system into canonical form using extensions of standard techniques
® extract and solve a propositional ‘disjunctive residue’

Intuitively, the disjunctive residue represents the unsatisfiable combinations of disjuncts in a
propositional form based on the content of the constraints. Each of the transformations above
preserves satisfiability, and so the original disjunctive system is satisfiable if and only if the
disjunctive residue is satisfiable. If the disjunctions are relatively independent (as frequently happens
in grammatical specifications), then the disjunctive residue is significantly easier to solve than the
original system.

The first three sections of this paper cover the steps outlined above. The fourth section describes how
models can be produced. Finally, the last section compares this approach with some other techniques
for dealing with disjunctive systems of constraints.

Turning Disjunctions into Conjunctions

Basic Lemma
Our method depends on a simple lemma for converting a disjunction into a conjunction of implications:

(1) &4 V &2is satisfiable iff(p—% 45 )A ( -1p-* 49)is satisfiable,
where p is a new propositional variable.

Proof:
D If4i v $2 is satisfiable, then either 45 is satisfiable or 42 is satisfiable. Suppose that 4> is

satisfiable. Then if we choose p to be true, then p—» s satisfiable because 45 is satisfiable,
and -Ip-* $2 is vacuously satisfiable because its antecedent is false. Therefore
(p-+ Gi)A (-lp-» 42)is satisfiable.

) If(p—»4hi )A (ip-> &2)is satisfiable, then both clauses are satisfiable. One clause will
be vacuously satisfiable because its antecedent is false and the other will have a true antecedent.
Suppose that p-> 43 is the clause with the true antecedent. Then 4> must be satisfiable for p-+ 45 to
be satisfiable. But if 4> is satisfiable, then sois 4 V 42 Q E D.

Intuitively, the new variable p is used to encode the requirement that at least one of the disjuncts be
true. Inthe remainder of the paper we use lower-case p to refer to a single propositional variable, and
upper-case P to refer to a boolean combination of propositional variables. We call P 4>a contexted
constraint, where P is the context and 4>is called the base constraint.

(Note that this lemma is stated in terms of satisfiability, not logical equivalence. A form ofthe lemma
that emphasized logical equivalence would be: 4tV 42**3p: (p—»4S)A (-IP  $2 )
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Turning a Disjunctive System into a Conjunctive System

The lemma given above can be used to convert a disjunctive system of constraints into an flat
conjunction of contexted constraints in polynomial time. The resulting conjunction is satisfiable if and
only if the original system is satisfiable. The algorithm for doing so is as follows:

(2) a) push all of the negations down to the literals
b) turn all of the disjunctions into conjunctions using the lemma above
c) flatten nested contexts with: IPt—=1Pj = <)) < (PtA PR -* )

d) separate conjoined constraints with: (P, -» $1 A ) ** (Pi $IYA (P, -* 42)

This algorithm is a variant of the reduction used to convert disjunctive systems to CNF in the proof
that CNF is NP-complete[4], and is thus known to run in polynomial time. In effect, weare simply
converting the disjunctive system to an implicational form of CNF (note that P —* islogically
equivalent to ~>P V & CNF has the desirable property that if any one clause can be shown to be
unsatisfiable, then the entire system is unsatisfiable.

Example

The functional structure f of an uninflected verb in English has the following constraints in the
formalism of Lexical-Functional Grammar[6|:

(3) ((f INF) = - A(f TENSE) = PRES A -[(fSUBJ NUM) = SG A (f SUBJ PERS) = 3]) v (FINF) = +

(In LFG notation, a constraint of the form (f a) = v asserts that fta) = v,where fis a function, a is an
attribute, and v is a value, (fa b)=v is shorthand for f(a)(b) =v.) These constraints say that an
uninflected verb in English is either a present tense verb which is not third person singular or it is
infinitival. In the left column below this system has been reformatted so that it can be comparedwith
the results of applying algorithm (2) to it, shown on the right:

reformatted: converts to:
( (f INF) = - (Pt fINF=- ) A
A (f TENSE) = PRES (P * (fTENSE) = PRES) A
A -[ (f SUBJ NUM) = SG (pl1Ap2 (f SUBJ NUM) x SG ) A
A (fSUBJ PERS) =3 ]) (p1A ->p2 -» (f SUBJ PERS) * 3) A
\V; (fINF) = + (“P1- (FINF) = +)

Converting the Constraints to Canonical Form

A conjunction of contexted constraints can be put into an equi-satisfiable canonical form that makes it
easy to identify all unsatisfiable combinations of constraints. The basic idea is to start with
algorithms that determine the satisfiability of purely conjunctive systems and extend each rule of
inference or rewriting rule so that it can handle contexted constraints. We illustrate this approach by
modifying two conventional satisfiability algorithms, one based on deductive expansion and one based
on rewriting.

Deductive Expansion

Deductive expansion algorithms work by determining all the deductions that could lead to
unsatisfiability given an initial set of clauses and some rules of inference. The key to extending a
deductive expansion algorithm to contexted constraints is to show that for every rule of inference that
is applicable to the base constraints, there is a corresponding rule of inference that works for contexted
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constraints. The basic observation is that base constraints can be conjoined if their contexts are
conjoined:

@  (Pi — S )A (P2—>40) =* (Pi A P2—&i A (2)

If we know from the underlying theory of conjoined base constraints that <6 A <2 —a4)3, then the
transitivity of implication gives us:

(5)  (Pi —* 45 )A (P2 —*<32) =* (Pi A P2 —#43)

Equation (5) is the contexted version of A A $3. Thus the following extension of a standard
deductive expansion algorithm works for contexted constraints:

(6) For every pair of contexted constraints Pi —»<£l and P2—* qosuch that:
a) there is a rule of inference $1A $2 -+ (£3
b) P\ A P2 = FALSE
c) there are no other clauses P3—%4)3such that PtAP2-P 3
add Pi A P2—<$3to the conjunction of clauses being processed.

Condition (6b) is based on the observation that any constraint of the form FaLse —(pcan be discarded
since no unsatisfiable constraints can ever be derived from it. This condition is not necessary for the
correctness of the algorithm, but may have performance advantages. Condition (6c) corresponds to the
condition in the standard deductive expansion algorithm that redundant constraints must be
discarded if the algorithm is to terminate. We extend this condition by noting that any constraint of
the form Pj —* 4>is redundant if there is already a constraint of the form Pj —»<f where Pj -* Pj. This is
because any unsatisfiable constraints derived from Pj -+ 4>will also be derived from Pj —* <€ Our
extended algorithm terminates if the standard algorithm for simple conjunctions terminates. When it
terminates, an equi-satisfiable disjunctive residue can be easily extracted, as described below.

Rewriting

Rewriting algorithms work by repeatedly replacing conjunctions of constraints with logically
equivalent conjunctions until a normal form is reached. This normal form usually has the property
that all unsatisfiable constraints can be determined by inspection. Rewriting algorithms use a set of
rewriting rules that specify what sorts of replacements are allowed. These are based on logical
equivalences so that no information is lost when replacements occur. Rewriting rules are interpreted
differently from logical equivalences, however, in that they have directionality: whenever a logical
expression matches the left-hand side of a rewriting rule, it is replaced by an instance of the logical
expression on the right-hand side, but not vice-versa. To distinguish the two, we will use «* for
logical equivalence and » for rewriting rules. (This corresponds our use of —»for implication and =
for deduction above.)

A rewriting algorithm for contexted constraints can be produced by showing that for every rewrite
rule that is applicable to the base constraints, there is a corresponding rewrite rule for contexted
constraints. Suppose that $1 A 2 <><$3is a rewriting rule for base constraints. An obvious candidate

for the contexted version of this rewrite rule would be to treat the deduction in (5) as a rewrite rule:
(7 (Pi *$1 )A (P2—8$2) <> (Pi AP2-»$3) (incorrect)

This is incorrect because it is not a logical equivalence: the information that <p\ is true in the context
Pi A ->P2and that $2 is true in the context P2 A —tPi has been lost as the basis of future deductions. If
we add clauses to cover these cases, we get the logically correct:

©®  (Piodi)A(P2-%$2)~ (Pi A -P2-*J5i)A( P2A -P t-><2)A (Pi A P24$3)
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This is the contexted equivalent of o A $2 <>$3. Note that the effect of this is that the contexted
constraints on the right-hand side have unconjoinable contexts (that is, their conjunction is
tautologically false). Thus, although the right-hand side of the rewrite rule has more conjuncts than
the left-hand side, there are fewer implications to be derived from them.

Loosely speaking, a rewriting algorithm is constructed by iterative application of the contexted
versions of the rewriting rules of a conjunctive theory. Rather than give a general .tiine here, let us
consider the particular case of attribute value logic.

Application to Attnbute-Value Logic

Attribute-value logic is used by both LFG and unification-based grammars. We will start with a
simple version of the rewriting formalism given in Johnson[51. For our purposes, we only need two of
the rewriting rules that Johnson defines[5 pp. 38-39]:

0) ti =t2 « t2«tlwhen [jti]| < []t2i (INI'is Johnson's norm for terms. )
(10) t2=stiA<t) « t2~ti A <$2/til where <contains t2and ||t2|> i]ti]|

(<Mt2/til denotes "4) with every occurrence of t2 replaced by ti". )

We turn equation (10) into a contexted rewriting rule by a simple application of (7) above:

(11)  (Pi->t2=tl1)A( P2-><t>)
» (Pi A ->P2—t2=tL) A( - Pi A P2-+<t>) A( Pi AP2-+(t2=ti A<t>[t2/tiD)

We can collapse the two instances of 12=11 together by observing that (P-*AAB) *+
(p a)A(P->B)andthat (P{-* A)A(Pj A) « (PtV Pj-* A), giving the simpler form:

(12)  (Pi -* t2=ti)A (P2%4>) & (Pi -* t2=ti )A (P2A - Pi -> 45 A (P2A Pi -* 4[t2ti 1)

Formula (12) is the basis for a very simple rewriting algorithm for a conjunction of contexted
attribute-value constraints.

(13) For each pair of clauses Pi —*tj=ttand P2—4>

3 if [l > INI,thenset 20t ad B 10 else st 2107 andti 1Ot
b) if $+mentions t2then replace P2-* Pwith (P2A -*Pi -> <P A (P2A Pi -* 2/ til)

Notice that since Pi -* t2=1ti is carried over unchanged in (12), we only have to replace P2  <in
(13b). Note also that if P2A Pt is FALSE, there is no need to actually add the clause P2A Pi -= <t(t2/ti]
since no unsatisfiable constraints can be derived from it. Similarly if P2 A —21 is FALSE there is no

need to add P2 A ~1Pi <

Example

The following example illustrates how this algorithm works. Suppose that (15) is the contexted
version of (14):

(14) [f2=fiV (fia) = ci]A[(f2a)=c2v(fia) =c3] where g *cjforall i*]j
15) a pi > f2-l

b.  Apj -* =o!

C. P > (f2a)=C2

d. - > (flag=a
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(For clarity, we omit the A's whenever contexted constraints are displayed in a column.) There is an
applicable rewrite rule for constraints (15a) and (15c) that produces three new constraints:

(16) pi — f2=fi n Pi m =
p2 -+ (T2a)=c2 ~"Pia P2-* (f2a)=c2
pi Ap2 -» (fia)=0

Although there is an applicable rewrite rule for (15d) and the last clause of (16), we ignore it since pt
A p9 A —p2 is FALSE. The only other pair of constraints that can be rewritten are (15b) and (15d).
producing three more constraints:

(T i *> (fia)=cie> ~Pi ~" (fia)=ci
P2 . (fia)=C3 PiAt? ~ (fia)=c3
“pi A -p2* C=c3

Since no more rewrites are possible, the normal form ot (15) is thus:

18) a pi — f2=fi
b. «gpj -> (fl a) =ci
c. -pi Ap2 — (Ra)=Q
d. Pi A -1p2 % (fi a)=c3
e PiAp2 — (fia=CQ
f. APIiA p2 -» © =B

Extracting the Disjunctive Residue

When the rewriting algorithm is finished, all unsatisfiable combinations of base constraints will have
been derived. But more reasoning must be done to determine from base unsatisfiabilities whether the
disjunctive system is unsatisfiable. Consider the contexted constraint P -* < where <is unsatisfiable.
In order for the conjunction of contexted constraints to be satisfiable, it must be the case that -*P is
true. We call -'Pa nogood, following deKleer's terminology! 1] Since P contains propositional
variables indicating disjunctive choices, information about which conjunctions of base constraints are
unsatisfiable is thus back-propagated into information about the unsatisfiability of the conjunction of
the disjuncts that they come from. The original system as a whole is satishable just in case the
conjunction of all its nogoods is true. We call the conjunction of all of the nogoods the residue ot the
disjunctive system.

For example, clause (18f) asserts that -*pi A A"P2-»>ci =c3. Butci =c3is unsatisfiable, since we know

that ci * ¢3. Thus ~(-1pi A -1P2) is a nogood. Since ci =c3 is the only unsatisfiable base constraint in
(18), this is also the disjunctive residue of the system. Thus (14) is satisfiable because -1(~IpiA 1po)

has at least one solution (e.g. pi is true and P2 is true).

Since each nogood may be a complex boolean expression involving conjunctions, disjunctions and
negations of propositional variables, determining whether the residue is satisfiable may not be easy.
In fact, the problem is NP complete. However, we have accomplished two things by reducing a
disjunctive system to its residue. First, since the residue only involves propositionat variables, it can
be solved by propositional reasoning techniques (such as deKleer's ATMS) that do not require
specialized knowledge of the problem domain. Second, we believe that for the particular case of
linguistics, the final residue will be simpler than the original disjunctive problem. This is because the
disjunctions introduced from different parts of the sentence usually involve different attributes in the
feature structure, and thus they tend not to interact.

Another way that nogoods can be used is to reduce contexts while the rewriting is being carried out,
using identities like the following:
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(19) ~PiA( ~IPiAP2~* <) < PiA(R2 P
(20) -Pi A( Pi A P2-><$>) « pj
(21) Pi A Pi < FALSE

Doing this can improve the performance since some contexts are simplified and some constraints are
eliminated altogether. However, the overhead of comparing the nogoods against the contexts may
outweigh the potential benefit.

Producing the Models

Assuming that there is a method for producing a model for a conjunction of base constraints, we can
produce models from the contexted system. Every assignment of truth values to the propositional
variables introduced in (1) corresponds to a different conjunction of base constraints in the original
system, and each such conjunction is an element of the DNF of the original system. Rather than
explore the entire space of assignments, we need only enumerate those assignments for which the
disjunctive residue is true.

Given an assignment of truth values that is consistent with the disjunctive residue, we can produce a
model from the contexted constraints by assigning the truth values to the propositional variables in
the contexts, and then discarding those base constraints whose contexts evaluate to false. The
minimal model for the remaining base constraints can be determined by inspection if the base
constraints are in normal form, as is the case for rewriting algorithms. (Otherwise some deductions
may have to be made to produce the model, but the system is guaranteed to be satisfiable.) This
minimal model will satisfy the original disjunctive system.

Example

The residue for the system given in (18) is -1( _Ipi A ->p2). This residue has three solutions : pi and
P2 both true, pi true and p2 false, and pi false and p2 true. We can produce models for these solutions
by extracting the appropriate constraints from (18), and reading off the models. Here are the solutions
for this system:

solution: constraints: model:
(22)  pi true, p2 true: f2=fi A(fi a) = Q@ ne 1
(23)  pi true, p2 false: f2=fi A (fi a)=c3 e 1
(24)  pi false, p2true: (fla)=ci A (f2a)= @ flfa cl]

Comparison with Other Techniques

In this section we compare disjunctive constraint satisfaction with some of the other techniques that
have been developed for dealing with disjunction as it arises in grammatical processing. These other
techniques are framed in terms of feature-structure unification and a unification version of our
approach would facilitate the comparisons. Although we do not provide a detailed specification of
context-extended unification here, we note that unification can be thought of as an indexing scheme
for rewriting. We start with a simple illustration of how such an indexing scheme might work.
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Unification Indexing

Regarding unification as an indexing scheme, the main question that needs to be answered is where to
index the contexts. Suppose that we index the contexts with the values under the attributes. Then the

attribute-value (actually, attribute-corc/Jexr-value) matrix for 125a) would be (25h):

-~ pl ell
(25) a fa)=ciV (,fb) = C2V(fa)=c3) a L-PlaP2 O3
b Qpl&p2 cf|_

Since the contexts are indexed under the attributes, two disjunctions will only interact if they have
attributes in common. |If they have no attributes in common, their unification will be linear in the
number of attributes, rather than multiplicative in the number of disjuncts. For instance, suppose
that (26b) is the attribute value matrix for (26a):

c (fi3 c4]
(26) a (fe)=CAV ((fd) =GV (fe)=eg) d [}p3&p4 c5]
9 [jp3&'p4 ctf]

Since these disjunctions have no attributes in common, the attribute-value matrix for the conjunction
of (25a) and (26a) will be simply the concatenation of (25b) and (26b):

vy

-er)gl) 1&-p2 93']]

Q-pl&p2 c2j

[p3 c4]

o

@n

(¢}

d Qp3&p4 cb5]

e [}p3&'p4 c6]
The DNF approach to this problem would produce nine f-structures with eighteen attribute-value
pairs. In contrast, our approach produces one f-structure with eleven attribute-value or context-value
pairs. In general, ifdisjunctions have independent attributes, then a DNF approach is exponential in
the number of disjunctions, whereas our approach is linear. This independence feature is very
important for language processing, since, as we have suggested, disjunctions from different parts ofa
sentence usually constrain different attributes.

Karttunen sDisjunctive Values

Karttunen(7] introduced a special type of value called a "disjunctive value” to handle certain types of
disjunctions. Disjunctive values allow simple disjunctions such as:

(28)  (FCASE) = ACCV (FCASE) = MOM
to be represented in the unification data structure as:

(29> [Case {acc nomf]|

where the curly brackets indicate a disjunctive value. Karttunen's disjunctive values are not limited
to atomic values, as the example he gives for the German article "die" shows:

£ASE {NOM ACC}

i ([Sender fem]]
(30) die = INFL AGR J [number sglJ

([number pQ
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The corresponding attribute-context-value matrix for our scheme would be:

jpl  Notfl

CASE ACC)
131 die = |neL GENDER [p2 FEM]
AGR fp2 sG]

NUMBER
L-p2 py

The advantage of disjunctive constraint satisfaction is that it can handle all types of disjunctions,
whereas disjunctive values can only handle atomic values or simple feature-value matrices with no
external dependencies. Furthermore, disjunctive constraint satisfaction can often do better than
disjunctive values for the types of disjunctions that they can both handle. This can be seen in (31),
where disjunctive constraint satisfaction has pushed a disjunction further down the AGr feature than
the disjunctive value approach in (30). This means that if AGR were given an attribute other than
GENDER Or NUMBER, this new attribute would not interact with the existing disjunction.

However, disjunctive values may have an advantage of reduced overhead, because they do not require
embedded contexts and they do not have to keep track of nogoods. It may be worthwhile to incorporate
disjunctive values in our scheme to represent the very simple disjunctions, while disjunctive
constraint satisfaction is used for the more complex disjunctions.

Kasper's Successive Approximation

Kasper(8, 9] proposed that an efficient way to handle disjunctions is to do a step-wise approximation
for determining satisfiability. Conceptually, the step-wise algorithm tries to find the inconsistencies
that come from fewer disjuncts first. The algorithm starts by unifying the non-disjunctive constraints
together. Ifthe non-disjunctive constraints are inconsistent, then there is no need to even consider the
disjunctions. Ifthey are consistent, then the disjuncts are unified with them one at a time, where each
unification is undone before the next unification is performed. If any of these unifications are
inconsistent, then its disjunct is discarded. Then the algorithm unifies the non-disjunctive constraints
with all possible pairs of disjuncts, and then all possible triples of disjuncts, and so on. (This technique
is called "k-consistency" in the constraint satisfaction literature[3].) In practice, Kasper noted that
only the first two steps are computationally useful, and that once bad singleton disjuncts have been
eliminated, it is more efficient to switch to DNF than to compute all of the higher degrees of
consistency.

Kasper’ technique is optimal when most of the disjuncts are inconsistent with the non-disjunctive
constraints, or the non-disjunctive constraints are themselves inconsistent. His scheme tends to
revert to DNF when this is not the case. Although simple inconsistencies are prevalent in many
circumstances, we believe they become less predominate as grammars are extended to cover more and
more linguistic phenomena. The coverage of a grammar increases as more options and alternatives
are added, either in phrasal rules or lexical entries, so that there are fewer instances of pure
non-disjunctive constraints and a greater proportion of inconsistencies involve higher-order
interactions. This tendency is exacerbated because of the valuable role that disjunctions play in
helping to control the complexity of broad-coverage grammatical specifications. Disjunctions permit
constraints to be formulated in local contexts, relying on a general global satisfaction procedure to
enforce them in all appropriate circumstances, and thus they improve the modularity and
manageability of the overall grammatical system. We have seen this trend towards more localized
disjunctive specifications particularly in our developing LFG grammars, and have observed a
corresponding reduction in the number of disjuncts that can be eliminated using Kasper's technique.
On the other hand, the number of independent disjunctions, which our approach does best on, tends to
go up as modularity increases.

One other aspect of LFG grammatical processing is worth noting. Many LFG analyses are ruled out
not because they are inconsistent, but rather because they are incomplete. That is, they fail to have an
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attribute that a predicate requires (e.g. the object is missing for a transitive verb). Since incomplete
solutions cannot be ruled out incrementally (an incomplete solution may become complete with the
addition of more information), completeness requirements provide no information to eliminate
disjuncts in Kasper's successive approximation. These requirements can only be evaluated in what is
effectively a disjunctive normal form computation. But our technique avoids this problem, since
independent completeness requirements will be simply additive, and any incomplete contexts can be
easily read off of the attribute-value matrix and added to the nogoods before solving the residue.

Kasper's scheme works best when disjuncts can be eliminated by unification with non-disjunctive
constraints, while ours works best when disjunctions are independent. It is possible to construct a
hybrid scheme that works well in both situations. For example, we can use Kasper's scheme up until
some critical point (e.g. after the first two steps), and then switch over to our technique instead of
computing the higher degrees of consistency.

Another, possibly more interesting, way to incorporate Kasper's strategy is to always process the sets
of constraints with the fewest number of propositional variables first. That is, if P3 A P4 had fe® er

propositional variables than P A P.,, then the rewrite rule in (32b) should be done before (32a):

(32) a (PL- 31)A (PO-* €9) = (PLA P, -* (%)
b. (P3-* $8)A (P4-+ &4) = (P3A P4-* (36)

This approach would find smaller nogoods earlier, which would allow combinations of constraints that
depended on those nogoods to be ignored, since the contexts would already be known to be inconsistent.

Eisele and Dorre s techniques

Eisele and Dorre[2] developed an algorithm for taking Karttunen's notion of disjunctive values a little
further. Their algorithm allows disjunctive values to be unified with reentrant structures. The
algorithm correctly detects such cases and "lifts the disjunction due to reentrancy". They give the
following example:

Notice that the disjunction under the "a" attribute in the first matrix is moved one level up in order to
handle the reentrancy introduced in the second matrix under the "b" attribute.

This type of unification can be handled with embedded contexts without requiring that the disjunction
be lifted up. In fact, the disjunction is moved down one level, from under "a" to under "b" and "c":

Overall

The major cost of using disjunctive constraint satisfaction is the overhead of dealing with contexts and
the disjunctive residue. Our technique is quite general, but if the only types of disjunction that occur
are covered by one of the other techniques, then that technique will probably do better than our
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scheme. For example, if all of the nogoods are the result of singleton inconsistencies (the result of
unifying a single disjunct with the non-disjunctive part), then Kasper's successive approximation
technique will work better because it avoids our overhead. However, if many of the nogoods involve
multiple disjuncts, or if some nogoods are only produced from incomplete solutions, then disjunctive
constraint satisfaction will do better than the other techniques, sometimes exponentially so. We also
believe that further savings can be achieved by using hybrid techniques if the special cases are
sufficiently common to warrant the extra complexity.
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1 Introduction

Many of the formalisms used to define the syntax of natural (and programming) languages may

be located in a continuum that ranges from propositional Horn logic to full first order Horn logic,

possibly with non-Herbrand interpretations. This structural parenthood has been previously re-

marked: it lead to the development of Prolog [Col-78, Coh-88] and is analyzed in some detail

in [Perw-80]. A notable outcome is the parsing technique known as Earley deduction [Per\V-83].
These formalisms play (at least) three roles:

descriptive: they give a finite and organized description of the syntactic structure of the
language,

analytic: they can be used to analyze sentences so as to retrieve a syntactic structure (i.e.
a representation) from which the meaning can be extracted,

generative: they can also be used as the specification of the concrete representation of
sentences from a more structured abstract syntactic representation (e.g. a parse tree).

The choice of a formalism is essential with respect to the descriptive role, since it controls the
perspicuity with which linguistic phenomena may be understood and expressed in actual language
descriptions, and hence the tractability of these descriptions for the human mind.

Plowever, computational tractability is required by the other two roles if we intend to use these
descriptions for mechanical processing of languages.

The aim of our work, which is partially reported here, is to obtain a uniform understanding of
the computational aspects of syntactic phenomena within the continuum of Horn-like formalisms
considered above, and devise general purpose algorithmic techniques to deal with these formalisms

in practical applications.
To attain this goal, we follow a three-sided strategy:

« Systematic study of the lower end of the continuum, represented by context-free (CF) gram-
mars (simpler formalisms, such as propositional Horn logic do not seem relevant for our
.purpose).
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e Systematic study of the higher end of the continuum, i.e. first order Horn clauses,

e Analysis of the relations between intermediate formalisms and Horn clauses, so as to reuse
for intermediate formalisms the understanding and algorithmic solutions developed for the
more powerful Horn clauses.

This strategy is motivated by two facts:

» the computational properties of both CF grammars and Horn clauses may be expressed with
the same computational model: the non-deterministic pushdown automaton,

» the two formalisms have a compatible concept of syntactic structure: the parse-tree in the
CF case, and the proof-tree in the Horn clause case.

The greater simplicity of the CF formalism helps us in understanding more easily most of the
computational phenomena. We then generalize this knowledge to the more powerful Horn clauses,
and finally we specialize it from Horn clauses to the possibly less powerful but linguistically more
perspicuous intermediate formalisms.

In the rest of this paper we present two aspects of our work:
1. a new understanding of shared parse forests and their relation to CF grammars, and

2. a generalization to full Horn clauses, also called Definite Clause (DC) programs, of the push-
down stack computational model developed for CF parsers.

2 Context-Free Parsing

Though much research has been devoted to this subject in the past, most of the practically usable
work has concentrated on deterministic push-down parsing which is clearly inadequate for natural
language applications and does not generalize to more complex formalisms. On the other hand
there has been little formal investigation of general CF parsing, though many practical systems
have been implemented based on some variant of Earley’s algorithm.

Our contribution has been to‘develop a formal model which can describe these variants in
a uniform way, and encompasses the construction of parse-trees, and more generally of parse-
forests. This model is based on the compilation paradigm common in programming languages and
deterministic parsing: we use the non-deterministicl Pushdown Automaton (PDA) as a virtual
parsing machine which we can simulate with an Earley-like construction; variations on Earley’s
algorithm are then expressed as variations in the compilation schema used to produce the PDA code
from the original CF grammar. This uniform framework has been used to compare experimentally
parsing schemata w.r.t. parser size, parsing speed and size of shared forest, and in reusing the
wealth of PDA construction techniques to be found in the literature.

This work has been reported elsewhere [Lan-74, BilL-88, Lan-88a]. An essential outcome,
which is the object of this section, is a new understanding of the relation between CF grammars,
parse-trees and parse-forests, and the parsing process itself. The presentation is informal since our

1In this paper, the abbreviation PDA always impnes the possibility of non-determinism
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(1) S D= NP VP

(2) S I S PP
(3) NP D= n
(4) NP D= det n
(5) NP ::= NP PP
(6) PP B prep NP
(7) \V = Vv NP
Figure 1: A Context-Free Grammar Figure 2: Graph of the Grammar

purpose is to give an intuitive understanding of the concepts, which is our interpretation of the
earlier theoretical results.

Essentiadly, we shall first show that both CF grammars and shared parsed forest may be repre-
sented by AND-OR graphs, with specific interpretations. We shall then argue that this represen-
tational similarity is not accidental, and that there is no difference between a shared forest and a
grammar.

2.1 Context-free Grammars

Our running example for a CF grammar is the pico-grammar of English, taken from [Tom-87],
which is given in figure 1.

In figure 2 we give a graphical representation of this grammar as an AND-OR graph. The
notation for this AND-OR graph is unusual and emphasizes the difference between AND and OR
nodes. OR-nodes are represented by the non-terminal categories of the grammar, and AND-nodes
are represented by the rules (numbers) of the grammar. There are also leaf-nodes corresponding
to the terminal categories.

The OR-node corresponding to a non-terminal X has exiting arcs leading to each AND-node n
representing a rule that defines X This arc is not explicitly represented in the graphical formalism
chosen. If there is only one such arc, then it is represented by placing n immediately under X This
is the case for the OR-node representing the non-terminal PP. If there are several such arcs, they
are implicitly represented by enclosing in an ellipse the OR-node Xabove all its son nodes n, n*, ...
This is the case for the OR-node representing the non-terminal NP.

The sons of an AND-node (i.e. a rule) are the grammatical categories found in the right-hand-
side of the rule, in that order. The arcs leading from an AND-node to its sons are represented
explicitly. The convention for orienting the arcs is that they leave a node from below and reach a
node from above.
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This graph accurately represents the grammar, and is very similar to the graphs used in some
parsers. For example, LR(0) parsing uses a graph representation of the grammar that is very
similar, the main difference being that the sons of AND-nodes are linked together from left to
right, rather than being attached separately to the AND-node [AhoU-72, DeR-71]. More simply,
this graph representation is very close to the data structures often used to represent conveniently
a grammar in a computer memory.

A characteristic of the AND/OR graph representing a grammar is that all nodes have different
labels. Conversely, any labelled AND/OR graph such that all node labels are different may be read
as — translated into — a CF grammar such that AND-node labels are rule names, OR-node labels
represent non-terminal categories, and leaf-node labels represent terminal categories.

2.2 Parse trees and parse forests

Given a sentence in the language defined by a CF grammar, the parsing process consists in building
a tree structure, the parse tree, that shows how this sentence can be constructed according to the
grammatical rules of the language. It is however frequent that the CF syntax of a sentence is
ambiguous, i.e. that several distinct parse-trees may be constructed for it.

Let us consider the grammar of figure 1.

If we take as example the sentence “l see a man with a mirror”, which translate into the
terminal sequence “n v det n prep det n”,we can build the two parse trees given in figures 3
and 4. Note that we label a parse tree node with its non-terminal category and with the rule used
to decompose it into constituents. Hence such a parse tree could be seen as an AND-OR tree
similar to the AND-OR grammar graph of figure 2. However, since all OR-nodes are degenerated
(i.e. have a unique son), a parse tree is just an AND-tree.

The number of possible parse trees may become very large when the size of sentences increases:
it may grow exponentially with that size, and may even be infinite for cyclic grammars (which
seem of little linguistic usefulness [PerW-83, Tom-85]). Since it is often desirable to consider all
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| see a man with a  mirror

Figure 5. Context and Subtree Figure 6: A shared parse forest

possible parse trees (e.g. for semantic processing), it is convenient to merge as much as possible
these parse trees into a single structure that allows them to share common parts. This sharing
save on the space needed to represent the trees, and also on the later processing of these trees
since it may allows to share between two trees the processing of some common parts2. The shared
representation of all parse trees is called shared parse forest, or just parse forest.

To analyze how two trees can share a (connected) part, we first notice that such a part may be
isolated by cutting the tree along an edge (or arc) as in figure 5. this actually give us two parts: a
subtree and a context (cf. figure 5). Either of .these two parts may be shared in forests representing
two trees. When a subtree is the same for two trees, it may be shared as shown in figure 7. When
contexts are equal and may thus be shared, we get the structure depicted in figure 8.

The sharing of context actually corresponds to ambiguities in the analyzed sentence: the ellipse
in figure 8 contains the head nodes for two distinct parses of the same subsentence u, that both
recognize v in the same non-terminal category NT. Each head node is labelled with the (number of)
the rule used to decompose v into constituents in that parse, and the common syntactical category
labels the top of the ellipse. Not accidentally, this structure is precisely the structure of the OR-
nodes we used to represent CF grammars. Indeed, an ambiguity is nothing but a choice between
two possible parses of the same sentence fragment v as the same syntactic category NT.

Using a combination of these two forms of sharing, the two parse trees of figures 3 and 4 may
be merged into the shared parse forest3 of figure 6. Note that, for this simple example, the only

2The direct production of such shared representation by parsing algorithms also corresponds to sharing in the

parsing computation [Tom-87, Lan-74, BilL-88].

3This graphical representation of shared forests is not original: to our knowledge it was first used by

Tomita [Tom-87], However, we believe that its comparative understanding as context sharing, as AND-OR tree
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Sentence:/\ Sentence:
uw  / \ \ uww / \

Figure 7: Two parses sharing a subtree Figure 8: Two parses sharing a context

context being shared is the empty outer context of the two possible parse tree, that still states that
a proper parse tree must belong to the syntactic category S.

In this representation we keep our double labelling of parse tree nodes with both the non-
terminal category and the rule used to decompose it into its constituents. As indicated above,
ambiguities are represented with context sharing, i.e. by OR-nodes that are the exact equivalent
of those of figure 2. Hence a shared parse forest is an AND-OR graph*. Note however that the
same rule (resp. non-terminal) may now label several AND-nodes (resp. OR-nodes) of the shared
parse forest graph.

If we make the labels distinct, for example by indexing them so as not to lose their original
information, we can then read the shared forest graph of a sentence 3 as a grammar Ta. The
language of this grammar contains only the sentence s, and it gives s the same syntactic structure(s)
— i.e. the same parse tree(s) and the same ambiguities — as the original grammar, up to the above
renaming of labels.

2.3 Parse forests for incomplete sentences

Our view of parsing may be extended to the parsing of incomplete sentences [Lan-88a].

An example of incomplete sentenceis .. see ... mirror”. Assuming that we know that
the first hole stands for a single missing word, and that the second one stands for an arbitrary
number of words, we can represent this sentence by the sequence “? v * n”. The convention is
that “?” stands for one unknown word, and for any number of them.

Such an incomplete sentence 3 may be understood as defining a sublanguage C3 which contains
all the correct sentences matching s. Any parse tree for a sentence in that sublanguage may then be
considered a possible parse tree for the incomplete sentence s. For example, the sentences “l see
a man with a mirror” and “You see a mirror” are both in the sublanguage of the incomplete
sentence above. Consequently, the two parse trees of figures 3 and 4 are possible parse trees for
this sentence, along with many others.

or as grammar has never been presented. Context sharing is called local ambiguity packing by Tomita.

4This graph may have cycles for infinitely ambiguous sentences when the grammar of the language is itself cyclic.
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All parse trees for the sentence s = “? v * ii” may be merged into a shared parse forest that
is represented in figure 9.

The graph of this forest has been divided into two parts by the horizontal grey line a —

The terminal labels underscored with a represent any word in the corresponding terminal
category. This is also true for all the terminal labels in the bottom part of the graph.

Tne forest fragment below the horizontal line is a (closed) subgraph of the original grammar
of figure 2 (which we have completed in grey to emphasize the fact). It corresponds to parse trees
of constituents that are completely undefined, within their syntactical categories, and may thus
be any tree in that category that the grammar can generate. This occurs once in the forest for
non-terminal PP at arc marked a and twice for NP at arcs marked p.

This bottom part of the graph brings no new information (it is just the part of the original
grammar reachable from nodes PP and NP). Hence the forest could be simplified by eliminating this
bottom subgraph, and labelling the end node of the a (resp. (5) arc with PP* (resp. NP*), meaning
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an arbitrary PP (resp. NP) constituent.

The complete shared forest of figure 6 may be interpreted as a CF grammar Qs. This grammar
is precisely a grammar of the sublanguage C3of all sentences that match the incomplete sentence 5.
Again, up to renaming of nonterminals, this grammar Q3 gives the sentences in Ca the same syntactic
structure as the original grammar of the full language.

If the sentence parsed is the completely unknown sentence u = then the corresponding
sublanguage Cu is the complete language considered, and the parse forest for u is quite naturally
the original grammar of the full language: The grammar of a CF language is the parse-forest of
the completely unknown sentence, i.e. the syntactic structure of all sentences in the language, in
a non-trivial sense. In other words, all ono can say about a fully unknown sentence assumed to
be correct, is that it satisfies the syntax ot the language. This statement does take a stronger
signification when shared parse forests are actually built by parsers, and when such a parser does
return the original grammar for the fully unknown sentence.

Parsing a sentence according to a CF grammar is just extracting a parse tree fitting that
sentence from the CF grammar considered as a parse forest.

Looking at these issues from another angle, we have the following consequence of the above
discussion: given a set of parse trees (i.e. appropriately decorated trees), they form the set of
parses of a CF language iff they can be merged into a shared forest that is finite.

In [BilL-88, Lan-88a] Billot and the author have proposed parsers that actually build shared
forests formalized as CF grammar. This view of shared forests originally seemed to be an artifact of
the formalization chosen in the design of these algorithms, and appeared possibly more obfuscatory
than illuminating. It has been our purpose here to show that it really has a fundamental character,
independently of any parsing algorithm.

This close relation between sharing structures and context-freeness actually hints to limitations
of the effectiveness of sharing in parse forests defined by non-CF formalisms.

From an algorithmic point of view, the construction of a shared forest for a (possibly incomplete)
sentence may be seen as a specialization of the original grammar to the sublanguage defined by
that sentence. This shows interesting connections with the general theory of partial evaluation
of programs [Fut-88], which deals with the specialization of programs by propagation of known
properties of their input.

In practice, the published parsing algorithms do not always give shared forest with maximum
sharing. This may result in forests that are larger or more complex, but does not invalidate our
presentation.

3 Horn Clauses

The PDA based compilation approach proved itself a fruitful theoretical and experimental support
for the analysis and understanding of general CF parsing a la Earley. In accordance with our
strategy of uniform study of the “Horn continuum”, we extended this approach to general Horn
clauses, i.e. DC programs.

This lead to the definition of the Logical Push-Down Automaton (LPDA) which is an operational
engine intended to play for Horn clauses the same role as the usual PDA for CF languages. Space
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limitations prevent giving here a detailed presentation of LPD As, and we only sketch the underlying
ideas. More details may be found in [Lan-88b, Lan-88].

As in the CF case, the evaluation of a DC program may be decomposed into two phases:

e a compilation phase that translate the DC program into a LPDA. Independently of the
later execution strategy, the compilation may be done according to a variety of evaluation
schemata: top-down, bottom-up, predictive bottom-up, .. Specific optimization techniques
may also be developed for each of these compilation schemata.

* an execution phase that can interpret the LPDA according to some execution technique: back-
track (depth-first), breadth-first, dynamic programming, or some combination [TamS-86].

This separation of concerns leads to a better understanding of issues, and should allow a more
systematic comparison of the possible alternatives.

In the case of dynamic programming execution, the LPDA formalism uses to very simple struc-
tures that we believe easier to analyze, prove, and optimize than the corresponding direct con-
structions on DC programs [PerW-83, Por-86, TamS-86, Vie-87b], while remaining independent of
the computation schema, unlike the direct constructions. Note that predictive bottom-up compi-
lation followed by dynamic programming execution is essentially equivalent to Earley deduction as
presented in [PerW-83, Por-86].

The next sections include a presentation of LPDAs and their dynamic programming interpre-
tation, a compilation schema for building a LPDA from a DC program, and an example applying
this top-down construction to a very simple DC program.

3.1 Logical PDAs and their dynamic programming interpretation

A LPDA is essentially a PDA that stores logical atoms (i.e. predicates applied to arguments) and
substitutions on its stack, instead of simple symbols. The symbols of the standard CF PDA stack
may be seen as predicates with no arguments (or more accurately with two argument similar to those
used to translate CF grammars into DC in [PerW-80]). A technical point is that we consider PDAs
without “finite state” control: this is possible without loss of generality by having pop transitions
that replace the top two atoms by only one (this is standard in LR(k) PDA parsers[AhoU-72]).

Formally a LPD A ™ is a 6-tuple: M= (X,F,A,S$ $f,0)
where X is a set ofovariables, F is a set of functions and constants symbols, A is a set of stack
predicate symbols, $ and $f are respectively the initial and final stack predicates, and 0 is a finite
set of transitions having one of the following three forms:

horizontal transitions: B «»C — replace B by C on top of stack
push transitions: B >+CB — push C on top of former stack top B
pop transitions: BD >»C — replace BD by C on top of stack
where B, C and D are A-atoms, i.e. atoms built with A, F and X.

Intuitively (and approximately) a pop transition BD “C is applicable to a stack configuration
with atoms A and A' on top, iff there is a substitution s such that Bs = As and Ds = As. Then A
and A' are removed from the stack and replaced by Cs, i.e. the atom C to which s has been applied.
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Things are similar for other kinds of transitions. Of course a LPDA is usually non-deterministic
w.r.t. the choice of the applicable transition.

In the case of dynamic programming interpretations, all possible computation paths are ex-
plored, with as much sub-computation sharing as possible. The algorithm proceeds by building a
collection of items (analogous to those of Earley’s algorithm) which are pairs of atoms. An item
<A A'> represents a stack fragment of two consecutive atoms [Lan-74, Lan-88a]. If another item
<A' A"> was also created, this means that the sequence of atoms AA'A" is to be found in some
possible stack configuration, and so on (up to (t)he us% of substitutions, not discussed here). The

computation is initialized with an initial item U= < SH>. New items are produced by applying
the LPDA transitions to existing items, until no new application is possible (an application may
often produce an already existing item). The computation terminates under similar conditions as
specialized algorithms [PerW-83, TamS(-)86, Vie-87b]. If successful, the computation produces one

or several final items of the form <$f $ >, where the arguments of $f are an answer substitution
of the initial DC program. In a parsing context, one is usually interested in obtaining parse-trees
rather than “answer substitutions™. A parse tree is here a proof tree corresponding to the original
DC program. Such proof trees may be obtained by the same techniques that are used in the case
of CF parsing [Lan-74, BilL-88, Bil-88], and that actually interpret the items and their relations as
a shared parse forest structure.

Substitutions are applied to items as follows (we give as example the most complex case): a
pop transition BD «»C is applicable to a pair of items <A A'> and <E E'>, iff there is a unifier
s of <A A'> and <B D>, and a unifier s' of A's and E. This produces the item <Css' EV>.

3.2 Top-down compilation of DC programs into LPDAs

Given a DC program, many different compilation schemata may be usedto build acorresponding
LPDA [Lan-88]. We give here a very simple and unoptimized top-down construction. The DC
program to be compiled is composed of a set of clauses 7 Ajt.o Ajt,i,...,Aknk, where each
Afy is a logical literal. The query is assumed to be the head literal Ao.o of the first clause 70.

The construction of the top-down LPDA is based on the introduction of new predicate sym-
bols Wt,,-, corresponding to positions between the body literals of each clause 7. The predicate
Vjt,0 corresponds to the position before the leftmost literal, and so on. Literals in clause bodies
are refuted from left to right. The presence of an instance of a position literal V~"tjt) in the
stack indicates that the first : subgoals corresponding to the body of some instance of clause 7*
have already been refuted. The argument bindings of that position literal are the partial answer
substitution computed by this partial refutation.

For every clause 7 A”o A*fi,..., A k,nk>w« note tjt the vector of variables occurring in
the clause. Recall that A*t- is a literal using some of the wvariables in7”, whileVA- is only a
predicate which needs to be given the argument vector t* to become the literal V ~t*).
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Then we can define the top-down LPDA by the following transitions:

1. $=»VO0w(to) $

2. VI (tfo — Afc.i+i Vjt. tfe) — for every clause 7* and

for every position i in its body: 0 < i < n®
3. Afc.o » Vjt.o(tjt) — for every clause ~k

4. Vfcink(tfc) VRit(tfd) i—=~ ii+i(tf05 — /or every pair of clauses 7* and 7*/ and
/or every position i in the body of 7;-% 0 < t < njt<
The final predicate of the LPDA is the stack predicate VOno which corresponds to the end of the

body of the first “query clause’” of the DC program. The rest of the LPDA is defined accordingly.
The following is an informal explanation of the above transitions:

1. Initialization: We require the refutation of the body of clause 70, i.e. of the query.

2. Selection of the leftmostremainingsubgoalWhen the first i literals of clause 7* have been
refuted, as indicated by theposition literal V ~t*), then select the i + 13t literal A*.+i to
be now refuted.

3. Selection of clause 7* Having to satisfy a subgoal that is an instance of A”o, eliminate it
by resolution with the clause 7 The body of 7" is now considered as a sequence of new
subgoals, as indicated by the position literal V2iO(tjt).

4. Return to calling clause 7*: Having successfully refuted the head of clause 7* by refuting
successively all literals in its body as indicated by position literal V”ink(t"), we return to the
calling clause 7~ and “increment” its position literal from V;-/ t(t*/) to V//it+1(t"/), since the
body literal Ak',i+i has been refuted as instance of the head of 7~

Backtrack interpretation of a LPDA thus constructed essentially mimics the Prolog interpreta-
tion of the original DC program.

3.3 A very simple example

The following example has been produced with a prototype implementation realized by Eric Ville-
monte de la Clergerie and Alain Zanchetta [VilZ-88].

The definite clause program to be executed is given in figure 11. Note that a search for all
solutions in a backtrack evaluator would not terminate.

The solutions found by the computer are: X2 3 f(f(a))
X2 = f(a)
X2 * a

5If jc = Jt( then we rename the variable in tsince the transition corresponds to the use of two distinct variants

of the clause 7*.

Note also that we need not define such a transition for all triples of integer k k and » but only for those triples

such that the head of 7* unifies with the literal +
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FrEFExAE* PUSH Transitions B->BC ««xvvvvwenn

predicate :nabla.2.0
nabla.2.0(X1) -> q(f(X1)) nabla.2.0(X1)

predicate :nabla.0.0

nabla.0.0(X2) -> q(X2) nabla.0.0(X2)

predicate :dollar0

dollarOO -> nabla.0.0(X2) dollarOO

Horizontal Transitions B->C ******

*********

predicate :q
g(l(l(a))) -> nabla.1.0()
q(XIl) -> nabla.2.0(X1)

predicate :query

query(X2) -> nabla.0.0(X2)

predicate :nabla.0.1

nabla.0.1(X2) -> answer(X2)

*hkhkkhkhkkhkkkk pop TranSitIOﬂS BD_>C *Khkkhkkkhkhkhkhkhkkhkk

predicate :nabla.2.1
nabla.2.1(XI) nabla.0.0(X2) -> nabla.0.1(X2)

nabla.2.1(X4) nabla.2.0(X1) -> nabla.2.1(X1)

predicate :nabla.1.0
nabla.1.0() nabla.0.0(X2) -> nabla.0.1(X2)

nabla.1.0() nabla.2.0(XI) -> nabla.2.1(X1)

predicate :nabla.0.1
nabla.0.1(X3) nabla.0.0(X2) -> nabla.0.1(X2)

nabla.0.1(X2) nabla.2.0(X1) -> nabla.2.1(X1)

Figure 10: Transitions of the LPDA.
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Clauses: q(1(1(a))):-.
g(X1) =-q(1(X1)).
Query: q(xX2)
Figure 11: The Definite Clause pro-
gram.

dollarOO , ()()

nabla. 0.0(XS) , dollarOO

q(X6) , nabla.0.0(X6)
nabla.2.0(X7) , nabla.0.0(X7)
nabla.1.0() , nabla.0.0(1(1(a)))
q(l(X8)) , nabla.2.0(X8)

nabla. 0.1(1(1(a))) , dollarOO
nabla.2.0(1(X9)) , nabla.2.0(X9)
nabla.1.0() , nabla.2.0(1(a))
nabla.2.1(1(a)) , nabla.0.0(1(a))
nabla.0.1(lI(a)) , dollarOO
q(l(1(X10))) , nabla.2.0(1(X10)) *
nabla.2.1(l(a)) , nabla.2.0(a)
nabla.2.1(a) , nabla.0.0(a)
nabla.0.1(a) , dollarOO
answer(a) , dollarOO
answer(l(a)) , dollarOO
answer(l(l(a))) , dollarOO

* subsumed by: q(f (X8)) ,nabla.2.0(X8)

Figure 12: Items produced by the dy-

namic programming interpretation.
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These solutions were obtained by first compiling the DC program into an LPDA according
to the schema defined in section 3.2, and then interpreting this LPDA with the general dynamic
programming algorithm defined in section 3.1.

The LPDA transitions produced by the compilation are in figure 10. The collection of items
produced by the dynamic programming computation is given in the figure 12.

In the transitions printout of figure 10, each predicate name nabla.i.j stands for our V,,;.
According to the construction of section 3.2, the final predicate should be nabla.0.l. For
better readability we have added a horizontal transition to a final predicate noted answer.

4  Other linguistic formalisms

Pereira and Warren have shown in their classical paper [PerW-80] the link between CF grammars
and DC programs. A similar approach may be applied to more complex formalisms than CF
grammars, and we have done so for Tree Adjoining Grammars (TAG) [Lan-88c].

By encoding TAGs into DC programs, we can specialize to TAGs the above results, and easily
build TAG parsers (using at least the general optimization techniques valid for all DC programs).
Furthermore, control mechanisms akin to the agenda of chart parsers, together with some finer
properties of LPDA interpretation, allow to control precisely the parsing process and produce
Earley-like left-to-right parsers, with a complexity 0(n6).

We expect that this approach can be extended to a variety of other linguistic formalisms, with
or without unification of feature structures, such as head grammars, linear indexed grammars,
combinatory categorial grammars. This is indeed suggested by the results of of Joshi, Vijay-
Shanker and Weir that relate these formalisms and propose CKY or Earley parsers for some of
them [VijWJ-87, VijW-89].

The parse forests built in the CF case correspond to proof forests in the Horn case. Such proof
forests may be obtained by the same techniques that we used for CF parsing [BilL-88]. However
it is not yet fully clear how parse trees or derivation trees may be extracted from the proof forest
when DC programs are used to encode non-CF syntactic formalisms.

5 Conclusion

Our understanding of syntactic structures and parsing may be considerably enhanced by comparing
the various approaches in similar formal terms. Hence we attempt to formally unify the problems
in two ways:

— by considering all formalisms as special cases of Horn clauses

— by expressing all parsing strategies with a unique operational device: the pushdown automa-
ton.

Systematic formalization of problems often considered to be pragmatic issues (e.g. parse forests)
has considerably improved our understanding and has been an important success factor.

The links established with problems in other areas of computer science (e.g. partial evaluation,
database recursive queries) could be the source of interesting new approaches.
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Head-Driven Bidirectional Parsing: A Tabular Method
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1. Introduction

Tabular methods for context-free language analysis [Graham and Harrison, 1976,
Graham et al., 1980], and in particular Earley's Algorithm [Earley, 1970], can be
considered a major reference for natural language parsing. Even if independently
conceived, Earley's Algorithm constitutes the basis for Chart parsing [Kay, 1980,
Kaplan, 1973].

One basic aspect of known tabular methods, i.e. that the analysis proceedes
monodirectionally, is a relevant limitation, that, although reasonable for artificial
languages, seems reductive for natural language. A strong reason for a bidirectional
approach within natural language analysis is that modem theories of grammar emphasize
the role of a particular element inside each constituent (phrase), called the head; this
element carries categorial as well as thematic information about other elements within the
constituent. It turns out that the acceptability and the general skeleton of each constituent,
crucially depend on such information. More concretely, a number of possible partial
interpretations would be pruned out earlier, on the basis of functional information attached
to the head, resulting in greater efficiency.

Some recent works in the framework of Chart parsing [Steel and De Roeck, 1987,
Stock et al., 1989] have pointed out the importance of bidirectionality for natural language
analysis. Another work that deals with some form of bidirectionality [Bossi et al., 1983]
can be found in the formal language literature, though the analysis given there
presupposes Chomsky normal form grammars.

In this paper we shall introduce a tabular method coinceived for bidirectional context-
free parsing, discuss some of its relevant properties and through an example give an idea

of how the algorithm works.

2. Definitions

Assume a context-free grammar G=(N, E, P, S), where N is the finite set of all non-
terminal symbols, Z is the set of terminal symbols, P is a finite set of productions, and
Se N is the start symbol. L(G) represents the language generated by the grammar G. The

productions in P are numbered from 1 to IPIL, and are all of form Dp-»Cpj ... Cp"),

1 The notation IPl here indicates the cardinality of set P.
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.where k is a function defined over the set {1... IP'} and that takes values in the set Z* (the
set of positive integers). In the following, the natural number p often will be used instead
of the production associated with it. Without loss of generality, here it is assumed that the
grammar G is in e-free form (see [Aho and Ullman, 1972:147]); a more general
formulation of the algorithm does not lead to the loss of the properties shown here.

A function x is defined over the set {1..IPI} and it takes values in Z+. This function
indicates, for every production p in P, a position in the right-hand side of the production,
occupied by a symbol in N ul. This position is called the head position, and the
corresponding symbol is said to be in the head position for production p. Every time,
during the analysis, a symbol is recognized that is in head position for some production p,
the presence of the symbol Dp relative to production p is then locally hypothesized

DEFINITION 2.1

A state is defined to be any quadruple [p, Idot, rdot, m], with I<p”IPI,
O<ldot<rdot<K(p), me { Im, rm).

The component p indicates the corresponding production in P; the components Idot and
rdot represent two distinct positions, one after the other, in the right-hand side of
production p. The component m is a simple indicator m-Im indicates that the value of
Idot cannot be further diminished, even if greater than zero, while m-rm indicates that the
value of rdot cannot be increased further, even if it is less than 7%Z(p). Note that, by
definition, one limitation excludes the other. The value is used for the indicator m in
the absence of both the limitations just described. The use of the index m, as it will be
shown, prevents the duplication of “partial analyses” for substrings of w. Every state
j=[p, ldot, rdot, m] may be understood to be a partial analysis relative to production p,
for which the constituents Cpjdott+l ... Cp/dot* belonging to the right-hand side, have
been recognized. In the following, for convenience, the states will often be referred to in
these terms. The symbol Is denotes the set of all states.

DEFINITION 2.2

The function F is defined as follows:
F-N ul-n)
F(X)={5=[p, ldot, Idot+1, -] I X=Cp ldol+1, x(p)=Idot+1}.

The set F(X) therefore contains all the states indicating partial analyses of productions
in which the symbol X occupies the head position.
DEFINITION 2.3

An equivalence relation Q,in IsxlIs is defined so that for two generic states s=[p, ldot,
rdot, m] and j'=[p\ ldot', rdot’, mrj, sQ8" holds if and only ifp-p\ Idot-ldot' and
rdot=rdot\
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3. The Algorithm

A recognizer is an algorithm capable of accepting a generic string we L(G) for a
particular grammar of interest G. In all other cases, the string w is refused. A parser,
instead, is an algorithm that can solve the problem of whether or not w belongs to L(G)
and is also able to indicate the possible derivation trees2 for every we L(G). In this
section, a recognizer algorithm for context-free languages is presented. The use of a
simple algorithm able to reconstruct the derivation trees by interpreting the recognition
matrix T (see for example [Graham et Harrison 1983]) is sufficient to obtain a parser
algorithm.

The algorithm uses a matrix T of size (rt+l)x(n+1); each component fy of this matrix
takes values in the set Is), and is initialized with as empty set. The presentation of the
recognition algorithm is preceded by a schematic illustration of the computation involved.

The algorithm inserts into the recognition matrix T each state s that indicates a partial
analysis previously obtained for the generic substring jWj. There is a one to one
correspondence between the indicies of the analyzed substring jW and the indices of the
component ry, in which state s has been inserted. The algorithm then processes each
state, combining it with nearby states in an effort to extend the portions of the string
dominated by these states. When the analysis relative to a particular state is completed
(for both the right and left sides), if the constituent obtained is in a head position for some
production p in P, a new partial analysis for the production p itself is inserted into matrix
T. Note that the algorithm straightforwardly separates the problem of the combination of
different states from the problem of control. The algorithm in fact does not specify the
order in which the different states must be considered, nor in which order every single
state must be expanded in the two opposing sides. To that end, the algorithm uses a
variable A which takes values in the set ~(IsxNxN).

ALGORITHM 3.1

Given a context-free grammar G=(N, E, P, S) in e-free form, let w=a\ ... an, n>0, be
an input string. Develop a recognition matrix T, of size (n+1)x(rt+l), whose components

fy are coindexed from 0 to n for both sides.

begin
1 for iin {1 .. n) do
2. for s in F(a.) do
3. add triple e=(s, M, /) to set A only if sQsq

does not hold for any triple eq=(sq,
i-1, 1)
4. while A not empty do

2 A derivation tree D associated with a string L(G), is a labeled tree formed by all the
productions used in the derivation ofw, representing the correct hierarchic order.
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5. extract any elemente=(s, i,j) from theset A and
insert state s in fg; applyeach  of the following
procedures, in any order, to element e:
left-expander(e),
right-expander(e),
left-completer(e),

right-completer(e),

trigger(e);
6. if s=[p, 0, n(p), mi<=tQn, for some pe P such that Dp=S
7. then output(true)
8. else output(error)

end.

The five procedures mentioned above are described in the following.

PROCEDURE 3.1 Left-expander

Precondition The procedure is applied only when e-{s, iyJ) with s=[p, Idot, rdot, m],
Idot>0, m*Im.

Description The following two cases are possible.

Case 1. CpjdoleN. For every s'=[p\ 0, Kip"), /'</, such that Dp'=Cpldot,
the state s”=[p, lIdot-1, rdot, -] is created and the triple e'=(s”, i\j) is insened in set A,
only if j"Q”qgdoes not hold for any state in or for any triple £g=(5q, i\j) in A. Ifat

least one state s’ is found with the above properties, set m-rm ins.
Case 2. C p~el. If Cp ot=ai, the state s'=[p, Idot-\yrdot, -] is created and the

triple e'=(s\ i-1,j) is insened into set A, only if j'C&qdoes not hold for any state s in
t{ j or for any triple ~g=(5q, i-1,j) in A. If CA"Q=a{ set m=rm in 5.

This procedure is applied only if state s can be extended leftward (Idot>0) and only if it
has not already been extended rightward that is, if it is not subsumed to the right
by a more updated state. There are two cases, depending upon whether the left-hand
expansion symbol is a terminal symbol or not. If Cpldolis a non-terminal symbol, the

search proceeds to the left of state j, to any state s* (adjacent), that corresponds to a
completed analysis rdot’=n(pn) of a constituent usable by state s (Dp.=Cpjdot)*
If successful, the analysis is extended in correspondence with state s, including the

constituent found nearby; state s then is marked with m-rm, since this has been
subsumed on the left by a more updated state. If Cp Jddl is, instead, a terminal symbol,

and if C an extension of the analyses corresponding to state s is made, including

the terminal symbol a~ Still, state s is marked with m-rm for the same reasons as in

Case 1. Furthermore, note that Procedure 3.1 never duplicates the triples in A, nor the
states belonging to the same component of recognition matrix T.
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PROCEDURE 3.2 Right-expander

Precondition The procedure is applied only when e-{s, i,j) with s-[p, Idot, rdot, m\,
rdot<n(p), m*rm.

Description There are the following two cases.

Case 1. Cprdo[+leN. For every 5'=[/?', 0, K(p'), ml<=t. j’™>j, such that
Dp':Cp,rjaotH’ state s*'=[p, ldot, rdot+1, -] is created and triple e'=(s'\ ij") is inserted
into set A, only if j""C£qdoes not hold for any state sq in t*, or for any triple eq=Csq, i j |
in A. If at least one state s' has been found with the properties described above, set m-Im
ins.

Case 2: Cprdot+le I. If Cprdot+l=aj+1, the state s'=[p, Idot, rdot+1, -] is created and

the triple e'=(s\ ij+ 1) is inserted in A, only if .s'Q?q does not hold for any state sq in
riJ+r 15c P,idot=aj+r set m=Im in s-

This procedure is symmetric to the left-expander procedure, so the explanation is

omitted.

PROCEDURE 3.3 Left-completer

Precondition The procedure is applied only when e-{s, /,/), with J=[p, 0,7(p), m].

Description For every s'=[p’, Idot', rdot’, tj. /'</, rdot'ciip™), m'~rm. such that
Dp=Cp. rdot+r state Idol’, rdot™+1, -] is created and the triple e'-{s", i\j) is
inserted in set A only if s"Q$q does not hold for any state in r-,j or for any triple

e =(jqg, i\j) in A. Furthermore, set m'-Im for every s' found.

This procedure is applied whenever the analysis of a constituent Dp has been

completed through a state s=[p, 0, Kip), m]. It proceeds by searching leftward of state j

for any adjacent state s' that has not yet been subsumed to the left (m"*rm) and is able to
“expand” state 5 CDp=Cp.rdot+1). If successful, an extension of the analysis

corresponding to s' is carried out, including the constituent Dp. State s' is then marked
with m-Im, since it has now been subsumed on the right by a more updated state. Again,
note that the procedure never duplicates triples in A, nor states belonging to the same

component of the recognition matrix T.

PROCEDURE 3.4 Right-completer

Precondition The procedure is applied only when e-(s, i,j), with s-[p, 0, n(p), m].

Description For every s'-[p\ Idot', rdot’, m”~e fy.,/>/, Idot'>0, mWm, such that
Dpch’,’laot’ state s"=[p, |dot'-\, rdot\ -] is created and the triple e'=(s", ij9 is inserted
in set A only if .y'C&j does not hold true for any state sq in or for any triple eg=(>q,

vy in A. Furthermore, set m-rm for every s' found.

This procedure is symmetric to the left-completer procedure, so the explanation is

omitted.
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PROCEDURE 3.5 Trigger

Precondition The procedure is applied only when e-(s, i,j), with j=[p, 0, K(p), m\.
Description For every se F(Dp), insert the triple e=(s, i,j) in set A only if sQ?q does
not hold for any state sqin t[j or for any triple eg=(sq, i,j) in A.

The procedure is applied whenever the analysis of a particular constituent has been
completed and this constituent occupies the head position in some production p. In this
case a new state corresponding to a partial analysis for production p is created, including
the head. Once again, note that the procedure never duplicates triples in A, nor states

belonging to the same component of the recognition matrix T.

4. Some Formal Properties of the Algorithm

In this section the most interesting properties of Algorithm 3.1 are stated. For a formal
proof of what follows refer to [Satta and Stock, 1989b]. Four major properties have been
grouped under Invariant 4.1 below. Note that soundness and completeness for Algorithm

3.1 follow straightforwardly from statements (i) and (ii) in Invariant 4.1.

INVARIANT 4.1

*

(i) s=[p, ldot, rdot, m]e tijonly i/C pldot+l .. Cprdot => ai+l .. aj, i<j,
Idot+ 1<x{p)<rdor,

(H) Cp~dot+i-.Cp~ot => i<j, ldot +1<x(p)<rdot only if a quadruple h=[h\,
hi, /13, h4\, hg>0, 1°7<4 exists such that s=[p, Idot-h\, rdot-*h”, m]e ti_h3j+h"

(Hi) s=[p, ldot, rdot, Im\e only ifs'=[p, ldot, rdot+\, tx\'yf>j\

(iv) s=[p, ldot, rdot, rm]e r,j only ifs=[p, Idot-1, rdot, m]e f<i.

Algorithm 3.1 allows the extension of a state to both the left and right sides. This
possibility, if not carefully controlled, can lead to the duplication of an analysis, in the
following way. If a state s, relative to a partial analysis for a constituent Cs, is
independently extended to both sides, it would lead to the introduction of two partially
overlapping states, s' and s'\ for the same analysis. The completion of s' and 5" then
would lead to the duplication of constituent Cs- The algorithm presented here uses the
index m, associated with each state, so as to avoid partial overlapping for two (partial)
analyses of the same constituent. Formally, we define the partial overlapping relation as

follows.

DEFINITION 4.1 Partial Overlapping Relation

Two states s=[p, ldot, rdot, m]e ry and 5=[p, ldot’, rdot\ t['j’ are partially
overlapped (sDsy) iff /</'</</, ldot<ldot’<rdot<rdot\ and, furthermore, s subsumes the
same constituents Cpjdot'+I—Cpjciot subsumed in s”.

Note that for two states s=[p, ldot, rdot, m] and J=[p, ldot’, rdot\ m* such that
s(Ds\ it always holds that Idot'<z(p)<rdot. The following theorem can now be stated.
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THEOREM 4.1
Algorithm 3.1 never generates two states s and s' such that sUs".

The following result regards space and time complexity for Algorithm 3.1. Such a
result is intended for a Random Access Machine model of computation.

theorem 4.2

Algorithm 3.1 requires an amount of space 0(n2) and an amount of time 0(rc3), where
n is the length of the input string.

5. A Brief Example

In order to have an insight into Algorithm 3.1, an example regarding a simple
computation is given here. Assume an unambiguous context-free grammar G=(N, I, P,
S), where N=(S, A, B}, L={a, b, ¢, d, e), and P is the production set given as follows:

1 S —»Aa, x(h=2, &(1)=2;
2 S->Bb, 1(2)=2, tt(2)=2;
3 A-»cAc, t(3)=2, 7TT(3)=3;
4 A —d, X(d)=I, 7t(4)=l;
5 B—-=cBc, t(5)=2,ti(5)=3;
6 B-»e, x(6)=1, &(6)=1.

From Definition 2.2 it follows that:

F(A) = {[8, 1,2,-1}; F(B) ={[5. 1,2,-1};
F(@) = {[1 1.2,-1}; ¥(b) ={[2, 1,2,-]};
FC) = {[4, 0, 1,-1}; F(e) ={[6,0, 1,-1};
F(S) = F(c) =0.

A run of Algorithm 3.1 on the string w=ccecch is simplified by the following steps

(the order of application for the five procedures at line 5 is chosen at random).

1) ~Ni=[6, 0, 1, -] is inserted in * 3 and S2=[2>1*2,-] is inserted in rj 5, by
line 3;

2) ~N3=[5,1,2,-] is inserted in 2 3 by the trigger procedure;

3) 54=[5, 0, 2, -] is inserted in and m is set to rm in state 53, by Case 2 of

the left-expander procedure;
4) J5=[5, 0, 3, -] is inserted in f1> and m is set to Im in state s4, by Case 2 of

the right-expander procedure;
5) 56=[5, 1,2,-] is inserted in rl>4 by the trigger procedure;
6) j7=[5, 1,3,-] is inserted in and m is set to Im in state by Case 2 of

the right-expander procedure;
7 5g=[5, 0, 3, -] is inserted in  and m is set to rm in state s-j, by Case 2 of

the left-expander procedure;
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8) N-[5, 1,2,-] is inserted in r0,5 by the trigger procedure;
9) 5io=[2, 0, 2, -] is inserted in fQ6 ax*m % set t0 rm state by the
right-completer procedure;

10)  the algorithm outputs true and then stops.

Note how the setting of the m components in states 53 and 55 prevents the expansion of
partial analysis at both sides. Though not shown here, in more complicated cases the
setting of the m components permits the left-completer procedure to combine a state s with
the “leftward largest” partial analyses that are adjacent to the left of s, preventing once
more partial analysis duplication (vice versa for the right-completer procedure).

Finally, note that in the above example Algorithm 3.1 has constructed 10 states, while
a run of the classic method of Earley on the same string would have constructed 25 states.
Furthermore, by defining x(p)=1, I<p<IPI, Algorithm 3.1 mimics the left-corner strategy

as stated in [WirEn, 1987], resulting in the construction of 17 states for the same analysis.
6. Final Remarks

This paper discusses a parsing algorithm that extends bidirectionally the classic tabular
methods for context-free language analysis. The algorithm is given for e-free form
context-free grammars, but it is not difficult to extend it to the general case, for example
by employing the same technique used in [Graham et al. 1980] in the treatment of empty
categories.

With respect to natural language parsing, the presented tabular method is compatible
with the well known “Active Chart Parsing” technique, as pointed out in [Satta and Stock
1989a]. Finally, the extension to Earley's Algorithm proposed in [Shieber 1985] for
parsing complex-feature-based formalisms, could be equally applicable to the presented
approach.
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Head-Driven Parsing

Martin Kay
Xerox Palo Alto Research Center and Stanford University

There are clear signs of a ""Back to Basics" movement in parsing and syntactic
generation. Our Latin teachers were apparently right. You should start with the
main verb. This will tell you what kinds of subjects and objects to look for and
what cases they will be in. When you come to look for these, you should also
stan by trying to find the main word, because this will tell you most about what
else to look for.

In the early days of research on machine translation, Paul Garvin advocated the
applicadon of what he called the "Fulcrum' method to the analysis of sentences. If
he was the last to heed the injunctions of his Latin teacher, it is doubtless because
America followed the tradition of rewriting systems exemplified by context-free
grammar and this provided no immediate motivation for the notion of the head of
a construction. The European tradition, and particularly the tradition of Eastern
Europe, where Garvin had his roots, tend more towards dependency grammar, but
away from that of mathematical formalization which has been the underpinning
of computational linguistics.

But the move now is towards linguistic descriptions that put more information
in the lexicon so that grammar rules take on a more schematic quality. Little by
little, we moved from rules like

(1) VPl -> VP2 NP
CaseOf(VP2) = Dative
CaseOf(NP) = Dative
to rules that attain greater abstraction through the use of logical variables (or the
equivalent), like
@ VPI -> VP2 NP
ObjCase(VP2) = Case
CaseOFf(NP) - Case
Where the underlined Case is to be taken as the name of a variable. From there,
it was a short step to

(3) VPI -> VP2 X
ComplementOof(VP2) - X
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or even

(4) VP1 -> VP2 X
ComplementStringOf(vVP2) = X

Given rule (2), that parser knows what case the noun must have only after it has
encountered the verb. Rules (3) and (4), do not even tell it that the complement
must be a noun phrase. In (4) we cannot even tell how many complements ther
will be. For most parsers, the problem is masked in these examples by the fact
that they apply rules from left to right so that the value of the variable X is known
by the time it is needed. In rule (4a), the matter is different.

(4a) VP1 -> X VP2
ComplementStringOf(VP2) = X
Needless to say, these things have not gone unnoticed, least of all by the
participants in this conference. It has been noted, for example, that deftnite-
clause grammars can be adjusted so as to look for heads before complements and
adjuncts. If the head of a sentence is a verb phrase, then it is sufficient to write
(6) instead of (5).
(5) s (Left/Right)
np(Left/Middle),
vp(Middle/Right).

(6) s(Left/Right)
vp(Middle/Right),

np(Left/Middle).
A rule that expands the verb phrase would be something like (7).

(7) vp(Left/Right)
verb(Left/Middle),

np(Middle/Right).
This time, the order is the usual one because the head is on the leftl.
Of course, all this works if Left, middie, and Right are something like word
numbers that provide random access to the parts of the sentence. To make the
system work with difference lists, we need something more, for example, as in (8).

(8) s(Left/Right)
append(X, Middle, Left),
vp(Middle/Right), np(Left/Middle).

We have now moved lo the Prolog convention of using caiulized names for variables.
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The reason for the addition is that the parser, embodied here in the set of rules
themselves, has no way to tell where the verb phrase will begin. It must therefore
consider all possible positions in the string, an end which, against all expectation,
is accomplished by the append predicate. If append is not needed when something
like word numbers are used, it is because the inevitable search of the string is
being quietly conducted by the Prolog system as it searches its data base, rather
than being programmed explcitely.

The old-fashioned parser had no trouble finding the beginnings of things
because they were always immediately adjacent, either to the boundaries of the
sentence, or to another phrase whose position was already known. Given the
sentence

I sold my car to a student of African languages whom | met at a party

and given appropriate rules, the head-driven parser will correcdy identify "my
car" as the direct object of "sold"”. But it will also consider for this role at least
the following:

student

(8)

a

a student of African

a student of African languages

a student of African languages whom | met

a student of African languages whom | met at a party
African

African languages

African languages whom | met

African languages whom I- met at aparty

languages

languages whom | met
languages whom | met at a party
a party

It will reject them only when it fails to extend them far enough to the left to meet
the right-hand edge of the word *sold™. Likewise, the last four entries on the list
will be constructed again as possible objects for the preposition "of'. As we shall
see, this problem is not easy to put to set aside.

Of course, definite-clause grammars have other problems, when interpreted
directly by a standard Prolog processor. The most notorious ofthese is that,
intheir classical form, they cycle indefinitely when provided with agrammar
that involves left recursion. However this can be overcome by using a more
appropriate interpreter such as the one given in Appendix A of this paper. It
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does not touch the question of the additional work that has to be done in parsing
a sentence.

Two solutions to the problem suggest themselves immediately. One is to use
an undirected bottom-up parsing strategy, and the other is to seek an appropriate
adaptation of chart parsing to a directed, head-driven, strategy. The first solution
works for the simple reason that the problem we are facing simply does not arise
in undirected bottom-up processing. There is no question of finding phrases that
are adjacent to, or otherwise positioned relative to, other phrases. The strategy is a
purely opportunistic one which finds phrases wherever, and whenever, its control
strategy dictates. A simple chart parser with these properties is given in Appendix
B. It accepts only unary and binary rules, but this is not a real restriction because
these binary rules can function as meta-rules that interpret the more general of
the actual grammar according to something like the following scheme. Real rules
have a similar format to that used in the program in Appendix A, namely

rr(Mother, [LI, L2 ... Ln], Head, [RI, R2 ... Rm])

Li ... Ln are the non-head (complement) daughters of ’Mother’ to the left of the
head, and R\ ... Rm are those to the right. For convenience, we give the ones on
the left in the reverse of the order in which they actually appear so that the one
nearest to the head is written first. We define the binary rulepredicatereferred
to in the algorithm somewhat as follows;

rule(p(Mother, L, Rest), Head, Next)
rr(Mother, L, Head, [Next IRest]) .
rule(p(Mother, Rest, [1), Next, Head)
rr(Mother, [Next IRest], Head, [1).
rule(p(Mother, L, T), p(Mother, L, [HIT]), H).

rule(p(Mother), H, p(Mother, [HIT], [1).

One special unary rule is required, namely

rule(Mother, p(Mother, [1. [1)).

The scheme is reminiscent of categorial grammar, p (Category, Left, Right)
is a partially formed phrase belonging to the given category which can be com-
pleted by adding the items sepecified by the Left list on the left, and the Right
list on the right.

This scheme has a certain elegance in that the parser itself is simple and does
not reflect any peculiarities of head-driven grammar. Only the simple meta-rules
given above are in any way special. Furthermore, the performance properties
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of the chart parser are not compromised. On the other hand, this inactive chart
parser cannot be extended to make it into an active chan parser in a straightforward
manner as our second solution requires. This is the crux of the matter that this
paper addresses.

Suppose that the verb has been located that will be the head of a verb phrase,
but that it remains to identify one or two objects for it on the right. A standard
active chart parser does this by introducing active edges at the vertex to the
right of the verb which will build the first object if the material necessary for its
construction is available, or comes to be available. As the construction procedes,
active edges stretch further and further to the right intil the construction is complete
and the corresponding inactive edge is introduced. This works only because the
phrase can be built incrementally starting from the left, that is, starting next to
the phrase to which it must be adjacent. But this strategy is not open to the
head-driven parser which must begin by locating, or constructing the head of the
new phrase. The rest of the phrase must then be constructed outwards from the
head. We are therefore forced to modify the standard approach.

We propose to enrich the notion of a chart so that instead of simply active
and inactive edges, it contains five different types of object. Edges can be active
and inactive, but they can also be pending or current. This gives four of the five
kinds. The fifth we shall refer to simply as a seek. It is a record of the fact that
phrases with a given label are being sought in a given region of the chart. A seek
contains a label and also identifies a pair of vertices in the chart. It is irrelevant at
the level of generality of this discussion whether we think of the seek as actually
being located in, or on, one of the vertices, or being representable as a transition
between them. A condition that the chart is required to maintain is that edges with
the same label as that of a seek, both of whose end points lie within the region of
the seek, must be current. Edges which are not so situated must be pending. The
standard chart regime never calls for information in a chart to change, but that is
not the case here. W™hen a new seek is introduced, pending edges are modified to
become current as necessary to maintain the above invariant.

The fundamental rule (Henry Thompson’s term) of chart parsing is that an
action is taken, possibly resulting in the introduction of new edges, whenever
the introduction of a particular new edge brings the operative end of an active
edge together, at the same vertex, with an end of an inactive edge. If the label
on the inactive edge is of the kind that the active edge can consume, a new
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edge is introduced, possibly provoking new applications of the fundamental rule.
The fundamental rule also applies in our enriched charts, but only to current
edges-pending edges are ignored by it.

Suppose once again that a verb has been identified and that we are now
concerned to find its sisters to the right. The verb can have been found only
because there was a seek in existance for verbs covering the region in which it
was found, and this, in its turn, will have come about because seeks were extant in
that region for higher-level phrases, notably verb phrases. The objects we are now
interested to locate must lie entirely in a region bounded on the left by the verb
itself and, on the right, by the furthest right-hnd end of a VP seek that includes
the verb. Accordingly, a new seek is established for NP’s in this region. The
immediate effect of this will be to make current any pending edges in that region
that are inactive and labeled NP, or active and labeled with a rule that forms NP’s.

It remains to discuss how active edges, whether current or pending, are
introduced in the first place. The simplest solution seems to be to do this just as it
would be in an undirected, bottom-up, parser. Whenever a current inactive edge
is introduced, or a pending one becomes current, active edges are introduced, one
for each rule that could accept the new item as head. However, these do not
become current until a need for them emerges higher in the structure, and this is
signaled by the introduction of a seek.

Consider, for example, the sentence the dog saw the cat and assume that

dog, saw, and cat are nouns, saw is also a transitive verb, and that the grammar
contains the following rules:

rule(s (s(NP, VP)), [np(NP)], vp(VP); I[1).

rule(vp(vp(Vv, NP)), [], v(V), [np(NP)]).

rule(np(np(D, N)), [det(D)], n(N), [I]).

The sequence of events involved in parsing the sentence with a parser that follows
a simple shift reduce regime, would be as follows:

1. Add pending for det(det(the)) from 0 to 1/

Left * [], Right - []

2. Add pending for n(n(dog)) from 1 to 2, Left = [],
Right - []

3 .Add edge for v(v(saw)) from 2 to 3, Left = [],
Right - []

4. Add edge for vp(vp(v (saw),_653)) from 2 to 3,
Left = []/ Right - [np(_653)]

5. Add edge for vp(vp(v(saw),_653)) from 2 to 3,
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Left =[], Right = [s ( 653)]

6. Add pending for n(n(saw)) from 2 to 3, Left = [],
Right = []
7. Add pending for det(det(the)) from 3 to 4,
Left =[], Right = 1]
8. Add edge for n(n(cat)) from 4 to 5 Rule =01/0, Left = [],
Right = []
9. Add edge for np(np(_690,n(cat))) from 4 to 5,
Left = [det(_690)], Right = T[]
10. Add edge for det(det{the)) from 3 to 4,
Left =[], Right =[]
11. Add edge for np(np(det(the),n(cat))) from 3 to 5
Rule » r4 [/ 1, Left = [], Right * []
12. Add edge for vp(vp(v(saw),np(det(the),n(cat)))) from 2 to 5,
Left = [], Right = []
13. Add edge for s(s(_1507,vp(v(saw) ,np(det(the) ,n(cat)))))
from 2 to 5, Left = [np(_1507)1], Right = 1]
14. Add edge forn(n(dog)) from 1 to 2, Left = [1,
Right = T[]
15. Add edge for np(np(_2014,n(dog))) from 1 to 2,
Left = [det(_2014)], Right = 1]
16. Add edge for det(det(the)) from 0 to 1,
Left = [], Right = T[]
17. Add edge for np(np(det(the),n(dog))) from 0 to 2,
Left = [], Right = T[]
18. Add edge fors (s (np (det (the) ,n (dog)),vp (v (saw) ;
np(det (the),n(cat))))) from 0 to 5, Lift = [1.
Right = []
Result = [s(s(np(det(the),n(dog)),vp(v(saw),np(det(the),n(cat)))))l],
We write add edge... when the edge being added is current. Notice that

the edge for the word saw, construed as a verb, is initially introduced as current,
because the goal is to find a sentence and a seek is therefore extant for S, VP,
and V, covering the whole string. The N edge for saw, however, is pending. In
step 4, the active adge is introduced that will consume the object of saw when it
is found. This introduces a seek for NP and N between vertex 3and the end of
the sentence. For this reason, when cat is introduced in step 8, it is as a current
edge. Notice, however, that the, in step 7, is introduced as pending, because it is
not the head of a NP. However, the introduction of the active NP edge in step 9
causes the edge for the to be made current, and this is what happens in step 10.
The active S edge in step 13 activates the search for an NP before the verb so
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that all the remaining edges are introduced as current At the end of the process
all pending edges have been made current except the one corresponding to the
nominal interpretation of saw.

The Prolog code that implements this strategy is considerably more com-
picated that that for the techniques discussed earlier, and | have therefore not
included it.

I believe that the strategy | have outlined is the natural one for anyone to adopt
who is determined to work with a head-driven active chart parser. However, it is
entirely unclear that the advantages that it offers over the simple undirected chart
parser are worth its considerable added expense in complexity. Notice that, if one
of the other nouns in the sentence just considered also had a verbal interpretation,
the search for noun phrases would have been active everywhere. The longer the
sentence, and therefore the more pressing the need for high performance, the more
active regions there would be in the string and the more nearly the process as a
whole would approximate that of the undirected technique. This should not, of
course, be taken as an indictment of head-driven parsing, which is interesting for
reasons having nothing to do with performance. It does, however, suggest that the
temptation to claim that it is also a natural source of efficiency should be resisted.

Appendix A - A PARSER-GENERATOR FOR HEAD-
DRIVEN GRAMMAR.

This is a simple head-driven recursive-descent parser. There is a distinction
between the top level parse predicate and the syntax predicate to eliminate
inessential arguments to the top level call, and also because the program can,
with only minor modifications in syntax, be used as a generator. The predicate
head is assumed to be defined as pan of the grammar. It is true of a pair of
grammatical labels if the second can be the head (of the head, of the head ...) of
the first. Having hypothesized the label of the eventual lexical head of a phrase
that will satisfy the current goal, syntaxcalls range to find a word in the string
with that label. If such a word is found, its position in the string will be given
by the HrRange (head range) difference list and it must, in any case, lie within
the range of the string given by maxi and maxr. The build predicate constructs
phrases with the given putative head so long as their labels stand in the head
relation to the goal.
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* parse(String, Result)

* String is a list of words
Struct 1is the structure (nondeterministicaiiy) returned if the parse
succedes

*

*

parse (String, Struct)
syntax(String/[]1/Struct, String/[1)-

* syntax((L/R)/Goal ,Maxl/Maxr)

»

* G is the Goal for the parsen.

* L/R is a DL giving the bounds of the phrase satisfying the goal
* Maxl/Maxr gives the string bounds for the current search.
*kkkkk *kkhkk

syntax(Range/Goal, Max)
head(Goal, Head), % Find lexical head for Goal
range(HRange/Head, Max), % Associate Head with actual
%word and string position,

build(Range/Goal, HRange/Head, Max). %Build bottom up based on Head.

; range ((L/R)/Head, MaxL/MaxR)

* Trueof () position L/R in the string

* @) with grammatical description Head

* (4) somewhere 1in the string range MaxL/MaxR (parsing)
%

% Whole maximum range explored.

OO e oo oo oo e oo oomeooooooooo

range(, X/X) L8

%

% Next word in maximum range is the required head,

range(L/R/Head, L/)) diet(L/R, Head).
%

% Try again one place to the right.

range(Head, [HiT]/MaxR)
range(Head, T/MaxR).

: Duildf(GL/GR)/Goal, (HL/HR)/Head, MaxL/MaxR)

/******

* Build phrases bottomup based onthe Headlocated inthestring at
* HL/HR. The Jlocation of the phrasefound will beGL/GR and itnust
* fall inthe range MaxL/MaxR.

build(X, X, _)-. %Current head is result,
build(GL/GR/Goal, HL/HR/Head, MaxL/MaxR) %Find rule matching Head
rr(Lhs, Left, Head, Right), head(Goal, Lhs),
build_left(Left, LL/HL, MaxL/HL), %Check left daughters
build_right(Right, HR/RR, HR/MaxR), %and right daughters,

buiid(GL/GR/Goal, LL/RR/Lhs, MaxL/MaxR). % Try building further on
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build_left{[1, X/X, D . build_ie ft([HIT], L/R, MaxL/MaxR)
syntax(HL/R/H, MaxL/MaxR),
buiid_ieft(T, L/HL, MaxL/HL).build_right(d, X/X, ).
build_right([HIT1, L/R, MaxL/MaxR) :-
syntax(L/HR/H, MaxL/MaxR),
build_nght (T, HR/R, HR/MaxR) .

Appendix B - A SIMPLE INACTIVE CHART PARSER

This is a chart version of a nondeterminisitc shift-reduce parser. Vertices of
the chart are constructed from left to right, one on each recursive call to parse/3,
A vertex is a list of edges headed by a number which is provided for convenience
in printing. An edge takes the form [label, next-vertex]. The predicate
buiid_edge iS given a word and its successor vertex and returns a completed
vertex. It succeeds once for each entry that the word has in the dictionary and,
for each one, calls buiid_edgei. This can succeed in three ways, all of which are
collected into the list of edges contributing to the current vertex by virtue of the
setof construction. The three possbilities are (1) The word’s lexical entry itself
labels an edge; (2) A unary rule applies to the entry, and its left-hand side labels
an edge, and (3) A binary rule matches the entry and an entry in the next vertex
(member ([Label, Nextl], Next)). Each new label is passed t0o build-edgel
to be processed in the same manner as the original lexical entry.

parse(String, Result)
parse(String, [0], Result).

parse([], V, V).

parse([WordIRest], [NINext], Vertex)
setof(Edge, build_edge(Word, [NINext], Edge), V),
M is N+I, % Next vertex number
parse(Rest, [M|V], Vertex). % {M|V] is the vertex

build_edge(Word, Next, Edge)
diet(Word, Entry), % Dictionary lookup
build_edgel(Entry, Next, Edge).

build_edgel(Entry, Next, [Entry, Next]) % Shift.
build_edgel(Entry, Next, Edge) % Reduce one item
rule(Lhs, Entry),
build_edgel(Lhs, Next, Edge).
build_edgel(Entry, [NINext], Edge) % Reduce two items
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member([Label, Nextl], Next),
rule(Lhs, Label, Entry),
build_edgel(Lhs, Nextl, Edge).
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Parsing with Principles:
Predicting a Phrasal Node Before Its Head Appearsl?

Edward Gibson
Department of Philosophy
Carnegie Mellon University

Pittsburgh, PA 15213
eafg;3>cad.cs.cmu.edu

1 Introduction

Recent work in generative syntactic theory has shifted the conception of a natural language grammar from
a homogeneous set of phrase structure (PS) rules to a heterogeneous set of well-formedness constraints on
representations (see, for example, Chomsky (1981), Stowell (1981), Chomsky (1986a) and Pollard k Sag
(1987)). In these theories it is assumed that the grammar contains principles that are independent of the
language being parsed, together with principles that are parameterized to reflect the varying behavior of
different languages. However, there is more to a theory of human sentence processing than just a theory
of linguistic competence. A theory of performance consists of both linguistic knowledge and a parsing
algorithm. This paper will investigate ways of exploiting principle-based syntactic theories directly in a
parsing algorithm in order to determine whether or not a principle-based parsing algorithm can be compatible
with psycholinguistic evidence.

Principle-based parsing is an interesting research topic not only from a psycholinguistic point of view but
also from a practical point of view. When PS rules are used, a separate grammar must be written for each
language parsed. Each of these grammars contains a great deal of redundant information. For example,
there may be two rules, in different grammars, that are identical except for the order of the constituents on
the right hand side, indicating a difference in word order. This redundancy can be avoided by employing
a universal phrase structure component (not necessarily in the form of rules) along with parameters and
associated values. A principles and parameters approach provides asingle compact grammar for all languages
that would otherwise be represented by many different (and redundant) PS grammars.

Any model of human parsing must dictate: a) how structures are projected from the lexicon; b) how
structures are attached to one another; and ¢) what constraints affect the resultant structures. This paper will
concentrate on the first two components with respect to principle-based parsing algorithms: node projection
and structure attachment.

Two basic control structures exist for any parsing algorithm: data-driven control and hypothesis-driven
control. Even if a parser is predominantly hypothesis-driven, the predictions that it makes must at some
point be compared With the data that are presented to it. Some data-driven component is therefore necessary
for any parsing algorithm. Thus, a reasonable hypothesis to test is that the human parsing algorithm is
entirely data-driven. This is exactly the approach that is taken by a number of principle-based parsing
algorithms (see, for example, Abney (1986), Kashket (1987), Gibson & Clark (1987) and Pritchett (1987)).
These parsing algorithms each include a node projection algorithm that projects an input word to a maximal
category, but does not cause the projection of any further nodes.

Although this simple strategy is attractive because of its simplicity, it turns out that it cannot account
for certain phenomena observed in the processing of Dutch (Frazier (1987): see Section 2.1). A completely
data-driven node projection algorithm also has difficulty accounting for the processing ease of adjective-noun
constructions in English (see Section 2.2). As a result of this evidence, a purely data-driven node projection

1Paper presented at the International Workshop on Parsing Technologies, August 28-31, 1989.

21 would like to thank Robin Clark, Rick Kazman, Howard Kurtzman, Eric Nyberg and Brad Pritchett for their comments
on earlier drafts of this paper, and | offer the usual disclaimer.
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algorithm must be rejected in favor of a node projection algorithm that has a predictive (hypothesis-driven)
component Frazier (1987)).

This paper describes a node projection algorithm that is part of the Constrained Parallel Parser (CPP)
(Gibson (1987), Gibson k Clark (1987) and Clark & Gibson (1988)). This parser is based on the principles
of Government-Binding theory (Chomsky (1981, 1986a)). Section 3.1 gives an overview of the CPP model,
while Section 3.2 describes the node projection algorithm. Section 3.3 describes the attachment algorithm,
and includes an example parse. These node projection and attachment algorithms demonstrate that a
principle-based parsing algorithm can account for the Dutch and English data, while avoiding the existence
of redundant phrase structure rules. Thus it is concluded that one should continue to investigate hypothesis-
driven principle-based models in the search for an optimal psycholinguistic model.

2 Data-Driven Node Projection: Empirical Predictionsand Results

2.1 Evidence from Dutch

Consider the sentence fragment in (1):

(1)

. dat het meisje van Holland
“that the girl from Holland” ..

Dutch is like English in that prepositional phrase modifiers of nouns may follow the noun. Thus the
prepositional phrase van Holland may be a modifier of the noun phrase the girl in example (1). Unlike
English, however, Dutch is SOV in subordinate clauses. Hence in (1) the prepositional phrase van Holland
may also be the argument of a verb to follow. In particular, if the word ghmlachte (“smiled”) follows the
fragment in (1), then the prepositional phrase van Holland can attach to the noun phrase that it follows,
since the verb ghmlachte has no lexical requirements (see (2a)). If, on the other hand, the word houdt
(“likes”) follows the fragment in (1), then the PP van Holland must attach as argument of the verb houdt,
since the verb requires such a complement (see (2b)).

(2)
a. .. dat [s [iVP het meisje [pp van Holland 1] [vp glimlachte ]]
“that the girl from Holland smiled” ...
b. ..dat [5 [.vp het meisje ] [vp [v [pp van Holland ] [v houdt 1

“that the girl likes Holland”

Following Abney (1986), Frazier (1987), Clark k Gibson (1988) and numerous others, it is assumed that
attached structures are preferred over unattached structures. If we also assume that a phrasal node is not
projected until its head is encountered, we predict that people will entertain only one hypothesis for the
sentence fragment in (1): the modifier attachment. Thus we predict that it should take longer to parse
the continuation houdt (“likes”) than to parse the continuation ghmlachte (“smiled”), since the continuation
houdt forces the prepositional phrase to be reanalyzed as an argument of the verb. However, contrary
to this prediction, the verb that allows argument attachment is actually parsed faster than the verb that
necessitates modifier attachment in sentence fragments like (1). If the verb had been projected before its
head was encountered, then the argument attachment of the PP van Holland would be possible at the same
time that the modifier attachment is possible.3 Thus Frazier concludes that in some cases phrasal nodes
must be projected before their lexical heads have been encountered.

3 It is beyond the scope of this paper to offer an explanation as to why the argument attachment is in fact preferred, to the
modifier attachment. This paper seeks only to demonstrate that the argument attachment possibility must at least be available
for a psychologically real parser. See Abney (1986), Frazier (1987) and Clark U Gibson (1988) for possible explanations for the
preference phenomenon.
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2.2 Evidence from English

A second piece of evidence against this limited type of node projection is provided by the processing of noun
phrases in English that have more than one pre-head constituent.

It is assumed that the primitive operation of attachment is associated with a certain processing cost.
Hence the amount of time taken to parse a single input word is directly related to the number of attachments
that the parser must execute to incorporate that structure into the existing structure(s). If a phrasal node
is not projected until its head is encountered, then parsing the final word of a head-final construction will
involve attaching all its pre-head structures at that point. If, in addition, there is more than one pre-head
structure and no attachments are possible until the head appears, then a significant proportion of processing
time should be spent in processing the head.

The hypothesis that a phrasal node is not projected until its head is encountered can be tested with the
English noun phrase, since the head of an English noun phrase appears after a specifier and any adjectival
modifiers. For example, consider the English noun phrase the big red book. First, the word the is read and a
determiner phrase is built. Since it is assumed that nodes are not projected until their heads are encountered,
no noun phrase is built at this point. The word big is now read and causes the projection of an adjective
phrase. Attachments are now attempted between the two structures built thus far. Neither of the categories
can be argument, specifier or modifier for the other, so no attachment is possible. The next word red now
causes the projection of an adjective phrase, and once again no attachments are possible. Only when the
word book is read and projected to a noun phrase can attachments take place. First the adjective phrase
representing red attaches as a modifier of the noun phrase book. Then the AP representing big attaches as
a modifier of the noun phrase just constructed. Finally the determiner phrase representing the attaches as
specifier of the noun phrase big red book.

Thus if we assume that a phrasal node is not projected until its head is parsed, we predict that a greater
number of attachments will take place in parsing the head than in parsing any other word in the noun
phrase. Since it is assumed that an attachment is a significant parser operation, it is predicted that people
should take more time parsing the head of the noun phrase than they take parsing the other words of the
noun phrase. Since there is no psycholinguistic evidence that people take more time to process heads in
head-final constructions, | hypothesize that phrasal nodes are being projected before their heads are being
encountered.

3 Hypothesizing a Phrasal Node Before Its Head Appears

3.1 The Parsing Model: The Constrained Parallel Parser

This paper assumes the Constrained Parallel Parser (CPP) as its model of human sentence processing (see
Gibson (1987), Gibson & Clark (1987) and Clark k Gibson (1988)). The CPP model is based on the
principles of Government-Binding Theory (Chomsky (1981, 1986a)); crucially CPP has no separate module
containing language-particular rules. Following Marcus (1980), structures parsed under the CPP model are
placed on a stack and the most recently built structures are placed in a data structure called the buffer.
The parser builds structure by attaching nodes in the buffer to nodes on top of the stack. Unlike Marcus
model, the CPP model allows multiple representations for the same input string to exist in a buffer or stack
cell. Although multiple representations for the same input string are permitted, constraints on parallelism
frequently cause one representation to be preferred over the others. Motivation for the parallel hypothesis
comes from garden path effects and perception of ambiguity in addition to relative processing load effects.
For information on the particular constraints and their motivations, see Gibson & Clark (1987), Clark &
Gibson (1988) and the references cited in these papers.
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3.1.1 Lexical Entries for CPP

A lexical entry accessed by CPP consists of, among other things, a theta-gnd. A theta-grid is an unordered
list of theta structures. Each theta structure consists of a thematic role and associated subcategorization

formation. One theta structure in a theta-grid may be marked as indirect to refer to its subject. For
example, the word shout might have the following theta-grid:4

(3)
((Subcat = PREP, Thematic-Role = GOAL)
(Subcat = COMP, Thematic-Role = PROPOSITIOH))

When the word shout (or an inflected variant of shout)is encountered in aninput phrase, the thematic
role agent will be assigned to its subject, as long as thissubject is a nounphrase. The directthematic roles
goal and proposition will be assigned to prepositional and complementizer phrases respectively, as long as
each is present. Since the order of theta structures in a theta-grid is not relevant to its use in parsing, the
above theta-grid for shout will be sufficient to parse both sentences in (4).

(4)

a. The man shouts [pp to the woman] [cp that Ernie sees the rock]
b. The man shouts [cp that Ernie sees the rock] [pp to the woman]

3.1.2 X Theory in CPP

The CPP model assumes X Theory as present in Chomsky (1986b). X Theory has two basic principles:
first, each tree structure must have a head; and second, each structure must have a maximal projection. As
a result of these principles and other principles, (e.g., the 0-Criterion, the Extended Projection Principle,
Case Theory), the positions of arguments, specifiers and- modifiers with respect to the head of a given
structure are limited. In particular, a specifier may only appear as a sister to the one-bar projection below
a maximal projection, and the head, along with its arguments, must appear below the one-bar projection.
The orders of the specifier and arguments relative to the head is language dependent. For example, the basic
structure of English categories is shown below. Furthermore, binary branching is assumed (Kayne (1983)),
so that modifiers are Chomsky-adjoined to the two-bar or one-bar levels, giving one possible structure for a
post-head modifier below on the right.

Specifiernjn Speofier™”
X Argument* ANAM odifler

X Argument*

3.1.3 The CPP Parsing Algorithm

The CPP algorithm is essentially very simple. A word is projected via node projection (see Section 3.2)
into the buffer. If attachments are possible between the buffer and the top of the stack, then the results
of these attachments are placed into the buffer and the stack is popped. Attachments are attempted again
until no longer possible. This entire procedure is repeated for each word in the input string. The formal

CPP algorithm is given below:

I. (Initializations) Set the stack to nil. Set the buffer to nil.

4In a more complete theory, a syntactic category would be determined from the thematic role (Chomsky (1986a)).
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2 (Ending Condition) If the end of the input string has been reached and the buffer is empty then return
the contents of the stack and stop.

3 If the buffer is empty then project nodes for each lexical entry corresponding to the next word in the
input string, and put this list of maximal projections into the buffer.

4 Make all possible attachments between the stack and the buffer, subject to the attachment constraints
(see Clark & Gibson (1988)). Put the attached structures in the buffer. If no attachments are possible,
then put the contents of the buffer on top of the stack.

5. Go to 2.

3.2 The Projection of Nodes from the Lexicon

Node projection proceeds as follows. First a lexical item is projected to a phrasal node: a Confirmed node
(C-node). Following X Theory, each lexical entry for a given word is projected maximally. For example, the
word rock, which has both a noun and a verb entry would be projected to at least two maximal projections:

(5)
a. [ivp [n1[jV rock ]I
b. [vp [v [v rock ]I

Next, the parser hypothesizes nodes whose heads may appear immediately to the right of the given
C-node. These predicted structures are called hypothesized nodes or H-nodes. An H-node is defined to be
any node whose head is to .ae right of all lexical input. In order to determine which H-node structures to
hypothesize from a given C-node, it is necessary to consult the argument properties associated with the C-
nbde together with the specifier and modifier properties of the nodal category and theword order properties
of the language in question. It is assumed that the ability of one category to act asspecifier, modifier
or argument of another category is part of unparameterized Universal Grammar. On the other hand, the
relative order of two categories is assumed to be parameterized across different languages. For example, a
determiner phrase, if it exists in a given language, is universally allowable as a specifier of a noun phrase.
Whether the determiner appears before or after its head noun depends on the language-particular values
associated with the parameters that determine word order.

Three parameters are proposed to account for variation in word order, one for each of argument, specifier
and modifier projections.5 For each language, each of these parameters is associated with at least one value,
where the parameter values come from the following set: {*head*, *satellite*}.6 The value head indicates
that a category C causes the projection to the right of those categories for which C may be head. Thus
this value indicates head-initial word order. The value “satellite* indicates that a category C causes the
projection to the right of those categories for which C may be a satellite category. Hence this value indicates
head-final word order. H-node projection from a category C is defined in (6).

((g)rgument, Specifier, Modifier) H-Node Projection from category C: If the value associated with tHe /(argu-
ment, specifier, modifier) projection parameter is *head*, then cause the projection of (argument, specifier,
modifier) satellites, and attach them to the right below the appropriate projection of C. If the value associ-
ated with the (argument, specifier, modifier) projection parameter is ~satellite*, then cause the projection
of (argument, specifier, modifier) heads, and attach them to the right above the appropriate projection of
C.

In English the argument projection parameter is set to *head*, so that arguments appear after the head.

Hence, if a lexical entry has requirements that must be filled, then structures corresponding to subcategorized

5Furthermore, it is assumed that the value of the modifier projection parameter defaults to the value of the argument
projection parameter.

61 will use the term satellite to indicate non-head constituents: arguments, specifiers and modifiers.
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categories are hypothesized and attached. For example, the verb see subcategorizes for a noun phrase, so an
empty noun phrase node is hypothesized and attached as argument of the verb:

(7)
[vp [v [vsee ] [iVp el]ll

The specifier projection parameter, on the other hand, is set to -the value “~satellite* in English so that
specifiers appear before their heads. If the category associated with a C-node is an allowable specifier for
other categories, then an H-node projection of each of these categories is built and the C-node specifier is
attached to each. For example, since a determiner may specify a noun phrase, an H-node noun phrase is
hypothesized when parsing a determiner in English:

(8)

[-VP [DetP [DeVv [Joet the TN [a/ ¥V t 1M1

Thus the node projection algorithm provides a new derivation of language-particular word order. In
previous principle-based systems, word order is derived from parameterized direction of attachment (see
Gibson & Clark (1987), Nyberg (1987), VVehrli (1988)). An attachment takes place from buffer to stack
in head-initial constructions and from stack to buffer in head-final constructions. Since attachment is now
a uniform operation as defined in (17), this parameterization is no longer necessary. Instead, in head-
initial constructions, nodes now project to the nodes that they may immediately dominate. In head-final
constructions, nodes now project to those nodes that they may be immediately dominated by.

The projection parameters as defined in (6) account for many facts about word order across languages.
However, most, if not all, languages have cases that do not fit this clean picture. For example, while modifiers
in English are predominantly post-head, adjectives appear before the head. A single global value for modifier
projection predicts that this situation is impossible. Hence we must assume that the values given for the
projection parameters are only default values. In order to formalize this idea, | assume the existence of a
hierarchy of categories and words as.shown below:

Category

Noun Verb Adposition

Ernie rock see eat to on

It is assumed that the value for each of the projection parameters is the default value for that projection
type with respect to a particular language. However, a particular category or word may have a value
associated with it for a projection parameter in addition to the default one. If this is the case, then only
the most specific value is used. For example, in English, the category adjective is associated with the
value ~satellite* with respect to modifier projection. Thus English adjectives appear before the head. The
adjective tall will therefore cause the projection of both a C-node adjective phrase and an H-node noun
phrase:

(9)
a. [AP tall ]

b- [vp Lv® [ap tall JDv (A e I

If recursive application of projection to H-nodes were allowed, then it would be possible, in principle,
to project an infinite number of nodes from a single lexical entry. In English, for example, a genitive noun
phrase can specify another noun phrase. This noun phrase may also be a genitive noun phrase, and so on.
If H-nodes could project to further H-nodes, then it would be necessary to hypothesize an infinite number of
genitive NP H-nodes for every genitive NP that is read. As a result of this difficulty, the H-node Projection
Constraint is proposed:
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(10)
The H-node Projection Constraint: Only a C-node may cause the projection of an H-node.

As a result of the H-node Projection Constraint. H-nodes may not invoke H-node projection. For example,
if a specifier causes the projection of its head, the resulting head cannot then cause the projection of those
categories that it may specify. As a result, the number of nodes that may be projected from a single lexical
item is severely restricted.

3.3 Node Attachment

Given the above node projection algorithm, it is necessary to define an algorithm for attachment of nodes.
Since structures are predicted by the node projection algorithm, the attachment algorithm must dictate
how subsequent structures match these predictions. Consider the following two examples from English: the
first is an example of specifier attachment; the second is an example of argument attachment. In English,
specifiers precede the head and arguments follow the head. It is desirable for the attachment algorithm to
handle both kinds of attachments without word order particular stipulations.

First, suppose that the word the is on the stack as both a determiner phrase and an H-node noun phrase.
Furthermore, suppose that the word woman is projected into the buffer as both a noun phrase and an H-node
clausal phrase:’

(11)
Stack: [DetP [Detl [Det the 1]
[NP [DetP [Detl [Det the ]]] for# for t ]]]
Buffer: forp for' [n woman ]]]
[*Pe«.... [np [n> [n woman ]]] for',.... foreu... e]]]

The attachment algorithm should allow two attachments at this point: the H-node NP on the stack
uniting with each NP C-node in the buffer. It might also seem reasonable to allow the bare determiner
phrase to attach directly as specifier of each noun phrase. However, this kind of attachment is undesirable
for two reasons. First of all, it makes the attachment operation a disjunctive operation: an attachment
would involve either matching an H-node or meeting the satellite requirements of a category. Second of
all, it makes H-node projection unnecessary in most situations and therefore somewhat stipulative. That
is, allowing a disjunctive attachment operation would permit many derivations that never use an H-node,
so that the need for H-nodes would be restricted to head-final constructions with pre-head satellites (see
Section 2). It is therefore desirable for all attachments to involve matching an H-node.

Two structures should be returned after attachments in (11): a C-node noun phrase and an H-node
clausal phrase:

(12)

a. [np [DetP the ] for» for woman 1]]

b- [a-Pcu... [np [DetP the ] for'[n woman JI[*;,.... [*,..... e m

Now consider an English argumentattachment.Suppose that a prepositional phrase representing the
word beside is on the stack and the noun Fmnk is represented in the buffer as a noun phrase and a clausal
phrase:

(13)

Stack: [pp [P> [p beside ] forp ell
Buffer:  forp for* fo/ Frank ]]]
[a-Pc,.... Up [nl[jv Frank JI] [*'u.# [xcl.m. «]]]

7A noun phrase is projected to an H-node clausal (or predicate) phrase since nouns may be the subjects of predicates.
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Since the preposition beside subcategorizes for a noun phrase, there is an H-node NP attached as its object.
The attachment algorithm should allow a single attachment at this point: the noun phrase representing Frank
uniting with the H-node NP object of beside:

(14)
[pp [p' [p beside ] [sp Frank ]]]

As should be clear from the two examples, the process of attachment involves comparing a previously
predicted category with a current category. If the two categories are compatible, then attachment may be
viable.

3.3.1 Node Compatibility

Compatibility is defined in terms of unification, which is defined terms of subsumption.8 A structure X is
said to subsume a structure Vif X is more general than Y. That Xcontains less specific information them
Y. So, for example, a structure that is specified as clausal (e.g. t lead of a predicate), but is not specified
for a particular category subsumes a structure having the categorv erb, since verbs are predicative and thus
clausal categories. Hence structure (15a) subsumes structure (15b):

(15)
a- [*PaA... elll
b. [vp [v [v walk ]]]

The unification operation is the least upper bound operator in the subsumption ordering on information
in a structure. Since structure (15a) subsumes structure (15b), the result of unifying structure (15a) with
structure (15b) is structure (15b). Two structures are compatible if the unification of the two structures is
non-nil. The information on a structure that is relevant to attachment consists of the node’ bar level (e.g.,
zero level, intermediate or maximal), and the node’s lexical features, (e.g. category, case, etc).

3.3.2 Attachment

Roughly speaking, the attachment operation should locate an H-node in a structure on the stack along with
a compatible node in a structure in the buffer. If both of these structures have parent tree structures, then
these parent tree structures must also be compatible. In order to keep the process of attachment simple, it
is proposed that each attachment have at most one compatibility This constraint is given in (16):9

(16)
Attachment Constraint: At most one nontrivial lexical feature unification is permitted per attachment.

A nontrivial unification is one that involves two nontrivial structures; a trivial unification is one that
involves at least one trivial structure. For example, if the parent node of the buffer site is as of yet undefined,
then the parent node of the stack site trivially unifies with this parent node. Only when both parents are
defined is there a nontrivial unification.

Consider the effect of the following three requirements: first, the lexical features of the stack and buffer
attachment sites must be compatible; second, the tree structures above the buffer and stack attachment sites
must be compatible; and third, at most one lexical feature unification is permissible per derivation, (16).
Since any attachment must involve at least one nontrivial lexical feature unification, that of the stack and
buffer sites, any additional nontrivial unifications will violate the attachment constraint in (16). If both

8See Sheiber (1986) for background on the possible uses of unification in particular grammar formalisms.

91n fact, this constraint follows from the two assumptions: first, a compatibility check takes a certain amount of processing
time; and second, attachments that take less time are preferred over those that take more time. See Gibson (forthcoming) for
further discussion.
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the buffer and stack attachment sites have parent tree structures, then the lexical features of these parents
will need to be unified. Since the child structures will also need to be unified, (16) will be violated. Thus
it follows that, in an attachment, either the buffer site or the stack site has no parent tree structure.io

Since the order of the words in the input must be maintained in a final parse, only those nodes in a buffer
structure that dominate all lexical items in that structure are permissible as attachment sites. For example,
suppose that the buffer contained a representation for the noun phrase women in college. Furthermore,
suppose that there is an H-node NP on the stack representing the word the. Although it would be suitable
for the buffer structure representing the entire noun phrase women in college to match the stack H-node, it
would not be suitable for the C-node NP representing college to match this H-node. This attachment would
result in a structure that moved the lexical input women in to the left of the lexical input dominated by
the matched H-node, producing a parse for the input women m the college. Since the word order of the
input string must be maintained, sites for buffer attachment must dominate all lexicalitems in the buffer
structure.

Once suitable maximal projections in each of the buffer and stack structures have been identified for
matching, it is still necessary to check that their internal structures are compatible. For example, suppose
that an identified buffer site is a C-node whose head allows exactly one specifier and a specifier is already
attached. If the stack H-node site also contains a specifier, then the attachment should be blocked. On the
other hand, if the stack H-node site does not contain a specifier, and other requirements are satisfied, then
the attachment should be allowed.

Testing for internal structure compatibility is quite simple if all tree structures are assumed to be binary
branching ones. The only possible attachment sites inside the stack H-node are those nodes that dominate
no other nodes. As long as there is some buffer node that both dominates all the bufferinput and matches
the H-node attachment site for bar level, then the attachment is possible.

Attachment is formally defined in (17):

(17)
A structure w in the buffer can attach to a structure x on the stack iff all of (a), (b), (c), (d) and (a)

are true:
a.  Structure w containsa maximal projection node, v. such that v dominates all lexical material in w .

b.  Structure x contains a maximal projection H-node structure, Z;

c. The tree structure above v is compatible with the tree structure above Z, subject to the attachment
constraint in (16);

d. The lexical features of structure v are compatible with the lexical features of structure Z;

e. Structure v is bar-level compatible with structure Z.

Bar-level compatibility is defined in (18):

18

,(Aszructure U in the buffer is bar-level compatible with a structure v on the stack iff all of (@, (b) and (c)
are true:

a. Structure Ucontains a node, S, such that S dominates all lexical material in U;

b. Structure v contains an H-node structure, T, that dominates no lexical material;

c. The bar level of 5 is compatible with the bar level of +

If attachment is viable, then w contains a structure v that is bar-level compatible with a structure Z
that is part of x . Since v and Z are bar-level compatible, there are structures 5 and r inside v and Z

10 It might seem that some possible attachments are being thrown away at this point. That is, in principle, there might be
a structure that can only be formed by attaching a buffer site to a stack site where both sites have parent tree structures.
This attachment would be blocked by (16). However, it turns out that any attachment that could have been formed by an
attachment involving more than one lexical feature unification can always be arrived at by a different attachment involving a
single lexical feature unification. For the proof, see Gibson (forthcoming).
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respectively, that satisfy the conditions of bar-level compatibility, (18).

When the conditions for attachment are satisfied, structures w and x are united in the following way.
First. \v and x are copied to nodes w - arid x - respectively. Inside x - there is a node, : ', that is a copy of
Z. The lexical features of Z' axe set to the unification of the lexical features of structures v and .. Next,
structure v in z- (corresponding to structure « in 2z, is replaced by s -, the copy of structure 5 inside w .
The bar level of v is set to the unification of the bar levels of structures 5 and + .

Finally, the tree structures above v and : are unified and this tree structure is attached above .- That
is, if - has some parent tree structure and v does not, then the copy of this structure inside x - is attached
above ;. Similarly, if v has some parent tree structure and : does not, then the copy of this structure
inside \v is attached above : - If neither node has any parent tree structure (i.e., w - v. x = Z), then
the unification is trivial and no attachment is made. Since V and Z cannot both have parent tree structures
(see (16) and the discussion following it), unifying the parent tree structures is a very simple process.

3.3.3. Example Attachments

As an illustration of how attachments take place, consider once again the noun phrase the big red book. First
the determiner the is read and is projected to a C-node determiner phrase. Since a determiner is allowable
as the specifier of a noun phrase and specifiers occur before the head in English, an H-node NP is also built.
These two structures are depicted in (19):

(19)
a. [DetP the ]
b. [ivp [petp the ] LV [V €T

Since there is nothing on the stack, these structures are shifted to the top of the stack. The word big
projects to both a C-node AP and an H-node NP since an adjective is allowable as a pre-head modifier in
English. These two structures are placed in the buffer (depicted in (20)).

(20)
a. [ap big]
b. [np [n' [ap big 1 1[v «1I

An attachment between nodes (19b) and (20b) is now attempted. Note that: a) node (20b) is a maximal
projection dominating all lexical material in its buffer structure; b) node (19b) is a maximal projection H-
node on the stack; c) the tree structures above these two nodes are compatible (both are undefined); and
d) the categories of the two nodes are compatible. It remains to check for bar-level compatibility of the two
structures. Since: a) the N2in structure (20b) dominates all the buffer input; b) the H-node in structure
(19b) dominates no C-nodes; and c) Nx and N2 are compatible in bar level, the structures in (19b) and
(20b) can be attached. The two structures are therefore attached by uniting N# and N2. The resultant
structure is given in 21):

(21)
[np [petp the ] [n' [ap big ][n' [V « 1

Structure (21), the only possible attachment between the buffer and the stack, is placed back in the
buffer, and the stack is popped. Since there is now nothing left on the stack, no further attachments are
possible at this time. Structure (21) is thus shifted to the stack. The word red now enters the buffer as a
C-node adjective phrase and an H-node noun phrase:

(22)
a. [AP red]

b. [np [n; [ap red ] [n" [n«]l]
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An attachment between nodes (21) and (22b) is now attempted. Requirements (17a)-(17d) are satisfied
and the requirement for bar-level compatibility is satisfied by the node labeled N3 in (21) together with N'
in (22b). Hence the structures are united, giving (23): *4

(23)
[vp pete the ] [w ne big ] [V' a» red 1 [V: [V « TIII

Since (23) is the only possible attachment between the buffer and the stack, it is placed in the buffer
and the stack is popped. Since the stack is now empty, structure (23) shifts to the stack. The noun so0«
now enters the buffer as both a C-node noun phrase and an H-node clausal phrase:

(24)
a. [.vp [ [a book T]]
b- [xPcu... [np Dv' [n bo°k ]]] ki..,. elll

Two attachments are possible at this point. The NP structure in (23) unites with each NP C-node on
the stack, resulting in the structures in (25):

(25)
a- [vp [petP the ] [V' [ap big ] [V' [ap red ][ i~ book 1| [pp € wcs - 1
- [xp«i..,, [np the big red book ] e 1

Note that only one attachment per structure takes place in the final parse step. Crucially, no more
attachments per structure take place when parsing the head of the noun phrase than when parsing the pre-
head constituents in the noun phrase.11 Thus, in contrast with the situation when nodes are only projected
when their heads are encountered, the node projection and attachment algorithms described here predict
that there should not be any slowdown when parsing the head of a head-final construction.

The Dutch data described in Section 2.1 are handled in a similar manner.

4 Conclusions

This paper has described a) a principle-based algorithm for the projection of phrasal nodes before their
heads are parsed, and b) an algorithm for attaching the predicted nodes. It is worthwhile to compare the
new projection algorithm with algorithms that do not project H-nodes. The projection algorithm provided
here involves more work and hence, on the surface, may seem somewhat stipulative compared to one that
does not project H-nodes. However, it turns out that although projecting -to H-nodes is more complicated
than not doing so, attachment when H-nodes are not present is more complicated than attachment when
they are present. That is, if a projection algorithm causes the projection of H-nodes, it will have a more
complicated attachment algorithm. For example, if H-nodes are projected when parsing the noun phrase
ine woman, the determiner the is immediately projected to an H-node noun phrase, which leads to a simple
attachment. If H-nodes are not projected, then projection is easier, but attachment is that much more
complicated. When attaching, it will be necessary to check if a determiner is an allowable specifier of a noun
phrase: the same operation that is performed when projecting to H-nodes. Thus although the complexity of
particular components changes , the complexity of the entire parsing algorithm does not change, whether or
not H-nodes are projected. Since the proposed projection and attachment algorithms make better empirical
predictions than ones that do not predict structure, the new algorithms are preferred.

Note that it is the number of attachments per structure that is crucial here, and not the number of total attachments,
since attachments made upon two independent structures may be performed in parallel, whereas attachments made on the
same structure must be performed serially. For example, since structures (24a) wid (24b) are independent, attachments may

e made to each of these in parallel. But if an attachment, B relies on the result of another attachment A, then attachment A
must be performed first.
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Abstract

This paper addresses the issue of how to organize linguistic principles
for efficient processing. Based on the general characterization of princi-
ples in terms of purely computational properties, the effects of principle-
ordering on parser performance are investigated. A novel parser that ex-
ploits the possible variation in principle-ordering to dynamically re-order
principles is described. Heuristics for minimizing the amount of unneces-
sary work performed during the parsing process are also discussed.

1 Introduction

Recently, there has been some interest in the implementation of grammatical
theories based on the principles and parameters approach (Correa [3], Dorr [4],
Johnson [5], Kolb & Thiersch [6], and Stabler [10]). In this framework, a fixed set
of universal principles parameterized according to particular languages interact
deductively to account for diverse linguistic phenomena. Much of the work to
date has focused on the not inconsiderable task of formalizing such theories. The
primary goal of this paper is to explore the computationally-relevant properties
of this framework. In particular, we address the hitherto largely unexplored issue
of how to organize linguistic principles for efficient processing. More specifically,
this paper examines if, and how, a parser can re-order principles to avoid doing
unnecessary work. Many important questions exist: for example, (1) What
effect, if any, does principle-ordering have on the amount of work needed to
parse a given sentence? (2) If the effect of principle-ordering is significant, then
are some orderings much better than others? (3) If so, is it possible to predict
(and explain) which ones these are?

By characterizing principles in terms of the purely computational notions of
“filters” and “generators”, we show how how principle-ordering can be utilized
to minimize the amount of work performed in the course of parsing. Basically,
some principles, like Move-a (a principle relating ‘gaps’ and ‘fillers’) and Free
Indexing (a principle relating referential items) are “generators” in the sense
that they build more hypothesized output structures than their inputs. Other
principles, like the 0-Criterion which places restrictions on the assignment of
thematic relations, the Case Filter which requires certain noun phrases to be

1The work of the first author is supported by an IBM Graduate Fellowship. R.C. Berwick
is supported by NSF Grant DCR-85552543 under a Presidential Young Investigator's Award.
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marked with abstract Case, and Binding Theory constraints, act as filters and
weed-out ill-formed structures.

A novel, logic-based parser, the Principle-Ordering Parser (po-parser),
was built to investigate and demonstrate the effects of principle-ordering. The
po-parser Was deliberately constructed in a highly-modular fashion to allow
for maximum flexibility in exploring alternative orderings of principles. For in-
stance, each principle is represented separately as an atomic parser operation.
A structure is deemed to be well-formed only if it passes all parser operations.
The scheduling of parser operations is controlled by a dynamic ordering mech-
anism that attempts to eliminate unnecessary work by eliminating ill-formed
structures as quickly as possible. (For comparison purposes, the po-parser
also allows the user to turn off the dynamic ordering mechanism and to parse
with a user-specified (fixed) sequence of operations.)

Although we are primarily interested in exploiting the (abstract) computa-
tional properties of principles to build more efficient parsers, the PO-PARSER is
also designed to be capable of handling a reasonably wide variety of linguistic
phenomena. The system faithfully implements most of the principles contained
in Lasnik k. Uriagereka’s [7] textbook. That is, the parser makes the same gram-
maticality judgements and reports the same violations for ill-formed structures
as the reference text. Some additional theory is also drawn from Chomsky [1]
and [2]. Parser operations implement principles from Theta Theory, Case The-
ory, Binding Theory, Subjacency, the Empty Category Principle, movement at
the level of Logical Form as well in overt syntax, and some Control Theory. This
enables it to handle diverse phenomena including parasitic gaps constructions,
strong crossover violations, passive, raising, and super-raising examples.

2 The Principle Ordering Problem

This section addresses the issue of how to organize linguistic principles in the
Po-PARSER framework for efficient processing. iMore precisely, we discuss the
problem of how to order the application of principles to minimize the amount
of‘work’that the parser has to perform. We will explain why certain orderings
may be better in this sense than others. We will also describe heuristics that
the Po-PARSER employs in order to optimize the the ordering of its operations.

But first, is there a significant performance difference between various order-
ings? Alternatively, how important an issue is the principle ordering problem
in parsing? An informal experiment was conducted using the po-parser de-
scribed in the previous section to provide some indication on the magnitude of
the problem. Although we were unable to examine all the possible orderings, it
turns out that order-of-magnitude variations in parsing times could be achieved
merely by picking a few sample orderings.2

2The PO-PARSER has about twelve to sixteen parser operations. Given a set of one dozen
operations, there are about 500 million different ways to order these operations. Fortunately,
only about h*Jf a million of these are actually valid, due to logical dependencies between the
various operations. However, this is still far too many to test exhaustively. Instead, only a few
well-chosen orderings were tested on a number of sentences from the reference. The procedure
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2.1 Explaining the Variation in Principle Ordering

The variation in parsing times for various principle orderings that we observed
can be explained by assuming that overgeneration is the main problem, or bot-
tleneck, for parsers such as the Po-PARSER. That is, in the course of parsing
a single sentence, a parser will hypothesize many different structures. Most of
these structures, the ill-formed ones in particular, will be accounted for by one
or more linguistic filters. A sentence will be deemed acceptable if there exists
one or more structures that satisfy every applicable filter. Note that even when
parsing grammatical sentences, overgeneration will produce ill-formed structures
that need to be ruled out. Given that our goal is to minimize the amount of
work performed during the parsing process, we would expect a parse using an
ordering that requires the parser to perform extra work compared with another
ordering to be slower.

Overgeneration implies that we should order the linguistic filters to elimi-
nate ill-formed structures as quickly as possible. For these structures, applying
any parser operation other them one that rules it out may be considered as
doing extra, or unnecessary, work (modulo any logical dependencies between
principles).3 However, in the case of a well-formed structure, principle ordering
cannot improve parser performance. By definition, a well-formed structure is
one that passes all relevant parser operations: Unlike the case of an ill-formed
structure, applying one operation cannot possibly preclude having to apply an-
other.

2.2 Optimal Orderings

Since some orderings perform better than others, a natural question to ask is:
Does there exist a ‘globally’ optimal ordering? The existence of such an ordering
would have important implications for the design of the control structure of any
principle-based parser. The po-PARSER has a novel ‘dynamic’ control structure
in the sense that it tries to determine an ordering-efficient strategy for every
structure generated. If such a globally optimal ordering could be found, then
we can do away with the run-time overhead and parser machinery associated
with calculating individual orderings. That is, we can build an ordering-efficient
parser simply by ‘hardwiring’ the optimal ordering into its control structure.
Unfortunately, no such ordering can exist.

The impossibility of the globally optimal ordering follows directly from the
“eliminate unnecessary work” ethic. Computationally speaking, an optimal
ordering is one that rules out ill-formed structures at the earliest possible op-
portunity. A globally optimal ordering would be one that always ruled out every

involved choosing a default sequence of operation* and ‘scrambling’ the sequence by moving
operations as far as possible from their original positions (modulo any logical dependencies
between operations).

3In the PO-PARSER for example, the Case Filter operation which require* that all overt
noun phrases have abstract Case assigned, is dependent on both the inherent and structural
Case assignment operations. That is, in any valid ordering the filter must be preceded by
both operations.
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possible ill-formed structure without doing any unnecessary work. Consider the
following three structures (taken from Lasnik's book):

(1) a. *Johni is crucial [cprip < to see this ]|
b. *[,vpJohni’s mother ]J[vp likes himselfi]
c. *Johni seems that hei likes t\

Example (1) violates the Empty Category Principle (ECP). Hence the op-
timal ordering must invoke the ECP operation before any other operation that
it is not dependent on. On the other hand, example (Ib) violates a Binding
Theory principle, ‘Condition A’. Hence, the optimal ordering must also invoke
Condition A as early as possible. In particular, given that the two operations
are independent, the. optimal ordering must order Condition A before the ECP
and vice-versa. Similarly, example (Ic) demands that the ICase Condition on
Traces’ operation must precede the other two operations. Hence a globally
optimal ordering is impossible.

2.3 Heuristics for Principle Ordering

The principle-ordering problem can be viewed as a limited instance of the well-
known conjunct ordering problem (Smith & Genesereth [9]). Given a set of
conjuncts, we are interested in finding all solutions that satisfy all the conjuncts
simultaneously. The parsing problem is then to find well-formed structures
(i.e. solutions) that satisfy all the parser operations (i.e. conjuncts) simultane-
ously. Moreover, we are particularly interested in minimizing the cost of finding
these structures by re-ordering the set of parser operations.

This section outlines some of the heuristics used by the Po-PARSER to deter-
mine the minimum co6t ordering for a given structure. The po-parser contains
a dynamic ordering mechanism that attempts to compute a minimum cost or-
dering for every phrase -ucture generated during the parsing process.4 The
mechanism can be subdi led into two distinct phases. First, we will describe
how the dynamic ordering mechanism decides which principle is the most likely
candidate for eliminating a given structure. Then, we will explain how it makes
use of this information to re-order parser operation sequences to minimize the
total work performed by the parser.

2.3.1 Predicting Failing Filters

Given any structure, the dynamic ordering mechanism attempts to satisfy the
“eliminate unnececessary work” ethic by predicting a “failing” filter for that

4 In their paper, Smith S Genesereth drew a distinction between “static” and “dynamic"
ordering strategies. In static strategies, the conjuncts are first ordered, and then solved in
the order presented. By contrast, in dynamic strategies the chosen ordering may be revised
between solving individual conjuncts. Currently, the PO-PARSER employs a dynamic strategy.
The ordering mechanism computes an ordering baaed on certain features of each structure
to be processed. The ordering may be revised after certain operations (e.g. movement) that
modify the structure in question.
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structure. More precisely, it will try to predict the principle that a given struc-
ture violates on the basis of the simple structure cues. Since the ordering mech-
anism cannot know whether a structure is well-formed or not, it assumes that
all structures are ill-formed and attempts to predict a failing filter for every
structure. In order to minimize the amount of work involved, the types of
cues that the dynamic ordering mechanism can test for are deliberately limited.
Only inexpensive tests such as whether a category contains certain features
(e.g. ianaphoric, iinfinitival, or whether it is a trace or a non-argument) may
be used. Any cues that may require significant computation, such as searching
for an antecedent, are considered to be too expensive. Each structure cue is then
associated with a list of possible failing filters. (Some examples of the mapping
between cues and filters are shown below.) The system then chooses one of the
possible failing filters based on this mapping.5

(2)

Structure cue Possible fsuling filters

trace Empty Category Principle, and
Case Condition on traces

intransitive Case Filter

passive Theta Criterion
Case Filter

non-argument  Theta Criterion

-(-anaphoric Binding Theory Principle A

+ pronominal Binding Theory Principle B

The correspondence between each cue and the set of candidate filters may
be systematically derived from the definitions of the relevant principles. For
example, Principle A of the Binding Theory deals with the conditions under
which antecedents for anaphoric items, such as “each other” and “himself’,
must appear. Hence, Principle A can only be a candidate failing filter for struc-
tures that contain an item with the -f-anaphoric feature. Other correspondences
may be somewhat less direct: for example, the Case Filter merely states that
all overt noun phrase must have abstract Case. Now, in the Po-PARSER the
conditions under which a noun phrase may receive abstract Case are defined by
two separate operations, namely, Inherent Case Assignment and Structural Case
Assignment. It turns out that an instance where Structural Case Assignment
will not assign Case is when a verb that normally assigns Case has passive mor-
phology. Hence, the presence of a passive verb in a given structure may cause
an overt noun phrase to fail to receive Case during Structural Case Assignment
— which, in turn may cause the Case Filter to fail.6

5 Obviously, there are many ways to implement such a selection procedure. Currently, the
PO-PARSER uses a voting scheme based on the frequency of cues. The (unproven) underlying
assumption ia that the probability of a filter being a failing filter increases with the number
of occurrences of its associated cues in a given structure. For example, the more traces there
are in a structure, the more Likely it is that one of them will violate some filter applicable to
traces, such as the Empty Category Principle (ECP).

81t is possible to automate the process of finding structure cues simply by inspecting the
closure of the definitions of each filter and all dependent operations. One method of deriving
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The failing filter mechanism can been seen as an approximation to the
Cheapest-first heuristic in conjunct ordering problems. It turns out that if the
cheapest conjunct at any given point will reduce the search space rather than
expand it, then it can be shown that the optimal ordering must contain that
conjunct at that point. Obviously, a failing filter is a “cheapest” operation in
the sense that it immediately eliminates one structure from the set of possible
structures under consideration.

Although the dynamic ordering mechanism performs well in many of the test
cases drawn from the reference text, it is by no means foolproof. There are also
many cases where the prediction mechanism triggers an unprofitable re-ordering
of the default order of operations. (We will present one example of this in the
next section.) A more sophisticated prediction scheme, perhaps one based on
more complex cues, could increase the accuracy of the ordering mechanism.
However, we will argue that it is not cost-effective to do so. The basic reason is
that, in general, there is no simple way to determine whether a given structure
will violate a certain principle.7 That is, as far as one can tell, it is difficult to
produce a cheap (relative to the cost of the actual operation itself), but effective
approximation to a filter operation. For example, in Binding Theory, it is diffi-
cult to determine if an anaphor and its antecedent satisfies the complex locality
restrictions imposed by Principle A without actually doing some searching for
a binder. Simplifying the locality restrictions is one way of reducing the co6t
of approximation, but the very absence of search is the main reason why the
overhead of the present ordering mechanism is relatively small.8 Hence, having
more sophisticated cues may provide better approximations, but the tradeoff is
that the prediction methods may be almost as expensive as performing the real
operations themselves.

2.3.2 Logical Dependencies and Re-ordering

Given a candidate failing filter, the dynamic ordering mechanism has to schedule
the sequence of parser operations so that the failing filter is performed as early

cue* i> to collect the negation of all condition* involving category features. For example, if an
operation contain* the condition “not (lt«« ha*-f«atur* intransitiv*)”, then we can take
the presence of an intransitive item a* a possible reason for failure of that operation. However,
this approach ha* the potential problem of generating too many cues. Although, it may be
relatively inexpen*ive to test each individual cue, a large number of cues will significantly
increase the overhead of the ordering mechanism. Furthermore, it turns out that not all cues
are equally useful in predicting failure filter*. One solution may be to use “weight*" to rank
the predictive utility of each cue with respect to each filter. Then an adaptive algorithm could
be used to “learn™ the weighting value*, in a manner reminiscent of Samuels [8]. The failure
filter prediction process could then automatically eliminate testing for relatively unimportant
cue*. Thi* approach is currently being investigated.

71f *uch a scheme can be found, then it can effectively replace the definition of the principle
itself.

8 We ignore the additional co*t of re-ordering the sequence of operation* once a failing filter
ha* been predicted. The actual re-ordering can be made relatively inexpensive using various
trick*. For example, it ia po*«ible to “cache” or compute (off-line) common ca*es of re-ordering
a default sequence with respect to various failing filters, thu* reducing the cost of re-ordering
to that of a simple look-up.
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as possible. Simply moving the failing filter to the front of the operations queue
is not a workable approach for two reasons.

Firstly, simply fronting the failing filter may violate logical dependencies be-
tween various parser operations. For example, suppose the Case Filter was cho-
sen to be the failing filter. To create the conditions under which the Case Filter
can apply, both Case assignment operations, namely, Inherent Case Assignment
and Structural Case Assignment, must be applied first. Hence, fronting the Case
Filter will also be accompanied by the subsequent fronting of both assignment
operations unless, of course, they have already been applied to the structure
in question.

Secondly, the failing filter approach does not take into account the behaviour
of generator operations. A generator may be defined as any parser operation
that always produces one output, and possibly more than one output, for each
input. For example, the operations corresponding to X rules, Move-a, Free
Indexing and LF Movement are the generators in the po-parser. (Similarly, the
operations that we have previously referred to as “filters” may be characterized
as parser operations that, when given N structures as input, pass N and possibly
fewer than N structures.) Due to logical dependencies, it may be necessary in
some situations to invoke a generator operation before a failure filter can be
applied. For example, the filter Principle A of the Binding Theory is logically
dependent on the generator Free Indexing to generate the possible antecedents
for the anaphors in a structure. Consider the possible binders for the anaphor
"himself” in “John thought that Bill saw himself” as shown below:

(3) a. *John, thought that Bill,- saw himself,
b. John, thought that Billy saw himself;
c.*John, thought that Billy saw himself*

Only in example (3b), is the antecedent close enough to satisfy the locality
restrictions imposed by Principle A. Note that Principle A had to be applied
a total of three times in the above example in order to show that there is only
one possible antecedent for “himself”. This situation arises because of the gen-
eral tendency of generators to overgenerate. But this characteristic behaviour
of generators can greatly magnify the extra work that the parser does when
the dynamic ordering mechanism picks the wrong failing filter. Consider the
ill-formed structure u*John seems that he likes t” (a violation of the princi-
ple that traces of noun phrase cannot receive Case.) If however, Principle B
of the Binding Theory is predicted to be the failurefilter (onthebasis of the
structure cue “he”), then Principle B will beappliedrepeatedly to theindex-
ings generated by the Free Indexing operation. On the other hand, if the Case
Condition on Traces operation was correctly predicted to be the failing filter,
then Free Indexing need not be applied at ail. The dynamic ordering mech-
anism of the Po-PARSER is designed to be sensitive to the potential problems
caused by selecting a candidate failing filter that is logically dependent on many
generators.9

90bviously, there are many different ways to accomplish this. One method is to compute
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2.4 Linguistic Filters and Determinism

In this section we describe how the characterization of parser operations in
terms of filters and generators may be exploited further to improve the perfor-
mance of the po-parser for some operations. More precisely, we make use of
certain computational properties of linguistic filters to improve the backtrack-
ing behaviour of the po-parser. The behaviour of this optimization will turn
out to complement that of the ordering selection procedure quite nicely. That
is, the optimization is most effective in exactly those cases where the selection
procedure is least effective.

We hypothesize that linguistic filters, such as the Case Filter, Binding Con-
ditions, ECP, and so on, may be characterized as follows:

(4) Hypothesis: Linguistic filters are side-effect free conditions on
configurations

In terms of parser operations, this means that filters should never cause
structure to be built or attempt to fill in feature slots.10 Moreover, computa-
tionally speaking, the parser operations corresponding to linguistic filters should
be deterministic. That is, any given structure should either fail a filter or just
pass. A filter operation should never need to-succeed more than once, simply
because it is side-effect free.11 By contrast, operations that we have character-
ized as generators, such as Move-a and Free Indexing, are not deterministic in
this sense. That is, given a structure as input, they may produce one or more
structures as output.

the “distance” of potential failure filters from the current state of the parser in terms of the
number of generators yet to be applied. Then the failing filter will be chosen on the basis of
some combination of structure cues and generator distance. Currently, the PO-PARSER uses
a slightly different and cheaper scheme. The failure filter is chosen solely on the basis of
structure cues. However, the fronting mechanism is restricted so that the chosen filter can
only move a limited number of positions ahead .A' its original position. The original operation
sequence is designed such that the distance of the filter from the front of the sequence is
roughly proportional to the number of (outstanding) operations that the filter is dependent
on.
10So far, we have not encountered any linguistic filters that require either structure building
or feature assignment. Operations such as 5-role and Case assignment are not considered
filters in the sense of the definition given in the previous section. In the PO-PARSER, these
operations will never fail. However, definitions that involve some element of ‘modality’ are
potentially problematic. For example, Chomsky’ definition of an accessible SUBJECT, a
definition relevant to the principles of Binding Theory, contains the following phrase
assignment to or of the index of (3 would not violate the (i-within-i) filter «(7,...5,..] . A
transparent implementation of such a definition would seem to require some manipulation of
indices. However, Lasnik (p.58) points out that there exists an empirically indistinguishable
version of accessible SUBJECT without the element of modality present in Chomsky’s version.

11t turns out that there are situations where a filter operation (although side-effect free)
could succeed more than once. For example, the linguistic filter known as the “Empty Cate-
gory Principle” (ECP) implies that all traces must be “properly governed”. A trace may satisfy
proper government by being either “lexically governed” or “antecedent governed”. Now con-
sider the structxire [c p VVhati did you [vp read ti]]. The trace ti is both lexically governed
(by the verb read) and antecedent governed (by its antecedent what). In the PO-PARSER the
ECP operation can succeed twice for cases such as t\ above.
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Given the above hypothesis, we can cut down on the amount of work done by
the po-parser by modifying its behaviour for filter operations. Currently, the
parser employs a backtracking model of computation. If a particular parser op-
eration fails, then the default behaviour is to attempt to re-satisfy the operation
that was called immediately before the failing operation. In this situation, the
po-parser Will only attempt to re-satisfy the preceding operation if it happens
to be a generator. When the preceding operation is a filter, then the parser will
skip the filter and, instead, attempt to resatisfy the next most recent operation
and so on.12 For example, consider the following calling sequence:

Suppose that a structure generated by generator G2 passes filters and F2,
but fails on filter Fs. None of the three filters could have been the cause of the
failure by the side-effect free hypothesis. Hence, we can skip trying to resatisfy
any of them and backtrack straight to G2.

Note that this optimization is just a limited form of dependency-directed
backtracking. Failures are traced directly to the last generator invoked, thereby
skipping over any intervening filters as possible causes of failure. However, the
backtracking behaviour is limited in the sense that the most recent generator
may not be the cause of a failure. Consider the above example again. The
failure of Fs need not have been caused by G2. Instead, it could have been
caused by structure-building in another generator further back in the calling
sequence, say Gx. But the parser will still try out all the other possibilities in
G2 first.

Consider a situation in which the principle selection procedure performs
poorly. That is, for a particular ill-formed structure, the selection procedure
will fail to immediately identify a filter that will rule out the structure. The
advantages of the modified mechanism over the default backtrack scheme will
be more pronounced in such situations — especially if the parser has to try
several filters before finding a “failing” filter. By contrast, the behaviour of
the modified mechanism will resemble that of the strict chronological scheme
in situations where the selection procedure performs relatively well (i.e. when a
true failing filter is fronted). In such cases, the advantages, if significant, will be
small. (In an informal comparison between the two schemes using about eighty
sentences from the reference text, only about half the test cases exhibited a
noticeable decrease in parsing time.)

13This behaviour can be easily simulated using the ‘cut’ predicate in Prolog. We can route

all calls to filter operations through a predicate that calls the filter and then cuts off all internal
choice points. (For independent reasons, the PO-PARSER does not actually use this approach.)
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3 Conclusions: The Utility of Principle-Ordering

From our informal experiments with the po-PARSER, we have found that dy-
namic principle-ordering can provide a significant improvement over any fixed
ordering. We have found that speed-ups varying from three- or four-fold to
order-of-magnitude improvements are possible in many cases.13

The control structure of the Po-PARSER forces linguistic principles to be ap-
plied one at a time. Many other machine architectures are certainly possible.
For example, we could take advantage of the independence of many principles
and apply principles in parallel whenever possible. However, any improvement in
parsing performance would come at the expense of violating the minimum (un-
necessary) work ethic. Lazy evaluation of principles is yet another alternative.
However, principle-ordering would still be an important consideration for effi-
cient processing in this case. Finally, we should also consider principle-ordering
from the viewpoint of scalability. The experience from building prototypes of
the po-parser suggests that as the level of sophistication of the parser increases
(both in terms of the number and complexity of individual principles), the effect
of principle-ordering also becomes more pronounced.
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1. Introduction

Constructing a grammar which can parse sentences selected from a natural language corpus is a
difficult task. One of the most serious problems is the unmanageably large number of ambiguities.
Pure syntactic analysis based only on syntactic knowledge will sometimes result in hundreds of
ambiguous parses. Martin [15] reported that his parser generated 455 ambiguous parses for the
sentence:

List the sales ofproducts produced in 1973 with the products produced in 1972.

Through the long history of work in natural language understanding, semantic and pragmatic con-
straints have been known to be indispensable for parsing. These should be represented in some
formal way and be referred to during or after the syntactic analysis process. Al researchers have
been exploring the use of semantic networks, frame theory, etc. to describe both factual and intui-
tive knowledge for the purpose of filtering out meaningless parses and to aid in choosing the most
likely interpretation. The SHRDLU system [22] by Winograd successfully demonstrated the pos-
sibility of sophisticated language understanding and problem solving in this direction. However,
to represent semantic and pragmatic constraints, which are usually domain sensitive, in a well-
formed way is a very difficult and expensive task. To the best of our knowledge, no one has ever
succeeded in doing so except in relatively small restricted domains.

Furthermore, there remains a basic question as to whether it is possible to formally encode all of
the syntactic, semantic and pragmatic information needed for disambiguation in a definite and
deterministic way. For example, the sentence

Printfor me the sales of stair carpets.

seems to be unambiguous; however, in the ROBOT system pure syntactic analysis of this sentence
resulted in two ambiguous parses, because the “ME” can be interpreted as an abbreviation of the
state of Maine[9]. Thus, this simple example reveals the necessity of pragmatic constraints for the
disambiguation task. Readers may claim that the system which would generate the second inter-
pretation is too lax and that a human would never be perplexed by the case. However, a reader s
view would change if he were told that the the sentence below had been issued previous to the
sentence above.

Printfor ca the sales of stair carpets.

Knowing that the speaker inquired about the business in California in the previous queries, it is
quite natural to interpret “me” as the state of Maine in this context. A problem of this sort usually
calls for the introduction of an appropriate discourse model to guide the parsing. Even with a so-
phisticated discourse model beyond anything available today, it would be impossible to take ac-
count all previous sentences: The critical previous sentence may always be just beyond the capacity
of the discourse stack.

Thus it is quite reasonable to think of a parser which disambiguates sentences by referring to sta-

tistics which encode various characteristics of the past discourse, the task domain, and the speaker.
For instance, the probability that the speaker is referring to states and the probability that the
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speaker is abbreviating a name, are useful in disambiguating the example. If the probabilities of the
above are both statistically low, one could simply neglect the interpretation of the state of “Maine"
for “me”. Faced with such a situation, we propose, in this paper, to employ probability as a device
to quantify language ambiguities. In other words, we will propose a hybrid model for natural lan-
guage processing which comprises linguistic expertise, i.e. grammar knowledge, and its probabilistic
augmentation for approximating natural language. With this framework, semantic and pragmatic
constraints are expected to be captured implicitly in the probabilistic augmentation.

Section 2 introduces the basic idea of the probabilistic parsing modeling method and Section 3
presents the experimental results when this modeling method is applied to parsing problems of
English sentences and of Japanese noun compound words. Detailed description of the method are
given elsewhere.

2. Probabilistic Context-free Grammar

2.1 Extension to Context-free Grammar

A probabilistic context-free grammar is an augmentation of a context-free grammar [5]. Each of
the grammar and lexical rules (r) , having a form of a -* /2, is associated with a conditional proba-
bility Pr\r) = Pr{f} |a) . This conditional probability denotes the probability that a non-terminal
symbol a , having appeared in the sentential form during the sentence derivation process, will be
replaced with a sequence of terminal and non-terminal symbols /2. Obviously la) = 1 holds.

Processes of sentence generation from a sentence symbol 5 by a probabilistic context-free grammar
will be carried out in an identical manner to the usual non-probabilistic context-free grammar. But
the advantage of the probabilistic grammar is that the probability can be computed for each of the
derivation trees, which enables us to quantify sentence ambiguities as described below.

The probability of a derivation tree t can be computed as a product of conditional probabilities of
the rules which are employed for deriving that tree t.

Pr(€®= n Prin)
r*m

Here r denotes a rule of the form «w-* | and D(t) denotes an ordered set of the rules which are
employed for deriving the tree t. The next figure explains how the probability of a derivation tree
t can be computed as a product of rule probabilities.

Pr{t) = Pr{NP. VP.ENDM \S) x
Pr{DET.N | NP) x
~the |det) x
Pr{boy | N) x
Pr{V.NP | VP)x
NNikes | V) x
Pr{DET.N | NP) x
/V(that | det) x
Pr(giri | N) x
Pr{. | ENDM)

Fig. 1 Probability of a Derivation Tree

An ambiguous grammar allows many different derivation trees to coexist for sentences. From the
viewpoint of sentence parsing, we say that a sentence is ambiguous when more than two parsed
trees, say f,, t2 .. are derived from the parsing process. Having a device to compute probability for
a derivation tree as shown above, we can handle sentence ambiguity in a quantitative way. Namely,
when a sentence s is parsed ambiguously into derivation trees  t2 .. and a probability Pr[tj) is
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computed for each derivation tree  the sum of the probabilities V can be regarded as the
probability that a particular sentence s will happen to be generated among other infinite possibil-
ities. More interesting is the ratio denoting relative probabilities among ambiguous derivation trees:

Pritj)

k

We can assume that it should denote the “likelihood” of each derivation tree. For example, con-
sider the following English sentence “Reply envelopes are enclosed for your convenience.” The sen-
tence is ambiguous because it can be parsed in two different ways; the first being in the imperative
mode, and the second in the declarative.

r,, “Reply (that) envelopes are enclosed for your convenience.”
[Pr{ty + Pr{t2)

tv. “Reply envelopes (A kind of envelopes) are enclosed for your convenience.” =» ---—-—- P~ -

(Pr(ti) + Pritj)

These correspond to two different parsed trees, and t2 By computing Pr\t)) + Pr{td, we can es-
timate the probability that the specific sentence “Reply envelopes are ... ” is generated from among
an infinite number of possible sentences. On the other hand, + PriQ) and
Fit)I(P,i ti) + P'ih)) £ve measures of likelihood for interpretations and t2

2.2 Estimation of Rule Probabilities from Data

The Forward / Backward algorithm, described in [11], popularly used for estimating transition
probabilities for a given hidden-Markov-model, can be extended so as to estimate rule probabilities
of a probabilistic context free grammar in the following manner.

Assume a Markov model, whose states correspond to possible sentential forms which appear in a
sentence parsing process of a context free grammar. Then each transition between two states of the
Markov model corresponds to an application of a context-free rule that maps one sentential form
into another. For example, the state NP. VP can be reached from the state 5 by applying the rule
5 =*hP.VP to a start symbol 5, the state ART.NOUN.VP can be reached from the state NP.VP
by applving the rule NP -* ART.NOUN to the first NP of the sentential form NP.VP, and so on.
Since ea*.h rule corresponds to a state transition between two states, parsing a set of sentences given
as training data will enable us to count how many times each transition is traversed. In other words,
it tells how many times each rule is fired when the given set of sentences is generated. For example,
the transition from the state 5 to the state NP.VP may happen most frequently because the rule
S “mNP.VP is commonly used in almost every declarative sentence; while the transition from the
state ART.NOUN.VP to the state every.NOUN. VP may happen 103 times; etc. In a context-free-
grammar, each replacement of a non-terminal symbol occurs independently of the context. There-
fore, counts of all transitions between states a.A.fi to a.B.C.p, with arbitrary a and /?, should be tied
together.

Counting the transitions in such a way for thousands of sentences will enable us to estimate the rule
probabilities {Pr{{3| a)} which are the probabilities that left hand side non-terminal symbols a will
be replaced with right hand side patterns /2. The actual iteration procedure to estimate these
probabilities from N sentences {B'} is shown below.

1 Make an initial guess of {Pr{fi | @)} such that PAP la) = 1holds.

2. Parse each output sentence B*. Assume that grammar is ambiguous and that more than one
derivation path exists which generate the given sentence B'. In such cases, we denote D'; as the
j-th derivation path for the ith-sentence.

3. Compute the probability of each derivation path D'j in the following way:
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P*DJ) = f] Pr{n
‘. D*

This computes Pr[Dj) as a product of the probabilities of the rules {r} which are employed to
generate that derivation path D* .

4. Compute the Bayes aposteriori estimate of the count (?,(/?) which represents how many times
the rule a —/? was used for generatmg the sentence BI .

]
Here, n‘(a, (3 denotes the number of times the rule a —*fi is used on the derivation path D’; .

5. Normalize the count so that the total count for rules with same left hand side non-terminal
symbol a becomes 1

6. Replace (Pr(p | &)} with [E(/?)} and repeat from step 2.

Through this process, the {Pr(P |a)} will approach the real transition probability[2,10]. This al-
gorithm has been proven to converge [3].

2.3 Parsing Procedure which computes Probabilities

To find the most-likely parse, that is, the parse tree which has the highest probability from among
all the candidate parses, requires a lot of time if we calculate probabilities separately for each am-
biguous parse. The following is a parsing procedure based on the Cocke-Kasami-Young [1]
bottom-up parsing algorithm which can accomplish this task very efficiently. By using it, the
most-likely parse tree for a sentence will be obtained while the normal bottom-up parsing process
is performed. It gives the maximum probability Max,/*”-) as well as the total probability of all
parses at the same time.

The Cocke-Kasami-Young parsing algorithm maintains a two-dimensional table called the Well-
Formed-Substring-Table (WFST). An entry in the table, WFST(i,j) , corresponds to a
substring”,j), j words in length, starting at the i-th word, of an input sentence [1]. The entry
contains a list of triplets. An application of a rule a * fly will add an entry (a, /?, y) to the list. This
triplet shows that a sequence of fi.y which spans substring(i,j) is replaced with a non-terminal
symbol a. (/% is the pointer to another WFST entry that corresponds to the left subordinate
structure of a and y :is the pointer to the right subordinate structure of a.)

In order to compute probabilities of parse trees in parallel to this bottom-up parsing process, the
structure of this WFST entry is modified as follows. Instead of having an one-level flat list of
triplets, each entry of WFST was changed to hold a two-level list. The top-level of the two-level list
corresponds to a left hand side non-terminal symbol, called as LHS symbol hereinafter. All com-
binations of left and right subordinate structures are kept in the sub-list of the LHS symbol. For
instance, an application of a rule a -* py will add (/?, y) to the sub-list of a.

In addition to the sub-list, a LHS symbol is associated with two variables - MaxP and SumP. These
two variables keep the maximum and the total probabilities of the LHS symbol of all possible right

-88- Intemational Parsing Workshop '89



hand side combinations. MaxP and SumP can be computed in the process of bottom-up chart
parsing. When a rule a -* fly is applied, MaxP and SumP are computed as:

MaxP ) = Hiel!X(Prob(a -» 0y) x MaxP{$) x MaxP(y))
y

SumP(a) = y*(Prob{a -* (3y) x SumP(p) x SumP(y))
y

This procedure is similar to that of Viterbi algorithm[4] and maintains the maximum probability
and the total probability in MaxP and SumP respectively. MaxP/SumP gives the maximum relative
probability of the most-likely parse.

3. Experiments

To demonstrate the capability of the modeling method, a few trials were made to disambiguate
corpora of highly ambiguous phrases. Two of these experiments will be briefly described below.
Details can be found elsewhere.

3.1 Disambiguation of English Sentence Parsing

As the basis of this experiment, the grammar developed by Prof. S. Kuno in the 1960's for the
machine translation project at Harvard University [13,14,18] was used with some modification.
The set of grammar specifications in the Kuno grammar, which are in Greibach Normal form, were
translated into a form which is more favorable to our method. The 2118 original rules were refor-
mulated into 7550 rules in Chomsky normal formf[l].

Training sentences were chosen from two corpora. One corpus is composed of articles from
Datamation and Reader's Digest (average sentence length in words 10.85, average number of am-
biguities per sentence 48.5) and the other from business correspondence (average sentence length
in words 12.65, average number of ambiguities per sentence 13.5). A typical sentence from the latter
corpus is shown below:

It was advised that there are limited opportunities at this time.

The 3582 sentences from the first corpus, and 624 sentences from the second corpus that were
successfully parsed were used to train the 7550 grammar rules besides some lexical rules in each
corpus.

Once the probabilities for rules are thus obtained, they can be used to disambiguate sentences by
the procedure described in section 2.3.

SENTENCE
PRONOUN (we)
PREDICATE
AUXILIARY (do)
INFINITE VERB PHRASE
ADVERB TYPE1 ( not)
(A) 0.356 INFINITE VERB PHRASE
VERB TYPE IT 1( utilize )

OBJECT
NOUN ( outside )
ADJ CLAUSE
NOUN (art)

PRED. WITH NO OBIECT
VERB TYPE VTL ( services )
(B) 0.003 INFINITE VERB PHRASE
VERB TYPE IT 1( uukze )
OBIJECT
PREPOSITION ( outside )
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NOUN OBIJECT

NOUN (art)
OBJECT
NOUN ( services )

(C)0.641 INFINITE VERB PHRASE
VERB TYPE IT1( utilize )
OBJECT

NOUN ( outside )
OBJECT MASTER
NOUN (art)
OBJECT MASTER
NOUN ( services )
PERIOD
ADVERB TYPE1l (directly )
PRD ()

Fig. 2 Parse Tree for “We do not utilize

Figure 2 shows the parsing result for the sentence Ve do not utilize outside art services directly.
which turned out to have three ambiguities.

As shown in the figure, ambiguities come from the three distinct substructures, (A), (B) and (C),
for the phrase “utilize outside art services.". The derivation (C) corresponds to the most common
interpretation while in (A) "art” and "outside” are regarded respectively as subject and object of
the verb "services”. In (B), "art service” is regarded as an object of the verb "utilize”” and "outside”
is inserted as a preposition. The numbers 0.356, 0.003 and 0.641 signify the relative probabilities
of the three interpretations. As shown in this case, the correct parse (the third one) gets the highest
relative probability, as was expected.

Some of the resultant probabilities obtained through the iteration process for each of the grammar
rules and the lexical rules are shown below.

Rules for “1T6”1 Rules for “SE™ 3

(0.11054) IT6 - BELIEVE -(a) (0.21602) SE - AAA 4X VX PD —(c)
(0.10685) IT6 - KNOW -(b) (0.15296) SE -* PRN VX PD —(d)
(0.08562) IT6 - FIND (0.15229) SE - NNN VX PD
(0.07628) IT6 - THINK (0.11965) SE - AVISE

(0.03525) IT6 - CALL (0.04730) SE - PRE NQ SE

(0.03280) IT6 - REALIZE (0.04457) SE - NNN AC VX PD

(0.02616) SE - AV2 SE
Rules for “1T372

(0.16055) IT3 - GET Rules for “VX”4

(0.12447) IT3 -* MAKE (0.19809) VX -* VT1 N2

(0.1 1988) IT3 - HAVE (0.10704) VX - PRE NQ VX
(0.08132) IT3 - SEE (0.08790) VX - VII
(0.06477) IT3 - KEEP (0.07500) VX - AUX BV
(0.06363) IT3 - BELIEVE (0.05455) VX - AVI VX

Fig. 3 Rule probabilities estimated by iteration

Numbers in the parentheses on the left of each rules denote probabilities estimated from the iter-
ation process described in the section 3.3. For example, the probabilities that the words believe,
and know have the part of speech IT6 are shown as 11.11% and 10.7\% on lines (a) and (b) re-
spectively. Line (c) shows that a sequence AAA (article and other adjective etc.) 4X (subject noun
phrase), VX(predicate) and PD (period or post sentential modifiers followed by period) forms a
sentence (SE) with probability 21.6\%. Line (d), on the other hand, shows that a sequence PRN

Infinite form of a mono-transitive verb which takes a noun-clause object

infinite form of a complex-transitive verb which takes an object and an objective compliment
sentence

predicate
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(pronoun), VX and PD forms a sentence (SE) with probability 15.3 %. In such ways, the proba-
bility findings convey useful information for language analysis.

Table 1summarizes the experiments. Test 1corresponds to the corpus of articles from Datamation
and Reader's Digest, while Test 2 derived from the business correspondence. In both cases, the
base Kuno grammars were successfully augmented by probabilities.

a. Corpus test | test2
b. Number of sentences used for training 3582 624
C. Number of sentences checked manually 63 pl
d. Number of sentences with no correct parse 4 2
e. Number of sentences where highest prob.

was given to the most natural parse 54 18
f. Number of sentences where highest prob.

was not given to the right one 5 1

Table 1L Summary of English sentence parsing

3.2 Disambiguation of Japanese Noun Compound Word Parsing

Analyzing structures of noun compound words is difficult because noun compound words usually
do not have enough structural clues for syntactic parsing[17]. Particularly in the Japanese language,
noun compound words consist only of a few types of components, and pure syntactic analysis will
result in many ambiguous parses. Some kind of mechanism which can handle inter-word analysis
of constituent words is needed to disambiguate them.

We applied our probabilistic modeling method for disambiguating parsing of Japanese noun com-
pound words. It was done by associating rule probabilities to basic construction rules of noun
compound words. In order to make rule probabilities sensitive to inter-word relationship of com-
ponent words, words were grouped into finer categories (jV,, N2 M3 .. Sm). The base rules were
replicated for each combination of right hand side word categories. Since we assumed that the
right-most word of the right hand side inherits the category from the left hand side parent, a single
m/-¢ MV rule was replicated to m x m rules. For these mx m rules, separate probabilities were
prepared and estimated. The method described in the section 2.2 was used to estimate these
probabilities from noun compound words actually observed in text.

Once probabilities for rules were estimated, the parsing procedure described in the section 2.3 was
used to compute relative probability of each parse tree i.e. the likelihood of the parse tree among
others.

In this experiment, we categorized words by a conventional clustering technique which groups
words according to neighboring word patterns. For example, 'oil" and 'coal’ belong to the same
category in our method because they frequently appear in similar word patterns such as “ ~
burner”, “ ~ consumption”, “ ~ resources”. 31,900 noun compound words picked from abstracts
of technical papers [12] were used for this categorization process. Twenty eight categories were
obtained through this process for 1000 high-frequency 2-character kanji primitive words, 8 catego-
ries for 200 prefix single-character words, and 10 categories for 400 suffix single-character
words[16]. Base rules deriving from different combination of these 46 word categories resulted in

5582 separate rules. These base rules are displayed below.

<word > ~* <2 character kanji primitive word >

<word> —»<word> <word >
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<word > —* <prefix single character word > <word>

<word > -* <word > <suffix single character word >

5582 conditional probabilities of these rules were estimated from 28,568 noun compound words.

After training  was successfully done, 153 noun compound wordswere randomlychosen, parsed b\
the procedure shown in the section 3.3 and the parse trees wereexamined by hand. The check was
made whether the correct parse is given the highest probabilities. Among the 153testwords, 22
was uniquely parsed and 131 test wordswere parsed with more than two alternativeparse trees.
Among 131, in 92 cases, the right parses were given the highest probabilities.

Show below are parsing results for two noun compound words.

word 1 ~(medium) #1$|(scale) (integrated) [0]5& (ci rcui t)
word 2. /J'(small) #ifE(scale> \\Ifj (olectr icity) (company)

(Word order is the same both in English and in Japanese).

For both of these cases, 5 alternative parse trees were given. Obtained parse treeswere computed
with relative probabilities, the likelihood, among other alternative parses. Ln thefirstsentence, the
5-th parse tree, which is the most natural, got the highest probability 0.43. In the second case, the
3rd parse tree, which is the most natural, got the highest probability 1.0.

word 1 "medium scale integrated circuit"

structure of parsed tree shown in meaning implied from structure prob.
bracket notation
1 medium [ [ scale integrated ] circuit] a medium-size 0.17
"scale-integrated-circuit"
2 medium [ scale [ integrated circuit] ] a medium-sized integrated 0.04
circuit which is scale (?)
3 [medium scale ] [ integrated circuit] an integrated-circuit 0.19
of medium-scale
4 [ medium [ scale integrated ] ] circuit a medium-size circuit which 0.17
is scale-integrated
5 [ [ medium scale ] integrated ] circuit a circuit which is 0.43

medium-scale integrated

case 2 'small scale electricity company"

1 small [ [ scale electricity ] company] a small company which 0.0
serves scale-electricity

2 small [ scale [ electricity company] ] a company which is small, 0.0
serves electricity, and is
something to do with scale

3 [ small scale ] [ electricity company] a company which serves electricity 1.0
and which is small scale

4 [ small [ scale electricity ] ] company a company which services 0.0

small scale-electricity
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5 [ [ small scale ] electricity ] company a company which services 0.0
small scale electricity
(micro electronics?)

4. Concluding Remarks

N-gram modeling technique [20] has been proven to be a powerful and effective method for lan-
guage modeling. It has successfully been used in several applications such as speech recognition,
text segmentations, character recognition and others.[11,6,7,19,21] At the same time, however, it
has proved to be difficult to approximate language phenomena precisely enough when context de-
pendencies expand over a long distance. A direct means to remedy the situation is (a) to increase
Vof N-gram or (b) to increase the length of basic units from a character to a word or to a phrase.
If the vocabulary size is M, however, the statistics needed for maintaining the equivalent precision
in the N-gram model increase in proportion to MN. The situation is simitar m (b). Increasing the
length of the basic unit causes an exponential increase in vocabulary size. Hence an exponential
increase of the required statistics volume follows in (b) as well. This shows that the N-gram model
faces a serious data gathering problem when a task has a long-context dependency. Obviously, the
parsing of sentences creates this sort of problem.

On the other hand, the method introduced here aims to remedy this problem by combining a
probabilistic modeling procedure with linguistic expertise. In this hybrid approach [7,8], linguistic
expertise provides the framework of a grammar, and the probabilistic modeling method augments
the grammar quantitatively.

Since the probabilistic augmentation process is completely automatic, it is not necessary to rely on
human endeavor which tends to be expensive, inconsistent, and subjective. Also the probabilistic
augmentation of a grammar is adaptable for any set of sentences.

These two important features make the method useful for various problems of natural language
processing. Besides its use for sentence disambiguation demonstrated in the section 3.4, the method
can be used to customize a given grammar to a particular sub-language corpus. Namely, when a
grammar designed for a general-corpus is applied to this method, the rules and the lexical entries
which are used less frequently in the corpus will automatically be given low or zero probabilities.
Alternately, the rules and the lexical entries which require more refinement will be given high
probabilities, thus the method helps us to tune a grammar in a top-down manner. The method is
also useful for improving performance of top-down parsing when used for obtaining hints for re-
ordering rules according to the rule probabilities.

In this way, although all possible uses have not been explored the method proposed in this paper
has enormous potential application, and the author hopes that a new natural language processing
paradigm may emerge from it.

Use of probability in natural language analysis may seem strange, but it is in effect a only simple
generalization of common practice: Namely, the usual top-down parsing strategy forces a true or
false (1 or 0) decision, i.e. to choose one alternatives from others on every non-deterministic choice
point.

And most importantly, by use of the proposed method a grammar can be probabilistically aug-
mented objectively and automatically from a set of sentences picked from an arbitrary corpus. On
the other hand, the representation of semantic and pragmatic constraints in the form of usual se-
mantic networks, frame theory, etc., requires a huge amount of subjective human effort.
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ABSTRACT

In a natural language processing system, a large amount of ambiguity and a large
branching factor are hindering factors in obtaining the desired analysis for a given sentence
in a short time. In this paper, we are proposing a sequential truncation parsing algorithm
to reduce the searching space and thus lowering the parsing time. The algorithm is based
on a score function which takes the advantages of probabilistic characteristics of syntactic
information in the sentences. A preliminary test on this algorithm was conducted with a
special version of our machine translation system, the ARCHTRAN, and an encouraging
result was observed.

Motivation

In a natural language processing system, the number of possible analyses associated with
a given sentence is usually large due to the ambiguous nature of natural languages. But, it is
desirable that only the best one or two analyses are translated and passed to the post-editor
in order to reduce the load of the post-editor. Therefore, in a practical machine translation
system, it is important to obtain the best (in probabilistic sense) syntax tree having the best
semantic interpretation within a reasonably short time. This is only possible with an intelligent
parsing algorithm that can truncate undesirable analyses as early as possible.

There are several methods to accelerate the parsing process [Su 88b], one of which is
to decrease the size of the searching space. This can be accomplished with a scored parsing
algorithm that truncates unlikely paths as early as possible [Su 87a, 87b] and hence decreases
the parsing time.

As for the searching strategy for the scored parsing algorithm, it may be either parallel or
sequential. But in our system, a time limit is used to stop the parsing process when a sentence
is taking too long to parse because its length or because it has a very complicated structure.
Therefore, the sequential searching strategy is better for us than the parallel approach because
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wc arc likely to have some complete syntax trees to work with even if the parsing was
suspended abnormally when its time expires. On the other hand, the parallel approach will
not have this advantage because none of the on-going paths have traversed to the end.

In this paper, we are proposing a sequential truncation algorithm for parsing sentences
efficiendy. This algorithm employs the score function we proposed in [Su 88a]. However,
this algorithm is different from the one proposed in [Su 87a, 87b], which described a parallel
truncation algorithm for scored parsing. Here, we are adopting a sequential truncation method.
While we are using this sequential approach, a large speed-up in the parsing time has been
Jbserved.

Definition of the Score Function

In a scored parsing system, the best analysis is selected base on its score. Several scoring
mechanisms have been proposed in the literatures [Robi 83, Benn 85, Gars 87, Su 88a].
The one we adopt is the score function based on the conditional probability we proposed in
[Su 88a]. How to select the best analysis of a sentence is now convened into the problem
of finding the semantic interpretation (Semi), the syntactic structure (Synj) and the lexical
categories (LeXk) that maximize the conditional probability of the following equation,

SCORE (Sem,,synjLext)

= P (Semt'SynjiLexk\w\...wn)

P (Semt\Syrij'Lexjewi"Wn) *P (Syrij |Zexjt(u;i...u;n) *p (Lex™~wi”™~wn) nn

SCOREatm {Semi) *SCOREsyn (Synj)*SCOREux(Lex*)

where wi to wn stands for the words in the given sentence and the last three product terms
are semantic score, syntactic score and lexical score respectively. Since we are using
just the syntactic information in our current implementation, we will focus only on the
syntactic aspect of this score function (i.e. scorREjyn(synj), which can be approximated
by sc OREsyn{Synj) « P(Synj\Lexk) = P{Syrij\vi,vn), where V! to vn are the lexical
categories corresponding to wi to wn).

To show the mechanism informally, first refer to the syntax tree in Fig. 1. shown here
with its reduction sequences (produced with a bottom-up parsing algorithm), where Li is i-th
phrase level consists of terminals and nonterminals. The transition from a phrase level Lj to
the next phrase level Li+i corresponds to a reduction or derivation of a nonterminal at time ty.

A
U-{A, }
B c L7-( B c }
L6-{B. F G}
L5-{a F w4}
D E F G Uu-{a W3. w4 }
1 ([ 1 u-{b, E W3 w4}
hi h2 t4 h5 L2-{D W2 W3 W4}
wl w2 w3 w4 U - { WL W2, W3, wa >

Fit 1 Dtfferert R ose Lcvds fcr a bottcrrKj) Pareng
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The syntax score of the tree in Fig. 1 can be formulated as the following conditional
probability equation, where li and r* are the left and right contexts of the reducing symbols:

S C 0O R E syn (S ynaA)

=p L2\L\)
= P (Ls\L7..L2,L\) *P (Lj\Ls...L\) * ... *P (L2\L\)

- ~({L{~¥»¥1 {L{h,B,C,1rj¥r)y *=pP({cyri| {le,F, G ,re63})y * ... * P({L{LE=3}] {/7liuslfr 13})

Eqg. 2 can be further reduced to the following equation if only one left and one right context
symbol are considered where “0” is the null symbol.

S C O R E Syn (S ynaA)

PCL{~3% I1{0, B, , 03) *PC{cy 1 {B,F,6,03}y) * ... =P ({D3} [{O0O,u,1,U3523) (3)

If we want to calculate the score at the point where a word is just being fetched (compact
multiple reductions and one shift into one step), thescore~nrsyriay Can also be approximated
into the following equation.

= P(LsL7..L2\Li)
= N(Ng,E£7,£61"5,£4...£1) * P (£514,£3...£1) * P (Li1tLz\L2,L\) * P(Ij2\Li) ()
* P(LsL7 Le\L5)*P (Ls\L<) *P (L<LZz\L2) *P (L2\L1)

*P (L s\L5)*P (Ls\L<) *P(L<\L2)=*P(L2III)

Two assumptions were made in formulating Eq. 2-4. First, it is assumed that the forming
of phrase level i is only dependent on its immediate lower phrase level, since most information
percolated from other lower levels is contained in that level. And second, a reduction is only
locally context sensitive to its left or right context at each phrase level. This assumption is
also supported in other systems as well [Marc 80, Gars 87].

A simulation based solely on this syntactic score was conducted and reported in [Su 884]
with a full-path searching algorithm. The result shows that the correct syntactic structures of
over 85% of the test sentences were successfully picked when a total of three local left and
right context symbols were consulted.
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The Sequential Truncation Algorithm

Using the score function defined in the previous section, we will present the idea of
sequential truncation algorithm with Fig. 2.

stepO step 1 step 2

shift j
/Ireduce shift j

shift
1
shift !
reduce i
shift/ A shift 1

X
reduce

\ shift
N. N !
ret*vjeduce shift |
word 1 wad 2 word 3

Fig. 2 The searching tree

Each path in Fig. 2 corresponds to a possible derivation of a given sentence. The parser
will use the depth-first strategy to traverse the searching tree. But during the searching process,
the parser compares the score of each path accumulated so far with a running threshold C(ai)
(a detailed definition will be given in the following section) at each step i when the next
word is fetched. If the score of the path is less than the running threshold C(ai), it will be
truncated, i.e. blocked, and the next path will be tried. This process continues until we get
the first complete parse tree (i.e. when the whole sentence is reduced to a S node). After
we obtain the first complete parse tree, a lower bound for the scores is acquired. The parser
will continue to traverse other pathes, but from now on, the score of each path will also be
compared with the final accumulated score of the first complete parse tree in addition to be
compared with the running threshold. This additional comparison is similar to the branch and
bound strategy employed in many Al applications [Wins 84] and it will accelerate the parsing
process further. The whole process is shown in the flow chart in Fig. 3. If the test fails
in either case, this path will be truncated. Continuing in this manner, we may get a second
complete parse tree which has a final score higher than the first one. In this case, we will
replace the lower bound with the final score of the second parse tree and repeat the whole
process until the end of the entire searching process.

If all the paths are blocked without arriving at any complete parse tree, we can adopt one
of two possible strategies. First, we could loosen the running thresholds, i.e. lowering the
C(g0, and try the deepest path gone so far again. Second, we can process this sentence in
fail-soft mode. The fail-soft mechanism will skip and discard the current state and attempts
to continue the parsing at some later point
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The effectiveness of the sequential truncation algorithm depends on the distribution of
scores of the database and the input sentences. As we can see, for each syntax tree can be
expressed as the product of a sequence of conditional probability as shown in Eq. 4. Each
term in the product corresponds to a transition between two ”shift" actions and is evaluated
immediately after a "shift". Taking the logarithm on both sides of Eq. 4, we get the following
equation where X* denotes a sequence of phrase levels at i-th step and L is the length of the
sentence.

L
log (SCORES), (syn)) = J™log P{X, (5)
1=1
j
If we define yj = ~ log P (Xi\Xi-\), then yj denotes the accumulated logarithmic score

i=1
up to the j-th word which is also the j-th shift of the sentence.

Suppose we have M sentences with their correct parse trees in the database. For each
parse tree, we can evaluate yj by using the logarithmic score function defined before. So for
the k-th sentence in the database, we obtain a sequence y*, y*, , Where y*denotes
the accumulated logarithmic score of the k-th sentence and L* denotes the length of the k-th
sentence.

-99- Intemational Parsing Workshop '89



If wc regard each parse tree in the database as a sample point in a probability outcome
space, we may regard Y* as a random variable which maps each parse tree into an accumulated
logarithmic score (note, for a sentence with length L7, it will be associated, with random
variables : Vi,V2,..*£,))» So y*, with k from 1 to M, will be the samples of the random
variable Yi. Since each sentence has its own length, the number of samples in the database
for different random variable Yi will not be the same.

Using the samples in the database, we can draw a histogram for each Yi. We then
approximate each histogram by a continuous density function /y(y). To allow a fraction
Qi, say 99%, of the best parse trees to pass the test at step i, we can set a constant C(c*i)
such that P{Y X> C (at)) = at. For each path, Yj is the random variable of the accumulated
logarithmic score up to the i-th shift, and C(ai) is the running threshold that we will use to
compare with the running accumulated logarithmic score at step i. Those paths with running
accumulated logarithmic score yi less than C(c*i) would be blocked. Using the notation
defined above, the probability of obtaining the desired parse tree for a sentence with length

L k

L* would be Yi a»

»=I1

If we set Zi as the random variable which maps all the possible paths of all the sentences
we want to parse into the accumulated logarithmic score at i-th word, then all the paths,
whether they can reach the final state of the searching tree or not, will have a set of running
accumulated logarithmic scores. Fig. 4 shows the relation between the density function (2)
of running score of the input text and the density function fy (y) of cumulative score of the
database. In the figure, the dashed lines are the means of the density functions. Since the
step-wise cumulative score in the database is evaluated using the correct parse tree that we
have selected, we would expect that the expectation value of Yi will be greater than that of Zi,
that is, E[Yi] > E[Zi]; and the variance of Yi is less than that of Zi, that is Var[Yi]<Var[Zi].

means

to be
to be
tancated truncated

Qccj) Q«i)

4b. a better case
Ja. awcreecase

Rg.4 Relationship between the running sccre cf the inpU text
and the cumrnulative score of the database

Let ft denotes Fz (C(cti))y where Fz (z) is the cumulated distribution function of Zi,
then ft is the probability that a path will be truncated at the i-th step of the searching tree.
By using this sequential truncation method, the searching space would then be approximately

reduced to (1 - ft), which is a small portion of the original searching space generated by a

full path searching algorithm. Therefore the efficiency of parsing is increased. Since ft in Fig.
4a is less than that in Fig. 4b, which correspond to the situation that has a large expectation
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difference (E[Y,]-E[Zi]) and a small variance ratio (Var[Yi]/Var{Zi]), the underlying grammar
that has the property of Fig. 4b would benefit most from this algorithm. In addition, we can

see that if we increase the running threshold C(c*i), we will get a greater fa and a lower aj.

Lk
The parsing efficiency will thus increase, but the probability (i.e. [] a,) that we will get the

»=1
desired parse tree would decrease. How to select a good C(aO to achieve a desired parsing

success rate would be discussed in the following section.

How to set the running threshold

Using the model given in the last section, the probability that we will get the global

optimal solution, i.e. the parse tree with the largest probability, for a sentence with length L
L

is K1 = [] <, where KI is a constant pre-selected by the system designer as a compromise
between the parsing time and the post-editing time. Assuming that the average branching
factor for each path at each stage is a constant N, then the average total number of paths
we have to try is :

9(< * i=N+N=*({1-fa)*N+N=*(1-fix) *N*({1-h)*N + -
=N*(\+ N *h(a\) + N2*h(ai) *h(012) + ..)
/ L i \ <>
= JV*fl + ~/v' *J'1h(aj)l
In Eq. 6, in order to minimize the path number, the relation h(a\) < h(02) .. < h(a”®)

must holds because h(aj) has a larger coefficient than h(ai+i).
The problem of selecting an appropriate running threshold C(aO is now converted into

one of minimizing g(ai...a:L) under the constraint of a{ = K 1- Taking the logarithm on
1=1

L
both sides, we get £ log at = log KI. Then the Lagrange multiplier A is used to get
1=1
L
g* N*Yj °9 a« Taldng the partial derivative of g* with respects
1=1
to ai...aL, we will get the following equations :
* L
N-=0, -~-=0, .. =0, and Nlog ai = log K1 @)
da\ oa'i 00LL =1

There are (L+1) variables, which are ai...aL, and A, and (L+I) equations. So,
can be solved by the numerical method. Since a* is usually very close to 1, we can linearize
the function h(ai) in the region around <=1 and approximate by h(a,) %a *a,- + b. In this
way, we can substitute h(aj) in the above equation by a * a* -I- b to simplify the calculation.

During our derivation, we have assumed that the average branching factor at each stage
is a constant N. This constraint can be relaxed by assuming the average branching factor at
i-th stage to be N*. In this way, we will get a more complicated expression for g(ai...aL),
but it can still be solved in the same way.

The running threshold C(o;i) can now be computed off-line by selecting different Ki
for different sentence length L. We will call this set of C(a0 the “static running threshold”,
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because once they are computed, they will not be changed during the sentence parsing.
However, if we arrive at a complete parse tree with much higher final accumulated running
score than the final accumulated running threshold, then even if a path can pass all the
accumulated running thresholds it might still be discarded when it is being compared with
the final accumulated running score. So, the running threshold should be adjusted to reflect a
high final accumulated running score. Therefore, it would be better if the running threshold
is changed to C'(ai)=C(ai)+AC(aj), where AC(ai) is set to 7 * (y* —C (a,)), where 0<7<!
and y* is the accumulated logarithmic score of the current best parse tree at the i-th step,
and 7 is a tunning constant pre-selected by the system designer. C'(aj) is then the “dynamic
running threshold”. Using the dynamic running threshold, the efficiency of parsing would
be further improved.

If it so happen that all the pathes are blocked before any complete parse tree is formed,
we can find the deepest path (let us assuming it to be at the j-th step) among the blocked ones
and continue it with a lowered running threshold of C'(aj)=y'], where y' is the score of this
path at the j-th step. Since the procedure to lower the running threshold is quite complicated
and uses up memory space in run time, it might be better just invoke the fail-soft mechanism
for sentences whose paths are all blocked.

Testing

We completed two preliminary testings of truncation algorithm with special versions of
our English-Chinese MT system and a database of 1430 sentences.

In the first experiment, the sentence parsing time needed by a charted parser that uses
bottom-up parsing with top-down filtering is compared with the time needed by the same
charted parser with truncation mechanism. From the test, we found that the average sentence
parsing time by the charted parser with truncation is improved by a factor of four. For some
sentences, the improvement can go as high as a factor of twenty. This result is encouraging
because minimizing parsing *time is critical to a practical MT system.

Nevertheless, we noted that our output quality has degraded slightly. By this, we mean
that the best selected tree produced by the charted parser with no truncation is not among
the trees produced by the charted parser with truncation. Exploring this problem further, we
discovered that the chart [Wino 83] used during parsing is in conflict with the truncation
mechanism. The reason for having chart is to be able to store all subtrees that were parsed in
previous path traversal. So, when we backtrack to the next path and arrive at the same range
of inputs, the same subtrees can be used again without reparsing. However, the idea behind
the truncation mechanism is to discard subtree in the context in which it has low probability.
Therefore, if we adopt the truncation mechanism during parsing, not every subtree between a
string of inputs is successfully constructed and stored into the chart. For example, in Fig. 5,
there are two possible subtrees between b and ¢ when the pathes in the block A are expanded.
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Lj R2 catext

Fig.5. Chart with truncation mechanism

In Fig. 5, one of the subtrees is discarded and the other is stored into the chart. There are
two reasons why a subtree may be discarded. First, it might be caused by a natural language’s
constraints on the context dependency. Second, a subtree might be discarded because of its
small running accumulated score (and thus truncated by the truncation mechanism.) Either
will leave us a chart with incomplete subchart. So, this will result in the best possible tree
being missing as a side-effect of using this chart. For instance, in Fig. 5, the best tree might
be the second subtree with the left context of L2 and with the right context of R2 (i.e., its
probability is the highest.) But, since the path expansion starting from the left context of Li
has the second subtree discarded because its probability under the context of Li and Ri is
small, the best tree will never be formed. Therefore, with a chart having incomplete subcharts,
the possibility of obtaining the best tree is determined by the pathes traversed before.

One solution to this incompatibility problem is to mark the sections of the chart that are
complete. Hence, if an incomplete subchart is encountered again, it will be reparsed. On the
other hand, if a complete set of chart is encountered, the subtrees can be copied directly from
the chart. Another solution is to suspend the truncation mechanism when a set is being tried
the first time. And if subtrees are copied directly from the chart, the truncation mechanism
resumes its normal function. In this way, it is guaranteed that every subchart in the chart is
complete. Both of these solutions increase our sentence parsing time as the overhead. This
compromise, however, is unavoidable if the advantages of using chart are to be maintained.

In the second experiment, we converted the charted parser for the first experiment into
one with sequential searching strategy and without the use of the chart. Similar sentence
parsing test is conducted for this chartless parser but with a smaller analyses grammar. The
result shows that the total parsing time for this parser with truncation mechanism added is
better than the same parser without truncation by the factor of three.

From the positive results of the above two experiments, we have shown the inclusion
of the sequential truncation algorithm is advantageous for a MT system. In addition, we
have also shown the feasibility of harmonize the use of chart and the truncation algorithm.
Currently, we are in the process of resolving the incompatibility problem between the chart
and the truncation mechanism and constructing a working system with this solution.
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Conclusion

In a natural language processing system, it is important to arrive at a good analysis for a
sentence in a relatively short time. One way to achieve this is to decrease the parsing time
by reducing the searching space. We have proposed a sequential truncation algorithm with
a score function to achieve this goal.

In this sequential truncation strategy, a sequence of running thresholds are used to bound
the searching space during each step of the scored parsing. In addition, a path can also be
blocked by the branch-and-bound mechanism if its accumulated score is lower than that of an
already completed parse tree. There are several reasons for adopting this strategy. First, the
first parse tree with a moderate quality can be found quickly and easily. Second, the running
threshold serves to truncate part of the path that is quite unlikely to lead to the best analysis,
and thus greatly reduces the searching space.

We have made a pilot test on the truncation mechanism with a charted parser that adopts
bottom-up parsing with top-down “'tering. With a database of 1430 sentences, the result
indicates an average improvement ir le sentence parsing time by the factor of four (for some
sentences the improvement goes as . gh as a factor of twenty). However, we also discovered
an incompatibility problem between the use of chart and the truncation mechanism. In another
pilot test we conducted on the truncation mechanism, the sentence parsing time is tested for
a chartless parser that adopts sequential parsing strategy. The result shows an improvement
in parsing time by a factor of three for the inclusion of the truncation mechanism. These
encouraging results demonstrate a great promise for the sequential truncation strategy.

As our current research topic, we shall resolve the incompatibility problem between the
chart and the truncation algorithm and include the solution into our working MT system, the
ARCHTRAN.
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Abstract

An LR parser for probabilistic context-free grammars is described. Each of
the standard versions of parser generator (SLR, canonical and LA.LR) may be
applied. A graph-structured stack permits action conflicts and allows the
parser to be used with uncertain input, typical of speech recognition
applications. The sentence uncertainty 1iIs measured using entropy and 1is
significantly lower for the grammar than for a first-order Markov model.

1. INTRODUCTION
1.1 Background

The automatic recognition of continuous speech requires more than signal
processing and pattern matching: a model of the language is needed to give

structure to the utterance. At sub-word level, hidden Markov models [1]
have proved of great value in pattern matching. The focus of this paper is
modelling at the linguistic level. Markov models are adaptable and can

handle potentially any sequence of words [2]. Being probabilistic they fit
naturally into the context of uncertainty created by pattern matching.
However, they do not capture the larger-scale structure of language and
they do not provide an interpretation. Grammar models capture more of the
structure of language, but it can be difficult to recover from an early
error in syntactic analysis and there is no watertight grammar.

A systematic treatment of uncertainty is needed in this context, for the
following reasons:

(1) some words and grammar rules are used more often than others;

(2) pattern matching (whether by dynamic time warping, hidden Markov
modelling or multi-layer perceptron [3]) returns a degree of fit for each
word tested, rather than an absolute discrimination; a number of possible
sentences therefore arise;

(z) at the end of an utterance it is desirable that each of these
sentences receive an overall measure of support, given all the data so that
the information is used efficiently.

The type of language model which is the focus of this paper is the
probabilistic context-free grammar (PCFG). This 1is an obvious enhancement
of an ordinary CFG, the probability information initially intended to
capture () above, but as will be seen this opens the way to satisfying ()

and (3).- An LR parser [4,5] isused with an adaptation [s ] which enlarges
the scope to include almost anypractical CFG. This adaptation also allows
the LR approach to be used with uncertain input [7], and this approach

enables agrammar model to interface with the speech recognition front end
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as naturally as does a Markov model

1.2 Probabilistic Context-Free Grammars

A "probabilistic context-free grammar (PCFG)" [8-10] 1is a 4-tuple <N,T,R,S>
where N is a nonterminal vocabulary including the start symbol S, T is a
terminal vocabulary, and R is a set of production-rules each of which 1is a
pair of form <A a, p>, with AeN, a€(NuT)*, and p a probability. The
probabilities associated with all the rules having a particular nonterminal
on the LHS must sum to one. A probability is associated with each
derivation by multiplying the probabilities of those rules used, in

keeping with the context-freeness of the grammar.

A very simple PCFG can be seen in figure 1: the symbols in uppercase are
the nonterminals, those in lowercase are the terminals (actually
preterminals) and A denotes the null string.

2. LR PARSING FOR PROBABILISTIC CFGs

The LR parsing strategy can be applied to a PCFG if the rule-probabilities
are driven down into the parsing action table by the parser generator. In
addition, one of the objectives of using the parser in speech recognition
is for providing a set of prior probabilities for possible next words at
successive stages in the recognition of a sentence. The use of these prior
probabilities will be described in section 3.1. In what follows it will be
assumed that the grammars are non-left-recursive, although null rules are
allowed.

2.1 SLR Parser

The first aspect of parser construction is the closure function. Suppose
that 1 is an SLR kernel set consisting of LR(0) items of the form

<A » a-£, p>

The 1item probability p can be thought of as a posterior probability of the
item given the terminal string up to that point. The computation of
closure(l) requires that items

<B - ®W/r» PbPt>

be added to the set for each rule <B »7r, pr> with B on the LHS, provided
pBpr exceeds some small probability threshold e, where pB is the total
probability of items with B appearing after the dot (in the closed set).

New kernel sets are generated from a closed set of items by the goto
function. If all the items with symbol Xe(NuT) after the dot in a set 1
are

<Ak ak X%, pk> for k-1,...,nx, with px - £ pk
k-1

then the new kernel set corresponding to X 1is
(<Ak = akX-£k, pk/px> for k-1,...,nx}

and goto(l,X) 1is the closure of this set. The set already exists if there
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is another set which has the same number of elements, an exact counterpart
for each dotted item, and a probabilityfor each item that differs from
that for its counterpart in the new set by atmost e.

Starting from an initial state lo consisting of the closure of
{<8* = -5, 1>

where S* 1is an auxiliary start symbol, this process continues until no
further sets are created. They can then be listed as lo ,li,....

Each state set Il generates state m and a row in the parsing tables
"action™ and 'goto™. The goto table simply contains the numbers of the
destination states, as for the deterministic LR algorithm, but the
action table also inherits probabilistic information from the grammar.

(1) For each terminal symbol b, if thereare items in Im such that the
total Pb>f, and the shift state n isgiven by goto(Im,b) - Inthen

action[m,b] - <shift-to-n, pb>

(2) For each nonterminal symbol B, if Pb>« and goto(Im,B)-In then
goto[m,B] - n

(3 If <S*"™ > Se, p> G Im then action[m,$] - <accept, p>

@ If <B »7*, p> E lawhere BhS*” then

action[m ,FOLLOW(B) ] - <reduce-by B » 7 , p>

For the very simple grammar shown in figure 1 the parsing tables turn out
as shown in Ffigure 2, with shift-reduce optimisation [4,5] applied. The
probability of each entry is underneath.

The range of terminal symbols which can followaB-reduction is given by
the set FOLLOW(B) which can be obtained from the grammar by a standard
algorithm [4], For a probabilistic grammar, the probability p attached to
the reduce item cannot be distributed over those entries because when the
tables are compiled it is not determined which of those terminals can
actually occur next in that context, so the probability p is attached to
the whole range of entries.

The probability associated with a shift action is the prior probability of
that terminal occurring next at that point in the input string (assuming no
conflicts). Completing the set of prior probabilities involves Tfollowing
up each reduce action using local copies of the stack until shift actions
block all further progress. The reduce action probability must be
distributed over the shift terminals which emerge. This is done by
allocating this probability to the entries in the action table row for the
state reached after the reduction, in proportion to the probability of each
entry. Some of these entries may be further reduce actions in which case a
similar procedure must be followed, and so on.

2.2 Canonical LR Parser

For the canonical LR parser each item possesses a lookahead distribution:

<A = a*?, p, {P(atv) m >
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The closure operation is more complex than for the SLR parser, because of
the propagation of lookaheads through the non-kernel items. The items to
be added to a kernel set to close it take the form

*7r» PbPti (PB(aj))j=l--.. i i)

so that all the items with B after the dot are then

<Ak = ajj- , pk, {PkCai) }=1,...,in> for k-1,...,nB
and
ne Pk ITI F
Ps(@aj) - 1 - 1 P (®a:,al)Pial)
k-1 Pb i-1

where PF(Aka1,aJ) is the probability of aj occurring first in astring
derived from £kai, which iseasily evaluated. A justification of this will
be published elsewhere. The lookahead distribution is copied to the new
kernel set by the goto function.

The fFirst three steps of parsing table construction are essentially the
same as for the SLR parser. In step (4), the item in Im takes the form

<B »7e,p, (P(ar))i=1._-,T|> where B*S~

The total probability p has to be distributed over the possible next input
symbols at, using the lookahead distribution:

actionfm.ai] - <reduce-by B » 7, pP(at)>

for all 1 such that pP(ai)>c. The prior probabilities during parsing
action can now be read directly from the action table.

2.3 LALR Parser

Merging the states of the canonical parser which differ only in lookaheads
for each item causes the probability distribution of lookaheads to be lost,
so for the LALR parser the LR(1) items take the form

<A »a-@G, p, L> where LCT.

The preferred method for generating the states as described in [4] can be
adapted to the probabilistic case. Reduce entries in the parsing tables
are then controlled by the lookahead sets, with the prior probabilities
found as for the SLR parser.

2.4 Conflicts and InterprecatlLon

An action conflict arises whenever the parser generator attempts to put two
(or more) different entries into the same place in the action table, and
there are two ways to deal with them. The First approach is to resolve
each conflict [11]. This 1is a dubious practice in the probabilistic case
because there is no clear basis for resolving the probabilities of the
actions in conflict. The second approach is to split the stack and pursue
all options, conceptually in parallel. Toraita [s ] has devised an efficient
enhancement of the LR parser which operates in this way. A graph-
structured stack avoids duplication of effort and maintains (so far as
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possible) the speed and compactness of Che parser. With this approach the
LR algorithm can handle almost any practical CFG, and is highly suited to
probabilistic grammars, the main distinction being that a probability
becomes attached to each branch.

The generation and action of the probabilistic LR parser can be supported
by a Bayesian interpretation. This 1is in keeping with the further
adaptation of the algorithm to deal with uncertain input.

3. UNCERTAIN INPUT DATA
3.1 Prediction and Updating Algorithm

The situation envisaged for applications of the probabilistic LR parser in
speech recognition is depicted in figure 3. The parser forms part of a
linguistic analyser whose purpose is to maintain and extend those partial
sentences which are compatible with the input so far. With each partial
sentence there is associated an overall probability and partial sentences
with very low probability are suspended. It is assumed that the pattern
matcher returns likelihoods of words, which is true if hidden Markov models
are used. Other methods of pattern matching return measures which it is
assumed can be interpreted as likelihoods, perhaps via a transformation.

let (s-1,2 ,...) represent partial sentences up to stage m (the stage
denoted by a superscript). let D represent the data at stage m, and (D)
represent all the data up to stage m. Each branch 1™ predicts words

a" (perhaps via the LR parser) with probability P(aj|r® ), so the total
prior probability for each word aj is

PCajKD)1I"1) - Is P(a”] C1)P(rrl1]ID)""1)
Using Bayes®™ theorem the posterior probabilities of the words are

P(Dn,ia”)P(a” |(D)™"1)

P@I 1O )
P(D” |aT)P(aTuD)"1)

where P(D* |a*“) is the likelihood. If we define the extended branch r§]

as then after some manipulation the probability of this is
p(a~ Jrrl)ypP (rrlj]{D)ym"1) m n
PCrTjl (D)*) - — P(@a”1 (D) ) (1)
P@II®) )

This shows that the posterior probability of a" is distributed over the
extended partial sentences in proportion to their root sentences s n
contribution to the total prior probability of that word. If P(rsj| () )<e
then the branch is suspended. The next set of prior probabilities can now

be derived and the cycle continues.

These results are derived using the following independence assumptions:
P(a?]a*,D“) - P(a™la™) and P(D"]a*“,Dk) - P(D” |a”)

which decouple the data at different stages.
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Figure 4 shows successive likelihoods, entered by hand for a (rather
contrived) illustration using the grammar in figure 1. At the end the two
viable sentences (with probabilities) are

“"pn tv det n pron tv pn" (0.897)
"det n pron tv pn tv pn” (0.103)

Notice that the string which maximises the likelihood at each stage,
“"pn tv pron tv pron tv pn"
might correspond to a line of poetry but is not a sentence in the language.

The graph-structured stack approach of Tomita [6] is used for non-
deterministic input. Each path through the stack graph corresponds to one
or more partial sentences and the probability P(r*|{D)m} has to be
associated with each partial sentence r-~.

3.2 Entropy of the Partial Sentences

Despite the pruning the number of partial sentences maintained by the
parser tends to grow with the length of input. It seems sensible to base
the measure of complexity upon the probabilities of the sentences rather
than their number, and the obvious measure is the entropy of the
distribution. The discussion here will assume that the proliferation of
sentences is caused by input uncertainty rather than by action conflicts.
This 1is likely to be the dominant factor in speech applications.

The sentence entropy is defined as

- - Z_ P(7il () log p<rji (@i

where natural logarithms are used. A related measure called "perplexity”
[:2], defined as

?s " exp(HM)

is the equivalent (in entropy) number of equally-likely sentences.
Substituting for P(C jJ|{OF) from equation (1) leads to

K? - - P@*I(D)“)L log P@*I(D)°) - /I"]

where

" PO\ 1LY 7T Tog P13 AT, 03

is the entropy contributed by the sentences at stage m-1 predicting word
aj- The quantities /ij can be evaluated with the prior probabilities.

It can be shown that the sentence entropy has an upper bound as a function
of the likelihoods:

ws < log ljexp(*j)

withequality when P(D Ja% < -----------m-mmmmmemmo .
P(aj|1ID) )

The constant of proportionality does not matter. Figure 5(a) shows this
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upper bound for the grammar in Tfigure 1, and it can be seen chat che
perplexity 1is equivalent to 35 equally-likely sentences after 10 words

The upper bound is very pessimistic because it ignores the discriminative
power of the pattern matcher. This could be measured in various ways but
it is convenient to define a "likelihood entropy" as

and the "likelihood perplexity” is _ jn P™ 7 exp(K™).

The maximum sentence entropy subject to a fixed likelihood entropy can be
found by simulation. Sets of random likelihoods with a given entropy can
be generated from sets of independent uniform random numbers by raising
these to an appropriate power. Permuting these so as to maximise the
sentence entropy greatly reduces the number of sample runs needed to get a
good result. These likelihoods are then fed into the parser and the
procedure repeated to simulate the recognition process. The sentence
entropy is maximised over a number of such runs.

The likelihoods which produce the upper bound line shown in figure 5(a)
have a perplexity which 1is approximately constant at s .6 . This line is
reproduced almost exactly by the above simulation procedure, using a fixed
JL °F 6.6 with 30 sample runs.

The simulation method is easily adapted to compute the average sentence

entropy over the sample runs. For this itis preferable to average the
entropy and then convert to a perplexity rather than average the measured
perplexity values. This process provides an indication of how the parser

will perform in a typical case, assuming a fixed likelihood perplexity as a
parameter (although this could be varied from stage to stage if required).

Figure 5(a) shows how the average compares with the maximum for a fixed TL
of s .6 , and how the sentence perplexity isreduced when the likelihoods are
progressively more constrained - 5.0, 3.0 and 2.0).

3.3 Comparison with Inferred Markov Model

Markov models have some advantages over grammar models for speech
recognition in Fflexibility and ease of use but a major disadvantage is
their limited memory of past events. For an extended utterance the number
of possible sentences compatible with a Markov model may be much greater
than for a grammar model, for the same data. Demonstrating this in the
present context requires the derivation of a first-order Markov model from

a probabilistic grammar [13].

The uncertainty algorithm of section 3.1 will operate largely unchanged
with the prior probabilities obtained from the transition probabilities
rather than from the LR parser. Figure 5(b) contains results corresponding
to those in (a), for the Markov model inferred from the grammar in Tfigure

1. The upper bound reaches 409 after 10 words, for a likelihood perplexity
of approximately 6.3, reducing to 37 for the average (after 30 sample

runs). This TfTalls with the likelihood perplexity but is higher than for
the grammar model. The sentence perplexity for the grammar is twice that
for the inferred Markov model after from six to nine words depending on
This comparison 1is reproduced for other grammars considered.
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) S A~ NP VP, 1.0 () REL = pron VP, 0.3
) NP = pn, 0 4 () VP » iv, 0.5
(3 NP » det n REL, 0.6 (7) VP » tv NP, 0.5

(4 REL > A, 0 7

Figure 1: A simple probabilistic grammar.
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ACTION
STATE GOTO
pn  det n pron iv v $ S NP REL VP
0 sr2 si s2 <3
0.4 0.6
1 s4
1.0
2 acc
1.0
3 Sré s5 srl
0.5 0.5
4 s6 rd ra r4 sr3
) 0.3 0.7 ——>
5 sr2 si sr7
0.4 0.6
6 Sré s5 sr5
0.5 0.5
Figure 2: SLR and LALR parsing Cables for the grammar in figure 1.
Figure 3: Linguistic control block diagram for speech recognition.
> STAGE (m)
TERMINAL
1 2 3 4 5 6 7 8
pn 0.9 0.3 0.4 0.9
det 0.2 0.4
n 0.2 0.5
pron 0.8 0.7
1V
tv 0.8 0.1 0.9 0.8
$ 1.0
Figure 4: Likelihoods for illustration of uncertainty algorithm.
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INTRODUCTION

The purpose of parsing natural language is essentially to assign to a linear input string of
symbols a formalized structural description that reflects the underlying linguistic (syntactic
and/or semantic) properties of the utterance and can be wused for further information
processing.

In most practical applications, this delinearization [4] is acheived by some kind of
recursive panern matching strategy which accepts texts in standard orthographic writing, i.e.
composed of discrete symbols (the letters and signs of some specified alphabet) and blocks of
svmbols (words separated by blanks) as input, and rewrites them step by step, in accordance
with (1) a lexicon and (2) a finite set of production rules defined in a formal grammar, into a
parse tree or a bracketed string. This approach is commonly restricted to the domain of the
sentence as maximal unit of linguistic processing, thus adhering to the traditional view that
larger wunits like paragraphs, texts and discourse, are formed by mere juxtaposition of
autarchic, independently parsed sentences.

Clearly, this kind of procedure developed for parsing written language material is not im-
mediately applicable to speech processing purposes. For one. natural human speech does not
normally present itself in the acoustical medium as a simple linear string of discrete, well
demarcated and easily identifiable symbols, but constitutes a continuously varying signal
which incorporates virtually unlimited allophonic variations, reductions, elisions, repairs,
overlapping segmental representations, grammatical deficiencies, and potential ambiguities at
all levels of linguistic description. There are no "blanks™ and "punctuation marks" to define
words or indicate sentential boundaries in the acoustic domain. Syntactic structures at least in
spontaneous speech are often fragmentary or highly irregular, and cannot be easily defined
in terms of established grammatical theory [26]. Last not least, important components of the
total message are typically encoded and transmitted by nonverbal and even nonvocal means of
communication [is].

On the other hand, human speakers organize and present their speech output in terms of
well defined and clearly delimited chunks rather than as an unstructured, amorphous chain of
signals. This division into chunks is represented among other parameters in the time course
of voice fundamental frequency (FO0) where it appears as a sequence of coherent intonation
units optionally delimited by pauses and/or periods of laryngeaiization [19], and containing at
least one salient pitch movement [9].[20]. Human listeners are able to perceive these units as
"natural groups”™ forming a kind of performance structure [12], which reflects the information
structure of the utterance [14] and is used to decode the intended meaning of the transmitted
message. This involves (1) chopping up the message into information units in accordance with
the speaker's and listener's shared state of knowledge. (2) organizing these units both
internally and externally in terms of given and new information, and (3) selecting one or at
the most two elements in each unit as points of prominence within the message.

SYSTEM OVERVIEW

While written language input is generally presented to the parser with both the terminal
svmbols (i.e. words) and the starting symbols or roots (i.e. sentences) clearly delineated and
set off from each other by spaces and/or punctuation marks, thus imposing the parsing
algorithm with the task to identify som kind of intermediate structure(s) representation
composed of variables from a finite set of non-terminal symbols or categories (i.e. the phrase
structure, constituent structure, functional structure, etc), essentially the reverse applies
when parsing connected speech input. That is, the continuously varying speech signal is
presented to the analysis with some kind of intermediate structure(s) representation either
immediately observable (e.g. the voiced-unvoiced distinction between individual speech
sounds) or readily deducible (e.g. the prosodic structure expressed in patterns of intonation
and accentuation) without prior knowledge of higher-level linguistic information, thus leaving
the parser with the task to recognize (or rather support the recognition of) both the individual
words and the full sentences.

This reverse relationship between text parsing on one side and speech parsing on the
other is illustrated schematically in figure 1. It must be appreciated in this context that the
intermediate structure(s) representations in text versus speech parsing are neither identical
nor necessarily isomorphical.
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TEXT INPUT
SPEECH INPUT

INTERMEDIATE
STRUCTURES

LEXICON PARSER GRAMMAR

( WORDS ")  (SENTENCE~*

Figure 1 Parsing NL text versus parsing connected speech

The speech parsing algorithm presented in this study is thus initiated by a data-driven
,spCeCh segmentation stage that exploits the prosodically cued chunking present in the
acousticsi! speech signal and uses it to perform automatic, speaker-independent segmentation
of continuous speech into functionally defined intonation/information units. For this purpose.

0 global declination lines are computed by the linear regression method, which approximate
the trends in time of the peaks (topline) and vallevs (baseline) of F. across the utterance
Computation is reiterated every time the Pearson Product Moment Correlation Coefficient drops
below a preset level of acceptability. Segmentation is thus performed without prior knowledge
ot higher-level linguistic information, with the termination of one unit being determined bv
the general resetting of the intonation contour wherever in the utterance it may occur.

Earlier studies in the correlations between prosodv and grammar have shown that the
intonation units thus established time-align in a clearly defined way with units of linguistic
structure that can be described in probabilistic terms with respect to three interlacing levels
ot analysis: constituent structure, linear word count and duration [i].[:0]. Furthermore, once
the extent of an intonation unit has been established both in the time and in the frequency
domain, areas of prominence can easily be detected as overshooting or undershooting F
excursions that provide valuable points of departure for further linguistic analysis and island
parsing strategies.

A detailed description of the segmentation algorithm together with an evaluation of its
performance on three medium sized Swedish texts read by four native speakers (two female,
two male) is presented in [21]. Problems of classification by means of hierarchically
organized, non-parametric. multiple-hypothesis classifiers are discussed in [6], A statistical
evaluation and coarse classification of the time-alignment between the intonation units
established by our segmentation algorithm and features of linguistic structure at the level of a
complete sentence (S). clause (C). noun phrase (SUB), verb phrase (VP), adverbial modifier
(ADV) and parenthetical construction (PAR) can be found in [20] and [2L].

The present paper deals specifically with design aspects of a parsing algorithm that
accepts the output of the speech segmentation stage as input and uses it

1 - to build a case grammar representation of the original
speech utterance:

2 - to guide the word recognition process by generating
expectations resulting from partial linguistic analyses.

In the following sections, the grammar formalism, the lexicon and the parser will be
presented as separate modules. Problems of integration with other language models
(linguistic and stochastic) will be discussed in the summary.
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GRAMMAR

The grammar formalism adopted for syntactic/semantic parsing of the speech input is
based on Fillmore'scase grammar [11]. According to this approach, asentence in its basic
structure (deepstructure as opposed to surface structure) iscomposed of a modality
component M and the proposition P:

S>M + P (1)
where M defines a series of modes which describe aspects of the sentence as a whole:
M * tense, aspect...mood (2)
and P consists of the verb together with various cases related to it:

P =>Verb + Ct + C~ Cn (3)

with the indices in C, denoting that a particular case relationship can only occur once in a
proposition.

Each case is defined according to Simmons [28] as:
C* K + NP (4)

where K (which mav be null) stands for the preposition which introduces the noun phrase
and defines its relationship with the verb:

K * Prep (5)
and the noun phrase NP is defined as:
NP =(Prep)* + (Det)* + (AdjIN)* + N + (SINP)* (6)

in which theparentheses denote optional elements, the asterixmeans that theelement may be
repeated, and the vertical bar indicates alternation.

A full case grammar representation can thus be described as a tree structure in the form.

S

Modality

Within the general framework of case grammar, the following modes and their respective
possible values have been adopted:

TENSE - present, past, future

ASPECT - perfect, imperfect

ESSENCE - positive, negative, indeterminate
FORM - simple, emphatic, progressive
MODAL - can. may, must

MOOD - declarative, imperative, interrogative
MANNER - adeverbial

TIME - adverbial
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The modality of the utterance as a whole is ultimately determined by the combination of the
individual values assigned to each of the modes listed above.

At least five of these eight modes, i.e. form. mood, essence and the adverbials of time
and manner have been shown to be directly reflected in the intonation contours of natural
human speech (e.g. [2].[5].[20].[27]). For instance, emphatic pronunciation appears to be
universally signaled by larger pitch movements both in the local (emphatic accent) and in the
global (wider «.y, domain. Imperative mood, in addition to displaying on the average shorter
durations per intonation wunit, is wusually associated with higher o onsets and steeper
declination line falls, whereas declarative mood is typically cued by low. target-value «
offsets, often combined with a short period of laryngealization or devoicing. Adverbials. botft
of manner and time, are commonly processed interms of separate intonation units,
especially when they appear at utterance-final positions. The interrogative mood, at least as
far as non-WH-questions are concerned, is signaled intonationally in most languages studied
so far by rising intonation patterns, terminally and/or globally (the latter predominantly with
respect to the topline).

As shown earlier, the speech segmentation algorithm not only aims to unearth the
underlying intonation/information structure of the utterance, but also represents the
calculated values of various intonation unit parameters (i.e. duration, declination slope,
onset, offset and resetting,for the baselines and toplines respectively) in a 10-parameter
vector which is wused for a first broad classificationand hierarchization (see references
[6],[20] and [2i] for further details). Individual valuesare measured in Hz (¢ -values) or
milliseconds (durations) and represented in separate probability density functions (PDF)
which allows for (1) finer grain. (2) fast computation of average means, standard deviations
and modal targets, and (3) direct comparison and categorization of individual intonation unit
parameters reflecting » oaa1ity by simple and robust VQ methods.

Prominence
Topline Intercept (atop) ' qa Topline Endpoint (yto\;/))
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Figure 2 Intonation unit parameters for one male speaker
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In summary, modality provides essential information about the propositional content of
the utterance. It also provides valuable cues to word order (e.g. interrogative mood is often
associated with inverted word order), word structure (e.g. imperative sentences usually lack a
lexical expression for the subject, which is commonly understood to be the addressed
person), and constituent identity. Determining the modality at an early stage of the parsing
process by probabilistic evaluation of the intonational cues specified by the segmentation
algorithm thus helps (1) to establish important aspects of the overall meaning of the
utterance, and (2) to judge the plausibility of alternative word order hypotheses.

Proposition

In traditional case grammar, the main verb in the proposition constitutes the kernel to
which the cases are attached, and the auxiliary verbs contain much of the information about
modality. It is thus important to detect and identify the verbal elements of the utterance at an
early stage of the parsing process.

It has been shown earlier that once the extent of an intonation unit is established both in
the time and in the frequency domain, areas of prominence can easily be spotted as
overshooting or undershooting pitch excursions that reach outside the FO range defined by
the computed baseline-topline configuration. Unfortunately, only a small proportion of these
prominent pitch obtrusions (less than one third, i.e. 31.6 %. in our accumulated Swedish
material comprising 10440 running words and 704 sentences of read speech recorded by
four native speakers) have been found to be directly associated with the verbal constituents in
natural human speech, and thus provide an immediate cue for the detection and identification
of the case head. On the other hand, these verb-prominence coincidences - at least in our
Swedish material - have been found to be strongly related:

1 - to prominent pitch obtrusions in the initial parts of the
individual intonation units (81.7 %). whereas prominence in
the final parts appears to be predominantly associated with
nominal constituents (77.1 %):

2 - to lower average FO values of overshooting pitch
prominence (typically around 12 Hz for our male speakers
and 17-20 Hz for their female counterparts), whereas pitch
prominence in connection with focal accent or emphasis on
nominals reaches on the average significantly higher values.

This latter phenomenon apparently applies irrespective to the position of the pitch
obtrusion with regards to earlier or later sections of the intonation unit.

In summary, about one third of the prominent pitch obtrusions computed by the speech
segmentation algorithm are directly associated with verbal constituents, and can thus be
regarded as reliable cues to indicate verbal case heads in connected speech parsing. On the
other hand, the overwhelming majority of prominent pitch excursions time-align with
nominal constructions, i.e. signaling the "important”™, "new", “unpredictable” words
carrying most of the semantic information content in the utterance, whereas most of the
potential verbal case heads are associated with non-obtrusive pitch movements inside the
baseline-topline configuration.

Albeit for obvious reasons this situation is far from optimal for a caseframe approach to
continuous speech parsing, we consider the fact to be able to reliably identify about one third
of the potential verbal case heads in natural human speech, and to use them to construct a
skeleton of verb kernels around which a case grammar representation of the original
utterance can be built, as a promising step in the right direction.

Several attempts have been reported in the literature to extend the traditional case-
theoretic approach to include even nominal caseframes, i.e. to construct case grammars that
use caseframes not only to describe verbs but also the head nouns of noun phrases (see for
instance [15]). Work in this direction is ongoing and will be reported in later papers.

A fuller presentation of the grammar component built for parsing continuous speech
input, together with an implementation study for Swedish speech input is prepared for
presentation at COLING 90.
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LEXICON

The lexicon to be used with the parser is specially designed for speech processing
applications (text-to-speech. speech recognition, speech coding, etc) and supports the
caseframe approach to continuous speech parsing outlined in this studv. Its format is defined
as a Swedish monolingual dictionary which contains in addition to the standard entries (head,
homograph index, part-of-speech. inflexion code, morphological form classes, etc) also:

1 - a narrow phonetic transcription reflecting standard
pronunciation usage:

2 - the textual frequency rating based on a one-million word
korpus of Swedish newspaper articles:

3 - an indexed caseframe description for each verb entry.

For the latter purpose, the following reduced set of cases has been adopted from Stockwell.
Schachter and Partee [29]. with definitions compiled by the author:

AGENT -animate instigator of the action

DATIVE -animate recipient of the action

INSTRUMENTAL -inanimate object used to perform the
action

LOCATIVE - location or orientation of the action

NEUTRAL -the thing being acted upon (combining

the objective and the factive in
Fillmore's original list of cases

A caseframe is thus defined as an ordered array composed of the entire set of cases
caseframe = array[agent... neutral] (8)

in which each case can be either required (req) or optional (opt) or disallowed (dis) and
must be marked accordingly.

Since several different verbs often share the same particular kind of caseframe. we
propose to store the entire set of 35 logically possible caseframes as an indexed list, using
the indices as pointers (identifiers) with the respective verb entries in the lexicon. Thus,
instead of listing the complete caseframe specification together with the lexical entry as in the
following example for the Swedish verb "hacka" (to chop):

hacka 3 type: verb
infl: vl
freq: 4
tran: [ 2hakka]
case: agent - req
dative - dis

instrumental - opt
locative - opt
neutral - opt

using the indexed representation format results in the more space-economic and search-
effective structure:

hacka 3 type: verb

infl: vl
freq: 4
tran: [ 2hakka]
case: 97

Observe that the entry "type: verb™ might at first glance appear redundant in view of the
fact that to begin with only the verb entries are listed with caseframes. As indicated in the
previous section, however, we plan to include caseframe descriptions even for nouns and
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As shown earlier, the output of the speech segmentation algorithm and input to the parser
is a linear sequence of parameter vectors representing the LPC-coefficients and pitch value

estimates of the original continuous speech utterance at 16ms-intervals,
into prosodically defined

representations are exemplified below
high-quality digital

segmented

speaker,

intonation/information

recording). English (female

units.
in Figure 3 for three short samples of Swedish (male
speaker,

with the FO contour
Typical prosodic structure

poor-quality analogue

recording) and Japanese (male speaker, toll-qualitv analogue recording) speech.

SW EDISH (male speaker)

Cr>mmgen kom klockan J pd morjonen 14 < \ 1264 och
England nod mfor mbordeskngets khmat Amigen torn *or
Jen misslyckade Hennk 1ll. to* annu i klotirrt i Lewes
*uvu<u>ad i grevskapei Sussej omgiven a* ana sotdater
Ujtiike 7000 man. Hon *ade nvligen merkomnyi fran
Fr&iknkr 1 ttadent jastnmg rt normtMtdi*ka tom ann*
reser tig oanfran den iago bebrggelten i tinden. befann
sig Pnns Efcard. kungens ton. och kan tom Langtkank.
Edvard kommendr mOt Jooo txn+ta nddare

=a-EN-arsB-

Figure

3 Prosodic
samples of Swedish.

ENGLISH (female speaker)

The *rm Mrw Unhods im Marketing mm mat* some ihtnk of
Vain* Anminu. *+*ch can tx defined at an odtecitve and
imagine*iv* took at a pro+xi or iernce io tee if il is
poesidie io mad* u more profitable at tom* cost or to
supply the idem dnaiiry at a lower cost, or of System telling.
~nich meant that a comjnv. instead of telling an \toiote4
machine or component, offers a compete system a compete
factory or pomtr disindtnion system.

£rna

structure representation

JAPANESE (male speaker)

Nihon no dona matht m mo ryokm go \adilmm anmomt.
Sono nma m mm yofu no rypkan mo anmant

4r**d »m kjito Nthaek-fi no *ado m o-*omon m nmntm
desho Myaiesn w yoft no hotem to wo chigaimatm

Yado m isudu *o jochm go heya «i annat shut kart anom
»a iugu Lunano ni iikanntuti

Hnm no mannada nj chmana hiLu shoimiodM go an
anota tab*ton w tu+mnman

~-rr< 1

for three short
English and Japanese speech.

Arrows

indicate areas of prominence outside the F Q range defined by
the baseline-topline configuration.

The calculated values of the intonation unit parameters duration, declination, onset, offset

and resetting,

for the baselines and toplines respectively,

are stored in a 10-parameter vector

and used for a first broad classification and hierarchization of the material.

Once the speech

segmentation algorithm has
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intonation/information unit both in the time and in the frequenv domain, areas of
prominence can be easily spotted as overshooting or undershooting pitch excursions reaching
outside the FO range defined by the computed baseline-topline configuration. Prominence is
measured by the Hz-distance above topline or below baseline respectively (compare figure 2).

Based on the probabilistic datafor verb-prominence correspondences established in the
previous section, the verbal components of the utteranceare localized and used as points of
departure for further linguistic processing. As shown among others by Waibel [30] for
English and Bannert [j] for German, these pitch obtrusions provide the must reliable cue for
the automatic detection if suess in continuous speech recognition, i.e. marking the
"important” words carrying most of the semantic information content in the utterance. In
addition, stressed syllables are commonly pronounced with longer durations and better
articulation, which qualifies them as "islands of phonemic reliability”, generally scoring
better recognition rates than the unstressed (reduced, neutralized) parts of the utterance.

Parsing is run in parallel with the acoustic-phonetic classifier, following a hypothesis-
driven island parsing strategy, i.e. using the areas of prominence (islands of reliability) as
points of departure for inside-out processing. In other words, the classifier first forms a
hypothesis about the phonetic identity of the speech segment(s) at the center of prominence.
After that, the island is gradually expanded in both directions by verifying neighbour phone
candidates using continuously variable hidden Markov models (HMM) [25] based on
precompiled allophone/diphone/triphone  statistics [16] and bounded by phonological
constraints expressed in the form of finite state transition networks as proposed among others
by Church [ioj.

Island expansion proceeds to the beginning and end of the respective intonation/informa-
tion unit, thus constructing a phone lattice that spans the entire duration of the IU. A word
lattice of the input utterance is hypothesized on the basis of information about (1) the most
probable number of words predicted for the respective intonation/information unit as derived
from the broad classification [21]. (2) the language specific knowledge about the phonotactic
properties within words and acrosswords defined by the phonology-constrained diphone and
triphone models. (3) the expected case identities generated by the caseframe entries in the
lexicon, and (4) the lexical identities listed in a Swedish pronunciation lexicon [17]. Syntactic
(including morphological) constraints are only weakly defined in a constituent-based context-
free grammar formulation (CFG), which is aimed to permit successful parses even for
fragmentary and/or grammatically deficient speech input and is expected to support the
pruning of "unpromising" parses at an early stage of the analysis.

It must be appreciated in this context that only about one fifth of all intonation/informa-
tion units unearthed by the speech segmentation algorithm (18.2% in our Swedish material)
align in a simple one-to-one fashion with full sentences, while the majority (81.8% in the
Swedish material) aligns with features of constituent structure in the sub-sentence domain.
This implies that the overwhelming majority of full sentences (grammatical as well as
ungrammatical) contained in continuous speech is processed in terms of several
intonation/information wunits. Empirical study of our accumulated Swedish speech material
revealed an average of 2.36 I1Us per sentence withthree clearly defined modes at 2, 3 and 5
IUs [20]. It must be appreciated in this contextthat sentences composed of 4 or more
intonation/information units typicallycontain parallel structures such as enumerations,
appositions, parentheticals and rhetorical repetitions.

Given the limited number of actually occurring lIU-per-sentence constellations represented
by the combination of (1) the most probable number of IUs per sentence, (2) the internal
properties of each individual 1U specified in a 10-parameter vector containing duration,
onset, offset, slope and resetting values for the baseline and topline respectively, and (3) the
scored lattice of constituent label(s) derived from the coarse-classification procedure, the sub-
problem of sentence generation by intonation unit concatenation can be conveniently solved
bv a finite-state parsing strategy such as proposed by Gibbon [13] i.e. using a finite-state
automation (FSA) with transition probabilities attached to each arc.

SUMMARY AND CONCLUSIONS

The speech segmentation, classification and hierarchization components have been
developed for Swedish speech input. Testing the algorithm for English and Japanese speech
input is ongoing and shows promising results. Further research focuses on improvements in
the definition of the linguistic description format (i.e. incorporating nominal caseframes,
attaching probability scores for cases in the "opt"™ state, including lexical hypotheses with
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the caseframe entries, integrating the case grammar with a functional grammar component,
etc).

We like to believe that the approach presented in this study shows promise not only for
spoken input parsing in general, but for a number of practical applications in the field of
speech processing including telecommunication, interpreting telephony, automatic keyword
extraction, and text-to-speech synthesis. Linear regression lines are easily calculated and
require onlv little computational effort, which makes the segmentation algorithm a fast,
robust and objective technique for computer speech applications. Modulating voice for
increased informativitv exploits a natural strategy that human speakers use quite automatically
in communicative situations involving channel deficiency (e.g. due to static, transmission
noise, or masking effects) and/or different kinds of ambiguity Prominent pitch
excursions (together with greater segmental durations) constitute a universally used feature of
language that is employed to signal new versus given, contrastive versus presupposed,
thematic versus rhematic information in connected speech utterances [7] and can thus be used
as a reliable cue to quickly identify the semantically potent keywords in the message. In
addition, the frequency range covered by voice phenomena (intonation, accentuation,
larvngealization) lies safely within the normal band Ilimits of telecommunication, which
qualifies FO as a natural, versatile, and accessible code for human-computer interaction via
telephone.

Finallv. text-to-speech systems using standard syntactic parsers designed to find 'major
svntactic boundaries”™ at which the intonation contour needs to be broken into separate units
that help the listener to decode the message, invariably come up with the same two kinds of
problems [23]:

1 - they tend to produce not one (the most probable, semantically most
plausible) but several alternative parses:

2 - they produce too many boundaries at falsely detected or inappropriate
sentence locations.

Perceptual evaluation of these synthesized contours reveals that listeners get distracted and
often even piainlv confused by too many prosodicallv. marked boundaries, while too few
prosodic breaks just sound like as if the speaker simply is talking too fast. These findings not
onlv show that the amount of segmentation and the correspondence between syntactic and
prosodic units are dependent on the rate of speech, but that listeners apparently neither
expect, nor need, nor even want prosodically cued information about all the potential
richness in syntactic structure described by modern syntactic theories, in order to decode the
intended meaning of an utterance.
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Abstract

This paper describes a speech parsing method called HMM-LR. In HMM-LR, an LR parsing table
is used to predict phones in speech input, and the system drives an HMM-based speech recognizer
directly without any intervening structures such as a phone lattice. Very accurate, efficient speech
parsing is achieved through the integrated processes of speech recognition and language analysis.
The HMM-LR method is applied to large-vocabulary speaker-dependent Japanese phrase
recognition. The recognition rate is 87.1% for the top candidates and 97.7% for the five best
candidates.

1 Introduction

This paper describes a speech parsing method called HMM-LR. This method uses an efficient
parsing mechanism, a generalized LR parser, driving an HMM-based speech recognizer directly
without any intervening structures such as a phone lattice.

Generalized LR parsing [1] is a kind of LR parsing [2], originally developed for programming
languages and has been extended to handle arbitrary context-free grammars. An LR parser is guided
by an LR parsing table automatically created from context-free grammar rules, and proceeds left-to-
right without backtracking. Compared with other parsing algorithms such as the CYK (Cocke-
Younger-Kasami) algorithm [3] or Earley’s algorithm [4], a generalized LR parsing algorithm is the
most efficient algorithm for natural language grammars.

There have been some applications of generalized LR parsing to speech recognition. Tomita [5]
proposes an efficient word lattice parsing algorithm. Saito [6] proposes a method of parsing phoneme
sequences that include altered, missing and/or extra phonemes. However, these methods are
inadequate because of the information loss due to signal-symbol conversion. The HMM-LR method
does not use any intervening structures. The system drives an HMM-based speech recognizer
directly for detecting/verifying phones predicted using an LR parsing table.

HMM (Hidden Markov Models) [7] has the ability to cope with the acoustical variation of speech
by means of stochastic modeling, and it has been used widely for speech recognition. In HMM, any
word models can be composed of phone models. Thus, it is easy to construct a large vocabulary speech
recognition system.

This paper is organized as follows. Section 2 describes the LR parsing mechanism. Section 3
describes HMM. Section 4 describes the HMM-LR method. Section 5 describes recognition
experiments using HMM-LR. Finally, section 6 presents our conclusions.

2 LR Parsing
2.1 LR Parsing

LR parsing was originally developed for programming languages. It is applicable to a large class
of context-free grammars.
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The LR parser is deterministically guided by an LR parsing table with two subtables (action table
and goto table). The action table determines the next parser action ACTION[s,a] from the state s
currently on top of the stack and the current input symbol a. There are four kinds of actions, shift,
reduce, accept and error. Shift means shift one word from input buffer onto the stack, reduce means
reduce constituents on the stack using the grammar rule, accept means input is accepted by the
grammar, and error means input is not accepted by the grammar. The goto table determines the next
parser state GOTO[s,A] from the state s and the grammar symbol A.

The LR parsing algorithm is summarized below.

1. Initialization. Setp to point to the first symbol of the input. Push the initial state 0 on top of
the stack.

2. Consult ACTION[s,a] where s is the state on top of the stack and a is the symbol pointed to by
P-

3. IfACTION[s,a] = “shift s' 7, push s’on top of the stack and advance p to the next input symbol.
IFACTION[s,a] * “reduce A—p”, pop |0] symbols off the stack and push GOTOis'A] where s’is
the state now on top of the stack.

IFACTION([Ss,a] =,laccept”, parsing is completed.
IfACTION[s,a] = “error”, parsing fails.
Return to 2.

2.2 Generalized LR Parsing

Standard LR parsing cannot handle ambiguous grammars. For an ambiguous grammar, the LR
parsing table will have multiple entries (conflicts). As a general method, a stack-splitting mechanism
can be used to cope with multiple entries. Whenever a multiple entry is encountered, the stack is
divided into two stacks, and each stack is processed in parallel. Thus, it is possible to use LR parsing
to handle an ambiguous grammar which describes natural language.

e o u k r S
0 s5 2
1 s7,r3 r3
2 s9 s10
3 r2
(1) s -> NPV 4 sS sit
@ s -» V 5 s13
(3) NP -+ N 6 ace
(4 NP —» NP 7 r6
(5 N -»kor« 8 r4
© P ->o0 9 s14
MV *kure 10 si5
8 V -»0 kure n s10
12 rl
13 s16
Fig.l Example grammar 14 s17
15 s18
16 s19
17 r5 rs
18 X
19 $20
20 r8

Fig.2 LR parsing table
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A simple example grammar is shown in Fig.l, and the LR parsing table, compiled from the

grammar automatically, is shown in Fig.2. The left part is the action table and the right part is the
goto table. The entry “acc” stands for the action "accept”, and blank spaces represent “error”. The

terminal symbol represents the end of the input.

3. HMM (Hidden Markov Models)

HMM is effective in expressing speech statistically, so it has been used widely for speech
recognition.
Fig.3 shows an example of a phone model. A model has a collection of states connected by

transitions. Two sets of probabilities are attached to each transition. One is a transition probability
al) which provides the probability for taking transition from state i to state;. The other is an output
probability btlk, which provides the probability of emitting code k when taking a transition from state
i to statej.

The forward-backward algorithm [7] can be used to estimate the model’s parameters given a

collection of training data. After estimating the model’s parameters, the forward algorithm (trellis

algorithm) can be used to verify phones as follows.

1 (f=0 & i=0)
aj(o = 0((t= 0&i* 0) or 1~ 0 & i= 0))

a,(0 is the probability that the Markov process is in state i having generated code sequence
yi,y2,...,yi. The final probability for the phone is given by apiT) where F is a final state of the phone
model and T is a length of input code sequence.

4. HMM-LR Method
4.1 Basic Mechanism

In standard LR parsing, the next parser action (shift, reduce, accept or error) is determined using
the current parser state and next input symbol to check the LR parsing table. This parsing
mechanism is valid only for symbolic data and cannot be applied simply to continuous data such as
speech.

In HMM-LR, the LR parsing table is used to predict the next phone in the speech. For the phone
prediction, the grammar terminal symbols are phones instead of the grammatical category names

generally used in natural language processing. Consequently, a lexicon for the specified task is
embedded in the grammar.

The following describes the basic mechanism of HMM-LR (see Fig.4). First, the parser picks up all
phones which the initial state of the LR parsing table predicts, and invokes the HMM to verify the
existence of these predicted phones. During this process, all possible parsing trees are constructed in

Fig. 3 HMM phone model
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parallel. The HMM phone verifier receives a probability array which includes end point candidates
and their probabilities, and updates it using an HMM probability calculation process (the forward
algorithm). This probability array is attached to each partial parsing tree. When the highest
probability in the array is lower than a threshold level, the partial parsing tree is pruned by
threshold level, and also by beam-search technique. The parsing process proceeds in this way, and
stops if the parser detects an accept action in the LR parsing table. In this case, if the best probability
point reaches the end of speech data, parsing ends successfully. A very accurate, efficient parsing
method is achieved through the integrated process of speech recognition and language analysis.
Moreover, HMM units are phones, and any word models can be composed of phone models, so it is
easy to construct a large vocabulary speech recognition system.

4.2 Algorithm

To describe an algorithm for the HMM-LR method, we first introduce a data structure named cell.
A cell is a structure with information about one possible parsing. The following are kept in the cell:

¢ LR stack, with information for parsing control.

» Probability array, which includes end point candidates and their probabilities.

The algorithm is summarized below.

1. Initialization. Create a new cell C. Push the LR initial state 0 on top of the LR stack of C.
Initialize the probability array Q of C;

. t=20
Qit) =
1
Grammar rules LR table
Vv —* vntm (,) Vcon|(n) Pre-compile jtate m o ch U r—
Veml -""0 th 11
Vn«m2 -* m 0 $1
Vnmj -*m o ra 1 s2
Vconjl -*r1 U 2 s3 $4 sS
Vo, 2 « u
von3  -* «
Looku
HMM phone models Phone P
prediction
ch
m -
ts
/m/
e .
Recognition results
HMM-LR
ch -» ...
ol \ Its! ch 70 r
ts 65 of-*ts -» ...
r 30 r “» X (Pruning)
Verification
score
Verification \
'V X /W

Input speech: mochiiru

Fig. 4 Basic mechanism of HMM-LR
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2. Ramification of cells. Construct a set
S ={(C,sax)|3C,a x(Cisacell & Cisnot accepted
& sis astate ofC & ACTION[s,a}=x & "error”}
For each element (C, s, a, X) € S, do operations below. Ifaset S is empty, parsing iscompleted.

3. lix-ushift s'”, verify the existence of phone a. In this case, update the probability array Q of
the cell C by the following computation.

QU) t=0

aKO = 0 t=0&i* 0
1§ (djit-D ajfijiiyt))
0 (f=0)

t) =
QU apit)

If max Qi) (i= 1...T) is below a threshold level set inadvance, the cell Cis abandoned. Else
push s’on top of the LR stack ofthe c  C.

4, Ifx-"reduce A—07,same as standa. .”R parsing.

5. If x="accept”and Q{T) is larger than a threshold level, thecell C is accepted. If not,cell C is
abandoned.

6. Return to 2.

Recognition results are kept in cells. Generally, many recognition candidates exist, and it is
possible to rank these candidates using a value Q{T).

The set S constructed in step 2 above is quite large. It is possible to set an upper limit on the
number of elements in S by beam-search technique. It is also possible to use local ambiguity packing
[1] to represent cells efficiently.

5. Experiments

The HMM-LR method is applied to speaker-dependent Japanese phrase recognition. Duration
control techniques and separate vector quantization are used to achieve accurate phone recognition.
Two duration control techniques are used, one is phone duration control for each HMM phone model
and the other is state duration control for each HMM state [8]. Phone duration control is carried out
by weighting HMM output probabilities with phone duration histograms obtained from training
sample statistics. State duration control is realized by state duration penalties calculated by
modified forward-backward probabilities of training samples. In separate vector quantization,
spectral features, spectral dynamic features and energy are quantized separately. In the training
stage, the output vector probabilities of these three codebooks are estimated simultaneously and
independently, and in the recognition stage all the output probabilities are calculated as a product of
the output vector probabilities in these codebooks.

The grammar used in the experiments describes a general Japanese syntax of phrases and is
written in the form of context-free grammar. Lexical entries are also written in the form of context-
free grammar. There are 1,461 grammar rules including 1,035 different words, and perplexity per
phone is 5.87. Assuming that the average phone length per word is three, the word perplexity is more
than 100.

Table 1 shows the phrase recognition rates for three speakers. The average recognition rate is
87.1% for the top candidate and 97.7% for the five best candidates. Japanese is an agglutinative
language, and there are many variations of affixes after an independent word. The problem here is
that recognition errors are often mistakes caused by these affixes.
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Table 1 Phrase recognition rates

6. Conclusion

In this paper, we described a speech parsing method called HMM-LR, which uses a generalized LR
parsing mechanism and an HMM-based speech recognizer. The experiment results show that an
HMM-LR method is very effective in continuous speech recognition.

An HMM-LR continuous speech recognition system is used as part of the SL-TRANS (Spoken
Language TRANSIation) system developed at ATR Interpreting Telephony Research Laboratories.
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ABSTRACT

An analysis method for Japanese spoken sentences based on HPSG has been developed. Any
analysis module for the interpreting telephony task requires the following capabilities: (i) the
module must be able to treat spoken-style sentences; and, (ii) the module must be able to take, as
its input, lattice-like structures which include both correct and incorrect constituent candidates of
a speech recognition module. To satisfy these requirements, an analysis method has been
developed, which consists of a grammar designed for treating spoken-style Japanese sentences
and a parser designed for taking as its input speech recognition output lattices. The analysis
module based on this method is used as part of the NADINE(Natural Dialogue Interpretation
Expert) system and the SL-TRANS (Spoken Language Translation) system.

1 INTRODUCTION

An analysis module for a spoken sentence translation system, or an interpreting telephony

system requires the following capabilities:

(i) the module must be able to treat spoken-style sentences; and,

(ii) the module must be able to accept not only strings but also lattice-like structures where the
analysis module directly drives a speech recognition module (e.g., a phoneme or word recognition
module but not a whole sentence recognition module) or where the analysis module takes as its
inputs partial speech recognition results including both correct and incorrect sentence
constituents.

To satisfy these requirements, an analysis method has been developed which consists of a
grammar framework designed for treating spoken-style Japanese sentences and a unification-
based parser designed for taking as its input speech recognition result lattices.

The grammar framework is unification-based lexico-syntactic and is essentially based on
HPsGUo01 and JPSG121. This is because:

(i) a lexico-syntactic approach is modular in the sense that most of the grammatical information is
to be specified in descriptions of lexical items; and that it is therefore easy to extend a grammar
simply by adding new lexical items to the lexicon or adding new information to lexical items; and
(i) the JPSG framework can essentially capture constraints between complex predicate
constituents and their complements. This capability is important because spoken-style Japanese
sentences often have complex predicate constituents.

The grammar framework is extended from these grammatical frameworks by introducing
features related to semantic and pragmatic constraints!12)

The parser developed is essentially based on the active chart parsing algorithm!11) because
the algorithm is as efficient as Earley's algorithm!l) or any other CFG parsing algorithm and,
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moreover, has the capability of controlling parsing strategies to avoid exhaustive searches. The
parser is extended to treat constraints in Typed Feature Structures (TFS) by using TFSP links (as
defined in Section 3).

The analysis method proposed in this paper is used in the analysis module of the NADINE
system[4-9% and the NADINE system is used as the machine translation module of the SL-TRANS
system. In the SL-TRANS system, input speech is recognized by the Japanese bunsetsul phrase
recognition module based on the HMM-LR method!8! and the module outputs the sequence of
bunsetsu phrase lattices, each of which consists of bunsetsu phrase structure candidates. The
outputs are filtered by a bunsetsu dependency filter module(51 which outputs sentence lattices
consisting of fewer bunsetsu phrase structure candidates than the HMM-LR produces.

The NADINE system takes as its input a sentence lattice and outputs an English sentence.
The analysis module based on this paper’s method takes a sentence lattice and outputs typed
feature structures which represent syntactic, semantic and pragmatic information of the
sentence. Then, the transfer and generation modules output an English sentence.

In this paper, Section 2 describes the grammar framework and Section 3 describes the parser
and the analysis method.

2. GRAMMAR FRAMEWORK FOR SPOKEN-STYLE JAPANESE SENTENCES

The grammar built up to analyze spoken-style Japanese sentences is essentially based on
HPSG and JPSG. The grammar describes not only syntactic and semantic information but also
discourse and pragmatic information in an integrated way by using TFS descriptions.

Resolution of omitted obligatory cases (or zero-pronouns) is very important because

Fig.1 Overview ofthe SL-TRANS system (modules related to the analysis module)

1. a basic phonological phrase consisting of a jiritsugo-word such as a noun, verb, or adverb
followed by zero or more fuzokugo-v/ords such as auxiliary verbs, postpositional particles, or
sentence final particles.
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(i) pronouns referring to the speaker and the hearer seldom appear in spoken-style sentences and
these omitted cases make sentences more ambiguous, and

(i) in order to translate these sentences into natural English sentences, they must be
supplemented.

If they are not supplemented, for example, Japanese sentences without agent subject case
expressions must often be.translated into unnatural English passive sentences (e.g., “A
registration form will be sent” instead of “l1 will send you a registration form"). In this paper's
analysis, such omitted cases are resolved by using constraints on the uses of deictic expressions
and their case elements, and so on.

2.1. Treatment of Syntactic and Semantic Information

Spoken-style Japanese sentences often have complex sentence final predicate phrases
consisting of main predicates and combinations of auxiliary verbs and sentence final particles. In
such a predicate phrase, its head constituent stipulates the properties of the complement
occurring just on its left such as its part of speech, conjugational type, and conjugational form.
Such stipulations are easily described in the SUBCAT feature value in the head. A SUBCAT
feature value is a list of complement constituent specifications.

For example, in the lexical description (1) of the causative auxiliary verb “seru”, the SUBCAT
feature value specifies that the auxiliary takes as its complement a verb phrase with
conjugational type CONS (for consonant type) and conjugational form VONG (for voice negative
type), and two postpositional phrases (PPs), a PP marked by “ni” and a PP marked by ga .
Moreover, it specifies that the VP must be located just before the auxiliary and that the relative
order between two PPs is free. The SEMF feature, which is a bundle of semantic features,
specifies the semantic selectional restrictions and, in the description, the SEMF feature value of
the ga-PP specifies that the PP must refer to an animate object.

[[syn [[morph [[ctype vow][cform aspl-or-infn]]]
[head [[pos V]
[modi [[caus +]11

[subcat [[Ffirst [[syn [I[morph [[ctype cons][cform vong]l]
[head [[pos V]
[modi [[caus -][deac -1 -.-1111
[subcat [[Ffirst [[syn [[head [[form ga]

11 1

[sem ?causee]l]
[rest end 11111
[sem ?caused]]]
[rest (:perm-list [[syn [[head [[formga] ...11 ---11
[semf [[human +1]1]
[sem ?causer]]
[[syn [[head [[formni] ...11 -..11
[sem ?causee]lDIIl ---1 ---1

[sem [[relation cause]
[causer ?causer]
[causee ?causee]
[caused ?caused]]]] n

where “?” is the prefix of the tag and structures denoted by the same tag are token identical, and
":perm-list” is a macro which takes as its arguments a set of typed feature structure descriptions
and returns as its value the disjunction of permuted lists made of the set.
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Furthermore, the COH feature (Category Of Head) in a complement or adjunct constituent
specifies its head constituents. Combinations of COH and SUBCAT features allow flexible
grammatical descriptions.

Japanese predicate constituents belong to groups: a member of these groups must, with some
exceptions, occur in a strictly one-dimensional sequence; these groups correspond to semantic
hierarchies. A new head feature MODL (for modality) has been devised to all and only predicates
with grammatically ordered constituents. For example, in the above description (1), the MODL
feature value of the first SUBCAT value element specifies that the complement verb phrase
should not include any auxiliary verbs.

Besides the predicate constituent order specification, the MODL feature is also used to restrict
syntactic and semantic behavior of subordinate (adverbial) phrases. For example, certain formal
adverbs (i.e., subordinate conjunctions) require as their complements verb phrases without time
or place modifiers. Such requirements reduce ambiguities of adverbial phrase modificands. The
MODL feature in conjunction with the SEMF feature contribute to reducing the number of verbal

modificand ambiguities.

2.2.Treatment of Pragmatic Constraints on Uses of Expressions

This grammar framework treats discourse or pragmatic constraints on uses of expressions in
order to select plausible analysis candidates and to resolve certain kinds of zero-pronouns. An
analysis candidate includes not only syntactico-semantic descriptions such as a semantic
interpretation (the SEM feature value) but also annotations or a set of conditions under which the
interpretation is valid. For example, the sentence

Watashi ni  tourokuyoushi o] o-okuri itadake masu ka
| DAT registration formACC HON-send RECEIVE-FAVOR POLITE QUESTION

seems to have two analysis candidates corresponding to phrase structures (a) and (b) in Fig.2
(they correspond to “Could you please send me a registration form?”and IT'Could I please send a

registration form?”). However, the analysis candidate corresponding to (b) has the following
annotations:

common phrase structure of (a) and (b)
phrase structure (a) %
---------- phrase structure (b)

Watashi ni tourokuyoushi wo o-okuri itadake masu

Fig.2 Two derivation trees of the sentence
‘watashi ni tourokuyoushi o o-okuri itadake masu ka*
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[[relation condescend]

[agent ?speaker]
[object ?subject_sem]
[comparative-object ?speaker]]

[[relation express-more-empathy]
[agent ?speaker]
[object ?subject_sem]

[comparative-object ?speaker]]
(where ?speaker refers to the speaker and ?subject_sem is the semantic representation of the
subject of “itadake”).

Accordingly, these conditions are unnatural (e.g., the speaker expresses more empathy to a
person other than himself) but (a) does not have such unnatural conditions. Thus, the analysis (a)
is selected as a more plausible candidate than (b).

These annotations are also used for zero-pronoun resolution. In the analysis (a), the subject
and indirect object o{"'itadake' are missing. However, (a) has the following annotations:

[[relation condescend]
[agent ?speaker]
[object ?subject_sem]
[comparative-object ?indirect-object _sem]]
[[relation express-more-empathy]
[agent ?speaker]
[object ?subject_sem]

[comparative-object ?indirect-object_sem]]

and by searching for discourse participants satisfying these conditions, candidates of missing
elements can be found.

In order to obtain such annotations, lexical descriptions have PRAG| RESTRS features which
include constraints in terms of RESPECT, CONDESCEND, POLITE, EXPRESS-MORE-
EMPATHY and so on.

Plausibility scores based on these annotations are used in conjunction with other kinds of
scores described below to select plausible analysis candidates. Zero-pronoun resolution is applied
after parsing Annotations are used in conjunction with conditions under which utterances of
sentences are interpreted as certain types of illocutionary acts, and conditions under which
actions in general are rational.

3. FEATURE STRUCTURE PROPAGATION PARSER
3.1.Active Chart Parser with Feature Structure Propagation Links

The active chart parsing algorithm has properties suitable for parsing natural language
efficiently. In particular, it has two excellent properties for treating speech recognition result
lattices:
(i) it does not limit its inputs to only strings but can accept lattice structures — thus, it can parse
speech recognition result lattices directly; and,
(ii) it has the capability of controlling the order of parsing by adapting a method of selecting
pending edges from the pending edge list, which works as an agenda. Thus, by adapting a
selection method based on certain criteria which, at least, reflects speech recognition result
plausibility, plausible parses can be obtained in the early stages without exhaustive search.

-136- International Parsing Workshop '89



However, this second property makes structure sharing difficult in unification-based CFG
parsing, or CFG parsing augmented by constraints described in typed feature structures (TFSs).
In unification-based parsing, there often exist edges with the same content except for their TFSs.
When an active edge is continued with an inactive edge, if there is already an edge with the same
contents except for its TFSs as the continuation edge, edge sharing may seem to be able to be
achieved by adding the continuation edge's TFSs into the existing edge’s. However, this makes
parsing incomplete because the existing edge may have been used previously to construct larger
edges due to the parsing order freeness and because newly added TFSs are not used to construct
larger edges or used as part of larger edges.

In order to solve this problem, the TFS Propagation parser (in short, TFSP parser) has
been developed. The parser is essentially based on active chart parsing and each edge of the
parser has a set of TFSs representing syntactic, semantic and pragmatic information of
corresponding partial phrase structures. The parser is extended to have special links called TFS
Propagation links (TFSP links).

A TFSP link in an edge remembers how the TFSs of the edge were previously propagated and
specifies how TFSs newly added into the edge should be used. That is, a TFSP link of an active
edge points to a continuation edge having as its annotation the inactive edge used to construct the
continuation edge. Then, when a TFS is added to an active edge, for each TFSP link of the edge,
the TFS is unified with each TFS of the link's inactive edge and then the unification result TFS is
added into the link's continuation edge if the unification succeeds. By using TFSP links, new edge
creation is necessary only when there is no edge with a certain starting vertex, ending vertex,
label and remainder symbol sequence. The TFSP link makes edge structure sharing possible.

Fig.3 TFSP links

Suppose the case where the inactive edge G has been created from the active edge (D and
the inactive edge G and the inactive edge © has been created from the active edge ® and the
inactive edge G. The TFSP link © is created between G and ©. In this case, when the
active edge ® is continued with the inactive edge G, the successful unification result TFSs of
® 'sand G’s TFSs are added to the edge G. The edge has a TFSP link and then the newly
added TFSs are unified with TFSs in ® and the successful unification results are propagated
to the edge © as specified by the TFS link G. If there are already TFS links in the edge ©,
the newly added TFSs are also propagated in the ways specified by these links.
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The TFSP link enables the parser to reduce unnecessary edge structure creation and TFS
unification. When an active edge is continued with an inactive edge, the continuation edge is
meaningful only when it has at least one consistent TFS corresponding to the continuation edge.
Therefore, the necessary computation is reduced to finding a pair of active and inactive edge TFSs
which are consistent or can be unified. It is not necessary to compute the other pairs' unification
after finding a first pair unless TFSs representing whole sentence structures are required later.
This is made possible by using TFSP links because they can not only unify TFSs immediately and
propagate unification result if desired, but they can also propagate information on how to unify
them later. This reduces unnecessary unification computation when the edges are not used as
parts of the parses of the whole sentences, especially when the TFSP parser does not need to find
all possible parses exhaustively.

The unification method used in the TFSP parser has the following characteristics:

(1) It uses Kasper's disjunctive feature structure unification algorithm”). This allows not only for
efficient descriptions of each lexical item (such as efficient coding of SUBCAT feature values for
treating complement order scrambling and word meanings with conditions for disambiguation),
but also packing descriptions of homonyms. Disjunctive lexical descriptions work like Polaroid
wordsl31.

(2) As for the definite feature structure unification algorithm, the incremental copy unification
algorithm which allows cyclic structures!7! is adopted to treat cyclic constraints including
SUBCAT and COH features.

3.2 Agenda Control Mechanism and Plausibility Score

In order to select the most plausible analysis candidate in the early stages, the TFSP parser
selects the pending edge with the best edge score among the pending edge list during parsing, and
selects the TFS with the best TFS score among sets of TFSs in complete edges, each of which has
as its label the start symbol, as its remainder symbol sequence an empty sequence, as its starting
vertex the leftmost vertex of the chart, and as its ending vertex the rightmost vertex of the chart
just after parsing finishes. Parsing finishes when a certain number of TFSs have been created
with scores better than certain criteria determined by the input sentence length (e.g., the number
of bunsetsu structures).

The edge score mainly contributes to first obtaining a plausible syntactic structure. The edge
score for treating speech recognition result lattices is essentially based on the following:
(a) speech recognition score,
(b) surface string length, and
(c) edge type such as active, inactive, orjust-proposed.
When a new edge is created, the edge score is calculated from information on the active edge and
the inactive edge. Moreover, when a new TFSP link is created and the links point to an existing
continuation edge, the edge score of the continuation is recalculated.

The TFS score mainly contributes to obtaining syntactico-semantically and pragmatically
plausible structure and is essentially based on the following:
(d) phrase structure complexity (the number of phrase structure tree nodes),
(e) unfilled complements (the number of elements in SLASH feature value), and
(0 violation of pragmatic constraints on expression usage (the unnatural relationships in the
PRAG|RESTRS feature value).

The behavior of the TFSP parser is illustrated by an example. Suppose the case where a
speech recognition result lattice includes the following sentence candidates and the nominative
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postposition “ga” has a better speech recognition score than the topic marker "wa'” (Fig.4). The
parser first tries to build up the structure including "ga” due to the speech recognition score
preference because there are no other differences between structures including “ga” and "wa”.
However, the building-up process stops when combining structures corresponding to
“tourokayoilshi ga” and “o-okuri” because of TFS unification failure between SEMF feature
values of the verb's subject [[animate + ] and the nominative noun phrase [[animate -]]. Then,
the parser adopts the structure containing “wa” and analyzes the semantics of the topic noun
phrase as playing a semantic object role in the “okuru” (sending) relationship.

In this case, the agent subject is missing and the parser outputs as the semantic
representation:

[[relation okuru-1]
[agent ?subject_sem]
[recipient ?indirect-object_sem]
[object [[parameter 72X]
[restriction [[relation tourokuyoushi-1]

[object  2x] 11111

However, the parser also outputs pragmatic constraints on the person referred to by the subject
based on the lexical descriptions of the honorific verb “itashi” as follows:

[[relation condescend]
[agent ?speaker]
[object ?subject_sem]

[comparative-object ?indirect-object sem]]

After parsing, the analysis module searches for the person to whom the speaker can condescend,
and if there is no person other than the speaker and the hearer in the discourse of the utterance,
the missing subject is analyzed as referring to the speaker. Then, the following semantic
representation is obtained:

[[relation okuru-1]
[agent ?speaker]
[recipient ?hearer]
[object [[parameter 72X]
[restriction [[relation tourokuyoushi-I]

[object  ?x]11111

From this semantic representation, the output sentence “l send you a registration form.” is
obtained.

(Lit.) A registration form will send (something).

a
Tourokuyoushi NOM\ o-okuri itashi masu
-*_e »4 x>
Registration form HON-send do-CONDECEND POLITE
UTPfC
(Lit.) As for the registration form, (I) will send it. ° Bunsetsu boundary

Fig.4 Example of speech recognition result lattice sequence (simplified).
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3.3. Experiments

This analysis method is applied to speech recognition results of sentences in 2 task-oriented
dialogues about “the secretarial service of the international conference”. The HMM-LR speech
recognition module with a bunsetsu dependency filter outputs for each spoken sentence a
sequence of bunsetsu phrase lattices. These 2 dialogues consist of 37 sentences. The speech
recognition module outputs correct results (i.e., sequences of bunsetsu lattices each of which
includes the correct bunsetsu structure) for 35 sentences. This analysis method is applied to these
35 sentences.

These sentences consists of 76 bunsetsu phrases and 112 bunsetsu structure candidates. That
is, a bunsetsu phrase has about 1.47 bunsetsu structure candidates.

For this experiment, a grammar was prepared which includes not only lexical items required
for accepting correct bunsetsu structures in the dialogue, but also all lexical items consisting of all
bunsetsu structure candidates. The grammar consists of 13 general rules including morphological
rules and about 300 lexical entries.

The analysis method obtains correct sentence analysis results for 34 sentences; adequate
English sentences are obtained from these correct analysis results. The sentence recognition rate
of this method is about 97% and the total sentence recognition rate including the HMM-LR speech
recognition module is 92%. The single incorrect analysis result structure, which corresponds to
the Japanese sentence “tourokuyoushi mo o-okuri itashi masu “ (lit. “I will send you a registration
form, too") instead of “tourokuyoushi o o-okuri itashi masu“ (lit. 7 will send you a registration
form™), includes as the incorrect speech recognition part only an incorrect modal particle “mo”
with a higher speech recognition score than the correct case particle “0”, and the incorrectly
recognized structure is perfectly grammatical. In this case, to obtain the correct result requires
taking account of the differences in presuppositions derived from these particles and comparing
these presuppositions with the context of the utterances.

4. CONCLUSION

In this paper, a new analysis method is proposed for Japanese spoken sentences using a
grammar framework for treating spoken-style Japanese sentences and a new parser called the
TFSP parser. The grammar framework is essentially based on HPSG and JPSG, and is designed
to treat not only syntactic and semantic information but also pragmatic information. Analysis
results based on this framework include semantic interpretations of input sentences with
annotations on constraints on the uses of these sentences. The TFSP parser has been developed to
allow edge structure sharing in unification-based analyses. This method is used as the analysis
module of the NADINE system and the SL-TRANS system.

The analysis method is applied to HMM-LR speech recognition result lattices. In parsing
lattices, selecting the pending edge with the best score allows the parser to first find plausible
candidates. Constraints described in TFSs filter out syntactically or semantically ill-formed
structures. The experimental results show that this method is effective in sentence speech
recognition. In the experiments, recovering from incorrect recognition requires utterance context
understanding including understanding of utterance presuppositions.
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ABSTRACT

Authentic text as found in corpora cannot be described completely by a formal
system, such as a set of grammar rules. As robust parsing is a prerequisite for any
practical natural language processing system, there is certainly a need for techniques
that go beyond merely formal approaches. Various possibilities, such as the use of
simulated annealing, have been proposed recently and we have looked at their suitabil-
ity for the parse process of the DLT machine translation system, which will use a
large structured bilingual corpus as its main linguistic knowledge source. Our findings
are that parsing is not the type of task that should be tackled solely through simulated
annealing or similar stochastic optimization techniques but that a controlled applica-
tion of probabilistic methods is essential for the performance of a corpus-based parser.
On the basis of our explorative research we have planned a number of small-scale
implementations in the near future.

1. Introduction

Usually a parser is viewed as a program that takes a sentence in a particular language as its
input and delivers one or more analyses for that sentence. This is no different in the present
prototype of DLT (Distributed Language Translation), a multilingual translation system under
development at the Dutch software house BSO. In the prototype, we use an ATN-parser that
delivers ail syntactic analyses of an input sentence in the source language (SL). Each analysis
undergoes structural and lexical transfer resulting in one or more target language (TL) trees.1

In order to limit the size of the ATN, we have used Technical English as the basis for our
grammar. This type of English has been specially designed for writing technical manuals. It
has certain limitations, such as the number of verb forms to be used, the number of elements
that may be coordinated, sentence length and the like. Nevertheless, it proves to be very diffi-
cult to specify a complete grammar, let alone formulate grammar rules. Moreover, even with
such a limited grammar we have to deal with the combinatorial explosion due to the parsing of
ambiguous sentences.

1 In fact, DLT consists of two separate but similar translation processes. The first translates the SL into
the IL, DLT’s Esperanto-based Intermediate Language; the second translates from the IL into the TL.
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A typical complication of a translation system is that, apart from the SL grammar for the
parser, we need a grammar for TL generation and a contrastive grammar (metataxis) to link
source and target language. Then, there are three dictionaries, one for each language and one
for the language pair. Finally, semantic information has to be included. On a prototype scale, it
is already difficult to maintain consistency between the various knowledge sources, but for a
large-scale industrial version this is almost impossible.

Two recent inventions by members of the DLT research team have contributed to the solution
of the complications mentioned previously. Van Zuijlen (1988) has introduced the Structured
Syntactic Network (SSN) to achieve the compact representation of all dependency-type ana-
lyses of a sentence in a single structure. The problem of consistency of knowledge sources has
been tackled by Sadler (1989), who has proposed the Bilingual Knowledge Bank (BKB), a
large structured bilingual corpus. It contains for each sentence the preferred syntactic analysis
and translation in the given context, as well as certain other referential and co-referential infor-
mation. An important structural element is the Translation Unit (TU), a dependency subtree for
which there is a non-compositional translation, e.g. expressions like kick the bucket.

The introduction of the BKB places the various processes commonly found in a translation sys-
tem (parsing, structural transfer, semantic evaluation, generation) in a different perspective. We
will not deal here with structural transfer and generation but concentrate on the consequences
for the parse process, which will be dealt with in a number of sections:

linguistic theory and representation;
- interfacing parser and BKB;
- corpus-based parsing;
- probabilistic methods.
We conclude with a few remarks about research we have planned for the near future.

2. Linguistic Theory and Representation

The linguistic theory used in DLT is Dependency Grammar, one of the less frequently used
formalisms in natural language processing projects (see Schubert (1987) for a discussion on its
suitability for machine translation). The dependency grammar of a language describes syntac-
tic relations or dependencies between pairs of words. The relation is directed, i.e. one word,
the governor governs (dominates) the other, the dependent. In general, the dependencies range
over word classes (syntactic categories) rather than specific words. A useful feature of depen-
dency grammar is that the resulting analysis may be used direcdy by the semantic component
of the translation system, i.e. a single type of representation suffices for all processes in the
system.

The syntactic relations in dependency grammar are derived from the function of a word in the
sentence. For example, man is the subject of walks in The man walks. It is important to realize
that dependency grammar is primarily concerned with words; there are no phrasal categories.

A dependency tree has a geometry that is quite different from that of a constituent tree (Figure
1). Notice that in a constituent tree nodes are either phrasal or lexical, but that in a depen-
dency tree nodes are always lexical. The branches of a dependency tree are labeled with syn-
tactic relations. A dependency tree is not ordered, which means that a particular relation is
only defined by the governor and the dependent and not by the position of the dependent with
respect to other dependents. In the example word order does play a role to identify the subject
and the object of the sentence but order is not reflected in the representation.

In order to facilitate the interfacing between the BKB and the parse process (see Section 3), we
use an alternative representation, which we will refer to as a Dependency Link
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sees

the the old the boy sees the old man

Figure 1 [a] dependency tree and [b] constituent tree for the sentence The boy sees the old
man.

0oBJ
DET \
/ ATRI\\
: : [~ i\
the boy sees the old man

Figure 2. The dependency link representation of The boy sees the old man.

Representation (DLR). A dependency link consists of a governor, a dependent and their rela-
tion. The link is projective, i.e. it takes the position of- governor and dependent with respect to
each other into account. We obtain a graphical representation of a DLR by writing down the
sentence as a linear string of words and then draw the dependencies as arcs (Dependency
Links) connecting the words. Figure 2 shows the dependency link representation of The boy

he old man.
sees the old mal CIRC

the boy sees the old man with a telescope
Figure 3. The dependency link representation of The boy sees the old man with a telescope.

The DLR shown in Figure 2 has the same representative power as a dependency tree. How-
ever, in contrast to a tree, connections in a DLR are by reference and, as a consequence, it is
possible to represent directed graphs as well. Graphs are a means to represent multiple analyses
of a sentence in a single representation. The ideas behind such a representation for dependency
grammar, the SSN, are discussed in Van Zuijlen (1988). The dependency link may be viewed
as a common building brick for trees as well as SSNs. This is shown in Figure 3 where we see
the two analyses for The boy sees the old man with a telescope in a single DLR. By selecting
either the link man-ATR2-with or sees-CTRC-with we obtain the respective interpretations. The
set of dependency links that constitute one interpretation is called an ensemble.
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3. Interfacing Parser and BKB

As the BKB is the only source of linguistic knowledge in the DLT system, interfacing between
the BKB and each process is needed. In this section, we will give a brief sketch of how the
interfacing between parser and BKB is organized. The BKB is bilingual, but the parser has
only to deal with the SL side of the BKB. It is convenient, therefore, to view it as a large
dependency tree bank. This tree bank contains the dependency trees of a large number of sen-
tences, with each dependency tree consisting of one or more translation units. The TUs have
no direct significance for the parser, but it is important to establish which TUs are contained in
the input sentence. This is done in the following way.

After recognition of a word in the input string the TUs of which it is part are retrieved from
the BKB. The parser does not deal with the TUs directly but interprets them as one or more
dependency links. For each word there is a (possibly empty) set of DLs that either govern or
depend on the word. By combining DLs into ensembles we obtain dependency trees the pro-
jection Oinearization) of which has to match the input string. So parsing is not carried out by
parse tree construction guided by the input string but by matching the input string with the pro-
jection of a parse tree synthesized from dependency links (Figure 4).

input string

Figure 4. Parsing with a treebank. The words in the input string control the retrieval of TUs
from the BKB. Each TU consists of a number of DLs which are used to synthesize an analysis
tree. The projection of this tree should match the input string.

The dependency links that are "used for the analysis (in Figure 4 connected with the analysis
tree by dotted lines) select in mm those parts of the TUs retrieved from the BKB that are
relevant for the translation of the input string.
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4. Corpus-Based Parsing

An important requirement for the parse process is that the analysis result matches with the
BKB, such that it may be syntactically as well as semantically evaluated. In that respect the
use of a structured corpus has a number of advantages.

(1) the coverage of the parser is such that all linguistic phenomena in the corpus will be dealt
with;

(2) the syntactic knowledge retrieved from the corpus on a particular item is consistent with
other types of knowledge;

(3) since various types of knowledge are available simultaneously, incremental evaluation of
(partial) analyses is relatively simple.

This is evident for input sentences that are literally present in the BKB and for which - in a
manner of speaking - direct pattern matching is possible. However, we want to extend the cov-
erage beyond that and, therefore, we have done some explorative research in the field of
corpus-based parsing, primarily by reviewing work of others in the light of our specific needs.

Recent work in corpus-based parsing has a common characteristic. A parsed corpus is used as
a source of linguistic knowledge and probabilistic methods are used to arrive at an analysis.
Basically, parse trees are randomly generated until the optimal parse tree is found with respect
to an evaluation measure based on comparison of the parse tree with the corpus. Robustness is
guaranteed since, whatever the value of the evaluation, one of the analyses will be better than
all others. The search space associated with the investigation of all possible parse trees for a
sentence is very large and, therefore, Haigh, Sampson & Atwell (1988) apply simulated anneal-
ing in their Annealing Parser for Realistic Input Language (APRIL) as an efficient way to find
this optimal parse tree for a complete sentence. Atwell, O’Donoghue & Souter (1989) have
developed the Realistic Annealing Parser (RAP) which also uses simulated annealing but works
incrementally, thus reducing the search space drastically. Both projects evaluate the resulting
trees with corpus information, either in the form of a tree bank (Haigh et al. 1988) or first
order recursive Markov chains (Atwell et al. 1989).

Comparing APRIL and RAP shows that a slightly different approach to the same problem
already results in a large reduction of the search space. This justifies the question whether
simulated annealing is really a very suitable technique. If we examine the literature on that
point (e.g. Aarts and Korst 1989) we find that the problems for which it is successfully applied
are of the "traveling salesman™ type, in other words, problems that are highly unstructured and
have a large search space which is defined in advance. The search space consists of the dis-
tances associated with all possible tours. There is a clear relation between a tour and the total
distance; it is obtained by summation of the distances of each pair of connected cities. The dis-
tance is always defined between two points and it can be measured; there is no configuration
of cities for which no solution can be found. The search space may become very large and
simulated annealing serves as a means to investigate it efficiently.

At first sight, parsing a language seems to be a similar problem. We have a number of words
(cities) and, in the case of a dependency grammar representation, we have to find optimal con-
nections between them. For each connected pair of words we compute the grammaticality of
the connection (distance) by comparing it with the linguistic information we have available.
Here the problem starts. The "‘syntactic distance' cannot be calculated straightforwardly but has
to be approximated on a probabilistic basis, e.g. by counting the number of occurrences of the
particular relation in a corpus. If the relation never occurs it is not possible to say anything
sensible about the distance. We might assign a default value to it, but we have no certainty that
it contributes to an optimal solution. This in contrast with the *“traveling salesman™ problem
where a long distance between two points does not exclude the connection from being part of
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the optimal solution.

The temporary acceptance of *odd™ constructions in simulated annealing parsers is motivated
by the fact that during the search of a new solution the current solution is changed by means
of a number of primitive modifications which may lead to intermediary results which are not
well-formed. The acceptance of these results doesn’t depend »en their leading to a solution
which may be evaluated by comparing it with the linguistic information available but on a sto-
chastic function that states the probability with which a "'bad™ result is to be accepted. What is
missing is the observation that language is structured and enables predictions on the basis of
available partial information. So instead of a random walk (or unguided city tour) it is possible
to select those transformations that are most likely to lead to an optimal solution.2

A corpus is very useful to make such predictions and if we intend to use the same corpus for
the evaluation of the solutions we have the certainty that we only generate those solutions that
are verifiable.

Again we may observe a difference with the "traveling salesman' problem. The latter has a
predefined solution space and it is easy to specify primitive transformations that will lead from
one solution to the other. In the case of parsing the solution space is not predefined but has to
be generated on the basis of the linguistic information available. This is either a set of gram-
mar rules or a tree bank based on a parsed corpus.

Souter (1989) discusses how difficult it is to express the grammatical information contained in
a such corpus in a limited number of rules. In fact, thousands of rules are needed, many of
which are only applied once or twice. He observes a close resemblance between a rule-
frequency curve and the more familiar word-frequency curve (Zipf 1936). These findings sup-
port the idea that the usual grammar with a few hundred rules is not very adequate and may
contain *‘gaps’. Also, our experience with the DLT prototype has made clear to us that a rule-
based approach has unacceptable limitations. Still, we are not convinced that it is necessary to
apply statistical optimization all the time when a corpus is used to find the correct analysis.
When dealing with input that is covered by the corpus the latter may be viewed as large set of
rules and a solution will be found in a straightforward, efficient manner. Nevertheless, there is
room for probabilistic methods and in the next section we will discuss some applications.

5. Probabilistic Methods

It should be clear from the discussion in the previous section that probabilism is only useful
when it is applied in a controlled way. For the parse process in a BKB-based DLT system
there are three application areas:

- handling input errors and unusual input;
restricting the number of analyses;
- ordering of alternatives.
We will discuss each of these areas in the following subsections.

5.1. Incorrect and Unusual Input

As far as the parser is concerned incorrect and unusual input relate to input for which no
acceptable solution can be found by straightforward matching with the BKB. The main differ-
ence is that if the input is incorrect the user should be consulted for clarification. If the input is
unusual a solution should preferably be found without asking. The border between the two is

2 In RAP (Atwell et & 1989) the rate of convergence is improved by introducing a bias towards the
transformation of low-valued parts of die tree.
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determined by the fact whether it is possible to find a single analysis that matches with the
BKB.

The ability to process deviant input is a requirement for any robust parser. In RAP and APRIL
this is achieved by always generating a parse tree, even if the result is implausible. For our
application this will not do. Each analysis should match with the BKB, otherwise translation is
not possible. If such an analysis cannot be obtained the parser should try and find out what is
wrong and, if necessary, consult the user - preferably by making some sensible suggestions.

5.1.1. Input Errors

Input errors may be of various types which ask for different approaches. However, a general
principle is that we need to know what the "‘correct” version is in order to say something sensi-
ble about the deviations. This is a severe requirement, but if an error has only local conse-
quences and if there is enough surrounding context it should be possible to determine the cause
of the deviation.

Since error analysis may need a combined effort of different knowledge sources, the BKB
approach seems to be ideal for intelligent error handling. Some types of errors we may con-
sider are:

(1) word form errors;

(2) syntactic deviations;

(3) spelling mistakes.

Errors of type (1) or (2) are relatively easy to detea by comparing the input to the linguistic
information available. An interesting method to deal with such grammatical errors has been
suggested by Chamiak (1983). In a rule-based parser a rule for which one or more atomic tests
(e.g. agreement) fail is not applied. By modifying the tests it is possible to assign a kind of
applicability measure to a rule. Instead of returning simply "yes” or "'no" each test returns a
value that is added to the current value of the applicability measure if the test succeeds and
subtracted if the test fails.

Chamiak’s proposal is also very useful when a grammar is based on a corpus. For instance, it
could be that, considering their word class, two words have a relation but that there is a
mismatch between their features. An example is The boy see the man, in which subject-vert>
agreement is violated. However, by establishing that the boy could be a subject and that see
takes one and that complete feature unification is not possible the parser classifies the error.
The user will then be consulted for clarification, e.g. by being presented two correct alterna-
tives one of which must be chosen;

(@) The boys see the old man
(b) The boy sees the old man

By using corpus information a likelihood value could be assigned to each alternative, which
may be decisive if one alternative turns out to be far more plausible than any of the others, in
which case user consultation is not needed.

There are errors that cannot be described on the basis of features or syntactic structures, but
may be solved by using knowledge on individual words or their relations. In such cases a
corpus-based system is superior. A typical example is a misspelled word, such as foz, which
might be fez otfox. By taking the context into account and comparing it with corpus informa-
tion the selection of one or the other alternative is supported. Compare;

(@ In Morocco men wear a caftan and afoz.
(b) Thefoz hunts at night.
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The context in (a) points to the interpretation fez, whereas the context in (b) points to the
interpretation fox.

5.1.2. Unusual Input

In this section we will show by means of a simple example how use of a corpus supports the
handling of unusual input. We mentioned earlier that in dependency grammar dependencies
range over word classes. There are cases, however, in which a word has a syntactic function
that is not typical for its word class. Nouns, such as week, month and year, may be used as
time adverbials, as in / saw him last week. We don’t want to call week an adverb because it
cannot perform the same functions as an adverb. On the other hand, we don’t want to extend
the functions that are possible for nouns because only a small number of nouns may be used in
the same way as week.

In a rule-based parser categories are used to formulate some general distributional criteria, as it
is not feasible to state for a each word the syntactic functions it may perform. Such informa-
tion is, however, available in a corpus. We may find:

(1) He came last week.
(2) 1 have had a very bad week.
(3) A week is enough to finish this job.

From the available parse trees we derive the distribution of week in terms of governing or
depending relations. Now suppose that we have the input sentence He arrives next month, but
that we don’t have direct evidence that month could perform the same function as week in ().
The parser will then compare the distribution of month and week, in order to establish if they
are used in the same way, i.e. show syntactic synonymity. The more correspondence is found,
the higher the probability that month may indeed be used as a time adverbial.

The method to establish the possibility for month to be used as time adverbial may also be
applied in other cases. The syntactic context of a word may suggest a function or even word
class for which there is no direct evidence. For example, in He computers all the time the noun
computer is used as verb. From the corpus we may deduce that in English ""any noun may be
verbed" and that the use of computer as a verb is acceptable.

5.2. Restricting the Number of Alternatives

An exhaustive parser often generates alternatives without taking aspects of language use into
account. For a system that features user interaction this results in asking the user questions
about alternatives that are counter-intuitive. Consider, for example,

Daily inspections should be performed.

Here daily modifies inspections and although it could modify the verb in an alternative
analysis, this interpretation is only evident when daily is placed at the end of the sentence:

Inspections should be performed daily.

This is an example in which a corpus could be used to limit the number of possible analyses
and, thus, assist the system to behave sensibly in the eyes of the user.

The fact that the corpus sometimes extends and sometimes restricts the number of possible
interpretations indicates that there is an important lexical influence in syntax which causes
words to behave differently from what we expect, considering their word classes. This sug-
gests that a strict separation between syntax and semantics (or at least language use) is not pos-
sible in the case of "realistic’" language. The acceptability of certain distributions cannot be
explained syntactically; there is no reason why only specific nouns may serve as adverbials.
By the same token, there is no reason to exclude some potential analyses other than by

-149- International Parsing Workshop '89



observing that a language user would never interpret them that way.

5.3. Ordering Alternatives

An interact] e translation system will have to deal with alternative analyses of the SL sentence,
even if some of them may be excluded in advance. Particularly in the case of coordination or
post-modifier sequences there may by a number of alternatives that have to be taken into
account. By using the graph representation we introduced in Section 2 it is possible to
represent the alternatives in a compact way. There are various techniques to prevent the com-
binatorial explosion caused by the generation of the alternatives (see e.g. Tomita 1985), but
then we are faced with the problem of evaluating them efficiently. We intend to solve this in
the following way.

We start with the incremental generation of all dependency links that are part of one or more
of the potential analyses, resulting in a DLR of the input. The DLs that constitute the best
analysis according to a given evaluation function are made active, all others are made dor-
mant. If the multiple analyses are caused by structural ambiguity, such as alternative attach-
ment points, then a simple transformation suffices to generate an alternative analysis. In Fig-
ure 3, for example, the activation of DL man-ATR2-with and the deactivation of DL sees-
CIRC-with or vice versa results in an alternative analysis. So, a transformation is performed by
activating/deactivating of a pair of DLs with a common dependent.

The set of DLs with a common dependent forms a choice point. Only DLs that are elements
of choice points will have to be considered in the search for alternatives. To order the alterna-
tives, that is to find the second best given the current optimum, it may be necessary to perform
more than one transformation without knowing what the sequence of transformations is. If
there is a large number of choice points, systematic evaluation of all analyses is not feasible
and a stochastic optimization technique is necessary. In contrast with the parsing of arbitrary
input, such a technique is applicable here since certain requirements are met (Aarts & Korst
1989: 100). The solution space (i.e. a representation of all possible solutions) is given by the
DLR and there is a primitive transformation (the activation/deactivation of a pair of DLs) to
generate an alternative solution. All the same, in very simple cases it is better to evaluate and
compare alternatives directly. In view of this, it is advantageous to have an adaptive optimiza-
tion technique that is able to select the most efficient strategy.

6. Future Work

The result of our explorative research has been that we see many interesting aspects in corpus-
based parsing in connection with probabilistic methods. However, application in a BKB-based
DLT system asks for an approach that is different from related proposals by others. Therefore,
we have planned a number of small-scale implementations in order to find out to what extent
the various ideas and suggestions put forward in this paper are indeed feasible.
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PREDICTIVE NORMAL FORMS FOR
FUNCTION COMPOSITION IN
CATEGORIAL GRAMMARS

Robert E. Wall, University of Texas at Austin
and
Kent Wittenburg, MCC

Abstract: Extensions to Categorial Grammars proposed to account for
nonconstitutent conjunction and long-distance dependencies introduce the problem of
equivalent derivations, an issue we have characterized as spurious ambiguity from the
parsing perspective. In Wittenburg (1987) a proposal was made for compiling Categorial
Grammars into predictive forms in order to solve the spurious ambiguity problem. This
paper investigates formal properties of grammars that use predictive versions of function
composition. Among our results are (1) that grammars with predictive composition are in
general equivalent to the originals if and only if a restriction on predictive rules is applied,
(2) that modulo this restriction, the predictive grammars have indeed eliminated the problem
of spurious ambiguity, and (3) that the issue of equivalence is decidable, i.e.,
for any particular grammar, whether one needs to apply the restriction or not to ensure
equivalence is a decidable question.

1. Introduction. Steedman (1985, 1987), Dowty (1987), Moortgat (1988), Morrill
(1988), and others have proposed that Categorial Grammar, a theory of syntax in which
grammatical categories are viewed as functions, be generalized in order to analyze
“noncanonical’ syntactic constructions such as wh-extraction and nonconstituent
conjunction. A consequence of these augmentations is an explosion of semantically
equivalent derivations admitted by the grammar, a problem we have characterized as
spurious ambiguity from the parsing perspective (Wittenburg 1986). In Wittenburg
(1987), it was suggested that the offending rules of these grammars could take an
alternate predictive form that would eliminate the problem of spurious ambiguity. This
approach, consisting of compiling grammars into forms more suitable for parsing, is
within the tradition of discovering normal forms for phrase structure grammars, and thus
our title. Our approach stands in contrast to those which are attempting to address the
spurious ambiguity problem in Categorial Grammars through the parsing algorithm itself
rather than through the grammar (see Pareschi and Steedman 1987; Moortgat 1987, 1988;
Hepple and Morrill 1989; Koenig 1989; Gardent and Bes 1989). Our approach is more
in line with the tack that Bouma (1989) is taking, although his formulation of categorial
systems differs radically from our own, more traditional set of assumptions.

In Wittenburg (1987) it was conjectured that predictive forms for Categorial Grammars
were equivalent to the source forms and that they did indeed eliminate spurious
ambiguity. Here we report on formal results that have ensued from these original
conjectures. We have found that, on the whole, the conjectures proved valid although we
have discovered that the relationship between predictive normal forms for these grammars
and their source forms are more complicated than was implied by the earlier paper. As
we will show, an additional condition is necessary to ensure equivalence of these
grammars and eliminate spurious ambiguity from the picture.
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2. Source Grammar (G) In this paper we focus on the role of basic function
composition as a way of illustrating the effects of predictive normal forms. For these
proofs then, we assume a form of Categorial Grammar that is considerably more restricted
than those advocated by van Bentham (1986), Steedman (1987), Moortgat (1988), Morrill
(1988), and others. As the work of these authors shows, the simple Categorial Grammars
we assume here are not linguistically adequate. We do not consider the effects of type-
raising nor of generalized conjunction here, nor do we address the issue of generalized
composition. While we intend to address these points in future work, the simplifications
we assume here allow us to uncover an intidal set of properties associated with the use of
predictive combinators.

We assume for our source grammar G the following combinatory rules together with a
lexically assigned system of categories of the usual recursive sort That is, we assume a set
of basic categories, say, {S, NP, N}. If X and Y are categories, so are X/Y and Y\X.
Our notation follows Steedman (1987) and Dowty (1985) in that the domain type appears
consistently to the right of a slash and a range type to the left. Left directionality is then
indicated by a left-leaning slash, and right directionality by aright-leaning slash.
Semantically, we assume that lexical categories introduce functional constants in lambda
terms where the arity of the functions bears an obvious and direct relation to the syntactic

type.1l Here are example lexical entries.

kicks: S\NP/NP John: S/(S\NP) a: NP/N platypus: N
XxXy ((kicks x)y) \f(f john) Xx(a X)) platypus

We assume the following set of combinatory rules:
Forward function application (fa>) Backward function application (fa<)

XY Y > X Y XVY -> X
f a f(a) a f f(a)

Forward function composition (fc>) Backward function composition (fc<)

XIY YIZ -> X/zZ Y\Z X\Y -> X\Z
f g Xx(f(g(x))) = Bfg g f Xx(f(g(x))) = Bfg

Given these semantics, G yields equivalence classes of derivations, where equivalence is

defined modulo (3-conversion of semantic terms.2 The two sources of spurious ambiguity

in G are summarized by the following equivalences generalized over directional variants of
the rules:

1Although we use the term semantics here to describe the relevant issues of derivational ambiguity, it
should be understood that we dealing with a syntactic domain. One might think of our semantics as
defining the syntactic structures yielded by derivations using these grammars.

2This definition of equivalence does not take quantifier scope differences into account. Itis more in
harmony with the predictive normalization techniques to assume that scoping structure is not necessarily
isomorphic to the derivation tree, a position also advocated by Steedman (1987) and Moortgat (1988).

-153- International Parsing Workshop '89



(apply (compose X Y) Z) = (apply X (apply Y 2))

(compose X (compose Y Z)) = (compose (compose X Y) 2Z)

An example illustrating the first of these equivalences follows:1

S S
f(fi(a)) f(9(a))
...................................... fa> IFRTRURRURTTPRURPRRRIN i b
S/NP EVP
A x(f(g(x))) g(a)
........................... fc> ISUTSRUPURRRIRRIN i b
S/IFVP  FVP/NP NP S/IFVP  FVP/NP NP
f g a f g a

Assuming the terminal string ""John Kicks a platypus®, complete derivations would
yield the equivalent derivational terms ((kicks (a platypus))John).

The numbers of these equivalent derivations increase "almost exponentially” in string
length, with the Catalan series (Wittenburg 1986).

3. Predictive Normal Form (G') A predictive normal form version of G replaces each
composition rule with two predictive variants.2

Forward-predictive forward function composition (fpfc>)

XI(YIZ) YIW -> X/(W/Z)
f g Xh(f(Bgh)) = Xh(f(Xx(g(h(x)))))

Backward-predictive forward function composition (bpfc>)

Wiz X\(Y/Z)-> X\(Y /W)
g f Xh(f(Bhg))= Xh(f(Xx(h(g(x)))))

Backward-predictive backwards function composition (bpfc<)

YW X\(Y\Z)-> X\(W\Z)
g f Xh(f(Bgh)) = Xh(f(Xx(g(h(x)))))

Forward-predictive backwards function composition (fpfc<)

XI(Y\Z) W\Z -> X/(Y\W)
f g Xh(f(Bhg))= Xh(f(Xx(h(g(x)))))

~FVP is used as a notational convenience for the category S\NP.

~These rules are derivable in the Lambek calculus (Lambek 1958).
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We will now consider, first, the question of ambiguity in G'. Second, we will take up the
guestion of whether G and G' are equivalent

4. Ambiguity in G' Is there ambiguity in G'? We will consider first cases that are
analogous to the derivations in G known to give rise to spurious ambiguity. Our proof is
by induction on the height of a derivation tree.

In G, spurious ambiguity arises from the use of composition. Consider any maximal
subtree of fc> in a derivation in G, i.e.,

AlE

etc.

A/B B/C C/D DI/E C/D DIE

Since it is part of a derivation of S, it must feed into an instance of fa at the top (either as
functor or as argument) —if it fed into fc, this tree would not be a maximal fc tree.

So subderivations in G with fc> must be of one of the following forms:

Case 1 (G): A Case 2 (G): F

A/B B/C C/D D/IE E

In either case, there is one and only one derivation in G’ for the same category sequence.

Case 1(G"): . Case 2 (G):
A F

A/B  B/C C/D D/E E F/(AIE) A/B  B/C C/D D/E

The cases of fc< are parallel. And since fc> and fc< cannot appear together in a maximal fc
tree because of directionality clash, all cases are accounted for.
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We have shown here that cases of spurious ambiguity in G do not give rise to analogous
spurious ambiguity in G', but of course there may be new sources of ambiguity in G' that
we have not yet considered.

Can there be any cases of derivational ambiguity in G'? That is, can there be derivation
trees of the form

for (possibly complex) categories A, B, C, X, Y, Z, where mothers are derived from
daughters using just the rules of fa and predictive function composition? An exhaustive list
of all the combinatory possibilities reveals just two types:
Type 1: X =Y/Y and Z=YVY\Y
The central category Y can combine first by fa with Y/Y to its left or with Y\Y to its
right, to yield Y in either case. This Y can then combine with the remaining category by fa
to give Y again:

Y fa> Y fa<
/ Y fa< fa> Y \
7 / \ / \ \
YIY Y Y\Y YIY Y Y\Y

But this is a genuine ambiguity, not a spurious one, for the topmost Y can be assigned
different semantic values by the two derivations. If [[YAH] =f, [[Y]] = a and [[Y\Y]] =
g, the left derivation yields f(g(a)) and the right one g(f(a)).

In the more general case, we might have m instances of Y/Y to the left of the Y and n
instances of Y\Y to the right In such a situation the number of syntactically and
semantically distinct derivations would be the (m-i-n)th Catalan number. And since only
fa> and fa< are used, the same ambiguity, if it is present, will be found in both G and in
G’ .

Type Il: A predictive combination rule is involved in the derivation. We will illustrate
with just one case; the others are similar, differing only the directions of the slashes and the
order of constituents.

Consider the derivation tree

E fpfc>

in which each mother node is derived from its daughters by the indicated rule. Since E is
derived by fpfo, D must be of the form XJ(Y/Z) and C of the form Y/W; hence E is of the
form X/(W/Z). Then because D is derived by fa>, it follows that A must be of the form
(X/(Y/Z))/B. That is, the derivation tree is of the form
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XI(W/Z) fpfc
/ \
XI(YIZ) fa>\.

(XI(Y/1z2))IB B Y/W

for (possibly complex) categories B, W, X, Y, Z.

Given the rules of fa and predictive composition, there is a distinct derivation tree
yielding X/(W/Z) from the category sequence (X/(Y/Z))/B, B, YAV; namely,

XI(W/zZ) fa>
fpfc
(X/(YIZ))IB B YAV

Now because (X/(Y/Z))/B becomes X/(W/Z) by fa>, it follows that X/(Y/Z) = X/(W/Z),
and so Y = W. Further, B combines with YAV (i.e., Y/Y) to give B again, so B is required
to be of the form R/(Y/Y), for some R. (Note that R/(Y/Y) could also combine with Y/Y

by fa>, but nothing prevents fpfc> from applying here as well.) In summary, G' allows
the following sort of derivational ambiguity (and others symmetrical to it);

XJ(Y/z) fpfc> XI(YIZ) fa>
/
XI(YIZ) fa>
/ \
XICYIZDIRICYIY)) RICYIY)  YIY (XICYIZ)RICYIY)) RICYIY) YIY

Is this a spurious or a genuine ambiguity? Letting the three leaf constituents have
semantic values f, g, and h, respectively, we obtain >i[f(g)(Bhi)] for the root node of the

left tree and f[Xi[g(Bhi)]] for the root of the tree on the right (Bhi denotes the composition
of functions h and i.) These expressions are certainly non-equivalent for aribitrary

functions f, g, h. 1 At any rate, we might ask if this sort of ambiguity can lead to an
explosion of combinatorial possibilities like the one we were trying to rid ourselves of in
the first place. The worst case would be when there is a sequence of n categories Y/Y
extending rightward, thus:

(XICYIZDIRICYIY))  RICYIYY  YIY YIY. .. YIY

Now R/(Y/Y) can combine with Y/Y's by fpfc, yielding R/(Y/Y) each time, then combine
with the large category on the left by fa> to give X/(Y/Z), which can then combine with any
remaining Y/Y’s by fpfc> to give X/(Y/Z) back again. The lone instance of fa> can thus

JEven so, it appears that if these functions are constrained by the form of the categories to which they are
assigned (e.g., h must be a function from [[Y]]-type things to [[Y]]-type things, etc.), then the two
expression may be equivalent and the ambiguity is a "'spurious' one in the language of G'. At any rate,
this point is moot given succeeding comments that these derivations need to be ruled out for G' to be
equivalent to G.
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occur at any point in the derivation, and if there are n Y/Y’, there will be n+1 distinct
derivation trees. Thus, the number of derivations grows only linearly with the number of
occurrences of Y/Y, not with a Catalan growth rate.

5. Equivalence of G and G' In considering equivalence of these grammars, we first
take up the question of whether L(G) is a subset of L(G") followed by the question of
whether L(G") is a subset of L(G).

5.1. Predictive composition includes composition Proof sketch: We show by induction on
the depth of derivation trees that any derivation in G has a derivation in G'.

Any derivation of category S in G must end in fa> (or fa<). Consider the extension by

depth one of a derivation tree headed by fax We consider 4 (not always mutually

exclusive) cases. (Others include the symmetrical < variants and those that are excluded by
directionality clashes).

S S S S

(1) (2) (3) 4)
Cases (1) and (3) are common to G and G'. Consider case (2). From the defmitions of
fa> and fc>, the categories of the derivation must be as shown on the left, where Y and Z
are any categories.

G’

SIY Y/z SIY Yz Z
In G’ there is a corresponding derivation from the same sequence of categories, as shown
on the right There is also this derivation in G, but G', lacking fc>, has only this one for
this category sequence.

Consider case (4).

G:
SI(YIZ)
fpfc>
SI(X/Z) XIY YIZ SI(X/Z) XIY YIZ
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G' lacks fc>, but fpfc> allows (just) one derivation for this category sequence. The other
cases symmetrical to these follow similarly.

5.2. Doe's LfG) subsume LfG")? Consider the following derivation in G":

S
fa>
\
B/(C/D)

S/(B/(C/D)) BI(E/D) EIC

There is no corresponding derivation in G. (Neither fa> nor fc> is applicable to the given

categories.) Thus, in general, L(G) does not include L(G") and the grammars are not
equivalent

What can be done about the non-equivalence of G' and G?

1. Restrict rule application in G': One may stipulate that the result
category of a predictive rule cannot serve as argument in any other rule. (In
function application X/Y Y => Z we take Y to be the argument category. In
predictive rule X/(Y/Z) YIW => X/(W/Z) we take the Y/W to be the argument
For backwards rules, the argument category is the leftmost term.) In the derivation
just above, the predictive rule fpfc> "feeds” fa> as argument If derivations in G’
are restricted in this way, L(G") is provably included in L(G), and the grammars

are weakly equivalentl

Moreover, the same restriction banishes all cases of Type Il ambiguity noted in
Sec. 4 above. Observe that Type Il ambiguity depends on predictive rules in G’
being able to ""feed” the arguments of further instances of predictive rules. Thus,
G' becomes free of any spurious ambiguity.

This approach might be thought to be reminiscent of Pareschi and Steedman
(1987), where spurious ambiguity is addressed through procedural means in
parsing. Yet our approach here actually need not constrain the parsing algorithm at
all. A node formed by a predictive rule can be flagged, say, by a feature, while
those formed by fa would not be. All combinatory rules could then have a feature
on their ""argument™ categories that would block when encountering this flag. This
rather minimal amount of additional bookkeeping could easily be accommodated in
the parsing strategy of one’s choice: top-down, bottom-up, left-right, breadth-
first, or whatever. Thus, what at first might appear to be a constraint on parsing
would be more accurately described as a modification to the grammar.

2. Grin and bear it: Recasting the grammar in "predictive normal form"
eliminates all cases of spurious ambiguity occasioned by sequences of function
composition, a problem which is known to crop up very frequently in actual

1For lack of space, we do not include the full proof here. It is parallel to the
proof in Sec. 5.1 showing the inclusion of L(G) in L(G’. Any derivation in this
newly restricted G' is provably replacable by a derivation in G.
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applications and to cause serious delays in parsing times. On the other hand
because of the complexity and the rather specific forms of the categories which
give rise to the spurious ambiguities and the *spurious derivations' in the G’
examples above, it seems reasonable to suppose that such cases are unlikely to be
encountered very often in ordinary applications. In any event, as we noted above,
the number of Type Il ambiguous derivations in G’ grows only linearly and not in
Catalan fashion with increasing string length and would not be expected to lead to
intolerable parsing times. The slight profligacy of G’ over G might, therefore,
present no serious practical problem.

For those still inclined to worry, we offer the following reassuring fact: a predictive normal
form grammar can misbehave only if categories of sufficient ""complexity" can be derived
from the given set of categories in the lexicon, e.g., a category of the form S/(X/(W/Z)) in
the case of non-equivalence above and of the form (X/(Y/Z))/(R/(Y/Y)) in the instances of
Type Il ambiguity. But given such a grammar and the lexical categories it is a decidable

guestion whether any categories of the undesired complexity can arise during a derivation.1l
(We wish to thank Jim Barnett for suggestions on how to prove this.) Thus one can tell .

whether a particular G' is equivalent to G and is free from spurious ambiguity.2

6. Conclusion The main result of this paper is that we have shown that Categorial
Grammars with predictive variants of function composition rules can satisfy the
requirements for normalization, namely, that the "compiled” grammars preserve
equivalence and that they do so with the benefit of eliminating the parsing problem
occasioned by spurious ambiguity. We have also enumerated decidability proofs of
interest. Our next task is to explore the predictive normal form strategy with more
expressive, and more nearly adequate, Categorial systems such as those that incorporate
some form of generalized composition and conjunction, type-raising, etc. What we expect
to find is that if predictive normalization techniques are applicable at ail, the predictive
grammars will have a relationship to their source forms that parallels the one we have
uncovered here. In other words, we expect the restriction on the use of predictive rules is
in general necessary for preserving equivalence when using predictive combinators.
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Parsing Spoken Language
Using Combinatory Grammars*

Mark Steedman
Computer and Information Science, U.Penn.

Combinatory Grammars are a generalisation of Categorial Grammars to include operations on function
categories corresponding to the combinators of Combinatory Logic, such as functional composition and
type raising. The introduction of such operations is motivated by the need to provide an explanatory ac-
count of coordination and unbounded dependency. However, the associativity of functional composition
tends to engender an equivalence class of possible derivations for each derivation permitted by more tra-
ditional grammars. While all derivations in each class by definition deliver the same function-argument
relations in their interpretation, the proliferation of structural analyses presents obvious problems for
parsing within this framework and the related approaches based on the Lambek calculus (Moortgat).

This problem has been called the problem of “spurious ambiguity”, (although it will become apparent
that the term is rather misleading). A number of ways of dealing with it have been proposed, including
compiling the grammar into a different form (Wittenburg), “normal form”-based parsing (Hepple and
Morrill, Koenig), and a “lazy” chart parsing technique which directly exploits the properties of the
combinatory rules themselves to provide a unified treatment for “spurious” ambiguities and “genuine”
attachment ambiguities (Pareschi and Steedman).

Recent work suggests that the very free notion of syntactic structure that is engendered by the
theory is identical to the notion of structure that is required by recent theories of phrasal intonation
and prosody. Intonational Structure is notoriously freer than traditional syntactic structure, and is
commonly regarded as conveying distinctions of discourse focus and propositional attitude. It is argued
that the focussed entities, propositions, and abstractions that are associated with a given intonational
structure can be identified with the interpretations that the grammar provides for the non-standard
constituents that it allows under one particular derivation from an equivalence class. The constituent
interpretations corresponding to each possible intonational tune belong to the same equivalence class,
and therefore reduce to the same canonical function argument relations. However, it is apparent that the
ambiguity between derivations in the same equivalence class is not spurious at all, but meaning-bearing.

Of course, not all structural ambiguities are resolved by distinctions of intonation. (An example is
PP attachment ambiguity). It follows that some of the techniques proposed for written parsing must
be implicated as well. However, the theory opens the possibility of unifying phonological and syntactic
processing, as well as simplifying the architecture required for integrating higher-level modules in spoken
language processing.

*1 am grateful to Julia Hirschberg, Aravind Joahi, Mitch Marcu«, Janet Pierrehumbert, and Bonnie Lynn Webber for

comments and advice. The research was supported by DARPA grant no. N0014-85-K0018, ARO grant no. DAAG29-84-
K-0061, and NSF grant no. CER MCS 82-19196.
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Structure and Intonation

Phrasal intonation is notorious for structuring the words of spoken utterances into groups which fre-
quently violate orthodox notions of constituency. For example, the normal prosody for the answer (b)
to the following question (a) imposes the intonational constituency indicated by the brackets (stress is
indicated by capitals):

(1) a I know that brassicas are a good
source of minerals, but what are
LEGumes a good source of?

b. (LEGumes are a good source of)
VITamins.

Such a grouping cuts right across the traditional syntactic structure of the sentence. The presence of
two apparently uncoupled levels of structure in natural language grammar appears to complicate the
path from speech to interpretation unreasonably, and to thereby threaten a number of computational
applications.

Nevertheless, intonational structure is strongly constrained by meaning. Contours imposing brack-
etings like the following are not allowed:

(2) # Three doctors (in ten prefer cats)

Halliday [5] seems to have been the first to identify this phenomenon, which Selkirk [16] has called
the “Sense Unit Condition”, and to observe that this constraint seems to follow from the function of
phrasal intonation, which is to convey distinctions of focus, information, and propositional attitude
towards entities in the discourse. These entities are more diverse than mere nounphrase or propositional
referents, but they do not include such non-concepts as “in ten prefer cats.”

One discourse category that they do include is what E. Prince [15] calls “open propositions”. Open
propositions are most easily understood as being that which is introduced into the discourse context by
a Wh-question. So for example the question in (1), What art. legumes a good source of? introduces an

open proposition which it is most natural to think of as a functional abstraction, which would be written
as follows in the notation of the A-calculus:

(3) \x[good'(source’ x) legumes']

(Primes indicate interpretations whose detailed semantics is of no direct concern here.) When this
function or concept is supplied with an argument vitamins', it reduces to give a proposition, with the
same function argument relations as the canonical sentence:

(4) good'(source: vitamins')legumes'

It is the presence of the above open proposition rather than some other that makes the intonation contour
in (1) felicitous. (I am not claiming that its presence uniquely determines this response, nor that its
explicit mention is necessary for interpreting the response.)

All natural languages include syntactic constructions whose semantics is also reminiscent of functional
abstraction. The most obvious and tractable class are Wh-constructions themselves, in which exactly
the same fragments that can be delineated by a single intonation contour appear as the residue of the
subordinate clause. But another and much more problematic class are the fragments that result from
coordinate constructions. It is striking that the residues of wh-movement and conjunction reduction are
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also subject to something like a “sense unit condition”. For example, strings like “in ten prefer cats”
are not conjoinable:

(5) *Three doctors in ten prefer cats,
and in twenty eat carrots.

While coordinate constructions have constituted another major source of complexity for natural language

understanding by machine, it is tempting to think that this conspiracy between syntax and prosody might
point to a unified notion of structure that is somewhat different from traditional surface constituency.

Combinatory Grammars.

Combinatory Categorial Grammar (CCG, [17]) is an extension of Categorial Grammar (CG). Elements
like verbs are associated with a syntactic “category” which identifies them as functions, and specifies
the type and directionality of their arguments and the type of their result:

(6) eats (S\HP)/HP: eat'

The category can be regarded as encoding the semantic type of their translation. Such functions can
combine with arguments of the appropriate type and position by functional application:

(7) Haxry eats apples
HP (S\IP)/IP  SP

SNIP

S

Because the syntactic functional type is identical to the semantic type, apart from directionality, this
derivation also builds a compositional interpretation, eats'apples'harry', and of course such a “pure”
categorial grammar is context free. Coordination might be included in CG via the following rule, allowing
any constituents of like type, including functions, to form a single constituent of the same type:

8 X conj X = X

9 | cooked and ate a frog
HP (SNMP)/IP conj (S\SP)/IP  SP

(SNIP)/IP

(The rest of the derivation is omitted, being the same as in (7).) In order to allow coordination of
contiguous strings that do not constitute constituents, CCG generalises the grammar to allow certain
operations on functions related to Curry’s combinators [4]. For example, functions may compose, as well
as apply, under the following rule

(10) Forward Composition:
XY :F YIZ :G XI1Z : Az F(Gx)
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The most important single property of combinatory rules like this is that they have am invariant seman-
tics. This one composes the interpretations of the functions that it applies to, as is apparent from the
right hand side of the rule.l Thus sentences like | cooked, and might eat, the beans can be accepted,
via the following composition of two verbs (indexed as B, following Curry’s nomenclature) to yield a
composite of the same category as a transitive verb. Crucially, composition also yields the appropriate
interpretation, assuming that a semantics is also provided for the coordination rule.

(11) cooked and sight eat

(S\NP)/NP conj (S\NP)/VP VP/HP

(S\NP)/HP

(S\WP)/INP

Combinatory grammars also include type-raising rules, which turn arguments into functions over functions-
over-such-arguments. These rules allow arguments to compose, and thereby take part in coordinations
like 1 cooked, and you ate, the legumes. They too have an invariant compositional semantics which
ensures that the result has an appropriate interpretation. For example, the following rule allows the
conjuncts to form as below (again, the remainder of the derivation is omitted):

(12) Subject Type-raising:
NP :y = S/{S\NP):AF Fy

(13) | cookad and you at*
wP (S\IP)/IP conj IP (S\MIP)/IP
-------------- ST E——
S/(S\IP) 3/(3\IP)
>B >B
3/1P 3/1P
3/1P

Intonation in a CCG.

Inspection of the above examples shows that Combinatory grammars embody an unusual view of surface
structure, according to which strings like Betty might eat are constituents. In fact, according to this
view, surface structure is a much more ambiguous affair than is generally realised, for they must also
be possible constituents of non-coordinate sentences like Betty might eat the mushrooms, as well. (See
[11] and [19] for a discussion of the obvious problems that this fact engenders for parsing written text.)
An entirely unconstrained combinatory grammar would in fact allow more or less any bracketing on a
sentence. However, the actual grammars we write for configurational languages like English are heavily
constrained by local conditions. (An example would be a condition on the composition rule that is
tacitly assumed here, forbidding the variable Y in the composition rule to be instantiated as NP, thus
excluding constituents like *[eat the]yp/").

The claim of the present paper is simply that particular surface structures that are induced by
the specific combinatory grammar that was introduced to explain coordination in English are identical
to the intonational structures that are required to specify the possible intonation contours for those

1 The rule uses the notation of the A-calculus in the semantics, for clarity. This should not obecure the fact that it is
functional composition itself that is the primitive, not the A operator.
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same sentences of English.2 More specifically, the claim is that that in spoken utterance, intonation
largely determines which of the many possible bracketings permitted by the combinatory syntax of
English is intended, and that the interpretations of the constituents are related to distinctions of focus
among the concepts and open propositions that the speaker has in mind. Thus, whatever problems for
parsing written text arise from the profusion of equivalent alternative surface structures engendered by
this theory, these “spurious” ambiguities seem to be to a great extent resolved by prosody in spoken
language. The theory therefore offers the possibility that phonology and parsing can be merged into a
single unitary process.

The proof of this claim lies in showing that the rules of combinatory grammar can be annotated
with intonation contour schemata, which limit their application in spoken discourse, and to showing
that the major constituents of intonated utterances like (I)b, under the analyses that these rules permit,
correspond to the focus structure of the context to which they are appropriate, such as (l)a.

I shall use a notation which is based on the theory of Pierrehumbert [12], as modified in more recent
work by Selkirk [16], Beckman and Pierrehumbert [2], [13], and Pierrehumbert and Hirschberg [14], |

have tried as far as possible to take my examples and the associated intonational annotations from those
authors.

I follow Pierrehumbert in assuming two abstract pitch levels, and three types of tones, as follows.
There are two phrasal tones, written H and L, denoting high or low “simple” tones — that is, level
functions of pitch against time. There are also two boundary tones, written H%and L denoting an
intonational phrase-final rise or fall. Of Pierrhumberts six pitch accent tones, | shall only be concerned
with two, the H* accent and the L+H*. The phonetic or acoustic realisation of pitch accents is a complex
matter. Roughly speaking, the L+H* pitch accent that is extensively discussed below in the context of
the L+H* LH% melody generally appeaxs as a maximum which is preceded by a distinctive low level, and
peaks later than the corresponding H* pitch accent when the same sequence is spoken with the H* L
melody that goes with “new” information, and which is the other melody considered below.

In the more recent versions of the theory, Pierrehumbert and her colleagues distinguish two levels
of prosodic phrase that include a pitch accent tone. They are the intonational phrase proper, and
the “intermediate phrase”. Both end in a phrasal tone, but only intonational phrases have additional
boundary tones H/, and L/. Intermediate phrases are bounded on the right by their phrasal tone alone,
and do not appear to be characterised in FO by the same kind of final rise or fall that is characteristic
of true intonational phrases. The distinction does not play an active role in the present account, but
I shall follow the more recent notation of prosodic phrase boundaries in the examples, without further
comment on the distinction.

There may also be parts of prosodic phrases where the fundamental frequency is merely interpolated
between tones, notably the region between pitch accent and phrasal tone, and the region before a pitch
accent. In Pierrehumbert’s notation, such substrings bear no indication of abstract tone whatsoever.

A crucial feature of this theory for present purposes is that the position and shape of a given pitch
accent in a prosodic phrase, and of its phrase accent and the associated right-hand boundary, are
essentially invariant. If the constituent is very short - say, a monosyllabic nounphrase - then the whole
intonational contour may be squeezed onto that one syllable. If the constituent is longer, then the pitch
accent will appear at its left edge, the phrasal tone and boundary tone if any will appear at its right edge,
and the intervening pitch contour will merely be interpolated. In this way, the tune can be spread over

longer or shorter strings, in order to mark the corresponding constituents for the particular distinction
of focus and propositional attitude that the melody denotes.

Consider for example the prosody of the sentence Fred ate the beans in the following pair of discourse

2 There is a precedent for the claim that prosodic structure can be identified with the structures arising from the inclusion
of associative operations in grammar in the work of Moortgat [9] and Oehrle [10], and in [?]
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settings, which are adapted from Jackendoff [7, pp. 260]:

(14) Q: Well, what about the BEAnNs?
Who ate THEM?
A: FEED ate the BEA-ns.
H*L L+H*LH'/,

(15) Q: Well, what about FRED?
What did HE eat?
A: FRED ate the BEANns.
L+H* LHV. H* LL7.

In these contexts, the main stressed syllables on both Fred and the beans receive a pitch accent, but a
different one. In (14), the pitch accent contour on Fred is H*, while that on beans is L+H*. (I base these
annotations on Pierrehumbert and Hirschberg’s [14, ex. 33] discussion of this example.)

In the second example (15) above, the pitch accents are reversed: this time Fredis L+H* and beans is
The assignment of these tones seem to reflect the fact that (as Pierrehumbert and Hirschberg point
out) H* is used to mark information that the speaker believes to be new to the hearer. In contrast, L+H*
seems to be used to mark information which the current speaker knows to be given to the hearer (because
the current hearer asked the original question), but which constitutes a novel topic of conversation for
the speaker, standing in a contrastive relation to some other given information, constituting the previous
topic. (If the information were merely given, it would receive NO tone in Pierrehumbert’s terms — or
be left out altogether.) Thus in (15), the L+H* LHY, phrase including this accent is spread across the
phrase Fred ate.s Similarly, in (14), the same tune is confined to the object of the open proposition ate

the beans, because the intonation of the original question indicates that eating beans as opposed to some
other comestible is the new topic.

H*.

Syntax-driven Prosody.

The L+H* LHY. intonational melody in example (15) belongs to a phrase Fred ate ... which corresponds
under the combinatory theory of grammar to a grammatical constituent, complete with a translation
equivalent to the open proposition \x[(ate' x) fred!). The combinatory theory thus offers a way to
assign contours like L+H* LH'. to such novel constituents, entirely under the control of independently
motivated rules of grammar. For example, the rule of forward composition should be made subject to a
restriction which is in the terms of Pierrehumbert’s theory an extremely natural one, amounting to the
straightforward injunction “Don’t apply this rule across an intonational phrase or intermediate phrase
boundary”. The modified rule allows the following derivation for Fred ate .
semantic interpretation is included:4

.., in which for once the

3An alternative prosody, in which the contrastive tune ia confined to Fred, seems equally coherent, and may be the
one intended by Jackendoff. | believe that this alternative is informationally distinct, and arises from an ambiguity as to
whether the topic of this discourse is Fred or What Fred ate. It is accepted by the present rules.

4Again primes indicate interpretations whose details are of no concern here. It will be apparent from the derivations

that the assumed semantic representation is at a level prior to the explicit representation of matters related to quantifier
scope.
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(16) Fred

HP:fred’ (S\NP)/HP:ate '
L+H* LH7.
>T
S/(S\HP):) P P lIred’
L+H*

S/HP: Xx (ate’ X) Ired’
L+H*LHY,

The options incorporated in the tonal annotations of the rule allow the L+H* LHJ, tune to spread across
any sequence that can be composed by repeated applications of the rule. For example, if the reply to the
same question What did Fred eat? is FRED must have eaten the BEANS, then the tune will typically
be spread over Fred must have eaten as in the following derivation, in which much of the syntactic
and semantic detail has been omitted in the interests of brevity:

(17) Fred mist have eaten

HP (SNMP)/VP VP/VPen VPen/HP

Lt Lift
—————— >T
L+H*
L+H*
L+H*
______________________ =B
L+H*LH%

On the assumption that forward functional application bears a complementary restriction, and can
combine any intonation contours to yield their concatenation, except when the leftmost is a bare phrasal
tone or phrasal tone and boundary tone, the derivation of (15) can be completed as follows:

(18) Fred ate the beans
IP:fred’ (S\IP)/IP:ate* IP/l: the’ l:bean*’
L+H* LHX H* LLX
——————————— T e —————
S/(S\IP): IP:the’ bean*’
>P P fred* H* LLX
L+H*

S/IP:>X (ate* 1) fred*
L+ge LSI

3: ate' (the* beans*) fred*
L+1* LIX H* LLX

The division into contrastive/given open proposition versus new information is appropriate, and no other
derivation is allowed, given this intonation contour. Repeated application of the composition rule, as in
(17), would allow the L+H* LH¥, contour to spread further, as in (FRED must have eaten) the BEANS.

In contrast, the intonation contour on (14) will not permit the annotated composition rule to apply,
because Fredend with a L boundary intonation, so the bracketing imposed in (15) (and the formation of
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the corresponding open proposition) is simply not allowed. However, since forward functional application
is unrestricted, the following derivation of (14) is allowed. Again, the derivation divides the sentence
into new and given information consistent with the context given in the example:

(19) Fr«d th« b«an»
IP:fr«d» (3\IP)/IP:mt«» [P/l:th«> I:b«*n*’
H* L L+H* LHX
S/ICSMP): IP:th« ’ b«an*>
>P P fr«d> L+H* LHX
H* L
>
S\IP:«at’ (th«* b«&na’)
L+H* LHX
3: b«ana’) frad’
H* L L+H* LHX

The effect of the rules is to annotate the entire predicate as an L+H* LHY. It is emphasised that this
does not mean that the tone is spread, but that the whole constituent is marked for the corresponding
discourse function — roughly, as contrastive. The finer grain information that it is the object that is
contrasted, while the verb is given, resides in the tree itself. Similarly, the fact that boundary tones are
associated with words at the lowest level of the derivation does not mean that they are part of the word,
nor that the word is the entity that they are a boundary of It is prosodic phrases that they bound,
and these also are defined by the tree. No other analysis is allowed for (19). Other cases considered by
Jackendoff are considered in a more extended companion to the present paper [19], and are shown to
yield only contextually appropriate interpretations.

Conclusions.

The problem of so-called “spurious” ambiguity, or multiple semantically equivalent derivations, now
appears in a quite different light. While the semantic properties of the rules (notably the associativity
of functional composition that engenders the problem in the first place) do indeed guarantee that these
analyses are semantically equivalent at the level of Argument Structure, they are nonetheless meaning-
bearing at the level of Information Structure. To call them “spurious” is rather misleading. What is
more, while there are usually a great many different analyses for any given sequence of words, intonation
contour often limits or even eliminates the non-determinism arising from this source.

The significance of eliminating non-determinism in this way should not be under-estimated. Similar
intonational markers are involved in coordinate sentences, like the following ‘right-node-raised” example:

(20) I will, and you won’t, eat mushrooms

In such sentences the local ambiguity between composing won't and eat and applying the latter to
its argument first is a genuine local ambiguity, equivalent to a local attachment ambiguity in a more
traditional grammar, for only one of the alternatives will lead to a parse at all. And the correct

alternative is the one that is selected by the restriction against forward composition across prosodic
phrase boundaries.

However, the extent to which intonation alone renders parsing deterministic should also not be over-
stated. There still axe sources of non-determinism in the grammar, which must be coped with somehow.

Most obviously, there are sources common to all natural language grammars, such as the well-known
PP-attachment ambiguities in the following example:
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(21) Put.the block in the box on the table.

While intonation can distinguish the two analyses, they do not seem to be necessarily so distinguished.
There is also a residuum of so-called spurious ambiguity, because function categories bearing no tone
are free to forward compose and to apply.

It is important to observe that this ambiguity is widespread, and that it is a true ambiguity in
discourse interpretation. Consider yet another version of the example with which the paper began,
uttered with only an H* LL% tune on the last word:

(22)
Legumes are a good source of Vitamins.
H* LL%

Such an intonation contour is compatible with all the analyses that the unannotated CCG would allow.
However, such an utterance is also compatible with a large number of contextual open propositions.
For example, it is a reasonable response to the question What can you tell me about legumes? But it
is similarly reasonable as an answer to What are legumes?, or to What are legumes a good source of?
The ambiguity of intonation with respect to such distinctions is well-known , and it would simply be
incorrect not to include it . (See discussion in [1] and [8] for alternative proposals for ways of resolving
it that are compatible with the present proposal.)

According to the present theory, the pathway between phonological form and interpretation is much
simpler than has been thought up till now. Phonological Form maps directly onto Surface Structure, via
rules of combinatory grammar annotated with abstract intonation contours. Surface Structure is identical
to intonational structure, and maps directly onto Focus Structure, in which focussed and backgrounded
entities and open propositions are represented by functional abstractions and arguments. Such structures
reduce to yield canonical Function-Argument Structures. The proposal thus represents a return to the
architecture proposed by Chomsky [3] and Jackendoff [7]. The difference is that the concept of surface
structure has changed. It now really is only surface structure, supplemented by “annotations” which do

nothing more than indicate the information structural status and intonational tune of constituents at
that level.

While many problems remain, both in parsing written text with grammars that include associative
operations, and at the signal-processing end, the benefits for automatic spoken language understanding
are likely to be significant. Most obviously, where in the past parsing and phonological processing have
delivered conflicting structural analyses, and have had to be pursued independently, they now are seen
to be in concert. Processors can therefore be devised which use both sources of information at once, thus
simplifying both problems. Furthermore, a syntactic analysis that is so closely related to the structure
of the signal should be easier to use to “filter” the ambiguities arising from lexical recognition. What
is likely to be more important in the long run, however, is that the constituents that arise under this
analysis are also semantically interpreted. The paper has argued that these interpretations are directly
related to the concepts, referents and themes that have been established in the context of discourse,
say as the result of a question. The shortening and simplification of the path from speech to these
higher levels of analysis offers the possibility of using those probably more effective resources to filter
the proliferation of low level analyses as well.
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1 Introduction

In recent papers [14,15,3] we have shown that Combinatory Categorial Grammars (CCG), Head Gram-
mars (HG), Linear Indexed Grammars (LIG), and Tree Adjoining Grammars (TAG) are weakly equiv-
alent; i.e., they generate the same class of string languages. Although it is known that there are
polynomial-time recognition algorithms for HG and TAG [7,11], there are no known polynomial-time
recognition algorithms that work directly with CCG or LIG. In this paper we present polynomial-
time recognition algorithms for CCG and LIG that resemble the CKY algorithm for Context-Free
Grammars (CFG) [4,16].

The tree sets derived by a CFG can be recognized by finite state tree automata [10]1. This
is reflected in CFL bottom-up recognition algorithms such as the CKY algorithm. Intermediate
configurations of the recognizer can be encoded by the states of these finite state automata (the
nonterminal symbols of the grammar). The similarity of TAG, CCG, and LIG can be seen from the
fact that the tree sets derived by these formalisms can be recognized by pushdown (rather than finite
state) based tree automata. We give recognition algorithms for these formalisms by extending the
CKY algorithm so that intermediate configurations are encoded using stacks. In [6] a chart parser for
CCG is given where copies of stacks (derived categories) are stored explicitly in each chart entry. In
Section 4 we show that storing stacks in this way leads to exponential run-time. In the algorithm we
present here the stack is encoded by storing its top element together with information about where
the remainder of the stack can be found. Thus, we avoid the need for multiple copies of parts of the
same stack through the sharing of common substacks. This reduces the number of possible elements
in each entry in the chart and results in a polynomial time algorithm since the time complexity is
related to the number of elements in each chart entry.

It is not necessary to derive separate algorithms for CCG, LIG, and TAG. In proving that these
formalisms are equivalent, we developed constructions that map grammars between the different for-
malisms. We can make use of these constructions to adapt an algorithm for one formalism into an
algorithm for another. First we present a discussion of the recognition algorithm for LIG in Section 22.

1A bottom-up finite state tree automaton reads a tree bottom-up. The state that the automaton associates with each
node that it visits will depend on the states associated with the children of the node.

2 We consider LIG that correspond to the Chomsky normal form for CFG although we do not prove that all LIG have

an equivalent grammar in this form. A discussion of the recognition algorithm for LIG in this form is sufficient to enable
us to adapt it to give a recognition algorithm for CCG, which is the primary purpose of this paper.
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We present the LIG recognition algorithm first since it appeares to be the clearest example involving
the use of the notion of stacks in derivations. In Section 3 we give an informal description of how to
map a CCG to an equivalent LIG. Based on this relationship we adapt the recognition algorithm for
LIG to one for CCG.

2 Linear Indexed Grammars

An Indexed Grammar [I] can be viewed as a CFG in which each nonterminal is associated with a
stack of symbols. In addition to rewriting nonterminals, productions can have the effect of pushing
or popping symbols on top of the stacks that are associated with each nonterminal. A LIG [2] is an
Indexed Grammar in which the stack associated with the nonterminal of the LHS of each production
can only be associated with one of the occurrences of nonterminals on the RHS of the production.
Empty stacks are associated with other occurrences of nonterminals on the RHS of the production. We
write A[--] (or A[--7]) to denote the nonterminal A associated with an arbitrary stack (or an arbitrary
stack whose top symbol is 7). A nonterminal A with an empty stack is written A[].

Definition 2.1 A LIG, G, is denoted by (V>/, Vj, V> 5, P) where

V'v is a finite set of nonterminals,

Vj is a finite set of terminals,

Vj is a finite set of indices (stack symbols),

S 6 Vn is the start symbol, and

P is a finite set of productions, having one of the following forms.

JtN - ALl...A-["]...AnQ  AH-.41[]...A[-7]...A.[] A[l —*a

where A, A\,..., An 6 Vn and fIG {e}UV].

The relation => is defined as follows where a € Vf and Ti,T 2 are strings of nonterminals with
G

associated stacks.
e If A[--7]1— AIi[]...At["]...An[] € P then

TiA[q7]T2 => TI1AL[]...A,[a]...A,[]T2

e IfA[]~ AL[]...Aj[-i]...A.[] € P then

T,A[a]T2 => T1Ai[]...A,[a7]...An[] T2

In each of these two cases we say that A, is the distinguished child of A in the derivation.

o If A[] aes P then
r lA[}T: = >riar:

The language generated by a LIG, G, L(G) = {w |S[] == w }.
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2.1 Recognition of LIG

In considering the recognition of LIG, we assume that the underlying CFG is in Chomsky Normal
Form; i.e., either two nonterminals (with their stacks) or a single terminal can appear on the RHS of a
rule. Although we have not confirmed whether this yields a normal form, a recognition algorithm for
LIG in this form of LIG is sufficient to enable us to develop a recognition algorithm for CCG. We use
an array L consisting of n2 elements where the string to be recognized is ax.. .an. In the case of the
CKY algorithm for CFG recognition each array element Lt contains that subset of the nonterminal
symbols that can derive the substring ax.. .a;. In our algorithm the elements stored in Lij will encode
those nonterminals and associated stacks that can derive the string a, .. .a".

In order to obtain a polynomial algorithm we must encode the stacks efficiently. With each
nonterminal we store only the top of its associated stack and an indication of the element in L
where the next part of the stack can be found. This is achieved by storing sets of tuples of the form
((4,7,A"7",p, q in the array elements. Roughly speaking, a tuple (A, 7,A', 7', p, ) is stored in | tiJ
when A[q7/7] => a,...aj and A/[g;7/] — ap..,aq where g is a string of stack symbols and A is
the unique distinguished descendent of A in the derivation of a,.. .a;.

Note that tuples, as defined above, assume the presence of at least two stack symbols. We must
also consider two other cases in which a nonterminal is associated with either a stack of a single
element, or with the empty stack. Suppose that A is associated with a stack containing only the single
symbol 7. This case will be represented using tuples of the form (A, 7,A"',p, 9 (w ” indicates that
an empty stack is associated with A'). When an empty stack is associated with A we will use the tuple
(A, -, -). In discussing the general case for tuples we will use the form (A,7,A", 7", p, 9 with
the understanding that: A' G VN or 7,7" £ VI or and p, q are integer between 1 and n or
The algorithm can be understood by verifying that at each step the following invariant holds.

Proposition 2.1 (A, 7,A, 7', p,q) £ LXJif and only if one of the following holds.
If v ~ — then A[7] => a,...ap_iA[}ag+\ ... a; and A'[ol~i\ =—> ap...aq for some a E

VI where A' is a distinguished descendent of A. Note that this implies that for
ano e VI, A[3] ak...ap_iA/[/3la,+1...aj. Thus, for @3 = 07', A[aYf] =">

a,-...ap_i A'[a7/]la,+i .. .aj which implies A[a7;7] Z¥=a,.. .aj.
If 77= - ~ A' then A[7] ==> a,-.. .a3 and A'[] ap.. .ag.
If A' = - then A[] == at.. .gj.

Wre now describe how each entry Lij is filled. As the algorithm proceeds, the gap between i and j
increases until it spans the entire input. The input, <zi... an, is accepted if (S, ,— E L\ n.
New entries are added to the array elements according to the productions of the grammar as follows.

1. The production A[»7] -+ Ai[]AZ2[-] is used while filling the array element Lij as follows. For
every k where i < k < j, check the previously completed array elements Litk and Lk+\j for
(Ai,*-,and some (A2,72,A3,73,P, <), respectively. If these entries are found add
(A, 7,A2,722k + 1,j) to Lij. If72 =73 =23 = P=q= ~ we Place (A,7,A2,-,fc+ 1,j) in
Lij. From these entries in Liyk and Ifc+i.j we know by Proposition 2.1 that Ax[] = at...at
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and 42[a] ==> ak+i .. .a; for some a E V}. Thus, Afcry] ==> a, . *a:. The production A™y] —
Ai[*-]A2[] is handled similarly.

2. Suppose A-*] —= Ai[].42[--7] is a production. When filling LtyJ we must check whether the
tuple ( A i , i s in Lx and (A2,7,A3,73,p,q) is in Lk+lyJ for some k between i
and j. If we do find these tuples then we check in Lwq for some (A3,73,A4,74,r,s). In this
case we add (A, 73,A4,74,r,s) to L{j. If 73 = - then the stack associated with A3 is empty,
74= As = r = s = — and we add the tuple (A, r,5) to L{yl. The above steps can be
related to Proposition 2.1 as follows.

(@) If 73 5 - then for some a € V/, A4[q74) ="> ar .. .a3 a subderivation of 43(0:7473] =
av...aq a subderivation of A2[c*74737] —> a*+i...aj. Combining this with Ai[]] =
a,...at we have A[q7473] —>a, ... a;.

(b) If 73 = —then A3[] av...aqis a subderivation of A2[f] => "k+1-..aj. Combining
with Ai[] ==> a,-.. .a*, we get A[] ==><Zj...aj.

Productions of the form A[-*] —AI[-*7]A2[] are handled similarly.

3. Suppose A[] — a is a production. This is used by the algorithm in the initialization of the array
L. If the terminal symbol a is the same as the ith symbol in the input string, i.e., a = a,, then
we include (A, - in the array element Z,tl.

2.2 Complete Algorithm
Fori:=1to n do

Li.i := {(1, IA[]-» a,}
Fori:=nto 1 do

Forj :=jto n do

Fork :=itoj —1do

Step la. For each production A(--7] — Ai[]A2[]
if (Ai, -, ,-) € Li'k and (A2,72,A3,73,p, q) € Lk+i,j
then Lij := Lij u {(A,7,A2,72,k+ 1,;) }

Step Ib. For each production A[--7] —>Ai[--]A2[]
if (Ai, 71,A3,73,p,q) € Li,!, and (A2—— ——) € Lk+ij
then Lij I—Lij U {(A,7>Ai,7i>*i")}

Step 2a. For each production A[-]—*Ai[]A2[--7]
if (A2,7iA3,73,p,q) € £%+i,;> (A3,73,A4,74,r,5) € £PI?,and ( A i € L%k
then Lij .= Lij U {(A,73>A4,74> }

Slep 2b. For each production Al--] —%Ai[--7]A2][]
if (Ai, 7,A3,73,p,?) 6 (A3,73,A4,74,r,5) G Ip,}, and (A2) — -, =) 6 EX+1;
then Lij := Lij u {(A, 73,A4,74,r,5) }
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2.3 Complexity of the Algorithm

Any array element, say Zjj, is a set of tuples of the form (A, 7,A', 7', p,q) where p and q are either
integers between i and j, ori =j = The number of possible values for A, A', 7, and 7' are each
bounded by a constant. Thus the number of tuples in LX) is at most 0((j —t)2). For a fixed value
of i,j,k, steps la and Ib will attempt to place at most 0((j - i)2) tuples in L{j. Before adding my
tuple to Lij we first check whether the tuple is already present in that array element. This can be
done in constant time on a RAM by assuming that each array element LXJ is itself an (i -f 1) x (j 4-1)
array. A tuple of the form (A, 7,A', 7', p,q) will be in the (p,q)th element of LX] and a tuple of the
form (A, —— — —-) will be in the (i + I,j + I)th element of Lxj. Thus these steps take at most
0({j ~ 02) time- Similarly, for a fixed value of i, j, and fc, steps 2a and 2b can add at most 0((j - i)2)
distinct tuples. However, in these steps 0((j —i)4) not necessarily distinct tuples may be considered.
There are 0((j —i)4) such tuples because the integers p,q,r,s can take values in the range between i
and j. Thus steps 2a and 2b may each take 0((j —i)4) time for a fixed value of i,j,k. Since we have
three initial loops for i,j, and k, the time complexity of the algorithm is O (n7) where the length of
the input is n.

3 Combinatory Categorial Grammars

CCG [9,8] is an extension of Classical Categorial Grammars in which both function composition
and function application are allowed. In addition, forward and backward slashes are used to place
conditions concerning the relative ordering of adjacent categories that are to be combined.

Definition 3.1 A CCG, G, is denoted by (Vj, V)v,5,/, R) where

Vj is a finite set of terminals (lexical items),

V)v is a finite set of nonterminals (atomic categories),

5 is a distinguished member of Vjyv,

/ is a function that maps elements of Vj u {€} to finite subsets of C(Vj\), the set of
categories,3 where C(V}v) is the smallest set such that Vjv C C(V”) and ci,c2 G C(Vjv)
implies (ci/c2), (ci\c2) € C(VN),

R is a finite set of combinatory rules.

There are four types of combinatory rules involving variables x,y,z,z\,... over C(V)y) and where
It € {\>/}4-

1. forward application: > ix/ly) V~%*x

2. backward application: y (x\y) -+ X

For these rules we say that (x/y) is the primary category and y the secondary category.

3. generalized forward composition for some fixed n > 1:

(x/y) (o (yII*1)|2 eoe|»*n) “m (<ee(*[I*1)]2 *<In7n)

3Note that / can assign categories to the empty string, e, though, to our knowledge, thisfeature has not been employed
in the linguistic applications of CCG.

4There is no type-raising rule although its effect can be achieved to a limited extent since / can assign type-raised
categories to lexical items.
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4. generalized backward composition for some n > 1.

(o -*2/|1-1)]2 eo-In*n)  (Ay) — (s . (x]i*i)]|2°*e-In*n)
For these rules (x/y) is the primary category and (.. )I2... |n*n) the secondary category.

Restrictions can be associated with the use of each combinatory rule in R. These restrictions take the
form of constraints on the instantiations of variables in the rules.

1. The leftmost nonterminal (target category) of the primary category can be restricted to be in
a given subset of Vjv.

2. The category to which y is instantiated can be restricted to be in a given finite subset of C (V\).

Derivations in a CCG, G = (Vj, Wy, 5,/, R), involve the use of the combinatory rules in R. Let =>
G
be defined as follows, where Ti, T2 € [C{VN)u VT)mand c,ci,c2€ C(VN).

e If R contains a combinatory rule that has CiC2 — ¢ as an instance then

TicT2 ==> TiGic2T2

« Ifc6/(a) for somea 6 Vt U{c}and c £ C(V)v) then

TicT?2 :G> TiaT?2

The string languages generated by a CCG, G, L(G) = {it; |5 wilw € Vf }
In the present discussion of CCG recognition we make the following assumptions concerning the
form of the grammar.

1. In order to simplify our presentation we assume that the categories are parenthesis-free. The
algorithm that we present can be adapted in a straightforward way to handle parenthesized cate-
gories and this more general algorithm is given in [:2].

2. We will assume that the function / does not assign categories to the empty string. This is
consistent with the linguistic use of CCG although we have not shown that this is a normal form
for CCG.

3.1 The LIG/CCG Relationship

In this section, we describe the relationship between LIG and CCG by discussing how we can construct
from any CCG a weakly equivalent LIG. The weak equivalence of LIG and CCG was established
in [15]. The purpose of this section is to show how a CCG recognition algorithm can be derived from
the algorithm given above for LIG.

Givena CCG, G = (Vj, V\r,5,/, R), we construct an equivalent LIG, G' = (V]j, V)v, VjvU{/,\}, S,P)
as follows. Each category in ¢ 6 C(V]v) can be represented in G' as a nonterminal and associated
stack Af[a] where A is the target category of c and a € ({/»\}V)v)* suck Aa = c¢. Note that we
are assuming that categories are parenthesis-free.
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We begin by considering the function, /, which assigns categories to each element of Vj- Suppose
that ¢ E f(a) where ¢ G C(Vh) and a G Vt- We should include the production A[a] —* a where
c - Aa in P. For each combinatory rule in R we may include a number of productions in P. From the
definition of CCG it follows that the length of all secondary categories in the rules R is bounded by
some constant. Therefore there are a finite number of possible ground instantiations of the secondary
category in each rule. Thus we can remove variables in secondary categories by expanding the number
of rules in R. The rules that result will involve a secondary category ¢ G C(Vjv) and a primary category
of the form x/A or x\A where A 6 Wv is the target category of c. The rule may also place a restriction
on the value of the target category of x. In the case of the primary categories of the combinatory
rules there is no bound on their length and we cannot remove the variable that will be bound to the
unbounded part of the category (the variable x above). Therefore the rules contain a single variable
and are linear with respect to this variable; i.e., it appears once on either side of the rule.

It is straightforward to convert combinatory rules in this form into corresponding LIG productions.
We illustrate how this can be done with an example. Suppose we have the following combinatory rule.

x/A A/B\C\B - x/B\C\B

where the target category of x must be either C or D. This is converted into the following two
productions in P.

C[-/B\C\B] - C[-M] A[/B\C\B] D[-/B\C\B] - D[-/A] A{/B\C\B]

Notice that these LIG productions do not correspond precisely to our earlier definition. We are
pushing and popping more that one symbol on the stack and we have not associated empty stacks with
all but one of the RHS nonterminals. Although this clearly does not affect weak generative power, as
we will see in the next section, it will require a modification to the recognition algorithm given earlier
for LIG.

3.2 Recognition of CCG

In order to produce a CCG recognition algorithm we extend the LIG recognition algorithm given in
Section 2.2. From the previous section it should be clear that the CCG and LIG algorithms will be
very similar. Therefore we do not present a detailed description of the CCG algorithm. We use an
array, C, with n2elements, CtJ for 1 < t <j < n. The tuples in the array will have a slightly different
form from those of the LIG algorithm. This is because each derivation step may depend on more than
one symbol of the category (stack). The number of such symbols is bounded by the grammar and is
equal to the number of symbols in the longest secondary category. We define this bound for a CCG,
G = (Vj, V}v,5,/, R) as follows. Let 1(c) = k if c € ({/A}*jv)fc Let 5(G) be the maximum 1(c) of
any category ¢ G C(V}v) such that c can be the secondary category of a combinatory rule in R.

As in the LIG algorithm we do not store the entire category explicitly. However, rather than storing
only the top symbol locally, as in the LIG algorithm, we store some bounded number of symbols locally
together with a indication of where in C the remainder of the category can be found. This modification
is needed since at each step in the recognition algorithm we may have to examine the top s(G) symbols
of a category. Without this extension we would be required to trace through c(G) entries in C in order
to examine the top c(G) symbols of a category and the algorithm’s time complexity would increase.
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An entry in C will be a six-tuple of the form (A,a,/3,7,p, q) where A EV/y,a,BE ({/IAKvVV
and one of the two cases applies.

or 2<1(@a) < s(G) —1, I(@3)=s(G)- 1, 7 Ef \}Viv, 1<p<gqg<n

0<1(a) < 23(G) —2, 3 =€ 7=p=q —
An entry(A, a, (3,~/,p,q) isplaced inCt,j when

e If/3=€and 7 —p —q — - then Aa . a, .. .aft.

 If BE£ ethen for some a' E ({/,\ }VIV)*, Aa'/3a . a,...a; and Aa'/?7 :G">a,,...a7.

The steps of the algorithm that apply for examples of forward application and forward composition
are as follows.

« x/IA A—»ER
For each k between i and j, we look for (B, a,/?,7,p,9) E C,* and (A, -) E C*HiJ
where B is a possible target category of x and the string (3a has /A as a suffix. If we find these
tuples then do the following.

If 1(a) >3 or (3= e then include (B,a',/3,i,p,q) in CtJ where a = a'/A
If 1(a) =2 and (3" e then look in Cpqg for some (B, a', /?', 7', r,s) such that (3 isa suffix of
/3'a', and include (B, a'™a",fi',7',r,3)in Ct)J where a = q"/A and a'= qll;7.

If 1(a) = /A then we know that @= eand 7 = p =g = — and we should add (5, et —
in

« x/A A\B/C —x\B/C Ei?
For each Abetween i and j, we look for (A', a,j3,7,p, D E C,»and (A,\B/C, ¢, -) E Cjt+ij
where A'is a possible target category of x and /A is a suffix of /3a. If we find these tuples then
do the following.

If 1gs) = s(G) —1 or 1(a) = 2,5(G) —3 then include (A',\B/C, /3,/A,i, k) in C,j where (3/A
is a suffix of (3a such that I((3") —s(G) —1.

If I((3) = 0and 1(a) < 25s(G) —3) then include (A, \B/Ca\e,———) in C,t] where a'/A =
(3a.

Each of the other forms of combinatory rules can be treated in a similar way yielding an algorithm
that closely resembles the LIG algorithm presented in Section 2.2. Note that in a complete algorithm,
the forward composition example that we have considered here would have to be made more general
since the number of cases that must be considered depends on the length of the secondary category in
the rule. The time complexity of the full CCG recognition algorithm is the same as that of the LIG
algorithm; i.e., o (n7).
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4 Importance of Linearity

The recognition algorithms given here have polynomial-time complexity because each array element
(e-g» LXJ in LIG recognition) contains a polynomial number of tuples (with respect to the difference
between j and i). These tuples encode the top symbol of the stack (or top symbols of the category)
together with an indication of where the next part of the stack (category) can be found. If we had
stored the entire stack in the array elements5, then each array entry could include exponentially many
elements. The recognition complexity would then be exponential.

It is interesting to consider why it is not necessary to store the entire stack in the array elements.
Suppose that (A,7,.4,7',p,q) 6 Lij. This indicates the existence of a tuple, say (A', 7', A", 7", r,5),
in LBg. It is crucial to note that when we are adding the first tuple to LXJ we are not concerned about
how the second tuple came to be put in Lp<g This is because the productions in LIG (combinatory
rules in CCG) are linear with respect to their unbounded stacks (categories). Hence the derivations
from different nonterminals and their associated stacks (categories) are independent of each other. In
Indexed Grammars, productions can have the form A[-*7] —>Ai[-] A2[*]. In such productions there is
no single distinguished child that inherits the unbounded stack from the nonterminal in the LHS of the
production. In a bottom-up recognition algorithm the identity of the entire stacks associated with A\
and A2 has to be verified. This nullifies any advantage from the sharing of stacks since we would have
to examine the complete stacks. A similar situation arises in the case of coordination schema used to
handle certain forms of coordination in Dutch. A coordination schema has been used by Steedman [9]
that has the form x conj x —»x where the variable x can be any category. With this schema we have
to check the identity of two derived categories. This results in the loss of independence among paths
in derivation trees. In [13] we have discussed the notion of independent paths in derivation trees with
respect to a range of grammatical formalisms. We have shown [12] that when CCG are extended with
this coordination schema the recognition problem becomes NP-complete.

5 Conclusion

We have presented a general scheme for polynomial-time recognition of languages generated by a
class of grammatical formalisms that are more powerful than CFG. This class of formalisms, which
includes LIG, CCG, and TAG, derives more complex trees than CFG due the use of an additional
stack-manipulating mechanism. Using constructions given in [15,3], we have described how a recog-
nition algorithm presented for LIG can be adapted to give an algorithm for CCG. These are the first
polynomial recognition algorithms that work directly with these formalisms. This approach can also
be used to yield TAG recognition algorithm, although the TAG algorithm is not discussed in this
paper. A similar approach has been independently taken by Lang [5] who presents a Earley parser for
TAG that appears to be very closely related to the algorithms presented here.

5In the chart parser for CCG given by Pareschi and Steedman [6] the entire category is stored explicitly in each chart
entry.
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Handling of Ill-designed Grammars in
Tomita’s Parsing Algorithm
R. Nozohoor-Farshi

School of Computer Science
University of Windsor, Windsor, Canada N9B 3P4

ABSTRACT

In this paper, we show that some non-cyclic context-free grammars with e-rules cannot be han-
dled by Tomita’s algorithm properly. We describe a modified version of the algorithm which remedies
the problem.

1. Introduction

Tomita’s parsing algorithm [8,9] is an efficient all-paths parsing method which is driven by an LR
parse table with multi-valued entries. The parser employs an acyclic parse graph instead of the conven-
tional LR parser stack. The parser starts as an ordinary LR parser, but splits up when multiple actions
are encountered. Multiple parses are synchronized on their shift actions and are joined whenever they
are found to be in the same state.

The parallel parsing of all possible paths makes this algorithm suitable for parsing nearly all the
arbitrary context-free grammars. In fact, one may view this method as a precompiled form of Earley’s
algorithm [2,3]. Earley [2] proposed a form of precompiled approach to his method in the case of a res-
tricted class of grammars which has undecidable membership. Tomita’s algorithm, on the other hand, is
intended for use with general grammars. Since the method uses a parse table, it achieves considerable
efficiency over the Earley’s non-compiled method which has to compute a set of LR items at each stage
of parsing. In this respect, Tomita’s algorithm can indeed be considered as a breakthrough in efficient
parallel parsing in practical systems. However, there seem to be at least two types of context-free gram-
mars that cannot be handled by this method properly. The first type are cyclic grammars. These gram-
mars have infinite ambiguity and therefore have to be excluded from syntactic analyses. The second
kind of grammars include certain context-free grammars with e-productions. Some of these are unambi-
guous and some have bounded, bounded direct or unbounded degrees of ambiguity.

Grammars of the latter type may seldom be used to describe the syntax of natural language. In
fact, we consider them as somewhat ill-designed. But, they may creep in easily when one is designing a
natural language grammar with e-rules. Such rules cause unexpected infinite loops in parsing. In this
paper, we modify the parsing algorithm so that it can handle the second type grammars.

The modification introduces cyclic subgraphs in the original graph-structured parse stack. These
subgraphs correspond to the parsing of null substrings in the input sentence. Thus, the modification
incurs no cost to the grammars or the inputs that do not need this feature. We believe that adding such
a feature to Tomita’s algorithm is very desirable. Because, it enriches the method to be comparable to
Earley’s algorithm in its coverage, and yet it is in a precompiled form.

In the following sections, we discuss the two types of the grammars that cause problems in the
original algorithm, and we present the modified algorithm.

2. The Two Types of Grammars

Cyclic grammars are those in which a non-terminal, like A, can derive itself (i.e., A ="=> A).
and G2are examples of cyclic grammars.
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G G2

S A S->SS
A —S S —>x
A —>»X S —>f

InGlt A==> S=> A andin G2 S==> SS==> S Cyclic grammars produce infinite number
of parse trees for a finite length input such as "x" in L ) and UG”. They cause problem in every
parsing algorithm. Therefore, they have been avoided in describing syntax of languages traditionally.

Both Earley’s and Tomita’s algorithms will fail to detect the cyclicity of and G2 Given an
input sentence x , one can however obtain the minimal parses with respect to either grammar by
Earley’s algorithm and only with respect to Gt by Tomita’s algorithm. The second algorithm will not
terminate when the grammar G2 is used. Tomita [8] discusses the cyclic grammars and rules out their
inclusion in natural language parsing. Such exclusion can be achieved through a simple test before gen-
erating a parse table (see [1] for example).

Among the second kind grammars that cannot be handled with the original algorithm are the
examples G3, G4, G5and G6 below.

G3 G5
S—=ASHb S-»ASbhb
S —>x S —»xX
A—>»£E A ->t

A-> £

G4 G6:

S->M S->MN

'S —N M-» AMD
M—-AMbD M —x
M -> x N—s>bNA
N—-AND N -> x
N — X A —£
A—>£

G3 is unambiguous, G4 has bounded ambiguity, G5 has bounded direct ambiguity while G6 *has
unbounded ambiguity (see Apendix 1 for the definition of these terms). One may note that in these
grammars, unlike cyclic grammars, there are only finite number of parse trees for a given finite length
input.

A property common to these grammars is that there exists a non-terminal, say S, such that
N+ >aSp where ot —= £ but 3=/=> e. For example, in G3or G5, S can be rewritten as
S ASb ®> S b. Rules like these may be excluded from a grammar by using an appropriate
test (see Appendix 2). However, one may keep or include such rules in a grammar for the following
reasons.

(1) To capture some rare phenomena, for example, embedded that-sentences
[[ THAT [[THAT ... [[THAT SI VP 1.. 1 VP]] VP] in which a number of terminal ’that’s are omit-
ted.

(2) Grammars with E-productions are more concise and readable than the grammars without £-rules. In
fact, elimination of £-rules from a grammar may increase the size of the grammar exponentially. There-
fore, one may use rules similar to the examples G3to G6 to compact the grammar and the parse table,
knowing that their presence should not affect the correct parsing of valid inputs.
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(3) More frequently, such rules may appear in a grammar when e-productions are introduced without an
adequate care. It is important to note that replacement of these rules (and their associated symbols) may
not always be easy.

Grammars G3 through G6 can be parsed by Earley’s algorithm with no problem. For example,
consider the sentence xbbb e L(G3). That algorithm will produce the following states.

state 0 state 1 state 2 state3

root — .S#, 0 S—x,0 S —ASh., 0 S —ASh., 0
S-> ASh, 0 XxX— root S#0 b— ro0t—=SJ,0 b—> root—=S#0
S—x0 S—=ASb, 0 S -> AS.b,0 S ASbO0
A —»e, 0

S —ASh, 0

state 4 state 5

S —ASh, 0

root — S.#, 0 root —» S#., 0

S —ASb, 0

However, the above grammars cause an infinite loop in Tomita’s algorithm. Applying the algorithm for
e-grammars (given in [8]) to the input sentence xbbb and the parse table for G, the result will be an
infinite graph-structured stack as shown below.

State x b # A S Grammar Gy.
(1) S—ASHbH

0 re3,;sh3 2 1 (2) S »x
1 acc (3) A->e
2 re3,sh3 2 4
3 re2 re2
4 sh5
5 rel  rel

Action table Goto table

u 0.0 u 01 v 02 u 03

In Tomita’s algorithm the state nodes created in the parse graph are partitioned into UQ Ult . . .,
Un where each £/, is the set of state vertices which are created before shifting of word al# in the input
Furthermore, in the presence of e-productions, each U is partitioned into Ui0, Citl, U2, . . « Each
Uij denotes the set of state vertices created while parsing the j-th null construct after the i-th input
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symbol a, is shifted and before the shifting of next actual input symbol ai+l takes place. Tomita
assumes that the number of null constituents between every adjacent pair of input symbols is always
finite. Though his assumption is correct for non-cyclic grammars, it cannot be incorporated as such in
the parser since it will require arbitrary and complex lookaheads in general case. As noted earlier this
strategy fails in the example grammars.

It is interesting to note that the same strategy will succeed in the case of LR grammar G 3 which
is the reverse of Gs.

C'3:
S—-=bSA
S —>x

A —e

The difference between G3 and G3 is that in G3 a null deriving constituent appears on the left part of a
recursive phrase, while in G3, it appears on the right side of the recursive construct. Thus, the parser
for G3 does not know how many A’s it has to create before consuming the first input word "x". In the
case of G3, the left context provides enough information to limit the number of empty constructs to a
finite size.

One may observe that though G3 is an unambiguous grammar, it is not LR(k) for any k. Viewing
differently, one may argue that such grammars can be parsed deterministically and more efficiently by
non-canonical parsers. Marcus’ parser [5] and bottom-up variations of it described in [6,7] can handle
this grammar in a much better way, since they create the rightmost A in the parse tree first. The reader
may also consult [6,7] to see the advantage of these parsers over Tomita’s algorithm when grammars
like G7 are to be parsed.

GT7:
S—aSa

S->BSb
S—CSc
B —a
C —a
S —»X

However, we should emphasis that the whole thrust and advantage of Tomita’s parser lies in obtaining
multiple parses with respect to ambiguous grammars such as those in examples G4 to G6.

In the following section, we modify Tomita’s algorithm in a way that the second type grammars
can be handled within this framework. In doing so, we believe that we are introducing a version of
Tomita’ algorithm which is a partially-precompiled equivalent of Earley’s parser and can be applied to
all non-cyclic context-free grammars.

3. Modified Algorithm

To accommodate grammars like G3 to G6 within Tomita’s parsing method, we allow cycles in
the graph-structured parse stack. These cycles are introduced in the parse graph in avery restricted way.
Each cyclic subgraph represents a regular expression that corresponds to parsing of a null substring
between two adjacent input symbols. Unlike Tomita’s algorithm for e-grammars [8], we do not partition
each Ui any further. So, the set of state vertices of each cyclic subgraph entirely lies within a single £/,.
Obviously, cycles are created within £/, only if parsing of the input sentence requires them. Since the
parse graph is now cyclic, we do reductions along arbitrary paths (i.e., paths that are not simple and
may contain repetitive vertices or arcs).Such paths are usually termed (directed) walks in graph theory.

Our approach though is intuitive, it has its roots in LR theory. In LR parsing, the finite automaton
(from which a parse table is extracted) represents the set of all viable prefixes of the grammar in closed
form. The parse stack, on the other hand, represents an actual viable prefix (of a right sentential form)
in open form. The actual viable prefix is built from the input symbols which are consumed by the LR
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parser. It is necessary to hold the actual viable prefix in the stack so that the parser can be provided
with the exact left context. However, in the modified all-paths parser we do not need to keep the null-
deriving segments of the left context in open form. For example, in parsing sentences like xb. b e
L(G3), e and A. . .A are the viable prefixes when the parser scans the first input symbol "x". Since each
A derives a null string and we do not know exacdy how many of them we should assume, we represent
the left context in the closed form e+AA*. The corresponding parse graph will appear as the figure in
below when "Xx" is just shifted. The parser will pick as many A’s as it needs from this regular expres-
sion when the remainder of the sentence is seen.

Similarly, consider the example grammar G5 and the parse table for it as shown below. One will
obtain the following shapshot of the parse graph after the parser consumes the prefix txb of the sentence
txb. . .b, and all the appropriate reductions are done.

state t X b # A S Grammar G5
() S—>ASb

0 sh4/e4 sh3jed 2 1 (2) S —»x
1 acc (3) A—>»t
2 sh4je4 sh3jed 2 5 4 A—e
3 re2 re2
4 re3 re3
5 sh6
6 rel rel

Action table Goto table

Ur Ui u2 U,

L 1 booeee 1 bemeeee- 1
— i
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In this example, the left context just before shifting the word "X can represented as the regular
expression (AA* A + A ) A*. For clarity, the bold faced A represents the non-terminal obtained by
reducing "t"". For the same reason, we are not combining identical symbol vertices which are adjacent to

the same state vertex, (a measure of optimization suggested in [8]), in the illustrated examples or in the
algorithm that to follow.

As another example, an interested reader using the parse table in Appendix 3 may verify that U0
for the grammar G% will have the following format.

Ca:

S —x

S BShb
S—AShDb
B—AA
A —£

In the above examples, we have used an LALR(l) parser generator, similar to YACC [4], to
obtain the parse tables with multi-valued entries. Tomita [8,9] also uses LALR(I) tables, however, using
non-optimized LR(1) tables will decrease the number of superfluous reductions in general.

We are now in a position to present the modified algorithm. For simplicity, we give an algorithm
for a recognizer rather than a parser. The recognizer can be augmented in a way similar to that of [81 to
provide a parser that also creates the parse foresL

Recognition Algorithm:

PARSE (G, aje*°**a,)
e T:=0.
r = FALSE.
e Create a vertex vO labeled sO in T.
e Uo := (vO0).
e For i := 1to ndo PARSEWORD (i).
e Return r.

PARSEWORD (i)

« A = Ui
*R:=0;Q;=0,
* Repeat

"if A* 0 then do ACTOR
else if R * 0 then do COMPLETER
untiif R=0 and A = 0.
* Do SHIFTER.

ACTOR
¢ Remove an element v from A.
e« Forall a 6 ACTION (STATE (v), al#l) do
begin
if a = ’accept’ then r := TRUE;
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if a = ’shift s’ then add <v ,s> to Q;
if a = ’reduce p’ then
for all vertices w such that there exists a directed
walk of length 2 IRHS (p) Ifrom v to w /* For e-rules this is a trivial walk, i.e. w=v */
do add <w ,p>to R
end.
COMPLETER

« Remove an element <w ,p> from R.
* N := LHS (p); s:=GOTO (STATE (w), N)..
« If there exists u e U, such that STATE(u) = s then
begin
if there does not exist a path of length 2 from u to w then
begin
create a vertex z labeled N in T,
create two arcs in T from u to z and from z to w;
forall vg (U -A)do
/* In the case of non-e-grammars this loop executes for v-u only */
for all g such that ’reduce q’ e ACTION (STATE (v), al+l) do
for all vertices t such that there exists a directed walk of
length 2 IRHS (g) Ifrom v to tthat goes through vertex z
do add <t,g>to R
end
end
else I* i.e., when there does not exist u e fle such that STATE (u) =s */
begin
create in I' two vertices u and z labeled s and N respectively;
create two arcs in T from u to z and from z tow;
add u to both A and #,

end.
SHIFTER
e Uitj := 0.
« Repeat

remove an element <v s> from Q;
create a vertex x labeled al+l in T;
create an arc from x to v;
if there exists a vertex u e Ui+l such that STATE (u) = s then
create an arc from u to x
else
begin
create a vertex u labeled s and an arc from u to x in T;
add u to £/i+l
end.
until Q = 0.

As noted earlier, the above recognition algorithm can be changed into a parsing algorithm to pro-
duce the shared parse forest among the different parses. In the parsing algorithm the elements of R are
triples <w, p, L> where L is a list of vertices that represent RHS symbols of p. One must note that our
algorithm creates e-deriving non-terminals that may be shared as a son by other non-terminals that are
in ancestor-descendant relationship in the parse forest. To illustrate this point, we show the full parse
graphs and corresponding parse trees of example sentences in Appendix 4. As an alternative, in build-
ing a parse forest one may replicate a null yielding subtree whenever this subtree participates in a
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reduction where at least one other sibling has non-empty vyield.

As a final remark, we may add that the above algorithm can obtain the minimal parses in the case
of cyclic grammars, but does not detect their cyclicity. It is also possible to precompile some subsets
of each @, that are obtained under the transitions with respect to null-deriving non-terminals.

4. Conclusion

We have modified Tomita’s parsing algorithm so that it can handle some ill-designed grammars
with e-rules that caused a problem in the original algorithm. We have introduced cycles in the parse
graph in a restricted way. This makes the parse graph in the new algorithm a cyclic directed graph in
some general cases. However, the new algorithm works exacltly like the original one in case of gram-
mars that have no £-productions. This algorithm has no extra costs beyond that of the original algo-
rithm.

We believe that the modified algorithm is a precompiled equivalent of Earley’s algorithm with
respect to its coverage, though we have not provided a formal proof for it The resulting algorithm sug-
gests that Tomita’s graph-structured parsing approach can be used with a broader class of context-free
grammars.

Appendix 1: Ambiguous grammars

Definition: A context-free grammar G has bounded ambiguity of degree k if each sentence in L(G) has
at most k distinct derivation trees.

Definition: A context-free grammar G has unbounded ambiguity if for each i>l, there exists a sentence
in L(G) which has at least i distinct derivation trees.

Definition: The degree of direct ambiguity of a non-terminal A with respect to a string x is the number
of distinct tuples (p, x irx2>e ¢+ .*»). where p is a production A -» BX2ee+Bn, and x{x2 e exH=x is
a factorization of x such that Bi ="=>x, for 1<: £ n.

Definition: A context-free grammar has bounded direct ambiguity of degree k if the degree of direct
ambiguity of any of its non-terminals with respect to any string is at most k.

For example, the grammar Gs has direct ambiguity of degree 2, in spite of being unboundedly
ambiguous.

Appendix 2: Identifying the e-grammars that cannot be parsed by the original algorithm.

LetG = (N ,T ,P,S)bea context-free grammar with e productions. The following algorithm
decides whether G can be parsed by the original algorithm.

(1) Compute the set of non-terminals E = (C IC =£=>¢ } that can derive a null string.

(2) Let pc N x N be a binary relation such that (A,B) € pifandonly if A -> CjC2 -« .
production in Pand C, e E for 1<i £ n.

(3) Compute p+ the closure of p. If there exists a non-terminal A where (AA) 6 p+ then G cannotbe
parsed by the Tomita’s original algorithm for e-grammars.
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Appendix 3: Parse Table for Grammar Gs

state X b
0 sh2j-e5
1
2 rel
3 sh2je5
4 sh2/e5
5 sh8
6 sh2,redje5
7 sh9
8 re2
9 re3

Action table

# A B S
4 1
acc
rel
4 3 5
6 3 7
6 3 7
re2
re3
Goto table

Appendix 4: Parsing of example sentences

The following figures illustrate parsing of the sentences xbbb € L(G3 and bbbx e L(G3). The
dotted lines indicate the rejected paths. The shared non-terminals are shown in italics.

Ur

Ui

Grammar G8
1) S -» x
2s->BShb
3)S-*AShb
4 B-)AA
(5) A-4e

u<

Parse graph and parse tree of the sentence xbbb e L(Gi)

S
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Parse graph and parse tree of the sentence bbbx g L(G$)

One may observe that the parse graph and the parse tree of the sentence bbbx e L(G3) are
different from those that one can obtain by using Tomita’s algorithm for e-grammars [8]. The modified
recognizer creates a single A node in the parse graph whereas Tomita’s recognizer will create three A
vertices. In our representation of parse tree, the null yielding subtree with root A is shared among the
S nodes that are descendants of each other. However as it was noted in the paper, the parser could
replicate such subtrees in the parse tree if one wishes so.
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ANALYSIS OF TOMITA'S ALGORITHM FOR GENERAL CONTEXT-FREE PARSING1

JAMES R. KIPPS (KIPPS@RAND-UNIX.ARPA)
The RAND Corporation, Santa Monica, CA 90406

Abstract. A variation on Tomita’s algorithm is analyzed in regards to its time and space complexity.
It is shown to have a general time bound of 0 (np+1), where n is the length of the input string and p
is the length of the longest production. A modified algorithm is presented in which the time bound is
reduced to 0(n3). The space complexity of Tomita’s algorithm is shown to be proportional to nz in
the worst case and is changed by at most a constant factor with the modification. Empirical results
are used to illustrate the trade off between time and space on a simple example. A discussion of two
subclasses of context-free grammars that can be recognized in o (n2) and O(n) is also included.

1. INTRODUCTION

Algorithms for general context-free (CF) parsing, e.g., Earley’s algorithm (Earley, 1968) and the
Cocke-Younger-Kasami algorithm (Younger, 1967), are necessarily less efficient than algorithms for
restricted CF parsing, e.g., the LL, operator precedence, and LR algorithms (Aho and Ullman, 1972),
because they must simulate a multi-path, nondeterministic pass over their inputs using some form
of search, typically, goal-driven. While many of the general algorithms can be shown to theoretically
perform as well as the restricted algorithms on a large subclass of CF grammars, due to the inefficiency
of goal expansion the general algorithms have not been widely used as practical parsers for programming
languages.

A basic characteristic shared by many of the best known general algorithms is that they are top-
down parsers. Recently, Tomita (1985) introduced an algorithm for general CF parsing defined as a
variation on standard LR parsing, i.e., a table-driven, bottom-up parsing algorithm. The benefit of this
approach, is that it eliminates the need to expand alternatives of a nonterminal at parse time (what
Earley refers to as the predictor operation). For Earley’s algorithm, the predictor operation is one
of two 0(n2) components. While eliminating this operation would not change the algorithm’s time
bound of 0(n3), it could be significant to practical parsing. It is of interest to analyze the complexity
of Tomita’s algorithm and see how it compares.

Upon examination, Tomita’s algorithm is found to have a general time complexity of 0(n”+1),
where n is as before and p is the length of the longest production in the source grammar. Thus, this
algorithm achieves 0(n3) for grammars in Chomsky normal form (Chomsky, 1959) but has potential
for being worse when productions are of unrestricted lengths. In this paper, | present a modification
of Tomita’s algorithm that allows it to run in time proportional to n3 for grammars with productions
of arbitrary lengths.

2. TOMITA'S ALGORITHM

The following is an informal description of Tomita’s algorithm as a recognizer; familiarity with
standard LR parsing is assumed. Tomita views his algorithm as a variation on standard LR parsing.
The algorithm takes a shift-reduce approach, using an extended LR parse table to guide its actions.
The extended parse table records shift/reduce and reduce/reduce conflicts as multiple action entries,
so the parse table can no longer be used for strictly deterministic parsing. The algorithm simulates a
nondeterministic parse with pseudo-parallelism. It scans an input string xi ¢ ¢xn from left to right,
following all paths in a breath-first manner and merging like subpaths when possible to avoid redundant
computations.

1 This work was supported by the Defense Advanced Research Projects Agency, under contract number
MDA-903-85-C-0030.
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The algorithm operates by maintaining a number of parsing processes in parallel. Each process
has a stack, scans the input string from left-to-right, and behaves basically the same as the single
parsing process in standard LR parsing. Each stack element is labeled with a parse state and points
to its parent, i.e., the previous element on a process’ stack. The top-of-stack is the current state of a
process.

Each process does not actually maintain its own separate stack. Rather, these “multiple” stacks
are represented using a single directed acyclic (but reentrant) graph called a graph-structured stack.
Each stack element corresponds to a vertex of the graph. Each leaf of the graph acts as a distinct
top-of-stack to a process. The root of the graph acts as a common bottom-of-stack. The edge between
a vertex and its parent is directed toward the parent. Because of the reentrant nature of the graph (as
explained below), a vertex may have more than one parent.

The leaves of the graph grow in stages. Each stage Ui corresponds to the zth symbol x, from the
input string. After x, is scanned, the leaves in stage Ui are in a one-to-one correspondence with the
algorithm’s active processes, where each process references a distinct leaf of the graph and treats that
leaf as its current state. Upon scanning x,+i, an active process can either (1) add an additional leaf to
Ui, or (2) add a leaf to £/++1. Only processes that have added leaves to f/j+i will be active when x*+2
is scanned.

In general, a process behaves in the following manner. On x<, each active process (corresponding
to the leaves in Ui-1) executes the entries in the action table for x given its current state. When a
process encounters multiple actions, it splits into several processes (one for each action), each sharing
a common top-of-stack. When a process encounters an error entry, the process is discarded (i.e., its
top-of-stack vertex sprouts no leaves into Ui by way of that process). All processes are synchronized,
scanning the same symbol at the same time. After a process shifts on X into Ui, it waits until there
are no other processes that can act on x, before scanning x,+i.

The Shift Action. A process (with top-of-stack vertex v) shifts on X from its current state s to
some successor state s' by

(1) creating a new leaf v' in Ui labeled s';
(2) placing an edge from v' to its top-of-stack v (directed towards v); and
(3) making v' its new top-of-stack vertex (in this way changing its current state).

Any successive process shifting to the same state s' in Ui is merged with the existing process to form a
single process whose top-of-stack vertex has multiple parents, i.e., by placing an additional edge from
the top-of-stack vertex of the existing process in Ui to the top-of-stack vertex of the shifting process.
The merge is done because, individually, these processes would behave in exactly the same manner
until a reduce action removed the vertices labeled s' from their stacks. Thus, merging avoids redundant
computation. Merging also ensures that each lead" in any Ui will be labeled with a distinct parse state,
which puts a finite upper-bound on the possible number of active processes and, thus, limits the size
of the graph-structured stack.

The Reduce Action. A process executes a reduce action on a production p by following the chain
of parent links down from its top-of-stack vertex v to the ancestor vertex from which the process began
scanning for p earlier, essentially “popping” intervening vertices off its stack. Since merging means a
vertex can have multiple parents, the reduce operation can lead back to multiple ancestors. When this
happens, the process is again split into separate processes (one for each ancestor). The ancestors will
correspond to the set of vertices at a distance v from v, where p equals the number of symbols in the
right-hand side of the pth production. Once r luced to an ancestor, a process shifts tothestate s
indicated in the goto table for Dp (the nonterminal on the left-hand side of the pth production)given
the ancestor’s state. A process shifts on a nonterminal much as it does a terminal, with the exception
that the new leaf is added to Ui_i rather than Ui] a process can only enter Ui by shifting on x,.
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The algorithm begins with a single initial process whose top-of-stack vertex is the root of the
graph-structured stack. It then follows the general procedure outlined above for each symbol in the
input string, continuing until there are either no leaves added to Ux (i.e., no more active processes),
which denotes rejection, or a process executes the accept action on scanning the n + 1st input symbol
‘H,” which denotes acceptance.

3. ANALYSIS OF TOMITA’S ALGORITHM

In this section, a formal definition of Tomita’s algorithm is presented as a recognizer for input
string xi eeexn. This definition is understood to be with respect to an extended LR parse table (with
start state So) constructed from a source grammar G.

Notation. The productions of G are numbered arbitrarily 1, e, d, where each production is of
the form Dp — Cpi** Cpp (1 < p < d) and where p is the number of symbols on the right-hand side
of the pth production.

Definition. The entries of the extended LR parse table are accessed with the functions ACTIONS
and GOTO.

» ACTIONS(s,x) returns a set of actions from the action table along the row of state s under
the column labeled x. This set will contain no more than one of a shift action shs' (shift to
state s) or an accept action acc; it may contain any number of reduce actions rep (reduce
using production p). An empty action set corresponds to an error.

e GOTO(s,£>p) returns a state s' from the goto table along the row of state s under thecolumn
labeled with nonterminal Dp.

Definition. Each vertex of the graph-structured stack is a triple (i,s,l), where i is an integer
corresponding to the ith input symbol scanned (at which point the vertex was created as a leaf), 5is a
parse state (corresponding to a row of the parse table), and / is a set of parent vertices. The processes
described in the last section are represented implicitly by the vertices in successive £,-s. The root of
the graph-structured stack, and hence the initial process, is the vertex (0,S0,0).

The Recognizer. The recognizer is a function of one argument REC(x! e x,,). Itcalls upon
the functions SHIFT(t;,.s) and REDUCE(u,p). SHIFT(v,s) either adds a new leaf to {+ labeled
with parse state s whose parent is vertex v or merges vertex v with the parents of an existing leaf.
REDUCE(u,p) executes a reduce action from vertex v using production p. REDUCE calls upon the
function ANCESTORS(u,p), which returns the set of all ancestor vertices a distance of p from vertex v.
These functions, which vary somewhat from the formal definition given in Tomita (1985),2 are defined
in Figure 3.1.

In REC, [1] adds the end-of-9entence symbol H’ to the end of the input string; [2] initializes the
root of the graph-structured stack; [3] iterates through the symbols of the input string. On each symbol
X-, [4] processes the vertices (denoting the active processes) of successive C/,- i’s, adding each vertex to
P to signify that it has been processed. On each vertex v, [5] executes the shift, reduce, and accept
actions from the action table according to v's state s. After processing the vertices in {/l<— [6] checks
whether a vertex was added to ensuring that at least one process is still active before scanning
X,-+i.

In SHIFT, [7] shifts a process into state s by adding a vertex to £/, labeled s. If a vertex labeled
s already exists, v is added to its parents, merging processes; otherwise, a new vertex is created with
a single parent v.

2 Tomita’s functions REDUCE and REDUCE-E have been collapsed into a single REDUCE function; also
added were the ANCESTORS function and the concept of a “clone” vertex. While these changes do not alter
Tomita’s algorithm significantly, they were helpful in developing ideas about its complexity.
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REC(Xi === Xxn)
1 let xn+1l := H
let U =[] O<i<n
[2] let Uo := [(0,50,0)j
[31 for i from 1 to n+ 1

let P =[]
4 for W = (G- 1,5,/) 5/. u E Ui-i
let P := P o M
51 if 3‘sh s™ € ACTIONS (s,x,) , SHIFT(v,s")

for V're p» € ACTIONS(s,x.) , REDUCE(u.p)
if *acc” € ACTIONS(s,Xj), accept
[61 if Ui is empty, reject
SHIFT(V,S)
4| if 3vf = (i,s,1) s.t. v £ Ui
let /7 := /U {u}

else
let U = Ui o [G,s, {iXP]
REDUCE (u,p)
K| for Vei® = (j'"s'Ji) s.t. vi' € ANCESTORS(Vv,p)
let s" := GOTO(Ss',Dp)
E1f 3v"' = {i-I,s",I") st v 6 Uil
[101 if Vit e I"
do nothing (ambiguous)
else
[11] if 372, = {j'yS'J") st. 2 € I"
let v¢' = (*- 15", {vi"p
for V're p* € ACTIONS(5/ ,x.), REDUCE(yc'.p)
else
121 let I" = 1" U {u's}
131 ifu 6 P
let v," = (i- Ls", {iV})
for V're p» € ACTIONS(s”™.x*), REDUCE( P
else
[14] let = (i-i o [<- L. {v,1})]

ANCESTORS (v = (j,s,1),k)
[15] if =0
retum({u})
else
retum((Jw€& ANCESTORS(u".jb - 1))

Fig. 3.1—Tomita’s Algorithm

In REDUCE, [g] iterates through the ancestor vertices a distance of p from v, setting s" to the
state indicated in the goto table under Dv given the ancestor’s state s'. Each ancestor vertex v\ is
shifted into Ui-i on s". [9] checks whether such a vertex v" already exists. (If not, [14] adds a vertex
labeled s" to [/,»_i.) If v" does already exist, [10] checks that a shift from the current ancestor vx' has
not already been made. (If it has, then some segment of the input string has been recognized as an
instance of the same nonterminal Dp in two different ways, and the current derivation can be discarded
as ambiguous; otherwise, vi' is merged with the parents of the existing vertex.) Before merging, [11]
checks whether v\ is a “clone” vertex, created by [13] in an earlier call to REDUCE (as described
below). If ui' is not a clone, [12] adds it to the parents of v", merging processes. [13] checks if v"
has already been processed. If so, then it missed any reductions through rV. To correct this, v" is
“cloned” into vc" (i.e., a variant on v" with a single parent u”), and all reduce actions executed on v"
are now executed on vc".
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Returning to [11], when reducing on a null production, ANCESTORS will return a clone vertex as
the ancestor of itself. If a variant wi of  already exists in the parents of v", then W is a clone of u2'.
At this point v" has already been processed, meaning that there could still be reductions that have
not gone through the single parent of ui'. To correct this, v" is again cloned, and all reduce actions
executed on v" are executed on the new clone vc".

Finally, in ANCESTORS, [15] recursively descends the chain of parents of vertex v, returning the
set of vertices a distance of k from v.

The General Case. Tomita’s algorithm is an 0(n/+1) recognizer in general, where p is the greatest
p in G. The reasons for this are as follows:

(a) Since each vertex in Ui must be labeled with a distinct parse state, the number of vertices in
any Ui is bounded by the number of parse states;

(b) The number of parents / of a vertex v — (i,s,l) in Ui is proportional to i. Because processes

could have begun scanning for some production p in each uj (j < i), aprocess in Ui ould
reduce using p and split into ~ i processes (one for each ancestor in adistinct uj). Then
each process could shift on Dp to the same state in Ui and, thus, that vertex could have ~ i
parents;

(c) For each x.+i, SHIFT will be called a bounded number of times (at most once foreach vertex
in Ui). SHIFT executes in a bounded number of steps.

(d) For each x,+i and production p, REDUCE(u,p) will be called a bounded number of times in
REC, and REDUCE(uc",p) (the recursive call to REDUCE) will be called no more than —i
times. The reason for the former is the same as in (c). The latter is due to the conditions on
the recursive call, which maintain that it can be called no more than once for each parent of
a vertex in Ui, of which there are at most proportional to z

(e) REDUCE(v,p), because at most ~ i vertices can be returned by ANCESTORS, executes in
~ i steps plus the steps needed to execute ANCESTORS.

(f) ANCESTORS(u,p) executes in ~ if steps in the worst case. While at most —i processes could
have begun scanning for p, the number of paths by which any single process could reach v in
Ui is bounded by the number of ways the intervening input symbols can be partitioned among
the p vocabulary symbols in the right-hand side of production p. For a process that started
from Uj (j < *), the number of paths to v in Ui in the recognition of p can be proportional to

0 o0 0
E .. | .+ £ i-
migi  =mj
Summing from ; = 0, e, i gives a closed form proportional to if . ANCESTORS"",p), where

ve' = (» «{v'}), executes in ~ if ~| steps because there is that many ways ~ i ancestor vertices
could reach v' and only one way v' could reach vc™\

(g) The worst case time bound is dominated by the time spent in ANCESTORS, which can be
added to the time spent in REDUCE. Since REDUCE(v,p), with a bound ~ ip, is called only
a bounded number of times, and REDUCE(uc//,p), with a time bound of ~ i?_1, is called at

most ~ i times, the worst case time to process any X, is ~ i?, for each : = 0, ¢es,n + 1 and
longest production p\
(h) Summing from i = 0, e*+, n + 1 gives REC a general time bound proportional to n*+1.

As a result, this bound indicates that Tomita’s algorithm only belongs to complexity class 0(n3)
when applied to grammars in Chomsky normal form (CNF)3 or some other equally truncated notation.

3 In CNF, productions can have one of two forms, A —aBC or A —* a; thus, the length of the longest
production is at most 2.
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Although any CF grammar can be automatically converted to CNF (Hopcraft and Ullman, 1979), ex-
tracting useful information from derivation trees produced by such grammars would be time consuming
at best (if possible at all).

4. MODIFYING TOMITA’S ALGORITHM FOR N3 TIME

In this section, Tomita’s algorithm is made an 0{n 3) recognizer for CF grammars with productions
of arbitrary length. Essentially, the modifications are to the ANCESTORS function. ANCESTORS is
the only function that forces us to use  steps. It is interesting to note that ANCESTORS can take
this many steps even though it returns at most ~ i ancestor vertices and even though there are at
most ~ i intervening vertices and edges between a vertex in U- and its ancestors. This indicates that
ANCESTORS can recurse down the same subpaths more than once. The efficiency of ANCESTORS
and Tomita’s algorithm can be improved by eliminating this redundancy.

The modification described here turns ANCESTORS into a table look-up function. Assume
there is a two-dimensional “ancestors” table. One dimension is indexed on the vertices in the graph-
structured stack, and the other is indexed on integers k = 1, ee*, p, where p equals the greatest p. Each
entry (v,k) is the set of ancestor vertices a distance of k from vertex v. Then, ANCESTORS(v,fc) re-
turns the (at most) ~ i ancestor at (v, k) in — 1steps. Of course, the table must be filled dynamically
during the recognition process, so the time expended in this task must also be determined.

In Figure 4.1, ANCESTORS is defined as a table look-up function that dynamically generates
table entries the first time they are requested. In this definition, the ancestor table is represented by
changing the parent field | of a vertex v = (i,s,/) from a set of parent vertices to an ancestor field a.
For a vertex v — (;, s, a), a consists of a set of tuples (k,/*), such that It is the set of ancestor vertices
a distance of k from v.

Figure 4.1 illustrates the necessary modifications made to the definitions of Figure 3.1; the function
REC is unchanged. In SHIFT, [1] adds a vertex to Ui labeled s. If such a vertex does not already exist,
one is created whose ancestor field records that v is the ancestor vertex at a distance of 1; otherwise,
v is added to the other distance-1 ancestors.

In REDUCE, [2] iterates through the ancestor vertices a distance of p from v, setting s" to the
state indicated in the goto table under Dp given the ancestor’s state s'. Each ancestor vertex v\ is
shifted into Ui-1 on s". [3] checks whether such a vertex v" already exists. (If not, [10] will add a
vertex labeled s" to Ui-1.)) If v" does already exist, [4] checks that a shift from the current ancestor
v\ has not already been made. If it has, then vi' can be discarded as ambiguous; if not, then vi'
can be merged with the other ancestors a distance of 1 from v". Before merging, [5] checks whether
ui' is a clone vertex as described in Section 3. If ui' is a clone (the result of being reduced on a null
production), v" is again cloned, and all reduce actions executed on v" are executed on the new clone
vc". After the application of REDUCE, [6] updates the ancestor table stored in v" to record entries
made in the ancestor field ac" of the clone when k > 2. Otherwise, if vi' is not a clone, [7] adds it to
the distance-1 ancestors of v, merging processes. [8] checks if v has already been processed. If so,
then it missed any reductions through v\', so v" is cloned into ve" and all reduce actions executed on
v" are now executed on v ". After reducing vc", [9] updates the ancestor table stored in v" to record
entries made in the ancestor field ac" of the clone when k > 2.

In ANCESTORS, [11] searches a (the portion of the ancestor table stored with v) for ancestor
vertices at a distance of k from v. If an entry exists, those vertices are returned; if not, [12] calls
ANCESTORS recursively to generated those vertices and, before returning the generated vertices,
records them in the ancestor field of v.

The question now becomes how much time is spent filling the ancestor table. For
ANCESTORS(v,p), time is bounded in the worst case by ~ i2 steps, while for ANCESTORS"*"?),
it is bounded by —i steps. In general, ANCESTORS(v,fc), where v = (i,s,a), will take ~ i steps
to execute the first time it is called (one for each recursive call to ANCESTORS(t/,A: - 1), where
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SHIFT(v.Ss)
1 il 3v' = (s st. v G Y A @) 6 a,
let /7 := /U {v}
else

let U = ¢4 o [<i,s,[A.4DD]

REDUCE(Vv.p)
2] for Wwi® = (j\s',ax) s.t. v\' G ANCESTORS(u,p)

let s = GOTO (s",Dp)
31 if V' = @- Lsa) st u' G thi-i A (1.H € a"
[4] if v\ G I
do nothing (ambiguous)
else
51 if 3u2" = (/,s/,a2/) st u2" G I"
let we" = (z-1,s",ac’) st ac' = [(I>i"}>]
for V°re p> G ACTIONS (s",X,), REDUCE (vc' ,p)
[61 let A =/du ASstL €a" A @, /fAE ac" (k>2)
else
1 let I =/ U {V}
k]| if v G P

let uc'= @ - Ls",a") s.t. ac'= [@ {vi;Pl
for V're p> G ACTIONS(s",X,), REDUCE(VC',p)
[9] let Ikl := Ikl U /& st (k,JIkI) G a* A (M*a) G ac’ (fc2)
else
[10] let Ui-i := «ii o [(*- 1, {1"P]

ANCESTORS (v = (j,s,a),k)
[11] if kK = 0,
return({u})
else
if 3(k,/k) G a,
retunxdie)

else
[12] let It := Uv"eM(l,/D€a ANCESTORS (V' ,k - 1)
let a := a U {{k, 1K)}
retum(/fc)

Fig. 4.1—Modified Algorithm

v' G I\ and (1,/i) G a) and —1 steps thereafter. When ANCESTORS(v,p) is executed, there are ~ z
such “virgin” vertices between v and its ancestors, and so this call can execute ~ 22 steps in the worst
case. ANCESTORS(vc",p) is called only after the call to ANCESTORS(v,p) has been made, where
ve" is a clone of v. This means that ~ zof the vertices between v' and the ancestor vertices have been
processed, so the call to ANCESTORS(t/,p —1) could take at most proportional to zsteps for each of
a bounded number of intervening vertices.

Given this, the upper bound on the number of steps that can be executed by the total calls on
REDUCE for a given X, is proportional to 2. Summing from z= 0, **+, n -- 1 gives ~ n3 steps as the
worst case upper bound on the execution time of the modified algorithm.

5. SPACE BOUNDS

The space complexity of Tomita’s algorithm as it appears in Section 3 is proportional to n2in the
worst case. This is because the space requirements of the algorithm are bounded by the requirements of
the graph-structured stack. There are a bounded number of vertices in each U, of the graph-structured
stack, and each vertex can have at most ~ z parents. Summing again from i = 0, s, n + 1 gives —n2
as the worst case space requirement for the graph-structured stack.
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With the modification of Section 4. the space requirements of the graph-structured stack are
increased by at most a constant factor of n2. This is because the modification replaces the ~ i parents
of a vertex in U- with at most ~ Pi entries in the ancestors field. So, for a vertex v = (:,s,a) s.t. v
G U,, the ancestors field @ will be a subset of {(c,/c)|l < ¢ < p) where |/c|] ~ i. Summing from i —
0]...)n+ lgives <Nz or ~ N2 still as a worst case upper bound on space.

6. EMPIRICAL RESULTS

The variation on Tomita’s algorithm presented in Section 3 and the modified algorithm presented
in Section 4 have both been implemented in C. The graphs in figures 6.1 and 6.2 show empirical
results comparing the time and space requirements of both implementations. Each time/space graph
set corresponds to the grammars, G1, G2, and G3, which are dominated by productions of length 2, 3
and 4.

Gl S S S G2: S SSS
S X S S X
S X
steps steps
107 - Tomita’s
106 - Tomita’s
105 - _
104 Tomias . Modified
Modified Modified
103
102
N SR NS W, O B O ey ey S
10 20 30 40 50" 10 20 30 40 50 10 20 30 40 50

(a) (b) (©
Fig. 6.1—Comparison of Time Complexity

The time graphs in Figure 6.1 measure the number of calls to SHIFT, REDUCE, and ANCES-
TORS. The input sentences are strings of x’s of length 10 to 50. Our analysis of time complexity
predicts that the modified algorithm will take roughly the same number of steps for each grammar,
while the steps taken by Tomita’s algorithm will increase as a function of the length of the dominant
production. The empirical data gathered from our two implementations agrees with this prediction.
When n = 50, the modified algorithm took ~ 7000 steps for grammar G1 in Figure 6.1 (a), ~ 6000 for
G2 in Figure 6.1 (6), and — 10000 for G3 in Figure 6.1 (c); Tomita’s algorithm took ~ 44,000 steps
for grammar GI, ~ 660, 000 for G2, and ~ 7, 300,000 for G3.

space space space

() *) to
Fig. 6.2—Comparison of Space Complexity
The space graphs in Figure 6.2 measure the number of edges required by the graph-structured stack
(in Tomita’s algorithm) and the length of entries in the ancestors table (in the modified algorithm).
The number of vertices required is the same for both algorithms and is not counted; space that can
be reclaimed before scanning successive x,’s is also not counted. Our analysis of space complexity

-200- Intemational Parsing Workshop '89



predicts that Tomita’s algorithm will require ~ n2 space and that the modified algorithm will require
at most a factor of n2 additional space. The empirical evidence also agrees with this prediction. The
space requirements of the modified algorithm differs from Tomita’s algorithm by a factor of ~ 2.1 for
grammar Gl in Figure 6.2 (a), ~ 3.9 for G2 in Figure 6.2 (6), and ~ 4.7 for G3 in Figure 6.2 (c).

7. LESS THAN N3 TIME

Several of the better known general CF algorithms have been shown to run in less than 0(n3)
time for certain subclasses of grammars. Therefore, it is of interest to ask if Tomita’s algorithm, as
well as the modified version presented here, can also recognize some subclasses of CF grammars in less
than 0(n3) time. In this section, | informally describe two such subclasses that can be recognized in
0(n2) and O(n) time, respectively. The arguments for their existence parallel those given by Earley
(1968), where they are formally specified.

Time o (n2) Grammars. ANCESTORS is the only function that forces us to use ~ i? steps in
Tomita’s algorithm and ~ r steps in the modified algorithm. We determined that this could happen
when a ancestor vertex v' from Uj (j < i) reached the reducing vertex v in Ui by more than a single
path, i.e., the symbols x;-ee*x, were derived from a nonterminal Dp in more than one way, indicating
that grammar G is ambiguous. If G were unambiguous, then there would be at most one path from
a given V' to v. This means that the bounded calls to ANCESTORS(t>,p) can take at most ~ steps
and that ANCESTORS(uc",p) can take at most a bounded number of steps. The first observation is
due to the fact that there are ~ i ancestor vertices that can be reached in only one way. Similarly,
the second observation is due to the fact that if ANCESTORS”",p) took ~ i steps, returning ~ i
ancestors, and was called ~ i times, then some ancestor vertices must have shifted into Ui in more
than one way, which would be a contradiction, meaning grammar G must be ambiguous. So, if the
grammar is unambiguous, then the total time spent in REDUCE for any x< is ~ i and the worst case
time bound for the Tomita’s algorithm is 0(n2). A similar result is true for the modified algorithm.

Time O(n) Grammars. In his thesis, Earley (1968) points out that “ ... for sc le grammars the
number of states in a state set can grow indefinitely with the length of the string being recognized.
For some others there is a fixed bound on the size of any state set. We call the latter grammars
bounded state grammars.” While Earley’s “states” have a different meaning than states in Tomita’s
algorithm, a similar phenomena occurs, i.e., for the bounded state grammars there is a fixed bound on
the number of parents any vertex can have. In Tomita’s algorithm, bounded state grammars can be
recognized in time O(n) for the following reason. No vertex can have more than a bounded number of
ancestors (if otherwise, then —i vertices could be added to the parents of some vertex in Ui, proving
by contradiction that the grammar is not bounded state). This means that the ANCESTORS function
can execute in a bounded number of steps. Likewise, REDUCE can only be called a bounded number
of times. Summing over the x* gives us an upper bound ~ n. Again, a similar result is true for the
modified algorithm. Interestingly enough, Earley states that almost all LR(k) grammars are bounded
state, as well, which suggests that Tomita’s algorithm, given fc-symbol look ahead, should perform
with little loss of efficiency as compared to a standard LR(fc) algorithm when the grammar is “close”
to LR(fc). Earley also points out that not all bounded state grammars are unambiguous; thus, there
are non-LR(fc) grammars for which Tomita’s algorithm can perform with LR(&) efficiency.

8. CONCLUSION

The results in this paper support in part Tomita’s claim (1985) of efficiency for his algorithm.
With the modification introduced here, Tomita’s algorithm is shown to be in the same complexity
class as existing general CF algorithms. These results also give support to his claim that his algorithm
should run with near LR(fc) efficiency for near LR(fc) grammars.

It should be noted that while the modification to Tomita’s algorithm has theoretic interest it
would detract from a practical parser. Realistic grammars are constrained by the fact that they must
be human-readable. Since human-readable grammars should never realize the worst-case 0(n”~+1) time
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bound of Tomita’s algorithm, the benefits of the ancestors table in the modified algorithm would not
balance out its overhead cost. In this regard, the modified algorithm should not be viewed as an
“improvement” over Tomita’s algorithm but as a means of illustrating its place among other general
CF algorithms.

The variation on Tomita’s algorithm described in this paper, as well as the modified algorithm,
have been implemented in both LISP a..i C at The RAND Corporation. The LISP implementation
(Kipps, 1988) is distributed with ROSIE (Kipps et al., 1987), a language for applications in artifi-
cial intelligence with a highly ambiguous English-like syntax. The C implementation is part of the
RAND Translator-Generator project, which is developing a “next generation” YACC4 for non-LR(fc)
languages.
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The Computational Complexity of Tomita’s
Algorithm

Mark Johnson

April 26, 19S9

1 Introduction

The Tomita parsing algorithm adapts Knuth’s (1967) well-known parsing algo-
rithm for LR()t) grammars to non-LR grammars, including ambiguous gram-
mars. Knuth’s algorithm is provably efficient: it requires at most 0(n|G]) units
of time, where |G| is the size of (i.e. the number of symbols in) G and n is
the length of the string to be parsed. This is often significantly better than
the 0(n3|G|2) worst case time required by standard parsing algorithms such as
the Earley algorithm. Since the Tomita algorithm is closely related to Knuth’s
algorithm, one might expect that it too is provably more efficient than the Ear-
ley algorithm, especially as actual computational implementations of Tomita’s
algorithm outperform implementations of the Earley algorithm (Tomita 1986,
1987).

This paper shows that this is not the case. Two main results are presented in
this paper. First, for any m there is a grammar Lm such that Tomita’s algorithm
performs Q(nm) operations to parse a string of length n. Second, there is a
sequence of grammars Gm such that Tomitas algorithm performs f2(nclGm)
operations to parse a string of length n. Thus it is not the case that the Tomita
algorithm is always more efficient than Earley’s algorithm; rather there are
grammars for which it is exponentially slower. This result is forshadowed in
Tomita (1986, p. 72), where the author remarks that Tomita’s algorithm can
require time proportional to more than the cube of the input length. The result
showing that the Tomita parser can require time proportional to an exponential
function of the grammar size is new, as fair as | can tell.

2 The Tomita Parsing Algorithm

This section briefly describes the relevant aspects of the Tomita parsing al-
gorithm: for further details see Tomita (1986). Familiarity with Knuths LR
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parsing algorithm is presumed: see the original article by Knuth (1967), Aho
and Ullman (1972), or Aho, Sethi and Ullman (1986) for details.

The Tomita algorithm and Knulh’s LR parsing algorithm on which it is based
are both shift-reduce parsing algorithms, and both use the same LR automaton
to determine the parsing actions to be performed. The LR automaton is not
always deterministic: for example, if the grammar is ambiguous then at some
point in the analysis of an ambiguous string two difTerent parsing actions must be
possible that lead to the two distinct analyses of that string. Knuth’s algorithm
is only defined for grammars for which the parsing automaton is deterministic:
these are called the LR(k) grammars, where k is the length of the lookahead
strings. Tomita’s algorithm extends Knuth’s to deal with non-deterministic LR
automata.

Tomita’s algorithm in effect simulates non-determinism by computing all of
the LR stacks that result from each of the actions jf a non-deterministic LR
automaton state. Tomita’s algorithm mitigates the cost of this non-determinism
by representing the set of all the LR stacks possible at a given point of the parse
as a multiply-rooted directed acyclic graph called a graph-structured stack, which
is very similiar to a parsing chart (Tomita 1988). Each node of this graph
represents an LR state of one or more of the LR stacks, with the root nodes
representing the top states of LR parse stacks. The graph contains exactly one
leaf node (i.e. a node with no successors). This leaf node represents the start
state of the LR automata (since this is the bottom element of all LR parse
stacks), and each maximal path through the graph (i.e. from a root to the leaf)
represents an LR parse stack.

As each item in the input string is read all of the parsing actions called
for by the top state of each LR stack are performed, resulting in a new set of
LR stacks. Because of the way in which the set of LR stacks are represented,
Tomita’s algorithm avoids the need to copy the each LR stack in its entirity
at non-deterministic LR automaton states; rather the top elements of the two
(or more) new stacks are represented nodes whose successors are the nodes
that represent the LR stack elements they have in common. Similiarly, if the
same LR state appears as the top element of two or more new stacks then these
elements are represented by a single node whose immediate successors are the set
of nodes that represent the other elements of these LR stacks. This “merging” of
identical top elements of distinct LR stacks allows Tomita’s algorithm to avoid
duplicating the same computation in different contexts.

Finally, Tomita employs a packed forest representation of the parse trees in
order to avoid enumerating these trees, the number of which can grow expo-
nentially as a function of input length. In this representation there is at most
one node of a given category at any string location (i.e. a pair of beginning and
ending string positions), so the number of nodes in such a packed forest is at
most proportional to the square of the input length. Each node is associated
with a set of sequences of daughter nodes where each sequence represents one
possible expansion of the node; thus the trees represented can easily be “read
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off” the packed forest representation.

3 Complexity as a Function of Input Length

The rest of this paper shows the complexity results claimed above. This section
describes a sequence of grammars Lm such that on sufficiently long inputs the
Tomita algorithm performs more than Q(nm) operations to parse an input of
length n. This result follows from properties of the packed forest representation
alone, so it applies to any algorithm that constructs packed forest representa-
tions of parse trees.

Consider the sequence of grammars Lm for m > 0 defined in (1), where
5m+2 abbreviates a sequence of S’s of length m + 2.

5—a
5 —55 (1)
S *5m+2

All of these grammars generate the same language, namely the set of strings
a+. Consider the input string am+2 for n > m. By virtue of the first two rules in
(1) any ncin-empty string location can be analyzed as an 5. Thus the number of
different sequences of daughter nodes of the matrix or top-most 5 node licensed
by the third rule in (1) is {ma1) the number of ways of choosing different right
string positions of the top-most 5 node’s first m + 1 daughters. Since (m+L)
is a polynomial in n of order m + 1, it is bounded below by cnm for some
¢ > 0 and sufficiently large n, i.e. Since any algorithm which
uses the packed forest representation, such as Tomita’s algorithm, requires the
construction of these sequences of daughter nodes, any such algorithm must
perform Q(nm) operations.

Finally, it should be noted that this result assumes that the sequences of
daughter nodes are completely enumerated. It might be possible these sequences
could themselves be “packed” in such a fashion that avoids their enumeration,
possibly allowing the packed forest representations to be constructed in polyno-
mial time.

4 Complexity as a Function of Grammar Size

This section shows that there are some grammars such that the total number
of operations performed by the Tomita algorithm is an exponential function of
the size of the grammar.

The amount of work involved in processing a single input item is proportional
to the number of distinct top states of the set of LR stacks corresponding to
the different non-deterministic analyses of the portion of the input string shown
so far. By exhibiting a sequence of grammars in which the number of such
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states is an exponential function of the size of the grammar we show that the
total number of operations performed by the Tomita algorithm can be at least
exponentially related to the size of the grammar.

Consider the sequence of grammars for m > 0 defined in (2).
5- A o<i<m
4 - BjAi 0<ij<m,inj
Ax- Bj  0<i,j<m,ijkj ©
Bj —a 0<j<m

All of the grammars Gm generate the same language, namely the set of
strings a+. Since these grammars are ambiguous they are not LR(t) for any k.
Consider the behaviour of a non-deterministic LR parser for the grammar
Gm on an input string an where n > m. The items of the start state are shown

in (3).

S — -4
Ai - ®BjAi . .

At. B 0<ij<m,j )
Bj — a

The parser shifts over the first input symbol a to the state shown in (4)

(Bi —a] 0<j<m (4)

This is a non-deterministic state, since all of the m reductions Bj — a are

possible parsing actions from this state. Suppose that the reduction to BKI is

chosen. The state that results from the reduction to Bkl is shown in (5). There
are m such states.

Ai — Bj-, *.4,
Ai - Bkr
Ai — BjAi 0< j<mtif j, k! (5
Ai - B
Bj — a

After shifting over the next input symbol the parser again reaches the same
ambiguous state as before, namely the state shown in (4). Suppose the reduction
to Bki * chosen. If Bt, = B*, then the resulting state is the one shownin (5).
On the other hand, if Bt, Bjei then the resulting state is as shown in(6).
There are m(m—I)/2 distinct states of the form shown in (6), so after reducing
Bk2 there will be m(m + 1)/2 distinct LR states in all.

Al Bkt +Ai

Al

Al =B}AI 6)
Al Bj

B, -a
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It is not hard to see that after n > m input symbols have been read and

reduced to 5t, ... BkK respectively the resulting state will be as shown in (7).
4 —Bxne 4
4, - Bkn,-
4, — mBJAI 0< i,j <m,i j,kie. @)
4, — Bj
Bj — -a

Since there are 2m — 1 distinct such states, the Tomita parser must perform
at least 2m — 1 computations per input item after the first m items have been
read. Since \GmM\ — 5m2 —m = 0(m 2), the ratio of the average number of
computations per input item for a sufficiently long string to grammar size is
Q(2rn/m 2) = Q(cm) for some ¢ > 1 Thus the total number of operations
performed by the parser i< Q(c|G,n?), exponential function of grammar size.

5 Conclusion

The results just demonstrated do not show that Tomita’s algorithm is always
slower than polynomially bounded algorithms such as Earley’s, in fact in practice
it is significantly faster than Earley's algorithm (Tomita 1986). On the other
hand, the results presented here show that this superior performance is not
just a property of the algorithm alone, but also depend on properties of the
grammars (and possibly the inputs) used. It would be interesting to identify
the properties that are required for efficient functioning of Tomita’ algorithm.

Second, it might possible to modify Tomita’s algorithm so that it provably
requires at most polynomial time. For example, requiring all grammars used
by the algorithm to be in Chomsky Normal Form would prohibit the grammars
used to show that Tomita’s algorithm does not always run in polynomial time.
Whether this restriction would ensure polynomial time behaviour with respect
to input length is an open question (note that the grammars used to show the
exponential complexity with respect to grammar size are already in Chomsky
Normal Form).

Finally, the non-polynomial behaviour of Tomita’ algorithm with respect
to input length followed from the properties of the packed forest representa-
tion of parse trees, so it follows that any algorithm which uses packed forest

representations will also exhibit non-polynomial behaviour.
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Probabilistic Parsing for Spoken Language Applications

Stephanie Seneff
Spoken Language Systems Group
Laboratory for Computer Science
MIT Cambridge, MA 02139

Abstract

A new natural language system, T ina, has been developed for applications involving spoken language
tasks, which integrates key ideas from context free grammars, Augmented Transition Networks (ATN’s) [6],
and Lexical Functional Grammars (LFG?’) [1]. The parser uses a best-first search strategy, with probability
assignments on all arcs obtained automatically from a set of example sentences. An initial context-free
grammar, derived from the example sentences, is first converted to a probabilistic network structure. Control
includes both top-down and bottom-up cycles, and key parameters are passed among nodes to deal with long-
distance movement, agreement, and semantic constraints. The probabilities provide a natural mechanism
for exploring more common grammatical constructions first. One novel feature of Tina is that it provides
an automatic sentence generation capability, which has been very effective for identifying overgeneration

problems. A fully integrated spoken language system using this parser is under development.

1 Introduction

Most parsers have been designed with the assumption that the input word stream is determin-
istic: i.e., at any given point in the parse tree it is known with certainty what the next word is. As
a consequence, these parsers generally cannot be used effectively, if at all, to provide linguistically
directed constraint in the speech recognition component of a speech understanding system. In a
fully integrated speech understanding system, the recognition component should only be allowed
to propose partial word sequences that the natural language component can interpret; any word
sequences that are syntactically or semantically anomalous should probably be pruned prior to the
acoustic match, rather than examined for approval in a verification mode. To operate in such a
fully integrated mode, a parser has to have the capability of considering a multitude of hypotheses
simultaneously. The control strategy should have a sense of which of these hypotheses, considering
both linguistic and acoustic evidence, is most likely to be correct at any given instant in time,
and to pursue that hypothesis only incrementally before reexamining the evidence. The linguistic
evidence should include probability assignments on proposed hypotheses; otherwise the perplexity
of the task becomes too high for practical recognition applications.

This paper describes a natural language system, T ina, Which addresses many of these issues.
The grammar is constructed by converting a set of context-free rewrite rules to a form that merges
common elements on the right-hand side (RHS) of all rules sharing the same left-hand side (LHS).
Elements on the LHS become parent nodes in a family tree. Through example sentences, they
acquire knowledge of who their children are and how they can interconnect. Such a transformation
permits considerable structure sharing among the rules, as is done in typical shift-reduce parsers [5].
Probabilities are established on arcs connecting pairs of right siblings rather than on rule produc-
tions. This has several advantages, which will be discussed later. Context-dependent constraints
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to deal with agreement and gaps are realized through simple logical functions applied to flags or
features passed among immediate relatives.

2 General Description

T ina IS basically a context-free grammar, implemented by expansion at run-time into a network
structure, and augmented with flags/parameters that activate filtering operations. The grammar
is built from a set of training sentences, using a bootstrapping procedure. Im ally, each sentence
is translated by hand into a list of the rules invoked to parse it. After the grammar has built
up a substantial knowledge of the language, many new sentences can be parsed automatically, or
with minimal intervention to add a few new rules incrementally. The arc probabilities can be
incrementally updated after the successful parse of each new sentence.

The process of converting the rules to a network form is straightforward. All rules with the
same LHS are combined to form a structure describing possible interconnections among children of
a parent node associated with the left-hand category. A probability matrix connecting each possible
child with each other child is constructed by counting the number of times a particular sequence of
two siblings occurred in the RHS s of the common rule set, and normalizing by counting all pairs
from the particular left-sibling to any right sibling. Two distinguished nodes, a START node and
an END node, are included among the children of every grammar node. A subset of the grammar
nodes are terminal nodes whose children are a list of vocabulary words.

This process can be illustrated with the use of a simple example. Consider the following three
rules:

NP =$> ARTICLE NOUN
NP => ARTICLE ADJECTIVE NOUN
NP => ARTICLE ADJECTIVE ADJECTIVE NOUN

These would be converted to a network as shown in Figure 1, which would be associated with a
grammar node named NP. Since adjective is followed twice by noun and once by adjective,
the network shows a probability of 1/3 for the self loop and 2/3 for the advance to NOUN. Notice
that the system has now generalized to include any number of adjectives in a row.

.33

33

Figure 1: Probablistic Network Resulting from three Context-Free Rules given in Text.

A functional block diagram of the control strategy is given in Figure 2. At any given time, a
set of active parse nodes are arranged on a priority queue. Each parse node contains a pointer to
a corresponding grammar node, and has access to all the information needed to pursue its partial
theory. The top node is popped from the queue, and it then creates a number of new nodes (either
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children or right siblings depending 01l its state), and inserts them into the queue according to
their probabilities. If the node is an END node, it collects up all subparses from its sequence of
left siblings, back to the START node, and passes the information up to the parent node, giving
that node a completed subparse. The process can terminate on the first successful completion of a
sentence, or the Nth successful completion if more than one hypothesis is desired.

Figure 2: Functional Block Diagram of Control Strategy.

A parse in Tina begins with a single parse node linked to the grammar node SENTENCE, which
is entered on the queue with probability 1.0. This node creates new parse nodes with categories like
STATEMENT, QUESTION, and REQUEST, and places them on the queue, prioritized. If STATEMENT is
the most likely child, it gets popped from the queue, and returns nodes indicating SUBJECT, IT, etc.,
to the queue. When SuBJECT reaches the top of the queue, it activates units such as NOUN-GROUP
(for noun phrases and associated post-modifiers), gerund, and noun-clause. Each node, after
instantiating first-children, becomes inactive, pending the return of a successful subparse from a
sequence of children. Eventually, the cascade of first-children reaches the terminal-node ARTICLE,
which proposes the words “the,” “a,” and “an,” testing these hypotheses against the input stream.
If a match with “the” is found, then the article node fills its subparse slot with the entry (ARTICLE
“the”), and activates all of its possible right-siblings.

Whenever a terminal node has successfully matchcd an input word, the path probability is

-211- International Parsing Workshop '99



reset to 1.0. Thus the probabilities that are used to prioritize the queue represent not the total
path probability but rather the probability given the partial word sequence. Each path climbs up
from a terminal node and back down to a next terminal node, with each new node adjusting the
path probability by multiplying by a new conditional probability. The resulting conditional path
probability for a next word represents the probability of that word in its syntactic role given all
preceding words in their syntactic roles. With this strategy, a partial sentence does not become
increasingly improbable as more and more words are added. I.

Because of the sharing of common elements on the right hand side of rules, T ina can auto-
matically generate new rules that were not explicitly provided. For instance, having seen the rule
X = A B C and the rule X == B C D, the system would automatically generate two new rules,
X = B C, and X = A B C D. Although this property can potentialy lead to certain problems with
overgeneration, there are a number of reasons why it should be viewed as a feature. First of all, it
permits the system to generalize more quickly to unseen structures. For example, having seen the
rule AUX-QUESTION => AUX subject PREDICATE (as in "May 1 go?”) and the rule AUX-QUESTION
=> have SUBJECT LINK PR.ED-adjECTIVE (as in “Has he been good?”), the system would also
understand the forms aux-question => have subject predicate (as in “Has he left?”) and
AUX-QUESTION => aux subject link pred-adjective (as in “Should 1 be careful?”).2 Secondly
it greatly simplifies the implementation, because rules do not have to be explicitly monitored during
the parse. Given a particular parent and a particular child, the system can generate the allowable
right siblings without having to note who the left siblings (beyond the immediate one) were. Fi-
nally, and perhaps most importantly, probabilities are established on arcs connecting sibling pairs
regardless of which rule is under construction. In this sense the arc probabilities behave like the
familiar word-level bigrams of simple recognition language models, except that they apply to sib-
lings at multiple levels of the hierarchy. This makes the probabilities meaningful as a product of
conditional probabilities as the parse advances to deeper levels of the parse tree and also as it
returns to higher levels of the parse tree. All of the conditionals can be made to sum to one for
any given choice, and everything is mathematically sound.

One negative aspect of such cross fertilization is that the system can potentially generalize to
include forms that are agrammatical. For instance, the forms “Pick the box up” and “Pick up
the box,” if defined by the same LHS name, would allow the system to include rules producing
forms such as “Pick up the box up” and “Pick up the box up the box!” This problem can be
overcome either by giving the two structures different LHS names or by grouping “up the box”
and “the box up” into distinct parent nodes, adding another layer to the hierarchy on the RHS.
A third alternative is to include a particte slot among the features which, once filled, cannot be
refilled. In fact, there were only a few situations where such problems arose, and they were always
correctable.

3 Constraints and Gaps

This section describes how Tina handles several issues that are often considered to be part of
the task of a parser. These include agreement constraints, semantic restrictions, subject-tagging for
verbs, and long distance movement (often referred to as gaps, or the trace, as in “(which article)*

‘Some modification of this scheme will be necessary when the input stream is not deterministic. See [4] for a
discussion of these very important issues regarding scoring in a best-first search.
2The auxiliary verb sets the mode of the main verb to be root, or past participle as appropriate.
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do you think I should read (£,)?”). T ina is particulary effective in handling gaps. Complex cases of
nested or chained gaps are handled correctly, and appropriately ill-formed gaps are rejected. The
mechanism resembles the Hold register idea of ATN’s [6] and the treatment of bounded domination
metavariables in LFG’s ([1], p. 235 ff), but | believe it is more straightforward than both of these.

3.1 Design Philosophy

Our approach to the design of a constraint mechanism is to establish a simple framework that
is general enough to handle syntactic, semantic, and, ultimately, phonological constraints using
identical functional procedures. The grammar is expressed as context-free rewrite rules without
constraints. The constraints reside instead with the individual nodes of the tree that are established
when the grammar is converted to a network structure. In effect, the constraint mechanism is thus
reduced from a two-dimensional to a one-dimensional domain. Thus, for example, it would not be
permitted to write an f-structure [1] equation of the form suBJ~f => NP associated with the rule
Vp => VERB NP INF, to cover, “I told John to go.” Instead, the Np node (regardless of its parent)
would generate a cCURRENT-Focus from its subparse, which would be passed along passively to the
verb “go.” The verb would then simply consult the cURRENT-Focus (regardless of its source) to
establish its subject.

3.2 Constraints

Each parse node comes equipped with a number of slots for holding constraint information that
is relevant to the parse. Included are person and number, case, determiner (definite, INDEFINITE,
proper, etc.), mode (RooOT, finite, etc.), and semantic categories. These features are passed along
from node to node: from parent to child, child to parent, and left-sibling to right-sibling. Certain
nodes have the power to adjust the values of these features. The adjustment may take the form
of an unconditional override, or it may involve a unification with the value for that feature passed
to the node from a parent, sibling, or child. The filters are restricted in power in two important
ways: 1) A filter can only operate on data that are available to the immediate parse node that
instantiates the filter, and 2) A filter must be restricted in action to simple logical operations such
as AND, SET, RESET, etc.

Some specific examples of constraint implementations will help explain how this works. Certain
nodes specify person/number/determiner restrictions which then propagate up to higher levels
and back down to later terminal nodes. Thus, for example, A noun-PL node sets the number to
PLURAL, but only if the left sibling passes to it a description for number that includes PLURAL as
a possibility (otherwise it dies, as in “each boats”). This value then propagates up to the subject
node, across to the PREDICATE node, and down to the verb, which then must agree with PLURAL,
unless its MODE is marked as non-finite. Any non-auxilliary verb node blocks the transfer of any
predecessor person/number information to its right siblings, reflecting the fact that verbs agree in
person/number with their subject but not their object.

A more complex example is a compound noun phrase, as in “Both John and Mary have decided
to go.” Here, each individual noun is singular, but the subject requires the plural form of “have.”
Tina deals with this by making use of a node category and-noun-phrase, which sets the number
constraint to PLURAL for its parents, and blocks the transfer of number information to its children.
Some nodes also have special powers to set the mode of the verb either for their children or for
their right-siblings. Thus, for example, “have” as an auxilliary verb sets mode to PAST-PARTICIPLE
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for its nght-siblings. The category GERUND sets the mode to PRESENT-PARTICIPLE for its children.
Whenever a predicate node is invoked, the verb’s mode has always been set by a predecessor.

SENTENCE

QUESTION

Figure 3: Example of a Parse Tree lllustrating a Gap.

3.3 Gaps

The mechanism to deal with gaps resembles in certain respects the Hold register idea of ATN'’s,
but with an important difference, reflecting the design philosophy that no node can have access
to information outside of its immediate domain. The process of getting into the Hold register (or
the float-object slot, using my terminology) requires two steps, executed independently by two
different nodes. The first node, the generator, fills the cCURRENT-FOcus slot with the subparse
returned to it by its children. The second node, the activator, moves the CURRENT-FOCUS into
the FLOAT-OBJECT position, for its children. It also requires that the float-object be absorbed
somewhere among its descendants by a designated absorber node. The CURRENT-Focus only gets
passed along to siblings and their descendants, and hence is unavailable to activators at higher
levels of the parse tree. Finally, certain (blocker) nodes block the transfer of the FLOAT-OBJECT to
their children.

A simple example will help explain how this works. For the sentence “(How many pies),- did
Mike buy (t,)?n as illustrated by the parse tree in Figure 3, the g-subject “how many pies” is
a generator, so it fills the CURRENT-FOCUS with its subparse. The DO-QUESTION is an activator;
it moves the CURRENT-FOCUS into the float-object position. Finally, the object of “buy,” an
absorber, takes the gq-subject, as its subparse. The po-QUEsTION refuses to accept any solutions
from its children if the FLOAT-0BJECT has not been absorbed. Thus, the sentence “How many pies
did Mike buy the pies?” would be rejected. Furthermore, the same po-QUESTION node deals with
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the yes/no question “Did Mike buy the pies?/ except in this case there is no current-focus and
hence NO gap.

More complicated sentences involving nested or chained traces, are handled staightforwardly
by this scheme. For instance, the phrase, “(the violin), that (these Sonatas); are easy to play
(tj) on (t,)” can be parsed correctly by Tina, identifying “Sonatas” as the object of “play” and
“violin” as the object of "on.” This works because the verb-phrase-p-o, an activator, writes over
the FLOAT-OBJECT “violin” with the new entry "Sonatas,” but only for its children. The original
FLOAT-OBJECT is still available to fill the oBJECT slot in the following prepositional phrase.

The example used to illustrate the power of ATN's [6], Mohn was believed to have been shot,”
also parses correctly, because the oBJECT node following the verb “believed” acts as both an
absorber and a (re)generator. Cases of crossed traces are automatically blocked because the second
CURRENT-FOCUS gets moved into the FLOAT-OBJECT position at the time of the second activator,
overriding the preexisting FLOAT-OBJ ECT set up by the earlier activator. The wrong FLOAT-OBJECT
is available at the position of the first trace, and the parse dies:

*(Which books), did you ask John (where)j Bill bought (t,) (t*)?

The CURRENT-FOCUS slot is not restricted to nodes that represent nouns. Some of the generators
are adverbial or adjectival parts-of-speech (pos). An absorber checks for agreement in POS before
it can accept the FLOAT-OBJECT as its subparse. As an example, the question, “(How oily), do you
like your salad dressing (t,)?” contains a Q-SUBJECT "how oily” that is all adjective. The absorber
PRED-ADJECTIVE accepts the available fioat-object as its subparse, but only after confirming that
POS is ADJECTIVE.

The CURRENT-FOCUS has a number of other uses besides its role in movement. . It always
contains the subject whenever a verb is proposed, including verbs that are predicative objects of
another verb, as in “l want to go to China.” In the case of passive voice, it contains °NIL at the
time of instantiation of the verb. It has also been found to be very effective for passing semantic
information to be constrained by a future node, and it plays an integral role in pronoun-reference.
These issues are addressed more fully in [4]

3.4 Semantic Filtering

In the most recent version of the parser, we implemented a number of semantic constraints using
procedures that were very similar to those used for syntactic constraints. We found it effective
to filter on the ACTIVE-NOUN’s semantic category, as well as to constrain absorbers in the gap
mechanism to require a match on semantics before they could accept a float-object. Semantic
categories were implemented in a hierarchy such that, for example, restaurant automatically
inherits the more general properties building and place. We also introduced semantically-loaded
categories at the low levels of the parse tree. It seems that, as in syntax, there is a trade-off between
the number of unique node-types and the number of constraint filtering operations. At low levels
of the parse tree it seems more efficient to label the categories, whereas information that must pass
through higher levels of the hierarchy is better done through constraint filters.
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4 Practical Issues

Two unique practical aspects of T ina’s design are its generation-mode capability and its ability
to build a grammar automatically from a set of parsable sentences. We have found generation
mode to be an essential tool for identifying overgeneration problems in the grammar. The ability
to automatically provide a subset grammar for a set of sentences makes it easy to design a very
specific, well constrained grammar, leading to improved performance in restricted-domain spoken
language tasks.

Generation mode uses the same low-level routines as those used by the parser, but chooses
only a single path based on the outcome of a random-number generator. Since all of the arcs
have assigned probabilities, the parse tree is traversed by generating a random number at each
node and deciding which arc to take based on the outcome, using the arc probabilities to weight
the alternatives. Occasionally, the generator chooses a path which leads to a dead end, due to
unanticipated constraints. In this case, it can back up and try again. Table 1contains five examples
of consecutively generated sentences. Since these were not selectively drawn from a larger set, they
accurately reflect the current performance level. Because a number of semantic filtering operations
have been applied within this task, most of the generated sentences are semantically as well as
syntactically sound.

It is a two-step procedure to acquire a grammar from a specific set of sentences. The rule set
is first built up gradually, by parsing the sentences one-by-one, adding rules and/or constraints
as needed. Once a full set of sentences has been parsed in this fashion, the parse trees from the
sentences are automatically converted to the set of rules used to parse each sentence. The training
of both the rule set.and the probability assignments is established directly from the provided set
of parsed sentences; i.e. the parsed sentences are the grammar.

Another useful feature of TINA is that, as in LFG’s, all unifications are nondestructive, and as a
consequence explicit back-tracking is never necessary. Every hypothesis on the queue is independent
of every other one, in the sense that activities performed by pursuing one lead do not disturb the
other active nodes. This feature makes T ina an excellent candidate for parallel implementation.
The control strategy would simply ship off the most probable node to an available processor.

Table 1: Sample sentences generated consecutively by the most recent version of Tina.

Do you know the most direct route to Broadway Avenue from here?

Can | get Chinese cuisine at Legal’s?

I would like to walk to the subway stop from any hospital.

Locate a T-stop in Inman Square.

W hat kind of restaurant is located around Mount Auburn in Kendall Square of East Cambridge?

5 Discussion

This paper describes a new grammar formalism that addresses issues of concern in building a
fully integrated speech understanding system. The grammar includes arc probabilities reflecting
the frequency of occurrence of the syntactic structures within the domain. These probabilities are
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used to control the order in which hypotheses are considered, and are trained automatically from
a set of parsed sentences, which makes it straightforward to tailor the grammar to a particular
need. Ultimately, one could imagine the existence of a very large grammar that could parse almost
anything, which would be subsetted for a particular task by simply providing it with a set of
example sentences within that task.

| believe that, at the time a set of word candidates is proposed to the acoustic matcher of a
recognizer, all of the constraint available from the restrictive influence of syntax, semantics, and
phonology should have already been applied. The parse tree of Tina can be used to express
various constraints ranging from acoustic-phonetic to semantic and pragmatic. Each parse node
would contain slots for all kinds of constraint information - syntactic filters such as person, number
and mode, semantic filters such as the permissible semantic categories for the subject/object of
the hypothesized verb, and acoustic-phonetic filters (for instance, restricting the word to begin
with a vowel if the preceding word ended in a flap, as in "Wha/ is”). As the parse tree advances,
it accumulates additional constraint filters that further restrict the number of possible next-word
candidates. Thus the task of the predictive component is formulated as follows: given a sequence
of words that has been interpreted to the fullest capability of the syntactic/semantic/phonological
components, what are the likely words to follow, and what are their associated a priori probabilities?

While TINA’s terminal nodes are lexical words, | believe that the nodes should continue down
below the word level. Prefixes and suffixes alter the meaning/part-of-speech in predictable ways,
and therefore should be represented as separate subword grammar units that can take certain
specified actions. Below this level would be syllabic units, whose children are subsyllabic units such
as onset and rhyme, finally terminating in phoneme-like units. Acoustic evidence would enter at
several stages. Important spectral matches would take place at the terminal nodes, but duration
and intonation patterns would contribute to scores at many higher levels of the hierarchy.

Three different task-specific versions of Tina have been implemented. The first one was designed
to handle the 450 “phonetically rich” sentences of the TIMIT database [2]. The system was then
ported to the DARPA Resource Management domain. A number of evaluation measures have been
applied for these tasks, as described in [3]. Little else will be said here, except to note that perplexity
was reduced nine-fold for the Resource Management task when arc probabilities established from
the training data were incorporated, instead of using the equal-probability scheme. The latest
version has been tailored to the new voyager task, under development at MIT. This task involves
navigational assistance within a geographical region. Our goal is to utilize constraints offered
by both syntax and semantics so as to reduce perplexity as much as possible without sacrificing
coverage. The parser is implemented on the Symbolics Lisp machine and runs quite efficiently. A
sentence, entered in text form, is typically processed in a fraction of a second.

An effort to integrate the Voyager, version of Tina with the summit speech recognition
system [7] is currently underway. Two important issues are 1) how to combine the scores for
the recognition component and the predictive component of the grammar, and 2) how to take
advantage of appropriate pruning strategies to prevent an explosive search problem. The fully
integrated spoken language system will use Tina both to constrain the recognition space and to
provide an input to the back-end. Our current approach is to link together all words and all start-
times that are equivalent within the parse, letting them proceed at a pace in accordance with the
best-scoring word/time for the set. Viterbi pruning can take place within the recognizer, by having
each terminal node initialize the recognizer with all the active phonetic nodes provided by its set
of active hypotheses.
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Connectionist Models of Language

James L McClelland

Traditional models of language processing process language by rule. This approach faces two p oblems.
First, there are difficulties in using the rules during processing, since often one rule must be pitted against
another. In this case traditional approaches face the difficult problem of deciding which rule should win in
such cases. Second, there are difficulties in acquiring rules, since it is often hard to know when a rule

should be proposed, or when a sentence should be handled as one of many special cases.

In the connectionist approach my colleagues and | have been taking, language processing is viewed as a
constraint satisfaction process. Each constituent of a sentence is viewed as imposing constraints on the
representation of the state or event described by the sentence. During processing, as each constituent is

encountered/it constrains the evolving representation of the sentence.

The knowledge that governs this constraint satisfaction is stored in the strengths of the connections
among the units in a connectionist network. These connection strengths encode the knowledge that is
traditionally encoded in the form of rules, but have the advantage that they are naturally capable of
capturing constraints that differ in magnitude or degree. The acquisition of these connection strengths
occurs through a connection adjustment process based on the back-propagation learning algorithm. The
algorithm performs gradient descent in a measure of the extent to which the answers that the network
gives to questions about the event described by a sentence actually match the probability that those
answers are correct given the sentence. This algorithm is able to learn to assign the correct

interpretations even when there are conflicting cues to the correct interpretation of a sentence.

To date this approach has been applied successfully to the processing of one-clause sentences. We
have shown that it can learn to assign meanings to sentences containing vague and ambiguous words;
that it fills in implicit arguments, and that it can use both word meaning and word order information

correctly in making assignments of constituents to roles.

Current extensions focus on improving the rate of learning and on extending the approach to sentences
of arbitrary complexity. In this regard we have recently established that a simpler variant of the model
used for the comprehension of one-dause sentences is capable of learning, from a finite set of examples,

to process all of the infinite corpus of sentences generated by a Finite State Automaton.
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A Connectionist Parser Aimed at Spoken Language

Ajay Jain  Alex Waibel

School of Computer Science
Carnegie Mellon University
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Abstract

We describe a connectionist model which learns to parse single sentences from sequential word input. A parse in
the connectionist network contains information about role assignment, prepositional attachment, relative clause
structure, and subordinate clause structure. The trained network displays several interesting types of behavior.
These include predictive ability, tolerance to certain corruptions of input word sequences, and some generalization
capability. We report on experiments in which a small number of sentence types have been successfully learned by
a network. Work is in progress on a larger database. Application of this type of connectionist model to the area of
spoken language processing is discussed
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Introduction

Traditional methods employed in parsing natural language have focused on developing powerful formalisms to
represent syntactic and semantic structure along with rules for transforming language into these formalisms. The
builders of such systems must accurately anticipate and model all of the language constructs that their systems will
encounter.  Spoken language, with its weak grammatical structure, complicates matters. We believe that
connectionist networks which learn to transform input word sequences into meaningful target representations offer
advantages in this area.

Much work has been done applying connectionist computational models to various aspects of language
understanding. Some researchers have used connectionist networks to implement formal grammar systems for use
in syntactic parsing [1,5, 10,6]. These networks do not learn their grammars. Other work has focused on
semantics [8, 11,3,2] but either ignored parsing, or the networks did not learn to parse. The networks presented in
this paper learn their own "grammar rules" for transforming an input sequence of words into a target representation,
and learn to use semantic information to do role assignment

The remainder of this paper is organized as follows. First, there is a description of our network formalism. Next,
we describe in detail a modest experiment in which a network was taught to parse a small class of sentences. We
show how the network behaves with some novel sentences and with sentences that have been corrupted as in spoken
language. Then, we show how we have generalized our architecture to model a much larger class of sentences and
discuss the work as it currently stands. Lastly, we offer some concluding remarks about this work and suggest
future directions.

Network Formalism

The most common type of deterministic connectionist network is a back propagation network [9]. Processing
units are connected to each other, and each connection has an associated weight Connections are unidirectional.
Units have an activity value and an output value which is usually a sigmoidal function of the activity. For a
connection from unit A to unit B, we define the stimulation along the connection to be the output value of unit A
multiplied by the weight associated with the connection. A unit’s activity is simply the sum of the stimulation along
each of its input connections. A network learns input / output mappings by iteratively updating its weight values
using a gradient descent technique.

Spoken language is an inherently sequential domain, and standard back propagation is not well suited to such a
task. Recently, some recurrent extensions to back propagation where sequences of connections can form cycles
have been proposed that can handle sequential input [4,7]. Our networks extend these notions by explicitly
accounting for time in our processing units. Units have activities which decay during each discrete time step by a
constant factor. Thus, the activation of a unit can be built up over time from repetitive weak stimulation. Activity
values are also damped to prevent unstable behavior. By gently "integrating” activities, the network has time to
adapt to new information smoothly.

The activity of a unit is passed through a sigmoid squashing function to produce an output value as in standard
back propagation. In addition, a value called the velocity is calculated. It is the rate of change of the output of a
unit. Each connection in the network has two weights associated with it -- one for the output value and one for the
velocity value. The velocity values are important to represent dynamic behavior which depends on changes in
activation more than on absolute activation.

In order to facilitate symbolic processing, we use special units, called gating units, which gate the connections
between groups of units. Fig. 1diagrams the behavior of gating units. Slot C represents a particular word. It can be
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Figure 1. Gating Units

assigned to either slot A or slot B. The connections from the units of Slot C to both Slots A and B are gated by the
two units below the slots (the connections are not shown here). In this case, the gating unit for slot A becomes
active (see the right hand side of the diagram), and the pattern of activation across slot C becomes active across sloe
A. This type of assignment behavior can, in principle, be learned by a network without using gating units but is
computationally wasteful.

Parsing Sentences

Our domain for this experiment consists of active and passive sentences consisting of up to 3 noun phrases and 2
verb phrases each. There are three roles for nouns to fill for each verb -- agent, patient, and recipient. The network
also models subordinate and relative clause structure as well as prepositional attachment The lexicon consists of 40
words which are divided into 7 "asses -- nouns, verbs, adjectives, adverbs, auxiliaries, prepositions, and
determiners. Each word is defined at most once within a class, but some words belong to two classes.

Words are represented as patterns of activation across a set of feature units. There are seven sets of feature units,
one for each class of words. The pattern for a word consists of two parts: a feature part and an identification part.
The feature part contains a small set of binary features encoding semantic information about a word. The
identification part serves to disambiguate words which have identical feature parts (like a serial number). This
allows one to add words to the lexicon which have the same features as existing words without any re-training of the
network (the modifiable connections of the network do not connect to any identification units). Our 40 word lexicon
is in a virtual sense much larger than 40 words. Each word is associated with one unit in the network which has
hard-wired connections to excite the appropriate pattern across the feature units. A sentence is presented to the
network by stimulating the word units corresponding to the words in the sentence each for a short time in sequence.

The target representation for sentences in the network has two levels: the Phrase level and the Structure level.
Refer to Fig. 2 for a picture of the network structure. The Phrase level consists of groups of units called blocks,
each of which contain a noun or a verb and its modifiers. A noun block has slots for a noun, two adjectives, a
preposition, and a determiner. A verb block has slots for a verb, an auxiliary, and an adverb. There are 3 noun
blocks and 2 verb blocks. Each block captures a phrase. The blocks are filled in order, with the first noun phrase
occupying the first noun block, the second NP occupying the second noun block, and so on. The exact ordering
relationship between the verb phrases and the noun phrases is lost in this representation, but due to the simplicity of
the sentences this is not a problem.

The units in the Structure level describe the relationships between the phrases in the Phrase level the clauses they
make up. There are six relationships possible:
* Agent: Noun block (NB) is agent of Verb block (VB). Group of 3 by 2 units.
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Figure 2: Network Structure
* Patient: NB is patient of VB. Group of 3x2.
* Recipient: NB is recipient of VB. Group of 3x2.
* Prepositional Modification: NB modifies other NB. Group of 3x3.

Relative Clause: VB modifies NB. Group of 2x3.

e Subordinate Clause: VB subordinate to other VB. Group of 2x2.
The sentence, "John gave a bone to the old dog." is shown in Fig. 2.

In Fig. 2, the units shown in thick lined boxes have modifiable input connections - they learn their behavior. The
gating units at the Phrase level share a group of hidden units. These hidden units have connections from the feature
units, the noun and verb blocks, and the gating units themselves. The Phrase level forms a recurrent subnetwork.
The representation units of the Structure level also share a set of hidden units. These hidden units *'see' all that the
other set of hidden units see plus the structure representation units. The Structure level also forms a recurrent
subnetwork. None of the hidden units have connections to the identification bit portions of the slots in the network.

The network whose performance we will characterize below was trained in two phases. First, the gating units in
the Phrase level which are responsible for the behavior of the slots of the noun and verb blocks were trained. Their
behavior is quite complex. They must learn to turn on when a word appears across the feature units for their slot
(and their slot is supposed to be filled), stay on until the word disappears (even after the word has been assigned to
the slot), mm off sharply, and stay off even when another word appears across their feature units. They must also
learn to overwrite or empty out incorrectly assigned slots. Words get assigned incorrectly when they have
representations in more than one class and there is insufficient information to disambiguate the usage. The word

was™ has representations both as a verb and as an auxiliary verb. The network must assign it to both the auxiliary
and the verb slots of the current verb block, and disambiguate the assignment when the next word comes in by either
overwriting the verb slot with the real verb or emptying out the auxiliary slot

The next Phase involves adding the Structure level and training the structure representation units. The targets for
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the structure units are set at the beginning of a sentence and remain the same for the whole sentence. This forces the
units to try to make decisions about sentence structure as early as possible; otherwise, they accumulate error signals.
On the surface, it may seem that these units should have more or less monotonic behavior. However, the sentences
in our domain do not necessarily contain sufficient information at word presentation time to make accurate decisions
about the word’s function. This coupled with the network’s attempt to make decisions early causes the structure
units to have surprisingly complicated activation patterns over time.

A set of 9 sentences was used to train the gating units of the Phrase level. They were selected to be the smallest
set of sentences which would cover a reasonably rich set of sentences for training the Structure units. The network
generalized very well to include "compositions™ of sentence types from the initial set of 9. It was tolerant of varying
word speed and silences between words. This is an important property, useful for integration of speech systems
with natural language processing.

From this network, the Structure units were added. Eighteen sentences which were correctly processed at the
Phrase level were chosen to train the Structure level. A variety of sentences was included. There were more active
constructions than passive, more single clause than two clause sentences. Many different role structures were
present in the training set. The network learned the set successfully.

Network Performance

The trained network displays several interesting properties on both the sentences in the training set and other new
input sentences. A novel sentence is one which is not isomorphic to a training sentence modulo the identification
bits of the words in the sentences. Thus, "Peter gave Fido the bone" is not different from "John gave Fido the bone."
However, "Peter gave Fido the snake" is different since "snake" is animate, but "bone" is not.

The sentence "A snake ate the girl." is an example of the simplest type from the training set. The behavior of the
key structure units corresponding to the roles of verb block 1are shown in Fig. 3. Each box contains the indicated

SjEjTr TSUuTW v-f QUTPVIT: v-recip
A »rek* it th« (irl A trtak*  at* the« firl A snah* it* th* girl
lillia a1, ill. FHTTHHTTTTT  osmoncec
flii il 0 il lilniii
<ldimmmmnvaMvMInI Milla.....NNHya

Figure 3: A snake ate the girl.

relationship units. The horizontal axis corresponds to time. Each word is presented for ten time steps. The first row
of each box corresponds to the first noun phrase, the second to the second noun phrase and so on. The initial
representation shows low activities for all of the relationship units. During presentation of the First word, the agent
unit representing the First noun becomes quite active. It has not yet quite decided on its final value however, as can
be seen by the oscillations. The other units are all either weakly active or oscillating. When the verb "ate" is
presented, the agent unit corresponding to noun 1 fires strongly since it is now clear that the sentence is not a passive
construction. Similarly, the patient unit for noun 2 becomes more active since "ate™ is transitive. The last part of the
sentence further verifies the correct representation. If "near the house" is appended to the sentence (forming a
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sentence not in the training set), it gets attached to ‘the girl".

In spoken language, determiners and other short function words tend to be poorly articulated. This is indeed a
persistent problem for speech recognition systems, as it leads to word deletions. Despite such deletions, our network
makes appropriate role assignments with such sentences as "Snake ate girl." The role assignment is agent / patient
as in the uncorrupted sentence. Non-speech interjections are also possible as in, "A snake (ahh) ate the girl." A
speech recognition system could easily interpret the non-speech *ahh™ as "a". Our network puts the non-speech a
in the determiner slot of the second noun block, and then overwrites it with "the™. The result is a good parse of the
ill-formed sentence. Similarly, simple stuttering does not adversely affect network performance in many cases. Itis

important to note that this behavior was not taught in any way to the network.
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Th# mikt was (lv*n by Fldo Th#
i t@iiin > 1R (1T T A
il [HHneialialiniil
iiimi IO 111 1Lin niitin i I iin

Piiiiiiiie iiiitiit b EErrrrirer i

Figure 4: The snake was given by the man to Fido.

A more complicated sentence is given by, ""The snake was given by the man to Fido." as shown in Fig. 4. It was
not in the training set. There was only one sentence with a similar structure in the training sec ""The bone was given
by the man to the dog.”" They differ significandy in that *'snake™ is animate and less significantly in their detailed
noun phrase structure. Fig. 4 shows a similar display as before. For the duration of the first two words of this
sentence, the units behave as they did in the previous one. However, the passive construction indicated by "‘was
given' causes the agent unit for the first noun to decay and the agent unit for the third noun to grow. This is because
several other passive sentences in the training set were structured where the third noun was the agent. The word
"by"* causes the agent units to move toward their final positions and indicate by the man is the agent block. The
recipient and patient units make their final decisions with a little residual oscillation at this time as well. At the
arrival of "to Fido" finally, the correct parse is locked up.

In the previous example, the network seized the preposition by to make its role assignments. The network is
also able to use semantic cues from words in the absence of meaningful function words. Fig. 5 show the network s
behavior on the sentence, "*A snake was given an apple by John."" Here, the network must rely on the semantic
features of "'snake" and "‘apple’” to make the proper role assignment. Since "'snake’ is animate, and apple is not, their
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Figure 5. A snake was given an apple by John.

roles are assigned as recipient and patient, respectively. This occurs when "an apple” is processed. The opposite
role assignment is made in, "A bone was given the dog by John." The heuristic learned by the network is that
inanimate objects are preferred as patients over animate objects.

Single clause sentences dominated the training set, but a few two clause sentences were presented to explore the
network’s ability to learn the interactions among clauses. Since the network architecture allowed for only three
noun phrases with two verb phrases, these sentences were quite simple. The network learned to recognize
subordinate clauses as in, "John slept after he ate an apple.” It also learned to recognize sentence terminal relative
clauses as in, "John kissed the girl who slept” Generalization capability in the two clause sentences was not tested
extensively due to the paucity of sentences constructible within the constraints of the task. Minor variations in the
noun phrase structure from the training sentences were properly treated.

In summary, we have observed four key features in the network’s performance. It is able to combine syntactic,
semantic, and word order information effectively to perform its task. The network tries to be predictive, making
decisions about the structure of the sentence as soon as sufficient information becomes available. When the network
is uncertain, the units oscillate among sets of possible future states in a way that is detectable by the network via the
velocity weights. The network responds reasonably to sentences which have been modified from those in its
training set

Extending the Architecture

The architecture described above is still limited in its present form. To extend and scale it to more complex
sentences and to allow for a more flexible representation, we have designed a more general architecture. The new
architecture is modular, hierarchical, and recurrent. It has four levels: Phrase, Clause Structure, Clause Roles, and
Interclause. The Phrase level is analogous to that of the network described earlier, but differs in three important
ways. The words in the lexicon all share the same feature units instead of being separated into classes. The phrases
are not separated into verb and noun blocks; the input sentence is parsed into blocks of contiguous words which
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form phrases. The sentence "The old dog who was sleeping was given a bone by John™ would be split up into "(The
old dog)'(who) (was sleeping) (was given) (a bone) (by John)". The Clause Structure level uses the evolving Phrase
level representation to split the sentence into its constituent clauses: "(The old dog) (was given) (a bone) (by John)

and "(who) (was sleeping)". The Clause Roles level does the role assignment and noun phrase attachment for each
of the clauses as they are mapped. For example, "(The old dog)" would be called the recipient, "(a bone)' the
patient etc. The final level, Interclause, encodes the fact that the embedded clause is relative to "(The old dog)".

Interclause Level

Clause Structure Level

The old dog who was sleeping was given a bone by John

Phrase Level

"The old dog who was sleeping was given a bone by Jonn."

Figure 6: New Representation
Fig. 6 shows the representation of this sentence.

At the Phrase level and the Clause Roles level, the network consists of horizontally replicated modules which are
trained on all of the phrases and clauses from a set of sentences. This artificially creates the effect of a very large
training set on a very large network without the cost associated with building such networks. The Cause Structure
and Interclause levels cannot be treated in this manner since they deal with whole sentence structure.

We are currently exploring such a network on a set of over 200 sentences. These include sentences with passive
constructions, center embedded clauses, and some lexical ambiguity. Preliminary results on the individual modules

comprising the network have been encouraging, and we hope to begin testing on the fully integrated network
shortly.

Conclusion

We have presented a connectionist architecture which learns to incrementally parse sentences. Our networks
exhibit behavior that could potentially be extremely useful for the integration of speech and language processing.
Tolerance to corruptions of input including ungrammaticality, word deletions and insertions, and varying word
speed are all desirable for speech applications. Connectionist networks appear to be less rigid than more formal
systems thereby allowing them to handle a wider variety of sentences given only a limited initial set of examples.
Their ability to learn complex dynamical behaviors from diverse knowledge sources makes them well suited for
speech processing applications.
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Massively Parallel Parsing in ~"DmDialog:
Integrated Architecture for Parsing Speech Inputs
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Abstract

This paper describes the parsing scheme in the <$DmDia 1 OG speech-to-speech dialog translation system, with
special emphasis on the integration of speech and natural language processing. We propose an integrated architec-
ture for parsing speech inputs based on a parallel marker-passing scheme and attaining dynamic participation of
knowledge from the phonological-level to the discourse-level. At the phonological level, we employ a stochastic
model using a transition matrix and a confusion matrix and markers which carry a probability measure. At a
higher level, syntactic/semantic and discourse processing, we integrate a case-based and constraint-based scheme
in a consistent manner so that a priori probability and constraints, which reflect linguistic and discourse factors, are
provided to the phonological level of processing. A probability/cost-based scheme in our model enables ambiguity
resolution at various levels using one uniform principle.

1. Introduction

This paper discusses a method of integrating speech recognition and natural language processing. In order to
develop speech-based natural language systems such as a speech-to-speech translation system and a speech input
natural language interface, an integration of speech recognition and natural language processing is essential, because
it improves the recognition rate of the speech inputs. Improvement of the recognition rate can be attained by an
integration of natural language processing with speech recognition, providing a more appropriate assignment of a
priori probability to each hypothesis and imposes more constraints to reduce search space. Thus, the quality of
the language model is an important factor. Since our goal is to create accurate translation from speech input, a
sophisticated parsing and discourse understanding scheme are necessary. We propose an architecture for parsing
speech inputs that integrates speech (phonological-level processing) and natural language processing with full
syntactic/semantic analysis and discourse understanding.

In our system, we assume that an acoustic processing device provides a symbol sequence for a given speech
input In this paper, we assume that a phoneme-level sequence is provided to the systeml. The phoneme sequence
given from the phoneme recognition device contains substitution, insertion and deletion of phonemes, as compared
to a correct transcription which contains only expected phonemes. We call such a phoneme sequence a noisy
phoneme sequence. The task of phonological-level processing is to activate a hypothesis as to the correct phoneme
sequence from this noisy phoneme sequence. Inevitably, multiple hypotheses can be generated due to the stochastic
nature of phoneme recognition errors. Thus, we want each hypothesis to be assigned a measure of its being correct
In the stochastic models of speech recognition, a probability of each hypothesis is determined by ~CylA) x P(h).
P(y\n) is the probability of a series of input sequence being observed when a hypothesis h is articulated. P(h) is
an a priori probability of the hypothesis derived from the language model. Apparently, when phonological-level
processing is the same, the system with a sophisticated language model attains a higher recognition rate, because
a priori probability differenciates between hypotheses of high acoustic similarity which would otherwise lead to
confusion. At the same time, we want to eliminate less-plausible hypotheses as early as possible so that the search
space is kept within a certain size. We use syntactic/semantic and discourse knowledge to impose constraints which
reduce search space, in addition to the probability-based pruning within the phonological level.

1We use Matsushita Institute’s Japanese speech recognition systemlIMorii et. iL, 19851 for a current implementation.
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2. <2>DMDIALOG Project

2.1. Overview

ODMDIALOG is a speech-to-speech dialog translation system based on a massively parallel computational model
[Kitano, 1989b] [Kitano et. al., 1989b] 2. It accepts speaker-independent continuous speech inputs. Some of the
significant features of #DmDialog include:

I. Use of a hybrid parallel paradigm as a basic computational scheme, which is an integrated model of a direct
memory access (DMA) type of a massively parallel marker passing scheme and a connectionist network;

II. Dymanic utilization of knowledge from morphophonetics to discourse by distributively encoding this knowl-
edge in a memory network on which actual computations are performed,;

HI. Integration of case-based and constraint-based processing to capture linguistically complex phenomena
without losing cognitive realities;

IV. A cost-based ambiguity resolution scheme which applies to all levels of ambiguity (from phoneme recognition
to discourse context selection)[Kitano et. al., 1989a];

V. Almost concurrent parsing and generation, so that a pan of a sentence can be translated before the whole
sentence is parsed [Kitano, 1989a].

The philosophy behind our model is to view parsing as a process on a dynamic system where the law of energy
conservation, entropy production and other laws of physics can be effective analogies. We also demand that our
model be consistent with psycholinguistic studies.

2.2. A Baseline Algorithm

We employ the hybrid parallel paradigm in order to model two distinct aspects of the parsing: information building
and hypothesis selection. In the hybrid parallel paradigm, a parallel marker-passing scheme and a connectionist
network are integrated and computations are performed directly in a memory network. Knowledge from the mor-
phophonetic level to the discourse level is represented as a memory network which is consists of nodes and links.
Several types of nodes are in the memory network.

Concept Sequence Class (CSC) captures configurational patterns of linguistic phenomena such as phoneme se-
quences, concept sequences and plan sequences. CSCs have an internal structure. The internal structure is composed
of a label, IS-A links, a sequence, presuppositions, effects, and constraint equations. This structure is same for all
CSCs except CSCs in the phonological layer.

Concept Class (CC) represents concepts such as phonemes, concepts, and plans.

Concept Instance (CIl) arc instances of CCs. They are used to represent discourse entities[Webber, 1983] and
instance of utterances.

Nodes are connected by labelled links. Abstraction links (I1S-A) and compositional links (PART-OF) are typical
types of links. The memory network is organized in a hierarchical manner. There are hierarchies of nodes repre-
senting concepts from specific instances (using CIs) to general concepts (using CCs) and hierarchies of structured
nodes representing relations of concepts which are indexed into relevant concepts and specific instances (using Cls
and their links). When CSCs represent specific cases, they arc already co-indexed to the specific instances in the
memory network. Abstract CSCs hold various constraints described as constraint equations, presuppositions and
effects. These abstract CSCs arc instantiated during parsing and newly created specific CSCs are indexed into the
memory network as cases of utterance. Parsing with abstract CSCs is computationally more expensive than parsing
with cases, but it maintains productivity of the knowledge.

Three types of markers (A-, P-, and C-Markers) arc used for parsing. Two other types of markers, G- and
V-Markers arc used for generation; thus they arc not described in this paper.
Activation Markers (A-Markers) contain information including discourse entities, features and cost They prop-
agate upward through abstraction links.
Prediction Markers (P-Markers) predict possible next activations. They contain binding lists (a list of role-
instance pairs binded so far), a measure of cost, and linguistic and pragmatic constraints.
Contextual Markers (C-Markers) are used as an alternative to a connectionst network and indicate contextual
priming. C-Markers are not used when the connectionist network is fully deployed.

2# indicate* that our rystem is a speech input system. This notation is a tradition of the Center for Machine Translation. Dm implies
that the system was initially designed as a direct memory access (DMA) based system. However, our system evolved differently from the
DMAPIRiesbeck and Martin, 19851 and now Dm implies both DMA and dynamics modelLng which reflects our philosophy of viewing a cognitive
process as a dynamic process governed by the laws of physics. piaLoe means that our system translates dialogs.
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Figure 2. Movement of P-Markers in Layered Sequences

A basic cycle of our algorithm is as follows:

1 Activation:
For each input symbol, a corresponding node is activated and an A-Marker is created. A unit of input may
be either a phoneme or a word, depending on the input device. The A-Marker is passed up through IS-A
links. The A-Marker contains information relevant to the processing of that layer.

2. A-P-Collision:
When an A-Marker and a P-Marker collide at a certain element of a CSC, the P-Marker is moved to the next
possible concept element of the CSC. At this stage, constraints are checked.

3. Prediction:
As a result of moving P-Markers to the next possible element of the CSC, predictions are made describing
possible next inputs.

4. Recognition (Network Modification and Information Propagation):
When the CSC is accepted, (1) the memory network may be modified as a side-effect, and (2) an A-Marker
containing aggregated information is passed up through IS-A links.

The movements of P-Markers on a CSC are illustrated in figure 1. In (a), a P-Marker (initially located on <0)
is hit by an A-Marker and moved to the next element. In (b), two P-Markers are used and moved to €2 and e2. In
the dual prediction, two P-Markers are placed on elements of the CSC (on e0 and e\). This dual prediction is used
for phonological processing.

Figure-2 shows movement of a P-Marker on the layers of CSCs. When the P-Marker at the last element of the
CSC gets an A-Marker, the CSC is accepted and an A-Marker is passed up to the element in the higher layer CSC.
Then, a P-Marker on the element of the CSC gets the A-Marker, and the P-Marker is moved to the next element
At this time, a P-Marker which contains information relevant to the lower CSC is passed down and placed on the
first element of the lower CSC. This is a process of accepting one CSC and predicting the possible next word and
syntactic structure.

3. Phonological Parsing

This section describes phonological-level activities. We assume a noisy phoneme sequence, as shown in Figure 3,
to be the input of the phonological-level processing. In order to capture the stochastic nature of speech inputs, we
adopt a probabilistic model similar to that used in other speech recognition research. First, we describe a simple
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kaigi ni sanka shitai nodesu Yoilshi ha arimasuka oname wo onegai shimasu

DAI*I*EPAUTAQPAINO*EKU BJOHIRAARI*ATAWA 0 *A*AEJOORE*EISI*AS@
BAH* IPAA=KAS<a>PAINODUSU JOSJUWAARINAOQZAA  WO*A*AEJOORE*EEHJANA
BAH*I*EPAU= KAIQPAI*0 *ESU IOUSIWAARIMAUQKA WONA*AEJOBO*E*EIHJAH(a>

KAIIMTPAA=KAS(2)PEEI*ODESU JOOSIHAKARI*AUQKA 0*A*AEJO*0*E*EEISINAKU
KAI*I*EPAA=ZAS(2)PAIWO*USJIU IOOSJUWAWARI*AACA 0*A*AEJOO*E*EEIHJAZU

Figure 3: Examples of Noisy Phoneme Sequences

model using a static probability matrix. In this model, probability is context-independent Then, we extend the
model to capture context-dependent probability.

3.1. The Organization of the Phonological Processing

The algorithm described as a baseline algorithm is deployed on phonetic-level knowledge. In the memory network,
there are CSCs representing the phoneme sequence for each lexical entry. The dual prediction method is used in
order to handle deletion of a phoneme.

We use a probabilistic model to capture the stochastic nature of speech processing. Probability measures involved
are: a priori probability given by the language model, a confusion probability given by a confusion matrix, and a
transition probability given by a transition martix.

A priori probability is derived from the language model and is a measure of which phoneme sequence is likely
to be recognized. A method of deriving a priori probability is described in the section on syntax/semantic parsing
and discourse processing.

A confusion matrix defines the output probability of a phoneme when an input symbol is given. Given an input
sign it the confusion matrix ay determines the probability that the sign i, will be recognized as a phoneme pj. It
is a measure of the distance between symbols and phonemes as well as a measure of the cost of hypotheses that
interpret the symbol i, as the phoneme pj. In the context-dependent model, the confusion matrix will defined as ay*
which gives a probability of a symbol /, to be interpreted as a phoneme pj at a transition ft. We call such matrix a
dynamic confusion matrix.

A transition matrix defines the transition probability which is a probability of a symbol /i to follow a symbol
I~ For an input sequence zo ii «-- the a priori probability of transition between io and i\ is given by
Since we have a finite set of input symbols, each transition can be indexed as f*. The transition probability and
the confusion probability are intended to capture the context-dependency of phoneme substitutions - a phenomena
whereby a certain phoneme can be actually articulated as other phonemes in certain environments.

3.2. Context-Independent Model

First, we explain our algorithm using a simple model whose confusion matrix is context-independent. Later, we
describe the context-dependent model which uses a dynamic confusion matrix. Initially, P-Markers contain a priori
probability (*) given by the language model. In #DmDialog, the language model reflects full natural language
knowledge from syntax/semantics to discourse. The P-Markers are placed on each first and second element of
CSCs representing expected phoneme sequences. For an input symbol  A-Markers are passed up to all phoneme
nodes that have a probability”) greater than the threshold (Th). When a P-Marker, which is at i-th element,
and an A-Marker collide, the P-Marker is moved to the i+I-th and i+2-th elements of the sequence (This is a
dual prediction). When the next input symbol ilH generates an A-Marker that hits the P-Marker on the i+I-th

element, the P-Marker is moved using the dual prediction method The probability density measure computed on
the P-Marker is as follows:

ppm(i)

ppm{i—1) x a*.,,*., x b (1)
ppm(0) i

" @

where ppm(i) is a probability measure of a P-Marker at the i-th element of the CSC which is a probability of
the input sequence being recognized as a phoneme sequence traced by the P-Marker.
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Figure 4: A Part of a State-Transition Diagram

In Figure-4, an input sequence is /0 % eee i*. Py in the diagram denotes a phoneme Pj at i-th element of the
CSC. pij is a state rather than an actual phoneme, and Pj in the CSC refers to the actual phoneme. P-Markers at
Poo, Poi, Pm, P-Markers on the 0-th element of the CSCs referring PO, Px, and P2 respectively, are hit by A-Markers
Eventually, P-Markers are moved to the next element of CSCs. For instance, Poo will move to pio, plu Pio, P7:
depending on which CSC the P-Marker is placed on. Probabilities are computed with each movement A P-Marker
at pu has the probability tt0. When the P-Marker received an A-Marker from ilt the probability is re-computed

3™ u AT X X agoiop\‘ Transitions such as poo —* pi\ and poo —* pio insert an extra phoneme
which does not exist in the input sequence. Probability for such transitions are computed in such a way as:
T° x X X X A P-Marker at p\o does not get an A-Marker from i\ due to the threshold.
In such cases, a probability measure of the P-Marker is re-computed as r 0 x X at**. This represents a

decrease of probability due to an extra input symbol.

P-Markers at the last element (p,,) and one before the last 0,-0 are involved in the word boundary problem.
When a P-Marker at pHis hit by an A-Marker, the phoneme sequence is accepted and an A-Marker that contains
the probability and the phoneme sequence is passed up to the syntactic/semantic-level of the network. Then, the
next possible words are predicted using syntactic/semantic knowledge, and P-Markers are placed on the first and the
second element of the phoneme sequence of the predicted words. When a P-Marker at pH { is hit by an A-Marker,
the P-Marker is moved to pHand, independently, the phoneme sequence is accepted, due to the dual prediction, and
the first and the second elements of the predicted phoneme sequences get P-Markers.

33. The Context-Dependent Model

I ae context-dependent model can be implemented by using the dynamic confusion matrix. The algorithm described
above can be applied with some modifications. First, A-Markers are passed up to phonemes whose maximun output

probability is above the threshold. Second, output probability used for probability calculation is defined by the
dynamic confusion matrix.

ppn<0 = ppm(i—1) x x V a , 3

where k denotes a transition from i, 2 tot_i. It is interesting that our context-dependent model is quite similar
to the Hidden Markov Model (HMM) when the transition of the state of P-Markers are synchronously determined
by, for example, certain time intervals. We can implement a forward-passing algorithm and the Viterbi algorithm
IViterbi, 19671 using our model. This implies that when we decide to employ the HMM as our speech recognition
model, instead of a current speech input device, it can be implemented within the framework of our model.

3.4. Probability Cost Equality

Since we have been using the cost-based ambiguity resolution scheme [Kitano et al., 1989a], the equivalency
of the probabilistic approach and the cost-based approach need to be discussed. Our motivation in introducing
the cost-based scheme was to perceive parsing as a dynamic process. Thus the hypothesis with the least cost,
hence minimum workload, is selected as the best hypothesis. When a stochasity is introduced, the process that
requires more workload is less likely to be chosen. Thus, qualitatively, higher probability means less cost and lower
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probability means higher cost. Probability/cost conversion equations are3:

P = e~r~ (4)

cost = -ClogP (5)

In the actual implementation, we use a cost-based scheme because use of probability requires multiplication,
whereas use of cost requires only addition which is computationally less expensive than multiplication. It is also
a straightforward implementation of our model that perceives parsing as a physical process (an energy dispersion
process). Thus, in the cost-based model, we introduce an accumlated acoustic cost (AAC) as a measure of cost
which is computed by:

aac(i) = aac(i- 1l)+ccii tA_1+ fc*_ - pe (6)

where aac(i), cc*.,.*.,, and pe are an AAC measure of the P-Marker at i-th element, confusion cost
between /,_i and p,_i, transition cost between /,_2 and /._i, and phonetic energy, respectively. Phonetic energy
reflects an influx of energy from external acoustic energy.

4. Syntactic/Semantic Parsing

Unlike most other language models employed in speech recognition research, our language model is a complete
implementation of a natural language parsing system. Thus, complete semantic interpretations, constraint checks,
ambiguity resolution and discourse interpretations are performed. The process of prediction is a part of parsing in
our model, thereby attaining an integrated architecture of speech input parsing. In syntactic/semantic processing,
the central focus is on how to build the informational content of the utterance and how to reflect syntactic/semantic
constraints at phonological-level activities. Throughout the syntactic/semantic-level and discourse-level, we use a
method to fuse constraint-based and case-based approaches. In our model, the difference between a constraint-based
process and a case-based process is a level of abstraction; the case-based process is specific and the constraint-
based process is more abstract The constraint-based approach is represented by various unification-based grammar
formalisms [Pollard and Sag, 19871 [Kaplan and Bresnan, 19821. We use semantic grammar which combines
syntactic and semantic constraints4. In our model, propagation of features and unification are conducted as a
feature aggregation by A-Markers and constraints satisfaction performed by operations involving P-Markers. The
case-based approach is a basic feature of our model. Specific cases of utterances are indexed in the memory
network and reactivated when similar utterances are given to the system. One of the motivations for the case-based
parsing is that it encompasses phrasal lexicons [Becker, 197515. The scheme described in this section is applied to
discourse-level processing and attains an integration of the syntactic/semantic-level and the discourse-level.

4.1. Feature Aggregation

Feature aggregation is an operation which combines features in the process of passing up A-Markers so that minimal
features are carried up. Due to the hierarchical organization of the memory network, features which need to be
carried by A-Markers are different depending on which level of abstraction is used for parsing. When knowledge of
cases is used for parsing, features are not necessary because this knowledge is already indexed to specific discourse
entities. Features need to be carried when more abstract knowledge is used for parsing. For example, the parsing of
a sentence She runs can be handled at different levels of abstraction using the same mechanism. The word she refers
to a certain discourse entity so that very specific case-based parsing can directly access a memory which recalls
previous memory in the network. Since previous cases are indexed into specific discourse entities, the activation can
directly identify which memory to recall When this word she is processed in a more abstract level such as PERSON,
we need to check features such as number and gender. Thus, these features need to be contained in the A-Marker.
Further abstraction requires more features to be contained in the A-Marker. Therefore, the case-based process and
the constraint-based process is treated in one mechanism. Aggregation is a cheap operation since it simply adds

3The equations are based on the Maxwell-Boltzmann distribution P = e

4Thi* does not preclude use of unification grammar formalism in our system. In fact, we are now developing a cross-compiler that compiles
grammar rule* written in LFG into our network. Designing of a croM-compder from HPSG to our network is also underway.

3Discussions on benefits of phrasal lexicons for parsing and generation are found in [Riesbeck «nd Martin, 19851 [Hovy, 19881.
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new features to existing features in the A-Marker. Given the fact that unification is a computationally expensive
operation, aggregation is an efficient mechanism for propagating features because it ensures only minimal features
are aggregated when features are unified. This is different from another marker-passing scheme which carries an
entire feature [Tomabechi and Levin, 1989]. When an entire feature is carried, whole features are involved in the
unifiction operation even through some of features are not necessary.

The feature aggregation is applied in order to interface with different levels of knowledge. At the phonological
level, only a probability measure and a phoneme sequence are involved- Thus, when an A-Marker hits a CC node
representing a certain concept, i.e. female-person-3sg for she, the A-Marker does not contain any linguistically
significant information. However, when the A-Marker is passed up to more abstract CC nodes, i.e. person, linguisti-
cally significant features are contained in the A-Marker and unnecessary information is discarded. When a sentence
is analyzed at the syntactic/semantic-level, a prepositional content is established and is passed up to the discourse-
level by an A-Marker, and some linguistic information which is necessary only within the syntactic/semantic-level
is discarded.

4.2. Constraint Satisfaction

Constraint is a central notion in modem syntax theories. Each CSC has constraint equations which define the
constraints imposed for that CSC depending on their level of abstraction. CSCs representing specific cases do not
have contraint equations since they are already instanciated and the CSCs are indexed in the memory network.
The more abstract the knowledge is the more they contain constraint equations. Feature structures and constraint
equations interact in two stages. At the prediction stage, if a P-Marker placed on the first element of the CSC already
contains a feature structure that is non-nil, the feature structure determines, according to the constraint equations,
possible feature structures of A-Markers that subsequent elements of the CSC can accept. At an A-P-Collision
stage, a feature structure in the A-Marker is tested to see if it can meet what was anticipated. If the feature structure
passes this test, information in the A-Marker and the P-Marker is combined and more precise predictions are made
on what can be acceptable in the subsequent element. For She runs, we assume a constraint equation (AGENT
NUM = ACTION NUM) associated with a CSC, for example, <AGENT ACTION>. When a P-Marker initially
has a feature structure that is nil, no expectation is made. In this example, at an A-P-Collision, an A-Marker has
a feature structure containing (NUM = 3s) constraints for the possible verb form which can follow, because the
feature in the A-Marker is assigned in the constraint equation so that (AGENT NUM 3s) requires (ACTION NUM
3s). This guarantees that only a verb form runs can be legitimate6. When predicting what comes as a ACTION, P-
Markers can be passed down via IS-A links and only lexical entries that meet (ACTION NUM 3s) can be predicted.
When we need to relax grammatical constraints, P-Markers can be placed on every verb form, but assign higher a
priori probabilities for those which meet the constraint A unification operation can be used to conduct operations
described in this section. As a result of parsing at the syntactic/semantic-level, the prepositional content of the
utterance is established. Since our model is a memory-based parsing model, the memory network is modified to
reflect what was understood as a result of previous parsing.

43. Prediction

From the viewpoint of predicting the next hypothesis at the phonological level, case-based parsing provides the
most specific prediction and gives high a priori probability. Prediction by more abstract knowledge provides less
specific predictions and gives weaker a priori probability compared to case-based prediction. Thus, we have a set
of hypotheses with strong preferences predicted by the case-based process and a set of hypotheses (this includes
hypotheses predicted by the case-based process) predicted by the constraint-based process. Of course, the strength
of the preference is dependent on the level of abstraction the parsing has required. Even in the constraint-based
process, if the level of abstraction is low, the prediction has strength comparable to the case-based prediction.

5. Integration of Discourse Knowledge
At the discourse-level, the focus is on how to recognize the intention of the utterance, interpret discourse phenomena
and predict next possible utterances. “DmDialog uses discourse knowledge such as (1) discourse plans, and (2)

6When we use abstract notation such as NP or VP, the same mechanism applies and captures linguistic phenomena.
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discourse entities and their relations. We use hierarchic”™ discourse plan sequences, represented by CSCs7, to
represent and provide specificity as well as productivity of discourse plans. Hierarchical discourse plan sequences
represent possible sequences of utterance plans which may be actually performed by each speaker. Plan hierarchies
are organized for each participant of the dialog in order to capture complex dialog often taking place in a mixed-
initiative dialog. Each element of the plan sequence represents a domain-specific instance of a plan or an utterance
type [Litman and Allen, 1987] which can be dynamically derived from abstract dialog knowledge and domain
knowledge. Abstract plan sequences are close to plan schemata described in [Litman and Allen, 1987] since they
represent very generic constraints as well as the relationship between an utterance and a domain plan. There is also
knowledge for the discourse structure[Cohen and Fertig, 1986] [Grosz and Sidner, 1985]. When an element of the
plan sequence of this abstraction is activated, the rest of the elements of the plan sequence have constraints imposed
which are derived from the information given to the activated elements. This ensures coherence of the discourse.
When a plan sequence case is activated, it simply predicts the next plan elements because these specific plan
sequences are regarded as records of past cases and, thus, most constraints are already imposed and the sequence
is indexed according to the specific constraints. In addition, use of order constraints of CSC representations allows
us to handle order-freeness of subdialog conversations. Furthermore, unlike scripts or MOPstSchank, 1982], a plan
sequence has an internal structure which enables our model to impose constraints which ensure coherency of the
discourse processing.

As a result of the discourse understanding, possible next utterances can be predicted. P-Markers are passed down
to nodes representing these utterances. Eventually, they reach the phonological level and give a priori probability
to each hypothesis. Similar to predictions from syntactic/semantic-level, the strength of the prediction is dependent
upon the level of abstract knowledge involved.

6. A Cost-based Ambiguity Resolution Scheme

A cost-based disambiguation scheme is a method of evaluating each hypothesis based on the cost assigned to it
Costs are added when (1) phonemes are replaced, inserted, or dropped during recognition of noisy speech inputs
(we use a cost converted from a probability measure at the phonological-level), (2) a new instance is created, (3) a
concept without contextual priming is used, or (4) constraints are assumed when using CSCs. Costs arc subtracted
when (1) a concept with discourse prediction is used, or (2) a concept with contextual priming is used. Basic
equations are:

CSC, = " CCij+” constraintsk + biasi (7
j *

CCj - LEXj+instantiated - primingj (8)

LEXi = -Clog/* ©)

where C Cijy constraintsk, biasi denote a cost of the j-th element of CSC,, a costof assuming the k-th constraints, and
the lexical preference of CSC,, respectively. LEXj, instantiated, primingj denote a cost of the lexical node LEXj, a
cost of creating new Cl by referential failure, and contextual priming, respectively. LEX] is a cost converted from the
probability measure at the phonological level as described earlier. The accumnlated acoustic cost, computed by the
equation (6), can be used instead of converting probability by equation (9). Then, the cost-based scheme is adopted

at every level of processing. In the cost-based disambiguation scheme, we choose the least costly hypothesis based
on the above equations.

Our model parses utterances under a given context Thus, the cost assigned to a certain hypothesis is not always
the same. It is dependent on the context; that is, the initial conditions of the system when the utterance is entered.
The initial condition of the system is determined based on the previous course of discourse. The major factors
are the state of the memory network modified as a result of processing previous utterances, contextual priming,
and predictions from discourse plans. The memory network is modified based on the knowledge conveyed by the
series of utterances in the discourse as described briefly in the previous section. Contextual priming is imposed
either by using a C-Marker passing or by a connectionist network. The mechanism of assigning preference is
based on top-down prediction using discourse knowledge. Such prediction provides a priori probability  at the
phonological-level.

7Thii mean* that order-strict or order-free constraints ipply in determining the order of the pUn sequence.
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The cost-based ambiguity resolution scheme is applied to the reference problem including definite and indefinite
reference, pronoun reference, etc. We use activation/cost-based reference where each reference hypothesis incures
cost and the least-cost hypothesis will be selected. The cost for each hypothesis is computed based of activation lev-
els of each discourse entities and semantic restrictions. The method does not assume a layered network [Tomabechi
and Levin, 1989] and, thus, we can coherently handle problems including the reference to the related objects.

7. Preliminary Evaluations and Discussions

Currently, ~"DmDialog is being tested on the conference registration domain based on simulated telephone con-
versation experiments by ATR. The use of dialog-level knowledge has proven to be effective in in reducing the
perplexity of the task. We took as an example a small test set from the ATR corpus, and the perplexity of this task
with no prediction knowledge was 247.0. Using sentential level knowledge this figure was reduced to 19.7, and
using dialog level knowledge it was reduced to 2.4. However, the problem is that (1) the domain of our experiment
is relatively small, and (2) when we cover more complex discourse, prediction from the discourse-level may be
less specific. We are now evaluating our model with larger test sets.

We employ the probabilistic model for the following reason: the use of phonological knowledge alone, such
as phonological rules and distinctive feature theory, cannot sufficiently cope with the stochastic nature of speech
recognition. However, phonological knowledge would be useful for analyzing and estimating probability matrices.
By contrasting feature types, such as voicing, instead of collecting all the phonemic data, we would reduce the
amount of data needed for building the probability matricestChurch, 1987].

The hierarchical organization of the memory network is a key feature in integrating constraint-based and case-
based processing. Although we suffer from some overhead by concurrently parsing one sentence at different levels
of abstraction, the capability of handling both specific and abstract knowledge in a consistent manner seems more
significant. The feature aggregation method is a useful technique to keep overhead to a minimum.

The implementation of <EDmDialog on a parallel machine is an interesting topic. We believe the benefits of our
model can be best explored with parallel machines and that its implementation may be relatively straightforward.
Actually, a part of our model has been implemented on a custom VLSItKitano, 1988].

8. Related Works

Several efforts have been made to integrate speech and natural language processing. [Tomabechi et. al., 1988]
attempts to extend the marker-passing model to speech input Their model uses environment without probabilistic
measure which would allow environmental rules to be applied. Since misrecognitions are somewhat stochastic,
lack of the probability measure seems a shortcoming in their model. The MINDS system [Young et al., 1989]
is an attempt to integrate speech and natural language processing implementing layered prediction. They reported
that use of layered prediction involving discourse knowledge reduced the perplexity of the task. This is consistent
with our claim. [Church, 1987] discusses speech recognition using phonetic knowledge such as environment and
a distinct feature matrix. We share similar motivations, but we try to incorporate this knowledge in a probabilistic
model. [Saito and Tomita, 1988] [Kita et al., 1989] and [Chow and Roukos, 1989] are examples of approaches to
integrate speech with unification-based parsing, but, unfortunately, discourse processing has not been incorporated.
Marker-passing models of parsing such as [Riesbeck and Martin, 1985] and [Tomabechi and Levin, 1989] captured
only one side of parsing (case-based or constraint-based), in contrast to our model which incorporates both aspects
in one scheme.

9. Conclusion

This paper describes a method of speech-natural language integration in #D mDialog. The probability/cost-based
model is used to capture the stochastic nature of speech inputs. The language model in our model is a parser itself
and directly connected to the phoneme processing by means of cost measures, a priori probability, and constraints
to limit search space. Addition of the discourse understanding scheme further improved the power of the language
model to constrain and predict phonological processes. As a result reduction of the perplexity was observed and
the recognition rate was improved. Feature aggregation in the hierarchically organized memory network was a
useful scheme to integrate case-based and constraint-based parsing. The parallel marker-passing approach seems a
viable alternative for designing an integrated architecture for parsing speech inputs.
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Appendix: Implementation

<*>DMDIALOG has been implemented on IBM-RT-PC which runs CMU-CommonLisp on the Mach operating system
and HP-9000 runs HP-CommonLisp. Speech recognition and synthesis devices (Matsushita Research Institute’s
Japanese speech recognition device and DECTalk) are connected to perform real-time speech-to-speech translation.
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Parallel Parsing Strategies in Natural Language Processing
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ABSTRACT

We present a concise survey of approaches to the context-free parsing prob-
lem of natural languages in parallel environments. The discussion includes parsing
schemes which use more than one traditional parser, schemes where separate
processes are assigned to the ‘non-deterministic’ choices during parsing, schemes
where the number of processes depends on the length of the sentence being parsed,
and schemes where the number of processes depends on the grammar size rather
than on the input length. In addition we discuss a connectionist approach to the
parsing problem.

1. Introduction

In the early 1970’s papers appeared in which ideas on parallel compiling for programming
languages and parallel executing of computer programs were investigated. In these papers parallel
lexical analysis, syntactic analysis (parsing) and code generation were discussed. At that time vari-
ous multi-processor computers were introduced (CDC 6500, 7600, STAR, ELLIAC 1V, etc.) and the
first attempts were made to construct compilers which used more than one processor when compil-
ing programs. Slowly, with the advent of new parallel architectures and the ubiquitous application
of VLSI, interest increased and presently research on parallel compiling and executing is
widespread. Although more slowly, a similar change of orientation occurred in the field of natural
language processing. However, unlike the compiler construction environment with its generally
accepted theories, in natural language processing no generally advocated - and accepted - theory of
natural language analysis and understanding is available. Therefore it is not only the desire to
exploit parallelism for the improvement of speed but it is also the assumption that human sentence
processing is of an inherently parallel nature which makes computer linguists and cognitive scien-
tists turn to parallel approaches for their problems.

Parallel parsing methods have been introduced in the areas of theoretical computer science,
compiler construction and natural language processing. In the area of compiler construction these
methods sometimes refer to the properties of programming languages, e.g. the existence of special
keywords, the frequent occurrence of arithmetic expressions, etc. Sometimes the parsing methods
that have been introduced were closely related to existing and well-known serial parsing methods,
such as LL-, LR-, and precedence parsing. Parallel parsing has often been looked upon as deter-
ministic parsing of sentences with more than just a single serial parser. However, with the mas-
sively parallel architectures that have been designed and constructed, together with the possibility to
design special-purpose chips for parsing and compiling in mind, also the well-known methods for
general context-free parsing have been re-investigated in order to see whether they allow parallel
implementations. Typical results in this area are O (n)-time parallel parsing algorithms based on the
Earley or the Cocke-Younger-Kasami parsing methods. In order to study complexity results for
parallel recognition and parsing of context-free languages theoretical computer scientists have intro-
duced parallel machine models and special subclasses of the context-free languages (bracket
languages, input-driven languages). Methods that have been introduced in this area aim at obtaining
lower bounds for time and/or space complexity and are not necessarily useful from a more practical
point of view. A typical result in this area tells us that context-free language recognition can be
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done in o (lo™n) time using n 6 processors, where n is the length of the input string.

In the area of natural language processing many lands of approaches and results can be dis-
tinguished. While some researchers aim at cognitive simulation, others are satisfied with high per-
formance language systems. The first-mentioned researchers may ultimately ask for numbers of
processors and connections between processors that approximate the number of neurons and inter-
connections in the human brain. They model human language processing with connectionist models
and therefore they are interested in massive parallelism and methods which allow low degradation
in the face of local errors. In connectionist and related approaches to parsing and natural language
analysis the traditional methods of language analysis are often replaced by strongly interactive dis-
tributed processing of word senses, case roles and semantic markers. A more modest use of paral-
lelism may also be useful. For any system which has to understand natural language sentences it is
necessary to distinguish different levels of analysis (see e.g. Nijholt[ 1988], where we distinguish
the morphological, the lexical, the syntactic, the semantic, the referential and the behavioral level)
and at each level a different kind of knowledge has to be invoked. Therefore we can distinguish dif-
ferent tasks: the application of morphological knowledge, the application of lexical knowledge, etc.
It is not necessarily the case that the application of one type of knowledge is under control of the
application of any other type of knowledge. These tasks may interact and at times they can be per-
formed simultaneously. Therefore processors which can work in parallel and which can communi-
cate with each other may be assigned to these tasks in order to perform this interplay of multiple
sources of knowledge. Finally, and independent of a parallel nature that can be recognized in the
domain of language processing, since operating in parallel with a collection of processors can
achieve substantial speed-ups, designers and implementers of natural language processing systems
will consider the application of available parallel processing power for any task or subtask which
allows that application.

In this paper various approaches to the problem of parallel parsing will be surveyed. We will
discuss examples of parsing schemes which use more than one traditional parser, schemes where
‘non-deterministic’ choices during parsing lead to separate processes, schemes where the number of
processes depends on the length of the sentence being parsed, and schemes where the number of
processes depends on the grammar size rather than on the input length. Our aim is not to give a
complete survey of methods that have been introduced in the area ofparallel parsing.Rather we
present some approaches that use ideas that seem to be characteristicfor many of theparallel pars-
ing methods that have been introduced.

2. From One to Many Traditional Serial Parsers

Introduction

As mentioned in the introduction, many algorithms for parallel parsing have been proposed. Con-
centrating on the ideas that underlie these methods, some of them will be discussed here. For an
annotated bibliography containing references to other methods see Nijholt et al[ 1989]. Since we
will frequently refer to LR-parsing a few words will be spent on this algorithm. The class of LR-
grammars is a subclass of the class of context-free grammars. Each LR-grammar generates a deter-
ministic context-free languages and each deterministic context-free language can be generated by an
LR-grammar. From an LR-grammar an LR-parser can be constructed. The LR-parser consists of
an LR-table and an LR-routine which consults the table to decide the actions that have to be per-
formed on a pushdown stack and on the input The pushdown stack will contain symbols denoting
the state of the parser. As an example, consider the following context-free grammar.

1L S—»NP VP 4. PP -> *prep NP
2.S->SPP 5. VP -> *v NP
3. NP *det *n

With the LR-construction method the LR-table of Fig. 1 will be obtained from this grammar. It is
assumed that each input string to be parsed will have an endmarker which consists of the $-sign.

An entry in the table of the form ‘shn’ indicates the action ‘shift state n on the stack and
advance the input pointer’; entry ‘ren’ indicates the action ‘reduce the stack using rule n\ The
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state. «det  *n *v.. cprep 3 NP PP VP S

0 sh3 2
1 sh5 acc 4
2 sh6 7
3 sh8
4 re2 re2
5 sh3 9
6 sh3 10
7 rel rel
8 re3 re3 re3
9 re4 red
10 re5 re5

Fig. 1 LR-parsmg table for the example grammar.

entry ‘acc’ indicates that the input string is accepted. The right part of the table is used to decide the
state the parser has to enter after a reduce action. In a reduce action states are popped from the
stack. The number of states that are popped is equal to the length of the right hand side of the rule
that has to be used in the reduction. With the state which becomes the topmost symbol of the stack
(O- 10) and with the nonterminal of the left hand side of the rule which is used in the reduction (5,
NP, VP, or PP) the right part of the table tells the parser what state to push next on the stack. In Fig.
2 the usual configuration of an LR-parser is shown.

LR-
routine

LR-
table

Fig. 2 LR-parser.

More than One Serial Parser

Having more than one processor, why not use two parsers? One of them can be used to process the
input from left to right, the other can be used to process the input from right to left. Each parser can
be assigned part of the input When the parsers meet the complete parse tree has to be constructed
from the partial parse trees delivered by the two parsers. Obviously, this idea is not new. We can
find it in Tseytlin and Yushchenko! 1977] and it appears again in Loka[1984]. Let G =(V,I,P, S)
be a context-free grammar. For any string ae V* let a* denote the reversal of a. Let
G* = (N,L,P\S) be the context-free grammar which is obtained from G by defining
PR={/. A-*a* |i. A->ae P}. Itis not difficult to see that, when we start a left-to-right top-down
construction of a parse tree with respect to G at the leftmost symbol of a string w and a bottom-up
right-to-left construction of a parse tree with respect to G* at the rightmost symbol of w, then -
assuming the grammar is unambiguous - the resulting partial parse trees can be tied together and a
parse tree of w with respect to G is obtained. If the grammar is ambiguous all partial trees have to
be produced before the correct combinations can be made. Similarly, we can start with a bottom-up
parser at the left end of the string and combine it with a top-down parser starting from the right end
of the string. Especially when the grammar G allows a combination of a deterministic top-down (or
LL-) parser and a deterministic bottom-up (or LR-) parser this might be a useful idea. However, in
general we can not expect that if G is an LL-grammar, then G* is an LR-grammar and conversely.

Rather than having one or two parsers operating at the far left or the far right of the input, we
would like to see a number of parsers, where the number depends on the ‘parallelism’ the input
string allows, working along the length of the input string. If there is a natural way to segment a
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string, then each segment can have its own parser. Examples of this strategy are the methods
described in Lincoln[1970], Mickunas and Schellf 1975], Fischer[1975], Carlisle and Friesen[1985]
and Lozinskii and Nirenburg[1986]. Here we confine ourselves to an explanation of Fischer’s
method. Fischer introduces ‘synchronous parsing machines’ (SPM) that LR-parse part of the input
string. Each of the SPM’s is a serial LR-parser which is able to parse any sentence of the grammar
in the usual way from left to right. However, at least in theory, Fischer’s method allows any symbol
in the input string as the starting point of each SPM. For practical applications one may think of
starting at keywords denoting the start of a procedure, a block, or even a statement. One obvious
problem that emerges is, when we let a serial LR-parser start somewhere in the input string, in what
state should it start? The solution is to let each SPM carry a set of states, guaranteed to include the
correct one. In addition, fey each of these states the SPM carries a pushdown stack on which the
next actions are to be performed. An outline of the parsing algorithm follows.

For convenience we assume that the LR-parser is an LR(0) parser. No look-ahead is neces-
sary to decide a shift or a reduce action. In the algorithm M denotes the LR-parsing table and for
any state s,R(s) denotes the set consisting of the rule which has to be used in making a reduction in
state s. By definition, R (s) = {0} if no reduction has to be made in state s.

(1) Initialization.
Start one SPM at the far left of the input string. This SPM has a single stack and it only con-
tains Jo. e initial state. Start a number of other SPM’s. Suppose we want to start an SPM
immediately to the left of some symbol a. In the LR-parse table M we can find which states
have a non-empty entry for symbol a. For each of these states the SPM which will be started,
possesses a stack containing this state only. Hence, the SPM is started with just those sta