

Carnegie Mellon University

I n t e r n a t i o n a l

W o r k s h o p

o n P a r s i n g

Technologies

Preface

WELCOME to the International Workshop on Parsing Technologies.

The interest and the progress being made in the field of parsing is exciting. The technical
program has been assembled to include all aspects of this technology. We hope it will stimulate
further discussion, research and development in the field.

We hope the emphasis o f this workshop will center around the exchange o f ideas rather than the
presentation of results. In this workshop, presenters should be prepared to discuss problems and
techniques - with a particular emphasis on work-in-progress and unresolved difficulties.

The program committee has selected a variety o f areas for discussion, hoping that you will
choose the set o f presentations that best match your interests and specialties. The variety should
encourage discussion and exchange that should benefit all. We hope to encourage participation,
discussion and even argument.

The workshop program and organization have been created through the efforts of a large number
of people who have given generously of their time and talent.

I would like to thank each o f the comittee members: Bob Berwick, Harry Bunt, Jaime Carbonell,
Eva Hajicova, Aravind Joshi, Ron Kaplan, Bob Kasper, Martin Kay, Match Marcus, Makoto
Nagao and Yorick Wilks.

In addition, I would like to acknowledge contributions and extend my gratitude to the local
arrangement people. Especially Joan Maddamma, the workshop secretary, who did most o f the
administrative work for this volume and the workshop.

Masaru Tomita
Workshop Chairman
Carnegie Mellon University

UNbW'^SITV . ■ >

PITTSBURGH, f X

i i International Parsing Workshop ’89

&

Workshop Committee

W orkshop Chairm an:

Masam Tomita. Carnegie Mellon University

Program Com m ittee:

Robert Berwick, Massachusetts Institute of Technology

Harry Bunt, Tilburg University

Jaime Carbonell, Carnegie Mellon University

Eva Hajicova, Charles University

Aravind Joshi, University of Pennsylvania

Ronald Kaplan, Xerox PARC

Robert Kasper, University of Southern California

Martin Kay, Xerox PARC

Mitch Marcus, University o f Pennsylvania

Makoto Nagao, Kyoto University

Yorick Wilks, New Mexico State University

i i i International Parsing Workshop '89

For additional copies of this book, write:

Carnegie Mellon University
Attn: Joan Maddamma

School of Computer Science
Pittsburgh, PA 15213-3890 USA

PRICE: $50.00 within USA - $55.00 for overseas mail

iv International Parsing Workshop '89

For Your Information

TABLE OF CONTENTS

P reface...................... ii

C o m m itte e ijj .

Unification and Classification: An Experiment in Information-Based Parsing... 1
Robert T. Kasper. USC/ISI - USA.

Using Restriction to Optimize Unification Parsing.. 8
Dale Gerdemann. University of Illinois - USA.

An Overview o f Disjunctive Constraint Satisfaction .. 18
John T. Maxwell III* and Ronald M. Kaplan. Xerox PARC - USA.

A Uniform Formal Framework for Parsing... 28
Bernard Lang. INRIA - FRANCE.

Head-Driven Bidirectional Parsing: A Tabular Method ... 43
Giorgio Satta* and Oliviero Stock University of Padova - ITALY.

lad-D riven Parsing ... 52
Martin Kay, Xerox PARC - USA.

Parsing with Principles: Predicting a Phrasal Node Before Its Head Appears .. ;................. 63
Edward Gibson, Laboratory for Computational Linguistics, CMU - USA.

The Computational Implementation o f Principle-Based Parsers... 75
Sandiway Fong* and Robert Berwick, MIT. Al Laboratory - USA.

Probabilistic Parsing Method for Sentence Disambiguation ... 85
T. Fujisaki*, F. Jelinek, J. Cocke, E. Black, IBM-T. J. W atson Center-USA,
T. Nishino, Tokyo Science Unviversity - JAPAN.

A Sequential Truncation Parsing Algorithm Based on the Score Function .. 95
Keh-Yih Su*. National Tsing Hua Unv., Jong-Nae Wang and Mei-Hui Su
BTC R&D Ctr., Jing-Shin Chang, National Chiao Tung Unviversity - CHINA.

Probabilistic LR Parsing for Speech Recognition ...105
J. H. W right* and E. N. Wrigley, University of Bristol, UNITED KINGDOM.

Parsing Speech for Structure and Prom inence .. 115
Dieter Huber, Unversity of Gothburg - SWEDEN.

Parsing Continuous Speech by HM M -LR M ethod ...126
Kenji Kita*, Takeshi Kawabata, Hiroaki Saito,
ATR Interpreting Telephony Research Laboratories - JAPAN.

Parsing Japanese Spoken Sentences Based on HPSG ..132
Kiyoshi Kogure, ATR Interpreting Telephony Research Laboratories - JAPAN.

Probalistic Methods in Dependency Grammar Parsing ..142
Job M. van Zuijlen, BSO/Research, THE NETHERLANDS.

Predictive Norm al Forms for Composition in Categorical Grammars ...152
Kent W ittenburg* and Robert Wall, MCC - USA.

v International Parsing Workshop '89

Parsing Spoken Language Using Combinatory Grammars..;...162
Mark Steedman, University of Pennsylvania - USA.

Recognition o f Combinatory Categoriai Grammars and Linear Indexed Grammars... 172
K. Vijay-Shanker, University of Delaware and David J. Weir*,
Northwestern University - USA.

Handling o f Ill-Designed Grammars in Tomita's Parsing A lgorithm .. 182
Rohman Nozohoor-Farshi, University of Windsor - CANADA.

Analysis o f Tomita's A lgorithm for General Context-Free Parsing..193
James R. Kipps, The RAND Corporation - USA.

The Computational Complexity o f Tomita's Algorithm ..203
Mark Johnson, Brown University - USA.

Probabilistic Parsing for Spoken Language Applications... 209
Stephanie Seneff, MIT - USA.

Connectionist Models o f Language .. 219
James L. McClelland, Carnegie Mellon University - USA.

A Connectionist Parser A im ed at Spoken Language ..221
Ajay Jain* and Alex Waibel. Carnegie Mellon University - USA.

M assively Parallel Parsing in (t>DmDialog: Integrated Architecture for Parsing Speech Inputs...............................230
Hiroaki Kitano*, Teruko Mitamura and Masaru Tomita, CMT/CMU - USA.

Parallel Parsing Strategies in NLP ..240
Anton Nijholt, Twente University of Technology - THE NETHERLANDS.

Com plexity and Decidability in Left-Associative Grammar...254
Roland Hausser, Computational Linguistics Lab - CMU - USA.

The Selection o f a Parsing Strategy for an On-L ine Machine
Translation System in a Sublanguage Domain. A New Practical Comparison..264
Patrick Shann, University of Geneva and University of Zurich-SW ITZERLAND.

Finite State Machines from Feature Grammars- ..277
Alan W. Black. University of Edinburgh - UNITED KINGDOM.

An Effective Enumeration A lgorithm o f Parses tor Ambiguous CFL..286
Tadashi Seko, Nariyoshi Yamai*, Nara National College of Technology - JAPAN,
Noboru Kubo and Toru Kawata, SHARP Corporation - JAPAN.

A M orphological Parser for Linguistic Exploratio i.. 297
David W eber, Summer Institute of Linguistics - CMU - USA.

The Paralle l Expert Parser: A Meaning-Oriented, Lexically-
Guided, Parallel-Interactive Model o f Natural Language Understanding ... 309
Geert Adriaens, Siem ens NLP Research - BELGIUM.

Chart Parsing for Loosely Coupled Parallel System s .. 320
Henry S.Thompson, University of Edinburgh-UNITED KINGDOM.

Paralle l LR Parsing Based on Logic Program ming.. 3 2 9
Hozumi Tanaka* and Hiroaki Numazaki, Tokyo Institute of Technology-JAPAN.

The Relevance o f Lexicalization to Parsing ...
Yves Schabes* and Aravind K. Joshi, University of Pennsylvania - USA.

v i International Parsing Workshop ’89

A Framework for the Development o f Natural Language Grammars.. 350
Massimo Marino, University of Pisa - ITALY

An Efficient Method for Parsing Erroneous Input..361
Stuart Malone* and Sue Felshin, MIT - USA.

Analysis Techniques for Korean Sentences Based on Lexical Functional Grammar....................................369
Deok Ho Yoon* and Yung Taek Kim, Seoul National University - KOREA.

Learning Cooccurrences by Using a Parser..379
Kazunori Matsumoto*. Hiroshi Sakaki. Shingo Kuroiwa, KDD Kamifukuoka
R&D Labs - JAPAN.

Parsing, Word Associations and Typical Predicate-Argument Relations..389
Kenneth Church*. William Gale, Patrick Hanks, and Donald Hindle,
AT&T Bell Labs - USA.

An Efficient, Primarily Bottom-Up Parser for Unification Grammars.. 399
Neil K. Simpkins* and Peter J. Hancox, Aston University - UNITED KINGDOM.

PPEMO: Parsing by Conspicuous Lexical Consumption ...401
Brian M. Slator and Yorick Wilks*. New Mexico State University - USA.

Parsing A lgorithms 2-D im ensional Language ..414
Masaru Tomita, CMT/CMU - USA.

A Broad-Coverage Natural Language Analysis System ... 425
Karen Jensen, IBM - USA.

Pseudo Parsing Swift-Answer A lgorithm ...442
S. Pal Asija, Shelton, C onnecticu t - USA.

A Dependency-Based Parser for Topic and Focus.. 448
Eva Hajicova, Charles University - CZECHOSLOVAKIA.

Parsing Generalized Phrase Structure Grammar with Dynamic Expansion..458
Navin Budhiraja, Subrata Mitra*. Harish Karnick, Rajeev Sangal,
Indian Institute of Technology Kanpur - INDIA.

v i i International Parsing Workshop '89

Carnegie Mellon University

In te rn a tio n a l W o rk s h o p
o n P a r s i n g

Tecnhnologies

UNIFICATION AND CLASSIFICATION:
AN EXPERIMENT IN INFORMATION-BASED PARSING

Robert T. Kasper
USC/Information Sciences Institute

Admiralty Way, Suite 1001
Marina del Rey, CA 90292

When dealing with a phenomenon as vast and complex as natural language, an
experimental approach is often the best way to discover new computational methods and
determine their usefulness. The experimental process includes designing and selecting
new experiments, carrying out the experiments, and evaluating the experiments. Most
conference presentations are about finished experiments, completed theoretical results, or
the evaluation of systems already in use. In this workshop setting, I would like to depart
from this tendency to discuss some experiments that we are beginning to perform, and
the reasons for investigating a particular approach to parsing. This approach builds on
recent work in unification-based parsing and classification -b ased know ledge
representation, developing an architecture that brings together the capabilities of these
related frameworks.

1 . Background: Two General Frameworks for Representing Information

1.1. Unification-based Grammars

A variety of current approaches to parsing in computational linguistics emphasize
declarative representations of grammar with logical constraints stated in terms of feature
and category structures. These approaches have collectively become known as the
"unification-based" grammars, because unification is commonly used as the primary
operation for building and combining feature structures. Some of the simplest of these
grammatical frameworks, as exemplified by the PATR-II system [Shieber 1984], state
constraints on features entirely in terms of sets of unifications that must be
simultaneously satisfied whenever a grammatical rule is used. In such systems all
constraints on a rule or lexical item are interpreted conjunctively. Many of the more
recent frameworks also use other general logical connectives, such as disjunction, negation
and implication, in their representation of constraints. The usefulness of such logical
constraints is abundantly illustrated by linguistic models, including Systemic Grammar
(SG) [Halliday 1976] and Head Driven Phrase Structure Grammar (HPSG) [Pollard&Sag
1987], and by computational tools such as Functional Unification Grammar (FUG) [Kay
1985]. For example, SG and FUG even use disjunctive alternations of features, instead of
structural rules, as the primary units of grammatical organization. While the intuitive
interpretation o f these logical constraints is rather straightforward, and they are quite
natural for linguists to formulate, large-scale implementations of them have typically
involved finding a delicate balance between expressive power and computational
efficiency.

Some difficulties can be expected in developing a system for computing with disjunctive
and negative feature constraints, because it has been established that common operations

-1- Intemational Parsing Workshop '89

on such descriptions, such as unification and subsumption, arc NP-completc and require
exponential time in the worst case. The most common and obvious way to deal with
disjunctive constraints is to expand the grammatical description to disjunctive normal
form (DNF) during a pre-processing step, thereby eliminating disjunction from the rules
that are actually used by the parser. This method works reasonably well for small
grammars, but it is clearly unsatisfactory for larger grammars, because it actually
requires exponential space and time in all cases. For even modest amounts of disjunction,
the parser is forced to operate on a huge description, even in many cases where no
exponential expansion would be necessary.

It is possible to avoid exponential expansion for most practical grammars, and several
unification algorithms for disjunctive feature descriptions have been developed in recent
years. The first of these algorithms was developed by Karttunen [Karttunen 1984]. His
method of representing disjunction allowed value disjunction (i.e. alternative values of a
single feature), but it did not allow general disjunction (i.e. constraints involving multiple
features). Although it is possible to transform any description that contains general
disjunction into a formally equivalent description that contains only value disjunction, this
transformation may sometimes result in loss of efficiency or lack of clarity in the
structures produced by a parser.

Two more recent algorithms [Kasper 1987, Eisele&Doerre 1988] allow general disjunctive
descriptions, and avoid expansion to DNF by exploiting logical equivalences between
descriptions to produce normal forms that allow a more compact representation. Kasper's
algorithm is based on a normal form that divides each description into definite and
indefinite components. The definite component contains no disjunction, and the indefinite
component contains a list of disjunctions that must be satisfied. The Eisele&Doerre
algorithm uses a different normal form that guarantees the detection o f any
inconsistencies during the normalization process by selectively expanding disjunctions
that might possibly interact with other information in the description. Although a precise
characterization o f the differences in performance between these algorithms involves
many subtleties, the Eisele&Doerre algorithm usually handles value disjunction more
efficiently, and the Kasper algorithm usually handles general disjunction more efficiently.
The crucial technique shared by both algorithms is the use of a normal form that allows
early elimination of alternatives when they are inconsistent with definite information.

The Kasper algorithm was first implemented as an extension to the unification algorithm
of the PATR-II parser, and it has been further developed to handle conditional
descriptions and a limited type of negation [Kasper 1988a]. These extensions to PATR-II
have been used to construct an experimental parser for systemic grammars [Kasper
1988b], which has been tested with a large grammar of English.

Although these methods for processing complex feature constraints are generally much
more efficient than expansion to DNF, they still have several significant sources of
inefficiency:

1. a large amount of structure must be copied in order to guarantee correct unification;

2. consistency checks are required between components of a description that do not
share any features in common, because unification cannot determine whether any
dependencies exist between two structures without actually unifying them;

3. repeated computations are often required over sub-expressions o f descriptions,
because the results of prior consistency checks are not saved.

International Parsing Workshop '89

These sources of inefficiency are not unique to one method of parsing with disjunctive
descriptions; similar shortcomings are commonly reported for most unification-based
systems. For example, the Eisele&Doerre algorithm eliminates some redundant
consistency checks, but it generally requires copying significant portions of a description
to do so. The unification literature contains several techniques for reducing the amount of
copying by structure sharing, but these techniques appear to solve only part of the
problem. A more general approach to improving the efficiency of unification may be
available by adopting methods that are used in classification-based systems.

1.2. Classification-based Knowledge Representation

The KL-ONE family of knowledge representation systems organize information about
objects and the relations between them into conceptual hierarchies (a combination of
semantic networks and frames) according to class membership, where X is below Y in
the hierarchy if X is a subclass or instance of the class Y. For example, a hierarchy of
English word classes would probably contain Verbs, Modal-Verbs as a subclass o f Verbs,
and the word "should" as an instance of Modal-Verbs. More formally, the hierarchy is a
subsumption-ordered lattice based upon logical properties that can be deduced from the
definitions of concepts and the facts known about particular objects. In these systems,
classification is the operation that places a new class or object into the lattice according to
the subsumption order. A primary benefit of classification is that it organizes large
collections of knowledge in such a way that properties shared in common by many objects
only need to be represented once, yet they can still be efficiently accessed.

KL-ONE and similar frameworks have been used for semantic interpretation in some
natural language processing systems, but usually in a way that is quite separate from the
grammatical parsing process. Recent research indicates that it may be advantageous to
make use of a classification-based framework for processing grammatical knowledge as
well. Many formal properties are shared by the feature descriptions used in unification-
based grammars and the terminological definitions used in KL-ONE. Generally speaking,
linguistic categories correspond to concepts, and their features (or attributes) correspond
to binary relations in the knowledge representation system. The similarity between these
two types of descriptions has been most clearly documented by Smolka [Smolka 1988] in
his development of a logic that integrates a significant combination of their expressive
capabilities. Smolka has also shown that the subsumption and unification problems for
this logic can be reduced to each other in linear time. Thus, systems based on either term
subsumption or unification can be expected to solve a similar range of problems, although
differing levels of non-asymptotic time/space efficiency can be expected. Theoretical
results have also been based on the observation that feature structures can be implicitly
organized into a subsumption lattice of types according to their information content. In
most unification-based system s the lattice is not explicitly constructed, but a
classification-based system can be used to place the feature structures of a grammar and
lexicon into a structure-sharing lattice, potentially improving both space and time
efficiency.

Despite the underlying similarities between the KL-ONE framework and unification-based
grammars, there are significant differences in the expressive capabilities that are usually
provided. In particular, the knowledge representation systems typically have general
constraints on relations with multiple values, whereas most unification-based systems do
not provide a direct representation for features with set values. On the other hand,
complex logical constraints involving disjunction and negation have been more extensively
developed in unification-based systems than in classification-based systems. The LOOM
system [MacGregor 1988], which has been developed at USC/ISI, appears to be the first in

-3- Intemational Parsing Workshop '89

the KL-ONE family to have included general disjunction and negation in its concept
definition language. The implementation of classification for disjunctive concepts has
been based on the same strategy that was originally developed for unification with
disjunctive feature descriptions [Kasper 1987]. The implementation of classification for
concepts defined by negation is still in progress. With these extensions, the LOOM system
should be able to handle the full range of constraints that have been used in linguistic
descriptions of feature structures.

2, An Experiment In Classification-based Parsing

In order to explore a strategy for parsing based on classification, our first experiment will
be to emulate the unification component of our parser for a large systemic grammar of
English [Kasper 1988b] within the framework of LOOM. It appears to be straightforward
to convert the feature constraints of the grammar into a set of definitions that can be
processed by LOOM, because of the underlying correspondences between LOOM’S concept
definitions and linguistic feature descriptions that we have already described. It is also
straightforward to perform an operation that is equivalent to the unification of feature
structures within LOOM. This is accomplished by forming an object which is defined as
the conjunction of the objects corresponding to the feature structures.

Motivating this experiment are two primary goals:

1. to investigate the extent to which classification can be used to organize the knowledge
contained in linguistic descriptions so that it can be more efficiently accessed during
the parsing process;

2. to develop a suitable architecture for integrating semantic information into the parsing
process, in a way that knowledge specific to application domains does not have to be
re-organized for parsing.

2.1. Efficiency Considerations

The classification-based architecture used by LOOM solves a whole class o f related
efficiency problems by explicitly constructing and maintaining a subsumption-ordered
lattice of terms with inheritance. In particular, it may provide substantial improvements
for some of the above mentioned sources of inefficiency that have been observed with
unification-based parsers.

2 . 1 . 1 . Structure Sharing

The organization o f objects into a lattice automatically provides a great amount of
structure sharing. Pointers are copied instead of structures whenever objects are defined
or modified.

In most unification-based parsers, it is necessary to make new copies o f the feature
structures that are associated with lexical items or grammatical rules whenever they are
used in building a description of a sentence (or one of its constituents). In a classification-
based system the entire structure does not need to be copied, because the description of a
constituent can contain pointers to the classes of objects that it instantiates. This
representation not only saves space, but it also allows the parser to make use o f
information that has already been precomputed (during the classification process) for
classes of objects in the grammar and lexicon.

-4- Intemational Parsing Workshop '89

2.2. Integrating Semantic Information Into the Parsing Process

In order for practical natural language parsers to be produced with less effort per
application, it is desirable for the knowledge base of an application to also be usable by a
general purpose parser. Existing systems often use semantic grammars that are specific to
a particular application domain, or require substantial reorganization of the information
used by an application so that it can be used by the parser. A more effective use of
knowledge sources may be possible if linguistic features and information about an
application's semantic domain are defined in the same general knowledge representation
framework. Using a classification-based system, links can be established between terms
of the semantic domain and terms of the linguistic knowledge base that correspond to
them. This approach has already been explored in text generation research [Kasper 1989],
where the links are established by stipulating that terms of the application domain
specialize one or more terms of the linguistic model. This condition generally holds,
because the linguistic model contains primarily abstract features.

Another potential benefit o f using an integrated knowledge organization is early
disambiguation according to features of the semantic domain. If objects of the semantic
domain are directly linked in a knowledge base to lexical or grammatical features, the
parser can use information about those objects without any special purpose machinery.

3. Summary

We are developing an experimental parser using the classification-based architecture of
the LOOM knowledge representation system. The initial goal is to reproduce the
functionality of an existing unification-based parser, using a large grammar of English. If
successful, this experiment should enable a comparison of classification and unification as
mechanisms for parsing. A classification scheme appears to provide a way of
substantially reducing several of the most general sources of inefficiency that arc
observed in current unification-based parsers. However, this conjecture needs to be
examined by performing experiments with several real grammars and applications.
Because the classification mechanism is based on general logical properties o f feature
descriptions, it should be applicable to a broad class of grammars, just as unification-
based parsers have been developed for grammars from a diverse range of linguistic
theories and applications. In addition to providing an efficient engine for processing the
constraints of linguistic feature descriptions, we also expect this type of information
organization to provide a strong basis for integrating semantic knowledge and knowledge
specific to particular applications into the parsing process.

-6- International Parsing Workshop '89

2 . 1 . 2 . Indexing Dependencies

The process of classification also keeps track of dependencies between different objects,
eliminating the need for checking consistency between components of a description that
have no features in common. In effect, an index is incrementally constructed from
features to descriptions that contain them.

In most unification-based systems, feature structures are represented by directed graphs
or terms. These representations effectively provide an index of features possessed by
each object. This type of indexing is generally sufficient if only conjunctive constraints on
features are used. When disjunctive constraints are also used, it becomes useful to keep
track of dependencies between different parts of a complex description, in order to avoid
repeated consistency checks between parts that share no features in common. A reverse
index (from features to objects having those features) can be used to avoid these useless
consistency checks. This second kind of index is created automatically when feature
structures are classified into an explicit lattice.

2 . 1 . 3 . Avoiding Redundant Computations

The first time that a component of a description is classified, it is placed into a lattice
containing all other descriptions in the knowledge base. The lattice structure makes full
consistency checks unnecessary between objects that are known to be in a subsumption
relationship. The object-oriented representation of the lattice also makes it possible to
store the results of consistency checks between components of a description, so that they
do not need to be repeated.

2 . 1 . 4 . Using Classification as a Grammar Compiler

The classification-based architecture is also able to impose a system of type constraints on
feature structures. Constraints may be placed on the sets of features that are required or
prohibited for particular types of objects, and on the types of objects that may occur as
the values o f particular features. Structures that violate one of these constraints are
automatically marked as incoherent. In contrast, many of the unification methods used in
computational linguistics have untyped feature structures. For applications o f limited
scale, an untyped unification-based system may provide acceptable results with
somewhat less overhead than a classification-based approach. In particular, an untyped
feature system allows greater flexibility in the early stages of developing a grammar.
However, for applications that are necessarily knowledge-intensive, a classification-based
system is likely to be preferable, because it organizes a large collection of linguistic
knowledge (and related nonlinguistic knowledge) in such a way that it can be more
efficiently processed.

From another perspective, the classification-based system can be seen as carrying out a
compilation procedure on a linguistic knowledge base. The initial loading (or compilation)
of a large grammar into the system may be computationally expensive, but the result is a
parser that may be considerably more efficient at run-time than current unification-based
systems. In the early stages of developing a grammar, when not many sentences are
parsed with a particular version o f the grammar before it is substantially revised, the
benefits o f compilation may not be appreciated. When the system is actually used in an
application, or tested on a large body of text, it may significantly improve performance.

-5- Intemational Parsing Workshop '89

REFERENCES

Brachman, R. and Schmolzc, J. An Overview of the KL-ONE Knowledge Representation
System. Cognitive Science, Vol. 9:2, 1985.

Eisele, Andreas and Doerre, Jochen. Unification of Disjunctive Feature Descriptions.
Proceedings of the 26th Annual Meeting of the Association for Computational Linguistics,
Buffalo, NY: June 7-10, 1988.

Halliday, Michael. System and Function in Language. Kress G., editor, Oxford University
Press, London, England, 1976.

Karttunen, Lauri. Features and Values. Proceedings of the Tenth International Conference
on Computational Linguistics: COL1NG 84, Stanford, CA: July 2-7, 1984.

Kasper, Robert. A Flexible Interface for Linking Applications to Penman's Sentence
Generator. Proceedings of the DARPA Workshop on Speech and Natural Language,
Philadelphia: February, 1989.

Kasper, Robert. Conditional Descriptions in Functional Unification Grammar. Proceedings
of the 26th Annual Meeting of the Association for Computational Linguistics, Buffalo, NY:
June 7-10, 1988a.

Kasper, Robert. An Experimental Parser for Systemic Grammars. Proceedings of the 12th
International Conference on Computational Linguistics, Budapest: August, 1988b.

Kasper, Robert. A Unification Method for Disjunctive Feature Descriptions. Proceedings of ■
the 25th Annual Meeting of the Association for Computational Linguistics, Stanford, CA:
July 6-9, 1987.

Kay, Martin. Parsing in Functional Unification Grammar. Natural Language Parsing, Dowty
D., Karttunen L., and Zwicky A. (eds.), Cambridge University Press, Cambridge, England,
1985.

MacGregor, Robert. A Deductive Pattern Matcher. Proceedings of AAAI-88, The National
Conference on Artificial Intelligence, St. Paul, MN: August, 1988.

Pollard, Carl and Sag, Ivan. Information Based Syntax. CSLI Lecture Notes Number 13,
Univeristy of Chicago Press, 1987.

Shieber, Stuart. The Design of a Computer Language for Linguistic Information.
Proceedings of the Tenth International Conference on Computational Linguistics: COLING
84, Stanford, CA: July 2-7, 1984.

Smolka, Gert. A Feature Logic with Subsorts. LILOG Report 33, IBM Deutschland,
Stuttgart, West Germany, May 1988.

-7- International Parsing Workshop '89

Using Restriction to Optimize Unification
Parsing

D ale Gerdem ann * *

D epartm ent of Linguistics
C ognitive Science Group

Beckm an Institute for Advanced Science and Technology
U niversity of Illinois

1 In troduction
Since Shieber (1985), restriction has been recognized as an important operation
in unification parsing. 1 As Shieber points out, the most straightforward adap­
tation of Earley’s algorithm 2 for use with unification grammars fails because
the infinite number of categories in these grammars can cause the predictor step
in the algorithm to go into an infinite loop, creating ever more and more new
predictions (i.e. the problem is that new predictions are not subsumed by pre­
vious predictions). The basic idea of restriction is to avoid making predictions
on the basis of all of the information in a DAG, but rather to take some subset
of that information (i.e. a restricted DAG-henceforth RD) and use just that
information to make new predictions. Since there are only a finite number of
possible RDs the predictor step will no longer go into the infinite loop described
above. The price you pay for this move is that some spurious predictions will be
made, but as Shieber points out, the algorithm is still correct since any spunous
predictions will be weeded out by the completer step.

‘ Cognitive Science G roup, Beckm an In stitu te , 405 N. M athews, Urbana, 111 61801;
daleQ tanki.cogvci.u iuc.edu

*1 would like to thank Alan Frisch, Erhard Hinrichs, Lucja Ivariska, Jerry M organ, Mike
M endelson, and Tsuneko Nakatawa for their useful com m ents. Any deficiencies m ust rest with
me. Thanks also to the UIUC Cognitive Science/A rtificial Intelligence fellowship com m ittee
for the support that m ade this research possible.

*By unification parsing I m ean p a n in g of unification grammars. See Seifert (1988) for a
precise definition of a unification grammar.

3I will assume fam iliarity w ith the basic steps of E arley’s algorithm as presented in Earley
(1970). For an introduction to E arley’s algorithm and its relationship to chart parsing in
general see W inograd (1983).

-8- Intemational Parsing Workshop '89

Shieber’s use of restriction in the predictor step is by now well established.
On the other hand, there has been little discussion of the uses of restriction in
other stages of parsing. In this paper, I will argue that restriction can be used
to advantage in at least three additional ways. First, restriction can be used
to significantly speed up the subsumption check on new predictions. Second, it
can be used in the completer step in order to speed up the process of finding
the correct states in the state sets to be completed. And third, it can be used
to add a lookahead component to the unification parser. I will begin this paper
by briefly reviewing Shieber’s use of restriction and then I will discuss the three
additional uses for restriction mentioned above.

2 R estriction in the Predictor Step
The original motivation for restriction was to avoid infinite cycles in the predic­
tor step of Earley’s algorithm. Shieber illustrates this problem with a “counting
grammar” but the same point can be made using a type of grammar that is some­
what more familiar in recent linguistic theory. Specifically, infinite cycles can
arise in grammars that handle 3ubcategorization with list valued features such
as Head Driven Phrase Structure Grammar (Pollard and Sag, 1987) or PATR
style grammars (Shieber, 1986). To illustrate the problem, suppose that we are
parsing a sentence using a grammar with the PATR style rules in (1,2). The
problem of non-termination can arise with this grammar since rule (2) allows
for lexical items with indefinitely long subcategorization lists.

(1) zO —♦ xl x2
xO [c a t s]
x l [l] [cat np]

cat vp
x2 subcat

f ir s t [1]
rest end

(2) zO

xO

xl x2
cat vp

cat vp

subcat
f ir s t
rest

[2! 1
11] . .

xl [1]

x2 12)

The first step in parsing a sentence with this grammar is to find a rule whose
left hand side unifies with the DAG described by the path equation {cat) = s

-9- International Parsing Workshop '89

(i.e. the start DAG). Since the rule in (l) satisfies this requirement, the next
step is to make a prediction for the xl daughter. In Earley’s algorithm as it was
originally formulated (Earley 1970), the prediction for xl would simply be its
category label (i.e. np). In this unification style grammar, however, category
labels are just features like any other feature. Since the DAGs associated with
each of the non-terminals (xO, x l , . . . , xn) in a rule may express just partial
information about that non-terminal, it is possible that some non-terminals
(such as x2 in the second rule) will not be associated with any category label at
all. The natural solution, then, would be to make a prediction using the entire
DAG associated with a given non-terminal. Suppose, now, that we have parsed
the np in rule (1) and we’re ready to parse x2. The DAG associated with x2
would be (3).

cat vp
[cat np]subcat f ir s t

rest end .

When this DAG unifies with the category on the left hand side of (2) we get
the rule shown in (4).

(4) xO xl x2

xO

xl

cat
subcat
cat

subcat

vp
\2 \
vp

f irs t [i]
rest [2]

f i r s t [cat np]
rest end

. x2 I1!

Now, following the same procedure, the predictor would next make a pre­
diction for the non-terminal xl in (4). It can easily be seen that when the DAG
associated with x l unifies with the left hand side of rule (2) the predicted rule
is almost the same as (4) except that the value for (subcat rest) in (4) becomes
the value for (subcat rest rest) in the new predict ,i. In fact, the predictor
step can continue making such predictions ad infinitum and, crucially, the new
predictions will not be subsumed by previous predictions.

To solve this problem Shieber proposes that the predictor step should not
use all of the information in the DAG associated with a non-terminal, but rather
it should use some limited subset of that information. Of course, when some
nodes of the DAG tire eliminated the predictor step can overpredict, but this
does not affect the correctness of the algorithm since these spurious predictions
will not be completable. Shieber’s proposal is basically that before the predictor
step is applied, a RD should be created which contains just the information

-10- Intemational Parsing Workshop '89

associated with a finite set of paths (i.e. a restrictor). 3 In this way, Shieber’s
algorithm allows an infinite number of categories to be divided into a finite
number of equivalence classes. Since the number of possible RDs is finite it
becomes impossible to make the kind of infinite cycle of predictions illustrated
above.

Primarily for notational reasons, I will define restriction in a slightly different
manner from Shieber (1985). For our purpose here we can define the RD D’ of
DAG D to be the least specific DAG D’ C D such that for every path P in the
restrictor if the value of P in D is atomic then the value of P in D’ is the same
as the value of P in D and if the value of P in D is complex then the value of
P in D’ is a variable. This differs from Shieber’s definition in that reentrancies
are eliminated in the RD. Thus the RD is not really a DAG but rather is a
tree and hence it can be represented more easily by a simple list structure. For
example,given the restrictor [(a b), (d e f), (d i j f)], the RD for the DAG in
(5) (from Shieber 1985) will be represented by the indented list shown in (6),
in which variables are indicated by [].4

a [
b c]

’ e W [/ { 9 M l "

d * [; [i l l

k I m

(6) [[a , [[6 , c]] l ,

\ d , [[« , [[/ , O i l] ,

[i , U [[/ . I l l l l l l

3 R estr ic tion in th e Subsum ption Test
The first use of restriction I will discuss involves the subsumption check on new
predictions. In the original Earley’s algorithm (Earley 1970), a check was made
on each new prediction to see that an identical prediction had not already been
made in the same state set. Of course, if duplicate predictions are retained the
parser can fall into the left recursion trap. In Shieber’s adaptation, however, this
identity check is changed to the more general notion of a subsumption check. If
a new DAG is predicted that is subsumed by a previous (more general) DAG,

aT he question of how to select an appropriate restrictor for greatest efficiency m ust remain
a question for further research. See the conclusion of this paper for further discussion.

^E lim inating reentrancies from RDs may also be a reasonable thing to do from a com pu­
tational point of view . Judging from the particular restrictors used in Shieber (1985,1986)
it would appear that reentrancies rarely occur in RDs. However, for some purposes it may
be desirable to include more inform ation in R D s. A possible exam ple would be the use of
parsing algorithm s for generation, in which it would be desirable to use as much top down
inform ation as possible.

-11- Intemational Parsing Workshop '89

the new DAG is not retained since any DAGs that could be predicted on the
basis of the new DAG could already have been predicted on the basis of the
more general DAG. Clearly, the move from an identity check to a subsumption
check is the right sort of move to make, but a subsumption check on arbitrarily
large DAGs can be an expensive operation. This seems to be an ideal area in
which restriction could be used to optimize the algorithm.

The move I propose is the following. Initially, new predictions are made in
the manner suggested by Shieber; i.e. make a RD for the category “to the right
of the Dot” and then collect all the rules from the grammar whose left hand side
category unifies with this RD-these rules then constitute the new predictions.
At this point I suggest that the RD used to find these predictions should be
retained along with the new predictions; that is, a list of RDs that have been
used to make predictions should be kept for each state set. I will call this list the
RDJList. Then, the next time the parser enters the predictor step and creates
a new RD from which to make new predictions, a subsumption check can be
made directly between this RD and the RD_List. If the new RD is subsumed
by any member of the RD_List then we can immediately give up trying to make
any new predictions from this RD. Any predictions made from th RD would
necessarily already have been made when the predictor encountered the more
general RD in the RDJList. Thus we avoid both the expense of making new
predictions and the expense of applying the subsumption test to weed these new
predictions out. Moreover, since RDs are typically very small (at least given
the sample restrictors given in Shieber (1985,1986)), the subsumption test that
is performed on them can be applied very quickly.

As an example, suppose that some set of predictions has already been made
using the RD, ([cat, np]], then there is no point in making predictions using
[[cat, np],[num, sing]] since any such predictions would necessarily fail the sub­
sumption check; i.e., rules expanding singular noun phrases are more specific
than (or subsumed by) rules expanding noun phrases unspecified for number.
This particular case probably does not arise often in actual parsing, but cases
of left recursion do arise for which this optimization can make a very signifi­
cant difference in processing speed. In fact our experience with the UNICORN
natural language processing system (Gerdemann and Hinrichs 1988), has shown
that for grammars with a large amount of left recursion, this simple optimiza­
tion can make the difference between taking several minutes of processing time
and several seconds of processing time.

4 R estr ic tion in the C om pleter Step
The next use of restriction I propose involves the completer step. The completer
applies, in Earley’s algorithm, at the point where all of the right hand side of
a rule in some state has been consumed, i.e., the point at which the “Dot” has
been moved all the way to the right in some rule. At this point the completer

-12- International Parsing Workshop '89

goes back to the state set in which the state to be completed was originally
predicted and searches for a prediction in this state set which has a category
“to the right of the Dot* which can unify with the mother node of the rule in
the state to be completed. This search can be quite time consuming since the
completer must attempt to perform a unification for each state in this state set.

In each state, there is a variable F which indicates in which state set that
stace was predicted so the completer can immediately go back to the Fth state
set in order to make the completion. But there is no variable which indicates
which state in the Fth state set could have been responsible for making that
prediction. And, in fact, it would be quite difficult to implement such a direct
backpointer since in many cases a particular state is really only indirectly re­
sponsible for some prediction in the sense that it would have been responsible
for the prediction if it had not been for the subsumption check. For example,
suppose we try to implement a system of backpointers as follows. Each state
will be a quintuple (Lab,BP,Dot,F,Dag) where Lab is an arbitrary label, BP is
a kind of backpointer which takes as its value the label of the state that was re­
sponsible for predicting the current state and Dot, F, and Dag are as in Shieber’s
adaptation of Earley’s algorithm; i.e., Dot is a pointer to the current position
in the rule represented by Dag, and F is the more general kind of backpointer
which only indicates in which state set the original prediction was made. To
illustrate the problem with this scheme, consider the partial state set in (7), in
which the subscripted t indicates that this is the tth state set.

(7) [Labi, B P 1 , Dotl, F 1 , Dagl], [Lab2, B P 2 , Dot2, F2, Dag2\ , ...]

Now suppose the RD for Dagl is [[cat,np]] and that the RD for Dag2 is
[[cat,np],[num,sing]]. When the predictor looks at state Labi it will make
some number of predictions with backpointers to Labi as in (8) (For example,
[Lab3,Labl,0,i,Dag3] is a new state with an arbitrary label, Lab3, a backpointer
to state Labi, the Dot set at 0 indicating the beginning of the left hand side,
F set to t indicating that the prediction was made in state set i, and Dag3
representing the new rule).

(8) i [. .. [Labi, B P 1 , Dotl, FI, Dagl], [Lab2, B P 2 , Dot2, F2, Dag2],
[LabZ, Labi, DotZ, DagZ], [LabA, Labi, Dot\, FA, Dagi] , ...]

But when the predictor looks at Lab2 no predictions will be made since its RD
ifl subsumed by the RD of Labi. Thus even though (without the subsumption
check) Lab2 could have been responsible for the predictions Lab3 and Lab4, no
backpointers are created for Lab2 .

It is at this point that RDs can again help us out. The idea is that when
the predictor attempts to make predictions on the basis of some state it adds
a RD to that state and to all predictions made from that state as a kind of
marker (or coindexing between a state and the predictions resulting from that

-13- < International Parsing Workshop '89

state). The RD used for this coindexing will be either 1 .) the RD used to
make the predictions or 2.) if no predictions were made because a more general
RD had already been used to make predictions, then this more general RD
is used as the marker. Now the completion step is greatly simplified. The
completer can go back to the Fth state set and attempt unification only on states
that have identical RD-markers. Clearly this move eliminates many attempted
unifications that would be doomed to failure. To implement this idea states
will be defined as quintuples (BP,FP,Dot,F,Dag) where BP is a RD acting as a
backpointer, FP is a RD acting as a forward pointer and F,Dot, and Dag are as
before. Now the analog of (7) will be (9).

(9) i [. . . [BP 1 , F P 1 , Dotl, FI, Dagl\, [BP2, FP2, Dot2, F2, Dag2],...]

In (9) BPl and BP2 will each be instantiated to the value of the RD re­
sponsible for the prediction which created their respective state. F P l and FP2 ,
however will be uninstantiated variable since these two states have not yet been
responsible for creating any new predictions. Now assuming that the RDs for
Dagl and Dag2 are as in (7) then when the predictor applies to the first state
shown in (9), the result will be the state set shown in (10).

(10) ,[. . . [B P l , [[cat, np]], Dotl, FI, Dagl],
[BP2, F P 2 , Dot2, F2, Dag2\,
[[[cat, np]], FP3, DotZ, F 3, Dag3],
[[[cat, np]], FPA, DotA, FA, DagA],...]

Then when the predictor looks at the second state in (10), no predictions
will be made as before, however the predictor will register the attempt to make
a prediction by instantiating the variable FP2 as in (11).

(1 1) i [. . . [B P l , [[cat, np]], Dotl, F 1 , Dagl],
[BP2, [[cat, np]], Dot2, F2, Dag2\,
[[[cat, np]], FPZ, DotZ, F 3, Dag3],
[[[cat, np]], FPA, DotA, FA, DagA],...]

Now whenever the descendants of states 3 and 4 are ready to be completed,
it will be easy to go back to this state set and find the states whose forward
pointers are identical to the backpointers of the states to be completed. Thus
many candidates for completion are immediately ruled out.

5 R estr ic tion U sed in Lookahead
The final use for restriction that I propose involves lookahead. Lookahead is one
aspect of Earley’s algorithm which clearly needs modification in order to be used

-14- Intemational Parsing Workshop '89

efficiently with unification grammars or natural language grammars in general.
In the original algorithm, a calculation of lookahead was performed as part of
the prediction step. A simple example can show the problem with Earley’s
version of this procedure. In the S —► NP VP rule, when the predictor makes
a prediction for NP, it is required to add a state for each possible lookahead
string that can be derived from the VP. But given the large number of verbs or
adverbs that can start a VP in a natural language this would require adding a
huge number of states to the state set. Clearly we don’t want to simply list all
the possible lookahead strings, but rather the correct approach would be to find
what features these strings have in common and then add a smaller number of
states with feature based lookaheads.

Aside from the question of what kind of lookahead to calculate, there are
two other questions that need to be considered: first the question of when to
calculate lookahead and second how to calculate it. Beginning with the when
question, it is clear that unification grammars require lookahead to be calculated
at a later point than it is in Earley’s approach. The reason for this is illustrated
by rules like (2) repeated here as (12)

(12) xO

xO

xl x2
cat vp
subcat [l]

x l [1]

x2 [2]

cat

subcat

vp
f ir s t [2]
rest [l]

According to Earley’s approach, when a prediction is made for xl, the looka­
head for x2 should be calculated. But in this case, no features for x2 will be
specified until after x l is parsed. This is an extreme situation, but it illustrates
a general problem. It is the normal case in a unification grammar for the result
of parsing one category to affect the feature instantiations on its sister. Clearly,
what needs to be done in this case is to parse x l and then perform a lookahead
on x2. Thus, lookahead should be calculated for a category immediately before
the predictor applies to that category; i.e., lookahead can be considered a quick
check to be made immediately before applying prediction. Unlike Earley’s orig­
inal algorithm, then, it is not necessary to put a lookahead string into a state
to be checked at a later point.

The question, then, is how to calculate lookahead. In Earley’s version of the
algorithm, there is a function, Hk which when applied to a category C returns
a set of k-symbol strings of terminals which could begin a phrase of category
C. When applied to unification grammars, however, the problem of having an
infinite number of categories again appears. We certainly cannot list possible
strings of preterminals that can begin each category. It is clear, then, that some

-15- Intemational Parsing Workshop '89

form of restriction is again going to be necessary in order to implement any kind
of lookahead. One, relatively simple, way of implementing this idea is as follows.
When the predictor applies to a category C, the first thing it does is make a RD
for C. Then a table lookup is performed to determine what preterminal cate­
gories could begin C. Since there are potentially infinite preterminal categories,
restriction must be applied here too. So more precisely, the table lookup finds
a set of RDs that could unify with whatever actual preterminal could begin a
phrase of category C. Let us call these RDs the preterminal RDs. Then before
the predictor can actually make a prediction a check must be performed to ver­
ify that the next item in the input is an instance of a category that can unify
with one of the preterminal RDs. If the check fails, then the prediction is aban­
doned. All that remains is to specify how the lookup table is constructed. One
way such a table might be constructed would be to run the parser in reverse for
generation as in Shieber (1988) . Thus, for each possible RD (given a particular
restrictor), the generator is used to determine what preterminal RDs can begin
a phrase of this category.

6 Conclusion
I have argued here that restriction can be used in unification parsing to effect
three optimizations. First, it can be used to greatly speed up the subsumption
test for adding new predictions to the state set, second it can be used to speed up
the searching used in the completer step, and finally it can be used to implement
a form of lookahead. The first two of these uses have been fully implemented
within the UNICORN natural language processing system (Gerdemann and
Hinrichs 1988). The use of restriction with lookahead is still under development.

In general, the fact that unification grammars may have categories of in­
definite complexity necessitates some way of focusing on limited portions of
the information contained in these categories. It seems quite likely, then, that
restriction would be useful even in other parsing algorithms for unification gram­
mars. The primary question that remains is what portion of the information
in complex DAGs should be used in these algorithms; that is, the question is
how to choos« a restrictor. Up to now, no general principles have been given for
choosing a restrictor for greatest efficiency. Given the proposals in this paper, it
becomes even more critical to find such general principles since restriction can
affect the efficiency of several steps in the parsing algorithm.

References
[1] Jay Earley. An efficient context-free parsing algorithm. Communications of

the ACM , 1970.

[2] Dale Gerdemann and Erhard Hinrichs. UNICORN: a unification parser for

-16- International Parsing Workshop '89

attribute-value grammars. Studies in the Linguistic Sciences, 1988.

[3] Carl Pollard and Ivan Sag. An Information-Based Approach to Syntax and
Semantics: Volume 1 Fundamentals. CSLI Lecture Notes No. IS, Chicago
University Press, Chicago, 1987.

[4] Roland Seiffert. Chart-parsing of unification-based grammars with ID\LP-
rules. In Ewan Klein and Johan van Benthem, editors, Categories, Polymor­
phism and Unification, pages 335-54, CCS/ILLI, Edinburgh/Amsterdam,
1987.

[5] Stuart Shieber. An Introduction to Unification-Based Approaches to Gram­
mar. CSLI Lecture Notes No. 4, Chicago University Press, Chicago, 1986.

[6] Stuart Shieber. A uniform architecture for parsing and generation. In
COLING-88, pages 614-9, 1988.

[7] Stuart Shieber. Using restriction to extend parsing algorithms for complex-
feature-based formalisms. In ACL Proceedings, 2Srd Annual Meeting,
pages 145-52, 1985.

[8] Terry Winograd. Language as a Cognitive Process: Syntax. Ablex, Nor­
wood, 1983.

-17- Intemationai Parsing Workshop '89

An O verview of
Disjunctive Constraint Satisfaction

■John T. Maxwell III and Ronald M . Kaplan

Xerox Palo Alto Research Center

Introduction

This paper presents a new algorithm for solving disjunctive systems of constraints. The algorithm
determines whether a system is satisfiable and produces the models if the system is satisfiable. There
are three main steps for determining whether or not the system is satisfiable:

1) turn the disjunctive system into an equi-satisfiable conjunctive system in polynomial time
2) convert the conjunctive system into canonical form using extensions of standard techniques
■3) extract and solve a propositional ’disjunctive residue'

Intuitively, the disjunctive residue represents the unsatisfiable combinations of disjuncts in a
propositional form based on the content of the constraints. Each of the transformations above
preserves satisfiability, and so the original disjunctive system is satisfiable if and only if the
disjunctive residue is satisfiable. If the disjunctions are relatively independent (as frequently happens
in grammatical specifications), then the disjunctive residue is significantly easier to solve than the
original system.

The first three sections of this paper cover the steps outlined above. The fourth section describes how
models can be produced. Finally, the last section compares this approach with some other techniques
for dealing with disjunctive systems of constraints.

Turning Disjunctions into C onjunctions

B asic L e m m a

Our method depends on a simple lemma for converting a disjunction into a conjunction of implications:

(1) 4>i V 4>2 is satisfiable iff (p —*• 4>i) A (- 1 p -* 4)9) is satisfiable,
where p is a new propositional variable.

Proof:
1) If 4)i v $2 is satisfiable, then either 4>i is satisfiable or 4>2 is satisfiable. Suppose tha t 4>i is

satisfiable. Then if we choose p to be true, then p —► is satisfiable because 4>i is satisfiable,
and - l p-* $2 is vacuously satisfiable because its antecedent is false. Therefore
(p -+ <t>i) A (- l p -» 4)2) is satisfiable.

2) If (p —► 4)i) A (i p - > 4>2) is satisfiable, then both clauses are satisfiable. One clause will
be vacuously satisfiable because its antecedent is false and the other will have a true antecedent.
Suppose that p -> 4>l is the clause with the true antecedent. Then 4>i must be satisfiable for p -+ 4>i to
be satisfiable. But if 4>i is satisfiable, then so is 4>i V 4>2- Q E D.

Intuitively, the new variable p is used to encode the requirement that a t least one of the disjuncts be
true. In the rem ainder of the paper we use lower-case p to refer to a single propositional variable, and
upper-case P to refer to a boolean combination of propositional variables. We call P 4> a contexted
constraint, where P is the context and 4> is called the base constraint.

(Note that this lemma is stated in terms of satisfiability, not logical equivalence. A form of the lemma
that emphasized logical equivalence would be: 4>t V 4)2 *"* 3p: (p —► 4>l) A (- IP $2)•)

-18- International Parsing Workshop '89

T u rn in g a D is ju n c tive S y s te m into a C o n ju n c tive S y s te m

The lemma given above can be used to convert a disjunctive system of constraints into an flat
conjunction of contexted constraints in polynomial time. The resulting conjunction is satisfiable if and
only if the original system is satisfiable. The algorithm for doing so is as follows:

(2) a) push all of the negations down to the literals
b) turn all of the disjunctions into conjunctions using the lemma above
c) flatten nested contexts with: I P t —* I Pj —* <J>)) <=* (P t A Pj -* <$)
d) separate conjoined constraints with: (P, -» $ 1 A)) ** (Pi $ 1) A (P, -* 4)2)

This algorithm is a variant of the reduction used to convert disjunctive systems to CNF in the proof
that CNF is NP-complete[4], and is thus known to run in polynomial time. In effect, we are simply
converting the disjunctive system to an implicational form of CNF (note that P —* is logically
equivalent to ~>P V <t>)- CNF has the desirable property that if any one clause can be shown to be
unsatisfiable, then the entire system is unsatisfiable.

E xam ple

The functional s tructure f of an uninflected verb in English has the following constraints in the
formalism of Lexical-Functional G ram m ar[6 |:

(3) ((f INF) = - A (f TENSE) = PRES A -[(fSUBJ NUM) = SG A (f SUBJ PERS) = 3]) v (f INF) = +

(In LFG notation, a constraint of the form (f a) = v asserts that fta) = v, where f is a function, a is an
attribute, and v is a value, (f a b) = v is shorthand for f(a)(b) = v.) These constraints say tha t an
uninflected verb in English is e ither a present tense verb which is not third person singular or it is
infinitival. In the left column below this system has been reformatted so that it can be compared with
the results of applying algorithm (2) to it, shown on the right:

reformatted: converts to:

((f INF) = - (P t -*• (f INF) = -) A

A (f TENSE) = PRES (P-| -* (fTENSE) = PRES) A

A - [(f SUBJ NUM) = SG (p 1 A p 2 (f SUBJ NUM) x SG) A

A (fSUBJ PERS) = 3]) (p 1 A ->p2 -► (f SUBJ PERS) * 3) A

V (f INF) = + (“, P 1 - (f INF) = +)

Converting the Constraints to C anonical Form

A conjunction of contexted constraints can be put into an equi-satisfiable canonical form that makes it
easy to identify all unsatisfiable combinations of constraints. The basic idea is to s ta r t with
algorithms tha t determine the satisfiability of purely conjunctive systems and extend each rule of
inference or rewriting rule so tha t it can handle contexted constraints. We illustrate this approach by
modifying two conventional satisfiability algorithms, one based on deductive expansion and one based
on rewriting.

D ed u c tive E x p a n s io n

Deductive expansion algorithm s work by determining all the deductions tha t could lead to
unsatisfiability given an initial set of clauses and some rules of inference. The key to extending a
deductive expansion algorithm to contexted constraints is to show th a t for every rule of inference tha t
is applicable to the base constraints, there is a corresponding rule of inference th a t works for contexted

-19- Intemational Parsing Workshop '89

constraints. The basic observation is that base constraints can be conjoined if their contexts are
conjoined:

(4) (Pi —> <J>i) A (P ‘2 —> 4>o) =* (Pi A P ‘2 —♦ 4>i A (|>2)

If we know from the underlying theory of conjoined base constraints that <£i A <£2 —*■ 4)3, then the
transitivity of implication gives us:

(5) (Pi —* 4>i) A (P2 —* <J>2) =* (Pi A P2 —<► 4>3)

Equation (5) is the contexted version of A ^ $ 3. Thus the following extension of a standard
deductive expansion algorithm works for contexted constraints:

(6) For every pair of contexted constraints Pi —»<£1 and P 2 —* <po such that:
a) there is a rule of inference $ 1 A $2 -+ (£3
b) P \ A P2 * FALSE

c) there are no other clauses P3 —*• 4)3 such that P t A P 2 - P 3
add Pi A P2 —* <$>3 to the conjunction of clauses being processed.

Condition (6b) is based on the observation that any constraint of the form FALSE —> (p can be discarded
since no unsatisfiable constraints can ever be derived from it. This condition is not necessary for the
correctness of the algorithm, but may have performance advantages. Condition (6c) corresponds to the
condition in the standard deductive expansion algorithm that redundant constraints must be
discarded if the algorithm is to terminate. We extend this condition by noting tha t any constra in t of
the form Pj —* 4> is redundant if there is already a constraint of the form Pj —► <£, where Pj -* Pj. This is
because any unsatisfiable constraints derived from Pj -+ 4> will also be derived from Pj —* <£. Our
extended algorithm term inates if the s tandard algorithm for simple conjunctions terminates. When it
terminates, an equi-satisfiable disjunctive residue can be easily extracted, as described below.

R e w r i t in g

Rewriting algorithms work by repeatedly replacing conjunctions of constraints with logically
equivalent conjunctions until a normal form is reached. This normal form usually has the property
that all unsatisfiable constraints can be determined by inspection. Rewriting algorithms use a set of
rewriting rules that specify what sorts of replacements are allowed. These are based on logical
equivalences so that no information is lost when replacements occur. Rewriting rules are in terpreted
differently from logical equivalences, however, in that they have directionality: whenever a logical
expression matches the left-hand side of a rewriting rule, it is replaced by an instance of the logical
expression on the right-hand side, but not vice-versa. To distinguish the two, we will use «-* for
logical equivalence and » for rewriting rules. (This corresponds our use of —► for implication and =>
for deduction above.)

A rewriting algorithm for contexted constraints can be produced by showing tha t for every rewrite
rule that is applicable to the base constraints, there is a corresponding rewrite rule for contexted
constraints. Suppose tha t $ 1 A <J>2 <=> <$>3 is a rewriting rule for base constraints. An obvious candidate
for the contexted version of this rewrite rule would be to treat the deduction in (5) as a rewrite rule:

(7) (Pi -*• $ 1) A (P 2 —<► $2) <=> (Pi A P2 -» $3) (incorrect)

This is incorrect because it is not a logical equivalence: the information that <p\ is true in the context
Pi A -> P2 and that $2 is true in the context P 2 A —1 Pi has been lost as the basis of future deductions. If
we add clauses to cover these cases, we get the logically correct:

(8) (P i —►4)i) A (P 2—* $2) ^ (Pi A - P 2 -*<J>i) A(P2 A - P t -> <£2) A (Pi A P2 —♦ $3)

-20- International Parsing Workshop '89

This is the contexted equivalent of <pi A $ 2 <=> $ 3. Note that the effect of this is that the contexted
constraints on the right-hand side have unconjoinable contexts (that is, their conjunction is
tautologically false). Thus, although the right-hand side of the rewrite rule has more conjuncts than
the left-hand side, there are fewer implications to be derived from them.

Loosely speaking, a rewriting algorithm is constructed by iterative application of the contexted
versions of the rewriting rules of a conjunctive theory. Rather than give a general .t iine here, let us
consider the particular case of a ttr ibute value logic.

A p p lica t io n to A t tn b u te - V a lu e L og ic

Attribute-value logic is used by both LFG and unification-based grammars. We will s ta r t with a
simple version of the rewriting formalism given in Johnson[51. For our purposes, we only need two of
the rewriting rules that Johnson defines[5 pp. 38-39]:

O) ti == t2 « t2 « t l when ||t i|| < ||t2i| (INI is Johnson's norm for terms.)

(10) t2=s tiA<t) « t2~ t i A <$>[t2/til where <t> contains t2 and ||t2|| > i|ti||

(<J>[t2/til denotes "4) with every occurrence of t2 replaced by ti".)

We turn equation (10) into a contexted rewriting rule by a simple application of (7) above:

(1 1) (P i - > t 2 = t 1) A (P2 -><t>)
» (Pi A ->P2 —► t2 = t L) A (- Pi A P2 -+<t>) A (Pi A P 2 -+ (t2 = ti A<t>[t2/tiD)

We can collapse the two instances of 1 2 = 1 1 together by observing that (P - * A A B) *+
(p a) A (P -> B) and tha t (P{ -* A) A (Pj A) «- (P t V Pj -* A), giving the simpler form:

(12) (Pi -* t2 = t i) A (P2 -*« 4>) «=> (Pi -* t2 = ti) A (P2 A - Pi -> 4>) A (P2 A Pi -* 4>[t2/ti 1)

Formula (12) is the basis for a very simple rewriting algorithm for a conjunction of contexted
attribute-value constraints.

(13) For each pair of clauses Pi —* tj = t t and P 2 —> 4>:
a) if ||tj|| > INI,then set fc2 t0 tj and fci t0 else set fc2 t0 ̂ and t i t0 ti
b) if <|> mentions t 2 then replace P2 -* <P with (P2 A -*Pi -> <J>) A (P 2 A Pi -* <t>[t2/ t i l)

Notice that since Pi -* t2 = ti is carried over unchanged in (12), we only have to replace P2 <t> in
(13b). Note also that if P 2 A P t is FALSE, there is no need to actually add the clause P2 A Pi - * <t>(t2/ti]
since no unsatisfiable constraints can be derived from it. Similarly if P 2 A —1 ? ! is FALSE there is no
need to add P 2 A ~1 Pi —► <t>.

E x a m p le

The following example illustrates how this algorithm works. Suppose that (15) is the contexted
version of (14):

(14) [f2 = f i V (f i a) = c i]A [(f2 a) = c2 v (f i a) = c3] where q * cj for all i * j

15) a. Pi -> f2 — fl
b. ^Pi -* II 0 r—

•

c. P2 -*> (f2 a) =C2
d. ~' P2 -> (fl a) = C3

-21- Intemational Parsing Workshop '89

(For clari ty, we omit the A's whenever contexted const ra in t s are d isplayed in a column.) There is an
applicable rewrite rule for const r a in ts (15a) and (15c) tha t produces three new const raints:

(16) pi — f2 = fi ^ Pi -*■ =
p2 -+ (T2 a) = c2 ~"Pi a P2 -* (f-2 a) = c2

pi A p2 -» (fi a) = C9

Although there is an applicable rewri te rule for (15d) and the last clause of (16), we ignore it since p t
A p9 A —-p2 is FALSE. The only o ther pai r of cons t ra in t s tha t can be rewr i t ten are (15b) and (I 5d).
producing three more const ra ints:

(IT) —1 pi -*> (fi a) = ci <=> ~' Pi ~ " (fi a) = ci
—1P2 — * (fi a) = C3 P i A t ? ~ (fi a) = c3

“’Pi A - p 2 -*> Cl = c 3

Since no more rewrites are possible, the normal form ot (15) is thus:

18) a. Pi — f2 = fi
b. “■Pi -> (fl a) = ci
c. - 1 pi A p2 — (f2 a) = C2
d. Pi A - 1 p2 -*• (fi a) = c3
e. Pi A P2 — (fi a) = C2
f. -1 Pi A p2 -» 0 II 0 CO

Extracting the Disjunctive Residue
When the rew riting algorithm is finished, all unsatisfiable combinations of base constraints will have
been derived. But more reasoning must be done to determine from base unsatisfiabilities whether the
disjunctive system is unsatisfiable. Consider the contexted constraint P -* <J>, where <J> is unsatisfiable.
In order for the conjunction of contexted constraints to be satisfiable, it must be the case tha t -• P is
true. We call - ' P a nogood, following deKleer's terminology! 1]. Since P contains propositional
variables indicating disjunctive choices, information about which conjunctions of base constraints are
unsatisfiable is thus back-propagated into information about the unsatisfiability of the conjunction of
the disjuncts that they come from. The original system as a whole is satishable just in case the
conjunction of all its nogoods is true. We call the conjunction of all of the nogoods the residue ot the
disjunctive system.

For example, clause (18f) asserts tha t -*pi A ^ P 2 - » > ci = c 3. B utc i = c 3 is unsatisfiable, since we know
that ci * c3. Thus ~>(- 1 pi A - 1 P2) is a nogood. Since ci = c3 is the only unsatisfiable base constra in t in
(18), this is also the disjunctive residue of the system. Thus (14) is satisfiable because - l (~ lp i A 1 po)
has at least one solution (e.g. pi is true and P2 is true).

Since each nogood may be a complex boolean expression involving conjunctions, disjunctions and
negations of propositional variables, determining whether the residue is satisfiable may not be easy.
In fact, the problem is NP complete. However, we have accomplished two things by reducing a
disjunctive system to its residue. First, since the residue only involves propositionat variables, it can
be solved by propositional reasoning techniques (such as deKleer's ATMS) that do not require
specialized knowledge of the problem domain. Second, we believe tha t for the particular case of
linguistics, the final residue will be simpler than the original disjunctive problem. This is because the
disjunctions introduced from different parts of the sentence usually involve different a ttr ibu tes in the
feature structure, and thus they tend not to interact.

Another way that nogoods can be used is to reduce contexts while the rewriting is being carried out,
using identities like the following:

-22- International Parsing Workshop '89

(19) ~,PiA(~1Pi A P2~* <t>) <=> Pi A (P-2 —► c$>)

(20) - P i A(Pi A P2-><$>) “’ Pi

(21) Pi A Pi <=> FALSE

Doing this can improve the performance since some contexts are simplified and some constraints are
eliminated altogether. However, the overhead of comparing the nogoods against the contexts may
outweigh the potential benefit.

Producing the M odels
Assuming that there is a method for producing a model for a conjunction of base constraints, we can
produce models from the contexted system. Every assignment of tru th values to the propositional
variables introduced in (1) corresponds to a different conjunction of base constraints in the original
system, and each such conjunction is an element of the DNF of the original system. Rather than
explore the entire space of assignments, we need only enumerate those assignm ents for which the
disjunctive residue is true.

Given an assignment of tru th values tha t is consistent with the disjunctive residue, we can produce a
model from the contexted constraints by assigning the tru th values to the propositional variables in
the contexts, and then discarding those base constraints whose contexts evaluate to false. The
minimal model for the rem aining base constraints can be determined by inspection if the base
constraints are in normal form, as is the case for rewriting algorithms. (Otherwise some deductions
may have to be made to produce the model, but the system is guaranteed to be satisfiable.) This
minimal model will satisfy the original disjunctive system.

E xa m p le

The residue for the system given in (18) is - l (_lpi A ->p2). This residue has three solutions : pi and
P 2 both true, pi true and p2 false, and pi false and p2 true. We can produce models for these solutions
by extracting the appropriate constraints from (18), and reading off the models. Here are the solutions
for this system:

solution: constraints: model:

(22) pi true, p2 true: f2 = fi A (f i a) = C2 !![’ 1

(23) pi true, p2 false: f2 = fi A (fi a) = c3 !![• 1
(24) pi false, p2 true: (fl a) = ci A (f2 a) = C2 fl[a cl]

C om parison with Other T ech n iqu es

In this section we compare disjunctive constra in t satisfaction with some of the o ther techniques tha t
have been developed for dealing with disjunction as it arises in gram m atical processing. These other
techniques are framed in term s of feature-structure unification and a unification version of our
approach would facilitate the comparisons. Although we do not provide a detailed specification of
context-extended unification here, we note that unification can be thought of as an indexing scheme
for rewriting. We s ta r t with a simple illustration of how such an indexing scheme might work.

-23- Intemational Parsing Workshop '89

U nifica tion In d ex in g

Regarding unification as an indexing scheme, the main ques tion th a t needs to be answered is where to
index the contexts. Suppose that we index the contexts with the values under the at t r ibutes . Then the
a t t r ibute-value (actual ly, attribute-corc/Jexr-value) matr ix for 125a) would be (25b):

(25) a. f a) = c i V (,fb) = C2V(f a) = c 3)
’ I p l e l l
a L - P I & ' P 2 C3J

b Q p l & p 2 c f | _

Since the contexts are indexed unde r the a t t r ibutes , two disjunct ions will only in terac t if they have
a t t r ibutes in common. If they have no a t t r i bu te s in common, the i r uni fica tion will be l inear in the
number of a t t r i but es , r a th e r than mul t ipl ica t ive in the n um ber of disjuncts. For instance, suppose
that (26b) is the a t t r i bu te value mat r i x for (26a):

(26) a. (f c) = C4 V ((f d) = C5 V (f e) = eg)
c (fi3 c 4]

d [} p3 &p 4 c5]

9 [j p 3 & ' p 4 ctf]

(27)

Since these disjunctions have no a ttr ibu tes in common, the a ttribute-value matrix for the conjunction
of (25a) and (26a) will be simply the concatenation of (25b) and (26b):

» Tpl Cl1a Lrp l & - p 2 c3j

b Q-p l&p2 c2 j

c [p3 c 4]

d Q p 3 & p 4 c5]

e [} p 3 & ' p 4 c6]

The DNF approach to this problem would produce nine f-structures with eighteen attribute-value
pairs. In contrast, our approach produces one f-structure with eleven attr ibute-value or context-value
pairs. In general, if disjunctions have independent a ttr ibutes, then a DNF approach is exponential in
the number of disjunctions, whereas our approach is linear. This independence feature is very
important for language processing, since, as we have suggested, disjunctions from different parts of a
sentence usually constrain different attributes.

K a r ttu n e n s D is ju n c t iv e V a lu es

Karttunen(7] introduced a special type of value called a "disjunctive value” to handle certain types of
disjunctions. Disjunctive values allow simple disjunctions such as:

(28) (f CASE) = ACC V (f CASE) = MOM
to be represented in the unification data s tructure as:

(2 9 > [Ca s e {a c c n o m £|

where the curly brackets indicate a disjunctive value. Karttunen 's disjunctive values are not limited
to atomic values, as the example he gives for the German article ’’die" shows:

(30) die = IN F L

£ ASE {NOM ACC}

([S e n d e r fem]]
AGR J [num ber s g J

([n u m b e r p Q

-24- International Parsing Workshop '89

The corresponding a t t r ibute-context -value matr ix for our scheme would be:

131 die = IN FL

CASE

AGR

j p l NOtfl
ACCJ

GENDER [p2 FEM]

NUMBER
fp2 SG]
L-p2 py

The advantage of disjunctive constraint satisfaction is tha t it can handle all types of disjunctions,
whereas disjunctive values can only handle atomic values or simple feature-value matrices with no
external dependencies. Furthermore, disjunctive constraint satisfaction can often do better than
disjunctive values for the types of disjunctions that they can both handle. This can be seen in (31),
where disjunctive constraint satisfaction has pushed a disjunction further down the AGR feature than
the disjunctive value approach in (30). This means that if AGR were given an a ttr ibu te other than
GENDER or NUMBER, this new a ttr ibu te would not interact with the existing disjunction.

However, disjunctive values may have an advantage of reduced overhead, because they do not require
embedded contexts and they do not have to keep track of nogoods. It may be worthwhile to incorporate
disjunctive values in our scheme to represent the very simple disjunctions, while disjunctive
constraint satisfaction is used for the more complex disjunctions.

K asper 's S u ccess ive A p p r o x im a t io n

Kasper(8, 9] proposed tha t an efficient way to handle disjunctions is to do a step-wise approximation
for determining satisfiability. Conceptually, the step-wise algorithm tries to find the inconsistencies
that come from fewer disjuncts first. The algorithm sta r ts by unifying the non-disjunctive constraints
together. If the non-disjunctive constraints are inconsistent, then there is no need to even consider the
disjunctions. If they are consistent, then the disjuncts are unified with them one at a time, where each
unification is undone before the next unification is performed. If any of these unifications are
inconsistent, then its disjunct is discarded. Then the algorithm unifies the non-disjunctive constraints
with all possible pairs of disjuncts, and then all possible triples of disjuncts, and so on. (This technique
is called "k-consistency" in the constraint satisfaction literature[3].) In practice, Kasper noted that
only the first two steps are computationally useful, and tha t once bad singleton disjuncts have been
eliminated, it is more efficient to switch to DNF than to compute all of the higher degrees of
consistency.

Kasper’s technique is optimal when most of the disjuncts are inconsistent with the non-disjunctive
constraints, or the non-disjunctive constraints are themselves inconsistent. His scheme tends to
revert to DNF when this is not the case. Although simple inconsistencies are prevalent in many
circumstances, we believe they become less predominate as g ram m ars are extended to cover more and
more linguistic phenomena. The coverage of a gram m ar increases as more options and alternatives
are added, e ither in phrasal rules or lexical entries, so tha t there are fewer instances of pure
non-disjunctive constraints and a greater proportion of inconsistencies involve higher-order
interactions. This tendency is exacerbated because of the valuable role that disjunctions play in
helping to control the complexity of broad-coverage gram m atical specifications. Disjunctions permit
constraints to be formulated in local contexts, relying on a general global satisfaction procedure to
enforce them in all appropriate circumstances, and thus they improve the m odularity and
manageability of the overall gram m atical system. We have seen this trend towards more localized
disjunctive specifications particularly in our developing LFG gram m ars, and have observed a
corresponding reduction in the num ber of disjuncts that can be eliminated using Kasper's technique.
On the other hand, the number of independent disjunctions, which our approach does best on, tends to
go up as modularity increases.

One other aspect of LFG gram m atical processing is worth noting. Many LFG analyses are ruled out
not because they are inconsistent, but ra the r because they are incomplete. That is, they fail to have an

-25- Intemational Parsing Workshop '89

attribute that a predicate requires (e.g. the object is missing for a transitive verb). Since incomplete
solutions cannot be ruled out incrementally (an incomplete solution may become complete with the
addition of more information), completeness requirements provide no information to eliminate
disjuncts in Kasper's successive approximation. These requirements can only be evaluated in what is
effectively a disjunctive normal form computation. But our technique avoids this problem, since
independent completeness requirements will be simply additive, and any incomplete contexts can be
easily read off of the attribute-value matrix and added to the nogoods before solving the residue.

Kasper's scheme works best when disjuncts can be eliminated by unification with non-disjunctive
constraints, while ours works best when disjunctions are independent. It is possible to construct a
hybrid scheme that works well in both situations. For example, we can use Kasper's scheme up until
some critical point (e.g. after the first two steps), and then switch over to our technique instead of
computing the higher degrees of consistency.

Another, possibly more interesting, way to incorporate Kasper's strategy is to always process the sets
of constraints with the fewest number of propositional variables first. That is, if P3 A P4 had fe^ er
propositional variables than P { A P.,, then the rewrite rule in (32b) should be done before (32a):

(32) a. (P L - * <J>1) A (P 0 -* <£9) => (P L A P., -* (J>5)
b. (P 3 -* <$>3) A (P 4 -+ 4>4) =» (P 3 A P 4 -* (J>6)

This approach would find smaller nogoods earlier, which would allow combinations of constraints that
depended on those nogoods to be ignored, since the contexts would already be known to be inconsistent.

E ise le a n d D orre s tech n iqu es

Eisele and Dorre[2] developed an algorithm for taking Karttunen 's notion of disjunctive values a little
further. Their algorithm allows disjunctive values to be unified with reen tran t structures. The
algorithm correctly detects such cases and "lifts the disjunction due to reentrancy". They give the
following example:

Notice that the disjunction under the "a" a ttr ibu te in the first m atrix is moved one level up in order to
handle the reentrancy introduced in the second matrix under the "b" attribute.

This type of unification can be handled with embedded contexts without requiring tha t the disjunction
be lifted up. In fact, the disjunction is moved down one level, from under "a" to under "b" and "c":

O vera ll

The major cost of using disjunctive constraint satisfaction is the overhead of dealing with contexts and
the disjunctive residue. Our technique is quite general, but if the only types of disjunction tha t occur
are covered by one of the other techniques, then that technique will probably do better than our

-26- International Parsing Workshop '89

scheme. For example, if all of the nogoods are the result of singleton inconsistencies (the result of
unifying a single disjunct with the non-disjunctive part), then Kasper's successive approximation
technique will work better because it avoids our overhead. However, if many of the nogoods involve
multiple disjuncts, or if some nogoods are only produced from incomplete solutions, then disjunctive
constraint satisfaction will do better than the other techniques, sometimes exponentially so. We also
believe that further savings can be achieved by using hybrid techniques if the special cases are
sufficiently common to w arran t the extra complexity.

A cknow ledgem ents

The approach described in this paper emerged from discussion and interaction with a number of our
colleagues. We are particularly indebted to John Lamping, who suggested the initial forumulation of
the basic lemma, and to Bill Rounds for pointing out the relationship between our conversion
algorithm and the NP completeness reduction for CNF. We are also grateful for many helpful
discussions with Dan Bobrow, Johan deKleer, Jochen Dorre, Andreas Eisele, Pat Hayes, Mark
Johnson, Lauri K arttunen, and Martin Kay.

References

[11 deKleer, J. (1986). An Assumption-based TMS. Artificial Intelligence 28, 127-162.

[21 Eisele, A. and Dorre, J. (1988). Unification of Disjunctive Feature Descriptions. Proceedings of
the 26th Annual Meeting o f the ACL. Buffalo, New York.

[31 Freuder, E.C. (1978). Synthesizing Constraint Expressions. Communications o f the AC M 21,
958-966.

[41 Hopcroft, J. and Ullman, J. (1979). Introduction to Automata Theory, Languages and
.Computation, p. 328-330.

[51 Johnson, M. (1988). Attnbute-Value Logic and the Theory o f G ram m ar . Ph.D. Thesis.
Stanford University.

[6] Kaplan, R. and Bresnan, J. (1982). Lexical Functional Grammar: A Formal System for
Grammatical Representation. In J. Bresnan (ed.), The Mental Representation of Grammatical
Relations. MIT Press, Cambridge, Massachusetts.

[7] . Karttunen, L. (1984). Features and Values. Proceedings o f COLING 1984, Stanford, CA.

[81 Kasper, R.T. (1987). Feature Structures: A Logical Theory with Application to Language
Analysis. Ph.D. Thesis. University of Michigan.

[91 Kasper, R.T. (1987). A Unification Method for Disjunctive Feature Descriptions. Proceedings
of the 25th Annua l Meeting o f the A C L , Stanford, C A.

-27- International Parsing Workshop ’89

A Uniform Formal Framework for Parsing

B e rn a rd Lang

IXRIA

B.P. 105, 78153 Le Chesnav , F ran ce

langQ in r ia . in r ia .f r

1 Introduction

Many of the formalisms used to define the syntax of natural (and programming) languages may
be located in a continuum tha t ranges from propositional Horn logic to full first order Horn logic,
possibly with non-Herbrand in terpreta tions. This s truc tu ra l parenthood has been previously re­
marked: it lead to the development of Prolog [Col-78, Coh-88] and is analyzed in some detail
in [PerW-80]. A notable outcome is the parsing technique known as Earley deduction [Per\V-83].

These formalisms play (at least) three roles:

d e s c r i p t i v e : they give a finite and organized description of the syntactic s truc tu re of the
language,

a n a ly t i c : they can be used to analyze sentences so as to retrieve a syntactic s truc tu re (i.e.
a representation) from which the meaning can be extracted,

g e n e r a t i v e : they can also be used as the specification of the concrete representation of
sentences from a more struc tu red abstract syntactic representation (e.g. a parse tree).

The choice of a formalism is essential with respect to the descriptive role, since it controls the
perspicuity with which linguistic phenom ena may be understood and expressed in actual language
descriptions, and hence the tractabili ty of these descriptions for the hum an mind.

Plowever, com puta tional trac tab ili ty is required by the o ther two roles if we intend to use these
descriptions for mechanical processing of languages.

The aim of our work, which is partially reported here, is to obtain a uniform unders tanding of
the com puta tiona l aspects of syntactic phenom ena within the continuum of Horn-like formalisms
considered above, and devise general purpose algorithmic techniques to deal with these formalisms
in practical applications.

To a tta in this goal, we follow a three-sided strategy:

• Systematic s tudy of the lower end of the continuum , represented by context-free (C F) g ram ­
mars (simpler formalisms, such as propositional Horn logic do not seem relevant for our

. purpose).

-28- International Parsing Workshop '89

• Systematic s tudy of the higher end of the continuum, i.e. first order Horn clauses,

• Analysis of the relations between intermediate formalisms and Horn clauses, so as to reuse
for in term ediate formalisms the understanding and algorithmic solutions developed for the
more powerful Horn clauses.

This s tra tegy is motivated by two facts:

• the com puta tional properties of both CF grammars and Horn clauses may be expressed with
the same com puta tional model: the non-deterministic pushdown autom aton ,

• the two formalisms have a compatible concept of syntactic structure: the parse-tree in the
CF case, and the proof-tree in the Horn clause case.

The greater simplicity of the CF formalism helps us in understanding more easily most of the
com puta tional phenomena. We then generalize this knowledge to the more powerful Horn clauses,
and finally we specialize it from Horn clauses to the possibly less powerful but linguistically more
perspicuous in term ediate formalisms.

In the rest of this paper we present two aspects of our work:

1 . a new unders tanding of shared parse forests and their relation to CF gram m ars, and

2. a generalization to full Horn clauses, also called Definite Clause (DC) programs, of the push­
down stack com puta tional model developed for CF parsers.

2 C ontext-F ree Parsing

T hough much research has been devoted to this subject in the past, most of the practically usable
work has concentra ted on deterministic push-down parsing which is clearly inadequate for natural
language applications and does not generalize to more complex formalisms. On the o ther hand
there has been little formal investigation of general CF parsing, though many practical systems
have been im plem ented based on some variant of Earley’s algorithm.

Our con tr ibu tion has been t o ‘develop a formal model which can describe these variants in
a uniform way, and encompasses the construction of parse-trees, and more generally of parse-
forests. This model is based on the compilation paradigm common in program ming languages and
deterministic parsing: we use the non-determ inistic 1 Pushdown A u tom aton (P D A) as a virtual
parsing machine which we can sim ulate with an Earley-like construction; variations on Earley’s
a lgorithm are then expressed as variations in the compilation schema used to produce the PD A code
from the original CF gram m ar. This uniform framework has been used to compare experimentally
parsing schem ata w.r.t. parser size, parsing speed and size of shared forest, and in reusing the
wealth of P D A construction techniques to be found in the literature.

This work has been reported elsewhere [Lan-74, BilL-88, Lan-88a]. An essential outcome,
which is the object of this section, is a new understanding of the relation between CF gram m ars,
parse-trees and parse-forests, and the parsing process itself. The presentation is informal since our

1 In this paper, the abbreviation P D A alw ays im pnes the possibility of non-determ inism

-29- Intemational Parsing Workshop '89

(1) S : : = NP VP

(2) S : : = S PP

(3) NP : : = n

(4) NP : : = d e t n

(5) NP : : = NP PP

(6) PP : : = p r e p NP

(7) VP : : = V NP

Figure 1 : A Context-Free G ram m ar Figure 2: G raph of the G ram m ar

purpose is to give an intuitive understanding of the concepts, which is our in terpre ta tion of the
earlier theoretical results.

Essentiadly, we shall first show that both CF gram m ars and shared parsed forest may be repre­
sented by AND-OR graphs, with specific interpretations. We shall then argue th a t this represen­
tational similarity is not accidental, and tha t there is no difference between a shared forest and a
gram m ar.

2 . 1 C o n te x t -fr e e G r a m m a rs

Our running example for a CF gram m ar is the pico-grammar of English, taken from [Tom-87],
which is given in figure 1 .

In figure ‘2 we give a graphical representation of this gram m ar as an AN D-OR graph. The
notation for this AND-OR graph is unusual and emphasizes the difference between AND and OR
nodes. OR-nodes are represented by the non-terminal categories of the gram m ar, and AND-nodes
are represented by the rules (numbers) of the gram m ar. There are also leaf-nodes corresponding
to the term inal categories.

The OR-node corresponding to a non-terminal X has exiting arcs leading to each AND-node n
representing a rule th a t defines X. This arc is not explicitly represented in the graphical formalism
chosen. If there is only one such arc, then it is represented by placing n immediately under X. This
is the case for the O R-node representing the non-terminal PP. If there are several such arcs, they
are implicitly represented by enclosing in an ellipse the OR-node X above all its son nodes n, n* , . . .
This is the case for the OR-node representing the non-terminal NP.

The sons of an AND-node (i.e. a rule) are the gram m atical categories found in the right-hand-
side of the rule, in that order. T he arcs leading from an AND-node to its sons are represented
explicitly. T he convention for orienting the arcs is th a t they leave a node from below and reach a
node from above.

-30- International Parsing Workshop '89

This graph accurately represents the gram m ar, and is very similar to the graphs used in some
parsers. For example, LR (0) parsing uses a graph representation of the g ram m ar tha t is very
similar, the main difference being tha t the sons of AND-nodes are linked together from left to
right, ra ther than being a ttached separately to the AND-node [AhoU-72, DeR-71]. More simply,
this graph representation is very close to the d a ta s tructures often used to represent conveniently
a gram m ar in a com puter memory.

A characteristic of the A N D /O R graph representing a gram m ar is th a t all nodes have different
labels. Conversely, any labelled A N D /O R graph such th a t all node labels are different may be read
as — transla ted into — a CF gram m ar such th a t AND-node labels are rule names, OR-node labels
represent non-term inal categories, and leaf-node labels represent terminal categories.

2.2 Parse trees and parse forests

Given a sentence in the language defined by a CF gram m ar, the parsing process consists in building
a tree s truc tu re , the parse tree, th a t shows how this sentence can be constructed according to the
g ram m atica l rules of the language. It is however frequent th a t the CF syntax of a sentence is
ambiguous, i.e. th a t several distinct parse-trees may be constructed for it.

Let us consider the g ram m ar of figure 1 .
If we take as example the sentence “I see a man with a mirror”, which trans la te into the

term inal sequence “n v det n prep det n”, we can build the two parse trees given in figures 3
and 4 . Note th a t we label a parse tree node with its non-terminal category and with the rule used
to decompose it into constituents. Hence such a parse tree could be seen as an AN D -O R tree
similar to the AN D-OR gram m ar graph of figure 2. However, since all OR-nodes are degenerated
(i.e. have a unique son), a parse tree is just an AND-tree.

T he num ber of possible parse trees may become very large when the size of sentences increases:
it may grow exponentially with th a t size, and may even be infinite for cyclic gram m ars (which
seem of little linguistic usefulness [PerW-83, Tom-85]). Since it is often desirable to consider all

-31- Intemational Parsing Workshop '89

Figure 5: Context and Subtree

I see a man with a mirror

Figure 6: A shared parse forest

possible parse trees (e.g. for semantic processing), it is convenient to merge as much as possible
these parse trees into a single s truc tu re tha t allows them to share common parts. This sharing
save on the space needed to represent the trees, and also on the later processing of these trees
since it may allows to share between two trees the processing of some common p a r ts2. The shared
representation of all parse trees is called shared parse forest , or just parse forest.

To analyze how two trees can share a (connected) part, we first notice th a t such a part may be
isolated by cu tt ing the tree along an edge (or arc) as in figure 5. this actually give us two parts: a
subtree and a context (cf. figure 5). E ither of .these two parts may be shared in forests representing
two trees. W hen a subtree is the same for two trees, it may be shared as shown in figure 7. W hen
contexts are equal and may thus be shared, we get the s truc tu re depicted in figure 8.

The sharing of context actually corresponds to ambiguities in the analyzed sentence: the ellipse
in figure 8 contains the head nodes for two distinct parses of the same subsentence u, th a t both
recognize v in the same non-terminal category NT. Each head node is labelled with the (num ber of)
the rule used to decompose v in to constituents in th a t parse, and the common syntactical category
labels the top of the ellipse. Not accidentally, this s truc tu re is precisely the s truc tu re of the 0 R -
nodes we used to represent CF gram m ars. Indeed, an ambiguity is nothing bu t a choice between
two possible parses of the same sentence fragment v as the same syntactic category NT.

Using a com bination of these two forms of sharing, the two parse trees of figures 3 and 4 may
be merged into the shared parse forest3 of figure 6 . Note tha t , for this simple example, the only

2T h e direct production of such shared representation by parsing a lgorithm s also corresponds to sharing in the

parsing com putation [Tom-87, Lan-74, BilL-88].

3T h is graphical representation of shared forests is not original: to our knowledge it was first used by

T o m ita [Tom-87], However, we believe that its com parat ive understanding as context sharing, as A N D -O R tree

-32- Intemational Parsing Workshop '89

Sentence:/\
UVW / \ \

Sentence:
UVW / \

A

Figure 7: Two parses sharing a subtree Figure 8 : Two parses sharing a context

con tex t being shar ed is the e m p ty ou ter contex t of the two possible parse tree, t h a t still s t a t es th a t
a p roper parse t ree m u s t belong to the syn tac t i c ca tegory S.

In this representation we keep our double labelling of parse tree nodes with both the non­
terminal category and the rule used to decompose it into its constituents. As indicated above,
ambiguities are represented with context sharing, i.e. by OR-nodes th a t are the exact equivalent
of those of figure 2. Hence a shared parse forest is an A N D -O R graph*. Note however th a t the
same rule (resp. non-terminal) may now label several AND-nodes (resp. OR-nodes) of the shared
parse forest graph.

If we make the labels distinct, for example by indexing them so as not to lose their original
information, we can then read the shared forest graph of a sentence 3 as a gram m ar T a. The
language of this g ram m ar contains only the sentence s, and it gives s the same syntactic s truc ture(s)
— i.e. the same parse tree(s) and the same ambiguities — as the original gram m ar, up to the above
renaming of labels.

2 .3 P a r se fo r e s ts for in c o m p le te s e n te n c e s

O ur view of parsing may be extended to the parsing of incomplete sentences [Lan-88a].
An example of incomplete sentence is . . see . . . m i r r o r ” . Assuming th a t we know tha t

the first hole stands for a single missing word, and th a t the second one stands for an arb itrary
num ber of words, we can represent this sentence by the sequence “? v * n” . T he convention is
th a t “? ” stands for one unknown word, and for any num ber of them.

Such an incomplete sentence 3 may be understood as defining a sublanguage C3 which contains
all the correct sentences m atching s. Any parse tree for a sentence in th a t sublanguage may then be
considered a possible parse tree for the incomplete sentence s. For example, the sentences “I see
a man with a mirror” and “You see a mirror” are both in the sublanguage of the incomplete
sentence above. Consequently, the two parse trees of figures 3 and 4 are possible parse trees for
this sentence, along with m any others.

or as gram m ar has never been presented. C on text sharing is called local ambiguity packing by T om ita.

4T h is graph may have cycles for infinitely am biguous sentences when the gramm ar of the language is itse lf cyclic.

-33- Intemational Parsing Workshop '89

All parse trees for the sentence s = “? v * ii” may be merged into a shared parse forest that
is represented in figure 9.

The graph of this forest has been divided into two parts by the horizontal grey line a —
The term inal labels underscored with a represent any word in the corresponding term inal

category. This is also true for all the term inal labels in the bo t tom part of the graph.
Tne forest fragment below the horizontal line is a (closed) subgraph of the original gram m ar

of figure 2 (which we have completed in grey to emphasize the fact). It corresponds to parse trees
of constituents th a t are completely undefined, within their syntactical categories, and may thus
be any tree in th a t category tha t the gram m ar can generate. This occurs once in the forest for
non-terminal PP a t arc marked a and twice for NP a t arcs marked p.

This bo ttom part of the graph brings no new information (it is just the part of the original
g ram m ar reachable from nodes PP and NP). Hence the forest could be simplified by eliminating this
bo ttom subgraph , and labelling the end node of the a (resp. (5) arc with PP* (resp. NP*), meaning

-34- International Parsing Workshop '89

an arb itrary PP (resp. NP) constituent.

The complete shared forest of figure 6 may be interpreted as a CF gram m ar Qs. This gram m ar
is precisely a gram m ar of the sublanguage C3 of all sentences that match the incomplete sentence 5 .
Again, up to renaming of nonterminals, this gram m ar Q3 gives the sentences in Ca the same syntactic
s truc tu re as the original g ram m ar of the full language.

If the sentence parsed is the completely unknown sentence u = then the corresponding
sublanguage Cu is the complete language considered, and the parse forest for u is quite naturally
the original gram m ar of the full language: The grammar o f a CF language is the parse-forest o f
the completely unknown sentence, i.e. the syntactic structure o f all sentences in the language, in
a non-trivial sense. In o ther words, all ono can say about a fully unknown sentence assumed to
be correct, is tha t it satisfies the syntax ot the language. This s ta tem ent does take a stronger
signification when shared parse forests are actually built by parsers, and when such a parser does
return the original gram m ar for the fully unknown sentence.

Parsing a sentence according to a CF gram m ar is just extracting a parse tree fitting that
sentence from the CF gram m ar considered as a parse forest.

Looking at these issues from another angle, we have the following consequence of the above
discussion: given a set of parse trees (i.e. appropriately decorated trees), they form the set of
parses of a CF language iff they can be merged into a shared forest tha t is finite.

In [BilL-88, Lan-88a] Billot and the au thor have proposed parsers tha t actually build shared
forests formalized as CF gram m ar. This view of shared forests originally seemed to be an artifact of
the formalization chosen in the design of these algorithms, and appeared possibly more obfuscatory
than illuminating. It has been our purpose here to show th a t it really has a fundam ental character,
independently o f any parsing algorithm.

This close relation between sharing structures and context-freeness actually hints to limitations
of the effectiveness of sharing in parse forests defined by non-CF formalisms.

From an algorithmic point of view, the construction of a shared forest for a (possibly incomplete)
sentence may be seen as a specialization of the original g ram m ar to the sublanguage defined by
th a t sentence. This shows interesting connections with the general theory of partial evaluation
of programs [Fut-88], which deals with the specialization of programs by propagation of known
properties of their input.

In practice, the published parsing algorithms do not always give shared forest with m axim um
sharing. This may result in forests th a t are larger or more complex, bu t does not invalidate our
presentation.

3 H orn Clauses

The PD A based compilation approach proved itself a fruitful theoretical and experim ental support
for the analysis and unders tand ing of general CF parsing a la Earley. In accordance with our
s tra tegy of uniform study of the “Horn con tinuum ” , we extended this approach to general Horn
clauses, i.e. DC programs.

This lead to the definition of the Logical Push-Down A u tom aton (L P D A) which is an operational
engine in tended to play for Horn clauses the same role as the usual PD A for CF languages. Space

-35- Intemational Parsing Workshop '89

limitations prevent giving here a detailed presentation of LPD As, and we only sketch the underlying
ideas. More details may be found in [Lan-88b, Lan-88].

As in the CF case, the evaluation of a DC program may be decomposed into two phases:

• a compilation phase tha t transla te the DC program into a LPDA. Independently of the
later execution strategy, the compilation may be done according to a variety of evaluation
schemata: top-down, bottom -up, predictive bottom -up, ... Specific optimization techniques
may also be developed for each of these compilation schemata.

• an execution phase th a t can in terpret the LPDA according to some execution technique: back­
track (depth-first), breadth-first, dynamic programming, or some combination [TamS-86].

This separation of concerns leads to a be tter understanding of issues, and should allow a more
systematic comparison of the possible alternatives.

In the case of dynamic program ming execution, the LPDA formalism uses to very simple struc­
tures tha t we believe easier to analyze, prove, and optimize than the corresponding direct con­
structions on DC programs [PerW-83, Por-86, TamS-86, Vie-87b], while remaining independent of
the com puta tion schema, unlike the direct constructions. Note tha t predictive bottom -up compi­
lation followed by dynamic programming execution is essentially equivalent to Earley deduction as
presented in [PerW-83, Por-86].

The next sections include a presentation of LPDAs and their dynamic programming in terpre­
tation, a compilation schema for building a LPDA from a DC program, and an example applying
this top-down construction to a very simple DC program.

3 . 1 L o g ica l P D A s an d th e ir d y n a m ic p r o g r a m m in g in te r p r e ta t io n

A LPD A is essentially a PD A th a t stores logical atoms (i.e. predicates applied to argum ents) and
substitu tions on its stack, instead of simple symbols. The symbols of the s tandard CF PD A stack
may be seen as predicates with no argum ents (or more accurately with two argum ent similar to those
used to transla te CF gram m ars into DC in [PerW-80]). A technical point is th a t we consider PDAs
without “finite s ta te ” control: this is possible without loss of generality by having pop transitions
tha t replace the top two atoms by only one (this is s tandard in LR(k) PD A parsers[AhoU-72]).

Formally a LPD A ^4 is a 6-tuple: ^4 = (X , F , A , $, $f, 0)
where X is a set of variables, F is a set of functions and constants symbols, A is a set of stack

0
predicate symbols, $ and $f are respectively the initial and final stack predicates, and 0 is a finite
set of transitions having one of the following three forms:

horizontal transitions: B •—► C — replace B by C on top of stack

push transitions: B >—<► CB — push C on top of former stack top B

pop transitions: BD >—► C — replace BD by C on top of stack

where B, C and D are A -a tom s, i.e. a toms built with A , F and X.

Intuitively (and approxim ately) a pop transition BD '—► C is applicable to a stack configuration
with atom s A and A ' on top, iff there is a substi tu tion s such tha t B.s = As and Ds = A s. T hen A
and A' are removed from the stack and replaced by Cs, i.e. the a tom C to which s has been applied.

-36- IntemationaJ Parsing Workshop '89

Things are similar for other kinds of transitions. Of course a LPDA is usually non-deterministic
w.r.t. the choice of the applicable transition.

In the case of dynamic programming interpretations, all possible com putation paths are ex­
plored, with as much sub-com putation sharing as possible. The algorithm proceeds by building a
collection of items (analogous to those of Earley’s algorithm) which are pairs of atoms. An item
<A A '> represents a stack fragment of two consecutive atoms [Lan-74, Lan-88a]. If another item
< A ' A "> was also created, this means tha t the sequence of atoms A A 'A" is to be found in some
possible stack configuration, and so on (up to the use o f substitutions, not discussed here). The

O 0
com puta tion is initialized with an initial item U = < S H >. New items are produced by applying
the LPDA transitions to existing items, until no new application is possible (an application may
often produce an already existing item). T he com putation terminates under similar conditions as
specialized algorithms [PerW-83, Tam S-86, Vie-87b]. If successful, the com putation produces one

O
or several final items of the form <$f $ > , where the argum ents of $f are an answer substitu tion
of the initial DC program. In a parsing context, one is usually interested in obtaining parse-trees
rather than “answer subs ti tu tions’’. A parse tree is here a proof tree corresponding to the original
DC program. Such proof trees may be obtained by the same techniques tha t are used in the case
of CF parsing [Lan-74, BilL-88, Bil-88], and th a t actually in terpret the items and their relations as
a shared parse forest s tructure .

Substitu tions are applied to items as follows (we give as example the most complex case): a
pop transition BD •—► C is applicable to a pair of items < A A '> and < E E '> , iff there is a unifier
s of < A A '> and <B D > , and a unifier s' of A 's and E. This produces the item < C s s ' E V > .

3 .2 T o p -d o w n c o m p ila t io n o f D C p ro g ra m s in to L P D A s

Given a DC program , m any different compilation schemata may be used to build a corresponding
LPD A [Lan-88]. We give here a very simple and unoptimized top-down construction. T he DC
program to be compiled is composed of a set of clauses 7 Ajt.o A j t , i , . . . ,A k,nk , where each
A£,,• is a logical literal. T he query is assumed to be the head literal Ao.o of the first clause 70.

The construction of the top-down LPD A is based on the in troduction of new predicate sym ­
bols Vjt,,-, corresponding to positions between the body literals of each clause 7^. The predicate
Vjt,o corresponds to the position before the leftmost literal, and so on. Literals in clause bodies
are refuted from left to right. T he presence of an instance of a position literal V ^ ^ t j t) in the
stack indicates th a t the first : subgoals corresponding to the body of some instance of clause 7*
have already been refuted. T he argum ent bindings of tha t position literal are the partial answer
subs ti tu t ion com puted by this partial refutation.

For every clause 7 A^o A*fi , . . . , A k,nk > w« note tjt the vector of variables occurring in
the clause. Recall th a t A*tl- is a literal using some of the variables in 7^, while V^,- is only a
predicate which needs to be given the a rgum ent vector t* to become the literal V ^ t *) .

-37- International Parsing Workshop '89

T h e n we can def ine th e t o p - d o w n L P D A by th e fol lowing t r a n s i t io n s :

1 . $ *—► V0to(to) $

2 . Vfc,;(t fc) — Afc.i+i Vjt.^tfc) — for every clause 7* and

for every position i in its body: 0 < i < n^

3. Afc.o ►— Vjt.o(tjt) — for every clause ~/k

4 . Vfcink(tfc) V fc/it(t fc/) i—• ^ ii+i (t fc0 5 — / o r every pair o f clauses 7* an d 7*/ and

/ o r every position i in the body o f 7 ;-': 0 < t < njt<

The final predicate of the LPDA is the stack predicate V0)no which corresponds to the end of the
body of the first “query clause'’ of the DC program. The rest of the LPDA is defined accordingly.

The following is an informal explanation of the above transitions:

1 . Initialization: We require the refutation of the body of clause 70, i.e. of the query.

2. Selection o f the leftmost remaining subgoal: When the first i literals of clause 7* have been
refuted, as indicated by the position literal V ^ t *) , then select the i + l 3t literal A ^ .+ i to
be now refuted.

3. Selection o f clause 7*: Having to satisfy a subgoal tha t is an instance of A^o, eliminate it
by resolution with the clause 7 The body of 7 ̂ is now considered as a sequence of new
subgoals, as indicated by the position literal V^i0(tjt).

4. Return to calling clause 7*/: Having successfully refuted the head of clause 7* by refuting
successively all literals in its body as indicated by position literal V^ink(t^), we retu rn to the
calling clause 7^ and “increm ent” its position literal from V;-/ t(t^/) to V^/it+1 (t^/), since the
body literal Ak',i+i has been refuted as instance of the head of 7^.

Backtrack in te rp re ta tion of a LPDA thus constructed essentially mimics the Prolog in te rp re ta ­
tion of the original DC program.

3 .3 A v e r y s im p le e x a m p le

The following example has been produced with a prototype im plem entation realized by Eric Ville-
monte de la Clergerie and Alain Zanchetta [VilZ-88].

The definite clause program to be executed is given in figure 11. Note tha t a search for all
solutions in a backtrack evaluator would not term inate.

T he solutions found by the com puter are: X2 3 f (f (a))

X2 = f (a)

X2 * a

5If jfc = Jt(then we rename the variable in t s i n c e the transition corresponds to the use of two distinct variants

of the clause 7 * .

Note also that we need not define such a transition for all triples of integer k k and », but only for those triples

such that the head of 7 * unifies with the literal +

-38- International Parsing Workshop '89

********* PUSH T r a n s i t i o n s B->BC * * * * * * * * * * *

p r e d i c a t e : n a b l a . 2 . 0

n a b l a . 2 . 0 (XI) -> q (f (X I)) n a b l a . 2 . 0 (X1)

p r e d i c a t e : n a b l a . 0 .0

n a b l a . 0 . 0 (X2) -> q(X2) n a b l a . 0 . 0 (X2)

p r e d i c a t e : d o l l a r 0

d o l l a r O O -> n a b l a . 0 . 0 (X2) d o l l a r O O

* * * * * * * * * H o r i z o n ta l T r a n s i t i o n s B->C ******

p r e d i c a t e :q

q (l (l (a))) -> n a b l a . 1 . 0 ()

q(XI) -> n a b l a . 2 . 0 (X1)

p r e d i c a t e : query

query(X2) -> n a b l a . 0 . 0 (X2)

p r e d i c a t e : n a b l a . 0 .1

n a b l a . 0 . 1(X2) -> answer(X2)

********* pop T r a n s i t i o n s BD->C ************

p r e d i c a t e : n a b l a . 2.1

n a b l a . 2 . 1(XI) n a b l a . 0 . 0 (X2) -> n a b l a . 0 . 1(X2)

n a b l a . 2 . 1(X4) n a b l a . 2 . 0 (X1) -> n a b l a . 2 . 1(X1)

p r e d i c a t e : n a b l a . 1.0

n a b l a . 1 . 0 () n a b l a . 0 . 0 (X2) -> n a b l a . 0 . 1(X2)

n a b l a . 1 . 0 () n a b l a . 2 . 0 (Xl) -> n a b l a . 2 . 1(X1)

p r e d i c a t e : n a b l a . 0 .1

n a b l a . 0 . 1(X3) n a b l a . 0 . 0 (X2) -> n a b l a . 0 . 1(X2)

n a b l a . 0 . 1(X2) n a b l a . 2 . 0 (X1) -> n a b l a . 2 . 1(X1)

Figure 10: Transitions of the LPD A.

Clauses: q(1(1(a))):-.
q(Xl):-q(l(XI)).

Query: q(X2)

Figure 1 1 : The Definite Clause pro­

gram.

d o l l a r O O , () ()

nab la . 0 . 0 (XS) , d o l l a r O O

q(X6) , n a b l a . 0 . 0 (X6)

n a b l a . 2 . 0 (X7) , n a b l a . 0 . 0 (X7)

n a b l a . 1 . 0 () , n a b l a . 0 . 0 (1 (1 (a)))

q (l (X 8)) , n a b l a . 2 . 0 (X8)

n ab la . 0 . 1(1 (1 (a))) , d o l l a r O O

n a b l a . 2 . 0 (1 (X9)) , n a b l a . 2 . 0 (X9)'

n a b l a . 1 . 0 () , n a b l a . 2 . 0 (1 (a))

n a b l a . 2 . 1 (1 (a)) , n a b l a . 0 . 0 (1 (a))

n a b l a . 0 . l (l (a)) , d o l l a r O O

q (l (l (X 10))) , n a b l a . 2 . 0 (1 (X10)) *

n a b l a . 2 . l (l (a)) , n a b l a . 2 . 0(a)

n a b l a . 2 . 1(a) , n a b l a . 0 . 0 (a)

n a b l a . 0 . 1 (a) , d o l l a r O O

answer(a) , d o l l a r O O

a n s w e r (l (a)) , d o l l a r O O

a n s w e r (l (l (a))) , d o l l a r O O

* su bsu m ed by: q (f (X 8)) , n a b l a .2 . 0(X8)

Figure 1 2 : Items produced by the dy­

namic program m ing in terp re ta tion .

-39- Intemational Parsing Workshop '89

These solutions were obtained by first compiling the DC program into an LPDA according
to the schema defined in section 3.2, and then interpreting this LPDA with the general dynamic
program ming algorithm defined in section 3.1.

The LPDA transitions produced by the compilation are in figure 10. The collection of items
produced by the dynamic programming com putation is given in the figure 1 ‘2 .

In the transitions prin tout of figure 10, each predicate name n a b l a . i . j s tands for our V,,; .
According to the construction of section 3.2, the final predicate should be n a b l a . 0 . 1 . For

better readability we have added a horizontal transition to a final predicate noted answer.

4 O ther linguistic formalisms

Pereira and W arren have shown in their classical paper [PerW-80] the link between CF grammars
and DC programs. A similar approach may be applied to more complex formalisms than CF
gram m ars, and we have done so for Tree Adjoining G ram m ars (TAG) [Lan-88c].

By encoding TAGs into DC programs, we can specialize to TAGs the above results, and easily
build TAG parsers (using at least the general optimization techniques valid for all DC programs).
Furthermore, control mechanisms akin to the agenda of chart parsers, together with some finer
properties of LPD A in terpre ta tion , allow to control precisely the parsing process and produce
Earley-like left-to-right parsers, with a complexity 0 (n 6).

We expect th a t this approach can be extended to a variety of other linguistic formalisms, with
or without unification of feature s tructures, such as head gram m ars, linear indexed gram m ars,
com binatory categorial gram m ars. This is indeed suggested by the results of of Joshi, Vijay-
Shanker and Weir th a t relate these formalisms and propose CKY or Earley parsers for some of
them [VijWJ-87, VijW-89].

The parse forests built in the CF case correspond to proof forests in the Horn case. Such proof
forests may be obtained by the same techniques tha t we used for CF parsing [BilL-88]. However
it is not yet fully clear how parse trees or derivation trees may be extracted from the proof forest
when DC programs are used to encode non-CF syntactic formalisms.

5 C onclusion

Our unders tand ing of syntactic s tructures and parsing may be considerably enhanced by comparing
the various approaches in similar formal terms. Hence we a t te m p t to formally unify the problems
in two ways:

— by considering all formalisms as special cases of Horn clauses
— by expressing all parsing strategies with a unique operational device: the pushdown a u to m a ­

ton.
System atic formalization of problems often considered to be pragm atic issues (e.g. parse forests)

has considerably improved our unders tanding and has been an im portan t success factor.
T he links established with problems in o ther areas of com puter science (e.g. partia l evaluation,

da tabase recursive queries) could be the source of interesting new approaches.

-40- Intemational Parsing Workshop '89

References

[AhoU - 1 2] Aho, A.V., and L liman, J .D. 19(2 The Theory o f Parsing, Translation and Compil­
ing. Prentice-Hall, Englewood Cliffs, New Jersey.

[Bil-88] Billot, S. 1988 Analyseurs Syntaxiques et Non-Determinisme. These de Doctorat.
Universite d ’Orleans la Source Orleans (France).

[BilL-88] Billot, S.; and Lang, B. 1989 The struc tu re of Shared Forests in Ambiguous Parsing.
Proc. o f the 271*1 Annua l Meeting o f the Association for Computational Linguistics ,
Vancouver (British Columbia), 143-151. Also INRIA Research Report 1038.

[Coh-88] Cohen, J. 1988 A View of the Origins and Development of Prolog. Communications
o f the A C M 31(1) :26-36.

[Col-/8] Colmerauer, A. 1978 M etamorphosis Gramm ars, in Natural Language C om m unica­
tion with Com puters , L. Bole ed., Springer LNCS 63. First appeared as Les Gram-
maires de M etamorphose , Groupe d'Intelligence Artificielle, Universite de Marseille
II, 1975.

[DeR-71] DeRemer, F.L. 1971 Simple LR(k) Gram m ars. Communications A C M 14(7): 453-
460.

[Fut-88] Fu tam ura , Y. (ed.) 1988 Proceedings of the Workshop on Par tia l Evaluation and
Mixed C om putation . New Generation Computing 6(2,3).

[Lan-74] Lang, B. 1974 Deterministic Techniques for Efficient Non-deterministic Parsers.
Proc. o f the 2nc* Colloquium on A u tom a ta , Languages and Programming , J . Loeckx
(ed.), Saarbriicken, Springer Lecture Notes in C om puter Science 14: 255-269.
Also: R apport de Recherche 72, IRIA-Laboria, Rocquencourt (France).

[Lan-88a] Lang, B. 1988 Parsing Incomplete Sentences. Proc. o f the 12th Internat. Conf. on
Com putational Linguistics (C O LIN G 88) Vol. 1 :365-371, D. V argha(ed .) , Budapest
(H ungary).

[Lan-88b] Lang, B. 1988 Datalog A utom ata . Proc. o f the 3rd Internat. Conf. on Data and
Knowledge Bases , C. Beeri, J .W . Schm idt, U. D ayal(eds .) , M organ Kaufm ann Pub.,
pp. 389-404, Jerusa lem (Israel).

[Lan-88] Lang, B. 1988 Complete Evaluation o f Horn Clauses: an A u tom ata Theoretic A p ­
proach. IN RIA Research Report 913.

[Lan-88c] Lang, B. 1988 The System atic Construction o f Earley Parsers: Application to the
Production o f 0 (n 6) Earley Parsers for Tree Adjoining Grammars. In preparation.

[PerW-80] Pereira, F.C .N.; and W arren, D.H.D. 1980 Definite Clause G ram m ars for Language
Analysis — A Survey of the Formalism and a Comparison with Augm ented T ransi­
tion Networks. Artificial Intelligence 13: 231-278.

-41- Intemational Parsing Workshop ’89

[PerW-83]

[Por-86]

[TamS-S6]

[Tom-85]

[Tom-87]

[Vie-87b]

[VijWJ-87]

[VijW-89]

[VilZ-88]

Pereira, F.C.N.; and Warren, D.H.D. 1983 Parsing as Deduction. Proceedings of
the '213t Annual Meeting o f the Association for Computational Linguistics: 137-144,
Cambridge (Massachusetts).

Porter, H.H. 3rd 1986 Earley Deduction. Tech. Report C S /E -86-002, Oregon G rad­
uate Center, Beaverton (Oregon).

Tamaki, H.; and Sato, T. 1986 OLD Resolution with Tabulation. Proc. o f 3 rd In-
ternat. Conf. on Logic Programming , London (UK), Springer LNCS 225: 84-98.

Tom ita , M. 19S5 A n Efficient Context-free Parsing Algorithm for Natural Languages
and Its Applications. Ph.D. thesis, Carnegie-Mellon University, P ittsburgh , Pennsyl­
vania.

Tom ita , M. 1987 An Efficient Augm ented-Context-Free Parsing Algorithm. Compu­
tational Linguistics 13(1-2): 31-46.

Vieille, L. 1987 Recursive Query Processing: The power o f Logic. Tech. Report TR-
KB-17, European C om puterlndustry Research Center (ECR C), Munich (West G er­
many).

Vijay-Shankar, K.; Weir, D.J.; and Joshi, A.K. 1987 Characterizing S truc tu ra l De­
scriptions Produced by Various Gram m atical Formalisms. Proceedings o f the 25rd
A nnual Meeting o f the Association for Computational Linguistics: 104-111, Stanford
(California).

Vijay-Shankar, K.; and Weir, D.J. 1989 Recognition of Com binatory Categorial
G ram m ars and Linear Indexed Gram m ars. These proceedings.

Villemonte de la Clergerie, E.; and Zanchetta, A. 1988 Evaluateur de Clauses de
Horn. R apport de Stage d 'O ption , Ecole Polytechnique, Palaiseau (France).

-42- International Parsing Workshop '89

Head-Driven Bidirectional Parsing: A Tabular Method

Giorgio Satta (0)(°°), Oliviero Stock (°°)

(°) University di Padova, via Belzoni 7, 35131 Padova, Italy

(°°) Istituto per la Ricerca Scientifica e Tecnologica, 38050 Povo, Trento, Italy

1. Introduction

Tabular methods for context-free language analysis [Graham and Harrison, 1976,

Graham et al., 1980], and in particular Earley's Algorithm [Earley, 1970], can be

considered a major reference for natural language parsing. Even if independently

conceived, Earley's Algorithm constitutes the basis for Chart parsing [Kay, 1980,

Kaplan, 1973].
One basic aspect o f known tabular methods, i.e. that the analysis proceedes

m onodirectionally, is a relevant limitation, that, although reasonable for artificial
languages, seems reductive for natural language. A strong reason for a bidirectional

approach within natural language analysis is that modem theories o f grammar emphasize

the role o f a particular element inside each constituent (phrase), called the head; this

element carries categorial as well as thematic information about other elements within the

constituent. It turns out that the acceptability and the general skeleton of each constituent,

crucially depend on such information. More concretely, a number o f possible partial

interpretations would be pruned out earlier, on the basis o f functional information attached

to the head, resulting in greater efficiency.
Some recent works in the framework o f Chart parsing [Steel and De Roeck, 1987,

Stock et al., 1989] have pointed out the importance of bidirectionality for natural language

analysis. Another work that deals with some form of bidirectionality [Bossi et a l ., 1983]

can be found in the formal language literature, though the analysis given there

presupposes Chomsky normal form grammars.
In this paper we shall introduce a tabular method coinceived for bidirectional context-

free parsing, discuss some o f its relevant properties and through an example give an idea

o f how the algorithm works.

2. Def in it ions

Assume a context-free grammar G=(N, E, P, S), where N is the finite set o f all non­

terminal symbols, Z is the set o f terminal symbols, P is a finite set o f productions, and

Se N is the start symbol. L(G) represents the language generated by the grammar G. The

productions in P are numbered from 1 to IPI1, and are all o f form Dp-» C p j ... Cp ^) ,

1 The notation IPI here indicates the cardinality o f set P.
-43- International Parsing Workshop '89

.where k is a function defined over the set {1 ... IP!} and that takes values in the set Z* (the

set o f positive integers). In the following, the natural number p often will be used instead

of the production associated with it. Without loss of generality, here it is assumed that the

grammar G is in e-free form (see [Aho and Ullman, 1972:147]); a more general

formulation o f the algorithm does not lead to the loss o f the properties shown here.
A function x is defined over the set { 1...IPI} and it takes values in Z+. This function

indicates, for every production p in P, a position in the right-hand side o f the production,
occupied by a symbol in N u l . This position is called the head position , and the

corresponding symbol is said to be in the head position for production p. Every time,
during the analysis, a symbol is recognized that is in head position for some production p ,
the presence o f the symbol Dp relative to production p is then locally hypothesized

DEFINITION 2.1

A s ta t e is defined to be any quadruple [p, I d o t , r d o t , m] , with l< p ^ lP I,
0<ldot<rdot<K(p), m e { Im, rm).

The component p indicates the corresponding production in P; the components Idot and

rd o t represent two distinct positions, one after the other, in the right-hand side o f

production p. The component m is a simple indicator m -lm indicates that the value of

Idot cannot be further diminished, even if greater than zero, while m -rm indicates that the
value o f rd o t cannot be increased further, even if it is less than 7z(p). Note that, by

definition, one limitation excludes the other. The value is used for the indicator m in

the absence o f both the limitations just described. The use o f the index m, as it will be

shown, prevents the duplication o f “partial analyses” for substrings o f w. Every state

j=[p, Idot, rdot, m] may be understood to be a partial analysis relative to production p,

for which the constituents Cpjdot+1 ... Cp/dot* belonging to the right-hand side, have

been recognized. In the following, for convenience, the states will often be referred to in
these terms. The symbol Is denotes the set o f all states.

DEFINITION 2.2

The function F is defined as follows:
F: N u l - ^)

F(X)={5=[p, Idot, ldo t+ 1, -] I X=Cp ldol+1, x(p)=ldot+1}.

The set F(X) therefore contains all the states indicating partial analyses o f productions

in which the symbol X occupies the head position.

DEFINITION 2.3

An equivalence relation Q,in Isx ls is defined so that for two generic states s=[p, Idot,

r d o t , m] and j '= [p \ Idot', r d o t ', m rj, sQ§' holds if and only if p - p \ I d o t - l d o t ' and

rdo t= rdo t\

-44- International Parsing Workshop '89

3. The Algorithm

A recognizer is an algorithm capable o f accepting a generic string w e L(G) for a

particular grammar o f interest G. In all other cases, the string w is refused. A parser ,
instead, is an algorithm that can solve the problem of whether or not w belongs to L(G)
and is also able to indicate the possible derivation trees2 for every w e L(G). In this

section, a recognizer algorithm for context-free languages is presented. The use o f a

simple algorithm able to reconstruct the derivation trees by interpreting the recognition

matrix T (see for example [Graham et Harrison 1983]) is sufficient to obtain a parser

algorithm.
The algorithm uses a matrix T o f size (rt+l)x(n+l); each component fy of this matrix

takes values in the set Is), and is initialized with as empty set. The presentation o f the

recognition algorithm is preceded by a schematic illustration of the computation involved.
The algorithm inserts into the recognition matrix T each state s that indicates a partial

analysis previously obtained for the generic substring jWj. There is a one to one

correspondence between the indicies of the analyzed substring jWj and the indices o f the

component ry, in which state s has been inserted. The algorithm then processes each

state, combining it with nearby states in an effort to extend the portions of the string

dominated by these states. When the analysis relative to a particular state is completed

(for both the right and left sides), if the constituent obtained is in a head position for some

production p in P, a new partial analysis for the production p itself is inserted into matrix

T. Note that the algorithm straightforwardly separates the problem of the combination o f

different states from the problem of control. The algorithm in fact does not specify the

order in which the different states must be considered, nor in which order every single

state must be expanded in the two opposing sides. To that end, the algorithm uses a
variable A which takes values in the set ^(IsxNxN).

ALGORITHM 3.1

Given a context-free grammar G=(N, E, P, S) in e-free form, let w = a\ ... an, n>0 , be

an input string. D evelop a recognition matrix T, o f size (n+l)x(rt+ l), whose components

fy are coindexed from 0 to n for both sides.

b e g in

1. for i in {1 .. n) do
2. for s in F(a.) do

3. add triple e=(s , M , /) to set A only if s Q sq

does not hold for any triple e q = (s q ,

i - l , i)
4. while A not empty do

2 A derivation tree D associated with a string L(G), is a labeled tree formed by all the
productions used in the derivation ofw, representing the correct hierarchic order.

-45- International Parsing Workshop '89

5. extract any element e=(s, i , j) from the set A and
insert state s in fg ; apply each of the follow ing

procedures, in any order, to element e :
left-expander(e),

right-expander(e),

left-completer(e),

right-completer(e),

trigger(e);
6 . if s=[p, 0, n(p), m]<= tQ n, for some p e P such that Dp=S

7. then output(true)

8 . else output(error)

en d .

The five procedures mentioned above are described in the following.

PROCEDURE 3.1 Left-expander

Precondition The procedure is applied only when e - { s , iyJ) with s=[p, Idot, rdot , m],
ldot>0 , m*lm.

Description The following two cases are possible.
C ase 1: Cpj dole N . For every s '= [p \ 0, Kip'), /'</, such that D p'=Cpldot,

the state s ”=[p, Idot-1, rdot , -] is created and the triple e'=(s”, i \ j) is insened in set A,
only if j"Q^q does not hold for any state in or for any triple £q=(5q, i \ j) in A. If at

least one state s ’ is found with the above properties, set m -rm in s.
Case 2: C p ^ e l . If Cp ĉjot=ai, the state s'=[p, ld o t - \y rdot, -] is created and the

triple e'=(s\ i - 1, j) is insened into set A, only if j'C&q does not hold for any state s in

t{ j or for any triple ^q=(5q, i - l , j) in A. If C ^ ^ Q=a{, set m=rm in 5 .

This procedure is applied only if state s can be extended leftward (ldot>0) and only if it

has not already been extended rightward that is, if it is not subsumed to the right

by a more updated state. There are two cases, depending upon whether the left-hand
expansion symbol is a terminal symbol or not. If Cp ldol is a non-terminal symbol, the

search proceeds to the left o f state j, to any state s' (adjacent), that corresponds to a
completed analysis rdot’=n(pr)) o f a constituent usable by state s (Dp.=Cpjdot)*

If successful, the analysis is extended in correspondence with state s, including the

constituent found nearby; state s then is marked with m -rm , since this has been
subsumed on the left by a more updated state. If Cp Jdol is, instead, a terminal symbol,

and if C an extension o f the analyses corresponding to state s is made, including

the terminal symbol a ̂ Still, state s is marked with m -r m for the same reasons as in

Case 1. Furthermore, note that Procedure 3.1 never duplicates the triples in A, nor the

states belonging to the same component o f recognition matrix T.

-46- International Parsing Workshop ’89

PROCEDURE 3.2 Right-expander

Precondition The procedure is applied only when e-{s , i , j) with s -[p , Idot, rdot, m\,
rdot<n(p), m*rm.

Description There are the following two cases.
C a s e 1: Cp rdo[+1 e N . For every 5'=[/?', 0, K(p'), m']<= t. j ’> j , such that

D ,=C j ,, state s"=[p, Idot, rdo t+ l, -] is created and triple e'=(s'\ i j ') is insertedp p,raot+i ^
into set A, only if j"C£q does not hold for any state sq in t^, or for any triple eq=Csq, i j l

in A. If at least one state s' has been found with the properties described above, set m -lm

in s.
Case 2: Cp rdot+1e I . If Cp rdot+1=aj+1, the state s'=[p, Idot, rdo t+ l, -] is created and

the triple e '= (s \ i j + l) is inserted in A, only if .s'Q?q does not hold for any state s q in

riJ+ r 15 c P,idot= a j + r set m=lm in s -

This procedure is symmetric to the left-expander procedure, so the explanation is

omitted.

PROCEDURE 3.3 Left-completer

Precondition The procedure is applied only when e-{s , / , /) , with J=[p, 0 , 7i(p), m].
D escription For every s'=[p', Idot', rdot', tj. /'</, rdot'ciip"), m'^rm. such that

Dp=Cp. rdot’+ r state Idol’, r d o t ’+ 1 , -] is created and the triple e '-{s" , i \ j) is
inserted in set A only if s"Q$q does not hold for any state in r-,j or for any triple

e = (jq, i \ j) in A. Furthermore, set m '-lm for every s' found.

This procedure is applied whenever the analysis o f a constituent D p has been

completed through a state s=[p, 0, Kip), m]. It proceeds by searching leftward of state j

for any adjacent state s' that has not yet been subsumed to the left (m'*rm) and is able to
“expand” state 5 CDp= C p. rdot.+1). If successful, an extension o f the analysis

corresponding to s' is carried out, including the constituent D p. State s' is then marked

with m -lm , since it has now been subsumed on the right by a more updated state. Again,

note that the procedure never duplicates triples in A, nor states belonging to the same

component o f the recognition matrix T.

PROCEDURE 3.4 Right-completer

Precondition The procedure is applied only when e -(s , i , j), with s - [p , 0, n (p), m].
D escrip tion For every s ' - [p \ Idot', rd o t ', m ^e f y . , /> / , ldot'>0, m W m , such that

D =C , , . , state s"=[p, ldo t ' - \ , rd o t \ -] is created and the triple e'=(s", i j 9) is inserted p p ,laot ^ '
in set A only if .y"C&q does not hold true for any state sq in or for any triple eq=(>yq,

y") in A. Furthermore, set m - r m for every s' found.

This procedure is symmetric to the left-completer procedure, so the explanation is

omitted.

-47- Intemational Parsing Workshop '89

PROCEDURE 3.5 Trigger

Precondition The procedure is applied only when e - (s , i , j) , with j=[p, 0, K(p), m\.

Description For every se F(Dp), insert the triple e=(s, i, j) in set A only if sQ?q does

not hold for any state sq in t[j or for any triple eq=(sq, i, j) in A.

The procedure is applied whenever the analysis of a particular constituent has been

completed and this constituent occupies the head position in some production p. In this

case a new state corresponding to a partial analysis for production p is created, including

the head. Once again, note that the procedure never duplicates triples in A, nor states

belonging to the same component of the recognition matrix T.

4. Some Formal Properties of the Algorithm

In this section the most interesting properties of Algorithm 3.1 are stated. For a formal

proof o f what follows refer to [Satta and Stock, 1989b]. Four major properties have been

grouped under Invariant 4.1 below. Note that soundness and completeness for Algorithm

3.1 follow straightforwardly from statements (i) and (ii) in Invariant 4.1.

INVARIANT 4.1
*

(i) s = [p , Id o t , r d o t , m] e ti j o n l y i / C p ldot+1 ... Cp rdot => a i+1 ... a j , i < j ,

ldot+ 1 <x{p)<rdor,

(H) Cp^dot+i-.Cp^ot => i<j, Idot +1 <x(p)<rdot only if a quadruple h=[h\,

hi, /13, h4\, hq>0, 1^7<4 exists such that s=[p , ldo t-h \, rdot-^h^, m]e ti_h3j+h^

(Hi) s=[p, Idot, rdot, lm \e only ifs'=[p, Idot, rdo t+ \, tx \'yf > j \

(iv) s= [p , Idot, rdo t , rm]e r,j only i f s = [p , Idot-1, rdo t , m]e f< i.

Algorithm 3.1 allows the extension o f a state to both the left and right sides. This

possibility, if not carefully controlled, can lead to the duplication o f an analysis, in the

follow ing way. If a state s , relative to a partial analysis for a constituent Cs, is

independently extended to both sides, it would lead to the introduction o f two partially

overlapping states, s' and s ' \ for the same analysis. The completion o f s' and 5 " then
would lead to the duplication o f constituent Cs- The algorithm presented here uses the

index m, associated with each state, so as to avoid partial overlapping for two (partial)

analyses o f the same constituent. Formally, we define the partial overlapping relation as

follow s.

DEFINITION 4.1 Partial Overlapping Relation

Tw o states s= [p , Idot , rdot, m]e ry and 5 = [p , Idot’, r d o t \ t[' j ’ are p a r t ia l ly

overlapped (s‘Dsr) iff /< /'< /< /, ldot<ldot’< rdot<rdot\ and, furthermore, s subsumes the

same constituents Cpjdot'+l—Cpjciot subsumed in s ’.

Note that for two states s= [p , Idot, rdot, m] and J = [p , Idot’, r d o t \ m *] such that
s(Ds\ it always holds that Idot'<z(p)<rdot. The following theorem can now be stated.

-48- International Parsing Workshop '89

THEOREM 4.1

Algorithm 3.1 never generates two states s and s' such that sUs'.

The following result regards space and time complexity for Algorithm 3.1. Such a
result is intended for a Random Access Machine model of computation.

t h e o r e m 4.2

Algorithm 3.1 requires an amount of space 0 (n 2) and an amount of time 0(rc3), where

n is the length of the input string.

5. A Brief Example

In order to have an insight into Algorithm 3.1, an example regarding a simple
computation is given here. Assume an unambiguous context-free grammar G=(N, I , P,
S), where N =(S , A, B}, L={a, b, c, d, e) , and P is the production set given as follows:

1 : S —» A a , x (l)= 2 , 7t (l)= 2 ;
2 : S -> B b , l(2)= 2 , tt(2)=2;
3: A - » c A c , t(3)=2, 7T(3)=3;
4: A —> d , X(4)=l, 7t(4)=l;

5: B —> c B c , t(5)=2, ti(5)=3;

6: B -» e , x(6)= l, 7t(6)= l.

From Definition 2.2 it follows that:

F(A) = {[3, 1 , 2 , -] } ; F(B) = {[5, 1 , 2 , -] } ;

F(a) = {[1, 1 , 2 , -] } ; ¥(b) = {[2, 1 , 2 , -] } ;

F(*f) = {[4, 0, 1 , -] } ; F(e) = {[6 , 0, 1 , -] };
F(S) = F(c) = 0 .

A run o f Algorithm 3.1 on the string w=cceccb is simplified by the follow ing steps

(the order o f application for the five procedures at line 5 is chosen at random).

1) ^ i= [6 , 0 , 1 , -] is inserted in ^ 3 and S2=[2 > 1 * 2 , -] is inserted in rj 5 , by

line 3;
2) 3̂=[5 , 1 , 2 , -] is inserted in f2 3 by the trigger procedure;

3) 54=[5, 0, 2, -] is inserted in and m is set to rm in state 53 , by Case 2 o f

the left-expander procedure;
4) J5=[5 , 0, 3, -] is inserted in f 1>4 and m is set to Im in state s4 , by Case 2 of

the right-expander procedure;
5) 5‘6=[5 , 1 , 2 , -] is inserted in r1>4 by the trigger procedure;

6) j 7=[5, 1 , 3 , -] is inserted in and m is set to Im in state by Case 2 o f

the right-expander procedure;
7) 5g=[5 , 0, 3, -] is inserted in ^ and m is set to rm in state s-j, by Case 2 o f

the left-expander procedure;

-49- International Parsing Workshop '89

8) ^ - [5 , 1 , 2 , -] is inserted in r0,5 by the trigger procedure;

9) 5 io= [2 , 0, 2, -] is inserted in fQ,6 an<̂ m *s set t0 rm state by the
right-completer procedure;

1 0) the algorithm outputs true and then stops.

Note how the setting of the m components in states 53 and 55 prevents the expansion of

partial analysis at both sides. Though not shown here, in more complicated cases the

setting o f the m components permits the left-completer procedure to combine a state s with

the “leftward largest” partial analyses that are adjacent to the left of s, preventing once

more partial analysis duplication (vice versa for the right-completer procedure).

Finally, note that in the above example Algorithm 3.1 has constructed 10 states, while

a run of the classic method o f Earley on the same string would have constructed 25 states.
Furthermore, by defining x(p)= 1, l<p<lPI, Algorithm 3.1 mimics the left-corner strategy

as stated in [Wir£n, 1987], resulting in the construction o f 17 states for the same analysis.

6. Final Remarks

This paper discusses a parsing algorithm that extends bidirectionally the classic tabular

methods for context-free language analysis. The algorithm is given for e-free form

context-free grammars, but it is not difficult to extend it to the general case, for example

by employing the same technique used in [Graham et al. 1980] in the treatment o f empty

categories.

With respect to natural language parsing, the presented tabular method is compatible

with the well known “Active Chart Parsing” technique, as pointed out in [Satta and Stock

1989a]. Finally, the extension to Earley's Algorithm proposed in [Shieber 1985] for

parsing complex-feature-based formalisms, could be equally applicable to the presented

approach.

R e f e r e n c e s

[Aho and Ullm an, 1972] Aho, A. V ., and J. D. Ullman. The Theory o f Parsing,
Translation, an Compiling, vol. 1, Prentice-Hall, Englewood C liffs, New Jersey,
1972.

[Bossi et a l ., 1983] Bossi, A., N. Cocco, and L. Colussi. A divide-and-conquer ap­
proach to general context-free parsing. Information Processing Letters, 16 - pp. 203-
208, 1983.

[Earley, 1970] Earley, J. An Efficient Context-Free Parsing Algorithm. Communications
o f the A C M , 13(2), pp. 94-102, 1970.

[Graham and Harrison, 1976] Graham, S. L., and M. A. Harrison. Parsing o f General
Context Free Languages. Advances in Computers , pp. 77-185 , Academ ic Press,
N ew York, 1976.

[Graham et a l ., 1980] Graham, S. L., M. A. Harrison, and W. L. Ruzzo. An Improved
Context-Free Recognizer. ACM Toplas , 2(3), pp. 415-462, 1980.

[Kaplan, 1973] Kaplan, R. M. A General Syntactic Processor. In: (R. Rustin, ed)
Natural Language Processing , pp. 193-241, Algorithmics Press, New York, New
York, 1973.

-50- International Parsing Workshop '89

[Kay, 1980] Kay, M. Algorithm Schemata and Data Structures in Syntactic Processing.
Tecnical Report CSL-80 Xerox-PARC, Palo Alto, California, 1980.

[Satta and Stock, 1989a] Satta, G., and O. Stock. Formal Properties and Implementation
of Bidirectional Chans. Proceedings o f the 11th International Joint Conference on
Artificial Intelligence, Detroit, Michigan, 1989.

[Satta and Stock, 1989b] Satta, G., and O. Stock. Bidirectional Context-Free Language
Parsing within a tabular approach, submitted for publication.

[Shieber, 1985] Shieber, S. M. Using Restriction to Extend Parsing Algorithms for
Complex-Feature-Based Formalisms. Proceedings o f the 23rd Conference of the
Association for Computational Linguistics, Chicago, Illinois, 1985.

[Steel and De Roeck, 1987] Steel, S. and A. De Roeck. Bidirectional Chart Parsing.
Proceedings o f AISB-87, Edinburgh, Scotland, 1987.

[Stock et al., 1989] Stock, O., R. Falcone, and P. Insinnamo. Bidirectional Charts: a
Potential Technique for Parsing Spoken Natural Language. Computer Speech and
Language, 3, 1989.

[Wiren, 1987] Wiren, M. A Comparison o f Rule-Invocation Strategies in Context-Free
Parsing. Proceedings o f the 3rd Conference of the European Chapter o f the Associa­
tion fo r Computational Linguistics, Copenhagen, Denmark, 1987.

-51- Intemational Parsing Workshop '89

Head-Driven Parsing
Martin Kay

Xerox Palo Alto Research Center and Stanford University

There are clear signs of a "Back to Basics" movement in parsing and syntactic
generation. Our Latin teachers were apparently right. You should start with the
main verb. This will tell you what kinds of subjects and objects to look for and
what cases they will be in. When you come to look for these, you should also
stan by trying to find the main word, because this will tell you most about what
else to look for.

In the early days of research on machine translation, Paul Garvin advocated the
applicadon of what he called the "Fulcrum" method to the analysis of sentences. If
he was the last to heed the injunctions of his Latin teacher, it is doubtless because
America followed the tradition of rewriting systems exemplified by context-free
grammar and this provided no immediate motivation for the notion of the head of
a construction. The European tradition, and particularly the tradition of Eastern
Europe, where Garvin had his roots, tend more towards dependency grammar, but
away from that of mathematical formalization which has been the underpinning
of computational linguistics.

But the move now is towards linguistic descriptions that put more information
in the lexicon so that grammar rules take on a more schematic quality. Little by
little, we moved from rules like
(1) V P l - > V P 2 NP

C a s e O f (V P 2) = D a t i v e
C a s e O f (N P) = D a t i v e

to rules that attain greater abstraction through the use of logical variables (or the
equivalent), like

(2) VPl -> VP2 NP
ObjCase(VP2) =■ Case
CaseOf(NP) - Case

Where the underlined Case is to be taken as the name of a variable. From there,
it was a short step to

(3) V P l - > V P 2 X

C o m p l e m e n t O f (VP2) - X

-52- International Parsing Workshop '89

or even

(4) V P 1 - > V P 2 X

C o m p l e m e n t S t r i n g O f (V P 2) = X

Given rule (2), that parser knows what case the noun must have only after it has
encountered the verb. Rules (3) and (4), do not even tell it that the complement
must be a noun phrase. In (4) we cannot even tell how many complements ther
will be. For most parsers, the problem is masked in these examples by the fact
that they apply rules from left to right so that the value of the variable X is known
by the time it is needed. In rule (4a), the matter is different.

(4 a) V P 1 - > X V P 2

C o m p l e m e n t S t r i n g O f (V P 2) = X

Needless to say, these things have not gone unnoticed, least of all by the
participants in this conference. It has been noted, for example, that deftnite-
clause grammars can be adjusted so as to look for heads before complements and
adjuncts. If the head of a sentence is a verb phrase, then it is sufficient to write
(6) instead of (5).

(5) s (L e f t / R i g h t)
n p (L e f t / M i d d l e) ,
v p (M i d d l e / R i g h t) .

(6) s (L e f t / R i g h t)
v p (M i d d l e / R i g h t) ,

n p (L e f t / M i d d l e) .

A rule that expands the verb phrase would be something like (7).

(7) v p (L e f t / R i g h t)
v e r b (L e f t / M i d d l e) ,

n p (M i d d l e / R i g h t) .

This time, the order is the usual one because the head is on the left1.

Of course, all this works if L e f t , M i d d l e , and R i g h t are something like word
numbers that provide random access to the parts of the sentence. To make the
system work with difference lists, we need something more, for example, as in (8).

(8) s (L e f t / R i g h t)
a p p e n d (X , M i d d l e , L e f t) ,

v p (M i d d l e / R i g h t) , n p (L e f t / M i d d l e) .

We have now moved lo the Prolog convention of using caiulized names for variables.

-53- Intemational Parsing Workshop '89

The reason for the addition is that the parser, embodied here in the set of rules
themselves, has no way to tell where the verb phrase will begin. It must therefore
consider all possible positions in the string, an end which, against all expectation,
is accomplished by the a p p e n d predicate. If a p p e n d is not needed when something
like word numbers are used, it is because the inevitable search of the string is
being quietly conducted by the Prolog system as it searches its data base, rather
than being programmed explcitely.

The old-fashioned parser had no trouble finding the beginnings of things
because they were always immediately adjacent, either to the boundaries of the
sentence, or to another phrase whose position was already known. Given the
sentence

I sold my car to a student o f African languages whom I met at a party

and given appropriate rules, the head-driven parser will correcdy identify "my
car" as the direct object of "sold". But it will also consider for this role at least
the following:

(8) a s t u d e n t
a s t u d e n t o f A f r i c a n
a s t u d e n t o f A f r i c a n l a n g u a g e s
a s t u d e n t o f A f r i c a n l a n g u a g e s w h o m I m e t
a s t u d e n t o f A f r i c a n l a n g u a g e s w h o m I m e t a t a p a r t y
A f r i c a n
A f r i c a n l a n g u a g e s
A f r i c a n l a n g u a g e s w h o m I m e t
A f r i c a n l a n g u a g e s w h o m I- m e t a t a p a r t y
l a n g u a g e s
l a n g u a g e s w h o m I m e t
l a n g u a g e s w h o m I m e t a t a p a r t y

a p a r t y

It will reject them only when it fails to extend them far enough to the left to meet
the right-hand edge of the word "sold". Likewise, the last four entries on the list
will be constructed again as possible objects for the preposition "of'. As we shall
see, this problem is not easy to put to set aside.

O f course, definite-clause grammars have other problems, when interpreted
directly by a standard Prolog processor. The most notorious of these is that,
in their classical form, they cycle indefinitely when provided with a grammar
that involves left recursion. However this can be overcome by using a more
appropriate interpreter such as the one given in Appendix A of this paper. It

54- International Parsing Workshop '89

does not touch the question of the additional work that has to be done in parsing
a sentence.

Two solutions to the problem suggest themselves immediately. One is to use
an undirected bottom-up parsing strategy, and the other is to seek an appropriate
adaptation of chart parsing to a directed, head-driven, strategy. The first solution
works for the simple reason that the problem we are facing simply does not arise
in undirected bottom-up processing. There is no question of finding phrases that
are adjacent to, or otherwise positioned relative to, other phrases. The strategy is a
purely opportunistic one which finds phrases wherever, and whenever, its control
strategy dictates. A simple chart parser with these properties is given in Appendix
B. It accepts only unary and binary rules, but this is not a real restriction because
these binary rules can function as meta-rules that interpret the more general of
the actual grammar according to something like the following scheme. Real rules
have a similar format to that used in the program in Appendix A, namely

r r (M o t h e r , [L I , L2 . . . L n] , H e a d , [R l , R2 . . . R m])

Li ... Ln are the non-head (complement) daughters of ’Mother’ to the left of the
head, and R\ ... Rm are those to the right. For convenience, we give the ones on
the left in the reverse of the order in which they actually appear so that the one
nearest to the head is written first. We define the binary rule predicate referred
to in the algorithm somewhat as follows;

r u l e (p (M o t h e r , L, R e s t) , H e a d , N e x t)
r r (M o t h e r , L, H e a d , [N e x t I R e s t]) .

r u l e (p (M o t h e r , R e s t , []) , N e x t , H e a d)
r r (M o t h e r , [N e x t I R e s t] , H e a d , []) .

r u l e (p (M o t h e r , L , T) , p (M o t h e r , L, [H I T]) , H) .

r u l e (p (M o t h e r) , H, p (M o t h e r , [H I T] , []) .

One special unary rule is required, namely

r u l e (M o t h e r , p (M o t h e r , [] , [])) .

The scheme is reminiscent of categorial grammar, p (C a t e g o r y , L e f t , R i g h t)

is a partially formed phrase belonging to the given c a t e g o r y which can be com ­
pleted by adding the items sepecified by the L e f t list on the left, and the R i g h t

list on the right.
This scheme has a certain elegance in that the parser itself is simple and does

not reflect any peculiarities of head-driven grammar. Only the simple meta-rules
given above are in any way special. Furthermore, the performance properties

-55- International Parsing Workshop '89

of the chart parser are not compromised. On the other hand, this inactive chart
parser cannot be extended to make it into an active chan parser in a straightforward
manner as our second solution requires. This is the crux of the matter that this
paper addresses.

Suppose that the verb has been located that will be the head of a verb phrase,
but that it remains to identify one or two objects for it on the right. A standard
active chart parser does this by introducing active edges at the vertex to the
right of the verb which will build the first object if the material necessary for its
construction is available, or comes to be available. As the construction procedes,
active edges stretch further and further to the right intil the construction is complete
and the corresponding inactive edge is introduced. This works only because the
phrase can be built incrementally starting from the left, that is, starting next to
the phrase to which it must be adjacent. But this strategy is not open to the
head-driven parser which must begin by locating, or constructing the head of the
new phrase. The rest of the phrase must then be constructed outwards from the
head. We are therefore forced to modify the standard approach.

We propose to enrich the notion of a chart so that instead of simply active
and inactive edges, it contains five different types of object. Edges can be active
and inactive, but they can also be pending or current. This gives four of the five
kinds. The fifth we shall refer to simply as a seek. It is a record of the fact that
phrases with a given label are being sought in a given region of the chart. A seek
contains a label and also identifies a pair of vertices in the chart. It is irrelevant at
the level of generality of this discussion whether we think of the seek as actually
being located in, or on, one of the vertices, or being representable as a transition
between them. A condition that the chart is required to maintain is that edges with
the same label as that of a seek, both of whose end points lie within the region of
the seek, must be current. Edges which are not so situated must be pending. The
standard chart regime never calls for information in a chart to change, but that is
not the case here. W^hen a new seek is introduced, pending edges are modified to
become current as necessary to maintain the above invariant.

The fundamental rule (Henry Thompson’s term) of chart parsing is that an
action is taken, possibly resulting in the introduction of new edges, whenever
the introduction o f a particular new edge brings the operative end of an active
edge together, at the same vertex, with an end of an inactive edge. If the label
on the inactive edge is o f the kind that the active edge can consume, a new

-56- Intemational Parsing Workshop '89

edge is introduced, possibly provoking new applications of the fundamental rule.
The fundamental rule also applies in our enriched charts, but only to current
edges-pending edges are ignored by it.

Suppose once again that a verb has been identified and that we are now
concerned to find its sisters to the right. The verb can have been found only
because there was a seek in existance for verbs covering the region in which it
was found, and this, in its turn, will have come about because seeks were extant in
that region for higher-level phrases, notably verb phrases. The objects we are now
interested to locate must lie entirely in a region bounded on the left by the verb
itself and, on the right, by the furthest right-hnd end of a VP seek that includes
the verb. Accordingly, a new seek is established for NP’s in this region. The
immediate effect of this will be to make current any pending edges in that region
that are inactive and labeled NP, or active and labeled with a rule that forms NP’s.

It remains to discuss how active edges, whether current or pending, are
introduced in the first place. The simplest solution seems to be to do this just as it
would be in an undirected, bottom-up, parser. Whenever a current inactive edge
is introduced, or a pending one becomes current, active edges are introduced, one
for each rule that could accept the new item as head. However, these do not
become current until a need for them emerges higher in the structure, and this is
signaled by the introduction of a seek.

Consider, for example, the sentence the dog saw the cat and assume that
dog , saw , and cat are nouns, saw is also a transitive verb, and that the grammar
contains the following rules:

r u l e (s (s (N P , V P)) , [n p (N P)] , v p (V P) ; []) .
r u l e (v p (v p (V , N P)) , [] , v (V) , [n p (N P)]) .

r u l e (n p (n p (D , N)) , [d e t (D)] , n (N) , []) .

The sequence o f events involved in parsing the sentence with a parser that follows
a simple shift reduce regime, would be as follows:

1 . A d d p e n d i n g f o r d e t (d e t (t h e)) f r o m 0 t o 1 /
L e f t * [] , R i g h t - []

2 . A d d p e n d i n g f o r n (n (d o g)) f r o m 1 t o 2 , L e f t = [] ,

R i g h t - []
3 . A d d e d g e f o r v (v (s a w)) f r o m 2 t o 3 , L e f t =* [] ,

R i g h t - []
4 . A d d e d g e f o r v p (v p (v (s a w) , _ 6 5 3)) f r o m 2 t o 3 ,

L e f t = [] / R i g h t - [n p (_ 6 5 3)]
5 . A d d e d g e f o r v p (v p (v (s a w) , _ 6 5 3)) f r o m 2 t o 3 ,

-57- Intemational Parsing Workshop '89

L e f t =* [] , R i g h t = [s (___6 5 3)]
6 . A d d p e n d i n g f o r n (n (s a w)) f r o m 2 t o 3 , L e f t = [] ,

R i g h t = []
7 . A d d p e n d i n g f o r d e t (d e t (t h e)) f r o m 3 t o 4 ,

L e f t = [] , R i g h t = []
8 . A d d e d g e f o r n (n (c a t)) f r o m 4 t o 5 R u l e = 0 / 0 , L e f t = [] ,

R i g h t = []
9 . A d d e d g e f o r n p (n p (_ 6 9 0 , n (c a t))) f r o m 4 t o 5 ,

L e f t = [d e t (_ 6 9 0)] , R i g h t = []
1 0 . A d d e d g e f o r d e t (d e t { t h e)) f r o m 3 t o 4 ,

L e f t = [] , R i g h t = []
1 1 . A d d e d g e f o r n p (n p (d e t (t h e) , n (c a t))) f r o m 3 t o 5

R u l e » r 4 / 1 , L e f t = [] , R i g h t * []
1 2 . A d d e d g e f o r v p (v p (v (s a w) , n p (d e t (t h e) , n (c a t)))) f r o m 2 t o 5 ,

L e f t = [] , R i g h t = []
1 3 . A d d e d g e f o r s (s (_ 1 5 0 7 , v p (v (s a w) , n p (d e t (t h e) , n (c a t)))))

f r o m 2 t o 5 , L e f t = [n p (_ 1 5 0 7)] , R i g h t = []
1 4 . A d d e d g e f o r n (n (d o g)) f r o m 1 t o 2 , L e f t = [] ,

R i g h t = []
1 5 . A d d e d g e f o r n p (n p (_ 2 0 1 4 , n (d o g))) f r o m 1 t o 2 ,

L e f t = [d e t (_ 2 0 1 4)] , R i g h t = []
1 6 . A d d e d g e f o r d e t (d e t (t h e)) f r o m 0 t o 1 ,

L e f t = [] , R i g h t = []
1 7 . A d d e d g e f o r n p (n p (d e t (t h e) , n (d o g))) f r o m 0 t o 2 ,

L e f t = [] , R i g h t = []
1 8 . A d d e d g e f o r s (s (n p (d e t (t h e) , n (d o g)) , v p (v (s a w) ;

n p (d e t (t h e) , n (c a t))))) f r o m 0 t o 5 , L i f t = [] ,
R i g h t = []

R e s u l t = [s (s (n p (d e t (t h e) , n (d o g)) , v p (v (s a w) , n p (d e t (t h e) , n (c a t)))))] ,

We write a d d e d g e . . . when the edge being added is current. Notice that
the edge for the word saw, construed as a verb, is initially introduced as current,
because the goal is to find a sentence and a seek is therefore extant for S, VP,
and V, covering the whole string. The N edge for saw, however, is pending. In
step 4 , the active adge is introduced that will consume the object of saw when it
is found. This introduces a seek for NP and N between vertex 3and the end of
the sentence. For this reason, when cat is introduced in step 8 , it is as a current
edge. Notice, however, that the, in step 7, is introduced as pending, because it is
not the head o f a NP. However, the introduction of the active NP edge in step 9
causes the edge for the to be made current, and this is what happens in step 1 0 .
The active S edge in step 13 activates the search for an NP before the verb so

-58- International Parsing Workshop '89

that all the remaining edges are introduced as current At the end of the process
all pending edges have been made current except the one corresponding to the
nominal interpretation of s a w .

The Prolog code that implements this strategy is considerably more com-
picated that that for the techniques discussed earlier, and I have therefore not
included it.

I believe that the strategy I have outlined is the natural one for anyone to adopt
who is determined to work with a head-driven active chart parser. However, it is
entirely unclear that the advantages that it offers over the simple undirected chart
parser are worth its considerable added expense in complexity. Notice that, if one
of the other nouns in the sentence just considered also had a verbal interpretation,
the search for noun phrases would have been active everywhere. The longer the
sentence, and therefore the more pressing the need for high performance, the more
active regions there would be in the string and the more nearly the process as a
whole would approximate that of the undirected technique. This should not, of
course, be taken as an indictment o f head-driven parsing, which is interesting for
reasons having nothing to do with performance. It does, however, suggest that the
temptation to claim that it is also a natural source of efficiency should be resisted.

Appendix A - A PARSER-GENERATOR FOR HEAD-
D RIVEN G RAM M AR.

This is a simple head-driven recursive-descent parser. There is a distinction
between the top level p a r s e predicate and the s y n t a x predicate to eliminate
inessential arguments to the top level call, and also because the program can,
with only minor modifications in s y n t a x , be used as a generator. The p r e d i c a t e

h e a d is assumed to be defined as pan o f the grammar. It is true of a pair of
grammatical labels if the second can be the head (of the head, o f the head ...) of
the first. Having hypothesized the label of the eventual lexical head of a phrase
that w ill satisfy the current goal, s y n t a x c a l l s r a n g e to find a word in the string
with that label. If such a word is found, its position in the string will be given
by the H R a n g e (head range) difference list and it must, in any case, lie within
the range o f the string given by M a x i and M a x r . The b u i l d predicate constructs
phrases with the given putative head so long as their labels stand in the h e a d

relation to the goal.

-59- Intemational Parsing Workshop '89

.......
* parse(String, Result) *

* String is a list of words *
* Struct is the structure (nondeterministicaiiy) returned if the parse
* succedes *
........
parse (String, Struct)

syntax(String/[]/Struct, String/[]).

* syntax((L/R)/Goal, Maxl/Maxr) ’
» *
* G is the Goal for the parsen. '
* L/R is a DL giving the bounds of the phrase satisfying the goal *
* Maxl/Maxr gives the string bounds for the current search. *
* tr
******...........*****.........

syntax(Range/Goal, Max)
head(Goal, Head), % Find lexical head for Goal
range(HRange/Head, Max), % Associate Head with actual

% word and string position,
buiId(Range/Goal, HRange/Head, Max). % Build bottom up based on Head.

* range((L/R)/Head, MaxL/MaxR) *
«
* True of (1) position L/R in the string *
* (3) with grammatical description Head *
* (4) somewhere in the string range MaxL/MaxR (parsing) *
...
%
% Whole maximum range explored.
% =

range(_, X/X) !, fail.
%
% Next word in maximum range is the required head,

range(L/R/Head, L/_) diet(L/R, Head).
%
% Try again one place to the right.

range(Head, [HiT]/MaxR)
range(Head, T/MaxR).

/******...............
* D u i l d f (GL/GR)/Goal, (HL/HR)/Head, MaxL/MaxR)
* *
* Build phrases bottom up based on the Head located in the string at *
* HL/HR. The location of the phrase found will be GL/GR and it must *
* fall in the range MaxL/MaxR. *

build(X, X, _). % Current head is result,
build(GL/GR/Goal, HL/HR/Head, MaxL/MaxR) % Find rule matching Head

rr(Lhs, Left, Head, Right), head(Goal, Lhs),
build_left(Left, LL/HL, MaxL/HL), % Check left daughters
build_right(Right, HR/RR, HR/MaxR), % and right daughters,
buiid(GL/GR/Goal, LL/RR/Lhs, MaxL/MaxR). % Try building further on that.

-60- Intemational Parsing Workshop '89

build_Ieft{[], X/X, _) . build_ie ft([HIT], L/R, MaxL/MaxR)
syntax(HL/R/H, MaxL/MaxR),
buiid_ieft(T, L/HL, MaxL/HL).build_right([], X/X, _).

buiId_right([HIT1, L/R, MaxL/MaxR) :-
syntax(L/HR/H, MaxL/MaxR),
build_nght (T, HR/R, HR/MaxR) .

A ppendix B - A SIM PLE INACTIVE CHART PARSER

This is a chart version of a nondeterminisitc shift-reduce parser. Vertices of
the chart are constructed from left to right, one on each recursive call to p a r s e / 3,

A vertex is a list of edges headed by a number which is provided for convenience
in printing. An edge takes the form [l a b e l , n e x t - v e r t e x] . The predicate
b u i i d _ e d g e is given a word and its successor vertex and returns a completed
vertex. It succeeds once for each entry that the word has in the dictionary and,
for each one, calls b u i i d _ e d g e i . This can succeed in three ways, all of which are
collected into the list of edges contributing to the current vertex by virtue of the
s e t o f construction. The three possbilities are (1) The word’s lexical entry itself
labels an edge; (2) A unary rule applies to the entry, and its left-hand side labels
an edge, and (3) A binary rule matches the entry and an entry in the next vertex
(m e m b e r ([L a b e l , N e x t l] , N e x t)) . Each new label is passed to b u i l d - e d g e l

to be processed in the same manner as the original lexical entry.

p a r s e (S t r i n g , R e s u l t)
p a r s e (S t r i n g , [0] , R e s u l t) .

p a r s e ([] , V , V) .
p a r s e ([W o r d I R e s t] , [N I N e x t] , V e r t e x)

s e t o f (E d g e , b u i l d _ e d g e (W o r d , [N I N e x t] , E d g e) , V) ,
M i s N + l ,
p a r s e (R e s t , [M | V] , V e r t e x) .

% N e x t v e r t e x n u m b e r
% { M | V] i s t h e v e r t e x

b u i l d _ e d g e (W o r d , N e x t , E d g e)
d i e t (W o r d , E n t r y) ,
b u i l d _ e d g e l (E n t r y , N e x t , E d g e) .

b u i l d _ e d g e l (E n t r y , N e x t , [E n t r y , N e x t])
b u i l d _ e d g e l (E n t r y , N e x t , E d g e)

r u l e (L h s , E n t r y) ,
b u i l d _ e d g e l (L h s , N e x t , E d g e) .

b u i l d _ e d g e l (E n t r y , [N I N e x t] , E d g e)

% D i c t i o n a r y l o o k u p

% S h i f t .
% R e d u c e o n e i t e m

% R e d u c e t w o i t e m s

-61- Intemational Parsing Workshop '89

m e m b e r ([L a b e l , N e x t l] , N e x t) ,
r u l e (L h s , L a b e l , E n t r y) ,
b u i l d _ e d g e l (L h s , N e x t l , E d g e) .

-62- IntemationaJ Parsing Workshop '89

P a r s in g w ith P r in c ip le s :
P r e d ic t in g a P h r a sa l N o d e B e fo r e I ts H e a d A p p e a r s 1 2

Edward G ibson
D ep a r tm e n t o f P h i lo sop h y

C arnegie M ellon U nivers ity
P itt sb u rg h , PA 15213
ea fg ;3>cad. c s .cm u .ed u

1 In troduction

R ecent work in gen era t ive sy n ta c t ic th eory has sh ifted the co n cep tion o f a natural lan gu age gram m ar from
a h o m o g e n e o u s se t o f phrase s tru ctu re (P S) rules to a h etero gen eo u s se t o f w ell- form edness con stra in ts on
rep resen ta t ion s (see , for e x a m p le , C h o m sk y (198 1) , S tow ell (1 98 1) , C h o m sk y (19 86 a) and Pollard k Sag
(1 9 8 7)) . In th ese theor ies it is a ssu m ed th a t the gram m ar con ta ins princip les th a t are in d ep en d e n t o f the
language b e in g parsed , tog e th er w ith principles th at are param eter ized to reflect the varying behavior o f
different lan gu a ges . However, there is more to a theory o f hu m an sen ten ce process in g th an ju s t a theory
of l ingu is t ic c o m p e te n c e . A th eory o f p erform an ce con s is ts o f b o th l ingu is t ic k n ow led ge and a parsing
a lgor ithm . T h is paper will in v es t ig a te w ays o f ex p lo i t in g pr inc ip le -based sy n ta c t ic theories d irect ly in a
parsing a lg o r ith m in order to d e term in e w h eth er or not a princip le-based parsing a lg o r ith m can be co m p a t ib le
w ith p sy ch o l in g u is t ic ev id en ce .

P r in c ip le -b a sed parsing is an in terest in g research topic not o n ly from a p sy ch o l in g u is t ic po int o f v iew but
also from a practica l p o in t o f v iew . W h e n PS rules are used, a sep ara te gra m m a r m u st be w rit ten for each
language parsed . E ach o f th ese g ra m m ars c o n ta in s a great deal o f red u n d an t in fo rm a tion . For exa m p le ,
there m ay be tw o rules, in different gram m ars, th a t are id en t ica l e x c e p t for th e order o f the c o n s t i tu e n t s on
the right han d s ide , in d ica t in g a d ifference in word order. T h is r ed u n d an cy can be avoided by em p lo y in g
a universal phrase s tru c tu re c o m p o n e n t (n o t n ecessarily in the form o f rules) a lon g w ith p aram eters and
a sso c ia ted values. A p rincip les and p ara m eters approach provides a s ing le co m p a c t g ra m m a r for all lan gu ag es
th at would o th e r w is e be represen ted by m an y different (a n d red u n d a n t) PS gra m m ars .

A ny m o d e l o f h u m an parsing m u st d ic tate : a) how stru ctu res are projec ted from the lexicon; b) how
s tru ctu res are a t ta c h e d to on e another; and c) w h a t con stra in ts affect th e resu ltan t s tru ctu res . T h is paper will
co n cen tra te on the first tw o c o m p o n e n t s w ith respect to pr inc ip le -based parsing a lgor ithm s: n od e p roject ion
and s tru ctu re a t ta c h m e n t .

T w o basic con tro l s tru c tu res e x is t for any parsing a lgorithm : d ata -d r iven con tro l and h y p o th es is -d r iv en
control. E ven if a parser is p re d o m in a n t ly h y p o th es is -d r iv en , the p red ict ion s th a t it m ak es m u st at som e
point be co m p a red with th e data that are presented to it. S o m e d ata -d r iven c o m p o n e n t is therefore necessary
for any parsin g a lg o r i th m . Thus, a reason ab le h y p o th e s is to te s t is th a t the h u m a n p arsing a lg o r i th m is
entire ly d a ta -d r iv e n . T h is is e x a c t ly th e ap proach th a t is taken by a n u m ber o f p r in c ip le -b ased parsing
a lgor ith m s (see , for e x a m p le , A b n e y (1 9 8 6) , K a sh k et (1 9 8 7) , G ib son &: Clark (1 9 8 7) and P r itc h e t t (1 9 8 7)) .
T h e se p arsing a lg o r i th m s ea ch in c lu d e a n o d e p roject ion a lg or ith m th a t p ro jec t s an in p u t word to a m a x im a l
category, b u t d o es n o t c a u se th e p ro jec t io n o f any further nodes .

A lth o u g h th is s im p le s t r a te g y is a t tra c t iv e b eca u se o f its s im p lic ity , it turns o u t th a t it c a n n o t acc o u n t
for certa in p h e n o m e n a o b serv ed in th e p rocess in g o f D u tch (Frazier (1987): see S ec t io n 2 .1) . A c o m p le te ly
d a ta-d r iven n o d e p r o je c t io n a lg o r i th m also has difficulty a cc o u n t in g for the p ro cess in g ea se o f a d jec t iv e -n o u n
co n stru c t io n s in E n g lish (see S e c t io n 2 .2) . As a result o f th is ev id en ce , a purely d a ta -d r iv en n o d e p ro jec t io n

1 Paper presented at the International Workshop on Parsing Technologies, August 28-31, 1989.

2 I would like to thank Robin Clark, Rick Kazm an, Howard Kurtzm an, Eric Nyberg and Brad Pritchett for their com m ents
on earlier drafts of this paper, and I offer the usual disclaimer.

-63- International Parsing Workshop '89

a lgo r ith m m u st be rejected in favor o f a n ode p roject ion a lgo r ith m th a t has a pred ict ive (h y p oth es is -d r iven)
c o m p o n en t Frazier (1 9 8 7)) .

T h is paper descr ibes a n ode project ion a lgo r ith m th a t is part o f the C on stra in ed Parallel Parser (C P P)
(G ib so n (1 9 8 7) , G ib son k C lark (1 98 7) and Clark & G ibson (1 9 8 8)) . T h is parser is based on the principles
o f G o v e r n m e n t-B in d in g theo ry (C h o m sk y (1981 , 1986a)) . Section 3.1 g ives an overview o f the C P P m odel ,
while S ec t ion 3.2 d escr ibes the n ode project ion a lgor ithm . S ec t io n 3 .3 descr ibes the a t ta c h m e n t a lgorithm ,
and includes an e x a m p le parse. T h ese n ode project ion and a t ta c h m e n t a lgo r ith m s d e m o n s tra te th a t a
p rinc ip le -based parsing a lg or ith m can a ccou nt for the D u tch and E nglish d ata , while avoid ing the ex is ten ce
o f red u n d an t phrase s tru ctu re rules. T h u s it is co n c lu d ed th a t one should continue to in vest iga te hyp oth es is -
driven prin c ip le -b ased m o d e ls in th e search for an o p t im a l p sycho l in gu is t ic m od el .

2 D ata -D riven N o d e Projection: Empirical Pred ic tions and R esults

2.1 E vidence from D u tch

C onsid er th e s e n te n c e fragm en t in (1):

(1)
... d a t het m eisje van Holland ...
... “th a t the girl from H o l la n d ” ...

D u tc h is like E nglish in th a t p rep os it io n a l phrase modifiers o f n ou n s m ay fo llow the noun . T h u s th e
p rep o s it ion a l ph rase van Holland m ay be a m odifier o f the n oun phrase the girl in e x a m p le (1). U nlike
E n glish , h ow ever, D u tc h is S O V in su b o r d in a te c lauses. Hence in (1) th e p rep o s it io n a l phrase van Holland
m ay also be th e a rg u m en t o f a verb to fo llow. In particu lar , if the word ghmlachte (“sm i le d ”) fo llows the
fragm en t in (1) , th en th e p re p o s it io n a l phrase van Holland can a t ta c h to th e nou n ph rase th a t it follows,
since the verb ghmlachte has no lex ica l req u irem en ts (see (2 a)) . If, on th e oth er h an d , the word houdt
(“lik es”) fo llow s th e fragm en t in (1) , th en the P P van Holland m ust a t ta ch as a rg u m e n t o f the verb houdt,
since the verb requires su ch a co m p le m e n t (see (2 b)) .

(2)
a d a t [s [iVP het m eisje [pp van H ol land]] [vp g l im lach te]]

... “th a t th e girl from H olland s m i le d ” ...

b d a t [5 [.vp het m eisje] [v p [v [pp van H olland] [v h o u d t]]]]
... “th a t th e girl likes H o l la n d ”

F ollow in g A b n e y (1 9 8 6) , Frazier (1 9 8 7) , C lark k G ib so n (1 9 8 8) and n u m erou s o th ers , it is a s su m ed th a t
a t ta c h e d s t r u c tu res are preferred over u n a t ta c h e d s tru ctu res . If we a lso a ssu m e th a t a phrasa l n o d e is not
p ro jec ted unti l its h ead is e n c o u n te r e d , w e pred ict th a t p eop le will en ter ta in on ly one h y p o th e s is for the
se n te n c e fra gm en t in (1): th e m odifier a t ta c h m e n t . T h u s we predict th a t it sh o u ld take longer to parse
the co n t in u a t io n houdt (“likes”) th a n to parse the c o n t in u a t io n ghmlachte (“s m i le d ”), s ince the c o n t in u a t io n
houdt forces the p rep o s i t io n a l p hrase to be rea n a lyze d as an arg u m en t o f th e verb. How ever, contrary
to th is p red ic t ion , th e verb th a t a llow s a rg u m e n t a t ta c h m e n t is ac tu a l ly parsed faster th a n the verb th a t
n e c e s s i ta t e s m odifier a t t a c h m e n t in s e n te n c e fra gm en ts like (1). If th e verb had been p ro je c te d before its
h ead was e n c o u n te red , th en th e a r g u m en t a t ta c h m e n t o f th e P P van Holland w ou ld b e p oss ib le at th e sam e
t im e th a t th e m odifier a t t a c h m e n t is p o s s ib le .3 T h u s Frazier con c lu d es th a t in so m e cases phrasa l n od es
m u st be p ro jec ted before their lex ica l h ead s have b een en c o u n tered .

3 It is beyond the scope of this paper to offer an explanation as to why the argument attachm ent is in fact preferred, to the
modifier attachm ent. This paper seeks only to dem onstrate that the argument attachm ent possibility m ust at least be avai lable
for a psychologically real parser. See Abney (1986), Frazier (1987) and Clark U Gibson (1988) for possible explanations for the
preference phenom enon.

-64- International Parsing Workshop '89

2.2 E vidence from E nglish

A seco n d piece o f e v id e n ce aga in st this l im ited ty p e o f n ode project ion is provided by the process ing o f noun
phrases in E nglish th a t have m ore th an one pre-head con st itu en t .

It is a ssu m ed th a t the pr im itive op era t ion o f a t ta c h m e n t is a sso c ia ted w ith a certain process ing cost.
Hence the a m o u n t o f t im e taken to parse a sing le input word is d irect ly related to the num ber o f a t ta ch m e n ts
that the parser m ust e x e c u te to incorporate th a t s tru ctu re into the ex is t in g s tru ctu re (s) . If a phrasal node
is not p ro jec ted until its head is en cou n tered , then parsing the final word o f a head-final co n stru ct io n will
involve a t ta c h in g all its pre-head s tru ctu res at th a t po int . If, in a ddit ion , there is more th an on e pre-head
structure and no a t ta c h m e n ts are poss ib le until the head appears , then a s ignificant p rop ortion o f process ing
tim e sh ou ld be sp e n t in p rocess in g the head.

T h e h y p o th es is th a t a phrasal n od e is not p rojected until its head is en cou n tered can b e te s ted w ith the
English noun phrase, s ince the head o f an English noun phrase appears after a specifier and any adjectival
modifiers . For ex a m p le , consider the E nglish noun phrase the big red book. First , the word the is read and a
determ iner phrase is built . S ince it is a ssu m ed th a t nodes are not p rojected until their h ead s are encou ntered ,
no noun phrase is bu ilt at th is point . T h e word big is now read and causes the p roject ion o f an adjective
phrase. A t ta c h m e n t s are now a t t e m p te d betw een the two stru ctu res built thus far. N eith er o f th e categories
can be a rgu m en t , specifier or modifier for the o th er , so no a t ta c h m e n t is poss ib le . T h e n e x t word red now
causes th e p roject ion o f an a d ject ive phrase, and once again no a t ta c h m e n ts are p oss ib le . O n ly w h en the
word book is read and projec ted to a noun phrase can a t ta c h m e n ts take p lace. First th e ad ject ive phrase
represent ing red a t ta c h e s as a m odifier o f the noun phrase book. T h e n th e A P rep resen t ing big a t ta ch es as
a modifier o f th e no u n phrase ju s t co n s tru c ted . F in a lly the d eterm in er phrase rep resen t ing the a t ta c h e s as
specifier o f the n ou n p hrase big red book.

T h u s if we a ssu m e th a t a phrasa l n o d e is not p rojected until its head is parsed , we pred ict th a t a greater
num ber o f a t t a c h m e n ts will take place in parsing the head th an in parsing any o th er word in the noun
phrase. S ince it is a s su m ed th a t an a t ta c h m e n t is a sign if icant parser o p era t io n , it is p red ic ted th a t people
sh ou ld take m ore t im e p arsing the h ead o f the noun phrase th an th e y take parsing the o th er words o f the
noun phrase . S in ce there is no p sy ch o l in gu is t ic ev id en ce th a t p eop le take m ore t im e to process h eads in
head-final c o n s tr u c t io n s , I h y p o th e s iz e th a t phrasal nodes are b e in g p ro jec ted before their h ea d s are be in g
enco u n tered .

3 H y p o th es iz in g a P hrasal N o d e Before Its H ead A ppears

3.1 T he Parsing M odel: T h e C onstra ined Parallel Parser

T h is pap er a s s u m e s th e C o n s tr a in e d Paralle l Parser (C P P) as its m o d e l o f h u m a n se n te n c e p rocess in g (see
G ib son (1 9 8 7) , G ib so n & C lark (1 9 8 7) and Clark k G ib so n (1 9 8 8)) . T h e C P P m o d e l is based on the
princip les o f G o v e r n m e n t -B in d in g T h e o r y (C h o m sk y (1981 , 1986a)); crucially C P P has no se p ara te m o d u le
co n ta in in g la n g u a g e -p a r t ic u la r rules. F ollow ing M arcus (1 9 8 0) , s tru ctu res parsed under th e C P P m o d e l are
placed on a s ta ck and th e m o s t recently built s tru ctu res are p laced in a d a ta stru c tu re called the buffer.
T h e parser bu ilds s tru c tu re by a t ta ch in g n o d es in the buffer to n o d es on top o f th e stack . U nlike M arcus
m od el, the C P P m o d e l a llow s m u lt ip le rep resen ta t ion s for the sa m e in p u t s tr in g to ex is t in a buffer or s tack
cell. A l th o u g h m u lt ip le rep r esen ta t io n s for the sa m e in p u t s tr in g are p e rm it ted , co n s tra in ts on p a ra lle lism
frequently ca u se o n e re p resen ta t io n to be preferred over the o th ers . M o t iv a t io n for th e parallel h y p o th e s is
com es from gard en p a th effects an d p ercep t io n o f a m b ig u ity in a d d it io n to re la t ive p r o cess in g load effects.
For in form a tio n on th e particu lar co n s tr a in ts and their m o t iv a t io n s , see G ib so n & Clark (1 9 8 7) , C lark &
G ibson (1 9 8 8) an d th e references c ited in th ese papers .

-65- Intemational Parsing Workshop '89

3.1.1 L exical E ntries for C P P

A lexical en try accessed by C P P c o n s is ts of, am o n g other th in gs , a theta-gnd. A th eta -gr id is an unordered
list o f theta structures. Each th e ta stru ctu re con s is ts o f a th em a t ic role and assoc ia ted su b ca teg o r iz a t io n

form ation . O n e th e ta s tru ctu re in a th eta -gr id m ay be marked as indirect to refer to its su b jec t . For
e x a m p le , the word shout m igh t have the fo llowing th e ta -g r id :4

(3)
((Subcat = PREP, Thematic-Role = GOAL)
(Subcat = COMP, Thematic-Role = PR0P0SITI0H))

W h e n the word shout (or an inflected variant o f shout) is en co u n tered in an in p u t phrase, th e th em atic
role agent will be a ss ig n ed to its su b je c t , as long as this su b jec t is a noun phrase. T h e direct th e m a t ic roles
goal and proposition will be ass igned to p rep o s it ion a l and com p lem en t iz er phrases respect ive ly , as long as
each is presen t . S ince th e order o f th e t a s tru ctu res in a th eta -gr id is not relevant to its use in parsing, the
above th e ta -g r id for shout will be suffic ient to parse b o th sen ten ces in (4) .

(4)
a. T h e m a n sh o u t s [pp to the w om an] [c p th a t Ernie sees the rock]

b . T h e m a n sh o u t s [c p th a t Ernie sees the rock] [p p to the w om an]

3.1.2 X T heory in C P P

T h e C P P m o d e l a ssu m es X T h e o r y as present in C h o m sk y (1 9 8 6 b) . X T h e o r y has tw o basic principles:
first, each tree s t ru c tu r e m u st have a head; and secon d , each stru ctu re m u st h ave a m a x im a l p ro jec t ion . As
a result o f th ese pr in c ip les and o th er princip les , (e.g., th e 0 -C r ite r io n , the E x te n d e d P ro jec t io n Princip le ,
C ase T h e o r y) , th e p o s i t io n s o f a rg u m en ts , specifiers and- m odifiers w ith respect to th e h ead o f a g iven
s tru c tu r e are l im ited . In particu lar , a specifier m a y on ly ap pear as a s ister to th e on e-b ar p ro jec t ion below
a m a x im a l p ro jec t io n , and th e head , a long w ith its arg u m en ts , m u st ap p ear be low the o n e-b ar project ion .
T h e orders o f th e specifier and a rg u m e n ts relat ive to th e head is la n gu a ge d ep e n d e n t . For e x a m p le , the basic
s tru c tu r e o f E n g lish ca teg or ies is sh o w n b e lo w . Furtherm ore , b inary bran ch in g is a ssu m e d (K a y n e (1 9 8 3)) ,
so th a t m odif iers are C h o m sk y -a d jo in e d to th e tw o-bar or one-b ar levels, g iv in g one p o ss ib le s tru ctu re for a
p o s t -h e a d m odif ier b e low on th e right.

S p e c i f ie r ^ j^ S p e o f i e r ^ ^

X A rgum ent* ^ ^ ^ M o d i f l e r

X A rgum ent*

3.1.3 T h e C P P P arsing A lg o r ith m

T h e C P P a lg o r i th m is e s s e n t ia l ly very s im p le . A word is projec ted v ia n od e p ro jec t ion (see S e c t io n 3.2)
in to th e buffer. If a t t a c h m e n ts are p o ss ib le b e tw een the buffer an d the top o f th e stack , th en th e results
o f th ese a t t a c h m e n ts are p laced in to the buffer and th e sta ck is p o p p ed . A t ta c h m e n t s are a t t e m p t e d again
unti l no longer p oss ib le . T h is entire p roced ure is rep ea te d for each word in th e in p u t s tr in g . T h e formal

C P P a lg o r i th m is g iven below:

I. (I n it ia l iz a t io n s) S e t th e s ta ck to nil. S e t th e buffer to nil.

4 In a more com plete theory, a syntactic category would be determ ined from the them atic role (Chom sky (1986a)).

-66- Intemational Parsing Workshop '89

2 (E n d in g C o n d it io n) If th e en d o f the input str ing has been reached and the buffer is em p ty then return
the c o n ten ts o f the stack and stop .

3 If the buffer is e m p ty then project n od es for each lexical entry corresp on d in g to the next word in the
input s tr in g , and put th is list o f m a x im a l project ions into the buffer.

4 Make all poss ib le a t ta c h m e n ts b e tw een the s tack and the buffer, su b jec t to the a t ta ch m en t constra ints
(see Clark & G ib son (1 9 8 8)) . P u t the a tta ch ed stru ctu res in the buffer. If no a t ta c h m e n ts are possible ,
then put the co n te n ts o f the buffer on top o f the stack.

5 . Go to 2.

3.2 The P roject ion o f N o d es from the Lexicon

Node project ion p roceed s as fo llows. First a lex ica l i tem is projected to a phrasal node: a Confirmed n ode
(C-node). Follow ing X T h eory , each lexical entry for a g iven word is projec ted m axim ally . For ex a m p le , the
word rock, w hich has b o th a noun and a verb entry w ould be p rojected to at least two m a x im a l projections:

(5)
a. [/vp [n 1 [jV rock]]]

b. [vp [v [v rock]]]

N ex t , the parser h y p o th e s iz e s n o d es w h ose heads m ay appear im m e d ia te ly to the right o f the g iven
C-node. T h e se pred ic ted s t ru ctu res are called hypothesized n od es or H-nodes. A n H -n od e is defined to be
any node w hose h ead is to .a e right o f all lex ical in p ut . In order to d e te rm in e w hich H -n od e s tru ctu res to
h yp oth es ize from a g iven C -n o d e , it is necessary to con su lt the argu m en t p roperties a sso c ia ted w ith the C-
n’ode together w ith th e specifier and m odifier properties o f the n od a l ca teg o ry and the word order properties
o f the language in q u est ion . It is a ssu m ed th a t th e ab ility o f on e ca teg ory to act as specifier , modifier
or argum ent o f a n o th er ca teg o ry is part o f u n p a ram eter ized U niversa l G ra m m ar . O n the o th er hand , the
relative order o f tw o c a tego r ies is a ssu m ed to be p aram eter ized across different languages . For ex a m p le , a
determ iner phrase, if it e x is t s in a g iven lan gu age , is universa lly a llow able as a specifier o f a n o un phrase.
W hether the d e term in er ap p ea rs before or after its head noun d ep en d s on the lan gu a ge-p art icu la r values
associated w ith the p a ram eters th a t d e te rm in e word order.

Three p ara m ete rs are p rop o sed to a cc o u n t for variat ion in word order, on e for each o f a rgu m en t , specifier
and modifier p r o je c t io n s .5 For ea ch la n g u a g e , each o f th ese p aram eters is a sso c ia ted w ith at least one value,
where the p aram eter va lu es co m e from th e fo l low ing set: {* h e a d * , * sa te l l i t e * } . 6 T h e value head ind icates
that a c a teg o ry C cau ses the p ro jec t io n to th e right o f th o se ca tegor ies for w hich C m a y be head. T h u s
this value in d ica tes h ea d - in it ia l word order. T h e value ^sate ll i te* in d ica tes th a t a ca teg o r y C cau ses the
projection to the right o f th o se ca teg o r ie s for w hich C m a y be a sa te l l i te category . H ence th is va lue in d icates
head-final word order. H -n od e p ro jec t io n from a ca te g o ry C is defined in (6) .

(6) u /
(A rgu m en t , Specif ier , M odif ier) H -N o d e P ro jec t io n from ca tegory C: If the value a sso c ia te d w ith th e (arg u ­
ment, specifier , m od if ier) p ro jec t io n p ara m eter is *h ead * , th en cau se the p roject ion o f (a rg u m en t , specifier ,
modifier) sa te l l i te s , an d a t ta c h t h e m to the right b e low the ap prop ria te p roject ion o f C . If th e value a ssoc i­
ated w ith th e (a r g u m e n t , spec if ier , m od if ier) p ro jec t io n p aram eter is ^sate ll i te* , th e n ca u se the p r o jec t ion
of (a rgum en t , specifier , m od if ier) h ead s , and a t ta ch th em to the right a b ov e the app ro pr ia te p ro jec t io n o f

C.

In E nglish th e a rg u m en t p r o jec t io n p a ram eter is se t to *head*, so th a t arg u m en ts ap p ear after th e head.
Hence, if a lex ica l en try has req u irem en ts th a t m u s t be filled, th en s tru ctu res co rresp o n d in g to su b c a teg o r ized

5Furthermore, it is assum ed that the value of the modifier projection parameter defaults to the value of the argument
projection parameter.

61 will use the term sate l l i t e to indicate non-head constituents: arguments, specifiers and modifiers.

-67- International Parsing Workshop '89

catego r ies are h y p o th es ized and a t tach ed . For exa m p le , the verb see su bcatego r izes for a noun phrase, so an
e m p ty noun phrase n ode is h y p o th es ized and a ttach ed as a rgu m en t o f the verb:

(7)
[vp [v [v see] [iVp e]]]

T h e specifier p ro jec t io n p a ram eter , on the oth er hand , is set to -the value ^satellite* in English so that
specifiers appear before their heads. If the ca teg ory a sso c ia ted w ith a C -n o d e is an allowable specifier for
oth er ca tegor ies , then an H -n od e project ion o f each o f these categor ies is built and the C -n od e specifier is
a tta ch ed to each . For ex a m p le , s ince a d eterm in er m ay specify a noun phrase, an H -node noun phrase is
h y p o th es ized w h en parsing a d e term in er in English:

(8)
[.VP [D e t P [D e V [oet the]]] [at/ [/V t]]]

T h u s the n od e p ro jec t io n a lg o r ith m provides a new d erivat ion o f langu ag e-p art icu lar word order. In
p rev iou s pr in c ip le -b ased sy s te m s , word order is derived from p aram eter ized d irection o f a t ta c h m e n t (see
G ib so n & Clark (1 9 8 7) , N y b erg (19 8 7) , VVehrli (1 9 8 8)) . A n a t ta c h m e n t takes p lace from buffer to stack
in h ea d -in it ia l co n s tr u c t io n s and from stack to buffer in head-f ina l co n stru ct io n s . S ince a t ta c h m e n t is now
a u n iform o p e r a t io n as defined in (1 7) , th is p a ram eter iza t ion is no longer necessary. Instead , in head-
in itia l co n s tr u c t io n s , n o d es now project to the n odes th a t th ey m ay im m e d ia te ly d o m in a te . In head-f inal
co n str u c t io n s , n o d e s now project to th ose n o d es th a t th ey m ay be im m ed ia te ly d o m in a te d by.

T h e p ro jec t io n p a ram eters as defined in (6) accou n t for m an y facts a b o u t word order across lan gu a ges .
However, m o s t , if n o t all, la n g u a g e s have cases th a t do n ot fit th is clean p icture . For e x a m p le , while m odifiers
in E nglish are p re d o m in a n t ly p o s t -h e a d , a d ject ives appear before the h ead . A single g lob a l value for m odifier
p ro jec t io n p red ic ts th a t th is s i tu a t io n is im p oss ib le . Hence we m u st a ssu m e th a t the values g iven for the
p rojec t ion p a ra m e ter s are o n ly d e fau lt values. In order to form alize this idea, I a ssu m e the e x is te n c e o f a
hierarchy o f ca te g o r ie s and words a s .s h o w n below:

C a te g o ry

N o u n Verb A d p o s it io n

Ernie rock ... see e a t ... to on

It is a s su m ed th a t th e va lue for each o f the p roject ion p aram eters is the d efau lt value for th a t p ro jec t io n
ty p e w ith resp ec t to a p articu lar la n gu a ge . However, a particu lar ca teg o r y or word m ay have a value
a s s o c ia te d w ith it for a p ro jec t io n p a ra m e ter in a d d it io n to the defau lt one. If th is is the case, th en on ly
the m o s t sp ec if ic va lue is used . For ex a m p le , in E n glish , th e ca te g o ry a d ject ive is a sso c ia te d w ith the
value ^ sa te l l i te* w ith r e sp ec t to m od if ier projec t io n . T h u s E nglish adjec t ives ap p ear before the h ea d . T h e
a d jec t iv e tall w ill therefore ca u se th e p ro jec t io n o f b o th a C -n o d e ad jec t ive phrase and an H -n od e noun
phrase:

(9)
a . [AP tall]

b- [jvp Lv' [a p tall] Dv' (/v e]]]]

If recursive a p p l ic a t io n o f p ro jec t io n to H -n o d es were a llowed, th en it w o u ld b e p oss ib le , in principle ,
to p ro jec t an in f in ite n u m b er o f n o d es from a s in g le lexical entry. In E ng lish , for ex a m p le , a g en it iv e noun
p h rase can sp e c i fy a n o th er n ou n phrase . T h is n o u n phrase m a y a lso be a g en it iv e noun phrase , and so on.
If H -n o d es cou ld p r o jec t to further H -n o d es , th en it w ould be n ecessary to h y p o th e s iz e an infin ite n u m ber o f
g e n it iv e N P H -n od es for ev ery g e n it iv e N P th a t is read. A s a result o f th is difficulty, the H -n o d e P ro jec t io n
C o n s tr a in t is p roposed:

-68- International Parsing Workshop '89

T h e H -n od e P ro jec t io n C on stra in t: O n ly a C -n od e m ay cause the p roject ion o f an H-node.

As a result o f the H -node P ro jec t ion C o n stra in t . H -n od es m ay not invoke H -node project ion . For exam p le ,
if a specifier cau ses th e p roject ion o f its head, the resulting head ca n n o t then cause the project ion o f those
ca tegor ies th a t it m ay specify . A s a result, the num ber o f nodes th a t m ay be projected from a s ingle lexical
item is severe ly restr icted .

3.3 N o d e A ttach m en t

G iven the above n ode pro jec t ion a lgor ith m , it is n ecessary to define an a lg or ith m for a t ta c h m e n t o f nodes.
Since s t ru ctu res are p red ic ted by the n od e p roject ion a lgor ithm , the a t ta ch m en t a lg o r ith m m u st d ic ta te
how su b se q u e n t s tru ctu res m a tch th ese pred ict ions . C onsider th e fo l low ing two ex a m p les from English: the
first is an e x a m p le o f specifier a t ta ch m en t; the secon d is an e x a m p le o f argu m en t a t ta c h m e n t . In English,
specifiers precede the head and a rg u m en ts follow the head. It is desirable for the a t ta c h m e n t a lg or ith m to
h andle b o th k inds o f a t ta c h m e n ts w ith o u t word order particu lar s t ip u la t ion s .

F irst , s u p p o se th a t the word the is on the s tack as b o th a d e term in er phrase and an H -node noun phrase.
F urtherm ore, su p p o s e th a t the word woman is p rojected into the buffer as b o th a nou n phrase and an H -node
clausa l phrase:'

(11)

Stack: [DetP [Det1 [Det th e]]]
[N P [D e t P [D e t 1 [Det th e]]] for# for t]]]

Buffer: forp for' [n w o m a n]]]
[* P e « [n p [n> [n w o m a n]]] for ' , foreu . . . e]]]

T h e a t t a c h m e n t a lg o r i th m sh o u ld allow tw o a t ta c h m e n ts at this point: the H -nod e N P on the s tack
u n it in g w ith each N P C -n o d e in the buffer. It m ight also s eem reasonable to allow the bare d e term iner
phrase to a t ta c h d irect ly as specifier o f each noun phrase. How ever, this kind o f a t ta c h m e n t is undesirab le
for tw o reasons. F irst o f all , it m akes the a t ta c h m e n t op er a t io n a d is ju nct ive o p erat ion : an a t ta c h m e n t
would involve either m a tch in g an H -n od e or m ee t in g th e sa te l l i te requirem ents o f a category . S eco n d of
all, it m ak es H -n o d e p r o jec t ion u nn ecessa ry in m o st s i tu a t io n s and therefore s o m e w h a t s t ip u la t iv e . T h a t
is, a l low in g a d is ju n c t iv e a t t a c h m e n t op e ra t io n would p erm it m a n y d er ivat ion s th a t never use an H -n od e ,
so th a t th e need for H -n od es w ould be restr icted to head-f ina l c o n s tru c t io n s w ith p re -h ead sa te l l i te s (see
S ection 2). It is therefore des irab le for all a t ta c h m e n ts to involve m a tc h in g an H -n od e .

T w o s tru c tu res sh o u ld be return ed after a t ta c h m e n ts in (1 1): a C -n o d e noun phrase and an H -n od e
clausa l phrase:

(12)
a . [n p [DetP th e] for» for w o m a n]]]

b - [a -P c u .. . [n p [D e t P th e] for' [n w o m a n]]] [* ; , [* „ e 111

N ow consid er an E n g lish arg u m en t a t ta c h m e n t . S u p p o se th a t a p rep os it ion a l p hrase rep resen t in g the
word beside is on th e s ta ck and th e noun Fm nk is rep resented in the buffer as a noun phrase and a c lausa l
phrase:

(13)
Stack: [pp [p> [p b es id e] forp e]]]
Buffer: forp for* fo/ Frank]]]

[a -P c , U p [n 1 [jv Frank]]] [* ' u . #. [x cl. m. . «]]]

(10)

7 A noun phrase is projected to an H-node clausal (or predicate) phrase since nouns may be the subjects of predicates.

-69- Intemational Parsing Workshop '89

Since the p rep os it io n beside su b ca teg o r ize s for a nou n phrase, there is an H -node N P a ttach ed as its o b jec t .
T h e a t ta c h m e n t a lg o r i th m sh ou ld allow a s ing le a t ta c h m e n t at this point: the noun phrase representing Frank
u nit ing w ith the H -n od e N P o b jec t o f beside:

(14)
[pp [p‘ [p b es id e] [s p Frank]]]

As sh ou ld be clear from th e two e x a m p les , the p rocess o f a t ta c h m e n t involves com parin g a previously
pred icted c a teg o ry w ith a current category . If the tw o categor ies are compatible , th en a t ta c h m e n t m a y be

viable.

3.3.1 N o d e C om p atib ility

Compatibility is defined in term s o f unification , w hich is defined term s o f subsum ption.8 A stru ctu re X is
said to subsum e a s tr u c tu re V' if X is m ore general th a n Y. T h a t X co n ta in s less specific in form ation them
Y. So, for e x a m p le , a s tru ctu re th a t is spec if ied as clausal (e .g . t lea d o f a p red ica te) , but is not specif ied

for a particu lar c a teg o r y s u b s u m e s a s tru ctu re h av in g the categorv erb, s ince verbs are p red icat ive and thus
c lau sa l ca tego r ies . H en ce stru ctu re (15a) su b s u m e s s tru ctu re (15b):

(15)
a - [* P CU . . . e]]]
b . [vp [v> [v w alk]]]

T h e unification o p e r a t io n is the least upper b ou n d op era to r in the su b s u m p t io n ordering on in form ation
in a s tru ctu re . S in ce s tru c tu r e (15a) su b s u m e s s tru ctu re (15b), the result o f u n ify ing stru c tu re (15a) w ith
s tru c tu re (15b) is s t r u c tu r e (15b). T w o stru ctu res are compatible if the un if ication o f th e tw o stru ctu res is
n on -n il . T h e in fo r m a t io n on a s tru c tu re th a t is relevant to a t ta c h m e n t co n s is ts o f th e n o d e ’s bar level (e.g.,
zero level, in te r m e d ia te or m a x im a l) , and the n o d e ’s lex ica l features , (e.g. ca tegory , case, etc).

3.3.2 A tta ch m en t

Roughly speaking, the attachment operation should locate an H-node in a structure on the stack along with
a compatible node in a structure in the buffer. If both of these structures have parent tree structures, then
these parent tree structures must also be compatible. In order to keep the process of attachment simple, it
is proposed that each attachment have at most one compatibility This constraint is given in (16):9

(16)
Attachment Constraint: At most one nontrivial lexical feature unification is permitted per attachment.

A nontrivial unification is one that involves two nontrivial structures; a trivial unification is one that
involves at least one trivial structure. For example, if the parent node of the buffer site is as of yet undefined,
then the parent node of the stack site trivially unifies with this parent node. Only when both parents are
defined is there a nontrivial unification.

Consider the effect of the following three requirements: first, the lexical features of the stack and buffer
attachment sites must be compatible; second, the tree structures above the buffer and stack attachment sites
must be compatible; and third, at most one lexical feature unification is permissible per derivation, (16).
Since any attachment must involve at least one nontrivial lexical feature unification, that of the stack and
buffer sites, any additional nontrivial unifications will violate the attachment constraint in (16). If both

8 See Sheiber (1986) for background on the possible uses of unification in particular grammar formalisms.

9 In fact, this constraint follows from the two assum ptions: first, a com patibility check takes a certain am ount of processing
time; and second, attachm ents that take less tim e are preferred over those that take more time. See Gibson (forthcom ing) for
further discussion.

.Tfl.___________ In ta m a tin n a l P are in n W nrU chnn 'PQ

the buffer and stack attachment sites have parent tree structures, then the lexical features of these parents
will need to be unified. Since the child structures will also need to be unified, (16) will be violated. Thus
it follows that, in an attachment, either the buffer site or the stack site has no parent tree structure . 10

Since the order of the words in the input must be maintained in a final parse, only those nodes in a buffer
structure that dominate all lexical items in that structure are permissible as attachment sites. For example,
suppose that the buffer contained a representation for the noun phrase women in college. Furthermore,
suppose that there is an H-node NP on the stack representing the word the. Although it would be suitable
for the buffer structure representing the entire noun phrase women in college to match the stack H-node, it
would not be suitable for the C-node NP representing college to match this H-node. This attachment would
result in a structure that moved the lexical input women in to the left of the lexical input dominated by
the matched H-node, producing a parse for the input women m the college. Since the word order of the
input string must be maintained, sites for buffer attachment must dominate all lexical items in the buffer
structure.

Once suitable maximal projections in each of the buffer and stack structures have been identified for
matching, it is still necessary to check that their internal structures are compatible. For example, suppose
that an identified buffer site is a C-node whose head allows exactly one specifier and a specifier is already
attached. If the stack H-node site also contains a specifier, then the attachment should be blocked. On the
other hand, if the stack H-node site does not contain a specifier, and other requirements are satisfied, then
the attachment should be allowed.

Testing for internal structure compatibility is quite simple if all tree structures are assumed to be binary
branching ones. The only possible attachment sites inside the stack H-node are those nodes that dominate
no other nodes. As long as there is some buffer node that both dominates all the buffer input and matches
the H-node attachment site for bar level, then the attachment is possible.

Attachment is formally defined in (17):

(17)
A structure W in the buffer can attach to a structure X on the stack iff all of (a), (b), (c), (d) and (a)
are true:
a. Structure W contains a maximal projection node, Y , such that Y dominates all lexical material in W \

b. Structure X contains a maximal projection H-node structure, Z;
c. The tree structure above Y is compatible with the tree structure above Z, subject to the attachment

constraint in (16);
d. The lexical features of structure Y are compatible with the lexical features of structure Z;
e. Structure Y is bar-level compatible with structure Z.

Bar-level compatibility is defined in (18):

(18)
A structure U in the buffer is bar-level compatible with a structure V on the stack iff all of (a), (b) and (c)
are true:
a. Structure U contains a node, S, such that S dominates all lexical material in U ;
b. Structure V contains an H-node structure, T, that dominates no lexical material;
c. The bar level of 5 is compatible with the bar level of T .

If attachment is viable, then W contains a structure Y that is bar-level compatible with a structure Z
that is part of X . Since Y and Z are bar-level compatible, there are structures 5 and T inside Y and Z

10 It might seem that som e possible attachm ents are being thrown away at this point. T hat is, in principle, there might be
a structure that can only be formed by attaching a buffer site to a stack site where both sites have parent tree structures.
This attachm ent would be blocked by (1 6). However, it turns out that any attachm ent that could have been formed by an
attachment involving more than one lexical feature unification can always be arrived at by a different attachm ent involving a
single lexical feature unification. For the proof, see Gibson (forthcom ing).

-71- Intemational Parsing Workshop '89

When the conditions for attachment are satisfied, structures W and X are united in the following way.
First. \ V and X are copied to nodes W ' arid X ' respectively. Inside X ' there is a node, Z ' , that is a copy of
Z. The lexical features of Z ' axe set to the unification of the lexical features of structures Y and Z . Next,
structure V in Z ' (corresponding to structure T in Z) is replaced by S ' , the copy of structure 5 inside W .
The bar level of V is set to the unification of the bar levels of structures 5 and T .

Finally, the tree structures above Y and Z are unified and this tree structure is attached above Z ' That
is, if Z has some parent tree structure and Y does not, then the copy of this structure inside X ' is attached
above Z ' . Similarly, if Y has some parent tree structure and Z does not, then the copy of this structure
inside \ V is attached above Z ' . If neither node has any parent tree structure (i.e., W - Y , X = Z), then
the unification is trivial and no attachment is made. Since V and Z cannot both have parent tree structures
(see (16) and the discussion following it), unifying the parent tree structures is a very simple process.

respectively, that satisfy the conditions o f bar-level compatibility, (1 8).

3.3.3. E xam p le A tta ch m en ts

As an illustration of how attachments take place, consider once again the noun phrase the big red book. First
the determiner the is read and is projected to a C-node determiner phrase. Since a determiner is allowable
as the specifier of a noun phrase and specifiers occur before the head in English, an H-node NP is also built.
These two structures are depicted in (19):

(19)
a. [D e t P th e]

b. [ivp [D e t P the] Lv' [/v e]]]

Since there is nothing on the stack, these structures are shifted to the top of the stack. The word big
projects to both a C-node AP and an H-node NP since an adjective is allowable as a pre-head modifier in
English. These two structures are placed in the buffer (depicted in (20)).

(2 0)
a. [a p b ig]

b. [n p [n ' [a p b ig] [n 1 [/v «]]]]

An attachment between nodes (19b) and (20b) is now attempted. Note that: a) node (20b) is a maximal
projection dominating all lexical material in its buffer structure; b) node (19b) is a maximal projection H-
node on the stack; c) the tree structures above these two nodes are compatible (both are undefined); and
d) the categories of the two nodes are compatible. It remains to check for bar-level compatibility of the two
structures. Since: a) the N'2 in structure (20b) dominates all the buffer input; b) the H-node in structure
(19b) dominates no C-nodes; and c) N'x and N2 are compatible in bar level, the structures in (19b) and
(20b) can be attached. The two structures are therefore attached by uniting N#x and N'2. The resultant
structure is given in (2 1):

(21)
[np [D e t P the] [n' [a p big] [n' [̂ v «]]]]

Structure (21), the only possible attachment between the buffer and the stack, is placed back in the
buffer, and the stack is popped. Since there is now nothing left on the stack, no further attachments are
possible at this time. Structure (21) is thus shifted to the stack. The word red now enters the buffer as a
C-node adjective phrase and an H-node noun phrase:

(22)
a. [AP red]
b. [n p [n ; [a p red] [n ' [n «]]]]

-72- Intemational Parsing Workshop '89

An attachment between nodes (2 1) and (2 2 b) is now attempted. Requirements (1 7 a)-(l7 d) are satisfied
and the requirement for bar-level compatibility is satisfied by the node labeled N3 in (2 1) together with N'
in (2 2 b). Hence the structures are united, giving (23): * 4

(23)
[.vp [D e t P the] [jv» [A P big] [v' [a p red] [,V; [,v e]]]]]

Since (23) is the only possible attachment between the buffer and the stack, it is placed in the buffer
and the stack is popped. Since the stack is now empty, structure (23) shifts to the stack. The noun b o o k

now enters the buffer as both a C-node noun phrase and an H-node clausal phrase:

(24)
a. [.vp [/v» [at book]]]

b - [x P c u . . . [n p Dv' [n b o ° k]]] k i . . , . e]]]

Two attachments are possible at this point. The NP structure in (23) unites with each NP C-node on
the stack, resulting in the structures in (25):

(25)
a - [vp [D e t P the] [v' [a p big] [v' [a p red] [^/ [^ > book]] [pp e] [C p e]]]]]
b - [xp«i..„ [n p the big red book] e]]]

Note that only one attachment per structure takes place in the final parse step. Crucially, no more
attachments per structure take place when parsing the head of the noun phrase than when parsing the pre­
head constituents in the noun phrase . 11 Thus, in contrast with the situation when nodes are only projected
when their heads are encountered, the node projection and attachment algorithms described here predict
that there should not be any slowdown when parsing the head of a head-final construction.

The Dutch data described in Section 2.1 are handled in a similar manner.

4 Conclusions

This paper has described a) a principle-based algorithm for the projection of phrasal nodes before their
heads are parsed, and b) an algorithm for attaching the predicted nodes. It is worthwhile to compare the
new projection algorithm with algorithms that do not project H-nodes. The projection algorithm provided
here involves more work and hence, on the surface, may seem somewhat stipulative compared to one that
does not project H-nodes. However, it turns out that although projecting -to H-nodes is more complicated
than not doing so, attachment when H-nodes are not present is more complicated than attachment when
they are present. That is, if a projection algorithm causes the projection of H-nodes, it will have a more
complicated attachment algorithm. For example, if H-nodes are projected when parsing the noun phrase
t h e w o m a n , the determiner the is immediately projected to an H-node noun phrase, which leads to a simple
attachment. If H-nodes are not projected, then projection is easier, but attachment is that much more
complicated. When attaching, it will be necessary to check if a determiner is an allowable specifier of a noun
phrase: the same operation that is performed when projecting to H-nodes. Thus although the complexity of
particular components changes , the complexity of the entire parsing algorithm does not change, whether or
not H-nodes are projected. Since the proposed projection and attachment algorithms make better empirical
predictions than ones that do not predict structure, the new algorithms are preferred.

Note that it is the number of attachm ents per structure that is crucial here, and not the number of total attachm ents,
since attachm ents made upon two independent structures may be performed in parallel, whereas attachm ents made on the
same structure m ust be performed serially. For exam ple, since structures (24a) wid (24b) are independent, attachm ents may

e made to each of these in parallel. But if an attachm ent, B relies on the result of another attachm ent A, then attachm ent A
must be performed first.

-73- International Parsing Workshop '89

5 References

Abney (1986), “Licensing and Parsing'’, Proceedings of the Seventeenth North East Linguistic Society Con­
ference, MIT, Cambridge, MA.

Chomsky, N. (1981), Lectures on Government and Binding, Foris, Dordrecht, The Netherlands.

Chomsky, N. (1986a), Knowledge of Language: Its Nature, Origin and Use, Praeger Publishers, New York,
NY.

Chomsky, N. (1986b), Barriers, Linguistic Inquiry Monograph 13, MIT Press, Cambridge, MA.

Clark, R. & Gibson, E. (1988), “A Parallel Model for Adult Sentence Processing” , Proceedings of the Tenth
Cognitive Science Conference, McGill University, Montreal, Quebec.

Frazier, L. (1987) “Syntactic Processing Evidence from Dutch” , Natural Language and Linguistic Theory
5, pp. 519-559.

Gibson, E. (1987), Garden-Path Effects m a Parser with Parallel Architecture, Eastern States Conference
on Linguistics, Columbus Ohio.

Gibson, E. (forthcoming), Parsing with Principles: A Computational Theory of Human Sentence Process­
ing, Ms., Carnegie Mellon University, Pittsburgh, PA.

Gibson, E. k Clark, R. (1987), “Positing Gaps in a Parallel Parser” , Proceedings of the Eighteenth North
East Linguistic Society Conference, University of Toronto, Toronto, Ontario.

Kashket, M. (1987), G o v e r n m e n t -Binding Parser for Warlpin, a Free Word Order Language, MIT Master’s
Thesis, Cambridge, MA.

Kayne, R. (1983) Connectedness and Binary Branching, Foris, Dordrecht, The Netherlands.

Marcus, M. (1980), A Theory of Syntactic Recognition for Natural Language, MIT Press, Cambridge, MA.

Nyberg, E. (1987), “Parsing and and the Acquisition of Word Order” , Proceedings of the Fourth Eastern
States Conference on Linguistics, The Ohio State University, Columbus, OH.

Pollard, C. k Sag, I. (1987) An Information-based Syntax and Semantics, CSLI Lecture Notes Number 13,
Menlo Park, CA.

Pritchett, B. (1987), Garden Path Phenomena and the Grammatical Basis of Language Processing, Harvard
University Ph.D. dissertation, Cambridge, MA.

Sheiber, S. (1986) An Introduction to Unification-based Approaches to Grammar, CSLI Lecture Notes
Number 4, Menlo Park, CA.

S to well, T. (1981), Origins o f Phrase Structure, MIT Ph.D. dissertation.

VVehrli, E. (1988), “Parsing with a GB Grammar” , in U. Reyle and C. Rohrer (eds.), Natural Language
Parsing and Linguistic Theones, 177-201, Reidel, Dordrecht, the Netherlands.

-74- Intemational Parsing Workshop '89

The Computational Implementation of
Principle-Based Parsers1

Sandiway Fong
Robert C. Berwick

Artificial Intelligence Laboratory,
Massachusetts Institute of Technology

Abstract
T h is paper addresses the issue of how to organize linguistic principles

for efficient processing. B ased on the general ch aracterization of princi­
ples in term s o f purely com putation al properties, the effects of principle-
ordering on parser perform ance are investigated . A novel parser that ex­
ploits the possible variation in principle-ordering to dynam ically re-order
principles is described. H euristics for m inim izing the am ount of unneces­
sary work perform ed during the parsing process are also d iscussed.

1 In troduction
Recently, there has been some interest in the implementation of grammatical
theories based on the principles and parameters approach (Correa [3], Dorr [4],
Johnson [5], Kolb & Thiersch [6], and Stabler [10]). In this framework, a fixed set
of universal principles parameterized according to particular languages interact
deductively to account for diverse linguistic phenomena. Much of the work to
date has focused on the not inconsiderable task of formalizing such theories. The
primary goal of this paper is to explore the computationally-relevant properties
of this framework. In particular, we address the hitherto largely unexplored issue
of how to organize linguistic principles for efficient processing. More specifically,
this paper examines if, and how, a parser can re-order principles to avoid doing
unnecessary work. Many important questions exist: for example, (1) W hat
effect, if any, does principle-ordering have on the amount of work needed to
parse a given sentence? (2) If the effect of principle-ordering is significant, then
are some orderings much better than others? (3) If so, is it possible to predict
(and explain) which ones these are?

By characterizing principles in terms of the purely computational notions of
“filters” and “generators” , we show how how principle-ordering can be utilized
to minimize the amount of work performed in the course of parsing. Basically,
some principles, like Move-a (a principle relating ‘gaps’ and ‘fillers’) and Free
Indexing (a principle relating referential items) are “generators” in the sense
that they build more hypothesized output structures than their inputs. Other
principles, like the 0-Criterion which places restrictions on the assignment of
thematic relations, the Case Filter which requires certain noun phrases to be

! The work of the first author is supported by an IBM Graduate Fellowship. R .C. Berwick
is supported by NSF Grant DCR-85552543 under a Presidential Young Investigator's Award.

-75- Intemational Parsing Workshop '89

marked with abstract Case, and Binding Theory constraints, act as filters and
weed-out ill-formed structures.

A novel, logic-based parser, the Principle-Ordering Parser (p o - p a r s e r),
was built to investigate and demonstrate the effects of principle-ordering. The
p o - p a r s e r was deliberately constructed in a highly-modular fashion to allow
for maximum flexibility in exploring alternative orderings of principles. For in­
stance, each principle is represented separately as an atomic parser operation.
A structure is deemed to be well-formed only if it passes all parser operations.
The scheduling of parser operations is controlled by a dynamic ordering mech­
anism that attem pts to eliminate unnecessary work by eliminating ill-formed
structures as quickly as possible. (For comparison purposes, the p o - p a r s e r
also allows the user to turn off the dynamic ordering mechanism and to parse
with a user-specified (fixed) sequence of operations.)

Although we are primarily interested in exploiting the (abstract) computa­
tional properties of principles to build more efficient parsers, the PO-PARSER is
also designed to be capable of handling a reasonably wide variety of linguistic
phenomena. The system faithfully implements most of the principles contained
in Lasnik k. Uriagereka’s [7] textbook. That is, the parser makes the same gram-
maticality judgements and reports the same violations for ill-formed structures
as the reference text. Some additional theory is also drawn from Chomsky [1]
and [2]. Parser operations implement principles from Theta Theory, Case The­
ory, Binding Theory, Subjacency, the Empty Category Principle, movement at
the level of Logical Form as well in overt syntax, and some Control Theory. This
enables it to handle diverse phenomena including parasitic gaps constructions,
strong crossover violations, passive, raising, and super-raising examples.

2 T h e Princip le Ordering P rob lem
This section addresses the issue of how to organize linguistic principles in the
PO -PAR SER framework for efficient processing. iMore precisely, we discuss the
problem of how to order the application of principles to minimize the amount
o f ‘work’ that the parser has to perform. We will explain why certain orderings
may be better in this sense than others. We will also describe heuristics that
the PO -PA R SER employs in order to optimize the the ordering of its operations.

But first, is there a significant performance difference between various order­
ings? Alternatively, how important an issue is the principle ordering problem
in parsing? An informal experiment was conducted using the p o - p a r s e r de­
scribed in the previous section to provide some indication on the magnitude of
the problem. Although we were unable to examine all the possible orderings, it
turns out that order-of-magnitude variations in parsing times could be achieved
merely by picking a few sample orderings.2

2T he PO-PARSER has about twelve to sixteen parser operations. G iven a set of one dozen
operations, there are about 500 m illion different ways to order these operations. Fortunately,
only about h*Jf a m illion of these are actually valid, due to logical dependencies betw een the
various operations. However, this is still far too m any to test exhaustively. Instead, only a few
well-chosen orderings were tested on a number of sentences from the reference. T he procedure

-76- Intemational Parsing Workshop '89

2 . 1 E x p la in in g th e V a r ia tio n in P r in c ip le O rd er in g

The variation in parsing times for various principle orderings that we observed
can be explained by assuming that overgeneration is the main problem, or bot­
tleneck, for parsers such as the PO-PARSER. That is, in the course of parsing
a single sentence, a parser will hypothesize many different structures. Most of
these structures, the ill-formed ones in particular, will be accounted for by one
or more linguistic filters. A sentence will be deemed acceptable if there exists
one or more structures that satisfy every applicable filter. Note that even when
parsing grammatical sentences, overgeneration will produce ill-formed structures
that need to be ruled out. Given that our goal is to minimize the amount of
work performed during the parsing process, we would expect a parse using an
ordering that requires the parser to perform extra work compared with another
ordering to be slower.

Overgeneration implies that we should order the linguistic filters to elimi­
nate ill-formed structures as quickly as possible. For these structures, applying
any parser operation other them one that rules it out may be considered as
doing extra, or unnecessary, work (modulo any logical dependencies between
principles).3 However, in the case of a well-formed structure, principle ordering
cannot improve parser performance. By definition, a well-formed structure is
one that passes all relevant parser operations: Unlike the case of an ill-formed
structure, applying one operation cannot possibly preclude having to apply an­
other.

2 .2 O p tim a l O rd er in g s

Since some orderings perform better than others, a natural question to ask is:
Does there exist a ‘globally’ optimal ordering? The existence of such an ordering
would have important implications for the design of the control structure of any
principle-based parser. The PO-PARSER has a novel ‘dynamic’ control structure
in the sense that it tries to determine an ordering-efficient strategy for every
structure generated. If such a globally optimal ordering could be found, then
we can do away with the run-time overhead and parser machinery associated
with calculating individual orderings. That is, we can build an ordering-efficient
parser simply by ‘hardwiring’ the optimal ordering into its control structure.
Unfortunately, no such ordering can exist.

The impossibility of the globally optimal ordering follows directly from the
“eliminate unnecessary work” ethic. Computationally speaking, an optimal
ordering is one that rules out ill-formed structures at the earliest possible op­
portunity. A globally optimal ordering would be one that always ruled out every

involved choosing a default sequence of operation* and ‘scram bling’ the sequence by m oving
operations as far as possible from their original positions (m odulo any logical dependencies
betw een operations).

3In the PO-PARSER for exam ple, the Case Filter operation which require* that all overt
noun phrases have abstract Case assigned, is dependent on both the inherent and structural
Case assignm ent operations. T hat is, in any valid ordering the filter m ust be preceded by
both operations.

-77- Intemational Parsing Workshop '89

possible ill-formed structure without doing any unnecessary work. Consider the
following three structures (taken from Lasnik's book):

(1) a. *Johni is crucial [c p [i p <1 to see this]]
b. *[,vpJohni’s mother][vp likes himselfi]
c. *Johni seems that hei likes t\

Example (1) violates the Empty Category Principle (ECP). Hence the op­
timal ordering must invoke the ECP operation before any other operation that
it is not dependent on. On the other hand, example (lb) violates a Binding
Theory principle, ‘Condition A’. Hence, the optimal ordering must also invoke
Condition A as early as possible. In particular, given that the two operations
are independent, the. optimal ordering must order Condition A before the ECP
and vice-versa. Similarly, example (lc) demands that the kCase Condition on
Traces’ operation must precede the other two operations. Hence a globally
optimal ordering is impossible.

2 .3 H e u r is t ic s for P r in c ip le O rd er in g

The principle-ordering problem can be viewed as a limited instance of the well-
known conjunct ordering problem (Smith & Genesereth [9]). Given a set of
conjuncts, we are interested in finding all solutions that satisfy all the conjuncts
simultaneously. The parsing problem is then to find well-formed structures
(i.e. solutions) that satisfy all the parser operations (i.e. conjuncts) simultane­
ously. Moreover, we are particularly interested in minimizing the cost of finding
these structures by re-ordering the set of parser operations.

This section outlines some of the heuristics used by the PO-PARSER to deter­
mine the minimum co6t ordering for a given structure. The p o - p a r s e r contains
a dynamic ordering mechanism that attempts to compute a minimum cost or­
dering for every phrase -ucture generated during the parsing process.4 The
mechanism can be subdi led into two distinct phases. First, we will describe
how the dynamic ordering mechanism decides which principle is the most likely
candidate for eliminating a given structure. Then, we will explain how it makes
use of this information to re-order parser operation sequences to minimize the
total work performed by the parser.

2.3.1 Predicting Failing Filters
Given any structure, the dynamic ordering mechanism attempts to satisfy the
“eliminate unnececessary work” ethic by predicting a “failing” filter for that

4 In their paper, Sm ith Sc G enesereth drew a distinction between “static” and “dynamic"
ordering strategies. In static strategies, the conjuncts are first ordered, and then solved in
the order presented. By contrast, in dynam ic strategies the chosen ordering may be revised
betw een solving individual conjuncts. Currently, the PO-PARSER em ploys a dynam ic strategy.
T he ordering m echanism com putes an ordering baaed on certain features of each structure
to be processed. T he ordering m ay be revised after certain operations (e.g. m ovem ent) that
m odify the structure in question.

*78- International Parsing Workshop '89

structure. More precisely, it will try to predict the principle that a given struc­
ture violates on the basis of the simple structure cues. Since the ordering mech­
anism cannot know whether a structure is well-formed or not, it assumes that
all structures are ill-formed and attempts to predict a failing filter for every
structure. In order to minimize the amount of work involved, the types of
cues that the dynamic ordering mechanism can test for are deliberately limited.
Only inexpensive tests such as whether a category contains certain features
(e.g. ianaphoric, iinfinitival, or whether it is a trace or a non-argument) may
be used. Any cues that may require significant computation, such as searching
for an antecedent, are considered to be too expensive. Each structure cue is then
associated with a list of possible failing filters. (Some examples of the mapping
between cues and filters are shown below.) The system then chooses one of the
possible failing filters based on this mapping.5

(2)

S tru c tu re cue P ossib le fsuling filters
trace Em pty C ategory Principle, and

C ase Condition on traces
intransitive C ase Filter
passive T h eta Criterion

C ase F ilter
non-argum ent T h eta Criterion
-(-anaphoric Binding Theory Principle A
+ pronom inal Binding Theory Principle B

The correspondence between each cue and the set of candidate filters may
be systematically derived from the definitions of the relevant principles. For
example, Principle A of the Binding Theory deals with the conditions under
which antecedents for anaphoric items, such as “each other” and “himself’,
must appear. Hence, Principle A can only be a candidate failing filter for struc­
tures that contain an item with the -f-anaphoric feature. Other correspondences
may be somewhat less direct: for example, the Case Filter merely states that
all overt noun phrase must have abstract Case. Now, in the PO-PARSER the
conditions under which a noun phrase may receive abstract Case are defined by
two separate operations, namely, Inherent Case Assignment and Structural Case
Assignment. It turns out that an instance where Structural Case Assignment
will not assign Case is when a verb that normally assigns Case has passive mor­
phology. Hence, the presence of a passive verb in a given structure may cause
an overt noun phrase to fail to receive Case during Structural Case Assignment
— which, in turn may cause the Case Filter to fail.6

5 O bviously, there are many ways to im plem ent such a selection procedure. Currently, the
PO-PARSER uses a voting schem e based on the frequency of cues. The (unproven) underlying
assum ption ia that the probability of a filter being a failing filter increases w ith the number
of occurrences of its associated cues in a given structure. For exam ple, the more traces there
are in a structure, the more Likely it is that one of them will violate some filter applicable to
traces, such as the Em pty Category Principle (E C P).

8 It is possible to autom ate the process of finding structure cues sim ply by inspecting the
closure of the definitions of each filter and all dependent operations. One m ethod of deriving

-79- Intemational Parsing Workshop '89

The failing filter mechanism can been seen as an approximation to the
Cheapest-first heuristic in conjunct ordering problems. It turns out that if the
cheapest conjunct at any given point will reduce the search space rather than
expand it, then it can be shown that the optimal ordering must contain that
conjunct at that point. Obviously, a failing filter is a “cheapest” operation in
the sense that it immediately eliminates one structure from the set of possible
structures under consideration.

Although the dynamic ordering mechanism performs well in many of the test
cases drawn from the reference text, it is by no means foolproof. There are also
many cases where the prediction mechanism triggers an unprofitable re-ordering
of the default order of operations. (We will present one example of this in the
next section.) A more sophisticated prediction scheme, perhaps one based on
more complex cues, could increase the accuracy of the ordering mechanism.
However, we will argue that it is not cost-effective to do so. The basic reason is
that, in general, there is no simple way to determine whether a given structure
will violate a certain principle.7 That is, as far as one can tell, it is difficult to
produce a cheap (relative to the cost of the actual operation itself), but effective
approximation to a filter operation. For example, in Binding Theory, it is diffi­
cult to determine if an anaphor and its antecedent satisfies the complex locality
restrictions imposed by Principle A without actually doing some searching for
a binder. Simplifying the locality restrictions is one way of reducing the co6t
of approximation, but the very absence of search is the main reason why the
overhead of the present ordering mechanism is relatively small.8 Hence, having
more sophisticated cues may provide better approximations, but the tradeoff is
that the prediction methods may be almost as expensive as performing the real
operations themselves.

2.3 .2 Logical D ep en d en c ies and R e-ordering

Given a candidate failing filter, the dynamic ordering mechanism has to schedule
the sequence of parser operations so that the failing filter is performed as early

cue* i> to collect the negation of all condition* involving category features. For exam ple, if an
operation contain* the condition “n o t (I t « « ha*-f«atu r* i n t r a n s i t i v *) ” , then we can take
the presence of an intransitive item a* a possible reason for failure of that operation. However,
this approach ha* the potentia l problem of generating too m any cues. A lthough, it m ay be
relatively inexpen*ive to test each individual cue, a large number of cues will significantly
increase the overhead o f the ordering m echanism . Furthermore, it turns out that not all cues
are equally useful in predicting failure filter*. One solution m ay be to use “weight*" to rank
the predictive u tility of each cue w ith respect to each filter. T hen an adaptive algorithm could
be used to “learn" the weighting value*, in a manner rem iniscent of Sam uels [8]. The failure
filter prediction process could then autom atically elim inate testing for relatively unim portant
cue*. Thi* approach is currently being investigated.

7If *uch a schem e can be found, then it can effectively replace the definition of the principle
itself.

8 W e ignore the additional co*t of re-ordering the sequence of operation* once a failing filter
ha* been predicted. T he actual re-ordering can be made relatively inexpensive using various
trick*. For exam ple, it ia po*«ible to “cache” or com pute (off-line) com m on ca*es of re-ordering
a default sequence w ith respect to various failing filters, thu* reducing the cost of re-ordering
to that o f a sim ple look-up.

-80- International Parsing Workshop '89

as possible. Simply moving the failing filter to the front of the operations queue
is not a workable approach for two reasons.

Firstly, simply fronting the failing filter may violate logical dependencies be­
tween various parser operations. For example, suppose the Case Filter was cho­
sen to be the failing filter. To create the conditions under which the Case Filter
can apply, both Case assignment operations, namely, Inherent Case Assignment
and Structural Case Assignment, must be applied first. Hence, fronting the Case
Filter will also be accompanied by the subsequent fronting of both assignment
operations unless, of course, they have already been applied to the structure
in question.

Secondly, the failing filter approach does not take into account the behaviour
of generator operations. A generator may be defined as any parser operation
that always produces one output, and possibly more than one output, for each
input. For example, the operations corresponding to X rules, Move-a, Free
Indexing and LF Movement are the generators in the p o - p a r s e r . (Similarly, the
operations that we have previously referred to as “filters” may be characterized
as parser operations that, when given N structures as input, pass N and possibly
fewer than N structures.) Due to logical dependencies, it may be necessary in
some situations to invoke a generator operation before a failure filter can be
applied. For example, the filter Principle A of the Binding Theory is logically
dependent on the generator Free Indexing to generate the possible antecedents
for the anaphors in a structure. Consider the possible binders for the anaphor
"himself” in “John thought that Bill saw himself” as shown below:

(3) a. *John, thought that Bill,- saw himself,
b. John, thought that Billy saw himself;
c.*John, thought that Billy saw himself*

Only in example (3b), is the antecedent close enough to satisfy the locality
restrictions imposed by Principle A. Note that Principle A had to be applied
a total of three times in the above example in order to show that there is only
one possible antecedent for “himself”. This situation arises because of the gen­
eral tendency of generators to overgenerate. But this characteristic behaviour
of generators can greatly magnify the extra work that the parser does when
the dynamic ordering mechanism picks the wrong failing filter. Consider the
ill-formed structure u*John seems that he likes t” (a violation of the princi­
ple that traces of noun phrase cannot receive Case.) If however, Principle B
of the Binding Theory is predicted to be the failure filter (on the basis of the
structure cue “he”), then Principle B will be applied repeatedly to the index­
ings generated by the Free Indexing operation. On the other hand, if the Case
Condition on Traces operation was correctly predicted to be the failing filter,
then Free Indexing need not be applied at ail. The dynamic ordering mech­
anism of the PO-PAR SER is designed to be sensitive to the potential problems
caused by selecting a candidate failing filter that is logically dependent on many
generators.9

9Obviously, there are m any different ways to accom plish this. One m ethod is to com pute

-81- Intemational Parsing Workshop '89

2 .4 L in g u is t ic F ilte r s and D e te r m in ism
In this section we describe how the characterization of parser operations in
terms of filters and generators may be exploited further to improve the perfor­
mance of the p o - p a r s e r for some operations. More precisely, we make use of
certain computational properties of linguistic filters to improve the backtrack­
ing behaviour of the p o - p a r s e r . The behaviour of this optimization will turn
out to complement that of the ordering selection procedure quite nicely. That
is, the optimization is most effective in exactly those cases where the selection
procedure is least effective.

We hypothesize that linguistic filters, such as the Case Filter, Binding Con­
ditions, ECP, and so on, may be characterized as follows:

(4) H ypothesis: Linguistic filters are side-effect free conditions on
configurations

In terms of parser operations, this means that filters should never cause
structure to be built or attempt to fill in feature slots.10 Moreover, computa­
tionally speaking, the parser operations corresponding to linguistic filters should
be deterministic. That is, any given structure should either fail a filter or just
pass. A filter operation should never need to-succeed more than once, simply
because it is side-effect free.11 By contrast, operations that we have character­
ized as generators, such as Move-a and Free Indexing, are not deterministic in
this sense. That is, given a structure as input, they may produce one or more
structures as output.

the “distance” of potential failure filters from the current state of the parser in terms of the
number of generators yet to be applied. Then the failing filter will be chosen on the basis of
som e com bination of structure cues and generator distance. Currently, the PO-PARSER uses
a slightly different and cheaper schem e. The failure filter is chosen solely on the basis of
structure cues. However, the fronting m echanism is restricted so that the chosen filter can
only m ove a lim ited number of positions ahead .A' its original position. The original operation
sequence is designed such that the distance of the filter from the front of the sequence is
roughly proportional to the number of (outstanding) operations that the filter is dependent
on.

10 So far, we have not encountered any linguistic filters that require either structure building
or feature assignm ent. O perations such as 5-role and Case assignm ent are not considered
filters in the sense of the definition given in the previous section. In the PO-PARSER, these
operations will never fail. However, definitions that involve some elem ent of ‘m odality ’ are
potentially problem atic. For exam ple, C hom sky’s definition of an access ible S U B J E C T , a
definition relevant to the principles of Binding Theory, contains the following phrase
a s s ig n me n t t o or o f t h e i n d e x o f (3 w ou ld not v io la t e the (i -w i t hi n- i) f i l ter • (7 , . . .S, ...] . A
transparent im plem entation of such a definition would seem to require some m anipulation of
indices. However, Lasnik (p .58) points out that there exists an empirically indistinguishable
version o f acces s ib l e S U B J E C T w ithout the elem ent of m odality present in C hom sky’s version.

11 It turns out that there are situations where a filter operation (although side-effect free)
could succeed more than once. For exam ple, the linguistic filter known as the “Em pty Cate­
gory Principle" (E C P) im plies that all traces must be “properly governed” . A trace may satisfy
proper governm ent by being either “lexically governed” or “antecedent governed” . Now con­
sider the structxire [c p VVhati d id y o u [v p re ad ti]]. T he trace ti is both lexically governed
(by the verb read) and antecedent governed (by its antecedent what). In the PO-PARSER the
ECP operation can succeed twice for cases such as t\ above.

-82- Intemational Parsing Workshop '89

Given the above hypothesis, we can cut down on the amount of work done by
the p o - p a r s e r by modifying its behaviour for filter operations. Currently, the
parser employs a backtracking model of computation. If a particular parser op­
eration fails, then the default behaviour is to attempt to re-satisfy the operation
that was called immediately before the failing operation. In this situation, the
p o - p a r s e r will only attempt to re-satisfy the preceding operation if it happens
to be a generator. When the preceding operation is a filter, then the parser will
skip the filter and, instead, attempt to resatisfy the next most recent operation
and so on.12 For example, consider the following calling sequence:

Suppose that a structure generated by generator G2 passes filters and F2,
but fails on filter F3 . None of the three filters could have been the cause of the
failure by the side-effect free hypothesis. Hence, we can skip trying to resatisfy
any of them and backtrack straight to G2.

Note that this optimization is just a limited form of dependency-directed
backtracking. Failures are traced directly to the last generator invoked, thereby
skipping over any intervening filters as possible causes of failure. However, the
backtracking behaviour is limited in the sense that the most recent generator
may not be the cause of a failure. Consider the above example again. The
failure of F3 need not have been caused by G2. Instead, it could have been
caused by structure-building in another generator further back in the calling
sequence, say Gx. But the parser will still try out all the other possibilities in
G2 first.

Consider a situation in which the principle selection procedure performs
poorly. That is, for a particular ill-formed structure, the selection procedure
will fail to immediately identify a filter that will rule out the structure. The
advantages of the modified mechanism over the default backtrack scheme will
be more pronounced in such situations — especially if the parser has to try
several filters before finding a “failing” filter. By contrast, the behaviour of
the modified mechanism will resemble that of the strict chronological scheme
in situations where the selection procedure performs relatively well (i.e. when a
true failing filter is fronted). In such cases, the advantages, if significant, will be
small. (In an informal comparison between the two schemes using about eighty
sentences from the reference text, only about half the test cases exhibited a
noticeable decrease in parsing time.)

13T his behaviour can be easily sim ulated using the ‘c u t’ predicate in Prolog. We can route
all calls to filter operations through a predicate that calls the filter and then cuts off all internal
choice points. (For independent reasons, the PO-PARSER does not actually use this approach.)

-83- Intemational Parsing Workshop '89

3 Conclusions: The Utility of Principle-Ordering

From our informal experiments with the PO-PARSER, we have found that dy­
namic principle-ordering can provide a significant improvement over any fixed
ordering. We have found that speed-ups varying from three- or four-fold to
order-of-magnitude improvements are possible in many cases.13

The control structure of the PO-PARSER forces linguistic principles to be ap­
plied one at a time. Many other machine architectures are certainly possible.
For example, we could take advantage of the independence of many principles
and apply principles in parallel whenever possible. However, any improvement in
parsing performance would come at the expense of violating the minimum (un­
necessary) work ethic. Lazy evaluation of principles is yet another alternative.
However, principle-ordering would still be an important consideration for effi­
cient processing in this case. Finally, we should also consider principle-ordering
from the viewpoint of scalability. The experience from building prototypes of
the p o - p a r s e r suggests that as the level of sophistication of the parser increases
(both in terms of the number and complexity of individual principles), the effect
of principle-ordering also becomes more pronounced.

R eferences
[1] Chom sky, N .A ., L ec tu res on G o vern m en t and B ind ing: T h e Pisa. Lectures. 1981.

Foris P u blication s.

[2] Chom sky, N .A ., K now ledge o f L an gu age : I ts N a tu re , O rigin, and Use." 1986.
P rager.

[3] C orrea, N ., “Sy n tactic A nalysis of English with respect to G overnm ent-Binding
G ram m a r,” P h .D D issertation , 1988. Syracu se University.

[4] Dorr, B .J . , “ U N IT R A N : A P rin ciple-B ase A pproach to M achine T ran sla tio n ,”
M .I.T . A .I. Technical R eport No. 1000 . 1987.

[5] John son , M ., “ K now ledge aa L an gu age ,” m s. M .I.T . Brain and C ognitive Sciences.

[6] K olb , H .P ., k C. T h iersch , “ Levels and Em pty C ategories in a Principles and
P aram eters A pproach to P arsin g ,” m s. 1988. T ilb u rg University.

[7] Laanik, H. k J . U riagereka, A C ourse in G B S y n ta x : L ec tu res on B in d in g and
E m p ty C ategories. 1988. M .I.T . P ress.

[8] Sam u els, A .L ., “Som e S tu d ie s in M achine Learning Using the G am e of C heckers.
II — R ecent P rogress,” IBM Journal. Novem ber 1967.

[9] Smith, D.E., k M.R. G enesereth , “ O rdering C on jun ctive Q ueries,” A rtific ia l In­
telligence 26 (1985) 171-215.

[10] S tab le r , E .P ., J r . “T h e Logical A pproach to S y n tax : Foundations, Specification s
and Im plem en tation s of T h eories of Governm ent and B in ding.” m s. 1989. Uni­
versity o f W estern O ntario .

13O bviously, the speed-up obtained will depend on the number of principles present in the
system and the degree of ‘fine-tuning’ of the failure filter selection criteria.

-84- Intemational Parsing Workshop '89

A Probabilistic Parsing Method for Sentence Disambiguation
T. Fujisaki, F. Jelinek, J. C o ^ e , E. Black, T. Nishincr

IBM Thomas J. Watson Research Center
P.O. Box 704, Yorktown Heights, N Y. 10598

■^Tokvo Denki University

1. Introduction
Constructing a grammar which can parse sentences selected from a natural language corpus is a
difficult task. One of the most serious problems is the unmanageably large number of ambiguities.
Pure syntactic analysis based only on syntactic knowledge will sometimes result in hundreds of
ambiguous parses. Martin [15] reported that his parser generated 455 ambiguous parses for the
sentence:

List the sales o f products produced in 1973 with the products produced in 1972.

Through the long history of work in natural language understanding, semantic and pragmatic con­
straints have been known to be indispensable for parsing. These should be represented in some
formal way and be referred to during or after the syntactic analysis process. AI researchers have
been exploring the use of semantic networks, frame theory, etc. to describe both factual and intui­
tive knowledge for the purpose of filtering out meaningless parses and to aid in choosing the most
likely interpretation. The SHRDLU system [22] by Winograd successfully demonstrated the pos­
sibility of sophisticated language understanding and problem solving in this direction. However,
to represent semantic and pragmatic constraints, which are usually domain sensitive, in a well-
formed way is a very difficult and expensive task. To the best of our knowledge, no one has ever
succeeded in doing so except in relatively small restricted domains.

Furthermore, there remains a basic question as to whether it is possible to formally encode all of
the syntactic, semantic and pragmatic information needed for disambiguation in a definite and
deterministic way. For example, the sentence

Print for me the sales o f stair carpets.

seems to be unambiguous; however, in the ROBOT system pure syntactic analysis of this sentence
resulted in two ambiguous parses, because the “M E” can be interpreted as an abbreviation of the
state of Maine[9]. Thus, this simple example reveals the necessity of pragmatic constraints for the
disambiguation task. Readers may claim that the system which would generate the second inter­
pretation is too lax and that a human would never be perplexed by the case. However, a reader s
view would change if he were told that the the sentence below had been issued previous to the
sentence above.

Print fo r ca the sales o f stair carpets.

Knowing that the speaker inquired about the business in California in the previous queries, it is
quite natural to interpret “m e” as the state of Maine in this context. A problem of this sort usually
calls for the introduction of an appropriate discourse model to guide the parsing. Even with a so­
phisticated discourse model beyond anything available today, it would be impossible to take ac­
count all previous sentences: The critical previous sentence may always be just beyond the capacity
of the discourse stack.

Thus it is quite reasonable to think of a parser which disambiguates sentences by referring to sta­
tistics which encode various characteristics of the past discourse, the task domain, and the speaker.
For instance, the probability that the speaker is referring to states and the probability that the

-85- IntemationaJ Parsing Workshop '89

speaker is abbreviating a name, are useful in disambiguating the example. If the probabilities of the
above are both statistically low, one could simply neglect the interpretation of the state of “Maine"
for “me”. Faced with such a situation, we propose, in this paper, to employ probability as a device
to quantify language ambiguities. In other words, we will propose a hybrid model for natural lan­
guage processing which comprises linguistic expertise, i.e. grammar knowledge, and its probabilistic
augmentation for approximating natural language. With this framework, semantic and pragmatic
constraints are expected to be captured implicitly in the probabilistic augmentation.

Section 2 introduces the basic idea of the probabilistic parsing modeling method and Section 3
presents the experimental results when this modeling method is applied to parsing problems of
English sentences and of Japanese noun compound words. Detailed description of the method are
given elsewhere.

2. Probabilistic Context-free Grammar

2.1 Extension to Context-free Grammar
A probabilistic context-free grammar is an augmentation of a context-free grammar [5]. Each of
the grammar and lexical rules (r) , having a form of a -* /?, is associated with a conditional proba­
bility Pr\r) = Pr{f} | a) . This conditional probability denotes the probability that a non-terminal
symbol a , having appeared in the sentential form during the sentence derivation process, will be
replaced with a sequence of terminal and non-terminal symbols /? . Obviously I a) = I holds.

p
Processes of sentence generation from a sentence symbol 5 by a probabilistic context-free grammar
will be carried out in an identical manner to the usual non-probabilistic context-free grammar. But
the advantage of the probabilistic grammar is that the probability can be computed for each of the
derivation trees, which enables us to quantify sentence ambiguities as described below.
The probability of a derivation tree t can be computed as a product of conditional probabilities of
the rules which are employed for deriving that tree t.

Pr(t) = n Prir)
r * m

Here r denotes a rule of the form <x -* , and D(t) denotes an ordered set of the rules which are
employed for deriving the tree t. The next figure explains how the probability of a derivation tree
t can be computed as a product of rule probabilities.

Pr{t) = Pr{NP. VP.ENDM \ S) x
Pr{DET.N | NP) x
^ t h e | det) x

Pr{boy | N) x
Pr{V.NP | VP)x
/V l̂ikes | V) x

Pr{DET.N | NP) x
/V(that | det) x

Pr(gi ri | N) x
Pr{. | ENDM)

Fig. 1 Probability of a Derivation Tree

An ambiguous grammar allows many different derivation trees to coexist for sentences. From the
viewpoint of sentence parsing, we say that a sentence is ambiguous when more than two parsed
trees, say f„ t2, ... are derived from the parsing process. Having a device to compute probability for
a derivation tree as shown above, we can handle sentence ambiguity in a quantitative way. Namely,
when a sentence s is parsed ambiguously into derivation trees t2, ... and a probability Pr[tj) is

-86- ' International Parsing Workshop ’89

computed for each derivation tree the sum of the probabilities V can be regarded as the
probability that a particular sentence s will happen to be generated among other infinite possibil­
ities. More interesting is the ratio denoting relative probabilities among ambiguous derivation trees:

Pritj)

k

We can assume that it should denote the “likelihood” of each derivation tree. For example, con­
sider the following English sentence “Reply envelopes are enclosed for your convenience.” The sen­
tence is ambiguous because it can be parsed in two different ways; the first being in the imperative
mode, and the second in the declarative.

r,: “ Reply (that) envelopes are enclosed for your convenience.”
[Pr{tx) + Pr{t2))

tv. “ Reply envelopes (A kind o f envelopes) are enclosed for your convenience.” = » ------- P ^ h)-------
(Pr(t i) + P r it j)

These correspond to two different parsed trees, and t2. By computing Pr\t,) + Pr{t2), we can es­
timate the probability that the specific sentence “Reply envelopes are ... ” is generated from among
an infinite number of possible sentences. On the other hand, + PriQ) and
F>ri t2)l(P,i ti) + P'ih)) £ ve measures of likelihood for interpretations and t2.

2.2 Estimation of Rule Probabilities from Data
The Forward / Backward algorithm, described in [11], popularly used for estimating transition
probabilities for a given hidden-Markov-model, can be extended so as to estimate rule probabilities
of a probabilistic context free gra m m ar in the following m a n n er.

Assume a Markov model, whose states correspond to possible sentential forms which appear in a
sentence parsing process of a context free grammar. Then each transition between two states of the
Markov model corresponds to an application of a context-free rule that maps one sentential form
into another. For example, the state NP. VP can be reached from the state 5 by applying the rule
5 —* hP.VP to a start symbol 5, the state ART.NOUN.VP can be reached from the state NP.VP
by applving the rule NP -* ART.NOUN to the first NP of the sentential form NP.VP, and so on.
Since ea*.h rule corresponds to a state transition between two states, parsing a set of sentences given
as training data will enable us to count how many times each transition is traversed. In other words,
it tells how many times each rule is fired when the given set of sentences is generated. For example,
the transition from the state 5 to the state NP.VP may happen most frequently because the rule
S -*■ NP.VP is commonly used in almost every declarative sentence; while the transition from the
state ART.NOUN.VP to the state every.NOUN. VP may happen 103 times; etc. In a context-free-
grammar, each replacement of a non-terminal symbol occurs independently of the context. There­
fore, counts of all transitions between states a.A.fi to a.B.C.p, with arbitrary a and /?, should be tied
together.

Counting the transitions in such a way for thousands of sentences will enable us to estimate the rule
probabilities {Pr{{3 | a)} which are the probabilities that left hand side non-terminal symbols a will
be replaced with right hand side patterns /?. The actual iteration procedure to estimate these
probabilities from N sentences {B '} is shown below.

1. Make an initial guess of {Pr{fi | a)} such that P^P I a) = 1 holds.

2. Parse each output sentence B‘ . Assume that grammar is ambiguous and that more than one
derivation path exists which generate the given sentence B'. In such cases, we denote D'; as the
j-th derivation path for the ith-sentence.

3. Compute the probability of each derivation path D'j in the following way:

-87- International Parsing Workshop ’89

P*D ‘j) = f] Pr{r)

'• D‘,

This computes Pr[D‘j) as a product of the probabilities of the rules {r} which are employed to
generate that derivation path D‘, .

4. Compute the Bayes a posteriori estimate of the count (?,(/?) which represents how many times
the rule a — /? was used for generatmg the sentence Bl .

Here, n‘,(a, (3) denotes the number of times the rule a —* fi is used on the derivation path D'; .

5. Normalize the count so that the total count for rules with same left hand side non-terminal
symbol a becomes 1.

6. Replace (Pr(p | a)} with [£(/?)} and repeat from step 2.

Through this process, the {Pr(P | a)} will approach the real transition probability[2,10]. This al­
gorithm has been proven to converge [3].

2.3 Parsing Procedure which computes Probabilities
To find the most-likely parse, that is, the parse tree which has the highest probability from among
all the candidate parses, requires a lot of time if we calculate probabilities separately for each am­
biguous parse. The following is a parsing procedure based on the Cocke-Kasami-Young [1]
bottom -up parsing algorithm which can accomplish this task very efficiently. By using it, the
most-likely parse tree for a sentence will be obtained while the normal bottom -up parsing process
is performed. It gives the maximum probability Max,/*^-) as well as the total probability of all
parses at the same time.

The Cocke-Kasami-Young parsing algorithm maintains a two-dimensional table called the Well-
Formed-Substring-Table (WFST). An entry in the table, W FST(i,j) , corresponds to a
substring^, j), j words in length, starting at the i-th word, of an input sentence [1]. The entry
contains a list of triplets. An application of a rule a -*• fly will add an entry (a, /?, y) to the list. This
triplet shows that a sequence of fi.y which spans substring(i,j) is replaced with a non-terminal
symbol a. (/?: is the pointer to another W FST entry that corresponds to the left subordinate
structure of a and y : is the pointer to the right subordinate structure of a.)

In order to compute probabilities of parse trees in parallel to this bottom -up parsing process, the
structure of this W FST entry is modified as follows. Instead of having an one-level flat list of
triplets, each entry of W FST was changed to hold a two-level list. The top-level of the two-level list
corresponds to a left hand side non-terminal symbol, called as LHS symbol hereinafter. All com­
binations of left and right subordinate structures are kept in the sub-list of the LHS symbol. For
instance, an application of a rule a -* py will add (/?, y) to the sub-list of a.

In addition to the sub-list, a LHS symbol is associated with two variables - MaxP and SumP. These
two variables keep the maximum and the total probabilities of the LHS symbol of all possible right

j

-88- Intemational Parsing Workshop ’89

hand side combinations. MaxP and SumP can be computed in the process of bottom-up chart
parsing. When a rule a -* fly is applied, MaxP and SumP are computed as:

MaxP (cl) = H ie ! X(Prob(a - * 0y) x MaxP{$) x MaxP(y))
y

SumP(a) = y^(Prob{a -* (3y) x SumP(p) x SumP(y))
y

This procedure is similar to that of Viterbi algorithm[4] and maintains the maximum probability
and the total probability in M axP and SumP respectively. M axP/SumP gives the maximum relative
probability of the most-likely parse.

3. Experiments
To demonstrate the capability of the modeling method, a few trials were made to disambiguate
corpora of highly ambiguous phrases. Two of these experiments will be briefly described below.
Details can be found elsewhere.

3.1 Disambiguation o f English Sentence Parsing
As the basis of this experiment, the grammar developed by Prof. S. Kuno in the 1960's for the
machine translation project at Harvard University [13,14,18] was used with some modification.
The set of grammar specifications in the Kuno grammar, which are in Greibach Normal form, were
translated into a form which is more favorable to our method. The 2118 original rules were refor­
mulated into 7550 rules in Chomsky normal form [l].
T r a i n i n g sentences were chosen from two corpora. One corpus is composed of articles from
Datamation and Reader's Digest (average sentence length in words 10.85, average number of am ­
biguities per sentence 48.5) and the other from business correspondence (average sentence length
in words 12.65, average number of ambiguities per sentence 13.5). A typical sentence from the latter
corpus is shown below:

It was advised that there are limited opportunities at this time.

The 3582 sentences from the first corpus, and 624 sentences from the second corpus that were
successfully parsed were used to train the 7550 grammar rules besides some lexical rules in each
corpus.

Once the probabilities for rules are thus obtained, they can be used to disambiguate sentences by
the procedure described in section 2.3.

SEN TEN C E
PRONOUN (we)
PRED ICA TE

A U X ILIA R Y (do)
IN FIN ITE VERB PHRASE

A DVERB TYPE1 (not)
(A) 0.356 IN FIN ITE VERB PH RASE

VERB TY PE IT 1 (utilize)
OBJECT

: NOUN (outside)
A DJ C LA U SE

NOUN (a r t)
PRED. WITH NO OBJECT

VERB TY PE VT1 (services)
(B) 0.003 IN FIN ITE VERB PH RASE

: VERB TY PE IT 1(uukze)
: O BJECT

PREPOSITION (outside)

-89- Intemational Parsing Workshop '89

N O U N OBJECT
: N O U N (a r t)

OBJ ECT
: N O U N (services)

(C)0.641 I N F I N I T E VERB P H R A S E
VERB T Y P E IT1(utilize)
OBJ ECT

: N O U N (outside)
OBJ ECT MA ST ER

N O U N (art)
OBJ ECT MA ST ER

: N O U N (services)
PE R I O D

AD VE RB TYPE1 (directly)
PRD (.)

Fig. 2 Parse Tree for “We do not utilize

Figure 2 shows the parsing result for the sentence ‘Ve do not utilize outside art services directly. .
which turned out to have three ambiguities.
As shown in the figure, ambiguities come from the three distinct substructures, (A), (B) and (C),
for the phrase “utilize outside art services.". The derivation (C) corresponds to the most common
interpretation while in (A) "art” and "outside” are regarded respectively as subject and object of
the verb "services”. In (B), "art service” is regarded as an object of the verb "utilize” and "outside”
is inserted as a preposition. The numbers 0.356, 0.003 and 0.641 signify the relative probabilities
of the three interpretations. As shown in this case, the correct parse (the third one) gets the highest
relative probability, as was expected.
Some of the resultant probabilities obtained through the iteration process for each of the gram m ar
rules and the lexical rules are shown below.

Rules for “ 1IT6” 1 Rules for “S E ” 3
(0.11054) IT6 - BELIEVE - (a) (0.21602) SE - A A A 4X V X P D — (c)
(0.10685) IT6 - K N O W -(b) (0.15296) SE -* P R N VX P D — (d)
(0.08562) IT6 - F IN D (0.15229) SE - N N N V X PD
(0.07628) IT6 - T H IN K (0.11965) SE - A V I S E
(0.03525) IT6 - CALL (0.04730) SE - PRE N Q SE
(0.03280) IT6 - R E A L IZ E (0.04457) SE - N N N A C V X P D

(0.02616) SE - A V 2 SE
Rules for “ IT 3” 2

(0 .16055) IT3 - G E T Rules for “ V X ” 4
(0 .12447) IT3 -* M A K E (0.19809) V X -* VT1 N 2 -
(0.1 1988) IT3 - H A V E (0.10704) V X - PRE N Q V X
(0.08132) IT3 - SEE (0.08790) V X - VII
(0.06477) IT3 - KE E P (0.07500) V X - A U X BV
(0.06363) IT3 - BELIEVE (0.05455) V X - A V I VX

Fig. 3 Rule probabilities estimated by iteration

Numbers in the parentheses on the left of each rules denote probabilities estimated from the iter­
ation process described in the section 3.3. For example, the probabilities that the words believe,
and know have the part of speech IT6 are shown as 11. 1\% and 10.7\% on lines (a) and (b) re­
spectively. Line (c) shows that a sequence AAA (article and other adjective etc.) 4X (subject noun
phrase), VX(predicate) and PD (period or post sentential modifiers followed by period) forms a
sentence (SE) with probability 21.6\% . Line (d), on the other hand, shows that a sequence PRN

Infinite form of a mono-transitive verb which takes a noun-clause object
infinite form of a complex-transitive verb which takes an object and an objective compliment
sentence
predicate

-90- Intemational Parsing Workshop '89

(pronoun), VX and PD forms a sentence (SE) with probability 15.3 %. In such ways, the proba­
bility findin gs convey useful information for language analysis.

Table 1 summarizes the experiments. Test 1 corresponds to the corpus of articles from Datamation
and Reader's Digest, while Test 2 derived from the business correspondence. In both cases, the
base Kuno gram m ars were successfully augmented by probabilities.

a. Corpus test l test2
b. Number of sentences used for training 3582 624
c. Number of sentences checked manually 63 21
d. Number of sentences with no correct parse 4 2
e. Number of sentences where highest prob.

was given to the most natural parse 54 18
f. Number of sentences where highest prob.

was not given to the right one 5 1

Table 1. Summary of English sentence parsing

3.2 Disambiguation o f Japanese Noun Compound Word Parsing
Analyzing structures of noun compound words is difficult because noun compound words usually
do not have enough structural clues for syntactic parsing[17]. Particularly in the Japanese language,
noun compound words consist only of a few types of components, and pure syntactic analysis will
result in many ambiguous parses. Some kind of mechanism which can handle inter-word analysis
of constituent words is needed to disambiguate them.

We applied our probabilistic modeling method for disambiguating parsing of Japanese noun com­
pound words. It was done by associating rule probabilities to basic construction rules of noun
compound words. In order to make rule probabilities sensitive to inter-word relationship of com­
ponent words, words were grouped into finer categories (jV,, N2, jV3, ... S m). The base rules were
replicated for each combination of right hand side word categories. Since we assumed that the
right-most word of the right hand side inherits the category from the left hand side parent, a single
■V -♦ ;V/V rule was replicated to m x m rules. For these m x m rules, separate probabilities were
prepared and estimated. The method described in the section 2.2 was used to estimate these
probabilities from noun compound words actually observed in text.

Once probabilities for rules were estimated, the parsing procedure described in the section 2.3 was
used to compute relative probability of each parse tree i.e. the likelihood of the parse tree among
others.

In this experiment, we categorized words by a conventional clustering technique which groups
words according to neighboring word patterns. For example, 'oil" and 'co a l' belong to the same
category in our method because they frequently appear in similar word patterns such as “ ~
burner”, “ ~ consum ption”, “ ~ resources”. 31,900 noun compound words picked from abstracts
of technical papers [12] were used for this categorization process. Twenty eight categories were
obtained through this process for 1000 high-frequency 2-character kanji primitive words, 8 catego­
ries for 200 prefix single-character words, and 10 categories for 400 suffix single-character
words[16]. Base rules deriving from different combination of these 46 word categories resulted in
5582 separate rules. These base rules are displayed below.

< word > ~* <2 character kanji primitive word >

< word > —► < word > < word >

-91- Intemational Parsing Workshop ’89

< word > —* < prefix single character word > < word>

< word > -* < word > < suffix single character word >

5582 conditional probabilities of these rules were estimated from 28,568 noun compound words.

.After training was successfully done, 153 noun compound words were randomly chosen, parsed b\
the procedure shown in the section 3.3 and the parse trees were examined by hand. The check was
made whether the correct parse is given the highest probabilities. Among the 153 test words, 22
was uniquely parsed and 131 test words were parsed with more than two alternative parse trees.
Among 131, in 92 cases, the right parses were given the highest probabilities.

Show below are parsing results for two noun compound words.

word 1: ^(medium) # l$ | (s c a le) (integrated) [o]5& (ci rcui t)

word 2: /J'(small) # if£ (sca le> \ \ l f j (o le c tr ic i ty) (company)

(Word order is the same both in English and in Japanese).

For both of these cases, 5 alternative parse trees were given. Obtained parse trees were computed
with relative probabilities, the likelihood, among other alternative parses. Ln the first sentence, the
5-th parse tree, which is the most natural, got the highest probability 0.43. In the second case, the
3rd parse tree, which is the most natural, got the highest probability 1.0.

word 1 "medium scale integrated circuit"

structure of parsed tree shown in
bracket notation

meaning implied from structure prob.

1 medium [[scale integrated] circuit] a medium-size
"scale-integrated-circuit"

0.17

2 medium [scale [integrated circuit]] a medium-sized integrated
circuit which is scale (?)

0.04

3 [medium scale] [integrated circuit] an integrated-circuit
of medium-scale

0.19

4 [medium [scale integrated]] circuit a medium-size circuit which
is scale-integrated

0.17

5 [[medium scale] integrated] circuit a circuit which is
medium-scale integrated

0.43

case 2 'small scale electricity company"

1 small [[scale electricity] company] a small company which
serves scale-electricity

0.0

2 small [scale [electricity company]] a company which is small,
serves electricity, and is
something to do with scale

0.0

3 [small scale] [electricity company] a company which serves electricity
and which is small scale

1.0

4 [small [scale electricity]] company a company which services
small scale-electricity

0.0

-92- International Parsing Workshop '89

5 [[small scale] electricity] company a company which services 0.0
small scale electricity
(micro electronics?)

4. Concluding Remarks
N-gram modeling technique [20] has been proven to be a powerful and effective method for lan­
guage modeling. It has successfully been used in several applications such as speech recognition,
text segmentations, character recognition and others.[11,6,7,19,21] At the same time, however, it
has proved to be difficult to approximate language phenomena precisely enough when context de­
pendencies expand over a long distance. A direct means to remedy the situation is (a) to increase
.V of N-gram or (b) to increase the length of basic units from a character to a word or to a phrase.
If the vocabulary size is M, however, the statistics needed for m a i n t a i n i n g the equivalent precision
in the N-gram model increase in proportion to M N. The situation is s i mi la r m (b). Increasing the
length of the basic unit causes an exponential increase in vocabulary size. Hence an exponential
increase of the required statistics volume follows in (b) as well. This shows that the N-gram model
faces a serious data gathering problem when a task has a long-context dependency. Obviously, the
parsing of sentences creates this sort of problem.

On the other hand, the method introduced here aims to remedy this problem by c o m b in in g a
probabilistic modeling procedure with linguistic expertise. In this hybrid approach [7,8], linguistic
expertise provides the framework of a grammar, and the probabilistic modeling method augments
the grammar quantitatively.

Since the probabilistic augmentation process is completely automatic, it is not necessary to rely on
human endeavor which tends to be expensive, inconsistent, and subjective. Also the probabilistic
augmentation of a grammar is adaptable for any set of sentences.

These two important features make the method useful for various problems of natural language
processing. Besides its use for sentence disambiguation demonstrated in the section 3.4, the method
can be used to customize a given grammar to a particular sub-language corpus. Namely, when a
grammar designed for a general-corpus is applied to this method, the rules and the lexical entries
which are used less frequently in the corpus will automatically be given low or zero probabilities.
Alternately, the rules and the lexical entries which require more refinement will be given high
probabilities, thus the method helps us to tune a grammar in a top-down manner. The method is
also useful for improving performance of top-down parsing when used for obtaining hints for re­
ordering rules according to the rule probabilities.

In this way, although all possible uses have not been explored the method proposed in this paper
has enormous potential application, and the author hopes that a new natural language processing
paradigm may emerge from it.

Use of probability in natural language analysis may seem strange, but it is in effect a only simple
generalization of common practice: Namely, the usual top-down parsing strategy forces a true or
false (1 or 0) decision, i.e. to choose one alternatives from others on every non-deterministic choice
point.

And most importantly, by use of the proposed method a grammar can be probabilistically aug­
mented objectively and automatically from a set of sentences picked from an arbitrary corpus. On
the other hand, the representation of semantic and pragmatic constraints in the form of usual se­
mantic networks, frame theory, etc., requires a huge amount of subjective human effort.

Acknowledgement
The authors are indebted to Or. B. Mercer, and Dr. L. Bahl of the IBM Thomas J. Watson Re­
search Center, for their valuable technical suggestions and comments.

Prof. S. Kuno of Harvard University has not only given the senior author permission to use the
Kuno grammar, but also much valuable linguistic advice.

-93- Intemational Parsing Workshop '89

R eferen ces
[1] A.V. A ho, J.D. Ullman. The Theory o f Parsing, Transla tion and C om piling , Vol. 1, Prentice-Hall.

1972
[2] J.K. Baker. Trainable G ram m ars fo r Speech R ecognition . internal m em o. 1982
[3] L.E. Baum. A M axim iza tion Technique Occurring in the S ta tis tica l A nalysis o f P robabilistic F unc­

tions in M arkov Chains, Vol. 41. No. 1. The Annals o f Mathematical Statistics, 19/0
[4] G .D . Forney. Jr., The Viterbi A lg o rith m . Proc. o f IEEE, Vol. 61, No. 3, 1973
[5] K.S. Fu, Syn tac tic M ethods in P attern R ecognition . Vol. 112, Mathematics in Science and Engi­

neering, Academic Press. 1974
[6] T. Fujisaki, A Schem e o f Separa ting and Giving Phonetic Transcriptions to K anji-kana M ixed

Japanese D ocum ents by D ynamic P rogram m ing .(in Japanese), Natural Language Workshop Report
NL28-5. Inf. Proc. Soc. o f Japan. 1981

[7] T.Fujisaki, H andling o f A m biguities in N a tu ra l Language Processing fin Japanese), Doctoral disser­
tation, Dept, o f Information Science. Lniv j f T okyo. 1985

[8] T. Fujisaki, A n A pproach to S tochastic Parsing , Proc. o f C O L L IN G 84. 1984
[9] L. Harris E xperience with R O B O T in 12 C om m ercia l N a tu ra l Language D atabase Query

A p p lica tions . Proc. o f IJCAI, 1979.
[10] F. Jelinek, N otes on the O utside Inside A lg o rith m , internal m em o, 1983
[11] F. Jelinek. et. al. C ontinuous Speech R ecognition by S ta tis tica l M ethods , Proc. o f the IEEE, Vol. 64,

No. 4, 1976
[12] ' M T for Electronics, Science and Technology D atabase(m tape form), Japanese Information Center

for Science and Technology, Vol. 26
[13] S. Kuno, The A u gm en ted Predictive A n a ly ze r fo r C on text-free Languages and Its R elative

Efficiency, C A C M , Vol. 9, N o. 11, 1966
[14] S. Kuno, A .G . Oettinger, S yn tac tic S tru c tu re and A m biguity o f E nglish , Proc. o f FJCC, 1963
[1 5] W .A. Martin, et al.. P relim inary A na lysis o f a B readth-F irst Parsing A lgorithm : Theoretica l an d E x ­

perim en ta l R esu lts , M IT LCS Report T R -261 , 1979
[1 6] T. N ishno, T. Fujisaki. P robabilistic P arsing o f K anji C om pound W ords Cm Japanese), J. o f Inf. Proc.

Soc. o f Japan, Vol 29, N o . 11, 1988 i d
[1 7] T. W. Finin., C onstraining the in terpreta tion o f nom ina l com pounds in a lim ited cp m tex t, In R.

Grishman and R. Kittredge, editors. Analysing Language in a Restricted D om ian , Lawrence
Erlbaum Assoc., Hillsdale, 1986

[18] A .G . Oettinger. R eport N o. N SF -8: M a th em a tica l L inguistics and A u to m a tic T ransla tion , The C o m ­
putation Laboratory, Harvard Univ., 1963

[1 9] J. Raviv, Decision M aking in M arkov C hains A p p lied to the P roblem o f P a ttern R ecognition , IEEE,
Trans. Information Theory, Vol. IT-3, No. 4. 1967

[2 0] C.E. Shannon, P rediction and E ntoropy o f P rin ted E nglish , Bell Sys. Tech. J., Vol. 30, 1951
[2 1] K. T akeda, T. Fujisaki, S egm en ta tion o f K anji Prim itive W ord by a S i r hastical M e th o d (in

Japanese), J. o f Inf. Proc. Soc. o f Japan, Vol 28, N o .9 , 1987
[22] T. Winograd, U nderstanding N a tu ra l Language N ew York, Academic Press, 1972
[2 3] T. Winograd, L anguage as a Cognitive P recess Vol. 1 Syntax, Addison Wesley, 1983

-94- Intemational Parsing Workshop '89

A Sequential Truncation Parsing
Algorithm based on the Score Function

Keh-Ylh Su*, Jong-Nae Wang", Mei-Hul Su" and Jing-Shin Chang"'

'Department of Electrical Engineering
National Tslng Hua University, Hslnchu, Taiwan, R.O.C.

“ BTC R&D Center
28 R&D Road II, 2F

Science-Based Industrial Park, Hslnchu, Taiwan, R.O.C.

'“ Institute of Computer Science and Information Engineering
National Chlao Tung University, Hslnchu, Taiwan, R.O.C.

Key Words: Machine Translation, Parsing Strategy, Score Function,
Sequential Truncation Parsing Algorithm

ABSTRACT

In a natural language processing system, a large amount o f ambiguity and a large
branching factor are hindering factors in obtaining the desired analysis for a given sentence
in a short time. In this paper, we are proposing a sequential truncation parsing algorithm
to reduce the searching space and thus lowering the parsing time. The algorithm is based
on a score function which takes the advantages o f probabilistic characteristics o f syntactic
information in the sentences. A preliminary test on this algorithm was conducted with a
special version o f our machine translation system, the ARCHTRAN, and an encouraging
result was observed.

Motivation

In a natural language processing system, the number o f possible analyses associated with
a given sentence is usually large due to the ambiguous nature o f natural languages. But, it is
desirable that only the best one or two analyses are translated and passed to the post-editor
in order to reduce the load o f the post-editor. Therefore, in a practical machine translation
system, it is important to obtain the best (in probabilistic sense) syntax tree having the best
semantic interpretation within a reasonably short time. This is only possible with an intelligent
parsing algorithm that can truncate undesirable analyses as early as possible.

There are several methods to accelerate the parsing process [Su 88b], one o f which is
to decrease the size o f the searching space. This can be accomplished with a scored parsing
algorithm that truncates unlikely paths as early as possible [Su 87a, 87b] and hence decreases
the parsing time.

As for the searching strategy for the scored parsing algorithm, it may be either parallel or
sequential. But in our system, a time limit is used to stop the parsing process when a sentence
is taking too long to parse because its length or because it has a very complicated structure.
Therefore, the sequential searching strategy is better for us than the parallel approach because

-95- International Parsing Workshop '89

wc arc likely to have some complete syntax trees to work with even if the parsing was
suspended abnormally when its time expires. On the other hand, the parallel approach will
not have this advantage because none of the on-going paths have traversed to the end.

In this paper, we are proposing a sequential truncation algorithm for parsing sentences
efficiendy. This algorithm employs the score function we proposed in [Su 8 8a]. However,
this algorithm is different from the one proposed in [Su 87a, 87b], which described a parallel
truncation algorithm for scored parsing. Here, we are adopting a sequential truncation method.
While we are using this sequential approach, a large speed-up in the parsing time has been
.jb served.

Definition of the Score Function
In a scored parsing system, the best analysis is selected base on its score. Several scoring

mechanisms have been proposed in the literatures [Robi 83, Benn 85, Gars 87, Su 88a].
The one we adopt is the score function based on the conditional probability we proposed in
[Su 8 8a]. How to select the best analysis of a sentence is now convened into the problem
of finding the semantic interpretation (Semi), the syntactic structure (Synj) and the lexical
categories (LeXk) that maximize the conditional probability of the following equation,

S C O R E (Sem ,, S y n j L e x t)
= P (S e m t ' S y n j i L e x k \ w \ . . . w n)

= P (S e m t \ S y r i j ' L e x j e w i " W n) * P (S y r i j |Zexjt(u;i...u;n) * P (L e x ^ w i ^ w n) ̂ ̂

= S C O R E a t m { S e m i) * S C O R E s y n (S y n j) * S C O R E u x (L e x *) ,

where w i to wn stands for the words in the given sentence and the last three product terms
are semantic score, syntactic score and lexical score respectively. Since we are using
just the syntactic information in our current implementation, we will focus only on the
syntactic aspect o f this score function (i.e. S C O R E j y n (S y n j) , which can be approximated
by S C O R E s y n { S y n j) « P (S y n j \ L e x k) = P { S y r i j \ v i „ v n) , where V! to vn are the lexical
categories corresponding to w i to wn).

To show the mechanism informally, first refer to the syntax tree in Fig. 1. shown here
with its reduction sequences (produced with a bottom-up parsing algorithm), where Li is i-th
phrase level consists o f terminals and nonterminals. The transition from a phrase level Lj to
the next phrase level Li+i corresponds to a reduction or derivation of a nonterminal at time ty.

A

U - { A , }
B C L 7 - (B, C }

L 6 - { B .

L5 - { a

F. G }

F. W4 }

D E F G U - { a W3. W4 }

1 I I 1 U - { D , E, W3, W4 }
h i h 2 t4 h 5 L2 - { D, W2, W3, W4 }

w l w2 w3 w4 U - { WL W2, W3, W4 >

Fit 1 Dtfferert R o se Lcvds fcr a bottcrrKj) Pareng

96- International Parsing Workshop '89

The syntax score of the tree in Fig. 1 can be formulated as the following conditional
probability equation, where li and r* are the left and right contexts of the reducing symbols:

S C O R E s y n (S y n A)

= P . L 2 \ L \)

= P (L s \ L 7 . . L 2 , L \) * P (L j \ L s . . . L \) * . . . * P (L 2 \ L \) ^

~ ^ ({ ^ } | { h , B , C , r j }) * P ({ C } | { l e , F , G , r 6 }) * . . . * P ({ £ > } | { ’/ l i u ; l f r 1 })

Eq. 2 can be further reduced to the following equation if only one left and one right context
symbol are considered where “0” is the null symbol.

S C O R E S y n (S y n A)

« P ({ ^ } | { 0 , B , C , 0 }) * P ({ C } | { B , F , G , 0 }) * . . . * P ({ D } | { 0 , u , 1 , U ; 2 }) (3)

If we want to calculate the score at the point where a word is just being fetched (compact
multiple reductions and one shift into one step), the S C O R E ^ n f S y r i A) can also be approximated
into the following equation.

S C O R E 3 y n (S y n A)

= P (L s L 7 . . L 2 \ L i)

= ^ (^ 8,£7 ,£61^ 5,£4...£1) * P (£51^ 4,£3...£1) * P (LitLz\L2,L\) * P(Ij2\Li) (4)
* P (L s L 7 L6 \L5) * P (L s\L<) * P (L < L z\L2) * P (L 2 \L1)
* P (L s \ L 5) * P (L s \ L <) * P (L < \ L 2) * P (L 2 III)

Two assumptions were made in formulating Eq. 2 -4 . First, it is assumed that the forming
of phrase level i is only dependent on its immediate lower phrase level, since most information
percolated from other lower levels is contained in that level. And second, a reduction is only
locally context sensitive to its left or right context at each phrase level. This assumption is
also supported in other systems as well [Marc 80, Gars 87].

A simulation based solely on this syntactic score was conducted and reported in [Su 8 8a]
with a full-path searching algorithm. The result shows that the correct syntactic structures o f
over 85% of the test sentences were successfully picked when a total o f three local left and
right context symbols were consulted.

-97- Intemational Parsing Workshop '89

The Sequential Truncation Algorithm
Using the score function defined in the previous section, we will present the idea of

sequential truncation algorithm with Fig. 2.

stepO

shift

step 1

shift

step 2
shift j

/r e d u c e shift j

1

shift !
reduce

/
ii
i

^ shift !
X

reduce
\ shift

N . ^ !
ret̂ vjeduce shift j

word 1 wad 2 word 3

Fig. 2 The searching tree

Each path in Fig. 2 corresponds to a possible derivation of a given sentence. The parser
will use the depth-first strategy to traverse the searching tree. But during the searching process,
the parser compares the score of each path accumulated so far with a running threshold C(ai)
(a detailed definition will be given in the following section) at each step i when the next
word is fetched. If the score of the path is less than the running threshold C(ai), it will be
truncated, i.e. blocked, and the next path will be tried. This process continues until we get
the first complete parse tree (i.e. when the whole sentence is reduced to a S node). After
we obtain the first complete parse tree, a lower bound for the scores is acquired. The parser
will continue to traverse other pathes, but from now on, the score o f each path will also be
compared with the final accumulated score o f the first complete parse tree in addition to be
compared with the running threshold. This additional comparison is similar to the branch and
bound strategy employed in many A l applications [Wins 84] and it w ill accelerate the parsing
process further. The whole process is shown in the flow chart in Fig. 3. If the test fails
in either case, this path will be truncated. Continuing in this manner, we may get a second
complete parse tree which has a final score higher than the first one. In this case, we will
replace the lower bound with the final score o f the second parse tree and repeat the whole
process until the end o f the entire searching process.

If all the paths are blocked without arriving at any complete parse tree, we can adopt one
of two possible strategies. First, we could loosen the running thresholds, i.e. lowering the
C(qO, and try the deepest path gone so far again. Second, we can process this sentence in
fail-soft mode. The fail-soft mechanism will skip and discard the current state and attempts
to continue the parsing at some later point

-98- Intemationai Parsing Workshop '89

The effectiveness o f the sequential truncation algorithm depends on the distribution of
scores o f the database and the input sentences. As we can see, for each syntax tree can be
expressed as the product o f a sequence of conditional probability as shown in Eq. 4. Each
term in the product corresponds to a transition between two ’’shift" actions and is evaluated
immediately after a ’’shift". Taking the logarithm on both sides o f Eq. 4, we get the following
equation where X* denotes a sequence o f phrase levels at i-th step and L is the length of the
sentence.

L
log (S C O R E s)l„ (S y n)) = J ^ l o g P { X , (5)

1=1

j
If we define y j = ^ log P (X i \ X i - \) , then yj denotes the accumulated logarithmic score

i= l
up to the j-th word which is also the j-th shift of the sentence.

Suppose we have M sentences with their correct parse trees in the database. For each
parse tree, we can evaluate yj by using the logarithmic score function defined before. So for
the k-th sentence in the database, we obtain a sequence y*, y *, , where y*denotes
the accumulated logarithmic score o f the k-th sentence and L* denotes the length o f the k-th
sentence.

-99- Intemational Parsing Workshop '89

If wc regard each parse tree in the database as a sample point in a probability outcome
space, we may regard Y* as a random variable which maps each parse tree into an accumulated
logarithmic score (note, for a sentence with length L^, it will be associated, with random
variables : Vi, V2,...*£„)• So y*, with k from 1 to M, will be the samples of the random
variable Yi. Since each sentence has its own length, the number of samples in the database
for different random variable Yi will not be the same.

Using the samples in the database, we can draw a histogram for each Yi. We then
approximate each histogram by a continuous density function / y (y) . To allow a fraction
Qi, say 99%, of the best parse trees to pass the test at step i, we can set a constant C(c*i)
such that P { Y X> C (a t)) = a t. For each path, Yj is the random variable of the accumulated
logarithmic score up to the i-th shift, and C(ai) is the running threshold that we will use to
compare with the running accumulated logarithmic score at step i. Those paths with running
accumulated logarithmic score yi less than C(c*i) would be blocked. Using the notation
defined above, the probability of obtaining the desired parse tree for a sentence with length

L k

L* would be Yi a »*
»= i

If we set Zi as the random variable which maps all the possible paths of all the sentences
we want to parse into the accumulated logarithmic score at i-th word, then all the paths,
whether they can reach the final state of the searching tree or not, will have a set of running
accumulated logarithmic scores. Fig. 4 shows the relation between the density function (2)
of running score o f the input text and the density function f y (y) of cumulative score of the
database. In the figure, the dashed lines are the means of the density functions. Since the
step-wise cumulative score in the database is evaluated using the correct parse tree that we
have selected, we would expect that the expectation value of Yi will be greater than that o f Zi,
that is, E[Yi] > E[Zi]; and the variance of Yi is less than that of Zi, that is Var[Yi]<Var[Zi].

means

to be
tancated

Q cc j)
4a. a wcreecase

to be
truncated

Q « i)
4b. a better case

Rg.4 Relationship between the running sccre cf the inpU text
and the cumrnulative score of the database

Let f t denotes F'z (C (cti))y where F'z (z) is the cumulated distribution function o f Zi,
then f t is the probability that a path will be truncated at the i-th step o f the searching tree.
By using this sequential truncation method, the searching space would then be approximately

reduced to (1 - f t) , which is a small portion o f the original searching space generated by a

full path searching algorithm. Therefore the efficiency o f parsing is increased. Since f t in Fig.
4a is less than that in Fig. 4b, which correspond to the situation that has a large expectation

-100- Intematlonal Parsing Workshop ’89

difference (E[Y,]-E[Zi]) and a small variance ratio (Var[Yi]/Var{Zi]), the underlying grammar
that has the property of Fig. 4b would benefit most from this algorithm. In addition, we can
see that if we increase the running threshold C(c*i), we will get a greater fa and a lower aj.

Lk
The parsing efficiency will thus increase, but the probability (i.e. [] a ,) that we will get the

»=i
desired parse tree would decrease. How to select a good C(aO to achieve a desired parsing
success rate would be discussed in the following section.

How to set the running threshold
Using the model given in the last section, the probability that we will get the global

optimal solution, i.e. the parse tree with the largest probability, for a sentence with length L
L

is K l = [] <*„ where K l is a constant pre-selected by the system designer as a compromise

between the parsing time and the post-editing time. Assuming that the average branching
factor for each path at each stage is a constant N, then the average total number of paths
we have to try is :

9 (< * i = N + N * (1 - fa) * N + N * (1 - fix) * N * (1 - h) * N + -
= N * (\ + N * h (a \) + N 2 * h (a i) * h (012) + ...)

/ L—l i \ <*>
= J V * f l + ^ . / V ' * J"I h (a j) 1

In Eq. 6 , in order to minimize the path number, the relation h (a \) < h (0:2) ... < h (a ^)
must holds because h(aj) has a larger coefficient than h(ai+i).

The problem of selecting an appropriate running threshold C(aO is now converted into

one o f minimizing g(ai...a:L) under the constraint of a{ = K l - Taking the logarithm on
1 = 1

L
both sides, we get £ log a t = log K l . Then the Lagrange multiplier A is used to get

1 = 1
L

g* ^ * Y j °9 a «- Taldng the partial derivative o f g* with respects
1=1

to a i...a L , we will get the following equations :

* L
^ - = 0 , - ^ - = 0 , ... = 0 , and ^ l o g a i = log K l (7)
d a \ oa'i , 00LL l=1

There are (L + l) variables, which are a i...aL , and A, and (L + l) equations. So,
can be solved by the numerical method. Since a* is usually very close to 1, we can linearize
the function h(ai) in the region around <**=1 and approximate by h (a ,) % a * a,- + b. In this
way, we can substitute h(aj) in the above equation by a * a* -I- b to simplify the calculation.

During our derivation, we have assumed that the average branching factor at each stage
is a constant N. This constraint can be relaxed by assuming the average branching factor at
i-th stage to be N*. In this way, we will get a more complicated expression for g (a i...aL),
but it can still be solved in the same way.

The running threshold C(o;i) can now be computed off-line by selecting different Kl
for different sentence length L. We will call this set of C (a0 the “static running threshold”,

-101- Intemational Parsing Workshop 89

because once they are computed, they will not be changed during the sentence parsing.
However, if we arrive at a complete parse tree with much higher final accumulated running
score than the final accumulated running threshold, then even if a path can pass all the
accumulated running thresholds it might still be discarded when it is being compared with
the final accumulated running score. So, the running threshold should be adjusted to reflect a
high final accumulated running score. Therefore, it would be better if the running threshold
is changed to C '(ai)=C (ai)+A C (aj), where A C (ai) is set to 7 * (y* — C (a ,)) , where 0< 7 < 1
and y* is the accumulated logarithmic score o f the current best parse tree at the i-th step,
and 7 is a tunning constant pre-selected by the system designer. C'(aj) is then the “dynamic
running threshold”. Using the dynamic running threshold, the efficiency of parsing would
be further improved.

If it so happen that all the pathes are blocked before any complete parse tree is formed,
we can find the deepest path (let us assuming it to be at the j-th step) among the blocked ones
and continue it with a lowered running threshold of C'(aj)=y'] , where y' is the score of this
path at the j-th step. Since the procedure to lower the running threshold is quite complicated
and uses up memory space in run time, it might be better just invoke the fail-soft mechanism
for sentences whose paths are all blocked.

Testing

We completed two preliminary testings of truncation algorithm with special versions of
our English-Chinese MT system and a database o f 1430 sentences.

In the first experiment, the sentence parsing time needed by a charted parser that uses
bottom-up parsing with top-down filtering is compared with the time needed by the same
charted parser with truncation mechanism. From the test, we found that the average sentence
parsing time by the charted parser with truncation is improved by a factor o f four. For some
sentences, the improvement can go as high as a factor o f twenty. This result is encouraging
because minimizing parsing *time is critical to a practical MT system.

Nevertheless, we noted that our output quality has degraded slightly. By this, we mean
that the best selected tree produced by the charted parser with no truncation is not among
the trees produced by the charted parser with truncation. Exploring this problem further, we
discovered that the chart [Wino 83] used during parsing is in conflict with the truncation
mechanism. The reason for having chart is to be able to store all subtrees that were parsed in
previous path traversal. So, when we backtrack to the next path and arrive at the same range
o f inputs, the same subtrees can be used again without reparsing. However, the idea behind
the truncation mechanism is to discard subtree in the context in which it has low probability.
Therefore, if we adopt the truncation mechanism during parsing, not every subtree between a
string o f inputs is successfully constructed and stored into the chart. For example, in Fig. 5,
there are two possible subtrees between b and c when the pathes in the block A are expanded.

-102- Intemational Parsina Workshop '89

Lj R2 c a t ext

Fig. 5 . Chart with truncation mechanism

In Fig. 5, one of the subtrees is discarded and the other is stored into the chart. There are
two reasons why a subtree may be discarded. First, it might be caused by a natural language’s
constraints on the context dependency. Second, a subtree might be discarded because o f its
small running accumulated score (and thus truncated by the truncation mechanism.) Either
will leave us a chart with incomplete subchart. So, this will result in the best possible tree
being missing as a side-effect o f using this chart. For instance, in Fig. 5, the best tree might
be the second subtree with the left context o f L2 and with the right context o f R2 (i.e., its
probability is the highest.) But, since the path expansion starting from the left context o f Li
has the second subtree discarded because its probability under the context o f Li and Ri is
small, the best tree will never be formed. Therefore, with a chart having incomplete subcharts,
the possibility o f obtaining the best tree is determined by the pathes traversed before.

One solution to this incompatibility problem is to mark the sections o f the chart that are
complete. Hence, if an incomplete subchart is encountered again, it will be reparsed. On the
other hand, if a complete set o f chart is encountered, the subtrees can be copied directly from
the chart. Another solution is to suspend the truncation mechanism when a set is being tried
the first time. And if subtrees are copied directly from the chart, the truncation mechanism
resumes its normal function. In this way, it is guaranteed that every subchart in the chart is
complete. Both o f these solutions increase our sentence parsing time as the overhead. This
compromise, however, is unavoidable if the advantages o f using chart are to be maintained.

In the second experiment, we converted the charted parser for the first experiment into
one with sequential searching strategy and without the use o f the chart. Similar sentence
parsing test is conducted for this chartless parser but with a smaller analyses grammar. The
result shows that the total parsing time for this parser with truncation mechanism added is
better than the same parser without truncation by the factor o f three.

From the positive results o f the above two experiments, we have shown the inclusion
o f the sequential truncation algorithm is advantageous for a MT system. In addition, we
have also shown the feasibility o f harmonize the use of chart and the truncation algorithm.
Currently, we are in the process of resolving the incompatibility problem between the chart
and the truncation mechanism and constructing a working system with this solution.

-103- Intemational Parsing Workshop '89

Conclusion
In a natural language processing system, it is important to arrive at a good analysis for a

sentence in a relatively short time. One way to achieve this is to decrease the parsing time
by reducing the searching space. We have proposed a sequential truncation algorithm with
a score function to achieve this goal.

In this sequential truncation strategy, a sequence of running thresholds are used to bound
the searching space during each step of the scored parsing. In addition, a path can also be
blocked by the branch-and-bound mechanism if its accumulated score is lower than that of an
already completed parse tree. There are several reasons for adopting this strategy. First, the
first parse tree with a moderate quality can be found quickly and easily. Second, the running
threshold serves to truncate part of the path that is quite unlikely to lead to the best analysis,
and thus greatly reduces the searching space.

We have made a pilot test on the truncation mechanism with a charted parser that adopts
bottom-up parsing with top-down ‘"tering. With a database of 1430 sentences, the result
indicates an average improvement ir le sentence parsing time by the factor of four (for some
sentences the improvement goes as . gh as a factor of twenty). However, we also discovered
an incompatibility problem between the use of chart and the truncation mechanism. In another
pilot test we conducted on the truncation mechanism, the sentence parsing time is tested for
a chartless parser that adopts sequential parsing strategy. The result shows an improvement
in parsing time by a factor o f three for the inclusion of the truncation mechanism. These
encouraging results demonstrate a great promise for the sequential truncation strategy.

As our current research topic, we shall resolve the incompatibility problem between the
chart and the truncation algorithm and include the solution into our working MT system, the
ARCHTRAN.

References
[Benn 85] Bennett, W.S. and J. Slocum, "The LRC Machine Translation System," Computational

Linguistics, voL 11, No. 2-3, pp. 111-119, ACL, Apr.-Sep. 1985.
[Gars 87] Garside, Roger, Geoffrey Leech and Geoffrey Sampson (eds.), The Computational Analysis

of English : A Corpus-Based Approach, Longman , New York, 1987.
[Marc 80] Marcus, M.P., A Theory of Syntactic Recognition for Natural Language, MIT Press,

Cambridge, MA, 1980.
[Robi 82] Robinson, J.J., "DIAGRAM : A Grammar for Dialogues," CACM, vol. 25, No. 1, pp.

27-47, ACM, Jan. 1982.
[Su 87a] Su, K.-Y., J.-S. Chang, and H.-H. Hsu, "A Powerful Language Processing System for English-

Chinese Machine Translation," Proc. of 1987 Int. Conf. on Chinese and Oriental Language
Computing, pp.260-264, Chicago, Dl, USA, 1987.

[Su 87b] Su, K.-Y., J.-N. Wang, W.-H. Li, and J.-S. Chang, "A New Parsing Strategy in Natural
Language Processing Based on the Truncation Algorithm", Proc. of Natl. Computer Symposium
(NCS), pp. 580-586, Taipei, Taiwan. 1987.

[Su 88a] Su, K.-Y. and J.-S.Chang, "Semantic and Syntactic Aspects of Score Function," Proc.
COLJNG-88, vol. 2, pp. 642-644, 12th Int. Conf. on Comput. Linguistics, Budapest, Hungary,
22-27 Aug. 1988.

[Su 88b] Su, K.-Y., “Principles and Techniques of Natural Language Parsing : A Tutorial,” Proc. of
ROCUNG-I, pp.57-61, Nantou, Taiwan. Oct 1988.

[Wino 83] Wmograd, Terry, Language as a Cognitive Process, Addison-Wesley, Reading, MA., USA,
1983.

[Wins 84] Winston, P.H., Artificial Intelligence, Addison-Wesley, Reading, MA., USA, 1984.

-104- Intemational Parsing Workshop '89

P r o b a b il is t ic LR P a r s in g fo r Sp e e c h Re c o g n it io n

J.H.Wright: and E.N.Wrigley

Engineering Mathematics, University of Bristol, U.K.

Abstract

An LR parser for probabilistic context-free grammars is described. Each of
the standard versions of parser generator (SLR, canonical and LA.LR) may be
applied. A graph-structured stack permits action conflicts and allows the
parser to be used with uncertain input, typical of speech recognition
applications. The sentence uncertainty is measured using entropy and is
significantly lower for the grammar than for a first-order Markov model.

1. INTRODUCTION

1.1 Background

The automatic recognition of continuous speech requires more than signal
processing and pattern matching: a model of the language is needed to give
structure to the utterance. At sub-word level, hidden Markov models [1]
have proved of great value in pattern matching. The focus of this paper is
modelling at the linguistic level. Markov models are adaptable and can
handle potentially any sequence of words [2]. Being probabilistic they fit
naturally into the context of uncertainty created by pattern matching.
However, they do not capture the larger-scale structure of language and
they do not provide an interpretation. Grammar models capture more of the
structure of language, but it can be difficult to recover from an early
error in syntactic analysis and there is no watertight grammar.

A systematic treatment of uncertainty is needed in this context, for the
following reasons:

(1) some words and grammar rules are used more often than others;
(2) pattern matching (whether by dynamic time warping, hidden Markov

modelling or multi-layer perceptron [3]) returns a degree of fit for each
word tested, rather than an absolute discrimination; a number of possible
sentences therefore arise;

(3) at the end of an utterance it is desirable that each of these
sentences receive an overall measure of support, given all the data so that
the information is used efficiently.

The type of language model which is the focus of this paper is the
probabilistic context-free grammar (PCFG). This is an obvious enhancement
of an ordinary CFG, the probability information initially intended to
capture (1) above, but as will be seen this opens the way to satisfying (2)
and (3). An LR parser [4,5] is used with an adaptation [6] which enlarges
the scope to include almost any practical CFG. This adaptation also allows
the LR approach to be used with uncertain input [7], and this approach
enables a grammar model to interface with the speech recognition front end

-105- Intemational Parsing Workshop '89

as naturally as does a Markov model

1.2 Probabilistic Context-Free Grammars

A "probabilistic context-free grammar (PCFG)" [8-10] is a 4-tuple <N,T,R,S>
where N is a nonterminal vocabulary including the start symbol S, T is a
terminal vocabulary, and R is a set of production-rules each of which is a
pair of form <A a , p>, with AeN, a€(NuT)*, and p a probability. The
probabilities associated with all the rules having a particular nonterminal
on the LHS must sum to one. A probability is associated with each
derivation by multiplying the probabilities of those rules used, in
keeping with the context-freeness of the grammar.

A very simple PCFG can be seen in figure 1: the symbols in uppercase are
the nonterminals, those in lowercase are the terminals (actually
preterminals) and A denotes the null string.

2. LR PARSING FOR PROBABILISTIC CFGs

The LR parsing strategy can be applied to a PCFG if the rule-probabilities
are driven down into the parsing action table by the parser generator. In
addition, one of the objectives of using the parser in speech recognition
is for providing a set of prior probabilities for possible next words at
successive stages in the recognition of a sentence. The use of these prior
probabilities will be described in section 3.1. In what follows it will be
assumed that the grammars are non-left-recursive, although null rules are
allowed.

2 . 1 SLR Parser

The first aspect of parser construction is the closure function. Suppose
that I is an SLR kernel set consisting of LR(0) items of the form

<A -» a-£, p>

The item probability p can be thought of as a posterior probability of the
item given the terminal string up to that point. The computation of
closure(I) requires that items

<B -> ■ 7r» PbPt>

be added to the set for each rule <B -» 7 r, pr> with B on the LHS, provided
pBpr exceeds some small probability threshold e, where pB is the total
probability of items with B appearing after the dot (in the closed set).

New kernel sets are generated from a closed set of items by the goto
function. If all the items with symbol Xe(NuT) after the dot in a set I
are

<Ak ak -X/9k , pk> for k-l,...,nx , with px - £ pk
k - 1

then the new kernel set corresponding to X is

(<Ak -> akX-£k , pk/px> for k-1, . . . , nx}

and goto(I,X) is the closure of this set. The set already exists if there
-106- International Parsing Workshop '89

is another set which has the same number of elements, an exact counterpart
for each dotted item, and a probability for each item that differs from
that for its counterpart in the new set by at most e.

Starting from an initial state I0 consisting of the closure of

{<S' -> -S, 1>>

where S' is an auxiliary start symbol, this process continues until no
further sets are created. They can then be listed as I0 ,Ii,....

Each state set Ira generates state m and a row in the parsing tables
"action" and "goto". The goto table simply contains the numbers of the
destination states, as for the deterministic LR algorithm, but the
action table also inherits probabilistic information from the grammar.

(1) For each terminal symbol b, if there are items in Im such that the
total Pb>f, and the shift state n is given by goto(Im ,b) - In , then

action[m,b] - <shift-to-n, pb>

(2) For each nonterminal symbol B, if Pb>« and goto(Im ,B)-In then

goto[m,B] - n

(3) If < S ' -> S • , p> G Im then action[m,$] - <accept, p>

(4) If <B -> 7 * , p> E Ira where BhS' then

action[m , FOLLOW(B)] - <reduce-by B -» 7 , p>

For the very simple grammar shown in figure 1 the parsing tables turn out
as shown in figure 2, with shift-reduce optimisation [4,5] applied. The
probability of each entry is underneath.

The range of terminal symbols which can follow a B-reduction is given by
the set FOLLOW(B) which can be obtained from the grammar by a standard
algorithm [4], For a probabilistic grammar, the probability p attached to
the reduce item cannot be distributed over those entries because when the
tables are compiled it is not determined which of those terminals can
actually occur next in that context, so the probability p is attached to
the whole range of entries.

The probability associated with a shift action is the prior probability of
that terminal occurring next at that point in the input string (assuming no
conflicts). Completing the set of prior probabilities involves following
up each reduce action using local copies of the stack until shift actions
block all further progress. The reduce action probability must be
distributed over the shift terminals which emerge. This is done by
allocating this probability to the entries in the action table row for the
state reached after the reduction, in proportion to the probability of each
entry. Some of these entries may be further reduce actions in which case a
similar procedure must be followed, and so on.

2.2 Canonical LR Parser

For the canonical LR parser each item possesses a lookahead distribution:

<A -> a * /?, p, {P(at) m >
-107- International Parsing Workshop '89

The closure operation is more complex than for the SLR parser, because of
the propagation of lookaheads through the non-kernel items. The items to
be added to a kernel set to close it take the form

' 7r » PbPt i (PB(aj))j = l.... i t i)

so that all the items with B after the dot are then

<Ak -> ajj • , pk, { Pk(ai) } 1=1 ,..., in> for k-1, . . . , nB

and
n B Pk lT l F

P8 (aj) - I — I P (/9ka 1 ,aJ)Plt(a1)
k - 1 Pb i- 1

Fwhere P (^ka 1 ,aJ) is the probability of aj occurring first in a string
derived from £kai, which is easily evaluated. A justification of this will
be published elsewhere. The lookahead distribution is copied to the new
kernel set by the goto function.

The first three steps of parsing table construction are essentially the
same as for the SLR parser. In step (4), the item in Im takes the form

<B -» 7 • , p, (P(a1)) 1 = 1.,T|> where B*S '

The total probability p has to be distributed over the possible next input
symbols at, using the lookahead distribution:

actionfm.ai] - <reduce-by B -» 7 , pP(at)>

for all i such that pP(ai)>c. The prior probabilities during parsing
action can now be read directly from the action table.

2.3 LALR Parser

Merging the states of the canonical parser which differ only in lookaheads
for each item causes the probability distribution of lookaheads to be lost,
so for the LALR parser the LR(1) items take the form

<A -» a- (3, p, L> where LCT.

The preferred method for generating the states as described in [4] can be
adapted to the probabilistic case. Reduce entries in the parsing tables
are then controlled by the lookahead sets, with the prior probabilities
found as for the SLR parser.

2.4 Conflicts and Interprecat Lon

An action conflict arises whenever the parser generator attempts to put two
(or more) different entries into the same place in the action table, and
there are two ways to deal with them. The first approach is to resolve
each conflict [11]. This is a dubious practice in the probabilistic case
because there is no clear basis for resolving the probabilities of the
actions in conflict. The second approach is to split the stack and pursue
all options, conceptually in parallel. Toraita [6] has devised an efficient
enhancement of the LR parser which operates in this way. A graph-
structured stack avoids duplication of effort and maintains (so far as

-108- International Parsing Workshop '89

possible) the speed and compactness of Che parser. With this approach the
LR algorithm can handle almost any practical CFG, and is highly suited to
probabilistic grammars, the main distinction being that a probability
becomes attached to each branch.

The generation and action of the probabilistic LR parser can be supported
by a Bayesian interpretation. This is in keeping with the further
adaptation of the algorithm to deal with uncertain input.

3. UNCERTAIN INPUT DATA

3.1 Prediction and Updating Algorithm

The situation envisaged for applications of the probabilistic LR parser in
speech recognition is depicted in figure 3. The parser forms part of a
linguistic analyser whose purpose is to maintain and extend those partial
sentences which are compatible with the input so far. With each partial
sentence there is associated an overall probability and partial sentences
with very low probability are suspended. It is assumed that the pattern
matcher returns likelihoods of words, which is true if hidden Markov models
are used. Other methods of pattern matching return measures which it is
assumed can be interpreted as likelihoods, perhaps via a transformation.

let (s-1 ,2 ,...) represent partial sentences up to stage m (the stage
denoted by a superscript). let D represent the data at stage m, and (D)
represent all the data up to stage m. Each branch 1^ predicts words
a™ (perhaps via the LR parser) with probability P(aj|r^), so the total
prior probability for each word aj is

PCajKD)1"'1) - Is P(a” | C 1)P(rrI|ID)"'1)

Using Bayes' theorem the posterior probabilities of the words are

P(Dn,ia”)P(a” | (D)™"1)
P(aj | (D))

P(D” |aT)P(aTUD)"1)

inwhere P(D“ |a“) is the likelihood. If we define the extended branch r sJ
as then after some manipulation the probability of this is

p (a ^ | r r 1) P (r r 1 | { D) m " 1) m n

PCrTjl (D)“) --------- ---------- -------- — ------------ P(a” I (D)) (1)
P (a j | (D))

This shows that the posterior probability of a™ is distributed over the
extended partial sentences in proportion to their root sentences s ̂
contribution to the total prior probability of that word. If P(rsj| (D))<e
then the branch is suspended. The next set of prior probabilities can now
be derived and the cycle continues.

These results are derived using the following independence assumptions:

P(a?|a*,D“) - P(a^ | a") and P(D"|a“ ,Dk) - P(D’ |a”)

which decouple the data at different stages.

-109- International Parsing Workshop '89

Figure 4 shows successive likelihoods, entered by hand for a (rather
contrived) illustration using the grammar in figure 1. At the end the two
viable sentences (with probabilities) are

"pn tv det n pron tv pn" (0.897)
"det n pron tv pn tv pn” (0.103)

Notice that the string which maximises the likelihood at each stage,

"pn tv pron tv pron tv pn"

might correspond to a line of poetry but is not a sentence in the language.

The graph-structured stack approach of Tomita [6] is used for non-
deterministic input. Each path through the stack graph corresponds to one
or more partial sentences and the probability P(r^|{D)m } has to be
associated with each partial sentence r^.

3.2 Entropy of the Partial Sentences

Despite the pruning the number of partial sentences maintained by the
parser tends to grow with the length of input. It seems sensible to base
the measure of complexity upon the probabilities of the sentences rather
than their number, and the obvious measure is the entropy of the
distribution. The discussion here will assume that the proliferation of
sentences is caused by input uncertainty rather than by action conflicts.
This is likely to be the dominant factor in speech applications.

The sentence entropy is defined as

- - Z P(r”j| (D)“) log p<r^ji (dj")
s > J

where natural logarithms are used. A related measure called "perplexity"
[1 2], defined as

?s " exp(H^)

is the equivalent (in entropy) number of equally-likely sentences.
Substituting for P(j | {D }™) from equation (1) leads to

K? - - P(a*|(D)“)[log P(a*|(D)°) - /l"]
where

. m r-> _ . _ m— 1 . ■ . _ , o — 1 . - _ . „ m -1 . tn m -1.---P(I\ | a j, {D }) log P(TS | a j, { D })

is the entropy contributed by the sentences at stage m - 1 predicting word
aj. The quantities /ij can be evaluated with the prior probabilities.

It can be shown that the sentence entropy has an upper bound as a function
of the likelihoods:

w s < log Ijexp(*j)
. „ e x p (A *)

withequality when P(D | a %) <x ----------------------.
P (a. j | ID))

The constant of proportionality does not matter. Figure 5(a) shows this
*1 International Parsing Workshop '89

upper bound for the grammar in figure 1, and it can be seen chat che
perplexity is equivalent to 35 equally-1 ikely sentences after 10 words

The upper bound is very pessimistic because it ignores the discriminative
power of the pattern matcher. This could be measured in various ways but
it is convenient to define a "likelihood entropy" as

and the "likelihood perplexity" is _ jn P™ ” exp(K^).

The maximum sentence entropy subject to a fixed likelihood entropy can be
found by simulation. Sets of random likelihoods with a given entropy can
be generated from sets of independent uniform random numbers by raising
these to an appropriate power. Permuting these so as to maximise the
sentence entropy greatly reduces the number of sample runs needed to get a
good result. These likelihoods are then fed into the parser and the
procedure repeated to simulate the recognition process. The sentence
entropy is maximised over a number of such runs.

The likelihoods which produce the upper bound line shown in figure 5(a)
have a perplexity which is approximately constant at 6 .6 . This line is
reproduced almost exactly by the above simulation procedure, using a fixed
J3L °f 6 . 6 with 30 sample runs.

The simulation method is easily adapted to compute the average sentence
entropy over the sample runs. For this it is preferable to average the
entropy and then convert to a perplexity rather than average the measured
perplexity values. This process provides an indication of how the parser
will perform in a typical case, assuming a fixed likelihood perplexity as a
parameter (although this could be varied from stage to stage if required).

Figure 5(a) shows how the average compares with the maximum for a fixed T L
of 6 .6 , and how the sentence perplexity is reduced when the likelihoods are
progressively more constrained - 5.0, 3.0 and 2.0).

3.3 Comparison with Inferred Markov Model

Markov models have some advantages over grammar models for speech
recognition in flexibility and ease of use but a major disadvantage is
their limited memory of past events. For an extended utterance the number
of possible sentences compatible with a Markov model may be much greater
than for a grammar model, for the same data. Demonstrating this in the
present context requires the derivation of a first-order Markov model from
a probabilistic grammar [13].

The uncertainty algorithm of section 3.1 will operate largely unchanged
with the prior probabilities obtained from the transition probabilities
rather than from the LR parser. Figure 5(b) contains results corresponding
to those in (a), for the Markov model inferred from the grammar in figure
1. The upper bound reaches 409 after 10 words, for a likelihood perplexity
of approximately 6.3, reducing to 37 for the average (after 30 sample
runs). This falls with the likelihood perplexity but is higher than for
the grammar model. The sentence perplexity for the grammar is twice that
for the inferred Markov model after from six to nine words depending on
This comparison is reproduced for other grammars considered.

-111- Intemational Parsing Workshop '89

References

1. S E Levinson, L R Rabiner and M M Sondhi, "An Introduction to the
Application of the Theory of Probabilistic Functions of a Markov Process to
Automatic Speech Recognition", BSTJ vol 62, ppl035-1074, 1983.

2. R Garside, G Leech and G Sampson (eds), "The Computational Analysis of
English, a Corpus-Based Approach", Longman, 1987.

3. H Bourland and C J Wellekens, "Speech Pattern Discrimination and
Multilayer Perceptrons", Computer Speech and Language, vol 3, ppl-19, 1989.

4. A V Aho, R Sethi and J D Ullman, "Compilers: Principles, Techniques and
Tools", Addison-Wesley, 1985.

5. N P Chapman, "LR Parsing, Theory and Practice", Cambridge University
Press, 1987.

6 . M Tomita, "Efficient Parsing for Natural Language", Kluwer Academic
Publishers, 1986.

7. J H Wright and E N Wrigley, "Linguistic Control in Speech Recognition",
Proceedings of the 7th FASE Symposium, pp545-552, 1988.

8 . P Suppes, "Probabilistic Grammars for Natural Languages", Synthese, vol
22, pp95-116, 1968.

9. W J M Levelt, "Formal Grammars in Linguistics and Psycholinguistics,
volume 1", Mouton, 1974.

10. C S Wetherall, "Probabilistic Languages: A Review and Some Open
Questions", Computing Surveys vol 12, pp361-379, 1980.

11. S M Shieber, "Sentence Disambiguation by a Shift-Reduce Parsing
Technique", Proc. 21st Annual Meeting of Assoc, for Comp. Linguistics,
ppll3-118, 1983.

12. L R Bahl, J Jelinek and R L Mercer, "A Maximum Likelihood Approach to
Continuous Speech Recognition", IEEE Trans, on Pattern Analysis and Machine
Intelligence, vol PAMI-5, ppl79-190, 1983.

13. J H Wright, "Linguistic Modelling for Application in Speech
Recognition", Proceedings of the 7th FASE Symposium, pp391-398, 1988.

(1) S ^ NP VP, 1 . 0 (5) REL -> pron VP, 0.3
(2) NP -> pn, 0 4 (6) VP -» iv, 0.5
(3) NP -» det n REL, 0.6 (7) VP -» tv NP, 0.5
(4) REL -> A, 0 7

Figure 1: A simple probabilistic grammar.

-112- Intemational Parsing Workshop '89

STATE
ACTION GOTO

pn det n pron iv tv $ S NP REL VP

0 sr2
0.4

si
0 .6

s2 s 3
1 s4

1 .0
2 acc
3 sr6

0.5
s5

0.5

1 .0
srl

4 s6
0.3

r4 r4
0.7

r4 sr3
5 sr2 si

--- >
sr 70.4 0 .6

6 sr6
0.5

s5
0.5

sr5

Figure 2: SLR and LALR parsing Cables for the grammar in figure 1.

Figure 3: Linguistic control block diagram for speech recognition.

TERMINAL
> STAGE (m)

1 2 3 4 5 6 7 8

pn 0.9 0.3 0.4 0.9
det 0 .2 0.4

n 0 .2 0.5
pron 0 .8 0.7

I V

tv 0 .8 0 .1 0.9 0 .8
$ 1 .0

Figure 4: Likelihoods for illustration of uncertainty algorithm.

-113- International Parsing Workshop '89

3
5

-1
r

35

A
,

A
ve

ra
g

e

-114- Intemational Parsing Workshop '89

F1
fet
-ir
e

5:
Se

nt
en

ce

pe
rp

le
xi

ti
es

fo
r

(a
)

gr
am

ma
r,

(b
)

Ma
rk

ov

mo
de

l.

P A R S IN G S P E E C H F O R S T R U C T U R E A N D P R O M IN E N C E

Dieter Huber

Department o f Computational Linguistics
University o f Goteborg

and

Department o f Information Theory
Chalmers University o f Technology

S-412 96 Gothenburg
Sweden

International W ork sh op on Parsing T ech n o lo g ie s
C arnegie M ello n U niversity

Pittsburgh. P ennsylvania
A ugust 2 8 - 3 1 . 1989

-115- Intemational Parsing Workshop '89

INTRODUCTION
T he purpose o f parsing natural language is essentia lly to ass ign to a linear input string o f

sym bols a formalized structural description that reflects the underlying linguistic (syntactic
and/or sem antic) properties o f the utterance and can be used for further information
process ing .

In most practical applications, this delinearization [4] is acheived by so m e kind o f
recursive panern matching strategy w hich accepts texts in standard orthographic writing, i .e .
com p osed o f discrete sym bols (the letters and signs o f som e specified alphabet) and blocks o f
svm b ols (words separated by blanks) as input, and rewrites them step by step, in accordance
with (1) a lexicon and (2) a finite set o f production rules defined in a formal gram m ar, into a
parse tree or a bracketed string. This approach is co m m o n ly restricted to the dom ain o f the
sen ten ce as maximal unit o f linguistic p rocess ing , thus adhering to the traditional view that
larger units like paragraphs, texts and d iscou rse , are formed by mere juxtaposit ion o f
autarchic, independently parsed sentences.

C learly , this kind o f procedure developed for parsing written language material is not im ­
mediately applicable to speech process ing purposes. For o n e . natural hum an speech does not
norm ally present itself in the acoustical m edium as a s im ple linear string o f discrete , well
demarcated and easily identifiable sy m b o ls , but constitutes a con tinu ou sly varying signal
w h ich incorporates virtually unlimited allophonic variations, reductions, e l i s io n s , repairs,
overlapping segm ental representations, grammatical def ic ien c ies , and potential am bigu ities at
all levels o f linguistic description. T here are no "blanks" and "punctuation marks" to define
w ords or indicate sentential boundaries in the acoustic d om ain . Syntactic structures at least in
spon tan eou s speech are often fragmentary or h ighly irregular, and cannot be easi ly defined
in terms o f established grammatical theory [26]. Last not least, important com p on en ts o f the
total m essa g e are typically encoded and transmitted by nonverbal and even nonvocal m eans o f
co m m u n ica t io n [i s] .

O n the other hand, hum an speakers organize and present their speech output in terms o f
w ell defined and clearly delimited chunks rather than as an unstructured, am orp hous chain o f
s ign a ls . T h is div ision into chunks is represented a m on g other parameters in the time co u rse
o f v o ice fundam ental frequency (F 0) w here it appears as a seq u en ce o f coh eren t intonation
units optionally delimited by pauses and/or periods o f laryngeaiization [19], and con ta in ing at
least on e salient pitch m ovem ent [9].[20]. H um an listeners are able to perceive these units as
"natural groups" form ing a kind o f performance structure [12], w hich reflects the information
structure o f the utterance [14] and is used to decode the intended m eaning o f the transmitted
m essa g e . T h is involves (I) ch op p ing up the m essage into information units in accordance with
the speaker 's and listener's shared state o f kn ow led ge . (2) organ iz ing these units both
internally and externally in terms o f given and new inform ation, and (3) se lect ing o n e or at
the m ost two e lem en ts in each unit as points o f p rom in en ce within the m essa ge .

SYSTEM OVERVIEW
W h ile written lan gu age input is generally presented to the parser with both the terminal

svm bols (i .e . w ords) and the starting symbols or roots (i .e . sen ten ces) c learly delineated and
set o f f from each other by spaces and/or punctuation marks, thus im p os in g the parsing
algorithm with the task to identify som kind o f intermediate structure(s) representation
c o m p o sed o f variables from a finite set o f non-terminal sym bols or categories (i .e . the phrase
structure, constituent structure, functional structure, e tc) , essentia l ly the reverse applies
w h en parsing con n ected speech input. That is , the cont in u o u sly varying sp eech s ignal is
presented to the analys is with som e kind o f intermediate structure(s) representation either
im m ediate ly ob servab le (e .g . the vo iced -u nvo iced distinction betw een individual speech
so u n d s) or readily d ed ucib le (e .g . the prosodic structure expressed in patterns o f intonation
and accentuat ion) without prior know ledge o f h igh er- leve l linguistic in form ation , thus leaving
the parser with the task to recogn iz e (or rather support the recognit ion of) both the individual
w ords and the full s en ten ces .

T h is reverse relat ionship betw een text parsing on on e s ide and speech parsing on the
other is illustrated schem atica l ly in figure 1. It must be appreciated in this context that the
interm ediate structure(s) representations in text versus speech parsing are neither identical
nor n ecessa r i ly isom orp h ica l .

-116- International Parsing Workshop '89

TEXT INPUT
SPEECH INPUT

INTERMEDIATE
STRUCTURES

LEXICON PARSER GRAMMAR

(WORDS ") (SENTENCE^

F igu re 1 Parsing N L text versus parsing connected speech

T h e speech parsing algorithm presented in this study is thus initiated by a data-driven
, spCeCh segm entation stage that exploits the prosodically cued chunking present in the

acousticsi! speech signal and uses it to perform automatic, speaker- independent segm entation
o f con t in u o u s speech into functionally defined intonation/information units. For this purpose.

o g lobal declination lines are computed by the linear regression method, w h ich approximate
the trends in time o f the peaks (topline) and vallevs (baseline) o f F . across the utterance
C om putation is reiterated every time the Pearson Product Moment Correlation Coefficient drops
below a preset level o f acceptability. Segmentation is thus performed without prior know ledge
ot h igher - lev e l linguistic information, with the termination o f on e unit being determ ined bv
the general resetting o f the intonation contour w herever in the utterance it may occu r .

Earlier studies in the correlations between prosodv and gram m ar have sh o w n that the
intonation units thus established t im e-align in a clearly defined way with units o f linguistic
structure that can be described in probabilistic terms with respect to three interlacing levels
ot analysis: constituent structure, linear word count and duration [i] . [: o] . F u rth erm ore , o n c e
the extent o f an intonation unit has been established both in the time and in the frequency
d o m a in , areas o f p r om in en ce can easily be detected as overshoot ing or undershoot ing F
ex cu rs io n s that provide valuable points o f departure for further linguistic analys is and island
parsing strategies.

A detailed description o f the segm entation algorithm together with an evaluation o f its
p erform ance on three m ed ium sized Sw edish texts read by four native speakers (two fem ale ,
two m ale) is presented in [21]. P rob lem s o f classif ication by m eans o f h ierarchically
orga n ized , non -p aram etr ic . m ult ip le-hypothes is c lassif iers are d iscussed in [6], A statistical
evaluation and coarse classif ication o f the t im e-a l ignm ent between the intonation units
established by our segm entation algorithm and features o f linguistic structure at the level o f a
com p le te sen ten ce (S) . c la u se (C). noun phrase (S U B) , verb phrase (V P) , adverbial m odifier
(A D V) and parenthetical construction (PAR) can be found in [20] and [21].

T h e present paper deals specifically with design aspects o f a parsing a lgorithm that
accepts the output o f the speech segm entation stage as input and uses it

1 - to build a case gram m ar representation o f the orig inal
speech utterance:

2 - to gu id e the word recognition process by generating
expectations resulting from partial linguistic analyses.

In the fo l low in g sec t ion s , the gram m ar form alism , the lexicon and the parser will be
presented as separate m od u les . P rob lem s o f integration with other language m odels
(l in gu ist ic and stochastic) will be d iscu ssed in the sum m ary .

International Parsing Workshop '89

G R A M M A R

T h e gram m ar form alism adopted for syntactic /sem antic parsing o f the speech input is
based on F il lm ore 's case gra m m a r [1 1] . A ccord in g to this approach, a sentence in its basic
structure (deep structure as opposed to surface structure) is com posed o f a modality
com p on en t M and the proposition P:

S => M + P (1)

w here M defines a series o f m odes w hich describe aspects o f the sentence as a whole:

M * tense, a sp e c t . . .m ood (2)

and P con sists o f the verb together with various cases related to it:

P => V erb + C t + C ̂ C n (3)

with the indices in C , denoting that a particular case relationship can on ly occur o n ce in a
proposition .

Each case is defined according to Simmons [28] as:

C * K + N P (4)

w h ere K (w hich mav be null) stands for the preposition w hich introduces the noun phrase
and defines its relationship with the verb:

K * Prep (5)

and the noun phrase N P is defined as:

N P => (P rep)* + (D et)* + (A d jIN)* + N + (S I N P)* (6)

in w h ich the parentheses denote optional e lem en ts , the asterix m eans that the e lem en t may be
repeated, and the vertical bar indicates alternation.

A full case gram m ar representation can thus be described as a tree structure in the form .

S

M o d a l i ty

W ith in the general fram ework o f case gram m ar, the fo l low ing m odes and their respective
p oss ib le va lues have been adopted:

T E N S E - present, past, future
A S P E C T - perfect, im perfect
E S S E N C E - positive, negative, indeterminate
F O R M - s im p le , em phatic , progress ive
M O D A L - can . may, must
M O O D - declarative, imperative, interrogative
M A N N E R - adeverbial
T I M E - adverbial

-118- Intemational Parsing Workshop '89

The modality of the utterance as a whole is ultimately determined by the combination of the
individual values assigned to each of the modes listed above.

At least five of these eight modes, i.e. form. mood, essence and the adverbials of time
and manner have been shown to be directly reflected in the intonation contours of natural
human speech (e.g. [2].[5].[2 0].[27]). For instance, emphatic pronunciation appears to be
universally signaled by larger pitch movements both in the local (emphatic accent) and in the
global (wider k e y) domain. Imperative mood, in addition to displaying on the average shorter
durations per intonation unit, is usually associated with higher F 0 onsets and steeper
declination line falls, whereas declarative mood is typically cued by low. target-value F

offsets, often combined with a short period of laryngealization or devoicing. Adverbials. botft
of manner and time, are commonly processed in terms of separate intonation units,
especially w'hen they appear at utterance-final positions. The interrogative mood, at least as
far as non-WH-questions are concerned, is signaled intonationally in most languages studied
so far by rising intonation patterns, terminally and/or globally (the latter predominantly with
respect to the topline).

As shown earlier, the speech segmentation algorithm not only aims to unearth the
underlying intonation/information structure of the utterance, but also represents the
calculated values of various intonation unit parameters (i.e. duration, declination slope,
onset, offset and resetting, for the baselines and toplines respectively) in a 10-parameter
vector which is used for a first broad classification and hierarchization (see references
[6],[20] and [2i] for further details). Individual values are measured in Hz (F -values) or
milliseconds (durations) and represented in separate probability density functions (P D F)
which allows for (1) finer grain. (2) fast computation of average means, standard deviations
and modal targets, and (3) direct comparison and categorization of individual intonation unit
parameters reflecting m o d a l i t y by simple and robust VQ methods.

Prominence
Topline Intercept (atop) ' 801 Topline Endpoint (y top)

T-H 3 V
0 02 p «. 41 0 02

r
1-1*1 _
. .« > ftT, i|

k A

i - irw 5
:3 2

n - i«3
0 01

ooo -------- I L f !------- im, (j 1
I k

0® -------- - 0 00 ----- ^ U l

Duration
0 03

0 02
r-2233

• • 3*J

- 4

Baseline Slope

0 00 \j

l* " 1 Baseline Endpoint (y base)

7W9------ ran------nr. i I f c ,

Figure 2 Intonation unit param eters for on e m ale speaker

-119- Intemational Parsing Workshop '89

In su m m ary , modality provides essential information about the propositional content o f
the utterance. It also provides valuable cues to word order (e .g . interrogative mood is often
associated with inverted word ord er) , word structure (e .g . imperative sentences usually lack a
lexical express ion for the subject, w hich is co m m on ly understood to be the addressed
p erson) , and constituent identity. D eterm in ing the modality at an early stage o f the parsing
process by probabilistic evaluation o f the intonational cues specified by the segm entation
algorithm thus helps (1) to establish important aspects o f the overall m eaning o f the
utterance, and (2) to judge the plausibility o f alternative word order hypotheses.

Proposition
In traditional case gram m ar, the main verb in the proposition constitutes the kernel to

w h ich the cases are attached, and the auxiliary verbs contain much o f the information about
modality. It is thus important to detect and identify the verbal e lem ents o f the utterance at an
early stage o f the parsing process .

It has been sh ow n earlier that on ce the extent o f an intonation unit is established both in
the time and in the frequency dom ain , areas o f p rom in en ce can easily be spotted as
oversh oot in g or undershooting pitch excu rsion s that reach outside the F 0 range defined by
the com puted b asel ine-top line configuration . Unfortunately , only a sm all proportion o f these
prom inent pitch obtrusions (less than one third, i .e . 3 1 .6 %. in our accum ulated Sw edish
material com p ris in g 10 440 running words and 7 0 4 sentences o f read speech recorded by
four native speakers) have been found to be directly associated with the verbal constituents in
natural hum an sp eech , and thus provide an im mediate cue for the detection and identification
o f the case head. O n the other hand, these v erb -p rom in en ce co in c id en ces - at least in our
S w ed ish material - have been found to be strongly related:

1 - to prom inent pitch obtrusions in the initial parts o f the
individual intonation units (8 1 .7 %). w hereas prom in en ce in
the final parts appears to be predominantly associated with
nominal constituents (77 .1 %):
2 - to lower average F 0 values o f overshoot ing pitch
prom in ence (typically around 12 H z for our male speakers
and 17-2 0 Hz for their fem ale counterparts) , w hereas pitch
pro m in en ce in connection with focal accent or em p hasis on
nom inals reaches on the average significantly h igher values.

T h is latter p h e n o m en o n apparently applies irrespective to the position o f the pitch
obtrusion with regards to earlier or later sect ions o f the intonation unit.

In su m m a ry , about on e third o f the prom inent pitch obtrusions com puted by the speech
segm entation algorithm are directly associated with verbal constituents , and can thus be
regarded as reliable cu es to indicate verbal case heads in connected sp eech parsing. O n the
other hand, the ov erw h e lm in g majority o f prom inent pitch excu rs io n s t im e-a lign with
n om inal co n stru ct ion s , i .e . s ign a ling the "important", "new", "unpredictable" words
carrying most o f the sem antic information content in the utterance, w hereas most o f the
potential verbal ca se heads are associated with n on-obtrusive pitch m ovem en ts inside the
b a se l in e -to p lin e configuration .

A lbeit for ob v iou s reasons this situation is far from optimal for a casefram e approach to
con tin u o u s sp eech parsing, w e con s id er the fact to be able to reliably identify about o n e third
o f the potential verbal case heads in natural hum an sp eech , and to use them to construct a
skeleton o f verb kernels around w hich a case gram m ar representation o f the original
utterance can be built, as a p rom isin g step in the right direction.

Several attempts have been reported in the literature to extend the traditional case -
theoretic approach to include even nom inal case fra m es , i .e . to construct ca se gram m ars that
use case fra m es not on ly to d escribe verbs but also the head nouns o f nou n phrases (see for
instance [15]). W ork in this direction is o n g o in g and will be reported in later papers.

A fuller presentation o f the gram m ar com p o n en t built for parsing c o n t in u o u s sp eech
input, together with an im plem entation study for Sw edish speech input is prepared for
presentation at C O L I N G 9 0 .

120- International Parsing Workshop '89

LE X IC O N

The lexicon to be used with the parser is specially designed for speech processing
applications (text-to-speech. speech recognition, speech coding, etc) and supports the
caseframe approach to continuous speech parsing outlined in this studv. Its format is defined
as a Swedish monolingual dictionary which contains in addition to the standard entries (head,
homograph index, part-of-speech. inflexion code, morphological form classes, etc) also:

1 - a narrow phonetic transcription reflecting standard
pronunciation usage:

2 - the textual frequency rating based on a one-million word
korpus of Swedish newspaper articles:

3 - an indexed caseframe description for each verb entry.

For the latter purpose, the following reduced set of cases has been adopted from Stockwell.
Schachter and Partee [29]. with definitions compiled by the author:

AGENT - animate instigator of the action
DATIVE - animate recipient of the action
INSTRUMENTAL - inanimate object used to perform the

action
LOCATIVE - location or orientation of the action
NEUTRAL - the thing being acted upon (combining

the objective and the factive in
Fillmore's original list of cases

A caseframe is thus defined as an ordered array composed of the entire set of cases

casefram e = a rra y [a g e n t . . . n e u tr a l] (8)

in which each case can be either required (req) or optional (o p t) or disallowed (d is) and
must be marked accordingly.

Since several different verbs often share the same particular kind of caseframe. we
propose to store the entire set of 3 5 logically possible caseframes as an indexed list, using
the indices as pointers (identifiers) with the respective verb entries in the lexicon. Thus,
instead of listing the complete caseframe specification together with the lexical entry as in the
following example for the Swedish verb "hacka" (to chop):

hacka 3 type: verb
i n f l : v l
freq : 4
tran: [2 hakka]
case: agent - req

d a tiv e - d is
in stru m en ta l - opt
lo c a t iv e - opt
n eu tra l - opt

using the indexed representation format results in the more space-economic and search-
effective structure:

hacka 3 type: verb
in f l : v l
freq : 4
tran: [2 hakka]
case: 97

O b serv e that the entry " t y p e : v e r b " might at first g lance appear redundant in v iew o f the
fact that to begin with on ly the verb entries are listed with ca sefram es. As indicated in the
previous sect ion , how ever , we plan to include casefram e descriptions even for n ou ns and

121- International Parsing Workshop '89

other nom inal constructions , with feature descriptions based on research on valency theory
currently conducted at the department o f computational linguistics . Further lexical work, is
also directed towards the extension o f individual case states marked as " r e q " or " o p t " with
probabilistic lexical hypotheses derived from K W IC -studies o f coherent speech .

PARSER
G iven the potentially ungrammatical and often highly fragmentary nature o f con tinu ou s

speech input, the actual parsing o f the prosodicallv segm ented utterance is performed
fo l low ing a flexible , m ultiple-strategy, constru ction -sp ec if ic approach as proposed am on g
others bv Carbonell Sc Hayes [s]) . Kw asnv & Sondheim er [24] and W eisch ed e l & Black [31].
A fundamental objective associated with this kind o f approach is to integrate general signal
p rocess in g and natural language process ing techniques (both linguistic and stochastic) in
order to fully exploit the com bination o f partial information obtained at various stages o f the
analys is .

As sh ow n earlier, the output o f the speech segm entation algorithm and input to the parser
is a linear seq u en ce o f parameter vectors representing the L PC -coeffic ients and pitch value
estimates o f the original con tin uous speech utterance at 16m s-intervals, with the F 0 contour
segm en ted into prosodically defined intonation/information units. Typical prosodic structure
representations are exem plified below in Figure 3 for three short sam ples o f Sw edish (m ale
speaker, h igh-quality digital record ing) . E nglish (fem ale speaker, poor-quality a na logu e
recording) and Japanese (m ale speaker, toll-qualitv analogue recording) speech .

S W E D I S H (male speaker) E N G L I S H (female speaker) J A P A N E S E (male speaker)

Cr>mmgen kom klockan J pd m orjonen 14 < \ 1 264 och
England n od mfor mbordeskngets khm at A 'migen torn *or
Jen misslyckade H ennk III. to* annu i k lo tirrt i Lewes.
uvu<u>ad i grevskapei Sussej omgiven a ana sot date r
Ujtiike 7000 man. Hon *ade nvligen merkomnyi fran
Fr& iknkr 1 ttadent jastnmg rt normtMtdi^ka tom ann*
reser tig oanfran den iago bebrggelten i tinden. befann
sig Pnns E fcard. kungens ton. och k a n tom Langtkank.
Edvard k ommen dr rnOt JOOO txn + ta nddare

The *rm Mrw U nhods im Marketing m m mat* some ihtnk o f
Vain* A nm inu . *+*ch can tx defined a t an odtecitve and
imagine*iv* took at a p ro + x i or iernce io tee i f il is
poesidie io mad* u more profitable at tom* cost or to
supply the idem dnaiiry at a lower cost, or o f System telling.
~nich meant that a com jnv. instead o f telling an \toiote4
machine or component, offers a com pete system a com pete
factory or pom tr disindtnion system.

Nihon no dona m atht m mo ryokm go \adi\mm anmomt.
Sono n m a m mm yofu no rypkan mo anm ant

4r**d »m kjito Nthaek-fi no *ado m o-*omon m nmntm
desho Myaiesn w yo ft no hotem to wo chigaimatm

Yado m isudu *o jochm go heya «i annat shu t kart anom
»a iugu Lunano ni iikanntuti

H nm no mannada nj chmana h iL u shoimiodM go an.
anota tab*ton w tu+ m nm an

^ ^
~ - r * < 1

! ^ z : " C .-3.

^ » •

1
1 _ I

,£r'^ 4
Jl

= a - E ^ - a r s B -

>
n s - ^

1 0 1 1) *

! 4 v

• » I J 4 !
1

• » 2) «

F igu re 3 Prosod ic structure representation for three short
sam ples o f S w ed ish . E nglish and Japanese speech . A rrows
indicate areas o f pro m in en ce outside the F Q range defined by
the b ase l in e -top lin e configuration .

T h e calculated values o f the intonation unit parameters duration, dec lination , onse t , offset
and resetting, for the base l ines and toplines respectively, are stored in a 10-param eter vector
and used for a first broad classif ication and hierarchization o f the material.

O n c e the sp eech segm entation algorithm has established the extent o f an

-122- International Parsing Workshop ’89

intonation/information unit both in the time and in the frequenv d om ain , areas o f
p rom in en ce can be easily spotted as overshooting or undershooting pitch excursions reaching
outside the F 0 range defined by the computed baseline-topline configuration. P rom in ence is
measured by the H z-distance above topline or below baseline respectively (com pare figure 2).

Based on the probabilistic data for verb-prominence correspondences established in the
previous section, the verbal components of the utterance are localized and used as points of
departure for further linguistic processing. As shown among others by Waibel [30] for
English and Bannert [j] for German, these pitch obtrusions provide the must reliable cue for
the automatic detection if s t r e s s in continuous speech recognition, i.e. marking the
"important'' words carrying most of the semantic information content in the utterance. In
addition, stressed syllables are commonly pronounced with longer durations and better
articulation, which qualifies them as "islands of phonemic reliability", generally scoring
better recognition rates than the unstressed (reduced, neutralized) parts of the utterance.

Parsing is run in parallel with the acoustic-phonetic classifier, following a hypothesis-
driven island parsing strategy, i.e. using the areas of prominence (islands of reliability) as
points of departure for inside-out processing. In other words, the classifier first forms a
hypothesis about the phonetic identity of the speech segment(s) at the center of prominence.
After that, the island is gradually expanded in both directions by verifying neighbour phone
candidates using continuously variable hidden Markov models (H M M) [25] based on
precompiled allophone/diphone/triphone statistics [16] and bounded by phonological
constraints expressed in the form of finite state transition networks as proposed among others
by Church [ioj.

Island expansion proceeds to the beginn ing and end o f the respective intonation /in form a­
tion unit, thus constructing a phone lattice that spans the entire duration o f the IU . A word
lattice o f the input utterance is hypothesized on the basis o f information about (1) the most
probable num ber o f words predicted for the respective intonation/information unit as derived
from the broad classif ication [21]. (2) the language specific know ledge about the phonotactic
properties within words and across words defined by the phon ology-con stra in ed d iphone and
triphone m od els . (3) the expected case identities generated by the caseframe entries in the
lex ico n , and (4) the lexical identities listed in a Sw edish pronunciation lexicon [17]. Syntactic
(in c lu d in g m orphologica l) constraints are on ly weakly defined in a constituent-based context-
free gram m ar formulation (C F G), w hich is aimed to permit su ccessfu l parses even for
fragm entary and/or gramm atically deficient speech input and is expected to support the
p runing o f "unprom ising" parses at an early stage o f the analysis.

It must be appreciated in this context that on ly about on e fifth o f all in tonation /in form a­
tion units unearthed by the speech segm entation algorithm (1 8 .2 % in our Sw ed ish material)
align in a s im ple o n e - to -o n e fashion with full sen ten ces , w hile the majority (8 1 .8 % in the
S w edish material) a ligns with features o f constituent structure in the su b -sen ten ce dom ain .
T his im plies that the ov erw h e lm in g majority o f full sentences (grammatical as well as
ungram m atica l) contained in continu ou s speech is processed in terms o f several
in tonation/inform ation units. Empirical study o f our accum ulated Sw edish speech material
revealed an average o f 2 .3 6 IU s per sentence with three clearly defined m odes at 2 , 3 and 5
IU s [20]. It must be appreciated in this context that sentences com p osed o f 4 or m ore
intonation/inform ation units typically contain parallel structures su ch as enu m era t io n s ,
appositions , parentheticals and rhetorical repetitions.

G iven the limited nu m b er o f actually o ccu rr ing IU -p e r -sen ten c e conste llat ions represented
by the com b ination o f (1) the most probable num ber o f IU s per sen ten ce , (2) the internal
properties o f each individual IU specified in a 10-parameter vector con ta in ing duration,
on se t , offset, s lop e and resetting values for the basel ine and topline respectively , and (3) the
scored lattice o f constituent label(s) derived from the coarse-c lass if ication procedure , the su b ­
p roblem o f sen ten ce generation by intonation unit concatenation can be con ven ien t ly solved
bv a finite-state parsing strategy such as proposed by G ibbon [13]. i .e . u s in g a finite-state
automation (F S A) with transition probabilities attached to each arc.

S U M M A R Y AND CONCLUSIONS
T h e speech segm en tation , classification and hierarchization co m p on en ts have been

developed for Sw ed ish speech input. T esting the algorithm for E n glish and Japanese sp eech
input is o n g o in g and sh ow s prom ising results. Further research focuses on im provem ents in
the definition o f the linguistic description format (i.e . incorporating n om inal ca se fram es ,
attaching probability scores for cases in the " o p t " state, includ ing lexical hypotheses with

-123- Intemational Parsing Workshop '89

the casefram e entries , integrating the case grammar with a functional grammar com p on en t ,
etc) .

W e like to believe that the approach presented in this study show s promise not only for
spoken input parsing in general, but for a num ber o f practical applications in the field of
speech process ing including te lecom m unication , interpreting telephony, automatic keyword
extraction, and text-to-speech synthesis . Linear regression lines are easily calculated and
require onlv little computational effort, w hich makes the segmentation algorithm a fast,
robust and objective technique for computer speech applications. M odulating voice for
increased informativitv exploits a natural strategy that human speakers use quite automatically
in com m u n ica t ive situations involving channel defic iency (e .g . due to static, transm ission
noise , or masking effects) and/or different kinds o f ambiguity P rom inent pitch
ex cu rs io n s (together with greater segm ental durations) constitute a universally used feature o f
language that is em ployed to signal new versus g iven , contrastive versus presupposed ,
thematic versus rhematic information in connected speech utterances [7] and can thus be used
as a reliable cu e to quickly identify the sem antically potent keywords in the m essa ge . In
addition, the frequency range covered by voice phenom ena (intonation, accentuation ,
larvngealization) lies safely within the normal band limits o f te lecom m u nication , w hich
qualifies F 0 as a natural, versatile, and access ib le code for hum an-com puter interaction via
te lephone.

F inallv . text-to-speech systems using standard syntactic parsers designed to find 'm ajor
svntactic boundaries" at w hich the intonation contour needs to be broken into separate units
that help the listener to decode the m essage , invariably co m e up with the sam e two kinds o f
problem s [23]:

1 - they tend to produce not one (the most probable, sem antically most
plausible) but several alternative parses:

2 - they produce too many boundaries at falsely detected or inappropriate
sen ten ce locations.

Perceptual evaluation o f these synthesized contours reveals that listeners get distracted and
often even piainlv confused by too many prosodicallv marked boundaries , w h ile too few
prosodic breaks just sound like as if the speaker sim ply is talking too fast. T h ese find ings not
onlv sh o w that the am ount o f segm entation and the corresp on den ce between syntactic and
prosodic units are dependent on the rate o f sp eech , but that listeners apparently neither
expect, nor need, nor even want prosodically cued information about all the potential
r ich n ess in syntactic structure described by modern syntactic theories, in order to decode the
intended m ean in g o f an utterance.

REFERENCES
[1] B A lten berg . ''Prosodic Patterns in Spoken E n g lish " . Lund University Press , 1987
[2] H A ltm an n . "Zur Problematik der Konstitution von Satzmodi als Form rvpen". in: J
M eib a u er (ed) Satzm odus zw isch en Gram matik und Pragmatik. M ax N ie m e y e r V er la g ,
T u b in g e n 1987
[3] R .B a n n ert . "From prom inent syllables to a skeleton o f m eaning: a model o f prosodically
guided sp eech recogn it ion " . Proceedings o f the Xlth International Congress o f Phonetic Sciences,
T all in n (E stonia) 1987
[4] A Barr and E A F e ig en b a u m . "The H andbook o f Artificial In te ll igen ce" . Stanford 1981
[5] A B atliner . "Produktion und Pradiktion. D ie Rolle intonarischer und anderer M erk m a le
bei der B e s t im m u n g des Satzm odus" . in: H Altm ann (ed) In ton ation s forsch u ngen . M ax
N ie m e y e r V er lag . T u b in g en 1988
[6] H B ro m a n . P Brauer. E E lia ssen . P H ed e l in . D H uber and P K n a gen h je lm .
"Classification: A P rob lem o f Optimization or O rgan iza t io n ?” , Proceedings o f the 57(7-
Symposium "D igital Com m unication", S tockholm 1989
[7] G B ro w n . "Prosodic structure and the g iv e n /n ew distinction", in: A .C u tler and D .R .L a d d
(e d s) . Prosody: M o d e ls and M ea su rem en ts . S pr in g er -V er lag . 1983
[«] J G C arbonell and P J H a y e s . "Robust parsing using multiple co n stru c t io n -sp ec if ic
strategies", in: L B ole (ed) . Natural L an gu age Parsing S ystem s. S p r in g er -V e r la g , B erlin
1987
[9] W L C h afe . "Givenness, contrastiveness , defin iteness , subjects , topics, and points o f
v iew " , in: C harles Li (ed) . Subject and T op ic . A cad em ic P ress . N e w Y ork 1976

-124- Intemational Parsing Workshop '89

[10] K W C h u rch . "Phonological Parsing in Speech R ecognition". Kluwer A cadem ic
P u b lishers . 1987
[1 1] Ch F il lm ore . "The case for case" , in: E Bach and R T H arm s. U niversa ls in Linguistic
T h eory . Holt. Rinehart and W inston . C hicago 1968
[12] J P G ee and F G rosjean. "'Performance structures: a psycnolingu ist ic and linguistic
appraisal". Cognitive Psychology 15. 1983
[13] D G ib b o n . "Finite state process ing o f tone sy s tem s” . ACL Proceedings. 1987
/ i 4] M A K Halliday. '"Theme and Information in the E nglish C lause" . Oxford U niversity
Press . 1976
[15] Ph J H ayes . A G H auptm ann. J G Carbonell and M Tomita. "Parsing spoken language:
a sem antic casefram e approach". ACL Proceedings. 1986
[16] P H ed el in . D H uber and A Leijon. "Probability distribution o f a llophones , d iphones and
triphones in phonetic transcriptions o f Sw edish newspaper text". C halm ers Report 8. 1988
[17] P H ed e l in . A Jonsson and P Lindblad. "Svensk Uttalslexicon (Sw edish Pronunciation
L e x ic o n)" . C halm ers Report 4 . 1989
[18] D H u ber . "On the C om m unicative Function o f V o ice in H u m an -C om p u ter Interaction".
S T IM D I 2 . S tockholm 1988
[19] D H u b er . "Larvngealization as a Boundary Cue in Read Speech " . Proceedings o f the
Second Swedish Phonetics Conference. Lund 1988
[20] D H u b er . "Aspects o f the C om m unicative Function o f V o ice in Text Intonation". P h D
D issertation . G oteborg 1988
[21] D H u b er . "A statistical approach to the segm entation and broad classif ication o f
con tin u ou s speech into phrase-sized information units". Proceedings ICASSP 89. G lasgo w
1989
[22] D H u b er . "Prosodic Contributions to the Resolution o f A m biguity" . Proceedings o f the
Conference NORDIC PROSODY V. A bo (F in la n d) . 1989
[23] D H Klatt. "Review o f text-to-speech conversion for E n glish " . Journ al o f the Acoustical
Society o f America 8 2 (3) . 1987
[24] S C K w asnv and N K S on d h e im er . " U n g ra m m a tic a l ly and extra-grammaticality in
natural language understanding system s" . Proceedings o f the 17th Annual Meeting o f the
Association fo r Computational Linguistics. La Jolla. Cal. 1979
[25] S E L ev in so n . "C ontinuously variable hidden M arkov models for automatic speech
recogn it ion " . Computer Speech and Language \ . 1986
[26] J Lofsrrom. "Repliker utan G ranser (B ou nd less Conversational E x ch a n g e s)" . P h D
D issertation . G oteborg 1989
[27] W O p p en rieder . "Intonarische K e n n ze ich n u n g von Satzm odi". in: H A ltm ann (ed)
In ton at ion s forsch u n gen , M ax N ie m e v e r V erlag . T u b in g en 1988
[28] R F S im m o n s . "Semantic networks: their computation and use for understanding
E ng lish sen ten ces" , in: R C Schank and K M Colby (ed s) . C om puter M od e ls o f T h o u gh t and
L a n g u ag e , W H F reem a n & C o . San F ran cisco 1973
[29] R P S tockw eil . P Schachter and B H Partee. "The M ajor Syntactic Structures o f
E n g lish " , H oit , R inehart and W in sto n . N e w York 1973
[30] A W a ib e l , "Prosodic k now ledge sou rces for word hypothesization in a con t in u ou s sp eech
recognit ion system " . Proceedings ICASSP 87. Dallas 1987
[3 1] R M W e isch ed e l and L Black. "Responding to potentially unparseable sen ten ces" .
American Journ al o f Computational Linguistics 6 , p p .9 7 - 1 0 9 . 1980

-125- International Parsing Workshop '99

P a rs in g C on tin u o u s S p eech by HMM-LR M ethod

Kenji KITA, Takeshi KAWABATA, Hiroaki SAITO

ATR Interpreting Telephony Research Laboratories
Seika-chou, Souraku-gun, Kyoto 619-02, JAPAN

Abstract
This paper describes a speech parsing method called HMM-LR. In HMM-LR, an LR parsing table

is used to predict phones in speech input, and the system drives an HMM-based speech recognizer
directly without any intervening structures such as a phone lattice. Very accurate, efficient speech
parsing is achieved through the integrated processes of speech recognition and language analysis.
The HMM-LR method is applied to large-vocabulary speaker-dependen t Jap an ese phrase
recognition. The recognition rate is 87.1% for the top candidates and 97.7% for the five best
candidates.

1 Introduction
This paper describes a speech parsing method called HMM-LR. This method uses an efficient

parsing mechanism, a generalized LR parser, driving an HMM-based speech recognizer directly
without any intervening structures such as a phone lattice.

Generalized LR parsing [1] is a kind of LR parsing [2], originally developed for programming
languages and has been extended to handle arbitrary context-free grammars. An LR parser is guided
by an LR parsing table automatically created from context-free grammar rules, and proceeds left-to-
right without backtracking. Compared with other parsing algorithms such as the CYK (Cocke-
Younger-Kasami) algorithm [3] or Earley’s algorithm [4], a generalized LR parsing algorithm is the
most efficient algorithm for natural language grammars.

There have been some applications of generalized LR parsing to speech recognition. Tomita [5]
proposes an efficient word lattice parsing algorithm. Saito [6] proposes a method of parsing phoneme
sequences tha t include altered, missing and/or extra phonemes. However, these methods are
inadequate because of the information loss due to signal-symbol conversion. The HMM-LR method
does not use any intervening structures. The system drives an HMM-based speech recognizer
directly for detecting/verifying phones predicted using an LR parsing table.

HMM (Hidden Markov Models) [7] has the ability to cope with the acoustical variation of speech
by means of stochastic modeling, and it has been used widely for speech recognition. In HMM, any
word models can be composed of phone models. Thus, it is easy to construct a large vocabulary speech
recognition system.

This paper is organized as follows. Section 2 describes the LR parsing mechanism. Section 3
describes HMM. Section 4 describes the HMM-LR method. Section 5 describes recognition
experiments using HMM-LR. Finally, section 6 presents our conclusions.

2 LR Parsing
2.1 LR P ars ing

LR parsing was originally developed for programming languages. It is applicable to a large class
of context-free grammars.

-126- Intemational Parsing Workshop '89

The LR parser is deterministically guided by an LR parsing table with two subtables (action table
and goto table). The action table determines the next parser action ACTION[s,a] from the state s
currently on top of the stack and the current input symbol a. There are four kinds of actions, shift,
reduce, accept and error. Shift means shift one word from input buffer onto the stack, reduce means
reduce constituents on the stack using the grammar rule, accept means input is accepted by the
grammar, and error means input is not accepted by the grammar. The goto table determines the next
parser state GOTO[s,A] from the state s and the grammar symbol A.

The LR parsing algorithm is summarized below.

1. Initialization. Set p to point to the first symbol of the input. Push the initial state 0 on top of
the stack.

2. Consult ACTION[s,a] where s is the state on top of the stack and a is the symbol pointed to by
P-

3. If ACTION[s,a] = “shift s' ”, push s’ on top of the stack and advance p to the next input symbol.
4. If ACTION[s,a] ^ “reduce A— p”, pop |0| symbols off the stack and push G O TO is 'A] where s’ is

the state now on top of the stack.
5. If ACTION[s,a] = ,laccept”, parsing is completed.
6. If ACTION[s,a] = “error”, parsing fails.
7. Return to 2.

2 .2 Genera l ized LR Pars ing
Standard LR parsing cannot handle ambiguous grammars. For an ambiguous grammar, the LR

parsing table will have multiple entries (conflicts). As a general method, a stack-splitting mechanism
can be used to cope with multiple entries. Whenever a multiple entry is encountered, the stack is
divided into two stacks, and each stack is processed in parallel. Thus, it is possible to use LR parsing
to handle an ambiguous grammar which describes natural language.

e o u k r S

0 s5 s2
1 s7,r3 r3
2 s9 s 10
3 r2

(1) S -> N P V 4 sS S11

(2) S -» V 5 s 13

(3) NP - ♦ N 6 acc

(4) NP —» N P 7 r6

(5) N - » k o r « 8 r4

(6) P -> o 9 s14

(7) V - * k u r e 10 si 5

(8) V -» o k u r e 11 s 10
12 r1
13 s 16

Fig.l Example grammar 14 s 17
15 s 18
16 s 19
17 r5 r5
18 Xl
19 $20
20 r8

Fig .2 LR parsing table

-127- Intemational Parsing Workshop '89

A s i m p le e x a m p l e g r a m m a r is s h o w n in F i g . l , a n d th e LR p a r s in g ta b le , c o m p i le d from th e

g r a m m a r a u t o m a t i c a l ly , is s h o w n in F i g . 2. T h e le f t p a r t is th e a c t io n ta b le a n d th e r ig h t p art is the

g oto ta b le . T h e e n tr y “a c c ” s t a n d s for th e a c t io n "accep t", a n d b la n k s p a c e s r e p r e s e n t “ erro r” . T h e

t e r m in a l s y m b o l r e p r e s e n t s th e e n d o f th e in p u t .

3. HM M (H id d en M a rk o v M o d els)
H M M is e f f e c t iv e in e x p r e s s i n g s p e e c h s t a t i s t i c a l l y , so i t h a s b e e n u s e d w i d e l y for s p e e c h

re c o g n it io n .
F i g . 3 s h o w s a n e x a m p l e o f a p h o n e m o d e l . A m o d e l h a s a c o l l e c t io n o f s ta te s c o n n e c t e d by

tra n s it io n s . T w o s e t s o f p r o b a b i l i t i e s are a t t a c h e d to e a c h t r a n s i t io n . O n e is a tran sitio n p ro b ab ility

a LJ, w h ic h p r o v id e s th e p r o b a b i l i t y for t a k i n g t r a n s i t i o n from s t a t e i to s t a t e ; . T h e o th e r is a n output

p ro b a b ility btJk, w h ic h p r o v id e s th e p r o b a b i l i t y o f e m i t t i n g code k w h e n t a k i n g a t r a n s i t i o n from s t a te

i to s t a t e j .
T h e fo rw a rd -b a ck w a rd a lg o r ith m [7] c a n be u s e d to e s t i m a t e th e m o d e l ’s p a r a m e t e r s g iv e n a

c o l le c t io n o f t r a i n i n g d a ta . A f te r e s t i m a t i n g th e m o d e l ’s p a r a m e t e r s , th e fo rw ard a lg o r ith m (tre llis

a lg o r ith m) c a n be u s e d to v e r i f y p h o n e s a s fo l lo w s .

1 (f = 0 & i = 0)

a j (0 = 0 ((t = 0 & i * 0) or (t ^ 0 & i = 0))

'Zj (a.j(t-l)ajibjiiyt))

a,(0 is the probability th a t the Markov process is in state i having generated code sequence
y i,y 2 ,...,yi. The final probability for the phone is given by apiT) where F is a final state of the phone
model and T is a length of input code sequence.

4. H M M -L R M eth o d
4.1 Basic M echan ism

In standard LR parsing, the next parser action (shift, reduce, accept or error) is determined using
the current parser state and next input symbol to check the LR parsing table. This parsing
mechanism is valid only for symbolic data and cannot be applied simply to continuous data such as

speech.
In HMM-LR, the LR parsing table is used to predict the next phone in the speech. For the phone

prediction, the grammar terminal symbols are phones instead of the grammatical category names
generally used in natural language processing. Consequently, a lexicon for the specified task is

embedded in the grammar.
The following describes the basic mechanism of HMM-LR (see Fig.4). First, the parser picks up all

phones which the initial state of the LR parsing table predicts, and invokes the HMM to verify the
existence of these predicted phones. During this process, all possible parsing trees are constructed in

Fig. 3 HMM phone model

-128- International Parsing Workshop '89

parallel. The HMM phone verifier receives a probability array which includes end point candidates
and their probabilities, and updates it using an HMM probability calculation process (the forward
algorithm). This probability array is attached to each partial parsing tree. When the highest
probability in the array is lower than a threshold level, the partial parsing tree is pruned by
threshold level, and also by beam-search technique. The parsing process proceeds in this way, and
stops if the parser detects an accept action in the LR parsing table. In this case, if the best probability
point reaches the end of speech data, parsing ends successfully. A very accurate, efficient parsing
method is achieved through the integrated process of speech recognition and language analysis.
Moreover, HMM units are phones, and any word models can be composed of phone models, so it is
easy to construct a large vocabulary speech recognition system.

4 .2 A l g o r i t h m

To describe an algorithm for the HMM-LR method, we first introduce a data structure named cell.
A cell is a structure with information about one possible parsing. The following are kept in the cell:

• LR stack, with information for parsing control.
• Probability array, which includes end point candidates and their probabilities.

The algorithm is summarized below.

1. Initialization. Create a new cell C. Push the LR initial state 0 on top of the LR stack of C.
Initialize the probability array Q of C;

Qit) =
t = 0
1

Gram m ar rules

V —* Vn t m („) Vcon |(n)
V « ,m 1 - " " O t h I I
Vn «m2 -* m o
V n .m j -* m o r a
Vconj 1 - * r U
VCOn,2 « u
VCon,3 - * «

Pre-compile

H M M phone models

m - .
/m /

/c

/ts//o/ \

Phone
prediction

ch
ts

ch 70
ts 65
r 30

Verification
score

Verif ication \

' ' V X / W
Input speech: mochiiru

LR tab le

jtate m o ch U r —

0 $1
1 s2
2 s3 $4 sS

Lookup

HMM-LR
Recognition results

ch -►
r

o f - * ts -►

r “► X (Pruning)

Fig. 4 Basic mechanism of HMM-LR

-129- International Parsing Workshop '89

2. Ramification of cells. Construct a set
S = {(C, s, a, x) | 3C, a, x (C is a cell & C is not accepted

& sis a state ofC & ACTION[s,a}= x & "error” }.
For each element (C, s, a, x) € S, do operations below. If a set S is empty, parsing is completed.

3. l i x - ushift s' ”, verify the existence of phone a. In this case, update the probability array Q of
the cell C by the following computation.

QU) (t = 0)
aKO = 0 (t = 0 & i * 0)

1 j (d j i t - D a j f i j i i y t))

Q(t) =
0 (f = 0)

a pit)

If max Q(i) (i= 1...T) is below a threshold level set in advance, the cell C is abandoned. Else
push s ’ on top of the LR stack of the c C.

4. If x-"reduce A—0”, same as standa. . ^R parsing.
5. If x = "accept” and Q{T) is larger than a threshold level, the cell C is accepted. If not, cell C is

abandoned.
6. Return to 2.

Recognition results are kept in cells. Generally, many recognition candidates exist, and it is
possible to rank these candidates using a value Q{T).

The set S constructed in step 2 above is quite large. It is possible to set an upper limit on the
number of elements in S by beam-search technique. It is also possible to use local ambiguity packing
[1] to represent cells efficiently.

5. Experiments
The HMM-LR method is applied to speaker-dependent Japanese phrase recognition. Duration

control techniques and separate vector quantization are used to achieve accurate phone recognition.
Two duration control techniques are used, one is phone duration control for each HMM phone model
and the other is state duration control for each HMM state [8]. Phone duration control is carried out
by weighting HMM output probabilities with phone duration histograms obtained from training
sample statistics. State duration control is realized by state duration penalties calculated by
modified forward-backward probabilities of training samples. In separate vector quantization,
spectral features, spectral dynamic features and energy are quantized separately. In the training
stage, the output vector probabilities of these three codebooks are estimated simultaneously and
independently, and in the recognition stage all the output probabilities are calculated as a product of
the output vector probabilities in these codebooks.

The grammar used in the experiments describes a general Japanese syntax of phrases and is
written in the form of context-free grammar. Lexical entries are also written in the form of context-
free grammar. There are 1,461 grammar rules including 1,035 different words, and perplexity per
phone is 5.87. Assuming that the average phone length per word is three, the word perplexity is more
than 100.

Table 1 shows the phrase recognition rates for three speakers. The average recognition rate is
87.1% for the top candidate and 97.7% for the five best candidates. Japanese is an agglutinative
language, and there are many variations of affixes after an independent word. The problem here is
tha t recognition errors are often mistakes caused by these affixes.

-130- International Parsing Workshop ’89

Table 1 Phrase recognition rates

6. Conclusion
In this paper, we described a speech parsing method called HMM-LR, which uses a generalized LR

parsing mechanism and an HMM-based speech recognizer. The experiment results show that an
HMM-LR method is very effective in continuous speech recognition.

An HMM-LR continuous speech recognition system is used as part of the SL-TRANS (Spoken
Language TRANSlation) system developed at ATR Interpreting Telephony Research Laboratories.

Acknowledgements
The authors would like to express their gratitude to Dr.Akira Kurematsu, president of ATR

I n t e r p r e t i n g Telephony Research Laboratories, for his encouragement and support, which made this
research possible, and to Mr.Toshiyuki Hanazawa for the HMM program.

References
[1] Tomita, M.: Efficient Parsing for Natural Language: A Fast Algorithm for Practical Systems,

Kluwer Academic Publishers (1986).
[2] Aho, A.V., Sethi, R. and Ullman, J.D.: Compilers, Principles, Techniques, and Tools, Addison-

Wesley (1986).
[3] Aho, A.V. and Ullman, J.D.: The Theory of Parsing, Tranlation, and Compiling, Prentice-Hall,

Englewood Cliffs (1972).
[4] Earley, J.: A n Efficient Context-Free Parsing Algorithm, Comm. ACM, Vol.13, No.2, pp.94-102

(1970).
[5] Tomita, M.: A n Efficient Word Lattice Parsing Algorithm for Continuous Speech Recognition,

Proc. IEEE Int. Conf. Acoust. Speech Signal Process. ICASSP-86, pp.1569-1572 (1986).
[6] Saito, H. and Tomita, M.: Parsing Noisy Sentences, Proc. 12th Int. Conf. Comput. Linguist.

COLING-88, p p .561-566 (1988)
[7] Levinson, S.E., Rabiner, L.R. and Sondhi, M.M.: A n Introduction to the Application of the

Theory of Probabilistic Functions o f a Markov Process to Automatic Speech Recognition, Bell
Syst. Tech. J., Vol.62, No.4, pp.1035-1074 (1983).

[8] Hanazawa, T., Kawabata, T. and Shikano, K.: Duration Control Methods for HMM Phoneme
Recognition, The Second Jo in t Meeting of ASA and ASJ (1988).

-131- International Parsing Workshop '89

Parsing Jap a n ese Spoken Sentences B ased on HPSG

Kiyoshi KOGURE

ATR Interpreting Telephony Research Laboratories
Sanpeidani, Inuidani, Seika-Cho, Soraku-gun, Kyoto 619-02, Japan

kogure%atr-la. atr.junet@ uunet.uu.net

ABSTRACT
An analysis method for Japanese spoken sentences based on HPSG has been developed. Any

analysis module for the interpreting telephony task requires the following capabilities: (i) the
module must be able to trea t spoken-style sentences; and, (ii) the module must be able to take, as
its input, lattice-like structures which include both correct and incorrect constituent candidates of
a speech recognition module. To satisfy these requirem ents , an analysis method has been
developed, which consists of a gram m ar designed for treating spoken-style Japanese sentences
and a parser designed for taking as its input speech recognition output lattices. The analysis
module based on this method is used as part of the NADINE(Natural Dialogue Interpretation
Expert) system and the SL-TRANS (Spoken Language T ransla tion) system.

1. IN TR O D U CTIO N
An analysis module for a spoken sentence translation system, or an interpreting telephony

system requires the following capabilities:
(i) the module must be able to treat spoken-style sentences; and,
(ii) the module must be able to accept not only strings but also lattice-like structures where the
analysis module directly drives a speech recognition module (e.g., a phoneme or word recognition
module but not a whole sentence recognition module) or where the analysis module takes as its
inputs part ia l speech recognition resu lts including both co rrec t and inco rrec t sen tence
constituents.

To satisfy these requirements, an analysis method has been developed which consists of a
g ram m ar framework designed for treating spoken-style Japanese sentences and a unification-
based parser designed for taking as its input speech recognition result lattices.

The g ram m ar framework is unification-based lexico-syntactic and is essentially based on
H P S G U 0 1 and JPSG121. This is because:
(i) a lexico-syntactic approach is modular in the sense that most of the grammatical information is
to be specified in descriptions of lexical items; and that it is therefore easy to extend a gram m ar
simply by adding new lexical items to the lexicon or adding new information to lexical items; and
(ii) the JPSG fram ew ork can essentia lly capture constra in ts between complex p red ica te
constituents and their complements. This capability is important because spoken-style Japanese
sentences often have complex predicate constituents.
The gram m ar framework is extended from these g ram m atica l fram ew orks by introducing
features related to semantic and pragmatic constraints!12).

The parser developed is essentially based on the active chart parsing algorithm!11) because
the algorithm is as efficient as Earley's algorithm!1) or any other CFG parsing algorithm and,

-132- Intemational Parsing Workshop '89

mailto:atr.junet@uunet.uu.net

moreover, has the capability of controlling parsing strategies to avoid exhaustive searches. The
parser is extended to treat constraints in Typed Feature Structures (TFS) by using TFSP links (as
defined in Section 3).

The analysis method proposed in this paper is used in the analysis module of the NADINE
system[4-9i and the NADINE system is used as the machine translation module of the SL-TRANS
system. In the SL-TRANS system, input speech is recognized by the Japanese bunsetsu1 phrase
recognition module based on the HMM-LR method!8! and the module outputs the sequence of
bunsetsu phrase lattices, each of which consists of bunsetsu phrase structure candidates. The
outputs are filtered by a bunsetsu dependency filter module(51 which outputs sentence lattices
consisting of fewer bunsetsu phrase structure candidates than the HMM-LR produces.

The NADINE system takes as its input a sentence lattice and outputs an English sentence.
The analysis module based on this paper’s method takes a sentence lattice and outputs typed
feature s truc tu res which represen t syntactic , sem antic and pragm atic information of the
sentence. Then, the transfer and generation modules output an English sentence.

In this paper, Section 2 describes the gram m ar framework and Section 3 describes the parser
and the analysis method.

2. G R A M M A R FR A M EW O R K FOR SPO K EN -STY LE J A P A N E S E SEN TEN C ES
The gram m ar built up to analyze spoken-style Japanese sentences is essentially based on

HPSG and JPSG. The gram m ar describes not only syntactic and semantic information but also
discourse and pragmatic information in an integrated way by using TFS descriptions.

Resolution of omitted obligatory cases (or zero-pronouns) is very important because

Fig. 1 Overview of the SL-TRANS system (modules related to the analysis module)

1. a basic phonological phrase consisting of a jiritsugo-word such as a noun, verb, or adverb
followed by zero or more fuzokugo-v/ords such as auxiliary verbs, postpositional particles, or
sentence final particles.

-133- Intemational Parsing Workshop ’89

(i) pronouns referring to the speaker and the hearer seldom appear in spoken-style sentences and
these omitted cases make sentences more ambiguous, and
(ii) in order to t ran s la te these sentences into na tu ra l E ng lish sen tences , they m ust be
supplemented.
If they are not supplemented, for example, Japanese sentences without agent subject case
expressions m ust often b e . t ra n s la te d into u nna tu ra l English passive sentences (e.g., “A
registration form will be sent” instead of “I will send you a registration form'). In this paper's
analysis, such omitted cases are resolved by using constraints on the uses of deictic expressions
and their case elements, and so on.

2.1. Treatment of Syntactic and Semantic Information
Spoken-style Japanese sentences often have complex sentence final predicate phrases

consisting of main predicates and combinations of auxiliary verbs and sentence final particles. In
such a predicate phrase, its head consti tuen t s tipu lates the properties of the complement
occurring just on its left such as its part of speech, conjugational type, and conjugational form.
Such stipulations are easily described in the SUBCAT feature value in the head. A SUBCAT
feature value is a list of complement constituent specifications.

For example, in the lexical description (1) of the causative auxiliary verb “seru”, the SUBCAT
feature value specifies th a t the aux il ia ry tak es as its com plem en t a verb ph rase with
conjugational type CONS (for consonant type) and conjugational form VONG (for voice negative
type), and two postpositional phrases (PPs), a PP marked by “ni” and a PP marked by ga .
Moreover, it specifies that the VP must be located just before the auxiliary and that the relative
order between two PPs is free. The SEMF feature, which is a bundle of sem antic features,
specifies the semantic selectional restrictions and, in the description, the SEMF feature value of
the ga-PP specifies that the PP must refer to an animate object.

[[syn [[morph [[ctype vow][cform aspl-or-infn]]]
[head [[pos v]

[modi [[caus +]]]

[subcat [[first [[syn [[morph [[ctype cons][cform vong]]]
[head [[pos v]

[modi [[caus -][deac -] ...]]]]
[subcat [[first [[syn [[head [[form ga]

. . .]] . . .] . . .]
[sem ?causee]]]

[rest end]]]]]
[sem ?caused]]]

[rest (:perm-list [[syn [[head [[formga] ...]] ...]]
[semf [[human +]]]
[sem ?causer]]
[[syn [[head [[formni] ...]] ...]]
[sem ?causee]])]]] ...] ...]

[sem [[relation cause]
[causer ?causer]
[causee ?causee]
[c a u s e d ? c a u s e d]]]] ^

where “?” is the prefix of the tag and structures denoted by the same tag are token identical, and
":perm-list” is a macro which takes as its argum ents a set of typed feature structure descriptions
and returns as its value the disjunction of permuted lists made of the set.

-134- Intemational Parsing Workshop ’89

F u r t h e r m o r e , th e C O H fe a t u r e (C a t e g o r y O f H e a d) in a c o m p l e m e n t or a d ju n c t c o n s t i t u e n t

s p e c i f i e s i t s h e a d c o n s t i t u e n t s . C o m b in a t io n s o f C O H a n d S U B C A T f e a t u r e s a l l o w f l e x i b l e

g r a m m a t i c a l d e s c r i p t io n s .

J a p a n e s e p r e d ic a t e c o n s t i t u e n t s b e lo n g to g ro u p s: a m e m b e r o f th e s e g r o u p s m u s t , w i t h s o m e

e x c e p t i o n s , o c c u r in a s t r i c t l y o n e - d i m e n s i o n a l s e q u e n c e ; t h e s e g r o u p s c o r r e s p o n d to s e m a n t i c

h i e r a r c h i e s . A n e w h e a d f e a t u r e M O D L (for m o d a l i t y) h a s b e e n d e v i s e d to a l l a n d o n ly p r e d ic a t e s

w it h g r a m m a t i c a l l y o r d e r e d c o n s t i t u e n t s . F or e x a m p l e , in th e a b o v e d e s c r i p t io n (1), th e M O D L

f e a t u r e v a lu e o f th e f i r s t S U B C A T v a lu e e l e m e n t s p e c i f i e s t h a t th e c o m p l e m e n t v er b p h r a s e

s h o u l d n o t in c lu d e a n y a u x i l i a r y v er b s .

B e s i d e s th e p r e d ic a t e c o n s t i t u e n t o r d e r s p e c i f i c a t io n , th e M O D L f e a t u r e is a l s o u s e d to r e s t r ic t

s y n t a c t i c a n d s e m a n t i c b e h a v io r o f s u b o r d i n a t e (a d v e r b ia l) p h r a s e s . F or e x a m p l e , c e r t a i n fo r m a l

a d v e r b s (i .e . , s u b o r d i n a t e c o n ju n c t io n s) r e q u ir e a s th e i r c o m p l e m e n t s v erb p h r a s e s w i t h o u t t i m e

or p la c e m o d i f i e r s . S u c h r e q u i r e m e n t s r e d u c e a m b i g u i t i e s o f a d v e r b ia l p h r a s e m o d i f i c a n d s . T h e

M O D L f e a t u r e in c o n j u n c t io n w i t h th e S E M F f e a t u r e c o n t r i b u t e to r e d u c in g th e n u m b e r o f v e r b a l

m o d i f ic a n d a m b i g u i t i e s .

2 .2 .T re a tm e n t of P ra g m a t ic C o n s t ra in ts on Uses of E x p re ss io n s
This g ram m ar framework treats discourse or pragmatic constraints on uses of expressions in

order to select plausible analysis candidates and to resolve certain kinds of zero-pronouns. An
analysis candidate includes not only syntactico-sem antic descriptions such as a sem antic
interpretation (the SEM feature value) but also annotations or a set of conditions under which the
interpretation is valid. For example, the sentence

Watashi ni tourokuyoushi o o-okuri itadake masu ka
I DAT registration form ACC HON-send RECEIVE-FAVOR POLITE QUESTION

seems to have two analysis candidates corresponding to phrase structures (a) and (b) in Fig.2
(they correspond to “Could you please send me a registration form?” and IT'Could I please send a
registration form?”). However, the analysis candidate corresponding to (b) has the following
annotations:

common phrase structure of (a) and (b)
phrase structure (a) v

----------phrase structure (b)

W atashi ni tourokuyoushi wo o-okuri itadake masu

Fig.2 Two derivation trees of the sentence
‘watashi ni tourokuyoushi o o-okuri itadake masu ka“

-135- Intemational Parsing Workshop ’89

[[r e l a t i o n c o n d e sc e n d]
[a g e n t ? s p e a k e r]
[o b j e c t ? s u b j e c t _ s e m]
[c o m p a r a t i v e - o b j e c t ? s p e a k e r]]

[[r e l a t i o n e x p r e s s - m o r e - e m p a th y]
[a g e n t ? s p e a k e r]
[o b j e c t ? s u b j e c t _ s e m]
[c o m p a r a t i v e - o b j e c t ? s p e a k e r]]

(where ? s p e a k e r refers to the speaker and ?sub j e c t_ s e m is the semantic representation of the
subject of “itadake”).

Accordingly, these conditions are unnatural (e.g., the speaker expresses more empathy to a
person other than himself) but (a) does not have such unnatural conditions. Thus, the analysis (a)
is selected as a more plausible candidate than (b).

These annotations are also used for zero-pronoun resolution. In the analysis (a), the subject
and indirect object o {"'itadake' are missing. However, (a) has the following annotations:

[[r e l a t i o n c o n d e sc e n d]
[a g e n t ? s p e a k e r]
[o b j e c t ? s u b je c t_ s e m]
[c o m p a r a t i v e - o b j e c t ? i n d i r e c t - o b j e c t _ s e m]]

[[r e l a t i o n e x p r e s s - m o r e - e m p a t h y]
[a g e n t ? s p e a k e r]
[o b j e c t ? s u b je c t_ s e m]
[c o m p a r a t i v e - o b j e c t ? i n d i r e c t - o b j e c t _ s e m]]

and by searching for discourse participants satisfying these conditions, candidates of missing
elements can be found.

In order to obtain such annotations, lexical descriptions have PRAG| RESTRS features which
include constraints in terms of RESPECT, CONDESCEND, POLITE, EXPRESS-MORE-
EMPATHY and so on.

Plausibility scores based on these annotations are used in conjunction with other kinds of
scores described below to select plausible analysis candidates. Zero-pronoun resolution is applied
after parsing Annotations are used in conjunction with conditions under which utterances of
sentences are interpreted as certain types of illocutionary acts, and conditions under which
actions in general are rational.

3. FEATURE STRUCTURE PROPAGATION PARSER
3.1. Active Chart Parser with Feature Structure Propagation Links

The active chart parsing algorithm has properties suitable for parsing na tu ra l language
efficiently. In particular, it has two excellent properties for treating speech recognition result
lattices:
(i) it does not limit its inputs to only strings but can accept lattice structures — thus, it can parse
speech recognition result lattices directly; and,
(ii) it has the capability of controlling the order of parsing by adapting a method of selecting
pending edges from the pending edge list, which works as an agenda. Thus, by adap ting a
selection method based on certain criteria which, at least, reflects speech recognition resu lt
plausibility, plausible parses can be obtained in the early stages without exhaustive search.

-136- International Parsing Workshop '89

However, this second property makes structure sharing difficult in unification-based CFG
parsing, or CFG parsing augmented by constraints described in typed feature structures (TFSs).
In unification-based parsing, there often exist edges with the same content except for their TFSs.
When an active edge is continued with an inactive edge, if there is already an edge with the same
contents except for its TFSs as the continuation edge, edge sharing may seem to be able to be
achieved by adding the continuation edge's TFSs into the existing edge’s. However, this makes
parsing incomplete because the existing edge may have been used previously to construct larger
edges due to the parsing order freeness and because newly added TFSs are not used to construct
larger edges or used as part of larger edges.

In order to solve this problem, the TFS P ro p a g a t io n p a r s e r (in short, T F S P p a rse r) has
been developed. The parser is essentially based on active chart parsing and each edge of the
parser has a set of TFSs represen ting syntactic , sem antic and pragm atic in form ation of
corresponding partial phrase structures. The parser is extended to have special links called TFS
Propagation links (TFSP links).

A TFSP link in an edge remembers how the TFSs of the edge were previously propagated and
specifies how TFSs newly added into the edge should be used. That is, a TFSP link of an active
edge points to a continuation edge having as its annotation the inactive edge used to construct the
continuation edge. Then, when a TFS is added to an active edge, for each TFSP link of the edge,
the TFS is unified with each TFS of the link's inactive edge and then the unification result TFS is
added into the link's continuation edge if the unification succeeds. By using TFSP links, new edge
creation is necessary only when there is no edge with a certain s tarting vertex, ending vertex,
label and remainder symbol sequence. The TFSP link makes edge structure sharing possible.

Fig.3 TFSP links
Suppose the case where the inactive edge G has been created from the active edge (D and

the inactive edge G and the inactive edge © has been created from the active edge ® and the
inactive edge G . The TFSP link © is created between G and © . In this case, when the
active edge ® is continued with the inactive edge G , the successful unification result TFSs of
® ’s and G ’s TFSs are added to the edge G . The edge has a TFSP link and then the newly
added TFSs are unified with TFSs in ® and the successful unification results are propagated
to the edge © as specified by the TFS link G . If there are already TFS links in the edge © ,
the newly added TFSs are also propagated in the ways specified by these links.

-137- Intemational Parsina Workshop '89

The TFSP link enables the parser to reduce unnecessary edge structure creation and TFS
unification. When an active edge is continued with an inactive edge, the continuation edge is
meaningful only when it has at least one consistent TFS corresponding to the continuation edge.
Therefore, the necessary computation is reduced to finding a pair of active and inactive edge TFSs
which are consistent or can be unified. It is not necessary to compute the other pairs' unification
after finding a first pair unless TFSs representing whole sentence structures are required later.
This is made possible by using TFSP links because they can not only unify TFSs immediately and
propagate unification result if desired, but they can also propagate information on how to unify
them later. This reduces unnecessary unification computation when the edges are not used as
parts of the parses of the whole sentences, especially when the TFSP parser does not need to find
all possible parses exhaustively.

The unification method used in the TFSP parser has the following characteristics:
(1) It uses Kasper's disjunctive feature structure unification algorithm^). This allows not only for
efficient descriptions of each lexical item (such as efficient coding of SUBCAT feature values for
treating complement order scrambling and word meanings with conditions for disambiguation),
but also packing descriptions of homonyms. Disjunctive lexical descriptions work like Polaroid
wordsl31.
(2) As for the definite feature structure unification algorithm, the incremental copy unification
algorithm which allows cyclic s truc tu res!7! is adopted to t re a t cyclic constra in ts including
SUBCAT and COH features.

3.2. Agenda Control Mechanism and Plausibility Score
In order to select the most plausible analysis candidate in the early stages, the TFSP parser

selects the pending edge with the best edge score among the pending edge list during parsing, and
selects the TFS with the best TFS score among sets of TFSs in complete edges, each of which has
as its label the s ta r t symbol, as its remainder symbol sequence an empty sequence, as its starting
vertex the leftmost vertex of the chart, and as its ending vertex the rightmost vertex of the chart
just after parsing finishes. Parsing finishes when a certain number of TFSs have been created
with scores better than certain criteria determined by the input sentence length (e.g., the number
of bunsetsu structures).

The edge score mainly contributes to first obtaining a plausible syntactic structure. The edge
score for treating speech recognition result lattices is essentially based on the following:
(a) speech recognition score,
(b) surface string length, and
(c) edge type such as active, inactive, or just-proposed.
When a new edge is created, the edge score is calculated from information on the active edge and
the inactive edge. Moreover, when a new TFSP link is created and the links point to an existing
continuation edge, the edge score of the continuation is recalculated.

The TFS score mainly contributes to obtaining syntactico-semantically and pragmatically
plausible s tructure and is essentially based on the following:
(d) phrase structure complexity (the number of phrase structure tree nodes),
(e) unfilled complements (the number of elements in SLASH feature value), and
(0 violation of pragmatic constraints on expression usage (the unnatura l relationships in the
PRAG|RESTRS feature value).

The behavior of the TFSP parser is illustrated by an example. Suppose the case where a
speech recognition result lattice includes the following sentence candidates and the nominative

-138- International Parsing Workshop '89

postposition “ga” has a better speech recognition score than the topic marker "wa'” (Fig.4). The
parser first tries to build up the structure including "ga” due to the speech recognition score
preference because there are no other differences between structures including “ga” and "wa”.
However, the bu i ld ing-up process stops when com bining s t ru c tu re s co rrespond ing to
“tour okay oils hi ga” and “o-okuri” because of TFS unification failure between SEMF feature
values of the verb's subject [[animate + 1] and the nominative noun phrase [[animate -]]. Then,
the parser adopts the structure containing “wa” and analyzes the semantics of the topic noun
phrase as playing a semantic object role in the “okuru” (sending) relationship.

In this case, the agent subject is m iss ing and the p a rse r ou tp u ts as the sem an tic
representation:

[[relation okuru-1]
[agent ?subject_sem]
[recipient ?indirect-object_sem]
[object [[parameter ?x]

[restriction [[relation tourokuyoushi-1]
[object ?x]]]]]]

However, the parser also outputs pragmatic constraints on the person referred to by the subject
based on the lexical descriptions of the honorific verb “itashi” as follows:

[[relation condescend]
[agent ?speaker]
[object ?subject_sem]
[comparative-object ?indirect-object_sem]]

After parsing, the analysis module searches for the person to whom the speaker can condescend,
and if there is no person other than the speaker and the hearer in the discourse of the utterance,
the missing subject is analyzed as referring to the speaker. Then, the following semantic
representation is obtained:

[[relation okuru-1]
[agent ?speaker]
[recipient ?hearer]
[object [[parameter ?x]

[restriction [[relation tourokuyoushi-1]
[object ?x]]]]]]

From this semantic representation, the output sentence “I send you a reg is tra tion form .” is
obtained.

(Lit.) A reg istra tion form w i l l send (something).

a
Tourokuyoushi N O M \ o-okuri itashi masu

-*-•-------------------»♦------------------ x>
Registration form HON-send do-CONDECEND POLITE

UTPfC

(Lit.) As fo r the reg istra tion form, (I) w i l l send it. ° Bunsetsu boundary

Fig.4 Example of speech recognition result lattice sequence (simplified).

-139- International Parsing Workshop ’89

This analysis method is applied to speech recognition results of sentences in 2 task-oriented
dialogues about “the secretarial service of the international conference”. The HMM-LR speech
recognition module with a bunsetsu dependency filter outputs for each spoken sentence a
sequence of bunsetsu phrase lattices. These 2 dialogues consist of 37 sentences. The speech
recognition module outputs correct results (i.e., sequences of bunsetsu lattices each of which
includes the correct bunsetsu structure) for 35 sentences. This analysis method is applied to these
35 sentences.

These sentences consists of 76 bunsetsu phrases and 112 bunsetsu structure candidates. That
is, a bunsetsu phrase has about 1.47 bunsetsu structure candidates.

For this experiment, a gram m ar was prepared which includes not only lexical items required
for accepting correct bunsetsu structures in the dialogue, but also all lexical items consisting of all
bunsetsu structure candidates. The gram m ar consists of 13 general rules including morphological
rules and about 300 lexical entries.

The analysis method obtains correct sentence analysis results for 34 sentences; adequate
English sentences are obtained from these correct analysis results. The sentence recognition rate
of this method is about 97% and the total sentence recognition rate including the HMM-LR speech
recognition module is 92%. The single incorrect analysis result structure, which corresponds to
the Japanese sentence “tourokuyoushi mo o-okuri itashi masu ‘ (lit. “I will send you a registration
form, too") instead of “tourokuyoushi o o-okuri itashi masu“ (lit. ‘7 will send you a registration
form"), includes as the incorrect speech recognition part only an incorrect modal particle “mo”
with a higher speech recognition score than the correct case particle “o”, and the incorrectly
recognized structure is perfectly grammatical. In this case, to obtain the correct result requires
taking account of the differences in presuppositions derived from these particles and comparing
these presuppositions with the context of the utterances.

4. CONCLUSION
In this paper, a new analysis method is proposed for Japanese spoken sentences using a

g ram m ar framework for treating spoken-style Japanese sentences and a new parser called the
TFSP parser. The g ram m ar framework is essentially based on HPSG and JPSG, and is designed
to trea t not only syntactic and semantic information but also pragmatic information. Analysis
results based on this fram ew ork include sem antic in te rp re ta t ions of input sentences with
annotations on constraints on the uses of these sentences. The TFSP parser has been developed to
allow edge structure sharing in unification-based analyses. This method is used as the analysis
module of the NADINE system and the SL-TRANS system.

The analysis method is applied to HMM-LR speech recognition result lattices. In parsing
lattices, selecting the pending edge with the best score allows the parser to first find plausible
candidates. Constraints described in TFSs filter out syntactically or semantically ill-formed
structures. The experimental results show that this method is effective in sentence speech
recognition. In the experiments, recovering from incorrect recognition requires utterance context
understanding including understanding of utterance presuppositions.

ACKNOWLEDGEMENTS
The author is deeply grateful to Dr. Kurematsu, the president of ATR Interpreting Telephony

Research Laboratories, Teruaki Aizawa, the head of the N a tu ra l Language U nders tand ing

3.3. Experiments

-140- International Parsing Workshop '89

D epartm ent, Kei Yoshimoto, and the members of the N atura l Language U n d e rs ta n d in g
Department for their constant help and encouragement.

REFERENCE
[1] EarleyJ .: An Efficient Context-Free Parsing Algorithm, Comm. ACM, Vol. 13, No. 2, 1970.
[2] Gunji, T.: Japanese Phrase Structure Grammar - A Unification-Based Approach, Dordrecht,

Reidel, 1987.
[3] Hirst, G.: Semantic interpretation and the resolution of ambiguity, Cambridge University

Press, 1987.
[4] Iida, H. et al.: A n Experimental Spoken Natural Dialogue Translation System Using a

L exicon-D riven G ram m ar, P roceed ings of the E u ro p e a n C onfe rence on Speech
Communication and Technology, 1989 (to be published).

[5] Kakigahara, K. and Morimoto, T.: A Study of Bunsetsu Selection Based on the Kakariuke-
Dependency, (in Japanese), IPSG Spring Meeting, 1989.

[6] Kasper, R.: A Unification Method for Disjunctive Feature Descriptions, Proceedings of the
24th Annual Meeting of the Association for Computational Linguistics, 1987.

[7] Kato, S. and Kogure, K.: Efficiency of Feature Structure Unification Methods, (in Japanese)
Proceedings of the Natural Language Working Group of IPSJ, NL64-9, 1987.

[81 Kita, K. et al.: Parsing Continuous Speech by H M M -LR M ethod, Proceedings of the
international Workshop on Parsing Technologies, 1989.

[91 Kogure, K. et al.: A Method of Analyzing Japanese Speech Act Types, Proceedings of the 2nd
International Conference on Theoretical and Methodological Issues in Machine Translation
of Natural Languages, 1988.

[10] Pollard, C. and Sag, I.: Information-Based Syntax and Semantics - Volume 1 Fundamentals,
CSLI Lecture Notes, No. 13, 1988.

[11] Winograd,T.: Language as a cognitive process - Volume 1 Syntax, Addison-Wesley, 1983.
[12] Yoshimoto, K. and Kogure, K.: Phrase Structure Grammar for In ter-Term inal Dialog

Analysis, (in Japanese), IPSG Fall Meeting, 1988.

-141- Intemational Parsing Workshop '89

PRO BABILISTIC M ETHODS IN DEPENDENCY GRAM M AR PARSING

Job M. van Zuijlen

BSO/Research
P.O.B. 8348

NL-3503 RH Utrecht
The Netherlands

e-mail: zuijlen@dltl.uucp

June 1989

ABSTRACT

Authentic text as found in corpora cannot be described completely by a formal
system, such as a set of grammar rules. As robust parsing is a prerequisite for any
practical natural language processing system, there is certainly a need for techniques
that go beyond merely formal approaches. Various possibilities, such as the use of
simulated annealing, have been proposed recently and we have looked at their suitabil­
ity for the parse process of the DLT machine translation system, which will use a
large structured bilingual corpus as its main linguistic knowledge source. Our findings
are that parsing is not the type of task that should be tackled solely through simulated
annealing or similar stochastic optimization techniques but that a controlled applica­
tion of probabilistic methods is essential for the performance of a corpus-based parser.
On the basis of our explorative research we have planned a number of small-scale
implementations in the near future.

1. Introduction
Usually a parser is viewed as a program that takes a sentence in a particular language as its
input and delivers one or more analyses for that sentence. This is no different in the present
prototype of DLT (Distributed Language Translation), a multilingual translation system under
development at the Dutch software house BSO. In the prototype, we use an ATN-parser that
delivers ail syntactic analyses of an input sentence in the source language (SL). Each analysis
undergoes structural and lexical transfer resulting in one or more target language (TL) trees.1
In order to limit the size of the ATN, we have used Technical English as the basis for our
grammar. This type of English has been specially designed for writing technical manuals. It
has certain limitations, such as the number of verb forms to be used, the number of elements
that may be coordinated, sentence length and the like. Nevertheless, it proves to be very diffi­
cult to specify a complete grammar, let alone formulate grammar rules. Moreover, even with
such a limited grammar we have to deal with the combinatorial explosion due to the parsing of
ambiguous sentences.

1 In fact, D LT consists of two separate but similar translation processes. The first translates the S L into
the IL, D L T ’s Esperanto-based Intermediate Language; the second translates from the IL into the TL.

-142- International Parsing Workshop '89

A typical complication of a translation system is that, apart from the SL grammar for the
parser, we need a grammar for TL generation and a contrastive grammar (metataxis) to link
source and target language. Then, there are three dictionaries, one for each language and one
for the language pair. Finally, semantic information has to be included. On a prototype scale, it
is already difficult to maintain consistency between the various knowledge sources, but for a
large-scale industrial version this is almost impossible.
Two recent inventions by members of the DLT research team have contributed to the solution
of the complications mentioned previously. Van Zuijlen (1988) has introduced the Structured
Syntactic Network (SSN) to achieve the compact representation of all dependency-type ana­
lyses of a sentence in a single structure. The problem of consistency of knowledge sources has
been tackled by Sadler (1989), who has proposed the Bilingual Knowledge Bank (BKB), a
large structured bilingual corpus. It contains for each sentence the preferred syntactic analysis
and translation in the given context, as well as certain other referential and co-referential infor­
mation. An important structural element is the Translation Unit (TU), a dependency subtree for
which there is a non-compositional translation, e.g. expressions like kick the bucket.
The introduction of the BKB places the various processes commonly found in a translation sys­
tem (parsing, structural transfer, semantic evaluation, generation) in a different perspective. We
will not deal here with structural transfer and generation but concentrate on the consequences
for the parse process, which will be dealt with in a number of sections:

linguistic theory and representation;
- interfacing parser and BKB;
- corpus-based parsing;
- probabilistic methods.
We conclude with a few remarks about research we have planned for the near future.

2. Linguistic Theory and Representation
The linguistic theory used in DLT is Dependency Grammar, one of the less frequently used
formalisms in natural language processing projects (see Schubert (1987) for a discussion on its
suitability for machine translation). The dependency grammar of a language describes syntac­
tic relations or dependencies between pairs of words. The relation is directed, i.e. one word,
the governor governs (dominates) the other, the dependent. In general, the dependencies range
over word classes (syntactic categories) rather than specific words. A useful feature of depen­
dency grammar is that the resulting analysis may be used direcdy by the semantic component
of the translation system, i.e. a single type of representation suffices for all processes in the
system.
The syntactic relations in dependency grammar are derived from the function of a word in the
sentence. For example, man is the subject of walks in The man walks. It is important to realize
that dependency grammar is primarily concerned with words; there are no phrasal categories.
A dependency tree has a geometry that is quite different from that of a constituent tree (Figure
1). Notice that in a constituent tree nodes are either phrasal or lexical, but that in a depen­
dency tree nodes are always lexical. The branches of a dependency tree are labeled with syn­
tactic relations. A dependency tree is not ordered, which means that a particular relation is
only defined by the governor and the dependent and not by the position of the dependent with
respect to other dependents. In the example word order does play a role to identify the subject
and the object of the sentence but order is not reflected in the representation.
In order to facilitate the interfacing between the BKB and the parse process (see Section 3), we
use an alternative representation, which we will refer to as a Dependency Link

-143- Intemational Parsing Workshop '89

sees

t h e t h e o l d t h e b o y s e e s t h e o l d man

Figure 1. [a] dependency tree and [b] constituent tree for the sentence The boy sees the old
man.

OBJ

/ DET \
/ ATR1\\

. . / / ~ i \
the boy sees the old man

Figure 2. The dependency link representation of The boy sees the old man.

Representation (DLR). A dependency link consists of a governor, a dependent and their rela­
tion. The link is projective, i.e. it takes the position of- governor and dependent with respect to
each other into account. We obtain a graphical representation of a DLR by writing down the
sentence as a linear string of words and then draw the dependencies as arcs (Dependency
Links) connecting the words. Figure 2 shows the dependency link representation of The boy
sees the old man.

CIRC

th e boy s e e s th e o ld man w ith a t e l e s c o p e
Figure 3. The dependency link representation of The boy sees the old man with a telescope.

The DLR shown in Figure 2 has the same representative power as a dependency tree. How­
ever, in contrast to a tree, connections in a DLR are by reference and, as a consequence, it is
possible to represent directed graphs as well. Graphs are a means to represent multiple analyses
of a sentence in a single representation. The ideas behind such a representation for dependency
grammar, the SSN, are discussed in Van Zuijlen (1988). The dependency link may be viewed
as a common building brick for trees as well as SSNs. This is shown in Figure 3 where we see
the two analyses for The boy sees the old man with a telescope in a single DLR. By selecting
either the link man-ATR2-with or sees-CTRC-with we obtain the respective interpretations. The
set of dependency links that constitute one interpretation is called an ensemble.

-144- International Parsing Workshop '89

As the BKB is the only source of linguistic knowledge in the DLT system, interfacing between
the BKB and each process is needed. In this section, we will give a brief sketch of how the
interfacing between parser and BKB is organized. The BKB is bilingual, but the parser has
only to deal with the SL side of the BKB. It is convenient, therefore, to view it as a large
dependency tree bank. This tree bank contains the dependency trees of a large number of sen­
tences, with each dependency tree consisting of one or more translation units. The TUs have
no direct significance for the parser, but it is important to establish which TUs are contained in
the input sentence. This is done in the following way.
After recognition of a word in the input string the TUs of which it is part are retrieved from
the BKB. The parser does not deal with the TUs directly but interprets them as one or more
dependency links. For each word there is a (possibly empty) set of DLs that either govern or
depend on the word. By combining DLs into ensembles we obtain dependency trees the pro­
jection Oinearization) of which has to match the input string. So parsing is not carried out by
parse tree construction guided by the input string but by matching the input string with the pro­
jection of a parse tree synthesized from dependency links (Figure 4).

3. Interfacing Parser and BKB

in p u t s t r i n g

Figure 4. Parsing with a treebank. The words in the input string control the retrieval of TUs
from the BKB. Each TU consists of a number of DLs which are used to synthesize an analysis
tree. The projection of this tree should match the input string.

The dependency links that are "used" for the analysis (in Figure 4 connected with the analysis
tree by dotted lines) select in mm those parts of the TUs retrieved from the BKB that are
relevant for the translation of the input string.

-145- Intemational Parsing Workshop ’89

An important requirement for the parse process is that the analysis result matches with the
BKB, such that it may be syntactically as well as semantically evaluated. In that respect the
use of a structured corpus has a number of advantages.
(1) the coverage of the parser is such that all linguistic phenomena in the corpus will be dealt

with;
(2) the syntactic knowledge retrieved from the corpus on a particular item is consistent with

other types of knowledge;
(3) since various types of knowledge are available simultaneously, incremental evaluation of

(partial) analyses is relatively simple.
This is evident for input sentences that are literally present in the BKB and for which - in a
manner of speaking - direct pattern matching is possible. However, we want to extend the cov­
erage beyond that and, therefore, we have done some explorative research in the field of
corpus-based parsing, primarily by reviewing work of others in the light of our specific needs.
Recent work in corpus-based parsing has a common characteristic. A parsed corpus is used as
a source of linguistic knowledge and probabilistic methods are used to arrive at an analysis.
Basically, parse trees are randomly generated until the optimal parse tree is found with respect
to an evaluation measure based on comparison of the parse tree with the corpus. Robustness is
guaranteed since, whatever the value of the evaluation, one of the analyses will be better than
all others. The search space associated with the investigation of all possible parse trees for a
sentence is very large and, therefore, Haigh, Sampson & Atwell (1988) apply simulated anneal­
ing in their Annealing Parser for Realistic Input Language (APRIL) as an efficient way to find
this optimal parse tree for a complete sentence. Atwell, O’Donoghue & Souter (1989) have
developed the Realistic Annealing Parser (RAP) which also uses simulated annealing but works
incrementally, thus reducing the search space drastically. Both projects evaluate the resulting
trees with corpus information, either in the form of a tree bank (Haigh et al. 1988) or first
order recursive Markov chains (Atwell et al. 1989).
Comparing APRIL and RAP shows that a slightly different approach to the same problem
already results in a large reduction of the search space. This justifies the question whether
simulated annealing is really a very suitable technique. If we examine the literature on that
point (e.g. Aarts and Korst 1989) we find that the problems for which it is successfully applied
are of the "traveling salesman" type, in other words, problems that are highly unstructured and
have a large search space which is defined in advance. The search space consists of the dis­
tances associated with all possible tours. There is a clear relation between a tour and the total
distance; it is obtained by summation of the distances of each pair of connected cities. The dis­
tance is always defined between two points and it can be measured; there is no configuration
of cities for which no solution can be found. The search space may become very large and
simulated annealing serves as a means to investigate it efficiently.
At first sight, parsing a language seems to be a similar problem. We have a number of words
(cities) and, in the case of a dependency grammar representation, we have to find optimal con­
nections between them. For each connected pair of words we compute the grammaticality of
the connection (distance) by comparing it with the linguistic information we have available.
Here the problem starts. The "syntactic distance" cannot be calculated straightforwardly but has
to be approximated on a probabilistic basis, e.g. by counting the number of occurrences of the
particular relation in a corpus. If the relation never occurs it is not possible to say anything
sensible about the distance. We might assign a default value to it, but we have no certainty that
it contributes to an optimal solution. This in contrast with the "traveling salesman" problem
where a long distance between two points does not exclude the connection from being part of

4. Corpus-Based Parsing

-146- International Parsing Workshop '89

the optimal solution.
The temporary acceptance of "odd" constructions in simulated annealing parsers is motivated
by the fact that during the search of a new solution the current solution is changed by means
of a number of primitive modifications which may lead to intermediary results which are not
well-formed. The acceptance of these results doesn’t depend x>n their leading to a solution
which may be evaluated by comparing it with the linguistic information available but on a sto­
chastic function that states the probability with which a "bad" result is to be accepted. What is
missing is the observation that language is structured and enables predictions on the basis of
available partial information. So instead of a random walk (or unguided city tour) it is possible
to select those transformations that are most likely to lead to an optimal solution.2
A corpus is very useful to make such predictions and if we intend to use the same corpus for

the evaluation of the solutions we have the certainty that we only generate those solutions that
are verifiable.
Again we may observe a difference with the "traveling salesman" problem. The latter has a
predefined solution space and it is easy to specify primitive transformations that will lead from
one solution to the other. In the case of parsing the solution space is not predefined but has to
be generated on the basis of the linguistic information available. This is either a set of gram­
mar rules or a tree bank based on a parsed corpus.
Souter (1989) discusses how difficult it is to express the grammatical information contained in
a such corpus in a limited number of rules. In fact, thousands of rules are needed, many of
which are only applied once or twice. He observes a close resemblance between a rule-
frequency curve and the more familiar word-frequency curve (Zipf 1936). These findings sup­
port the idea that the usual grammar with a few hundred rules is not very adequate and may
contain "gaps". Also, our experience with the DLT prototype has made clear to us that a rule-
based approach has unacceptable limitations. Still, we are not convinced that it is necessary to
apply statistical optimization all the time when a corpus is used to find the correct analysis.
When dealing with input that is covered by the corpus the latter may be viewed as large set of
rules and a solution will be found in a straightforward, efficient manner. Nevertheless, there is
room for probabilistic methods and in the next section we will discuss some applications.

5. Probabilistic Methods
It should be clear from the discussion in the previous section that probabilism is only useful
when it is applied in a controlled way. For the parse process in a BKB-based DLT system
there are three application areas:
- handling input errors and unusual input;

restricting the number of analyses;
- ordering of alternatives.
We will discuss each of these areas in the following subsections.

5.1. Incorrect and Unusual Input
As far as the parser is concerned incorrect and unusual input relate to input for which no
acceptable solution can be found by straightforward matching with the BKB. The main differ­
ence is that if the input is incorrect the user should be consulted for clarification. If the input is
unusual a solution should preferably be found without asking. The border between the two is

2 In RAP (Atwell et &1. 1989) the rate o f convergence is improved by introducing a bias towards the
transformation o f low-valued parts of die tree.

-147- Intemational Parsing Workshop '89

determined by the fact whether it is possible to find a single analysis that matches with the
BKB.
The ability to process deviant input is a requirement for any robust parser. In RAP and APRIL
this is achieved by always generating a parse tree, even if the result is implausible. For our
application this will not do. Each analysis should match with the BKB, otherwise translation is
not possible. If such an analysis cannot be obtained the parser should try and find out what is
wrong and, if necessary, consult the user - preferably by making some sensible suggestions.

5.1.1. Input Errors
Input errors may be of various types which ask for different approaches. However, a general
principle is that we need to know what the "correct” version is in order to say something sensi­
ble about the deviations. This is a severe requirement, but if an error has only local conse­
quences and if there is enough surrounding context it should be possible to determine the cause
of the deviation.
Since error analysis may need a combined effort of different knowledge sources, the BKB
approach seems to be ideal for intelligent error handling. Some types of errors we may con­
sider are:
(1) word form errors;
(2) syntactic deviations;
(3) spelling mistakes.
Errors of type (1) or (2) are relatively easy to detea by comparing the input to the linguistic
information available. An interesting method to deal with such grammatical errors has been
suggested by Chamiak (1983). In a rule-based parser a rule for which one or more atomic tests
(e.g. agreement) fail is not applied. By modifying the tests it is possible to assign a kind of
applicability measure to a rule. Instead of returning simply "yes” or "no" each test returns a
value that is added to the current value of the applicability measure if the test succeeds and
subtracted if the test fails.
Chamiak’s proposal is also very useful when a grammar is based on a corpus. For instance, it
could be that, considering their word class, two words have a relation but that there is a
mismatch between their features. An example is The boy see the man, in which subject-vert>
agreement is violated. However, by establishing that the boy could be a subject and that see
takes one and that complete feature unification is not possible the parser classifies the error.
The user will then be consulted for clarification, e.g. by being presented two correct alterna­
tives one of which must be chosen;
(a) The boys see the old man
(b) The boy sees the old man
By using corpus information a likelihood value could be assigned to each alternative, which
may be decisive if one alternative turns out to be far more plausible than any of the others, in
which case user consultation is not needed.
There are errors that cannot be described on the basis of features or syntactic structures, but
may be solved by using knowledge on individual words or their relations. In such cases a
corpus-based system is superior. A typical example is a misspelled word, such as foz, which
might be fez ot fox. By taking the context into account and comparing it with corpus informa­
tion the selection of one or the other alternative is supported. Compare;
(a) In Morocco men wear a caftan and a foz.

(b) The foz hunts at night.

-148- International Parsing Workshop '89

The context in (a) points to the interpretation fez, whereas the context in (b) points to the
interpretation fox.

5.1.2. Unusual Input
In this section we will show by means of a simple example how use of a corpus supports the
handling of unusual input. We mentioned earlier that in dependency grammar dependencies
range over word classes. There are cases, however, in which a word has a syntactic function
that is not typical for its word class. Nouns, such as week, month and year, may be used as
time adverbials, as in / saw him last week. We don’t want to call week an adverb because it
cannot perform the same functions as an adverb. On the other hand, we don’t want to extend
the functions that are possible for nouns because only a small number of nouns may be used in
the same way as week.
In a rule-based parser categories are used to formulate some general distributional criteria, as it
is not feasible to state for a each word the syntactic functions it may perform. Such informa­
tion is, however, available in a corpus. We may find:
(1) He came last week.
(2) I have had a very bad week.
(3) A week is enough to finish this job.
From the available parse trees we derive the distribution of week in terms of governing or
depending relations. Now suppose that we have the input sentence He arrives next month, but
that we don’t have direct evidence that month could perform the same function as week in (1).
The parser will then compare the distribution of month and week, in order to establish if they
are used in the same way, i.e. show syntactic synonymity. The more correspondence is found,
the higher the probability that month may indeed be used as a time adverbial.
The method to establish the possibility for month to be used as time adverbial may also be
applied in other cases. The syntactic context of a word may suggest a function or even word
class for which there is no direct evidence. For example, in He computers all the time the noun
computer is used as verb. From the corpus we may deduce that in English "any noun may be
verbed" and that the use of computer as a verb is acceptable.

5.2. Restricting the Number of Alternatives
An exhaustive parser often generates alternatives without taking aspects of language use into
account. For a system that features user interaction this results in asking the user questions
about alternatives that are counter-intuitive. Consider, for example,

Daily inspections should be performed.
Here daily modifies inspections and although it could modify the verb in an alternative
analysis, this interpretation is only evident when daily is placed at the end of the sentence:

Inspections should be performed daily.
This is an example in which a corpus could be used to limit the number of possible analyses
and, thus, assist the system to behave sensibly in the eyes of the user.
The fact that the corpus sometimes extends and sometimes restricts the number of possible
interpretations indicates that there is an important lexical influence in syntax which causes
words to behave differently from what we expect, considering their word classes. This sug­
gests that a strict separation between syntax and semantics (or at least language use) is not pos­
sible in the case of "realistic" language. The acceptability of certain distributions cannot be
explained syntactically; there is no reason why only specific nouns may serve as adverbials.
By the same token, there is no reason to exclude some potential analyses other than by

-149- International Parsing Workshop '89

observing that a language user would never interpret them that way.

5.3. Ordering Alternatives
An interact1, e translation system will have to deal with alternative analyses of the SL sentence,
even if some of them may be excluded in advance. Particularly in the case of coordination or
post-modifier sequences there may by a number of alternatives that have to be taken into
account. By using the graph representation we introduced in Section 2 it is possible to
represent the alternatives in a compact way. There are various techniques to prevent the com­
binatorial explosion caused by the generation of the alternatives (see e.g. Tomita 1985), but
then we are faced with the problem of evaluating them efficiently. We intend to solve this in
the following way.
We start with the incremental generation of all dependency links that are part of one or more
of the potential analyses, resulting in a DLR of the input. The DLs that constitute the best
analysis according to a given evaluation function are made active, all others are made dor­
mant. If the multiple analyses are caused by structural ambiguity, such as alternative attach­
ment points, then a simple transformation suffices to generate an alternative analysis. In Fig­
ure 3, for example, the activation of DL man-ATR2-with and the deactivation of DL sees-
CIRC-with or vice versa results in an alternative analysis. So, a transformation is performed by
activating/deactivating of a pair of DLs with a common dependent.
The set of DLs with a common dependent forms a choice point. Only DLs that are elements
of choice points will have to be considered in the search for alternatives. To order the alterna­
tives, that is to find the second best given the current optimum, it may be necessary to perform
more than one transformation without knowing what the sequence of transformations is. If
there is a large number of choice points, systematic evaluation of all analyses is not feasible
and a stochastic optimization technique is necessary. In contrast with the parsing of arbitrary
input, such a technique is applicable here since certain requirements are met (Aarts & Korst
1989: 100). The solution space (i.e. a representation of all possible solutions) is given by the
DLR and there is a primitive transformation (the activation/deactivation of a pair of DLs) to
generate an alternative solution. All the same, in very simple cases it is better to evaluate and
compare alternatives directly. In view of this, it is advantageous to have an adaptive optimiza­
tion technique that is able to select the most efficient strategy.

6. Future Work
The result of our explorative research has been that we see many interesting aspects in corpus-
based parsing in connection with probabilistic methods. However, application in a BKB-based
DLT system asks for an approach that is different from related proposals by others. Therefore,
we have planned a number of small-scale implementations in order to find out to what extent
the various ideas and suggestions put forward in this paper are indeed feasible.

Acknowledgements
I would like to thank my colleagues from BSO/Research, in particular Dorine Tamis and
Ronald Vendelmans, for fruitful discussions and critical remarks.

References
Aarts, Emile and Jan Korst (1989): Simulated Annealing and Boltzmann Machines. John Wiley

and Sons, Chichester.
Atwell, Eric, Tim O’Donoghue and Clive Souter (1989): "The COMMUNAL RAP: A Proba­

bilistic Approach to NL Parsing". Leeds University, Leeds.

-150- Intemational Parsing Workshop '89

Chamiak, Eugene (1983): "A Parser with Something for Everyone". In: King, Margaret (ed.),
Parsing Natural Language. Academic Press, London.

Haigh, Robin, Geoffrey Sampson and Eric Atwell (1988): "Project APRIL - a Progress
Report". Proceedings of the 26th Annual Meeting of the Association for Computational
Linguistics. Buffalo.

Sadler, Victor (1989): The Bilingual Knowledge Bank. BSO/Research, Utrecht.
Schubert, Klaus (1987): Metataxis. (= Distributed Language Translation 2). Foris, Dordrecht.
Souter, Give (1989): "The COMMUNAL Project: Extracting a Grammar from the Polytechnic

of Wales Corpus". ICAME Journal, No. 13, April 1988.
Tomita, Masaru (1985): Efficient Parsing for Natural Language. Kluwer, Boston.
Van Zuijlen, Job M. (1988): "A Technique for the Compact Representation of Multiple Ana­

lyses in Dependency Grammar". BSO/Research, Utrecht.
Zipf, George (1936): The Psycho-Biology of Language: An Introduction to Dynamic Philology.

George Routledge, London.

-151- Intemational Parsing Workshop '89

PREDICTIVE NORMAL FORMS FOR
FUNCTION COMPOSITION IN

CATEGORIAL GRAMMARS

Robert E. Wall, University of Texas at Austin
and

Kent Wittenburg, MCC

Abstract: Extensions to Categorial Grammars proposed to account for
nonconstitutent conjunction and long-distance dependencies introduce the problem of
equivalent derivations, an issue we have characterized as spurious ambiguity from the
parsing perspective. In Wittenburg (1987) a proposal was made for compiling Categorial
Grammars into predictive forms in order to solve the spurious ambiguity problem. This
paper investigates formal properties o f grammars that use predictive versions o f function
composition. Among our results are (1) that grammars with predictive composition are in
general equivalent to the originals if and only if a restriction on predictive rules is applied,
(2) that modulo this restriction, the predictive grammars have indeed eliminated the problem
of spurious ambiguity, and (3) that the issue o f equivalence is decidable, i.e.,
for any particular grammar, whether one needs to apply the restriction or not to ensure
equivalence is a decidable question.

1. Introduction . Steedman (1985, 1987), Dowty (1987), Moortgat (1988), Morrill
(1988), and others have proposed that Categorial Grammar, a theory o f syntax in which
grammatical categories are viewed as functions, be generalized in order to analyze
"noncanonical" syntactic constructions such as wh-extraction and nonconstituent
conjunction. A consequence o f these augmentations is an explosion of semantically
equivalent derivations admitted by the grammar, a problem we have characterized as
spurious ambiguity from the parsing perspective (Wittenburg 1986). In Wittenburg
(1987), it was suggested that the offending rules o f these grammars could take an
alternate predictive form that would eliminate the problem o f spurious ambiguity. This
approach, consisting o f compiling grammars into forms more suitable for parsing, is
within the tradition o f discovering normal forms for phrase structure grammars, and thus
our title. Our approach stands in contrast to those which are attempting to address the
spurious ambiguity problem in Categorial Grammars through the parsing algorithm itself
rather than through the grammar (see Pareschi and Steedman 1987; Moortgat 1987, 1988;
Hepple and Morrill 1989; Koenig 1989; Gardent and Bes 1989). Our approach is more
in line with the tack that Bouma (1989) is taking, although his formulation o f categorial
systems differs radically from our own, more traditional set o f assumptions.

In Wittenburg (1987) it was conjectured that predictive forms for Categorial Grammars
were equivalent to the source forms and that they did indeed eliminate spurious
ambiguity. Here we report on formal results that have ensued from these original
conjectures. W e have found that, on the whole, the conjectures proved valid although we
have discovered that the relationship between predictive normal forms for these grammars
and their source forms are more complicated than was implied by the earlier paper. As
we will show, an additional condition is necessary to ensure equivalence of these
grammars and eliminate spurious ambiguity from the picture.

-152- International Parsing Workshop '89

2. Source G ram m ar (G) In this paper we focus on the role of basic function
composition as a way of illustrating the effects o f predictive normal forms. For these
proofs then, we assume a form of Categorial Grammar that is considerably more restricted
than those advocated by van Bentham (1986), Steedman (1987), Moortgat (1988), Morrill
(1988), and others. As the work o f these authors shows, the simple Categorial Grammars
we assume here are not linguistically adequate. We do not consider the effects o f type-
raising nor of generalized conjunction here, nor do we address the issue of generalized
composition. While we intend to address these points in future work, the simplifications
w e assume here allow us to uncover an intidal set o f properties associated with the use of
predictive combinators.

We assume for our source grammar G the following combinatory rules together with a
lexically assigned system o f categories of the usual recursive sort That is, we assume a set
o f basic categories, say, {S, NP, N }. If X and Y are categories, so are X /Y and Y\X.
Our notation follows Steedman (1987) and Dowty (1985) in that the domain type appears
consistently to the right o f a slash and a range type to the left. Left directionality is then
indicated by a left-leaning slash, and right directionality by a right-leaning slash.
Semantically, we assume that lexical categories introduce functional constants in lambda
terms where the arity o f the functions bears an obvious and direct relation to the syntactic
type.1 Here are example lexical entries.

kicks: S\NP/NP John: S/(S\NP) a: NP/N platypus: N
XxXy ((k ick s x) y) \ f (f john) Xx(a x) p latypus

W e assume the following set o f combinatory rules:

Forward function application (fa>) Backward function application (fa<)

X /Y Y -> X Y XVY -> X
f a f(a) a f f(a)

Forward function composition (fc>) Backward function composition (fc<)

X /Y Y/Z -> X/Z Y\Z X \Y -> X\Z
f g Xx(f(g(x))) = Bfg g f Xx(f(g(x))) = Bfg

Given these semantics, G yields equivalence classes o f derivations, where equivalence is
defined modulo (3-conversion of semantic terms.2 The two sources o f spurious ambiguity
in G are summarized by the following equivalences generalized over directional variants of
the rules:

1 Although we use the term semantics here to describe the relevant issues of derivational ambiguity, it
should be understood that we dealing with a syntactic domain. One might think of our semantics as
defining the syntactic structures yielded by derivations using these grammars.
2This definition of equivalence does not take quantifier scope differences into account. It is more in
harmony with the predictive normalization techniques to assume that scoping structure is not necessarily
isomorphic to the derivation tree, a position also advocated by Steedman (1987) and Moortgat (1988).

-153- International Parsing Workshop '89

(apply (compose X Y) Z) = (apply X (apply Y Z))

(compose X (compose Y Z)) = (compose (compose X Y) Z)

An example illustrating the first o f these equivalences follow s:1

S S
f(fi(a)) f(g(a))

......................................fa>fa>
S/NP FVP
A .x(f(g (x))) g (a)

...........................fc>fa>
S/FVP FVP/NP NP S/FVP FVP/NP NP

f g a f g a

Assuming the terminal string "John kicks a platypus", complete derivations would
yield the equivalent derivational terms ((kicks (a p latypus))John).

The numbers o f these equivalent derivations increase "almost exponentially” in string
length, with the Catalan series (Wittenburg 1986).

3. P redictive N orm al Form (G') A predictive normal form version o f G replaces each
composition rule with two predictive variants.2

Forward-predictive forward function composition (fpfc>)

X/(Y/Z) Y/W -> X/(W /Z)
f g Xh(f(Bgh)) = Xh(f(Xx(g(h(x)))))

Backward-predictive forward function composition (bpfc>)

W/Z X\(Y/Z) -> X\(Y/W)
g f Xh(f(Bhg))= Xh(f(Xx(h(g(x)))))

Backward-predictive backwards function composition (bpfc<)

Y\W X\(Y\Z) -> X\(W \Z)
g f Xh(f(Bgh)) = Xh(f(Xx(g(h(x)))))

Forward-predictive backwards function composition (fpfc<)

X/(Y\Z) W \Z -> X/(Y\W)
f g Xh(f(Bhg))= Xh(f(Xx(h(g(x)))))

^FVP is used as a notational convenience for the category S\NP.

^These rules are derivable in the Lambek calculus (Lambek 1958).

-154- Intemational Parsing Workshop '89

W e will now consider, first, the question o f ambiguity in G'. Second, we will take up the
question o f whether G and G' are equivalent

4. A m biguity in G' Is there ambiguity in G'? We will consider first cases that are
analogous to the derivations in G known to give rise to spurious ambiguity. Our proof is
by induction on the height of a derivation tree.

In G, spurious ambiguity arises from the use of composition. Consider any maximal
subtree o f fc> in a derivation in G, i.e.,

A/E

etc.

A/B B/C C/D D/E

Since it is part o f a derivation of S, it must feed into an instance of fa at the top (either as
functor or as argument) — if it fed into fc, this tree would not be a maximal fc tree.

So subderivations in G with fc> must be o f one o f the following forms:

Case 2 (G): F

C/D D/E

In either case, there is one and only one derivation in G’ for the same category sequence.

Case 1 (G'): . Case 2 (G’):
A F

A/B B/C C/D D/E E F/(A/E) A/B B/C C/D D/E

The cases o f fc< are parallel. And since fc> and fc< cannot appear together in a maximal fc
tree because o f directionality clash, all cases are accounted for.

Case 1 (G): A

A/B B/C C/D D/E E

-155- International Parsing Workshop ’89

We have shown here that cases o f spurious ambiguity in G do not give rise to analogous
spurious ambiguity in G', but o f course there may be new sources of ambiguity in G' that
we have not yet considered.

Can there be any cases o f derivational ambiguity in G'? That is, can there be derivation
trees o f the form

for (possibly complex) categories A, B, C, X, Y, Z, where mothers are derived from
daughters using just the rules o f fa and predictive function composition? An exhaustive list
of all the combinatory possibilities reveals just two types:

Type 1: X = Y/Y and Z = Y\Y
The central category Y can combine first by fa with Y/Y to its left or with Y\Y to its

right, to yield Y in either case. This Y can then combine with the remaining category by fa
to give Y again:

Y fa> Y fa<

/ Y fa< fa> Y \
7 / \ / \ \

Y/Y Y Y\Y Y/Y Y Y\Y

But this is a genuine ambiguity, not a spurious one, for the topmost Y can be assigned
different semantic values by the two derivations. If [[YAH] = f, [[Y]] = a, and [[Y\Y]] =
g, the left derivation yields f(g(a)) and the right one g(f(a)).

In the more general case, we might have m instances o f Y/Y to the left o f the Y and n
instances o f Y\Y to the right In such a situation the number o f syntactically and
semantically distinct derivations would be the (m-i-n)th Catalan number. And since only
fa> and fa< are used, the same ambiguity, if it is present, will be found in both G and in
G ’.

Type II: A predictive combination rule is involved in the derivation. We will illustrate
with just one case; the others are similar, differing only the directions o f the slashes and the
order o f constituents.

Consider the derivation tree
E fpfc>

/ \
D fa> \

/ \ \
A B C

in which each mother node is derived from its daughters by the indicated rule. Since E is
derived by f p f o , D must be o f the form XJ(Y/Z) and C o f the form Y/W; hence E is o f the
form X/(W /Z). Then because D is derived by fa>, it follows that A must be of the form
(X/(Y/Z))/B. That is, the derivation tree is of the form

-156- Intemational Parsing Workshop '89

X/(W /Z) fpfc
/ \

X/(Y/Z) f a > \ .

(X/(Y/Z))/B B Y/W

for (possibly complex) categories B, W, X, Y, Z.
Given the rules o f fa and predictive composition, there is a distinct derivation tree

yielding X/(W/Z) from the category sequence (X/(Y/Z))/B, B, YAV; namely,

X/(W/Z) fa>

fpfc

(X/(Y/Z))/B B YAV

N ow because (X/(Y/Z))/B becomes X/(W /Z) by fa>, it follows that X/(Y/Z) = X/(W /Z),
and so Y = W. Further, B combines with YAV (i.e., Y/Y) to give B again, so B is required
to be o f the form R/(Y/Y), for some R. (Note that R/(Y/Y) could also combine with Y/Y
by fa>, but nothing prevents fpfc> from applying here as well.) In summary, G' allows
the following sort of derivational ambiguity (and others symmetrical to it);

XJ(Y/Z) fpfc> X/(Y/Z) fa>

/
X/(Y/Z) fa>

/ \
(X/(Y/Z))/(R/(Y/Y)) R/(Y/Y) Y/Y (X/(Y/Z))/R/(Y/Y)) R/(Y/Y) Y/Y

Is this a spurious or a genuine ambiguity? Letting the three leaf constituents have
semantic values f, g, and h, respectively, we obtain >i[f(g)(Bhi)] for the root node o f the
left tree and f[Xi[g(Bhi)]] for the root o f the tree on the right (Bhi denotes the composition
of functions h and i.) These expressions are certainly non-equivalent for aribitrary
functions f, g, h. 1 At any rate, we might ask if this sort o f ambiguity can lead to an
explosion o f combinatorial possibilities like the one we were trying to rid ourselves o f in
the first place. The worst case would be when there is a sequence o f n categories Y/Y
extending rightward, thus:

(X/(Y/Z))/(R/(Y/Y)) R/(Y/Y) Y/Y Y /Y . . . Y/Y

N ow R/(Y/Y) can combine with Y/Y's by fpfc, yielding R/(Y/Y) each time, then combine
with the large category on the left by fa> to give X/(Y/Z), which can then combine with any
remaining Y /Y ’s by fpfc> to give X/(Y/Z) back again. The lone instance o f fa> can thus

JEven so, it appears that if these functions are constrained by the form of the categories to which they are
assigned (e.g., h must be a function from [[Y]]-type things to [[Y]]-type things, etc.), then the two
expression may be equivalent and the ambiguity is a "spurious" one in the language of G'. At any rate,
this point is moot given succeeding comments that these derivations need to be ruled out for G' to be
equivalent to G.

■157. International Parsing Workshop '89

occur at any point in the derivation, and if there are n Y/Y’s, there will be n+1 distinct
derivation trees. Thus, the number o f derivations grows only linearly with the number of
occurrences o f Y/Y, not with a Catalan growth rate.

5. E quivalence o f G and G' In considering equivalence o f these grammars, we first
take up the question o f whether L(G) is a subset o f L(G') followed by the question of
whether L(G') is a subset o f L(G).

5.1. Predictive composition includes composition Proof sketch: We show by induction on
the depth o f derivation trees that any derivation in G has a derivation in G'.

Any derivation o f category S in G must end in fa> (or fa<). Consider the extension by
depth one o f a derivation tree headed by fa x W e consider 4 (not always mutually
exclusive) cases. (Others include the symmetrical < variants and those that are excluded by
directionality clashes).

s s s s

(1) (2) (3) (4)

Cases (1) and (3) are common to G and G'. Consider case (2). From the defmitions o f
fa> and fc>, the categories o f the derivation must be as shown on the left, where Y and Z
are any categories.

G ’:

S/Y Y/Z S/Y Y/Z Z

In G' there is a corresponding derivation from the same sequence o f categories, as shown
on the right There is also this derivation in G, but G', lacking fc>, has only this one for
this category sequence.

Consider case (4).

G:

S/(X/Z) X/Y Y/Z

S/(Y/Z)
fpfc>

S/(X/Z) X/Y Y/Z

-158- Intemational Parsing Workshop '89

G' lacks fc>, but fpfc> allows (just) one derivation for this category sequence. The other
cases symmetrical to these follow similarly.

5.2. Doe's LfG) subsume LfG')? Consider the following derivation in G':

S
fa>
\

B/(C/D)

S/(B/(C/D)) B/(E/D) E/C

There is no corresponding derivation in G. (Neither fa> nor fc> is applicable to the given
categories.) Thus, in general, L(G) does not include L(G') and the grammars are not
equivalent

What can be done about the non-equivalence of G' and G?

1. R estrict rule application in G': One may stipulate that the result
category o f a predictive rule cannot serve as argument in any other rule. (In
function application X/Y Y => Z we take Y to be the argument category. In
predictive rule X/(Y/Z) Y/W => X/(W/Z) we take the Y/W to be the argument
For backwards rules, the argument category is the leftmost term.) In the derivation
just above, the predictive rule fpfc> "feeds” fa> as argument If derivations in G’
are restricted in this way, L(G') is provably included in L(G), and the grammars
are weakly equ ivalent1

Moreover, the same restriction banishes all cases o f Type II ambiguity noted in
Sec. 4 above. Observe that Type II ambiguity depends on predictive rules in G’
being able to "feed” the arguments o f further instances of predictive rules. Thus,
G' becomes free o f any spurious ambiguity.

This approach might be thought to be reminiscent o f Pareschi and Steedman
(1987), where spurious ambiguity is addressed through procedural means in
parsing. Yet our approach here actually need not constrain the parsing algorithm at
all. A node formed by a predictive rule can be flagged, say, by a feature, while
those formed by fa would not be. All combinatory rules could then have a feature
on their "argument" categories that would block when encountering this flag. This
rather minimal amount o f additional bookkeeping could easily be accommodated in
the parsing strategy o f one's choice: top-down, bottom-up, left-right, breadth-
first, or whatever. Thus, what at first might appear to be a constraint on parsing
would be more accurately described as a modification to the grammar.

2. Grin and bear it: Recasting the grammar in "predictive normal form"
eliminates all cases o f spurious ambiguity occasioned by sequences of function
composition, a problem which is known to crop up very frequently in actual

1 For lack of space, we do not include the full proof here. It is parallel to the
proof in Sec. 5.1 showing the inclusion of L(G) in L(G’). Any derivation in this
newly restricted G' is provably replacable by a derivation in G.

-159- Intemational Parsing Workshop '89

applications and to cause serious delays in parsing times. On the other hand
because of the complexity and the rather specific forms of the categories which
give rise to the spurious ambiguities and the "spurious derivations" in the G’
examples above, it seems reasonable to suppose that such cases are unlikely to be
encountered very often in ordinary applications. In any event, as we noted above,
the number o f Type II ambiguous derivations in G’ grows only linearly and not in ’
Catalan fashion with increasing string length and would not be expected to lead to
intolerable parsing times. The slight profligacy o f G’ over G might, therefore,
present no serious practical problem.

For those still inclined to worry, we offer the following reassuring fact: a predictive normal
form grammar can misbehave only if categories of sufficient "complexity" can be derived
from the given set of categories in the lexicon, e.g., a category of the form S/(X/(W /Z)) in
the case o f non-equivalence above and of the form (X/(Y/Z))/(R/(Y/Y)) in the instances o f
Type II ambiguity. But given such a grammar and the lexical categories it is a decidable
question whether any categories of the undesired complexity can arise during a derivation.1
(We wish to thank Jim Barnett for suggestions on how to prove this.) Thus one can tell .
whether a particular G' is equivalent to G and is free from spurious ambiguity.2

6. C onclusion The main result o f this paper is that we have shown that Categorial
Grammars with predictive variants o f function composition rules can satisfy the
requirements for normalization, namely, that the "compiled" grammars preserve
equivalence and that they do so with the benefit o f eliminating the parsing problem
occasioned by spurious ambiguity. We have also enumerated decidability proofs of
interest. Our next task is to explore the predictive normal form strategy with more
expressive, and more nearly adequate, Categorial systems such as those that incorporate
some form o f generalized composition and conjunction, type-raising, etc. What we expect
to find is that if predictive normalization techniques are applicable at ail, the predictive
grammars will have a relationship to their source forms that parallels the one we have
uncovered here. In other words, we expect the restriction on the use o f predictive rules is
in general necessary for preserving equivalence when using predictive combinators.

7. A cknow ledgem ents This work has been carried out under the auspices o f the Interface
Languages project in the Human Interface Laboratory of the Advanced Computer
Technology Program at MCC.

8. References

Bouma, G. (1989) Efficient Processing o f Flexible Categorial Grammar. In Proceedings
o f the Fourth Conference o f the European Chapter of the Association for
Computational L ingu istics,, 10-12 April 1989, pp. 19-26

Dowty, D. (1987) Type Raising, Functional Composition, and Non-Constituent
Conjunction. In Oehrle, R., E. Bach, and D. Wheeler (eds.), Categorial Grammars
and Natural Language Structures. Dordrecht: Reidel.

^The proof o f these decidability results is contained in a longer version o f this paper (M C C technical report
A C T -H I-2 7 4 -8 9) available from M C C , Hum an Interface Lab, 35 0 0 W. B alcones Research Center Drive,
Austin, T X 7 8 7 5 9 .

N .B . T ype-rais ing does increase com plex ity o f categories in a different w ay, and thus these observations
do not extend to categorial grammars with such rules (e.g., Moortgat 1987).

-160- Intemational Parsing Workshop '89

Gardcnt, C., and G. Bes. 1989. Efficient Parsing for French. In Proceedings of the 27th
Annual Meeting o f the Association for Computational Linguistics, 26-29 June
1989, Vancouver, pp. 280-287.

Hepple, M., and G. Morrill. (1989) Parsing and Derivational Equivalence. In
Proceedings o f the Fourth Conference of the European Chapter of the Association
for Computational Linguistics, 10-12 April 1989, Manchester, England, pp. 9-18.

Koenig, E. 1989. Parsing as Natural Deduction. In Proceedings of the 27th Annual
Meeting of the Association for Computational Linguistics, 26-29 June 1989,
University o f British Columbia, Vancouver, pp. 272-286.

Lambek, J. (1958). The Mathematics o f Sentence Structure. American Mathematical
Monthly 65:154-170.

Moortgat, M. (1987) Lambek Categorial Grammar and the Autonomy Thesis. Paper
presented at the ZWO Symposium 'Morphology and Modularity', Utrecht, 16-18
June 1986. [Available as INL Working Paper 87-03, Instituut voor Nederlandse
Lexicologie, Leiden, Netherlands.]

Moortgat, M. (1988) Categorial Investigations: Logical and Linguistic Aspects o f the
Lambek Calculus. Foris.

Morrill, G. (1988) Extraction and Coordination in Phrase Structure Grammar and
Categorial Grammar. Ph.D. dissertation, Centre for Cognitive Science, University
o f Edinburgh.

Pareschi, R., and M. Sceedman (1987) A Lazy Way to Chart-Parse with Categorial
Grammars. Proceedings o f the 25th Annual Meeting o f the Association for
Computational Linguistics, 6-9 July 1987, Stanford, pp. 81-88.

Steedman, M. (1985) Dependency and Coordination in the Grammar o f Dutch and
English. Language 61:523-568.

Steedman, M. (1987) Combinatory Grammars and Parasitic Gaps. Natural Language and
Linguistic Theory 5:403-440.

Van Bentham, J. (1986) Essays in Logical Semantics. Reidel.

Wittenburg, K. (1986) Natural Language Parsing with Combinatory Categorial Grammars
in a Graph-Unification-Based Formalism. Ph.D. dissertation, University o f Texas
at Austin.

Wittenburg, K. (1987) Predictive Combinators: A Method for Efficient Parsing o f
Combinatory Categorial Grammars. Proceedings o f the 25th Annual Meeting o f the
Association for Computational Linguistics, 6-9 July 1987, Stanford, pp. 73-80.

-161- Intemational Parsing Workshop ’89

Parsing Spoken Language
Using Combinatory Grammars*

Mark Steedman
Computer and Information Science, U.Penn.

Combinatory Grammars are a generalisation of Categorial Grammars to include operations on function
categories corresponding to the combinators of Combinatory Logic, such as functional composition and
type raising. The introduction of such operations is motivated by the need to provide an explanatory ac­
count of coordination and unbounded dependency. However, the associativity of functional composition
tends to engender an equivalence class of possible derivations for each derivation permitted by more tra­
ditional grammars. While all derivations in each class by definition deliver the same function-argument
relations in their interpretation, the proliferation of structural analyses presents obvious problems for
parsing within this framework and the related approaches based on the Lambek calculus (Moortgat).

This problem has been called the problem of “spurious ambiguity” , (although it will become apparent
that the term is rather misleading). A number of ways of dealing with it have been proposed, including
compiling the grammar into a different form (Wittenburg), “normal form”-based parsing (Hepple and
Morrill, Koenig), and a “lazy” chart parsing technique which directly exploits the properties of the
combinatory rules themselves to provide a unified treatment for “spurious” ambiguities and “genuine”
attachment ambiguities (Pareschi and Steedman).

Recent work suggests that the very free notion of syntactic structure that is engendered by the
theory is identical to the notion of structure that is required by recent theories of phrasal intonation
and prosody. Intonational Structure is notoriously freer than traditional syntactic structure, and is
commonly regarded as conveying distinctions of discourse focus and propositional attitude. It is argued
that the focussed entities, propositions, and abstractions that are associated with a given intonational
structure can be identified with the interpretations that the grammar provides for the non-standard
constituents that it allows under one particular derivation from an equivalence class. The constituent
interpretations corresponding to each possible intonational tune belong to the same equivalence class,
and therefore reduce to the same canonical function argument relations. However, it is apparent that the
ambiguity between derivations in the same equivalence class is not spurious at all, but meaning-bearing.

Of course, not all structural ambiguities are resolved by distinctions of intonation. (An example is
PP attachment ambiguity). It follows that some of the techniques proposed for written parsing must
be implicated as well. However, the theory opens the possibility of unifying phonological and syntactic
processing, as well as simplifying the architecture required for integrating higher-level modules in spoken
language processing.

*1 am grateful to Julia Hirschberg, Aravind Joahi, M itch Marcu«, Janet Pierrehumbert, and Bonnie Lynn W ebber for
com m ents and advice. T he research was supported by DARPA grant no. N0014-85-K 0018, ARO grant no. DAAG 29-84-
K-0061, and NSF grant no. CER MCS 82-19196.

-162- Intemational Parsing Workshop '89

Structure and Intonation

Phrasal intonation is notorious for structuring the words of spoken utterances into groups which fre­
quently violate orthodox notions of constituency. For example, the normal prosody for the answer (b)
to the following question (a) imposes the intonational constituency indicated by the brackets (stress is
indicated by capitals):

(1) a. I know that brassicas are a good
source of minerals, but what are
LEGumes a good source of?

b. (LEGumes are a good source of)
VITamins.

Such a grouping cuts right across the traditional syntactic structure of the sentence. The presence of
two apparently uncoupled levels of structure in natural language grammar appears to complicate the
path from speech to interpretation unreasonably, and to thereby threaten a number of computational
applications.

Nevertheless, intonational structure is strongly constrained by meaning. Contours imposing brack­
etings like the following are not allowed:

(2) # Three doctors (in ten prefer cats)

Halliday [5] seems to have been the first to identify this phenomenon, which Selkirk [16] has called
the “Sense Unit Condition” , and to observe that this constraint seems to follow from the function of
phrasal intonation, which is to convey distinctions of focus, information, and propositional attitude
towards entities in the discourse. These entities are more diverse than mere nounphrase or propositional
referents, but they do not include such non-concepts as “in ten prefer cats.”

One discourse category that they do include is what E. Prince [15] calls “open propositions” . Open
propositions are most easily understood as being that which is introduced into the discourse context by
a Wh-question. So for example the question in (1), What art. legumes a good source of? introduces an
open proposition which it is most natural to think of as a functional abstraction, which would be written
as follows in the notation of the A-calculus:

(3) \x[good'(source' x) legumes']

(Primes indicate interpretations whose detailed semantics is of no direct concern here.) When this
function or concept is supplied with an argument v itam ins ', it reduces to give a proposition, with the
same function argument relations as the canonical sentence:

(4) good' (source1 vitamins')legumes'

It is the presence of the above open proposition rather than some other that makes the intonation contour
in (1) felicitous. (I am not claiming that its presence uniquely determines this response, nor that its
explicit mention is necessary for interpreting the response.)

All natural languages include syntactic constructions whose semantics is also reminiscent of functional
abstraction. The most obvious and tractable class are Wh-constructions themselves, in which exactly
the same fragments that can be delineated by a single intonation contour appear as the residue of the
subordinate clause. But another and much more problematic class are the fragments that result from
coordinate constructions. It is striking that the residues of wh-movement and conjunction reduction are

-163- < International Parsing Workshop '89

also subject to something like a “sense unit condition” . For example, strings like “in ten prefer cats”
are not conjoinable:

(5) *Three doctors in ten prefer cats,
and in twenty eat carrots.

While coordinate constructions have constituted another major source of complexity for natural language
understanding by machine, it is tempting to think that this conspiracy between syntax and prosody might
point to a unified notion of structure that is somewhat different from traditional surface constituency.

Combinatory Grammars.

Combinatory Categorial Grammar (CCG, [17]) is an extension of Categorial Grammar (CG). Elements
like verbs are associated with a syntactic “category” which identifies them as functions, and specifies
the type and directionality of their arguments and the type of their result:

(6) eats (S\HP)/HP: e a t '

The category can be regarded as encoding the semantic type of their translation. Such functions can
combine with arguments of the appropriate type and position by functional application:

(7) Haxry e a ts apples

HP (S \ IP) / IP SP

SNIP
--------------------------<

S

Because the syntactic functional type is identical to the semantic type, apart from directionality, this
derivation also builds a compositional interpretation, eats' apples' harry ' , and of course such a “pure”
categorial grammar is context free. Coordination might be included in CG via the following rule, allowing
any constituents of like type, including functions, to form a single constituent of the same type:

(8) X conj X => X

(9) I cooked and ate a frog

HP (SNMP)/IP conj (S\SP)/IP SP

(SNIP)/IP

(The rest of the derivation is omitted, being the same as in (7).) In order to allow coordination of
contiguous strings that do not constitute constituents, CCG generalises the grammar to allow certain
operations on functions related to Curry’s combinators [4]. For example, functions may compose, as well
as apply, under the following rule

(10) Forward Composition:
X / Y : F Y /Z :G X / Z : Az F (G x)

-164- International Parsing Workshop ’89

The most important single property of combinatory rules like this is that they have am invariant seman­
tics. This one composes the interpretations of the functions that it applies to, as is apparent from the
right hand side of the rule.1 Thus sentences like I cooked, and might eat, the beans can be accepted,
via the following composition of two verbs (indexed as B, following Curry’s nomenclature) to yield a
composite of the same category as a transitive verb. Crucially, composition also yields the appropriate
interpretation, assuming that a semantics is also provided for the coordination rule.

(1 1) co o k e d and s i g h t e a t

(S \N P)/N P c o n j (S \N P)/V P VP/HP
--------------- >B

(S \N P)/H P
--- 1

(S\W P)/N P

Combinatory grammars also include type-raising rules, which turn arguments into functions over functions-
over-such-arguments. These rules allow arguments to compose, and thereby take part in coordinations
like I cooked, and you ate, the legumes. They too have an invariant compositional semantics which
ensures that the result has an appropriate interpretation. For example, the following rule allows the
conjuncts to form as below (again, the remainder of the derivation is omitted):

(12) Subject Type-raising:
N P : y => S / { S \ N P) : AF Fy

(13) I cookad and you at*

■P (S \ I P) / I P conj IP (S \ I P) / I P
-------------->T ------------- >T
S / (S \ I P) 3 / (3 \IP)
-------------------------------->B -------------------------------->B

3 / IP 3 /IP
---1

3/IP

Intonation in a CCG.

Inspection of the above examples shows that Combinatory grammars embody an unusual view of surface
structure, according to which strings like Betty might eat are constituents. In fact, according to this
view, surface structure is a much more ambiguous affair than is generally realised, for they must also
be possible constituents of non-coordinate sentences like Betty might eat the mushrooms, as well. (See
[11] and [19] for a discussion of the obvious problems that this fact engenders for parsing written text.)
An entirely unconstrained combinatory grammar would in fact allow more or less any bracketing on a
sentence. However, the actual grammars we write for configurational languages like English are heavily
constrained by local conditions. (An example would be a condition on the composition rule that is
tacitly assumed here, forbidding the variable Y in the composition rule to be instantiated as NP, thus
excluding constituents like *[eat the]yp/^).

The claim of the present paper is simply that particular surface structures that are induced by
the specific combinatory grammar that was introduced to explain coordination in English are identical
to the intonational structures that are required to specify the possible intonation contours for those

1 The rule uses the notation of the A-calculus in the sem antics, for clarity. T his should not obecure the fact that it is
functional com position itself that is the prim itive, not the A operator.

-165- Intemational Parsing Workshop '89

same sentences of English.2 More specifically, the claim is that that in spoken utterance, intonation
largely determines which of the many possible bracketings permitted by the combinatory syntax of
English is intended, and that the interpretations of the constituents are related to distinctions of focus
among the concepts and open propositions that the speaker has in mind. Thus, whatever problems for
parsing written text arise from the profusion of equivalent alternative surface structures engendered by
this theory, these “spurious” ambiguities seem to be to a great extent resolved by prosody in spoken
language. The theory therefore offers the possibility that phonology and parsing can be merged into a
single unitary process.

The proof of this claim lies in showing that the rules of combinatory grammar can be annotated
with intonation contour schemata, which limit their application in spoken discourse, and to showing
that the major constituents of intonated utterances like (l)b, under the analyses that these rules permit,
correspond to the focus structure of the context to which they are appropriate, such as (l)a.

I shall use a notation which is based on the theory of Pierrehumbert [12], as modified in more recent
work by Selkirk [16], Beckman and Pierrehumbert [2], [13], and Pierrehumbert and Hirschberg [14], I
have tried as far as possible to take my examples and the associated intonational annotations from those
authors.

I follow Pierrehumbert in assuming two abstract pitch levels, and three types of tones, as follows.
There are two phrasal tones, written H and L, denoting high or low “simple” tones — that is, level
functions of pitch against time. There are also two boundary tones, written HV% and L’/«, denoting an
intonational phrase-final rise or fall. Of Pierrhumberts six pitch accent tones, I shall only be concerned
with two, the H* accent and the L+H*. The phonetic or acoustic realisation of pitch accents is a complex
matter. Roughly speaking, the L+H* pitch accent that is extensively discussed below in the context of
the L+H* LH% melody generally appeaxs as a maximum which is preceded by a distinctive low level, and
peaks later than the corresponding H* pitch accent when the same sequence is spoken with the H* L
melody that goes with “new” information, and which is the other melody considered below.

In the more recent versions of the theory, Pierrehumbert and her colleagues distinguish two levels
of prosodic phrase that include a pitch accent tone. They are the intonational phrase proper, and
the “intermediate phrase” . Both end in a phrasal tone, but only intonational phrases have additional
boundary tones H'/, and L'/,. Intermediate phrases are bounded on the right by their phrasal tone alone,
and do not appear to be characterised in F0 by the same kind of final rise or fall that is characteristic
of true intonational phrases. The distinction does not play an active role in the present account, but
I shall follow the more recent notation of prosodic phrase boundaries in the examples, without further
comment on the distinction.

There may also be parts of prosodic phrases where the fundamental frequency is merely interpolated
between tones, notably the region between pitch accent and phrasal tone, and the region before a pitch
accent. In Pierrehumbert’s notation, such substrings bear no indication of abstract tone whatsoever.

A crucial feature of this theory for present purposes is that the position and shape of a given pitch
accent in a prosodic phrase, and of its phrase accent and the associated right-hand boundary, are
essentially invariant. If the constituent is very short - say, a monosyllabic nounphrase - then the whole
intonational contour may be squeezed onto that one syllable. If the constituent is longer, then the pitch
accent will appear at its left edge, the phrasal tone and boundary tone if any will appear at its right edge,
and the intervening pitch contour will merely be interpolated. In this way, the tune can be spread over
longer or shorter strings, in order to mark the corresponding constituents for the particular distinction
of focus and propositional attitude that the melody denotes.

Consider for example the prosody of the sentence Fred ate the beans in the following pair of discourse

2 There is a precedent for the claim that prosodic structure can be identified with the structures arising from the inclusion
of associative operations in grammar in the work of M oortgat [9] and Oehrle [10], and in [?]

-166- Intemational Parsing Workshop '89

(1 4) Q: W e l l , w hat a b o u t t h e BEAns?
Who a t e THEM?

A: FEED a t e t h e B E A -n s .
H*L L+H*LH'/,

(15) Q: W e l l , w hat a b o u t FRED?
What d i d HE e a t ?

A: FRED a t e t h e BEAns.
L+H* LHV. H* LL7.

In th ese c o n te x t s , the m ain s tressed sy l lab les on b o th Fred and the beans receive a p itch accen t , but a
different one. In (1 4) , the p itch accen t con tou r on Fred is H*, w hile th a t on beans is L+H*. (I base these
a n n o ta t io n s on P ierreh u m b ert and H irsch b erg ’s [14, ex. 33] d iscuss ion o f this ex a m p le .)

In th e seco n d e x a m p le (15) a b ove , the p itch accen ts are reversed: this t im e Fred is L+H* and beans is
H*. T h e a s s ig n m e n t o f th ese to n e s s e e m to reflect the fact th a t (as P ierreh u m b ert and Hirschberg point
o u t) H* is used to m ark in form ation th a t th e speaker b e lieves to be new to the hearer. In co n tras t , L+H*
seem s to b e used to m ark in fo rm atio n w hich the current speaker k n o w s to be g iven to th e hearer (b eca u se
th e current hearer asked th e orig inal q u e s t io n) , b u t w hich c o n s t i tu te s a novel to p ic o f co n v ersa t ion for
the sp eak er , s t a n d in g in a co n tra s t iv e re la t ion to som e other given in form a tio n , c o n s t i tu t in g th e p rev iou s
top ic . (I f th e in fo rm a tio n were m erely g iven , it w ou ld receive no to n e in P ie r r e h u m b e r t ’s term s — or
be left o u t a l to g e th e r .) T h u s in (1 5) , the L+H* LH'/, phrase in c lu d in g th is accen t is sp rea d across the
p h rase Fred ate. 3 S im ilarly , in (1 4) , the sa m e tu n e is confined to th e o b jec t o f the o p e n p ro p o s i t io n ate
the beans, b eca u se th e in to n a t io n o f th e orig inal q u e st ion in d ica tes th a t e a t in g b ea n s as opposed to some
other comestible is the n ew topic .

settings, which are adapted from Jackendoff [7, pp. 260]:

Syntax-driven Prosody.

T h e L+H* LH*/. in to n a t io n a l m e lo d y in ex a m p le (15) b e lo n g s to a ph rase Fred ate ... w h ich corresp on d s
un d er th e co m b in a to ry theo ry o f gra m m a r to a g r a m m a tic a l co n s t i tu e n t , c o m p le te w ith a tran s la t ion
eq u iv a len t to th e o p en p r o p o s i t io n \x[(ate' x) fred!). T h e c o m b in a to r y th eory th u s offers a way to
ass ign co n to u rs like L+H* LH'/. to su ch novel co n s t i tu e n t s , en tire ly under th e contro l o f in d e p e n d e n t ly
m o t iv a te d rules o f gr a m m a r . For e x a m p le , th e rule o f forward c o m p o s i t io n sh o u ld be m a d e su b je c t to a
restr ic t ion w h ich is in th e term s o f P ie r r e h u m b e r t ’s th e o r y an e x tr e m e ly na tura l on e , a m o u n t in g to the
s tra igh tforw a rd in ju n ct io n “D o n ’t a p p ly th is rule across an in to n a t io n a l phrase or in te r m e d ia te phrase
b o u n d a r y ” . T h e m o d if ied rule a llow s th e fo l low in g der iva t io n for Fred ate . . . , in w h ich for on ce the
s e m a n t ic in ter p re ta t io n is in c lu d ed :4

3 An alternative prosody, in which the contrastive tune ia confined to Fred, seems equally coherent, and m ay be the
one intended by Jackendoff. I believe that this alternative is inform ationally d istinct, and arises from an am biguity as to
whether the topic of this discourse is Fred or W hat Fred ate. It is accepted by the present rules.

4 Again primes indicate interpretations whose details are of no concern here. It will be apparent from the derivations
that the assum ed sem antic representation is at a level prior to the explicit representation of m atters related to quantifier
scope.

-167- Intemational Parsing Workshop '89

(16) Fred

HP: f r e d ’ (S \ N P) / H P : a t e '
L+H* LH’/.

------------------ >T
S / (S \ H P) :) P P I r e d ’

L+H*
-------------------------------------->B

S / H P : X x (a t e ’ X) I r e d '
L+H*LH'/,

T h e o p t io n s in co rp ora ted in th e ton a l a n n o ta t io n s o f the rule allow the L+H* LH’/, tu n e to spread across
any seq u en c e th a t can be c o m p o sed by rep ea ted a p p lica t ion s o f the rule. For ex a m p le , if the reply to the
sa m e q u est ion What did Fred eat? is FRED must have eaten the BEANS , th en th e tu n e will typ ica lly
be spread over Fred must have eaten as in the fo l low ing derivat ion , in w hich m uch o f the sy n ta c t ic
and se m a n t ic de ta i l has b een o m it t e d in th e in terests o f brevity:

(1 7) Fred m ist have ea te n

HP (SNMP)/VP VP/VPen VPen/HP
L+H* Lift

------ >T
L+H*

L+H*

L+H*
---------------------- >B

L+H*LH%

On th e a s s u m p t io n th a t forward fu nct io n a l a p p l ica t ion bears a c o m p le m e n ta r y restr ic t ion , and can
co m b in e any in to n a t io n co n tou rs to y ie ld their c o n c a te n a t io n , e x ce p t w h en the le f tm o s t is a bare phrasal
ton e or phrasa l to n e and b o u n d a ry to n e , the d erivat ion o f (1 5) can be c o m p le te d as follows:

(1 8) Fred ate the beans

IP :f r e d ’ (S \ I P) / I P :ate * IP /I : t h e ’ I:bean*’
L+H* LHX H* LLX

----------- >T — >
S / (S \ I P) : I P :the ’ bean*’
>P P fred* H* LLX
L+H*

S/IP:>X (a te* I) fred*
L+ge LSI

3: a t e ' (the* beans*) fred*
L+I* LIX H* LLX

T h e d iv is io n in to c o n tr a s t iv e /g iv e n o p en p ro p os it ion versus new in fo rm atio n is a p p rop r ia te , and no o th er
d erivat ion is a llow ed , g iven th is in to n a t io n con tou r . R e p e a te d a p p l ica t io n o f th e c o m p o s i t io n rule, as in
(1 7) , w ou ld a llow th e L+H* LH*/, co n tou r to sp read further, as in (FRED must have eaten) the BEANS.

In co n tras t , th e in to n a t io n c o n tou r on (1 4) w ill n ot p e rm it the a n n o ta te d c o m p o s i t io n rule to apply,
b ec a u se Fred en d w ith a L b o u n d a ry in to n a t io n , so th e bracketing im p o sed in (1 5) (a n d the fo rm ation o f

-168- International Parsing Workshop '89

the corresponding open proposition) is simply not allowed. However, since forward functional application
is unrestricted, the following derivation of (14) is allowed. Again, the derivation divides the sentence
into new and given information consistent with the context given in the example:

(19) Fr«d th« b«an»

IP:fr«d» (3 \IP) /IP :m t« » IP /I : th « > I:b«*n*'
H* L L+H* LHX

S/CSMP): I P : th« ’ b«an*>
> P P fr«d> L+H* LHX

H* L
-->

S \ I P :« a t ’ (th « * b«&na’)
L+H* LHX

3: b«ana’) f r a d ’
H* L L+H* LHX

The effect of the rules is to annotate the entire predicate as an L+H* LH'/,. It is emphasised that this
does not mean that the tone is spread, but that the whole constituent is marked for the corresponding
discourse function — roughly, as contrastive. The finer grain information that it is the object that is
contrasted, while the verb is given, resides in the tree itself. Similarly, the fact that boundary tones are
associated with words at the lowest level of the derivation does not mean that they are part of the word,
nor that the word is the entity that they are a boundary of It is prosodic phrases that they bound,
and these also are defined by the tree. No other analysis is allowed for (19). Other cases considered by
Jackendoff are considered in a more extended companion to the present paper [19], and are shown to
yield only contextually appropriate interpretations.

Conclusions.

The problem of so-called “spurious” ambiguity, or multiple semantically equivalent derivations, now
appears in a quite different light. While the semantic properties of the rules (notably the associativity
of functional composition that engenders the problem in the first place) do indeed guarantee that these
analyses are semantically equivalent at the level of Argument Structure, they are nonetheless meaning-
bearing at the level of Information Structure. To call them “spurious” is rather misleading. What is
more, while there are usually a great many different analyses for any given sequence of words, intonation
contour often limits or even eliminates the non-determinism arising from this source.

The significance of eliminating non-determinism in this way should not be under-estimated. Similar
intonational markers are involved in coordinate sentences, like the following ‘right-node-raised” example:

(20) I will, and you won’t, eat mushrooms

In such sentences the local ambiguity between composing won’t and eat and applying the latter to
its argument first is a genuine local ambiguity, equivalent to a local attachment ambiguity in a more
traditional grammar, for only one of the alternatives will lead to a parse at all. And the correct
alternative is the one that is selected by the restriction against forward composition across prosodic
phrase boundaries.

However, the extent to which intonation alone renders parsing deterministic should also not be over­
stated. There still axe sources of non-determinism in the grammar, which must be coped with somehow.
Most obviously, there are sources common to all natural language grammars, such as the well-known
PP-attachment ambiguities in the following example:

-169- Intemational Parsing Workshop '89

(21) Put.the block in the box on the table.

While intonation can distinguish the two analyses, they do not seem to be necessarily so distinguished.
There is also a residuum of so-called spurious ambiguity, because function categories bearing no tone
are free to forward compose and to apply.

It is important to observe that this ambiguity is widespread, and that it is a true ambiguity in
discourse interpretation. Consider yet another version of the example with which the paper began,
uttered with only an H* LL% tune on the last word:

(2 2)

Legumes are a good source of Vitamins.
H* LL%

Such an intonation contour is compatible with all the analyses that the unannotated CCG would allow.
However, such an utterance is also compatible with a large number of contextual open propositions.
For example, it is a reasonable response to the question What can you tell me about legumes? But it
is similarly reasonable as an answer to What are legumes?, or to What are legumes a good source of?
The ambiguity of intonation with respect to such distinctions is well-known , and it would simply be
incorrect not to include it . (See discussion in [1] and [8] for alternative proposals for ways of resolving
it that are compatible with the present proposal.)

According to the present theory, the pathway between phonological form and interpretation is much
simpler than has been thought up till now. Phonological Form maps directly onto Surface Structure, via
rules of combinatory grammar annotated with abstract intonation contours. Surface Structure is identical
to intonational structure, and maps directly onto Focus Structure, in which focussed and backgrounded
entities and open propositions are represented by functional abstractions and arguments. Such structures
reduce to yield canonical Function-Argument Structures. The proposal thus represents a return to the
architecture proposed by Chomsky [3] and Jackendoff [7]. The difference is that the concept of surface
structure has changed. It now really is only surface structure, supplemented by “annotations” which do
nothing more than indicate the information structural status and intonational tune of constituents at
that level.

While many problems remain, both in parsing written text with grammars that include associative
operations, and at the signal-processing end, the benefits for automatic spoken language understanding
are likely to be significant. Most obviously, where in the past parsing and phonological processing have
delivered conflicting structural analyses, and have had to be pursued independently, they now are seen
to be in concert. Processors can therefore be devised which use both sources of information at once, thus
simplifying both problems. Furthermore, a syntactic analysis that is so closely related to the structure
of the signal should be easier to use to “filter” the ambiguities arising from lexical recognition. What
is likely to be more important in the long run, however, is that the constituents that arise under this
analysis are also semantically interpreted. The paper has argued that these interpretations are directly
related to the concepts, referents and themes that have been established in the context of discourse,
say as the result of a question. The shortening and simplification of the path from speech to these
higher levels of analysis offers the possibility of using those probably more effective resources to filter
the proliferation of low level analyses as well.

R eferences

[1] Altmann, Gerry and Mark Steedman: 1988, ‘Interaction with Context During Human Sentence
Processing’ Cognition, 30, 191-238

-170- Intemational Parsing Workshop '89

[2] Beckman, Mary and Janet Pierrehumbert: 1986, ‘International Structure in Japanese and English’,
Phonology Yearbook, 3, 255-310.

[3] Chomsky, Noam: 1970, ‘Deep Structure, Surface Structure, and Semantic Interpretation’, in D.
Steinberg and L. Jakobovits, Semantics, CUP, Cambridge, 1971, 183-216.

[4] Curry, Haskell and Robert Feys: 1958, Combinatory Logic, North Holland, Amsterdam.

[5] Halliday, Michael: 1967, Intonation and Grammar in British English, Mouton, The Hague.

[6] Hepple, Mark, and Glyn Morrill: 1989, ‘Parsing and Derivational Equivalence’, Proceedings of the
Fourth Conference of the European Chapter of the ACL, Manchester, April 1989, 10-18.

[7] Jackendoff, Ray: 1972, Semantic Interpretation tn Generative Grammar, MIT Press, Cambridge
MA.

[8] Marcus, Mitch, Don Hindle, and Margaret Fleck: 1983, D-theory: Talking about Talking about
Trees, Proceedings of the 21st Annual Meeting of the Association for Computational Linguistics,
Cambridge Mass, June, 1983, 129-136.

[9] Moortgat, Michael: 1988, Categorial Investigations, Foris, Dordrecht.

[10] Oehrle, Richard T.: 1985, paper to the Conference on Categorial Grammar, Tucson, AR, June 1985,
in Richard T. Oehrle, E.. Bach and D. Wheeler, (eds), Categorial Grammars and Natural Language
Structures, Reidel, Dordrecht, (in press).

[11] Pareschi, Remo, and Mark Steedman. 1987. A lazy way to chart parse with categorial grammars,
Proceedings of the 25th Annual Conference of the ACL, Stanford, July 1987, 81-88.

[12] Pierrehumbert, Janet: 1980, The Phonology and Phonetics of English Intonation, Ph.D dissertation,
MIT. (Distributed by Indiana University Linguistics Club, Bloomington, IN.)

[13] Pierrehumbert, Janet, and Mary Beckman: 1989, Japanese Tone Structure, MIT Press, Cambridge
MA.

[14] Pierrehumbert, Janet, and Julia Hirschberg, 1987, ‘The Meaning of Intonational Contours in the
Interpretation of Discourse’, ms. Bell Labs.

[15] Prince, Ellen F. 1986. On the syntactic marking of presupposed open propositions. Papers from the
Parasession on Pragmatics and Grammatical Theory at the 22nd Regional Meeting of the Chicago
Linguistic Society, 208-222.

[16] Selkirk, Elisabeth: Phonology and Syntax, MIT Press, Cambridge MA.

[17] Steedman, Mark: 1987. Combinatory grammars and parasitic gaps. NL<, 5, 403-439.

[18] Steedman, Mark: 1989, Structure and Intonation, ms. U. Penn.

[19] Wittenburg, Kent: 1987, ‘Predictive Combinators: a Method for Efficient Processing of Combi­
natory Grammars’, Proceedings of the 25th Annual Conference of the ACL, Stanford, July 1987
73-80.

-171- Intemational Parsing Workshop '89

R ecogn ition o f C om binatory Categorial Gram m ars and Linear
Indexed Gram m ars

1 In trod u ction

In recent papers [14,15,3] we have shown th a t Com binatory Categorial G ram m ars (CCG), Head G ram ­
mars (H G), Linear Indexed G ram m ars (LIG), and Tree Adjoining G ram m ars (TAG) are weakly equiv­
alent; i.e., they generate the same class of string languages. Although it is known th a t there are
polynomial-time recognition algorithms for HG and TAG [7,11], there are no known polynomial-time
recognition algorithms th a t work directly with CCG or LIG. In this paper we present polynomial­
time recognition algorithms for CCG and LIG th a t resemble the CKY algorithm for Context-Free
G ram m ars (C F G) [4,16].

The tree sets derived by a C FG can be recognized by finite state tree au to m a ta [10]1. This
is reflected in CFL bo ttom -up recognition algorithms such as the CKY algorithm. Intermediate
configurations of the recognizer can be encoded by the sta tes of these finite s ta te au to m a ta (the
nonterm inal symbols of the g ram m ar). The similarity of TAG, CCG, and LIG can be seen from the
fact th a t the tree sets derived by these formalisms can be recognized by pushdown (ra ther than finite
s ta te) based tree au to m a ta . We give recognition algorithms for these formalisms by extending the
CK Y algorithm so th a t in term ediate configurations are encoded using stacks. In [6] a chart parser for
CCG is given where copies of stacks (derived categories) are stored explicitly in each chart entry. In
Section 4 we show th a t storing stacks in this way leads to exponential run-time. In the algorithm we
present here the stack is encoded by storing its top element together with information about where
the rem ainder of the stack can be found. Thus, we avoid the need for multiple copies of parts of the
same stack through the sharing of common substacks. This reduces the num ber of possible elements
in each en try in the chart and results in a polynomial time algorithm since the time complexity is
related to the num ber of elements in each chart entry.

It is not necessary to derive separa te algorithms for CCG, LIG, and TAG. In proving th a t these
formalisms are equivalent, we developed constructions th a t m ap g ram m ars between the different for­
malisms. We can m ake use of these constructions to adap t an algorithm for one formalism into an
algorithm for another. First we present a discussion of the recognition algorithm for LIG in Section 22.

1A bottom-up finite state tree automaton reads a tree bottom-up. The state that the automaton associates with each
node that it visits will depend on the states associated with the children of the node.

2 We consider LIG that correspond to the Chomsky normal form for CFG although we do not prove that all LIG have
an equivalent grammar in this form. A discussion of the recognition algorithm for LIG in this form is sufficient to enable
us to adapt it to give a recognition algorithm for CCG, which is the primary purpose of this paper.

K. Vijay-Shanker

Department of CIS
University of Delaware

Delaware, DE 19716

David J. Weir

Department of EECS
Northwestern University

Evanston, IL 60208

-172- International Parsing Workshop '89

We present the LIG recognition algorithm first since it appeares to be the clearest example involving
the use of the notion of stacks in derivations. In Section 3 we give an informal description of how to
m ap a CCG to an equivalent LIG. Based on this relationship we adapt the recognition algorithm for
LIG to one for CCG.

2 Linear Indexed Gram m ars

An Indexed G ram m ar [l] can be viewed as a CFG in which each nonterminal is associated with a
stack of symbols. In addition to rewriting nonterminals, productions can have the effect of pushing
or popping symbols on top of the stacks tha t are associated with each nonterminal. A LIG [2] is an
Indexed G ram m ar in which the stack associated with the nonterminal of the LHS of each production
can only be associated with one of the occurrences of nonterminals on the RHS of the production.
E m pty stacks are associated with o ther occurrences of nonterminals on the RHS of the production. We
write A[--] (or A[--7]) to denote the nonterminal A associated with an a rb itra ry stack (or an arbitrary
stack whose top symbol is 7). A nonterm inal A with an em pty stack is written A[].

D e f in i t io n 2.1 A LIG, G, is denoted by (V>/, Vj, V>, 5, P) where

V'v is a finite set of nonterminals,
V j is a finite set of terminals,
Vj is a finite set of indices (stack symbols),
S 6 Vn is the s ta r t symbol, and
P is a finite set of productions, having one of the following forms.

/ t N - A1[] . . .A, - ["] . . .An(] A H - . 4 1[] . . . A , [- 7] . . .A„[] A[] —* a

where A, A \ , . . . , A n 6 Vn a ^d flG { e } U V j .

The relation = > is defined as follows where a € V f and T i , T 2 are strings of nonterminals with
G

associated stacks.

• If A[--7] — A i [] . . . A t ["] . . . A n [] € P then

T iA [q 7]T 2 = > T 1 A 1 [] . . . A , [a] . . . A „ [] T 2

• If A[-] ~ A1[] . . . A j[- i] . . . A „ [] € P then

T ,A [a]T 2 =>• T 1A i [] . . . A , [a 7] . . . A n[]T2

In each of these two cases we say th a t A, is the d i s t i n g u i s h e d child of A in the derivation.

• If A[] a 6 P then
r l A [} T 2 = > r i a r 2

The language genera ted by a LIG, G, L (G) = { w | S[] ==>• w }.

-173- Intemational Parsing Workshop '89

In considering the recognition of LIG, we assum e th a t the underlying CFG is in Chom sky Normal
Form; i.e., e ither two nonterm inals (w ith their stacks) or a single term inal can appear on the RHS of a
rule. A lthough we have not confirmed w hether this yields a norm al form, a recognition algorithm for
LIG in this form of LIG is sufficient to enable us to develop a recognition algorithm for CCG. We use
an array L consisting of n2 elem ents where the string to be recognized is a x .. .a n . In the case of the
CKY algorithm for CFG recognition each array elem ent L t<J contains th a t subset of the nonterm inal
symbols th a t can derive the substring ax .. .a ; . In our algorithm the elem ents stored in L i j will encode
those nonterm inals and associated stacks th a t can derive the string a, . . . a^.

In order to ob tain a polynom ial algorithm we m ust encode the stacks efficiently. W ith each
nonterm inal we store only the top of its associated stack and an indication of the element in L
where the next p a rt of the stack can be found. This is achieved by storing sets of tuples of the form
(.4 , 7 , A ' , 7 ' ,p, q) in the array elem ents. Roughly speaking, a tuple (A, 7 , A', 7 ', p, <7) is stored in I tiJ
when A [q7 /7] = > a , . . .aj and A/[q;7 /] —̂ ap . . , a q where q is a string of stack symbols and A is
the unique distinguished descendent of A in the derivation of a , . . . a ; .

Note th a t tuples, as defined above, assum e the presence of a t least two stack symbols. We must
also consider two o ther cases in which a nonterm inal is associated with either a stack of a single
elem ent, or w ith the em pty stack. Suppose th a t A is associated w ith a stack containing only the single
sym bol 7 . This case will be represented using tuples of the form (A, 7 , A ' , p , <7) (w- ” indicates that
an em pty stack is associated w ith A '). W hen an em pty stack is associated w ith A we will use the tuple
(A, - , -) . In discussing the general case for tuples we will use the form (A, 7 , A ', 7 ', p, <7) with
the understand ing th a t: A' G VN or 7 , 7 ' £ V/ or and p, q are integer betw een 1 and n or
T he algorithm can be understood by verifying th a t at each step the following invariant holds.

P r o p o s i t io n 2.1 (A , 7 , A', 7 ', p, q) £ L XyJ if and only if one of the following holds.

If -y' ^ — then A[7] = > a , . . . a p_i A'[}aq+\ . . . a ; and A'[ol~i'\ ===> ap . . . aq for some a E

V f where A ' is a distinguished descendent of A. Note th a t this implies th a t for
a ll 0 e V f , A[j3~f] a l- . . . a p_ iA /[/3]a, + 1 . . . a j . T hus, for (3 = 0 7 ', A [aY f] =^>

a,-. . . a p_ i A '[a7 /] a ,+ i . . .aj which implies A [a7 ;7] =̂ => a , . . .a j .

If 7 7 = - ^ A' then A[7] ==> a,-.. .a3 and A'[] ap .. .aq.

If A' = - then A[] =̂ => a t- . . .aj.

Wre now describe how each en try L i j is filled. As the algorithm proceeds, the gap betw een i and j
increases until it spans the en tire inpu t. T he inpu t, <zi. . . an , is accepted if (S , , —) E L\ n.
New entries are added to the a rray elem ents according to the productions of the g ram m ar as follows.

1. T he p roduction A[»7] -+ A i[]A 2[-] is used while filling the a rray elem ent L i j as follows. For
every k where i < k < j , check the previously com pleted array elem ents L itk and L k+\,j for
(A i , * - , a n d some (A 2, 72, A3,73 ,P , <?), respectively. If these entries are found add
(A , 7 , A2, 72? k + 1, j) to L i j . If 72 = 73 = ^3 = P = q = ~ we Place (A ,7 ,A 2, - , f c + l , j) in
L i j . From these entries in L iyk and Ifc+i.j we know by P roposition 2.1 th a t A x[] =̂=> a t- . . . a fc

2.1 Recognit ion of LIG

-174- International Parsing Workshop ’89

and .4.2[a] ==> a,k+i . . .a ; for some a E V}- . T hus, Afcry] ==> a, •. •a: . The production A[**-y] —

Ai[*-]A2[] is handled similarly.

2. Suppose A[-*] —*> A i[].42[--7] is a production. W hen filling L tyJ we m ust check whether the
tuple (A i , i s in L x and (A2, 7 , A3, 73 , p, q) is in L k+lyJ for some k between i
and j . If we do find these tuples then we check in L v<q for some (A 3 , 73, A4, 74, r, s). In this
case we add (A , 73 , A4, 74, r, s) to L{j . If 73 = - then the stack associated with A3 is empty,
74 = A 4 = r = s = —, and we add the tuple (A, r , 5) to L{yJ. T he above steps can be
related to Proposition 2.1 as follows.

(a) If 73 5* - then for some a € V /, A4[q74J =^> ar . . . a 3 a subderivation of .43 (0:7473] =̂=>

av . . . a q a subderivation of A2[c*74737] ==> a * + i . . . a j . Com bining this w ith A i[] ==>

a , . . . a t we have A [q7 473] ===> a, . . . a ; .

(b) If 73 = — then A3[] av . . . a q is a subderivation of A2[7] ==>• ^k+ 1 - . . a j . C o m b in i n g

w ith Ai [] ==> a,-. . .a* , we get A[] = = > < Z j...a j.

P roductions of the form A[-*] —1► Ai[-*7]A2[] are handled similarly.

3 . Suppose A[] — a is a p roduction . This is used by the algorithm in the initialization of the array
L. If the term inal sym bol a is the sam e as the i th sym bol in the input string , i.e., a = a ,, then
we include (A , - in the a rray elem ent Z ,tl.

2 .2 C o m p le te A lg o r ith m

For i := 1 to n do

Li.i := {(>1, I A []-» a,}

For i := n to 1 do
For j := j to n do

For k := i to j — 1 do

Step la. For each production A(--7] — Ai[]A2[--]
if (A i, - , , -) € Li'k and (A2 , 72 , A3 , 7 3 , p, q) € Lk+i,j
then Li j := Li j U { (A, 7 , A2, 72 , k + 1 ,;) }

Step lb. For each production A[--7] —*> Ai[--]A2[]
if (Ai , 7 1 , A3 , 7 3 , p , q) € Li,!, and (A2) —, —, —, —) € L k + i j

then Li j 1 —- Li j U {(A,7>Ai,7i>*i^')}

Step 2a. For each production A[-] —* Ai[]A2[--7]
if (A 2 , 7 i A3 , 7 3 , p, q) € £*+i,;> (A3 , 7 3 , A4, 74 , r, s) € £ Pl?, and (A i € L%,k
then Li j .= Li j U { (A, 7 3 > A4, 74> }

S/ep 2 b. For each production A[--] —*• Ai[--7]A2[]
if (Ai , 7 , A3 , 73, p, ?) 6 (A3, 73, A4, 74, r , 5) G Ip,}, and (A2) —, - , , -) 6 £*+ 1 ,;
then L i j := L i j U { (A, 73, A4 , 74, r, s) }

-175- International Parsing Workshop '89

2 .3 C o m p le x ity o f th e A lg o r ith m

Any array elem ent, say Z j j , is a set of tuples of the form (A, 7 , A', 7 ', p, q) where p and q are either
integers betw een i and j , or i = j = The num ber of possible values for A, A', 7 , and 7 ' are each
bounded by a constan t. Thus the num ber of tuples in L XJ is at m ost 0 ((j — t)2). For a fixed value
of i , j , k , steps l a and lb will a tte m p t to place at most 0 ((j — i)2) tuples in L{j . Before adding m y
tuple to L i j we first check w hether the tuple is already present in th a t array elem ent. This can be
done in constan t tim e on a RAM by assum ing th a t each array elem ent L XtJ is itself an (i -f 1) x (j 4- 1)
array. A tuple of the form (A, 7 , A', 7 ', p, q) will be in the (p ,q) th elem ent of L Xi] and a tuple of the
form (A, —, —, —, —, -) will be in the (i + l , j + l) th elem ent of L xj . Thus these steps take at most
0 ({ j ~ 0 2) tim e- Similarly, for a fixed value of i, j , and fc, steps 2a and 2b can add at m ost 0 ((j - i)2)
d istinct tuples. However, in these steps 0 ((j — i)4) not necessarily distinct tuples may be considered.
There are 0 ((j — i)4) such tuples because the integers p , q , r , s can take values in the range between i
and j . Thus steps 2a and 2b m ay each take 0 ((j — i)4) tim e for a fixed value of i , j , k . Since we have
three in itial loops for i, j , and k, the tim e com plexity of the algorithm is 0 (n 7) where the length of
the input is n.

3 C om binatory C ategorial G ram m ars

CCG [9,8] is an extension of Classical C ategorial G ram m ars in which bo th function composition
and function application are allowed. In addition , forw ard and backw ard slashes are used to place
conditions concerning the relative ordering of adjacent categories th a t are to be combined.

D e f in i t io n 3 .1 A C C G , G, is denoted by (V j, V)v, 5 , / , R) where

V j is a finite set of term inals (lexical item s),
V)v is a finite set of nonterm inals (atom ic categories),
5 is a distinguished m em ber of Vjv,
/ is a function th a t m aps elem ents of Vj U {e} to finite subsets of C (Vj\r), the set of
categories ,3 where C(V}v) is the sm allest set such th a t Vjv C C (V ^) and c i ,c 2 G C(Vjv)
implies (c i / c 2), (c i \ c 2) € C(VN),
R is a finite set of com binatory rules.

T here are four types of com binatory rules involving variables x , y , z , z \ , . . . over C(V)y) and where

It € { \ > / } 4-

1 . forward application: > i x / y) V ~ '* x

2 . backward application: y (x \ y) -+ x
For these rules we say th a t (x / y) is the prim ary category and y the secondary category.

3 . generalized forward com position for som e fixed n > 1 :

(x / y) (. • . (y | l * l) | 2 • • • | » * n) -*■ (* • • (* | l * l) | 2 • • - In^n)

3 Note that / can assign categories to the empty string, e, though, to our knowledge, this feature has not been employed
in the linguistic applications of CCG.

4There is no type-raising rule although its effect can be achieved to a limited extent since / can assign type-raised
categories to lexical items.

-176* International Parsing Workshop ’89

4. generalized backw ard com position for some n > 1:

(• - * (2/ | l-l)|2 • • -ln*n) (A y) —’ (• • . (x | i * i) | 2 • • -ln*n)

For these rules (x / y) is the prim ary category and (. .)|2 . . . |n*n) the secondary category.

R estrictions can be associated with the use of each com binatory rule in R. These restrictions take the
form of constra in ts on the in stan tia tions of variables in the rules.

1. T he leftm ost nonterm inal (t a r g e t c a te g o ry) of the prim ary category can be restric ted to be in
a given subset of Vjv.

2. T he category to which y is in stan tia ted can be restricted to be in a given finite subset of C (V \) .

D erivations in a C C G , G = (V j, Vyv, 5 , / , R), involve the use of the com binatory rules in R. Let = >
G

be defined as follows, where T i , T 2 € [C{VN) u VT)m and c ,c i ,c 2 € C (V N).

• If R contains a com binatory rule th a t has CiC2 — c as an instance then

T ic T 2 ==> T iG ic2T 2

• If c 6 / (a) for some a 6 Vt U { c } and c £ C (V)v) then

T ic T 2 =► T i a T 2
G

T he string languages generated by a C C G , G , L(G) = { it; | 5 w \ w € V f }.

In the present discussion of CCG recognition we m ake the following assum ptions concerning the
form of the g ram m ar.

1 . In order to simplify our p resen tation we assum e th a t the categories are parenthesis-free. The
algorithm that we present can be adapted in a straightforward way to handle parenthesized cate­
gories and this more general algorithm is given in [1 2].

2. We will assum e th a t the function / does not assign categories to the em pty string . This is
consisten t w ith the linguistic use of CCG although we have not shown th a t th is is a norm al form
for CC G .

3.1 The LIG/CCG Relationship
In this section, we describe the relationship betw een LIG and CCG by discussing how we can construct
from any CC G a weakly equivalent LIG. T he weak equivalence of LIG and CCG was established
in [15]. T he purpose of this section is to show how a CCG recognition algorithm can be derived from
the a lgorithm given above for LIG.

Given a C C G , G = (V j, V\r, 5 , / , R), we construct an equivalent LIG, G' = (V j, V)v, VjvU{/, \} , S ,P)»
as follows. Each category in c 6 C(V]v) can be represented in G' as a non term inal and associated
stack A[a] where A is the ta rg e t category of c and a € ({/»\}V)v)* suck A a = c. N ote th a t we
are assum ing th a t categories are parenthesis-free.

177- International Parsing Workshop '89

We begin by considering the function, / , which assigns categories to each element of V j- Suppose
th a t c E f (a) where c G C (V h) and a G Vt - We should include the production A[a] —* a where
c - A a in P. For each com binatory rule in R w'e may include a num ber of productions in P. From the
definition of CCG it follows th a t the length of all secondary categories in the rules R is bounded by
some constan t. Therefore there are a finite num ber of possible ground instan tia tions of the secondary
category in each rule. Thus we can remove variables in secondary categories by expanding the number
of rules in R. The rules th a t result will involve a secondary category c G C(Vjv) and a prim ary category
of the form x / A or x \A where A 6 Vyv is the target category of c. The rule m ay also place a restriction
on the value of the targe t category of x. In the case of the prim ary categories of the com binatory
rules there is no bound on their length and we cannot remove the variable th a t will be bound to the
unbounded p a rt of the category (the variable x above). Therefore the rules contain a single variable
and are linear w ith respect to this variable; i.e., it appears once on either side of the rule.

It is stra igh tfo rw ard to convert com binatory rules in this form into corresponding LIG productions.
We illu s tra te how this can be done with an exam ple. Suppose we have the following com binatory rule.

x / A A / B \ C \ B - x / B \ C \ B

where the ta rg e t category of x m ust be either C or D. This is converted into the following two
productions in P.

C [- /B \C \B] - C [-M] A [/B \C \B] D [- /B \C \B] - D[- / A] A { /B \C \B]

Notice th a t these LIG productions do not correspond precisely to our earlier definition. We are
pushing and popping m ore th a t one sym bol on the stack and we have not associated em pty stacks with
all bu t one of the RHS nonterm inals. A lthough this clearly does not affect weak generative power, as
we will see in the next section, it will require a m odification to the recognition algorithm given earlier
for LIG.

3 .2 R e c o g n it io n o f C C G

In order to produce a CCG recognition algorithm we extend the LIG recognition algorithm given in
Section 2.2. From the previous section it should be clear th a t the CCG and LIG algorithm s will be
very sim ilar. Therefore we do not present a detailed description of the CCG algorithm . We use an
array , C , w ith n 2 e lem ents, C tJ for 1 < t < j < n. T he tuples in the array will have a slightly different
form from those of the LIG algorithm . This is because each derivation step m ay depend on more than
one sym bol of the category (stack). T he num ber of such sym bols is bounded by the g ram m ar and is
equal to the num ber of sym bols in the longest secondary category. We define th is bound for a CCG,
G = (V j, V}v, 5 , / , R) as follows. Let 1(c) = k if c € ({ /A } ^ jv) fc- Let 5(G) be the m axim um 1(c) of
any category c G C(V}v) such th a t c can be the secondary category of a com binatory rule in R.

As in the LIG a lgorithm we do not store the en tire category explicitly. However, ra th e r th an storing
only the top sym bol locally, as in the LIG algorithm , we store some bounded num ber of sym bols locally
together w ith a indication of where in C the rem ainder of the category can be found. This m odification
is needed since a t each step in the recognition algorithm we m ay have to exam ine the top s (G) symbols
of a category. W ith o u t this extension we would be required to trace th rough c(G) entries in C in order
to exam ine the top c(G) sym bols of a category and the a lgo rithm ’s tim e com plexity would increase.

-178- Intemational Parsing Workshop '89

An en try in C will be a six-tuple of the form (A ,a ,/3 ,7 ,p , q) where A E V /y ,,a ,(3 E ({ / A K v V
and one of the two cases applies.

or 2 < 1(a) < s(G) — 1, l((3) = s(G) - 1, 7 E { / , \ }Viv , 1 < p < q < n

0 < 1(a) < 23(G) — 2, (3 = €, 7 = p = q —

An en try (A, a, (3,~/,p,q) is placed in C t,j when

• If /3 = € and 7 — p — q — - then A a a, . . . a 7.
G

• If (3 £ e then for some a ' E ({ / , \ }V/v)*, A a '/3a a , . . . a ; and A a '/?7 = ^ > a „ . . . a 7.
G G

The steps of the algorithm th a t apply for exam ples of forw ard application and forw ard composition
are as follows.

• x / A A —► x E R
For each k betw een i and j , we look for (B , a , /?, 7 , p, <7) E C,,* and (A , -) E C*+liJ
where B is a possible ta rge t category of x and the string (3a has /A as a suffix. If we find these
tuples then do the following.

If 1(a) > 3 or (3 = e then include (B , a ' , / 3 , i , p , q) in C tJ where a = a ' / A

If 1(a) = 2 and (3 ^ e then look in Cp<q for some (B , a ', /?', 7 ', r, s) such th a t (3 is a suffix of
/3'a ', and include (B , a '"a " , fi', 7 ', r, 3) in C t)J where a = q " /A and a ' = q //;7 .

If 1(a) = / A then we know th a t (3 = e and 7 = p = g = —, and we should add (5 , e, £, —, -)
in

• x / A A \ B / C —*• x \ B / C E i?
For each A: betw een i and j , we look for (A ', a , j3, 7 ,p , <?) E C,,^ and (A , \ B / C , e, -) E Cjt+i.j
where A ' is a possible ta rg e t category of x and /A is a suffix of /3a. If we find these tuples then
do the following.

If l(j3) = s (G) — 1 or 1(a) = 2,s(G) — 3 then include (A ' , \ B / C , /3', / A , i , k) in C , j where (3'/A
is a suffix of (3a such th a t l((3') — s (G) — 1 .

If l((3) = 0 and 1(a) < 2s(G) — 3) then include (A', \ B / C a \ e, —, —, —) in C ,tJ where a ' / A =
(3a.

Each of th e o th e r form s of com binatory rules can be trea ted in a sim ilar way yielding an algorithm
th a t closely resem bles the LIG algorithm presented in Section 2 .2 . Note th a t in a com plete algorithm,
the forw ard com position exam ple th a t we have considered here would have to be m ade m ore general
since the num ber of cases th a t m ust be considered depends on the length of the secondary category in
the rule. T he tim e com plexity of the full CCG recognition algorithm is the sam e as th a t of the LIG
algorithm ; i.e., 0 (n 7).

179- International Parsing Workshop '89

4 Im portance o f Linearity

T he recognition algorithm s given here have polynom ial-tim e complexity because each array element
(e -g-» L XyJ in LIG recognition) contains a polynomial num ber of tuples (w ith respect to the difference
betw een j and i). These tuples encode the top symbol of the stack (or top symbols of the category)
together with an indication of where the next p a rt of the stack (category) can be found. If we had
stored the entire stack in the array elem ents5, then each array en try could include exponentially many
elem ents. The recognition com plexity would then be exponential.

It is in teresting to consider why it is not necessary to store the entire stack in the array elements.
Suppose th a t (A , 7 , .4', 7 ', p, q) 6 L i j . This indicates the existence of a tuple, say (A ', 7 ', A", 7 ", r, s),
in L Pyq. It is crucial to note th a t when we are adding the first tuple to L X<J we are not concerned about
how the second tuple came to be put in L p<q. This is because the productions in LIG (com binatory
rules in C C G) are linear w ith respect to their unbounded stacks (categories). Hence the derivations
from different nonterm inals and their associated stacks (categories) are independent of each other. In
Indexed G ram m ars, productions can have the form A[-*7] —*> A i [--] A 2 [*•]. In such productions there is
no single distinguished child th a t inherits the unbounded stack from the nonterm inal in the LHS of the
production . In a bo ttom -up recognition algorithm the identity of the entire stacks associated with A\
and A2 has to be verified. This nullifies any advantage from the sharing of stacks since we would have
to exam ine the com plete stacks. A sim ilar situation arises in the case of coordination schem a used to
handle certain forms of coordination in D utch. A coordination schem a has been used by Steedm an [9]
th a t has the form x con j x —► x where the variable x can be any category. W ith this schem a we have
to check the iden tity of two derived categories. This results in the loss of independence am ong paths
in derivation trees. In [13] we have discussed the notion of independent pa ths in derivation trees with
respect to a range of gram m atica l form alisms. We have shown [12] th a t when CCG are extended with
this coord ination schem a the recognition problem becomes N P-com plete.

5 C onclusion

We have presented a general schem e for polynom ial-tim e recognition of languages generated by a
class of g ram m atica l form alism s th a t are m ore powerful th an C FG . This class of form alism s, which
includes LIG, C C G , and TA G , derives m ore complex trees th an C FG due the use of an additional
s tack -m an ipu la ting m echanism . Using constructions given in [15,3], we have described how a recog­
nition algorithm presented for LIG can be adap ted to give an algorithm for C C G . These are the first
polynom ial recognition algorithm s th a t work directly w ith these form alism s. This approach can also
be used to yield TA G recognition a lgorithm , a lthough the TAG algorithm is not discussed in this
paper. A sim ilar approach has been independently taken by Lang [5] who presents a Earley parser for
TA G th a t appears to be very closely related to the algorithm s presented here.

5In the chart parser for CCG given by Pareschi and Steedman [6] the entire category is stored explicitly in each chart
entry.

-180- International Parsing Workshop '89

R eferences

[1] A. V. Aho. Indexed gram m ars — An extension to context free gram m ars. J . A C M , 15:647-671,
1968.

[2] G. G azdar. Applicability o f Indexed Gram m ars to Natural Languages. Technical Report CSLI-
85-34, C enter for S tudy of Language and Inform ation, 1985.

[3] A. K. Joshi, K. V ijay-Shanker, and D. J. W eir. The convergence of mildly context-sensitive
gram m ar form alisms. In T . Wasow and P. Sells, editors, The Processing o f L inguistic Structure ,
M IT Press, 1989.

[4] T . K asam i. A n E fficien t Recognition and Syn tax A lgorithm fo r Context-Free Languages. Technical
R eport A F-CRL-65-758, Air Force Cam bridge Research L aboratory, Bedford, MA, 1965.

[5] B. Lang. N ested Stacks and Structure Sharing in Earley Parsers. In p reparation .

[6] R. Pareschi and M. J. S teedm an. A lazy way to chart-parse with categorial gram m ars. In 23th
m eeting Assoc. Com put. Ling., 1987.

[7] C. Pollard . Generalized Phrase Structure Grammars, Head Gram m ars and Natural Language.
PhD thesis, S tanford University, 1984.

[8] M. S teedm an. C om binators and gram m ars. In R. Oehrle, E. Bach, and D. W heeler, editors,
Categorial G ram m ars and N atural Language Structures, Foris, D ordrecht, 1986.

[9] M. J. S teedm an. Dependency and coordination in the g ram m ar of D utch and English. Language,
61:523-568, 1985.

[10] J. W . T h a tch er. C haracterizing derivations trees of context free g ram m ars through a generaliza­
tion of finite a u to m a ta theory. J. Com put. Syst. S c i ., 5 :365-396y 1971.

[1 1] K. V ijay-Shanker and A. K. Joshi. Some com puta tional properties of tree adjoining gram m ars.
In 23rd m eeting Assoc. Com put. Ling., pages 82-93, 1985.

[12] K. V ijay-Shanker and D. J. W eir. The com puta tional properties of constrained g ram m ar for­
m alism s. In p repara tion .

[13] K. V ijay-Shanker, D. J . W eir, and A. K. Joshi. C haracterizing s tru c tu ra l descriptions produced
by various g ram m atica l form alism s. In 25t/l m eeting Assoc. Com put. L ing., 1987.

[14] K. V ijay-Shanker, D. J . W eir, and A. K. Joshi. Tree adjoining and head w rapping. In I I th
In terna tiona l Conference on Com put. Ling., 1986.

[15] D. J . W eir and A. K. Joshi. C om binato ry categorial gram m ars: G enerative power and relationship
to linear contex t-free rew riting system s. In 26t/l m eeting Assoc. Com put. L ing., 1988.

[16] D. H. Younger. Recognition and parsing of context-free languages in tim e n 3. Inf. Control,
10(2):189-208, 1967.

-181- Intemational Parsing Workshop '89

Handling of Ill-designed Grammars in

T om ita’s Parsing Algorithm

R. Nozohoor-Farshi

School of Computer Science
University of Windsor, Windsor, Canada N9B 3P4

ABSTRACT
In this paper, we show that some non-cyclic context-free grammars with e-rules cannot be han­

dled by Tomita’s algorithm properly. We describe a modified version of the algorithm which remedies
the problem.

1. Introduction
Tomita’s parsing algorithm [8,9] is an efficient all-paths parsing method which is driven by an LR

parse table with multi-valued entries. The parser employs an acyclic parse graph instead of the conven­
tional LR parser stack. The parser starts as an ordinary LR parser, but splits up when multiple actions
are encountered. Multiple parses are synchronized on their shift actions and are joined whenever they
are found to be in the same state.

The parallel parsing of all possible paths makes this algorithm suitable for parsing nearly all the
arbitrary context-free grammars. In fact, one may view this method as a precompiled form of Earley’s
algorithm [2,3]. Earley [2] proposed a form of precompiled approach to his method in the case of a res­
tricted class of grammars which has undecidable membership. Tomita’s algorithm, on the other hand, is
intended for use with general grammars. Since the method uses a parse table, it achieves considerable
efficiency over the Earley’s non-compiled method which has to compute a set of LR items at each stage
of parsing. In this respect, Tomita’s algorithm can indeed be considered as a breakthrough in efficient
parallel parsing in practical systems. However, there seem to be at least two types of context-free gram­
mars that cannot be handled by this method properly. The first type are cyclic grammars. These gram­
mars have infinite ambiguity and therefore have to be excluded from syntactic analyses. The second
kind of grammars include certain context-free grammars with e-productions. Some of these are unambi­
guous and some have bounded, bounded direct or unbounded degrees of ambiguity.

Grammars of the latter type may seldom be used to describe the syntax of natural language. In
fact, we consider them as somewhat ill-designed. But, they may creep in easily when one is designing a
natural language grammar with e-rules. Such rules cause unexpected infinite loops in parsing. In this
paper, we modify the parsing algorithm so that it can handle the second type grammars.

The modification introduces cyclic subgraphs in the original graph-structured parse stack. These
subgraphs correspond to the parsing of null substrings in the input sentence. Thus, the modification
incurs no cost to the grammars or the inputs that do not need this feature. We believe that adding such
a feature to Tomita’s algorithm is very desirable. Because, it enriches the method to be comparable to
Earley’s algorithm in its coverage, and yet it is in a precompiled form.

In the following sections, we discuss the two types of the grammars that cause problems in the
original algorithm, and we present the modified algorithm.

2. The Two Types of Grammars
Cyclic grammars are those in which a non-terminal, like A, can derive itself (i.e., A =^=> A).

and G2 are examples of cyclic grammars.

-182- Intemational Parsing Workshop '89

- 2 -

G
S A
A —> S
A —» x

G 2:
S -> S S
S —> x
S —> £

In G lt A = = > S = > A, and in G2, S = = > S S = = > S. Cyclic grammars produce infinite number
of parse trees for a finite length input such as "x" in L ^) and U G ^. They cause problem in every
parsing algorithm. Therefore, they have been avoided in describing syntax of languages traditionally.

Both Earley’s and Tomita’s algorithms will fail to detect the cyclicity of and G 2. Given an
input sentence x , one can however obtain the minimal parses with respect to either grammar by
Earley’s algorithm and only with respect to Gt by Tomita’s algorithm. The second algorithm will not
terminate when the grammar G2 is used. Tomita [8] discusses the cyclic grammars and rules out their
inclusion in natural language parsing. Such exclusion can be achieved through a simple test before gen­
erating a parse table (see [1] for example).

Among the second kind grammars that cannot be handled with the original algorithm are the
examples G 3, G4, G5 and G6 below.

G3:
S —> A S b
S —> x
A —» £

G4:
S -> M

’ S —> N
M —> A M b
M -> x
N —» A N b
N —» x
A —» £

G 5:
S -» A S b
S —» x
A -> t
A -> £

G6:
S - > M N
M -» A M b
M —> x
N —» b N A
N -> x
A —> £

G 3 is unambiguous, G4 has bounded ambiguity, G5 has bounded direct ambiguity while G6 *has
unbounded ambiguity (see Apendix 1 for the definition of these terms). One may note that in these
grammars, unlike cyclic grammars, there are only finite number of parse trees for a given finite length
input.

A property common to these grammars is that there exists a non-terminal, say S, such that
^ + > a S p where ot ——■> £ but (3 =/=> e. For example, in G 3 or G5, S can be rewritten as
S A S b ■> S b. Rules like these may be excluded from a grammar by using an appropriate
test (see Appendix 2). However, one may keep or include such rules in a grammar for the following
reasons.

(1) To capture some rare phenomena, for example, embedded that-sentences
[[THAT [[THAT . . . [[THAT SI VP 1 . . .1 VP]] VP] in which a number of terminal ’that’s are omit­
ted.

(2) Grammars with E-productions are more concise and readable than the grammars without £-rules. In
fact, elimination of £-rules from a grammar may increase the size of the grammar exponentially. There­
fore, one may use rules similar to the examples G 3 to G6 to compact the grammar and the parse table,
knowing that their presence should not affect the correct parsing of valid inputs.

-183- Intemational Parsinc Workshoo '89

(3) More frequently, such rules may appear in a grammar when e-productions are introduced without an
adequate care. It is important to note that replacement of these rules (and their associated symbols) may
not always be easy.

Grammars G 3 through G6 can be parsed by Earley’s algorithm with no problem. For example,
consider the sentence xbbb e L(G3). That algorithm will produce the following states.

state 0 state 1 state 2 state3
root —» .S#, 0 S —> x., 0 S —> ASb., 0 S —> ASb., 0
S -> .ASb, 0 x —> root S.#, 0 b —> root —> S J , 0 b —> root —> S.#, 0
S —> .x, 0 S —> AS.b, 0 S -> AS.b,0 S AS.b,0
A —» e., 0
S —> A.Sb, 0

state 4
S —> ASb., 0
root —» S.#, 0
S —> AS.b, 0

state 5

root —» S#., 0

However, the above grammars cause an infinite loop in Tomita’s algorithm. Applying the algorithm for
e-grammars (given in [8]) to the input sentence xbbb and the parse table for G 3 , the result will be an
infinite graph-structured stack as shown below.

State x b # A S Grammar Gy.
(1) S —> A S b
(2) S —» x
(3) A -> e

0 re3,sh3 2 1
1 acc
2 re3,sh3 2 4
3 re 2 re2
4 sh5
5 rel rel

Action table Goto table

U 0.0 U 0,1 U 02 U 0.3

In Tomita’s algorithm the state nodes created in the parse graph are partitioned into UQl U lt . . . ,
Un where each £/, is the set of state vertices which are created before shifting of word a 1+1 in the input
Furthermore, in the presence of e-productions, each U[is partitioned into Ui 0, C/Itl, Ul2, . . •• Each
Ui j denotes the set of state vertices created while parsing the j-th null construct after the i-th input

-184- Intemational Parsing Workshop '89

symbol a, is shifted and before the shifting of next actual input symbol ai+1 takes place. Tomita
assumes that the number of null constituents between every adjacent pair of input symbols is always
finite. Though his assumption is correct for non-cyclic grammars, it cannot be incorporated as such in
the parser since it will require arbitrary and complex lookaheads in general case. As noted earlier this
strategy fails in the example grammars.

It is interesting to note that the same strategy will succeed in the case of LR grammar G 3 which
is the reverse of G 3 .

C'3:
S —> b S A
S —> x
A —> e

The difference between G3 and G3 is that in G3 a null deriving constituent appears on the left part of a
recursive phrase, while in G 3, it appears on the right side of the recursive construct. Thus, the parser
for G3 does not know how many A’s it has to create before consuming the first input word "x". In the
case of G3 , the left context provides enough information to limit the number of empty constructs to a
finite size.

One may observe that though G3 is an unambiguous grammar, it is not LR(k) for any k. Viewing
differently, one may argue that such grammars can be parsed deterministically and more efficiently by
non-canonical parsers. Marcus’ parser [5] and bottom-up variations of it described in [6,7] can handle
this grammar in a much better way, since they create the rightmost A in the parse tree first. The reader
may also consult [6,7] to see the advantage of these parsers over Tomita’s algorithm when grammars
like G 7 are to be parsed.

G7:
S —> a S a
S -> B S b
S —> C S c
B —> a
C —> a
S —» x

However, we should emphasis that the whole thrust and advantage of Tomita’s parser lies in obtaining
multiple parses with respect to ambiguous grammars such as those in examples G4 to G6.

In the following section, we modify Tomita’s algorithm in a way that the second type grammars
can be handled within this framework. In doing so, we believe that we are introducing a version of
Tomita’ algorithm which is a partially-precompiled equivalent of Earley’s parser and can be applied to
all non-cyclic context-free grammars.

3. Modified Algorithm
To accommodate grammars like G3 to G6 within Tomita’s parsing method, we allow cycles in

the graph-structured parse stack. These cycles are introduced in the parse graph in a very restricted way.
Each cyclic subgraph represents a regular expression that corresponds to parsing of a null substring
between two adjacent input symbols. Unlike Tomita’s algorithm for e-grammars [8], we do not partition
each Ui any further. So, the set of state vertices of each cyclic subgraph entirely lies within a single £/,.
Obviously, cycles are created within £/, only if parsing of the input sentence requires them. Since the
parse graph is now cyclic, we do reductions along arbitrary paths (i.e., paths that are not simple and
may contain repetitive vertices or arcs). Such paths are usually termed (directed) walks in graph theory.

Our approach though is intuitive, it has its roots in LR theory. In LR parsing, the finite automaton
(from which a parse table is extracted) represents the set of all viable prefixes of the grammar in closed
form. The parse stack, on the other hand, represents an actual viable prefix (of a right sentential form)
in open form. The actual viable prefix is built from the input symbols which are consumed by the LR

-185- Intemational Parsing Workshop '89

parser. It is necessary to hold the actual viable prefix in the stack so that the parser can be provided
with the exact left context. However, in the modified all-paths parser we do not need to keep the null-
deriving segments of the left context in open form. For example, in parsing sentences like xb. .b e
L(G3), e and A. . .A are the viable prefixes when the parser scans the first input symbol "x". Since each
A derives a null string and we do not know exacdy how many of them we should assume, we represent
the left context in the closed form e+AA*. The corresponding parse graph will appear as the figure in
below when "x" is just shifted. The parser will pick as many A’s as it needs from this regular expres­
sion when the remainder of the sentence is seen.

AI)

Similarly, consider the example grammar G5 and the parse table for it as shown below. One will
obtain the following snapshot of the parse graph after the parser consumes the prefix txb of the sentence
txb. . .b, and all the appropriate reductions are done.

state t X b # A S

0 sh4/e4 sh3je4 2 1
1 acc
2 sh4je4 sh3je4 2 5
3 re2 re2
4 re 3 re 3
5 sh6
6 rel rel

Grammar G5
(1) S —» A S b
(2) S —» x
(3) A —» t
(4) A —» e

Action table Goto table

U r U i
i--------1

U 2
I--------1

U,
I--------1

i— i

-186- Intemational Parsing Workshop '89

In this example, the left context just before shifting the word "x" can represented as the regular
expression (AA* A + A) A*. For clarity, the bold faced A represents the non-terminal obtained by
reducing "t". For the same reason, we are not combining identical symbol vertices which are adjacent to
the same state vertex, (a measure of optimization suggested in [8]), in the illustrated examples or in the
algorithm that to follow.

As another example, an interested reader using the parse table in Appendix 3 may verify that U0
for the grammar G% will have the following format.

Cg:
S —> x
S B S b
S —> A S b
B —> A A
A —> £

In the above examples, we have used an LALR(l) parser generator, similar to YACC [4], to
obtain the parse tables with multi-valued entries. Tomita [8,9] also uses LALR(l) tables, however, using
non-optimized LR(1) tables will decrease the number of superfluous reductions in general.

We are now in a position to present the modified algorithm. For simplicity, we give an algorithm
for a recognizer rather than a parser. The recognizer can be augmented in a way similar to that of [81 to
provide a parser that also creates the parse foresL

Recognition Algorithm:

PARSE (G, a j • • • a„)
• T := 0 .
• a . :=
• r = FALSE.
• Create a vertex v0 labeled s 0 in T.
• U0 := (v0).
• For i := 1 to n do PARSEWORD (i).
• Return r.

PARSEWORD (i)
• A := Ui.
• R := 0 ; Q ; = 0 ,
• Repeat

' if A * 0 then do ACTOR
else if R * 0 then do COMPLETER

until R = 0 and A = 0 .
• Do SHIFTER.

ACTOR
• Remove an element v from A.
• For all a 6 ACTION (STATE (v), a1+1) do

begin
if a = ’accept’ then r := TRUE;

-187- International Parsing Workshop '89

if a = ’shift s ’ then add <v ,s> to Q;
if a = ’reduce p’ then

for all vertices w such that there exists a directed
walk of length 2 I RHS (p) I from v to w /* For e-rules this is a trivial walk, i.e. w=v */
do add <w ,p> to R

end.

COMPLETER
• Remove an element <vv ,p> from R.
• N := LHS (p); s := GOTO (STATE (w), N)..
• If there exists u e U, such that STATE(u) = s then

begin
if there does not exist a path of length 2 from u to w then

begin
create a vertex z labeled N in T;
create two arcs in T from u to z and from z to w;
for all v g (.Ui - A) do
/* In the case of non-e-gram mars this loop executes for v -u only */

for all q such that ’reduce q’ e ACTION (STATE (v), aI+1) do
for all vertices t such that there exists a directed walk of
length 2 I RHS (q) I from v to t that goes through vertex z
do add <t ,q> to R

end
end

else I* i.e., when there does not exist u e £/,• such that STATE (u) = s */
begin

create in r two vertices u and z labeled s and N respectively;
create two arcs in T from u to z and from z tow ;
add u to both A and £/,

end.

SHIFTER
• Ui+j := 0 .
• Repeat

remove an element <v ,s> from Q;
create a vertex x labeled al+1 in T;
create an arc from x to v;
if there exists a vertex u e Ui+l such that STATE (u) = s then

create an arc from u to x
else

begin
create a vertex u labeled s and an arc from u to x in T;
add u to £/i+1

end.
until Q = 0 .

As noted earlier, the above recognition algorithm can be changed into a parsing algorithm to pro­
duce the shared parse forest among the different parses. In the parsing algorithm the elements of R are
triples <w, p, L> where L is a list of vertices that represent RHS symbols of p. One must note that our
algorithm creates e-deriving non-terminals that may be shared as a son by other non-terminals that are
in ancestor-descendant relationship in the parse forest. To illustrate this point, we show the full parse
graphs and corresponding parse trees of example sentences in Appendix 4. As an alternative, in build­
ing a parse forest one may replicate a null yielding subtree whenever this subtree participates in a

-188- Intemational Parsing Workshop '89

reduction where at least one other sibling has non-empty yield.
As a final remark, we may add that the above algorithm can obtain the minimal parses in the case

of cyclic grammars, but does not detect their cyclicity. It is also possible to precompile some subsets
of each C/, that are obtained under the transitions with respect to null-deriving non-terminals.

4. Conclusion
We have modified Tomita’s parsing algorithm so that it can handle some ill-designed grammars

with e-rules that caused a problem in the original algorithm. We have introduced cycles in the parse
graph in a restricted way. This makes the parse graph in the new algorithm a cyclic directed graph in
some general cases. However, the new algorithm works exacltly like the original one in case of gram­
mars that have no £-productions. This algorithm has no extra costs beyond that of the original algo­
rithm.

We believe that the modified algorithm is a precompiled equivalent of Earley’s algorithm with
respect to its coverage, though we have not provided a formal proof for it The resulting algorithm sug­
gests that Tomita’s graph-structured parsing approach can be used with a broader class of context-free
grammars.

Appendix 1: Ambiguous grammars

Definition: A context-free grammar G has bounded ambiguity of degree k if each sentence in L(G) has
at most k distinct derivation trees.

Definition: A context-free grammar G has unbounded ambiguity if for each i>l, there exists a sentence
in L(G) which has at least i distinct derivation trees.

Definition: The degree of direct ambiguity of a non-terminal A with respect to a string x is the number
of distinct tuples (p, x irx 2> • • • .*»). where p is a production A -» B XB 2 • • • Bn, and x {x 2 • • • xH=x is
a factorization of x such that Bi =^=> x, for 1 < 1 £ n.

Definition: A context-free grammar has bounded direct ambiguity of degree k if the degree of direct
ambiguity of any of its non-terminals with respect to any string is at most k.

For example, the grammar G 5 has direct ambiguity of degree 2, in spite of being unboundedly
ambiguous.

Appendix 2: Identifying the e-grammars that cannot be parsed by the original algorithm.
LetG = (N , T , P , S) b e a context-free grammar with e productions. The following algorithm

decides whether G can be parsed by the original algorithm.

(1) Compute the set of non-terminals E = (C IC =£=> e } that can derive a null string.

(2) Let p c N x N be a binary relation such that (A,B) € p if and only if A -> C jC 2 • • • CnB a is a
production in P and C, e E for 1 <i £ n.

(3) Compute p+ the closure of p. If there exists a non-terminal A where (A A) 6 p+ then G cannot be
parsed by the Tomita’s original algorithm for e-grammars.

-189- International Parsing Workshop '89

Appendix 3: Parse Table for G ra m m a r G s

state X b # A B S Grammar G 8
(1) S -» x
(2) S -> B S b0 sh2j-e5 4 j 1

1 acc (3) S -* A S b
2 rel rel (4) B -) A A
3 sh2je5 4 3 5 (5) A -4 e
4 sh2/e5 6 3 7
5 sh8
6 sh2,re4je5 6 3 7
7 sh9
8 re2 re 2
9 re 3 re 3

Action table Goto table

Appendix 4: Parsing of example sentences
The following figures illustrate parsing of the sentences xbbb € L(G3) and bbbx e L(G3). The

dotted lines indicate the rejected paths. The shared non-terminals are shown in italics.

Ur U i U- u- u<

Parse graph and parse tree of the sentence xbbb e L(Gi)

S

-190- Intemational Parsing Workshop '89

Parse graph and parse tree of the sentence bbbx g L(G$)

One may observe that the parse graph and the parse tree of the sentence bbbx e L(G3) are
different from those that one can obtain by using Tomita’s algorithm for e-grammars [8]. The modified
recognizer creates a single A node in the parse graph whereas Tomita’s recognizer will create three A
vertices. In our representation of parse tree, the null yielding subtree with root A is shared among the
S nodes that are descendants of each other. However as it was noted in the paper, the parser could
replicate such subtrees in the parse tree if one wishes so.

References

[1] A.V. Aho and J.D. Ullman, The Theory of Parsing, Translation, and Compiling, Volume 1, Pren­
tice Hall, Englewood Cliffs, NJ, 1972.

[2] J. Earley, An Efficient Context-free Parsing Algorithm, Ph.D. Thesis, Computer Science Depart­
ment, Camegie-Mdlon University, Pittsburg, PA, 1968.

[3] J. Earley, An efficient context-free parsing algorithm, CACM, vol. 13, no. 2, pp. 94-102 February
1970. ’

[4] S.C. Johnson, YACC: Yet Another Compiler-Compiler, Technical Report 32, Bell Laboratories,
Murray Hill, NJ, 1975. Also reproduced in Unix Programmer’s Manual.

[5] M.P. Marcus, A Theory of Syntactic Recognition for Natural Language, MIT Press, Cambridge
MA, 1980. 6 ’

[6] R. Nozohoor-Farshi, On formalizations of Marcus’ parser, COLING’ 86, Proceedings of the 1 1 th
International Conference on Computational Linguistics, University of Bonn, West Germany d d .
533-535, August 1986.

-191 - International Parsing Workshop '89

- 11 -

[7] R. Nozohoor-Farshi, LRRL(k) Grammars: A Left to Right Parsing Technique with Reduced Loo­
kaheads, Ph.D. Thesis, Department of Computing Science, University of Alberta, Edmonton,
Canada, 1986.

[8] M. Tomita, Efficient Parsing for Natural Language, Kluwer Academic Publishers, Boston, MA,
1986.

[9] M. Tomita, An efficient augmented-context-free parsing algorithm, Computational Linguistics,
vol. 13, no. 1-2, pp. 31-46, January 1987.

Acknowledgement
The research reported in this paper was supported by the Natural Sciences and Engineering

Research Council of Canada grant A9447.

-192- International Parsing Workshop 89

ANALYSIS OF TOMITA'S ALGORITHM FOR GENERAL CONTEXT-FREE PARSING1

JAMES R. KIPPS (KIPPS@RAND-UNIX.ARPA)
The RAND Corporation, Santa Monica, CA 90406

Abstract. A variation on Tom ita’s algorithm is analyzed in regards to its time and space complexity.
It is shown to have a general time bound of 0 (n p’+1), where n is the length of the input string and p
is the length of the longest production. A modified algorithm is presented in which the time bound is
reduced to 0 (n 3). The space complexity of Tom ita’s algorithm is shown to be proportional to n2 in
the worst case and is changed by at most a constant factor with the modification. Empirical results
are used to illustrate the trade off between time and space on a simple example. A discussion of two
subclasses of context-free grammars that can be recognized in 0 (n2) and O(n) is also included.

1. INTRO DUCTIO N
Algorithms for general context-free (CF) parsing, e.g., Earley’s algorithm (Earley, 1968) and the

Cocke-Younger-Kasami algorithm (Younger, 1967), are necessarily less efficient than algorithms for
restricted CF parsing, e.g., the LL, operator precedence, and LR algorithms (Aho and Ullman, 1972),
because they must simulate a multi-path, nondeterministic pass over their inputs using some form
of search, typically, goal-driven. While many of the general algorithms can be shown to theoretically
perform as well as the restricted algorithms on a large subclass of CF grammars, due to the inefficiency
of goal expansion the general algorithms have not been widely used as practical parsers for programming
languages.

A basic characteristic shared by many of the best known general algorithms is that they are top-
down parsers. Recently, Tomita (1985) introduced an algorithm for general CF parsing defined as a
variation on standard LR parsing, i.e., a table-driven, bottom-up parsing algorithm. The benefit of this
approach, is that it eliminates the need to expand alternatives of a nonterminal at parse time (what
Earley refers to as the predictor operation). For Earley’s algorithm, the predictor operation is one
of two 0 (n 2) components. While eliminating this operation would not change the algorithm’s time
bound of 0 (n 3), it could be significant to practical parsing. It is of interest to analyze the complexity
of Tom ita’s algorithm and see how it compares.

Upon examination, Tom ita’s algorithm is found to have a general time complexity of 0 (n^+1),
where n is as before and p is the length of the longest production in the source grammar. Thus, this
algorithm achieves 0 (n 3) for grammars in Chomsky normal form (Chomsky, 1959) but has potential
for being worse when productions are of unrestricted lengths. In this paper, I present a modification
of Tom ita’s algorithm that allows it to run in time proportional to n3 for grammars with productions
of arbitrary lengths.

2. TOMITA'S ALGORITHM
The following is an informal description of Tom ita’s algorithm as a recognizer; familiarity with

standard LR parsing is assumed. Tomita views his algorithm as a variation on standard LR parsing.
The algorithm takes a shift-reduce approach, using an extended LR parse table to guide its actions.
The extended parse table records shift/reduce and reduce/reduce conflicts as multiple action entries,
so the parse table can no longer be used for strictly deterministic parsing. The algorithm simulates a
nondeterministic parse with pseudo-parallelism. It scans an input string xi • • xn from left to right,
following all paths in a breath-first manner and merging like subpaths when possible to avoid redundant
computations.

1 T h is work was su pported by the Defense A dvanced Research P ro jects Agency, under contract number
M D A -903-85-C-0030.

-193- International Parsing Workshop ’89

The algorithm operates by maintaining a number of parsing processes in parallel. Each process
has a stack, scans the input string from left-to-right, and behaves basically the same as the single
parsing process in standard LR parsing. Each stack element is labeled with a parse state and points
to its parent, i.e., the previous element on a process’s stack. The top-of-stack is the current state of a
process.

Each process does not actually maintain its own separate stack. Rather, these “multiple” stacks
are represented using a single directed acyclic (but reentrant) graph called a graph-structured stack.
Each stack element corresponds to a vertex of the graph. Each leaf of the graph acts as a distinct
top-of-stack to a process. The root of the graph acts as a common bottom-of-stack. The edge between
a vertex and its parent is directed toward the parent. Because of the reentrant nature of the graph (as
explained below), a vertex may have more than one parent.

The leaves of the graph grow in stages. Each stage Ui corresponds to the zth symbol x, from the
input string. After x, is scanned, the leaves in stage Ui are in a one-to-one correspondence with the
algorithm’s active processes, where each process references a distinct leaf of the graph and treats that
leaf as its current state. Upon scanning x,+i, an active process can either (1) add an additional leaf to
Ui, or (2) add a leaf to £/,•+1 . Only processes that have added leaves to f/j+i will be active when x*+2
is scanned.

In general, a process behaves in the following manner. On x<, each active process (corresponding
to the leaves in U i-1) executes the entries in the action table for x< given its current state. When a
process encounters multiple actions, it splits into several processes (one for each action), each sharing
a common top-of-stack. When a process encounters an error entry, the process is discarded (i.e., its
top-of-stack vertex sprouts no leaves into Ui by way of that process). All processes are synchronized,
scanning the same symbol at the same time. After a process shifts on Xj into Ui, it waits until there
are no other processes that can act on x, before scanning x,+i.

The Shift Action. A process (with top-of-stack vertex v) shifts on Xi from its current state s to
some successor state s' by

(1) creating a new leaf v' in Ui labeled s';
(2) placing an edge from v' to its top-of-stack v (directed towards v); and
(3) making v' its new top-of-stack vertex (in this way changing its current state).

Any successive process shifting to the same state s' in Ui is merged with the existing process to form a
single process whose top-of-stack vertex has multiple parents, i.e., by placing an additional edge from
the top-of-stack vertex of the existing process in Ui to the top-of-stack vertex of the shifting process.
The merge is done because, individually, these processes would behave in exactly the same manner
until a reduce action removed the vertices labeled s' from their stacks. Thus, merging avoids redundant
computation. Merging also ensures that each lead" in any Ui will be labeled with a distinct parse state,
which puts a finite upper-bound on the possible number of active processes and, thus, limits the size
of the graph-structured stack.

The Reduce Action. A process executes a reduce action on a production p by following the chain
of parent links down from its top-of-stack vertex v to the ancestor vertex from which the process began
scanning for p earlier, essentially “popping” intervening vertices off its stack. Since merging means a
vertex can have multiple parents, the reduce operation can lead back to multiple ancestors. When this
happens, the process is again split into separate processes (one for each ancestor). The ancestors will
correspond to the set of vertices at a distance v from v, where p equals the number of symbols in the
right-hand side of the pth production. Once r luced to an ancestor, a process shifts to the state s'
indicated in the goto table for Dp (the nonterminal on the left-hand side of the pth production) given
the ancestor’s state. A process shifts on a nonterminal much as it does a terminal, with the exception
that the new leaf is added to Ui_i rather than Ui] a process can only enter Ui by shifting on x,.

-194- Intemationai Parsing Workshop '89

The algorithm begins with a single initial process whose top-of-stack vertex is the root of the
graph-structured stack. It then follows the general procedure outlined above for each symbol in the
input string, continuing until there are either no leaves added to Ux (i.e., no more active processes),
which denotes rejection, or a process executes the accept action on scanning the n + 1st input symbol
‘H,’ which denotes acceptance.

3. ANALYSIS OF T O M IT A ’S ALGORITHM
In this section, a formal definition of Tomita’s algorithm is presented as a recognizer for input

string xi • • • xn . This definition is understood to be with respect to an extended LR parse table (with
start state So) constructed from a source grammar G.

Notation. The productions of G are numbered arbitrarily 1, • • •, d, where each production is of
the form Dp — Cpi • • Cpp (1 < p < d) and where p is the number of symbols on the right-hand side
of the pth production.

Definition. The entries of the extended LR parse table are accessed with the functions ACTIONS
and GOTO.

• ACTIONS(s,x) returns a set of actions from the action table along the row of state s under
the column labeled x. This set will contain no more than one of a shift action shs' (shift to
state s) or an accept action acc; it may contain any number of reduce actions rep (reduce
using production p). An empty action set corresponds to an error.

• GOTO(s,£>p) returns a state s' from the goto table along the row of state s under the column
labeled with nonterminal Dp.

Definition. Each vertex of the graph-structured stack is a triple (i,s, l), where i is an integer
corresponding to the ith input symbol scanned (at which point the vertex was created as a leaf), 5 is a
parse state (corresponding to a row of the parse table), and / is a set of parent vertices. The processes
described in the last section are represented implicitly by the vertices in successive £/,-’s. The root of
the graph-structured stack, and hence the initial process, is the vertex (O,So,0).

The Recognizer. The recognizer is a function of one argument REC(x! • • • x„). It calls upon
the functions SHIFT(t;,.s) and REDUCE(u,p). SHIFT(v,s) either adds a new leaf to {/,• labeled
with parse state s whose parent is vertex v or merges vertex v with the parents of an existing leaf.
REDUCE(u,p) executes a reduce action from vertex v using production p. REDUCE calls upon the
function ANCESTORS(u,p), which returns the set of all ancestor vertices a distance of p from vertex v.
These functions, which vary somewhat from the formal definition given in Tomita (1985),2 are defined
in Figure 3.1.

In REC, [1] adds the end-of-9entence symbol H ’ to the end of the input string; [2] initializes the
root of the graph-structured stack; [3] iterates through the symbols of the input string. On each symbol
X,-, [4] processes the vertices (denoting the active processes) of successive C/,-_i’s, adding each vertex to
P to signify that it has been processed. On each vertex v, [5] executes the shift, reduce, and accept
actions from the action table according to v's state s. After processing the vertices in {/<—ii [6] checks
whether a vertex was added to ensuring that at least one process is still active before scanning
x,-+i.

In SHIFT, [7] shifts a process into state s by adding a vertex to £/, labeled s. If a vertex labeled
s already exists, v is added to its parents, merging processes; otherwise, a new vertex is created with
a single parent v.

2 Tom ita’s functions REDUCE and REDUCE-E have been collapsed into a single REDUCE function; also
added were the ANCESTORS function and the concept of a “clone” vertex. While these changes do not alter
Tom ita’s algorithm significantly, they were helpful in developing ideas about its complexity.

-195- Intemational Parsing Workshop ’89

REC(xi ••• xn)
[1] let xn+1 := H

let Ui := [] (0 < i < n)
[2] let U0 := [(O,5o ,0)j
[3] for i from 1 to n + 1

let P := []
[4] for Vv = (i — 1,5,/) 5./. u E U i- i

let P := P o [v]
[5] if 3 ‘sh s'* € ACTIONS (s, x,) , SHIFT(v,s')

for V're p» € ACTI0NS(s,x.) , REDUCE(u.p)
if *acc’ € ACTIONS(s,Xj), accept

[6] if Ui is empty, reject
SHIFT(v , s)

[7] if 3vf = (i,s,l) s.t. v' £ Ui
let / := / U {u}

else
let Ui := Ui o [(i, s, {i/})]

REDUCE(u,p)
[8] for Vt>i' = (j ' ^ s ' J i) s.t. vi' € ANCESTORS(v,p)

let s" := GOTO (s ' , Dp)
[9] if 3v" = { i - l , s " , l ") s.t. v" 6 Ui_!

[10] if Vi' e I"
do nothing (ambiguous)

else
[11] if 3i?2; = {j ' yS'J^) s.t. V2 € I"

let vc" := (* - 1, s", {vi'})
for V're p* € ACTI0NS(5/',x.), REDUCE(yc",p)

else
[12] let I" := I" U {u!7}
[13] if u" 6 P

let v," := (i- l,s", {iV})
for V're p» € ACTIONS(s^.x*), REDUCE(,p)

else
[14] let := C/i-i o [(< - 1, s " , { v , 1})]

ANCESTORS (v = (j , s , l) , k)
[15] if = 0

retum({u})
else
retum((Jv<€/ ANCESTORS(u'.jb - 1))

Fig. 3.1—Tom ita’s Algorithm

In REDUCE, [8] iterates through the ancestor vertices a distance of p from v, setting s" to the
state indicated in the goto table under Dv given the ancestor’s state s '. Each ancestor vertex v\ is
shifted into U i-i on s " . [9] checks whether such a vertex v" already exists. (If not, [14] adds a vertex
labeled s" to [/,•_i.) If v" does already exist, [10] checks that a shift from the current ancestor vx' has
not already been made. (If it has, then some segment of the input string has been recognized as an
instance of the same nonterminal Dp in two different ways, and the current derivation can be discarded
as ambiguous; otherwise, vi' is merged with the parents of the existing vertex.) Before merging, [11]
checks whether v\ is a “clone” vertex, created by [13] in an earlier call to REDUCE (as described
below). If ui' is not a clone, [12] adds it to the parents of v" , merging processes. [13] checks if v"
has already been processed. If so, then it missed any reductions through rV. To correct this, v" is
“cloned” into vc" (i.e., a variant on v" with a single parent u^), and all reduce actions executed on v"
are now executed on vc" .

-196- Intemational Parsing Workshop ’89

Returning to [11], when reducing on a null production, ANCESTORS will return a clone vertex as
the ancestor of itself. If a variant v-i of already exists in the parents of v" , then V\ is a clone of u2' .
At this point v" has already been processed, meaning that there could still be reductions that have
not gone through the single parent of ui'. To correct this, v" is again cloned, and all reduce actions
executed on v" are executed on the new clone vc" .

Finally, in ANCESTORS, [15] recursively descends the chain of parents of vertex v, returning the
set of vertices a distance of k from v.

The General Case. Tomita’s algorithm is an 0 (n /’+ l) recognizer in general, where p is the greatest
p in G. The reasons for this are as follows:

(a) Since each vertex in Ui must be labeled with a distinct parse state, the number of vertices in
any Ui is bounded by the number of parse states;

(b) The number of parents / of a vertex v — (i , s , l) in Ui is proportional to i. Because processes
could have begun scanning for some production p in each Uj (j < i), a process in Ui could
reduce using p and split into ~ i processes (one for each ancestor in a distinct Uj) . Then
each process could shift on Dp to the same state in Ui and, thus, that vertex could have ~ i
parents;

(c) For each x. + i, SHIFT will be called a bounded number of times (at most once for each vertex
in Ui) . SHIFT executes in a bounded number of steps.

(d) For each x,+i and production p, REDUCE(u,p) will be called a bounded number of times in
REC, and REDUCE(uc",p) (the recursive call to REDUCE) will be called no more than — i
times. The reason for the former is the same as in (c). The latter is due to the conditions on
the recursive call, which maintain that it can be called no more than once for each parent of
a vertex in Ui, of which there are at most proportional to z;

(e) REDUCE(v,p), because at most ~ i vertices can be returned by ANCESTORS, executes in
~ i steps plus the steps needed to execute ANCESTORS.

(f) ANCESTORS(u,p) executes in ~ if steps in the worst case. While at most — i processes could
have begun scanning for p, the number of paths by which any single process could reach v in
Ui is bounded by the number of ways the intervening input symbols can be partitioned among
the p vocabulary symbols in the right-hand side of production p. For a process that started
from Uj (j < *), the number of paths to v in Ui in the recognition of p can be proportional to

o o o

E l • £ i-
mi =ji =mj

Summing from ; = 0, • • •, i gives a closed form proportional to if . A N C ESTO R S^",p), where
vc" = (», «{v'}), executes in ~ if ~ l steps because there is that many ways ~ i ancestor vertices
could reach v' and only one way v' could reach vc"\

(g) The worst case time bound is dominated by the time spent in ANCESTORS, which can be
added to the time spent in REDUCE. Since REDUCE(v,p), with a bound ~ ip , is called only
a bounded number of times, and REDUCE(uc//,p), with a time bound of ~ i?_1, is called at
most ~ i times, the worst case time to process any x, is ~ i?, for each : = 0, • • •, n + 1 and
longest production p\

(h) Summing from i = 0, • • •, n + 1 gives REC a general time bound proportional to n^+1.

As a result, this bound indicates that Tom ita’s algorithm only belongs to complexity class 0 (n 3)
when applied to grammars in Chomsky normal form (CNF)3 or some other equally truncated notation.

3 In CNF, productions can have one of two forms, A —*■ BC or A —* a; thus, the length of the longest
production is at most 2.

-197- Intemational Parsing Workshop '89

Although any CF grammar can be automatically converted to CNF (Hopcraft and Ullman, 1979), ex­
tracting useful information from derivation trees produced by such grammars would be time consuming
at best (if possible at all).

4. MODIFYING T O M I T A ’S ALGORITHM FOR N3 T IM E
In this section, Tom ita’s algorithm is made an 0 { n 3) recognizer for CF grammars with productions

of arbitrary length. Essentially, the modifications are to the ANCESTORS function. ANCESTORS is
the only function that forces us to use steps. It is interesting to note that ANCESTORS can take
this many steps even though it returns at most ~ i ancestor vertices and even though there are at
most ~ i intervening vertices and edges between a vertex in U,- and its ancestors. This indicates that
ANCESTORS can recurse down the same subpaths more than once. The efficiency of ANCESTORS
and Tom ita’s algorithm can be improved by eliminating this redundancy.

The modification described here turns ANCESTORS into a table look-up function. Assume
there is a two-dimensional “ancestors” table. One dimension is indexed on the vertices in the graph-
structured stack, and the other is indexed on integers k = 1, • • •, p, where p equals the greatest p. Each
entry (v,k) is the set of ancestor vertices a distance of k from vertex v. Then, ANCESTORS(v,fc) re­
turns the (at most) ~ i ancestor at (v, k) in — 1 steps. Of course, the table must be filled dynamically
during the recognition process, so the time expended in this task must also be determined.

In Figure 4.1, ANCESTORS is defined as a table look-up function that dynamically generates
table entries the first time they are requested. In this definition, the ancestor table is represented by
changing the parent field I of a vertex v = (i,s ,/) from a set of parent vertices to an ancestor field a.
For a vertex v — (:, s, a), a consists of a set of tuples (k , /*), such that It is the set of ancestor vertices
a distance of k from v.

Figure 4.1 illustrates the necessary modifications made to the definitions of Figure 3.1; the function
REC is unchanged. In SHIFT, [1] adds a vertex to Ui labeled s. If such a vertex does not already exist,
one is created whose ancestor field records that v is the ancestor vertex at a distance of 1; otherwise,
v is added to the other distance-1 ancestors.

In REDUCE, [2] iterates through the ancestor vertices a distance of p from v, setting s" to the
state indicated in the goto table under Dp given the ancestor’s state s'. Each ancestor vertex v\ is
shifted into Ui- 1 on s". [3] checks whether such a vertex v" already exists. (If not, [10] will add a
vertex labeled s" to U i-1 .) If v" does already exist, [4] checks that a shift from the current ancestor
v\ has not already been made. If it has, then vi' can be discarded as ambiguous; if not, then vi'
can be merged with the other ancestors a distance of 1 from v" . Before merging, [5] checks whether
ui' is a clone vertex as described in Section 3. If ui' is a clone (the result of being reduced on a null
production), v" is again cloned, and all reduce actions executed on v" are executed on the new clone
vc" . After the application of REDUCE, [6] updates the ancestor table stored in v" to record entries
made in the ancestor field ac" of the clone when k > 2. Otherwise, if vi' is not a clone, [7] adds it to
the distance-1 ancestors of v", merging processes. [8] checks if v" has already been processed. If so,
then it missed any reductions through v \ ' , so v" is cloned into ve" and all reduce actions executed on
v" are now executed on v " . After reducing vc" , [9] updates the ancestor table stored in v" to record
entries made in the ancestor field ac" of the clone when k > 2.

In ANCESTORS, [11] searches a (the portion of the ancestor table stored with v) for ancestor
vertices at a distance of k from v. If an entry exists, those vertices are returned; if not, [12] calls
ANCESTORS recursively to generated those vertices and, before returning the generated vertices,
records them in the ancestor field of v.

The question now becomes how much time is spent filling the ancestor table. For
ANCESTORS(v,p), time is bounded in the worst case by ~ i2 steps, while for ANCESTORS^*",?),
it is bounded by — i steps. In general, ANCESTORS(v,fc), where v = (i,s ,a) , will take ~ i steps
to execute the first time it is called (one for each recursive call to ANCESTORS(t/,A: - 1), where

-198- Intemational Parsing Workshop ’89

SHIFT(v.s)
[1] il 3v' = (z',s,a) s.t. v' G U{ A (1,/) 6 a,

let / := / U {v}
else

let U{ := C/i o [<i,s,[(l,{v})])]

REDUCE(v.p)
[2] for Vui' = (j \ s ' , a x') s.t. v\' G ANCESTORS(u,p)

let s" := GOTO (s', D p)
[3] if 3v" = (z - 1, s", a") s.t. u" G tfi-i A (l.H € a"
[4] if v\ G I"

do nothing (ambiguous)
else

[5] if 3u2' = (j/,s/,a2/) s.t. u2' G I"
let we" := (z-l,s",ac") s.t. ac" = [(l>i'}>]
for V're p> G ACTIONS (s", x,) , REDUCE (vc" ,p)

[6] let /fcl := /fcl U /fc3 s.t. € a" A (Ar, /*a) € ac" (k > 2)
else

[7] let I" := /" U { V }
[8] if v" G P

let uc" : = (z - 1, s", a ") s.t. ac" = [(1, {vi;})]
for V're p> G ACTIONS(s",x ,), REDUCE(vc" ,p)

[9] let lkl := lkl U /*, s.t. (k , lkl) G a" A (M * a) G ac" (fc>2)
else

[10] let U i- i := «/i_i o [(*- 1,*", {«!'})]

ANCESTORS (v = (j , s , a) , k)
[11] if k = 0,

return({u})
else
if 3 (k, / k) G a,
retun xdie)

else
[12] let It := Uv'6M(l,/l)€a ANCESTORS (v' ,k - 1)

let a := a U { { k , l k)}
retum(/fc)

Fig. 4.1—Modified Algorithm

v' G l\ and (l,/i) G a) and — 1 steps thereafter. When ANCESTORS(v,p) is executed, there are ~ z
such “virgin” vertices between v and its ancestors, and so this call can execute ~ z2 steps in the worst
case. ANCESTORS(vc",p) is called only after the call to ANCESTORS(v,p) has been made, where
ve" is a clone of v. This means that ~ z of the vertices between v' and the ancestor vertices have been
processed, so the call to ANCESTORS(t/,p — 1) could take at most proportional to z steps for each of
a bounded number of intervening vertices.

Given this, the upper bound on the number of steps that can be executed by the total calls on
REDUCE for a given x, is proportional to z2. Summing from z = 0, • • •, n -I- 1 gives ~ n3 steps as the
worst case upper bound on the execution time of the modified algorithm.

5. SPACE BOUNDS
The space complexity of Tom ita’s algorithm as it appears in Section 3 is proportional to n2 in the

worst case. This is because the space requirements of the algorithm are bounded by the requirements of
the graph-structured stack. There are a bounded number of vertices in each U, of the graph-structured
stack, and each vertex can have at most ~ z parents. Summing again from i = 0, • • •, n + 1 gives — n2
as the worst case space requirement for the graph-structured stack.

-199- International Parsing Workshop '89

W it h th e m o d if ica t io n o f S ect ion 4. the sp ace requirem ents o f the graph-structured stack are
increased by at m o s t a co n stan t factor o f n 2 . T h is is becau se the m od if ica t ion replaces the ~ i parents
o f a vertex in U,- w ith at m o st ~ pi entries in the ancestors field. So, for a vertex v = (: , s , a) s.t. v
G U ,, the ancestors field a will be a su b se t o f { (c , / c) | l < c < p) where | /c | ~ i. S u m m in g from i —
0 | . . .) n + 1 g ives <— pn 2 or ~ n 2 st ill as a worst case upper b ou nd on space.

6. EMPIRICAL RESULTS
T h e var ia t ion on T o m i t a ’s a lg o r i th m presented in S ect ion 3 and the m odif ied a lg o r i th m presented

in S ec t ion 4 have b o th been im p lem e n te d in C. T h e graphs in figures 6.1 and 6.2 sh ow em pir ica l
results c o m p a r in g the t im e and sp ace requirem ents o f b o th im p lem en ta t io n s . Each t i m e / s p a c e graph
set corresp on ds to the gram m ars , G 1, G 2 , and G 3 , w hich are d o m in a te d by p r od u ct ion s o f len g th 2, 3

and 4.

G 1: S
S

S S
x

s teps

107 -
106 -
105 -
104

103

102

G 2: S
S
S

s teps

S S S
S x
x

T o m ita ’s

Modified

T o m ita ’s

Modified

10 20 30 40 5o"
(a)

1 i "i------1------1------ r~
10 20 30 40 50

(b)

Tomita’s

Modified

“ i------1------1------1------ r~
10 20 30 40 50

(c)

Fig. 6.1—Comparison of Time Complexity

The time graphs in Figure 6.1 measure the number of calls to SHIFT, REDUCE, and ANCES­
TORS. The input sentences are strings of x’s of length 10 to 50. Our analysis of time complexity
predicts that the modified algorithm will take roughly the same number of steps for each grammar,
while the steps taken by Tom ita’s algorithm will increase as a function of the length of the dominant
production. The empirical data gathered from our two implementations agrees with this prediction.
When n = 50, the modified algorithm took ~ 7000 steps for grammar G1 in Figure 6.1 (a), ~ 6000 for
G2 in Figure 6.1 (6), and — 10000 for G3 in Figure 6.1 (c); Tom ita’s algorithm took ~ 44,000 steps
for grammar G l, ~ 660, 000 for G2, and ~ 7, 300,000 for G3.

s p a c e s p a c e s p a c e

(a) (*) to
Fig. 6.2—Comparison of Space Complexity

The space graphs in Figure 6.2 measure the number of edges required by the graph-structured stack
(in Tom ita’s algorithm) and the length of entries in the ancestors table (in the modified algorithm).
The number of vertices required is the same for both algorithms and is not counted; space that can
be reclaimed before scanning successive x ,’s is also not counted. Our analysis of space complexity

-200- Intemational Parsing Workshop '89

predicts that Tom ita’s algorithm will require ~ n2 space and that the modified algorithm will require
at most a factor of n 2 additional space. The empirical evidence also agrees with this prediction. The
space requirements of the modified algorithm differs from Tomita’s algorithm by a factor of ~ 2.1 for
grammar G1 in Figure 6.2 (a), ~ 3.9 for G2 in Figure 6.2 (6), and ~ 4.7 for G3 in Figure 6.2 (c).

7. LESS THAN N3 T IM E
Several of the better known general CF algorithms have been shown to run in less than 0 (n 3)

time for certain subclasses of grammars. Therefore, it is of interest to ask if Tom ita’s algorithm, as
well as the modified version presented here, can also recognize some subclasses of CF grammars in less
than 0 (n 3) time. In this section, I informally describe two such subclasses that can be recognized in
0 (n 2) and O(n) time, respectively. The arguments for their existence parallel those given by Earley
(1968), where they are formally specified.

Time 0 (n2) Grammars. ANCESTORS is the only function that forces us to use ~ i? steps in
Tom ita’s algorithm and ~ r steps in the modified algorithm. We determined that this could happen
when a ancestor vertex v' from Uj (j < i) reached the reducing vertex v in Ui by more than a single
path, i.e., the symbols x;- • • • x, were derived from a nonterminal Dp in more than one way, indicating
that grammar G is ambiguous. If G were unambiguous, then there would be at most one path from
a given v' to v. This means that the bounded calls to ANCESTORS(t>,p) can take at most ~ steps
and that ANCESTORS(uc",p) can take at most a bounded number of steps. The first observation is
due to the fact that there are ~ i ancestor vertices that can be reached in only one way. Similarly,
the second observation is due to the fact that if A N C ESTO R S^",p) took ~ i steps, returning ~ i
ancestors, and was called ~ i times, then some ancestor vertices must have shifted into Ui in more
than one way, which would be a contradiction, meaning grammar G must be ambiguous. So, if the
grammar is unambiguous, then the total time spent in REDUCE for any x< is ~ i and the worst case
time bound for the Tom ita’s algorithm is 0 (n 2). A similar result is true for the modified algorithm.

Time O(n) Grammars. In his thesis, Earley (1968) points out that “ . . . for sc le grammars the
number of states in a state set can grow indefinitely with the length of the string being recognized.
For some others there is a fixed bound on the size of any state set. We call the latter grammars
bounded state grammars.” While Earley’s “states” have a different meaning than states in Tomita’s
algorithm, a similar phenomena occurs, i.e., for the bounded state grammars there is a fixed bound on
the number of parents any vertex can have. In Tom ita’s algorithm, bounded state grammars can be
recognized in time O(n) for the following reason. No vertex can have more than a bounded number of
ancestors (if otherwise, then — i vertices could be added to the parents of some vertex in Ui, proving
by contradiction that the grammar is not bounded state). This means that the ANCESTORS function
can execute in a bounded number of steps. Likewise, REDUCE can only be called a bounded number
of times. Summing over the x* gives us an upper bound ~ n. Again, a similar result is true for the
modified algorithm. Interestingly enough, Earley states that almost all LR(k) grammars are bounded
state, as well, which suggests that Tom ita’s algorithm, given fc-symbol look ahead, should perform
with little loss of efficiency as compared to a standard LR(fc) algorithm when the grammar is “close”
to LR(fc). Earley also points out that not all bounded state grammars are unambiguous; thus, there
are non-LR(fc) grammars for which Tom ita’s algorithm can perform with LR(&) efficiency.

8. CONCLUSION
The results in this paper support in part Tom ita’s claim (1985) of efficiency for his algorithm.

With the modification introduced here, Tom ita’s algorithm is shown to be in the same complexity
class as existing general CF algorithms. These results also give support to his claim that his algorithm
should run with near LR(fc) efficiency for near LR(fc) grammars.

It should be noted that while the modification to Tom ita’s algorithm has theoretic interest it
would detract from a practical parser. Realistic grammars are constrained by the fact that they must
be human-readable. Since human-readable grammars should never realize the worst-case 0 (n^+ l) time

-201- Intemational Parsing Workshop ’89

bound of Tom ita’s algorithm, the benefits of the ancestors table in the modified algorithm would not
balance out its overhead cost. In this regard, the modified algorithm should not be viewed as an
“improvement” over Tom ita’s algorithm but as a means of illustrating its place among other general
CF algorithms.

The variation on Tomita’s algorithm described in this paper, as well as the modified algorithm,
have been implemented in both LISP a ..i C at The RAND Corporation. The LISP implementation
(Kipps, 1988) is distributed with ROSIE (Kipps et al., 1987), a language for applications in artifi­
cial intelligence with a highly ambiguous English-like syntax. The C implementation is part of the
RAND Translator-Generator project, which is developing a “next generation” YACC4 for non-LR(fc)
languages.

REFERENCES
Aho, A.V., J.D. Ullman, The Theory o f Parsing, Translation and Compiling, Prentice-Hall, Englewood

Cliffs, NJ, 1972;
Chomsky, N., “On Certain Formal Properties of Grammars,” in Information and Control, vol. 2, no. 2,

pp. 137-167, 1959.
Earley, J., An Efficient Context-Free Passing Algorithm, Ph.D. Thesis, Computer Science Dept.,

Carnegie-Mellon University, Pittsburg, PA, 1968.
Hopcraft, J.E., J.D. Ullman, Introduction to Automata Theory, Languages, and Computation,

Addison-Wesley, Reading, MA, 1979.
Kipps, J.R., B. Florman, H.A. Sowizral, The New ROSIE Reference Manual and User’s Guide, R-

3448-DARPA, The RAND Corporation, 1987.
Kipps, J.R., “A Table-Driven Approach to Fast Context-Free Parsing,” N-2841-DARPA, The RAND

Corporation, 1988.
Knuth, D.E., “On the Translation of Languages from Left to Right,” Information and Control, vol. 8,

pp. 607-639, 1965.
Johnson, S.C., “YACC—Yet Another Compiler Compiler,” CSTR 32, Bell Laboratories, Murray Hill,

NJ, 1975.
Tomita, M., An Efficient Context-Free Parsing Algorithm for Natural Languages and Its Applications,

Ph.D. Thesis, Computer Science Dept., Carnegie-Mellon University, Pittsburg, PA, 1985.
Younger, D.H., “Recognition and Parsing of Context-Free Languages in Time n3,” in Information and

Control, vol. 10, no. 2, pp. 189-208, 1967.

4 YACC (Johnson, 1975) is a parser-generator for LALR(l) languages.

-202- International Parsing Workshop '89

The Computational Complexity of Tom ita’s
Algorithm

M a r k J o h n s o n

A p r i l 26 , 19S9

1 Introduction
The Tomita parsing algorithm adapts Knuth’s (1967) well-known parsing algo­
rithm for LR()t) grammars to non-LR grammars, including ambiguous gram­
mars. Knuth’s algorithm is provably efficient: it requires at most 0 (n |G |) units
of time, where |G| is the size of (i.e. the number of symbols in) G and n is
the length of the string to be parsed. This is often significantly better than
the 0 (n 3|G |2) worst case time required by standard parsing algorithms such as
the Earley algorithm. Since the Tomita algorithm is closely related to K nuth’s
algorithm, one might expect that it too is provably more efficient than the Ear­
ley algorithm, especially as actual computational implementations of Tom ita’s
algorithm outperform implementations of the Earley algorithm (Tomita 1986,
1987).

This paper shows that this is not the case. Two main results are presented in
this paper. First, for any m there is a grammar Lm such that Tomita’s algorithm
performs Q(nm) operations to parse a string of length n. Second, there is a
sequence of grammars G m such that Tomita’s algorithm performs f2(nc1Gm')
operations to parse a string of length n. Thus it is not the case that the Tomita
algorithm is always more efficient than Earley’s algorithm; rather there are
grammars for which it is exponentially slower. This result is forshadowed in
Tomita (1986, p. 72), where the author remarks that Tomita’s algorithm can
require time proportional to more than the cube of the input length. The result
showing that the Tomita parser can require time proportional to an exponential
function of the grammar size is new, as fair as I can tell.

2 T he Tom ita Parsing A lgorithm
This section briefly describes the relevant aspects of the Tomita parsing al­
gorithm: for further details see Tomita (1986). Familiarity with Knuth’s LR

-203- Intemational Parsing Workshop '89

parsing algorithm is presumed: see the original article by Knuth (1967), Aho
and Ullman (1972), or Aho, Sethi and Ullman (1986) for details.

The Tomita algorithm and Knulh’s LR parsing algorithm on which it is based
are both shift-reduce parsing algorithms, and both use the same LR automaton
to determine the parsing actions to be performed. The LR automaton is not
always deterministic: for example, if the grammar is ambiguous then at some
point in the analysis of an ambiguous string two difTerent parsing actions must be
possible that lead to the two distinct analyses of that string. Knuth’s algorithm
is only defined for grammars for which the parsing automaton is deterministic:
these are called the LR(k) grammars, where k is the length of the lookahead
strings. Tomita’s algorithm extends Knuth’s to deal with non-deterministic LR
automata.

Tomita’s algorithm in effect simulates non-determinism by computing all of
the LR stacks that result from each of the actions jf a non-deterministic LR
automaton state. Tomita’s algorithm mitigates the cost of this non-determinism
by representing the set of all the LR stacks possible at a given point of the parse
as a multiply-rooted directed acyclic graph called a graph-structured stack, which
is very similiar to a parsing chart (Tomita 1988). Each node of this graph
represents an LR state of one or more of the LR stacks, with the root nodes
representing the top states of LR parse stacks. The graph contains exactly one
leaf node (i.e. a node with no successors). This leaf node represents the start
state of the LR autom ata (since this is the bottom element of all LR parse
stacks), and each maximal path through the graph (i.e. from a root to the leaf)
represents an LR parse stack.

As each item in the input string is read all of the parsing actions called
for by the top state of each LR stack are performed, resulting in a new set of
LR stacks. Because of the way in which the set of LR stacks are represented,
Tom ita’s algorithm avoids the need to copy the each LR stack in its entirity
at non-deterministic LR automaton states; rather the top elements of the two
(or more) new stacks are represented nodes whose successors are the nodes
that represent the LR stack elements they have in common. Similiarly, if the
same LR state appears as the top element of two or more new stacks then these
elements are represented by a single node whose immediate successors are the set
of nodes that represent the other elements of these LR stacks. This “merging” of
identical top elements of distinct LR stacks allows Tom ita’s algorithm to avoid
duplicating the same computation in different contexts.

Finally, Tomita employs a packed forest representation of the parse trees in
order to avoid enumerating these trees, the number of which can grow expo­
nentially as a function of input length. In this representation there is at most
one node of a given category at any string location (i.e. a pair of beginning and
ending string positions), so the number of nodes in such a packed forest is at
most proportional to the square of the input length. Each node is associated
with a set of sequences of daughter nodes where each sequence represents one
possible expansion of the node; thus the trees represented can easily be “read

-204- International Parsing Workshop '89

off” the packed forest representation.

3 C o m p l e x i t y as a F u n c t i o n of I n p u t L e n g t h
The rest of this paper shows the complexity results claimed above. This section
describes a sequence of grammars Lm such that on sufficiently long inputs the
Tomita algorithm performs more than Q(nm) operations to parse an input of
length n. This result follows from properties of the packed forest representation
alone, so it applies to any algorithm that constructs packed forest representa­
tions of parse trees.

Consider the sequence of grammars Lm for m > 0 defined in (1), where
5 m + 2 abbreviates a sequence of S ’s of length m + 2.

5 — a
5 —> 5 5 (1)
S _* 5 m+2

All of these grammars generate the same language, namely the set of strings
a + . Consider the input string a M + 2 for n > m. By virtue of the first two rules in
(1) any ncin-empty string location can be analyzed as an 5. Thus the number of
different sequences of daughter nodes of the matrix or top-most 5 node licensed
by the third rule in (1) is {mn+l) the number of ways of choosing different right
string positions of the top-most 5 node’s first m + 1 daughters. Since (m + L)
is a polynomial in n of order m + 1, it is bounded below by cnm for some
c > 0 and sufficiently large n, i.e. Since any algorithm which
uses the packed forest representation, such as Tom ita’s algorithm, requires the
construction of these sequences of daughter nodes, any such algorithm must
perform Q(nm) operations.

Finally, it should be noted that this result assumes that the sequences of
daughter nodes are completely enumerated. It might be possible these sequences
could themselves be “packed” in such a fashion that avoids their enumeration,
possibly allowing the packed forest representations to be constructed in polyno­
mial time.

4 C om plexity as a Function o f G ram m ar Size
This section shows that there are some grammars such that the total number
of operations performed by the Tomita algorithm is an exponential function of
the size of the grammar.

The amount of work involved in processing a single input item is proportional
to the number of distinct top states of the set of LR stacks corresponding to
the different non-deterministic analyses of the portion of the input string shown
so far. By exhibiting a sequence of grammars in which the number of such

-205- Intemational Parsing Workshop '89

states is an exponential function of the size of the grammar we show that the
total number of operations performed by the Tomita algorithm can be at least
exponentially related to the size of the grammar.

Consider the sequence of grammars for m > 0 defined in (2).

5 - Ai
.4, - BjAi
Ax - Bj
Bj — a

(2)
0 < i < m
0 < i, j < m , i ^ j
0 < i , j < m , i jk j
0 < j < m

All of the grammars Gm generate the same language, namely the set of
strings a + . Since these grammars are ambiguous they are not LR(t) for any k.

Consider the behaviour of a non-deterministic LR parser for the grammar
Gm on an input string an where n > m. The items of the start state are shown
in (3).

0 < i , j < m , ^ j

S — -.4,-
Ai - ■BjAi
A t - -Bj
Bj — a

The parser shifts over the first input symbol a to the state shown in (4)

(3)

[Bj —♦ a-] 0 < j < m (4)
This is a non-deterministic state, since all of the m reductions Bj — a are

possible parsing actions from this state. Suppose that the reduction to Bkl is
chosen. The state that results from the reduction to Bkl is shown in (5). There
are m such states.

0 < j < m t i £ j, k ! (5)

Ai —- Bj.-, • .4,
Ai - B k r
Ai — BjAi
Ai - Bj
Bj — a

After shifting over the next input symbol the parser again reaches the same
ambiguous state as before, namely the state shown in (4). Suppose the reduction
to Bki *s chosen. If B t, = B*, then the resulting state is the one shown in (5).
On the other hand, if Bt, Bjei then the resulting state is as shown in (6).
There are m (m — l)/2 distinct states of the form shown in (6), so after reducing
B k 2 there will be m(m + l)/2 distinct LR states in all.

Ai
Ai
Ai
Ai
B,

Bkt • Ai

■B}Ai
Bj
•a

(6)

•206- International Parsing Workshop '89

It is n o t h a rd to see t h a t a f ter n > m i n p u t s y m b o l s h a v e b e e n r e a d a n d
r e d u c e d t o 5 t , . . . B k K r e s p e c t i v e l y t h e r e s u l t i n g s t a t e wi l l b e as s h o w n in (7) .

0 < i, j < m , i j , k\ • . . . (7)

.4, — B±n • .4,

.4 , - B kn,-

.4 , — ■BJA l

.4 , — Bj
Bj — -a

S i n c e t he r e are 2 m — 1 d i s t i n c t s u c h s t a t e s , t he T o m i t a pa r se r m u s t p e r f o r m
at l e as t 2 m — 1 c o m p u t a t i o n s per i n p u t i t e m a f t er t h e f irst m i t e m s h a v e b e e n
r ead . S i n c e \Gm\ — 5 m 2 — m = 0 (m 2), t h e r at io o f t h e a v e r a g e n u m b e r o f
c o m p u t a t i o n s pe r i n p u t i t e m for a s u f f i c i e n t l y l o n g s t r i n g t o g r a m m a r s i z e is
Q (2 rn/ m 2) = Q (c m) for s o m e c > 1. T h u s t he t o t a l n u m b e r o f o p e r a t i o n s
p e r f o r m e d by t h e par se r i< Q (c |G,n)̂, e x p o n e n t i a l f u n c t i o n o f g r a m m a r s ize .

5 C o n c l u s i o n
T h e r e s u l t s j u s t d e m o n s t r a t e d d o n o t s h o w t h a t T o m i t a ’s a l g o r i t h m is a l w a y s
s l o w e r t h a n p o l y n o m i a l l y b o u n d e d a l g o r i t h m s s u c h as E a r l e y ’s, in f a c t in p r a c t i c e
it is s i g n i f i c a n t l y f as t er t h a n E a r l e y ' s a l g o r i t h m (T o m i t a 1 9 8 6) . O n t h e o t h e r
h a n d , t h e r e s u l t s p r e s e n t e d he re s h o w t h a t t h i s s u p e r i o r p e r f o r m a n c e is n o t
j u s t a p r o p e r t y o f t h e a l g o r i t h m a l o n e , b u t a l s o d e p e n d o n p r o p e r t i e s o f t h e
g r a m m a r s (a n d p o s s i b l y t he i n p u t s) u s ed . It w o u l d b e i n t e r e s t i n g t o i d e n t i f y
t h e p r o p e r t i e s t h a t are r eq u ir ed for e f f i c ie nt f u n c t i o n i n g o f T o m i t a ’s a l g o r i t h m .

S e c o n d , i t m i g h t p o s s i b l e to m o d i f y T o m i t a ’s a l g o r i t h m s o t h a t i t p r o v a b l y
r eq u ir es a t m o s t p o l y n o m i a l t i m e . For e x a m p l e , r e q u i r i n g al l g r a m m a r s u s e d
by t h e a l g o r i t h m to be in C h o m s k y N o r m a l F o r m w o u l d p r o h i b i t t h e g r a m m a r s
u s e d t o s h o w t h a t T o m i t a ’s a l g o r i t h m d o e s n o t a l w a y s run in p o l y n o m i a l t i m e .
W h e t h e r t h i s r e s t r i c t i o n w o u l d e n s u r e p o l y n o m i a l t i m e b e h a v i o u r w i t h r e s p e c t
t o i n p u t l e n g t h is an o p e n q u e s t i o n (n o t e t h a t t h e g r a m m a r s u s e d t o s h o w t h e
e x p o n e n t i a l c o m p l e x i t y w i t h r e s p e c t to g r a m m a r s i z e are a l r e a d y in C h o m s k y
N o r m a l F o r m) .

F i n a l l y , t h e n o n - p o l y n o m i a l b e h a v i o u r o f T o m i t a ’s a l g o r i t h m w i t h r e s p e c t
t o i n p u t l e n g t h f o l l o w e d f r o m t h e p r o p e r t i e s o f t h e p a c k e d f or es t r e p r e s e n t a ­
t i o n o f p a r s e t r ee s , s o it f o l l ow s t h a t a n y a l g o r i t h m w h i c h u s e s p a c k e d f or es t

r e p r e s e n t a t i o n s wi l l a l so e x h i b i t n o n - p o l y n o m i a l b e h a v i o u r .

6 Bibliography
A h o a n d U l l m a n (1 9 7 2) The Th eor y o f Pars ing , Trans la t i on and Co mpi l ing , vol .
1, P r e n t i c e Hal l , N e w Je rs ey .

A h o , S e t h i a n d U l l m a n (1 9 8 6) C o mp i l e r s : Pr inc ip le s , Techniques and Tools,
A d d i s o n - W e s l e y , R e a d i n g , M a s s .

-207- Intemational Parsing Workshop '89

T o m it a (1986) Efficient Par s ing fo r Natural L anguage , Kluwer, B o sto n ,
Mass.

T o m it a (1 9 8 7) “An Efficient A u g m e n te d -C o n te x t -F r e e Parsing A lg o r i th m ” ,
Computa t iona l Linguistics, vol. 13, 31-46.

T o m ita (1 98 8) “G ra p h -S tru ctu red S tack and N atu ra l L anguage P a rs in g ” , in
The Proceedings of the 26th Annual Meeting of the Assoc ia tion f o r C om p ut a­
t ional Linguistics , S U N Y Buffalo, New York.

-208- Intemational Parsing Workshop '89

Probabilistic Parsing for Spoken Language Applications
S t e p h a n i e S e n e f f

S p o k e n L a n g u a g e S y s t e m s G r o u p
L a b o r a t o r y for C o m p u t e r S c i e n c e

M I T C a m b r i d g e , M A 0 2 1 3 9

A bstract
A new n atural lan gu a ge sy s te m , T i n a , has been d eve lo p ed for ap p lica t io n s involv ing sp ok en language

tasks, which in tegrates key ideas from c o n tex t free gram m ars, A u g m en ted T ransit ion N etw orks (A T N ’s) [6],
and Lexical F u n ctiona l G ra m m a rs (L F G ’s) [1]. T h e parser uses a best-first search stra tegy , w ith probability

a ss ig n m en ts on all arcs o b ta in ed a u to m a t ica l ly from a se t o f e x a m p le sen ten ces . A n initial context-free

gram m ar, derived from the ex a m p le sen ten ces , is first converted to a probabil is t ic network stru cture . Control
inc ludes b o th top -d ow n and b o t to m -u p cycles , and key p aram eters are passed am o n g n od es to deal w ith long­
d is tan ce m o v em en t , a greem en t , and sem a n t ic con stra in ts . T h e probabil it ies provide a natural m ech an ism

for ex p lo r in g m ore co m m o n g ra m m a tic a l co n s tru ct io n s first. O n e novel feature o f T i n a is th a t it provides

an a u to m a t ic s e n ten c e g en eration capability , which has been very effective for id ent ify in g overgeneration

prob lem s. A fully in tegrated spoken language sy s t e m using this parser is under d eve lo p m en t .

1 Introduction
Most parsers have been designed with the assum ption th a t the inpu t word stream is determ in­

istic: i.e., a t any given point in the parse tree it is known with certain ty w hat the next word is. As
a consequence, these parsers generally cannot be used effectively, if at all, to provide linguistically
directed constra in t in the speech recognition com ponent of a speech understanding system . In a
fully in tegrated speech understanding system , the recognition com ponent should only be allowed
to propose partial word sequences th a t the natu ral language com ponent can in terp ret; any word
sequences th a t are syntactically or sem antically anomalous should probably be pruned prior to the
acoustic m atch , ra th e r than exam ined for approval in a verification mode. To operate in such a
fully in tegrated m ode, a parser has to have the capability of considering a m ultitude of hypotheses
sim ultaneously. The control stra tegy should have a sense of which of these hypotheses, considering
both linguistic and acoustic evidence, is most likely to be correct at any given in stan t in tim e,
and to pursue th a t hypothesis only increm entally before reexam ining the evidence. The linguistic
evidence should include probability assignm ents on proposed hypotheses; otherw ise the perplexity
of the task becomes too high for practical recognition applications.

This paper describes a natu ral language system , T i n a , which addresses m any of these issues.
The g ram m ar is constructed by converting a set of context-free rew rite rules to a form th a t merges
common elem ents on the right-hand side (RHS) of all rules sharing the same left-hand side (LHS).
Elem ents on the LHS become parent nodes in a family tree. Through exam ple sentences, they
acquire knowledge of who their children are and how they can in terconnect. Such a transform ation
perm its considerable s tru c tu re sharing among the rules, as is done in typical shift-reduce parsers [5].
Probabilities are established on arcs connecting pairs of right siblings ra ther than on rule produc­
tions. This has several advantages, which will be discussed later. C ontex t-dependen t constra in ts

-209- Intemational Parsing Workshop '89

to deal with agreem ent and gaps are realized through simple logical functions applied to flags or
features passed am ong im m ediate relatives.

2 G e n e r a l D e s c r i p t i o n

T i n a is basically a context-free gram m ar, im plem ented by expansion at run-tim e into a network
struc tu re , and augm ented with flags/param eters tha t activate filtering operations. The gram m ar
is built from a set of train ing sentences, using a bootstrapping procedure. Im ally, each sentence
is transla ted by hand into a list of the rules invoked to parse it. After the gram m ar has built
up a substan tia l knowledge of the language, many new sentences can be parsed autom atically , or
with minimal intervention to add a few new rules increm entally. The arc probabilities can be
increm entally updated after the successful parse of each new sentence.

The process of converting the rules to a network form is straightforw ard. All rules with the
same LHS are combined to form a. s truc tu re describing possible interconnections among children of
a parent node associated with the left-hand category. A probability m atrix connecting each possible
child with each o ther child is constructed by counting the num ber of times a particu lar sequence of
two siblings occurred in the RHS s of the common rule set, and normalizing by counting all pairs
from the particu lar left-sibling to a n y right sibling. Two distinguished nodes, a START node and
an END node, are included among the children of every gram m ar node. A subset of the g r a m m a r

nodes are term inal nodes whose children are a list of vocabulary words.
This process can be illustrated with the use of a simple exam ple. Consider the following three

rules:

NP =$> ARTICLE NOUN

NP => ARTICLE ADJECTIVE NOUN

NP => ARTICLE ADJECTIVE ADJECTIVE NOUN

These would be converted to a. network as shown in Figure 1, which would be associated with a
gram m ar node nam ed NP. Since a d j e c t i v e is followed twice by n o u n and once by a d j e c t i v e ,

the network shows a probability of 1/3 for the self loop and 2 /3 for the advance to NOUN. Notice
th a t the system has now generalized to include any num ber of adjectives in a row.

.33

.33

F ig u re 1: Probablistic Network Resulting from three C ontext-Free Rules given in Text.

A functional block diagram of the control stra tegy is given in Figure 2. At any given tim e, a
set of active parse nodes are arranged on a priority queue. Each parse node contains a pointer to
a corresponding g ram m ar node, and has access to all the inform ation needed to pursue its partial
theory. The top node is popped from the queue, and it then creates a num ber of new nodes (either

-210- International Parsing Workshop ’89

c h i ld r e n or r i ght s i b l i n g s d e p e n d i n g 011 i t s s t a t e) , a n d in s e r t s t h e m i n t o t h e q u e u e a c c o r d in g to

th e i r p r o b a b i l i t i e s . If t h e n o d e is an END n o d e , it c o l l e c t s up all s u b p a r s e s f r o m it s s e q u e n c e o f

le f t s i b l i n g s , b a c k t o t h e START n o d e , a n d p a s s e s th e in f o r m a t i o n up to t h e p a r e n t n o d e , g iv i n g

t h a t n o d e a c o m p l e t e d s u b p a r s e . T h e p r o c e s s ca n t e r m i n a t e o n t h e first s u c c e s s f u l c o m p l e t i o n o f a

s e n t e n c e , o r t h e N t h s u c c e s s f u l c o m p l e t i o n if m o r e t h a n o n e h y p o t h e s i s is d e s i r e d .

F ig u re 2: Functional Block Diagram of Control Strategy.

A parse in T i n a begins with a single parse node linked to the gram m ar node S ENTENCE, which
is entered on the queue with probability 1.0. This node creates new parse nodes with categories like
S TATEMENT, QUESTI ON, and REQUEST, and places them on the queue, prioritized. If S TATEMENT is
the m ost likely child, it gets popped from the queue, and returns nodes ind icating SUBJECT, IT, etc.,
to the queue. W hen SUBJ ECT reaches the top of the queue, it activates units such as NOUN- GROUP

(for noun phrases and associated post-m odifiers), g e r u n d , and n o u n - c l a u s e . Each node, after
in stan tia tin g first-children, becomes inactive, pending the retu rn of a successful subparse from a
sequence of children. Eventually, the cascade of first-children reaches the term inal-node ARTICLE,

which proposes the words “the ,” “a ,” and “an ,” testing these hypotheses against the in p u t stream .
If a m atch w ith “th e ” is found, then the a r t i c l e node fills its subparse slot with the en try (ARTICLE

“th e ”), and activates all of its possible right-siblings.
W henever a term inal node has successfully matchcd an input word, the path probability is

-211- International Parsing Workshop '99

reset to 1.0. Thus the probabilities t h a t are u s e d t o p r i o r i t i z e t h e q u e u e represent not t h e total
path probability but rather the probability given t h e par t i a l w o r d s e q u e n c e . Each path climbs up
from a term inal node and back down to a next term inal n o d e , with each new node adjusting the
path probability by m ultiplying by a new conditional probability. The resulting conditional path
probability for a next word represents the probability of th a t word in its syntactic role given all
preceding words in their syntactic roles. W ith this strategy, a partial sentence does not become
increasingly im probable as more and more words are added. l .

Because of the sharing of common elements on the right hand side of rules, T i n a can au to ­
m atically generate new rules th a t were not explicitly provided. For instance, having seen the rule
X => A B C and the rule X => B C D, the system would autom atically generate two new rules,
X => B C, and X => A B C D. A lthough this property can potentialy lead to certain problem s with
overgeneration, there are a num ber of reasons why it should be viewed as a feature. F irst of all, it
perm its the system to generalize more quickly to unseen structu res. For exam ple, having seen the
rule A U X -Q U E ST IO N => AUX s u b j e c t PR ED IC A TE (as in "May I go?”) and the rule A U X -Q U E ST IO N

=> h a v e S U B JE C T LINK PR.ED -a d j EC T IV E (as in “Has he been good?”), the system would also
understand the forms a u x - q u e s t i o n => h a v e s u b j e c t p r e d i c a t e (as in “Has he left?”) and
A U X -Q U E ST IO N => a u x s u b j e c t l i n k p r e d - a d j e c t i v e (as in ‘‘Should I be careful?”).2 Secondly
it greatly simplifies the im plem entation, because rules do not have to be explicitly m onitored during
the parse. Given a particu lar parent and a particu lar child, the system can generate the allowable
right siblings w ithout having to note who the left siblings (beyond the im m ediate one) were. Fi­
nally, and perhaps most im portan tly , probabilities are established on arcs connecting sibling pairs
regardless of which rule is under construction. In this sense the arc probabilities behave like the
fam iliar word-level bigram s of simple recognition language models, except th a t they apply to sib­
lings a t m ultiple levels of the hierarchy. This makes the probabilities meaningful as a product of
conditional probabilities as the parse advances to deeper levels of the parse tree and also as it
retu rns to higher levels of the parse tree. All of the conditionals can be made to sum to one for
any given choice, and everything is m athem atically sound.

One negative aspect of such cross fertilization is th a t the system can potentially generalize to
include forms th a t are agram m atical. For instance, the forms “Pick the box u p ” and “Pick up
the box,” if defined by the same LHS name, would allow the system to include rules producing
forms such as “Pick up the box up” and “Pick up the box up the box!” This problem can be
overcome either by giving the two structu res different LHS names or by grouping “up the box”
and “the box up” into d istinct parent nodes, adding another layer to the hierarchy on the RHS.
A th ird a lternative is to include a p a r t i c l e slot among the features which, once filled, cannot be
refilled. In fact, there were only a few situations where such problems arose, and they were always
correctable.

3 C onstraints and Gaps

This section describes how T in a handles several issues th a t are often considered to be part of
the task of a parser. These include agreem ent constra in ts, sem antic restrictions, subject-tagg ing for
verbs, and long d istance m ovem ent (often referred to as gaps, or the trace, as in “(which article)*

‘ Som e m odification of this schem e will be necessary when the input stream is not determ in istic . See [4] for a
d iscussion of these very im portan t issues regarding scoring in a best-first search.

2T h e auxiliary verb se ts the mode of the main verb to be root, or p ast particip le as app rop riate .

-212- International Parsing Workshop '89

do you think I should read (£,)?”). T in a is particulary effective in handling gaps. Complex cases of
nested or chained gaps are handled correctly, and appropriately ill-formed gaps are rejected. The
mechanism resembles the Hold register idea of ATN’s [6] and the trea tm ent of bounded dom ination
m etavariables in LFG ’s ([1], p. 235 ff), but I believe it is more straightforw ard than both of these.

3.1 D e s ig n P h ilo so p h y

Our approach to the design of a constraint mechanism is to establish a simple framework that
is general enough to handle syntactic, sem antic, and, ultim ately, phonological constraints using
identical functional procedures. The gram m ar is expressed as context-free rewrite rules without
constrain ts. The constrain ts reside instead with the individual nodes of the tree th a t are established
when the gram m ar is converted to a network structu re . In effect, the constrain t mechanism is thus
reduced from a two-dimensional to a one-dimensional dom ain. Thus, for exam ple, it would not be
perm itted to write an f-structure [1] equation of the form S U B J ^ f => NP associated with the rule
vp => V E R B NP I NF , to cover, “I told John to go.” Instead, the NP node (regardless of its parent)
would generate a C U R R E N T - F O C U S from its subparse, which would be passed along passively to the
verb “go.” The verb would then simply consult the C U R R E N T - F O C U S (regardless of its source) to
establish its subject.

3 .2 C o n s tr a in ts

Each parse node comes equipped with a num ber of slots for holding constrain t inform ation that
is relevant to the parse. Included are person and num ber, case, determ iner (d e f i n i t e , I N D E F I N I T E ,

p r o p e r , etc .), mode (R O O T , f i n i t e , etc.), and sem antic categories. These features are passed along
from node to node: from parent to child, child to parent, and left-sibling to right-sibling. C ertain
nodes have the power to ad just the values of these features. The ad justm ent may take the form
of an unconditional override, or it may involve a unification with the value for th a t feature passed
to the node from a parent, sibling, or child. The filters are restricted in power in two im portan t
ways: 1) A filter can only operate on da ta th a t are available to the im m ediate parse node th a t
in stan tia tes the filter, and 2) A filter m ust be restricted in action to simple logical operations such
as A N D , S E T , R E S E T , etc.

Some specific exam ples of constra in t im plem entations will help explain how this works. C ertain
nodes specify pe rso n /n u m b er/d e te rm in er restrictions which then propagate up to higher levels
and back down to la te r term inal nodes. Thus, for exam ple, A n o u n - P L node sets the num ber to
PLURAL, but only i f the left sibling passes to it a description for num ber th a t includes PLURAL as
a possibility (o t h e r w i s e it dies, as in “each b o a ts”). This value then propagates up to the s u b j e c t

node, across t o t h e PREDICATE node, and down to the verb, which then m ust agree with PLURAL,

unless its MODE is m arked as non-finite. Any non-auxilliary verb node blocks the transfer of any
predecessor person /num ber inform ation to its right siblings, reflecting the fact th a t verbs agree in
person /num ber with their subject but not their object.

A more complex exam ple is a com pound noun phrase, as in “Both John and M ary have decided
to go.” Here, each individual noun is singular, but the subject requires the plural form of “have.”
T i n a deals w ith th is by m aking use of a node category a n d - n o u n - p h r a s e , which sets the num ber
constra in t to PLURAL fo r its parents, and blocks the transfer of num ber inform ation to its children.
Some nodes also have special powers to set the mode of the verb e ither for their children or for
their right-siblings. Thus, for exam ple, “have” as an auxilliary verb sets mode to PAST-PARTICIPLE

-213- International Parsing Workshop '89

for its nght-siblings. The category GERUND sets the mode to PRESENT-PARTlCIPLE for its children.
W henever a p r e d i c a t e node is invoked, the verb’s mode has always been set by a predecessor.

SEN T EN C E

QUESTION

Figure 3: Example of a Parse Tree Illustrating a Gap.

3 .3 G a p s

The mechanism to deal with gaps resembles in certain respects the Hold register idea of ATN’s,
but with an important difference, reflecting the design philosophy that no node can have access
to information outside of its immediate domain. The process of getting into the Hold register (or
the f l o a t - o b j e c t slot, using my terminology) requires two steps, executed independently by two
different nodes. The first node, the generator, fills the CURRENT- FOCUS slot with the subparse
returned to it by its children. The second node, the activator, moves the CURRE NT - F OCUS into
the FLOAT- OBJ ECT position, for its children. It also requires that the f l o a t - o b j e c t be absorbed
somewhere among its descendants by a designated absorber node. The C UR RE NT - F OCUS only gets
passed along to siblings and their descendants, and hence is unavailable to activators at higher
levels of the parse tree. Finally, certain (blocker) nodes block the transfer of the FLOAT- OBJECT to
their children.

A simple example will help explain how this works. For the sentence “(How many pies),- did
Mike buy (t,)?n as illustrated by the parse tree in Figure 3, the q - s u b j e c t “how many pies” is
a generator, so it fills the C UR RE NT - F OCUS with its subparse. The DO- QUESTI ON is an activator;
it moves the CURRE NT - F OCUS into the f l o a t - o b j e c t position. Finally, the object of “buy,” an
absorber, takes the q - s u b j e c t , as its subparse. The DO- QUESTION refuses to accept any solutions
from its children if the FLOAT- OBJ ECT has not been absorbed. Thus, the sentence “How many pies
did Mike buy the pies?” would be rejected. Furthermore, the same DO- QUESTI ON node deals with

-214- Intemational Parsing Workshop '99

t h e yes/no question “Did Mike buy t h e p i e s ? / e x c e p t in t h i s c a s e t h e r e is no c u r r e n t - f o c u s and
h e n c e no gap.

More com plicated sentences involving nested or chained traces, are handled staightforwardly
by this scheme. For instance, the phrase, “(the violin), th a t (these Sonatas); are easy to play
(tj) on (t ,) ” can be parsed correctly by T i n a , identifying “Sonatas” as the object of “play” and
“violin” as the object of "on .” This works because the v e r b - p h r a s e - p - o , an activator, writes over
the FLOAT- OBJECT “violin” with the new entry "Sonatas,” but only for its children. The original
FLOAT- OBJECT is still available to fill the OBJECT slot in the following prepositional phrase.

The exam ple used to illustrate the power of ATN's [6], M ohn was believed to have been sho t,”
also parses correctly, because the OBJECT node following the verb “believed” acts as both an
absorber and a (re)generator. Cases of crossed traces are autom atically blocked because the second
CURRENT- FOCUS gets moved into the FLOAT- OBJECT position at the time of the second activator,
overriding the preexisting FLOAT-OBJ ECT set up by the earlier activator. The wrong FLOAT-OBJECT
is available at the position of the first trace, and the parse dies:

*(W hich books), did you ask John (w here)j Bill bought (t,) (t^)?

The CURRENT- F OCUS slot is not restricted to nodes tha t represent nouns. Some of the generators
are adverbial or adjectival parts-of-speech (p o s) . An absorber checks for agreem ent in POS before
it can accept the FLOAT- OBJECT as its subparse. As an exam ple, the question, “(How oily), do you
like your salad dressing (t ,) ? ” contains a Q- SUBJECT "how oily” th a t is a.11 adjective. The absorber
PRED- ADJ ECTI VE accepts the available fioat-object as its subparse, but only after confirming tha t
POS is ADJECTI VE.

The CURRE NT - F OCUS has a num ber of o ther uses besides its role in movement. . It always
contains the subject whenever a verb is proposed, including verbs th a t are predicative objects of
ano ther verb, as in “I want to go to C hina.” In the case of passive voice, it contains ’NIL at the
tim e of in stan tia tion of the verb. It has also been found to be very effective for passing sem antic
inform ation to be constrained by a future node, and it plays an integral role in pronoun-reference.
These issues are addressed more fully in [4]

3 .4 S e m a n tic F ilte r in g

In the most recent version of the parser, we im plem ented a num ber of sem antic constrain ts using
procedures th a t were very sim ilar to those used for syntactic constrain ts. We found it effective
to filter on the A C T l V E - N O U N ’s sem antic category, as well as to constrain absorbers in the gap
m echanism to require a m atch on sem antics before they could accept a f l o a t - o b j e c t . Sem antic
categories were im plem ented in a hierarchy such th a t, for exam ple, r e s t a u r a n t autom atically
inherits the m ore general properties b u i l d i n g and p l a c e . We also in troduced sem antically-loaded
categories a t the low levels of the parse tree. It seems th a t, as in syntax , there is a trade-off between
the num ber of unique node-types and the num ber of constrain t filtering operations. At low levels
of the parse tree it seems more efficient to label the categories, whereas inform ation th a t m ust pass
through higher levels of the hierarchy is b e tte r done through constra in t filters.

-215- Intemational Parsing Workshop '89

4 Practical Issues

Two unique practical aspects of T i n a ’s design are its generation-m ode capability and its ability
to build a gram m ar autom atically from a set of parsable sentences. We have found generation
mode to be an essential tool for identifying overgeneration problems in the gram m ar. The ability
to au tom atically provide a subset gram m ar for a set of sentences makes it easy to design a very
specific, well constrained gram m ar, leading to improved perform ance in restricted-dom ain spoken
language tasks.

G eneration mode uses the same low-level routines as those used by the parser, but chooses
only a single pa th based on the outcom e of a random -num ber generator. Since all of the arcs
have assigned probabilities, the parse tree is traversed by generating a random num ber at each
node and deciding which arc to take based on the outcom e, using the arc probabilities to weight
the alternatives. Occasionally, the generator chooses a path which leads to a dead end, due to
unantic ipated constrain ts. In this case, it can back up and try again. Table 1 contains five examples
of consecutively generated sentences. Since these were not selectively draw n from a larger set, they
accurately reflect the current perform ance level. Because a num ber of sem antic filtering operations
have been applied within this task, most of the generated sentences are sem antically as well as
syntactically sound.

It is a two-step procedure to acquire a gram m ar from a specific set of sentences. The rule set
is first built up gradually, by parsing the sentences one-by-one, adding rules a n d /o r constrain ts
as needed. Once a full set of sentences has been parsed in this fashion, the parse trees from the
sentences are au tom atically converted to the set of rules used to parse each sentence. The training
of both the rule se t.and the probability assignm ents is established directly from the provided set
of parsed sentences; i.e. the parsed sentences are the gram m ar.

A nother useful feature of TINA is th a t, as in LFG ’s, all unifications are nondestructive, and as a
consequence explicit back-tracking is never necessary. Every hypothesis on the queue is independent
of every o ther one, in the sense th a t activities performed by pursuing one lead do not d isturb the
o ther active nodes. This feature makes T i n a an excellent candidate for parallel im plem entation.
The control s tra tegy would simply ship off the most probable node to an available processor.

T a b le 1: Sam ple sentences generated consecutively by the most recent version of T i n a .

Do you know the most direct route to Broadway Avenue from here?
Can I get Chinese cuisine a t Legal’s?
I would like to walk to the subway stop from any hospital.
Locate a T -stop in Inm an Square.
W hat kind of res tau ran t is located around M ount A uburn in Kendall Square of East Cambridge?

5 D iscussion

This paper describes a new gram m ar form alism th a t addresses issues of concern in building a
fully in tegrated speech understand ing system . The gram m ar includes arc probabilities reflecting
the frequency of occurrence of the syntactic s truc tu res within the dom ain. These probabilities are

-216- Intemational Parsing Workshop '89

used to control the order in which hypotheses are considered, and are trained autom atically from
a set of parsed sentences, which makes it straightforw ard to tailor the gram m ar to a particular
need. Ultim ately, one could imagine the existence of a very large gram m ar th a t could parse almost
anything, which would be subsetted for a particular task by simply providing it with a set of
exam ple sentences within th a t task.

I believe th a t, at the tim e a set of word candidates is proposed to the acoustic m atcher of a
recognizer, all of the constrain t available from the restrictive influence of syntax, sem antics, and
phonology should have already been applied. The parse tree of T i n a can be used to express
various constrain ts ranging from acoustic-phonetic to sem antic and pragm atic. Each parse node
would contain slots for all kinds of constrain t inform ation - syntactic filters such as person, number
and mode, sem antic filters such as the permissible sem antic categories for the sub jec t/ob jec t of
the hypothesized verb, and acoustic-phonetic filters (for instance, restricting the word to begin
with a vowel if the preceding word ended in a flap, as in "W ha/ is”). As the parse tree advances,
it accum ulates additional constrain t filters tha t further restrict the num ber of possible next-word
candidates. Thus the task of the predictive com ponent is form ulated as follows: given a sequence
of words th a t has been in terpreted to the fullest capability of the syntactic/sem antic/phonological
com ponents, w hat are the likely words to follow, and what are their associated a priori probabilities?

W hile T IN A ’s term inal nodes are lexical words, I believe th a t the nodes should continue down
below the word level. Prefixes and suffixes alter the m eaning/part-of-speech in predictable ways,
and therefore should be represented as separate subword gram m ar units th a t can take certain
specified actions. Below this level would be syllabic units, whose children are subsyllabic units such
as onset and rhyme, finally term inating in phoneme-like units. Acoustic evidence would enter at
several stages. Im portan t spectral m atches would take place at the term inal nodes, but duration
and in tonation pa tte rn s would contribu te to scores at many higher levels of the hierarchy.

Three different task-specific versions of T i n a have been im plem ented. The first one was designed
to handle the 450 “phonetically rich” sentences of the T IM IT database [2]. The system was then
ported to the DARPA Resource M anagem ent dom ain. A num ber of evaluation m easures have been
applied for these tasks, as described in [3]. L ittle else will be said here, except to note th a t perplexity
was reduced nine-fold for the Resource M anagem ent task when arc probabilities established from
the tra in ing d a ta were incorporated , instead of using the equal-probability scheme. The latest
version has been tailored to the new V o y a g e r task, under developm ent a t MIT. This task involves
navigational assistance within a geographical region. Our goal is to utilize constraints offered
by both syntax and sem antics so as to reduce perplexity as much as possible w ithout sacrificing
coverage. The parser is im plem ented on the Symbolics Lisp machine and runs quite efficiently. A
sentence, en tered in tex t form, is typically processed in a fraction of a second.

An effort to in teg rate the V o y a g e r , version of T i n a with the S u m m i t speech recognition
system [7] is curren tly underway. Two im portan t issues are 1) how to combine the scores for
the recognition com ponent and the predictive com ponent of the gram m ar, and 2) how to take
advantage of appropria te pruning strategies to prevent an explosive search problem. The fully
in tegrated spoken language system will use T i n a both to constrain the recognition space and to
provide an inpu t to the back-end. Our current approach is to link together all words and all s ta rt-
times th a t are equivalent w ithin the parse, letting them proceed at a pace in accordance with the
best-scoring w ord /tim e for the set. V iterbi pruning can take place within the recognizer, by having
each term inal node initialize the recognizer with all the active phonetic nodes provided by its set
of active hypotheses.

-217- Intemational Parsing Workshop '89

6 A cknow ledgem ents
In developing this parser, I have benefitted from interactions with Lynette H irschm an, Mark

Johnston , and Victor Zue. This research was supported by DARPA under C ontract N00014-89-j-
1332, m onitored through the Office of Naval Research.

References
[1] B resnan, J ., ed., The Mental Representation of Grammatical Relations, M IT Press, 1982.

[2] Lamel, L., R.H. Kassel, and S. Seneff, “Speech D atabase Development: Design and Analysis
of the A coustic-Phonetic C orpus,” DARPA Speech Recognition W orkshop Proceedings, Palo
A lto, CA, Feb 19-20, 1986.

[3] Seneff, 5 . “TINA: A Probablistic Syntactic Parser for Speech U nderstanding System s,” Darpa
Speech and Natural Language Workshop Proceedings, Feb.1989.

[4] Seneff, S. “TINA: A Probablistic Syntactic Parser for Speech U nderstanding System s,” Labo­
rato ry for C om puter Science Technical R eport, forthcom ing.

[5] Tom ita, M., Efficient Parsing fo r Natural Language, Kluwer Academic Publishers, Boston,
MA, 1986.

[6] W oods, W .A ., “T ransition Network G ram m ars for N atural Language A nalysis,” Com m un. of
the ACM 13, 591-606, 1970.

[7] Zue, V., J. Glass, M. Phillips, and S. Seneff, “The M IT Sum m it Speech Recognition System:
A Progress R epo rt,” DARPA Speech and Natural Language Workshop Proceedings, Feb.1989.

-218- International Parsing Workshop '89

Connectionist Models of Language

James L. McClelland

Traditional models of language processing process language by rule. This approach faces two p. oblems.
First, there are difficulties in using the rules during processing, since often one rule must be pitted against

another. In this case traditional approaches face the difficult problem of deciding which rule should win in

such cases. Second, there are difficulties in acquiring rules, since it is often hard to know when a rule

should be proposed, or when a sentence should be handled as one of many special cases.

In the connectionist approach my colleagues and I have been taking, language processing is viewed as a

constraint satisfaction process. Each constituent of a sentence is viewed as imposing constraints on the

representation of the state or event described by the sentence. During processing, as each constituent is

encountered/it constrains the evolving representation of the sentence.

The knowledge that governs this constraint satisfaction is stored in the strengths of the connections

among the units in a connectionist network. These connection strengths encode the knowledge that is

traditionally encoded in the form of rules, but have the advantage that they are naturally capable of

capturing constraints that differ in magnitude or degree. The acquisition of these connection strengths

occurs through a connection adjustment process based on the back-propagation learning algorithm. The

algorithm performs gradient descent in a measure of the extent to which the answers that the network

gives to questions about the event described by a sentence actually match the probability that those

answers are correct given the sentence. This algorithm is able to learn to assign the correct

interpretations even when there are conflicting cues to the correct interpretation of a sentence.

To date this approach has been applied successfully to the processing of one-clause sentences. W e

have shown that it can learn to assign meanings to sentences containing vague and ambiguous words;

that it fills in implicit arguments, and that it can use both word meaning and word order information

correctly in making assignments of constituents to roles.

Current extensions focus on improving the rate of learning and on extending the approach to sentences

of arbitrary complexity. In this regard we have recently established that a simpler variant of the model

used for the comprehension of one-dause sentences is capable of learning, from a finite set of examples,

to process all of the infinite corpus of sentences generated by a Finite State Automaton.

-219- Intemational Parsing Workshop '89

References

The following two Technical Reports give details of the research described above:

St. John, M. & McClelland, J. L. Learning and applying contextual constraints in sentence comprehension.

AIP Technical Report, Departments of Psychology and Computer Science, Carnegie Mellon University.

Servan-Schreiber, D., Cleeremans, A., and McClelland, J. L. Encoding sequential structure in simple

recurrent networks. Technical Report CM U-CS-88-183, Department of Computer Science, Carnegie

Mellon University.

-220- Intemationai Parsing Workshop '89

A Connectionist Parser Aimed at Spoken Language

Ajay Jain Alex Waibel

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We describe a connectionist model which learns to parse single sentences from sequential word input. A parse in
the connectionist network contains information about role assignment, prepositional attachment, relative clause
structure, and subordinate clause structure. The trained network displays several interesting types of behavior.
These include predictive ability, tolerance to certain corruptions of input word sequences, and some generalization
capability. We report on experiments in which a small number of sentence types have been successfully learned by
a network. Work is in progress on a larger database. Application of this type of connectionist model to the area of
spoken language processing is discussed

This research was funded by grants from ATR Interpreting Telephony Research Laboratories and the National
Science Foundation under grant number EET-8716324. The views and conclusions contained in this document are
the authors’ and should not be interpreted as representing the official policies, either expressed or implied, of ATR
Interpreting Telephony Research Laboratories, the National Science Foundation, or the U.S. Government.

-221- Intemational Parsing Workshop '89

Introduction
Traditional methods employed in parsing natural language have focused on developing powerful formalisms to

represent syntactic and semantic structure along with rules for transforming language into these formalisms. The
builders of such systems must accurately anticipate and model all of the language constructs that their systems will
encounter. Spoken language, with its weak grammatical structure, complicates matters. We believe that
connectionist networks which learn to transform input word sequences into meaningful target representations offer
advantages in this area.

Much work has been done applying connectionist computational models to various aspects of language
understanding. Some researchers have used connectionist networks to implement formal grammar systems for use
in syntactic parsing [1,5, 10,6]. These networks do not learn their grammars. Other work has focused on
semantics [8, 11,3,2] but either ignored parsing, or the networks did not learn to parse. The networks presented in
this paper learn their own "grammar rules" for transforming an input sequence of words into a target representation,
and learn to use semantic information to do role assignment

The remainder of this paper is organized as follows. First, there is a description of our network formalism. Next,
we describe in detail a modest experiment in which a network was taught to parse a small class of sentences. We
show how the network behaves with some novel sentences and with sentences that have been corrupted as in spoken
language. Then, we show how we have generalized our architecture to model a much larger class of sentences and
discuss the work as it currently stands. Lastly, we offer some concluding remarks about this work and suggest
future directions.

Network Formalism
The most common type of deterministic connectionist network is a back propagation network [9]. Processing

units are connected to each other, and each connection has an associated weight Connections are unidirectional.
Units have an activity value and an output value which is usually a sigmoidal function of the activity. For a
connection from unit A to unit B, we define the stimulation along the connection to be the output value of unit A
multiplied by the weight associated with the connection. A unit’s activity is simply the sum of the stimulation along
each of its input connections. A network learns input / output mappings by iteratively updating its weight values
using a gradient descent technique.

Spoken language is an inherently sequential domain, and standard back propagation is not well suited to such a
task. Recently, some recurrent extensions to back propagation where sequences of connections can form cycles
have been proposed that can handle sequential input [4,7]. Our networks extend these notions by explicitly
accounting for time in our processing units. Units have activities which decay during each discrete time step by a
constant factor. Thus, the activation of a unit can be built up over time from repetitive weak stimulation. Activity
values are also damped to prevent unstable behavior. By gently "integrating" activities, the network has time to
adapt to new information smoothly.

The activity of a unit is passed through a sigmoid squashing function to produce an output value as in standard
back propagation. In addition, a value called the velocity is calculated. It is the rate of change of the output of a
unit. Each connection in the network has two weights associated with it -- one for the output value and one for the
velocity value. The velocity values are important to represent dynamic behavior which depends on changes in
activation more than on absolute activation.

In order to facilitate symbolic processing, we use special units, called gating units, which gate the connections
between groups of units. Fig. 1 diagrams the behavior of gating units. Slot C represents a particular word. It can be

-222- International Parsing Workshop '89

Slot A Slot B Slot A Slot B

o o o o o o o o o o o o o o o o o o

o Gates o £ Gates O

Slot c Slot C

Figure 1: Gating Units

assigned to either slot A or slot B. The connections from the units of Slot C to both Slots A and B are gated by the
two units below the slots (the connections are not shown here). In this case, the gating unit for slot A becomes
active (see the right hand side of the diagram), and the pattern of activation across slot C becomes active across sloe
A. This type of assignment behavior can, in principle, be learned by a network without using gating units but is
computationally wasteful.

Parsing Sentences
Our domain for this experiment consists of active and passive sentences consisting of up to 3 noun phrases and 2

verb phrases each. There are three roles for nouns to fill for each verb -- agent, patient, and recipient. The network
also models subordinate and relative clause structure as well as prepositional attachment The lexicon consists of 40
words which are divided into 7 ''asses -- nouns, verbs, adjectives, adverbs, auxiliaries, prepositions, and
determiners. Each word is defined at most once within a class, but some words belong to two classes.

Words are represented as patterns of activation across a set of feature units. There are seven sets of feature units,
one for each class of words. The pattern for a word consists of two parts: a feature part and an identification part.
The feature part contains a small set of binary features encoding semantic information about a word. The
identification part serves to disambiguate words which have identical feature parts (like a serial number). This
allows one to add words to the lexicon which have the same features as existing words without any re-training of the
network (the modifiable connections of the network do not connect to any identification units). Our 40 word lexicon
is in a virtual sense much larger than 40 words. Each word is associated with one unit in the network which has
hard-wired connections to excite the appropriate pattern across the feature units. A sentence is presented to the
network by stimulating the word units corresponding to the words in the sentence each for a short time in sequence.

The target representation for sentences in the network has two levels: the Phrase level and the Structure level.
Refer to Fig. 2 for a picture of the network structure. The Phrase level consists of groups of units called blocks,
each of which contain a noun or a verb and its modifiers. A noun block has slots for a noun, two adjectives, a
preposition, and a determiner. A verb block has slots for a verb, an auxiliary, and an adverb. There are 3 noun
blocks and 2 verb blocks. Each block captures a phrase. The blocks are filled in order, with the first noun phrase
occupying the first noun block, the second NP occupying the second noun block, and so on. The exact ordering
relationship between the verb phrases and the noun phrases is lost in this representation, but due to the simplicity of
the sentences this is not a problem.

The units in the Structure level describe the relationships between the phrases in the Phrase level the clauses they
make up. There are six relationships possible:

• Agent: Noun block (NB) is agent of Verb block (VB). Group of 3 by 2 units.

-223- International Parsing Workshop '89

Noun
Verb

Ajective
Adverb

A uxiliary
Preposition
Determiner

Noun
Adjective
Adjective

Preposition
Determiner

Aeent

Feature
Units

Noun
Block 1

John

Patient
Verb

Block 1

Relative
Clause

gave

Noun
Block 2

a
bone Recipient

Word
Units

Verb
Block 2

John gave a bone to the old dog.

Noun
Block 3

to
the
old
dog

Prep. Mod

Subordinate
Clause

f f l

Figure 2: Network Structure

• Patient: NB is patient of VB. Group of 3x2.

• Recipient: NB is recipient of VB. Group of 3x2.

• Prepositional Modification: NB modifies other NB. Group of 3x3.

• Relative Clause: VB modifies NB. Group of 2x3.

• Subordinate Clause: VB subordinate to other VB. Group of 2x2.
The sentence, "John gave a bone to the old dog." is shown in Fig. 2.

In Fig. 2, the units shown in thick lined boxes have modifiable input connections - they learn their behavior. The
gating units at the Phrase level share a group of hidden units. These hidden units have connections from the feature
units, the noun and verb blocks, and the gating units themselves. The Phrase level forms a recurrent subnetwork.
The representation units of the Structure level also share a set of hidden units. These hidden units "see" all that the
other set of hidden units see plus the structure representation units. The Structure level also forms a recurrent
subnetwork. None of the hidden units have connections to the identification bit portions of the slots in the network.

The network whose performance we will characterize below was trained in two phases. First, the gating units in
the Phrase level which are responsible for the behavior of the slots of the noun and verb blocks were trained. Their
behavior is quite complex. They must learn to turn on when a word appears across the feature units for their slot
(and their slot is supposed to be filled), stay on until the word disappears (even after the word has been assigned to
the slot), mm off sharply, and stay off even when another word appears across their feature units. They must also
learn to overwrite or empty out incorrectly assigned slots. Words get assigned incorrectly when they have
representations in more than one class and there is insufficient information to disambiguate the usage. The word
"was" has representations both as a verb and as an auxiliary verb. The network must assign it to both the auxiliary
and the verb slots of the current verb block, and disambiguate the assignment when the next word comes in by either
overwriting the verb slot with the real verb or emptying out the auxiliary slot

The next phase involves adding the Structure level and training the structure representation units. The targets for

-224- International Parsing Workshop '89

the structure units are set at the beginning of a sentence and remain the same for the whole sentence. This forces the
units to try to make decisions about sentence structure as early as possible; otherwise, they accumulate error signals.
On the surface, it may seem that these units should have more or less monotonic behavior. However, the sentences
in our domain do not necessarily contain sufficient information at word presentation time to make accurate decisions
about the word’s function. This coupled with the network’s attempt to make decisions early causes the structure
units to have surprisingly complicated activation patterns over time.

A set of 9 sentences was used to train the gating units of the Phrase level. They were selected to be the smallest
set of sentences which would cover a reasonably rich set of sentences for training the Structure units. The network
generalized very well to include "compositions" of sentence types from the initial set of 9. It was tolerant of varying
word speed and silences between words. This is an important property, useful for integration of speech systems
with natural language processing.

From this network, the Structure units were added. Eighteen sentences which were correctly processed at the
Phrase level were chosen to train the Structure level. A variety of sentences was included. There were more active
constructions than passive, more single clause than two clause sentences. Many different role structures were
present in the training set. The network learned the set successfully.

Network Performance
The trained network displays several interesting properties on both the sentences in the training set and other new

input sentences. A novel sentence is one which is not isomorphic to a training sentence modulo the identification
bits of the words in the sentences. Thus, "Peter gave Fido the bone" is not different from "John gave Fido the bone."
However, "Peter gave Fido the snake" is different since "snake" is animate, but "bone" is not.

The sentence "A snake ate the girl." is an example of the simplest type from the training set. The behavior of the
key structure units corresponding to the roles of verb block 1 are shown in Fig. 3. Each box contains the indicated

SutEjTT
A »r«k* it* th« (lrl

TSuTW v-f

A trtak* at* th« fir 1

llllillla.llllllla >11, ill.

.til i.i i.i ill Ini ill ll

• ItlllllllllllllllltaMaMMMIIIIIII llllillla.....IIIIIIIHg.a

(JuT P V lT : v - r * c i p

A snah* it* th* girl

I llII l ll ll llf f •••••«•«

liilniiiillllllill

Figure 3: A snake ate the girl.

relationship units. The horizontal axis corresponds to time. Each word is presented for ten time steps. The first row
of each box corresponds to the first noun phrase, the second to the second noun phrase and so on. The initial
representation shows low activities for all of the relationship units. During presentation of the First word, the agent
unit representing the First noun becomes quite active. It has not yet quite decided on its final value however, as can
be seen by the oscillations. The other units are all either weakly active or oscillating. When the verb "ate" is
presented, the agent unit corresponding to noun 1 fires strongly since it is now clear that the sentence is not a passive
construction. Similarly, the patient unit for noun 2 becomes more active since "ate" is transitive. The last part of the
sentence further verifies the correct representation. If "near the house" is appended to the sentence (forming a

-225- International Parsing Workshop '89

sentence not in the training set), it gets attached to 'the girl".

In spoken language, determiners and other short function words tend to be poorly articulated. This is indeed a

persistent problem for speech recognition systems, as it leads to word deletions. Despite such deletions, our network

makes appropriate role assignments with such sentences as "Snake ate girl." The role assignment is agent / patient

as in the uncorrupted sentence. N on-speech interjections are also possible as in, "A snake (ahh) ate the girl." A

speech recognition system could easily interpret the non-speech "ahh" as "a". Our network puts the non-speech a

in the determiner slot o f the second noun block, and then overwrites it with "the". The result is a good parse o f the

il l-formed sentence. Similarly, s im ple stuttering does not adversely affect network performance in many cases. It is

important to note that this behavior was not taught in any w ay to the network.

5CTTOT: v - * c * n t IflUTMT: ' v - p a t i t n t

Th# m i k t was (lv * n by F I d o T h #

■ ii t (■ 111 n > llli.lll..llliilli ill, i

i,I II llllllillllltlllliiulllulliiniiiilll

i i i ■ i i 111 l l I I I 111 i n n i i t i n i i 111111 n i i n

l i i i i i i i i • i i i i t i i l l l l l l l l l i l t l l l l l l l l i i

Figure 4: The snake was given by the man to Fido.

A more complicated sentence is given by, "The snake was given by the man to Fido." as shown in Fig. 4. It was
not in the training set. There was only one sentence with a similar structure in the training sec "The bone was given
by the man to the dog." They differ significandy in that "snake" is animate and less significantly in their detailed
noun phrase structure. Fig. 4 shows a similar display as before. For the duration of the first two words of this
sentence, the units behave as they did in the previous one. However, the passive construction indicated by "was
given" causes the agent unit for the first noun to decay and the agent unit for the third noun to grow. This is because
several other passive sentences in the training set were structured where the third noun was the agent. The word
"by" causes the agent units to move toward their final positions and indicate by the man is the agent block. The
recipient and patient units make their final decisions with a little residual oscillation at this time as well. At the
arrival of "to Fido" finally, the correct parse is locked up.

In the previous example, the network seized the preposition "by" to make its role assignments. The network is
also able to use semantic cues from words in the absence of meaningful function words. Fig. 5 show the network s
behavior on the sentence, "A snake was given an apple by John." Here, the network must rely on the semantic
features of "snake" and "apple" to make the proper role assignment. Since "snake" is animate, and apple is not, their

-226- International Parsing Workshop '89

ffjTWJT; v-K«n*--------------
a %nM<0 ytt (lv«n an oy Jotr>

...... IdlllllMlllllI

PCTTUTTT̂ It itrt
A v%ak* was <;iv*n W l * By Jonn

liixili.jllnlli , i i , illllllllllllllllllliiiii,,iiiiiiiiiiiiil,lllllll,,l||||l||||ll

llllllllf lllllillll......
: v-r*Clp

•nak0 W«a t i v w i an a p p le by i * * i

...................................l l l l l l

1111111111a 1111II111■i■

>■■■ i ii 111 ii n 111 III I III 11 ii i M111 III
Figure 5: A snake was given an apple by John.

roles are assigned as recipient and patient, respectively. This occurs when "an apple" is processed. The opposite
role assignment is made in, "A bone was given the dog by John." The heuristic learned by the network is that
inanimate objects are preferred as patients over animate objects.

Single clause sentences dominated the training set, but a few two clause sentences were presented to explore the
network’s ability to learn the interactions among clauses. Since the network architecture allowed for only three
noun phrases with two verb phrases, these sentences were quite simple. The network learned to recognize
subordinate clauses as in, "John slept after he ate an apple." It also learned to recognize sentence terminal relative
clauses as in, "John kissed the girl who slept" Generalization capability in the two clause sentences was not tested
extensively due to the paucity of sentences constructible within the constraints of the task. Minor variations in the
noun phrase structure from the training sentences were properly treated.

In summary, we have observed four key features in the network’s performance. It is able to combine syntactic,
semantic, and word order information effectively to perform its task. The network tries to be predictive, making
decisions about the structure of the sentence as soon as sufficient information becomes available. When the network
is uncertain, the units oscillate among sets of possible future states in a way that is detectable by the network via the
velocity weights. The network responds reasonably to sentences which have been modified from those in its
training set

Extending the Architecture
The architecture described above is still limited in its present form. To extend and scale it to more complex

sentences and to allow for a more flexible representation, we have designed a more general architecture. The new
architecture is modular, hierarchical, and recurrent. It has four levels: Phrase, Clause Structure, Clause Roles, and
Interclause. The Phrase level is analogous to that of the network described earlier, but differs in three important
ways. The words in the lexicon all share the same feature units instead of being separated into classes. The phrases
are not separated into verb and noun blocks; the input sentence is parsed into blocks of contiguous words which

-227* International Parsing Workshop '89

form phrases. The sentence "The old dog who was sleeping was given a bone by John" would be split up into "(The
old dog)'(who) (was sleeping) (was given) (a bone) (by John)". The Clause Structure level uses the evolving Phrase
level representation to split the sentence into its constituent clauses: "(The old dog) (was given) (a bone) (by John)
and "(who) (was sleeping)". The Clause Roles level does the role assignment and noun phrase attachment for each
of the clauses as they are mapped. For example, "(The old dog)" would be called the recipient, "(a bone)' the
patient etc. The final level, Interclause, encodes the fact that the embedded clause is relative to "(The old dog)".

Interclause Level

Clause Structure Level

The old dog who was sleeping was given a bone by John

Phrase Level

"The old dog who was sleeping was given a bone by Jonn."

Figure 6: New Representation

Fig. 6 shows the representation of this sentence.

At the Phrase level and the Clause Roles level, the network consists of horizontally replicated modules which are
trained on all of the phrases and clauses from a set of sentences. This artificially creates the effect of a very large
training set on a very large network without the cost associated with building such networks. The Cause Structure
and Interclause levels cannot be treated in this manner since they deal with whole sentence structure.

We are currently exploring such a network on a set of over 200 sentences. These include sentences with passive
constructions, center embedded clauses, and some lexical ambiguity. Preliminary results on the individual modules
comprising the network have been encouraging, and we hope to begin testing on the fully integrated network

shortly.

Conclusion
We have presented a connectionist architecture which learns to incrementally parse sentences. Our networks

exhibit behavior that could potentially be extremely useful for the integration of speech and language processing.
Tolerance to corruptions of input including ungrammaticality, word deletions and insertions, and varying word
speed are all desirable for speech applications. Connectionist networks appear to be less rigid than more formal
systems thereby allowing them to handle a wider variety of sentences given only a limited initial set of examples.
Their ability to learn complex dynamical behaviors from diverse knowledge sources makes them well suited for

speech processing applications.

*228- International Parsing Workshop '89

R eferen ces

1. E. Chamiak and E. Santos. A Connectionist Context-Free Parser Which is not Context-Free But Then It is not
Really Connectionist Either. Proceedings of the Ninth Annual Conference of the Cognitive Science Society, 1987.

2. G. Cottrell. Connectionist Parsing. Proceedings of the Seventh Annual Conference of the Cognitive Science
Society, 1985.

3. G. Cottrell. A Connectionist Approach to Word Sense Disambiguation. Ph.D. Th., University of Rochester, May
1985.

4. J. L. Elman. Finding Structure in Time. Tech. Rept. 8801, Center for Research in Language, University of
California, San Diego, 1988.

5. M. Fanty. Context Free Parsing in Connectionist Networks. Tech. Rept TR174, Computer Science Department,
University of Rochester, November, 1985.

6. T. Howells. VITAL: A Connectionist Parser. Proceedings of the Tenth Annual Conference of the Cognitive
Science Society, 1988.

7. M. I. Jordan. Serial Order A Parallel Distributed Processing Approach. Tech. Rept 8604, Institute for
Cognitive Science, University of California, San Diego, 1986.

8. J. L. McClelland and A. H. Kawamoto. Mechanisms of Sentence Processing: Assigning Roles to Constituents.
In Parallel Distributed Processing, J. L. McClelland and D. E. Rumelhart, Ed., The MIT Press, 1986.

9. D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Internal Representations by Error Propagation. In
Parallel Distributed Processing, J. L. McClelland and D. E. Rumelhart, Ed., The MIT Press, 1986.

10. B. Selman and G. Hirst. A Rule-Based Connectionist Parsing System. Proceedings of the Seventh Annual
Conference of the Cognitive Science Society, 1985.

11. D. Waltz and J. Pollack. "Massively Parallel Parsing: A Strongly Interactive Model of Natural Language
Interpretation". Cognitive Science 9 (1985).

-229- International Parsing Workshop '89

Massively Parallel Parsing in ^ D m D ia lo g :
Integrated Architecture for Parsing Speech Inputs

Hiroaki Kitano, Teruko Mitamura and Masaru Tomita
Center for Machine Translation

Carnegie Mellon University
Pittsburgh, PA 15213 U.S.A.

Abstract

This paper describes the parsing scheme in the <$DmDia lOG speech-to-speech dialog translation system, with
special emphasis on the integration of speech and natural language processing. We propose an integrated architec­
ture for parsing speech inputs based on a parallel marker-passing scheme and attaining dynamic participation of
knowledge from the phonological-level to the discourse-level. At the phonological level, we employ a stochastic
model using a transition matrix and a confusion matrix and markers which carry a probability measure. At a
higher level, syntactic/semantic and discourse processing, we integrate a case-based and constraint-based scheme
in a consistent manner so that a priori probability and constraints, which reflect linguistic and discourse factors, are
provided to the phonological level of processing. A probability/cost-based scheme in our model enables ambiguity
resolution at various levels using one uniform principle.

1. Introduction

This paper discusses a method of integrating speech recognition and natural language processing. In order to
develop speech-based natural language systems such as a speech-to-speech translation system and a speech input
natural language interface, an integration of speech recognition and natural language processing is essential, because
it improves the recognition rate of the speech inputs. Improvement of the recognition rate can be attained by an
integration of natural language processing with speech recognition, providing a more appropriate assignment of a
priori probability to each hypothesis and imposes more constraints to reduce search space. Thus, the quality of
the language model is an important factor. Since our goal is to create accurate translation from speech input, a
sophisticated parsing and discourse understanding scheme are necessary. We propose an architecture for parsing
speech inputs that integrates speech (phonological-level processing) and natural language processing with full
syntactic/semantic analysis and discourse understanding.

In our system, we assume that an acoustic processing device provides a symbol sequence for a given speech
input In this paper, we assume that a phoneme-level sequence is provided to the system1. The phoneme sequence
given from the phoneme recognition device contains substitution, insertion and deletion of phonemes, as compared
to a correct transcription which contains only expected phonemes. We call such a phoneme sequence a noisy
phoneme sequence. The task of phonological-level processing is to activate a hypothesis as to the correct phoneme
sequence from this noisy phoneme sequence. Inevitably, multiple hypotheses can be generated due to the stochastic
nature of phoneme recognition errors. Thus, we want each hypothesis to be assigned a measure of its being correct
In the stochastic models of speech recognition, a probability of each hypothesis is determined by ^CylA) x P(h).
P(y\h) is the probability of a series of input sequence being observed when a hypothesis h is articulated. P(h) is
an a priori probability of the hypothesis derived from the language model. Apparently, when phonological-level
processing is the same, the system with a sophisticated language model attains a higher recognition rate, because
a priori probability differenciates between hypotheses of high acoustic similarity which would otherwise lead to
confusion. At the same time, we want to eliminate less-plausible hypotheses as early as possible so that the search
space is kept within a certain size. We use syntactic/semantic and discourse knowledge to impose constraints which
reduce search space, in addition to the probability-based pruning within the phonological level.

1 We use Matsushita Institute’s Japanese speech recognition systemlMorii et. iL, 19851 for a current implementation.

-230- Intemational Parsing Workshop '89

2.1. O verview

0DMDIALOG is a speech-to-speech dialog translation system based on a massively parallel computational model
[Kitano, 1989b] [Kitano et. al., 1989b] 2. It accepts speaker-independent continuous speech inputs. Some of the
significant features of # D m D ia lo g include:
I. Use of a hybrid parallel paradigm as a basic computational scheme, which is an integrated model of a direct
memory access (DMA) type of a massively parallel marker passing scheme and a connectionist network;
II. Dymanic utilization of knowledge from morphophonetics to discourse by distributively encoding this knowl­
edge in a memory network on which actual computations are performed;
HI. Integration of case-based and constraint-based processing to capture linguistically complex phenomena
without losing cognitive realities;
IV. A cost-based ambiguity resolution scheme which applies to all levels of ambiguity (from phoneme recognition
to discourse context selection)[Kitano et. al., 1989a];
V. Almost concurrent parsing and generation, so that a pan of a sentence can be translated before the whole
sentence is parsed [Kitano, 1989a].
The philosophy behind our model is to view parsing as a process on a dynamic system where the law of energy
conservation, entropy production and other laws of physics can be effective analogies. We also demand that our
model be consistent with psycholinguistic studies.

2.2. A Baseline Algorithm
We employ the hybrid parallel paradigm in order to model two distinct aspects of the parsing: information building
and hypothesis selection. In the hybrid parallel paradigm, a parallel marker-passing scheme and a connectionist
network are integrated and computations are performed directly in a memory network. Knowledge from the mor-
phophonetic level to the discourse level is represented as a memory network which is consists of nodes and links.
Several types of nodes are in the memory network.
Concept Sequence Class (CSC) captures configurational patterns of linguistic phenomena such as phoneme se­
quences, concept sequences and plan sequences. CSCs have an internal structure. The internal structure is composed
of a label, IS-A links, a sequence, presuppositions, effects, and constraint equations. This structure is same for all
CSCs except CSCs in the phonological layer.
Concept Class (CC) represents concepts such as phonemes, concepts, and plans.
Concept Instance (Cl) arc instances of CCs. They are used to represent discourse entities[Webber, 1983] and
instance of utterances.
Nodes are connected by labelled links. Abstraction links (IS-A) and compositional links (PART-OF) are typical
types of links. The memory network is organized in a hierarchical manner. There are hierarchies of nodes repre­
senting concepts from specific instances (using CIs) to general concepts (using CCs) and hierarchies of structured
nodes representing relations of concepts which are indexed into relevant concepts and specific instances (using CIs
and their links). When CSCs represent specific cases, they arc already co-indexed to the specific instances in the
memory network. Abstract CSCs hold various constraints described as constraint equations, presuppositions and
effects. These abstract CSCs arc instantiated during parsing and newly created specific CSCs are indexed into the
memory network as cases of utterance. Parsing with abstract CSCs is computationally more expensive than parsing
with cases, but it maintains productivity of the knowledge.

Three types of markers (A-, P-, and C-Markers) arc used for parsing. Two other types of markers, G- and
V-Markers arc used for generation; thus they arc not described in this paper.
Activation M arkers (A-Markers) contain information including discourse entities, features and cost They prop­
agate upward through abstraction links.
Prediction M arkers (P-Markers) predict possible next activations. They contain binding lists (a list of role-
instance pairs binded so far), a measure of cost, and linguistic and pragmatic constraints.
Contextual M arkers (C-Markers) are used as an alternative to a connectionst network and indicate contextual
priming. C-Markers are not used when the connectionist network is fully deployed.

2. <2>DMDIAL0G Project

2# indicate* that our rystem is a speech input system. This notation is a tradition of the Center for Machine Translation. Dm implies
that the system was initially designed as a direct memory access (DMA) based system. However, our system evolved differently from the
DMAPlRiesbeck and Martin, 19851 and now Dm implies both DMA and dynam ics m odel Lng which reflects our philosophy of viewing a cognitive
process as a dynamic process governed by the laws of physics. D IA L O G means that our system translates dialogs.

-231- Intemational Parsing Workshop '89

< <?o «2 C3 • • • e„ > => < eo e\ <?2 e3 • • • e* >

A (b) Dual Prediction

P P P P

A (a) Simple Prediction A

Figure 1: Movement of P-Markers

P
< £20 £21 • • • *2/. >

< £00 £ o i • • • t < £10 £ l i • • • £ i « > < £ o o £ o i • • • £ o / >

\
A

Figure 2: Movement of P-Markers in Layered Sequences

A basic cycle of our algorithm is as follows:

1. Activation:
For each input symbol, a corresponding node is activated and an A-Marker is created. A unit of input may
be either a phoneme or a word, depending on the input device. The A-Marker is passed up through IS-A
links. The A-Marker contains information relevant to the processing of that layer.

2. A-P-Collision:
When an A-Marker and a P-Marker collide at a certain element of a CSC, the P-Marker is moved to the next
possible concept element of the CSC. At this stage, constraints are checked.

3. Prediction:
As a result of moving P-Markers to the next possible element of the CSC, predictions are made describing
possible next inputs.

4. Recognition (Network Modification and Information Propagation):
When the CSC is accepted, (1) the memory network may be modified as a side-effect, and (2) an A-Marker
containing aggregated information is passed up through IS-A links.

The movements of P-Markers on a CSC are illustrated in figure 1. In (a), a P-Marker (initially located on <r0)
is hit by an A-Marker and moved to the next element. In (b), two P-Markers are used and moved to e2 and e2. In
the dual prediction, two P-Markers are placed on elements of the CSC (on e0 and e\). This dual prediction is used
for phonological processing.

Figure-2 shows movement of a P-Marker on the layers of CSCs. When the P-Marker at the last element of the
CSC gets an A-Marker, the CSC is accepted and an A-Marker is passed up to the element in the higher layer CSC.
Then, a P-Marker on the element of the CSC gets the A-Marker, and the P-Marker is moved to the next element
At this time, a P-Marker which contains information relevant to the lower CSC is passed down and placed on the
first element of the lower CSC. This is a process of accepting one CSC and predicting the possible next word and
syntactic structure.

3. Phonological Parsing

This section describes phonological-level activities. We assume a noisy phoneme sequence, as shown in Figure 3,
to be the input of the phonological-level processing. In order to capture the stochastic nature of speech inputs, we
adopt a probabilistic model similar to that used in other speech recognition research. First, we describe a simple

-232- Intemational Parsing Workshop '89

kaigi ni sanka shitai nodesu y o i l s h i h a arimasuka oname wo onegai shimasu
DAI*I*EPAUTAQPAINO*EKU
B AH* IPAA=KAS<a>PAINODUSU
B AH * I * EPA U= KAIQPAI *0 * ES U
KAIIMTPAA=KAS(2)PEEI*ODESU
KAI*I*EPAA=ZAS(2)PAIWO*USJU

BJOHIRAARI*ATAWA
JOSJUWAARINAOQZAA
IOUSIWAARIMAUQKA
JOOSIHAKARI*AUQKA
IOOSJU WAWARI * A AC A

0 * A * AEJOORE * EISI * AS@
WO * A * AEJOORE * EE HJ AN A
WONA*AEJOBO*E*EIHJAH(a>
0*A*AEJ0*0*E*EEISINAKU
0*A*AEJ00*E*EEIHJAZU

Figure 3: Examples of Noisy Phoneme Sequences

model using a static probability matrix. In this model, probability is context-independent Then, we extend the
model to capture context-dependent probability.

3.1. The Organization of the Phonological Processing
The algorithm described as a baseline algorithm is deployed on phonetic-level knowledge. In the memory network,
there are CSCs representing the phoneme sequence for each lexical entry. The dual prediction method is used in
order to handle deletion of a phoneme.

We use a probabilistic model to capture the stochastic nature of speech processing. Probability measures involved
are: a priori probability given by the language model, a confusion probability given by a confusion matrix, and a
transition probability given by a transition martix.

A priori probability is derived from the language model and is a measure of which phoneme sequence is likely
to be recognized. A method of deriving a priori probability is described in the section on syntax/semantic parsing
and discourse processing.

A confusion matrix defines the output probability of a phoneme when an input symbol is given. Given an input
sign iit the confusion matrix ay determines the probability that the sign i, will be recognized as a phoneme pj. It
is a measure of the distance between symbols and phonemes as well as a measure of the cost of hypotheses that
interpret the symbol i, as the phoneme pj. In the context-dependent model, the confusion matrix will defined as a,y*
which gives a probability of a symbol /, to be interpreted as a phoneme pj at a transition ft. We call such matrix a
dynamic confusion matrix.

A transition matrix defines the transition probability which is a probability of a symbol /,♦ i to follow a symbol
I,-. For an input sequence z'o ii • • • the a priori probability of transition between io and i\ is given by
Since we have a finite set of input symbols, each transition can be indexed as f*. The transition probability and
the confusion probability are intended to capture the context-dependency of phoneme substitutions - a phenomena
whereby a certain phoneme can be actually articulated as other phonemes in certain environments.

3.2. Context-Independent Model
First, we explain our algorithm using a simple model whose confusion matrix is context-independent. Later, we
describe the context-dependent model which uses a dynamic confusion matrix. Initially, P-Markers contain a priori
probability (*/) given by the language model. In #DmDialog, the language model reflects full natural language
knowledge from syntax/semantics to discourse. The P-Markers are placed on each first and second element of
CSCs representing expected phoneme sequences. For an input symbol A-Markers are passed up to all phoneme
nodes that have a probability^) greater than the threshold (Th). When a P-Marker, which is at i-th element,
and an A-Marker collide, the P-Marker is moved to the i+l-th and i+2-th elements of the sequence (This is a
dual prediction). When the next input symbol il+i generates an A-Marker that hits the P-Marker on the i+l-th
element, the P-Marker is moved using the dual prediction method The probability density measure computed on
the P-Marker is as follows:

ppm(i) = ppm{i — 1) x a*.,,*., x b (1)
ppm(0) = *i (2)

where ppm(i) is a probability measure of a P-Marker at the i-th element of the CSC which is a probability of
the input sequence being recognized as a phoneme sequence traced by the P-Marker.

-233- International Parsing Workshop. '89

CSCs involved:
< Po Po Po
< Po Po P 1
< Po P 1 Po
< Po P 1 P\
< ^1 Po Po
< p 1 PoPi
< p 1 Px P i
< P1 />!

Figure 4: A Part of a State-Transition Diagram

In Figure-4, an input sequence is /0 *i • • • i*. Py in the diagram denotes a phoneme Pj at i-th element of the
CSC. pij is a state rather than an actual phoneme, and Pj in the CSC refers to the actual phoneme. P-Markers at
Poo, Poi , Pm, P-Markers on the 0-th element of the CSCs referring P0, Px, and P2t respectively, are hit by A-Markers
Eventually, P-Markers are moved to the next element of CSCs. For instance, Poo will move to pio, p lu Pio, P7 1

depending on which CSC the P-Marker is placed on. Probabilities are computed with each movement A P-Marker
at p u has the probability tt0. When the P-Marker received an A-Marker from ilt the probability is re-computed
3I|^ u ^ T° X x apio,p,\ ‘ Transitions such as poo —* pi\ and poo —* pio insert an extra phoneme
which does not exist in the input sequence. Probability for such transitions are computed in such a way as:
T° x x x x A P-Marker at p \0 does not get an A-Marker from i\ due to the threshold.
In such cases, a probability measure of the P-Marker is re-computed as r 0 x x at* * * . This represents a
decrease of probability due to an extra input symbol.

P-Markers at the last element (p„) and one before the last 0 , - 0 are involved in the word boundary problem.
When a P-Marker at pH is hit by an A-Marker, the phoneme sequence is accepted and an A-Marker that contains
the probability and the phoneme sequence is passed up to the syntactic/semantic-level of the network. Then, the
next possible words are predicted using syntactic/semantic knowledge, and P-Markers are placed on the first and the
second element of the phoneme sequence of the predicted words. When a P-Marker at pH. { is hit by an A-Marker,
the P-Marker is moved to pH and, independently, the phoneme sequence is accepted, due to the dual prediction, and
the first and the second elements of the predicted phoneme sequences get P-Markers.

33. The Context-Dependent Model
I ae context-dependent model can be implemented by using the dynamic confusion matrix. The algorithm described
above can be applied with some modifications. First, A-Markers are passed up to phonemes whose maximun output
probability is above the threshold. Second, output probability used for probability calculation is defined by the
dynamic confusion matrix.

ppn<0 = ppm(i — 1) x x V a , (3)

where k denotes a transition from i,_2 to t,_ i . It is interesting that our context-dependent model is quite similar
to the Hidden Markov Model (HMM) when the transition of the state of P-Markers are synchronously determined
by, for example, certain time intervals. We can implement a forward-passing algorithm and the Viterbi algorithm
IViterbi, 19671 using our model. This implies that when we decide to employ the HMM as our speech recognition
model, instead of a current speech input device, it can be implemented within the framework of our model.

3.4. Probability Cost Equality
Since we have been using the cost-based ambiguity resolution scheme [Kitano e t al., 1989a], the equivalency
of the probabilistic approach and the cost-based approach need to be discussed. Our motivation in introducing
the cost-based scheme was to perceive parsing as a dynamic process. Thus the hypothesis with the least cost,
hence minimum workload, is selected as the best hypothesis. When a stochasity is introduced, the process that
requires more workload is less likely to be chosen. Thus, qualitatively, higher probability means less cost and lower

-234- Intemational Parsing Workshop '89

probability m eans higher cost. P robability/cost conversion equations are3:

P = e ^ r ~ (4)

c o s t = - C l o g P (5)

In the actual implementation, we use a cost-based scheme because use of probability requires multiplication,
whereas use of cost requires only addition which is computationally less expensive than multiplication. It is also
a straightforward implementation of our model that perceives parsing as a physical process (an energy dispersion
process). Thus, in the cost-based model, we introduce an accumlated acoustic cost (AAC) as a measure of cost
which is computed by:

aac(i) = aac(i - 1)+ ccii_t)Pi_1 + fc*_ - pe (6)

where aac(i), cc* .,.* .,, and pe are an AAC measure of the P-Marker at i-th element, confusion cost
between /,_ i and p,_ i, transition cost between /,_2 and /._ i , and phonetic energy, respectively. Phonetic energy
reflects an influx of energy from external acoustic energy.

4. Syntactic/Semantic Parsing
Unlike most other language models employed in speech recognition research, our language model is a complete
implementation of a natural language parsing system. Thus, complete semantic interpretations, constraint checks,
ambiguity resolution and discourse interpretations are performed. The process of prediction is a part of parsing in
our model, thereby attaining an integrated architecture of speech input parsing. In syntactic/semantic processing,
the central focus is on how to build the informational content of the utterance and how to reflect syntactic/semantic
constraints at phonological-level activities. Throughout the syntactic/semantic-level and discourse-level, we use a
method to fuse constraint-based and case-based approaches. In our model, the difference between a constraint-based
process and a case-based process is a level of abstraction; the case-based process is specific and the constraint-
based process is more abstract The constraint-based approach is represented by various unification-based grammar
formalisms [Pollard and Sag, 19871 [Kaplan and Bresnan, 19821. We use semantic grammar which combines
syntactic and semantic constraints4. In our model, propagation of features and unification are conducted as a
feature aggregation by A-Markers and constraints satisfaction performed by operations involving P-Markers. The
case-based approach is a basic feature of our model. Specific cases of utterances are indexed in the memory
network and reactivated when similar utterances are given to the system. One of the motivations for the case-based
parsing is that it encompasses phrasal lexicons [Becker, 197515. The scheme described in this section is applied to
discourse-level processing and attains an integration of the syntactic/semantic-level and the discourse-level.

4.1. Feature Aggregation
Feature aggregation is an operation which combines features in the process of passing up A-Markers so that minimal
features are carried up. Due to the hierarchical organization of the memory network, features which need to be
carried by A-Markers are different depending on which level of abstraction is used for parsing. When knowledge of
cases is used for parsing, features are not necessary because this knowledge is already indexed to specific discourse
entities. Features need to be carried when more abstract knowledge is used for parsing. For example, the parsing of
a sentence She runs can be handled at different levels of abstraction using the same mechanism. The word she refers
to a certain discourse entity so that very specific case-based parsing can directly access a memory which recalls
previous memory in the network. Since previous cases are indexed into specific discourse entities, the activation can
directly identify which memory to recall When this word she is processed in a more abstract level such as PERSON,
we need to check features such as number and gender. Thus, these features need to be contained in the A-Marker.
Further abstraction requires more features to be contained in the A-Marker. Therefore, the case-based process and
the constraint-based process is treated in one mechanism. Aggregation is a cheap operation since it simply adds

3 The equations are based on the Max well-Boltzmann distribution P = e .

4Thi* does not preclude use of unification grammar formalism in our system. In fact, we are now developing a cross-compiler that compiles
grammar rule* written in LFG into our network. Designing of a croM-compder from HPSG to our network is also underway.

3Discussions on benefits of phrasal lexicons for parsing and generation are found in [Riesbeck «nd Martin, 19851 [Hovy, 19881.

-235- Intemational Parsing Workshop ’89

new features to existing features in the A-Marker. Given the fact that unification is a computationally expensive
operation, aggregation is an efficient mechanism for propagating features because it ensures only minimal features
are aggregated when features are unified. This is different from another marker-passing scheme which carries an
entire feature [Tomabechi and Levin, 1989]. When an entire feature is carried, whole features are involved in the
unifiction operation even through some of features are not necessary.

The feature aggregation is applied in order to interface with different levels of knowledge. At the phonological
level, only a probability measure and a phoneme sequence are involved- Thus, when an A-Marker hits a CC node
representing a certain concept, i.e. female-per son-3 sg for she, the A-Marker does not contain any linguistically
significant information. However, when the A-Marker is passed up to more abstract CC nodes, i.e. person, linguisti­
cally significant features are contained in the A-Marker and unnecessary information is discarded. When a sentence
is analyzed at the syntactic/semantic-level, a prepositional content is established and is passed up to the discourse-
level by an A-Marker, and some linguistic information which is necessary only within the syntactic/semantic-level
is discarded.

4.2. Constraint Satisfaction
Constraint is a central notion in modem syntax theories. Each CSC has constraint equations which define the
constraints imposed for that CSC depending on their level of abstraction. CSCs representing specific cases do not
have contraint equations since they are already instanciated and the CSCs are indexed in the memory network.
The more abstract the knowledge is the more they contain constraint equations. Feature structures and constraint
equations interact in two stages. At the prediction stage, if a P-Marker placed on the first element of the CSC already
contains a feature structure that is non-nil, the feature structure determines, according to the constraint equations,
possible feature structures of A-Markers that subsequent elements of the CSC can accept. At an A-P-Collision
stage, a feature structure in the A-Marker is tested to see if it can meet what was anticipated. If the feature structure
passes this test, information in the A-Marker and the P-Marker is combined and more precise predictions are made
on what can be acceptable in the subsequent element. For She runs, we assume a constraint equation (AGENT
NUM = ACTION NUM) associated with a CSC, for example, <AGENT ACTION>. When a P-Marker initially
has a feature structure that is nil, no expectation is made. In this example, at an A-P-Collision, an A-Marker has
a feature structure containing (NUM = 3s) constraints for the possible verb form which can follow, because the
feature in the A-Marker is assigned in the constraint equation so that (AGENT NUM 3s) requires (ACTION NUM
3s). This guarantees that only a verb form runs can be legitimate6. When predicting what comes as a ACTION, P-
Markers can be passed down via IS-A links and only lexical entries that meet (ACTION NUM 3s) can be predicted.
When we need to relax grammatical constraints, P-Markers can be placed on every verb form, but assign higher a
priori probabilities for those which meet the constraint A unification operation can be used to conduct operations
described in this section. As a result of parsing at the syntactic/semantic-level, the prepositional content of the
utterance is established. Since our model is a memory-based parsing model, the memory network is modified to
reflect what was understood as a result of previous parsing.

4 3. Prediction
From the viewpoint of predicting the next hypothesis at the phonological level, case-based parsing provides the
most specific prediction and gives high a priori probability. Prediction by more abstract knowledge provides less
specific predictions and gives weaker a priori probability compared to case-based prediction. Thus, we have a set
of hypotheses with strong preferences predicted by the case-based process and a set of hypotheses (this includes
hypotheses predicted by the case-based process) predicted by the constraint-based process. Of course, the strength
of the preference is dependent on the level of abstraction the parsing has required. Even in the constraint-based
process, if the level of abstraction is low, the prediction has strength comparable to the case-based prediction.

5. Integration of Discourse Knowledge

At the discourse-level, the focus is on how to recognize the intention of the utterance, interpret discourse phenomena
and predict next possible utterances. ^D mD ialog uses discourse knowledge such as (1) discourse plans, and (2)

6When we use abstract notation such as NP or VP, the same mechanism applies and captures linguistic phenomena.

-236- Intemationai Parsing Workshop '89

discourse entities and their relations. We use hierarchic^ discourse plan sequences, represented by CSCs7, to
represent and provide specificity as well as productivity of discourse plans. Hierarchical discourse plan sequences
represent possible sequences of utterance plans which may be actually performed by each speaker. Plan hierarchies
are organized for each participant of the dialog in order to capture complex dialog often taking place in a mixed-
initiative dialog. Each element of the plan sequence represents a domain-specific instance of a plan or an utterance
type [Litman and Allen, 1987] which can be dynamically derived from abstract dialog knowledge and domain
knowledge. Abstract plan sequences are close to plan schemata described in [Litman and Allen, 1987] since they
represent very generic constraints as well as the relationship between an utterance and a domain plan. There is also
knowledge for the discourse structure[Cohen and Fertig, 1986] [Grosz and Sidner, 1985]. When an element of the
plan sequence of this abstraction is activated, the rest of the elements of the plan sequence have constraints imposed
which are derived from the information given to the activated elements. This ensures coherence of the discourse.
When a plan sequence case is activated, it simply predicts the next plan elements because these specific plan
sequences are regarded as records of past cases and, thus, most constraints are already imposed and the sequence
is indexed according to the specific constraints. In addition, use of order constraints of CSC representations allows
us to handle order-freeness of subdialog conversations. Furthermore, unlike scripts or MOPstSchank, 1982], a plan
sequence has an internal structure which enables our model to impose constraints which ensure coherency of the
discourse processing.

As a result of the discourse understanding, possible next utterances can be predicted. P-Markers are passed down
to nodes representing these utterances. Eventually, they reach the phonological level and give a priori probability
to each hypothesis. Similar to predictions from syntactic/semantic-level, the strength of the prediction is dependent
upon the level of abstract knowledge involved.

6. A Cost-based Ambiguity Resolution Scheme

A cost-based disambiguation scheme is a method of evaluating each hypothesis based on the cost assigned to it
Costs are added when (1) phonemes are replaced, inserted, or dropped during recognition of noisy speech inputs
(we use a cost converted from a probability measure at the phonological-level), (2) a new instance is created, (3) a
concept without contextual priming is used, or (4) constraints are assumed when using CSCs. Costs arc subtracted
when (1) a concept with discourse prediction is used, or (2) a concept with contextual priming is used. Basic
equations are:

CSC, = ^ CCij + ^ constraintsk + biasi (7)
j *

C C j - LEXj + instantiated - priming j (8)
LEX i = -Clog/* (9)

where C C ijy constraintsk, biasi denote a cost of the j-th element of CSC,, a cost of assuming the k-th constraints, and
the lexical preference of CSC,, respectively. L E X j, instantiated, p riming j denote a cost of the lexical node LE X j, a
cost of creating new Cl by referential failure, and contextual priming, respectively. LEXj is a cost converted from the
probability measure at the phonological level as described earlier. The acc urn la ted acoustic cost, computed by the
equation (6), can be used instead of converting probability by equation (9). Then, the cost-based scheme is adopted
at every level of processing. In the cost-based disambiguation scheme, we choose the least costly hypothesis based
on the above equations.

Our model parses utterances under a given context Thus, the cost assigned to a certain hypothesis is not always
the same. It is dependent on the context; that is, the initial conditions of the system when the utterance is entered.
The initial condition of the system is determined based on the previous course of discourse. The major factors
are the state of the memory network modified as a result of processing previous utterances, contextual priming,
and predictions from discourse plans. The memory network is modified based on the knowledge conveyed by the
series of utterances in the discourse as described briefly in the previous section. Contextual priming is imposed
either by using a C-Marker passing or by a connectionist network. The mechanism of assigning preference is
based on top-down prediction using discourse knowledge. Such prediction provides a priori probability at the
phonological-level.

7Thii mean* that order-strict or order-free constraints ipply in determining the order of the pUn sequence.

-237- Intemational Parsing Workshop '89

The cost-based ambiguity resolution scheme is applied to the reference problem including definite and indefinite
reference, pronoun reference, etc. We use activation/cost-based reference where each reference hypothesis incures
cost and the least-cost hypothesis will be selected. The cost for each hypothesis is computed based of activation lev­
els of each discourse entities and semantic restrictions. The method does not assume a layered network [Tomabechi
and Levin, 1989] and, thus, we can coherently handle problems including the reference to the related objects.

7. Preliminary Evaluations and Discussions

Currently, ^D mDialog is being tested on the conference registration domain based on simulated telephone con­
versation experiments by ATR. The use of dialog-level knowledge has proven to be effective in in reducing the
perplexity of the task. We took as an example a small test set from the ATR corpus, and the perplexity of this task
with no prediction knowledge was 247.0. Using sentential level knowledge this figure was reduced to 19.7, and
using dialog level knowledge it was reduced to 2.4. However, the problem is that (1) the domain of our experiment
is relatively small, and (2) when we cover more complex discourse, prediction from the discourse-level may be
less specific. We are now evaluating our model with larger test sets.

We employ the probabilistic model for the following reason: the use of phonological knowledge alone, such
as phonological rules and distinctive feature theory, cannot sufficiently cope with the stochastic nature of speech
recognition. However, phonological knowledge would be useful for analyzing and estimating probability matrices.
By contrasting feature types, such as voicing, instead of collecting all the phonemic data, we would reduce the
amount of data needed for building the probability matricestChurch, 1987].

The hierarchical organization of the memory network is a key feature in integrating constraint-based and case-
based processing. Although we suffer from some overhead by concurrently parsing one sentence at different levels
of abstraction, the capability of handling both specific and abstract knowledge in a consistent manner seems more
significant. The feature aggregation method is a useful technique to keep overhead to a minimum.

The implementation of <£DmDialog on a parallel machine is an interesting topic. We believe the benefits of our
model can be best explored with parallel machines and that its implementation may be relatively straightforward.
Actually, a part of our model has been implemented on a custom VLSItKitano, 1988].

8. Related Works

Several efforts have been made to integrate speech and natural language processing. [Tomabechi et. al., 1988]
attempts to extend the marker-passing model to speech input Their model uses environment without probabilistic
measure which would allow environmental rules to be applied. Since mis recognitions are somewhat stochastic,
lack of the probability measure seems a shortcoming in their model. The MINDS system [Young e t al., 1989]
is an attempt to integrate speech and natural language processing implementing layered prediction. They reported
that use of layered prediction involving discourse knowledge reduced the perplexity of the task. This is consistent
with our claim. [Church, 1987] discusses speech recognition using phonetic knowledge such as environment and
a distinct feature matrix. We share similar motivations, but we try to incorporate this knowledge in a probabilistic
model. [Saito and Tomita, 1988] [Kita e t al., 1989] and [Chow and Roukos, 1989] are examples of approaches to
integrate speech with unification-based parsing, but, unfortunately, discourse processing has not been incorporated.
Marker-passing models of parsing such as [Riesbeck and Martin, 1985] and [Tomabechi and Levin, 1989] captured
only one side of parsing (case-based or constraint-based), in contrast to our model which incorporates both aspects
in one scheme.

9. Conclusion

This paper describes a method of speech-natural language integration in # D mD ialog. The probability/cost-based
model is used to capture the stochastic nature of speech inputs. The language model in our model is a parser itself
and directly connected to the phoneme processing by means of cost measures, a priori probability, and constraints
to limit search space. Addition of the discourse understanding scheme further improved the power of the language
model to constrain and predict phonological processes. As a result reduction of the perplexity was observed and
the recognition rate was improved. Feature aggregation in the hierarchically organized memory network was a
useful scheme to integrate case-based and constraint-based parsing. The parallel marker-passing approach seems a
viable alternative for designing an integrated architecture for parsing speech inputs.

-238- International Parsing Workshop '89

Acknowledgement
We would like to thank members of the Center for Machine Translation for useful discussions. Especially, Hideto
Tomabechi, Hiroaki Saito and Jaime Carbonell helped us with insightful advice. Discussions on speech recognition
with Sheryl Young and Wayne Ward were especially useful. Lyn Jones was patient enough to proofread this paper
for us. We also would like to thank ATR Interpreting Telephony Laboratories for allowing us to use a corpus of the
conference registration domain for our research. Matsushita Research Institute is allowing us to use their speech
recognition system.

Appendix: Implementation

<*>DMDlALOG has been implemented on IBM-RT-PC which runs CMU-CommonLisp on the Mach operating system
and HP-9000 runs HP-CommonLisp. Speech recognition and synthesis devices (Matsushita Research Institute’s
Japanese speech recognition device and DECTalk) are connected to perform real-time speech-to-speech translation.

References

[Becker, 19751 Bedker, J. D., The Phrasal Lexicon, Boll, Beranek and Newman Technical Report 3081, 1975.
[Chow and Roukos, 19891 Chow, Y.L md Roukos, S., “Speech Understanding using a Unification Grammar," In Proc. o f ICASSP- IEEE

Interruitional Conference on Acoustics, Speech, and Signal Processing, 1989.
[Church, 19871 Church, K., Phonological Parsing in Speech Recognition, Kluwer Academic Publisher*, 1987.
[Cohen and Fenig. 19861 Cohen, P. and Fertig, S., “Discourse Structure «nd the Modality of Communication” International Symposium on

Prospects and Problem s o f Interpreting Telephony, 1986.
[Grosz and Sidner, 1985] Grosz, B. and Sidner, C., “The Structure of Discourse Structure,” C S U Report S o . C S U -85-39, 1985.
[Hovy, 1988] Hovy, E. H., Generating Natural Language Under Pragmatic Constraints, Lawrence Eribaum A**ociate*, 1988.
[Kaplan and Bresnan, 19821 Kaplan, R- and Bresnan, J., “Lexical-Functional Grammar A Formal System for Grammatical Representation,”

In Bresnan (Ed.), The Menial Representation o f Grammatical Relations, MIT Press, 1982.
[Kita eL aL, 1989] Kita, K., Kwabata, T. and Saito, H-, “HMM Continuous Speech Recognition using Predictive LR Parsing ” In Proc. of

ICASSP - IEEE International Conference on Acoustic, Speech, and Signal Processing, 1989.
[Kitano, 1988] Kitano, H., “Multilingual Information Retrieval Mechanism using VLSI,” In Proceedings o f RIAO-88, 1988.
[Kitano, 1989a] Kitano, H., “A Massively Parallel Model of Natural Language Generation for Interpreting Telephony: Almost Concurrent

Processing of Parsing and Generation " In Proceedings o f the Second European Conference on Natural Language Generation, 1989.
[Kitano, 1989b] Kitano, H., “A Model of Simultaneous Interpretation: A Massively Parallel Model of Speech-to-Speech Dialog Translation,”

In Proceedings o f the Annual Conference o f the International Association fo r Knowledge Engineers, 1989.
[Kitano et. al., 1989a] Kitano, H., Tomabechi, H. and Levin, L , “Ambiguity Resolution in D m T R an s PLUS," In Proceedings o f the Fourth

Conference o f the European Chapter o f the Association fo r Computational Linguistics, 1989.
[Kitano et. al., 1989b] Kitano, H., Tomabechi, H., Miumura, T. and Iida, H., “A Massively Parallel Model of Speech-to-Speech Dialog

Translation: A Step Toward Interpreting Telephony," In Proceedings o f the European Conference on Speech Communication and Technology
(EuroSpeech-89), 1989.

[Kitano eL al., ms.] Kitano, H., Iida, H., Mitamura, T. and Tomabechi, H.. Manuscript, “An Integrated Discourse Undemanding Model for
Interpreting Telephony under a Direct Memory Access Paradigm,” Carnegie Mellon University, 1989.

[Litman and Allen, 19871 Litman, D. and Allen, J., “A Plan Recognition Model for Subdialogues in Conversation,” Cognitive Science 11
(1987), 163-200.

LMorii et. aL, 19851 Morii, S., Niyada, K , Fujii, S. and Hoahimi, M., “Large Vocabulary Speaker-Independent Japanese Speech Recognition
System,” In Proceedings o f ICASSP - IEEE International Conference on Acoustics, Speech, and Signal Processing, 1985.

[Pollard and Sag, 19871 Pollard, G md Sag, I., Information-based Syntax and Semantics, volume 1, CSLI, 1987.
[Riesbeck and Martin, 1985] Rieabeck. C. and Martin, C., “Direct Memory Access Parsing," Yale University Report 354, 1985.
[Saito and Tomita, 19881 Saito, H. and Tomita, M., “Parsing Noisy Sentences," In Proceedings o f C O U N G -88, 1988.
[Schank. 1982] Schank, R., Dynamic Memory: A theory o f learning in computers and people, Cambridge University Press, 1982.
[Tomabechi et. al., 19881 Tomabechi. H., Mitamura, T. and Tomita. M., “Direct Memory Translation for Speech Input: A Massively Parallel

Network for Episodic/Thematic and Phonological Memory,” In Proceedings o f the International Conference on Fifth Generation Computer
Systems, 1988.

[Tomabechi and Levin, 19891 Tomabechi, H. and Levin, L , “The Head-driven Massively-parallel Constraint Propagation: Head-features and
subcategorization as interacting constraints in associative memory,” In Proceedings o f CogSci-89, 1989.

[Viterbi, 1967] Viterbi, A.J., “Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm," In IEEE Trans­
actions on Information Theory IT-13(2): 260-269, April, 1967.

[Webber, 1983] Webber, B., “So What Can We Talk About Now?" In Computational M odels o f D iscourse, The MIT Pres*, 1983.
[Young eL al., 19891 Young, S., Ward, W. and Hauptmann, A., “Layering Predictions: Flexible use of Didog Expectation in Speech Recogni­

tion," In Proceedings o f IJCA1-89, 1989.

-239- Intemational Parsing Workshop '89

Parallel Parsing Strategies in Natural Language Processing

Anton Nijholt

Faculty of Computer Science, University of Twente
P.O. Box 217, 7500 A£ Enschede, The Netherlands

ABSTRACT

We present a concise survey of approaches to the context-free parsing prob­
lem of natural languages in parallel environments. The discussion includes parsing
schemes which use more than one traditional parser, schemes where separate
processes are assigned to the ‘non-deterministic’ choices during parsing, schemes
where the number of processes depends on the length of the sentence being parsed,
and schemes where the number of processes depends on the grammar size rather
than on the input length. In addition we discuss a connectionist approach to the
parsing problem.

1. Introduction

In the early 1970’s papers appeared in which ideas on parallel compiling for programming
languages and parallel executing of computer programs were investigated. In these papers parallel
lexical analysis, syntactic analysis (parsing) and code generation were discussed. At that time vari­
ous multi-processor computers were introduced (CDC 6500, 7600, STAR, ELLIAC IV, etc.) and the
first attempts were made to construct compilers which used more than one processor when compil­
ing programs. Slowly, with the advent of new parallel architectures and the ubiquitous application
of VLSI, interest increased and presently research on parallel compiling and executing is
widespread. Although more slowly, a similar change of orientation occurred in the field of natural
language processing. However, unlike the compiler construction environment with its generally
accepted theories, in natural language processing no generally advocated - and accepted - theory of
natural language analysis and understanding is available. Therefore it is not only the desire to
exploit parallelism for the improvement of speed but it is also the assumption that human sentence
processing is of an inherently parallel nature which makes computer linguists and cognitive scien­
tists turn to parallel approaches for their problems.

Parallel parsing methods have been introduced in the areas of theoretical computer science,
compiler construction and natural language processing. In the area of compiler construction these
methods sometimes refer to the properties of programming languages, e.g. the existence of special
keywords, the frequent occurrence of arithmetic expressions, etc. Sometimes the parsing methods
that have been introduced were closely related to existing and well-known serial parsing methods,
such as LL-, LR-, and precedence parsing. Parallel parsing has often been looked upon as deter­
ministic parsing of sentences with more than just a single serial parser. However, with the mas­
sively parallel architectures that have been designed and constructed, together with the possibility to
design special-purpose chips for parsing and compiling in mind, also the well-known methods for
general context-free parsing have been re-investigated in order to see whether they allow parallel
implementations. Typical results in this area are O (n)-time parallel parsing algorithms based on the
Earley or the Cocke-Younger-Kasami parsing methods. In order to study complexity results for
parallel recognition and parsing of context-free languages theoretical computer scientists have intro­
duced parallel machine models and special subclasses of the context-free languages (bracket
languages, input-driven languages). Methods that have been introduced in this area aim at obtaining
lower bounds for time and/or space complexity and are not necessarily useful from a more practical
point of view. A typical result in this area tells us that context-free language recognition can be

-240- Intemational Parsing Workshop '89

done in 0 (lo^n) time using n 6 processors, where n is the length of the input string.
In the area of natural language processing many lands of approaches and results can be dis­

tinguished. While some researchers aim at cognitive simulation, others are satisfied with high per­
formance language systems. The first-mentioned researchers may ultimately ask for numbers of
processors and connections between processors that approximate the number of neurons and inter­
connections in the human brain. They model human language processing with connectionist models
and therefore they are interested in massive parallelism and methods which allow low degradation
in the face of local errors. In connectionist and related approaches to parsing and natural language
analysis the traditional methods of language analysis are often replaced by strongly interactive dis­
tributed processing of word senses, case roles and semantic markers. A more modest use of paral­
lelism may also be useful. For any system which has to understand natural language sentences it is
necessary to distinguish different levels of analysis (see e.g. Nijholt[1988], where we distinguish
the morphological, the lexical, the syntactic, the semantic, the referential and the behavioral level)
and at each level a different kind of knowledge has to be invoked. Therefore we can distinguish dif­
ferent tasks: the application of morphological knowledge, the application of lexical knowledge, etc.
It is not necessarily the case that the application of one type of knowledge is under control of the
application of any other type of knowledge. These tasks may interact and at times they can be per­
formed simultaneously. Therefore processors which can work in parallel and which can communi­
cate with each other may be assigned to these tasks in order to perform this interplay of multiple
sources of knowledge. Finally, and independent of a parallel nature that can be recognized in the
domain of language processing, since operating in parallel with a collection of processors can
achieve substantial speed-ups, designers and implementers of natural language processing systems
will consider the application of available parallel processing power for any task or subtask which
allows that application.

In this paper various approaches to the problem of parallel parsing will be surveyed. We will
discuss examples of parsing schemes which use more than one traditional parser, schemes where
‘non-deterministic’ choices during parsing lead to separate processes, schemes where the number of
processes depends on the length of the sentence being parsed, and schemes where the number of
processes depends on the grammar size rather than on the input length. Our aim is not to give a
complete survey of methods that have been introduced in the area of parallel parsing. Rather we
present some approaches that use ideas that seem to be characteristic for many of the parallel pars­
ing methods that have been introduced.

2. From One to Many Traditional Serial Parsers

Introduction
As mentioned in the introduction, many algorithms for parallel parsing have been proposed. Con­
centrating on the ideas that underlie these methods, some of them will be discussed here. For an
annotated bibliography containing references to other methods see Nijholt et al[1989]. Since we
will frequently refer to LR-parsing a few words will be spent on this algorithm. The class of LR-
grammars is a subclass of the class of context-free grammars. Each LR-grammar generates a deter­
ministic context-free languages and each deterministic context-free language can be generated by an
LR-grammar. From an LR-grammar an LR-parser can be constructed. The LR-parser consists of
an LR-table and an LR-routine which consults the table to decide the actions that have to be per­
formed on a pushdown stack and on the input The pushdown stack will contain symbols denoting
the state of the parser. As an example, consider the following context-free grammar.

1. S —» NP VP 4. PP -> *prep NP
2. S -> S PP 5. VP -> *v NP
3. NP *det *n

With the LR-construction method the LR-table of Fig. 1 will be obtained from this grammar. It is
assumed that each input string to be parsed will have an endmarker which consists of the $-sign.

An entry in the table of the form ‘shn’ indicates the action ‘shift state n on the stack and
advance the input pointer’; entry ‘ren’ indicates the action ‘reduce the stack using rule n \ The

-241- International Parsina Workshop '89

state •det *n *v •prep $ NP PP VP S
0 sh3 2 1
1 sh5 acc 4
2 sh6 7
3 sh8
4 re 2 re 2
5 sh3 9
6 sh3 10
7 re 1 re 1
8 re3 re3 re3
9 re4 re4

10 re5 re5

Fig. 1 LR-parsmg table for the example grammar.

entry ‘acc’ indicates that the input string is accepted. The right part of the table is used to decide the
state the parser has to enter after a reduce action. In a reduce action states are popped from the
stack. The number of states that are popped is equal to the length of the right hand side of the rule
that has to be used in the reduction. With the state which becomes the topmost symbol of the stack
(0- 10) and with the nonterminal of the left hand side of the rule which is used in the reduction (5 ,
NP, VP, or PP) the right part of the table tells the parser what state to push next on the stack. In Fig.
2 the usual configuration of an LR-parser is shown.

LR-
routine

LR-
table

Fig. 2 LR-parser.

More than One Serial Parser
Having more than one processor, why not use two parsers? One of them can be used to process the
input from left to right, the other can be used to process the input from right to left. Each parser can
be assigned part of the input When the parsers meet the complete parse tree has to be constructed
from the partial parse trees delivered by the two parsers. Obviously, this idea is not new. We can
find it in Tseytlin and Yushchenko! 1977] and it appears again in Loka[1984]. Let G = (jV, I ,P, S)
be a context-free grammar. For any string a e V* let a* denote the reversal of a. Let
G* = (N ,L ,P \S) be the context-free grammar which is obtained from G by defining
PR = {/. A -*a* | i. A ->ae P }. It is not difficult to see that, when we start a left-to-right top-down
construction of a parse tree with respect to G at the leftmost symbol of a string w and a bottom-up
right-to-left construction of a parse tree with respect to G* at the rightmost symbol of w, then -
assuming the grammar is unambiguous - the resulting partial parse trees can be tied together and a
parse tree of w with respect to G is obtained. If the grammar is ambiguous all partial trees have to
be produced before the correct combinations can be made. Similarly, we can start with a bottom-up
parser at the left end of the string and combine it with a top-down parser starting from the right end
of the string. Especially when the grammar G allows a combination of a deterministic top-down (or
LL-) parser and a deterministic bottom-up (or LR-) parser this might be a useful idea. However, in
general we can not expect that if G is an LL-gram mar, then G* is an LR-grammar and conversely.

Rather than having one or two parsers operating at the far left or the far right of the input, we
would like to see a number of parsers, where the number depends on the ‘parallelism’ the input
string allows, working along the length of the input string. If there is a natural way to segment a

-242- Intemational Parsing Workshop '89

string, then each segment can have its own parser. Examples of this strategy are the methods
described in Lincoln[1970], Mickunas and Schellf 1975], Fischer[1975], Carlisle and Friesen[1985]
and Lozinskii and Nirenburg[1986]. Here we confine ourselves to an explanation of Fischer’s
method. Fischer introduces ‘synchronous parsing machines’ (SPM) that LR-parse part of the input
string. Each of the SPM’s is a serial LR-parser which is able to parse any sentence of the grammar
in the usual way from left to right. However, at least in theory, Fischer’s method allows any symbol
in the input string as the starting point of each SPM. For practical applications one may think of
starting at keywords denoting the start of a procedure, a block, or even a statement. One obvious
problem that emerges is, when we let a serial LR-parser start somewhere in the input string, in what
state should it start? The solution is to let each SPM carry a set of states, guaranteed to include the
correct one. In addition, fey each of these states the SPM carries a pushdown stack on which the
next actions are to be performed. An outline of the parsing algorithm follows.

For convenience we assume that the LR-parser is an LR(0) parser. No look-ahead is neces­
sary to decide a shift or a reduce action. In the algorithm M denotes the LR-parsing table and for
any state s,R(s) denotes the set consisting of the rule which has to be used in making a reduction in
state s. By definition, R (s) = {0} if no reduction has to be made in state s.
(1) Initialization.

Start one SPM at the far left of the input string. This SPM has a single stack and it only con­
tains Jo. ^ e initial state. Start a number of other SPM’s. Suppose we want to start an SPM
immediately to the left of some symbol a. In the LR-parse table M we can find which states
have a non-empty entry for symbol a. For each of these states the SPM which will be started,
possesses a stack containing this state only. Hence, the SPM is started with just those states
that can validly scan the next symbol in the string.

(2) Scan the next symbol.
Let a be the symbol to be scanned. For each stack of the SPM, if state s is on top, then
(a) if M (s, a) = sh s ', then push s ' on the stack;
(b) if M (s, a) = 0 , then delete this stack from the set of stacks this SPM carries.
In the latter case the stack has been shown to be invalid. While scanning the next input sym­
bols the number of stacks that an SPM carries will decrease.

(3) R e d u c e ?
Let Q = [si, • • • ,J„) be the set of top states of the stacks of the SPM under consideration.
Define

R (Q) = U R (s) .
**Q

(a) if R(Q) = (0), then go to step (2); in this case the top states of the stacks agree that no
reduction is indicated;
(b) if R (2) = [i}, < * 0, and i = A ->y4, then, if the stacks of the SPM are deep enough to pop
off | t; | states and not be empty, then do reduction i;
(c) otherwise, if we have insufficient stack depth or not all top states agree on the same reduc­
tion, we stop this SPM (for the time being) and, if possible, we start a new SPM to the immedi­
ate right.

An SPM which has been stopped can be restarted- If an SPM is about to scan a symbol already
scanned by an SPM to its immediate right, then a merge of the two SPM’s will be attempted. The
following two situations have to be distinguished;
• If the left SPM contains a single stack with top state s, then s is the correct state to be in and we

can select from the stacks of the right SPM the stack with bottom state s. Pop s from the left
stack and then concatenate the two. All other stacks can be discarded and the newly obtained
SPM can continue parsing.

• If the left SPM contains more than one stack, then it is stopped. It has to wait until it is res­
tarted by an SPM to its left. Notice that the leftmost SPM always has one stack and it will
always have sufficient stack depth. Therefore there will always be an SPM coming from the
left which can restart a waiting SPM.

-243- Intemational Parsing Workshop '89

In step (3c) we started a new SPM immediate to the right of the stopped SPM. What set of states
and associated stacks should it be started in? We cannot, as was done in the initialization, simply
take those states which allow a scan of the next input symbol. To the left of this new SPM reduc­
tions may have been done (or will be done) and therefore other states should be considered in order
to guarantee that the correct state is included. Hence, if in step (3) (Q) | > 1, then for each 5 in Q,
provided R (5) = (0), we add s to the set of states of the new SPM and in case R{s) = [i) we add to
the set of states that have to be earned by the new SPM also the states that can become topmost
after a reduction using production rule i (perhaps followed by other reductions).

This concludes our explanation of Fischer’s method. For more details and extensions of these
ideas the reader is referred to Fischer[1975].

‘Solving’ Parsing Conflicts by Parallelism?
To allow more efficient parsing methods restrictions on the class of general context-free grammars
have been introduced. These restrictions have led to, among others, the classes of LL-, LR- and
precedence grammars and associated LL-, LR- and precedence parsing techniques. The LR-
technique uses, as discussed in the previous section, an LR-parsing table which is constructed from
the LR-grammar.

If the grammar from which the table is constructed is not an LR-grammar, then the table will
contain conflict entries. In case of a conflict entry the parser has to choose. One decision may turn
out to be wrong or both (or more) possibilities may be correct but only one may be chosen. The
entry may allow reduction of a production rule but at the same time it may allow shifting of the next
input symbol onto the stack. A conflict entry may also allow reductions according to different pro­
duction rules. Consider the following example grammar G:

1. S —» NP VP 5. NP —► NP PP
2. S —> S PP 6. PP —» *prep NP
3. NP —» *n 7. V P—>*vNP
4. NP —> *det *n

The parsing table for this grammar, taken from Tomita[19851, is shown in Fig. 3.
state *det *n *v *prep S NP PP VP S

0 sh3 sh4 2 1
1 sh6 acc 5
2 sh7 sh6 9 8
3 shlO
4 re3 re3 re3
5 re2 re2
6 sh3 sh4 11
7 sh3 sh4 12
8 re 1 re 1
9 re 5 re5 re 5

10 re 4 re4 re 4
11 re6 re6,sh6 re6 9
12 re7,sh6 re7 9

Fig. 3 LR-parsing table for grammar G.

Tomita’s answer to the problem of LR-parsing of general context-free grammars is ‘pseudo-
parallelism’. Each time during parsing the parser encounters a multiple entry, the parsing process is
split into as many processes as there are entries. Splitting is done by replicating the stack as many
times as necessary and then continue parsing with the actions of the entry separately. The processes
are ‘synchronized’ on the shift action. Any process that encounters a shift action waits until the
other processes also encounter a shift action. Therefore all processes look at the same input word of
the sentence.

Obviously, this LR-directed breadth-first parsing may lead to a large number of non­
interacting stacks. So it may occur that during parts of a sentence all processes behave in exactly
the same way. Both the amount of computation and the amount of space can be reduced

-244- International Parsing Workshop '99

considerably by unifying processes by combining their stacks into a so-called ‘graph-structured’
stack. Tomita does not suggest a parallel implementation of the algorithm. Rather his techniques
for improving efficiency are aimed at efficient serial processing of sentences. Nevertheless, we can
ask whether a parallel implementation might be useful. Obviously, Tomita’s method is not a
‘parallel-designed’ algorithm. There is a master routine (the LR-parser) which maintains a data
structure (the graph-structured stack) and each word that is read by the LR-parser is required for
each process (or stack). In a parallel implementation nothing is gained when we weave a list of
stacks into a graph-structured stack In tact, when this is done, Tomita’s method becomes closely
related to Earley’s method (see section 4) and it seems more natural - although the number of
processes may become too large - to consider parallel versions of this algorithm since it is not res­
tricted in advance by the use of a stack. When we want to stay close to Tomita’s ideas, then we
rather think of a more straightforward parallel implementation in which each LR conflict causes the
creation of a new LR-parser which receives a copy of the stack and a copy of the remaining input (if
it is already available) and then continues parsing without ever communicating with the other LR-
parsers that work on the same string. On a transputer network, for example, each transputer may act
as an LR-parser. However, due to its restrictions on interconnection patterns, sending stacks and
strings through the network may become a time-consuming process. When a parser encounters a
conflict the network should be searched for a free transputer whereas the stack and the remainder of
the input should be passed through the network to this transputer. This will cause other processes to
slow down and one may expect that only a limited ‘degree of non-LR-ness’ will allow an appropri­
ate application of these ideas. Moreover, one may expect serious problems when on-line parsing of
the input is required.

3. Translating Grammar Rules into Process Configurations
A simple ‘object-oriented’ parallel parsing method for e-free and cycle-free context-free grammars
has been introduced by Yonezawa and Ohsawa[1988]. The method resembles the well-known
Cocke-Younger-Kasami parsing method, but does not require that the grammars are in Chomsky
Normal Form (CNF). Consider again our example grammar G:

1. S -» NP VP 5. NP —» NP PP
2. S -> S PP 6. PP -» *prep NP
3. NP -» *n 7. VP -> *v NP
4. NP *det *n

The parsing table for this grammar, taken from Tomita[1985], is shown in This set of rules will be
viewed as a network of computing agents working concurrently. Each occurrence of a (pre-
)terminal or a nonterminal symbol in the grammar rules corresponds with an agent with modest pro­
cessing power and internal memory. The agents communicate with one another by passing subtrees
of possible parse trees. The topology of the network is obtained as follows. Rule 1 yields the net­
work fragment depicted in Fig. 4.

In the figure we have three agents, one for NP, one for VP and a ‘double’ agent for 5. Suppose the
jVP-agent has received a subtree 1t . It passes t { to the VP-agem. Suppose this agent has received a
subtree t 2. It checks whether they can be put together (the ‘boundary adjacency test’) and, if this
test succeeds, it passes (f { t2) to the 5-agent This agent constructs the parse tree (5 (f { t2)) and dis­
tributes the result to all computing agents in the network which correspond with an occurrence of 5
in a right hand side of a rule. The complete network for the rules of G is shown in Fig. 5. As can be
seen in the network, there is only one of these 5-agents. For this agent (5 (rt t 2)) plays the same
role as t x did for the NP-agent If the boundary adjacency test is not successful, then the VT-agent
stores the trees until it has a pair of trees which satisfies the tesL

Fig. 4 From rules to configuration.

-245- Intemational Parsing Workshop '89

Fig. 5 Computing agents for grammar G.

As an example, consider the sentence The man saw a girl with a telescope. For this particular
sentence we do not want to construct from a subtree 1 1 for a telescope and from a subtree t j for saw
the girl a subtree for a telescope saw a girl, although the rule S NP VP permits this construction.
Therefore, words to be sent into the network are provided with tags representing positional informa­
tion and during construction of a subtree this information is inherited from its constituents. For our
example sentence the input should look as

(0 1 the)(l 2 man)(2 3 saw)(3 4 aX4 5 girl)(5 6 withX6 7 aX7 8 telescope).
Combination of tokens and trees according to the grammar rules and the positional information can
yield a subtree (3 5 (NP ((*det a)(*n girl)))) but not a subtree in which (0 1 the) and (4 5 girl) are
combined. Each word accompanied with its tags is distributed to the agents for its (pre-)terminal(s)
by a manager agent which has this information available.

If the context-free grammar which underlies the network is ambiguous, then all possible parse
trees for a given input sentence will be constructed. It is possible to pipe-line constructed subtrees
to semantic processing agents which filter the trees so that only semantically valid subtrees are dis­
tributed to other agents. Another useful extension is the capability to unparse a sentence when the
user of a system based on this method erases (‘backspaces to’) previously typed words. This can be
realized by letting the agents send anti-messages that cancel the effects of earlier messages. It
should be noted that the parsing of a sentence does not have to be finished before a next sentence is
fed into the network. By attaching another tag to the words it becomes possible to distinguish the
subtrees from one sentence from those of an other sentence. The method as explained here has been
implemented in the object-oriented concurrent language ABCIV1. For the experiment a context-
free English grammar which gave rise to 1124 computing agents has been used. Sentences with a
length between 10 and 30 words and a parse tree height between . 0 and 20 were used for input.
Parallelism was simulated by time-slicing. From this simulation it followed that a parse tree is pro­
duced from the network in O (n x h) time, where n is the length of the input string and h is the
height of the parse tree. Obviously, simple examples of grammars and their sentences can be given
which cause an explosion in the number of adjacency tests and also in the number of subtrees that
will be stored without ever being used. Constructs which lead to such explosions do not usually
occur in context-free descriptions of natural language.

There are several ways in which the number of computing agents can be reduced. For exam­
ple, instead of the three double NP-agents of Fig. 5 it is possible to use one double iVf-agent with
the same function but with an increase of parse trees that have to be constructed and distributed.
The same can be done for the two 5-agents. A next step is to eliminate all double agents and give
their tasks to the agents which correspond with the rightmost symbol of a grammar rule. It is also
possible to have one computing agent for each grammar rule. In this way we obtain the
configuration of Fig. 6. It will be clear what has to be done by the different agents.

246- International Parsing Workshop '89

Fig. 6 Agents for grammar rules.

Another configuration with a reduced number of computing agents is obtained if we have an
agent for each nonterminal symbol of the grammar. For our example grammar we have four agents,
the 5-, the NP-, the VP-, and the PP-agent. We may also introduce agents for the pre-terminals or
even for each word which can occur in an input sentence. We confine ourselves to agents for the
nonterminal symbols and discuss their roles. In Fig. 7 we have displayed the configuration of com­
puting agents which will be obtained from the example grammar.

The communication between the agents of this network is as follows.
(1) The 5-agent sends subtrees with root 5 to itself; it receives subtrees from itself, the PP-agent,

the NP-agent, and the VT-agent.
(2) The jVP-agent sends subtrees with root NP to itself, the 5-agent, the VP-agent and the PP-

agent; it receives subtrees from itself and from the PP-agent; moreover, input comes from the
manager agent.

(3) The VP-agent sends subtrees with root VP to the 5-agent; it receives subtrees from the NP-
agent; moreover, input comes from the manager agent.

(4) The PP-agent sends subtrees with root PP to the 5-agent and to the WP-agent; it receives sub­
trees from the NP-agent; moreover, it receives input from the manager agent.

Fig. 7 Agents for nonterminal symbols.

The task of each of these nonterminal agents is to check whether the subtrees it receives can be put
together according to the grammar rules with the nonterminal as left-hand side and according to
positional information that is carried along with the subtrees. If possible, a tree with the nontermi­
nal as root is constructed, otherwise the agent checks other trees or waits until trees are available.

4. From Sentence Words to Processes

Cocke-Younger-Kasami’s Algorithm
Traditional parsing methods for context-free grammars have been re-investigated in order to see
whether they can be adapted to a parallel processing view. In Chu and Fu[1982] parallel aspects of
the tabular Cocke-Younger-Kasami algorithm have been discussed. The input grammar should be

-247- Intemational Parsing Workshop '89

in CNF, hence, each rule is of the form A -» BC or A a. This normal form allows the following
bottom-up parsing method. For any string x = a \ a 2 ' - - a n to be parsed an upper-triangular
(/i + l)x(n + l) recognition table T is constructed. Each table entry t i%J with i<j will contain a subset
of N (the set of nonterminal symbols) such that A e tt J if and only if A =>*ai+l • ■ ■ ar Assume that
the input string, if desired terminated with an endmarker, is available on the matrix diagonal. Suing
x belongs to L{G) if and only if 5 € t 0 n when the construction of the table is completed.
(1) Compute as i ranges from 0 to n-1 , by placing A in rI (+1 exactly when there is a produc­

tion A —> a.+i in P.
(2) Set d = 1. Assuming /t>, w has been formed for 0 < i < n -d, increase d with 1 and compute r, }

for 0 <i <n- d and j = i +d where A is placed in when, for any k such that i <k < j, there is
a production A —>BC e P with B e ti k and C e

In a similar form the algorithm is usually presented (see e.g. Graham and Harrison [1976]). Fig. 8
may be helpful in understanding a parallel implementation.

0.1 0.2 0.3 0.4 0.5

1.2 1.3 1.4 1.5

2.3 2.4 2.5

3.4 3.5

4.5

Fig. 8 The upper-triangular CYK-table.

Notice that after step (1) the computation of the entries is done diagonal by diagonal until entry r0>/,
has been completed. For each entry of a diagonal only elements of preceding diagonals are used to
compute its value. More specifically, in order to see whether a nonterminal should be included in
an element ; it is necessary to compare (t k and with k between i and j. The amount of storage
that is required by this method is proportional to n2 and the number of elementary operations is pro­
portional to n 3. Unlike Yonezawa and Oshawa’s algorithm where positional information needs an
explicit representation, here it is in fact available (due to the CNF of the grammar) in the indices of
the table elements. For example, in r14 we can find the nonterminals which generate the substring
of the input between positions 1 and 4. The algorithm can be extended in order to produce parse
trees.

From the recognition table we can conclude a two-dimensional configuration of processes.
For each entry ; of the upper-triangular table there is a process PLj which receives table elements
(i.e., sets of nonterminals) from processes P ij-\ and Pl+\ j . Process PltJ transmits the table ele­
ments it receives from / \ y_i to Pij+\ and the elements it receives from Pt+ \j to Pi~\j. Process Pi%i
transmits the table element it has constructed to processes P i- \ j and P i j+\. Fig. 9 shows the inter­
connection structure for n = 5. As soon as a table element has been computed, it is sent to its right
and upstairs neighbor. Each process should be provided with a coding of the production rules of the
grammar. Clearly, each process requires 0 (n) time. It is not difficult to see that like similar algo­
rithms suitable for VLSI-implementation, e.g. systolic algorithms for matrix multiplication or transi­
tive closure computation (see Guibas et al[1979] and many others) the required parsing time is also
0 (n). In Chu and Fu[1982] a VLSI design for this algorithm is presented (see also Tan[1983]).

Earley’s Algorithm
The second algorithm we discuss in this section is the well-known Earley’s method. It is not essen­
tially different from the CYK algorithm. Since the method maintains information in the table
entries about the righthand sides of the productions that are being recognized, the condition that the
grammar should be in CNF is not necessary. For general context-free grammars Earley parsing
takes 0 (n 3) time. This time can be reduced to 0 (n2) or 0 (n) for special subclasses of context-free

-248- International Parsing Workshop '89

Fig. 9 Process configuration for C Y K ’s algorithm.

grammars. Many versions of Earley’s method exist In Graham and Harrison[1976] the following
tabular version can be found. For any string x = a {a 2 ' " aH to be parsed an upper-triangular
(n + l)x(/i + l) recognition table T is constructed. Each table entry titJ will contain a set of items, i.e.,
a set of elements of the form A —>a-p (a dotted rule), where A —»a{3 is a production rule from the
grammar and the dot • is a symbol not in N uE. The computation of the table entries goes column
by column. The following two functions will be useful. Function PREDICTiiV—>2° , where
D = {A —>ot*(31 A -» a p € P }, is defined as

PREDICT(A) = (£->a-|31 P, a=>*e and 3 y e V* withA=>*flY).
Function PRED:2W—>2D is defined as

PRED(X) = U PREDICTS).
A e X

Initially, r0.0 = PRED({S}) and all other table entries are empty. Suppose we want to compute the
elements of column j, j > 0. In order to compute titJ with i * j assume that all elements of the
columns of the upper-triangular table to the left of column j have already been computed and in
column j the elements tKj for i <k < j have been computed.
(1) Addfl -xM p-Yto ti j if B -xx-affye t i j - \ ,a - cl, andf3=>*£.
(2) Add B -» o 4 p 7 to t i j , if, for any k such that i <k < j, B -> a-A $ye titk, A —xo-e t^j and

3=**e.
(3) Add B ->aA p7 to titj if B ->a*Aftye fltl, {3=** e and there exists C e N such that A =>*C and

C -> a y e titj.
After all elements ti } with of column j have been computed then it is possible to com-
pute t j j .
(4) L e t X j = [A e N \ B- > a - A $ e t i j , 0 < , i Z j - \) . Then t j j = PRED(Xy).
It is not difficult to see that A-xj-fJer,-,; if and only if there exists y e V* such that
5=>*aj • • • diAy and a=>*al+l • • • ar Hence, in r0>)* we can read whether the sentence was correct.
The algorithm can be extended in order to produce parse trees, t

Various parallel implementations of Earley’s algorithm have been suggested in the literature
(see e.g. Chiang and Fu[1982], Tan[1983] and Sijstermans[1986]). The algorithms differ mainly in
details on the handling of e-rules, preprocessing, the representation of data and circuit and layout
design. The main problem in a parallel implementation of the previous algorithm is the computation
of the diagonal elements f, t, for 0 £ i <,n. The solution is simple. Initially all elements tlti, 0<i<>ny

t When Earley’s algorithm was introduced, it was compared with the exponential time methods in which successively every
path was followed whenever a non-deterministic choice occurred. Since in Earley’s algorithm a 'simultaneous’ following of
paths can be recognized, it was sometimes considered as a parallel implementation of the earlier depth-first algorithms (see
e.g. Langl 1971 J).

-249- Intemational Parsing Workshop ’89

are set equal to PREDICIXjV), where N is the set of nonterminal symbols. The other entries are
defined according to the steps (1), (2) and (3). As a consequence, we now have A -»ct-p € t, y if and
only if a=>*al+i • • • aj. In spite of weakening the conditions on the contents of the table entries the
completed table can still be used to determine whether an input sentence was correct Moreover,
computation of the elements can be done diagonal by diagonal, similar to the CYK algorithm.
(1) Set tu equal to PREDICT(N), 0<z <n.
(2) Set d = 0. Assuming has been formed for 0</ < n -d, increase d with 1 and compute t, s

for 0 < i < n -d and j = i +d according to:
(2.1) Add# ->atfp7 to ti%J if B -xx-apyG tt ,_i, a = a, and (3=>*e.
(2.2) Add B ->cx4p-y to tt , if, for any lc such that i <k <j ,B —»a\4(3yG it k, A -»co- e tk , and

P=>*e.
(2.3) Add B —>oA(3 y to (tj if B — r) (, (3=s>*e and there exists C e N such that A =o*C

and C —»(D* € titj.
VLSI designs or process configurations which implement this algorithm in such a way that it takes
0 (n) time (with 0 (n 2) cells or processes can be found in Chiang and Fu[1982], Tan[1983] and Sij-
stermans[1986] (see also Fig. 9 and its explanation).

5. Connectionist Parsing Algorithms
Only few authors have considered parsing in connectionist networks. It is possible to distinguish a
dynamic programming approach based on the CYK algorithm (Fanty[1985]), a Boltzmann machine
approach (Selman and Hirst[1985,1987]) and an interactive relaxation approach (Howells[1980]).
We confine ourselves to an explanation of Fanty’s method since it fits rather naturally in the frame­
work of parsing strategies we have considered in the previous sections. A connectionist Earley
parsing algorithm can be found in the full version of the present paper.

Fanty’s strategy is that of the CYK parser. The nodes that will be part of the connectionist
network are organized according to the positions of the entries of the upper-triangular recognition
table. For convenience we first assume that the grammar is in CNF. The table’s diagonal will be
used for representing the input symbols. This representation will be explained later. For each non­
terminal symbol each entry in the table which is not on the diagonal will represent a configuration of
nodes. These nodes allow top-down and bottom-up passing of activity. We first explain the
bottom-up pass. Consider a particular entry, say with j - i >2, of the upper-triangular matnx. In
the traditional algorithm a nonterminal symbol X is added to the set of nonterminal symbols associ­
ated with the entry if there are symbols Y e r, * and Z e such that X —»YZ is in P. In the connec­
tionist adaptation of the algorithm we already have a node for each nonterminal symbol in entry r,j.
Therefore, rather than adding a symbol, here node X at position t^j is made active if node Y at posi­
tion tik and node Z at position t̂ j are active. In general there will be more ways to have a realiza­
tion of the production X -+YZ at position For example, a node for X at entry 3 can be made
active for a production X->YZ if there is an active node for Y at /12 and for Z at t 2 ,5 , or for Y at 1 1>3
and for Z at /3 j , or for Y at /1>4 and for Z at r4i5. This separation is realized with the help of match
nodes in the configuration of each entry of the table. The use of match nodes is illustrated in Fig. 10
for a node forX at position f 15 of a CYK-table. Here we have shown the three match nodes, one for
each possible realization of X —>YZ, for this node at this particular position. For these match nodes
to become active all of their inputs must be on. The node for X becomes active when at least one of
its inputs (coming from its match nodes) is on. In the figure only match nodes for separate realiza­
tions of the same production are included. Obviously, match nodes should also be included at this
position for all possible realizations of the other productions with lefthand side X. In this way all
the inputs that can make the node for X at this particular position active can be received in a proper
way. Observe that if during the recognition of a sentence in an entry more than one match node for
a nonterminal is active then the sentence is ambiguous.

In our explanation the assumption j - i >2 for entry tij was made. Since the grammar is in
CNF we have realizations of productions of the form X — in the entries with j - i - 1. In these
entries no match nodes are needed since in each entry there can be only one realization of a produc­
tion with a given lefthand side. We assume that there is a node for each terminal symbol in each

-250- International Parsing Workshop '89

Y <ij> Z<23> <13>, Z<35> 1̂<14> Z<43>
Fig. 10 Botrom-up passing of activity.

position at the diagonal of the matrix. Parsing starts by activating the nodes which correspond with
the input symbols. Then activation passes bottom-up through the network, first with realizations of
productions of the form X —>a, next with realizations of productions of the form X-+YZ. The input
is accepted as soon as the node for the start symbol in the topmost entry of the column of the last
input symbol becomes active.

Until now we have discussed a network which accepts (or rejects) an input string. In order to
obtain a representation of the parse tree or parse trees a second, top-down, pass of activity is neces­
sary. To perform this top-down pass we assume that each node mentioned so far consists of a
bottom-up and a top-down unit. The bottom-up units are used as explained above. In Fig. 11 both
bottom-up and top-down passing of activity is illustrated in a configuration of nodes for an entry titj
with j - i > 2. Each node is represented as consisting of a leftmost or bottom-up and a rightmost or
top-down unit.

A top-down unit becomes active when it receives input from its bottom-up counterpart and at least
one external source. In order to activate the top-down unit of the node for the start symbol in the
upper right comer of the table we assume that it receives input from its bottom-up counterpart and
from the node at position t where n is the length of the input, which is used to represent end-
marker $ of the input and which is made active when parsing starts. Hence, when the input is
recognized this unit becomes active and it passes activity top-down. All top-down units which
receive this activation and which receive activation from their bottom-up counterparts become
active. In this way activity is passed down to the terminal nodes and the active top-down nodes of
the network represent the parse tree(s). The parse in the connectionist network completes in 0 (n)
time.

Above our assumption was that grammars are in CNF. This is not a necessary condition, but
it facilitates the present discussion. See Fanty[19851 or the full version of this paper for possible
relaxations of this condition and the consequences for the lime complexity.

-251- Intemational Parsing Workshop '89

6. Conclusions
A survey of some ideas in parallel parsing has been presented. In the field of natural language pro­
cessing the Earley and CYK method are well known. Sometimes closely related methods such as
(active) chart parsing are used. Because of this close relationship a parallel implementation along
the lines sketched above is possible. Chan parsing (and Earley parsing) can be done with a more
modest number of processors if an agenda approach is followed (see e.g. Grisham and Chi-
traof 1988]). Earley’s algorithm can be modified to transition networks and extended to ATN’s (see
e.g. Chou and Fu[1975]). Therefore it is worthwhile to investigate a similar parallel approach to the
parsing of ATN’s. No attention has been paid to ideas aimed at improving upper bounds for the
recognition and parsing of general context-free languages. An introduction to that area can be
found in Chapter 4 of Gibbons and Rytterf 1988]. Neither have we been looking here at the connec-
tionist approaches in parsing and natural language processing as they are discussed in the papers of
Cottrell and Small[1984], Waltz and Pollackf 1985], McClelland and Kawamoto[1986] and
Small[1987]. More references to papers on parallel parsing can be found in Nijholt et al[1989].

Acknowledgements.
I am grateful to P.RJ. Asveld for his comments on an earlier version of this paper and to Theo
Vosse for drawing my attention to some papers on connectionist parsing. Some discussions with
Bart Van Acker and Bart De Wolf have improved my understanding of parallel parsing methods.

7. References

Carlisle, W.H. and D.K. Friesen [1985]. Parallel parsing using Ada. Proceedings 3rd Annual
National Conference on Ada Technology, March 1985,103-106.

Chiang, Y.T. and K.S. Fu [1982]. A VLSI architecture for fast context-free language recognition
(Earley’s algorithm). Proceedings Third International Conf. on Distributed Comp. Systems,
1982, 864-869.

Chou, S.M. and K.S. Fu [1975]. Transition networks for pattern recognition. School for Electrical
Engineering, Purdue University, West Lafayette, Indiana, TR-EE 75-39, 1975.

Chu, K.-H. and K.S. Fu [1982]. VLSI architectures for high-speed recognition of context-free
languages and finite-state languages. Proceedings of the Ninth Annual Symposium on Com­
puter Architectures, SIGARCH Newsletter 10 (1982), No.3, 43-49.

Cottrell, G.W. and SL . Small [1984]. Viewing parsing as word sense discrimination: A connec­
tionist approach. In: Computational Models of Natural Language Processing, B.G. Bara and
G. Guida (eds.), Elsevier Science Publishers, North-Holland, 1984,91-119.

Fischer, C.N. [1975]. Parsing context-free languages in parallel environments. Ph.D. Thesis, Tech.
Report 75-237, Dept, of Computer Science, Cornell University, 1975.

Gibbons, A. and W. Rytter [1988]. Parallel recognition and parsing of context-free languages.
Chapter 4 in Efficient Parallel Algorithms. Cambridge University Press, Cambridge, 1988.

Graham, S.L. and M.A. Harrison [1976]. Parsing of general context-free languages. Advances in
Computers, Vol. 14, M. Yovits and M. Rubinoff (eds.). Academic Press, New York, 1976,
76-185.

Grisham, R. and M. Chitrao [1988]. Evaluation of a parallel chart parser. In: Proceedings of the
Second Conference on Applied Natural Language Processing, Association for Computational
Linguistics, 1988, 71-76.

Guibas, L J., H.T. Kung and C.D. Thompson [1979]. Direct VLSI implementation of combinatorial
algorithms. Proc. Conf. on VLSI, Caltech, January 1979, 509-526.

Lang, B. [1971]. Parallel non-deterministic bottom-up parsing. In: Proc. Int. Symposium on Exten­
sible Languages. Grenoble, 1971, SIGPLAN Notices 6, Nr. 12, December 1971.

Lincoln, N. [1970]. Parallel programming techniques for compilers. SIGPLAN Notices 5 (1970),
No. 10, 18-31.

-252- International Parsing Workshop '89

Loka, R.R. [1984]. A note on parallel parsing. SIGPLAN Notices 19 (1984), No.l, 57-59.
Lozinskii, E.L. and S. Nirenburg [1986]. Parsing in parallel. Computer Languages 11 (1986),

39-51.
McClelland J.L. and A.H. Kawamoto [1986]. Mechanism of sentence processing: assigning roles to

constituents of sentences. Chapter 19 in Parallel Distributed Processing. Vol.2: Psychologi­
cal and Biological Models, D.E. Rumelhart, J.L. McClelland and the PDP Research Group,
The MIT Press, Cambridge, Mass., 1986,272-325.

Mickunas, M.D. and R.M. Schell [1978]. Parallel compilation in a multiprocessor environment.
Proceedings ACM Annual Conf., 1978, 241-246.

Nijholt, A. [1988]. Computers and Languages: Theory and Practice. Studies in Computer Science
and Artificial Intelligence. North-Holland, Elsevier Science Publishers, Amsterdam, 1988.

Nijholt, A. et al [1989]. An annotated bibliography on parallel parsing. Twente University, Internal
Memorandum, in preparation, 1989.

Selman, B. and G. Hirst [1987]. Parsing as an energy minimization problem. Chapter 11 in Genetic
Algorithms and Simulated Annealing. Research Notes in A.I., Morgan Kaufmann Publishers,
Los Altos, California, 1987.

Small, S.L. [1987]. A distributed word-based approach to parsing. In: Natural Language Parsing
Systems. L. Bole (ed.), Springer-Verlag, Berlin, 1987, 161-201.

Srikant, Y.N. and P. Shankar [1987]. Parallel parsing of programming languages. Information Sci­
ences A3 (mi), 55-83.

Sijstermans, F.W. [1986]. Parallel parsing of context-free languages. Doc. No. 202, Esprit Project
415, Subproject A: Object-oriented language approach, Philips Research Laboratories, Ein­
dhoven, 1986.

Tan, H.D.A. [1983]. VLSI-algoritmen voor herkenning van context-vrije talen in lineaire tijd. Rap­
port IN 24/83, Sdchting Mathematisch Centrum, Amsterdam, Juni 1983.

Tomita, M. [1985]. Efficient Parsing for Natural Language. Kluwer Academic Publishers, Boston,
Dordrecht, 1985.

Tseytlin, G.E. and E.L. Yushchenko [1977]. Several aspects of theory of parametric models of
languages and parallel syntactic analysis. In: Methods of Algorithmic Language Implementa­
tion. A. Ershov and C.H.A. Koster (eds.), Lect. Notes Comp. Sci. 47, Springer-Verlag, Ber­
lin, 1977,231-245.

Waltz, D.L. and J.B. Pollack [1985]. Massively parallel parsing: A strongly interactive model of
natural language interpretation. Cognitive Science 9 (1985), 51-74.

Yonezawa, A. and I. Ohsawa [1988]. Object-oriented parallel parsing for context-free grammars.
In: Proceedings of the 12th International Conference on Computational Linguistics (COL-
ING'8 8), Budapest, 1988, 773-778.

-253- International Parsing Workshop '89

COMPLEXITY AND DECIDABILITY
IN LEFT-ASSOCIATIVE GRAMMAR1

ROLAND HAUSSER

1. Formal Rule Schemata of Generative Grammar
Left-associative grammar (LA-grammar) is a comparatively new formalism. By way of introduction, let
us compare it with more widely known systems, namely phrase structure grammar (PS-grammar) and
categorial grammar (C-grammar).

The formalism of PS-grammar is based on the rewriting systems of Post (1936). Rewriting rules have
the following form:
(1.1) The Schema of a Phrase-Structure Rewriting Rule

By replacing (rewriting) the symbol A with B and C, this rule generates a tree structure with A dominaung
B and C. Conceptually, the derivation order of rewriting rules is top-down.

The formalism of C-gram mar is based on the categorial-canceling rules of LeSnieswki (1929) and
Ajdukiewicz (1935). Categorial-canceling rules have the following form:
(1.2) The Schema of a Categorial Canceling Rule

“ (yix) • Pen =* a %)
This rule schema combines a and 0 into a0 by canceling the Y in the category of a with the corresponding
category of 0. The result is a tree structure with a 0 of category X dominating a and 0. Conceptually, the
derivation order of categorial-canceling rules is bottom-up.
(1.3) The Schema of a Left-Associative Rule

r,: [CAT-1 CAT-2] => [rp,- CAT-3]

A left-associative rule r, maps a sentence start (represented by its category CAT-1) and a next word
(represented by its category CAT-2) into the rule package rp,- and a new sentence start (represented by its
category CAT-3). A state in LA-grammar is defined as an ordered pair, consisting of a rule package and
a sentence start. In the next composition, the rules in the rule package are applied to the sentence start
resulting from the last composition and a new next word.

The different rule schemata result in three different conceptual derivation orders.
(1.4) Three Grammatical Derivation Orders

LA-grammar C-grammar PS-grammar

LA-grammars are input-output equivalent to their parsers and generators in that (i) they take the same
input (i.e., an unanalyzed surface string), (ii) generate the same output (a left-associative syntactic analysis),

1The results reported in this paper are published in Hausser, R. (1989) Computation o f Language, Springer-Verlag Berlin-New
York (Symbolic Computation - Artificial Intelligence), June 1989.

A — B C

/ \

/ \

/ \
X \

bottom-up left-assoc. bottom-up amalgamating top-down expanding

-254- Intemational Parsing Workshop '89

and (iii) use the sam e rules in the sam e derivation order. In other words, LA-gram m ar achieves “absolute
type transparency”2 because it is strongly input-output equivalent to its parsers and generators.

PS-grammar and C-grammar, on the other hand, are unsuitable for direct parsing. Parsers for context-
free PS-grammars, for example, cannot possibly apply the rules of the grammar directly because the rules
rewrite an initial start symbol, while the parser takes sentences as input The standard solution to this
dilemma consists in computional routines which reconstruct the grammatical analysis in an indirect way
by building large intermediate structures (e.g., “state sets”, “charts”, “tables”) which are not part of the
grammar.

2. Syntax and Semantics
The tree structures generated by PS-grammar and C-grammar are semantically motivated constituent

structures. Constituent structures are based on substitution and movement tests which are intended to reveal
which parts of the sentence belong most closely together. The completely regular tree structure of LA-
grammar, on the other hand, is based on the notion of possible continuations and reflects the time-linear
nature of language.

As an example of a left-associative parse consider (2.1).
(2.1) A Sample Derivation
NEWCAT> (z Fido found a bone.)
Elapsed real time * 779 milliseconds
User cpu time * 660 milliseconds
System cpu time « 20 milliseconds
Total cpu time - 680 milliseconds

Linear Analysis:

*START_0
1

(NA) FIDO
(N SC V) FOUND

*NOM+FVERB_3
2

(SC V) FIDO FOUND
(SQ) A

*FVER3+MAIN_4
3

(SQ V) FIDO FOUND A
(SN) BONE

*DET+NOUN_2
4

(V) FIDO FOUND A BONE
(V DECL) .

*CMPLT_13
5

(DECL) FIDO FOUND A BONE .

Hierarchical Analysis:
(PROPOSITION-5_6_13

(MOOD (DECLARATIVE-5_6_13))
(PROP-CONTENT

((SENT-2_6_13 (SUBJ ((NP-1_6_13 (NAME (FIDO-l_6_13)))))
(VERB (FIND—2_6_13))
(DIR-OBJ
((NP-3_6_13 (REF (A-3_6_13 SG-4_6_13))

(NOUN ((BONE-4_6_13))))))))))

2 Berwick A. Weinberg (1984), p. 41.

-255- International Parsing Workshop '89

NAME REF NOUN
I I I

I I I I
FIDO A SG BONE

The algorithm of left-associative grammar (LA-grammar) always combines a sentence start and a next
word into a new sentence start. In a semantically interpreted LA-grammar, a homomorphic semantic hier­
archy is constructed simultaneously with the linear syntactic parse. The semantic hierarchy expresses many
of the intuitions central to constituent structure and may be displayed as a structured list or, equivalently,
as a tree structure. The following discussion of LA-grammar is limited to the formal properties of the
linear syntax.

3. The Mathematical Definition
(3.1) Formal Definition of Left-Associative Grammar5
An LA-grammar is defined as a 7-tuple <W, C, LX, CO, RP, STs, ST^ >, where

1. W is a finite set of word surfaces.

2. C is a finite set of category segments.

3. LX C (W x C) is a finite set comprising the lexicon.

4. CO = (coo ... co«_!) is a finite sequence of total recursive functions from (C* x C) into C- u {J,}.
called categorial operations.

5. RP = (rpo ... rp„_i) is an equally long sequence of subsets of n called rule packages.

6. STs = {(rp* ca t,) ,...} is a finite set of initial states, where each rp, is a subset of n called a start rule
package and each cat, e C .

7. ST/r = {(rp/ catf), ...} is a finite set of final states, where each rp/ e RP and each cat/- e C*.

For theoretical reasons, the categorial operations are defined as total functions. In practice, the categorial
operations are defined on easily-recognizable subsets of (C* x C+), where anything outside these subsets
is mapped into the arbitrary “don’t care” value {JL}, making the categorial operations total.

3 Let us recall some notation from set theory needed in this definition. If X if a set, then X+ is the “positive closure." i.e., the
set of all concatenations of elements of X. X* is the Kleene closure of X, defined u X * U « , where t is the “empty sequence.” The
power set of X is denoted by 2X . If X and Y are sets, then (X x Y) is the Cartesian product of X and Y, i.e., the set of ordered pairs
consisting of an element of X and an element of Y. For convenience, we also identify integers with sets, i.e., n = {i | 0 < i < n}.

-256- International Parsing Workshop '89

An LA-gram m ar is specified by (i) a lex icon L X , (ii) a set o f start states ST s, (iii) a sequence o f
rules, each defined as an ordered pair (co, rp,), and (iv) a set o f final states ST F. This general format o f
L A-gram m ars is illustrated below with the context-sensitive language atbkck.

(3.2) The Definition of a.kl /c k

LX -dtf { [a (be)], [b (b)]. [c (c)]}
S T { ({ r - 1 , r-2} (b e))}
r-1: [(X) (be)] => [{r-1 , r-2} (bX c)],
r-2: [(bX c) (b)] => [{r-2 , r-3} (X c)],
r-3: [(cX) (c)] => [{r-3 } (X)]
ST/r { [rp-3 €]}.

L A -gram m ar is equally suitable for parsing and generation. The only difference is that in parsing the
next w ord is provided by the input string, w hile in generation the next word is chosen from the lex icon . The
gram m atical analysis provided by LA-parsers and LA-generators is sim ply a trace o f the com putation. The
declarative lingu istic analysis and the com putation are m erely different aspects o f the sam e left-associative

structure.

(3.3) Parsing aaabbbccc with Active Rule Counter
NEWCAT> (z a a a b b b c c c)
; 1: Applying rules (RULE-1 RULE-2)
; 2: Applying rules (RULE-1 RULE-2)
; 3: Applying rules (RULE-1 RULE-2)
; 4: Applying rules (RULE-2 RULE-3)
; 5: Applying rules (RULE-2 RULE-3)
; 6: Applying rules (RULE-2 RULE-3)
; 7: Applying rules (RULE-3)
; 8: Applying rules (RULE-3)
; Number of rule applications: 14.

* START-0
1

(B C) A
(B C) A

•RULE-1
2

(B 3 C C) A A
(B O A

"RULE-1
3

(B 3 B C C C) A A A
(B) B

'RULE-2
4

(B B C C C) A A A B
(B) B

•RULE-2
5

(B C C C) A A A B B
(B) B

•RULE-2
6

(C C C) A A A B B B
(C) C

•RULE-3
7

(CC) A A A B B B C
(C) C

•RULE-3
8

(C) A A A B B B C C

-257- Intemational Parsing Workshop '89

(C) c
*RULE-3
9

(NIL) A A A 3 3 3 C C C

The parse is called with the function “(z N ote that categories precede the surfaces in (3 .3). Each
le ft-associative com position is characterized by a word number (e .g ., 4), a sentence start consisting o f a
category and a surface (e .g ., (B B C C) A A A B), a next word (e .g ., (B) B), and a rule (e .g ., *R U L E -2).
The result o f the com position is show n in the first line o f the next “history section ” (e .g ., (B C C C) A A
A B B) .

A s an illustration o f the relation betw een an LA-gram m ar and its generator, consider the fo llow ing
derivation o f w ell-form ed expressions up to length 12 using the grammar for a*b*c* defined in (3.2).

(3.4) Generating the Representative Sample of a*b*c*
NEWCAT> (gram-gen 3 ' (a b c))

Parses of length 2:
A 3

2 (C)
A A

1 (B 3 C C)

Parses of length 3:
ABC

2 3 (NIL)
A A B

1 2 (B C C)
AAA

1 1 (B B 3 C C C)

Parses of length 9:
A A A B 3 3 C C C

1 1 2 2 2 3 3 3 (NIL)
A A A A B 3 B B C

1 1 1 2 2 2 2 3 (C C C)

Parses of length 10:
A A A A B B B B C C

1 1 1 2 2 2 2 3 3 (CC)

Parses of length 11:
A A A A B B 3 3 C C C

1 1 1 2 2 2 2 3 3 3 (C)

Parses of length 12:
A A A A B B B B C C C C

1 1 1 2 2 2 2 3 3 3 3 (NIL)

A fter loading the sam e gramm ar as used for parsing, the function ‘gram -gen ’ is ca lled w ith tw o
argum ents: the “recursion factor” o f the grammar (cf. Section 6), and a list o f the words to be used .4
T he output is a system atic generation, starting with w ell-form ed expressions o f length 2. Each derivation
consists o f a surface, a sequence o f rules, and a result category. A s an exam ple o f a s in g le derivation,
consider (3 .5).

4In another version, ’gram-gen’ is called with the maximal surface length rather than the recursion factor.

-258- International Parsing Workshop '89

(3.5) A Complete Well-Formed Expression in a*b*c*

A A A 3 3 3 C C C
1 1 2 2 2 3 3 3 (NIL)

The surface and the rule sequence are lined up so that it is apparent which word was added by which rule.
Derivation (3.5) characterizes a complete well-formed expression because it represents the rule state (rp-3
e), which is element of the set of complete well-formed expressions of the LA-grammar for a*b*c* defined
in (3.2).

4. Generative Capacity and the Chomsky Hierarchy
The most basic formal result in LA-grammar is that it generates all—and only—the recursive languages.
That LA-grammar generates all recursive languages follows from the fact that a categorial operation can
be any total recursive function.5 That LA-grammar generates only the recursive languages, on the other
hand, is due to the linear structure of the derivation: at each left-associative composition there is only a
finite number of sentence starts, each with a finite rule package, and a finite number of next word readings,
resulting in a finite number of new sentence starts.6

Furthermore, we may show that the automata-theoretic hierarchy of regular, context-free, and context-
sensitive languages is clearly reflected in the formalism of LA-grammar. Specifically, regular languages
are generated by LA-Grammars with rules using only empty categorial operations, e.g.,
(4.1) LA-Rule with Empty Categorial Operation

Tr. [c CAT-2] => [rp,- e]
The proof is based on a systematic translation procedure from Finite State Automata into LA-grammars
with rules like (4.1).7

Context-free languages are generated by LA-grammars with categorial operations which work only
on the first segment of CAT-1 or CAT-3, e.g.,

r,: [(a X)(a)] => [rp, (X)]
or

r«: [(X)(a)] => [rp, (a X)]
where X is a variable for sequences of category segments. The proof is based on the corresponding
restrictions on pushdown automata. In particular, the automaton may look only at the top of the stack,
represented in the rule by CAT-1, and the automaton may only push or pop one element at a time from
the stack (with the corresponding result represented by CAT-3).

Context-sensitive languages are generated by LA-grammars where the length of the categories is
bounded by C • n, where C is a finite constant and n is the length of a complete well-formed input
expression. The proof is based ori the corresponding restrictions on linearly bounded automata.

(5) The Hierarchy o f A-LAGs, B-LAGs, and C-LAGs
A more natural way of dividing possible languages in LA-grammar than the Chomsky hierarchy is the
hierarchy of A-LAGs, B-LAGs, and C-LAGs. This new hierarchy is based on the properties of the
categorial operations of the rules of LA-grammar. The crucial formal property of a categorial operation—
from a complexity point of view—is whether or not it has to search through indefinitely-long sentence-start
categories.

3 For a detailed proof see Hausser (1989), Theorem 2, p. 135.
6For t detailed proof see Hausser (1989), Theorem 1, p. 134.
7 For a detailed discussion see Hausser (1989). Section 8.2. A more general characterization of the regular language* i* given in

Theorem 3, p. 138.

-259- Intemational Parsing Workshop '89

(5.1) Definition of the Class of C-LAGs
The class of constant LA-grammars, or C-LAGs, consists of grammars where no categorial
operation co, looks at more than k segments in the sentence-start categories, for a finite constant
k} A language is called a C-language iff it is recognized by a C-LAG.

LA-granmars for regular and context-free languages are all C-LAGs because in regular languages the
length of the sentence-start category is restricted by a finite constant, and in context-free languages the
categorial operation may only look at a finite number of segments at the beginning of the sentence-start
category. But the LA-grammars for many context-sensitive languages, e.g., a*b*c* (cf. (3.2)), a*b*c*d*e*,
WW, and WWW, are also C-LAGs.

Generally speaking, an LA-grammar is a C-LAG if its rules conform to the following schemas:
r,: [(seg-l...seg-k X) CAT-2] => [rp,- CAT-3]

r,: [(X seg-l...seg-k) CAT-2] => [rp, CAT-3]

r,: [(seg-l...seg-i X seg-i+l...seg-k) CAT-2] => [rp, CAT-3]
Thereby, CAT-3 may contain at most one sequence variable (e.g., X).

On the other hand, if an LA-grammar has rules of the form
r,: [(X seg-l...seg-k Y) CAT-2] => [rp, CAT-3]

the grammar is not a constant LA-grammar. In non-constant LA-grammars CAT-3 may contain more than
one sequence variable (e.g., X and Y).

Non-constant LA-grammars are divided into the B-LAGs and A-LAGs.
(5.2) Definition of the Class of B-LAGs

The class of bounded LA-grammars or B-LAGs consists of grammars where for any complete
well-formed expression E the length of intermediate sentence-start categories is bounded by
C • n, where n is the length of E and C is a constant. A language is called a B-language if it
is recognized by a B-LAG, but not by a C-LAG.

(5.3) Definition of the Class of A-LAGs
The class of A-LAGs consists of all LA-grammars because there is no limit on the length of
the categories, or on the number of category segments read by the categorial operations. A
language is called an A-language if it is recognized by an A-LAG, but not by a B-LAG.

The three classes of LA-grammars defined above are related in the following hierarchy:
(5.4) The Hierarchy of A-LAGs, B-LAGs, and C-LAGs

The class of A-LAGs recognizes all recursive languages, the class of B-LAGs recognizes
all context-sensitive languages, and the class of C-LAGs recognizes many context-sensitive
languages, all context-free languages, and all regular languages.

(6) Decidability
For arbitrary context-free grammars it is undecidable whether the languages generated are ambiguous, in
an inclusion relation, or equivalent In LA-grammar, on the other hand, questions of ambiguity, emptiness,
inclusion, and equivalence are decidable for a large subset of the C-LAGs which includes context-sensitive
languages. These results are based on the fact that the derivational structure of LA-grammar clearly exhibits
the occurrence of grammatical recursions.

The following definition is based on the notion of “abstract derivations”. Two derivations are represented
by the same abstract derivation if they differ only in the choice of words, but exhibit the same sequence of
rules and the same sequence of categories. In an abstract derivation different words of the same category,
e.g., (table (sn)) and (chair (sn)), are represented by one abstract word, e.g., (A (sn)).

8Thii finite constant will vary between different grammars.

-260- International Parsing Workshop '89

(6.1) Definition of a Grammatical Recursion
An abstract derivation exhibits a grammatical recursion if and only if

1. the surface exhibits two or more identical subsequences which are directly adjacent,

2. the rule sequence exhibits two or more identical subsequences which correspond to the surface, and

3. each instance of the recursion affects the sentence-start category in a regular way.

How sentence-start categories are affected by a recursion depends on the type of the recursion. LA-grammar
distinguishes between (i) constant, (ii) increasing, (iii) decreasing, and (iv) simultaneously increasing and
decreasing grammatical recursions. A recursion is constant if the sentence start categories at the beginning
of two adjacent loops are identical. A recursion is increasing if the sentence start category at the beginning
of the second loop is longer than the sentence start category at the beginning of the first loop. And
correspondingly for the other cases.

Here is how the algorithm recognizes and types recursions: Assume the generator has derived a string
of length n, and is in the process of adding the n+lst word—e.g., A—by means of a certain rule, e.g. 1.
(6.2) Example of a Grammatical Recursion

....... ABCABC A

....... 123123 1 (cat)

The algorithm for recognizing recursions checks whether the current rule, i.e., rule 1, has two predecessors.
If so, it checks whether the (abstract) surfaces added by the occurrences of rule 1 are all the same. If
so, it checks whether the rule sequences and the surface sequences between the occurrences of rule 1 are
identical. If all these conditions are satisfied, a recursion has been recognized. Finally, the recursion is
typed by comparing the categories of the expression in question with its shorter predecessors ending in
surface A and rule 1.

The crucial problem for proving decidability in LA-grammar is to determine how often grammatical
recursions have to be applied in order for the set of completions to be a “representative sample”. In the
class of C-LAGs, the grammatical structure provides a “recursion factor” which specifies how often the
increasing recursions of the grammar have to be applied in order to arrive at a representative sample.
During the generation of longer and longer expressions, the system keeps track of increasing recursions
and stops the recursion as soon as the number specified by the recursion factor has been reached.

In most C-LAGs this procedure results in a finite set of derivations which is representative in the
sense that all sentence types generated by the grammar are exemplified in iL Such a representative sample
provides the basis for deciding ambiguity, inclusion, equivalence, and (non-)emptiness of C-LAGs.

Not all C-LAGs are decidable, however. In C-LAGs with simultaneously increasing and decreasing
recursions such that the increase is greater than the decrease the recursion factor does not guarantee
the derivation of a representative sample. Those C-LAGs where the process of a systematic derivation,
controlled by a grammar-dependent recursion factor, results in finite sets of representative samples are
called D-LAGs (“Decidable C-LAGs”). An example of a D-LAG is a*b*c*, for which a representative
sample is derived in (3.4).

Can the technique of proving the subset and the equality relationship, as well as ambiguity and (non-)-
emptiness for a large class of context-free and context-sensitive languages be used for PS-grammars as well?
Because PS-grammars have a different derivational structure, the method of deriving longer and longer
sentence starts cannot be applied directly in PS-grammar. The only possibility would be a systematic
translation of PS-grammars into C-LAGs, and proving the properties in question indirecdy by way of the
weakly equivalent C-LAGs.

However, this approach requires that there is a general algorithm for translating PS-grammars into
LA-grammars. No such algorithm has been found. Furthermore, experience writing LA-grammars for

-261- International Parsing Workshop '89

languages described originally as PS-grammars has shown that the construction of the LA-grammar is
never based on the PS-grammar for the language, but proceeds from the language directly. Thus, it is
unlikely that such an algorithm exists.

(7) The Com plexity of Sound C-LAGs
Earley (1970) showed that the Earley algorithm recognizes unambiguous context-free grammars in

|G|2 ■ n2, but ambiguous context-free grammars in |G|2 • n2 (where |G| is the size of the grammar and n the
length of the input string). Thus, computational complexity in PS-grammar depends not only on the class
of the grammar, e.g., regular, context-free, or context-sensitive, but also on whether or not the grammar is
ambiguous.

It is similar in LA-grammar: computational complexity depends not only on whether the grammar
is a C-LAG, B-LAG, or A-LAG, but also on whether or not the grammar is ambiguous. LA-grammar
distinguishes three levels of ambiguity:
(7.1) Three Levels of Ambiguity in LA-Grammar

1. unambiguous grammars

2. syntactically-ambiguous grammars

3. lexically-ambiguous grammars

Syntactic ambiguity is defined in terms of the input-compatibility of rules.
(7.2) Three Types of Input Conditions

1. Incompatible input conditions: Two rules have incompatible input conditions if there exist no input
pairs which are accepted by both rules.

2. Compatible input conditions: Two rules have compatible input conditions if there exists at least
one input pair accepted by both rules, and there exists at least one input pair accepted by one rule,
but not the other.

3. Identical input conditions: Two rules have identical input conditions if it holds for all input pairs
that they are either accepted by both rules, or rejected by both rules.

(7J) Definition of Unambiguous LA-Grammars

An LA-grammar is unambiguous if and only if (i) it holds for all rule packages that their rules
have incompatible input conditions, and (ii) there are no lexical ambiguities.

Examples of incompatible input conditions are [(a X)(b)] and [(c X)(b)], as well as [(a X)(b)] and [(a
X)(c)].
(7.4) Definition of Syntactically-Ambiguous LA-Grammars

An LA-grammar is syntactically ambiguous if and only if (i) it has at least one rule package
containing at least two rules with compatible input conditions, and (ii) there are no lexical
ambiguities.

For example, [(a X)(b)] and [(X a)(b)] represent compatible input conditions.
(7.5) Definition of Lexically-Ambiguous LA-Grammars

An LA-grammar is lexically ambiguous if its lexicon contains at least two analyzed words
with identical surfaces.

-262- International Parsing Workshop '89

Because the categorial operations of C-LAGs look at no more than k sentence-start category segments,
for some constant k, the application of a rule may be taken as the “primitive operation” for purposes of
complexity analysis. Unambiguous C-LAGs are proven to parse in linear time. This result follows from
definition (7.3), and is significant insofar as it applies not only to the (non-deterministic) context-free but
also to many context-sensititive languages (e.g., akbkck as defined in (3.2)).

In the case of syntactically ambiguous LA-grammars, the crucial source of computational complexity
are recursive ambiguities. In sound LA-grammars recursive ambiguities are restricted by the single return
principle.
(7.6) The Single Return Principle (SRP)

If a syntactic ambiguity arises inside a recursion, then only one of the branches resulting from
the ambiguity may feed back into the recursion.

As a consequence of the SRP, sound LA-grammars have—at most—(C • n) readings.^ Furthermore, the
SRP does not decrease the generative capacity of an LA-grammar.10 Because for any LA-grammar there
exists a weakly equivalent sound LA-grammar, any syntactically ambiguous C-language can be parsed in
n2.

In the case of systematic lexical ambiguity, finally, there are two choices. One is to eliminate the lexical
ambiguities by means of neutral categories. The other is to “pack” the readings, which may be exponential
in number, into a single representation. It may be shown that these strategies are always possible within
the class of C-LAGs.11 In summary, if a language can be generated or recognized by a C-LAG then there
exists a C-LAG which will parse it in n2.

R eferences

Ajdukiewicz, K. (1935) "Die syntaktische Konnexiidt,” Studia Philosophica, 1:1-27.

Berwick, R.C., and A.S. Weinberg (1984) The Grammatical Basis of Linguistic Performance: Language Use and
Aquisition. The MIT-Press, Cambridge, Massachusetts.

Earley, J. (1970) "An Efficient Context-Free Parsing Algorithm, ” CACM 13(2):94-102.

Hausser, R. (1989) Computation of Language, Springer-Verlag Berlin-New York (Symbolic Computation - Artificial
Intelligence), June 1989.

Hopcroft, J.E., and Ullman, J.D. (1979) Introduction to Automata Theory, Languages, and Computation. Addison-
Wesley Publishing Company, Reading, Massachusetts.

Leiniewski, S. (1929) "Grundzuge ernes neuen Systems der Grundlage der Mathematik," Fundamenta Mathemancae,
Wan aw.

Post, E. (1936) "Finite Combinatory Processes — Formulation I,” Journal of Symbolic Logic, I.

9C is some finite, grammar dependent constant reflecting the number of rules introducing recursive ambiguities and n is the length
of the input.

10See Hausser (1989), Theorem 11, p. 224.
u Noie that the problem of Boolean satisfiability (cf. Hopcroft & Ullman (1979), p. 325) exceeds not only the power cf context-free

grammars, but also of C-LAGs. An LA-grammar would not only have to build longer and longer categories in order to keep track cf
the different value assignments, but it would also have to check through the category each time it encounters another proportional
variable. It is this second requirement which violates the definition of C-LAGs.

-263- Intemational Parsing Workshop '89

The selection of a parsing strategy for an on-line machine translation
system in a sublanguage domain. A new practical comparison.

Patrick Shann
University o f Geneva (ISSCO) & University of Zurich^, Switzerland

1. Introduction

The paper reports the results o f a practical comparison of different parsing strategies. The research
was carried out in the context of a larger project for the development o f a machine translation (MT)
system for translating avalanche forecast bulletins from German to French. The design of the MT
system requires controlled input and no post-editing o f the translated texts. The parsing experiment
had as a goal to select the most suitable parsing strategy for a parser that allows the composition of the
sentences in on-line fashion with mouse and windowing2. In order to guarantee correct translation, the
input system accepts only words and sentences that are known by their grammar and dictionary and it
refuses wrong input. To minimize input errors, the user can select the possible next words with the
mouse from different windows, which display the choices at a particular point in the sentence. The
sentences are parsed word by word from left to right so that wrong input is detected immediately.
After each word, the input device has to predict, with the help of the parser, all the words that can
possibly continue the sentence that is being made. For our type of on-line parser, time is critical. The
interface window has to be refreshed immediately after each word chosen by the user.

When we looked for a suitable parser, no comparison existed between Tomita's extended LR parser
and enhanced chart parsers (top-down filter, rule compiling and lookahead) using different strategies
(CKY, LC, B P) apart from Tomita's own comparison with the Earley parser (TD). Furthermore,
practical tests (Wiren 1987) are normally performed by using only simple phrase structure grammars
and by measuring pure parse time. In our experiment we were interested in real time performance
(what is seen by a user). Since the grammar type can heavily influence the overall processing
efficiency, we chose to base our experience on three grammar types in the paradigm of context-free
parsing (monadic, simple features and unification). Our parsing experiment is a continuation of the
work of J.Slocum (1981a) and M.Tomita (1985) on parsing algorithms and parsing strategies. The
emphasis o f the research lies on the real-world performance of the parsers in connection with different
grammar types rather than on the theoretical space and time complexity of the parsers.

2. Description of the parsers

In our experiment, we have compared the Tomita parser with four chart-parsers4 that have different
nile-invocation strategies. In this section we will introduce the different parsing strategies and the
improvements that can be made, i.e. top-down filtering, lookahead and rule compilation.

2 .1 . Chart parsers

Our four chan parsers can be distinguished in the way they define the two basic operations Combine
and Propose5. Combine is the procedure that builds new edges in the chart by combining existing
ones, Propose is the rule invocation strategy that predicts new edges on the basis of the grammar. In
the next chapter we define the basic algorithms. TTie improvements o f the chart parsers are described
in the following chapters on top-down filtering, lookahead and rule compilation.

2 .1 .1 . Four different chart parsers: TD, LC, CKY, BI

Let G be a context-free grammar with S as start symbol. We will represent terminal symbols by
lowercase letters: a, b, c; nonterminals by capitals: A, B, C; strings o f terminals or nonterminals

^ This research has been supported by a grant from the University o f Zurich.
A system with a similar input facility is reported by H.R.Tennant (1983).

3 S. Steel & A. De Roeck (1987).

We assum e basic familiarity with chart parsing and with Tomita’s LR parsing algorithm. For further literature on charts see
Wir^n (1987), for LR parsing Aho & Ullman (1979).

Our Combine is more general than W inograds (1983) since we use a C K Y variant with complete edges only.

-264- International Parsing Workshop '89

with Greek letters: a, p, y, vertices by: i, j, k; edges 1 as pairs of the rule in dotted notation and their
left and right vertices. We will call the first symbol to the right of the dot in an active edge the required
category. In the following example of an active edge, <A -> B • C D I i,j>, C is the required category,
i the left and j the right vertex. TD, LC are implemented in such a way that they use only active edges,
CKY only complete edges and BI active and complete edges.

2 . 1 .1 . 1 . Top-down (TD)

This strategy can be considered as Earley-like since it is very similar to Earley's algorithm apart from
the fact that it does not use a lookahead Some authors describe its Combine as the 'fundamental rule'
of chart parsing2.

Combine
Whenever a complete edge Ec <A -> a • I j,k> is added to the chart, combine it with all active
edges Ea <B -> p • Cy I ij> ending at Ec’s starting point j if Ec's category A corresponds to Ea's
required category C and build the corresponding new edges <B -> pC ■ y I i,k>.

Propose
Whenever an active edge Ea <A -> a • Bp I i j> is added to the chart, if its required category B is
a nonterminal, for every rule B -> y in the grammar G that expands Ea's required category B
add an empty active edge Ex <B -> • y I j j> .

The parse runs top-down and is triggered by the first active edge <S -> • a I 0,0> expanding a with all
the rules that have the start symbol S as left-hand side. It proceeds in a strict left-to-right fashion, the
next input word is read when all Proposes and Combines up to the current input point have been
executed. Opposed to the TD strategy are the two typical bottom-up parsers LC and CKY. Instead of
using the rule selecting mechanism for building new hypotheses or active edges on the basis of
required categories, the bottom-up parsers trigger the rules from the categories of complete edges.

2 . 1 . 1 . 2 . Left-corner (LC)

As a bottom-up technique new edges are proposed on the basis o f complete edges. The corresponding
grammar rules are triggered if the first symbol o f the right-hand side (RHS) o f the rule , the 'left-
corner', has the same category as the complete edge. LC and TD have the same 'Combine' and expand
active edges from left to right.

Propose
Whenever a complete edge Ea <A -> a • I i j> is added to the chart, for every rule B -> Ap in
the grammar G whose left-corner symbol A has the same category as Ea, add an active edge En
<B -> A • p I i,j> to the chart.

2 . 1 . 1 . 3 . Cocke-Kasami-Younger (CKY)

The second bottom-up parser is a variant of the Cock-Kasami-Younger algorithm. It is similar to CKY
in the sense that it is pure bottom-up and combines only complete edges, but the grammar rules are not
restricted to Chomsky normal form. To achieve this, Combine works from the right to the left and the
rules are proposed on the rightmost symbol of the right-hand side.

Propose
Whenever a complete edge Ea <A -> a • I i j> is added to the chart, propose all rules B -> pA in
the grammar G, whose rightmost symbol is A.

1 Edges con-espond to Earley's (1970) ’states’ and to ’items’ in Aho & Ullman (1977).
2 H. Thompson (1981). We will describe the two operations in a similar style to Thompson and Wir6n (1987).

-265- International Parsing Workshop '89

Combine
Whenever a complete edge Ec <A -> a • I i j> is added to the chart, for each rule B -> pA that is
proposed on A and for each combination of consecutive1 complete edges starting with Ec and
going to the left whose categories satisfy the sequence pA build a new complete edge En <B ->
PA-1 k,j> starting at the vertex k of its left-most edge and ending at the right vertex j of Ec.

2 . 1 .1 . 4 . Bi-directional (BI)

De Roeck (1987) gives the following motivation for bi-directional rule invocation. Form a linguistic
point o f view, certain phenomena like traces are best analysed top-down whereas others are best
discovered from evidence in the string, e.g. in coordination, the conjunction is the best evidence for
triggering the rule. But in the two bottom-up chart parsers the rules are triggered by a fixed handle,
which is either the left-most or the right-most symbol o f the RHS of a rule. In bi-directional chart
parsing the linguist can tailor the rule invoking strategy locally by annotating the rules if they are used
top-down or bottom-up. For bottom-up rules, one has to indicate which symbol they are triggered on.
A rule for coordinating Np’s can be annotated for example 'up' on the conjunction: Np -> Np Conj
Np {up Conj}. When the complete edge for Conj is added to the chart, this rule will be triggered and
it will add an active edge that tries to combine with an NP to the left as well as to the right. The
Propose of the bi-directional parser acts accordir.i the the annotation o f the rules. In order to avoid
duplication Combine has been implemented in such a way that it first combines to the left and only
then to the right. We have to expand the dotted rule notation in the sense that a colon marks the
beginning o f the recognized symbols of an edge and the dot the end o f the recognized parts. Symbols
to the right o f a colon and to the left o f a dot have been recognized. Our implementation proposes only
to the right. An active edge can be left-active, if it is expecting a symbol to the left

Etqpqss
Whenever a complete edge Ea <A -> : y • I i j> is added to the chart, for every rule B -> aAp
annotated bottom-up on the symbol A, add an active edge En <B -> a : A • p I i,j> to the chart.
Whenever an active edge Ea <A -> : a • Bp I i j> is added to the chart, if its required category B
is a nonterminal, add an empty active edge Ex <B ->*51 j,j> for each rule in the grammar G
that is annotated down and that expands Ea's required category B.

Combine
Whenever a left active edge Ea <A -> a : y • p I i,j> is added to the chart, for each combination of
complete edges starting with Ea and going to the left whose categories satisfy the sequence a
build a new active edge En <A -> : ay • p I k,j> starting at the vertex k o f its left-most edge and
ending at the right vertex j of Ea.
Whenever a complete edge Ec <A -> a • I j J o is added to the chart, combine it with all active
edges Ea <B -> : p • Cy I i,j> ending at Ec's starting point j if Ec’s category A corresponds to
Ea’s required category C and build the corresponding new edges <B -> : p C • y I i,k>.

The bi-directional chart parser was included in the tests for verifying the hypothesis if triggering
annotations o f the rules reduce the search space and improve the overall performance.

2.1.2. Top-down filter (tdf)

In general, bottom-up algorithms have a reduced search space by the fact that they are data-driven. On
evidence o f complete edges, that are present in the string, they are faster in finding the corresponding
rules. They do not have to explore the whole search space of the grammar as the TO parser that is
over-productive in active edges. On the other hand, bottom-up parsers have problems in dealing with
rules that have common right parts as in the following example: 'CD' is the common right string o f
both rules A -> BCD and A -> CD. Both rules will fire on a string 'BCD'. Bottom-up chart parsers
are over-productive in complete edges that do not attach to phrases on the left. The next two chapters
deal with filters to reduce over-production o f useless edges: top-down-filtering, a method for bottom-

1 Two complete edges can be combined to the left if the starting vertex o f the first edge corresponds to the ending vertex of the
second one.

*266- International Parsing Workshop '89

up parsers to reduce the production of useless complete edges and lookahead, a method to reduce the
production of unnecessary active edges, useful for TD, LC and BI.

Top-down-filtering is described like running a top-down parser in parallel with a bottom-up parser1.
The bottom-up parser proposes new edges while the top-down process checks if they can be derived
from the root. The tdf rejects all proposed rules that will generate phrases that can't be attached to the
left context. The tdf uses a "reachability relation R where AftB holds if there exists some derivation
from A to B such that B is the left-most element in a string derived from A" (Wiren 1987, cf also Pratt
1975). The reachability relation R can be precompiled so that the tdf can check in constant time if Jl
holds for a new proposed edge.

In the LC parser, the tdf is implemented in the following way: For each nonterminal category A the
transitive closure of the categories that are reachable from A are precalculated . At each vertex, the tdf
keeps a list of the reachable categories. Vertex 0 is initialised with the list of the categories that are
reachable from the root category. For each new active edge En, the tdf adds the categories that are
reachable from the new required category to the tdf -list of reachable categories at the ending vertex of
En. In the function Propose, the tdf checks for every proposed rule if its left-hand side category is in
the list of the reachable categories of the current vertex. Only rules that pass the tdf lead to the creation
of new active edges.

2.1.3 . Lookahead (la)

Top-down-filtering cuts down the production o f useless complete edges in bottom-up parsing by
checking if they can combine with the left context The lookahead function verifies if a new edge can
be attached to the right context. Wiren (1987) reports an experiment where la was used successfully to
reduce the over-production o f active edges in TD or LC2. La is based on the same reachability relation
as tdf but is loolang to the right. Each time an active edge is proposed, the la function checks if the
new required category Cn can reach the preterminal category of the next input word ai+i, that is if
CnR.ai+i holds. We have tested all our parsers without lookahead.

2.1.4. Rule compilation

The third method for reducing the number o f edges in chart parsing is precompiling the grammar rules
into decision trees. Assume two rules used by a LC parser, A -> BC and A -> BDE. The two rules
have the common left part B and can therefore be merged into a single combined rule with a shared
part B: A -> B (C, DE). In parsing, the two rule scan share the common pan B which is represented
by a single active edge. TD and LC compile the rules by factoring out similar left parts. CKY
combines from right to left and does therefore the factoring from the right. BI, based on annotations of
single rules, uses both ways o f building its rule decision trees. Note that building decision trees for
rules is related to the way in which the canonical set of items is built for the construction o f LR parsing
tables. The first step in making a new canonical LR set is done by taking all the items in a set that have
the same category to the right o f the dot. Building decision trees from rules also groups them together
on the basis o f the next category that has to be recognized.

2.2. Tomita's extended LR parser (TOM)

Tomita's Parser (Tomita 1985) is a generalised version o f a LR shift-reduce parser. It is based on two
data structures: a graph structured stack and a parser forest for representing the result. The graph-
structured stack allows nondeterministic parsing o f ambiguous grammars with LR shift-reduce
technique. Tomita (1988) shows that his graph-structured stack is very similar to the chart in chart
parsing. The parse forest allows an efficient representation o f the result While the number o f parses
can grow exponentially, the parse forest grows polynomially. In order to see which part o f the
program is responsible for efficiency, we compare two versions o f Tomita's parser, one with and one
without parse forest

1 J. Slocum (1981b), M .K ay (1982), Pratt (1975), Wirdn (1987).
2 Earley uses the lookahead in a different way: The lookahead is in his Completer and not in the Predictor, as in Wirdns
program m s.

-267- International Parsing Workshop '89

2 .3 . The gram m ar types

Each parser can be run with three different types of context-free grammars. This is done by adding
annotations to the context-free rule skeleton. Whenever all constituents of a context-free rule are
found, before the new edge is constructed, the parser calls for a rule-body procedure (Slocum 1981b)
that evaluates the annotations o f the rule. Each grammar type has a different module for evaluating the
rule-body procedure. If the rule-body procedure returns an error because a test has failed, the new
edge is discarded.

The first grammar type uses simple phrase structure rules with monadic categories that have no
annotations. The second grammar type has annotations that go with simple sets of attribute-value pairs
where the values are atomic. These annotations allow testing and assigning features to particular nodes
of the context-free rules. The third grammar type is unification based and uses complex features and
annotations in the PATR-II style. The three grammar types vary the rule-body procedure overhead
(unification being very time consuming) and therefore show a more realistic picture of the behaviour
of the parsers in real context.

3 . Previous em pirica l com parisons

In this section we report the results o f three practical comparisons o f parsers relevant to our
experiment: Slocum who compared particularly LC and CKY with top-down filter, Tomita who
compared his extended LR parser with Earley's parser and Wiren who compared TD and LC with top-
down filter and lookahead. Each of the comparisons gives an incomplete picture. They usually
compare two basic strategies with different refinements like top-down filtering etc.

One o f the important points for comparisons is stressed by Slocum (1981b): Theoretical calculations
about worst case behaviour o f algorithms can be quite inaccurate because they often neglect the
constant factors that seem to have a dominant effect in practical situations. He writes: "In order to
meaningfully describe performance, one must take into account the complete operational context of the
natural language processing system, particularly the expenses encountered in storage management and
applying rule-body procedures” since a significant portion of the sentence analysis effort may be
invested in evaluating the rule-body procedures. To measure performance accurately he suggests
including "everything one actually pays for in real computing world: Paging, storage management,
building interpretations, rule-body procedure, etc., as well as parse time".

3 . 1 . Slocum : two bottom -up chart parsers, LC vs. C KY

Slocum has conducted two experiments, one at SRI and the second one at LRC, which is more
important for us. In the second experiment, he carefully compared two bottom-up chart parsers: LC
and CKY enhanced with top-down filtering and early constituent tests1. He used the German analysis
grammar 500 rules) o f the MT system that was under development at the time at LRC and a corpus
of 262 sentences going from 1 - 39 words per sentence (15,6 words/sentence average). The rule-body
procedures were rather considerable for a parser test but interesting for realistic performance
evaluation. They consisted o f "the complete analysis procedures for the purpose o f subsequent
translation which includes the production o f a full syntactic and semantic analysis via phrase-structure
rules, feature tests and operations, transformations and case frames".

Given his grammar and test sentences Slocum establishes two things:

1) LC with tdf (without early constituent test) performs best, better than CKY (which is the opposite
of the common expectation). He comments that a tdf increases the search space, but that the overhead
is balanced in practice by the fact that the tdf reduces the number of phrases and therefore particularly
the rule-body procedure overhead, which is considerable in his case. "The overhead for filtering in LC
is less than that in CKY. This situation is due to the fact that LC maintains a natural left-right ordering
of the rule constituents in its internal representation, whereas CKY does not and must therefore
compute it at run time."

1 The early constituent test calls for the parser to evaluate that protion of the rule body-procedure which tests the first
constituent, as soon as it is discovered, to determine if it is acceptable’' (Slocum 1981b)

-268- International Parsing Workshop ’89

2) "The benefits of top-down filtering are dependent on sentence length: in fact filtering is detrimental
for shorter sentences. Averaging over all other strategies, the break-even point for top-down filtering
occurs at about 7 words.”

We conclude this section with a statement from Slocum about filters: "Filtering always increases pure
parse time because the parser sees it as pure overhead The benefits are only observable in overall
system performance, due primarily to a significant reduction in the time/space spent evaluating rule-
body procedures." TTiis point will be important in our comparisons since we use three different
grammar types with rule-body procedures that take increasingly more time.

3 . 2 . Tom ita: The Tom ita parser vs. Earley's algorithm

Tomita (1985) compared his parser empirically with two versions of the Earley algorithm (E-I and E-
II). In our terminology this would correspond to TD and TD+la. WTiile the Tomita parser was
producing a parse forest, E-I and E-13 were run as recognizers and produced no parse.

In the comparison, four pure context-free phrase-structure grammars were used, consisting of a
varying number o f rules: G1 8, G2 40, G3 220 and G4 400 rules. These grammars were tested with
two sets o f sentences, SI: 40 sentences from texts and S2: 13 artificial sentences that have an
increasing number of prepositional phrases (1 to 13). These artificial sentences are useful for testing
growing sentence ambiguity since the number o f parses grows exponentially (Martin et al. 1981).

Tomita’s experiment shows that his algorithm works 5 to 10 times faster than Earley's standard
algorithm (TD), and 2 to 3 times faster than Earley's improved algorithm (TD+la). He states that this
result is due to the pre-compilation of the grammar into an LR table. Tomita summarizes that his
algorithm "is significantly faster than Earley's algorithm, in the context of practical natural language
processing.. . Its parsing time and space remain tractable when sentence length, sentence ambiguity
or grammar size grows in practical applications."

3 . 3 . W iren: top-dow n and bottom -up chart parsers, TD vs. LC

Wiren compared in his experiment two basic chart parsers with several improvements, TD versus LC,
both with lookahead, LC with top-down filtering1. He tested his parsers with grammars G1 to G3
from Tomita, with a reduced number of the two sentence sets, S21 and S2.

The results o f his experiments show that the "directed methods" - based on top-down filtering and
lookahead - reduce significantly the number o f edges and perform better than undirected parsers.
Tested independendy, the selectivity filter (lookahead in our terminology) turned out to be much more
time efficient than top-down filtering that degraded time performance as the grammar grew larger2.
"The maximally directed strategy - .. . with selectivity and top-down filtering - remained the most
efficient one throughout all the experiments, both with respect to edges produced and time consumed."
It performed better than TD with lookahead.

Putting the results o f the three experiments together, we would expect that improved LC performs best
amongst chart parsers. Since the Tomita parser has only been compared with TD, we can expect a
different result by comparing it with improved bottom-up chart parsers that compile their rules into
decision trees (cf. chap. 2.1.4). Tomita and Wir6n measure pure parsing time determined by CPU
time minus time for garbage collection. Their grammars are pure CF grammars using little rule-body
procedure time and it is therefore difficult to predict what the interaction will be between filtering
overhead and rule-body procedure and how this will influence overall performance.

4 . T h e com p arison

4 . 1 . T he parsers

Our main goal was the selection o f a suitable parsing strategy for our on-line MT-system. Since our
application is time critical, one o f the important questions was what combination o f parser and rule-

1 LC k la Kilbury has already been used by Slocum. What it comes down to is that new active edges subsume the complete edges
that have provoked their proposal. Since we use that variant o f LC (cf. 2 .1.1.2) coming from Slocum (1981a), we dont
distinguish betw em a standard LC and the Kilbury variant. -2 6 9 - International Parsing Workshop '89
1 W irfn explains this puzzle with implementational reasons.

body procedure is best for our purpose. One of the objectives was to verify if the Tomita parser is as
efficient as predicted if it is compared to improved bottom-up chart parsers. Since no comparison
existed between all the basic rule invocation strategies for chan parsers, we decided to compare the
Tomita parser with four chart parsers. To guarantee the comparability of the chart parsers, we chose
Slocum's implementation (1981a) as basic design for all chan parsers. We added two supplementary
rule invocation strategies to his bottom-up left-comer (LC) and Cocke-Kasami-Younger strategy
(CKY), namely a top-down Earley-like strategy (TD) and a bi-directional strategy (BI). The basic
chart parsers were augmented by two enhancements, i.e. top-down filtering and compilation of the
rules into decision trees. We took the Tomita parser as described by Tomita (1985) and added a
second version without the parse forest representation. Since its LR(0) parsing table has no
lookahead, we added no lookahead to the chart parsers.

All the programs are implemented in Allegro Common Lisp and tested on a Macintosh II (MC68020
with 5 MB RAM). As main parameters we compared number o f edges, number of rule-body procedure
executions and over-all time.

4 . 2 . The gram m ars and sentences

The first test uses small grammars (22 and 80 rules) together with the same 50 artificial sentences. The
monadic grammars are tested with all 9 parsing strategies (TOM +/-parse forest; TD, LC, CKY, BI,
the bottom-up parsers +/-tdf), for features and unification grammars we use TOM without parse forest
and all the chart parsers. The 50 test sentences are constructed artificially to control parameters like
sentences ambiguity, sentences length and three linguistic phenomena, i.e. PP-attachment, relative
clauses and coordination. They can be classified into two groups, one where ambiguity grows
exponentially with increasing sentence length (PP-attachment and coordination), and a second group,
where the sentence length does not influence ambiguity (they have 1 to 3 readings). The sentence
length varies from 3 to 24 words. Each grammar type has two small grammars with approximately 25
resp. 80 rules.

The second test compares a reduced number of parsers (TOM, TD, LC, CKY, bottom-up +/-tdf) with a
bigger monadic grammar based on the German avalanche corpus that has 750 rules and 300 lexical
items. The 50 test sentences were taken from the avalanche corpus, their length varies from 6 to 42
words (average 19 words per sentence).

5 . T est-resu lts and d iscussion

Before we comment, we will give a brief outline of how we present the test-results in appendix 1 and
2. The seven tables in appendix 1 summarize the statistics for each grammar and set of sentences. We
give the total number o f edges and the total time for each parser over all sentences. The figures for
time indicate overall time1 that includes rule-body procedure etc. The reader should be careful in the
interpretation of the timings; these figures are dependent on machine, lisp system and the way in
which the algorithms are programmed. Nevertheless, we think that they give an indication o f relations.
Appendix 2 shows a limited number of diagrams to illustrate the figures graphically.

In appendix 1, each table shows three fields, one for the number of edges and two for timings: 1) the
total time for all sentences and 2) the time for 26 sentences with low ambiguity. The second group of
test sentences includes relative clauses and coordinations. The number o f words per sentence goes
from 5 to 23 words (13 average) and they have 1 to 5 readings. Time is measured in milliseconds. The
column 'diff indicates the difference o f the parsers from Tomita which is set to 1. In the field ’time
all', we added the average time per word (ms/word) in order to have a figure that can easily be
compared across the different tests. We have listed the number of edges because this figure is often
given as measurement for parser performance. But one can observe that the rankings based on the
number o f edges and the one based on timing do not correspond. This is due to the particular way in
which the chart parsers are implemented. As we have mentioned in chap. 2.1.1, TD and LC keep
only active edges in the chart, whereas CKY has only complete edges and BI both. For TOM, we
counted the number o f shift operations.

Since there is limited space for diagrams, most o f them show three parsers: TOM, TD and LC +/-tdf.
All the diagrams display the time/word relation for a particular grammar and a sentence set. Diagram 1

1 Since we have forced a garbage collection before each sentence, the garbage collector does not interfere with the timings.
-270- International Parsing Workshop 89

and 2 show PP-attachment (high ambiguity: a 20 word sentence has 132 parses), diagram 3 the
time/word relation for the 750 rule grammar and all the avalanche sentences. Diagram 4 represents the
times for LC +/-tdf with the three different grammar types for a set of coordinations in high ambiguity.
Diagram 5 shows all parsers with a set o f relative clauses that have low ambiguity.

5 . 1 . The chart parsers

Our tests confirm Slocum's and Wirdn’s data: the left-comer parser (LC) with top-down filtering is
overall the most efficient chart parser. It ranks highest among the chart parsers with all grammar types
and grammar sizes. The only exceptions are monadic and feature grammars o f the size of 80 rules with
low ambiguity sentences (see below 5.3.). Earley-like top-down (TD) with the two small grammars is
highly overproductive in active edges and therefore a bad choice if it is used without lookahead
Diagram 1 and 2 show how TD is influenced negatively by the ,rammar size, the grammar in diagram
2 has three times more rules. Strangely enough, in the large grammar (table 3 and diagram 3), TD is
converging towards LC as the sentences grow longer. In diagram 3, one can see well its initial
overhead of active edges .

The bi-directional chart parser (BI) was included in the tests for verifying the hypothesis if triggering
annotations on the rules reduce the search space and improve the overall performance. None o f our
tests could confirm such a hypothesis. It seems that top-down filtering or lookahead influence
performance to a greater extent than linguistic triggering annotations. BI did not perform better with
any particular set o f test sentences or grammars.

5 . 2 . The Tom ita parser and chart parsers

Diagram 1 and 2 show how the Tomita parser (to+) performs best in situations o f high ambiguity.
Taking the overall timings in table 1 and 2, TD is 4.75 to 6.53 times slower than TOM (and our
comparison stops at sentences with 20 words with 132 readings). The situation is less dramatic if we
take LC+tdf. Here the difference is 1.67 to 1.9. But, if we take our grammar o f 750 rules with its low
ambiguity sentences, the gap is much smaller: 1.38 for LC+tdf and 2.15 for TD. A closer look at
diagram 1 and 2 shows that TOM without parse forest (to-) is roughly equivalent to LC+tdf (lc+). We
therefore think that the major speed gain o f TOM comes from its parse forest, which is an efficient
way o f packing the parse trees. But, this representation could be used with any parser and is not
specific o f TOM. In diagram 3, TOM and LC+tdf show a constant time difference. Precompiling the
grammar rules into a LR parsing table or precompiling them into decision trees does not make a crucial
difference, even with very long sentences o f up to 42 words and a large grammar of 750 rules.

5 . 3 . F ilters, gram m ar size and rule-body procedures

This chapter tries to address the complex interaction between parsing strategy, grammar size, sentence
ambiguity and overheads for top-down filtering and rule-body procedure. There is no standard
grammar size. According to the grammar type, the size varies. We estimate that unification grammars,
which are highly lexical, might have 50 to 100 rules, grammars with simple features around 5001, and
monadic grammars several thousand rules.
In general, a TD parser is disadvantaged if the grammar has a high branching factor because o f its
overproduction o f active edges (cf. chap. 2.1.3.). Bottom-up parsers suffer from rules with common
right factoring in the right-hand side o f the rules (cf. chap. 2.1.2.). A grammar might produce
different results about TD overproduction or top-down filters according to its branching factor or right
factoring. The effect of a top-down filter is not always a good one. V/e have contradicting results
about top-down filtering. In the test with the monadic grammar o f 750 rules, the two chart parsers
with top-down filter 0c+ and cky+) perform better than their counterparts without filter. Diagram 3
also shows a converging TD and a diverging LC-tdf (lc-) as the sentence length increases. This is due
to the high right factoring o f that grammar. The opposite result is shown by monadic and feature
grammars with 75 rules together with the sample o f low ambiguity sentences. In these cases, the
overhead from the top-down filter deteriorates the efficiency of the chart parsers with top-down filter.
Unfiltered parsers with sentences up to 19 words are faster than the filtered ones. This result is
influenced by the nature o f the grammar as well as its size since the top-down filter with the small
grammars (22 or 30 rules) shows a positive e ffect

1 The Metal German analysis grammar, which is based on simple features, has 500-600 rules,

-271- International Parsing Workshop '99

Another tradeoff is between top-down filter and rule-body procedure. In our tests we compare three
different types of rule-body procedures: no annotadons in monadic grammars or simple features and
unification. Monadic grammars and simple feature grammars have a small rule-body procedure
whereas the overhead for unification is considerable (2/3 for unification and 1/3 for pure parsing).
Diagram 4 shows optically that the top-down filter has a positive effect as the rule-body procedure
grows. With a time consuming rule-body procedure, a top-down filter becomes vital for the overall
efficiency. This statement should not be interpreted as a generalization about simple feature grammars
versus unification. Our point is independent of a particular grammar type but has to do with the
relation between pure parse time and rule-body procedure time.

5 . 4 . Sentence length

As we reported in chap. 3.1., Slocum claims that the benefits of top-down filtering are dependent on
the sentence length and that the break-even point for top-down filtering (averaged over LC and CKY)
occurs at about 7 words. As we have shown above, the question is more complex and influenced
furthermore by the number of parses as well as by the nature and by the size of the grammar (right
factoring and branching factor). Some of our tests show clearly that the length of the sentence is not
necessarily the main parameter. We believe that no generalization is possible unless all the mentioned
factors are taken into account.

5 . 5 . Final choice

The choice of the parsing strategy for our MT-system was guided by the following ideas: Possible
candidates for an on-line parser that parses strictly from left to right are TOM, LC+tdf and TD. Given
the performance, TD was ruled out. The question of the grammar type was more difficult to solve.
The grammar has to predict all the sentences but only the correct ones, no overproduction is allowed.
We therefore have to subclassify heavily by using a system of about 100 grammatical and semantic
features. The worst cases for an empirical efficiency test are sentences with high ambiguity. Diagram 4
shows the performance of the three grammar types where the 20 word sentence has the highest
ambiguity. The average time per word varies heavily according to the grammar type: monadic - 70 ms,
features - 160 ms and unification -1267 ms. Unification is slower by a factor o f about 20. This factor
would be increased by the search for possible next words because it is not a simple matching of
categories but a complicated search that has to take into account all the instantiated variables from
constituents that have already been found Given this poor expectation for unification grammar in on­
line parsing, we were left with two grammar types, and we opted for simple monadic grammars,
rather as a matter of computational simplicity. Together with monadic grammars, we chose the Tomita
parser, because it was slightly more performant with the large grammar for the avalanche corpus, and
last but not least, because o f its elegance. We like the idea o f precompiling the grammar into a LR
table.

We have come to the conclusion that it is very difficult to test empirically the performance of
algorithms or better o f programs and to find good generalizations1. Nevertheless, we believe that we
have shown that the parse forest representation is to a large extent responsible for the good
performance o f the Tomita parser, and second, that the difference in efficiency between the Tomita
parser without the parse forest representation and an enhanced left-comer parser with top-down
filtering and compiled rules is small. Two points of empirical research have not been addressed in our
tests, which could also help the practitioners o f computational linguistics when they have to select their
parsing strategies: 1) We have excluded the use of a lookahead We think that this point needs further
investigation (i.e. TOM with an LALR table versus LC+tdf with la). 2) Since the parse forest
representation is highly efficient, its benefits in combination with unification grammars need more
clarification.

6 . A c k n o w le d g e m e n t

I would like to thank Anne De Roeck and Tony Lawson for all the theoretical and practical discussions
as well as for the contribution o f the unification grammar from Anne and the unifyer from Tony.
Thanks also to Mike Rosner, Rod Johnson, Dominique Petitpierre and Thomas Russi for their
comments and useful hints.

1 On a different machine with a different lisp system the same programs might behave differently.

-272- International Parsing Workshop '89

A. Aho and J. Ullman (1979), Principles o f compiler design , Addison Wesly.

J. Earley (1970), An efficient context-free parsing algorithm, Communications o f the ACM 13(2), 94-
102.

M. Kay (1982), Algorithmic schemata and data structures in syntactic processing, CSL-80-12, Xerox
Parc, Palo Alto.

W. Martin, K.Church & R. Paril (1981), Preliminary analysis of a breadth-first parsing algorithm:
Theoretical and experimental results, MTT LCS Technical report.

V. Pratt (1975), LINGOL - A progress report, Proc. 4th IJCAI, Tbilisi, 422-428.

J. Slocum (1981a), A practical comparison o f parsing strategies fo r machine translation and other
natural language processing purposes, PhD University of Texas, Austin.

J. Slocum (1981b), A practical comparison o f parsing strategies, Proc. 19th ACL, Standford.

S. Steel & A. De Roeck (1987), Bi-directional parsing, in: Hallam & Mellish (eds.), Advances in Al,
Proc. o f the 1987 AISB Conference, J. W iley, London.

H.R. Tennant et al. (1 9 8 3), Menu-based natural language understanding, Proc. 21st ACL, 151-158.

H. Thompson (1981), Chart parsing and rule schemata in GPSG, Proc. 19th ACL , Stanford .

M. Tomita (1985), An efficient context-free parsing algorithm fo r natural languages and its
applications, PhD CMU Pittsburg. Also as: Efficient parsing fo r natural language. A fa st
algorithm fo r practical purposes. Kluwer, Boston 1986.

M. Tomita (1987), An efficient augmented-context-free parsing algorithm, Computational Linguistics
13(1/2).

M. Tomita (1988), Graph-structured stack and natural language parsing, Proc. 26th ACL , Buffalo.

J. Winograd (1983), Language as a cognitive process, Syntax, Addison-W esley.

M. Wiren (1987), A comparison o f rule-invocation strategies in context-free chart parsing, Proc. 3rd
European chapter ACL , 226-233.

7 . R e feren ce s

-273- Intemational Parsing Workshop '89

Appendix 1 a

Table 1 Monadic gram m ar: 22 rules

edges rank diff time all
(ms)

rank diff ms/word time 2 rank diff

lc+ 6532 5 3.08 24049 2 1.67 38 8000 3 1.07
Ic- 13332 8 6.28 41418 7 2.88 66 12301 6 1.64

o + 3 44 9 2 1.62 33 219 4 2.31 53 1 2901 7 1.72
cky- 6886 6 3.24 34 634 5 2.41 55 9599 4 1.28
bi + 6497 4 3.06 44 483 8 3.10 71 1 5850 9 2.1 1
bi- 9655 7 4.55 36265 6 2.52 58 1 0033 5 1.34
td 1 9766 9 9.31 6821 7 9 4.75 1 09 12985 8 1.73
tom 2124 1 1 .00 14364 1 1.00 23 7498 1 1.00
to-2 3881 3 1 .83 25756 3 1.79 41 7940 2 1.06

Table 2 M onadic gram m ar: 75 rules

edges rank diff time all
(ms)

rank diff ms/word time 2 rank diff

lc+ 622 4 5 3.38 24418 3 1.90 39 841 7 6 1.36
Ic- 902 0 8 4.90 27834 6 2.16 44 7318 5 1.18
cky+ 280 3 2 1.52 389 80 7 3.03 62 16481 7 2.66

cky- 488 4 6 2.65 25650 4 1.99 41 6150 1 0.99

bi + 747 6 4 4.06 56649 8 4.40 90 20 084 8 3.24

bi- 827 7 7 4.50 25815 5 2.00 41 6730 4 1.09

td 3 3 0 2 8 9 17.95 84130 9 6.53 134 20665 9 3.33

tom 1840 1 1.00 12883 1 1.00 21 6200 2 1.00

to-2 31 1 7 3 1 .69 2 1899 2 1.70 35 6382 3 1.03

Table 3 M onadic gram m ar: 750 rules

edges rank diff time all
(ms)

rank diff ms/word

lc + 369 3 3 1.94 2 01 32 2 1.28 21
Ic- 18411 6 9 .67 511 32 6 3.26 54
cky+ 1923 2 1.01 36715 4 2.34 39
cky- 6 662 4 3.50 407 85 5 2.60 43
td 16951 5 8.90 337 17 3 2.15 35
tom 1904 1 1.00 15684 1 1.00 16

Abbreviations

+ + top-down filter (tdf)
- tdf

tom Tomita + parse forest
to-2 Tomita - parse forest

274- International Parsing Workshop '89

Appendix 1b

Table 4 Featuro grammar: 30 rulea

edges rank diff time all
(ms)

rank diff ms/word time 2 rank diff

lc + 6067 4 2.10 38669 1 0.93 62 11434 2 1.06
Ic- 12666 7 4.39 7641 5 6 1.85 122 18483 8 1.71
cky + 2661 1 0.92 470 15 3 1.14 75 15233 4 1.41
cky- 5304 3 1.84 69844 5 1.69 1 1 1 16213 5 1.50
bi + 61 65 5 2.14 64901 4 1.57 103 17517 7 1.62
bi- 10266 6 3.56 818 69 7 1.98 130 14050 3 1.30
td 2 1 6 6 9 8 7.52 114548 8 2.77 182 16982 6 1.57
to-2 288 3 2 1.00 41368 2 1.00 66 10818 1 1.00

Table 5 Feature grammar: 80 rulea

edges rank diff time all
(ms)

rank diff ms/word time 2 rank diff

lc + 6232 4 2.02 4 1265 1 0.96 66 12383 3 1.04

Ic- 896 3 7 2.91 60867 6 1.42 97 14649 5 1.23

cky + 2831 1 0.92 57884 4 1.35 92 2 0668 6 1.73

cky- 4871 3 1.58 592 48 5 1.38 94 13983 4 1.17

bi + 7459 5 2.42 80217 7 1.87 128 26467 8 2.22

bi- 819 8 6 2.66 49901 3 1.16 79 11967 2 1.00

td 3 2 7 9 2 8 10.64 13565 0 8 3.16 216 249 85 7 2.10

to-2 3083 2 1.00 4 2985 2 1.00 68 11917 1 1.00

Tab le 6 Unification gram m ar: 30 rulea

edges rank diff time all
(ms)

rank diff ms/word time 2 rank diff

lc + 544 9 3 1.79 144349 1 0.91 251 234 33 1 0.93

Ic- 1 1446 6 3.75 525 2 5 0 7 3.32 913 747 50 8 2.97

cky+ 281 3 1 0.92 153500 2 0.97 267 2 72 33 3 1.08

cky- 706 8 4 2.32 5 3 3 5 1 5 8 3.38 928 73167 7 2.91

bi+ 8 675 5 2.85 2 1 0 3 0 0 5 1.33 366 2 90 34 5 1.16

bi- 14247 7 4.67 3 0 7 9 4 9 6 1.95 536 3 7 8 6 6 6 1.51

td 18795 8 6.16 1 69 68 4 4 1.07 295 2 79 83 4 1.11

to-2 3 04 9 2 1.00 1 58 03 2 3 1.00 275 25 1 3 2 2 1.00

Tab le 7 Unification gram m ar: 80 ru le *

edges rank diff time all
(ms)

rank diff ms/word time 2 rank diff

lc+ 5519 3 2.00 1 08 38 2 1 0.95 188 20531 2 1.03

Ic- 125 27 7 4 .54 272181 8 2.39 473 4 2 5 4 9 8 2.14

cky+ 2 483 1 0.90 122 61 8 3 1.08 213 2 76 03 3 1.39

cky- 570 0 4 2.07 2 6 8 4 6 8 7 2.36 467 4 1 4 8 5 7 2.09

bi+ 6770 5 2.45 135834 4 1.19 236 2 9 9 1 8 4 1.51

bi- 12232 6 4.43 189650 6 1.67 330 3 0 2 1 7 5 1.52

td 3 4 0 9 3 8 12.36 146 20 3 5 1.29 254 31551 6 1.59

to-2 2 75 9 2 1.00 11 3750 2 1.00 198 19866 1 1.00

-275- International Parsing Workshop '89

— td

words
5 8 11 14 17 20

Diagram 1 Monadic-22 PP-attachment
ms
1 2 0

Appendix 2

words
' ~ 3 5 8 1 1 14 1 7 20

Diagram 2 Monadic-75 PP-attachment

1000

ms
1 00 0

ms

1 oo

8 0

6 0

4 0

20

0 4-t i » i \ i t t t i M i i u t n u i u n n i m m i i i n i
1 4 7 1 0 1 3 16 19 2 2 2 5 2 8 31 3 4 3 7 4 0 4 3 4 6 4 9 5 2 sentence nr.
6 10 1 5

Diagram 3 Monadic-750 (all sentences)

1 000
ms

20 2 5 3 0 4 2 words

1 00

1 0

— m +
i n i m -

— f +
. . . f -

— u +

I I I ! u -

8 1 1 1 4 1 7 2 0 words

D iagram 4 LC +/-tdf (30 rules)
3 grammar types, coordination
high ambiguity

70

60

50

40

30

20

10

0

i* '1

— lc+

— Ic-

I l l l ck+

am ck-

WJWA b i+

— b i ­

— tom

— td

8
»■ -..«■----- *— — f-

11 14 1 7 19 words

Diagram 5 Monadic-75, relative clauses
low ambiguity

-276- International Parsing Workshop ’89

Finite State Machines from Feature
Grammars

Alan W Black
Centre for Speech Technology Research

and Dept of Artificial Intelligence
University of Edinburgh

80 South Bridge
Edinburgh EHl 1HN
awb3eusip.ed.ac.uk

A bstract

This paper describes the conversion of a set of feature grammar rules into a deterministic
finite state machine that accepts the same language (or at least a well-defined related language).
First the reasoning behind why this is an interesting thing to do within the Edinburgh speech
recogniser project, is discussed. Then details about the compilation algorithm are given. Finally,
there is some discussion of the advantages and disadvantages of this method of implementing
feature based grammar formalisms.

1 B ackground

Real-time continuous speech recognition is still not possible but is becoming more possible each
year. One of the many problems in recognition is doing symbolic analysis in the higher levels of
the system in a reasonable time.

W ithin CSTR, we are investigating analyses using high level GPSG-type formalisms (like that
in [Gazdar85]) to describe the grammar of various restricted domains. This high level notation is
then automatically compiled into a basic feature grammar formalism called FBF ([Thompson89])
thus compiling out aliases, feature passing conventions etc. This FBF grammar is then used directly
in the run-time recogniser within a chart parser.

However, at run tim e, the many hypotheses predicted by the lower levels of the system give
rise to many partial constituents in the chart. Thus a large amount of time was spent in the chart
doing unification. However, when we look at the real requirements of the lower level of the system
(lexical access), we note that what is required in the majority of cases is merely a simple prediction
of the next possible symbol in a sentence from a given state.

Consequently we started to think about ways to provide this information as quickly as possible.
Obviously representing the grammar as a Finite State Machine would make lexical access prediction
significantly faster. As we currently write our grammars in a high level formalism it seems wrong
to throw that information away and start again, so we hope to find some form of compilation from
feature grammars to finite state grammars.

Of course, the first theoretical point to note is that feature grammars are, in essence, context-
free thus allowing more complex languages to be described than FSGs. For example, there does

-277- Intemational Parsing Workshop '89

not exist an equivalent finite state grammar for the (context-free) grammar

S —► a S b
S —* a b

Which describes the language anbn where n is greater than or equal to 1. However if we set a finite
limit on n then there does exist a (possibly very large but finite) FSM. Thus we could accept anbn
only where n is greater than or equal to one but less than some finite number d.

In terms of natural language, an equivalent example is the restriction that you can only have
up to n levels of centre embedding within a language. This seems to be no less a restriction on a
language than the restrictions you are imposing on that language when you try to write a grammar
for it in the first place, irrespective of the grammar formalism.

Practically, there may be other problems in writing a compilation function from feature gram­
mars to finite state grammars. There is of course the problem of the size of FSM created, as
well as the time that is needed to generate it. Both these question were open at the start of our
investigation.

Because we hoped that this compilation need only be run occasionally and that the high level
formalism could be debugged using a conventional chart parser, we feel that compilation tim e can
be up to 12 hours without any problem. As for the resulting FSM, it seems that with today’s
workstations up to 100,000 transitions might be acceptable. But the question still remained: how
big a feature grammar can be compiled within these constraints?

2 T he Initial S tructures

The grammarian first writes a grammar in the high level GPSG-like notation which is then trans­
lated to FBF. This translation is relatively simple, it merely converts the user-written form into an
internal Lisp form, expanding aliases, feature passing conventions etc. The FBF formalism seemed
like a good input to the FSM compiler as it is well defined and quite fixed within our system.

FBF is effectively an assembly language for feature grammars. It is much in the spirit of PATR-
II ([Shieber86]) but differs in that it uses term unification rather than graph unification as its basic
operation, though that distinction if not important here.

The inputs to the FSM compilation are:

• a distinguished category

• a set of feature grammar rules.

• a set of lexical entries

The lexicon consists of a mapping of atomic symbols to categories. In actual fact within our
system these atoms are not words but preterminals. It is these preterminals which label the arcs
of the generated finite state machine.

It should be added that FBF is not a prerequisite for this technique. Any feature grammar
notation would be suitable (though the code would have to be changed).

-278- Intemational Parsing Workshop '89

3 The Com pilation Process

The com pilation takes place in five stages:

• conversion into in ternal s truc tu res for fast access. This consists of the conversion of categories
in the gram m ar and lexicon into an in ternal form, consisting of an atom ic type and a list of
feature values, thus unification can be done more efficiently. Also, two indexes are created
— one for the gram m ar and one for the lexicon — both indexed by category type, allowing
efficient access to them .

• conversion of the gram m ar to a non-determ inistic finite s ta te m achine. This is the main part
— see the the next section for details about this.

• removal of error s ta tes from the non-determ inistic finite s ta te m achine. S tates can be created
which cannot lead to final sta tes, these are removed as well as all arcs pointing to them .

• determ inising. S tandard determ inising of the finite s ta te m achine (as described in [Hopcroft79
p. 22])

• analysis to produce sta tistics, th is finds the size, average and m axim um branching rates.

4 The A ctu a l Conversion

The conversion is done by building “agenda s ta tes” on an agenda and processing them until the
agenda is em pty. An “agenda s ta te ” consists of the following:

• A dep th — the num ber of rew rites th a t are required to get the first category in the rem ainder

• a list of rem aining categories — these are the categories (preterm inal or otherwise) th a t have
yet to be found before the end of a sentence is reached

• A set of variable bindings

• a s ta te in the non-determ inised m achine

The basic loop s ta r ts w ith an initial “agenda s ta te ” w ith the following settings:

• a dep th of 0

• a list con tain ing only the distinguished category

• a set of em pty bindings

• the in itial s ta te of the (non-determ inistic) FSM

The processing is as follows:

Take an “agenda s ta te ” from the agenda and take its rem ainder. R ew rite the first category in
the rem ainder, using the gram m ar, in all ways, recursively un til e ither the dep th lim it is m et or a
lexical category is found (i.e. a category which is in the lexicon).

R ew rites are m ade by replacing the first category w ith the righ t hand side of a gram m ar rule,
whose left hand side unifies w ith the first category. T hus a rew rite changes the first category,

-279- Intemational Parsing Workshop '89

increments the depth, and possibly binds some variables1. Also, in addition to the right hand side,
a special “end-subrule” marker («m) is added so that we can tell when to decrease the depth count.
For example: S may rewrite as follows2

S ==>
NP VP em = >
Det Noun em VP em

Then for each rewrite, check the lexicon and find all entries that can match the first category.
Add a transition to the state in the current “agenda state” , labelled with that lexical item, to a
new state, in the non-deterministic FSM.

This may be a (truly) new state or an already existing state. Each state in the non-deterministic
FSM has a “state descriptor” which symbolizes which categories from this state would lead to a final
state. The state descriptor is constructed by taking the remaining categories list and dereferencing
the variables, removing the “end-subrules” markers, and replacing any unbound variables with a
unique atom name representing a variable3. Thus no unification is required in searching, a simple
Lisp EQUAL is adequate (actually a more complex indexing system is used).

When looking for a “new state” , the state descriptor of the required state is constructed and a
(rather large) index is checked to find if such a state already exists, if so the new transition points
to the state related to that “state descriptor” .

If a truly new state is required a corresponding new “agenda state” is created. The “cdr” of
the remaining categories list is taken: that is the next category is found in the remainder list, any
“end-subrule” markers which precede it are removed and the depth is decremented.

5 A n E xam ple

For the sake of brevity the example grammar used here is only a standard context-free grammar
with atomic categories rather than a feature grammar. Thus we use EQUAL as our test operator,
while with feature grammars we would use unification, and record any resulting bindings.

Given the following grammar:

S — NP VP
NP —► Det Noun
NP —► PropNoun
VP — Verb NP

And a lexicon as follows:

th e —♦ Det
boy —► Noun
Hanako —♦ PropNoun
saw —► Verb

1 Because variable* are “uniquified* at each instantiation of a rule the correct bindingi are ensured throughout the
conversion.

3 Atomic symbols are used here as categories for brevity
9This is actually over-general, as variables which have been bound to one variable, and hence co-referenced, but

not (yet) bound to a literal, will still be treated as distinct by this method.

-280- Intemational Parsing Workshop 89

Let us go through some of the steps. The first stage is an agenda sta te of the form4:

depth : 0 rem ainder: (S) sta te : al

There are two possible rew rites

depth : 2 rem ainder: (PropNoun em VP em)
depth : 2 rem ainder: (D et Noun em VP em)

We then add transitions from al to two new sta tes labelled with “th e ” and “Hanako” like so:

Hanako

We then create two new “agenda s ta te s” and add them to the agenda

dep th : 1 rem ainder: (VP em) sta te : a2
depth : 2 rem ainder: (Noun em VP em) sta te : aS

Now consider the second one. As Noun is already a lexical category, there is no need to rewrite
it. We can add a transition from aS to a “new s ta te ” . To find the “s ta te descrip tor” of this “new
s ta te ” we first remove the first category, and then remove any “em” m arkers, decrem enting the
dep th accordingly. The resulting rem ainder and dep th is

depth : 1 rem ainder: (VP em)

Then we create the “s ta te descrip tor” from this new rem ainder, which will give sim ply (VP), which
is the sam e as the descrip to r of s2. Thus th is new arc labelled w ith “boy” will go from aS to a2.
Like this:

Hanako

Thus we only need one occurrence of the VP despite there being two “types” of NP. Of course
in larger grammars, we would probably have two parts of the FSM representing VPs, one dealing
with singular subject VPs, and the other with plural VPs (actually there may be more depending
on the distinctions made in the grammar). This of course means building a large FSM, but that
is, in part, the object of this exercise, trading space (i.e. the size of the FSM) with time (reducing
the number of unifications required).

4no bindings are shown as we dealing with a sim ple atom ic C F G

-281- International Parsing Workshop 89

5 .1 G e t t in g L o o p s fro m R e c u r s io n

Consider the following three rules in isolation:

NP — NP PP
NP —► Det Noun
PP — Prep NP

If we can collapse recursion into loops, we can represent these three rules by the very simple FSM

prep

We have two problems to deal with here, left recursion, and right recursion. Left recursion is a
lot harder to deal with than right recursion. With left recursion, during the rewrite stage we must
check to see if we have already used the rule during this rewrite. If we detect this, we construct
the new rewrite in a different way.

Instead of replacing the first category with its expansion, we find: what the non-recursive
rewrites are; and the rules which introduce the rewrites. For the sake of description we will consider
the case where there is only one non-recursive and one recursive rule, as in this example. Thus we
have a “non-recursive rewrite” (Det Noun en) and a “non-recursive part of a recursive rule” (PP
em — from the rule NP —► NP P P). We then construct a new remainder (for an “agenda state”)

(“non-recursive rewrite”
(“non-recursive part of a recursive rule”)
“top remainder”

)

When there are multiple occurrences of the first two parts we must form remainders for the cross-
product of them. However in our example, suppose we start with the remainder (NP VP e a) , the
three parts are

non-recursive rewrite Det Noun ea
non-recursive part of recursive rule PP ea
top remainder VP ea

Thus the complete rewrite is

(D et Noun ea (PP ea) VP ea)

The “looping part” in brackets, (PP ea), does not appear in the “state descriptor” and hence
this state is treated the same as (D et Noun ea VP ea). The important feature is this: when the
categories before the bracketed part have been dealt with and we have remainder of the form ((PP
ea) VP ea), we construct two new “agenda states” , one with remainder (PP ea VP ea) and the
other (VP ea) .

-282- International Parsing Workshop '89

This of course is too general as we are now trea ting the sta tes w ith the “s ta te descrip tors” (Det
Noun em VP em) and (Det Noun em (PP em) VP ea) as the same, which may not be true. W hat
we need to do is ensure th a t after the “looping p a rt” we can get back to the same sta te which did
not follow th a t p a rt. (Assuming no variable bindings have m ade th a t join inappropria te).

Right recursion is a lot easier, having generated a state w ith the remainder (PP em VP em),
we rewrite to (p rep NP em em VP em). After removing the prep we will be left w ith a remainder
of (NP em em VP em). Because we ignore “depth” and the “end-subrule” markers in generating
“state descriptors” , the “state descriptor” of (NP em em VP em) is the sam e as that of (NP em VP
em) , despite the different depths and number of “end-subrule” markers. Thus after the preposition
we can return to the point in the FSM where we require an NP followed by a VP.

It is true that this N P is “different” from the other. One is an NP w ithin a P P the other is the
subject of a sentence, but because we are merely doing recognition th is is all we need.

N otice that this m atching of states by a sta te descriptor is not guaranteed to merge similar
sta tes, since there m ay be cases where one remainder does not start w ith a lexical category and
another does. These may represent the sam e state if the first category can be written to the a
remainder the sam e as the other (and only that rem ainder). This m eans th at we will not guarantee
the m ost m inim al FSM during com pilation, but will collapse many states.

6 C om plexity R esults

It is not surprising that this is possible. The really interesting part is whether useful grammars can
be converted to reasonably sized finite state m achines in reasonable tim e.

T he code is w ritten in Com m on Lisp and runs on a number of different m achines. It had to be
re-w ritten a number of tim es to get the performance we wished. It has been true that the spectre
of unacceptable com putational com plexity has been just round the corner a number of tim es but
so far we have kept it at bay.

D escribing the size of a grammar is difficult, but to give som e idea o f the feasibility of this
m ethod o f running feature gram mars, one of our current gram mars, which consists of 31 G PSG-
like rules, describes declarative sentences w ith the following features:

transitive and intransitive verbs
copula sentences
m ultiple adjectives, and intensifiers in N Ps
quantifiers
noun com pounding
N P conjunction

The N P conjunction was quite a drastic addition, which increased the size of the resulting FSM by
an order o f m agnitude.

T he gram mar described above can be converted to a non-determ inistic FSM of about 9,000
s ta tes5 in around one hour on a Sun 4 /2 6 0 w ith 32M egabytes of m em ory. We feel th is is well
w ithin our 12 h o u r / 100,000 sta te lim it. But although th is grammar is bigger than many “toy
gram m ars” , it is still rather sm all and not really large enough to cover a significant proportion of
the dom ain we wish to cover.

5without conjunction the FSM is lew than 1,000 atate*

-283- Intemational Parsing Workshop 89

It should be added that we have had problems in determinismg some of the generated FSMs.
Though the conversion stage has taken around an hour, determinising has failed to finish in 75
hours, producing a much larger FSM than its non-determinised equivalent. This does suggest t h a t

perhaps we should only produce non-deterministic FSMs as output.

7 C om m ent

So the basic question is, “is it worth it?”

The major loss in moving from a chart parser using a feature grammar to a finite state machine
is the loss of a parse tree. One of the reasons for adding a sentence grammar to a speech recogniser
is to enable (eventually) some form of semantic analysis. There is an argument that because vast
numbers of hypotheses have to be dealt with by a speech recogniser, perhaps running with a FSM
as a grammar would be effective during recognition, and that post-processing of the few sentences
found could be done with a chart parser.

Then again perhaps speed is not the real thing to worry about, a fast chart parser and unification
algorithm might work almost as well (especially if machines are doubling in speed every year).

It is true that the technique is practically limited, no matter how fast machines get there will
always be grammars which cannot be converted in reasonable time and/or produce finite state
machines with too many states.

And as noted before, the algorithm does produce a FSM which accepts the subset of the language
described by the feature grammar where the “depth” less than the given lim it, plus some extra
sentences not originally accepted by the feature grammar. These extras are because of two faults
in the conversion algorithm, namely in joining the end of left recursive rules and not constraining
where variables have been co-indexed by another variable (and not an atomic value).

This over-generation seems to encourage the idea of using a real chart parser to post-process
and correct the sentences accepted by the FSM (though the types of grammars which cause these
problems are not common in our domain, so far).

^ r;thin our working framework (speech recognition) this method does produce useful results.
As can still allow our grammarians to write a high level description, but still have a fast
implementation of their grammar. So in spite of the short comings we will probably use this
technique for the foreseeable future.

8 A cknow ledgem ents

This work was supported by the UK Information Engineering Directorate/ Science and Engineering
Research Council as part of the IED /SER C Large Scale Integrated Speech Technology Demonstra­
tor Project (SERC grants D /29604, D /29611, D /29628, F /10309, F /10316), in which Marconi
Speech and Information Systems are the industrial partner.

-284- Intemational Parsina Workshoo '89

References

[Gazdar85] G. G azdar, E Klein, F. Pullum and I. Sag Generalized. Phrase Structure Grammar
Blackwell, Oxford, 1985

[Hopcroft79] J . Hopcroft and J. Ullman An Introduction to Automata Theory, Languages and
Computation Addison Wesley, Reading 1979.

[Shieber86j S. Shieber An Introduction to Unification-based Approaches to Grammar CSLI
Lecture notes Num ber 4, 1986

[Thompson89] H. Thom pson FBF - A Micro-formalism for grammar: Syntax, Semantics and
Metatheory D ept of A l, University of E dinburgh, forthcom ing

-285- Intemational Parsing Workshop '89

Nariyoshi YAMAI*, Tadashi SE K O t, Noboru K U B O ^ and Toru KAW ATA^

t D epartm ent of Inform ation Engineering, Nara National College of Technology,
Yam atokoriyam a, Nara 639-11, Japan

I t Com puter Systems Laboratories, C orporate Research and Development Group,
SH ARP C orporation, Tenri, Nara 632, Japan

A n Efficient Enum eration A lgor ithm of Parses
for A m biguous C ontext-Free Languages

Abstract

An efficient algorithm that enum erates parses of ambiguous context-free languages is described, and its time
and space complexities are discussed.

W hen context-free parsers are used for natural language parsing, pa ttern recognition, and so forth, there
may be a great num ber of parses for a sentence. One common strategy for efficient enum eration of parses is
to assign an appropriate weight to each production, and to enum erate parses in the order of the to tal weight
of all applied production. However, the existing algorithm s taking this strategy can be applied only to the
problems of lim ited areas such as regular languages; in the other areas only inefficient exhaustive searches
are known.

In this paper, we first introduce a hierarchical graph suitable for enum eration. Using this graph, enu­
meration of parses in the order of acceptablity is equivalent to finding paths of this graph in the order
of length. Then, we present an efficient enum eration algorithm with this graph, which can be applied to
arbitrary context-free gram m ars. For enum eration of k parses in the order of the to tal weight of all applied
productions, the time and space complexities of our algorithm are 0 (n 3 + k n 2) and 0 (nz + fcn), respectively.

1 Introduction

Context-free parsers are commonly used for na tu ra l language parsing, pa tte rn recognition, and so forth.
In these applications, there may be a great num ber of parses (or derivations) for a sentence, only a few
of which would be needed in later processes. Therefore, we look up only a few promising parses and do
not make an inefficient exhaustive search of parses. In order to find a few promising parses efficiently, we
often take a stra tegy th a t an appropriate weight is assigned to each production and parses are looked up in
the order of the to ta l weight of all applied productions. If the assigned weight is selected carefully to have
strong correlation to w hether a parse is accepted or not, looking up parses in the order of the to ta l weight is
equivalent to enum eration of parses in the order of acceptability. For example, in the punctuation problem
of Japanese sentences, the num ber of the phrases of the sentence is known to be an excellent candidate for
the weight of parses. However, the algorithm s proposed so far th a t took this stra tegy are applied only to
the problems of the lim ited areas such as regular languages, and they are not applied to general context-free
languages.

In this paper, we present an efficient enum eration algorithm based on this strategy, which can be applied
to general context-free gram m ars. We introduce a d a ta s truc tu re suitable for enum eration of parses named

-286- International Parsing Workshop '89

a parse graph, and present how to construct a parse graph in section 3. W ith a parse graph, a path between
two special vertex, some of whose arcs are replaced iteratively by the path denoted by their labels, represents
a right parse of the parsed sentence. Because the length of paths represents the to ta l weight of all applied
productions for parses, enum eration of parses in the order of the total weight of all applied productions is
equivalent to finding paths on the parse graph in the order of length. In section -4. we show the outline of
how to enum erate the parses of the ambiguous sentence in the order of their weight, using the parse graph.
We also discuss the time and space complexities of the algorithm in tha t section.

2 Context-Free Parsing Algorithm

Several general context-free parsing algorithm s have been proposed so far, namely Cocke-Y ounger-K asam i
algorithm [2, 3], Earley’s algorithm[4], V aliant’s algorithm[5j, G raham -H arrison-R uzzo algorithm [6, 8], and
so forth. The features of these algorithm s are the following. Cocke-Y ounger-K asam i algorithm (CYK
algorithm for short) is a kind of the bottom up parsing algorithm s, and has 0 (n 3) time complexity, w h e r e n

is the length of the sentence. In this algorithm , the gram m ar is required to be w ritten in Chomsky normal
form. E arley’s algorithm is a kind of the top down parsing algorithm s, and has 0 (n 3) time complexity.
By con trast with CYK algorithm , no special production form is required in Earley’s algorithm . V aliant’s
algorithm and G raham -H arrison-R uzzo algorithm (GHR algorithm for short) are the modified versions of
CYK algorithm and Earley’s algorithm , respectively. Both of them use the technique of m atrix m ultiplication
in order to reduce the time complexity, The time complexity of V aliant’s algorithm is 0 (n 2 81) and th a t of
GHR algorithm is 0 (n 3/ lo g n). However, in both algorithm s, the overhead for m atrix m ultiplication is so
large th a t these algorithm s don’t seem suitable for the practical use.

In this paper, we adopt E arley’s algorithm as the base of our algorithm because of the following two
reasons:

(1) No special production form is required.

(2) E arley’s algorithm seems more suitable than V aliant’s algorithm and GHR algorithm because the
overhead of these two algorithm s is quite large.

Let G = (V^v, Vt , P , S) be a gram m ar, where Vy is the set of nonterm inal symbols, Vj is the set of
term inal symbols, P is the set of productions, and 5 € Vy is the s ta r t symbol. In Earley’s algorithm , the
item lists /q, A , . . . , I n+i are created, where n is the length of the parsed sentence. Each item list consists
of several i tems [A — a ■ /3 (p), /] , where A — a ft G P, p is the index num ber of the production, is the
m eta symbol th a t shows how much of the right side of the production has been recognized so far, and / is
an integer which denotes the position in the input string at which we began to look for th a t instance of the
production. The set of item lists {/o, A , . . . , / n , / n+i} is called the parse list.

As for the tim e and space complexities for Earley’s algorithm , the following are known[l].

(e - 1) The time and space complexities for parsing a sentence by E arley’s algorithm are 0 (n 3) and 0 (n 2),
respectively, where n is the length of the parsed sentence.

(e - 2) T he tim e com plexity for deriving a parse from the parse list is 0 (n 2), where n is the length of the
parsed sentence.

-287- International Parsing Workshop '89

3 Parse Graphs

3.1 T h e fe a tu res o f p arse grap h s

The parse graph is a directed graph which consists of several connected com ponents. Each connected
com ponent is called a layer of the parse graph. Each layer is an acyclic graph that has only one source,
and it corresponds to either a nonterm inal symbol or an integer. An layer corresponding to a nonterm inal
symbol has only one sink. W ith this graph, we can extract parses more efficiently than with a parse list of
Earley’s algorithm . As shown in the next section, a path between two special vertex, some of whose arcs
are replaced iteratively by the path denoted by their labels, represents a right parse of the parsed sentence.

In the rem ainder of this paper, we use the following notations.

L (f) The layer corresponding to an integer / .

L{A) The layer corresponding to a nonterm inal symbol .4.
L(v) The layer containing a • tex v.
L(e) The layer containing an .̂rc e.
Uj(A') The source of the layer L(X) , where X is either an integer, a nonterm inal

symbol, a vertex, or an arc.
vt(A) The sink of the layer L{A), where .4 is a nonterm inal symbol. Note th a t the

layer corresponding to a nonterm inal symbol has only one sink.

In the parse graph, each arc has one of the following labels.

(1) An index num ber of the production p, which denotes the derivation by .4 — a (p).

(2) A nonterm inal symbol A, which denotes the derivation A ^ e.

(3) The index of a vertex v , which denotes the path from u,(y) to v.

W hen we describe the arc e = (m, v) with its label of each kind, we use the notations e(p), e(A), e[u], or
the alternative notations (u,t> ;(p)), (u , v \ (A)) , (« ,u ;[v j), respectively.

Instead of an item of the form [A — ot-fi (j>), /] in Earley’s algorithm , we use the trip let [.4 — or-/? (p), / , y]
as an item of our algorithm for constructing a parse graph, where v is the index of a vertex.

For exam ple, we parse the sentence xx of the gram m ar shown in Figure 1. The parse list and the parse
graph generated from this sentence are shown in Figure 2 and Figure 3, respectively.

In Figure 3, the label “(2)” of the arc from vertex # 8 to vertex # 9 indicates the derivation by 5 — 5 / (2),
the label “ (5)” of the arc from vertex # 0 to vertex # 1 indicates the derivation 5 ^ 6 , and the label “[7]”
of the arc from vertex # 2 to vertex # 8 indicates the paths from vertex # 0 to vertex # 7 .

-288- Intemational Parsing Workshop '89

Our algorithm for constructing a parse graph is based on Earley’s algorithm . In Earley’s algorithm , one of
three operations is performed on each item, depending on its form, to add more items to the item lists. In
our algorithm , these operations not only add more items to item lists but also add new vertices and arcs to
the parse graph, shown as follows.

3.2 A n a lg o r ith m for c o n s tr u c tin g a p arse graph

S - € (1)
S — S J (2)
J - F (3)
J -* / (4)
F —* x (5)
I —► X (6)

Figure 1: An ambiguous context-free gram m ar

-289- International Parsing Workshop '89

Io

h

S' — •5$ (0), 0, 0
s — (1), 0, 0
s — ■S J (0), 0, 0

' S' — S - $ (0), 0, 1
s — 5 • .7 (2), o, 2
J — ■F (3), 0, 0
J — ■I (4), 0, 0
F — ■i (5), 0, 0
I —- ■i (6), 0, 0

F — x • (5), 0, 0
I — x- (6), 0, Q
J — F- (3), 0, 4
J — I- (4), 0, 6
s — SJ- (2), 0, 8
S' — S - $ (0), o, 10
s — 5 • J (2), 0, 11
J — ■F (3), 1, 12
J — ■I (4), 1, 12
F — ■x (5), 1, 12
I —* ■I (6), 1, 12

F — X" (5), 1, 12
I — I- (6), 1, 12
J — F- (3), 1, 14
J — I- (4), 1, 16
S — SJ- (2), 0, 18
S' — s ■ $ (0), 0, 20
s — 5 • J (2), 0, 21
J — ■F (3), 2, 22
J — ■I (4), 2, 22
F — ■x (5), 2, 22
I — ■X (6), 2, 22

S' — 5$. (0), o, 20

Layer 0:

.i ?**0 j z u 0 j .2lK 3
2 8 g

|- (- -K D

\ (3)

h'-^KD >
5 ,/ * 7

[51 / < 4>

6

[9] K D
10

^Uoiizi*o<2i>o
11 18 19

[19]

20

[19]
* o

21

Layer 1:

r — K D
13

\ (3)

^ > 15 /▼ 17

[151 / < 4>

12 18

Layer 2:

o
22

Layer S:

y-
V»<S) vi(S)

(p) : a label "production p"

[v] : a label “vertex v“

<S> : a label "nonterminal S'

Figure 3: A parse graph for the sentence xx of the
gram m ar in Figure 1

h :

re 2: A parse list for the sentence xx of the
gram m ar in Figure 1

-290- International Parsing Workshop '89

The scanner is performed when an item in Ij is of the form [.4 — a ■ aJ + l 3 (p) , f , v] . It puts the item
[*4 — a a j +1 • 3 {p), / , v] to Ij + l .

O p e r a t io n 2 (p r e d ic to r)

The predictor is performed when an item in Ij is of the form [.4 — a • B 3 [p) , f , v]. It adds items [B —
•7 k (Pk) * j i i>iO)] for B-productions B — ~{k (pk) to Ij, except in the case where these items have already
been added to Ij. If the vertex v, (j) have not been created yet, the predictor creates v,{j) to the layer
L(j) . Especially, in the case where B => C LC2 • • • Cm e and C LC V --C m G Vy, the predictor adds the
vertices vs{B) , v u u2, . . . , ym_ !, vm , vt{B), and the arcs (t>,(B), v{\ (C L)), (, i'2;(C 2)), (e?2, vy, (C3)),
(t'm — 2 1 ym — I i (C m— L)) t (^m — 1 ? L'm ; (Cm)), (um, (p)) to 1 (5) if they are not in L{B) , and performs one
of the following:

(a) If an item of the form [.4 — q B • 3 (p) , f , w] is already in Ij, then add the arc (v , w \ (B)) to the parse
graph.

(b) O therwise, add the vertex w and the arc (v ,w' , (B)) to the parse graph, and add the item [.4 —
q B • 0 [p) , f , w] to Ij.

O p e r a t io n 3 (c o m p le te r)

The completer is performed when an item in Ij is of the form [.4 — a • (p) , f , v] . It performs one of the
following:

(a) If / = j , then the item would be processed by the predictor. Therefore, the com pleter does nothing.

(b) If / ^ and there exists an item of the form [A — ,3 • (9-),/, u] (p ^ q, u ^ v) in /j, and the arc
(u, w ; (<7)) in the parse graph, then add the arc (v , w\ (/>)) to the parse graph.

(c) Otherw ise, add a new vertex 1 and a new arc {v , x; (p)) to the parse graph. Furtherm ore, for all items
of the form [Bk — Ik ■ Abk ipk), f k , ^k] in / / , perform one of the following:

(c - 1) If there exists an item of the form [Bk — 7*.4 • 6 k (pk) , f k , Vk] in Ij where uk ̂ v*, then add a
new arc [uk , i>*;[1]) to the parse graph.

(c -2) O therw ise, add a new vertex vk and a new arc (u*, t;*; [z]) to the parse graph, and add a new
item [Bk — 7kA ■ 6 k (Pk), A , Vfc] to Ij.

We describe our algorithm for constructing a parse graph as follows:

A lgorith m 1. A n a lgorithm for con stru ctin g a parse graph

A context-free gram m ar G = {Vy, V j, P, S) and a sentence a La2 • • • an are given.

[step 1] Add the m eta symbol “$n to the tail of the sentence. Add the production S' — 5$ (0) to P.
C reate the parse graph consisting of r , (0). C reate the item list Iq consisting of [5 ' — -5$ (0), v,(0)].

[step 2] C reate the item lists Iq , / 1 , . . . , /„+i in order, by perform ing the following operations from k = 1
to k = n.

O p e r a t i o n 1 (s c a n n e r)

-291- Intemational Parsing Workshop '89

(1) Perform the predictor or the completer to add items to the item list Ik, until no more items can
be added to I

(2) Then, perform the scanner to add items to Ik+i-

[s te p 3] If / n+i has an item of the form [5/ —* 5$ • (0), u], then it means that the parser accepts the
sentence, and the algorithm term inates. Otherwise, it means tha t the parser rejects the sentence, and
the algorithm term inates.

Note that this algorithm is the same as Earley's algorithm except the portion for constructing a parse
graph.

As for the time and space complexities of this algorithm , the following theorem holds.

T h e o r e m 1. The time and space complexities of our algorithm are both 0 (n 3), where n is the length
of the sentence.

(proof) Consider the number of items in the item lists. Acc«. .ding to three operations, namely the
scanner, the predictor and the com pleter, each item list does not have items such th a t their first and second
com ponents are the same. Therefore, each item list has 0 (n) items, because the num ber of the kinds of the
first com ponent is constant, and tha t of the second com ponent is not more than n + 2. Hence, the num ber
of items of the parse list is 0 (n 2), because the parse list consists of n + 2 item lists. Consider the time and
space complexities of the operations per item.

(1) As for the scanner, the time and space complexities are both 0 (1).

(2) As for the predictor, at most 0(\P\) items are added to the item list, and 0 (|P |) vertices and arcs are
added to the parse graph, where |P | denotes the num ber-of the productions. Therefore, the tim e and
space complexities are both 0 (|P |) = 0 (1).

(3) As for the com pleter, if the second component of the performed item is / , the com pleter scans all items
in I f , adds at most 0 (n) items to the item list, and adds at most 0 (n) vertices and arcs to the parse
graph. Therefore, the time and space complexities are both 0 (n) .

Consequently, the time and space complexities of the operations per item is 0 (n) . Therefore, the tim e and
space complexities of the parse graph construction algorithm are both 0 (n 3). □

Com pared with (e-1) in section 2, the tim e complexity for constructing a parse graph is the same as
E arley’s algorithm , but the space complexity is worse because the num ber of arcs in a parse graph is 0 (n 3).

4 Enum eration o f Parses

4.1 Extracting parses

In order to ex tract parses from a parse graph, we introduce a traversal paths of a parse graph. The no tation
7r(u, v) represents traversal paths from u to v.

A traversal path from a vertex it to a vertex v is defined as follows provided th a t L(u) = L(v).

(1) A null sequence is defined as a traversal path if u = v .

-292- International Parsing Workshop '89

(2) The sequence of the arcs where e x = (i t , - , i \) , is defined as a traversal pa,th if a = u i , v i =

Uo, U2 = « 3 . • • • . y n - l = « n , = y -

(3) Let e i e 2 • • • c n be a traversal path from u to v . in which an arc e; is labeled with a nonterm inal symbol
.4. The-sequence of the arc e'i • • • e,_ i tt(i’3(.4). i’t(.4))e,-+i • • • en in which e,(.4) is replaced by a traversal
path JrfwjM), is defined as a traversal path.

(4) Let eieo • • • en be a traversal path from u to u, in which an arc e, is labeled with the index of a vertex
v. The sequence of the arc eL • • • e ,_ Lx (vs[v), v)e, + l • • • en in which e,[u] is replaced by a traversal path
ic[v, (v) ,v) is defined as a traversal path.

Especially, the traversal path that has only the arcs labeled with the index of the production is called a
proper traversal path. The notation r* (u , v) represents proper traversal paths from u to v. This notation is
also used to represent the sequence of the labels of the proper traversal paths.

As for the relationship between proper traversal paths and parses, the following theorem holds.

T heorem 2. If there exist two items [A — or • 7 (p), / , u] E / j , [-4 — a/3 • 7 (p), / , v] € Ik, where
a ,/? , 7 G V m, the sequence of the labels r* (u ,v) is the reverse order of the sequence of the production
num bers used for the rightm ost derivation aJ + 1 • • • .

r m

(proof) It is easy to prove this theorem by induction on the length of the derivation sequence. □

Let u((0) be the third com ponent v of the item [5' —• 5 S ■ (0), 0, v] € / n+ 1 - According to theorem 2,
the sequences of the labels 7rm(u,(0), vt(0)) represent the right parses of the parsed sentence. An exam ple of
a proper traversal path of the parse graph in Figure 3 is shown in Figure 4, where Uj(0) is vertex # 0 and
yt(0) is vertex # 20 .

A right parse can be ex tracted from the parse graph by searching a proper traversal pa th from i/f(0)
toward tfj(O). This extraction can be done w ithout backtracking, because each layer has only one source.
Therefore, the following theorem holds.

T heorem 3. If the given gram m ar is cycle-free, the tim e complexity for ex tracting a parse is O(n),
where n is the length of the sentence.

(proof) If the gram m ar is cycle-free, the length of the parse is O(n) . Therefore, the tim e complexity is
O(n) . □

C om pared with (e-2) in section 2, the time complexity for ex tracting a parse is be tte r than Earley’s
algorithm .

4.2 An algorithm for parse enumeration

Using a parse graph, enum eration of the parses in the order of the to ta l weight is equivalent to enum eration
of the proper traversal paths from ^j(O) to vt(0) in the order of the length. W hile m any researchers have
developed the algorithm s for finding the k shortest paths[9, 10, 11, 12, 13], we apply one of them developed
by K atoh, Ibaraki and Mine[10] to the parse graph recursively. Because of the lack of the space, we explain

-293- Intemational Parsing Workshop '89

o --^ -- O
\0 ! 20

I

O -------------------------s --------------------- KD--------- ^ -------- > _
\ ° / v 1 ,' 18 W 19

I \
I \

fy -<-s->- >o--- 0--(> [131 >0 ^ -6
\0 ! \ 2 ; 8 9 ',12 / 14 17

i \
i \

o!!k) aJ5 U o !^d
vs(S) vt(S) \0 / 4 7 12 13

right parse: 1 5 3 2 5 3 2

Figure 4: A proper traversal path from vertex # 0 to vertex #20

only the outline of the algorithm . The details of the algorithm are described in [14]. In the following
discussion, the k- th shortest traversal path from i/,(0) to vt(0) is referred to as x*.

First of all, derive the shortest path tree for v,(0), denoted as T (v s(0)), which consists of the arcs of the
shortest paths from i!,(0) to all o ther vertices. The shortest path tree can easily be derived in the algorithm
for constructing a parse graph, x 1 can be extracted from T (uJ(0)). tt2 consists of the path o fT (v ,(0)) from
MO) to a vertex u, the arc (u, v) where v is one of the vertices on 7T1, and the subpath of from v to v*(0).
Therefore, the num ber of the candidates of tt2 is the same as the sum o f the in-degree of all vertices on the
shortest path . As for the parse graph, the length of the shortest path and the in-degree of a vertex are both
0 (n)[l4] , and hence we can derive tt2 in 0 (n 2). In order to derive t 3, all paths from vf(0) to ut(0) except
tt1 and x 2 are divided into three sets as follows (see Figure 5):

(1) The set of paths th a t join the subpath common to tt1 and tt2. The shortest path in this set is referred
to as i a .

(2) T he set of paths th a t jo in x 1, and contain the subpath common to x l and x2 as their final subpath .
The shortest pa th in this set is referred to as x*,.

(4) The set of paths th a t jo in x 2, and contain the subpath common to x 1 and x2 as their final subpath .
The shortest pa th in this set is referred to as xc.

xa , Xi, and xc can be derived in the same m anner as deriving x2 in 0 (n 2), respectively, x 3 is the shortest one
of xa , Xfc, and xc, and the rest of these paths are stored in another set as the candidates of x 4. x 4, x 5, . . . are
derived by repeating the sim ilar calculation. Therefore, the time and space complexities of the enum eration
of the k shortest paths are 0 (n 3 + k n2) and 0 (n 2 + k n), respectively.

In the above discussion, the k shortest paths are derived. However, we can also derive the k longest
paths in the sam e m anner.

294- International Parsing Workshop '89

Figure 5: The relation among t l , x2, and t 3

Table 1: The time and space complexities of our algorithm s (n :the length of the sentence)

Com plexity Construction of parse graph Enum eration of k parses
Tim e 0 (n 3) 0 (n 3 + k n 2)
Space 0 (" 3) 0 (n 2 4- kn)

We sum m arize the tim e and space complexities of our algorithm s in Table 1.

5 Conclusion

In this paper, we have presented an algorithm for the enum eration of the parses in the order of the accept­
ability. This algorithm can be applied to the general context-free languages. In order to enum erate parses
efficiently, we have in troduced a d a ta s truc tu re suitable for the enum eration called the parse graph. Using
a parse graph, we can enum erate k parses in the order of acceptability efficiently in 0 (n z + k n 2).

A cknow ledgem ent

We appreciate Prof. Isao Shirakawa and Prof. Hideo M iyahara of Osaka University for their helpful su p p o r t .

The first au thor thanks Prof. Toshiro Araki, Dr. Hiroshi Deguchi, Dr. Shinji Shimojo of Osaka University,
and Mr. Toshiyuki Masui of SH ARP C orporation for their helpful suggestions and com m ents on this paper.

-295- Intemational Parsing Workshop '89

1] Aho, A. V. and Ullman, J. D., The Theory of Parsing, Translation, and Compiling, Vol. 1 :Parsing,
Prentice-Hall, 1972.

Kasami. T., “An efficient recognition and syntax analysis algorithm: for context-free languages” , Science
Report, AF CRL-65-758, Air Force Cambridge Research Laboratory, 1965.

Younger, D. H., “Recognition and parsing of context-free languages in time n3” , Information and
Control, 10, pp .189-208, 1967.

Earley, J., “An efficient context-free parsing algorithm” , Communication of A.C.M., 13-2, pp.94-102,
1970.

Valiant, L. G., “General context-fiee recognition in less than cubic time” , J.C.S.S., 10, pp.308-315,
1975.

G raham, S. L., Harrison, M. A., and Ruzzo, W. L., “On line context-free recognition in less than cubic
tim e” , Proc. 8 th Annu. A.C.M. Symp. on Theory of Computing, pp .112-120, 1976.

Graham , S. L., and Harrison, M. A., “Parsing of general context-free languages” , Advances in Comput­
ers, 14, Academic Press, pp.415-462, 1976.

Graham , S. L., and Harrison, M. A., “An improved context-free recognizer” , A.C.M. Trans, on Pro­
gramming Languages and Systems, 2-3, pp.415-462, 1980.

Yen, J. Y., “Finding the K shortest loopless paths in a network” , Management Science, 17, pp .712-716,
1971.

Katoh, N., Ibaraki, T., and Mine, H., “An efficient algorithm for K shortest simple paths” , Networks,
12, pp.411-427, 1982.

Fox, B. L., ‘‘D ata structures and computer science techniques in operations research” , Operations
Research, 26, pp.686-717, 1978.

[12] Denardo, E. V., and Fox, B. L., “Shortest-route methods: 1. reaching, pruning and buckets” , Operations
Research, 27, p p .161-186, 1979.

[13] Lawer, E. L., “A procedure for computing the K best solutions to discrete optimization problems and
its application to the shortest path problem” , Management Science, 18, pp.401-405, 1972.

[14] Yamai, N., “A s tudy for parsing of ambiguous languages using hierarchical graph representation of all
derivations” , Master Thesis of Osaka University, 1986 (in Japanese).

R eferences

-296- Intemational Parsing Workshop '89

A M o r p h o l o g i c a l P a r s e r f o r L i n g u i s t i c E x p l o r a t i o n
D a v i d Weber

Summer I n s t i t u t e o f L i n g u i s t i c s

1 . INTRODUCTION

T h i s p a p e r d e s c r i b e s AMPLE, a m o r p h o l o g i c a l p a r s e r (i . e . , a
p r o g r a m t h a t p a r s e s w o r d s i n t o m o r p h e m e s) . AMPLE g r e w o u t o f
w o r k i n c o m p u t e r a s s i s t e d d i a l e c t a d a p t a t i o n , a s d e s c r i b e d i n
s e c t i o n 1 . I t c o n t a i n s no l a n g u a g e - s p e c i f i c c o d e , b e i n g
c o n t r o l l e d e n t i r e l y t h r o u g h e x t e r n a l , u s e r - w r i t t e n f i l e s , t h e
n o t a t i o n s o f w h i c h w e r e d e s i g n e d f o r l i n g u i s t s . AMPLE’ s
c o n s t r u c t s a r e l i n g u i s t i c : " a l l o m o r p h " , " m orphem e" , " c o n d i t i o n i n g
e n v i r o n m e n t " , " c o - o c c u r r e n c e c o n s t r a i n t " , e t c .

AMPLE1s f u n d a m e n t a l a l g o r i t h m i s (i) t o d i s c o v e r a l l
p o s s i b l e d e c o m p o s i t i o n s o f a w o r d i n t o a l l o m o r p h s , a n d (i i) t o
e l i m i n a t e t h o s e w h i c h f a i l a n y c o n d i t i o n s , c o n s t r a i n t s o r t e s t s
i m p o s e d b y t h e u s e r .

T h i s m a t c h - a n d - f i l t e r a l g o r i t h m a l l o w s a h i g h l y m o d u l a r
a p p r o a c h t o m o r p h o l o g i c a l p a r s i n g . S t r o n g r e j e c t i o n o f i n c o r r e c t
a n a l y s e s i s a c h i e v e d b y t h e c o m b i n e d e f f e c t o f d i v e r s e f i l t e r s ,
e a c h e x p r e s s e d s i m p l y i n a n o t a t i o n a p p r o p r i a t e t o t h e p h e n o m e n a .

AMPLE i s a g o o d t o o l f o r e x p l o r i n g m o r p h o l o g y b e c a u s e o f t h e
f l e x i b i l i t y r e s u l t i n g f r o m t h i s m o d u l a r i t y . And i t i s u s a b l e b y
c o m p u t a t i o n a l l y n a i v e l i n g u i s t s b e c a u s e i t s n o t a t i o n s a r e
l i n g u i s t i c r a t h e r t h a n c o m p u t a t i o n a l .

2. COMPUTER ASSISTED DIALECT ADAPTATION
C o m p u t e r a s s i s t e d d i a l e c t a d a p t a t i o n (CADA) a t t e m p t s t o e x p l o i t
t h e s y s t e m a t i c r e l a t i o n s h i p s b e t w e e n c l o s e l y - r e l a t e d l a n g u a g e s t o
p r o d u c e d r a f t s o f t e x t i n t a r g e t l a n g u a g e s f r o m s o u r c e l a n g u a g e s
t e x t s . (I n i t i a l e x p l o r a t i o n s a r e d e s c r i b e d i n W eber a n d Mann,
1 9 7 9 .) CADA w o r k s o v e r n o n - t r i v i a l d e g r e e s o f l a n g u a g e
d i f f e r e n c e b e c a u s e , b e t w e e n c l o s e l y - r e l a t e d l a n g u a g e s , m o s t o f
t h e d i f f e r e n c e s a r e s y s t e m a t i c . T h e s e r e s u l t f r o m t h e
g e n e r a l i z a t i o n o f r e g u l a r d i a c h r o n i c c h a n g e s , t h u s i m p a c t i n g t h e
l a n g u a g e h e a v i l y . By c o n t r a s t , i r r e g u l a r o r i d i o s y n c r a t i c
c h a n g e s c a n n o t b e g e n e r a l i z e d , s o t e n d t o h a v e a l i m i t e d I m p a c t .
S o b e t w e e n c l o s e l y r e l a t e d l a n g u a g e s , s y s t e m a t i c d i f f e r e n c e s
p r e d o m i n a t e .

D i f f e r e n c e s a r e s y s t e m a t i c o n l y r e l a t i v e t o s o m e a n a l y s i s .
F o r e x a m p l e , b e t w e e n o n e d i a l e c t o f Q u e c h u a a n d a n o t h e r , t h e
c h a r a c t e r s t r i n g r a m i g h t c o r r e s p o n d t o r a , r l , r u o r r q u , b u t
t h e c o n t e x t i n w h i c h e a c h i s a p p r o p r i a t e c a n n o t b e d e t e r m i n e d
s i m p l y b y i n s p e c t i n g a d j a c e n t c h a r a c t e r s t r i n g s (i n t h e s o u r c e
d i a l e c t t e x t) . H o w e v e r , i f o n e c a n d e t e r m i n e t h e i d e n t i t y o f t h e
m orph em e i n w h i c h r a o c c u r s , t h e d i f f e r e n c e s b e c o m e s y s t e m a t i c :
w h e n i t i s t h e p a s t t e n s e s u f f i x , t h e n i t c o r r e s p o n d s t o r q a ;
w h e n i t i s t h e p u n c t u a l , i t c o r r e s p o n d s t o r l o r r a , d e p e n d i n g o n
m o r p h o l o g i c a l c o n t e x t ; w h e n i t i s t h e d i r e c t i o n a l ' o u t 1 , i t
c o r r e s p o n d s t o r q u o r r q a , a n d s o f o r t h .

-297- International Parsing Workshop '89

E x p e r i e n c e i n v a r i o u s l a n g u a g e f a m i l i e s [Q u e c h u a , T u c a n o a n ,
C a k c h i q u e l (M a y a n) , Campa (A r a w a k a n) , an d t h e P h i l i p p i n e t y p e]
h a s s h o w n t h a t , f o r l a n g u a g e f a m i l i e s w i t h r i c h m o r p h o l o g i e s ,
p a r s i n g w o r d s i n t o m o r p h e m e s m a k e s m o s t d i f f e r e n c e s s y s t e m a t i c ,
t h e r e b y p r o v i d i n g a s u f f i c i e n t a n a l y t i c b a s e o n w h i c h t o do
a d a p t a t i o n .

CADA's a n a l y t i c e n g i n e b e g a n a s a Q u e c h u a - s p e c i f i c
m o r p h o l o g i c a l p a r s e r w r i t t e n i n INTERLISP (W eber a n d Mann, 1 9 7 9) .
T h i s p a r s e r w a s r e - i m p l e m e n t e d i n C f o r s m a l l s y s t e m s (K a s p e r a n d
W e b e r , 1 9 8 6 a , b) . T h i s i m p l e m e n t a t i o n w a s s u b s e q u e n t l y a d a p t e d t o
t h e T u c a n o a n l a n g u a g e f a m i l y o f C o l o m b i a (R e e d 1 9 8 6 , 1 9 8 7) , t o
Campa l a n g u a g e s (A r a w a k a n o f P e r u) , a n d t o P h i l i p p i n e l a n g u a g e s .
G u i d e d b y t h e s e e x t e n s i o n s , a g e n e r a l m o r p h o l o g i c a l p a r s e r h a s
b e e n d e v e l o p e d , c a l l e d AMPLE (W e b e r , B l a c k a n d M c C o n n e l , 1 9 8 8) .

AMPLE f i t s i n t o w o r d - b y - w o r d a d a p t a t i o n a s i n d i c a t e d i n
T a b l e 1:

w o r d a n a l y s e s — > | TRANSFER | — > m o d i f i e d
+ -------------------- + w o r d a n a l y s e s

A +■
M
P
L
E

+ S
T
A
M
P

-------------------- +

I
ANALYSIS |

+ --------------------- +
n o r m a l i z e d

w o r d s

| TEXTIN |

+ ------------------------------ +

I
s o u r c e d i a l e c t t e x t

+ ---------------------- +
I I
j SYNTHESIS|
I I
+ ---------------------- +

n o r m a l i z e d
w o r d s

| TEXTOUT |

t a r g e t d i a l e c t t e x t

Table 1: THE MAJOR MODULES OF WORD-LEVEL CADA
The f o l l o w i n g i l l u s t r a t e s how e a c h m o d u l e o f T a b l e 1 c o n t r i b u t e s
t o a d a p t i n g f r o m P a c h i t e a Q u e c h u a A y w a r k a y k a r g a n ' t h e y w e r e
g o i n g 1 t o t h e c o r r e s p o n d i n g H u a n c a Q u e c h u a f o r m , L l y a l k a l a :

-298- Intemational Parsing Workshop '89

P a c h i t e a : A y w a r k a y k a r g a n
TEXTIN

a y w a r k a y k a r q a n
ANALYSIS

a y w a - - r k a - y k a - r q a
♦ a y w a - -PLIMPF -IMPF -PST

- n
- 3

TRANSFER

\ /
\ /

X
/ \

/ \
* r i - -IMPF -PLIMPF -PST

SYNTHESIS
11 - y a - l k a - l a

l i y a l k a l a
TEXTOUT

H u a n c a : L l y a l k a l a

I n a d d i t i o n t o s e r v i n g a s t h e a n a l y t i c b a s e f o r a d a p t a t i o n ,
AMPLE h a s b e e n u s e d t o a u t o m a t e t h e g l o s s i n g o f t e x t s (s e e , e . g . ,
W eber 1 9 8 7 a) , t o d e t e c t s p e l l i n g e r r o r s , a n d p e r h a p s m o s t
s i g n i f i c a n t l y , t o a d v a n c e u s e r s ' u n d e r s t a n d i n g o f t h e m o r p h o l o g y
o f v a r i o u s l a n g u a g e s .

V a r i o u s e x t e r n a l f a c t o r s h a v e s h a p e d AMPLE: i t s c o n s t r u c t s ,
m e c h a n i s m s a n d n o t a t i o n s m u s t b e f a m i l i a r t o l i n g u i s t s ; i t s d a t a
f i l e s s h o u l d b e u s e f u l f o r o t h e r c o m p u t a t i o n a l an d
n o n —c o m p u t a t i o n a l p u r p o s e s ; i t m u s t r u n e f f e c t i v e l y o n p e r s o n a l
c o m p u t e r s w i t h s m a l l m e m o r i e s ; a n d c r u c i a l l y , i t m u s t b e a b l e t o
c o p e w i t h v e r y d i v e r s e p h e n o m e n a w i t h o u t u n d u l y c o m p r o m i s i n g
l i n g u i s t i c i n t e g r i t y .

AMPLE t a k e s t e x t a s i n p u t . I t i d e n t i f i e s w o r d s an d
n o r m a l i z e s t h e m a c c o r d i n g t o u s e r - s p e c i f i e d r u l e s (e . g . , c h a n g e b
t o p b e f o r e a) . T h i s a l l o w s t h e i n t e r n a l r e p r e s e n t a t i o n t o
d i f f e r f r o m t h e e x t e r n a l o r t h o g r a p h y (w h i c h m i g h t e v e n b e a
p h o n e t i c r e p r e s e n t a t i o n) . E a c h w o r d i s s u b j e c t e d t o a
d e p t h - f i r s t , a l l p a t h s a n a l y s i s . The t e x t i s o u t p u t a s a
d a t a b a s e — o n e r e c o r d p e r w o r d — w i t h f i e l d s f o r t h e (p o s s i b l y
a m b i g u o u s) a n a l y s i s , p u n c t u a t i o n , w h i t e s p a c e , f o r m a t m a r k i n g ,
a n d c a p i t a l i z a t i o n i n f o r m a t i o n .

AMPLE h a s v a r i o u s " b i a s e s . " I t i s b a s e d o n t h e a s s u m p t i o n
t h a t m o r p h e m e s e x i s t . I t a p p l i e s d i r e c t l y t o c o n c a t e n a t i v e
m o r p h o l o g y ; n o n - c o n c a t e n a t i v e p h e n o m e n a u s u a l l y h a v e t o b e
c o e r c e d i n t o c o n c a t e n a t i v e s o l u t i o n s . F o r e x a m p l e , t o o k c o u l d b e
a n a l y z e d a s t a k e + P A S T (a s s u g g e s t e d b y B l o c k 1 9 4 7) . To a p p l y
AMPLE t o f u s i o n a l l a n g u a g e s g e n e r a l l y r e q u i r e s l a r g e n u m b e r s o f
f u s e d c o m b i n a t i o n s c o n s t r a i n e d b y d e c l e n s i o n o r c o n j u g a t i o n
c l a s s . F i n a l l y , AMPLE t a k e s a n i t e m / a r r a n g e m e n t r a t h e r t h a n a n
i t e m / p r o c e s s a p p r o a c h (H o c k e t t 1 9 5 4) . T h e r e a r e n o " u n d e r l y i n g
f o r m s " f r o m w h i c h s u r f a c e f o r m s a r e d e r i v e d .

3. GENERAL AMPLE DESCRIPTION

-299- Intemational Parsing Workshop '89

AMPLE h a s m a in m o d u l e s : SETUP, TEXTIN and ANALYSIS. SETUP
r e a d s f i l e s c o n t a i n i n g i n f o r m a t i o n a b o u t t h e l a n g u a g e , c r e a t i n g
i n t e r n a l s t r u c t u r e s f o r TEXTIN a n d ANALYSIS. M ost s i g n i f i c a n t l y ,
SETUP r e a d s o n e o r m ore d i c t i o n a r i e s , c r e a t e s a t r i e s t r u c t u r e
b a s e d o n a l l o m o r p h s (c h a r a c t e r s t r i n g s) f o r a c c e s s i n g t h e
i n f o r m a t i o n a b o u t t h a t a l l o m o r p h a n d t h e morpheme i t r e p r e s e n t s .

TEXTIN i d e n t i f i e s t h e w o r d s o f t h e t e x t , p u t t i n g t o o n e s i d e
w h i t e s p a c e , c a p i t a l i z a t i o n i n f o r m a t i o n , f o r m a t m a rk u p , an d
p u n c t u a t i o n . U s e r - s p e c i f i e d o r t h o g r a p h i c c h a n g e s a r e a p p l i e d ,
a l l o w i n g t h e i n t e r n a l w o r k i n g r e p r e s e n t a t i o n t o d i f f e r f r o m t h e
p r a c t i c a l o r t h o g r a p h y o f t h e t e x t .

A n a l y s i s p a r s e s b y (i) d i s c o v e r i n g a l l p o s s i b l e s e q u e n c e s o f
m a t c h i n g a l l o m o r p h s a n d (i i) f i l t e r i n g t h e s e w i t h t h e t e s t s t h a t
t h e u s e r w r i t e s i n v a r i o u s l i n g u i s t i c a l l y - o r i e n t e d c o n s t r a i n t
l a n g u a g e s (a s d e s c r i b e d b e l o w) . T h i s p r o c e e d s b o t t o m - u p ,
l e f t - t o - r i g h t a n d e x h a u s t i v e l y , i . e . , a l l p o s s i b l e c o m b i n a t i o n s
o f m a t c h i n g m o r p h e m e s a r e d i s c o v e r e d , a n d a l l w h i c h p a s s t h e
t e s t s a r e r e t u r n e d i n t h e o u t p u t . M a t c h i n g a n d f i l t e r i n g a r e
i n t e g r a t e d s o a s t o a b a n d o n f a l s e p a t h s a s e a r l y a s p o s s i b l e .

T h e r e a r e tw o t y p e s o f t e s t . S u c c e s s o r t e s t s a p p l y w h e n a
m a t c h i n g a l l o m o r p h i s c o n s i d e r e d a s t h e n e x t p o s s i b l e morpheme o f
a n a n a l y s i s . F i n a l t e s t s , g e n e r a l l y i n c o r p o r a t i n g n o n - l o c a l
d e p e n d e n c i e s , a r e d e f e r r e d u n t i l a n e n t i r e d e c o m p o s i t i o n i s
d i s c o v e r e d , o n e w h i c h p a s s e s a l l s u c c e s s o r t e s t s .

More s p e c i f i c a l l y , a s p r o c e s s i n g p r o c e e d s , a p a r t i a l
a n a l y s i s i s m a i n t a i n e d . W h e n e v e r a m a t c h i n g a l l o m o r p h i s
d i s c o v e r e d , s u c c e s s o r t e s t s a r e a p p l i e d b e t w e e n t h e p a r t i a l
a n a l y s i s (u s u a l l y i t s l a s t m orph em e) a n d t h e morphem e u n d e r
c o n s i d e r a t i o n a s a s u c c e s s o r (f o r w h i c h s o m e a l l o m o r p h h a s b e e n
m a t c h e d) . F o r e x a m p l e , i n a n a l y z i n g r l k a y k a a m a r a n ' h e w a s
w a t c h i n g m e 1 , ^he f o l l o w i n g s t a g e w o u l d b e r e a c h e d :

s e e IMPFV
I I

PARTIAL ANALYSIS: r i k a - - y k a :
POSSIBLE SUCCESSOR: -m a 10BJ

REMAINING STRING: m a r a n

One o f t h e s u c c e s s o r t e s t s , t o t a k e a n e x a m p l e , i n s u r e s t h a t
v o c a l i c l e n g t h (r e p r e s e n t e d h e r e a s a c o l o n) i s n o t f o l l o w e d b y
s y l l a b l e - c l o s i n g s u f f i x (s i n c e l o n g v o w e l s c a n n o t o c c u r i n a
c l o s e d s y l l a b l e) .

S u c c e s s o r t e s t s h a v e t h e a d v a n t a g e o f e l i m i n a t i n g f a l s e
p a t h s b e f o r e t h e y c o n s u m e m o r e c o m p u t a t i o n , b u t t h e y c a n n o t
a p p e a l t o f o l l o w i n g m o r p h e m e s , s i n c e t h e s e h a v e n o t y e t b e e n
i d e n t i f i e d . B u t f i n a l t e s t s a p p l y c o n s t r a i n t s t o a n e n t i r e
a n a l y s i s , s o c a n e x p r e s s f o r w a r d - r e f e r r i n g c o n s t r a i n t s . F o r
e x a m p l e , a f i n a l t e s t m i g h t s a y t h a t a m o r p h o p h o n e m i c a l l y
a f f e c t e d u n i t m u s t b e f o l l o w e d (n o t n e c e s s a r i l y a d j a c e n t l y) b y a
t r i g g e r f o r t h e p r o c e s s . A l s o , f i n a l t e s t s c a n i m p o s e
w e l l - f o r m e d n e s s c o n s t r a i n t s e x p r e s s e d o n a p a r t i c u l a r m orp hem e;
e . g . i t m i g h t c o n s t r a i n t h e c a t e g o r y o f t h e f i n a l m o r p h e m e .

300- International Parsing Workshop '89

4 . PHENOMENA

AMPLE c a n h a n d l e a w i d e v a r i e t y o f p h e n o m e n a . U n i t s may b e
p r e f i x e s , r o o t s o r s u f f i x e s , r e a l i z e d , n u l l , o r t h e r e d u p l i c a t i o n
o f a n a d j a c e n t s e g m e n t M orphem es may h a v e m u l t i p l e a l l o m o r p h s .
AMPLE c a n h a n d l e t h e r e d u p l i c a t i o n o f a d j a c e n t s e g m e n t s (a l t h o u g h
t h e m e c h a n i s m may b e c l u m s y i n som e c a s e s , a s d i s c u s s e d b e l o w) .
I n f i x a t i o n i s h a n d l e d , e v e n w hen o b s c u r e d b y p r i o r o r s u b s e q u e n t
a f f i x a t i o n o r r e d u p l i c a t i o n . The c o m p o u n d i n g o f r o o t s i s h a n d l e d
(b u t n o t h i n g h a s b e e n d o n e t o t r e a t t h e c o m p o u n d i n g o f
m o r p h o l o g i c a l l y - c o m p l e x w o r d s) .

4.1. Types of unit
AMPLE c a n d e a l w i t h r o o t s , s u f f i x e s an d p r e f i x e s (o f c o u r s e !) .
More i n t e r e s t i n g l y , i t c a n d e a l w i t h i n f i x e s , s u c h a s t h o s e o f
P h i l i p p i n e l a n g u a g e s , f o r w h i c h a n i n f i x may b e w i t h i n a r o o t o r
w i t h i n a p r e f i x , a n d w h e r e r e d u p l i c a t i o n may a p p l y a f t e r
i n f i x a t i o n . AMPLE a l l o w s com p oun d r o o t s , p o s s i b l y c o n s t r a i n e d b y
t h e c a t e g o r i e s o f t h o s e r o o t s .

AMPLE a l l o w s n u l l a l l o m o r p h s . The o c c u r r e n c e o f n u l l s m u st
b e s t r o n g l y c o n s t r a i n e d , s i n c e t h e y a r e n o t c o n s t r a i n e d b y t h e
c h a r a c t e r s o f t h e w o r d b e i n g a n a l y z e d . F o r e x a m p l e , i n Napo
Q u i c h u a , t h e a g e n t i v e n o m i n a l i z e r h a s n o p h o n o l o g i c a l
r e a l i z a t i o n , d u e t o i t s l e n i t i o n a n d u l t i m a t e l o s s . Bu t t h e r e i s
a s t r o n g c o n s t r a i n t o n i t s o c c u r r e n c e : i t m u s t b e a t a b o u n d a r y
w h e r e a n u n i n f l e c t e d v e r b i s e i t h e r w o r d f i n a l o r f o l l o w e d b y
s u f f i x e s t y p i c a l o f n o u n s . When a d a p t i n g t o P a s t a z a Q u i c h u a ,
w h e r e t h e a g e n t i v e i s / h / , i t i s t h u s p o s s i b l e t o i n s e r t / h / i n
t h e a p p r o p r i a t e p l a c e s w i t h c o n s i d e r a b l e a c c u r a c y . (F o r e x a m p l e ,
r l t a { - r i - ' g o ' - 0 ' a g e n t i v e 1 - t a ' a c c u s a t i v e 1 , m e a n i n g ' t o t h e
o n e who g o e s ') c a n b e c o m e r i - j - t a .

4.2. Phonologically conditioned allosorphy
The o c c u r r e n c e o f e a c h a l l o m o r p h i n a n a n a l y s i s may b e
c o n s t r a i n e d b y i t s p h o n o l o g i c a l o r m o r p h e m ic e n v i r o n m e n t , e i t h e r
l o c a l l y o r a t a d i s t a n c e .

4.2.1. Issues of representation
The p r a c t i c a l o r t h o g r a p h y o f t h e t e x t b e i n g a n a l y z e d may n o t b e
t h e b e s t r e p r e s e n t a t i o n f o r d o i n g a n a l y s i s . (F o r e x a m p l e , i n
a n a l y z i n g S p a n i s h , i t m i g h t b e d e s i r a b l e t o e l i m i n a t e t h e
o r t h o g r a p h i c a l t e r n a t i o n b e t w e e n z a n d c (c f . r a i z , r a i c e s) .
L i k e w i s e , f o r L a t i n o n e m i g h t w i s h t o c o n v e r t x i n t o k s , s o t h a t
a m orphem e b o u n d a r y c o u l d b e p o s i t e d b e t w e e n t h e Jc a n d t h e s (c f .
r e x » / r e k s / , r e g i s) . O r t h o g r a p h i c c h a n g e s s u c h a s t h e s e c a n b e
made b y t h e TEXTIN m o d u l e .

4.2.2. Conditions on allomorphs
A l l o m o r p h s may b e r e s t r i c t e d b y p h o n o l o g i c a l (c h a r a c t e r s t r i n g)
e n v i r o n m e n t . F o r e x a m p l e , t h e f o l l o w i n g s a y s t h a t m may o n l y
o c c u r f o l l o w e d b y p . (\ ® A® t h e f i e l d c o d e f o r " a l l o m o r p h " .)

\ a m / __p

-301- Intemational Parsing Workshop ’89

C l a s s e s o f p h o n o l o g i c a l s e g m e n t s c a n b e d e f i n e d , an d t h e n u s e d i n
c o n s t r a i n i n g e n v i r o n m e n t s . F o r e x a m p l e , t h e f o l l o w i n g d e f i n e s
t h e c l a s s o f l a b i a l s an d s t a t e s t h a t m m u st p r e c e d e o n e o f th em :

\ s c l + l a b i a l p b f v
\ a m / __ [+ l a b i a l]

4.2.3. Multiple allomorphs
Any morpheme may h a v e m u l t i p l e a l l o m o r p h s . F o r e x a m p l e , t h e

s e c o n d p e r s o n p o s s e s s i v e i n m o s t Q u e c h u a l a n g u a g e s h a v e t h r e e
a l l o m o r p h s , c o n s t r a i n e d a s f o l l o w s (w h e r e " [V] __ i n d i c a t e s " n o t
f o l l o w i n g a v o w e l) :

\ a n i k i / “ [V] _ | h a t u n n i k i ' y o u r b i g o n e '
\ a k i / i __ j w a s i k i ' y o u r h o u s e '
\ a y k i / [V] __ j u m a y k i ' y o u r h e a d 1

R e d u p l i c a t i o n i s h a n d l e d a s a s p e c i a l c a s e o f m u l t i p l e
a l l o m o r p h s , w h e r e e a c h p o s s i b i l i t y i s e n u m e r a t e d a l o n g w i t h t h e
e n v i r o n m e n t i n w h i c h i t c o u l d o c c u r (s o , e . g . , p a b e f o r e p a . . M
p e b e f o r e p e , e t c . I f t h e r e d u p l i c a t e d f r o m i s a l w a y s a p r e c i s e
s u b s t r i n g o f w h a t p r e c e d e s o r f o l l o w s , i t i s p o s s i b l e t o s t a t e
t h i s a s a g e n e r a l c o n s t r a i n t r a t h e r t h a n w i t h e a c h a l l o m o r p h .

4.3. Morphophonemics
P h e n o m e n a i n v o l v i n g b o t h a l t e r e d f o r m (p h o n o l o g y) a n d morphem e
i d e n t i t y p r e s e n t n o s p e c i a l c h a l l e n g e b e c a u s e b o t h t h e c h a r a c t e r
s t r i n g b e i n g a n a l y z e d a n d t h e p o s i t e d m o r p h e m e s a r e a v a i l a b l e .

4.3.1. Morpheme environment constraints on allomorphs
I t i s p o s s i b l e t o r e s t r i c t t h e o c c u r r e n c e o f a n a l l o m o r p h b y t h e
i d e n t i t y o f a m orp h em e; e . g . , t h e f o l l o w i n g s a y s t h a t a n m u s t b e
d i r e c t l y f o l l o w e d b y t h e m orphem e i d e n t i f i e d a s PQR:

\ a a n + / _PQR

4.3.2. Properties and tests
I t i s p o s s i b l e t o a s s i g n p r o p e r t i e s t o a l l o m o r p h s a n d m o r p h e m e s
a n d t o u s e t h e s e l n a v e r y g e n e r a l c o n s t r a i n t l a n g u a g e . F o r
e x a m p l e , s u p p o s e i n h e r e n t l y a p p l i c a t i v e v e r b s may n e v e r c o - o c c u r
w i t h t h e a p p l i c a t i v e s u f f i x APPL; t h i s c a n b e i n c o r p o r a t e d b y
a s s i g n i n g t h e p r o p e r t y " a p p l i c a t i v e " t o a p p l i c a t i v e v e r b s a n d
i m p o s i n g t h e f o l l o w i n g t e s t :

I F (c u r r e n t p r o p e r t y i s a p p l i c a t i v e)
THEN (FOR _ALL_RIGHT

NOT (RIGHT m orphname i s APPL))

4.4. Morphotactlcs
AMPLE h a s g o o d m e c h a n i s m s f o r i m p o s i n g m o r p h o t a c t i c c o n s t r a i n t s
T h e r e a r e t h r e e m a i n t y p e s : c a t e g o r i a l , o r d e r i n g , a n d morphem e
c o - o c c u r r e n c e c o n s t r a i n t s .

-302- International Parsing Workshop '89

R o o t s a r e a s s i g n e d o n e o r more c a t e g o r i e s , an d a f f i x e s a r e
a s s i g n e d o n e o r m ore c a t e g o r y p a i r s . The l e f t p a r t o f a c a t e g o r y
p a i r i s c a l l e d t h e " f r o m c a t e g o r y " an d c o r r e s p o n d s r o u g h l y t o t h e
a f f i x ' s " s u b c a t e g o r i z a t i o n f r a m e . " The r i g h t p a r t i s c a l l e d t h e
" t o c a t e g o r y " an d c o r r e s p o n d s r o u g h l y t o i t s " c a t e g o r y " .)

I n t e r m s o f t h e s e c a t e g o r i e s , t e s t s c a n b e i m p o s e d w h i c h
" s t r u c t u r e " t h e v e r b . To i l l u s t r a t e , c o n s i d e r a l a n g u a g e w i t h
d e r i v a t i o n a l s u f f i x e s (c a u s a t i v e , a p p l i c a t i v e , p a s s i v e , e t c .)
an d i n f l e c t i o n a l p r e f i x e s . What i n f l e c t i o n i s p e r m i t t e d a n d / o r
r e q u i r e d d e p e n d s o n t h e c a t e g o r y a f t e r d e r i v a t i o n , a n d " p r i o r "
i n f l e c t i o n . L i k e w i s e , t h e d e r i v a t i o n a l p o s s i b i l i t i e s d e p e n d on
t h e c a t e g o r y o f t h e r o o t a n d a n y " p r i o r " d e r i v a t i o n . T h u s , t h e
c o n s t r a i n t s m u s t p r o p a g a t e f i r s t p r o g r e s s i v e l y f r o m t h e r o o t
t h r o u g h t h e s u f f i x e s an d t h e n r e g r e s s i v e l y t h r o u g h t h e p r e f i x e s
t o t h e b e g i n n i n g o f t h e w o r d :

S
/ \

/ U
/ / \

/ / z
/ / / \

/ / X \
/ / / \ \

/ / / \ \
R / S T /U V W/X Y /Z
p f x p f x r o o t s f x s f x

T h i s c a n b e a c h i e v e d b y f o u r t e s t s : (i) f o r s u f f i x e s (w h e r e b y V=W
a n d X=Y a b o v e) :

l e f t t o c a t e g o r y i s c u r r e n t f r o m c a t e g o r y

(i i) f o r p r e f i x e s (w h e r e b y U=R a b o v e) :

c u r r e n t t o c a t e g o r y i s l e f t f r o m c a t e g o r y

(i i i) t o i d e n t i f y t h e c a t e g o r y a f t e r d e r i v a t i o n w i t h t h a t o f t h e
c l o s e s t p r e f i x (Z*T a b o v e) :

I F (c u r r e n t t y p e i s p r e f i x AND r i g h t t y p e i s r o o t)
THEN (c u r r e n t f r o m c a t e g o r y i s FINAL t o c a t e g o r y)

(i v) t o e n s u r e t h a t t h e c a t e g o r y o f t h e w h o l e w o r d (S a b o v e) i s
an a c c e p t a b l e t e r m i n a l c a t e g o r y , we cam d e c l a r e a c l a s s o f s u c h
c a t e g o r i e s (c a l l e d "f i n a l c a t e g o r i e s ") a n d s t a t e :

IN IT IA L t o c a t e g o r y i s member f i n a l c a t e g o r i e s

T h u s , a l t h o u g h AMPLE p r o c e s s e s f r o m l e f t t o r i g h t , i t i s p o s s i b l e
t o m o d e l t h e p e r c o l a t i o n o f f e a t u r e s f r o m a r o o t t h r o u g h t h e
l a y e r s o f a f f i x a t i o n , t o t h e f i n a l r e s u l t i n g c a t e g o r y o f t h e
w o r d .

4 . 4 . 1 . C a t e g o r i a l c o n s t r a i n t s

-303- International Parsing Workshop '89

4.4.2. Ordering
The u s e o f c a t e g o r y a l o n g t h e l i n e s d e s c r i b e d i n t h e p r e v i o u s
s e c t i o n may s t r o n g l y r e s t r i c t t h e o r d e r i n w h i c h a f f i x e s o c c u r .
H o w e v e r , f u r t h e r o r d e r i n g c o n s t r a i n t s may n e e d t o b e i m p o s e d .
T h i s c a n b e d o n e b y g i v i n g e a c h a f f i x a number (n o t n e c e s s a r i l y
u n i q u e) a n d i m p o s i n g a s u c c e s s o r t e s t l i k e t h e f o l l o w i n g :

l e f t o r d e r c l a s s < c u r r e n t o r d e r c l a s s

T h i s s a y s t h a t e v e r y m o r p h e m e ' s number m u st b e g r e a t e r t h a n o f
t h e p r e c e d i n g m o rp h em e , s o i n s i s t s t h a t t h e o r d e r c l a s s s t r i c t l y
i n c r e a s e . I f "< = " w e r e u s e d i n s t e a d o f " <" , t h e o r d e r w o u l d b e
n o n - d e c r e a s i n g .

The t e s t c o u l d a l s o b e m o d i f i e d t o t o l e r a t e m o r p h e m e s t h a t
a r e n o t c o n s t r a i n e d b y o r d e r , s u c h a s Q u e c h u a - J i a ' j u s t 1 . To do
s o , we a s s i g n - 1 2 a o r d e r c l a s s 0 , a n d t h e n t h e f o l l o w i n g s u c c e s s o r
t e s t p a s s e s i t :

(c u r r e n t o r d e r c l a s s = 0)
OR (l e f t o r d e r c l a s s <= c u r r e n t o r d e r c l a s s)

To make o r d e r i n g c o n s t r a i n t s a p p l y o v e r o n e o r m o re " f l o a t i n g "
a f f i x e s , we g i v e t h e f o l l o w i n g f i n a l t e s t :

I P ((c u r r e n t o r d e r c l a s s = 0)
AND (F0R_S0ME_LEFT (LEFT o r d e r c l a s s ~= 0))
AND (F0R_S0ME_RIGHT (RIGHT o r d e r c l a s s 0)))

THEN (LEFT o r d e r c l a s s <= RIGHT o r d e r c l a s s)

4.4.3. Morpheme co-occurrence constraints
AMPLE h a s a s i m p l e b u t e f f e c t i v e c o n s t r a i n t l a n g u a g e f o r i m p o s i n g
c o n d i t i o n s o n t h e c o - o c c u r r e n c e o f m o r p h e m e s . The f o l l o w i n g , f o r
e x a m p l e , s a y s t h a t PLIMPF c a n o n l y o c c u r p r e c e d i n g IMPFV:

\ m c c PLIMPF / _ IMPFV

The f o l l o w i n g s a y s t h a t t h e c o n d i t i o n a l m orphem e CND m u s t b e
p r e c e d e d (n o t n e c e s s a r i l y c o n t i g u o u s l y) b y a f i r s t , s e c o n d , o r
t h i r d v e r b a l p e r s o n s u f f i x (r e s p e c t i v e l y named 1 , 2 , a n d 3) :

\ m c c CND / 1 . . / 2 . . / 3 . .

T he f i r s t l i n e o f t h e f o l l o w i n g d e f i n e s a c l a s s o f m o r p h e m e s DIR,
a n d t h e s e c o n d s a y s t h a t PLDIR m u s t p r e c e d e a d i r e c t i o n a l , t h e
r e c i p r o c a l o r t h e r e f l e x i v e :

\ m c l DIR IN OUT UP DWN
\ m c c PLDIR / [D IR] _ / RECIP __ / REF _

-304- International, Parsing Workshop '89

5. AMPLE AS A TOOL FOR LINGUISTIC EXPLORATION
AMPLE h a s som e f e a t u r e s t h a t e n h a n c e i t s u s e f u l n e s s a s an
e x p l o r a t o r y t o o l :

1 . I t r e t u r n s t h e o r i g i n a l w o r d (t h e \ a f i e l d) , t h a t w o r d ' s
d e c o m p o s i t i o n (\ d) , an d t h e a n a l y s i s (\ a) ; f o r e x a m p l e ,
t h e f o l l o w i n g w o u l d b e r e t u r n e d f o r r i r k a n s a p a n a s h l ' t h e y
now w e n t (i t i s r e p o r t e d) ' :

\ a < VI g o > PST 3 PLUR NOW REPORT
\ d r i - r k a - n - s a p a - n a - s h i
\w r i r k a n s a p a n a s h l

2 . AMPLE r e p o r t s a l l a n a l y t i c f a i l u r e s , i n d i c a t i n g how f a r
i n t o t h e w o r d i t w a s a b l e t o p r o c e e d a n d w h e t h e r o r n o t
i t m a t c h e d a r o o t . T h i s o f t e n p r o v i d e s a s u f f i c i e n t c l u e
t o why t h e w o r d f a i l e d t o b e a n a l y z e d . F o r e x a m p l e , t h e
f o l l o w i n g r e p o r t (f o r Q u e c h u a) m a k e s i t c l e a r t h a t
(1) t h e r o o t f e s (h w e s a f t e r o r t h o g r a p h y c h a n g e s) i s n o t
a v a i l a b l e a s a r o o t , a n d (i i) t h e r e i s a n i n c o m p a t i b i l i t y
b e t w e e n t h e s u f f i x e s - r J a n d - m a : :

R o o t F a i l u r e : h w e s q a [| f e s q a]
A n a l y s i s F a i l u r e : r o q o r i m a a c h u n [r o q o r i m a: c h u n]

3 . AMPLE r e p o r t s o n t h e e f f e c t i v e n e s s o f e a c h t e s t : f o r b o t h
t h e u s e r - d e f i n e d a n d b u i l t - i n t e s t s , i t r e p o r t s how many
t i m e s e a c h t e s t w a s a p p l i e d (i n t h e o r d e r o f a p p l i c a t i o n)
a n d how many a n a l y s e s w e r e f i l t e r e d o u t b y t h e t e s t :

CATEGORY_ST c a l l e d 1 0 9 3 6 t i m e s , f a i l e d 7 4 3 6 .
0RDER_ST c a l l e d 3 5 0 0 t i m e s , f a i l e d 3 9 2 .

F0RESH0RTEN__ST c a l l e d 3 1 0 8 t i m e s , f a i l e d 3 6 .
ML0WERS_ST c a l l e d 3 0 7 2 t i m e s , f a i l e d 2 .

4 . The u s e r cam c o n t r o l w h i c h t e s t s a r e a p p l i e d and t h e
o r d e r o f t h e i r a p p l i c a t i o n . T h i s m a k e s i t p o s s i b l e t o
s e e t h e e f f e c t i v e n e s s o f e a c h , a n d t h e i r j o i n t e f f e c t .

5 . A m b i g u i t y l e v e l s a r e r e p o r t e d a s f o l l o w s :

2 w o r d s w i t h 0
6 2 0 w o r d s w i t h 1

73 w o r d s w i t h 2
2 w o r d s w i t h 3
3 w o r d s w i t h 4

a n a l y s e s .
a n a l y s i s .
a n a l y s e s .
a n a l y s e s .
a n a l y s e s .

6 . I t i s p o s s i b l e t o t r a c e AMPLE1s p a r s i n g a c t i v i t y . F o r
e x a m p l e , t h e f o l l o w i n g i s t h e f i r s t p a r t o f t h e t r a c e f o r
t h e Q u e c h u a w o r d n i m a r a n :

-305- Intemational Parsing Workshop '89

P a r s i n g n i m a r a n
r o o t : n i , * n i V2
s f x : ma, 1 0 , V 2 / V 1 , o r d e r : 7 0 , u l l o n g M l o w e r s , f s h r t n d

s f x : r a , PST, V l / V l , o r d e r : 8 0 , f o r e s h o r t e n s
s f x : n , 3 P , N 0 / N 0 , o r d e r : 140 / CV]

S u f f i x t e s t CATEGORY_ST f a i l e d .
s f x : n , 3 P , R 1 / R 0 , o r d e r : 140 / [V]

S u f f i x t e s t CATEGORY ST f a i l e d .
S f x : n , 3 P , N l / N O , o r d e r : 140 / [V] _

S u f f i x t e s t CATEGORY ST f a i l e d .
s f x : n , 3 , V I / V 0 , o r d e r : 1 2 0 , f o r e s h o r t e n s

No m ore s u f f i x e s f o u n d .
End o f w o r d f o u n d ; c h e c k i n g f i n a l t e s t s

A n a l y s i s s t r i n g : < V2 * n i > 10 PST 3
D e c o m p o s i t i o n : n i - m a - r a - n

A f t e r a c h i e v i n g t h i s a n a l y s i s , AMPLE c o n t i n u e s
c o n s i d e r i n g o t h e r p o s s i b i l i t i e s .

A f u t u r e v e r s i o n o f AMPLE w i l l a l l o w s e l e c t i v i t y i n t r a c i n g , more
i n f o r m a t i o n i n t h e a n a l y s i s (e . g . , t h e c a t e g o r y p a i r s u s e d i n a n
a n a l y s i s) , an d q u a n t i f y i n g t h e c o n t r i b u t i o n o f s p e c i f i c
m o r p h e m e s , t e s t s , e t c . t o a n a l y s i s .

6. CONCLUDING REFLECTIONS
AMPLE' s m a t c h - a n d - f i l t e r a l g o r i t h m p e r m i t s a h i g h l y m o d u l a r
a p p r o a c h t o m o r p h o l o g i c a l p a r s i n g . S t r o n g r e j e c t i o n o f i n c o r r e c t
a n a l y s e s c a n b e a c h i e v e d b y t h e c o m b i n e d e f f e c t o f d i v e r s e
f i l t e r s , e a c h o f w h i c h may b e q u i t e s i m p l e . D i r e c t r e p o r t i n g o f
t h e s e l i n g u i s t i c c o n s t r a i n t s i s p o s s i b l e b e c a u s e t h e y a r e n o t
c o m p i l e d i n t o som e i n a c c e s s i b l e f o r m . And t h i s a l g o r i t h m h a s
p r o v e n t o b e r e a s o n a b l y e f f i c i e n t .

Our s u c c e s s w i t h t h e m a t c h - a n d - f i l t e r a l g o r i t h m s u g g e s t s
t h a t m o r p h o l o g y h a s a m o d u l a r o r g a n i z a t i o n . T h a t i s , t h e
o r g a n i z a t i o n o f m o r p h o l o g y may r e s e m b l e t h e C h o m s k i a n a p p r o a c h t o
s y n t a x , w h e r e d i v e r s e p r i n c i p l e s o r t h e o r i e s , h e r e e x p r e s s e d a s
f i l t e r s , j o i n t l y b u t m o d u l a r l y d e f i n e a c c e p t a b i l i t y .

E a c h f i l t e r i s e x p r e s s e d s i m p l y i n a n o t a t i o n a p p r o p r i a t e t o
t h e p h e n o m e n a a n d f a m i l i a r t o t h e u s e r s , i n t h i s c a s e l i n g u i s t s .
T h i s m a k e s i t q u i t e s t r a i g h t f o r w a r d f o r l i n g u i s t s t o s e t u p a
m o r p h o l o g i c a l p a r s e r f o r a l a n g u a g e . E x p e r i e n c e h a s r e p e a t e d l y
s h o w n t h a t d o i n g s o l e a d s t h e u s e r t o new i n s i g h t s i n t o t h e
m o r p h o l o g y . B e c a u s e t h e r e a r e v a r i o u s c o n s t r a i n t l a n g u a g e s a n d
m e c h a n i s m s , AMPLE c a n b e u s e d t o m o d e l v a r i o u s c o n c e p t i o n s o f t h e
m o r p h o l o g y , a n d t o q u i c k l y t e s t t h e s e a g a i n s t l a r g e a m o u n t s o f
d a t a .

The m o d u l a r i t y a f f o r d e d b y t h e m a t c h - a n d - f i l t e r a p p r o a c h
a l s o m a k e s AMPLE v e r y e x t e n s i b l e : a s o t h e r c o n s t r a i n t l a n g u a g e s
a r e d i s c o v e r e d (a n d n o t a t i o n s d e v e l o p e d) t h e y c a n b e i n t e g r a t e d
i n t o AMPLE. F o r e x a m p l e , we a r e c o n s i d e r i n g a n a l t e r n a t i v e (o r
c o m p l e m e n t) t o t h e c a t e g o r y s y s t e m t h a t w o u l d a l l o w c a t e g o r i e s t o
b e d e f i n e d a s s e t s o f f e a t u r e s , i n c o r p o r a t i n g p e r c o l a t i o n ,
r e d u n d a n c y r u l e s a n d f e a t u r e a d d i t i o n r u l e s ; s e e i n W eber 1 9 8 7 b .

-306- Intemational Parsing Workshop '89

We e x p e c t AMPLE t o b e u s e f u l i n c o n j u n c t i o n w i t h v a r i o u s
s y n t a c t i c p a r s e r s . I n o n e e x p e r i m e n t , a u n i f i c a t i o n - b a s e d p a r s e r
(a d a p t e d f r o m a n e a r l y v e r s i o n o f P A T R -II) p a r s e s s e n t e n c e s (o r
s e n t e n c e f r a g m e n t s) u s i n g AMPLE o u t p u t . The morpheme
d i c t i o n a r i e s , a r e r e a d o n c e b y AMPLE f o r t h e m o r p h o l o g i c a l
i n f o r m a t i o n a n d a g a i n b y t h e s y n t a c t i c p a r s e r =o r t h e s y n t a c t i c
p a r s e r .

We h o p e t h a t i n t h e n e x t f e w y e a r s AMPLE w i l l b e a p p l i e d t o
a much w i d e r r a n g e o f l a n g u a g e s .

c u r r e n t a d d r e s s : D a v i d Weber
6 0 0 4 S t a n t o n A v e . A - 1 5
P i t t s b u r g h , PA 1 5 2 0 6

-307- Intemational Parsing Workshop ’89

REFERENCES

B l o c k , B e r n a r d . 1 9 4 7 . " E n g l i s h v e r b i n f l e c t i o n . " L a n o u a a e
2 3 : 3 9 9 - 4 1 8 . * *

H o c k e t t , C h a r l e s . 1 9 5 4 . "Two m o d e l s o f g r a m m a t i c a l
d e s c r i p t i o n . " Word. 1 0 : 2 1 0 - 2 3 1 .

K a s p e r , R o b e r t a n d D. W e b e r . 1 9 8 6 a (w r i t t e n i n 1 9 8 2) . U s e r ' s
R e f e r e n c e M a n u a l f o r t h e C Q u e c h u a A d a p t a t i o n P r o g r a m .
O c c a s i o n a l P u b l i c a t i o n s i n A c a d e m i c C o m p u t i n g No. 8 .
D a l l a s : Summer I n s t i t u t e o f L i n g u i s t i c s .

— ------------------ a n d _______________ . 1 9 8 6 b (w r i t t e n i n 1 9 8 2) . P r o g r a m m e r s
R e f e r e n c e M an u a l f o r t h e C Q u e c h u a A d a p t a t i o n P r o g r a m .
O c c a s i o n a l P u b l i c a t i o n s i n A c a d e m i c C o m p u t i n g N o . 9 .
D a l l a s : Summer I n s t i t u t e o f L i n g u i s t i c s .

R e e d , R o b e r t . 1 9 8 6 . C o m p u t e r A i d e d D i a l e c t A d a p t a t i o n : The
T u c a n o a n E x p e r i m e n t . PhD d i s s e r t a t i o n i n l i n g u i s t i c s .
U n i v e r s i t y o f T e x a s a t A r l i n g t o n .

----------------------_. 1 9 8 7 . The I m p l e m e n t a t i o n o f a S y s t e m f o r C o m p u t e r
A i d e d D i a l e c t A d a p t a t i o n . MA t h e s i s i n c o m p u t e r s c i e n c e .
U n i v e r s i t y o f T e x a s a t A r l i n g t o n .

W e b e r , D a v i d (e d i t o r) . 1 9 8 7 a . J u a n d e l O s o . S e r i e L i n g u i s t i c a
P e r u a n a No. 2 6 . Y a r i n a c o c h a : I n s t i t u t o L i n g u i s t i c o d e
V e r a n o .

______________ • 1 9 8 7 b . " S o b r e l a m o r f o l o g i a q u e c h u a . " Estudlos
Q u e c h u a . S e r i e L i n g u i s t i c a P e r u a n a N o. 2 7 . Y a r i n a c o c h a :
I n s t i t u t o L i n g u i s t i c o d e V e r a n o .

______________ a n d W i l l i a m Mann. 1 9 8 1 . " P r o s p e c t s f o r C o m p u te r
A s s i s t e d D i a l e c t A d a p t a t i o n . " AJCL. 7 : 1 6 5 - 1 7 7 .

______________ i H. A. B l a c k a n d S . R . M c C o n n e l . 1 9 8 8 . AMPLE: A T o o l
for Exploring Morphology. O c c a s i o n a l P u b l i c a t i o n s i n
A c a d e m i c C o m p u t i n g N o . 1 2 . D a l l a s : Summer I n s t i t u t e o f
L i n g u i s t i c s . (a v a i l a b l e f r o m t h e ILC A c a d e m i c B o o k C e n t e r ;
7 5 0 0 W. Camp W isdom R d . ; D a l l a s TX 7 5 2 3 6) .

International Parsing Workshop '89

THE PARALLEL EXPERT PARSER: A MEANING-ORIENTED,
LEXICALLY-GUIDED, PARALLEL-INTERACTIVE

MODEL OF NATURAL LANGUAGE UNDERSTANDING

G. ADRIAENS
S i e m e n s NLP R e s e a r c h

& K a t h o l i e k e U n i v e r s i t e i t L e u v e n
M. T h e r e s i a s t r a a t 2 1

B - 3 0 0 0 L e u v e n , B e l g i u m
+ 3 2 1 6 2 8 5 0 9 1

(s i e g e e r t @ k u l c s . u u c p o r
s i e g e e r t @ b l e k u l 6 0 . b i t n e t o r
s i e g e e r t S c s . k u l e u v e n . a c . b e)

Abstract

T h e P a r a l l e l E x p e r t P a r s e r (P E P) i s a n a t u r a l l a n g u a g e a n a l y s i s m o d e l
b e l o n g i n g t o t h e i n t e r a c t i v e m o d e l p a r a d i g m t h a t s t r e s s e s t h e p a r a l l e l
i n t e r a c t i o n o f r e l a t i v e l y s m a l l d i s t r i b u t e d , k n o w l e d g e c o m p o n e n t s t o a r r i v e
a t t h e m e a n i n g o f a f r a g m e n t o f t e x t . I t b o r r o w s t h e i d e a o f w o r d s a s
b a s i c d y n a m i c e n t i t i e s t r i g g e r i n g a s e t o f i n t e r a c t i v e p r o c e s s e s f r o m t h e
W o r d E x p e r t P a r s e r (S m a l l 1 9 8 0) , b u t t r i e s t o i m p r o v e o n t h e c l a r i t y o f
i n t e r a c t i v e p r o c e s s e s a n d o n t h e o r g a n i z a t i o n o f l e x i c a l l y - d i s t r i b u t e d
k n o w l e d g e . A s o f n o w , e s p e c i a l l y t h e p r o c e d u r a l a s p e c t s h a v e r e c e i v e d
a t t e n t i o n : I n s t e a d o f h a v i n g w i l d - r u n n i n g u n c o n t r o l l a b l e i n t e r a c t i o n s ,
PEP r e s t r i c t s t h e i n t e r a c t i o n s t o e x p l i c i t c o m m u n i c a t i o n s o n a s t r u c t u r e d
b l a c k b o a r d ; t h e c o m m u n i c a t i o n p r o t o c o l s a r e a c o m p r o m i s e b e t w e e n m a x i m u m
p a r a l l e l i s m a n d c o n t r o l l a b i l i t y . A t t h e s a m e t i m e , i t i s n o l o n g e r j u s t
w o r d s t h a t t r i g g e r p r o c e s s e s ; w o r d s c r e a t e l a r g e r u n i t s (c o n s t i t u e n t s) ,
t h a t a r e i n t u r n i n t e r a c t i n g e n t i t i e s o n a h i g h e r l e v e l . L e x i c a l
e x p e r t s c o n t r i b u t e t h e i r a s s o c i a t e d k n o w l e d g e , c r e a t e h i g h e r - l e v e l
e x p e r t s , a n d d i e a w a y . T h e l i n g u i s t s d e f i n e t h e l e v e l s t o b e c o n s i d e r e d ,
a n d w r i t e e x p e r t p r o c e s s e s i n a l a n g u a g e t h a t t r i e s t o h i d e t h e p r o c e d u r a l
a s p e c t s o f t h e p a r a l l e l - i n t e r a c t i v e m o d e l f r o m t h e m . P r o b l e m s i n c l u d e
t h e p o s s i b i l i t y o f d e a d l o c k s i t u a t i o n s w h e n p r o c e s s e s w a i t i n f i n i t e l y f o r
e a c h o t h e r , t h e w a y t o e f f i c i e n t l y p u r s u e d i f f e r e n t a l t e r n a t i v e s (a s o f
n o w , t h e s y s t e m j u s t u s e s d o n ' t - c a r e d e t e r m i n i s m) , a n d t e s t i n g w h e t h e r t h e
p r o t o c o l s a l l o w l i n g u i s t s t o f u l l y e x p r e s s t h e i r n e e d s . PEP h a s
b e e n i m p l e m e n t e d i n F l a t C o n c u r r e n t P r o l o g , u s i n g t h e L o g i x p r o g r a m m i n g
e n v i r o n m e n t . C u r r e n t r e s e a r c h i s o r i e n t e d m o r e t o w a r d s t h e p r o b l e m o f
d i s t r i b u t e d k n o w l e d g e r e p r e s e n t a t i o n . A b s t r a c t i o n s a n d g e n e r a l i z a t i o n s
a c r o s s l e x i c a l e x p e r t s c o u l d b e m a d e u s i n g p r i n c i p l e s f r o m o b j e c t - o r i e n t e d
p r o g r a m m i n g (i n t r o d u c i n g g e n e r i c , p r o t o t y p i c a l e x p e r t s ; c p . H a h n 1 9 8 7) .
T h o u g h t s a l s o g o i n t h e d i r e c t i o n o f a n i n t e g r a t i o n o f t h e c o a r s e - g r a i n e d
p a r a l l e l i s m w i t h k n o w l e d g e r e p r e s e n t a t i o n i n a f i n e - g r a i n e d p a r a l l e l
(c o n n e c t i o n i s t) w a y .

-309- International Parsing Workshop '89

1. Introduction

I n t h e c o u r s e o f t h e l a s t d e c a d e , i n t e r e s t i n p a r a l l e l m a c h i n e s a n d
a p p l i c a t i o n s h a s s t e a d i l y b e e n g r o w i n g i n t h e d i f f e r e n t d i s c i p l i n e s t h a t
d e a l w i t h n a t u r a l l a n g u a g e u n d e r s t a n d i n g (N L U) . T h i s o f c o u r s e h o l d 3 i n
t h e f i r s t p l a c e f o r r e s e a r c h e r s i n c o m p u t e r s c i e n c e a n d A I , w h o h a v e
a l w a y s b e e n i n t e r e s t e d i n c o m p u t a t i o n a l p r o c e s s e s (s e e e . g . K o w a l i k 1 9 8 8) .
R e c e n t d e v e l o p m e n t s i n (c o m p u t a t i o n a l) l i n g u i s t i c s a n d c o g n i t i v e
p s y c h o l i n g u i s t i c s s h o w t h a t t h e s e N L U - r e l a t e d d i s c i p l i n e s h a v e a l s o b e e n
m o v i n g t o w a r d s p a r a l l e l m o d e l s . A m a j o r f a c t o r i n f l u e n c i n g t h i s
d e v e l o p m e n t i s t h e r a p i d l y g r o w i n g i n t e r e s t i n I n t e r a c t i v e a p p r o a c h e s t o
NLU (s e e e . g . B r i s c o e 1 9 8 7 , A l t m a n n 1 9 8 8 , A l t m a n n & S t e e d m a n 1 9 8 8) .
B r i e f l y , t h e s e m o d e l s m o v e a w a y f r o m t h e t r a d i t i o n a l l i n g u i s t i c s - i n s p i r e d
v i e w s o f l a n g u a g e u n d e r s t a n d i n g a s n o n - i n t e r a c t i v e , i . e . a s a s e r i a l
a p p l i c a t i o n o f p r o c e s s i n g m o d u l e s w h o s e s o l e m e a n s o f c o m m u n i c a t i o n i s a
u n i d i r e c t i o n a l i n p u t - o u t p u t c h a n n e l (c p . F o r s t e r 1 9 7 9) . T h e r e i s a g r o w i n g
b e l i e f (b a s e d o n e x p e r i e n c e i n c o m p u t a t i o n a l l i n g u i s t i c s a n d o n
p s y c h o l i n g u i s t i c e x p e r i m e n t a t i o n) t h a t n o n - i n t e r a c t i v e m o d e l s a r e
i n c o r r e c t , a n d i n t e r a c t i v e o n e s a l l o w i n g m o r e f l e x i b l e c o m m u n i c a t i o n s
a m o n g c o m p o n e n t s (m a i n l y t o d e a l w i t h a m b i g u i t y) p r o v e t o b e s u p e r i o r .
A l t h o u g h m a t t e r s a r e m o r e c o m p l i c a t e d t h a n s t a t e d h e r e , i t w i l l b e c l e a r
t h a t I n t e r a c t i v e m o d e l s l e n d t h e m s e l v e s e a s i l y t o p a r a l l e l a r c h i t e c t u r e s
(s e e a l s o A d r i a e n s & H a h n f o r t h c o m i n g) . F o r t h e p r e s e n t a t i o n o f t h e

P a r a l l e l E x p e r t P a r s e r , I w i l l o n l y b r i e f l y d i s t i n g u i s h t w o k i n d s o f
a p p r o a c h e s t o p a r a l l e l NLU . On t h e o n e h a n d , t h e r e i s w h a t c a n b e c a l l e d
f l n e - g r a l n p a r a l l e l i s m ; o n t h e o t h e r h a n d , t h e r e i s c o a r s e - g r a l n
p a r a l l e l i s m . W i t h f l n e - g r a l n p a r a l l e l N L U I r e f e r b a s i c a l l y t o t h e
c o n n e c t i o n i s t a p p r o a c h a n d i t s d e c e n d a n t s . C o n n e c t i o n i s t m o d e l s
f e a t u r e h u g e n e t w o r k s o f s m a l l n o d e s o f i n f o r m a t i o n ; c o m p u t a t i o n i s
r e p r e s e n t e d b y f l u c t u a t i o n s o f t h e a c t i v a t i o n l e v e l s o f n o d e s a n d b y
(p a r a l l e l) t r a n s m i s s i o n o f e x c i t a t i o n a n d i n h i b i t i o n a l o n g c o n n e c t i o n s .
(F o r c o n n e c t i o n i s m i n g e n e r a l , s e e F e l d m a n & B a l l a r d 1 9 8 2 , V a n L e h n 1 9 8 4 ,

H i l l i s 1 9 8 6 , M c C l e l l a n d & R u m e l h a r t 1 9 8 6 ; f o r c o n n e c t i o n i s t m o d e l s o f NLU,
s e e C o t t r e l l & S m a l l 1 9 8 3 , C o t t r e l l 1 9 8 5 , P o l l a c k & W a l t z 1 9 8 5 , M c C l e l l a n d
& R u m e l h a r t 1 9 8 6) . W i t h c o a r s e - g r a l n p a r a l l e l N L U , I r e f e r t o a m o r e
m o d e s t k i n d , i n w h i c h t h e s m a l l e s t i t e m o f i n f o r m a t i o n i s m o r e c o m p l e x
t h a n a n o d e i n a c o n n e c t i o n i s t m o d e l (i t m a y b e a r u l e , f o r i n s t a n c e) , b u t
i n w h i c h o n e a t t e m p t s t o k e e p t h e p a r a l l e l c o m p u t a t i o n i n v o l v i n g t h e i t e m s
o f i n f o r m a t i o n m o r e u n d e r c o n t r o l t h a n c a n b e d o n e i n a c o n n e c t i o n i s t
m o d e l . (F o r e x a m p l e s o f c o a r s e - g r a i n p a r a l l e l NLU, s e e H i r a k a w a
1 9 8 3 , M a t s u m o t o 1 9 8 7 o r G r a n g e r , E i s e l t & H o l b r o o k 1 9 8 6) .

T h e r e s e a r c h p r e s e n t e d h e r e i s o f t h e l a t t e r t y p e o f p a r a l l e l N L U .
A p o t e n t i a l l y p a r a l l e l NLU s y s t e m (t h e W o r d E x p e r t P a r s e r , S m a l l 1 9 8 0) h a s
b e e n d r a s t i c a l l y r e v i s e d s o a s t o a l l o w a t r u l y p a r a l l e l i m p l e m e n t a t i o n
(v i z . i n F l a t C o n c u r r e n t P r o l o g , u s i n g t h e L o g i x e n v i r o n m e n t (S i l v e r m a n

e t a l . 1 9 8 6)) ; w e c a l l t h e r e s u l t i n g s y s t e m t h e P a r a l l e l E x p e r t P a r s e r
(P E P , D e v o s 1 9 8 7) .

2. The Word Expert Parser (WEP) revisited

T h e W o r d E x p e r t P a r s e r (WEP, S m a l l 1 9 8 0) i s a n a t u r a l l a n g u a g e
u n d e r s t a n d i n g p r o g r a m i n t h e A I t r a d i t i o n o f s e m a n t i c p a r s i n g (s e e a l s o
H i r s t 1 9 8 3 , H a h n 1 9 8 6 / 1 9 8 7 , C o t t r e l l 1 9 8 5 , A d r i a e n s 1 9 8 6 a / b f o r
W E P - i n s p i r e d o r - r e l a t e d w o r k) . T h e o r g a n i z a t i o n o f t h e m o d e l d i f f e r s
s t r o n g l y f r o m t h a t o f a " c l a 3 3 i c a l ,, NLU s y s t e m . R a t h e r t h a n h a v i n g a
n u m b e r o f c o m p o n e n t s o f r u l e s t h a t a r e a p p l i e d (s e r i a l l y) t o l i n g u i s t i c

-310- International Parsing Workshop '89

i n p u t b y a g e n e r a l p r o c e s s , WEP c o n s i d e r s t h e w o r d s t h e m s e l v e s a s a c t i v e
a g e n t s (w o r d e x p e r t s) t h a t i n t e r a c t w i t h e a c h o t h e r a n d w i t h o t h e r
k n o w l e d g e s o u r c e s i n o r d e r t o f i n d t h e m e a n i n g o f a f r a g m e n t o f t e x t .
W o r d s a r e i m p l e m e n t e d a s c o r o u t i n e s , i . e . p r o c e s s e s t h a t r u n f o r a
w h i l e (b r o a d c a s t i n g i n f o r m a t i o n o r p e r f o r m i n g s i d e - e f f e c t o p e r a t i o n s t o
r e f i n e t h e r e p r e s e n t a t i o n o f t h e m e a n i n g o f a t e x t f r a g m e n t) , a n d s u s p e n d
w h e n t h e y h a v e t o w a i t f o r i n f o r m a t i o n f r o m o t h e r e x p e r t s . T h e
i n f o r m a t i o n t h e y s e n d o r w a i t f o r a r e e i t h e r s i g n a l s r e l a t i n g t o t h e
s t a t u s o f t h e p a r s i n g p r o c e s s (b r o a d c a s t o n a d e d i c a t e d s i g n a l c h a n n e l) o r
c o n c e p t s t h a t r e p r e s e n t t h e m e a n i n g o f p a r t s o f t h e l i n g u i s t i c i n p u t
(b r o a d c a s t o n a d e d i c a t e d c o n c e p t c h a n n e l) . T h e e x p e r t s c o o r d i n a t e t h e

u n d e r s t a n d i n g p r o c e s s i n t u r n , e v e n t u a l l y c o n v e r g i n g t o w a r d s a c o n c e p t u a l
s t r u c t u r e t h a t r e p r e s e n t s t h e m e a n i n g o f a t e x t f r a g m e n t .

A l t h o u g h t h e m o d e l i n s p i r e d s e v e r a l r e s e a r c h e r s , i t h a s r e c e i v e d
l i t t l e a t t e n t i o n i n t h e l i n g u i s t i c c o m m u n i t y (b u t s e e B e r w i c k 1 9 8 3) a n d
h a s b e e n c o n s i d e r e d a s " a n i n t e r e s t i n g r a r i t y " . M o r e o v e r , t h e o r i g i n a l
r e s e a r c h e r s h a v e a b a n d o n e d t h e m o d e l i n f a v o r o f t h e c o n n e c t i o n i s t
a p p r o a c h m e n t i o n e d a b o v e . Y e t , t h e o r i g i n a l m o d e l s t i l l h a s s o m e
i n t e r e s t i n g f e a t u r e s t h a t a r e w o r t h y o f f u r t h e r c o n s i d e r a t i o n ; o n t h e
o t h e r h a n d , b o t h f o r l i n g u i s t i c a n d f o r c o m p u t a t i o n a l r e a s o n s , s o m e
d r a s t i c r e v i s i o n s a r e n e e d e d .

3. From WEP to PEP

I n g e n e r a l , t h e i d e a o f p a r a l l e l i n t e r a c t i n g p r o c e s s e s i s a v e r y
a t t r a c t i v e o n e i f o n e w a n t s a f l e x i b l e p a r s e r c a p a b l e o f u s i n g a n y t y p e o f
i n f o r m a t i o n a t a n y m o m e n t i t n e e d s i t . T h i s b a s i c p r i n c i p l e o f WEP h a s
b e e n r e t a i n e d f o r P E P . Y e t , a l t h o u g h t h e d e s i g n o f t h e s y s t e m s e e m e d t o
l e n d i t s e l f e a s i l y t o a p a r a l l e l i m p l e m e n t a t i o n , l i n g u i s t i c a n d
c o m p u t a t i o n a l f l a w : i n t h e m o d e l h a v e m a d e d r a s t i c r e v i s i o n s n e c e s s a r y
b e f o r e t h i s c o u l d a c t u a l l y b e d o n e .

3.1 True parallelism

A l t h o u g h WEP c l a i m e d t o b e " p o t e n t i a l l y p a r a l l e l " , i t h e a v i l y (a n d
i m p l i c i t l y) r e l i e d o n s e q u e n t i a l i t y t o m a k e i t s p r i n c i p l e s w o r k .
E s p e c i a l l y f o r t h e r e s t a r t i n g o f s u s p e n d e d e x p e r t s , a l a s t - i n f i r s t - o u t
r e g i m e (s t a c k) t o o k c a r e o f c o n t e n t i o n f o r m e s s a g e s : t h e e x p e r t t h a t
p l a c e d a n e x p e c t a t i o n f o r a m e s s a g e l a s t , m o s t l y g o t i t f i r s t . A l s o , t o
a v o i d c o m p l i c a t i o n s i n e x p e r t c o m m u n i c a t i o n , n o n e w e x p e r t s w e r e
i n i t i a l i z e d b e f o r e t h e q u e u e o f r e a d y - t o - r u n e x p e r t s w a s e m p t y . T h e
a d h e r e n c e t o t h i s s e q u e n t i a l i z a t i o n , n o t t o m e n t i o n t h e s i d e - e f f e c t s
i n v o l v e d , o b v i o u s l y m a d e W E P ' s c l a i m o f b e i n g " p o t e n t i a l l y p a r a l l e l "

i n v a l i d .
I n a t r u l y p a r a l l e l e n v i r o n m e n t , s e q u e n t i a l i t y c a n n o l o n g e r b e

r e l i e d o n . PEP u s e s p a r a l l e l i s m w h e n e v e r p o s s i b l e : f o r t h e e x e c u t i o n o f
e x p e r t c o d e AND f o r i n i t i a l i z i n g n e w e x p e r t s (i n i t i a l i z i n g a l l o f t h e m a s
s o o n a s t h e y a r e r e a d a n d m o r p h o l o g i c a l l y a n a l y z e d) . I n o r d e r t o
r e a l i z e t h i s , t h e m o s t i m p o r t a n t d e p a r t u r e f r o m t h e o r i g i n a l m o d e l i s t h a t
e x p e r t s a r e n o l o n g e r o n l y a s s o c i a t e d w i t h w o r d s (t h e o n l y l i n g u i s t i c
e n t i t i e s a c k n o w l e d g e d b y W E P) . We w i l l n o w d i s c u s s w h a t e x p e r t s a r e
a s s o c i a t e d w i t h , a n d h o w t h e n e w v i e w o f e x p e r t s l e a d s t o c l e a r e r a n d m o r e
e x p l i c i t c o n c e p t s o f w a i t i n g a n d c o m m u n i c a t i n g i n a p a r a l l e l e n v i r o n m e n t .

-311- Intemational Parsing Workshop 89

3.2 Word-Expert* vcriua Concept-Experts at different level*

A m a j o r i t e m o f c r i t i c i s m u t t e r e d a g a i n s t WEP h a s b e e n t h a t i t
c o n s i d e r s t h e w o r d a s t h e o n l y e n t i t y t o b e t u r n e d i n t o a n e x p e r t p r o c e s s .
L i n g u i s t i c a l l y s p e a k i n g , t h e e x i s t e n c e o f l a r g e r c o n s t i t u e n t s i s
u n d e n i a b l e a n d m u s t b e t a k e n i n t o a c c o u n t , w h a t e v e r m o d e l o n e a d v o c a t e s .
F r o m t h e c o m p u t a t i o n a l v i e w p o i n t , s q u e e z i n g a l l i n t e r a c t i o n s i n t o w o r d s
m a k e s i t a l m o s t i m p o s s i b l e t o f i g u r e o u t w h a t i s g o i n g o n i n t h e o v e r a l l
p a r s i n g p r o c e s s (T h i s n o n - t r a n s p a r e n c y i s o n e o f t h e r e a s o n s w h y
f u l l y - i n t e g r a t e d i n t e r a c t i v e m o d e l s a r e n o t s o p o p u l a r) . W o r d s h a v e t o
d e c i d e o n e v e r y t h i n g , f r o m m o r p h o l o g i c a l i s s u e s t o p r a g m a t i c i s s u e s , w i t h
j a m m e d c o m m u n i c a t i o n c h a n n e l s a s a r e s u l t .

I n P E P , e x p e r t s a r e a s s o c i a t e d w i t h c o n c e p t s r a t h e r t h a n w i t h w o r d s .
I t i s v e r y n a t u r a l t o d o s o : w o r d s a r e o n l y u s e d t o e v o k e t h e c o n c e p t s
t h a t c o n s t i t u t e t h e m e a n i n g o f a f r a g m e n t o f t e x t . S t i l l , c o n c e p t s
h a v e a c o n c r e t e l i n k t o w o r d s a n d c a n b e r e g a r d e d a s b e i n g a s s o c i a t e d w i t h
t h e g r o u p o f w o r d s t h a t e v o k e s t h e m . E . g . i n " t h e y o u n g g i r l " t h r e e
c o n c e p t s c a n b e d i s c o v e r e d , a s s o c i a t e d w i t h t h e b a s i c w o r d - g r o u p s " t h e " ,
" y o u n g " a n d " g i r l " . A t a h i g h e r l e v e l a c o m p o u n d c o n c e p t c o n s t i t u t i n g . t h e
m e a n i n g o f t h e e n t i r e c o n s t r u c t " t h e y o u n g g i r l " i s i n v o k e d .

C o n c r e t e l y , i n PEP a s p e c i f i c d a t a s t r u c t u r e (t h e e x p e r t f r a m e) i s
a s s o c i a t e d w i t h e v e r y e x p e r t . T h e h i e r a r c h y t h a t o r i g i n a t e s f r o m t h e
c o n c e p t s i s r e f l e c t e d b y t h e i n t e r c o n n e c t i o n o f t h e e x p e r t f r a m e s . T h e s e
a r e v e r t i c a l l y r e l a t e d b y l e v e l i n t e r d e p e n d e n c i e s , a n d h o r i z o n t a l l y b y t h e
r e l a t i v e r o l e t h e c o n c e p t s o f t h e f r a m e s p l a y i n t h e f r a m e t h a t i s b e i n g
b u i l t o u t o f t h e m o n e l e v e l h i g h e r . B e s i d e s i t s l e v e l , a n e x p e r t f r a m e
h a s t h r e e a t t r i b u t e s l o t s : a f u n c t i o n a t t r i b u t e (s t a t i n g w h a t t h e r o l e
i s t h e e x p e r t c o n c e p t p l a y s a t a s p e c i f i c l e v e l) , a c o n c e p t a t t r i b u t e
(r e p r e s e n t i n g t h e c o n t e n t s o f t h e e x p e r t) a n d a l e x i c a l a t t r i b u t e (s i m p l y

c o r r e s p o n d i n g t o t h e g r o u p o f w o r d s a s s o c i a t e d w i t h t h e c o n c e p t) . B e l o w ,
w e w i l l s e e t h a t t h i s d e f i n i t i o n o f a n e x p e r t f r a m e i s c r u c i a l f o r t h e
r e s t r i c t e d c o m m u n i c a t i o n p r o t o c o l a m o n g e x p e r t s .

T h e " a n a l y s i s p r o c e s s " c o n s i s t s o f t h e c o l l e c t i o n o f c u r r e n t l y a c t i v e
e x p e r t s t h a t t r y t o e s t a b l i s h n e w c o n c e p t s . I f a n e w c o n c e p t c a n
s u c c e s s f u l l y b e f o r m e d , t h e c o r r e s p o n d i n g e x p e r t i s a d d e d t o t h e a n a l y s i s
p r o c e s s , w h i l e t h e c o m b i n e d c o n c e p t ' s e x p e r t s m a y d i e . T h e y p a s s t h e i r
e x p e r t f r a m e s , a n d s o t h e c o n t a i n e d i n f o r m a t i o n , t o t h e n e w e x p e r t , w h i c h
w i l l u s u a l l y i n c o r p o r a t e t h e m i n i t s o w n e x p e r t f r a m e . N o t i c e t h a t t h i s
v i e w h a s i n t e r e s t i n g s o f t w a r e e n g i n e e r i n g a s p e c t s n o t p r e s e n t i n WEP:
b y h a v i n g a l e v e l e d a p p r o a c h e x p e r t c o d e b e c o m e s m o r e l o c a l , m o d u l a r a n d
a d a p t a b l e . T h e d y n a m i c p r o c e s s h i e r a r c h y e n a b l e s t h e l i n g u i s t / e x p e r t
w r i t e r t o w r i t e g e n e r i c o r p r o t o t y p i c a l e x p e r t s t h a t c a n b e p a r a m e t e r i z e d
w i t h t h e v a l u e o f t h e c o n c e p t t h e y r e p r e s e n t (c p . o b j e c t - o r i e n t e d
p r o g r a m m i n g) .

A f i n a l n o t e a b o u t t h e l e v e l s . E a c h l e v e l i s i n t e n d e d t o d e a l
w i t h a m o r e o r l e s s i n d e p e n d e n t p a r t i n t h e d e r i v a t i o n a n d c o m p o s i t i o n o f
m e a n i n g . H o w e v e r , w e l e a v e i t u p t o t h e l i n g u i s t s w r i t i n g t h e e x p e r t
p r o c e s s e s t o d e c l a r e (1) w h a t l e v e l s t h e y w a n t t o c o n s i d e r a n d (2) w h a t
t h e a p p r o p r i a t e f u n c t i o n s a r e t h a t t h e y w a n t t o u s e a t t h e r e s p e c t i v e
l e v e l s . B y c o m b i n i n g t h i s f l e x i b l e f i l l i n g i n o f a r i g o r o u s l y d e f i n e d
m o d e l , w e f o r c e t h e l i n g u i s t - u s e r t o c l e a r l y s p e c i f y t h e e x p e r t s a n d h e l p
h i m t o k e e p t h e e x p e r t s r e l a t i v e l y s m a l l (h e n c e , m o r e r e a d a b l e) a n d t o
f i g u r e o u t m o r e e a s i l y w h e r e t h i n g s c o u l d g o w r o n g m t h e p a r s i n g p r o c e s s .
A p o s s i b l e h i e r a r c h y o f l e v e l s m i g h t b e : m o r p h e m e , w o r d , c o n s t i t u e n t ,
c l a u s e , s e n t e n c e (e a c h l e v e l h a v i n g i t s o w n f u n c t i o n a t t r i b u t e s) . I n t h e
s o m e w h a t o v e r s i m p l i f i e d e x a m p l e b e l o w , t h r e e l e v e l s w i l l b e u s e d (b e t w e e n
b r a c k e t s : t h e r e s p e c t i v e f u n c t i o n a t t r i b u t e s) , v i z . w o r d _ l e v e l
[a r t i c l e ; a d j e c t i v e ; s u b s t a n t i v e] , c o n s t i t u e n t _ l e v e l [a c t i o n ; a g e n t ; o b j e c t] ,
a n d s e n t e n c e l e v e l .

-312- Intemational Parsing Workshop '89

3.3 Broadcasting versus Explicit Communication

E x p e r t s a r e t h e a c t i v e c o m p o n e n t s o f t h e a n a l y s i s s y s t e m . Ne w
c o n c e p t s c o m e i n t o e x i s t e n c e o n l y t h r o u g h t h e i r i n t e r a c t i o n . S i n c e
p a r a l l e l i s m w a s a m a j o r g o a l o f t h e PEP a p p r o a c h , t h e c o m m u n i c a t i o n
p r o t o c o l s h a v e b e e n b a s e d o n e x p l i c i t i d e n t i f i c a t i o n o f t h e e x p e r t f r a m e s
i n v o l v e d i n s o m e i n t e r a c t i o n , w h i c h a l l o w s o n e t o k e e p c o m m u n i c a t i o n u n d e r
c o n t r o l . Two k i n d s o f c o m m u n i c a t i o n t a k e p l a c e :

(1) Mttrlbutm-rmfining:

E x p e r t s a r e a l l o w e d t o r e f i n e t h e a t t r i b u t e s o f e x p e r t
f r a m e s . T h e a t t r i b u t e s a r e c o n s i d e r e d t o b e i n f o r m a t i o n t h a t
i s a c c e s s i b l e b y a l l e x p e r t s .

(2) attrlbutm-problng:

B a s i n g t h e m s e l v e s o n t h e a t t r i b u t e s o f t h e p r o b e d e x p e r t f r a m e s ,
e x p e r t s d e c i d e w h i c h w a y t o g o i n t h e a n a l y s i s p r o c e s s . A l l a t t r i b u t e
p r o b i n g i s i n t h e c h o o s e _ a l t p r e d i c a t e , t h a t i s d e s c r i b e d i n t h e n e x t
s u b s e c t i o n .

3 . 4 Suspending/Re•timing :
Explicit Machinery versus Declarative Reading

I n t h e c o u r s e o f t h e a n a l y s i s p r o c e s s , e x p e r t s w a l k t h r o u g h a
d i s c r i m i n a t i o n n e t w o r k , g r a d u a l l y r e f i n i n g a n d c o n s t r u c t i n g t h e m e a n i n g o f
a t e x t f r a g m e n t . T h e p r e d i c a t e t h a t a l l o w s e x p e r t s t o d e c i d e w h i c h w a y
t o g o i n t h i s p r o c e s s o n t h e b a s i s o f i n f o r m a t i o n t h e y e x p e c t t o g e t f r o m
o t h e r e x p e r t s i s t h e c h o o s e _ a l t p r e d i c a t e :

choose_alt([
alt(frame (frame-specification,

attribute_condition),
invoke(expert)),

alt(frame (frame-specification,
attribute_condition) ,
invoice (expert)) ,

else (invoice (expert))
]) •

I t c o n s i s t s o f a n u m b e r o f a l t e r n a t i v e s a n d a n o p t i o n a l e l s a t i v e . T h e
a l t e r n a t i v e s c o n t a i n a t e s t , w h i c h m a y f a i l , s u s p e n d o r s u c c e e d . I n t h e
l a s t c a s e t h e c o r r e s p o n d i n g e x p e r t m a y b e i n v o k e d . I f t e s t s f r o m s e v e r a l
a l t e r n a t i v e s s u c c e e d , , a n a r b i t r a r y c o r r e s p o n d i n g e x p e r t i s i n v o k e d ,
w h e r e a s t h e o t h e r s a r e n o t f u r t h e r c o n s i d e r e d (d o n ' t - c a r e c o m m i t t e d
c h o i c e ; s e e a l s o b e l o w a n d D e v o s 1 9 8 7 , h o w e v e r , f o r a s u g g e s t i o n o f h o w t o
r e a l i z e n o n - d e t e r m i n i s m i n v i e w o f a m b i g u i t y) . O n l y a f t e r f a i l u r e o f
a l l t e s t s i s t h e e l s a t i v e - e x p e r t e x e c u t e d .

T e s t s c o n s i s t o f a f r a m e - s p e c i f i c a t i o n a n d a n a t t r i b u t e - c o n d i t i o n .
T h e l a t t e r c o n s t i t u t e s t h e a c t u a l t e s t o n t h e a t t r i b u t e o f t h e f r a m e
s e l e c t e d b y " f r a m e - s p e c i f i c a t i o n ” . T h i s f r a m e c a n b e r e f e r r e d t o w i t h

-313- International Parsing Workshop '89

t e s t f r a m e i n t h e c o r r e s p o n d i n g i n v o k e d e x p e r t . O n e w i l l a l r e a d y h a v e
n o t i c e d t h a t t h e c h o o s e _ a l t p r e d i c a t e d o e s n o t c o n t a i n a n y e x p l i c i t
s c h e d u l i n g c o m m a n d s . I n d e e d , t h e i n t e n t i o n i s t o e n t i r e l y m a s k t h e
p r o g r a m f l o w b y a d e c l a r a t i v e r e a d i n g . H o w e v e r , f l o w c o n t r o l r e m a i n s
n e c e s s a r y a n d i t i s r e a l i z e d b y s u s p e n d i n g a n e x p e r t r o u t i n e (o r a b r a n c h
i n t h e c h o o s e _ a l t p r e d i c a t e , s i n c e t h e a l t e r n a t i v e s i n t h e c h o o s e _ a l t m a y
b e e x e c u t e d i n p a r a l l e l) , i f i t r e q u i r e s i n f o r m a t i o n t h a t i s n o t y e t
a v a i l a b l e . O n l y a f t e r t h i s r e q u i r e d i n f o r m a t i o n i s f i l l e d i n , d o e s t h e
e x p e r t - r o u t i n e r e s u m e . T h i s c a n c h e a p l y b e i m p l e m e n t e d u s i n g
r e a d - o n l y u n i f i c a t i o n (S h a p i r o 1 9 8 6) . I n t u i t i v e l y , p r e d i c a t e s t h a t
p r o b e f o r i n f o r m a t i o n s u s p e n d , i f t h e v a r i a b l e t h a t s u p p l i e s t h i s
I n f o r m a t i o n i s n o t y e t i n s t a n t i a t e d . T h i s s u s p e n s i o n t a k e s p l a c e
d u r i n g u n i f i c a t i o n o f t h e F l a t C o n c u r r e n t P r o l o g (F C P) p r e d i c a t e (s e e
b e l o w) , i n t o w h i c h e x p e r t r o u t i n e s a r e c o m p i l e d . R e s u m p t i o n o c c u r s
w h e n e v e r t h e r e q u i r e d v a r i a b l e g e t s i n s t a n t i a t e d . S u s p e n s i o n o f a
c h o o s e _ a l t b r a n c h m a y t a k e p l a c e i n t h e f o l l o w i n g c a s e s :

(1) I f t h e s e a r c h f o r t h e t e s t f r a m e r e q u i r e s
i n f o r m a t i o n t h a t i s n o t y e t a v a i l a b l e , i t s i m p l y
s u s p e n d s . A s a r e s u l t t h e f r a m e - s p e c i f i c a t i o n
a l w a y s l e a d s t o t h e s e l e c t i o n o f a f r a m e i n a
d e t e r m i n i s t i c w a y . H e n c e , e x p l i c i t c o m m u n i c a t i o n
b e c o m e s p o s s i b l e .

(2) T h e a t t r i b u t e - t e s t s u s p e n d s u n t i l t h e i n f o r m a t i o n t o
b e t e s t e d i s a v a i l a b l e .

T h e r e i s o n e o t h e r p r e d i c a t e o r c o m m a n d t h a t m a y c a u s e s u s p e n s i o n o f
a n e x p e r t , v i z . b e g i n _ l e v e l (a _ l e v e l j . T h e e x e c u t i o n o f a n e x p e r t
t h a t s p e c i f i e s b e g i n _ l e v e l (a _ l e v e l) , i s o n l y r e s u m e d a f t e r a l l a t t r i b u t e s
o f i n c o r p o r a t e d e x p e r t f r a m e s a r e s p e c i f i e d . T h i s f i l l i n g i n o f
a t t r i b u t e s t a k e s p l a c e b e t w e e n d i f f e r e n t e x p e r t f r a m e s o n t h e s a m e l e v e l
(i n t r a - l e v e l c o m m u n i c a t i o n) . W i t h r i g i d r u l e s a s t o w h i c h e x p e r t f i l l s i n

w h i c h f r a m e , i t i s p o s s i b l e t o p r o v e t h a t t h e e x p e r t c o d e i 3 d e a d l o c k
f r e e . T h e s e r u l e s w i l l f u r t h e r b e r e f e r r e d t o a s t h e d e a d l o c k a v o i d a n c e
r u l e s . I t s u f f i c e s e . g . t o p r o v e t h a t e v e r y f r a m e t h a t i 3 a t t h e l o w e s t
l e v e l t h a t s t i l l c o n t a i n s u n f i l l e d f r a m e s , w i l l e v e n t u a l l y b e f i l l e d i n .
I t m u s t t h e n n o t b e d i f f i c u l t t o c o n s t r u c t a d e a d l o c k a n a l y s e r , t h a t
c h e c k s w h e t h e r t h e d e a d l o c k a v o i d a n c e r u l e s a r e v i o l a t e d . T h i s h a s n o t
y e t b e e n f u r t h e r e l a b o r a t e d .

H o w e v e r , t o e n s u r e f l e x i b i l i t y (e s p e c i a l l y f r o m l i n g u i s t i c
c o n s i d e r a t i o n s) w e a r e f o r c e d t o a l l o w i n t e r - l e v e l c o m m u n i c a t i o n . e . g .
i n s e n t e n c e s a s " t h e l i t t l e g i r l l o v e d h e r t o y " , w h e r e " h e r " i s l e v e l
e q u i v a l e n t t o " l i t t l e " , b u t a n a p h o r i c a l l y r e f e r s t o " t h e l i t t l e g i r l " ,
w h i c h w i l l p r o b a b l y b e a t a h i g h e r (h e n c e , d i f f e r e n t) l e v e l t h a n " h e r " .
I n t h i s c a s e d e a d l o c k f r e e c o d e i s n o t e a s y t o g u a r a n t e e , b e c a u s e o f t h e
p o s s i b i l i t y o f c i r c u l a r w a i t i n g o f e x p e r t s f o r o n e a n o t h e r . I t i s o u r
h o p e t h a t w e c a n a l s o i n c o r p o r a t e r e s t r i c t e d a n d w e l l - s p e c i f i e d u s e o f
t h i s i n t e r - l e v e l c o m m u n i c a t i o n i n t h e d e a d l o c k a v o i d a n c y r u l e s .

T h e s y s t e m a s y e t d e s i g n e d , i m p l e m e n t s a d o n ' t - c a r e c o m m i t t e d - c h o i c e
b e t w e e n t h e a l t e r n a t i v e s o f a c h o o s e _ a l t p r e d i c a t e . T h i s m e a n s t h a t a n
a r b i t r a r y a l t e r n a t i v e t h a t s u c c e e d s , w i l l b e c h o s e n t o d e t e r m i n e t h e
e x p e r t ' s b e h a v i o u r . We a r e w e l l a w a r e o f t h e f a c t t h a t d o n ' t - c a r e
c o m m i t t e d - c h o i c e i s n o t a l w a y s w h a t o n e w a n t s i n A l a p p l i c a t i o n s . We
m e r e l y c h o s e t h i s (e a s y) o p t i o n h e r e i n o r d e r n o t t o b u r d e n t h e d e s i g n a n d
i m p l e m e n t a t i o n w i t h o n e m o r e s e r i o u s p r o b l e m . Two a l t e r n a t i v e s t o b e
e x p l o r e d i n t h e f u t u r e a r e t h e f o l l o w i n g .

T h e f i r s t i s i n t e r m e d i a t e b e t w e e n d o n ' t - c a r e c o m m i t t e d - c h o i c e a n d
f u l l n o n - d e t e r m i n i s m . T o e a c h a l t e r n a t i v e i n t h e c h o o s e _ a l t c o m m a n d a
p r i o r i t y i s a s s i g n e d . T h e a l t e r n a t i v e s a r e t h e n t r i e d o u t b y d e s c e n d i n g
p r i o r i t y , a l l o w i n g t h e m o r e l i k e l y o n e s t o s u c c e e d f i r s t . (T h e s e
p r i o r i t i e s w i l l o f t e n r e f l e c t f r e q u e n c y o f o c c u r r e n c e o f s p e c i f i c

-314- Intemational Parsing Workshop '89

l i n g u i s t i c s t r u c t u r e s .) A p r i o r i t i z i n g a p p r o a c h l i k e t h i s o n e w i l l
h o w e v e r r e q u i r e m o r e s y n c h r o n i s a t i o n a m o n g t h e a l t e r n a t i v e s o f t h e
c h o o s e _ a l t t o e n s u r e a u n i q u e s e m a n t i c s o f t h e c o m m a n d .

T h e s e c o n d i s f u l l n o n - d e t e r m i n i s m . No p r i o r i t i e s a r e a s s i g n e d t o
a l t e r n a t i v e s , a n d t h e s y s t e m i s c a p a b l e o f u n d o i n g a w r o n g c h o i c e d u r i n g
t h e a n a l y s i s p r o c e s s . I t c a n g o b a c k t o a c h o i c e p o i n t a n d t r y o u t
a n o t h e r a l t e r n a t i v e w h o s e t e s t s u c c e e d s . A (c o s t l y) i m p l e m e n t a t i o n
o f t h i s s t r a t e g y s h o u l d b e b a s e d o n C o n c u r r e n t P r o l o g c o d e (S h a p i r o 1 9 8 6)
t h a t c o n t a i n s a c o p y o f t h e g l o b a l e n v i r o n m e n t f o r e a c h a l t e r n a t i v e i n t h e
c h o o s e a l t c o m m a n d . T h i s C o n c u r r e n t P r o l o g c o d e w o u l d t h e n h a v e t o b e
f l a t t e n e d t o FCP (C o d i s h & S h a p i r o 1 9 8 5) .

3.5 An Exampla Analysis

B e l o w w e p r e s e n t t h e c o d e o f s o m e s a m p l e e x p e r t s t h a t a l l o w t h e
a n a l y s i s o f t h e s e n t e n c e " t h e l i t t l e g i r l e a t s t h e a p p l e " . T h e e x a m p l e i s
s i m p l i f i e d , b u t i l l u s t r a t e s w e l l t h e c r u c i a l e l e m e n t s o f P E P . F i r s t t h e
a p p r o p r i a t e l e v e l s a n d f u n c t i o n s a r e d e c l a r e d . T h e n f o l l o w s t h e c o d e o f
t h e a c t u a l e x p e r t s . R e m e m b e r t h a t e x p f r a m e r e f e r s t o t h e f r a m e t h a t i s
a s s o c i a t e d w i t h t h e e x p e r t a n d t e s t f r a m e r e f e r s t o t h e f r a m e t h a t w a s
r e f e r r e d t o i n t h e a l t e r n a t i v e o f t h e p r e c e d i n g c h o o s e _ a l t c o m m a n d ,
" b e g i n f r a m e " s e t s t h e a p p r o p r i a t e l e v e l a n d " r e f i n e _ f u n c t i o n " a n d
" r e f i n e _ c o n c e p t " d o t h e f i l l i n g i n o f t h e a t t r i b u t e s o f t h e s p e c i f i e d
f r a m e . T h e l e x i c a l a t t r i b u t e i s a u t o m a t i c a l l y f i l l e d i n w h e n b e g i n n i n g
t h e f r a m e . T h e e x a m p l e r e s t r i c t s i t s e l f t o c h o o s e _ a l t c o m m a n d s t h a t
o n l y r e q u i r e i n t r a —l e v e l commur. _ c a t i o n . W h e n t h e s e n t e n c e i s r e a d , t h e
c o r r e s p o n d i n g e x p e r t s a r e i n i t i a l i z e d a n d s t a r t t o r u n i n p a r a l l e l . T h e
r e s t o f t h e c o d e i s s e l f - e x p l a n a t o r y .

d«clic<(laval(
word_l«v«l
(function(articla,adjactiva,substantive 1) ,

conicituant_laval
(function i action,agant,objact]),

»antanca_iavai
(funct ion[))

]) •

tha : -
bagin_frama(word_laval),
rafina_function (axpfrajaa, 'articla').
rafina conctpt (axpfra»a, kind(*d*fining*)),
rafina_concapt (a*pfra»a, vaiua(*dafinad*)).

littia :-
bagin_frai*a <word_laval) ,
rafina function(axpframa, ' adjactiva'),
rafina_concapt(axpframa, kind (*adjactival*)).
ref in«_conc»pt (axpf rama, vaiua (“young, »i»all*)).

girl :-
bagin_frama (*»ord_l«va 1) ,
rafina function(axpfrarea. 'juitantiv*'),
rafina concapt(axpfraraa, kind("par son*)),
rafina_concapt(axpframa, vaiua(*fanaia, chiid_or_raaidan*)) ,

choo»a_alt
([a i t (frama(»inu»(1).function(aquai('articla'))).

-315- Intemational Parsing Workshop '89

invoke(article_incorporation)) ,
• It(frame(minus(1),function(equal('adjective'))) ,

invoke(adjectiv*_incorporation)) ,
else (invoice (no_incorporation)) I) .

apple analogous to the code for girl.

adjective_incorporation :—
incorporate(testframe),
choose_alt

([alt(frame(minus(1),function(equal('article'))),
invoke(article_incorporation)),

else(invoke(no_incorporation))]).

article_incorporation
incorporate(test frame),
begin frarae (constituent_level),
refin*_conc*pt(*xpframe, kind("unused")),
refine_concept(expframe, value("unused")).

no_incorporation
b*gin_fram*(constituent_level),
refine_concept (expframe, kind ("unused")),
refine_concept(expframe, value("unused")).

eats begin_frane(constltuent_level) ,
refine_function(expframe, 'action'),
refine_concept(expfrane, kind ("ingest")),
refine_concept(expframe, value("Ingest_food")),
chooie_alt

([alt(frame(plus(3),concept(view('eatable'))),
invoke(eat_something)),

els* (.......................))]) .

eat_soi»*thing : —
ref ine_f unction (test f raja*, ' object') ,
incorporate (tastfraja*) ,
choos*_alt

((alt(fraa*(minus(1),concept(view(' parson*))),
invoke(to**on*_*ats_saa*thing)),

•ls*(.......... '............)) 1).

scxa*an*_*at s_ao«ething
r*fin*_function (t*stfram*. ’ agent') ,
incorporate (tastfrajaa) ,
b«gin_fraa*(s«nt*nc*_level),
show solution.

-316- Intemational Parsing Workshop '89

4. A Parallel Implementation

I n t h e l a s t s e c t i o n o f t h i s p a p e r t h e i m p l e m e n t a t i o n (i n a l o g i c
p r o g r a m m i n g l a n g u a g e) o f a l l a s p e c t s o f PEP d i s c u s s e d s o f a r w i l l r e c e i v e
a c l o s e r l o o k . F o r t h i s I m p l e m e n t a t i o n L o g i x h a s b e e n u s e d , a F l a t
C o n c u r r e n t P r o l o g e n v i r o n m e n t (S i l v e r m a n e t a l . 1 9 8 6) .

4.1 General Model Organization

T h e p r o t o t y p e r e a l i z a t i o n o f t h e PEP m o d e l a l l o w i n g f o r c o r r e c t
a n a l y s i s o f v e r y s i m p l e s e n t e n c e s (s u c h a s " T h e m a n e a t s " , "A m a n e a t s " ,
"Man e a t s ") c o n s i s t s o f a n e x p e r t l a n g u a g e (EL) t o b e u s e d b y t h e l i n g u i s t
w h e n w r i t i n g h i s e x p e r t s , a p r e c o m p i l e r t h a t t r a n s f o r m s t h e e x p e r t s t o FCP
c o d e a n d t h e L o g i x FCP c o m p i l e r / e m u l a t o r , t h e p r o g r a m m i n g # e n v i r o n m e n t .
L i n g u i s t s a r e o f f e r e d t h e E L, w h i c h o n l y c o n t a i n s p r e d i c a t e s a t a h i g h
l e v e l o f a b s t r a c t i o n . T h e y m a y f u r t h e r t u n e t h e e x p e r t l e v e l s d i s c u s s e d
e a r l i e r a n d t h e f u n c t i o n a t t r i b u t e s t h e y w i l l b e u s i n g a t e a c h l e v e l t o
t h e i r o w n n e e d s . T h e y a r e o n l y a l l o w e d t o u s e t h e EL p r e d i c a t e s a c c o r d i n g
t o t h e i r o w n s p e c i f i c a t i o n o f l e v e l s a n d f u n c t i o n a t t r i b u t e s . T h e EL i s
t h e n p r e c o m p i l e d t o F C P . T h e m a i n r e a s o n f o r t h e a p p r o a c h o f
p r e c o m p i l i n g i s t h a t f l a t t e n i n g t e c h n i q u e s h a v e t o b e u s e d o n t h e
p r e d i c a t e s . T h e s e t e c h n i q u e s a r e t h e d o m a i n o f c o m p u t e r s c i e n t i s t s a n d
t h e l i n g u i s t s h o u l d n o t b e b o t h e r e d w i t h t h e m . (P r e c o m p i l i n g a l s o o f f e r s
i m p o r t a n t a d d i t i o n a l a d v a n t a g e s s u c h a s s y n t a x c h e c k i n g , c h e c k i n g o f
p o t e n t i a l d e a d l o c k , e t c . ; t h e s e f e a t u r e s a r e s t i l l u n d e r d e v e l o p m e n t) .

4.2 Data-Structures:
Frame Interconnection and Blackboard Information

T h e l e x i c a l - m o r p h o l o g i c a l a n a l y z e r s c h e d u l e s a n d i n v o k e s t h e
e x p e r t s c o r r e s p o n d i n g t o t h e e l e m e n t a r y l e x i c a l u n i t s a n d o u t p u t s a
b l a c k b o a r d , i . e . a m a t r i x w i t h s l o t s w h o s e c o l u m n s c o r r e s p o n d t o t h o s e
u n i t s a n d w h o s e r o w s c o r r e s p o n d t o a l e v e l . E a c h e x p e r t h a s o n e e x p e r t
f r a m e a s s o c i a t e d w i t h i t ; t h i s e x p e r t f r a m e f i l l s o n e s l o t o f t h e
b l a c k b o a r d . I n t h e b e g i n n i n g o f t h e a n a l y s i s p r o c e s s a l l f r a m e s a n d t h e
b l a c k b o a r d c o n t a i n u n i n s t a n t i a t e d s l o t s . E x p e r t s g r a d u a l l y
i n s t a n t i a t e t h e s l o t s . R e f e r r i n g t o a n o t h e r e x p e r t ' s e x p e r t f r a m e
r e q u i r e s w a l k i n g t o i t o v e r t h e b l a c k b o a r d . T h e w a l k i s d e f i n e d i n a
u n i q u e w a y . A l l s l o t s o n t h e p a t h s h o u l d b e i n s t a n t i a t e d , o t h e r w i s e t h e
w a l k s u s p e n d s a n d w a i t s f o r t h e i n s t a n t i a t i o n . T h i s i s e l e g a n t l y
i m p l e m e n t e d u s i n g t h e r e a d - o n l y u n i f i c a t i o n o f t h e p a r a l l e l P r o l o g
v e r s i o n s . S l o t s t h a t w i l l n e v e r b e o f a n y u s e a n y m o r e , a r e i n s t a n t i a t e d
t o d u m m y c o n s t a n t s i n o r d e r n o t t o i n d e f i n i t e l y b l o c k s u s p e n d e d w a l k s .

-317- International Parsing Workshop '89

5. Conclusion* and further r«««arch

I n t h i s p a p e r a f u r t h e r d e v e l o p m e n t o f t h e p r o c e d u r a l v i e w o f
n a t u r a l l a n g u a g e a n a l y s i s (NLU) a s p r o p o s e d b y S m a l l ' s W o r d E x p e r t P a r s e r
h a s b e e n p r e s e n t e d . T h e P a r a l l e l E x p e r t P a r s e r t r i e s t o p r e s e n t a t r u l y
d i s t r i b u t e d a n d p a r a l l e l i n t e r a c t i v e m o d e l o f NLU w i t h c l e a r l y d e f i n e d
e x p e r t s o n d i f f e r e n t l e v e l s , h i e r a r c h i c a l l y c o n c e i v e d e x p e r t f r a m e s a n d
r i g i d l y r e s t r i c t e d c o m m u n i c a t i o n p r o t o c o l s .

B e s i d e s f u r t h e r w o r k o n t h e i m p l e m e n t a t i o n a n d w r i t i n g / t e s t i n g
m o r e c o m p l e x e x p e r t s , t h e n e c e s s a r y m o d e l o f k n o w l e d g e (c o n c e p t)
r e p r e s e n t a t i o n t h a t h a s t o c o m p l e t e t h e f r a m e w o r k i s a m a j o r i s s u e f o r
f u r t h e r r e s e a r c h . A s m e n t i o n e d a b o v e , H a h n (1 9 8 7) h a s a l r e a d y w o r k e d o n
t h i s m a t t e r , i n t r o d u c i n g g e n e r i c , p r o t o t y p i c a l e x p e r t s . T h i s i s n o t j u s t
a k n o w l e d g e r e p r e s e n t a t i o n m a t t e r , b u t a l s o o n e o f i n t e g r a t i n g p a r a l l e l
P r o l o g w i t h a n o b j e c t - o r i e n t e d f r a m e w o r k (B o u r g o i s , f o r t h c o m i n g) .

REFEREN CES

ADRIAENS, G. (1986a) - W o r d E x p e r t P a r s i n g R e v i s e d a n d A p p l i e d t o
D u t c h . I n P r o c e e d i n g s o f t h e 7 t h E C A I (B r i g h t o n , U K) , V o l u m e I ,
2 2 2 - 2 3 5 .

ADRIAENS, G. (1986b) - P r o c e s s L i n g u i s t i c s : T h e T h e o r y a n d
P r a c t i c e o f a C o g n i t i v e - S c i e n t i f i c A p p r o a c h t o N a t u r a l L a n g u a g e
U n d e r s t a n d i n g . P h d . t h e s i s , D e p t s o f L i n g u i s t i c s a n d C o m p u t e r S c i e n c e ,
U n i v e r s i t y o f . L e u v e n , B e l g i u m .

ADRIAENS, G. (1987) - A C r i t i c a l D e s c r i p t i o n o f t h e C o r o u t i n e
R e g i m e U s e d i n t h e W o r d E x p e r t P a r s e r . C o m p u t e r S c i e n c e T h e s i s , D e p t o f
C o m p u t e r S c i e n c e , U n i v e r s i t y o f L e u v e n , B e l g i u m .

ADRIAENS, G. & U. HAHN (eda, forthcoming) - P a r a l l e l M o d e l s o f
N a t u r a l L a n g u a g e C o m p u t a t i o n . A b l e x , N e w J e r s e y .

ALTMANN, G. (1988) - A m b i g u i t i y , P a r s i n g S t r a t e g i e s , a n d
C o m p u t a t i o n a l M o d e l s . I n L a n g u a g e a n d C o g n i t i v e P r o c e s s e s 3 (2) ,
7 3 - 9 7 .

ALTMANN, • G. & M. STEEDMAN (1988) - I n t e r a c t i o n w i t h c o n t e x t
d u r i n g h u m a n s e n t e n c e p r o c e s s i n g . I n C o g n i t i o n 3 0 , 1 9 1 - 2 3 8 .

BERWICK. R.C. (1983) - T r a n s f o r m a t i o n a l G r a m m a r a n d A r t i f i c i a l
I n t e l l i g e n c e : a C o n t e m p o r a r y V i e w . I n C o g n i t i o n a n d B r a i n T h e o r y 6 (4) ,
3 8 3 - 4 1 6 .

BOURGOIS, M. (forthcoming) - T h e P a r a l l e l E x p e r t P a r s e r c o m e s o f
a g e . E x p l o r a t i o n s i n t h e i n t e g r a t i o n o f p a r a l l e l P r o l o g a n d
O b j e c t - o r i e n t e d K n o w l e d g e R e p r e s e n t a t i o n f o r N a t u r a l L a n g u a g e
U n d e r s t a n d i n g . A I T h e s i s , D e p a r t m e n t o f C o m p u t e r S c i e n c e , U n i v e r s i t y o f
L e u v e n , B e l g i u m .

BRISCOE, E . J . (1987) - M o d e l l i n g H u m a n S p e e c h C o m p r e h e n s i o n : A
C o m p u t a t i o n a l A p p r o a c h . E l l i s H o r w o o d , C h i c h e s t e r UK.

CODISH, M. 6 SHAPIRO, E . (1986) - C o m p i l i n g O R - p a r a l l e l i s m i n t o
A N D - p a r a l l e l i s m . T e c h n i c a l R e p o r t C S 8 5 - 1 8 , D e p a r t m e n t o f A p p l i e d
M a t h e m a t i c s . T h e W e i z m a n n I n s t i t u t e o f S c i e n c e , I s r a e l .

COTTRELL, G.M. (1985) - A C o n n e c t i o n i s t A p p r o a c h t o W o r d S e n s e
D i s a m b i g u a t i o n . U n i v e r s i t y o f R o c h e s t e r C o m p u t e r S c i e n c e P h d (T R - 1 5 4) .
R o c h e s t e r , N e w Y o r k .

-318- International Parsing Workshop 89

COTTRELL, G.W. & S.L. SMALL (1983) - A C o n n e c t i o n i s t S c h e m e
f o r M o d e l l i n g W o r d S e n s e D i s a m b i g u a t i o n . I n C o g n i t i o n a n d B r a i n
T h e o r y 6 (1) , 8 9 - 1 2 0 .

DEVOS, M. (1987) - T h e P a r a l l e l E x p e r t P a r s e r . R e a l i z a t i o n o f a
P a r a l l e l a n d D i s t r i b u t e d S y s t e m f o r N a t u r a l L a n g u a g e A n a l y s i s I n L o g i c
P r o g r a m m i n g L a n g u a g e s . E n g i n e e r ' s T h e s i s , D e p a r t m e n t o f C o m p u t e r S c i e n c e ,
U n i v e r s i t y o f L e u v e n , B e l g i u m (i n D u t c h) .

FELDMAN, J.A. & D.H. BALLARD (1982) - C o n n e c t i o n i s t M o d e l s a n d
T h e i r P r o p e r t i e s . I n C o g n i t i v e S c i e n c e 6 , 2 0 5 - 2 5 4 .

GRANGER, R.H., K.P. ElSELT 6 J.K. HOLBROOK (1986) - P a r s i n g
w i t h P a r a l l e l i s m : A S p r e a d i n g - A c t i v a t i o n M o d e l o f I n f e r e n c e P r o c e s s i n g
D u r i n g T e x t U n d e r s t a n d i n g .

HAHN, U. (1986) - A G e n e r a l i z e d W o r d E x p e r t M o d e l o f L e x i c a l l y
D i s t r i b u t e d T e x t P a r s i n g . I n P r o c e e d i n g s o f t h e 7 t h E C A I (B r i g h t o n , U K) ,
V o l u m e I , 2 0 3 - 2 1 1 .

HAHN, U. (1987) - L e x i k a l i s c h v e r t e i l t e s T e x t - P a r s i n g . E i n e
o b j e k t - o r i e n t i e r t e S p e z i f i k a t i o n e i n e s W o r t e x p e r t e n s y s t e m s a u f d e r
G r u n d l a g e d e s A k t o r e n m o d e l l s . U n i v e r s i t y o f K o n s t a n z D e p a r t m e n t o f
I n f o r m a t i o n S c i e n c e PhD T h e s i s .

HILLIS, D. (1986) - T h e C o n n e c t i o n M a c h i n e . MIT P r e s s , C a m b r i d g e
M a s s .

HIRAKAHA, H. (1983) - C h a r t P a r s i n g i n C o n c u r r e n t P r o l o g .
T e c h n i c a l R e p o r t o f t h e ICOT R e s e a r c h C e n t e r (T R - 0 0 8) . I n s t i t u t e f o r N e w
G e n e r a t i o n C o m p u t e r T e c h n o l o g y , T o k y o .

HIRST, G. (1983) - A F o u n d a t i o n f o r S e m a n t i c I n t e r p r e t a t i o n . I n
P r o c e e d i n g s o f t h e 2 1 s t ACL (C a m b r i d g e , M a s s) , 6 4 - 7 3 .

KOWALIK, J.S. (• < !) (1988) - P a r a l l e l C o m p u t a t i o n a n d C o m p u t e r s
f o r A r t i f i c i a l I n t e l l i g e n c e . K l u w e r , D o r d r e c h t T h e N e t h e r l a n d s .

MATSOMOTO, Y . (1987) - A P a r a l l e l P a r s i n g S y s t e m f o r N a t u r a l
L a n g u a g e A n a l y s i s . I n N e w G e n e r a t i o n C o m p u t i n g 5 (1 9 8 7) , 6 3 - 7 8 .

McClelland, j. & RUMELHART D.E. (1986) - P a r a l l e l D i s t r i b u t e d
P r o c e s s i n g . MIT P r e s s , C a m b r i d g e , M a s s .

POLLACK, J. & D. WALTZ (1985) - M a s s i v e l y P a r a l l e l P a r s i n g :
A S t r o n g l y I n t e r a c t i v e M o d e l o f N a t u r a l L a n g u a g e I n t e r p r e t a t i o n . I n
C o g n i t i v e S c i e n c e 9 , 5 1 - 7 4 .

SILVERMAN, W. m l . (1986) - T h e L o g i x S y s t e m U s e r M a n u a l -
V e r s i o n 1 . 2 1 . T e c h n i c a l R e p o r t C S - 2 1 , D e p a r t m e n t o f C o m p u t e r S c i e n c e .
T h e W e l z m a n n I n s t i t u t e o f S c i e n c e , R e h o v o t 7 6 1 0 0 , I s r a e l .

SHAPIRO, E. (1986) - C o n c u r r e n t P r o l o g : A P r o g r e s s R e p o r t .
F u n d a m e n t a l s o f A r t i f i c i a l I n t e l l i g e n c e , W. B i b e l & P h . J o r r a n d .
L e c t u r e N o t e s i n C o m p u t e r S c i e n c e , S p r i n g e r - V e r l a g , B e r l i n .

SMALL, S.L. (1980) - W o r d E x p e r t P a r s i n g : a T h e o r y o f D i s t r i b u t e d
W o r d - B a s e d N a t u r a l L a n g u a g e U n d e r s t a n d i n g . C o m p u t e r S c i e n c e T e c h n i c a l
R e p o r t S e r i e s . U n i v e r s i t y o f M a r y l a n d P h d .

VANLEHN, K. (1984) - A C r i t i q u e o f t h e C o n n e c t i o n i s t H y p o t h e s i s
t h a t R e c o g n i t i o n U s e s T e m p l a t e s , a n d n o t R u l e s . I n P r o c e e d i n g s o f t h e 6 t h
A n n u a l C o n f e r e n c e o f t h e C o g n i t i v e S c i e n c e S o c i e t y (B o u l d e r , C o l o r a d o) ,
7 4 - 8 0 .

319- International Parsing Workshop '89

Department of Artificial Intelligence
Centre for Cognitive Science

University of Edinburgh

A cknow ledgem ents

The work described in this paper was made possible in part by the use of equipment made available by
the Rank Xerox University Grants Programme, BBN Labs Inc.. Artificial Intelligence Ltd.. Xerox Palo Alto
Research Center and Intel Scientific Corp. —to all of them my thanks. None of them are in any way

responsible for the opinions expressed here.

0. Introduction

Of the parallel systems currently available, far and away the most common are loosely coupled
collections of conventional processors, and this is likely to remain true for some time. By loosely
coupled I mean that the processors do not share memory, so that some form of stream or
message-passing protocol is required for processor-processor communication. It follows that in most
cases the programmer must make explicit appeal to communication primitives in the construction of
software which exploits the available parallelism. Even in shared-memory systems, the absence of
parallel constructs from available programming languages may mean that appeal to a similar
communication model may be necessary, at least in the short term.

Although not ideally suited to loosely coupled systems, the general problem of parsing for speech and
natural language is of sufficient importance to merit investigation in the parallel world. -This paper
reports on explorations of the computation.communication trade-off in parallel parsing, together with the
development of an portable parallel parser which will enable the comparison of a variety of parallel
systems.

1. Parsing for Loosely Coupled Systems

Given the prevalence of loosely coupled systems, although one might suppose that shared-memory
parallelism offers greater scope for the construction of parallel parsing systems, and parallel chart
parsers in particular, none-the-less it is a good idea to look at what can be done in the loosely coupled

case.

Loosely coupled parallel systems can be expected to do best, that is, show a nearly linear (inverse)
relationship between solution time and number of processors, when the problem at hand is (isomorphic
to a) tree-search problem with large initial fan-out and compact specifications of sub-problems and
results. In such problems, the ratio of communication to computation is low, so the loose coupling does

not significantly impede linear speed-up. Large problems can be broken down into as many pieces as
there are processors, cheaply distributed to them, and the results cheaply returned.

Parsing of single sentences is not obviously suited to loosely coupled parallel systems. Whether one
attacks single-sentence parsing by some form of left-to-nght breadth-first parse, or by some form of
all-at-once bottom-up breadth-first parse, very high communication costs would seem to be involved.
The only hope would seem to be to pursue the latter route nevertheless, and see whether the
communication costs can be brought down to an acceptable level. There are a number of different
dimensions along which one might try to parallelise the parsing process, but insofar as they involve the

Chart Parsing for Loosely Coupled Parallel Systems
Henry S. Thompson

-320- Intemational Parsing Workshop '89

2 Chart Parsing for Loosely Coupled Parallel Systems —Henry S. Thompson

distribution of sub-problems, they are highly likely to require the representation of partial solutions.
Since this is a primary characteristic of the active chart parsing methodology, my investigations have
focussed on parallel implementations of active chart parsers.

II. Parallelism and the Chart

We start with the observation that chart parsing seems a natural technique to base a parallel parser on.
Its hallmarks are the reification of partial hypotheses as active edges, and the flexibility it allows in terms
of search strategy, and it would seem straight-forward to adapt a chart parser doing pseudo-parallel
breadth-first bottom-up parsing into a genuinely parallel parser. Indeed with a shared-memory parallel
system, the BBN Butterfly'", I have done just that, and the result exhibits the expected linear speed-up.
The approach used was simply to allow multiple processors to remove entries from the queue of
hypothesised edges and add them to the chart in parallel, performing the associated parsing tasks and
thereby in some cases hypothesising further edges onto the queue. Locks were of course required to
prevent race conditions m updating the chart and edge queue, but instrumentation suggested that there
was rarely contention for these locks and they had little adverse impact on performance.

Clearly this approach would not be appropriate in the loosely coupled case. One could of course use
some system which supports virtual shared memory to implement a shared chart and edge queue. But
this would defeat the whole purpose, as the parser would be serialised by the processor responsible for
maintaining the shared structures. What I have explored instead is retaining the same granularity of
parallelism, namely the edge, but accepting that at least some of the chart itself will have to be
distributed among the processors.

III. Distributing the Chart

I have explored the approach of distributing the chart among the processors in several implementations
of a chart parser for the Intel Hypercube™, a loosely coupled system, and for a network of Lisp
workstations. A memory-independent representation of the chart is used, allowing edges to be easily
encoded for transmission between processors. The chart is distributed among the processors on a
vertex by vertex basis. Vertices are numbered and assigned to processors in round-robin fashion.
Edges 'reside' on the processor which holds their 'hot' vertex, that is, their right-hand vertex if active,
left-hand if inactive. From this it can be seen that once a new edge is delivered to its 'home'
processor, that processor has all the edges required to execute the fundamental rule with respect to
that new edge. Each processor also has a copy of the grammar, so it can perform rule invocation as

necessary, and a copy of the dictionary, so that once the input sentence is distributed, pre-terminal
edge creation can proceed in parallel.

The following three figures illustrate the distribution of vertices and edges for a simple example
sentence and grammar, assuming a three processor system.

-321- Intemational Parsing Workshop ’89

Chart Parsing for Loosely Coupled Parallel Systems —Henry S. Thompson 3

4: S - > NP VP

2: V P - > V

Vertices are numbered circlos. Edges are thin if active, thick if inactive, and their contents are noted.
They are numbered on a per processor basis. Those with superscripts, e.g. 40, are ones which

-322- International Parsing Workshop '89

4 Chart Parsing for Loosely Coupled Parallel Systems —Henry S. Thompson

originated on another processor, whose number is given by the superscript. Of the eleven edges, four
had to be transmitted from where they were created by the action of the fundamental rule to where they

belonged.

Transmission of edges, as noted above, requires a memory-independent representation. This is
accomplished by flattening the structure of the edges, by making all their contents indirect references.
Thus where m the single processor or shared memory parallel processor versions edges con ta in ed their
endpoint vertices and label elements (category, dotted rules, daughters), in the loosely coupled version
edges n am e their endpoint vertices, and index their label elements relative to appropriate baselines.

Note that this means that when parsing is completed, a complete parse is not available on any single
processor. If it is required, then it will have to be assembled by requesting sub-parses from appropriate

processors, recursively.

IV. Communication vs. Computation —Results for the Hypercube

Testing to date has been confined to a two processor system. The edge distribution scheme described
above was installed into an existing serial chart parser. Considerable care has been taken within the
limits imposed by the host system communications primitives to keep communication bandwidth to a
minimum (approx. 100 bits/edge in a single packet). Even with a relatively trivial grammar and lexicon
and simple sentences of limited ambiguity, two processors are faster than one under some
circumstances. In order to explore the computation/communication trade-off, and to simulate the
operation of the system with more complex grammatical formalisms which would require substantially
greater per-edge computation, a parameterised wait-loop was added to the function implementing the
fundamental rule. As the duration of that loop increased, the parse-time increased less rapidly for the
two processor case than for the single-processor case, so that although in the initial, un-stowed,
condition, a single processor parsed faster than two, when the fundamental rule was slowed by a factor
of around four, two processors were faster than one. Figure 2 below illustrates this for the sentence
The oran g e sa w sa w the o ran g e sa w with the o ran g e s a w with a standard grammar which allows for
PP attachment ambiguity and a lexicon in which oran g e is ambiguous between N and A and saw is
ambiguous between N and V. The times plotted are to the discovery of the second parse, as the
termination detection algorithm described below had not yet been implemented.

-323- Intemational Parsing Workshop '89

Chart Parsing for Loosely Coupled Parallel S ystem s-H enry S. Thompson 5

1 2 3 4 5

Task weight

Figure 2. Graph of results of 2 processor H yp e rcu b e ex p erim en t

It is hoped that further experimentation with larger cubes will shortly be possible.

V. Towards Wider Comparability —The Abstract Parallel Agenda

With an eye to allowing an easy extension of this work to other systems, and more principled
comparison between systems, I have gone back to the original serial chart parser (Thompson 1983)
from which the Hypercuber" system was constructed, and produced an abstract parallel version. The
original parser was based on a quite general agenda mechanism, and the abstraction was largely
performed at this level. A multi-processor agenda system, allowing the programmer to schedule the
evaluation of any memory-independent form on any processor at a specified priority level is provided,
together with a novel means of synchronisation and termination. Implemented in Common Lisp, all this
agenda system requires for porting to a new system is the provision of a simple 'remote funcall’
primitive.

VI. Termination and Synchronisation

Termination detection in distributed systems is a well-known problem. It arises obtrusively in any
parallel approach to chart parsing, since this depends on an absence of activity to detect the completion
of parsing. The abstract parallel agenda mechanism which underlies the portable parallel parser uses a
new (we think —see Thompson, Crowe and Roberts forthcoming for discussion) algorithm for effective
synchronisation of task execution (of which termination is a special case). It is thus possible to

reconstruct not only the prioritisation function of an agenda (run this in preference to this), but also the
ordering function (run this only if that is finished). Unlike some existing termination algorithms, this one

-324- International Parsing Workshop '89

6 Chart Parsing for Loosely Coupled Parallel Systems —Henry S. Thompson

is particular appropriate where no constraints can be placed on processor connectivity (any processor
may, and usually does, send messages to any other processor). It requires only a modest increase in
the number of primitive operations which must be supported to port the agenda system —all that is
required is a simple channel for FIFO queueing of control messages between a designated boss’
processor and the rest. The overhead imposed by the scheme on normal operation is effectively
zero—communication remains asynchronous until near to a synchronisation point. Essentially the
scheme operates by each processor keeping track of the number of tasks created vs. the number of
tasks run locally. When a processor is idle waiting for synchronisation, it sends its counts to the boss.
When the boss has a complete set of counts which tally, it requests them again. If they haven't
changed, synchrony is signalled. Thus in the best case 4'n fixed length messages are required to
synchronise n processors.

VII. Testing the Portable System —Results of network experiment

For this experiment four Xerox 1186 processors running lnterlisp-0 and connected by a 10MB Ethernet
were used, running the parallel system on top of the abstract parallel agenda. Communication for the
implementation of the agenda was via the Courierr“ remote procedure call mechanism, whose hallmark
is reliability, not speed. Results were obtained during a period of low network loading, and three trials
were performed. The times used in the figures below are the fastest times obtained over the trials,
which were quite consistent from one to the next. Figure 3 shows processing time versus number of
processors for each of three sentences, using the same grammar and lexicon as in the previous
experiment, and for a fourth sentence, using a much larger and more realistic grammar with 70 rules
and an appropriate lexicon (the failure to find any parses was caused by a typing error in the grammar,
detected too late for correction). Table 1 gives the sentences, the number of active and inactive edges

involved and the number of parses found.

Sentence active inactive parses
edges edges

a: The orange saw saw the orange saw. 46 22 1

b: The orange saw saw the orange saw with
the orange saw. 88 43 2

c: The orange saw saw the orange saw with
the orange saw with the orange saw. 166 82 5

d: The front-end consists of those phases that
depend primarily on the source-language. 285 58 0

Table 1. Sentences used in the network experiments

325- International Parsing Workshop '89

Chart Parsing for Loosely Coupled Parallel S ystem s-H enry S. Thompson 7

Parse Time vs. Number of Processors

Number of processors
Figure 3. Graph of results of network experiment

Clearly not much encouragement can be taken from this experiment. Although there is some speed-up
from two to three processors in some cases, overall the pattern is one where communication costs
clearly dominate, so no advantage is gained. With slower processors and/or faster networks, we might
hope to see better results, especially given the results in section IV, but the appropriateness of this
approach to networked systems must remain in doubt in the absence of better evidence.

VIII. Alternative Patterns of Edge Distribution

One possible alternative decomposition of the task, which might offer some hope of improving the
computation/communication trade-off. would be to transmit only inactive edges, but to send them to all
processors. Then every processor would have the complete inactive chart, and could run active edges
from start to finish without ever sending them anywhere. In order to distribute the computational load,
rule invocation would be distributed on a per vertex basis. That is, each processor would only do

bottom up rule invocation for those inactive edges which began at a vertex owned by that processor.
The plus side of this route is that it sends only inactive edges around, which are simpler to encode, that
the final result is available on a single processor, indeed on all processors, without having to be
assembled, and that active edge processing is more efficient. The minus side is that the inactive edges
have to be sent to all processors. In the simple example given in Figure 1, this actually balances
out—four edges in the original implementation, two edges twice in the alternative one. A further
experiment with the network system was conducted to explore this approach. The same sentences as

-326- Intemational Parsing Workshop '89

8 Chart Parsing for Loosely Coupled Parallel Systems —Henry S. Thompson

before were used, but this time with the new edge distribution pattern. Table 2 below compares
sentence b from Table 1, The o ran g e sa w saw the o ran g e saw with the o ran g e saw . in terms of the
number of edges of each type processed locally and transmitted under the two patterns for different
numbers of processors. In each case, the figures are given as a|b, where a is the number for the
original pattern, and b is the number in the inactive-edge-only pattern.

of processors Active Inactive Total
local xmitted local xmitted local xmitted

2 59|88 29|0 26|36 17|25 85|124 46|25
3 57|88 3110 29)54 14.(50 86|142 45|50
4 47|88 4110 23|72 20)75 70|160 61175

Table 2. Edges processed locally versus transmitted for two edge distribution patterns

The increase in local edges is somewhat artifactual, coming in part from the replication of lexical edge
construction across all processors. Clearly only for small numbers of processors is there a net gain in
number of edges transmitted. The effect this has on processing time is pretty much as one would
expect. Figure 4 shows the times for sentence b for both patterns. The curve with points labelled "o"
is for the original pattern, that with points labelled "i" is for the alternative, mactive-edge-only pattern.

Two Distribution Strategies

Number of processors
Figure 4. Graph of alternative distributions strategies for parsing sentence b

-327- International Parsing Workshop '89

Chart Parsing for Loosely Coupled Parallel Systems —Henry S. Thompson g

As expected, only in the two processor case do we see an advantage to the alternative approach. In
general it is clear that the principle determinate of processing time is number of edges transmitted —the
overhead in the network communication dominates all other factors. The obvious conclusion is that,
particularly as processors speeds increase, it will take very high bandwidth mter-processor
communication, perhaps only achievable with special purpose architectures, to make at least this
edge-distribution approach to parallel parsing worthwhile.

References

Thompson. Henry S. 1983. "MCHART -- A Flexible, Modular. Chart Parsing System", in P ro ceed in g s
o f the National C on feren ce on Artificial In telligence, AAAI, Menlo Park. Ca.

Thompson, Henry S., Crowe. Alan and Roberts. Gary forthcoming. "Termination and Synchronisation
m Distributed Event Systems".

MCHART is available via electronic mail in both serial and parallel versions, implemented in a relatively
installation-independent Common Lisp. Requests to hthompson@uk.ac.edinburgh (JANET),
hthompson%edinburgh.ac.uk@nsfnet-relay.ac.uk (ARPANet).

-328- Intemational Parsing Workshop '89

mailto:edinburgh.ac.uk@nsfnet-relay.ac.uk

Paralle l Generalized LR Parsing
based on Logic P ro g ram m in g

Hozumi TANAKA Hiroaki NUMAZAKI
T o k y o I n s t i t u t e o f T e c h n o l o g y T o k y o I n s t i t u t e o f T e c h n o l o g y

Abstract

A generalized LR parsing algorithm, which lias been developed by Tomita[Tomita 86],
can treat a context free grammar. His algorithm makes use of breadth first strategy
when a conflict occcurs in a LR parsing table. It is well known that the breadth first
strategy is suitable for parall processing. This paper presents an algorithm of a par­
allel parsing system (PLR) based on a generalized LR parsing. PLR is implemented
in GHC[Ueda 85] that is a concurrent logic programming language developed by
Japanese 5th generation computer project. The feature of P L R is as follows: Each
entry of a LR parsing table is regarded as a process which handles shift and re­
duce operations. If a process discovers a conflict in a L R parsing table, it activates
subprocesses which conduct shift and reduce operations. These subprocesses run in
parallel and simulate breadth first strategy. There is no need to make some subpro-
.cesses synchronize during parsing. Stack information is sent to each subprocesses
from their parent process. A simple experiment for parsing a sentence revealed the
fact th a t PLR runs faster than PAX[Matsumoto 87][Matsumoto 89] tha t has been
known as the best parallel parser.

1 Introduction

As the length of a sentence becomes longer, the number of parsing trees increases and it will take
a lot of time to parse a sentence. In order to achieve fast parsing, we should look for a parallel
parsing system based on the most efficient and general parsing algorithms. One of parallel
parsing systems we have ever known is PAX[Matsumoto 87][Matsumoto 89] tha t is based on
C hart parser. It is well known th a t L R parser is the most efficient paser, since L R parsing
algorithm runs deterministicly for any L R gram m ar which is a subset of context free grammar.
Unfortunately, L R gram m ar is too weak to parse sentences of natural languages. When we
apply L R parsing algorithm to context free gram m ar, it is an usual case tha t conflicts appears
in a L R pasing table. So we need to generalize the L R parsing algorithm in order to process
these conflicts. There are two kinds of strategies to resolve the conflicts, namely a depth first
stra tegy and a breadth first strategy. Nilsson[Nilsson 86] has adopted a dep th first s tra tegy and
Tom ita[Tom ita 86] a breadth first s trategy which is called a generalized L R parsing. As it is easy
for us to simulate the breadth first strategy by parall processing technique. We have developed
a parallel generalized LR parsing system (PLR) based on the generalized L R parsing algorithm
which makes use of a breadth first strategy.

-329- Intemationai Parsing Workshop '89

After we will give a brief introduction of LR parsing algorithm in section 2, we will describe
our PLR system details of which will be explained in section 3. PLR is implemented in a
concurrent logic programming language called GHC[Ueda 85] that is developed by Japanese
5th generation computer project. One of the most significant feature of PLR is to regard each
entry of a LR parsing table as a process which handles shift and reduce operations. If the
process discovers a conflict in a LR parsing table, it creates and activates subprocesses in order
to process shift and reduce operations in the conflict. These subprocesses run in parallel and
simulate breadth first strategy. There is no need to make subprocesses synchronize during
parsing. Stack information is sent to each subprocesses from their parent process. In order to
understand PLR algorithm we will show a trace of actual parsing in subsection 3.6.

In section 4, we will explain some results of the experiment which parses sentences using
PLR and PAX. The experiment revealed the fact that PLR runs faster than PAX that is one of
the best parallel parsers.

2 G e n e r a l i z e d L R P a r s i n g a l g o r i t h m

The generalized LR parser is guided by a LR parsing table which is generated from grammar
rules given. Fig.2 shows an ambiguous English grammar. Fig.2 shows a LR parsing table
generated from the English grammar. The LR parsing table is devided into two parts, an action
table and a goto table.

The lefthand side of the table is called ’action tab le’, the entry of which is determined by
a pair of generalized LR parser’s state (the row of the table) and a lookahead preterm inal(the
column of the table) of an input sentence. There are two kinds of operations, a shift and a
reduce operations. Some entries of the LR table contains more than two operations which mean
th a t there is a conflict in the entry, and a parser should conduct more than two operations at
once.

The symbol ’sh N’ in some entries means that generalized LR parser has to push a lookahead
preterminal on the LR stack and go to ’s ta te N’. The symbol ’re N’ means tha t generalized LR
parser has to reduce several topmost elements on the stack using a rule numbered ’N \ The
symbol ’acc’ means tha t generalized LR parser ends with success of parsing. If an entry doesn’t
contain any operation, generalized LR parser recognizes an error.

The righthand side of the table is called a ’goto tab le’ which decides a s ta te tha t the parser
should enter after every reduce operation. The LR table shown in fig.2 has 4 conflicts at the
s ta te 14 (row number 14) and s ta te 16 for the column of ’p ’ and ’relp’. Each of four entries,
which have a conflict, contains two operations, a shift and a reduce operation. Such a conflict is
called a ’shift-reduce conflict’. When a parser encounters a conflict, it cannot determine which
operation should be carried out first. In PLR explained in the next section, conflicts will be
resolved using parallel processing technique and we do not mind the order of the operations in
a conflict.

3 I m p l e m e n t a t io n o f P L R

PLR is implemented in GIIC th a t is a concurrent logic programming language developed by
Japanese 5th generation computer project. In our system, each entry in a LR parsing table are
regarded as a process which will handle shift and reduce operations. If the process discovers
a conflict in a LR parsing table, it activates subprocesses in order to process shift and reduce

-330- International Parsing Workshop '89

(1) S — NP, VP.
(2)' s — S, PP.
(3) NP — NP, RELC

(0 NP — NP, PP.
(5) NP — det, noun.
(6) NP — noun.

(') NP — pron.
(8) VP — v, NP.

(9) RELC — relp, VP.
(10) PP — P, NP.

fig.l: Ambiguous English grammar

det noun pron V P relp % NP PP VP RELC S
0 sh l sli2 sh3 5 4
1 sh6
2 re6 re6 re6 re6
3 re7 re7 re7 re7
4 sh7 acc 8
5 shlO sh7 sh9 12 11 13
6 re5 re5 re5 re5
7 sh l sh 2 sli3 14
8 re2 re2
9 shlO 15
10 sh l sh2 sh3 16
11 rel rel
12 re4 re4 re4 re4
13 re3 re3 re3 re3
14 relO sh7/re 10 sh 9 /re l0 relO 12 13
15 re9 re9 re9 re9
16 re8 sh7/re8 sh9/re8 re8 12 13

fig.2: LR parsing table obtained from fig.l gram m ar

-331- Intemational Parsing Workshop '89

(1) a:- true| b,c.
(2) b:- tr 11 e| true.
(3) c:- t r u e| t r u e .

fig.3: typical stat nent of GIIC

operations in the conflict. These subprocesses run in parallel and simulate breadth first strategy
for the generalized LR parsing. There is no need to make subprocesses synchronize during
parsing. Stack information is sent to each subprocesses from their parent process.

3 .1 B r ie f I n tr o d u c t io n o f G H C

Before explaining the details of PLR algorithm, we will give a brief introduction of GHC. Typical
GHC statem ents are given in fig.3. Roughly speaking, the vertical bar in a GHC statem ent of
fig.3 works as a cut symbol of Prolog. When a goal ’a ’ is executed, i process corresponding to
the sta tem ent (1) is activated and the body becomes a new goal in which ’b ’ and ’c’ are excuted
simultaneously, since GHC adopts AND-parallel strategy. In other word, subprocesses V and
V are created by a parent process ’a ’ and they run in paralell. Although GHC has a few of
synchronization mechanisms, it will not be necessary for you to understand them.

3 .2 D e s c r ip t io n o f P L R A lg o r ith m

At first, PLR creates a list of preterminals of an input sentence which will be parsed. PLR
parser begins activating an action process which corresponds to the LR table entry determined
by the s ta te ’O’ and the first preterminal in the preterminal list. The action process activates the
other processes according to the comands specified in the LR talbe entry. Activated processes
recieves stack information from the parent process and also perform some comands specified in
the corresponding LR table entry. The process activation will continue until some processes find
out an ’acc’ or an ’erro r’ entry. If we have a conflict during parsing, more than two subprocesses
will be activated at once and run in parallel. There are three kinds of processes which are
activated in PLR parser.

• action process:

An action process carries out shift and /or reduce operations. In case of a shift operation,
the action process pushes a lookahead preterminal on a stack and activates a new process
which corresponds to new state given by the shift operation. When an action process
encounters a reduce operation, a reduce process will be activated and recieve stack infor­
mation from the parent action process. If an action process finds a conflict, more than two
subprocesses will be activated each of which perform either a shift or a reduce operation.
These subprocesses run in parallel. If an action process enconters an ’acc’ operation, the
action process will extract the result of the parsing and end with success. On the contrary,
if all of the above conditions are not satisfied, an action process will end with failure.

• reduce process:

Using a gram m ar rule specified by a reduce operation, the reduce process makes a reduction
of an appropriate portion of stack, and the reduce process activates a goto process in order
to enter a new state .

-332- Intemational Parsing Workshop ’89

• goto proccss:

Using stack information given by a reduce process, a goto process activates an action
process to enter a new state.

In the following subsections, we will give the GIIC definition of PLR processes obtained by
the LR table shown in fig 2.

3 .3 D e f in it io n o f A c t io n P r o c e s s

Followings are examples of definitions of an action process.

1. Suppose an action process iO’ that corresponds to the entry in fig.2 whose row and column
are 0 and ’noun’ respectively. As the entry contains ’sh 1’, the process has to activate a
subprocess which carries out a shift operation. The definition of the process ’iO’ is shown
below.

iO(noun, S lack , [noun,NextCat|List], Info) :- true |
i l (N e x tC a t , [[l,noun]|Stack], [NextCat|Listj, Info).

In the above process definition, the predicate ’iO’ is a process name, and its first argument
is a lookahead preterminal ’noun’. The second argument is ’S tack’ on which information
about state , grammatical categories and the'o ther information are pushed. The third is a
list of preterminals of an input sentence. The fourth outputs ’Info’, the results of parsing.
The subprocess ’i 1 ’ is activated and carries out a ’sh 1’ operation. The subprocess ’i l ’
recieves a new stack which consists of ’S tack’, s tate ’T’ and a preterminal ’noun’. Note
tha t in the third argument of the process ’i l ’, preterminal ’noun’ is eliminated from the
list of preterminals, since preterminal ’noun’ should be shifted.

2. Consider an entry of s ta te ’2’ and a lookahead preterminal V in fig.2. The definition of
action process ’i2’ is given below :

i 2 (v , S tack , List, Info) true |
re6(v, S tack , List, Info).

In the body of an action process ’i2’, a subprocess ’re6’ is activated in order to conduct a
reduce operation. The subprocess ’re6’ recieves the same stack information and a preter­
minal list as those of the parent process ’i2’. The detail of the reduce process will be
explained later.

3. Consider an entry of s ta te ’14’ and a lookahead preterminal ’p ’ in fig.2. We will find out
a shift-reduce conflict, ’sh 7 /re 10’. The definition of an action process ’i l 4 ’ is as follows.

i l4 (p , S tack , [p,NextCat|List], Info) true |
i7 (N ex tC a t, [[7,p]|Stack], [NextCat|List], Infol),
re 10(p , S tack , [p,NextCat|List], Info2),
merge(Infol , Info2 , Info).

-333- Intemational Parsing Workshop '89

In the body of the proccss ’i l 4 ’, both subprocesses 'i7’ and 're 10* carry out a shift and a
reduce operation simultaneously. The ’merge’ process is a built-in process which merges
the outpu t produced by the subprocesses ’iT’ and ’re 1 O’.

4. Consider the entry of state ’4’ and a lookahead preterminal ’S’ in fig.2. We will find out
’acc’ in the entry which indicates a success of parsing. The definition of the action process
’i4’ is as follows.

il($, [[_,Resu11.]|_], Info) true |
11) fo = [Res

In the body of the action process ’i4’,’[Result]’ is sent to the fourth argument ’Info’, and
finally the action process 'i4’ terminates with success.

5. If no operation is specfied in an entry, an error handling process has to be activated. We
have to define an error handling process in some states if necessary. The following is a
definition of an error process in state ’0 ’ which should be placed at the end of definitions
of the process ’i0’.

otherwise.
i0(_ - Info) true |

Info = [].

The sta tem ent ’otherwise’ is a built-in s ta tem ent which declares tha t GHC statem ents
below ’otherwise’ should be executed after all GHC stetements before ’ohterwise’ fails.

3.4 Definit ion of Reduce Process

The following definition of a reduce process ’relO’ is an example of reduce actions correspondds
to the gram m ar rule numbered 10 in fig.l((10) PP —p,NP).

relO(NextCat., Old Stack , List, Info)
OlclS tack=[[_,Tl] ,[_,T2] ,[S tate,T3] [Tail] |
p p (S ta te , N ex tC a t , [pp,T2,Tl], [[State,T3]|Tail], L is t, Info).

In the second argum ent of ' r e l 0 \ the topmost two elements of ’OldStack’ are popped and sent
to a goto process ’p p ’ iu which the third argument ’[pp ,T 2 ,T l]’ constructs a syntactic tree whose
root is ’p p ’ in accordance with the gram m ar rule 10 in fig.l. The name of the goto process ’pp’
is the name of the lefthand side nonterminal symbol in the gram m ar rule 10. The first argument
’S ta te ’ is a new s ta te number extracted from ’OldStack’. Note that the reduce process ’relO’
passes a next incomming proterminal ’N ex tC a t’ to the ’pp ’ process, since a reduce process does
not consume any incomming preterminals.

3.5 Definit ion of Goto Process

After a reduce operation is carried out, a goto process is activated in order to enter a new state
in which a new action process will be activated. At that time, the goto process uses both an
incomming nonterminal symbol and a s ta te number on the top of the stack.

-334- Intemational Parsina Workshop '89 ^

We will give a sample definition of goto processes.

s(0 , Next-Cat , Tree, S tack , List, Info) true |
i l (N e x tC a t , [[4,Tree]|Stack], List, Info).

The process ’s ’ defined above is activated after ’s ’ is constructed by a reduce process in state
’O’. As the entry of row ’0 ’ and column ’s ’ in the LR table of fig.2 includes ’4’, the goto process
’s ’ activates an action process ’i4’ pushing state ’4 ’ and tree information onto the stack.

3.6 A n E x a m p le o f P L R P a r s in g

Given a LR table of fig.2, a Iran slate r generates the following definitions of parsing processes.

i 0 (d e t , S t a c k , [_ , N e x t C a t l L i s t] , In fo) : - t r u e I
i l (N e x t C a t , [[l , d e t] I S t a c k] , [N e x t C a t l L i s t] , In fo) .

i O (n o u n ,S t a c k , [_ , NextCat I L i s t] , I n f o) t r u e I
i 2 (N e x t C a t , [[2 ,n] I S t a c k] , [NextCat I L i s t] , I n f o) .

i 0 (p r o n , S t a c k , [_ .N e x tC a t1 L i s t] , I n f o) : - t r u e I
i 3 (N e x t C a t , [[3 ,p ro n] I S t a c k] , [NextCatI L i s t] , I n f o) .

o th e r w i s e .
i 0 (_ , _ , _ , I n f o) t r u e 1 I n f o = [] .

i l (n o u n , S t a c k , [_ , N e x t C a t l L i s t] , I n f o) : - t r u e I
i 6 (N e x t C a t , [[6 , n o u n] 1 S t a c k] , [N e x t C a t i L i s t] , I n f o) .

Following is an example of PLR parsing,

input sentence : i open the door with a key .

Parsing begins with activating the following action process ’iO’.
i0(pron,[[0,[]]], [pron,v,det,noun,p,det,noun,$],Info)

‘Stack ‘List of Preterminal
Lookahead

Activates the action process ;i3’ for ’shift 3 ’.
i3(v,[[3,pron],[0,[]]], [v ,det,noun,p,det,noun,$] ,Info)

Activates the reduce process ’ie7} for 'reduce 7 ’.
re7(v,[[3,pron],[0,[]]],[v,det,noun,p,det,noun,$],Info)

[[3,pron], [0,[]]] = [[_,T1],[State,T2]1 Tail]
Activates the goto process ’n p ’.
np(0,v ,[np,pron], [[0,[]]], [v,det,noun,p,det,noun,$],Info)

-335- International Parsing Workshop '89

‘State 'Tree ‘Stack

Activates the action process ’i5’ for ’goto 5'.
i5(v, [[5,[np,pron]] , [0, []]], [v,det,noun,p,det,noun,$],Info)

Activates the action process }il0’ for ’shift 10’.
i10(det, [[10 ,v] , [5,[np.pron]], [0,[]]], [det,noun,p,det,noun,$],Info)

i 1 6 (p , [[1 6 , [np , d e t , n o u n]] , [1 0 , v] , [5 , [n p . p r o n]] , [0 , []]] , [p , d e t , n o u n ,$] , I n f o)
A c o n f l i c t ’ s h i f t 7 / re d u c e 8 ’ o c c u re s .
A c t iv a t e s ’ i 7 ’ and ’r e 8 ’ p r o c e s s e s s im u l ta n e o u s ly .

i 7 (d e t , [[7 , p] I [[1 6 , [n p . d e t , n o u n]] , [1 0 , v] , [5 , [n p . p r o n]] , [0 , []]]] , [d e t I [n , $]] , Info)
r e 8 (p , [[1 6 , [n p , d e t , n o u n]] , [1 0 , v] , [5 , [n p . p r o n]] , [0 , []]] , [p , d e t I [n o u n , $]] , I n f o)

Both p r o c e s s e s end w ith s u c c e s s and produce the fo l lo w in g r e s u l t s i n ’ I n f o 1 .
i4($,[[4 . [s .[n p , p r o n],[vp ,v , [n p,[n p...],[p p , p , [n p ...]]]]]], [0,[]]],[$],In fo)

I n f o * [s , [n p .p r o n] , [v p ,v , [n p , [n p , d e t , n o u n] , [p p , p , [n p ,d e t , noun]]]]]

14 ($, [[4 , [s , [s , [n p .p ro n] , [v p , v , [np , [n p . . .]]]] , [pp , p , [np . . .]]]] , [0 , []]] , [$] , In f o)

I n f o = [s , [s , [n p . p r o n] , [v p ,v , [n p , [n p . d e t , n o u n]]]] , [p p , p , [n p , d e t ,noun]]]

4 T h e R e s u l t s o f A E x p e r im e n t

We conducted an experiment to parse many English sentences with many P P a ttachm ents such

as :
NP.v.NP
NP,v,NP,PP
NP,v,N P,PP,PP
N P ,v ,N P,PP .PP ,PP

In the experiment, PLR and PAX are used to parse sentences. The number enclosed by paren­
thesis in fig.4 indicates the number of parsing trees. PLR runs 1.4 times faster than PAX that
was known as the best parallel parser in the past. In order to get all parsing trees of a sentence
with 9 PP a ttachm ents, PLR takes about 65 sec. on Sun-3/260 workstation. It means th a t PLR

produces a parsing tree only every 4 msec.
The reader should note th a t the PLR which we explained in this paper does not use a

graph s tructured stack. For comparison, the results of parsing which makes uses of the graph
struc tu red stack is shown by a solid line. The PLR parser with a graph structured stack runs
10 times slower than the one without a graph s tructured stack. The reason is tha t the former

-336- International Parsing Workshop '89

fig.4: The result of Parsing time

causes many processes to wait for synchronization. We are now considering the reason why PLR
parser without the graph structured stack runs so fast. One of the reasons is tha t PLR parser
without the graph does not. cause many processes to suspend for synchronizations.

5 C o n c l u s i o n

We described an exaple of the implementation of the PLR algorithm in GHC in which each
entry of the LR table is regarded as a process which handles shift and reduce operations. When
a conflict occurs in an entry of the LR table, the corresponding parsing process activates two or
more subprocesses which run in parallel and simulate breadth Jirst strategy of the generalized
LR parsing. Each subprocess is given the stack information from the parent process and runs
further to execute a shift and a reduce operation.

The experiment has revealed that PLR runs faster than PAX that has been known as the
best parallel parser. PLR runs so fast tha t it will be a promising parser for processing many
complex natura l language sentences.

However, PLR has many problems to be solved, for example, handling of gapping and idiom,
and integration of syntactic and semantic processing which are urgent problems to be solved in
the near future.

Ref erences

[Aho 72] Aho,A.V.and Ulman,J.D.: The Theory of Parsing,Translation,and Compiling,
Prcniice-Ilall,Englewood ClifTs,New Jersey (1972)

[Aho 85] Aho,A.V.,Senthi,R .and Ulman.J.D.: Compilers Principles,Techniques,and

-337- International Parsing Workshop '89

[Fuclii 87]

(Knuth 65]

[Konno 86]

[Nakata 81]

[Matsumoto S6]

[Matsumoto 87]

[Matsumoto 89]

[Mellish 85]

[Nilsson 86]

[Okumura 89]

[Pereira 80]

[Tokunaga 88]

[Tomita 86]

[Tomita 87]

[Ueda 85]

[Uehara 83]

Tooli,Addison-Wesley (1985)

Fucli.K. Furukawa,K. Mizoguch^F.i/Teirefu Ronn Gata Gengo GHC To Sono
Oinjou, Kyoritsu Syuppan (1 9 8 7) in Japanese

Knuth,D.E.: On the translation of languages from left to right,Information
and Control 8:6,pp.607-639

Konno,A. Tanaka ,K.:Hidari Gaichi Wo Kouryo Shita Bot tom Up Koubun
Kaiseki, Conputer Softwear,Vol.3, No.2, p p .1 15-125 (1986) in Japanese

Nakata,I.-.Compiler, Sangyo Tosyo (1981) in Japanese

Matsumoto,Y. Sugimura,R.:/2onn Gata Gengo Ni Motodsuku Koubun Kaiseki
System 5/1 A', Computer Soft\vear,Vol.3, No.4, pp.4-11 (1986) in Japanese

Matsumoto,Y.:/l Parallel Parsing System for Natural Language Analysis , New
Generation Computing, Vol.5, No. 1, pp.63-78 (1987)

M atsum oto,Y. .Natural Language Parsing Systems based on Logic Program­
ming, Ph.D thesis of Kyoto University, (June 1989)

Mellish,C.S.: Computer Interpretation of Natural Language Descriptions, Ellis
Ilorwood Limited (1985)

Nilsson,U.: AID:An Alternative Implementat ion of DCGs, New Generation
Computing, 4, pp .383-399 (1986)

Okumura,M.:5»'2engengo Kaiseki Ni Okeru Imiteki Aimaisei Wo Zoushtn-
teki Ni Kaisyou Suru Keisan Model , Natural Language Analysis Working
Group,Information Processing Society of Japan,NL71-1 (1989) in Japanese

Pereira,F.and Warren,D.: Definite Clause Gram m ar for Language Analysis-
A Survey of the Formalism and a Comparison with Augmented Transition
Networks, Artif. [ntell, Vol.13, No.3, pp .231-278 (1980)

Tokunaga,T. Iwayama,M. Kamiwaki,T. Tanaka,K.:Natural Language Anal•
ysis System Lang LAB, Transactions of Information Processing Society of
Japan,Vol.29, No.7, pp .703-711 (1988) in Japanese

Tomit a,M.:£/7ic»enJ Parsing for Natural Language, Kluwer Academic Publish­
ers (1986)

Tomita,M.: An Ejjicien Augmented-Context-Free Parsing Algorithm, Compu­
tational Linguistics, Vol.13, Numbers 1-2, pp.31-46 (1987)

Ueda,K .:Guarded Horn Clauses, Proc. T he Logic Program ming Conference,
Lecture Notes in Com puter Science, 221 (1985)

Uchara.K. Toyoda,J.: Sakiyomi To Yosokukinou Wo Motsu Jutugo Ronri Gate
Koubun Kaiseki Program : PAMPS, Transactions of Information Processing
Socicty of Japan , Vol.24, No.4, pp .496-504 (1983) in Japanese

*338- International Parsing Workshop '89

The Relevance of L eg a liza tio n to Parsing*

Yves Schabes and Aravind K. Joshi
D epartm ent of C om puter and Inform ation Science

University of Pennsylvania, Philadelphia. PA 19104-6389

sch abes/josh iQ lin c.c is. upenn.edu

Abstract
In this paper, we investigate the processing of the so-called ‘lexicalized ’ gram m ar. In ie x ic a iiz e d ’

g ram m ars (Sch abes, Abeille and Josh i, 1988), each elem entary stru ctu re is sy stem atica lly associated
with a lexical ‘h ead ’ . T h ese stru ctu res specify extended dom ains of locality (as com pared to C F G s) over
which constrain ts can be sta ted . Th e ‘g ram m ar’ con sists o f a lexicon where each lexical item is associated
with a finite num ber of stru ctu res for which that item is the ‘h ead ’ . There are no separate gram m ar
rules. There are, of course, ‘ ru les’ which tell us how these stru ctu res are com bined.

A general tw o-pass parsing strategy for ‘lexicalized ’ g ram m ars follows naturally. In the first stage ,
the parser selects a set of elem entary stru ctu res associated with the lexical item s in the input sentence,
and in the second stage the sentence is parsed with respect to this set. We evaluate this stra tegy with
respect to two ch aracteristics. F irst, the am ount of filtering on the entire gram m ar is evaluated: once
the first p ass is perform ed, the parser uses only a subset of the gram m ar. Second, we evaluates the use of
non-local inform ation : the stru ctu res selected during the first pass encode the m orphological value (and
therefore the position in the strin g) of their ‘h ead ’; this enables the parser to use non-local inform ation
to guide its search.

We take Lexicalized Tree A djoin ing G ram m ars as an instance of lexicalized gram m ar. We illu strate
the organization of the gram m ar. Then we show how a general Earley-type T A G parser (Sch abes and
Josh i, 1988) can take advan tage of lexicalization. Em pirical d a ta show th at the filtering of the gram m ar
and the non-local inform ation provided by the tw o-pass stra tegy im prove the perform ance of the parser.

We explain how con strain ts over the elem entary stru ctu res expressed by unification equations can be
parsed by a sim ple extension of the Earley-type T A G parser. Lexicalization gu aran tees term ination of
the algorithm w ithout sp ec ia l devices such as restrictors.

1 Lexi cal i zed Gr a mma r s
Most current lingu istic theories give lexical accounts o f several phenom ena that used to be considered purely
syn tactic . T h e inform ation put in the lexicon is thereby increased in both am ount and com plexity: see, for
exam ple, lexical rules in LFG (K aplan and Bresnan, 1983), G PSG (G azdar, Klein, P ullum and Sag, 1985),
HPSG (Pollard and Sag, 1987), C om binatory C ategorial G ram m ars (S teedm an 1985, 1988), K arttu n en ’s
version o f C ategoria l G ram m ar (K arttun en 1986, 1988), som e versions of G B theory (C hom sky 1981), and
Lexicon-G ram m ars (G ross 1984).

We say that a gram m ar is ‘lex ica lized ’ if it consists of:1

• a finite set o f stru ctures associated w ith each lexical item , which is intended to be the ‘h ead ’ o f these
structures; the stru ctures define the dom ain o f locality over which constrain ts are specified; constrain ts
are local w ith respect to their lexical ‘h ea d ’;

• an op eration or op eration s for com posing the structures.

N otice that C ategorial G ram m ars (as used for exam ple by A des and S teedm an, 1982 and S teed m an , 1985
and 1988) are lexicalized according to our definition since each basic category has a lexical item associated
with it.

•T h is work is p a rtia lly su p p o rte d by ARO g ra n t DA A29-84-9-007, D A RPA g ran t N0014-85-K 0018, N SF g ran ts MCS-82-
191169 an d D C R -84-10413. We have benefited from o u r d iscussions w ith A nne A beille, L auri K a rttu n e n , M itch M arcus and
S tu a rt Shieber. We would also like to th a n k E llen Hays.

By lex icaliza tion we m ean th a t in each s tru c tu re there is a lexical item th a t is realized. We do no t m ean sim ply add ing
feature s tru c tu re s (such as h ead) a n d u n ification eq u atio n s to th e ru les of the form alism .

-339- International Parsing Workshop '89

A general tw o-step parsing strategy for ‘lexicalized’ gram m ars follows naturally. In the first stage, the
parser se lects a set o f elem entary structures associated with the lexical item s in the input sentence, and in
the second stage the sentence is parsed with respect to this set. T he strategy is independent o f the nature
of the elem entary structures in the underlying gram m ar. In principle, any parsing algorithm can be used in
the second stage.

T he first step selects a relevant subset o f the entire gram m ar, since only the structures associated with
the words in the input string are selected for the parser. In the worst case, this filtering wou: . select the
entire gram m ar. T he number of structures filtered during this pass depends on the nature of the input string
and on characteristics o f the grammar such as the number of structures, the number of lexical entries, the
degree o f lexical am biguity, and the languages it defines.

Since the structures selected during the first step encode the m orphological value o f their ‘h ead ’ (and
therefore its position in the input string), the first step also enables the parser to use non-local inform ation to
guide its search. T h e encod ing o f the value of the ‘h ead ’ of each structure constrains the way the structures
can be com bined. It seem s that this inform ation is particularly useful for parsing algorithm s that have som e
top-dow n behavior.

T h is parsing strategy is general and any standard parsing technique can be used in the second step .
Perhaps the advantages o f the first step could be captured by som e other technique. However this strategy
is extrem ely sim ple and is consistent w ith the linguistic m otivations for lexicalization .

2 Lexi cal i zed TAGs
N ot every gram m ar is in a ‘lex ica lized ’ form .2 In the process of lexicalizing a gram m ar, we require that
the ‘lex ica lized ’ gram m ar produce not only the sam e language as the original gram m ar, but also the sam e
structures (or tree set).

For exam ple, a C FG , in general, will not be in a ‘lex ica lized ’ form. T he dom ain o f locality o f CFGs
can be easily extend ed by using a tree rewriting gram m ar (Schabes, A beille and Joshi, 1988) that uses only
su b stitu tion as a com bining operation . T h is tree rew riting gram m ar consists o f a set o f trees that are not
restricted to be o f depth one (as in C F G s). S u b stitu tion can take place only on non-term inal nodes o f the
frontier o f each tree. S u b stitu tion replaces a node marked for su b stitu tion by a tree rooted by th e sam e label
as the node (see Figure 1; the su b stitu tion node is marked by a down arrow j,).

However, in the general case, C FG s cannot be ‘lex ica lized ’, if only su b stitu tion is used. Furtherm ore, in
general, there is not enough freedom to choose the ‘h ead ’ of each structure. T h is is im portant because we
w ant the choice o f the ‘h ead ’ for a given structure to be determ ined on purely lingu istic grounds.

If adjunction is used as an additional operation to com bine these structures, C FG s can be lexicalized.
A djunction builds a new tree from an auxiliary tree 0 and a tree a . It inserts an auxiliary tree in smother
tree (see Figure 1). A djunction is m ore powerful than su b stitu tion . It can weakly sim u late su b stitu tion , but
it also generates languages that could not be generated w ith su b stitu tion .3

S u b stitu tion and adjunction enable us to lexicalize C FG s. T h e ‘h ead s’ can be freely chosen (Schabes,
A beille and Josh i, 1988). T h e resulting system now falls in the class o f m ildly con text-sen sitive languages
(Joehi, 1985). E lem entary structures o f extend ed dom ain o f locality com bined w ith su b stitu tion and adjunc­
tion y ield Lexicalized T A G s.

TA G s were first introduced by Joshi, Levy and Takahashi (1975) and Joshi (1985). For more details
on the original definition o f T A G s, we refer the reader to Joehi (1985), Kroch and Joehi (1985), or Vijay-
Shanker (1987). It is known that Tree A djoining Languages (T A L s) are m ildly con text sensitive . TALs
properly contain context-free languages.

2 N otice the sim ila rity of the defin ition of ‘lex icalized’ g ram m ar w ith th e offline p a rsib ility co n stra in t (K ap lan and B resnan
1983). As consequences of ou r defin ition , each s tru c tu re has a t least one lexical item (its ‘h e a d ’) a tta c h e d to it and all sentences
are finitely am biguous.

3 It is also possib le to encode a con tex t-free g ram m ar w ith aux iliary trees using a d ju n c tio n only. However, a lth o u g h the
languages co rrespond , the set of trees do no t co rrespond .

-340- International Parsinq Workshop '99

TAGs with substitution and adjunction are naturally lexicalized.4 A Lexicalized Tree Adjoining Grammar
is a tree-based system that consists of two finite sets of trees: a set of initial trees, I and a set of auxiliary
trees A (see Figure 2). The trees in I U A are called e lem en ta ry trees. Each elementary tree is constrained
to have at least one terminal symbol which acts as its ‘head’.

Figure 2: Schcmaiic initial and auxiliary trees

The t re e set of a TAG G , T(G) is defined to be the set of all derived trees starting from S-type initial
trees in I. The s tr in g language generated by a TAG, C(G), is defined to be the set of all terminal strings
of the trees in T{G).

By lexicalizing TAGs, we have associated lexical information to the ‘production’ system encoded by the
TAG trees. We have therefore kept the computational advantages of ‘production-like’ formalisms (such as
CFGs, TAGs) while allowing the possibility of linking them to lexical information. Formal properties of
TAGs hold for Lexicalized TAGs.

As first shown by Kroch and Joshi (1985), the properties of TAGs permit us to encapsulate diverse syn­
tactic phenomena in a very natural way. TAG’s extended domain of locality and its factoring recursion from
local dependencies lead, among other things, to localizing the so-called unbounded dependencies. Abeille
(1988a) uses the distinction between substitution and adjunction to capture the different extraction prop­
erties between sentential subjects and complements. Abeille (1988c) makes use of the extended domain of
locality and lexicalization to account for NP island constraint violations in light verb constructions; in such
cases, extraction out of NP is to be expected, without the use of reanalysis. The relevance of Lexicalized
TAGs to idioms has been suggested by Abeille and Schabes (1989).

4 In som e earlie r work of Joshi (1969, 1973), the use of th e two opera tio n s ‘adjoining* and ‘rep la ce m en t’ (a re stric ted case of
su b s titu tio n) was in v es tig a ted b o th m ath em a tica lly and linguistically . However, these investiga tions d ea lt w ith strin g rew riting
system s an d n o t tree rew riting system s.

-341- Intemational Parsing Workshop '89

We will now give some examples of structures that appear in a Lexicalized TAG lexicon.
Some examples of initial trees are (for simplicity, we have omitted unification equations associated with

the trees):5

S
s

NP
A NP0i VP NP01 VP NPol VP NPoA

01 N <“ >> I (“ ’) j, (“ 3> (0,4) v< X ^ P z (a ,)

boy saw saw put P̂ i NP2>1
Examples of auxiliary, trees (they correspond to predicates taking sentential complements or modifiers):
S S S

/\ A ANP01 VP NPol VP NPo± VP VP N

v ŝ ^ n a (0 1) (/?2) v s ^ n a (0 2) v^vWna (0 4) a^n* n a (0 b)

I I I I I
th in k prom ise s*w has P ^ t ty

In this approach, the argument structure is not just a list of arguments. It is the syntactic structure
constructed with the lexical value of the predicate and with all the nodes of its arguments that eliminates
the redundancy often noted between phrase structure rules and subcategorization frames.6

2.1 O r g a n iz a t io n o f th e G r a m m a r

A Lexicalized TAG is organized into two major paxts: a lexicon and t ree families, which are sets of
trees. Although it is not necessary to separate trees from their realization in the lexicon, we chose to do so
in order to capture some generalities about the structures. TAG’s factoring recursion from dependencies,
the extended domain of locality of TAGs, and lexicalization of elementary trees make Lexicalized TAG an
interesting framework for grammar writing. Abeille (1988b) discusses the writing of a Lexicalized TAG for
French. Bishop, Cote and Abeille (1989) similarly discuss the writing of a Lexicalized TAG grammar for
English.

2.1.1 T ree Families

A t ree fam ily is essentially a set of sentential trees sharing the same argument structure abstracted from
the lexical instantiation of the ‘head’ (verb, predicative noun or adjective). Because of the extended domain
of locality of Lexicalized TAG, the argument structure is not stated by a special mechanism but is implicitly
stated in the topology of the trees in a tree family. Each tree in a family can be thought of as all possible
syntactic ‘transformations’ of a given argument structure. Information (in the form of feature structures)
that is valid independent of the value of the ‘head’ is stated on the tree of the tree family. For example, the
agreement between the subject and the main verb or auxiliary verb is stated on each tree of the tree family.
Currently, the trees in a family are explicitly enumerated.

5T h e trees a re sim plified an d th e fea tu re s tru c tu re s on th e trees are n o t displayed. 1 is th e m ark for su b s ti tu tio n nodes. •
is the m ark for the foot node of am aux iliary tree an d N A s ta n d s for null a d ju n c tio n co n stra in t. T h is is th e only ad junc tion
co n stra in t not in d irectly s ta te d by fea tu re s tru c tu re s . We p u t indices on some n o n -term in als to express sy n tac tic roles (0 for
su b je c t, 1 for first o b jec t, e tc .) . T h e index show n on th e em p ty s tr in g («) a n d the co rrespond ing filler in th e sam e tree is for
th e pu rp o se of in d ica tin g th e filler-gap dependency .

6 O p tio n a l a rg u m en ts are s ta te d in the s tru c tu re .

The following trees, among others, compose the tree family of verbs taking one object (the family is
named npOVnpl):7

NP01 VP

VO NP,1

'anpO Vnpl)

NPojV/t VP

I / \
e, VO NP,1

(3 ROnpOVnpl) RlnpOVnp 1)

Ei VO NPti

a WOnpO Vnpl) [a W1 npO Vnpl)

anpOVnpl is an initial tree corresponding to the declarative sentence, /3ROnpOVnpl is an auxiliary tree
corresponding to a relative clause where the subject has been relativized, (3RlnpOVnp 1 corresponds to the
relative clause where the object has been relativized, aWOnpOVnpl is an initial tree corresponding to a
wh-question on the subject, a WlnpOVnpl corresponds to a wh-question on the object.

2.1.2 T h e Lexicon

The lexicon is the heart of the grammar. It associates a word with tree families or trees. Words are not
associated with basic categories as in a CFG-based grammar, but with tree-structures corresponding to
minimal linguistic structures. Multi-level dependencies can thus be stated in the lexicon.

It also states some word-specific feature structure equations (such as the agreement value of a given verb)
that have to be added to the ones already stated on the trees (such as the equality of the value of the subject
and verb agreements).

An example of a lexical entry follows:

loves , V : npOVnpl {VP. b : <mode> = in d ,
V P .t :< ag r pars>= 3,
V P .t :< a g r nua>= s in g u la r ,
VP. t : < t«nse>=pr«sent} .

It should be emphasized that in our approach the category of a word is not a non-terminal symbol but a
multi-level structure corresponding to minimal linguistic structures: sentences (for predicative verbs, nouns
and adjectives) or phrases (NP for nouns, AP for adjectives, PP for prepositions yielding adverbial phrases).

2.2 Parsing Lexicalized TAGs
An Earley-type parser for TAGs has been developed by Schabes and Joehi (1988). It is a general TAG parser.
It handles adjunction and substitution. It can take advantage of lexicalization. It uses the structures selected
after the first pass to parse the sentence. The parser is able to use the non-local information given by the first
step to filter out prediction and completion states. It is extended to deal with feature structures for TAGs
as defined by Vijay-Shanker and Joshi (1988). The extended algorithm we propose always terminates when
used on Lexicalized TAGs without special devices such as restrictors. Unification equations are associated
with both extended linguistic structures and lexical information given by the ‘head’. This representation
allows a more natural and more direct statement of unification equations.

7T h e trees axe sim plified, o is the m ark for the node un d er w hich th e ‘h e a d ’ w ord of the tree is a tta ch e d .

-343- International Parsing Workshop '89

If an offline behavior is adopted, the Earley-type parser for TAGs can be used with no modification for
parsing Lexicalized TAGs. First the trees corresponding to the input string are selected and then the parser
parses the input string with respect to this set of trees.

However, Lexicalized TAGs simplify some cases of the algorithm. For example, since by definition each
tree has at least one lexical item attached to it (its ‘head’), it will not be the case that a tree can be predicted
for substitution and completed in th- same states set. Similarly, it will not be the case that an auxiliary tree
can be left predicted for adjunction and right completed in the same states set.

But most importantly the algorithm can be extended to take advantage of Lexicalized TAGs. Once the
first pass has been performed, a subset of the grammar is selected. Each structure encodes the morphological
value (and therefore the positions in the string) of its ‘head’. Identical structures with different ‘head’ values
are merged together (by identical structures we mean identical trees and identical information, such as feature
structures, stated on those trees).8 This enables us to use the ‘head’ position information while processing
efficiently the structures. For example, given the sentence

The i men 2 who 3 saw 4 th® 5 woman 5 who 7 saw g John 9 axe m ^aPP7 11

the following trees (among others) are selected after the first pass:9

2.2 .1 Taking A d van tage o f L exicalization

NP

A
NP S

/ \

s

VD s NPqI v p
NP / \ NP NP *

/ \ NPb v p X I / \

D D i N comp I A D i N N V A
I I I e‘ v Np>x I I I II I I | I I I

tb«(i.5) wbo(3.7) ••»(«.*> womans) John^ are(io> b*ppy(lt)
The trees for men and for woman are distinguished since they carry different agreement feature structures

(not shown in the figure).
Notice that there is only one tree for the relative clauses introduced by saw but that its ‘head’ position

can be 4 or 8. Similarly for who and the.
The ‘head’ positions of each structure impose constraints on the way that the structures can be combined

(the ‘head’ positions must appear in increasing order in the combined structure). This helps the parser to
filter out predictions or completions for adjunction or substitution. For example, the tree corresponding to
men will not be predicted for substitution in any of the trees corresponding to saw since the ‘head’ positions
would not be in the right order.

We have been evaluating the influence of the filtering of the grammar and the ‘head’ position information
on the behavior of the Earley-type parser. We have conducted experiments on a feature structure-based
Lexicalized English TAG whose lexicon defines 200 entries associated with 130 different elementary trees.10
Twenty five sentences of length ranging from 3 to 14 words were used to evaluate the parsing strategy. For
each experiment, the number of trees given to the parser and the number of states were recorded.

In the first experiment (referred to as one pass, OP), no first pass was performed. The entire grammar
(i.e., the 130 trees) wag used to parse each sentence. In the second experiment (referred to as two passes
no ‘h e a d N S) , the two-pass strategy was used but the ‘head’ positions were not used in the parser. And
in the third experiment (referred to as two passes wtth ‘head’, H), the two-pass strategy was used and the
information given by the ‘head’ positions was used by the parser.

The average behavior of the parser for each experiment is given in Figure 3. The first pass filtered on
average 85% (always at least 75%) of the trees. The filtering of the grammar by itself decreased by 86% the

8 U nlike o u r prev ious suggestions (Schabes, Abeiile an d Josh i, 1988), we do no t d is tin g u ish each s tru c tu re by its ‘head’
p o sition since it increases unnecessarily th e n u m b er of s ta te s of th e E arley parser. By fac to rin g recursion , th e E arley parser
enables us to process only once p a r ts of a tree th a t are asso c ia ted w ith several lexical item s selecting th e sam e tree . However,
if te rm in a tio n is req u ired for a p u re top-dow n p a rser, it is necessary to d istin g u ish each s tru c tu re by its ‘h e a d ’ position .

9T h e exam ple is sim plified to i llu s tra te o u r po in t.
10T h e trees a re d iffe ren tia ted by th e ir topology an d th e ir fea tu re s tru c tu re s b u t not by th e ir ‘h e a d ’ value.

-344* International Parsing Workshop '89

number of states ((N H - OP)/OP) . The additional use of the information given by the ‘head’ positions
further decreased by 50% ((H - N H) / N H) the number of states. The decrease given by the filtering of the
grammar and by the information of the head positions is even bigger on the number of attempts to add a
state (not reported in the table).11

This set of experiments shows that the two-pass strategy increases the performance of the Earley-type
parser for TAGs. The filtering of the grammar affects the parser the most. The information given by head’
p.sition in the first pass allows further improvement of the parser’s performance (- 50% of the number
of states on the set of experiments). The bottom-up non-local information given by the ‘head’ positions
improves the top-down component of the Earley-type parser.

(NH-OPJ/OP (H-OP)/OP (H - NH)/NH
(%) (%) (%)

trees -85 -85 0
states -86 -93 -50

Figure 3: Empirical evaluation of the two-pass strategy

We performed our evaluation on a relatively small grammar and we did not evaluate the variations across
grammars. The lexical degree of ambiguity of each word, the number of structures in the grammar, the
number of lexical entries, and the length (and nature) of the input sentences are parameters to be considered.
Although it might appear easy to conjecture the influence of these parameters, the actual experiments are
difficult to perform since statistical data on these parameters are hard to obtain. We hope to perform some
limited experiments along those lines.

2.3 P a r s in g F e a tu r e -B a s e d T A G s

As defined by Vijay-Shanker (1987) and Vijay-Shanker and Joshi (1988), to each adjunction node in an
elementary tree two feature structures are attached: a top and a bottom feature structure.12 When the
derivation is completed, the top and bottom features of all nodes are unified simultaneously. If the top and
bottom features of a node do not unify, then a tree must be adjoined at that node. This definition can be
easily extended to substitution nodes. To each substitution node we attach one feature structure which acts
as a top feature. The updating of feature structures in the cases of adjunction and substitution is shown in
Figure 4.

1 A s ta te is effectively ad d ed to a s ta te s se t if it does no t exist in the set already.
T h e to p fea tu re s tru c tu re co rresp o n d s to a view to th e to p of the tree from th e node. T h e b o tto m fea tu re corresponds to

the view to th e b o tto m .

-345- Intemational Parsing Workshop '89

Figure 5: Examples of unification equations

2.3 .1 U n ifica tio n E qu ation s

As in PATR-II (Shieber, 1984, 1986), we express with unification equations dependencies between DAGs13
in an elementary tree. The extended domain of locality of TAGs allows us to 9tate unification equations
between features of nodes that may not necessarily be at the same level.

The system consists of a TAG and a set of unification equations on the DAGs associated with nodes in
elementary trees.

An example of the use of unification equations in TAGs is given in Figure 5.14
Notice that coindexing may occur between feature structures associated with different nodes in the tree.

Top or bottom features of a node are referred to by a node name (e.g. Sr)15 followed by A (for top) or
.b (for bottom). The semicolon states that the following path specified in angle brackets is relative to the
specified feature structure. The feature structure of a substitution node is referred to without A or .b. For
example, VP~rA:<agr num> refers to the path <agr num> in the top feature structure associated with the
adjunction node labeled by VPr and NP-0:<agr> refers to the path <agr> of the substitution node labeled
by N Pq.

Notice that the top and bottom feature structures of all nodes in the tree a 6 (Figure 5) cannot be
simultaneously unified: if the top and bottom feature structures of 5 are unified, the mode will be ind which
cannot unify with p p u rt (V P node). This forces an adjunction to be performed on 5 (e.g. adjunction of 0$
to derive a sentence like Has John written a book?) or on V P (e.g. adjunction of 07 to derive a sentence like
John has written a book). The sentence John written a book is thus not accepted.

Notice that in the tree q 6 agreement is checked across the nodes N P 0, S and VP. These equations handle
the two cases of auxiliary : N P q has written NP\ and has N P q written NP\?. The corresponding derived
trees are shown in Figure 6. 71 derives sentences like John has written a book. It is obtained by adjoining
07 on the VP node in ar6. 72 derives sentences like Has John written a book?. It is obtained by adjoining 0s
on the S node in a 6. The obligatory adjunction imposed by the mode feature structure has disappeared in
the derived trees j i and 72. However, to be completed, j i and y2 need N P -trees to be substituted in the
nodes labeled by N P (e.g. John and a book).

13 D irec ted Acyclic G rap h s w hich rep resen t th e fea tu re s tru c tu re s .
14 In these exam ples we have m erged the in fo rm atio n s ta te d on th e trees an d in th e lexicon. W e w rite un ification equations

above th e tree to w hich they apply. We have also p rin te d to th e right of each node th e m a tr ix re p re se n ta tio n of th e to p and
b o tto m fea tu re s tru c tu re s .

15 We im plic itly requ ire th a t each node have a un ique nam e in an e lem en tary tree . If necessary, su b sc rip ts d ifferen tia te nodes
o f the sam e category .

-346- Intemational Parsina WorkshoD '89

written

Figure 6: N P q has written NP\ and Has N P 0 written N Pi ?

2 .3 .2 E x ten sio n to th e E arley -typ e Parser

The Earley-type algorithm for TAGs (Schabes and Joshi, 1988) can be extended to parse Lexicalized TAG
with unification equations on elementary trees. The extension is similar to the one proposed by Shieber (1985)
in order to parse the PATR-II formalism but it does not require the use of restrictors. For the recognition of
a substituted tree, we choose to check that unification constraints are compatible at the prediction step and
we pass information only at the completion step. For the recognition of an adjunction, we choose to check
only that unification constraints are compatible at the Left Predictor, Left Completor and Right Predictor
steps and we pass information only at the Right Completor step.

What follows is an informal explanation of the extension to the Earley-type parser. A new component D
is added to the states manipulated by the Earley-type parser. D specifies the feature structures associated
with each node of the tree represented by the state. It is a set of feature structures. The manipulation of
the other components of a state remain the same. We will ignore these components of a state and focus our
attention here on the manipulation of the set of feature structures D.

The Scanner, Move-dot-down and Move-dot-up processors behave as before and copy the DAG D to the
new state.16 The Left Predictor predicts all possible adjunctions and also tries to recognize the tree with
no adjunction. In case no adjunction is left predicted, the Left Predictor adds the new state only if the top
and bottom feature structures are compatible (see Figure 7). If they are compatible, a new state is added
but top and bottom feature structures are not unified. They will be unified in the Right Predictor. Then,
if no adjunction has been left predicted, the Right Predictor moves the dot up and unifies top and bottom
feature structures (see Figure 7).

The recognition of an adjunction with features is shown in Figure 7.17 At each step of the recognition of
an adjunction, the compatibility of the feature structures is checked. The information is passed only at the
Right Completor step.

18 Iden tica l s ta te s have iden tica l com ponen ts, iden tica l feature s tru c tu re s D.
17 A s u b s ti tu te d tree is recognized in a sim ilar way and is no t exp lained here.

-347- Intemational Parsing Workshop '89

Uft___
t Pradctar
b no tofjncton

l f t {Jb

Left Predictor, no a

Right Predictor, no

Figure 7: No Adjunction Recognition of an adjunction
For aon-lexicalized TAGs, this approach does not guarantee termination of the algorithm (for similar

reasons as for CFG-based unification grammar, Shieber, 1985). However for Lexicalized TAGs, even when
recursion occurs, the termination of the algorithm is guaranteed since the recognition of a tree entails the
recognition of at least one input token (its ‘head’) and since information is passed only when a tree is
completely recognized. If information were passed before the Right Completor step (in case of adjunction),
restrictors (as defined by Shieber, 1985) can be used to guarantee termination. However we believe that in
practice (for the Lexicalized TAGs for French and English) passing information at an earlier step than the
Right Completor step does not improve the performance.

3 C onclusion
In ‘lexicalized’ grammars, each elementary structure is systematically associated with a lexical ‘head’. These
structures specify extended domains of locality (as compared to the domain of locality in CFGs) over which
constraints can be stated. The ‘grammar’ consists of a lexicon in which each lexical item is associated with
a finite number of structures for which that item is the ‘head’.

Lexicalized grammars suggest a natural two-step parsing strategy. The first step selects the set of
structures corresponding to each word in the sentence. The second step tries to combine the selected
structures.

We take Lexicalized TAGs as an instance of lexicalized grammar. We illustrate the organization of the
grammar. Then we show how the Earley-type parser can take advantage of the two-step parsing strategy.
Experimental data show that its performance is thereby drastically improved. The first pass not only filters
the grammar used by the parser to produce a relevant subset but also enables the parser to use non-local
bottom-up information to guide its search. Finally, we explain how constraints over these structures expressed
by unification equations can be parsed by a simple extension of this algorithm. Lexicalization guarantees
termination of the algorithm without a special mechanism such as the use of restrictors.

The organization of lexicalized grammars, the simplicity and effectiveness of the two-pass strategy (some
other technique would perhaps achieve similar results) seem attractive from a linguistic point of view and for
processing. We are currently exploring the possibility of extending this approach to Categorial Grammars.

djunction

\djunction

Sx

/ h s z i

L*ft Pn*dkacx / \ ------*
/ \ added to Sx

/ iH U tr
'■-------- --- and b U W

Sy A - -----------

-------------- or

le ft ComoMo^
* added to Sy

/ c \ , i* t U tr

/ • A* c d b a n d b U b f

Sz

A : :

Right Predictor
______ added to Sz

/ B’ \ ----- and b’ U bf

s " _______ _

Z i :
' --------- ---

Right Compimgi

a. added to Sw

/ * h c ~ rxivm/ " ---- h* 11 M -

-348- Intemational Parsing Workshop '89

R eferen ces
Abeille, Anne, A ugust 1988 (a). Parsing French with Tree Adjoining G ram m ar: som e Linguistic Accounts. In
Proceedings o f the 12tfl In te rn a tio n a l C onference on C om puta tional L ingu istics (C O L IN G ’88). B u dap est.

Abeille, Anne, 1988 (b). .4 Lexicalized Tree A djo in ing G ram m ar fo r French: the G eneral Framework. Technical
R eport M S-CIS-88-64, D epartm ent of C om puter and Inform ation Science, University of Pennsylvania.

Abeille, Anne, 1988 (c). E xtraction out of NP in Tree A djoining G ram m ar. In Papers from the 24 th Regional M eeting
o f the Chicago L ingu istic Society. C hicago.

Abeille, Anne and Sch abes, Yves, 1989. Parsing Idiom s in Tree Adjoining G ram m ars. In Fourth C onference o f the
European C hapter o f the A ssoc ia tion fo r C om puta tiona l L ingu istics (E A C L '8 9). M anchester.

A des, A. E. and Steedm an , M. J ., 1982. On the O rder of W ords. L inguistics and P hilosophy 3 :517-558.

B ishop, K ath leen M.; C ote, Sharon; and Abeille, Anne, 1989. A Lexicalized Tree A d jo in ing G ram m ar fo r English.
Technical R eport, D epartm ent of C om puter and Inform ation Science, University of Pennsylvania.

Chom sky, N., 1981. Lectures on G overnm en t and B inding. Foris, Dordrecht.

G azdar, G .; Klein, E.; Pullum , G. K .; and Sag, I. A., 1985. G eneralized Phrase S tructure G ram m ars. Blackwell
Publishing, O xford. A lso published by H arvard University Press, C am bridge, MA.

G ross, M aurice, 2-6 Ju ly 1984. Lexicon-G ram m ar and the Syntactic A nalysis of French. In Proceedings o f the 10th
In te rn a tio n a l C onference on C om pu ta tiona l L inguistics (C O L IN G ’84). Stanford.

Josh i, A ravind K ., A ugust 1969. Properties of Form al G ram m ars with M ixed T y p e of Rules and their L inguistic
Relevance. In Proceedings o f the In te rn a tio n a l C onference on C om puta tiona l L inguistics. S an g a Saby.

Josh i, A ravind K ., 1973. A C lass of T ransform ational G ram m ars. In M. G ross, M. Halle and Schutzenberger, M .P.
(ed itors), The Form al A na lysis o f N atural Languages. M outon, La Hague.

Josh i, A ravind K ., 1985. How Much C ontext-Sensitiv ity is N ecessary for C h aracterizing S tru ctu ral D escriptions—
Tree A djoin ing G ram m ars. In Dowty, D.; K arttun en , L.; and Zwicky, A. (ed itors), N atura l Language P rocessing—
Theoretical, C om p u ta tio n a l and Psychological Perspectives. C am bridge University Press, New York. Originally
presented in a W orkshop on N atural L an guage Parsing at Ohio S ta te University, C olum bus, Ohio, M ay 1983.

Josh i, A. K .; Levy, L. S .; and T akahashi, M., 1975. Tree A djunct G ram m ars. J. C om put. Syst. Sci. 10(1).

K ap lan , R. and Bresnan 1983. Lexical-functional G ram m ar: A Form al System for G ram m atica l R epresentation .
In B resnan , J . (ed itor), The M enta l R epresen ta tion o f G ram m atical Relations. M IT P ress, C am bridge MA.

K arttu n en , Lauri, 1986. R adical Lexicalism . Technical Report C SLI-86-68, C SL I, S tanford University. To also appear
in N ew A pproaches to Phrase S tru c tu res , University of C hicago Press, Baltin , M. and Kroch A ., C hicago, 1988.

K roch, A. and Josh i, A. K ., 1985. L ingu istic Relevance o f Tree A d jo in ing G ram m ars. Technical R eport M S-CIS-85-18,
D epartm ent of C om puter and Inform ation Science, University of Pennsylvania.

Pollard , C arl and Sag , Ivan A ., 1987. In fo rm a tio n -B a sed Syntax and Sem antics. Vol 1: F undam enta ls. C SL I.

Sch abes, Y ves and Jo sh i, A ravind K ., Ju n e 1988. An Earley-T ype Parsing A lgorithm for Tree A djoin ing G ram m ars.
In 26th M eeting o f the A sso c ia tio n fo r C om pu ta tiona l L ingu istics (A C L ’88). Buffalo.

Sch abes, Y ves; A beille, Anne; and Josh i, A ravind K ., A ugust 1988. Parsing S tra teg ie s with ‘ Lexica lized ’ G ram m ars:
A pp lication to TVec A djo in ing G ram m ars. In Proceedings o f the 12** In te rn a tio n a l C onference on C om puta tiona l
L in g u istic s (COLING’88). B u d ap est.

Shieber, Stuart M ., Ju ly 1984. The Design of a Computer Language for Linguistic Information. In 22nd M eeting o f
the A sso c ia tio n fo r C o m p u ta tio n a l L ingu istics (A C L ’84)- Stanford.
Shieber, S tu art M ., Ju ly 1985. U sing R estriction to Extend Parsing A lgorithm s for C om plex-feature-based For­
m alism s. In 23rd M eeting o f the A sso c ia tio n fo r C om pu ta tiona l L ingu istics (A C L ’85). C hicago.

Shieber, Stuart M., 1986. A n In tro d u c tio n to U nification-B ased A pproaches to G ram m ar. Center for the Study of
Language and Information, Stanford, CA.
Steedman, M. J . , 1985. Dependency and Coordination in the Grammar of Dutch and English. Language 61:523-568.

Steedman, M., 1987. Combinatory Grammars and Parasitic Gaps. N atura l Language and L ingu istic T heory 5:403—
439.

Vijay-Shanker, K., 1987. A S tu d y o f Tree A d jo in ing G ram m ars. PhD thesis, Department of Computer and Informa­
tion Science, University of Pennsylvania.
V ijay-Shanker, K. and Jo sh i, A .K ., A ugust 1988. Feature S tru cture B ased Tree A djoin ing G ram m ars. In Proceedings
o f the \2 th In te rn a tio n a l C onference on C om pu ta tiona l L ingu istics (C O L IN G ’88). B u d ap est.

-349- Intemational Parsing Workshop '89

A Framework for the Development of Natural Language Grammars

Massimo MARINO
Department of Linguistics

University of Pisa
Via S.Maria 36 1-56100 Pisa - ITALY

Electronic Mail: MASSIMOM0ICNUCEVM.BITNET

Abstract
This paper describes a parsing system used in a fram ework for the developm ent o f Natural

Language grammars. It is an interactive environment suitable for writing robust NL applications
generally. Its heart is the SAIL parsing algorithm that uses a Phrase-Structure Grammar with
extensive augmentations. Furthermore, some particular parsing tools are em bedded in the system ,
and provide a powerful environment for developing grammars, even o f large coverage A

1. Introduction
Every parsing system should embed a set of tools or mechanisms which should provide an aid

In treating a minimum set of linguistic phenomena. Designing SAIL we have mainly taken into
account the generality of the parsing system in order to give a wide freedom to the grammar designer,
so as to investigate many possible solutions in grammar design in order to adopt the best of them.
SAIL (System for the Analysis and Interpretation of Language) Is the parsing algorithm of the SAIL
Interfacing System (SIS) (/Marino 1988a/. /Marino 1988b/, /Marino 1989/), and Just because of Its
features of generality the design has been driven by some general aspects which derive from various
theoretical as well as computational accounts.

1. Whatever representation is adopted for the structure of the parsed sentences, it is agreed that
complex sets of syntactic and/or semantic features must describe the linguistic units. Therefore, it Is
necessary to provide feature handling mechanisms. This point has suggested to us a way of providing
a very rich language for handling feature structures (FS in the following). FSs are represented as
trees where each arc is labelled by an attribute, and nodes can be pointers to the following
alternative paths or a pointer to a leaf node where the value for the path spanned so far Is found.
They can store many kinds of information thanks to their efficient processing provided by a core set
of functions.

2. Some linguistic phenomena encountered In parsing NL, such as long-distance dependency or
the ability of treating some context-sensitive cases, led us to see the SAIL grammar rules as processes
executed by a processor, a role covered by the parser. The rules of a grammar have associated some
information related to their status of processes which are scheduled In a priority queue, according to
some their priority of execution (/Knuth 1973/, /Aho et al. 1983/). This also allows, for Instance,
that the execution of some rule can be requested to perform context-sensitive recognition, or some
rules can exchange between each other some information under the form of m essages to perform the
treatment of long-distance dependency.

3. The parser is structured as a bottom-up (shift reduce) all-paths algorithm, and a formalism
for the grammar rules was defined to allow syntactic processing in parallel with sem antic
processing. The grammar of SAIL is a Phrase-Structure Grammar (PSG) with extensive
augm entations, so that we also take advantage from the com positlonallty principle naturally

^This work has been carried out within the framework of the ESPRIT Project P527 CFID
(Communication Failure in Dialogue: Techniques for Detection and Repair).

-350- International Parsing Workshop '89

em bedded In bottom -up parsers. As m entioned above, the parser is seen as a processor, th u s one of its
m ain ta sk s is to sch ed u le the p r o c e sse s /r u le s to run in a priority q ueue. This queue is not com pletely

u n d er control o f the parser s in ce the gram m ar ru les and the d ictionary can a lso is su e som e specific
op eration s or req u ests ab out the m an agem ent o f the sch ed u lin g task.

4. The need o f a flexible front-end for the u ser is o f prim ary im portan ce to provide a powerful
an d co m p lete d ev e lo p m en t en v iro n m en t. The u se r in terface b u ilt over SAIL, the SIS. is the

fram ew ork w here a u ser can in teract w ith the und erly in g p arsing sy stem in d evelop in g gram m ars.
T his interface provides a se t o f com m and s, defined by m ean s o f a sem an tic gram m ar, that are cau gh t

and p rocessed by SAIL and can handle m any p ossib le requ ests of the user.

In th e follow ing sectio n w e give a brief d escrip tion o f the gram m ar and d iction ary form at and

how a gram m ar is d efined in SAIL. S ection 3 g ives an overview o f the SAIL p arsin g system , parser

organ iza tion , an d d a ta stru c tu r es It u se s . S ection 4 d escr ib es the p arsin g to o ls ava ilab le in the

sy stem and their p u rp oses. F inally, section 5 sh o w s Just on e exam p le o f a gram m ar fragm ent w here
som e p arsin g tools d escribed in the previous sectio n s are used.

2. The SAIL Grammar
The Grammar Format

T he form alism w e ad op t to e x p re ss gram m ar ru les , ca lled C om p lex G ram m ar U nit (CGU),
d efin e s a sy n ta c tic and a se m a n tic sid e called sy n ta c tic ru le an d se m a n tic ru le, resp ective ly . T he

sy n ta c tic ru le co n ta in s the production , the tests , the actio n s an d the recovery action s. The sem a n tic

ru le c o n ta in s th e se m a n tic co u n terp a rt o f th e sy n ta c tic te s t s an d a c t io n s . T he p resen ce o f the

s y n ta c t ic /s e m a n t ic recovery a c t io n s is a very p ow erfu l m ea n to u n d er ta k e a ltern a tiv e a c t io n s

w h e th er the ru le fa ils e ith er m a tc h in g the r ig h t-h a n d s id e o f th e p ro d u ctio n or ch e c k in g the

sy n ta c t ic /s e m a n tic te s ts . In th is w ay the ru les n eed not to be crud ely rejected w h en th ey fall but. for

in sta n ce , th ey can activate other ru les that could be applied su ccessfu lly .

A ru le in SAIL is w ritten d efin in g all the p rev iou s CGU's item s. In ad dition , it Is a lso n ece ssa r y to

provide the s ta tu s o f the ru le /p r o ce ss , so that It can be properly taken into accou n t by the parser. The

s ta tu s sa y s w h eth er a ru le can be sch ed u led for ap plication or not by the parser. It ca n be active or

in a c tiv e . A ctive ru le s a lw ays are sc h e d u led by the parser, w h erea s in active ru le s are n o t (inactive

ru les can be se en a s s leep in g rules). The s ta tu s p lays a central role in the organ ization o f a gram m ar.
As an exam p le, if a rule d e tec ts so m e right or w rong con d ition s in the p arsin g stru ctu re it can either
se t active or activate an in active rule.

Su m m arizin g , a gram m ar ru le is com p osed o f three m ain item s: 1) the sta tu s: active or inactive); 2)
the p rod u ction in con text-free (CF) form at, in the follow ing d en oted b y A <— w^ ... w n . n >1. w here the

le ft-arrow m eans th a t th e le ft-h a n d s id e is red u ced from th e r ig h t-h a n d s id e a cco rd in g to the

b ottom -u p strategy o f parsing; 3) the au gm en ta tion s.

T he p rod u ction is au gm en ted w ith an ad d ition al item , called the son -flag list. T h is list sa y s for every

ca tegory in th e righ t-h an d sid e w h eth er the corresp on d in g n ode m a tch ed in th e p a rsin g stru ctu re

m u st be con sid ered a s a so n o f the le ft-h an d sid e or not. If a son -flag is se t to +■ for a r igh t-h an d sid e

category the corresp on d in g m atch ed n ode is a so n o f th e left-h an d sid e node, o th erw ise it is n ot a son

n od e if th e flag is -. We h ave two ty p es o f p rod u ction d ep en d in g on its stru ctu re: CF an d con text-

sen sitiv e (CS) p rod uction s. CF productions, represented by A <— w j ... w n , are defined like:

(A (W! ... w n)

(+ ... ♦))
w h ere a ll n o d e s m a tc h e d b y th e r ig h t-h a n d sid e m u st b e s o n s o f th e le ft-h a n d s id e n od e . CS

p rod u ction s represen ted by: c j ... Cp A Cp+ i ... Cq *- c j ... Cp w j ... w n Cp+j ... Cq, 1 £ p £ q, n > 1, are

-351- Intemational Parsing Workshop '89

(A (ci ...CpWj ...w n Cp+i ... Cq)
(- ... - ... -))

w here on ly the n o d es w ith a p lu s flag in sid e a con text o f m in u s-flagged n od es are so n s o f the left-

hand side node. ̂

The a u g m en ta tio n s cover the syn tactic and sem a n tic te sts and actio n s of the CGU m odel. T hey are

the body o f a rule and are p ieces of Lisp code execu ted by the parser during the application o f the rule.
S ta tu s , prod uction and au g m en ta tio n s is the inform ation provided by th e gram m ar w riter for every

rule o f a gram m ar. A rule is a n am ed in sta n ce of a com p lex d ata stru ctu re defined accord ing to the

follow ing defrule format:
(defrule

■:gname gnome
:mame m am e
■.production <production> [<son-flag-list>]

[status <status>
:syn-tests <code>
:sem-tests <oode>
:syn-actlons <code>
:sem-actions <oode>
:syn-recovery-actions <code>
:sem-recovery-actions <code>])

gname is th e gram m ar nam e w here the rule m am e is defined. T h ese two n a m es m u st be provided in

every rule defin ition s in ce in the SIS w e can have m ore th an one gram m ar availab le w h ich m u st be
referred to by a nam e. A gram m ar u su a lly is defined by a defgramm d eclaration o f the form:

(defgramm gname [root])
w h ere root is the root category o f gnam e. T h is d ec la ra tio n s e ts up all d a ta s tr u c tu r e s for the

gram m ar b eing defined and m u st be issu ed before an y rule definition.

The Dictionary Format
A ny d iction ary o f a gram m ar co n ta in s a se t o f form s that are a sso c ia ted w ith a se t o f syn tactic

an d se m a n tic in form ation . A form is w hatever seq u en ce o f w ords w^ w 2 ... w n . W hen n= 1 w e have a

single form, oth erw ise a m ultiple form (n> 1). For an y form, be it s in g le or m ultip le, the first word w j

is ca lled the key form. T he k ey form is th e m ean for storin g an d retrieving a ll in form ation o f the

w hole form in the d a ta s tru ctu res b u ilt by the defgramm d eclaration . A ny form h a s a sso c ia ted three

k in d s o f in fo rm a tio n , form ing an in terp re ta tio n : sy n ta c tic category; se m a n tic va lu e: a s e t o f

fea tu res. A form ca n h ave m ore th an on e interpretation . In th is ca se , a s e t o f in terp retation s m u st be

d efin ed su p p ly in g a s th e first item the key form; afterw ards, for every se q u e n c e o f w ord s follow ing

th e k ey form , th e s e t o f in terp re ta tio n s . An en try o f th e d ic tio n a ry is d efin ed a cco rd in g to the

2 T h is d e fin itio n le a v es free the u se r o f d efin in g ru le s w ith d isc o n t in u o u s c o n s t itu e n ts in th e

sy n ta c tic rep resen ta tio n . C urrently th e parser d o es n ot em b ed an y stra teg y for a full trea tm en t o f

th e se c a s e s s in c e th e c la ss ic a l d efin ition o f ad jacen cy is im p lem en ted . T h is s tru ctu re w a s in itia lly

m otivated in order to d efine C S ru les by on ly on e rule, and n ot b y two (see S ectio n 4.). Furtherm ore,

s u c h a s tru ctu r e a llo w s a faster sea rch in the p arsin g stru ctu re , perform ed b y th e m a tch er o f the

p rod u ction , w h en , for in sta n c e , far c o n st itu e n ts m u st b e id en tified for lo n g -d ista n c e ta sk s . A nyw ay,
s ta te d th e im p ortan t role th a t ca n be covered b y the rep resen ta tion o f d isc o n tin u o u s co n s t itu e n ts

(see /B u n t at al. 1 9 8 7 /) , ex ten sion o f the parser about th is topic can be on e o f our future tasks.

defined like:

-352- Intemational Parsing Workshop '89

(defentry keyform gnome
(defform form

(aet-int :category <caienory>
(.•semual <semcal>
features <features>\)+)+)

w here keyform m u st be a strin g o f ju s t one word, e .g ., "dog", "train", etc.; the form m u st be either the

n u ll str in g "" for the sin g le form keyform, or a strin g o f on e or m ore w ords. Every form defin ition of

th is k ind is sa id to be in defentry form at. <category> Is the sy n ta ctic category and <semval> is the

sem a n tic va lu e. The fea tu res m u st be provided in the follow ing format:

<features> ::= ({[< attribute s>) (<value>))+)
<attributes> ::= a seq u en ce o f feature attributes
<ualue> ::= a valu e for the feature attribu tes

As an exam ple:
(((GENDER) (MASC))

((NUMBER) (SING))
((KIND-OF ARG1) (THING)))

Here are som e exam p les o f d iction ary en tries. The m ost trivial o f them is:
(defentry "train" m y_gram m ar

(defform ""
(aet-int :category Noun)))

w here the sin g le form train is defined by on e in terp retation o f category N oun. An exam p le o f a sin g le

form w ith two in terp reta tion s is the following:
(defentry "tree" m y_gram m ar

(defform ””
(aet-int : category N oun

.•features (((KIND-OF OBJ) (PLANT))))

(aet-int : category N oun
:featu res (((KIND-OF OBJ) (DATA-STRUCTURE))))))

w here tree is defined as a p lant an d a s a d ata stru cture. An exam p le of m ultip le form Is:
(defentry "in" m y_gram m ar

(deffonn ""
(aet-int : ca tegory Prep))

(defform "the"
(aet-int :category Com pPrep)))

w here in is d efined a s a preposition an d ln the a s a com p oun d preposition.

The Feature Structures
In the cu rren t sy ste m w e have ad opted a d a ta stru ctu re th at ca n be at the sa m e tim e efficien t to

be p ro cessed , h o m o g e n e o u s and reu sa b le in variou s p la ces o f the sy stem . T h is is w hy the sa m e d ata

s tru c tu r es are p ro cessed at d ifferent t im es in d ifferent p laces o f the sy stem . For in sta n ce , th e lex ica l
In form ation lo o k ed -u p from th e d ictio n a ry Is stored at p a rsin g tim e ln th e term in a l n o d e s o f the

p a rsin g stru c tu r e the p arser b u ild s. T h u s, it is o b v io u s to give th e sa m e form at to th e d a ta in the

d iction ary an d in th e n o d es o f the p arsin g stru ctu re . F eature stru c tu r es , in th eir c la ss ic a l defin ition

a s s e t s o f a ttr ib u te-v a lu e pairs, are a sso c ia te d w ith ea c h in terp retation o f a n y form in the d iction ary

an d o f a n y n od e ln th e p a rsin g stru c tu r e . F S s are treated a s trees , an d it is p o ss ib le to m an age

str u c tu r e s from th e b o ttom o f the p a rsin g stru c tu r e by m ea n s o f a sp ec ific p ack age o f fu n ctio n s,

following form at:

-353- Intemational Parsing Workshop '89

ca lled F ea tu re S tr u c tu re H an d ler (FSH). a llow in g th e m ain o p era tio n s on F Ss a s crea tion ,
m odification , d eletion . C urrently, th is package con ta in s 12 m ain op eration s that can be applied on
F Ss. O ver th is s e t o f low level op eraU on s on F Ss we have d evelop ed a se t o f graph fu n ctio n s
a ccessib le by the user, w hich act on the FSs assoc ia ted with the nodes of the parsing structure.

Rules with Non-Operative Productions [NOP Rules)
W hen n on-operative p rod uction s are defined in som e rule they do not build a n ew node, b ut can

perform variou s a c tio n s, su c h a s activatin g other ru les, or a lterin g se m a n tic stru ctu res. There are

three types o f non-operative p roductions d epending on the NOP category u sed in the left-hand side:
{ <NOP> I <NOP-ASE> I <NOP-SE> } <- w L ... wn

If <NOP> is u sed th en on ly the syn tactic rule is applied and the sem a n tic rule is never considered .
O nly th e sem a n tic rule can be applied and the syn tactic one is ignored by u s in g the category <NOP-
SE>. Finally, b oth the ru les are applied by u sin g the category <NOP-ASE>. As w e sh a ll see in Section
4. th is kind o f p rod uction can be u sefu l in CS recogn ition , providing an a lternative w ay for defining

CS ru les. M oreover, NOP ru les are a lso u se fu l w h en it is n ece ssa r y to control the activation o f real
ru les, w ith the objective o f lim iting the in d eterm in ism of the parser.

3. Overview of the SAIL Parsing System
In th is section w e d escribe briefly the parser, the d ata stru ctu res it h an d les, and how it works.

S tartin g from the FSH core p ackage, we have adopted th is d a ta stru ctu re w herever p o ssib le Inside,
the parsin g sy stem as the figure below sh ow s. The parser b u ild s a parsing stru ctu re u nd er the form o f

a graph, w here each n ode co n ta in s two k in d s o f inform ation: an in tern a l stru ctu re o f d a ta u sed by

th e p a rsin g a lgorith m on ly , an d the lin g u istic (sy n ta ctic an d sem a n tic) in form ation s e t b y th e

gram m ar ru les. B oth th ese stru ctu res are represented in a u n iq u e FS m anaged by the parser and the

ru n n in g gram m ar by u s in g the u nd erly in g FSH fu n ction s. A ny sou rce gram m ar m u st have a se t o f

ru les an d a se t o f d iction ary form s w ritten in the form ats d escrib ed previously . G ram m ar ru les can

m ake u se o f two s e ts o f fu n ction s: the graph fu n ctio n s, w h ich u se the FSH p ack age to u p d ate the

lin g u is t ic s tr u c tu r e s o f the graph , an d th e p arser m a n a g e m e n t fu n c tio n s to h a n d le the variou s

p arsin g too ls and m ec h a n ism s (see S ection 4.).

The p arser is a C F -b ased on e, orig inally derived from the ICA (Im m ediate C o n stitu e n t A nalysis)

algorith m d escr ib ed in /G r ish m a n 1 9 7 6 / . It is a b o tto m -u p sh ift-re d u ce a c tio n -b a se d a lgorithm ,

perform in g le ft-to -r ig h t s c a n n in g a n d red u ction in a n im m ed ia te c o n s t itu e n t a n a ly s is . T he d a ta

stru ctu re it w ork s on is a graph w here all p ossib le p arse-trees are con n ected . T he graph is com p osed

-354- Intemational Parsing Workshop '89

o f n o d es that can be term inal or n on -term in al. T erm inal n od es are b u ilt in corresp on d en ce to a

sc a n n ed form, w h ereas n on-term in als are built w henever a rule (other than a NOP rule) is applied .
T he p arsin g sy stem w as d esign ed to view the gram m ar ru les a s p ro cesses to be execu ted , and the

parser a s the p rocessor. At an y m om ent, the parser, following a priority sch em a, h an d les a q u eu e of
p ro ce sse s aw aitin g execu tion . In fact w e can have different types of ru les w ith different priorities of

ex ecu tio n . So it is p ossib le that a rule, w h en applied , se n d s a requ est for execu tion o f a n o th er rule

in sertin g the called rule in the appropriate p osition in the q ueue. After a sc a n n in g or a reduction , the

parser gets a se t o f active ru les w hich are the applicab le ru les at that m om ent. W hen the parser takes

su c h a se t - called a p acket - for every rule in the p ack et3 it b u ild s a p rocess d escrip tor and in serts

it in the q u eu e. We call su c h a p rocess d escrip tor an ap plication sp ecification (AS), w hile the q u eu e is

ca lled the ap p lica tion sp ec ifica tion lis t (ASL). A Ss are com p osed o f all the n e c e ssa r y in form ation

u sefu l to execu te the p rocess on the proper context. A Ss in a given ASL are ordered d ep en d in g upon

the ru le involved in an AS. In general, if stan d ard active ru les have to be execu ted . ASL is h and led

w ith a LIFO policy . T he p arser perform s all p o ss ib le red u ctio n s b u ild in g m ore th a n on e n ode if

n ecessa ry , ex tractin g one AS at a tim e before an a lyzin g the n ext on e. After an AS is ex tracted from

ASL the p arser se a rc h e s a m atch for the right-h an d sid e on th e graph. The m atch in g , if su cc ess fu l,
retu rn s on e or m ore s e ts o f n od es, ca lled redu ction se ts . For every redu ction se t. the ap p lica tion of

the ru le is tried. In th is w ay w e can co n n ect together all p o ssib le p arses for a se n te n c e in a u n iq ue

stru ctu re . The com p lete algorithm o f the parser is therefore:
Until the end o f the sentence is reached:

Scan a form:
build a new terminal node for the scanned form;
For everu interpretation o f the node:

get the packet o f rules corresponding to its category and for every rule tn
the packet insert in ASL the AS;

For everu AS in ASL:
get the first AS from the top o f ASL;
get the rule specified in the AS, it is the current rule, and access the node
specified in the AS. it is the current node:
starting from the current node perform the match on the graph using the
production o f the current rule:
if at least one reduction set is found then:

For everu reduction set:
if the tests o f the current rule hold then:

execute the actions o f the current rule:
if a new non-termtncd node is built then:

get the packet o f rules corresponding to its category and
for every rule in the p a ck et insert in ASL the AS;

else:
apply the recovery actions o f the current rule;

else:
apply the . recovery actions o f the current rule;

3A packet Is a set of active rules. Any grammar Is partitioned as a set of packets such that, for
every category cat of the grammar, the packet P(cat) is the set of those rules that have cat as the right­
most category in their right-hand side. This partitioning is useful for getting the rules applicable at a
given moment and it Is used by the matcher of the productions.

-355- Intemationai Parsing Workshop '89

4. Parsing Tools
Rule Disabling/ Enabling Operations

A s sta ted previously, ru les can a ssu m e two different s ta te s , active or inactive. The rule's sta te is
d eterm in ed at the m om ent o f rule definition. In addition, it is p ossib le to ch an ge the sta te during ‘.he
p arse by u sin g two sp ecific fun ction s. In the application o f a rule, o th ers m ay be ch an ged from active

to in active , perform ing a d isab lin g op eration , or ch an ged from in active to active, perform ing an

en ab lin g operation . It is p ossib le to ch an ge the sta te of one or m ore ru les at a tim e and the ru les can

a lso perform se lf-en ab lin g and se lf-d isab lin g operation s. C h an ges o f s ta te effected during a parsing

are n ot p erm an en t. At the en d o f each p arsin g the ru les are recon figured as in d icated in their
orig in a l d efin itio n .

Dictionary-Driven and Rule-Driven Activation
The m ech a n ism o f activation o f ru les can be u sed in our parsing sy stem in order to im prove the

d eterm in ism o f the parser. We rem ark that the parsing algorithm is b asica lly a b ottom -u p parallel
n on -determ in istic parser, so that partition ing a gram m ar as a se t o f active an d Inactive ru les, and

driving their ap p lica tion by an activation m ech an ism , w e can ach ieve a great control on the parser

d irectly from th e gram m ar, w ith o u t em b ed d in g sp ec ific con tro l s tr a te g ie s w ith in th e p arsin g

a lg o r ith m .
A ctivation o f ru les ca n be effected d uring the two m ain p h a se s of the parser activity: sc a n n in g an d

red u ction . D iction ary-d riven activa tion ca n be perform ed w h en the p arser s c a n s a form d efin ed

w ith an in terp reta tion like the following:
(set-int

category <category>
isemval <semval>
features (((queue) (rule-name+))))

The sp ec ia l feature queue a d v ises the parser o f a preference for sp ec ific ru les to apply w h en the form

is sc a n n ed . T h is preference is In depend en t o f the sta te o f the ru les sp ecified an d the A Ss are q u eu ed

in ASL w ith ou t con sid er in g the p acket corresp ond ing to category being sca n n ed . A s a co n seq u en ce of

th is m e c h a n ism o f activa tion , the fifth an d s ix th line o f the p arser a lgorithm m u st be ch an ged a s

follow s: Q£± the packet o f rules corresponding to Us category and for every rule in the packet insert
in ASL the AS unless the interpretation requires rule activation by the special feature queue. In this
case insert in ASL the AS o f the rules supplied as values o f the special feature queue.
R ule-driven activation , at level o f red u ction task , ca n be accom p lish ed b y u s in g a devoted fun ction ,
ca lled ru le-actiya tion . w h o se a rg u m en ts are the n a m e s o f th e ru les to activate, an d p rovid es for

q u e u in g A S s in ASL for every n am e sp ecified . In b oth the typ es o f activation , the activated ru les are

ap p lied Ju st o n ce im m ed ia te ly after the sc a n n in g or the term in ation o f the activatin g rule. T he sta te

o f th e activa ted ru le is n o t m odified an d activation o f m ore th an on e ru le a t a tim e is p o ss ib le , a s

w ell a s n ested activa tion s.

Context-Sensitive Rules
CS ru les w ere n ot d irectly Im plem ented in ou r p arsin g sy stem , b u t th ey w ere availab le b y n atu re

(in ad d ition to th e w ay cu rren tly defined in S ection 2.) th a n k s to th e ru le-activa tion m ec h a n ism an d

NOP ru les . T h e com p lete ap p lica tion for a CS p rod uction aAJ3<— cqffi is m ade in two ste p s . T he first

on e co n cern s a con tex t d eterm in ation , th e con tex t b eing rep resen ted by the right-h an d sid e o f the CS

p rod u ction . (r $. T he se co n d on e is ju s t an ap p lica tion o f the CF p rod u ction A<- y, if and on ly if the

first s te p h a s d eterm in ed th e co n tex t w h ere th e CF p rod u ction is a p p lica b le . T h is ca n b e ea s ily

-356- Intemational Parsing Workshop '89

a cco m p lish ed by d efin ing a NOP rule for the con tex t d eterm in ation as first step . A fterw ards, th is

NOP rule m u st activate the CF rule a s secon d step , building the node A in the proper context.

Message Passing
T he m e ssa g e p a ss in g m e c h a n ism is a p a rs in g too l th a t m a k e s p o ss ib le a sy n c h r o n o u s

o p era tio n s on lin g u istic data . T h is w ay o f p ro cess in g im p lies the co -op eration b etw een two ru les

w h ich in teract w ith each other exch an g in g som e inform ation by m ean s o f a sen d in g an d a receiving

ta sk perform ed at the two in d ep en d en t tim es o f ru le ap p lication . The sen d in g ta sk is perform ed by

the se n d in g ru le at a Ume T^, sen d in g a m essa g e for an oth er rule. This latter rule m u st perform the

receiving ta sk to receive the m essa g e at its ex ecu tio n tim e T2 . (T2 >T i). S in ce the relevant lin gu istic

d a ta the p arser w ork s on are stored a s F S s, the m e ssa g e s are F Ss. We have im p lem en ted two

a p p ro a ch es o f m essa g e p a ssin g . The first on e m a k es u se o f a g lobal FS w here a n y rule can store

global fea tu res. A ny rule during a p arse can a c c e s s th is global FS and w h atever feature va lu e. This

type o f FS is the global cou n terp art o f the FS stored in every node o f the graph stru cture: the FS o f a

n ode is local and can on ly be a c c e sse d b y th e n o d es linked to its n ode by a d irect con n ecU on link.
Therefore,- there b eing no right o f privacy on featu res in the global FS, th is particu lar stru ctu re m u st

be a cc essed w ith care by the ru les s in ce it can be a p lace o f conflicts am ong them .
The se co n d ap proach provides a stru ctu re that p reserves the right o f privacy o f the m essa g es . A lso in

th is c a se the m e ssa g e s are FSs, and are stored in a sort o f m ailbox, called m essage-b ox . A ny rule can

refer to the m essa g e -b o x to store a m essa g e , sp ec ify in g the d estin a tio n rule. O n the o ther sid e, an y

ru le ca n refer to the m e ssa g e -b o x to get m e ssa g e s , an d on ly th e m e ssa g e s a d d ressed to it w ill be

availab le. Let u s con sid er the two c a s e s sh ow n in the follow ing partial p arse-trees.

We su p p o se som e inform ation , created or ra ised in the node SN from the term inal sid e b y the rule Rs.
m u st b e u sed in th e n od e RN b u ilt b y th e ru le Rr. (1) sh o w s th a t th e m e ssa g e -b o x cou ld be u sed

b y p a ssin g the n o d es N 1.N 2. T h is is u se fu l w h en (som e) d a ta from SN are n ot relevant for p rocessin g

in N I an d N 2. g a in in g th e ad v a n ta g e th a t n o m em ory sp a c e is w a sted u s in g th e n o d e s N 1.N 2 for

ra isin g th e d a ta from SN to RN. On the o th er sid e , (2) sh o w s a ca se w here n o p ath e x is ts b etw een SN

an d RN. T herefore, th e on ly co n n ectio n b etw een the n o d es can be a com m on stru ctu re a c c e s se d b y

th em . T he u s e o f th e m e ssa g e -b o x is very e a sy s in c e all th e w ork is d o n e b y two fu n ctio n s . T he

fu n ctio n •en d m *g m a k es a cop y o f a s u b s e t o f th e F S s o f the n o d es it can a c c e s s (i.e ., th e n o d es

co rresp o n d in g to the left- an d righ t-h an d s id e o f th e production) an d sto re s it in th e m essa g e -b o x .

The fu n ction recelvem sg gets a m essa g e u n d er the form o f F S an d stores it in the n od e corresponding

to the le ft-h an d sid e o f th e p rod uction .

All th e fu n ction s: sendm sg, receivem *g, and th o se for h an d lin g the global FS are im plem en ted u sin g

the FSH p ackage.

-357- Intemational Parsing Workshop '89

The exam p le sh o w s a fragm ent o f a gram m ar w h ose aim is to drive the parser accord ing to a
sp ecific stra tegy o f recogn ition ach iev ing as resu lt an optim ized parsing stru cture, i.e.. the m inim um
n u m b er o f n od es strictly n ecessa ry is built.
The recogn ition o f in defin itely long c la u se s o f the form X and X and ... X could be ach ieved by u sing

the p roductions: AND <— NP "and NP. AND <— AND *and NP. w here, for in stan ce. X can be an NP and
•and is the category o f and. T h ese p rod uction s produce a parsing stru ctu re of the kind sh ow n below.
B eing k the n um ber o f con ju n ction s, the num ber of the n od es N(k) b uilt by th ese two p rod uction s is

given by: N(k) = TN(k) + NTN(k), TN(k) = 2k + 1. NTN(k) = (l/2)k (k + 1).

AND

5. An Example: SAILing X and X and ... X

NP "and NP *and NP *and NP *and NP

TN(k) d eter m in es th e n u m b er o f the term in al n od es, and NTN(k) the n u m b er o f th e n on -term in a l
n od es. For the graph above N(4) = 19, s in ce TN(4) = 9 and NTN(4) = 10. T h is kind o f p arsing stru ctu re

is n ot op tim ized , b e s id e s N(k) is a q u ad ratic fu n ction o f k. In the figure above w e have draw n in

boldface lin es the p arsin g stru ctu re w ith the m in im u m n u m b er o f n o d es w e w ant. For th is optim ized

stru ctu re NTN(k) is a lin ear fu n ction o f k: NTN(k) = k. Therefore, th e form ula for the optim ized case

N0 (k) is: N0 (k) = 3 k + 1.
O ur gram m ar fragm en t is b a sed on a w atch -ru le , ca lled C h eck -an d -ru le , th a t c h e c k s w h eth er the

p arser h a s a lread y b u ilt a node o f category AND follow ed b y ’an d NP. T h is ru le h a s th e production:

<NOP> <- AND 'a n d NP. an d if its right-h an d sid e h a s no m atch it m ea n s th a t the first n ode AND

h a s to be b uilt. C h eck -an d -ru le h a s the follow ing defin ition .

(defrule
:gnam e m y j r a m m a r
:m a m e C h eck -an d -ru le

:p rod u ction (<NOP> (AND "and NP))

:sta tu s a c tiv e
:sy n -a c t lo n s (rule-activation '(M ak e-and -ru le NP))
:sy n -re co v e ry -a c tio n s (rule-activation '(M ak e-flrst-and -ru le NP)))

T h e s y n -a c t io n s are ap p lied if th e r igh t-h an d s id e h a s a m a tch an d th e ru le M ak e-an d -ru le is

a ctivated to b u ild a n on -term in a l n od e AND. The sy n -reco v ery -a ctio n s are ap plied w h en th e parser

h a s to b u ild for th e first tim e a n ode AND. an d the rule M ak e-first-an d -ru le is activated . T h ese two

activated ru les m u st be in active s in ce the w atch -ru le h a s the w ork o f activatin g them .

(defrule
:gnam e m y _ g ra m m a r
:m a m e M a k e-flr s t-a n d -r u le

p r o d u c tio n (AND (NP *and NP))

:sta tu s in active)

-358- International Parsing Workshop '89

(defrule
:gnam e m y .g r a m m a r
:m a m e M ak e-an d -ru le
:produ ction (AND (AND ’ and NP))
:statu s in active)

6. Final Remark*
S om e rem arks ab ou t the p arsin g sy stem an d the parsin g too ls d escrib ed so far are Ln order. A

first p o in t co n cern s the priority a ssig n ed to ru les. It is clear th at w e can have three m ain k in d s o f

rules: activated ru les, NOP ru les and stan d ard ru les. T h is Is a lso their d ecrea sin g priority order of

ex ecu tio n : a c tiv a ted ru les h ave th e h ig h e s t priority s in c e th ey are a n a tu ra l co m p letio n an d

ex te n sio n o f the activatin g rule: NOP ru les can aflect stru ctu res u sed by stan d ard (non-NOP) ru les in

their p ack et, therefore th ey n eed to be properly sc h e d u led w ith a h igher priority th an the o th ers.
Furtherm ore, th is c la ssifica tion sh o w s how CGUs are n ot a m ere p lace o f a declarative d escrip tion of

a gram m ar, b u t th ey are a lso a p lace w here a p rocedu ral d escr ip tion o f a c tio n s co n cern in g the

p arsin g p ro cess can be given. T h is Is a pow erful w ay, w h en co n d itio n s are d etec ted , o f a lterin g the

n a tu ra l b eh a v io u r o f the p arser th a t fo llow s a p ara lle l b o tto m -u p , n o n -d e te r m in is t ic stra tegy .
A ction s taken follow th e d etection o f som e s itu a tio n in th e p arsing stru ctu res, e .g ., th e activation o f

a ru le in stea d o f a n oth er w h en a m issp e llin g Is found ln the in p u t, and a p arsin g p ro ce ss ca n be

driven by a gram m ar w here on ly the n ece ssa r y ru les for co n tex t d etec tion are s e t active an d th o se

d evoted to b u ild s tr u c tu r e s in active . T h is w ay o f se tt in g con tro l o f th e p arser p la ces th is p arsin g

sy stem ln the category o f s itu a tlo n -a ctio n p arsers (/W lnograd 1 9 8 3 /) .
U n fortu n ately th is paper ca n n o t be a p lace for a w ide d escrip tion o f exam p les o f gram m ars u s in g the

p arsin g to o ls o f SAIL. S om e ru n n in g ex a m p les, a s w ell a s th a t d escr ib ed above, ca n b e foun d ln

/M a rin o 1 9 8 8 a / . M oreover, som e Ill-form ed Input c a s e s h ave b een faced, e .g ., le x ic a l/sy n ta c tic 111-
fo rm ed n ess, co n stra in t v io la tion , co n st itu e n t sh u fflin g , m iss in g c o n st itu e n ts , in /F errari 1 9 8 9 / . A

w id e report o f th e w ork d evelop ed in th e fram ew ork o f th e E u rop ean ESPRIT Project P 5 2 7 CFID

u sin g th e SAIL Interfacing S y stem is In /D eliv era b le 9 / w here, am ong o th er th in gs, the d escrip tion

o f an E n glish gram m ar an d se m a n tic s Is sh ow n (/M ac A ogain e t al. 1 9 8 9 /) .

The a u th o r Is th an k fu l to G iacom o Ferrari w h o m ade p ossib le th is w o rk

References
/A h o et al. 1 9 8 3 / A ho. A ., V ., H opcroft, J . , E. an d U llm an , J . , D. 1 9 8 3 . Data S tru ctu res and

Algorithm s. A dd ison-W esley , R eading, M ass.

/B u n t a t al. 1 9 8 7 / B u n t, H.. T h esin gh , J . an d van der S loot. K. 1987 . D isc o n tin u o u s C o n stitu e n ts In

Trees, Rules, and Parsing. Proceedings of the 3rd Conference of the European Chapter
of the ACL. C openhagen. Denm ark, pp. 2 0 3 -2 1 0 .

/D e liv era b le 9 / Deliverable 9: Im plem entation o f Dialogue System . 1989 . Ref. C F ID .D 9.2 . ESPRIT

Project 5 2 7 (CFID).
/F errar i 1 9 8 9 / Ferrari. G. 1989 . The T reatm ent o f Ill-Formed Input w ith in the Frame o f SAIL.

W orking Paper. ESPRIT Project 5 2 7 (CFID).

/G r is h m a n 1 9 7 6 / G rish m a n , R. 1 9 7 6 . A S u rv ey o f S y n ta c t ic A n a ly s is P ro ced u res for N atu ra l
Language. American Journal of Computational Linguistics. M icrofiche 47 , pp. 2 -96 .

/K n u th 1 9 7 3 / Knuth. D., E. 1973. The Art of Computer Programming. Vol.m: Sorting and Searching.
A dd ison -W esley , R eading, M ass.

/M a c A ogain e t a l. 1 9 8 9 / M ac A ogain , E. an d H arper, J . 1 9 8 9 . S e m a n tic s an d G ram m ar. In

-359- Intemational Parsinq Workshop '89

/M arin o 1 9 8 8 a / M arino. M. 1988 . The SAIL Interfacing System : A Fram ew ork for the D evelopm ent
o f N atural Language G ram m ars and A pp lications. T echnical Report DL-NLP-88-1.
D ep artm ent of L ingu istics. U niversity of Pisa.

/M a r in o 1 9 8 8 b / M arino. M. 1 9 8 8 . A P ro c ess -A ctiv a tio n B a sed P a rsin g A lgorith m for the

D evelop m en t o f N atural L anguage G ram m ars. Proceedings of 12th International
Conference on Computational Linguistic*. B u d ap est Hungary, pp. 390-395 .

/M arin o 1 9 8 9 / M arino, M. 1989 . SAIL: A Prototype E n vironm en t for W riting NL A pp lications. In
/D eliverab le 9 / .

/WLnograd 1 9 8 3 / W lnograd, T. 1983 . Language as a Cognitive Process. Vol. 1: Syntax. A ddlson-

W esley. Reading, M ass.

/D e liv e r a b le 9 / .

-360- Intemational Parsing Workshop '89

An Efficient Method for Parsing Erroneous Input

Stuart Malone and Sue Felshin
Athena Language Learning Project

Massachusetts Institute of Technology

Copyright © 1989 Massachusetts Institute of Technology
All Rights Reserved

The Athena Language Learning Project receives major funding from the Annenberg/Corporation
for Public Broadcasting Project.

A bstract

In a natural language processing system designed for language learners, it is necessary to accept
both well-formed and ill-formed input. This paper describes a method of maintaining parsing
efficiency for well-formed sentences while still accepting a wide range of ill-formed input.

1. Introduction

The Athena Language Learning Project is developing advanced educational software for foreign
language learners. One of the tools we are developing is a natural language parser for use by
first through fourth semester students of various languages. This parser must be able to recover
from and correct a wide range of morphological, syntactic, and semantic errors, and yet still run
in real time. We have designed a system where all of these errors can be handled by the parser
uniformly and efficiently.

2. Description of the Parser

Our parser is a nondeterministic LA LR(l) parser, written in Common Lisp, similar to that of
Tomita [1] but differing in several significant ways.

• First, we associate a reduction function with each rule in the grammar. Whenever
a reduce action is performed by the parser it calls the corresponding reduction func­
tion, which constructs the new node of the parse tree from the nodes on the right
side of the production. As it does this, it may perform various tests on its input and
either mark errors on the new node or, rarely, return NIL to fail. This is similar to
the system of relaxation of predicates used by Weischedel and Black [2] and others;
we mark errors where they allowed predicates to be relaxed, and return NIL from
reductions where their predicates failed.

-361- International Parsing Workshop '89

• Second, in order to properly handle linguistic phenomena like movement and bind­
ing, we needed to make the parser context sensitive. We did this by associating
context sensitive information about a parse with each parse stack. This information
is passed in to each reduction function, which examines and modifies the infor­
mation as appropriate in order to build the new node.

• Third, we did not want the parser to return every possible parse of the student’s
input, given the relaxed rules of our grammar. A strict grammar for a natural lan­
guage already has to consider many possible parses of the input— allowing er­
roneous input increases the problem by an order of magnitude or more. Computing
all these parses would be a waste of time, and would make the system unusably
slow. Instead, we only want the parser to return the “most likely” parses.

• Fourth, we decided that it was essential for our parser to perform semantic analysis
at the same time as syntactic analysis in order to reduce ambiguity. Even though
syntactic errors are common for language learners, semantic errors are more un­
usual. If parsing can be guided by semantic constraints as well as syntactic ones,
then we can expect to come up with the better interpretations of the student’s input
with less work.

Adding context sensitive information to each parse stack had the significant disadvantage that it
became impractical to use some of Tomita’s more sophisticated techniques such as graph-
structured stacks and local ambiguity packing.* However, abandoning these techniques allowed
us to take advantage of a different one: a best-first searching strategy. Creating graph-structured
stacks requires the use o f breadth-first search in order to keep all of the parse stacks
synchronized on the input. Without graph-structured stacks, it becomes possible to advance dif­
ferent parses o f a sentence at different rates, forging ahead with parses that look promising, and
postponing work on less likely ones.

3. M arking Errors

In our parser, every word and every node in the parse tree contains an error-count which is in­
itially zero. Whenever an error is detected, our code increases the error-count of the word or
node and attempts to generate a plausible corrected node.

Four kinds of errors are detected by the lexical analysis pass o f the parser, and are marked on
individual words before they are parsed.

errors in the lexicon Some errors are so common that we have anticipated them by entering
them direcdy into the lexicon. For instance, use of the wrong gender
ending on a noun in Spanish, e.g., “abriga” for “abrigo” {"overcoat”).
Lexical lookup returns a word marked with an error.

spelling errors When regular lexical lookup fails, we run a spelling checker to search
for known words with similar spellings. Each misspelled word is
marked with an error.

•This was because, in order for rwo parse stacks to be merged, the context sensitive information associated with
each stack had to be compatible. This situation was so rare that the bookkeeping involved wasted more time than
was saved.

-362* International Parsing Workshop '89

blocked word errors Irregular forms of words are stored in the lexicon as subentries of their
regular forms. After lexical lookup, a second pass checks the irregular
subentries of the returned word to make sure none of them should have
been used instead. If it determines that one should have, it marks the
word with an error before returning it. For sample, the Spanish word
“tenio” in place of “tuvo”, or the English word “haved” in place of
“had”.

surface filter errors The surface filter looks at the stream of words returned by lexical
lookup and performs arbitrary surface operations, such as splitting
“compound” words into their components, combining single meanings
given by more than one word, and insuring that words are properly con­
tracted. As it does this, it marks any errors it finds on the appropriate
words. In English, for instance, a surface filter checks for correct
“a/an” alternation as in “a dog” vs. “an apple”.

It is important to understand that the lexical analysis pass may return several different interpreta­
tions for a single word, some of which may have errors while others may not. For instance, in
English the word “seed” could either be the correct singular form of the noun “seed” or the
incorrect (blocked) past tense of the verb “to see”.

Three other kinds of errors are detected during parsing and are marked on nodes by the reduction
functions that create those nodes.

structural errors

agreement errors

semantic errors

The grammar productions anticipate certain structural errors, similar to
the way that the lexicon anticipates certain lexical ones. For instance,
Spanish detects improper use of preposition-like words, e.g., “encima la
mesa” instead of “encima de la mesa” {"on (top of) the table”).

The reduction functions mark errors as appropriate for any context de­
pendent and/or independent syntactic requirements which are violated
by the current constituents. In English, the noun phrase “a books”
would be marked with an agreement error and assumed to be plural.

The reduction functions also access the case frame interpreter, which
builds semantic structure and marks any necessary errors. Even though
the semantic structures are separate from the syntactic nodes of the
parse tree, semantic errors are marked on the nodes of the parse tree so
that they will be visible to the parser.2

4. How Parsing Proceeds

Now that we have explained how we mark errors on the words and nodes of a parse tree, we can
explain how these errors are used by the parser to direct parsing. At this point it is helpful to
introduce a term for the information that is stored about a partially-completed parse. We call this
infomation the parse state, or pstate for short. A pstate contains the following information:

2The semantic structures built by the case frame interpreter introduce a new level o f ambiguity— each represents
any number o f possible semantic interpretations of the constituent. The error-count of a case frame is the error-
count o f its best interpretation.

363- International Parsing Workshop '89

• The traditional LALR parse stack of alternating nodes and state numbers.

• The current word of the input, which is the cu nt look-ahead token for the LALR
parser and will be the next word shifted onto the parse stack.

• An error-count, which is used to determine which pstate is “best” in the best-first
search for a successful parse.

• Context-sensitive infomation which varies from language to language.

The most interesting pan of a pstate for this discussion is the error-count, which is used to direct
the best-first parsing. The error-count of a pstate is the sum of the error-counts of the noaes in
its parse stack, plus the error-count of its current word.

The parser keeps a sorted list of pstates. Pstates with the same error-count are ordered ar­
bitrarily. Each step through the parser pops the first (best) pstate off of this list and looks up the
next actions for the pstate in the LALR tables. For each action, the parser does the following:

• If the action is a shift action, it shifts the current word onto the parse stack. A new
pstate is created for each possible following word, and the following words are
made the current words of the new pstates. Each new current word’s error-count is
added to the error-count for its pstate.

• If the action is a reduce action, then the arguments to the reduction, which are the
right side constituents, are popped off the parse stack and passed to the reduction. If
the reduction constructs a result node, a new pstate is created, the node is pushed
onto its parse stack, and the node’s error count is added to the pstate’s error-count.

Each pstate created during the above procedure is inserted in its proper position in the list of
pstates, and the procedure is repeated with the new best pstate. This continues until either the list
of pstates becomes empty, in which case parsing has failed, or enough pstates parse to comple­
tion that the remaining (worse) pstates are simply thrown away. To determine when to throw
away pstates, we maintain a range which we call the style threshold. Whenever the error-count
of a pstate becomes larger than the error-count of the best successful parse plus the style
threshold, that pstate is removed from the list of pstates and thrown away. However, no pstates
are thrown away until there is a successful parse.

4.1. An Exam ple

As an example o f how this system works, w e’ll describe the parsing o f the sentence “Dije donde
llovi6,” which is incorrect Spanish for “(I) said where (it) rained.” “Donde” with no accent is a
subordinating conjunction, as in “I’ll go where you go.” “D6nde”, with an accent, is a pro-PP
introducing a complement clause, as in “I said where it rained.” Unsurprisingly, students of
Spanish use the wrong form quite often. Lexical analysis of “donde” in our system returns two
words, the subordinating conjunction and the pro-PP, the latter marked with an error-count of
500 for the lack of an accent.

The parser starts with a single pstate, call it A, where the current word is “dije”, the first word in
the input sentence. The grammar first pushes various empty nodes onto the parse stack, includ­
ing an empty COMP and a pro subject, and eventually shifts “dije”. Since the next word,
“donde”, is ambiguous, the parser must now split this pstate into two new pstates, B and
C. Pstate B receives the subordinating conjunction as its current word, and has its error-count

-364- Intemational Parsing Workshop '89

increased by 0. Pstate C receives the pro-PP, and has its error-count increased by 500. Process­
ing of pstate C is then postponed because it’s not the best available pstate.

Parsing continues with pstate B. The subordinate clause “donde llovio” is completed and at­
tached to the S node dominating “dije”. Now the sentence is ready to be finished off. But
finishing it off precludes the possibility of more arguments being parsed, and the verb “dije”,
which requires a direct object or complement clause, has received neither. The case frame inter­
preter marks an error of 600 for a missing argument, and when this is added to pstate B, it is no
longer the best pstate. Thus pstate B is now postponed in favor of pstate C.

Parsing of pstate C now resumes at the point it was left off, and by parsing “donde llovio” as a
complement clause, continues to a successful completion. If the style threshold is less than 100,
parsing will stop, and pstate C, with an error-count of 500, will be returned. Otherwise, parsing
of pstate B will resume until it is successfully completed with an error-count of 600, and both
pstates B and C will be returned.

5. Anticipated Errors

Because the error-count of a pstate determines whether or not the pstate should be actively
pursued, postponed, or thrown away, it is vitally important for error-counts to be accumulated as
soon as possible.

Take, for example, the sentence “You drink too much beer.” This sentence has two interpreta­
tions: the obvious one, and an erroneous one where a case-blocking modifier has been placed
between the verb and the direct object (this reading should be “You drink beer too much”). The
error in the second interpretation is in the placement of the AD VP “too much” within the V P—
there is nothing wrong with the ADVP itself. Conceptually, therefore, the error should be
marked on the VP. But before this VP can be built, the erroneous modifier and the direct object
must be parsed; this will waste a lot of work before this reading’s pstate is postponed in favor of
the first reading, and eventually discarded unfinished due to the style threshold. Alternatively,
we can build a modifier node around the ADVP node and mark the error there, saving the time it
takes to parse the direct object Or best of all, before starting to build the ADVP in the first
place, we can build an empty node and mark the error on it. Thus this pstate will be postponed
as soon as the empty error node is created— before either the ADVP or the direct object have
been parsed.

We call these errors, which are marked on empty nodes before the erroneous input, anticipated
errors. In many ways, anticipated errors are the most important category of error, because they
have the greatest influence on the speed of parsing. Anticipated errors allow us to postpone or
discard a pstate before we have wasted a great deal of time on it.

We handle many structural errors by writing explicit productions to parse ill-formed input, and
these errors can always be anticipated. For instance, in our system we can write a rule such as:

VP => V3AR MOD,BAD-MOD? OBJ

This rule says: “To parse a VP, parse a VBAR, optionally followed by a MOD marked with the
BAD-M OD error, followed by an OBJ.” This is automatically expanded by our LALR table gen­
erator into:

-365* International Parsing Workshop '89

VP => VBAR MOD,BAD-MOD? OBJ

MOD,BAD-MOD? =>
MOD,BAD-MOD? => MOD,BAD-MOD

MOD,BAD-MOD => BAD-MOD MOD

BAD-MOD => (create an empty error node)

These rules will mark the partially completed parse with an error as soon as the parser decides
that there is a MOD after the VBAR, before the MOD, OBJ, or VP has been created. Since
parsing is best first, this partial parse will be postponed until it is the best parse available—
which may never happen. However, if the parse does become the best available, the work done
to construct the VBAR will not have been wasted. Processing of this partial parse will continue
right where it left off.

Some structural errors are too complex to anticipate through the use of the LALR table
generator’s error facililty. For example, in Spanish, infinitive sbar complement clauses must be
introduced with one of two different complementizers, “a” or “de”; or with no complementizer at
all, depending on the higher verb. English speakers, who are accustomed to always using the
particle “to”, frequently choose the wrong complementizer in Spanish. Since all three structures
(either complementizer or none at all) are potentially correct in Spanish, there is no place in any
production to mark the error.

We can still anticipate the error, however, by having the reduction function called when the com­
plementizer is reduced look at the higher verb. We can find the higher verb using the context-
sensitive information that is kept with each pstate. We call the case frame interpreter to deter­
mine whether the higher verb allows an SBAR complement clause, and if so, whether the verb
allows the given complementizer. We push a small error if the wrong complementizer was used
and a very large error if no clause is allowed at all.

6. Conclusions

We have written grammars for Spanish, English, French, German, Russian, and Classical Greek.
The most comprehensive o f these is for Spanish, where the grammar contains over five hundred
context-free productions.

The following data demonstrates the time saved by using best-first parsing and by trimming un­
likely pstates through use o f the style threshold. Time is measured by the total number o f reduc­
tions performed during parsing the input, counting both successful and trimmed pstates. We
generally set the style threshold at 30 to allow for slight variations in interpretations o f the input.
Setting the style threshold to a very large number (such as 10,000) approximates what would
happen if an equivalent grammar were run using Tomita’s parser.

-366- International Parsing Workshop '89

Dije donde llovio.

“(I) said where (it) rained.”

Style threshold # of parses # of reductions

0 1 680

30 1 680

100 2 1,010
10,000 19 3,549

Hace buen tiempo en BogotA.

“(It) makes good weather in Bogota.”

Style threshold # of parses # of reductions

30 1 831

10,000 22 7499

Acknowledgements

We wish to thank Professor Robert C. Berwick and Dr. Janet H. Murray of MIT for supporting
our research and convincing us to write this paper.

-367- Intemational Parsing Workshop '89

References

Masaru Tomita-
Efficient Parsing for Natural Language.
Kluwer Academic Publishers, Boston, 1986.

Ralph M. Weischedel and John E. Black.
Responding Intelligendv to Unparsable Inputs.
American Journal o f Computation Linguistics 6 (2):97-109, April-June, 1980.

-368- Intemational Parsing Workshop '89

Analysis Techniques for Korean Sentences based on Lexical Functional Grammar

Deok Ho Yoon, Yung Taek Kim
Department of Computer Engineering

Seoul National University
Seoul, Korea

ABSTRACT

The U n ification -based G ram m ars seem to be ad eq u ate fo r the an a ly sis o f
agg lu tin ative lan g u ag e s such a s K o rean , etc. In this p ap e r , the m erits o f L ex ica l
F u n ction al G ram m ar is analyzed an d the structure o f K o rean Syntactic A nalyzer
is d escrib ed . V erbal com plex category is u sed fo r the an a ly s is o f sev era l linguistic
phenom ena an d a new attribute o f UNKNO W N is defined fo r the an a ly sis o f
g ram m atica l re lation s.

1. Introduction

In these days, various kinds of Unification-based Grammars are developed and widely
researched(l,2]. Lexical Functional Grammar(LFG)[3,4] is one of them and seems to
meet well for the grammatical characteristics of Korean.

We have developed a Korean natural language parser, KOSA(KOrean Syntactic
Analyzer) which is based on the LFG. It is the analysis part of the KEMTS(Korean-
English Machine Translation System) which is our current machine translation system.

In this chapter the grammatical characteristics of Korean and the merits of LFG
formalism are presented.

1-1. The Grammatical Characteristics of Korean

Korean which is classified into the Ural-Altaic languages and belongs to the
agglutinative languages is greatly different in the linguistic structures from the Indo-
European languages such as English.

Korean adopts a short-clause as the unit of the spacing words. One short-clause
is constructed by the concatenation of one or more morphemes of individual lexical
categories. The concatenation is restricted by word conjoin conditions.

The most common patterns of short-clauses are ’verb(suffix) + ’ and ’noun(postnoun)
+ ’. In such patterns, morphemes belonging to verb or noun bring the major informations.
But because Korean is an agglutinative language, such morphemes have no conjugation
and cannot have auxiliary informations freely. In Korean, such auxiliary informations
are expressed by suffixes or postnouns which follow verb or noun, and their informations
have an important role on the analysis of Korean[10].

Suffixes represent grammatical informations such as modality, tense, mood, voice,
and etc. In Korean, agreement rules about gender, number or person are not developed
well, but various idiomatic expressions of complex patterns are widely used.

The major function of the postnoun is to show the grammatical relation(GR) between
an NP and a verb. Unlike the Indo-European languages in which the G R information
is directly obtained from the structure of the sentence, in Korean postnoun tells the
G R. So there is no need to distinguish NP and PP, and the order of NPs does not

-369- International Parsing Workshop '89

affect on the meaning. This brings on the relatively free word order of Korean.
When postnoun with other kind of information is used, the postnoun with the GR

information is omitted frequently. To analyze such cases, inferences using various
knowledges and heuristics are required.

1-2. The Merits of LFG for Korean Analysis

LFG has several merits for the analysis of Korean sentences. Some of them comes
from the fact that Korean is not a well structured language.

The first merit is the fact that the primitives of LFG are the grammatical relations
(G Rs) such as SUBJ, OBJ, etc., but not the phrases such as NP, VP, etc. In English,
the GRs of NPs can be detected from the order in the phrase tree. For example, we
can see that NP! is the SUBJ of S and NP2 is the OBJ of S from the c-structure
for English in F ig .l-a , but this is not permitted for Korean as shown in F ig .l-b , because
of the free word order of NPs. LFG offers a convinient way to analyze the implicit
GRs, and more extended analysis methods will be proposed in chapter 4.

(tSUBJ)-* fM
NP,1

VP
1

t«i t-* (tOBJ)-*
N V NP:

1

John 1 ikes
tM
N •

Mary

(t(iGR)J-i (K*GR))-
NP NP

A A
tM t*i
N P

t*i t“ i
N P

VC

John i Mary reul

^ Fig-1. GR of NPs in two C-structures

The second merit is the fact that postnouns and suffixes in Korean can be easily
and efficiently analyzed with lexical rules.

Also LFG provides convenience of invoking the inference mechanisms with
grammatical devices and constraint conditions for various purposes such as the
determination of UNKNOWN attributes.

In the design of KOSA, we tried to maximize such merits of LFG. Following
chapters will describe the structure of KOSA and the techniques that we adopt.

2. The Structure of KOSA

Korean Syntactic Analyzer, KOSA is a Korean parser based on LFG. It analyzes
a Korean sentence and extracts the grammatical informations in the form of an f-structure.
The output of KOSA can be used in various applications. KOSA has developed as the
analysis module of a Korean-English Machine Translation System, KEMTS and the output
of KOSA is used as the intermediate structures for translation.

KOSA consists of three modules: LexAnal, CstrAnal and FstrAnal. Fig-2 shows the
block diagram of KOSA. Each section describes the structure of each module.

-370- International Parsing Workshop '89

L e x A n a l

C s t r A n a l :

A Korean Sentence

! S h o r t C l a u s e S p l i t
S h o r t C l a u s e A n a l
T o k e n G e n e r a t e

T o k e n L i s t

D C G P a r s e r

O S t r u c t u r e

W o r d C o n j o i n j

C o n d i t i o n s I

L e x i c a l R u l e s
A t t a c h e d R u l e s

S y n t a c t ic
R u l e s

L e x i c o n

F s t r A n a 1: ! I F s t r E x t r a c t
F s t r C h e c k

F - S t r u c t u r e f o r K o r e a n
Fig-2. Block Diagram of KOSA

2-1. The Structure of LexAnal Module

LexAnaJ module analyzes a Korean sentence into the token strings and consists of
three phases: ShortClauseSplit, ShortClauseAnal and TokenGenerate.

The ShortClauseSplit phase splits a Korean sentence into a number of short-clauses
using blanks and punctuation symbols as the delimeters. This phase can be constructed
easily as a simple finite state automata.

Each short-clause is analyzed into morphemes in the ShortClauseAnal phase. As
shown in section 1-1, the concatenations of morphemes are restricted by the word conjoin
conditions which check the lexical categories, the phonology and the semantics. Although
the word conjoin conditions seem to be complicated, they are just simply some local
rules which deal only adjacent morpheme pairs. So this phase can be implemented as
an automata, too.

TokenGenerate phase generates the token strings from the morphemes. In this phase,
some morpheme patterns are combined into one complex token. Among some kinds of
complex tokens, verbal complex(VC) tokens are the most important. Typically a verb
and its following suffixes are combined into one VC token. But there also exist more
complex VC token types, and they are discusses in chapter 3. By generating complex
tokens, many local linguistic phenomena can be excluded from the CstrAnal/FstrAnal
modules. Because these modules analyze the global relationship among the sentence
constituents, the approach of combining morphems can greatly enhance the efficiency.
This phase is implemented as the recursive pattern rewriting rules.

2-2. The Structure of CstrAnal Module

The syntactic rules of the CstrAnal module are shown in Fig-3, and these rules
are enough to analyze most Korean sentences. Complex tokens are dealt like the simple
tokens according to their lexical categories. Each syntactic rule has functional schemata
showing the method of unification. By adding these functional schemata to each branch

-371- International Parsing Workshop '89

of the phrase trees, the c-structures are constructed.
(•(-G R))= . .=(*ADJ)

S(Typc] - > (NP A VP)* V{Typc]

S{Typc] - > Sfconnective] S(Typc]

NPfType] - > N PfTypc]
•=* ♦= 4

NPJTvpe] - > S(nominative] PJType]
i=('AXXT) •=;

NPtTypc] - > ADJ NP(Type]
(’(« R)) = * •=*

NP(Typc] --> NPfpossesive/conjunctive] NPfTypc]
• 4 ‘XADJ)

(‘UNKNOWN)»» »=»
NPfTypcJ - > S{modify] NPfTypc]

t= i
A VP - > ADV

* = I
A VP - > S{ adverb]

Fig-3. The Syntactic Rules of KOSA

(SI) shows the structure of a simple sentence and (S2) shows the coordinative
sentences. (NP1) and (NP2) show the basic structures of NPs and (NP3)-(NP5) show
the constituents which can modify the NPs. With above rules, postnouns are combined
with nouns(or nominal clauses) at the lowest level of the c-structure, but this has no
problem because the postnouns supply only the auxiliary informations.

The unhierarchical syntactic rule (SI) makes the forms of c-structures flat and brings
on much ambiguity especially on the position of NPs. So above rules examine context-
sensitive constraints to decrease the ambiguity. The applications of rules are restricted
by the context-sensitive informations in the bracket. But this approach is not enough
to prohibit the ambiguity of NP’s position. To resolve such ambiguity, the possibility
for the unification of f-structures should be examined.

This module is implemented with the DCG(Definite Clause Grammar) parser[5] on
PROLOG.

2-3. The Structure of FstrAnal Module

The FstrAnal module consists of two phases: FstrExtract and FstrCheck.
Because CstrAnal module results much ambiguity, FstrAnal module should cover

the task of filtering out illegal c-structures as well as the task of analyzing the f-structures.
Two phases of this module, will function as a two-level filter and generate the result
f-structures from correct c-structures only.

FstrExtract phase extracts the f-structures of the input sentence from the c-structures
by the bottom-up unification algorithm[3,6]. The complexity of the unification algorithm
in KOSA is not heavy, and is the level of general unification algorithm for LFG
formalism. Even though the grammatical characteristics of Korean are not reflected well
by the unification algorithm, they are reflected through the lexicon informations and
the functional schemata shown in section 2. Attached rules are used to extract the
functional schemata for the verbal complex tokens in this phase. Chapter 3 will describe
the functions of the attached rules.

FstrCheck phase examines the extracted f-structures whether they are grammatical
or not. Grammatical devices and constraint conditions of LFG are utilized for KOSA,
but some constraint conditions are modified and extended in order to solve Korean

(s i)

(S2)

(NP1)

(NP2)

(NP3)

(NP4)

(NP5)

(AVP1)

(AVP2)

-372- Intemational Parsing Workshop '89

linguistic phenomena. Some heuristics to the determine the unknown GR values of NPs
are used in this phase. Section 4-2 will describe the modifications/extensions and the
heuristics.

3. The Introduction and Usage of VC category

In English, there is the VP category which consists of all sentence constituents except
the subject of the sentence. But such a category can’t be found in Korean because
of the free word order among the NP constituents including the subject constituents.
So Korean verb seems to be directly governed by the S category.

Verbs are ususally combined with suffixes or another morphemes into complex tokens
in TokenGenerate phase. In this chapter, various usages of the VC category which means
the lexical category of verbal complex tokens will be shown.

3-1. Analysis of Auxiliary Informations in Suffixes

In Koean, there are many suffixes with complex and various usages. But most of
them does not affect on the meaning of the verb supplying only the auxiliry informations.
So when the FstrExtract phase extracts the functional schemata for a VC token which
consists of a verb and its following suffixes, the auxiliary informations of suffixes are
appended to the functional schemata of the verb.

For example, Korean word ’meok-eot-da' means ’ate’. ’meok’ is a verb which means
’eat’, 'eoC is a past-tense suffix, and ’da’ is a ending suffix for descriptive sentences.
The FstrExtract phase appends these informations from lexicon like below.

vc([v(m*o/fc),f(«>»,tense),f(<£a,final)]) :
(fPRED) = ’EAT<(tSU BJ)(rO BJ)>’
(fTENSE) - PAST
(tMODE) = DESC

3-2. Analysis of Idiomatic Expressions

Koean has many idiomatic expressions on the predicate part. If idiomatic expressions
are analyzed in CstrAnal/FstrAnal modules, the c-structures and the functional schemata
can become much more complicated. So KOSA combines each idiomatic expression into
one VC token in TokenGenerate phase, and obtains their functional schemata from the
attached rules in FstrExtract phase. This approach greatly diminishes the overhead of
CstrAnal and FstrAnal modules.

For example, a Korean idiomatic predicate ’meok-eul soo eop-da’ consists of three
short-clauses and five morphemes. It means ’cannot eat’, and can be thought as ’eat’
with auxiliary information of negative possibility. So KOSA, combines this expression
into one VC token and the attached rule adds the functional schemata, (rPOSSIVILITY) =

to those from lexicon. Below is the result token and functional schemata.

vc([v(mro4),f(eu l,modify),n(joo),v (e o p),f(d a ,final)]) :
(rPRED) - ’E A T <(tSU B J)(rO B J)> ’
(tMODE) - DESC
(t POSSIBILITY) -

3-3. Analysis of Duplicated Constituents Expressions

Some Korean sentences have duplicated subjects or duplicated objects. This
phenomenon is called as duplicated constituents problem, and KOSA analyzes the typical
case of this problem using VC category.

For example, in Korean ’Cheolsoo-ga ki-ga keu-da’ means ’Cheolsoo is tali’. Because

-373- International Parsing Workshop ’89

postnoun ’ga ’ is a subject marker, there exist two subjects ’Cheolsoo-ga and 'ki-ga'. As
'ki' means ’height’ and 'keu means ’big’, 'kei-ga keu means ’be tali’. In Korean, the
verb, ’ki-keu’ which means ’be tall’ is also used. Like this, many Korean adjective verbs
are often expressed in the form of a subject and following simple adjective verb. So
KOSA combines ’ki-ga keu-da' into one VC token, and the attached rule interprets it
just like ’ki-keu-da'. Similar method is applied to verbs which require duplicated objects.

3-4. Analysis of Passive/Causative Expressions

In Korean, passive/causative expressions are all represented using suffixes. For
example, ’meok-hi-da’ means ’be eaten’, and 'hi is a suffix showing passiveness. Similarly
’meok-i-da’ means ’let ... eat’, and ’/’ is a suffix showing causativeness.

KOSA combines such an expression into one VC token, and obtains the functional
schemata for this token using the methods proposed by Kaplan[7,8],

For ’meok-hi-da’ and 'meok-i-da', the attached rule for passiveness/causativeness
transforms the functional schemata of ’meok-da' like below.

\c(\v(mtok),i(da,final)]) : = > vc([v(m*o*),f(/u\pass),i(da,final)]) :
(?PRED) - ’E A T <(tSU B J)(fO B J)> ’ (»PRED) » ’EA T <(tO BLAGT)(tSU B J)> ’
(rMODE) =• DESC OMODE) =» DESC

\d[\r{meok),t(da,final)]) : - > vc([v(m*o*),f(/,cause),f(<£j,final)]) :
(tPRED) = ’ EA T < (fSUBJ)(tOBJ) > ’ (tPRED) = 'LET<(rSUBL)(rOBJ2)(rXCOM P)>(rO BJ)’
(rMODE) = DESC (tXCOMP PRED) - ’EA T <(tSU B J)(tO B J)> '

(tXCOMP SUBJ) =- (tOBJ2)
(tXCOMP OBJ) => (tOBJ)
(rMODE) = DESC

4. Determination Techniques of Grammatical Relations

The G R of Korean NPs are mainly determined by the postnouns. The G R value
of P is transmitted by ’t = i ’ to the NP, and indirectly used by ’(t(iG R))= i’[9].

But sometimes the GRs of NPs cannot be determined by the postnouns for two
reasons. One reason is the omission of the postnoun showing the GR value. Another
reason comes from the relation between the relative clauses and the antecedents. (Relative
clause precede its antecedent, in Korean.) Here the antecedent has a role as an NP
in the relative clause. But the postnoun of the antecedent shows only the GR for main
clause, and the GR for relative clause is unknown.

Even in such cases, we should find the hidden GRs for correct analysis. This chapter
describes the determination techniques of such unknown GRs.

4-1. Introduction of UNKNOWN Attributes

Because the heuristics to determine the unknown GR value should refer to the
global relations among the VC and another NPs, the f-structure of the sentence should
be able to be extracted before the heuristics are invoked. So we have introduced the
UNKNOWN attribute to represent the temporary GR values. It is inserted and used
during the FstrExtract phase, and changed to the correct GR value by the heuristics
in FstrCheck phase. . , __

The UNKNOWN is inserted by two methods. When the postnoun showing the OR
value is omitted, the ’null’ postnoun whose lexicon information has the functional
schemata, ’(tGR) = UNKNOWN’ is inserted in TokenGenerate phase. By the functional
schemata’, UNKNOWN becomes the attribute representing the NP whose GR is unknown.
For the relative clause, syntactic rule (NP5) in section 2-2 inserts the UNKNOWN
attribute whose value is the f-structure for the antecedent to the relative clause.

-374- Intemational Parsing Workshop 89

5-1. Analysis Result of LexAnal Module

after ShortQauseSplit phase: five short-clauses are generated

['woori-ga', ’ta-n’, 'bihaenggi-neun', 'Seoul-e', 'dochakha-et-da']

after ShortClauseAnal phase: eleven morphemes are generated

[aoun(we), post(^a,sub}-mark), verb(take-on), suffbc(n, modify),
noun(airplane), post(n*im, topic), noun(Seoul), post(*,obl1<x-mark),
vcrb(arrive), suf£Lx(*f,tense), suffix(<ia,final)]

after TokenGenerate phase: eight tokens are generated

[noun(we), post(^a,sub}-mark), vc([verb(take-on), suffix(n,modify)]),
noun (airplane), post(n*u/i, topic), noun(Seoul), post^.obl^-mark),
vc([verb(arrive),suffix(«,tense),suffix(da,final)])]

5-2. Analysis Result of CstrAnal Module

after CstrAnal module: two alternative c-structures are generated as below

S

0 (‘GR)>* (t(*GR))*» (»(*GR))m t-i (<iGR))*i
NP NP NP VC NP ' ' NP" VC

i (i f ^ . i I (iVnKNOV̂ ^
N P S NP N P arrive S NP N P arrive

f i f i t-i I I (K ‘GR)W ^t'’ »
we ga VC N P Seoul e NP VC

take-on
• f i f i I

neun N P take-on

s

7 m

0(*GR))-<
NP

f i f i
NP N P

f i | |
P Seoul e

neun
airplane | | airplane

ve ga

5-3. Analysis Result of FstrAnal Module

functional schemata of morphemes obtained from lexicon

noun(we): (tPRED) * ’PRO* noun(airplane): (tPRED) = ’AIRPLANE’
(tNUM) » PLURAL tioun(Seoul): (tPRED) =* ’SEOUL’
(tPERS) - 3

verb(take-oo): (tPRED) - TA K E -O N <(tSU B J)(tO E J)> ’
verb(arrive): (tPRED) » ’A R R IV E <(tSU B J)(tOBLlo c) > ’

posted): (tGR) - SUBJ suffix(/i): (tMODE) = MODIFY
post(n«un): (fTOPIQ * ’ + ’ suffix(«): (tTENSE) = PAST
pcst(*): (K3R) =• OBLloc suffii(<&): (tMODE) =■ DESC

functional schemata of complex tokens obtained by lexical rules

vc([verb(take~oa), suffix(/i,modify)]):
(tPRED) = T A K E-O N <(»SU B J)(tO B J)> ’
(tMODE) - MODIFY

vc([verb(arrive) ,suf&c(er, tense) ,suffix(d!a .final)]):
(tPRED) - ’A RR IV E<(fSU BJ)(tO BLLOC) > ’

-376- Intemational Parsing Workshop ’89

4-2. Extension of Constraints for U N K N O W N

There are several grammatical devices and constraint conditions in LFG, but some
of them are used in modified or extended forms for the effective use of UNKNOW NS.

Because Korean sentences can have multiple NPs with unknown G R values, f-
structure with multiple UNK NO W N attributes should be permitted and the consistency
constraint should be relaxed. KOSA has solved this problem without any change of the
unification algorithm by attaching index numbers to the UN K N O W N attributes as
U N K N O W N ^ UN K N O W N 2,... when they are inserted.

The completeness/coherence constraint sould be extended for sentences with multiple
UNKNOW NS. This extension is similar to that stated in [8], but the number of
U N K N O W N attributes can be more than one here. So the extended completeness/
coherence constraint is as following: The number of UN K N O W N attributes should be
less than or equal to the number of unsaturated grammatical functions of the PRED
value for the intermediate f-structures, and should be equal for the final f-structures.

4-3. Heuristics for GR-Determination of the UNKNOW NS

For the complete analysis, the hidden G R values of the UN K N O W N attributes should
be determined. KOSA uses three heuristics to determine them.

First is the simple mapping method. If there is only one U N K N O W N attribute
in an f-structure and one unsaturated grammatical function, the G R value of the
U N K N O W N is determined as the unsaturated grammatical function.

If the number of the UN K N O W N attributes is N(more than one), there should
be also N unsaturated grammatical functions. Then they can be matched in N! different
ways. To select the most proper mapping, two heuristics are used.

One heuristic is the agreement-point comparison method. The lexicon informations
for nouns contain the semantic markers. They are transmitted to the values of
U N K N O W N attributes. Each unsaturated grammatical function has the agreement-point
information for each semantic feature on range [-1.0.. 1.0]. This is also given from the
lexicon. For each mapping, the sum of agreement-points is calculated and the mapping
of the highest score is selected. Because the number N is not so large, this heuristic
does not bring a heavy overhead on examination.

The other heuristic is used when the agreement-points of several mappings are tied
at the highest. Although NPs have almost free order in Korean, we can find the common
word orders among them. The orders are not indispensable, but usual sentences follow
them. So we can use these common word orders to determine the G R values of the
UNKNOW NS. To find the order between the NPs without referring to the c-structure,
we can utilize the index number attached to the UNKNOW NS.

5. Sentence Analysis Example of KOSA

In this chapter, the analysis steps of KOSA will be illustrated for following example.
The first line of the example is the real Korean input, the second line is the input
sentence written in Roman alphabet, the third line shows the meanings of morphemes
belonging to the noun or verb category, and the last line shows the meaning of input
sentence. For easy understanding, we replaced the Korean characters with Italic-style and
morphemes belonging to the noun or verb category with English word.

s.^514.
woori-ga ta-n bihaenggi-neun Seoul-t dochakha-et-da.
we take-oa airplane Seoul arrive
The airplane which we took on arrived at Seoul.

-375- Intemational Parsing Workshop ’89

6. Conclusion

We have introduced the structure of KOSA, a natural language parser for Korean,
and discussed some related issues. In the design of KOSA, the overall Concept of LFG
formalism is adopted, and LFG is confirmed to meet well for the grammatical
characteristics of Korean. But some additional concepts for analysis are developed for
KOSA further. Among them, the usages of verbal complex category and some heuristics
concerned with the UNK NO W N attributes are formulated and discussed. In English,
there are similar grammatical functions to the UN K NO W N such as TOPIC. But Korean
NPs are far more flexible and free from the restriction of grammatical structures. And
sentences with multiple UNKNOW NS are also common. So the heuristics that meet well
for Korean are necessary, and the heuristics shown here can also be used to recover
the omitted NPs.

Main issues of current research includes the usage of NP tokens, each of which
consists of a noun and its following postnouns, and replacement of the functional schemata
’(t (iG R))= i’ with a GR-determine function. The NP token concept has the same origin
as the usage of VC category, and can provides the reduction of overhead for the CstrAnal/
FstrAnal modules. The GR-determine function is expected to b e . very useful for more
complete and efficient analysis of the relations between verbs and NPs.

References]

1. Sag, I .A ., Kaplan, R ., Karttunen, L ., Kay, M ., Pollard, C ., Sieber, S., Zaenen,
A ., "Unification and Grammatical Theory", CSLI, 1987.

2. Sieber, S .M ., An Introduction to Unification-Based Approaches to Grammar, pp.5-7,
CSLI Lecture Notes N o .4, 1986.

3. Bresnan, J .(E d .), The Mental Representation of Grammatical Relations, Cambridge
Mass.: MTT Press, 1982.

4. Kaplan, R .M . and Bresnan, J., "Lexical Functional Grammar: a formal system for
grammatical representation", 1982, pp. 173-281, in Bresnan, J .(E d .), The Mental
Representation of Grammatical Relations, Cambridge Mass.: MIT Press, 1982.

5. Bresnan, J., ’T h e Passive and Lexical Theory", 1982, pp.3-86, in Bresnan, J .(E d.),
The Mental Representation of Grammatical Relations, Cambridge Mass.: MIT Press,
1982.

6. W escoat, M .T ., "Practical Instructions for Working with the Formalism of Lexical
Functional Grammar", pp. 1-37, in Bresnan, J .(E d.) Lexical Functional Grammar,
Stanford University, 1987.

7. Pereira, F .C .N . and Waren, D .H .D ., "Definite Clause Grammars for Language
Analysis - A Survey of the Formalism and a Comparison with Augm ented Transition
Networks”, 1980, pp.231-278, Artificial Intelligence 13.

8. Peter Sells, Lectures on Contemporary Syntactic Theory, pp. 135-191, CSLI Lecture
Notes N o .3, 1985.

9. Ishikawa, A ., Complex Predicates and Lexical Operations in Japanese, pp.64-83,
University Microfilm International, 1985.

10. p p .9 3 -1 0 4 , £ £ £ 4 , 1985 .

-378- Intemational Parsing Workshop '89

(rTENSE) = PAST
(tMODE) = DESC

- after FstrExtract phase: two alternative f-structures are generated as below

P R E D ' A R R I V E < S U B J , O B L _ L O C > '

M O D E D E S C

: T E N S E P A S T

| O B L _ L O C (—

: P R E D ' S E O U L '

! G R O B L _ L O C

U N K N O W N

S U B J

I f
I P R E D ' A I R P L A N E '

I C R U N K N O W N j

| T O P I C

X A D J r~
P R E D ' T A K E - O N < S U B J , O B J > '

M O D E M O D I F Y

j U N K N O W N 2

j P R E D ' W E '

! C R S U B J

' A R R I V E < S U B J , O B L _ L O C > '

D E S C

P R E D

M O D E

T E N S E P A S T

O B L _ L O C r —

j P R E D ' S E O U L '

C R O B L _ L O CL
U N K N O W N

P R E D ' A I R P L A N E '

C R U N K N O W N !

T O P I C ' ♦ '

X A D J

P R E D ' T A K E - O N < S U B J . O B J > '

M O D E M O D I F Y

U N K N O W N 2 - - - - - - - - - - - - -

S U B J

1

l*ts

P R E D ' W E '

C R S U B J

- after FstrCheck phase: final f-structure

left alternative: rejected as illegal
< SU BJ,OBL_LOC> : {OBL_LOC,UNKNOWN1(SUBJ}

= > cohcrcocy constraint violation
<SU B J,O B J> : {UNKNOWN^}

= > completeness constraint violation

right alternative: selected
< SUBJ,OBL_LOC> : {OBL.LOC,UNKNOW N,}

=*> UNKNOWNj turns out to be SUBJ
< S U B J,0 B J> : {UNKNOWN2,SUBJ}

= > UNKNOWN^ turns out to be OBJ

PRED ' ARRIVE<SUBJ.OBL_LOC>'
MODE DESC
TENSE PAST
OBL_LOC

PRED 'SEOUL'
CR OBL_LOC

SUBJ
PRED
GR
TOPIC
XADJ

'AIRPLANE'
UNKNOWN!

PRED 'TAKE-ON<SUBJ,OBJ>‘
MODE MODIFY
OBJ •----------------
SUBJ

PRED 'WE'
GR SUBJ

-377- International Parsing Workshop '89

In section 4, several problems of the first method are described. And in the successive section, a
modified implementa t ion is showed. We explain three modifications. The first modification is to uses
the information of any proper a t t r i but es on the node. This informat ion is manual ly described in
augmen te d rewri t ing-rules . The informat ion consists of the nam es of relat ions and the calculation of
a r gum en ts for the relat ions. The second modification is to raises the prior i ty of the s t ructure which
appears the cooccurrences judged solely as correct all through the period of acquisit ion. The thi rd is to
collect cooccurrence dat a on two phases.

In section 6 , we show the analysis performance of the modified version on our experiment. The
results show that modified version shows better performances than the previous version, when
relatively small number of acquired data is utilized. Furthermore we show another experiment which
measures the appearance rate of acquired cooccurrences data in each parsed text with the measurement
of an analysis performance in each text. By this measurement, we can confirm that texts having high
appearance ratio are analyzed more accurately than texts having low appearance ratio.

2. Features of the utilized parser

In our method, cooccurrence data are collected with a parser. Here, we utilize a parser of a
English-to-Japanese machine translation system named KATE. The analysis technique for a English
sentence is based on augmented context free grammar like LINGOL. Cook-Kasami-Younger algorithm
and Early algorithm are implemented with some fast parsing techniques[2] in this parser. Other
features of the parser are :

(1) Each node of syntactic trees generated by the parser has attributes information which is the
meaning representation of the sub-tree governed by the node.

(2) On each node, a governor (the word which represents the phrase) is given as one of attributes.
(3) We can register partial patterns of possible syntactic trees, and when a rule generates such a

pattern on parsing stage, then the application of the rule is inhibited. These inhibiting patterns
are used for the suppression of ambiguous trees.

Examples of generated trees and governors are showed bellow. [Fig 1,21

[figure 1 An example of an analysis jqs] [Figure 2 An example of an analysis tree]

CL
I governor play

r~
NP

CI-I governor play

VP
governor governor

I play

NP
governor

I
VP

governor
play

PRON
governor

I
r~

VPS

VP
governor

play

ADV
governor

wed

NP
governor

play

I play

governor
tennis

NOUN
governor
tennis

tennis w ell

PRON VPS
governor

I

NP
governor

play
governor

we*
NOUN

I governor
wel

NOUN
I

NOUN
governor
tennis

governor
wed

play tennis well

3. Acquisition and usage of relationships between governors in a simple version

Details of the first method are explained here. We call the program for this method a simple
version. This version is more easily implemented than the modified version described in section 5, but
lacks the accuracy in collecting cooccurrence data, We show this method for explanation purposes.
3.1 Discrimination procedure of a cooccurrence and maintenance of stored cooccurrence-data

-380- Intemational Parsing Workshop ’89

Learning Cooccurrences by using a parser

Kazunori Matsumoto Hiroshi Sakaki Shingo Kuroiwa

KDD Kamifukuoka R&D Labs.
Saitama, Japan

ABSTRACT

This paper describes tw o methods for the acquisition and utilization of lexical cooccurrence

relationships. Under these method, cooccurrence relationships are obtained from tw o kinds of inputs

: example sentences and the corresponding correct syntactic structure. The first of the tw o methods

treats a set of governors each element of which is bound to a element of sister nodes set in a

syntactic structure under consideration, as a cooccurrence relationship. In the second method, a

cooccurrence relationship name and affiliated attribute names are manually given in the description

of augmented rewriting rules. Both methods discriminate correctness of cooccurrence by the use of

the correct syntactic structure mentioned above.

Experiment is made for both methods to find if thus obtained cooccurrence relationship is useful

for the correct analysis.

1. Introduction

Much attention should be paid for the role of m inutely described grammar and real world
knowledge in order to improve natural language analysis performance. In this respect, the authors
have tried to acquire and use coocurrence data for the im provem ent of analysis performance. By
com bining a parser and an acquisition m echanism , we im plem ented a learning program of lexical
cooccurrence data. The program has two kinds of inputs, exam ple sentences and the corresponding
correct structures. The related study of learning grammar from sentences and their sem antic structure
is conducted in LAS[1] (Language Learning System) by Anderson. He is of the opinion that most of
grammars are derived from sem antic structures. We advocate the use of syntactic structures, because
information such as cooccurrence is a reflection of the real world and is easily derived from syntactic
structure. Furtherm ore we im plem ented a parser to utilize the acquired lexical data.

This paper describes above mentioned two methods for acquiring lexical cooccurrences and also
describes the experim ent results of the methods.

The result of the experim ents shows (1) a reduction of the. number of alternative analysis trees (2)
the increase on probability of selecting a correct analysis tree. The experim ents m ight be influenced by
the used sentences and the nature of the used grammar. However we believe that our methods
proposed here is one of the prom ising ways to reflect real world knowledge to sentence analysis.

At first, we explain the parser we use. This parser is based on augm ented CFG. And the parser
produces a forest (m ultip le analysis trees), and selects a single structure from the forest.

In section 3, the first of the above methods is showed. The method has two features : (1)
Comparing generated analysis structures with the correct structure which should be generated by a
parser for a treated sentence, each sequence of the governors on sister nodes is judged into two cases,
correct case or wrong one. (2) The sequence which is alw ays judged as a wrong case through the
period of acquisition, is utilized for reducing analysis trees generated by the parser.

Experim ents are made to m easure effects of the second feature above. The result shows : when the
set of exam ple sentences are equivalent to the set of analyzed sentences, very few am biguous analysis
trees are generated. A lm ost all the selections of generated trees, then, are successful. H owever when
the set of exam ples are not equivalent to the set of analyzed sentences, only one third of ambiguous
trees are elim inated and probability of selection decreases a little in com parison with a original (no

action) case. .379. International Parsing Workshop '89

A n d w e m e a s u r e th e t r a n s i t i o n o f fo l lo w in g th r e e v a lu e s a s th e a n a l y s i s p e r f o r m a n c e o f the p a r se r
w i t h th e a m o u n t o f i n c r e a s i n g i n p u t t e d p a ir s a s a p a r a m e t e r .

(a) a v e r a g e o f th e n u m b e r o f g e n e r a t e d t r e e s p er a s e n t e n c e

(b) p r o b a b i l i t y o f g e n e r a t i n g a c o r r e c t a n a l y s i s tr e e

(c) p r o b a b i l i t y o f s e l e c t i n g a c o r r e c t a n a l y s i s t r e e

W e m a d e tw o e x p e r i m e n t s to m e a s u r e a b o v e v a lu e s .

O n e is m e a s u r e d in th e c o n d i t io n t h a t th e s e t o f s e n t e n c e s for t h e a c q u i s i t i o n p r o g r a m is e q u i v a l e n t

to th e s e t o f s e n t e n c e s a n a l y z e d b y th e p a r se r . A c t u a l l y w e c a n ’t m a k e th e s e t o f in p u t t e d p a ir s

e q u i v a l e n t to th e s e t o f m o d e l s e n t e n c e s in a p r a c t i c a l o c c a s io n . B e c a u s e o f .n e m o n o t o n o u s i n c r e a s e o f

a c q u ir e d c o o c c u r r e n c e d a t a in e a c h c a t e g o r y , h o w e v e r , w e c o n s i d e r th e r e s u l t o f t h i s e x p e r i m e n t g i v e s a

p r o s p e c t iv e v i e w o f th e e f f e c t o f th e f i l t e r in g . W e o b s e r v e f o l l o w i n g r e s u l t s . [F i g . 3]

(a) W i t h th e i n c r e a s e o f in p u t t e d p a ir s , a v e r a g e o f t r e e s d e c r e a s e s a l m o s t m o n o t o n o u s ly . F i n a l l y ,

th e a v e r a g e b e c o m e s a p p r o x i m a t e 1 .0 s t a r t i n g fr o m 2 .5 a t th e b e g i n n i n g . (A in F ig .3 s h o w s th e

r e d u c t i o n o f t r e e s)

(b) P r o b a b i l i t y o f g e n e r a t i n g a c o r r e c t t r e e s e v e r e l y g o e s d o w n , w h e n a m o u n t o f in p u t t e d p a ir s a re

few . A n d f i n a l l y th e p r o b a b i l i t y , o f c o u r s e , b e c o m e s e q u a l to th e p r o b a b i l i t y in i t ia l .

(c) P r o b a b i l i t y o f s e l e c t i n g a c o r r e c t t r e e a l s o g o e s d o w n , w h e n i n p u t t e d p a ir s a r e fe w , a n d a f t e r

n u m b e r o f in p u t t e d p a ir s e x c e e d s o n e th ir d o f th e n u m b e r o f f i n a l in p u t t e d p a ir s , th e

p r o b a b i l i t y b e c o m e s b e t t e r t h a n t h a t o f th e b e g i n n i n g . (C in F ig .3 s h o w s th e i m p r o v e m e n t)

T h e s e c o n d e x p e r i m e n t is m a d e in th e c o n d i t io n t h a t th e s e t o f 2 , 4 0 0 s e n t e n c e s i n p u t t e d for th e

a c q u i s i t i o n p r o g r a m is n o t e q u i v a l e n t to th e s e t o f 8 0 0 s e n t e n c e s p a r s e d . F o l l o w i n g o b s e r v a t i o n is

m a d e .

(a) W i t h th e i n c r e a s e o f i n p u t t e d p a ir s , th e a v e r a g e o f t r e e s d e c r e a s e w i t h a s o m e w h a t

n o n m o n o t o n ic . (A in F i g . 4 s h o w s th e r e d u c t i o n o f n u m b e r o f t r e e s)

(b) A s in th e c a s e o f th e p r e v i o u s e x p e r i m e n t , p r o b a b i l i t y o f g e n e r a t i n g a c o r r e c t t r e e g o e s d o w n

s e v e r e l y a t t h e b e g i n n i n g b u t d o e s n o t r e s u m e th e i n i t i a l s t a t e . (B in F i g . 4)

(c) P r o b a b i l i t y o f s e l e c t i n g a c o r r e c t t r e e a ls o g o e s d o w n a t th e b e g i n n i n g a n d , w h a t is w o r s e , th e

p r o b a b i l i t y f i n a l l y b e c o m e s lo w e r t h a n t h a t o f th e i n i t i a l s t a t e , in s p i t e o f th e a s s i s t i n g e f f e c t o f

r e d u c i n g a m b i g u i t i e s . (C in F i g . 4)

4. Problems in the simple version

This section explains eight problems of the previous simple implementation.
Problem [1] : Meaningless and purposeless data acquired.

Because the previous version discriminates and classifies all the sequences of governors appearing
in all the rewriting rules, the learning program acquires purposeless cooccurrence data from the
governors which represents no cooccurrence relationships. For example, in the case of the rule TEXT
—► CL END, which means a clause and a end-mark make a sentence, the previous program obtains the
sequence of governors of CL and END. However, this sequence is useless to be utilized for parsing.
Problem [2] : Cooccurrence data judged as to be always wrong but easily revised in the future

In accordance with the increase of inputted pairs for the leaning program, the sequence of
governors judged as to be always wrong so far may encounter a case where the sequence is judged as
to be correct. Probability of reclassification for acquired cooccurrence data varies with the rewriting-
rule related to the acquired data. For instance, in Fig.2, a sequence <3well£> for the rule NP —►
NOUN is the sequence judged as wrong. If the discrimination for this sequence doesn’t contradict any
discrimination caused by inputted data for the learning program, this sequence is judged as to be
always wrong and used for the filtering. However, we can easily mention the example where this
filtering works adversely.
Problem [3] : There exists the governor which is independent of a cooccurrence.

-382* International Parsing Workshop '89

I n s u f f i c i e n t s e m a n t i c a n a l y s i s c a u s e s th e g e n e r a t i o n o f u n p r o p e r s y n t a c t i c t r e e s , l ik e o n e in F i g . 2.

O u r p r o g r a m c o m p a r e s e a c h g e n e r a t e d t r e e w i t h th e c o r r e c t t r e e o f c o r r e s p o n d i n g s e n t e n c e , an d

c l a s s i f i e s th e s e q u e n c e o f g o v e r n o r s a p p e a r in g on s i s t e r n o d e s in to tw o c l a s s e s for e a c h r e w r i t i n g - r u .

W h e n th e s e q u e n c e o f th e g o v e r n o r s o c c u r s on th e f o l l o w in g tw o c o n d i t io n s , th e p r o g r a m j u d g e s the

s e q u e n c e a s a c o r r e c t c o o c c u r r e n c e d a ta , o t h e r w i s e j u d g e s a s a w r o n g c o o c c u r r e n c e d a ta .

(1) th e s a m e r u le w h ic h f i e ld s th e r e m a r k e d s e n t e n c e is a p p l i e d in th e c o r r e c t s y n t a c t i c t r e e ;

(2) In e a c h s u b - n o d e o f th e a p p l i e d r u le , th e t e r m i n a l w o r d s s e q u e n c e r e w r i t t e n is th e s a m e a s th e

t e r m i n a l w o r d s s e q u e n c e r e w r i t t e n b y c o r r e c t a p p l i c a t i o n s in th e c o r r e c t tr e e .

If w e a s s u m e th e t r e e in F i g . l is a c o r r e c t s y n t a c t i c t r e e w e o b t a in , f r o m th e t r e e s in F i g . l a n d

F i g . 2, w e o b t a i n f o l l o w i n g c o r r e c t c o o c c u r r e n c e d a t a a n d w r o n g c o o c c u r r e n c e d a ta .

C o rrec t c o o c c u r r e n c e d a t a fr o m Fig.1 & F ig .2
I p la y for C L -*■ N P V P

<3 I for N P P R O N
<3 p la y w e l l for V P —* V P A D V

p la y t e n n i s for V P —► V P 6 N P
t e n n i s > for N P — N O U N

W r o n g c o o c c u r r e n c e d a t a fr o m Fig.1 & F ig .2
<3 p la y w e l l for V P — V P 6 N P

w e l l for N P — N O U N
< t e n n i s w e l l > for N O U N -> N O U N N O U N

In accordance with this discrim ination procedure, the sequence of governors may be judged as
correct cooccurrence data in one example sentence and be judged as wrong cooccurrence data in
another. So the program stores the sequence of the governors into three categories. First is the set of
sequences being alw ays judged as correct cooccurrence data by the discrim ination procedure. The
second is the set of sequences being always judged as wrong cooccurrence data. And the last is the set
of sequences being judged as correct cooccurrence data in one or more cases and judged as wrong in
one or more cases. Our learning program m aintains these three categories through the period when
exam ple sentences and their correct structures are inputted. In this section, we simply call the
sequence of governors as cooccurrence data.
3 .2 Experiment for acquiring cooccurrence data

We make an experim ent for acquiring cooccurrence data with the use of the above mentioned
learning program. About 3,200 exam ple sentences are collected from a English grammar text[3] and
exam ple sentences in a dictionary. We assum e each exam ple sen tence has a s itu a tion free
interpretation, so if sem antics analysis is successful, very few ambiguous analysis trees are generated.

We m easure the number of cooccurrence data in each category at every 50 inputted pairs of
sentences and correct structures. We observe that :

(1) Each number of acquired cooccurrence data increases monotonously.
(2) F inally, from 3,200 sentences, the program acquires about 10,0000 kinds of cooccurrence data

belonging to the first category, about 5,000 kinds and 4,000 kinds respectively belonging to the
second and the third.

However, our detailed observation finds a part of acquired cooccurrence data purposeless or
m ischievous. This problem is described later in section 4.
3 .3 Filtering technique based on the cooccurrence data

We im plem ented the parser which utilizes acquired cooccurrence data. W hen the sequence of the
governors appearing on a rule application belongs to the set of acquired cooccurrence judged as to be
alw ays wrong, the parser doesn’t apply the rule. This paradigm suppresses the excessive application of
rules and reduces generated trees. So the probability of selecting proper analysis tree may increase.
We call this paradigm ‘F iltering based on cooccurrence (judged as to be alw ays wrong).’

-381- Intematlonal Parsing Workshop '89

c o o c c u r r e n c e d a t a fro m t h i s w r o n g tr e e , i f w e c o n s id e r <£ s t i l l m u cn $> for a r u le A D J

ju d g e d a s to be a l w a y s w r o n g .

[r:gure 6 Partial trees for "There is stil much money'']

ADV ADJ is

a) correct tree THERVP
govenor be

b) wrong tree THERVP
I govcnor be

VP1
VP1 ADV

govenor
be

govenor
still

NP govenor
money

NOUN
| govenor
I money

ADJ NOUN
govenor
much

govenor
money

be still much money

govenor
be

NP
govenor
money

NOUN
govenor
money

ADJ
govenor
much

NOUN
govenor
money

ADV ADJ

be

govenor
still

govenor
much

still much money
Problem [8] : Ambiguity in rule application orders causes the cooccurrence data which should be judged
as correct to be judged as wrong.

We assume two rewriting rules, A -* B A and -> A C. If categories appear in the sequence of B A
C and applications of each rule are successful, the parser generates two trees [Fig.7]. Appearance here
of attributes related to the cooccurrence is assumed in Fig.7.

According to the discrimination procedure in section 3. 1, regardless of whether the tree-1 is correct
or tree-2 is correct, both the cooccurrence < 3 (3 a £ > f o r A —> B A and the cooccurrence <?r for A
C A become purposeless.

' [Figure 7 Two ambiguous trees]

A
ATree-1 governor a

governor a
Tree-2

governor a
governor a

governor f t
A governor a Q

governor y
governor /3

^governor a Q
governor y

5. M odified version of learning and usage

This section shows a modified version of the previous program. This modified version solves the
problem [1]—[7] in the previous section. Only problem [8] is out of scope, but we have a basic idea to
reduce this kind of ambiguity with the use of the inhibited pattern technique in section 2.

Three major modification is described bellow.
Modification [1] : Manual description of cooccurrence names and their attributes names in rewriting
rules.

Rich input data is required by the system in order to determine what relations exists or what
attributes are used in each relation. Therefore we consider that the kind of a cooccurrence relationship
and the names of used attributes which appear in the cooccurrence should be described manually for ̂
the sake of effective learning by examples.

For this reason, we now extend the description method of the rewriting rules used in the former
version. In this extended description, a cooccurrence relationship is depicted as a function of any

-384- International Parsing Workshop '89

In th e c a s e o f th e r u le C L -+ N P A D V V P , w h ic h m e a n s a n o u n p h r a s e a n d a d v e r b a n d a verb

p h r a s e m a k e a c l a u s e , th e g o v e r n o r s o f N P a n d V P h a v e a c o o c c u r r e n c e r e la t io n s h i p . B u t th e g o v e r n o r

o f A D V is a l m o s t i n d e p e n d e n t o f th i s r e la t io n s h i p .

Problem [4] : T h e s a m e r e l a t i o n s h i p o f c o o c c u r r e n c e in d i f f e r e n t r e w r i t i n g r u le s c a n ’t be d e a l t w i th .

F o r e x a m p l e , th e c o o c c u r r e n c e r e l a t i o n s h i p b e t w e e n N P a n d V P for a r u le C L —► N P V P a n d the

c o o c c u r r e n c e r e l a t i o n s h i p b e t w e e n N P a n d V P for a r u le C L —* N P A D V V P a r e id e n t i f i e d a s d i f f e r e n t

r e l a t i o n s b y th e p r e v i o u s v e r s i o n . H o w e v e r , d e a l i n g w i t h b o th r e l a t i o n s h i p s a s th e s a m e w i l l b e m o re

a d v i s a b l e for th e u t i l i z a t i o n o f c o o c c u r r e n c e .

Problem [5] : T h e r e e x i s t s c o o c c u r r e n c e r e l a t i o n s h i p s w h ic h c a n ’t b e r e p r e s e n t e d w i t h th e s e q u e n c e o f

g o v e r n o r s o n s i s t e r n o d e s .

T h i s p r o b le m is c o n s i d e r a b l y a f f e c t e d by th e g r a m m a r u s e d . F o r th e c a s e o f F i g . 5, w e e x p l a i n th is

p r o b le m . F r o m a r u le V P —► V P P P (w h ic h m e a n s a n o u n p h r a s e a n d a p r e p o s i t i o n a l p h r a s e m a k e a

n o u n p h r a s e) , th e s e q u e n c e <3r e a d y o u > for th e r u le V P —► V P P P is j u d g e d a s c o r r e c t , i f th e s t r u c t u r e

o f F i g . 5 is a c o r r e c t s t r u c t u r e . H o w e v e r , i f th e f o l l o w i n g s e n t e n c e :

I r e a d th e l e t t e r f r o m y o u .

is in c l u d e d in in p u t t e d p a ir s , a c o n t r a d i c t io n m a y o ccu r . A p r e p o s i t io n a l p h r a s e o c c u r r e d in th is

s e n t e n c e c a n m o d i f y a n o u n p h r a s e . A n d i f a r u le V P —► V P P P is a p p l i e d w r o n g ly , th e s e q u e n c e

r e a d you£> for th e r u le V P —* V P P P is j u d g e d a s w r o n g . H e r e , th e a c q u ir e d s e q u e n c e b e c o m e s

p u r p o s e l e s s for to be u t i l i z e d .

In t h i s c a s e , c o o c c u r r e n c e d a t a for th e r u le V P - * V P P P s h o u l d b e r e p r e s e n t e d a s t h e r e la t io n

b e t w e e n th e g o v e r n o r o f V P , th e p r e p o s i t i o n o f P P , a n d t h e g o v e r n o r o f P P .

[Figure 5 Part of a structre for "1 read the letter with you"]

VP

name^ vaĴ
namcjl vain represents attributes of a node

name j represents the name of an attribute
vai j represnts the value for the name ?

Problem [6] : In the previous version, information of cooccurrence data judged as to be alw ays correct
is not utilized.

Suppress of generated trees affects the selection of trees. Moreover information of correct
cooccurrence data can improve the selection of a correct tree by the parser.

In the use of inform ation of correct cooccurrence, however, following two problems become

important.
Problem [7] : W hen a rule is applied at the occasion of an unproper application on lower level, the
cooccurrence data which should be judged as correct may be judged as wrong.

We explain th is problem with using Fig.6. In F ig.6, two analysis trees are generated. From a
correct structure, the sequence <3 much money for a rule N O U N —► ADJ NO U N is judged as correct.
And from a wrong structure, the sam e sequence is judged as wrong. So the data of this sequence
becomes purposeless. If the application of a rule ADJ —* ADV ADJ in the wrong structure fails, the
sequence <3much m o n e y s is only judged as correct in this sentence. We should not acquire

-383- Intemational Parsing Workshop '89

a re o b t a i n e d in a s i n g l e r e w r i t i n g ru le . F u r t h e r m o r e th e r e s u i t s n o w s th e n u m b e r o f 'c o o c c u r r e n c e d a ta

j u d g e d a s to be c o r r e c t a n d w r o n g s i m u l t a n e o u s l y ’ is a b o u t o n e fo u r t h o f th e s i m p le v e r s io n . T h is

p h e n o m e n o n is c a u s e d b y m a n u a l d e s c r i p t io n s for c o o c c u r r e n c e r e l a t i o n s h i p s , b e c a u s e t h e s e d e s c r ip t io n

s u p p r e s s th e a c q u i s i t i o n o f m e a n i n g l e s s c o o c c u r r e n c e d a t a a n d th e a c q u i s i t i o n o f d a t a e a s i l y r e c la s s i f i e d .

W e a l s o e x a m i n e th e e f f e c t o f th e 2 -p a s s a c q u i s i t i o n . W e o b s e r v e t h a t a b o u t 10% ‘c o o c c u r r e n c e d a ta

j u d g e d a s c o r r e c t a n d w r o n g s i m u l t a n e o u s l y ’ on th e f i r s t p h a s e a r e o b t a i n e d a s ‘th e d a t a j u d g e d as to

be a l w a y s c o r r e c t ’ o n th e s e c o n d p a s s o f a c q u is i t i o n .

6 .2 Experiment of using acquiring cooccurrence data w ith modified version

W e m a k e tw o e x p e r i m e n t s w i t h m o d i f ie d v e r s i o n l i k e in s e c t i o n 3 .3 , in o r d e r to th e t r a n s i t i o n o f

n e x t th r e e v a l u e s : (a) a v e r a g e o f th e n u m b e r o f g e n e r a t e d t r e e s p e r a s e n t e n c e (b) p r o b a b i l i t y o f

g e n e r a t i n g a c o r r e c t t r e e (c) p r o b a b i l i t y o f s e l e c t i n g a c o r r e c t tr ee .

T h e f i r s t is u n d e r th e c o n d i t io n t h a t th e s e t o f s e n t e n c e s for a c q u i s i t i o n is e q u i v a l e n t to th e s e t o f

s e n t e n c e s for a n a l y s i s . T h e s e c o n d is for th e c o n d i t io n t h a t th e s e t o f s e n t e n c e s for a c q u i s i t i o n is n o t

e q u i v a l e n t to th e s e t o f a n a l y z e d s e n t e n c e s . W e u s e th e s a m e s e t for a c q u i s i t i o n a n d th e s a m e s e t for

a n a l y s i s a s in e x p e r i m e n t s o f th e s i m p le v e r s i o n o n e a c h tw o e x p e r i m e n t .

A t th e f i r s t e x p e r i m e n t w e o b s e r v e f o l l o w in g r e s u l t s [F i g . 9] :

(a) W i t h th e i n c r e a s e o f i n p u t t e d p a ir s , th e a v e r a g e o f g e n e r a t e d t r e e s d e c r e a s e s m o n o t o n o u s ly l ik e

in th e e x p e r i m e n t for th e s i m p l e v e r s io n . B u t a t th e f i n a l s t a t e , th e e f f e c t o f r e d u c in g th e

n u m b e r o f t r e e s is l e s s t h a n t h a t o f th e s i m p l e v e r s i o n . (C o m p a r e w i t h A in F ig .3 ,8)

(b) When amount of inputted data are few, adverse effect of failing to generate a correct tree in the
modified version is less than that in the simple version. Furthermore the range of fluctuation
in the probability through this experiment is less than that in the simple version.

(c) When amount of inputted data is few, the probability of selecting a correct tree increases, which
is differ from the simple version. The probability at the final state is lower than that of the
simple version. (Compare with C in Fig.3,8)

A n d w e o b s e r v e f o l l o w i n g r e s u l t s [F ig . 10] a t th e s e c o n d e x p e r i m e n t :

(a) With increase of inputted data, the average of generated trees also decreases. This decrease is
more monotonous than that of the simple version, but the effect of suppressing trees is less
than that of the simple version. (Compare with A in Fig.4,9)

(b) The experiment under the simple version shows the sever decrease of the probability of
generating a correct tree, when inputted data is few. On the other hand, this experiment shows
little decrease of this probability even when inputted data is few. Moreover the final probability
is better than that of the simple version. (Compare with B in Fig.4,9)

(c) The decline of the probability of selecting a correct tree is very slight in comparison with the
simple version, when inputted data are few. The final probability by this modified version
slightly exceed that by the simple version. (Compare with C in Fig.4,9)

6. 3 Performance analysis for the ratio of acquired cooccurrence data
We define the proportion of cooccurrence data obtained through the learning by examples to the

cooccurrence data appearing in a parsed text as the ratio of acquired cooccurrence data. This section
describe the experiment which treats the relation between analysis performance and the ratio of
acquired cooccurrence data.

We choose 2,400 sentences for acquisition and six variations of sentence sets for analysis. Here,
each of six sets is not equivalent to the set for acquisition. At first, we measure the ratios of acquired
cooccurrence data for each of six sets, and measure performance for each of six sets with the use of
acquired cooccurrence data. By these measurement we obtain following prospective view through the

experiment.
When we compare, for each of those six sets, differences between the average of the number of

generated trees by the parser without cooccurrence data and that with cooccurrence data, the difference
-386- International Parsing Workshop '89

a t t r i b u t e s in e x i s t i n g nodes and, moreover, tnese a t t r ioutes usea are aepictea as functions of any
a t t r i b u t e s in a l l th e n o d e s .

T h e p r o g r a m o f m o d i f i e d v e r s i o n d e a l s w i t h c o o c c u r r e n c e d a t a a s b e l l o w ;

In th e p h a s e o f a c q u i s i t i o n , th e p r o g r a m d e c id e th e n a m e o f c o o c c u r r e n c e a n d th e n a m e s o f u sed

a t t r i b u t e s in th e c o o c c u r r e n c e , in a c c o r d a n c e w i t h th e d e s c r i p t io n o f a r e w r i t i n g ru le .

A c q u ir e d c o o c c u r r e n c e d a t a is j u d g e d s i m i l a r l y l ik e in th e p r e v io u s m e t h o d , a n d s t o r e d in to th r e e

c a t e g o r i e s l i k e in th e s i m p l e v e r s io n .

W e s h o w h o w th e m o d i f i e d v e r s i o n s o l v e s th e p r o b le m s [1] — [51 m e n t i o n e d in th e p r e v io u s s e c t io n

u t i l i z i n g f o l l o w in g e x a m p l e s .

Problem [1] : In th e r u le s s u c h a s T E X T - * C L E N D , w h ic h h a v e no c o o c c u r r e n c e th e r e s h o u l d be no

d e s c r i p t io n o f c o o c c u r r e n c e .

P r o b le m [2] : In th e r u le s s u c h a s N P - * N O U N , w h ic h t e n d to b e e a s i l y r e v i s e d th e c o o c c u r r e n c e

s h o u l d n o t be u t i l i z e d .
P r o b le m [3] : In th e r u le o f C L - » N P A D V V P , c o o c c u r r e n c e d a t a s h o u l d be d e s c r ib e d w i t h an

a t t r ib u t e o f N P a n d a n a t t r i b u t e o f V P , b e c a u s e w e c o n s i d e r c o o c c u r r e n c e r e la t io n e x i s t s b e t w e e n a

g o v e r n o r o f N P a n d a g o v e r n o r o f V P .

Problem [4] : W e s h o u l d d e c la r e th e s a m e c o o c c u r r e n c e in b o th r u le s o f C L - * N P A D V V P a n d C L ->

N P V P .
P r o b le m [5] : W h e n w e d e c la r e th e c o o c c u r r e n c e in th e r u le V P —*■ V P P P , w e s h o u l d c h o o s e the

g o v e r n o r o f V P , th e p r e p o s i t i o n o f P P , a n d th e g o v e r n o r o f th e P P a s th e e l e m e n t s o f th e c o o c c u r r e n c e .

M o d i f i c a t i o n [2] : U t i l i z a t i o n o f c o o c c u r r e n c e d a t a j u d g e d a s to b e a l w a y s c o r r e c t in s e l e c t i o n p h a s e .

In p r o b le m [6] w e p o in t e d o u t th e e f f e c t o f u s i n g c o o c c u r r e n c e d a t a j u d g e d a s to b e a l w a y s correct.

H e n c e , w e i m p l e m e n t n e x t p a r a d i g m :

W h e n a c o o c c u r r e n c e d a t a j u d g e d a s to b e a l w a y s c o r r e c t o c c u r s in a g e n e r a t e d t r e e o n t h e se le c t io n

p h a s e , t h e p a r s e r g i v e s th e t r e e a h i g h p r io r i t y for t h e s e l e c t i o n p u r p o s e .

M o d i f i c a t i o n [3] : A c q u i s i t i o n for c o o c c u r r e n c e d a t a is e x e c u t e d in 2 - p a s s e s .

T o s o l v e t h e p r o b le m [7] , w e m o d i f ie d th e p r o c e d u r e o f a c q u i r i n g c o o c c u r r e n c e d a ta . O n th e first

p a s s o f a c q u i s i t i o n , th e a c q u i s i t i o n o f c o o c c u r r e n c e is e x e c u t e d a s in th e p r e v i o u s v e r s i o n . A f t e r t h e end

o f th e f i r s t p a s s , th e m o d i f i e d p r o g r a m c l e a r th e b o t h s t o r a g e s o f ‘c o o c c u r r e n c e j u d g e d a s to be a lw a y s

c o r r e c t ’ a n d ‘c o o c c u r r e n c e j u d g e d a s to b e c o r r e c t a n d w r o n g s i m u l t a n e o u s l y . T h i s p r o g r a m e x e c u t e s the

a c q u i s i t i o n a g a i n f r o m t h e b e g i n n i n g o f in p u t t e d p a ir s w i t h t h e f i l t e r i n g b a s e d o n a c q u ir e d

c o o c c u r r e n c e .
In th e c a s e o f F i g .6 , i f t h e s e q u e n c e <3m u c h t i m e > i s j u d g e d a s to b e a l w a y s w r o n g a t th e e n d of

th e f i r s t p a s s o f a c q u i s i t i o n , a w r o n g t r e e in F i g . 6 c a n ’t b e g e n e r a t e d b y th e p a r s e r o n th e s e c o n d pass

o f a c q u i s i t i o n . F o r t h i s r e a s o n , th e s e q u e n c e <3 m u c h t i m e > i s n o t j u d g e d a s w r o n g in t h i s s e n t e n c e .

6. Acquisition and usage of cooccurrence data in the modified version
T h e r e s u l t t r e a t e d h e r e i s th e o n e for th e m o d i f i e d v e r s i o n . W e m a k e a n e x p e r i m e n t w i t h t h e same

e x a m p l e s e n t e n c e s a s u s e d fo r t h e s i m p l e v e r s i o n , b u t t h e u s e d g r a m m a r i s s l i g h t l y d i f f e r e n t . The

a u t h o r s b e l i e v e t h i s s l i g h t d i f f e r e n c e i s n e g l i g i b l e for th e c o m p a r i s o n w i t h th e s i m p l e v e r s i o n a n d the

m o d i f i e d v e r s i o n .

6.1 Experiment of acquiring cooccurrence data by the m odified version
A c c o r d i n g to t h e s a m e w a y o f t r e a t m e n t in th e s i m p l e v e r s i o n , w e m e a s u r e t h e n u m b e r o f each

s t o r e d c o o c c u r r e n c e d a t a for t h e m o d i f i e d v e r s i o n . T h e r e s u l t s h o w s e a c h s t o r e d d a t a increase

m o n o t o n o u s l y w i t h th e i n c r e a s e o f i n p u t t e d p a ir s . [F i g . 8]

T h e r e s u l t i s s i m i l a r to t h a t o f th e s i m p l e v e r s i o n in 3. 1. M o r e ' c o o c c u r r e n c e d a t a j u d g e d a s to be

a l w a y s c o r r e c t ’ a n d m o r e ‘c o o c c u r r e n c e d a t a j u d g e d a s to b e a l w a y s w r o n g a r e o b t a i n e d in th e m odifie

v e r s i o n t h a n in t h e s i m p l e v e r s i o n . T h i s m a y b e th e r e a s o n w h y o n e o r m o r e cooccu* r e n c e r e la t io n sn ip
-385- International Parsing Workshop 89

Figure 3 P erform ance of the sim ple version] [F igure 9 P erfo rm ance of the m odified version]
(Learmg sentences * Parsed sentences) (Learing sentences » Parsed sentences

Inputted pairs

[Figure 4 Performance of the simple version]
(Learing sentences =*= Parsed sentences)

Inputted pajrs

Figure 10 Performance of the modified version]
(Learing sentences =*= Parsed sentences)

Inputted pairs

Figure 8 Number of the three kinds of cooccurrence data

In Fig. 3 , 4 , 9 , 1 0

-o- Average of generated
trees per a sentence

-o- Probability of generating
a correct tree (%)

Probability of selecting
a correct tree (%)

♦ coo ccu rren ce d a ta judged a s to be alw ays correct
-*• coo ccu rren ce d a ta judged a s to be alw ays wrong - 388-

co o ccu rren ce d a ta judged a s to be correct an d wrong sim u ltaneously
International Parsing Workshop ’89

by th e h i g h e r r a t io t e x t t e n d s to be la r g e r th a n a lo w r a t io t e s t [F ig . 11]. A n d a h ig h e r r a t io t e x t te n d s

to h a v e l e s s a d v e r s e e f f e c t on th e p r o b a b i l i t y o f g e n e r a t i n g a c o r r e c t t r e e th a n a lo w e r r a t io te x t

[F ig . 12]. F u r t h e r m o r e a h i g h e r r a t io t e x t is l i k e l y to h a v e b e t t e r p r o s p e c t on th e p r o b a b i l i t y o f

s e l e c t i n g a c o r r e c t t r e e t h a n a lo w r a t io t e x t . [F ig . 13]

[Figure 11 Difference of the average of generated trees]
[Figure 12 Difference of the probability of generating a correct tree]
[Figure 13 Difference of probabiiity of selecting a correct tree]

Figur* 12Figur* 11 Figur* 13

a ~ • _

7. Conclusion
We observe cooccurrence data acquired by the modified version has less adverse effects on sentence

analysis than by the sim ple version under the circum stance of relatively few acquired data. Though we
consider sentences used in our experim ents are basic and lim ited, we may conclude information of
cooccurrence which human being has is very useful for acquiring cooccurrence relationships.

We conclude both of the sim ple version and the modified version are effective to suppress the
generation of unproper tree structures by a parser and to raise the probability of selecting proper

structures by a parser.
Authors believe in the modified version has more potential to learn cooccurrence by exam ples than

the sim ple version.
ACKNOWLEDGEMENT

The authors w '5^ to thank the members of Al laboratory in KDD Kam ifukuoka R&D Labs,
especially Tohru A sam i, Kazuo Hashim oto, and M asam i Suzuki for an earlier draft of this manuscript.
We also thank Dr. Ono, director of KDD Kamifukuoka R&D Labs, and Dr. Urano, deputy director for

giving a chance of our research and encouraging us.
REFERENCES

1. Anderson, J. : Introduction of Augm ented Transition N etw orks, Cognitive Science, 1, pp. 125-157

(1977).
2. Sakaki, H. et.a l : A Parsing method of Natural Language by F iltering Procedure, Transaction of

the IECE of Japan, E69, pp, 1114-1124 (1986).

-387- Intemational Parsing Workshop '89

I. Mutual Information

Church and Hanks (1989) discussed the use of the mutual information statistic in order to identify a
variety of interesting linguistic phenomena, ranging from semantic relations of the doctor/nurse type
(content word/content word) to lexico-syntactic co-occurrence constraints between verbs and prepositions
(content word/function word). Mutual information, I(x,y), compares the probability of observing word x
and word y together (the joint probability) with the probabilities of observing x and y independently
(chance).

rt \ i P (X , V)I(x;y) — log 2 —
P{x) P{y)

If there is a genuine association between x and y, then the joint probability P(x,y) will be much larger
than chance P{x) P(y), and consequently I(x\y) » 0, as illustrated in the table below. If there is no
interesting relationship between x and y, then P(x,y) ~ P(x) P{y), and thus, I(x\y) = 0 . If j: and y
are in complementary distribution, then P(x,y) will be much less than P(x) P{y), forcing I{x\y) « 0.
Word probabilities, P(x) and P(y), are estimated by counting the number of observations of x and y in a
corpus, f {x) and f i y) , and normalizing by N, the size of the corpus. Joint probabilities, P(x,y), are
estimated by counting the number of times that x is followed by y in a window of w words, f w{x,y),
and normalizing by N (w - l) .1

2. Phrasal Verbs

Church and Hanks (1989) also used the mutual information statistic in order to identify phrasal verbs,
following up a remark by Sinclair.

“ How common are the phrasal verbs with set! Set is particularly rich in making combinations
with words like about, in. up, out, on, off, and these words are themselves very common. How
likely is set off to occur? Both are frequent words; [set occurs approximately 250 times in a
m i l l i o n words and] off occurs approximately 556 times in a million words... [T]he question we
are asking can be roughly rephrased as follows: how likely is off to occur immediately after setl
... This is 0.00025 x0.00055 [P(jc> / ’(y)], which gives us the tiny figure of 0.0000001375 ...
The assumption behind this calculation is that the words are distributed at random in a text [at
chance, in our terminology]. It is obvious to a linguist that this is not so, and a rough measure
of how much set and off attract each other is to compare the probability with what actually
happens... Set off occurs nearly 70 times in the 7.3 million word corpus

1. The window size parameter allows us to look at different scales. Smaller window sizes will identify fixed expressions (idioms),
noun phrases, and other relations that hold over short ranges; larger window sizes will highlight semantic concepts and other
relationships that hold over larger scales.

*390- International Parsing Workshop ’89

Parsing,

Word Associations

and

Typical Predicate-Argument Relations

Kenneth Church
William Gale
Patrick Hanks
Donald Hindle

Abstract

There are a number of collocational constraints in natural languages that ought to play a more important
role in natural language parsers. Thus, for example, it is hard for most parsers to take advantage of the
fact that wine is typically drunk, produced, and sold, but (probably) not pruned. So too, it is hard for a
parser to know which veibs go with which prepositions (e.g., set up) and which nouns fit together to
form compound noun phrases (e.g., computer programmer). This paper will attempt to show that many
of these types of concerns can be addressed with syntactic methods (symbol pushing), and need not
require explicit semantic interpretation. We have found that it is possible to identify many of these
interesting co-occurrence relations by computing simple summary statistics over millions of words of
text. This paper will summarize a number of experiments carried out by various subsets of the authors
over the last few years. The term collocation will be used quite broadly to include constraints on SVO
(subject verb object) triples, phrasal verbs, compound noun phrases, and psychoiinguistic notions of
word association (e.g., doctor!nurse).

-389- Intemational Parsing Workshop '89

• to/in: alluding/vbg, adhere/vb, amounted/v bn, relating/vbg, amounting/vbg, revert/vb, re-
verted/vbn, resorting/vbg, relegated/vbn

• to/to: obligated/vbn, trying/vbg, compelled/vbn, enables/vbz, supposed/vbn, intends/vbz, vow-
ing/vbg, tried/vbd, enabling/vbg, tends/vbz, tend/vb, intend/vb, tries/vbz

Thus, we see there is considerable leverage to be gained by preprocessing the corpus and manipulating
the inventory of tokens.

4. Preprocessing with a Syntactic P arser

Hindle has found it useful to preprocess the input with the Fidditch parser (Hindle 1983) in order to ask
about the typical arguments of verbs. Thus, for any of verb in the sample, we can ask what nouns it
takes as subjects and objects. The following table shows the objects of the verb drink that appeared at
least two times in a sample of six million words of AP text, in effect giving the answer to the question
“ what can you drink?” Calculating the co-occurrence weight for drink, shown in the third column,
gives us a reasonable ranking of terms, with it near the bottom. This list of drinkable things is
intuitively quite good.

Object Frequency Mutual Information

<quantity> beer 2 12.34
tea 4 11.75
Pepsi 2 11.75
champagne 4 11.75
liquid 2 10.53
beer 5 10.20
wine 2 9.34
water 7 7.65
anything 3 5.15
much 3 2.54
it 3 1.25
<quantity> 2 1.22

A standard alternative approach to the classification of entities is in terms of a hierarchy of types. The
biological taxonomy is the canonical example: a penguin is a bird is a vertebrate and so on. Such “ is-
a” hierarchies have found a prominent place in natural language processing and knowledge
representation because they allow generalized representation of semantic features and of rules. There is
a wide range of problems and issues in using “ is-a” hierarchies in natural language processing, but two
especially recommend that we investigate alternative classification schemes like the one reported here.
First, "is-a” hierarchies are large and complicated and expensive to acquire by hand. Attempts to
automatically derive these hierarchies for words from existing dictionaries have been only partially
successful (Chodorow, Byrd, and Heidora 1985). Yet without a comprehensive hierarchy, it is difficult

-392- International Parsing Workshop '89

Some Interesting Associations with “ Doctor”
in the 1987 AP Corpus (N = 15 million; w = 6)

I(x; y) f(x, y) f(x) x fly) y

8.0 2.4 111 honorary 621 doctor
8.0 1.6 1105 doctors 44 dentists
8.4 6.0 1105 doctors 241 nurses
7.1 1.6 1105 doctors 154 treating
6.7 1.2 275 examined 621 doctor
6.6 1.2 1105 doctors 317 treat
6.4 5.0 621 doctor 1407 bills
6.4 1.2 621 doctor 350 visits
6.3 3.8 1105 doctors 676 hospital:
6.1 1.2 241 nurses 1105 doctors

Some Less Interesting Associations with “ Doctor”

-1.3 1.2 621 doctor 73785 with
-1.4 8.2 284690 a 1105 doctors
-1.4 2.4 84716 is 1105 doctors

[P(x,y) = 10/(1.3 106) » P(x) P(y)]. That is enough to show its main patterning and it
suggests that in currently-held corpora there will be found sufficient evidence for the description
of a substantial collection of phrases... (Sinclair 1987b, pp. 151-152)

It happens that set ... off was found 177 times in the 1987 AP Corpus of approximately 15 million
words, about the same number of occurrences per million as Sinclair found in his (mainly British)
corpus. Quantitatively, l(s e t\o ff) = 3.7, indicating that the probability of set ... off is 23-7 = 13 times
greater than chance. This association is relatively strong; the other particles that Sinclair mentions have
scores of: about (-0.9), in (0.6), up (4.6), out (2.2), on (1.0) in the 1987 AP Corpus of 15 million words.

j . Preprocessing the Corpus with a Part of Speech Tagger

Phrasal verbs involving the preposition to raise an interesting problem because of the possible confusion
with the infinitive marker to. We have found that if we first tag every word in the corpus with a part of
speech using a method such as Church (1988) or DeRose (1988), and then measure associations between
tagged words, we can identify interesting contrasts between verbs associated with a following
preposition to/in and verbs associated with a following infinitive marker to/to. (Part of speech notation
is borrowed from Francis and Kucera (1982); in = preposition; to = infinitive marker, vb = bare verb;
vbg = verb + ing; vbd = verb + ed; vbz = verb + s; vbn = verb + en.) The score identifies quite a
number of verbs associated in an interesting way with to\ restricting our attention to pairs with a score
of 3.0 or more, there are 768 verbs associated with the preposition to/in and 551 verbs with the infinitive
marker to!to. The ten verbs found to be most associated before to!in are:

-391- Intemationai Parsing Workshop '89

frequencies of frequences (the number of bigrams with count r). Then r*, the estimated expected value
of r in similar corpus of the same size, is

Nr +,
r* = NxE(Pr(x y)) = (r+1) — —

Nr

and the variance of r is

o 2(r) = N 2a 2(Pr(x y)) = r* (1 + (r +1) * - r*)

6. Just a Powerful Tool

Although it is clear that the statistics discussed above can be extremely powerful aids to a lexicographer,
they should not be overrated. We do not aim to replace lexicographers with self-organizing statistics;
we merely hope to provide a set of tools that could gready improve their productivity. Suppose, for
example, that a lexicographer wanted to find a set of words that take sentential complements. Then it
might be helpful to start with a table of t-scores such as:

t x_____________ y _

74.0 said that
50.9 noted that
43.3 fact that
41.9 believe that
40.7 found that
40.1 is that
40.0 reported that
39.5 adding that
38.6 Tuesday that
38.4 Wednesday that

It might be much quicker for a lexicographer to edit down this list than to construct the list from
intuition alooe. It doesn’t take very much time to decide that Tuesday and Wednesday are less
interesting than the others. Of course, it might be possible to automate some of these decisions by
appropriately preprocessing the corpus with a part of speech tagger or a parser, but it will probably
always be necessary to exercise some editorial judgment.

7. Practical Applications

The proposed statistical description has a large number of potentially important applications, including:

-394- Intemationai Parsing Workshop '89

to use such classifications in the processing of unrestricted text Secondly, for many purposes, even
knowing the subclass-superclass relations is insufficient; it is difficult to predict which properties art
inherited from a superclass and which aren’t, and what properties are relevant in a particular linguistic
usage. So for example, as noted above, despite the fact that both potatoes and peanuts are edible foods
that grow underground, we typically bake potatoes, but roast peanuts. A distnbution-based
classification, if successful, promises to do better at least on these two problems.

5. Significance Levels

If the frequency counts are very small, the mutual information statistic becomes unstable. This is the
reason for not reporting objects that appeared only once with the verb drink. Although these objects
have very large mutual information scores, there is also a very large chance that they resulted from some
quirk in the corpus, or a bug in the parser. For some purposes, it is desirable to measure confidence
rather than likelihood. Gale and Church have investigated the use of a t-score instead of the mutual
information score, as a way of identifying “ significant” bigrams.

The following table shows a few significant bigrams ending with potatoes, computed from 44 million
words of AP news wire from 2/12/88 until 12/31/88. The numbers in the first column indicate the
confidence in standard deviations that the word sequence is interesting, and cannot be attributed to
chance.

t X y

4 .6 sweet potatoes
4.3 ' mashed potatoes
4.3 * potatoes
4.0 and potatoes
3.8 couch potatoes
3.3 of potatoes
3.3 frozen potatoes

•
ooc4 fresh potatoes

2.8 small potatoes
2.1 baked potatoes

These numbers were computed by the following formula

t = E{Prjx y)) - E(Pr(x) Pr(y))

7 '-(x y)) + 0 2(?r(x) P r (y »

where E(Pr(x y)) and a 2(Pr(x y)) are the mean and variance of the probability of seeing word x
followed by word y. The means and variances are computed by the Good-Turing method (Good 1953).

Let r be the number of times that the bigram x y was found in a corpus of N words, and let N r be the

-393- Intemational Parsing Workshop '89

8. Alternatives to Collocation for Recognition Applications

There have been quite a number of attempts to use syntactic methods in speech recognition, beginning
with the ARP A speech project and continuing on to the present. It might be noted, however, that there
has not been very much success, perhaps because syntax alooe is not a strong enough constraint on
language use (performance). We believe that collocational constraints should play an important role in
recognition applications, and attempts to ignore collocational constraints and use purely syntactic
methods will probably run into difficulties.

Syntactic constraints, by themselves, though are probably not very important. Any psycholinguist knows
that the influence of syntax on lexical retrieval is so subde that you have to control very carefully for all
the factors that really matter (e.g., word frequency, word association norms, etc.). On the other hand,
collocational factors (word associations) dominate syntactic ones so much that you can easily measure
the influence of word frequency and word association norms on lexical retrieval without careful controls
for syntax.

There are many ways to demonstrate the relative lack of constraint imposed by syntax. Recall the old
television game show, “The Match Game,” where a team of players was given a sentence with a
missing word, e.g, “ Byzantine icons could murder the divine BLANK,” and asked to fill in the blank
the same way that the studio audience did. The game was ‘interesting’ because there are enough
constraints in natural language so that there is a reasonably large probability of a match. Suppose,
however, that we make our speech recognition device play the match game with a handicap; instead of
giving the speech recognition device the word string, “ Byzantine icons could murder the divine
BLANK,” we give the speech recognition device just the syntactic parse tree, [S [NP nn nns] [VP
[AUX md] v [NP at jj BLANK]]], and ask it to guess the missing word. This is effectively what we
are doing by limiting the language model to syntactic considerations alone. Of course, with this the
handicap, the match game isn’t much of a game; the recognition device doesn’t have a fair chance to

guess the missing word.

We believe that syntax will ultimately be a very important source of constraint, but in a more indirect*
way. As we have been suggesting, the real constraints will come from word frequencies and
collocational constraints, but these questions will probably need to be broken out by syntactic context.
How likely is it for this noun to conjoin with that noun? Is this noun a typical subject of that verb?
And so on. In this way, syntax plays a crucial role in providing the relevant representation for
expressing these very important constraints, but crucially, it does not provide very much useful
constraint (in the information theoretic sense) all by itself.2

2. Much of the work on language modeling for speech recognition has tended to concentrate on search questions. Should we still
be using Bates’ island driving approach (Bale* 1975), or should we try something newer such aa Tomita’s so-called generalized
LR(k) parser (Tomita 1986)? We suggest that the discussion should concentrate more on describing the facts, and less on how
they are enforced.

-396- International Parsing Workshop '89

• enhancing the productivity of lexicographers in identifying normal and conventional usage,

• enhancing the productivity of computational linguists in compiling lexicons of lexico-syntactic
facts,

• providing disambiguation cues for parsing highly ambiguous syntactic structures such as noun
compounds, conjunctions, and prepositional phrases,

• retrieving texts from large databases (e.g., newspapers, patents), and

• constraining the language model both for speech recognition and opucal character recognition
(OCR).

Consider the optical character recognizer (OCR) application. Suppose that we have an OCR device such
as (Kahan, Pavlidis, Baird 1987), and it has assigned about equal probability to having recognized
“ farm” and “ form,” where the context is either: (1) “ federal___credit” or (2) “ som e____of.” We
doubt that the reader has any trouble specifying which alternative is more likely. By using the following
probabilities for the eight bigrams in this sequence, a computer program can rely on an estimated
likelihood to make the same distinction.

,r y Observations per million words

federal farm 0.50
federal form 0.039
farm credit 0.13
form credit 0.026
some form 4.1
some farm 0.63
form of 34.0
farm of 0.81

The probability of the tri-grams can be approximated by multiplying the probabilities of the the two
constituent bigrams. Thus, the probability of federal farm credit can be approximated as
(0 .5x 10_6)x (0 .1 3 x 10"6) = 0 .0 6 5 x l0 -12. Similarly, the probability (or federal form credit can be
approximated as (0 .0 3 9 x l0 -6)x (0 .0 2 6 x l0 ~ 6) = O.OOlOxlO-12. The ratio of these likelihoods
shows that “ Caim” is (0 .0 6 5 x l0 ~ l2)/(0 .0 0 1 0 x l0 “ 12) = 65 times more likely than “ form” in this
context. In the other context, “ som e___of,” it turns out that “ form” is 273 times more likely than
“ farm.” This example shows how likelihood ratios can be used in an optical character recognition
system to disambiguate among optically confusable words. Note that alternative disambiguation
methods based on syntactic constraints such as part of speech are unlikely to help in this case since both
“ form” and “ farm” are commonly used as nouns.

-395- Intemational Parsing Workshop '89

Church, K., and Hanks, P., (1989), “ Word Association Norms, Mutual Information, and Lexicography,”
ACL Proceedings.

DeRose, S., “ Grammatical Category Disambiguation by Statistical Optimization,” Computational
Linguistics, Vol. 14, No. I, 1988.

Firth, J., (1957), “ A Synopsis of Linguistic Theory 1930-1955” in Studies in Linguistic Analysis,
Philological Society, Oxford; reprinted in Palmer, F., (ed. 1968), Selected Papers of JR. Firth,
Longman, Harlow.

Francis, W., and Kucera, H., (1982), Frequency Analysis of English Usage, Houghton Mifflin Company,
Boston.

Good, I. J., (1953), The Population Frequencies of Species and the Estimation of Population
Parameters, Biometnka, Vol. 40, pp. 237-264.

Hanks, P., (1987), “ Definitions and Explanations,” in Sinclair (1987a).

Harris, Z , (1968), “ Mathematical Structures of Language,” New York: Wiley.

Hirschman, L., Grishman, R., and Sager, N., (1975) “ Grammatically-based automatic word class
formation,” Information Processing and Management, 11, 39-57.

Hindle, D., (1983), “ User manual for Fidditch, a deterministic parser,” Naval Research Laboratory
Technical Memorandum #7590-142

Kahan, S., Pavlidis, T., and Baird, H„ (1987) “ On the Recognition of Printed Characters of any Font or
Size,” EEEE Transactions PAMI, pp. 274-287.

Sinclair, J., Hanks, P., Fox, G., Moon, R., Stock, P. (eds), (1987a), Collins Cobuild English Language
Dictionary, Collins, London and Glasgow.

Sinclair, J., (1987b), “ The Nature of the Evidence,” in Sinclair, J. (ed), Looking Up: an account of the
COBUILD Project in lexical computing, Collins, London and Glasgow.

Tomita, M., (1986), Efficient Parsing for Natural Language, Kluwer Academic Press.

-398- Intemational Parsing Workshop '89

9. Conclusion

In any natural language there are restrictions on what words can appear together in the same
construction, and in particular, on what can be arguments of what predicates. It is common practice in
linguistics to classify words not only on the basis of their meanings but also on the basis of their co­
occurrence with other words. Running through the whole Firthian tradition, for example, is the theme
that “ You shall know a word by the company it keeps” (Firth, 1957).

“ On the one hand, bank co-occurs with words and expressions such as money, notes, loan,
account, investment, clerk, official, manager, robbery, vaults, working in a, its actions. First
National, of England, and so forth. On the other hand, we find bank co-occurring with river,
swim, boat, east (and of course West and South, which have acquired special meanings of their
own), on top of the, and of the Rhine." (Hanks 1987, p. 127)

Harris (1968) makes this “ distributional hypothesis” central to his linguistic theory. His claim is that:
“ the meaning of entities, and the meaning of grammatical relations among them, is related to the
restriction of combinations of these entities relative to other entities,” (Harris 1968:12). Granting that
there must be some relationship between distribution and meaning, the exact nature of such a
relationship to our received notions of meaning is nevertheless not without its complications. For
example, there are some purely collocational restrictions in English that seem to enforce no semantic
distinction. Thus, one can roast chicken and peanuts in an oven, but typically fish and beans are baked
rather than roasted: this fact seems to be a quirk of the history of English. Polysemy provides a second
kind of complication. A sentence can be parsed and a sentence can be commuted, but these are two
distinct senses of the word sentence-, we should not be misled into positing a class of things that can be
both parsed and commuted.

Given these complicating factors, it is by no means obvious that the distribution of words will directly
provide a useful semantic classification, at least in the absence of considerable human intervention. The
work that has been done based on Harris’ distributional hypothesis (most notably, the work of the
associates of the Linguistic String Project (see for example, Hirschman, Grishman, and Sager 1975))
unfortunately does not provide a direct answer, since the corpora used have been small (tens of
thousands of words rather than millions) and the analysis has typically involved considerable
intervention by the researchers. However, with much larger corpora (10-100 million words) and robust
parsers and taggers, the early results reported here and elsewhere appear extremely promising.

References

Bates, M., “ Syntactic Analysis in a Speech Understanding System,” BBN Report No. 3116, 1975.

Chodorow, M, Byrd, R., and Heidom, G., (1985) “ Extracting semantic hierarchies from a large on-line
dictionary,” ACL Proceedings.

Church, K., (1988), “ A Stochastic Parts Program and Noun Phrase Parser for Unrestricted Text,”
Second Conference on Applied Natural Language Processing, Austin, Texas.

-397- International Parsing Workshop '89

Such a system can serve as the basis of a practical, linguistically-biased system using LFG and is a
prerequisite for an effective set of grammar writing rind debugging tools which operate at the level of LFG
itself. The parsing algorithm described here is intended for use in an automatic speech understanding
(ASR) system project (currently funded by the Royal Signals and Radar Establishment), where a data
driven strategy coupled with a strong TD predictive- capability is highly desirable.

-400- International Parsing Workshop '89

Unification Grammars

An Efficient, Primarily Bottom-Up Parser
for

Neil K. Simpkins and Peter J. Hancox
Applied Mathematics

Aston University
Aston Triangle

Birmingham, B4 7ET

Abstract
The search for efficient parsing strategies has a long history, dating back to at least the

Cocke/Younger/Kusami parser of the early sixties. The publication of the Earley parser in 1970 has had a
significant influence on context-free (CF) parsing for natural language processing, evidenced by the
interest in the variety of chart parsers implemented since then. The development of unification grammars
(with their complex feature structures) has put new life into the discussion of efficient parsing strategies,
and there has been some debate on the use of essentially bottom-up or top-down strategies, the efficacy
of top-down filtering and so on.

The approacn to parsing described here is suitable for complex category, unification-based grammars.
The concentration here is on a unification grammar which has a context-free backbone, Lexical-
Functional Grammer (LFG). The parser is designed primarily for simplicity, efficiency and practical
application.

The parser outlined here results in a high-level, but still efficient, language system without making a
requirement on the grammar/lexicon writer to understand its implementation details. The parsing
algorithm operates in a systematic bottom-up (BU) fashion, thus taking earliest advantage of LFQ’s

concentration of information in the lexicon and also making use of unrestricted feature structures to

realize LFG’s Top-Down (TD) predictive potential. While LFG can make special use of its CF backbone,
the algorithm employed is not restricted to grammars having a CF backbone and is equally suited to
complex-feature-based formalisms.

Additionally, the algorithm described (which is a systematic left-to-right (left comer) parsing algorithm)
allows us to take full advantage of both BU and TD aspects of a unificatin-based grammar without
incurring prohibitive overheads such as feature-structure comparison or subsumption checking. The use

of TD prediction, which in the Earley algorithm is allowed to hypothesize new parse paths, is here

restricted to confirming initial parses produced BU, and specializing these according to future (feature)
expectations.

-399- International Parsing Workshop '89

Score: see section 3.1, Computing Preferences, below.
Lexical Frame: see section 2.1, Text Lexicon, below.
Predictions and Requirements: grammatical predictions and constraints, both as found in the language

object itself and as synthesized from subordinated language objects (see section 2.1, Text Lexicon,
below).

Preceding and Remaining Text: the sentential context, or local sentence buffers; (preceding words are
needed to check on grammatical predictions and requirements that can be either forward or back­
ward in the sentence). When the remaining text is exhausted, the language object is a candidate
sentence representation.

Subordinated Language Objects: subordination refers to the way an NP is subordinated to a PP, an AP
is subordinated to an NP, and a phrase element is subordinated to the phrase head. A corresponding
label list holds labels associated with each stack element.

name: technician (string data type) filler a word from the text
type: word (string data type) filler WORD or phrase: NP,

AP, PP, VP, or CL (clause)
score: . 1.75 (short-floai data type) filler preference/priority value
frame: (POS . noun)

(SENSE . 0)
(GRAMMAR . noun/count)
(SEM-TYPE . human)
(PRAG . occupations)

(association List) filler a lexical semanuc frame
instantiated to some particular
word sense of the object named

requirement: ml (list of atoms) filler codes for grammatical
requirements from GRAMMAR slou

predicticn: nil (list of atoms) filler codes for grammatical
predictions from GRAMMAR slots

previous: (The) (list of words) filler, previous words in the sentence
remainder (measures

alternating
current
with an
ammeter)

(list of words) filler subsequent words in the sentence

cases: ml (list of labels) filler case and function labels
marking constituent relations

subordinate: nil (a LIFO stack of
language objects)

filler Language objects
that form the state of the parse
and are linguistically subordinate
to the current language object.

Fig. 1: Language object fo r "technician" (before coalescing).

1.2. Preference Machine Control
PREMO receives two inputs: a text to be parsed, and a lexicon of semantic objects specific to

that text. The algorithm of the preference machine, after loading the priority queue with scored
language objects for every sense of the first word in the sentence, is as follows (Fig. 2):
1. Delete-Max - retrieve the highest priority language object in the queue. (If the sentence buffer

for that object is empty then go to 8).
2. Get-Lexical - retrieve the list of sense frames associated with the first word in the sentence

buffer within the current language object
3. Make-Language-Object(s) - instantiate a new language object for every sense of the new word,

with an appropriate initial preference score.
4. Copy-Language-Object - create a copy of the current high priority language object to pair with

each new language object.
5. Coalesce - If more than a single grammar rule applies to the pair, copies of the pair are made.

Combine the pairs of language objects, subordinating one to the other.

-402- Intemational Parsing Workshop '89

PREMO: parsing by conspicuous lexical consumption-}-

Brian M. Slator* and Yorick Wilks

Computing Research Laboratory
Box 30001

New Mexico State University
Las Cruces, NM 88003-0001

ABSTRACT

PREMO is a knowledge-based Preference Semantics parser with access to a large, lexi­
cal semantic knowledge base and organized along the lines of an operating system. The
state of every partial parse is captured in a structure called a language object, and the
control structure of the preference machine is a priority queue of these language objects.
The language object at the front of the queue has the highest score as computed by a
preference metric that weighs grammatical predictions, semantic type matching, and
pragmatic coherence. The highest priority language object is the intermediate reading
that is currently most preferred (the others are still “ alive,” but not actively pursued);
in this way the preference machine avoids combinatorial explosion by following a
“ best-first” strategy for parsing. The system has clear extensions into parallel process­
ing.

1. Introduction
PREMO: The PREference Machine Organization, is an architecture, modelled as an operating sys­

tem, for parsing natural language. Each “ ready” process in the system captures the state of a partial
parse in a “ process control block” structure called a language object. The control structure is a priority
queue of competing parses, with priority given to each parse “ process” on the basis of a preference
semantics evaluation. The “ time-slice” for each process is whatever is needed to move forward one
word in a local process sentence buffer (where each process operates on a private copy of the current sen­
tence). After every time slice, the preference/priority for the currently “ running” parse is re-computed
and the language object for that process is returned to the priority queue. The first process to emerge
from the queue with its sentence buffer empty is declared the winner and saved This strategy is both a
run-time optimization and an application of the “Least Effort Principle” of intuitively plausible language
processing. The parsing is robust in that some structure is returned for every input, no matter how ill-
formed or “ garden-pathological” it is.

1.1. Language Object Structures
The basic data structure manipulated by the preference machine is called a language object (Fig. 1).

Each language object is a complex structure containing at least the following attributes:
Name and Type: every object name is a word from the text. Object type defaults to word until a word is

found to be part of phrase, then that object is changed to type phrase. The head of a phrase is the
language object with its co-members subordinated to it.

t This research w u supported by the New Mexico State University Computing Research Laboratory — grateful acknowledgement ts
accorded lo the members of the CRL Natural Language Group for their continuing interest and support.
• Present address: Department of Computer Science, North Dakou Sute University, Fargo, ND 58103.

-401- International Parsing Workshop '89

The PREMO grammatical formalism is non-standard, being not a phrase-structured produc­
tion system of rewrite rules but rather a phrase-triggered system of situation-action rules. The
Coalesce procedure lies at the heart of the PREMO algorithm. This routine accepts a pair of
language objects:

1. the current high priority language object as retrieved (and perhaps copied) from the priority
queue, and

2. a new language object representing a single word sense of the next word in the sentence
buffer of the current high priority language object

Every language object that is retrieved from the priority queue is of type phrase, and every new
language object created from the sentence buffer of the currently running parse is of type word. The
rules of the phrase grammar have a triple of symbols on the left hand side representing: (1) the
phrase type of the current high priority language object; (2) the phrase type of the language object
on the top of the stack of the current high priority language object; and (3) the syntactic category of
the newly created language object There are one or more triples of symbols on the right hand side
of each grammar rule specifying: (1) the phrase type of the new language object; (2) the action to
be performed on the new language object; and, (3) the location where the action is to take place
(Fig. 3).

2.2. Syntactic Structures

(phrase-type-A phrase-type-B category-C) => (phrase-type-D { operation l location x)
=> (phrase-type-O 2 operation2 location 2)
=> . . .

=> (phrase-type-D, operationH location*)
Fig. 3: The gloss for a generic grammar rule: if given a language object of phrase-cype-A, whose

top-of-stack language object is of phrase-type-B, and confronting a new language object
of grammatical category-C, then for each i from 1 to n, make a copy of the pair, change the

new language object copy into phrase-type-D,, and perform operationi
(either Sub, Push, or Subto), at locationt (within the New, Old, or Old-Sub language object).

The set of possible phrase types is limited, at present 10 these five: Adjective phrase, Noun
phrase, Prepositional phrase, Verb phrase, and Cause (a generic Other phrase type). Although
several action triples (all of which get executed), could appear on the right hand side of a rule, in
the current implementation no rule exceeds five action triples and most are three or less. Further,
the pan of speech set in the lexicon derived from LDOCE has 10 members: adjective, adverb, con­
junction, determiner, interjection, noun, predeterminer, preposition, pronoun, and verb. These three
facts conspire to give a limiting factor to the total size of the grammar rule seL

This grammar is a phrase (or constituent) grammar and not a sentence grammar. The parser
posits a sentence analysis only when its sentence buffer is consumed; until that point phrases are
constructed and coalesced with each other as they are encountered, without regard to sentence level
structure. The Coalesce decision is a syntactic one, with the resulting superordinate language
object effectively assuming the status of the head of the entire existing structure. Either the new
language object is inserted somewhere within the highest priority language object as a subordinate,
or the highest priority object is subordinated to the new object (Fig. 4). In the second case the new
object is effectively elevated to the status of superordinate, and it is this coalesced language object
that is inserted into the priority queue (with a suitably computed preference score).

-404- Intemational Parsing Workshop '89

6. Compute-Preference - assign a new priority score to each of the language objects resulting from
coalescing pairs.

7. Enqueue - insert the coalesced language objects onto the priority queue in preference score
order. Go to 1.

8. Inter-sentential Processes - save the language object at the front of the priority queue and flush
the queue. If there are no more sentences, return; otherwise, read the next sentence in the text
and load the priority queue with scored language objects for every sense of the first word in
the new sentence. Go to 1.

2. Global Data
Global system data structures include a text-specific lexicon, and a context structure derived

from Longman’s Dictionary of Contemporary English (LDOCE; Procter et al. 1978), and a phrase
grammar.

2.1. Text Lexicon
LDOCE is a full-sized dictionary in machine-readable form, designed for learners of English

as a second language, and containing several non-standard features (grammar, type, and pragmatic
codes). A PREMO sub-system produces text-specific lexicons from selected machine-readable dic­
tionary definitions (Wilks, Fass, Guo, McDonald, Plate and Slator, 1987, 1988, 1989). The input to
this sub-system is unconstrained text; the output is a collection of lexical semantic objects, one for
every sense of every word in the text. Each lexical semantic object in this lexicon contains gram­
matical and sub-categorization information, often with general (and sometimes specific) grammati­
cal predictions; content word objects also have semantic selection codes; and many have contextual
(pragmatic) knowledge as well. As a natural side-effect of the lexicon construction, a relative con­
textual score is computed for each object that bears such a code; these scores provide a simple
metric for comparing competing word senses for text-specific contextual coherence, and so directly
address the problem of lexical ambiguity. Besides exploiting those special encodings supplied with
the dictionary entries, the text of selected dictionary definitions are analyzed, through parsing and
pattern matching, to further enrich the resulting representation (Slator, 1988a, 1988b; Slator and
Wilks 1987, 1989).

-403- International Parsing Workshop '89

3.1. Computing Preferences
When a new language object is first created it receives a preliminary preference score. An ini­

tial value is given between 1.0 and 2.0 that depends on the word’s sense number (the lower the
word sense, the higher, closer to 2.0, the score). Immediately thereafter, various attributes of the
language object are evaluated and the initial score is adjusted. Adjustments to scores are either
“ minor,” “ standard,” or “ major” (in the current implementation these are 2%, 10%, and 50%
respectively), and can be in either direction. In the current implementation preliminary scores are
decreased in the case of an “ interjection” part of speech, or for an LDOCE time-and-frequency
code of “ archaic” or “ rare.” Preliminary scores are increased if the language object is for a
phrasal definition (such as “ alternating current”), or is for a closed class word, or if it makes a
grammatical prediction, or if it is a word with only a single sense definition. Finally, scores are
strongly influenced, in either direction, by the position of the word with respect to a restructured
pragmatic hierarchy computed for the text. For example, if the text has a scientific orientation then
the scientific senses of words are given preferential increases and the other senses of those words
are given decreased scores (such as the scientific senses, as opposed to the political and musical
senses, of “ measure”).

After the Coalesce decision has been made, and one language object has been subordinated
to the other, a new score is assigned to the result. These scores are computed according to the fol­
lowing criteria:
Predictions and Requirements: The lexical semantic frames have GRAMMAR slots that contain
predictions and requirements: some general and some specific. Some general codes mark nouns as
“ a countable noun followed by the infinitive with to," and others mark verbs as “ ditransitive and
followed by a that clause.” 1 There are also specific predictions: particular senses of “ sat” and
“ lay” predict an adverb or preposition, and particularly “ down.” And there are some absolute
requirements: one sense of “ earth” requires the article “ the.” These are collected and checked as
language objects are being coalesced, and subordinate predictions are “ synthesized” into their
superordinate language object Naturally, when a prediction is fulfilled the preference/priority is
increased; and when a prediction is made but not fulfilled, scores are decreased. The degree to
which scores are changed is still being experimented with, the currently implemented heuristic is to
effect larger changes for more specific predictions.
Subordination: When language objects are coalesced the current implementation awards minor
increases to pairings that follow a notion of natural order, for example, a Verb phrase subordinating
a Noun phrase is a natural event to expect, but an Adjective phrase subordinating a Verb phrase
less so. Both must be permitted, since it is possible to construct an example of either.
Semantic Matching: Content words in the text lexicon have semantic codes placing them in the
LDOCE type hierarchy (types like abstract, concrete, or animate). Nouns and adjectives have a
single code identifying their place in the hierarchy; verbs have 1, 2, or 3 codes identifying selection
restrictions on their arguments. Semantic matching is done, and scores are adjusted for semantic
coherence, whenever a pair of language objects are coalesced such that (1) an adjective (or a nomi­
nal) modifies a noun phrase head, or (2) a noun phrase is being attached as an argument to a verb,
or (3) a noun phrase is being attached as the object of a preposition, or (4) a prepositional phrase is
being attached as an argument to a verb. In the current implementation increases (but not decreases)
are computed as a function of distance in the type hierarchy. If a head prefers, say, an animate
argument and is presented with an abstract word sense, the increase will be quite small as opposed
to being presented with a competing human word sense.

3.2. Semantic Structures
When the Coalesce decision is being made, PREMO looks to see if one language object is

being subordinated to the other with a “ push” operation. If so, a new constituent is being started
and it is appropriate to affix a semantic label onto the subordinate object, since it is about to

1 Such as attempt in “ in attempt to climb the mountain,” and warn in “ He warned her (that) he would come.”

-406- International Parsing Workshop '89

B E F O R E

C O A L E S C I N G

OLD-
sue

SuO

pLD-
SUB-
SUS iuO

3LD-
SUB

(NELU SUB 0 L 0 I

T * # n « w

ooiec i
SuOOfdinat«S

oid
OD|*Ct.

suo

OLD-
SUB­
SUB suO

(NEUI SUB OLO-SUBI

3 5 i* c :
suoorainatt s !«• OK3-4UO
0 0 | « C I .

ncw

SuO

OLO-
SUB

SUO ■

(NEW PUSH OLD)

T h » " « w

o o n c t >
Ousn»d omo

oid
3 0 l « C t j

stac*

CXD

SUD *

OLD-
SUB-
SUB suO

OUD-
SUB

(NELU PUSH
OLD-SUB)

n«w
oOiect ts
Dosn»d onto
in* oid-suo
o o n c i ' s
slack

(NEUI SUB-TO
OLO-SUB)

OLD-
SUB­
SUB suO

Fig. 4: PREMO Coalesce Operations

At any given point in a parse, there will always be a language object construed as the head of
the parse, whichever language object has the superordinate status, of the pair being coalesced, will
become the head as per the rules of the grammar (where status is generally a reflection of the usual
syntactic dominance, with PP’s dominating NP’s, and VP’s dominating everything).

3. Preference Semantics
PREMO is a know ledge-based Preference Semantics parser (Wilks 1972, 1975a, 1975b,

1978), with access to the large, lexical semantic knowledge base created by the PREMO lexicon-
provider subsystem. Preference Semantics is a theory of language in which the meaning for a text
is represented by a complex semantic structure that is built up out of smaller semantic components;
this compositionality is a fairly typical feature of semantic theories. The principal difference
between Preference Semantics and other semantic theories is in the explicit and computational
accounting of ambiguous, metaphorical, and non-standard language use.

The links between the components of the semantic structures are created on the basis of
semantic preference and coherence. In text and discourse theory, coherence is generally taken to
refer to the meaningfulness of text Fass (1987) suggests that in NLP work such as Preference
Semantics the notions of “ satisfaction” and “ violation” (of selection restrictions or preferences)
and the notion of “ semantic distance” (across structured type hierarchies) are different ways of
characterising the meaningfulness of text; they capture different coherence relations. The original
systems of Preference Semantics (Wilks 1972, 1975a, 1975b, 1978), were principally based on the
coherence relation of “ inclusion” (semantic preferences and selection restrictions); the emphasis in
PREMO is more on the coherence relation based on semantic distance, although the original
notions of coherence also survive.

In Preference Semantics the semantic representation computed for a text is the one having the
most semantically dense structure among the competing “ readings.” Semantic density is a property
of structures that have preferences regarding their own constituents, and satisfied preferences create
density. Density is compared in terms of the existence of preference-matching features, the lack of
preference-breaking features, and the length of the inference chains needed to justify each sense
selection and constituent attachment decision. The job of a Preference Semantics parser, then, is to
consider the various competing interpretations, of which there may be many, and to choose among
them by finding the one that is the most semantically dense, and hence preferred.

-405- International Parsing Workshop '89

code carried by technician.

Iteration 4: The language object [VP'.measures] with its subordinated language object
[N technician,The] on the top of its stack, is popped from the queue and the 4 senses of alternate,
along with the language object for the phrasal alternating current, are instantiated; 5 copies of
['VP:measures] are then created and paired with them. Phrasal objects are preferred by PREMO,
and nothing occurs to outweigh that preference. The question to be decided is which of these two
readings should be preferred;

4. (VP NP noun) => ((NP push old) <or> (NP sub old-sub))
that is, does alternating current represent the start of a new NP constituent, or is it the new head of
the ongoing top-of-stack NP constituent (in this case [NP:technician,The]). The semantic code car­
ried by alternating current is abstract-physical-quality which is a poor match with the human of
[NP:technician,The] but a good match with the second argument code of [VP-.measure], which is
abstract. Therefore the new NP constituent reading receives the better preference/priority score
and assumes the position at the head of the PQ. However, first a label must be attached to the NP
constituent that is about to disappear from the top-of-stack as a result of the “ push” operation. In
this case, since the verb prefers and receives a human subject, this NP is labelled “ Agentive.”
Iterations 5-11: The high priority language object on the front of the PQ is ['V?:measures] which
now subordinates both {NP:technician,The] and [NP:alternating current]. The continuation of the
sentence buffer in [VP:meayure.s] is now with an ammeter. The next several iterations are con­
cerned with pushing a PP onto the subordinate stack of \yP:measures] and then subordinating
\N?:ammeter,an] as the object of the PP. The current implementation recognizes 3 senses of the
preposition with representing the ACCOMPANIMENT, POSSESSION, and INSTRUMENT cases.
Each of these is coalesced with [NP:ammeter,an] and pushed onto the subordinate stack of
[VP'.measures]. The INSTRUMENT reading is preferred on the basis of semantic matching
between the selection restriction code on the object of the preposition, which is concrete, and the
semantic code for ammeter, which is movable-solid.
Iteration 12: The final iteration retrieves the language object for the [VP-.measures] from the front
of the PQ and finds the sentence buffer is empty. It is at this point that the case label marking the
top-of-stack element (which is [PP:wt'//i,[NP:<3mmererlan]]), as the INSTRUMENT case is actually
affixed. This language object is then saved as the interpretation of sentence (1), the queue is flushed
and PREMO reads whatever sentence text follows, or if none follows, PREMO ends.

4.1. Toward Solving a Hard Problem
Two contrasting methods of word sense selection have been described here. The earlier

method was first explored by the Cambridge Language Research Unit, beginning in the mid-1950s.
This method performed a global analysis, (Mas term an 1957, as described in Wilks, 1972), that
relied on a thesaural resource. This method was good at choosing word senses coherent with the
other words in the text, by using a system of looking to the sets of words found under common
thesaural heads, and performing set intersections. The problem is that the less “ coherent” word
senses are missed and so, for example, in a physics text only the scientific sense of mass will
chosen and, therefore, the word mass in the phrase mass of data will come out wrong in that text.

The other method is Preference Semantics that performs a local analysis that relies on seman­
tic type markers. This method is good at choosing word senses that best fit with other words in a
sentence, by using a system of matching and comparing among the various primitive elements that
make up the meanings of words. The problem is that this can be fooled into preferring word senses
that only seem to be best. The standard example, attributed to Phil Hayes, is the following.
(2) A hunter licked his gun all over and the stock tasted good.

In this example, the challenge is to choose the correct sense of stock. The problem is that the
local evidence supplied by the verb to taste points towards the “ stock as soup” reading, which is
wrong. Granted, this is something of a pathological example, but it is famous and it captures the
flavor of the objection.

-408- Intemational Parsing Workshop '89

disappear under the new top-of-stack. These labels identify the functional or semantic relations that
hold between a language object and its superordinate. The LDOCE hierarchies, in conjunction with
the lexical semantic frame contained within each language object, and the “ frame enriching” pro­
cedures developed for the lexicon are brought to bear at this point (Slaior and Wilks, 1987, 1989);
as well as the hand-coded definitions for prepositions that we must admit to creating since LDOCE,
from our point of view, does not include useful case information in their preposition definitions.

Every sentence in a text is eventually represented by a single language object. These
language objects are named for the word seen to be the head of the dominating phrase in the sen­
tence, and are of type phrase (and presumably of phrase type VP, in the usual grammatical case).
Each of the subordinated phrases in the sentence is stacked within this superordinate language
object, along with a corresponding relation label.

4. PREMO Example
Consider the following sentence:

(1) The technician measures alternating current with an ammeter.
First PREMO loads the lexicon specific to this text, which contains 26 frames for content

words. These 26 frames are: alternate (3 adjective senses, 1 verb sense), ammeter (1 noun sense),
current (3 adjectives, 4 nouns), measure (8 nouns, 3 verbs, 1 adjective), technician (1 noun sense),
and the phrase “ alternating current” (1 noun sense). LDOCE defines about 7,000 phrases.
PREMO performs a contextual analysis by appeal to the pragmatic codes as organized into a spe­
cially restructured hierarchy. This results in the various Science and Engineering word senses
receiving increased preference/priority scores while most other word senses receive decreased
scores. This context setting mechanism is discussed at length in Slator (1988a, 1988b), Slator and
Wilks (1987, 1989) and Fowler and Slator (1989).

Then, PREMO initializes the priority queue (PQ) with language objects for both the adverbial
and definite determiner senses of The (the first word in the sentence), at which point the loop of the
algorithm in section 1.2, Preference Machine Control is entered. In the first iteration the deter­
miner is instantiated as an Adjective phrase [AP'.The], as is the adverb reading, according to the
rules of the grammar. The analysis of sentence (1) requires a total of 12 iterations through this loop.
Notice that sentence (1) is 336-way ambiguous if just the number of senses of polysemous content
words are multiplied out (a ltern a ted , times current=l, times measurc=\2, equals 336), and that
that number grows to 1008 if the three cases of with are included.
Iteration 2: The PQ contains three language objects for The, of which the definite determiner is
slightly preferred. This object is popped from the queue, and the next word in its sentence buffer,
technician is retrieved from the lexicon and instantiated as a language object There is only a sin­
gle sense of technician and only a single grammar rule action for the situation:

1. (AP nil noun) => (NP sub old).
This means technician becomes an NP with the determiner The subordinated to it
{NP'.technician.The]. This act of coalescing results in a minor increase being assigned to
VSP'.technician.The], and it returns to the priority queue.
Iteration 3: The language object [NP:technician,The] is popped from the queue and the 11 senses
of the next word in its sentence buffer, measure, are instantiated; then 11 copies of
[N’P'.technician.The] are created and paired with them. The two major grammar competitors during
this iteration are:

2. (NP AP noun) => (NP sub old)
3. (NP AP verb) => (VP sub old)

that is, measures as a noun becoming the new head of [NP:technician,The], as opposed to measures
as the head of a verb phrase taking \N?:technician,The) as an argument.

The criteria for comparing these readings (and the fact that PREMO prefers the second, VP
analysis), reduces to the fact that the noun measures carries an abstract semantic code which does
not match well with the human semantic code carried by technician; while the verb measures car­
ries a human selection restriction for its first argument, which matches exactly with the semantic

-407- International Parsing Workshop '89

PREMO analysis for text (4) Current can be measured.

((measured VP 4.757666S0 "v" '’0300" (ENFL SUBJECT))
(((be VP 4.077573S0 "v" ’’0008" (INFL))

((can VP 3.028026s0 ”v" ”0100" nil)))
(■Current NP2.763158S0 "n" ”0100" nil)))

PREMO analysis for The geographer measures river basin flow near a lake.

((measures VP 4.354593S0 "v" ”0100" (LOCATIVE OBJECT 1 AGENTIVE))
(((near PP 2.406232S0 "prep” ”0000" (OBJECT1))

(((lake NP 2.719298S0 "n" "0000" (DET))
((a AP 0.9075S0 "indefinite" "0100" nil)))))

(Cflow NP 1.433986S0 ”n" ”0500" (KIND-OF))
(((river*basin NP 2.178159S0 "n" "0000" (DET))

((the AP 0.9982499S0 "definite" "0100" nil)))))
((geographer NP 1.693873S0 "n" "0000" (DET))
((The AP 0.9982499S0 "definite" "0100" nil)))))

Fig. 5: PREMO Analyses for Texts (3) and (4).

The ocher two language objects displayed both show the first sense of measure each with
three language objects on the subordinate stack. In each case these subordinate language object con­
stituents represent the AGENT (technician and geographer), and the OBJECT (alternating current
and river basin flow), of the measuring action. Text (3) also has a prepositional phrase attached in
the INSTRUMENT case while text (4) has a prepositional phrase attached in the LOCATIVE case.

In spite of this success, the problem of mediating the tension between global and local
sources of information is still not completely solved. PREMO assumes text coherence and so while
Preference Semantics provides a naturally local sort of analysis procedure these local effects can be
overcome by appeal to global context. However, it is still possible to find examples, such as text (2)
above, that do not have any context (a common situation in the computational linguistics literature,
where space constraints and custom preclude long examples). And in the absence of this global
information PREMO will not perform any better than any other system of analysis. That is, if text
(2) were embedded in a longer exposition about hunters and guns, then the probability is high that
the correct sense of stock would be chosen. If however, text (2) were embedded in an exposition
about food and cooking, PREMO would almost certainly get this wrong. And in the absence of
context PREMO will choose the “ soup stock” reading because the notion of gun stocks having a
taste is not one that finds much support in a system of semantic analysis.

5. Comparison to Other Work
The original Preference Semantics implementations (Wilks 1972, 1975a, 1975b, 1978),

operated over a hand coded lexicon of semantic formulae. Input strings were segmented into
phrases beforehand, and coherence was essentially a matter of counting “ semantic ties” inferred by
pattern matching between formulae. PREMO operates over a machine-readable lexicon that is at
once much broiler and shallower than the original. To make up for this, preference scoring in
PREMO is much more finely grained and takes more into account (grammatical predictions, prag­
matic context, etc.). If anything, PREMO is grammatically weaker than the original work, while
being more robust in the sense that syntactic anomalies and ill-formed input are processed the same
as anything else.

A group at Martin Marietta (Johnson, Kim, Sekine, and White, 1988; White 1988), built a
language understander based on Preference Semantics, but modified by their own interpretation of
Wilks, Huang, and Fass (1985). Their NLI system is frame-based and much of the system’s
knowledge resides in the lexicon, which is constructed by hand. The parsing process is separated

-410- Intemational Parsing Workshop '89

PREMO attempts to tackle these contrasting analysis problems by bringing together both glo­
bal and local information. To demonstrate this, consider the analysis of the following two short
texts. The first is familiar from the example in Section 4, above.
(3) Current can be measured.

The technician measures alternating current with an ammeter.
The following text is intended to parallel the first one.
(4) Current can be measured.

The geographer measures river basin flow near a lake.

The point at issue is choosing the correct sense of current in each case. In text (3) it is the
engineering/electrical sense that should be chosen. In text (4), however, it is the geology-and-
geography sense of current that is correct. In the absence of other evidence, the geology-and-
geography sense is the one most systems would choose, since this is the more common usage of
the word in the language (and the lowest numbered word sense in LDOCE, which reflects this
notion of default preference). And since most systems have no notion of global text coherence,
most would get the wrong sense of current in text (3) at first reading. It is conceivable that the
sense selection for current could be corrected after further text has been processed, but few if any
systems attempt this, and it is far from obvious how this should be done in general. PREMO gets
both of these texts right, by choosing the correct sense of current in each case, and making all of
the other word sense and attachment decisions (see fig. 5).

In Fig. 5, each line element represents a condensation of a language object. Language objects
are complex items which this diplay merely summarizes. The form of these displays is as follows:

(<name> <phrase-type> <score> <part-of-speech> <sense-number> <stack-labels>)
and the lower language objects are on stacks, as indicated by their indentations. And so, the first
language object reads as this: the third sense of the verb measure (the linking verb sense), has two
elements on its subordinate stack, one marked as a verb inflection (the language object for be.
which itself has a language object on its internal stack marking verb inflection, the language object
for can), and the other stack element (note, the second sense of current), marked as the subject of
the measuring. The third language object in Fig. 5 has the identical interpretation, except that the
subject of the measuring is the first sense of current rather than the second.

PREMO analysis for text (3) Current can be measured.

(Cmeasured VP 4.855569S0 "v" "0300" (INFL SUBJECT))
(((be VP 4.197S0 "v" "0008" (INFL))

((can VP 3.174O81S0 "v" "0100" nil)))
(Current NP 2.985294S0 "n" "0200" nil)))

PREMO analysis for The technician measures alternating current with an ammeter.

((measures VP 4.68685S0 "v" "0100" (INSTRUMENT OBJECT1 AGENTTVE))
(((with PP 3.726117S0 "prep" "0000" (OBJECT1))

(((ammeter NP 2.814706S0 "n" "0000" (DET))
((an AP 1.815S0 "indef "0000" nil)))))

(alternating*current NP 3.838235S0 "n" "0000" nil)
((technician NP 0.8368717S0 "n" "0000" (DET))
((The AP 0.9982499S0 "definite" "0100" nil)))))

-409- Intemational Parsing Workshop '89

References

B o g u r a e v , B ranim ir K (1 9 7 9) . Automatic Resolution of Linguistic Ambiguities. University o f Cambridge Computer
Laboratory Technical Report. (No.l 1). Cambridge, UK: University of Cambndge Computer Laboratory.

C a r te r , D avid M. (1984). An Approach to General Machine Translation Based on Preference Semantics and I Focuss­
ing. Proceedings o f the 6th European Conference on A l (ECA1-S4), pp. 231-238. Pisa, Italy.

C a r te r , David M. (1987). Interpreting Anaphors i/i Natural Langikige Texts. Chichester, UK: Ellis Horwood.

Fass, D an C. (1986). Collaiive Semantics: An Approach to Coherence. Computing Research Laboratory Memorandum.
(MCCS-86-56). Las Cruces, NM: New Mexico Slate University.

Fass, Dan C. (1987). Semantic Relations, Metonymy, and Lexical Ambiguity Resolution : A Coherence-Based Account.
Proceedings o f the 9th Annual Cognitive Scunce Society Conference, pp. 575-586. Seattle, WA: University of Wash­
ington.

Fass, D an C. (1988). An Account of Coherence, Semantic Relations, Metonymy, and Lexical Ambiguity Resolution. In Lex­
ical Ambiguity Resolution in the Comprehension o f Human Language. Edited by Steve L. Small, Gary W. Cottrell,
and Michael K Tanenhaus. pp. 151-178. L®» Altos, CA: Morgan Kaufmann.

Fow uer, R ich a rd H. an d B rian M. S l a TOR (1989). Information Retrieval and Natural Language Analysis. Proceedings of
the 4th Annual Rocky Mountain Conference on Artificial Intelligence (RMCAI-89), pp. 129-136. Denver, CO. June
8-9

H uang, XlUMING (1984). A Computational Treatment of Gapping, Right Node Raising and Reduced Conjunction. Proceed­
ings o f the lOlh International Conference on Computational Linguistics (C 0U N G -S4), pp. 243-246. Stanford, CA.

H uano, Xiuming (1988). XTRA: The Design and Implementation of A Fully Automatic Machine Translation System. Com­
puting Research Laboratory Memorandum. (MCCS-88-121). Las Cruces, NM: New Mexico State University.

Johnson , He d i. G. Kim, Y. Sekjnb, a n d John S. W hite (1988). Application of Natural Language Interface to a Machine
Trans;iUon Problem. Proceedings o f the Second International Conference on Theoretical and Methodological Issues
in Machine Translation. Pittsburgh, PA. June.

M aste rm an , M. (1957). The Thesaurus in Synux and Semantics. Mechanical Translation, 4, 1-2.

PROCTER, P a u l Et A l. (1978). Longman Dictionary o f Contemporary English (LDOCE). Harlow, Essex, UK: Longman
Group Limited.

SlaTOR, B rian M. (1988a). Constructing Contextually Organized Lexical Semantic Knowledge-Bases. Proceedings o f the
Third Annual Rocky Mountain Conference on Artificial Intelligence, pp. 142-148. Denver, CO. June, 13-15.

SlaTOR, B rian M. (1988b). Lexical Semantics and a Preference Semantics Analysis. Memoranda in Computer and Cognitive
Science. (MCCS-88-143). Lai Cruces, NM: Computing Research Laboratory, New Mexico State University. (Doc­
toral Duse nation).

S l a to r , B rian M. (1988c). PREMO: the PREference Machine Organization. Proceedings o f the Third Annual Rocky Moun­
tain Conference on Artificial Intelligence, pp. 258-265. Denver, CO. June, 13-15.

S l a t o r , B rian M. a n d Y o rjcx A. W ilks (1987). Towards Semantic Structures from Dictionary Entries. Proceedings o f the
Second Annual Rocky Mountain Conference on Artificial Intelligence, pp. 85-96. Boulder, CO. Also as CRL Memo
MCCS-87-96.

S l a t o r , B rian M. a n d Y o rjcx A. W u u (Forthcoming - 1989). Towards Semantic Structures from Dictionary Entries. In
Linguistic Approaches to Artificial Intelligence. Edited by Andreis Kunz and Ulrich Schmitz. Frankfurt: Peter Lang
Publishing House. Revision of RMCAI-87 and CRL-MCCS-87-96.

W h i t e , John S. (1988). Advantages of Modularity in Natural Language Interface. Proceedings o f the Third Annual Rocky
Mountain Conference on Artificial Intelligence, pp. 248-257. Denver, CO. June, 13-15.

W ilk s, Yoftiac A. (1972). Grammar, Meaning, and the Machine Analysis o f Language. London: Rootled ge and Keg an Paul.

W ilks, Yowck A. (1975a). An Intelligent Analyzer and Understander of English. Communications o f the ACM, 18, 5, pp.
264-274. Reprinted in "Readings in Natural Language Processing," Edited by Barbara J. Grosz, Karen Sparck-Jones
and Bonnie Lynn Webber, Lo* Altos: Morgan Kaufmann, 1986, pp. 193-203.

W ilks, Y o ricx A. (1975b). A Preferential Pattern-Seeking Semantics for Natural Language Inference. Artificial Intelligence,
6. pp. 53-74.

W ilks, Y o rjcx A. (1978). Making Preferences More Acrive. Artificial Intelligence, 11, pp. 75-97.

W ilk s, Y o rjcx a ., D an C. F ass, C heng-M ing Guo, James E. M c d o n a ld , T ony P la te , a n d B ria n M S l a t o r (1987). A
Tractable Machine Dictionary as a Resource for Computational Semantics. Proceedings o f the Workshop on Natural
Language Technology Planning, Sepc 20-23. Blue Mountain Lake, NY. Also as CR L Memo MCCS-87-105. To
appear in "Computational Lexicography for Natural Language Processing." Brammir K Boguraev and Ted Briscoe
(Eds.). Harlow, Essex, UK: Longman. 1988

-412- International Parsing Workshop '89

into three autonomous modules: BuildRep (a constituent parser), Validate (a sort of constituent
filter), and Unify (which incrementally builds a semantic structure from validated constituents).
The principle differences between their system and PREMO lies in their criteria for abandoning
non-productive paths (their domain constraints allow them to prune on the basis of semantic
implausibility), and in their lack of a high level control structure (it is possible in there system for
every parse to be abandoned and nothing returned).

Preference Semantics has also been used for parsing by Boguraev (1979), Carter (1984,
1987), and Huang (1984, 1988). However, this work uses a conventional parsing strategy in which
syntax drives the parsing process depth-first and Preference Semantics is used within a semantics
component that provides semantic verification of syntactic constituents. PREMO has a more flexi­
ble, more breadth-first parsing strategy in which syntax, semantics, and pragmatics interact more
freely. The Meta5 semantic analyzer of Fass (1986, 1987, 1988), based on the system of Collative
Semantics, which extends Preference Semantics, operates over a rich hand-coded lexicon comprised
of a network of “ sense frames.’’ The principal goal of this system is to identify and resolve meta­
phorical and metonymous relations and, with its rich semantic knowledge base, Meta5 is able to
produce deep semantic analyses which are quite impressive, although constrained to a somewhat
narrow range of examples.

6. Discussion
PREMO employs a uniform representation at the word, phrase, and sentence levels. Further,

at every step in the process there is a dominating language object visible; that is, there is always a
“ well-formed partial parse” extant. This gives an appealing processing model (of a language
understander that stands ready to accept the next word, whatever it may be), and a real-time flavor,
where the next word is understood in the context of existing structure. PREMO intentionally
exploits everything that LDOCE offers, particularly in the area of grammatical predictions, and also
in terms of the TYPE hierarchy as given, and the PRAGMATIC hierarchy as restructured, as well
as extracting semantic information from the text of definitions.

One of the PREMO design principles is “ always return something” and that policy is
guaranteed by keeping every possibility open, if unexplored (this is the PREMO approximation to
back-tracking). Another design principle is to cut every conceivable comer by making “ smart”
preference evaluations. The potential remains however, for worst case performance, where the
preference/priority scores work out so that every newly coalesced pair immediately gets shoved to
the bottom of the priority queue. If this happens the algorithm reduces to a brute search of the
entire problem space.

By exploiting the operating system metaphor for control, PREMO inherits some very attrac­
tive features. First, PREMO avoids combinatorial explosion by ordering the potential parse paths
and only pursuing the one that seems the best. This is antithetical to the operating system principle
of “ fairness,” a point where the metaphor is intentionally abandoned in favor of a scheme that has
some faint traces of intuitive plausibility. The competition between parses, based as it is on the
tension between the various preference/priority criteria is vaguely reminiscent of a “ spreading
activation” system where the various interpretations “ fight it out” for prominence. The PREMO
architecture is, of course, utterly different in implementation detail, and it is not at all obvious how
it could be equivalently converted, or that this metaphor is even a fruitful one. Second, the operat­
ing system metaphor is an extendible one; that is, it is possible to conceive of PREMO actually
being implemented on a dedicated machine. Further, since the multiplication factor at each cycle
through the algorithm is small (in the 40-60 range for the near-worst case of 10-12 word senses
times 4-5 applicable grammar rules), and since each of these pairings is independent, it is easy to
imagine PREMO implemented on a parallel processor (like a Hypercube). Each of the pairs would
be distributed out to the (cube) processing elements where the coalescing and preference/priority
scoring would be done in parallel.

-411- Intemational Parsing Workshop '89

W o ju , Y o rjcx A., D an C. Fass, C heno-M ino G uo, James E. M c d o n au j, T oky P la te , a n d B rian M. S l a t o r (1988).
Machine Tractable Dictionaries u T00L1 and Resources for Natural Language Processing. Proceedings of the 12 th
International Conference on Computational Linguistics (COUNG-88). Budapest, Hungary. Aug. 22-27.

W u c s , Y orjcx A., D an G Fass, Cheno-M ino G uo, James E. M c d o n a ld , T ony P la te , an d B rian M S l a t o r (Forthcom­
ing - 1989). Providing Machine Tractable Dictionary Tools. In Theoretical and Computational Issues in Lexical
Semantics. Edited by James Pustejovsky. Cambridge, MA: MIT Press.

W m cs, Y o rjcx A., Xutmino H uano, a n d D an C. Fass (1985). Syntax, Preference, and Right Attachment Proceedings of
IJCA1S5, 2, pp. 779-784. Los Angeles, CA.

-413- International Parsing Workshop ’89

A — > B C (1)
are used to combine horizontally adjacent regions. In addition, rules like

B
A --> (2)

C
can be used in the 2-dimensional context-free grammar to combine vertically adjacent regions.

A region can be represented with a non-terminal symbol and 4 positional parameters: x, y, X and Y,
which determine the upper-left position and the lower-right position of the rectangle (assuming that the
coordinate origin is the upper-left corner of the input text).

Horizontally adjacent regions, (B, x8, yB, x B, Ys) and (C, x,., yc , Xc , Yc), can be combined only if
• yB - yc.
• YB = Yc , and

• X B = Xq .

The first two conditions say that B and C must have the same vertical position and the same height, and
the last condition says that B and C are horizontally adjoining.

Similarly, vertically adjacent regions, B and C, can be combined only if
• x0 = xc ,

• Xg 3 Xq, and

• yb = /c-
A new region, (A, xB, yB, Xc , Yc), is then formed. Figure 1-1 shows examples of adjacent regions, and
figure 1-2 shows the results of combining them using rules (2) and (1).

B

C

Figure 1-1: Examples of Adjacent Regions

Let Q be a 2D-CFG (N, I , PH> Pv, S), where

N: a set of non-terminal symbols
I : is a set of terminal symbols
PH: a set of horizontal production rules
Pv : a set of vertical production rules
S: start symbol

Let LEFT(p) be the left hand side symbol of p. Let RIGHT(p, i) be the i-th right hand side symbol of p.
Without loss of generality, we assume each rule in PH is either in the form of

A — > B C or A — > b

-415- Intemational Parsing Workshop '89

Parsing 2-Dimensional Language
Masaru Tomita

Computer Science Department
and

Center for Machine Translation
Carnegie-Mellon University

Pittsburgh, PA 152131

Abstract

2-Dimensional Context-Free Grammar (2D-CFG) for 2-dimensional input text is introduced and efficient
parsing algorithms for 2D-CFG are presented. In 2D-CFG, a grammar rule's right hand side symbols can
be placed not only horizontally but also vertically. Terminal symbols in a 2-dimensional input text are
combined to form a rectangular region, and regions are combined to form a larger region using a 2-
dimensional phrase structure rule. The parsing algorithms presented in this paper are the 2D-Ear1ey
algorithm and 2D-LR algorithm, which are 2-dimensionally extended versions of Earley’s algorithm and
the LR(O) algorithm, respectively.

1. In troduction
Existing grammar formalisms and formal language theories, as well as parsing algorithms, deal only

with one-dimensional strings. However, 2-dimensional layout information plays an important role In
understanding a text. It is especially crucial for such texts as title pages of artldes, business cards,
announcements and formal letters to be read by an optical character reader (OCR). A number of projects
[1 1 ,6 ,7 ,2], most notably by Fujisawa et al. [4], try to analyze and utilize the 2-dimensional layout

information. Fujisawa et al., unlike others, uses a procedural language called Form Definition Language
(FDL) [5, 12] to specify layout rules. On the other hand, in the area of image understanding, several
attempts have been also made to define a language to describe 2 -dimensional images [3 , 10].

This paper presents a formalism called 2-Dimensional Context-Free Grammar (2D-CFG), and two
parsing algorithms to parse 2-dimensional language with 2D-CFG. Unlike all the previous attempts
mentioned above, our approach is to extend existing well-studied (one dimensional) grammar formalisms
and parsing techniques to handle 2-dimensional language. In the rest of this section, we informally
describe the 2-dimensional context-free grammar (2D-CFG) in comparison with the 1-dimensional
traditional context-free grammar.

Input to the traditional context-free grammar is a string, or sentence; namely a one-dimensional array of
terminal symbols. Input to the 2-dimensional context-free grammar, on the other hand, is a rectangular
block of symbols, or text, namely, a 2-dimensional array of terminal symbols.

In the traditional context-free grammar, a non-terminal symbol represents a phrase, which is a
substring of the original input string. A grammar rule is applied to combine adjoining phrases to form a
larger phrase. In the 2 -dimensional context-free grammar, on the other hand, a non-terminal represents a
region, which is a rectangular sub-block of the input text. A grammar rule is applied to combine two
adjoining regions to form a larger region. Rules like

1Th» research was supported by the National Science Foundation under contract IRI-8858085.

-414- International Parsing Workshop ’89

Method:
For each p € PHu P v such that LEFT(p) = S, add an item (p, 0, 0, 0, n, m) to /00.

For each item (p, d, x, y, X, Y) in lY],
If d = |p|, do COMPLETOR
If RIGHT(p, d+1) e N, do PREDICTOR
If RIGHT(p, d+1) e I , do SHIFTER

PREDICTOR: For all q € P h a P v such that LEFT(q) = RIGHT(p, d+1), add an item (q, 0, i, j, X, Y) to

V
SHIFTER: If a j+1 j+1 = RIGHT(p, d+1), and if i<X a j<Y, then add an item (p, d+1, i, j, X, j+ 1) to /|+1 y

COMPLETOR: For all items (p\ d \ x’, y', X’, Y’) in such that RIGHT(p’, d’+1) = LEFT(p), do the
following:

• Case 1.- pe PHAp’e PH — Add an item (p\ d’+1, x’, y’ X’, Y) to /jjt if Y’-Y v d’=0.

• Case 2. p e Pva p ’ g Ph —- Add an item (p\ d’+1, x’, y’ X’, Y) to /Xy, if Y’-Y v d'-O.

• Case 3. pe PHAp’ e Pv —- Add an item (p\ d’+1, x’, y’ X, Y’) to /xY, if X’-X v d’-O.

• Case 4. p € PVAp’ e Pv Add an item (p\ d’+1, x\ y’ X, Y) to /ij(H X’-X v d’-O.

(1) S — > A A (3) B — > b b b
c d

(2) A — > B (4) C - - > c
C

(5) C - - > d

Figure 2-1: Example Grammar and Text

-417- Intemational Parsing Workshop '89

Figure 1-2: After applying rule (2) and (1), respectively

and each rule in Pv is in the form of

a — > B
c

Where A,B,C € N and b € I . This form of grammar is called 2-dimensional Chomsky Normal Form
(2D-CNF), and an arbitrary 2D-CFG can be converted into 2D-CNF. The conversion algorithm is very
similar to the standard CNF conversion algorithm, and we do not describe the algorithm in this paper.

The subsequent two sections present two efficient 2D parsing algorithms: 2D-Ear1ey and 2D-LR.

2. The 2D -E arley Parsing A lgorithm

Input:
2D-CFQ G = (N, I , PH, Pv , S) and an input text

a n * 21 *nl
*12 *22 *n2

*lm *2» *nm
where a ̂ e I .

O utput:
A parse table

ôo îo n̂O

/,j is a set of items and each item is (p, d, x, y, X, Y), where p is a rule in PH or Pv, d is an integer to
represent its dot position (0 < d < |p|, where |p| represents the length of p’s left hand side). The integers
x and y represent the item’s origin (x,y) or the upper-left comer of the region being constructed by the
item. The integers X and Y represent its perspective lower-right comer, and the parser’s horizontal
(vertical) position should never exceed X (Y) until the item is completed.

-416- Intemational Parsing Workshop '89

3. The 2D-LR Parsing Algorithm
A 2D-LR(0) parsing table consists of three parts: ACTION, G O TO -R IG HT and G OTO -DOW N. Figure

3-1 is a 2D-LR(0) table obtained from the grammar in Figure 2-1.

ST ACTION GOTO-RIGHT GOTO-DOWN

b c d $ s A B C S A B C

0 sh3 8 1 4
1 sh3 2 4
2 rel rel rel rel
3 r«3 re3 re3 re3
4 sh6 sh7 5
5 re2 re2 re2 re2
6 re4 re4 re4 re4
7 ro5 re5 ro5 re5
8 acc

Figure 3-1: A 2D-LR Parsing Table

As in Standard LR parsing, the runtime parser performs shift-reduce parsing with a stack guided by this

2D-LR table. Unlike standard LR(0), however, each item in the stack is represented as (s, x, y, X, Y),
where s is an LR state number, and (x,y) represents the current position in the input text. X and Y
represent right and lower limits, respectively, and no positions beyond these limits should ever be
explored until this state is popped off the stack.

Initially the stack has an item (0, 0, 0, n, m), where n and m are the number of columns and rows in the

input text, respectively.

Now let the current elements in the stack be

... (S31 Ygi Xg, Y^) B2 (^2» * 2’ y2' ^ 2’ ^ 2) (®1 » * 1» y v ^ 1 '
where the right most element is the top of the stack. Also assume that the current input symbol aij is b,
where i » x ^ 1 and j = y ,+ 1 . According to the parsing table, we perform SHIFT, R EDUCE or ACCEPT.

SHIFT:
If A C TIO N (s1, b) = sh s0, then if x1 < X 1 a y 1 < Y v push b and (s0, x ^ l , y1t X v y ^ l) onto the stack.

REDUCE:
If A C TIO N (s1, b) * re p, then let k be |p|+1 and do the following:

• Case 1. p e PH and G O T O -R IG H T ^ , LEFT(p)) = s0 — If YM * Y 1 then pop 2#|p| elements
from the stack, and push LEFT(p) and (s0, xv yv X^ Y t).

• Case 2. p e PH and G O TO -D O W N(sk, LEFT(p)) = s0] — If YM * Y 1 then pop 2*|p| elements
from the stack, and push LEFT(p) and (s0, x ,̂ Y 1f xv Yk).

• Case 3. p e Pv and G O TO -R IG H T(sk, LEFT(p)) = s0 — It Xk_t * X 1 then pop 2#|p| elements
from the stack, and push LEFT(p) and (s0, X v yk, X^ y ^ .

• Case 4. p e Pv and G O TO -D O W N (sk, LEFT(p)) - s0 — If Xk.1 - X 1 then pop 2*|p| elements
from the stack, and push LEFT(p) and (s0, xv y v X v Yk).

Figure 3-2 shows an example trace of 2D-LR parsing with the grammar in Figure 2-1.

-419- International Parsing Workshop ’89

3 - - > A A 0, 0, 2, 2 |

A — > B 0, 0, 2, 2
C

B — > b 0, 0, 2, 2

B — > b 0, 0, 2, 1

S - - > A A 0 , 0 , 2, 2

A - - > B 1 , 0 , 2 , 2
C

B — > b 1 , 0 , 2 , 2

B - - > b 1 , 0 , 2 , 1

S — > A A 0 , 0 , 2 , 2

A —

C

C

> .B
C

0, 0, 1, 2 I C — > c

■> c 0 , 1 , 1 , 2 |
I

•> d 0 , 1 , 1 , 2 |

■> . B
C

■> c

■> d

0,1,1,2
1 , 0 , 2 , 2

1,1,2,2
1 , 1 ,2,2

C — > d 1 , 1 , 2 , 2

------------ c-----------
I

0, 0, 1, 2 | A — > B
I .c

A — > B
.C

1 , 0 , 2 , 2

Figure 2-2: An Example of 2D-Ear1ey Parsing

-418- International Parsing Workshop '89

A 1 --> c
A2 — > BI A1 BI

A3 -
B2

-> A2
B2

A4 — > Cl A3 Cl

A1 -
C2

-> A4
C2

ccccc
bbb cbbbc

c bcb cbcbc
bbb cbbbc

ccccc

bbbbbbb
bcccccb
bcbbbcb
bcbcbcb
bcbbbcb
bcccccb
bbbbbbb

BI — > b

Bl — > BI
b

B2 — > b
B2 — > b B2 b

START — > A1

ccccccccc
cbbbbbbbc
cbcccccbc
cbcbbbcbc
cbcbcbcbc
cbcbbbcbc
cbcccccbc
cbbbbbbbc
ccccccccc

Cl - - > Cl
c

C2 --> c
C2 — > c C2 c

ccccccccccccc
cbbbbbbbbbbbc
cbcccccccccbc
cbcbbbbbbbcbc
cbcbcccccbcbc
cbcbcbbbcbcbc
cbcbcbcbcbcbc
cbcbcbbbcbcbc
cbcbcccccbcbc
cbcbbbbbbbcbc
cbcccccccccbc
cbbbbbbbbbbbc
ccccccccccccc

Figure 4-1: Example Grammar I

> M 1 1 V c Bl — > b Cl — > c
A2 — > Al Bl b

Bl — > Bl Cl -->
c
Cl

A3 — >
B2
A2 B2 — > b C2 — > c

A4 — > Cl A3 B2 — > b B2 C2 — > c
Al — > A4 START — > Al

C2

cbbbb
ebb ccbbb

c ccb cccbb
ccc ccccb

ccccc

cbbbbbb
ccbbbbb
cccbbbb
ccccbbb
cccccbb
ccccccb
ccccccc

cbbbbbbbb
ccbbbbbbb
cccbbbbbb
ccccbbbbb
cccccbbbb
ccccccbbb
cccccccbb
ccccccccb
ccccccccc

cbbbbbbbbbbbb
ccbbbbbbbbbbb
cccbbbbbbbbbb
ccccbbbbbbbbb
cccccbbbbbbbb
ccccccbbbbbbb
cccccccbbbbbb
ccccccccbbbbb
cccccccccbbbb
ccccccccccbbb
cccccccccccbb
ccccccccccccb
ccccccccccccc

Figure 4-2: Example Grammar II

-421- Intemational Parsing Workshop '89

(0,0,0,2,2)
(0,0,0,2,2) b (3,0,1,2,1)
(0,0,0,2,2) B (4,0,1,1,2)
(0,0,0,2,2) B (4,0,1,1,2) c (6, 1, 1, 1, 2)
(0,0,0,2,2) B (4,0,1,1,2) C (5, 0, 2, 2, 2)
(0,0,0,2,2) A (1,1,0,2,2)
(0,0,0,2,2) A (1, 1,0,2,2) b (3,2,0,2, 1)
(0, 0, 0, 2, 2) A (1, 1, 0, 2, 2) B (4,1,1,2, 2)
(0,0,0,2,2) A (1,1,0,2,2) B (4,1.,1,2, 2)
(0,0,0,2,2) A (1,1,0,2,2) B (4,1,1,2, 2)
(0,0,0,2,2) A (1,1,0,2,2) A (2,2,0,2,2)
(0,0,0,2,2) S (8,2,0,2,2)

Figure 3-2: Example Trace of 2D-LR Parsing

4. More Interesting 2D Grammars
This section presents a couple of more interesting example grammars and texts. Example Grammar I

generates nested rectangles of b’s and c’s, one after the other. In the grammar, B1 represents vertical
bars (sequences) of b’s, and B2 represents horizontal bars of b’s. Similarly, C1 and C2 represent vertical
and horizontal bars of c’s, respectively. A1 then represents rectangles surrounded by c’s. A2 represents
rectangles surrounded by c’s which are sandwiched by two vertical bars of b’s. A3 further sandwiches A2
with two horizontal b bars, representing rectangles surrounded by b’s. Similarly, A4 sandwiches A3 with
two vertical c bars, and A1 further sandwiches A4 with two horizontal c bars, representing rectangles

surrounded by c’s.

A similar analysis can be made for Grammar II, which generates triangles of b’s and c’s.

Grammar III generates all rectangles of a's which have exactly 2 b’s somewhere in them. Xn
represents horizontal lines of a s with n b’s. Thus, XO, X1 and X2 represent lines of a ’s, keeping track of
how many b’s are inside. Yn then combines those lines vertically, keeping track of how many a’s have
been seen thus far (n being the number of b’s). Therefore, Y2 contains exactly two b’s.

The example given in this section is totally deterministic. In general, however, a 2D-LR table may have
multiple entries, or both G O TO -D O W N and G O TO -R IG H T may be defined from an identical state with an

identical symbol. Such nondeterminism can also be handled efficiently using a graph-structured stack as

in Generalized LR Parsing [8 , 9].

-420- Intemational Parsing Workshop '89

5. Concluding Remarks
In this paper, 2D-CFG, 2-dimensional context-free grammar, has been introduced, and two efficient

parsing algorithms for 2D-CFG have been presented. Traditional one-dimensional context-free grammars
are well studied and well understood (e.g. [1]), and many of their theorems and techniques might be
extended and adopted for 2D-CFG, as we have done in this paper for Earley’s algorithm and LR parsing.

-423- Intemational Parsing Workshop '89

XO — > [ampty] YO — > [empty] Y2 — > YO
X2

xo — > XO a YO — > YO
xo Y2 — >

XI — > xo b
YI — > YO

XI --> XI a XI Y2 — >

X2 — > XI b YI --> YI
XO START -

X2 — > X2 a
a aa aaaaaaaa aaa aaaaaaa
a ab aaaaaaaa aaa aaaabaa
a aa aaaaaaaa bba aabaaaa
a aa aaaaaaab aaa

aaa
aia
aaa

XI

XO

Figure 4-3: Example Grammar III

-422- Intemational Parsing Workshop '89

References

[1] Aho, A. V. and Ullman, J. D.
The Theory of Parsing, Translation and Compiling.
Prentice-Hall, Englewood Cliffs, N. J., 1972.

[2] Akiyama, T. and Masuda, I.
A Method of Document-Image Segmentation Based on Projection Profiles, Stroke Density and

Circumscribed Rectangles.
Trans. IECE J69-D (8):1187-1196, 1986.

[3] K. S. Fu.
Syntactic Pattern Recognition.
Springer-Verlag, 1977.

[4] Fujisawa, H. et al.
Document Analysis and Decomposition Method for Multimedia Contents Retrieval.

. Proc. 2nd International Symposium on Interoperable Information Systems :231, 1988.

[5] Hlgashino, J., Fujisawa, H., Nakano, Y. and Ejiri, M.
A Knowledge-Based Segmentation Method for Document Understanding.
Proc. 8th Int. Conf. Pattern Recognition :745-748, Oct., 1986.

[6] Inagaki, K., Kato, T., Hiroshima, T. and Sakai, T.
MACSYM: A Hierarchical Image Processing System for Event-Driven Pattern Understanding of

Documents.
Pattern Recognition 17(1):85-108, 1984.

[7] Kubota, K. et al.
Document Understanding System.
In Proc. 7th Int. Conf. Pattern Recognition, pages 612-614. , 1984.

[8] Tomita, M.
Efficient Parsing for Natural Language.
Kluwer Academic Publishers, Boston, MA, 1985.

[91 Tomita, M.
An Efficient Augmented-Context-Free Parsing Algorithm.
Computational Linguistics 13(1 -2):31 -46, January-June, 1987.

[10] Watanabe, S. (ed.).
Frontiers o f Pattern Recognition.
Academic Press, 1972.

[11] Wong, K., Casey, R. and Wahl, F.
Document Analysis System.
IBM J. Research and Development 26(6):647-656, 1982.

[12] Yashiro, H. et.al.
A New Method of Document Structure Extraction.
In International Workshop on Industrial Applications of Machine Intelligence and Vision (MIV-89),

pages 282. , April, 1989.

-424- Intemational Parsing Workshop '89

is small. Only rcduccd, streamlined feature information is available in each entry; subcat­
egorization, or valency, information is not distinguished by word senses.

2. The second dictionary access (for reattachment) consults a far richcr sourcc than before. For
English, we make central use of online dictionary entries -- both their definitions and their
example sentences. W7 and the Longman Dictionary o f ('nntcmporary English (LDOCE) are
available to us. We can parse the definitions and examples with PEG, and use the syntactic
information that PEG provides in order to bootstrap our way into semantics. The amount
of information per word obtainable during this second access is huge -- much greater than what
is typically described, even for lexicalist systems.

3. The third access (for paragraph modeling) again includes full natural language text. Since this
component is only at a very early stage, there is not much to be said about it. We envision a
NL knowledge base that contains information from every available sourcc, from word lists to
dictionaries and beyond, to encyclopedias.

It is interesting that the purposes of the separate components divide so neatly along linguistic levels:
syntax, semantics, discourse. We do not mean to insist that the ultimate version of this system
would need to have its components so cleanly divided. Neither has separation of the components
been done for reasons of theoretical elegance or symmetry, but simply because the necessities of
broad-coverage NLP have brought it about.

1. A syntactic sketch: PEG

PEG is an augmented phrase structure grammar which has been useful in a number of different
settings - text critiquing and machine translation, to name two. PP.G's significant characteristics
include:

• binary rules, in most cases (Jensen 1987);
• a wealth of conditions on the operation of the rules - conditions that range from those that

are strongly general, and express real grammatical patterns of the language, to those that are
quite specific, and are intended to filter out certain semantically anomalous parses;

• a "relaxed" or "textual" approach to parsing, which means that we consistently avoid the use
of selectional ("semantic ") information to condition the parse, and that we also try, in so far
as possible, to avoid, or at least to soften, the use of subeatcgorization (valency) information
for that purpose. We assume, for example, that almost any verb can have a sense which will
fit almost any frame; and that almost any noun might be used as an argument to almost any
verb; and that the job of a computational parsing grammar is not to separate grammatical and
ungrammatical sentences, but to provide the most reasonable analysis for any input string.
The system is certainly able to distinguish grammatical from ungrammatical input, but this can
be done by commenting on, rather than by failing to accept, an ungrammatical string.

The lexicon that supports this initial syntactic parse started out, in 1981, as a list of all the main
entries in W7 - minus, of course, morphological variants that could be productively described by
rules. W7 claims to have 130,000 entries; after morphological variants were subtracted, the list
contained 63,850 entries. That number has been increased from time to time; it now stands at
roughly 70,000. As stated earlier, the goal of this lexicon is to supply useful syntactic information
for every word of the language, including neologisms.

Because it contains so many entries, this lexicon provides very broad coverage. However, for each
entry it contains only very limited information. The information is for parts of spcech, morphology
(tense, number, etc.), and word class features (transitive, ditransitivc, factive, ctc.). The features arc
mostly binary (present or absent), but include some lists, such as lists of verbal particles.

Word class features are valency features -- granted. But both the presentation and the use of these
features are different from what is described for most other parsing systems. First, no attempt is
made to specify the nature of the valency arguments. Second, although different parts of speech for
a single word arc listed and marked separately, all other sense distinctions, within each part of
speech, arc collapscd. One Icxical item might have many, often contradictory, feature markings.
The word "go," for example, appears in the lexicon as follows:

-426- International Parsing Workshop '89

A Broad-coverage Natural Language Analysis
System

Karen Jensen
IBM

April, 1989

0. Introduction

This paper discusses the components of our broad-covcrage natural language analysis system, as
they appear at this time.

A broad-coverage goal requires a robust and flexible natural language processing base, one that is
adaptable to linguistic needs and also to the exigencies of computation. The Programming l a n ­
guage for Natural language Processing (PLNLP: lleidorn |9 72) is well suited for this task.
PLNLP provides a general programming capability, including a rule-writing formalism and algo­
rithms for both parsing ("decoding") and generation ("encoding'). Although linguistic scholarship
and linguistic intuitions motivate our system strongly, we have chosen not to commit our compu­
tational formalism to any of the reigning linguistic theories. To quote Ron Kaplan:

the problem is that, at least in the current state o f the art, (linguists) don t k n o w which generalizations
and restrictions are really go ing to be true and correct, and which nre cither accidental , uninteresting
or false. T h e data just isn t in... (K aplan 1985. p. 5)

So our work is experimental, descriptive, and data-driven. This docs not mean that it has no the­
oretical implications. Any functioning unit of this size is an embodiment of some theory. The
theory behind this program of grammar development just hasn't l>ccn thoroughly articulated yet.

The system that is emerging has, so far, three components:

1. The PLNLP English Grammar (PF.G) makes an initial syntactic analysis for each input sen­
tence (Jensen 1986).

2. ['he reattachmcnt component takes syntactically consistent, but semantically inaccurate,
parses, and then reattaches constituents, when ncccssary, based on information gained from a
rich semantic data base (Jensen and Binot 1987).

3. I lie paragraph modelling component rcccivcs sentence parses and, for connected text, builds
them into logically consistent and coherent models of the chunks of discourse that arc typically
called paragraphs (Zadrozny and Jensen 1989).

Iland-in-hand with each of these components goes a separate dictionary .access.

1. The first dictionary acccss (for PFG) is to a lexicon that is essentially just a glorified word list.
However, it is a word list that, when couplcd with morphological rules and a default strategy
provided by the acccss mechanism, aims at supplying an entry for every word of the language,
including neologisms. We started with the full online W chuer'i Seventh New Collegiate. Dic­
tionary (W7). Wc have modified this word list somewhat, but (inly to enlarge it -- never to
reduce its scopc Although th* word coverage is great, the amount of information per word

-425- Intemational Parsing Workshop ’89

to o t h e r record s . F o r e x a m p l e , the v a lu e o f the P R M O D S a t tr ih u tc is a p o in te r to the n o u n p h ra se
(N P 1) w h ic h c o v e r s the n o u n " g eo m etry ."

A l l o f th e a n a ly s i s in f o r m a t io n is carr ied in th e r eco rd s tru c tu re . F o r c a se o f r e c o g n i t io n , h o w e v e r ,
w e a lso d i sp la y a va r ia n t o f th e s ta n d a r d parse tree:

NP1 N0UN1* "geometry"
VERB 1* If * fl

I S

NP2 DETP1 ADJ1* "a"
AJP1 AVPl ADV1*

ADJ2* "old"
N0UN2* f t . »» science

PUNC1 »» ii

Figure 2. Parse tree for the same sentence

Note that the start node presents the value of the SFGTYP2 attribute from Fig. I, plus a number
(each node is numbered for easy reference). The other, fairly standard, node names are the values
of the SCGTYP2 attributes in their corresponding records. Trees are produced by a routine that
uses just five attributes from the record structure: PRMODS, I IFAD, PSMOOS, SFGTYP2, and
STR. Since such a tree is conventionally said to depict phrase- or constitucnt-structurc, it might
be said that these five attributes make up the constituent structure for the parse.

More than constituent structure is contained in the records, however. During the operation of the
grammar rules, attributes arc assigned that point to subject, object, indirect objcct, predicate
nominative, etc. In other parlance, these might be assigned by "...a function that goes from the
nodes of a tree into f-structure space" (Kaplan 1985, p. II). Figure I shows two examples, SUB­
JECT and PRFDNOM. Such attributes, and their values, could be said to present the functional
structure. The TOPIC of the sentence is also computed, based on some exploratory work done in
Davison 1984. Other attributes will be added during further processing, and these attributes will
define higher levels of analysis. Progress in the analysis seems not to involve jumping between
levels, but rather a smooth accumulation (and sometimes an erasing) of attributes and values.

Now, some people might object that the same analysis could be obtained by using subcategori­
zation frames (together, perhaps, with sclcctional features on NPs), cither as conditions on the rules
or, within a lexicalist framework, as statements within the dictionary, to be honored by the rules.
According to this way of thinking, we would control multiple parses by exercising valency infor­
mation, not by ignoring it. From experience, we have found this to be a dangerous path, for several
reasons. The most forceful reason is that real text (at least, real FngJish text) just does not behave
in the well-disciplined fashion that such specifications would require. If we really want to do
broad-coverage parsing, then we have to be prepared for many imaginative uses of words to occur;
and strict subcategorization docs not allow for that.

Strict subcategorization cxpccts, for example, that verbs will occur in well-defined contexts. "Give"
should be cither transitive or ditransitivc, surely not intransitive. Hut what about the sentence I
gave at the office"? It's no good saying that there is an "understood" NP; if the computational
grammar depends on the prcscncc of at least one objcct in contcxt, then this sentence will fail to
parse. And even though there arc subcatcgorizational differences between "go" and "know" (by our
own earlier definitions), it is possible to use go" with a //^/-complement, as in:

I said, no. And then he goes, "See you later."

or with a w/i-complcmcnt, as in:

We'll go whatever amount (i.e., bail) is necessary.

These real-life facts of language tend in one direction: stated in extreme form, any word can, and
might, be used in any contcxt. Rut to mark every verb in the tcxicon with every possible subcat-

-428- International Parsing Workshop '89

go(NOUN SING)
go(VFRB COPL INF PLUR PRFS I RAN)

The first definition of "go," as a SINGular NOUN, collapses’two difTcrent noun entries for "go" in
W7. One is the Japanese game; the other has seven subsenses, including 'the act or manner of
going"; 'the height of fashion"; etc. The definition of "go" as a VF.RB collapses 19 intransitive or
COPLulative senses (e.g., "to go crazy"), and six TRANsitivc senses (e.g., to eo his wav," "to 20
bail for").

TTie word "Tcnow" also has two entries:

know(NOUN SING)
know(VF,RB INF NPTOV PLUR PRFS TTIATCOMP I RAN WIICOMP)

This means that "know" can he a singular noun ("in the know") or a verb. If it is a verb, besides
being INFinitive, PLURal, and PRFSent, it might he expected, with fair frequency, to have one
of the following complementation types:

NPTOV: We know him to he a good man.
TIIATCOMP: We know that he is here.
TRAN: We know him.
WIICOMP: We know what he wants.

The great advantage to this collapsing strategy (affectionately known as "smooshing") is that it helps
to avoid multiple parses in a simple, straightforward way. And this is no trivial accomplishment:
a broad-coverage, bottom-up parallel parser can easily strangle on proliferating parses. With simple
lexical information, however, we can expect a manageable number of parses, even in the worst case.
We aim for a single parse that carries forward all of the necessary data. We like to think of this as
a syntactic sketch; we have also called it an "approximate parse. The techniques for writing this
kind of grammar are varied, and use all sorts of syntactic and morphological hooks. We can exploit
the presence of valency features, but we try to blunt their force, using them to favor one situation
over another, rather than as strict necessary conditions for the success of a certain rule.

The result of the operation of PFG's augmented phrase structure rules, coupled with the stream­
lined lexicon just described, is an attribute-value data structure (in PI NI P terms, a "record struc­
ture"). Here is a somewhat pared-down example of the top-level record produced from the simple
input sentence, "Geometry is a very old science":

SEGTYPE ’SENT'
SEGTYP2 'DECL1
STR " geometry is a very old science"
RULES 4000 4080 5080 7200
BASE 'BE'
POS VERB
INDIC SING PRES COPL PERS3
PRMODS NP1 "geometry"
HEAD VERB1 "is"
PSMODS NP2 "a very old science"
PSMODS PUNC1
SUBJECT NP1 "geometry"
PREDNOM NP2 "a very old science"
TOPIC NP1 "geometry"

Figure 1. PI,NLP record for "Geometry is a very old

Attribute names are in the left-hand column; their values arc to the right. The attributes
SFG I YPF and SFGTYP2 refer to different labelings of the topmost node; S I R has as its value
the character string covered by this node; and RUI.FS contains a list of rule numbers, a deriva­
tional history for the parse at this level. POS indicates the possible parts of speech of the BASF,;
the INDIC ator features arc fairly self-explanatory. Most of the values in Fig. I are actually pointers

-427- Intemational Parsing Workshop '89

Fhe question mark indicates doubt about the acceptability of the coordinate NP inside PP5: 'the
river Nile and the consequent destroying of the boundaries of farm lands.'' Should NP4, "the
consequent destroying..,'' be and-eel with NP2, "the river Nile," or with the NP in PP3, "the annual
overflow../'?

Question marks are placed at various points in the parse tree by a routine that is sensitive to
problematic constructions in English. We could have produced two separate analyses; but, given
the large number of such attachment situations, this approach would have led straight to the fatal
trap of proliferating parses. The question marks, in effect, collapse different possible parses, and
allow for efficient handling of ambiguities (Jensen 1986, pp. 22-2.1).

Human readers of the sentence will not hesitate to say that the NP attachment shown in PP3 of
Figure 3 is not the intended one; the attachment indicated by the question mark is what we want.
Our problem is how to enable the computer to determine that.

Tlie sort of information that enables the right decision to be made, in this and similar cases, gen­
erally falls under the rubric of "background or commonscnsc knowledge. I he usual method for
making such knowledge available to a computer program has been to hand-codc the relevant con­
cepts, in whatever format. Although some hand-coding will undoubtedly be nccessary and valu­
able, we approach the problem from another angle.

Written text is itself a rich source of information. It can be viewed as a knowledge base; the lan­
guage that it is written in, even though this is a natural language, is a knowledge representation
language. In particular, reference works like dictionaries actually contain a storehouse of
commonscnse knowledge. We can parse the entries in an online dictionary with a syntactic gram­
mar. and retrieve a surprising amount of the information that is nccessary to resolve syntactic am­
biguities, like the one displayed in l;ig. 3 (Hinot and Jensen 1087, Jensen and Binot 1088).

I he problem presented in Fig. 3 reduces to a question: which of the following pairs is more likely?

■ overflow and destroying
• Nile and destroying

Hearing in mind the old adage that likes conjoin," we will consider that pair more likely whose
terms can be more easily related through dictionary entries -- including both definitions arid exam­
ple sentences. (Das Gupta 1087 also uses dictionary entries for interpreting conjoined words.)

Decisions on where to start these search procedures will ultimately be important, but here we avoid
them. Assume that we start with the first pair, first word. The noun definition for "overflow'' in
W7 begins:

overflow...n 1: a flowing over: INUNDATION

Here "inundation" is asserted to be a synonym for "overflow." I he noun "inundation" has no de­
finition of its own, but is merely listed under the verb "inundate

inundate...vt...: to cover with a flood: OVFRFI.OW

Ihe circularity of the synonym definitions is no problem, bccausc now we can infer something new
about "overflow ": it involves the act of covering by means of a flood. I he definition of "flood" in
W7 is not much help, but in LDOCE, the first example sentence quoted in the entry for the noun
"flood," when analyzed by PEG, takes us right where wc want to go:

flood..n... I... I he town was destroyed by the floods after the storm.

Focusing on only the relevant information, these dictionary entries present a small part of a con­
ceptual network:

-430- Intemational Parsing Workshop '89

egorization frame would be absurd, of course. And to add some sort of 'recovery ' procedures into
the grammar would be costly. The most sensible way to regard subcategorization (valency frames)
is as codified frequency information. A verb that is marked transitive is quite frequently used in its
transitive sense -- that's all.

This docs not mean that we ignore the semantic implications of valencies. On the contrary, what
we do is postpone the differentiation of word senses until after the initial syntactic sketch is com­
pleted. This strategy allows us to get our hands on any input string, assign it some (reasonable,
we hope) structure, and then interpret the input, whatever it might be. Before making the inter­
pretation, however, the parse may have to pass through the rcattachmcnt component.

2. Semantic readjustment

No matter how clever the grammarian's exploitation of word order, word class, and morphological
hooks is, there are many analyses in Fnglish that just will not yield a correct analysis from syntax
alone. Among these are the correct attachment of prepositional phrases and of relative and other
embedded clauses; the optimal structure of complex noun phrases; and the degree of structural
ambiguity exhibited by coordinated elements (Langendocn, p.c.). There arc no markers, in Rnglish,
that serve to disambiguate these constructions; the plain fact is that semantic (or even broader,
contextual) information is required.

Consider the following parse, summarized in Pig. 3 by its tree structure. Where the correct structure
cannot be determined by syntax, attachment is arbitrarily made to the closest available node, en­
couraging right branching.

DECL2 NP6

VERB2*
AJP1

DETP7
NOUN9*
PP1

was
ADJ3*
PP3

ADJ1* » » . ! _ . t f this
re-measuring

PP2 PREP1* "of"
DETP2 ADJ2* "the"
NOUN 1* "land"
f t f tnecessary
PP4 PREP2* "due to r t

DETP3 ADJ4* "the"
AJP2 ADJ5* f t -Iannual i t

N0UN2* t » f i I Ioverflow
PP5 PP6 PREP3* f t r f f of

NP2 DETP4 ADJ6* t f . i t t the
NP3 NOUN3* f t . t t river
N0UN4* ffKT • 1 11Nile

? C0NJ1* f f , 11 and
NP4 DETP5 ADJ7* "the"

AJP3 ADJ8* i t , i t consequent
NOUNS* t i i . «» destroying
PP7 PP8 PREP4* "of"

DETP6 ADJ9* "the"
N0UN6* "boundaries"
PP9 PP10 PREP5*

NP5 N0UN7*
N0UN8* "lands

»» c Itof
(f c f farm

PUNC1

I igur e V I’ a rs c tree f o r a s e n t e n c e w i t h s t r uct ur a l a m b i g u i t y

-429- Intemational Parsing Workshop '89

We have not yet implemented this particular disambiguation, although it is similar to work reported
on in Jensen and Binot 1087. Many technical issues remain to be investigated. Tor one example,
there is the problem of how to combine two (or more) dictionaries -- in this case, W7 and I .IXXT,
- in a way that allows for efficient access to, and processing of, all the information that they con­
tain. We want to set such problems aside for the moment, and assume that they will be solved.
The point is that vast, rich, and potentially rewarding networks of information exist in written text,
and much of that information is of the hitherto elusive "commonsensc sort.

1 his is our second dictionary access. The amount of information available at this stage of proc­
essing is immense and complexly structured. It is, needless to say, much greater than what is af­
forded by any of the current lexicalist frameworks. It avoids the pitfalls of straight hand-coding -
incompleteness, and time required -- and it points to a new wav of looking at knowlcdcc bases.
The prospect of a system that uses natural language in order to understand natural language is
pleasingly recursive. Words may yet prove to be the most adequate knowledge representation tools.

3. The paragraph as a discourse unit

Beyond the semantic readjustment component lies the whole world of connected text processing.
This area is generally referred to as "discourse/' We take the paragraph (loosely defined) to be the
first formal unit of discourse. It is the smallest reasonable domain of anaphora resolution, and the
smallest domain in which topic and coherence can be reliably defined (Zadrozny and .lenscn 1989,
p. 1, pp. 4(T).

The sentences in Figures 2 and 3 are actually part of a paragraph taken from a reading compre­
hension exercise in a well-known scries used by countlcss prospective collcgc students who want
to prepare for the standard Scholastic Aptitude l'cst (Brownstein et al. I()87, pp. 144-5). Here is
the complete text:

Geometry is a very old science. We are told by Herodotus, a Greek historian, that geometry
had its origin in Fgypt along the banks of the river Nile. The first record we have of its study
is found in a manuscript written by .Ahmcs, an Fgyptian scholar, about 1550 B .C . This
manuscript is believed to be a copy of a treatise which dated back probably more than a
thousand years, and describes the use of geometry at that time in a very crude form of sur­
veying or measurement. In fact, geometry, which means "earth measurement," received its
name in this manner. ITiis re-measuring of the land was necessary due to the annual overflow
of the river Nile and the consequent destroying of the boundaries of farm lands. This early
geometry was very largely a list of rules or formulas for finding the areas of plane figures.
Many of these rules were inaccurate, but, in the main, they were fairly satisfactory.

Figure 6. Paragraph from Barron 'a,flow to prepare for the S A T

I’FG parse trees for the paragraph in Fig. <S, sentence by sentence, are presented in Appendix A.

If we arc going to make discourse sense of this text, however, we n^cd something more than a linear
concatenation of syntactic sentence parses -- just as, in order to make syntactic sense out of a sen­
tence, w e need something more than a linear concatenation of w o r d s . A popular and effective way
of modeling this non-linear set of sentence relationships is as a network with nodes connected by
arcs (e.g., Sowa 1984). We can label the nodes with content words and the arcs with function (or
relation) names, for a simple beginning. For now, we use a fairly intuitive set of relation names,
rather than take the time to explain precisely how each arc gets labeled.

I he basic network for one sentence derives not directly from the surface syntactic structure, but
from the underlying prcdicatc-argumcnt structure, which itself is derived from the surface structure,
after all necessary readjustments have been made (Jensen forthcoming). Here is a network repre­
sentation, or model, for the first sentence in the geometry paragraph:

-432- International Parsing Workshop ’89

Figure 4. Network connecting "overflow" to 'destroying

and the path from "overflow" to "destroying" is clear in three steps

Any attempt to connect "Nile'' with destroying" is bound lo take longer. We can link "'Nile'' with
"river" (this link is actually present in W7, in the Pronouncing (n/cttcer); but we still have to get
from "river'' to "water," and then from "water" to "flood," and from flood" to "destroy'' (a total of
four steps). The link between "water" and "flood" is also likely to incur a penalty, ; ince moving
from "water" to flood" is difficult (i.e., flood" docs not appear in the definition of water"), al­
though moving in the reverse direction is easy ("water' docs appear in the definition of "flood ").
On this basis, we can revise the analysis of the sentence in I ig. * to reflect the more likely coordi­
nate structure:

DECL2 NP6

VERB2*
AJP1

DETP7
N0UN9*
PP1

was
ADJ3*
PP3

ADJ1* "this"
"re-measuring"
PP2 PREP 1*
DETP2 ADJ2*
N0UN1* "land"

necessary
PP4
NP2

CCJNJ1*
NP5

PREP2*
DETP3
AJP2
N0UN2*
PP5

"and"
DETP5
AJP3
NOUN5*
PP7

"of"
"the"

"due to"
ADJ4* "the"
ADJ5* "annual"
"overflow"
PP6
NP3

PREP3* "of"
DETP4 ADJ6* "the"
NP4 N0UN3* "river’
N0UN4* "Nile"

ADJ7- "the"
AD.J8* "consequent"
Mi , . IIdestroying
PP8 PREP4* "of"
DETP6 ADJ9* "the"
N0UN6* "boundaries"
PP9 PP10 PREPS* "of"

NP6 N0UN7* "farm"
N0UN8* "lands"

PUNC1

ligure 5. Readjusted parse for sentence in l :igure

-431- International Parsing Workshop '89

In order to build the link between "necessary" and "geometry," we have to know that "re-measuring
of the land" is a paraphrase for "geometry." We are told that "earth measurement" is a synonym
for "geometry" in the fifth sentence. Syntax allows us to say that "NOON measurement" and
"measurement of NOUN" arc possible equals. If we can establish that "earth measurement" and
land re-measuring" arc equals, then the problem is solved. "Measurement" and "re-measuring" are
transparently related, so the problem reduces to finding a link between "earth" and "land."

This, of course, is quite 5asy to find in dictionaries and thesauri. In LDOCE, one definition of
"earth" contains land" as a synonym, and vice versa (actually, the first four definitions for "land'
contain the word "earth" in a critical position in the parse). Similar conditions exist in W7. Roget's
Thesaurus (RT) lists "land" as a synonym for "earth" and "earth" as a synonym for "land." Q.E.D.

The intended purpose for paragraphs like the one we have been playing with, of course, is to test
a reader's comprehension ability by requiring sensible answers to questions based on the informa­
tion in the paragraph. In Brownstcin et al., the first tcM conccrning our paragraph is

(1) The title below that best expresses the ideas of this passage is

and the possible solutions are

(A) Plane Figures
(B) Beginnings of Geometry
(C) Manuscript of Ahmes
(D) Surveying in E;,gypt
(E) Importance of the Study of Geometry

It-is tempting to ask whether a program that is able to build and manipulate the P-modcl in Fig.
8 could also answer (I) successfully

-434- International Parsing Workshop '89

(C ^) ^ - s c g £ £ (g d >

Figure 7. A network representation for "Geometry is a very old science"

To build a model for an entire paragraph (a P-modcl), the trick now is to map the network for each
consecutive sentence onto the network for the prcccding sentence or sentences, joining nodes
whenever possible. Stated simply, nodes can be joined when they mean the same thing. To a first
approximation, sameness of meaning can be defined by:

1. use of the same word;
2. use of a synonym or paraphrase;
3. use of a pronoun reference;
4. use of zero anaphora (e.g., ellipsis in coordination).

Identification of "same word" is easy enough, and syntax will suffice to determine the referents for
most cases of zero anaphora, and for many pronouns. However, there arc also many pronoun
referents that cannot be syntactically resolved, and nothing in syntax will identify synonyms and
paraphrases. This fact has prevented the development of a formal discourse model (Hond and
Haves 1983, p. 16).

For a solution to the problems of pronoun reference and synonym identification, wc turn again to
reference works written in natural language. Dictionaries and thesauri are full of such information.

Here is part of the model that can be built for the paragraph in Fig. 6 It includes information from
only the first, second, fifth, and sixth sentences in that paragraph. Fven so, many details have been
left out:

-433- Intemational Parsing Workshop ’89

• Each component makes its own dictionary access or accesses, and the dictionaries associated
with different components will differ in the type and amount of information they contain.

• The written text of standard reference works is used as a repository for much of the background
or commonsense knowledge that is necessary to solve many analysis problems. This know­
ledge base can be accessed with the syntactic parser that forms one component of the system.

Acknowledgments

FTianks are due to Joel Fagan, George lleidom, I,ee Schwartz, and Lucy Vanderwende, who pro­
vided helpful comments and criticism. Any errors remain the author's responsibility.

References

Binot, J.-L. and K. Jensen. 1987. "A semantic expert using an online standard dictionary" in Pro­
ceedings o f MCA 1-87.

Bond, S.J. and J.R. Hayes. 108.1. "Cues people use to paragraph text." Dept, of Psychology,
Carnegie Mellon University.

Brownstcin, S.C., M. Weiner, and S.W. Green. 1987. How (o prepare for ihe. Scholastic Aptitude
Test. New York, Barron's.

Das-Gupta, P. 1987. "Boolean interpretation of conjunctions for document retrieval" in Journal o f
the American Society for Information Science 38.4.245-254.

Davison, A. 1984. "Syntactic markedness and the definition of sentence topic" in Language
60.4.797-846.

Ileidorn, G.E. 1972. "Natural language Inputs to a Simulation Programming System." Ph.D.
dissertation, Yale University.

Jensen, K. 1986. "PFG 1986: A broad-coverage computational syntax of English." Unpublished
paper.

Jensen, K. 1987. "Binary rules and non-binary trees" in A. Manastcr-Ramcr (cd.), Mathematics o f
Language. Amsterdam, John Benjamins, pp. 65-86.

Jensen, K. forthcoming. "PEGASUS: deriving prcdicatc-argumcnt structures from a syntactic
parse."

Jensen, K. and J.-L. Binot. 1987. "Disambiguating Prepositional Phrase Attachments by Using
On-Line Dictionary Definitions." in CL 13.3-4.251-60.

Kaplan, R. 1985. "Three scductions of computational psycholinguistics" in P. Whitclock, M.M.
Woods, ILL. Somers, R. Johnson, P. Bennett (cds.), Linguistic Theory and Computer
Applications. Ixmdon, Academic Press, 1987, pp. 140-81.

Longman Dictionary o f Contemporary English. 1078. Harlow and I ondon, I ongman Group Lim­
ited.

Roget's 7'hesaurus o f English Words and Phrases. 1962. New York, St. Martin's Press.

Sowa, J.F. 1984. Conceptual Structures: Information Processing in Mind and Machine. Reading,
MA; Addison-Weslcy.

IVehstcr's Seventh New Collegiate Dictionary. 1967. Springfield, Mass., G. & C. Mcrriam Co.

Zadrozny, W. and K. Jensen. 1080 "Semantics of paragraphs." Unpublished paper.

-436- International Parsing Workshop '89

Without going into any formal explanation of topic definition, let’s assume that we can identify the
node labeled "geometry" as the main idea, or topic, of the paragraph. (Note that it occupies a
central position in the network.) So we discard all possible answers to (I) except for those that
contain the word "geometry." This leaves us with two candidates. (B) and (f:). We then search the
graph around the "geometry" node, looking for related nodes that express either "beginnings" or
"importance of the study of." The latter alternative is not easy to find. But the "origin'' node can
be immediately identified with "beginnings." In W7, the entry for beginning" has "origin" as a
synonym, and the second sense definition for "origin" is 'rise, heginning, or derivation from a
source..." Furthermore, origin" and "beginning" arc mutual synonyms in RT.

Resolving the referent for the possessive pronoun "its" in the second sentence of our test paragraph
allQwed us to draw the arc between the "geometry" and "origin" nodes in Fig. 8, which we now la­
bel:

Figure (). Network for the answer to (I)

In this subgraph, the preferred answer to question (1) is clear: the title that best expresses the ideas
in the test passage is (B), Beginnings of Geometry."

Obviously a tremendous amount of important detail has been left out in order to produce this
blueprint for a formal model of a discourse unit. The challenges of implementation lie ahead. But
the general structure seems promising, and most promising of all is the possibility of finding a re­
pository of background knowledge, already coded for us. in online natural language sources.

Here is another comprehension question on the same paragraph:

(2) It can be inferred that one of the most important factors in the development of geometry as a
science was

An answer must be picked from the following alternatives:

(A) Ahmes' treatise
(B) the inaccuracy of the early rules and formulas
(C) the annual flooding of the Nile Valley
(D) the destruction of farm crops by the Nile
(F) an ancient manuscript copied by Ahmes

We suggest that the preferred answer to (2) can also bo found by using the I’-modcl in Fig. S, in
conjunction with a good dictionary and thesaurus; and we leave this as an exercise for the interested
reader.

4. Conclusion

1 his paper contains an overview of our broad-coverage NI, analysis system, including components
that already exist, that are currently being worked on, and that arc projected for the future. Some
aspects of our system that differentiate it from other NI, analysis systems are

• It is not modeled along the lines of any currently accepted linguistic theory; rather it is highly
experimental and data-driven.

• Separate components are emerging from this experimental process; they coincidc roughly with
the accepted linguistic levels: syntax, semantics, discourse.

PO 55

■435- International Parsing Workshop '89

Sentence 3:

DECL1 NP1 DETP1 ADJ1* "the"
AJP1 ADJ2* "first"
N0UN1* "record"
RELCL1 NP2 PRON1* "we"

VERB1* "have"
PP1 PP2 PREP 1* "of"

DETP2 ADJ3* "its"
NOUN2* "study"

AUXP1 VERB2* "is"
VERB3* "found"
PP3 PP4 PREP2* "in"

DETP3 ADJ4* "a"
N0UN3* "manuscript"
PTPRTCL1VERB4* "written"

? ? PP5 PP6 PREP3* "by"
N0UN4* "Ahmes"
PUNC1
NAPP0S1 DETP4 ADJ5* "an"

NP3 N0UN5* "Egyptian"
N0UN6* "scholar"
PUNC2

? ? ? ? PP7 PP8 PREP4* "about”
YEAR1* "1550"
LABEL1 N0UN7* "B.C."

PUNC3

-438- Intemational Parsing Workshop '89

Appendix A

Sentence 1:

DECL1 NP1 N0UN1* M , itgeometry
VERB 1* II . If

I S

NP2 DETP1 ADJ1* "a"
AJP1 AVP1 ADVI* if it very

ADJ2* "old"
NOUN2* tt . ft science

PUNC1 it if

Sentence 2:

DEC LI NP1 PRON1* t t t t we
AUXP1 VERB 1* • t _ i t are
VERB2* "told"
PP1 PP2 PREP1* I f , ftby

N0UN1* "Herodotus"
PUNC1 ft tf

J
NAPP0S1 DETP1 ADJ1* "a"

NP2 N0UN2* "Greek1
N0UN3* t t i , . i t historian
PUNC2 ft ft

VP1 C0MPL1 "that"
NP3 N0UN4* ft . ft geometry
VERB3* "had"
NP4 DETP2 ADJ2* ft . . tt its

NOUN5* "origin ft

? PP3 PP4
NOUN6*

PREP2*
"Egypt1

? ? PP5 PP6
DETP3
N0UN7*
PP7

in

PREP3* "along”
ADJ3* "the"
"banks"
PP8 PREP4* "of"
DETP4 ADJ4* "the"
NPS N0UN8* "river’
N0UN9* "Nile"

PUNC3

-437- Intemational Parsing Workshop ’89

Sentence 5:

PP1 PP2
N0UN1*
PUNCl

PREP1*
II r .11f a c t
f f »!

9

it . it i n

NP1 N0UN2* ft , ff g e o m e t r y
PUNC2 ff ff

y
? RELCL1 NP2

VERB 1*
PR0N1*
it ii m e a n s

" w h i c h ”

NP3 PUNC3
NP4
N0UN4*
PUNC4

ff ft ff

N0UN3* " e a r t h "
" m e a s u r e m e n t "
m i i»

>
VERB2* II . ,11r e c e i v e d
NP5 DETP1

N0UN5*
A DJ1*
M nname

i» , . mi t s

? PP3 PP4 PREP2 * i i . i i
m

DETP2 ADJ2* M . , . i it h i s
N0UN6* " m a n n e r m

PUNC5

S e n t e n c e 6:

DECL1 NP1 DETP1 ADJ1* f t . t . f t t h i s
NOUNI* " r e - m e a s u r i n g "
PP1 PP2 PREP1* " o f "

DETP 2 ADJ2* " t h e "
N0UN2* " l a n d "

VERB1* " w as"
AJP1 AD J3* it un e c e s s a r y

PP3 PP4 PREP2* " d u e t o f f

DETP 3 ADJ4* " t h e "
AJP2 ADJ5* a n n u a l f t

N0UN3* " o v e r f l o w "
PP5 PP6 PREP3* f t , - f t o f

NP2 DETP4 ADJ6* " t h e "
NP3 N0UN4* it , Mr i v e r
N0UN5* l » v t • 1 I IN i l e

? C 0 N J1* " a n d "
NP4 DETP5 ADJ7* " t h e "

AJP3 A DJ8* " c o n s e q u e n t "
N0UN6* i i , , . Md e s t r o y i n g
PP7 PP8 PREP4* " o f "

DETP6 AD J9* " t h e "
NOUN7* " b o u n d a r i e s "
PP9 P P 10 PREPS*

NP5 N0UN8*
N0UN9* " l a n d s

PUNCl " . "

" o f "
"farm"

-440- Intemational Parsing Workshop '89

Se ntence 4:

DECL1 NP1 DETP1 ADJ1* i i . ii t h i s
N0UN1* n , .itm a n u s c r i p t

VP1 AUXP1 VERB1* u . iti s
VERB2 * " b e l i e v e d "
INFCL1 INFTOl

VERB3*
NP2

" t o "
" b e"
DETP2
N0UN2*
PPI

" p r o b a b l y "

" t h a n "

" a t h o u s a n d "

C 0N J1* " a n d "
VP2 VERB5* " d e s c r i b e s "

ADJ2* it it a
m itc o p y
PP2 PREP 1* " o f "
DETP3 ADJ 3* "a"
N0UN3* it. , . it t r e a t i s e
RELCL1 NP3 PR0N1* " w h ic h "

VERB4* " d a t e d "
AVP1 ADV1* " b a c k "
AVP2 AVP3 ADV2*

ADV3* " m ore"
PP3 PP4 PREP2*

QUANP1 A DJ4*

N0UN4* " y e a r s '
PUNC1 " "

NP4 DETP4
N0UN5*

ADJ5*
M I tu s e

" t h e "

PP5 PP6 PREP3* ff r - Ho f
N0UN6* i t . ug e o m e t r y

. . t t t i m e? ? PP7 AVP4 ADV4* " a t t h a t
? ? ? PP8

DETP5
PREP4*
ADJ6*

ft . ft
m

"a"
AJP1 AVP5

ADJ7*
ADV5*
ft i tt c r u d e

t t t t v e r y

NOUN7* i t c i » fo r m
PP9 P P 10

NP5
PREP5*
N0UN8*

t t f i t o f
" s u r v e y i n g "

? ? ? C 0 N J2*
NP6

i t t t o r
N0UN9* " m e a s u r e m e n t "

PUNC2

-439- Intemational Parsing Workshop '89

Sentence 7:

DECL1 NP1

VERB1*
AVPl

NP2

ADJ1* "this"
ADJ2* "early”
r* . iigeometry

ADV1* "very'
"largely"
ADJ3* "a"

DETP1
AJP1
N0UN1*
f t ?» was
AVP2
ADV2*
DETP2
NOUN2* "list"
PP1 PP2 PREP1* "of"

NP3 N0UN3* "rules"
C0NJ1* "or"
NP4 N0UN4* "formulas"

? PP3 PREP2 "for"
VERB2* "finding"
NP5 DETP3 ADJ4* "the"

N0UN5* "areas"
PP4 PP5 PREP3*

AJP2 ADJ5*
NOUN6* "figures

"of"
"plane"

PUNC1

Sentence 8:

CMPD1 DECLI NP1 QUANP1 ADJ1* II ,-lfmany of
DETP1 ADJ2* "these"
N0UN1* ft -1 1 rules i t

VERB1* t t i t were
AJP1 ADJ3* "inaccurate"

PUNC1 ft ft>
C0NJ1* C0NJ2*

PUNC2
"but"
If »t

9

DECL2 PP1 PP2 PREP1* I t . I Im
DETP2 ADJ4* i i . , i tthe
NOUN2* It _ . Itm a in
PUNC3 tt tt

9

? NP2
VERB2*

PRON1*
tt tt were

"they"

AJP2 AVPl ADV1* • i f . i i t fairly
ADJ5* "satisfactory"

PUNC4 t i i t

-441- Intemational Parsing Workshop ’89

c) Figure 3 shows three performance curves as follows.

(i)Figre 3 (A) maps size of the polarizeddata base as a
percentage of the original data base alng the Y axis as the structure of the
data base is varied from fully structured to free form along the X axis for a
constant data base size.

(ii) Figure 3 (B) maps size of the polarized data base along the Y
axis as a function of the size of the original data base along the x axis for a
data base of contstant structure.

(ill) Figure 3 (C) shows access time above a certain threshold is
independent of the size of the original data base.

P S E U D O - P ARSING A L G O R I T H M

The Pseudo-parsing S W I F T - A N S W E R algorithm of this invention
comprises the -following steps.

a) Separation of a natural language text into senteneces , phrases and
words.

b) Separation of Words into non-context and context words.

c) Separation of non-context words into noise words such as
pronouns and prepositions a n d c o m m o n words such as C o m m o n words
appearing too frequently in a file or data base.

d) Alphabetizing all context words.

e) Mapping frequency and location of all non-contex t words with
respect to source data original files.

NOTE: The above mentioned five steps of the Pseudo parsing
algorithm are applied to the natural language unstructred files in the batch
mod e and then again to the spontaneous convoluted questions in the real
time mode.

f) performing mathematical operations such as taking highest
c o m m o n factor and lowest c o m m o n mu ltiple of the statistical information
that correponds to context words in the question.

-443- International Parsing Workshop ’89

PSEUDO PARSING S W I F T - A N S W E R A L G O R I T H M
b y

(c) S Pal Asija 19 8 9
Patent Attorney & Professional Engineer
7 Woonsocket Ave , Shelton, Conn. 06484

PH: (203)-736-9934 or 736-0774

INT R O D U C TION

Pseudo parsing S W I F T - A N S W E R algorithm is a subset of patented
(4 , 270 , 182) S W I FT - A N W E R algorithm which is based on the firstpure
software algorithm patent ever issued anywhere in the world. It is also a
federal Trademark registered in the principal register of the Unites States
Patent and Trademark Office. It isan acronym which stands for Special
W or d Index Full Tex t A1 ph a Numeric Storage With Easy Retrieval. It is
called Pseudo parsing because it deviates substantially from conventional
parsing algorithms, even though itaccomplishes confusingly similar
objectives. It isnot a software package nor a key word search system.

NOT A K E Y W O R D S Y STEM

Some AI(Artificial Intelligence) experts and computational linguists
have erroneously perceived this system as a keyword system and
therefore have evaluated and crticized itas such. But in reality it is not a
keyword system. In fact the system never asks the user for the r -ywords.
Keywords if a n y are automatically created and managed by this system. It
is strictly internal to the system and therefore completely transparent to
the user.

Just as in h u ma n t o h u m a n communications in this h u ma n / ma c h i n e
communication system also, neither the machine nor the h u m a n being is
conscious of any keywords. W h e n you ask a h u ma n being a question he or
she does not ask you for key words, even t ho ugh the respondant may
subconsciously select and use some keywords to properly respond to you.
Just as the user does not care what the subconscious of the respondant
does , the user also does not care what the internal software of the system
does to properly respond to the users communications.

BRIEF DESCRIPTION OF THE D R A W I N G

a) Figure 1 shows the program flow chart of the S W I F T - A N S W E R
algorithm.

b) Figure 2 shows the S W I F T - A N S W E R Data Flo Diagram.

-442- International Parsina Workshop '89

This unique algorithm creates the illusion of artificial intelligence
without even using a conventional "Spell-Check” dictionary let alone
spoon feeding rules of parsing, grammar, programming and knowledge of
the world. The artificial intelligence if any in this system is inherent in the
structure of the algorithm which makes it ind e pe nd en t of the knowledge
domanin of the data base.

FIVE PAHS E ALGOR IT HM

a) Installation phase during which the computer asks you a series of
q ues t ions to get toknow your computer environment and your
applicational needs including your data bases , so that itcan load
appropriate operating system, interface mod ul es and drivers.

b) Batch Phase during which the algorithm pre-processes each file
specified in phase (a) and extracts certain things from them.

c) Real Time Phase during which the same algorithm is applied to the
question as was applied to the files in phase (b).

d) Priority phase during which the prioritizing algorithm ranks all
possible answers without going to the data base files.

e) Presentation Phase during which the algorithm presents answers
in the order established in the priority phase (a) supra by fetching them
from the original files.

P O W E R F U L A L G O R I T H M

The power of the algorithm can be traced to the following precepts
and principles.

a) All natural languages saturate. As a language saturates and the
data base grows larger the probability of a new word appearing goes down
and the proabability of a repeat word goes up. The length of the index does
not increase although volume of cross-indexing does.

b) S om e words such as most pronouns and propositions do not mean
m u c h even to people let alone computers

-445- International Parsing Workshop '89

Note: This step in turn generates a lsitof prioritized answer which
specified that the best answer based upon the totality of this question
begins on disc so and so , sec to r so and so and is so man y bytes long and
the second best answer begins on disc so and so, sector so and so and is so
m an y bytes longand soon.

g) applying the user transparent boolean logic to different
permutations and combinations of the contextwords in the question.

NOTE: The pseudo parsing iscompleted at this step. The remaining
steps described in the patent deal with fetching and presenting the right
answer in the right format to the user.

U N I Q U E A L G 0 R I_T H M

The algorithm isunique compared to the prior art because itisthe
only software that responds to a users erroneous spontaneous questions
primarily because it performs the following user transparent functions
automatically.

a) Automatic LIUs (Logical Information Units)
b) Automatic & Unlimited Dictionary.
c) Automatic Key Words
d) Automatic Boolean Logic
e) Automatic Prioritizing of Answers
f) Automatic Fault Tolerance
g) Automatic Context Determination.
h) Automatic D B M (DataBase Management)

Th e following functions and features are not automated.

a) Questions & Reframing of questions
b) Interpretation of Answers
c) Specification of the USER environment
d) Creation of the Unstructured Source Data Base
e) Selection of Special Features
f) Inputting of additional context de pe nda n t c o m m o n words and

'synonyms & antonyms' iesearchonyms.

.444. International Parsing Workshop '89

c) HCF (Highest C o m m o n Factors) and LCM (Least C o m m o n Multiple)
of all data across dictionary words which the computer has not been pre­
told as meaningless to h u m a n beings from the question contain valuable
information.

d) Prioritizing sub-algorithm is based on hierarchical relevence of
decreasing order. Most relevent being the shortest LIU containing all
words of the question most number of times closest together. The
algorithm computes and gives starting access location an d length.

e) Faul t tolerance b y left and right shift with and without addition of
d u m m y characters and deletion of characters . The extent being
proportional to the size of the wor d and the degree of fault tolerance
specified by the user in phase (a) in para 14 supra.

f)The power of Binary Search and Boolean logic can be made user
transparent.

g) Everything people type or put on a machine readable media
probably means something to them notwithstanding livelydemo given
sometimes by the inventor.

h) Syno n y m s and antonyms both refer to the same contevt.

i) V o n - N e u m a n n serial computer is no match for the parallel
processing brain which is not too well understood to begin with. .

j)Most words inmost data bases and concomitant software are
spelled correctly.

k) Its naive to think that knowledge engineers can spoonfeed
knowledge of the universe to the computer.

100%

FULLY STRUCTURE FREE SIZE OF ORIGINAL DATA BASE SIZE OF ORIGINAL DATA BASE
STRUCTURED FORM

Figure 3

-447- International Parsing Workshop '89

SW
IF

T-
AN

SW
ER

DA

TA

FL
OW

D

IA
G

R
A

M

Cl
23
9

i I

£ it

2a
2

-446- Intemational Parsing Workshop '89

which will be clarified, in Sect. 3 belou) the type of
representations characterized till now, ue present in Fig. 1
an underlying representation of the sentence (1).

(1) In August, a seminar on parsing technologies will
be organized by CMU in Pittsburgh.

seminar-Specif-Sing Pittsburgh-in-Def-Sing

pars i ng

Fig. 1

2.2 A dependency oriented account of s y n t a c t i c (o - s e m a n t i c)
relations offers a rather straightforward way for a
formulation of a lexically-driven parsing procedure, since a
great part of the relevant information is projected from the
frames belonging to the lexical entries of the heads. In the
description ue subscribe to, valency slots are not
understood just in the sense of obligatory or regular kinds
of complementation, but are classified into
(i) inner participants (theta roles, each of which can be
present at most once with a single head token) and free
mod if icat i o n s ;
(ii) obligatory and optional; this distinction can be made
with both kinds of complementations quoted under (i)
depending on the specific heads.

As for (i), five inner participants are being
distinguished (for motivation, see Panevova, 1974; Hajicova
and Panevova, 1984), namely deep subject (Actor), deep
object (Patient, Objective), Addressee, Origin (Source) and
Effect; among free modifications, there belong Instrument,
Locative, Directional, Manner, several temporal adverbials,
adverbials of cause, condition, regard, General
relationship, etc. As for (ii), an operational test was
formulated that helps to determine which of the
complementations with a given lexical head is obligatory
(although perhaps deletable) and which is optional; the test
is based on judgements on the coherence of a simple dialogue
(see Panevova, 1974).

Both (i) and (ii) are reflected in the valency frames
of individual lexical entries in the lexicon. Thus, e.g.,
for the verb t o c h a n g e , the valency frame consists of two
obligatory slots for Actor and Objective, two optional slots
for Source and Effect (to c h a n g e s o m e t h i n g f rom s o m e t h i n g
i n t o s o m e t h i n g) and a list of free modifications, which can
be stated once for all the verbs. If one of the free

-449- International Parsing Workshop '89

A D e p e n d e n c y - B a s e d P a r s e r f o r T o p i c a n d F o c u s

Eva Haj icova
Faculty of Mathematics and Physics

Charles University
Halostranske n. 25

118 00 Praha 1
C z e c h o s 1ovak i a

1. Introduction

A deepened interest in the study of suprasegmental
features of utterances invoked by increasing attempts at a
build-up of algorithms for speech recognition and synthesis
quite naturally turned attention of the researchers to the
linguistic phenomena known for decades under the terms of
theme-rheme, t o p i c - c o m m e n t , topic-focus. In the present
paper ue propose a linguistic procedure for parsing
utterances in a "free word order" language, the resulting
structure of which is a labelled M-rooted tree that
represents (one of) the (literal) meaning(s) of the parsed
utterance. Main attention will be paid to the written fora
of language; however, due regard will be also paid to (at
least some of) the suprasegmental features and additional
remarks will be made with respect to parsing strategies for
written and spoken English.

2. Dependency-Based Output Structures

2.1. The procedure is based on the linguistic theory of
functional generative description as proposed by Sgall (cf.
Sgall, 1964,1967; Sgall et al., 1986). The representation of
the meaning(s) of the sentence - i.e. the output of the
analysis - is a projective rooted tree with the root
labelled by a complex symbol of a verb and its daughter
nodes by those of the complementations of the verb, i.e.
participants (or - in another terminology - the cases,
theta-roles, valency), as well as adverbials. The relation
between the governor (the verb) and the dependants (its
daughter nodes) is a kind of dependency between the two
nodes. The complementations of the daughter nodes (and their
respective complementations, etc.) are again connected with
their governors by an edge labelled by a type of dependency
relation. The top-down dimension of the tree thus reflects
the structural characteristics of the sentences. The left-
to-right dimension represents the deep word order, see Sect.
3 below. Structures with coordination may be then
represented by complex dependency structures (no longer of a
tree character) with a third dimension added to the tree
structure (Piatek, Sgall and Sgall, 1984), or,
alternatively, nodes of quite special properties can be
added to the tree itself (M o c k o r o v a , 1989). Such a type of
description can dispense with problems of constituency and
"spurious" ambiguity and offers an effective and economic
way of representing sentence meaning.

To illustrate (with several simplifications, some of

-448- International Parsing Workshop ’89

(3)(a) I do linguistics on Sa.nda.ys.
(3) (b) On Sundays, I do I i ngu i s t i c s .

In the representations of meaning as characterized in Sect.
2, we distinguish:

(i) contextually bound (CB) and non-bound (CN) nodes,
where "contextually" covers both verbal co-text and
situational context;

(ii) the dichotomy of topic and focus;
(iii) the hierarchy of communicative dynamism (deep

word o r d e r).
To illustrate the points (i) through (iii), let us take

the sentence (5) if uttered after (4), as na example.
(4) Hou did John organize the books in his library?
(5) He arranged his books on nature in an alphabetic

order in his bedroom.
(In his library, p h i 1o s o p h i c a 1 books are arranged
c h r o n o l o g i c a l l y .)

(i) CB nodes: he, arranged, . his, books, his
NB nodes: nature, alphabetic, order, bedroom

(ii) topic: he arranged his books on nature
focus: in an alphabetic order in his bedroom

(iii)deep word order (dots stand for the modifications of
the nodes explicitly mentioned)
he - ...books... - arranged - order... - ...bedroom

3.2 The impact of the three aspects (i) through (iii) can be
illustrated by the examples (6) through (8), respectively:

(6)(a) (You have just listened to our night concert.)
The compositions of Chopin were played by S.
R i c h t e r . We will devote to him also our next
p r o g r a a a e .
him = Richter

(6)(b) (You listen to our night concert.)
C h o p i n ’s compositions were played by S. R i c h t e r .
We will devote to him also our next p r o gr am m e .
him = Chopin

(7)(a) Staff only behind the c o u n t e r .
(7)(b) Staff only behind the counter.
(8)(a) It was John who talked to feu girls in many

t o w n s .
(8)(b) It was John who talked in many towns to few

girls.
The distinction between (a) and (b) in (6) consists in

the different preference of anaphoric use of referring
expressions if the possible referent is mentioned in the
previous context by an NB or a CB element (as C h o p i n in (a)
or in (b), respectively); in both cases, the anaphoric
elements are in the topic part of the sentence.

The sentence (7)(a) differs from (7)(b) only in that
t h e c o u n t e r is in the focus part of (a), while staff is in
the focus part of (b), which difference leads to a
significant distinction in interpretation: (a) holds true if
the members of the staff are (to stay) only behind the
counter and nowhere else, while (b) holds true if the space
behind the counter is (to be) occupied only by the members
of the staff; in contrast to (b), the sentence (a) holds
true also if there is somebody else than a member of the
staff in that space. In (7), the relevant semantic
distinction is rendered by a different placement of the
intonation center; in (3) above* the same effect results

-451- International Parsing Workshop '89

modifications is obligatory with a certain head (e.g.
Directional with arrive, Appurtanance with b r o t h e r , Material
uith f u l 1) , this has to be indicated in the valency frame of
the relevant head. 2.3 Dependency can be operationally
defined on the basis of endocentricity (cf. Sgall and
Panevova, 1989, following Kulagina ,1958). If in a syntactic
construction one of two members of the construction can be
left out, while the other retains the distributional
properties characteristic for the given pair, -then the
member that can be omitted is considered to depend on the
other: e.g., in Jim rea d a book the sentence part a book
can be omitted without the sentence losing its
grammaticality; thus, the verb rather than t h e book is the
head of the construction. The set of word classes that is
determined on independent grounds can then be used to
identify the "direction of dependency" in other (exocentric)
constructions: though in Jim b o u g h t a book the sentence part
a book cannot be omitted, b u y and read are assigned a single
word class (cn independent morphemic and syntactic criteria)
and thus it may be postulated that b o u g h t rather than a
book is the governor (head) of the construction b o u g h t a
b o o k . In a similar vein, a construction such as J im re&d can
be substituted in its syntactic position (as constituting a
sentence) by a subjectless verb in many languages (cf. Latin
P l u i t \ also in English I t rains the surface subject i t has
no semantic value: it cannot be freely substituted by a noun
or by another pronoun and is equivalent to the Latin
ending).

2.4 It is not our objective in the present paper to contrast
dependency structures with those of phrase structure
grammar. Let us only mention in conclusion of this section,
that among the main advantages of dependency trees there is
the relatively small number of nodes; the basic syntactic
hierarchy can be described without any non-terminal nodes
occurring in the representations of s e n t e n c e s ,a 1 though in
their derivations non-terminals can be used without the
limitations characteristic of G a i f m a n ’s approach to
dependency. In addition, if function words are understood as
mere grammatical morphemes having no syntactic autonomy,
then their values can be treated as indices, i.e. parts of
complex labels of nodes, as illustrated in Fig. 1 above. In
this way, the component parts of syntactically autonomous
units can be represented correctly as having other syntactic
properties than the autonomous units themselves, and the
representations do not get necessarily complicated.

3. The Semantic Impact of Topic-Focus Articulation

3.1 The topic-focus articulation of an utterance has an
impact on the semantic interpretation of the given
utterance. It is important to notice that (a) and (b) are
two different sentences in (2) as well as in (3), though the
semantic difference is much more important in (3) than in
(2). With (2) the two sets of propositions to which the two
sentences correspond assign the value "true" to the sanje
subset of possible worlds, which is not the case with (3) .
(The intonation center is denoted by italics.).

(2)(a) Mother is c o m i n g .
(2)(b) M o t h e r is coming.

-450- International Parsinq Workshop ’89

order is determined first of all by the scale of
communicative dynamism, it is evident that the former cases
in (A) and (B) do not present so many difficulties for the
recognition procedure as the latter cases do.

A written "sentence" corresponds, in general, to
several spoken sentences uhich differ in the placement of
their intonation center, cf., e.g., ex. (3) above. In
languages with the "free" word order this fact does not
bring about serious complications with written technical
texts, since there is a strong tendency to arrange the
sentences in such texts so that the intonation center falls
on the last word of the sentence (if this word is not
enclitical).

4.31 A procedure for the identification of topic and focus
in Czech written texts can then be formulated as follows (we
use the term ’c o m p l e m e n t a t i o n ’ or ’sentence p a r t ’ to denote
a subtree occupying the position of a participant or free
modification as discussed in Sect. 2 above):
(i)(a) If the verb is the last word of the surface shape of

the sentence (S S) , it always belongs to the focus.
(i)(b). If the verb is not the last word of the SS, it

belongs either to the topic, or to the focus.
Note: The ambiguity accounted for by the rule (i)(b) can be
partially resolved (esp. for the purposes of the practical
systems) on the basis of the features of the verb in the
preceding sentence: if the verb of the analyzed sentence is
identical with the verb of the preceding sentence, or if a
relation of synonymy or meaning inclusion holds between the
two verbs, then V belongs to the topic. Also, a semantically
weak, general verb such as t o b e , t o b e c o m e , t o c a . r r y out,
most often can be understood as belonging to the topic. In
other cases the primary position of the verb is in the
f o c u s .
(ii) The complementations preceding the verb are included in

the topic.
(iii) As for the complementations following the verb, the

boundary between topic (to the left) and focus (to the
right) may be drawn between any two complementations,
provided that those belonging to the focus are arranged
in the surface word order in accordance with the
systemic ordering.

(iv) If the sentence contains a rhematizer (such as e v e n ,
aiso, o n l y) , then in the primary case the
complementation following the rhematizer belongs to
the focus and the rest of the sentence belongs to
the topic.

N o t e . This concerns such sentences as H e r e e v e n a d e v i c e o f
t h e f i r s t t y p e can b e u s e d . ; in a secondary case the
rhematizer may occur in the topic,e.g., if it together with
the sentence part in its scope is repeated from the
preceding co-text.

4.32 Similar regularities hold or the analysis of spoken
sentences with normal intonation. However, if a non-final
complementation carries the intonation center (IC), then

(a) the bearer of the IC belongs to the focus and all
the complementations standing after IC belong to
the topic;

(b) rules (ii) and (iii) apply for the elements
-453- International Parsing Workshop '89

from a word order change.
The clefting in (8) univocally points to John as the

focus of the sentence, the rest being its topic; the two
sentences (a) and (b) differ as to the (deep) order of
Locative and Addressee. This distinction again has an
important semantic impact: with (a), there was a group of
girls who were few, and the same group was talked to in many
towns, while with (b) John talked in each of the many towns
with (maybe) a (different) small group of girls. This
difference need not be reflected in the surface word order:
the same effect is reached by a shift of intonation center,
see (9)(a) and (b).

(9)(a) John talked to few girls in many t o w n s .
(9)(b) John talked to few g i r l s in many towns.

4. Parsing Procedure for Topic and Focus

4.1 The proposed procedure of automatic identification of
topic and focus is based on two rather strong hypotheses:
(i) the boundary between topic and focus is always placed so
that there is such an item A in the representation of
meaning that every item of this representation that is less
(more) dynamic than A belongs to the topic (focus); in the
primary case the verb meets the condition on A and is itself
included in the focus;
(ii) the grammar of the particular language determines an
ordering of the kinds of complementations (dependency
relations) of the verb, of the noun, etc., called ’systemic
o r d e r i n g ’ (SO). The deep word order within focus is
determined by this ordering; with sentences comprising
contextually bound items, these items stand to the left in
the hierarchy of communicative dynamism and their order
(with respect to their governors) is determined by other
factors. An examination of Czech in comparison with English
and several other languages has led to the conclusion that
the SO of some of the main complementations is identical for
many languages, having the form Actor - Addressee -
Objective, As for Instrument, Origin, Locative, it seems
that English differs from Czech in that these three
complementations follow Objective in English, though they
precede it in Czech. It need not be surprising that
languages differ in such semantically relevant details of
their grammatical structures as those concerning SO
similarly as they appear to differ in the semantics of
verbal aspects, of the articles, of dual number, etc.

We assume further that every sentence has a focus,
since otherwise it would convey no information relevant for
communication; however, there are sentences without topic.

4.2 For an automatic recognition of topic, focus and the
degrees of CD, two points are crucial:

(A) Either the input is a spoken discourse (and the
recognition procedure includes an acoustic analysis), or
written (printed) texts are analyzed.

(B) Either the input language has (a considerable
degree of) the so-called free word order (as in Czech,
Russian, Latin, Warlpiri) or its word order is determined
mainly by the grammatical relations (as in English, French).

Since written texts usually do not indicate the
position of intonation center and since the "free'* word

-452- International Parsing Workshop '89

on automatic identification of topic and focus in spoken
utterances only the position of the intonation center; a
question naturally arises whether other features of
intonation patterns such as tune and phrasing (in terms of
P i e r r e h u m b e r t) can help as clues for sentence disambiguation
as for its topic and focus. Schmerling (1971) was the first,
to our knowledge, to propose that the different
interpretations of C h o m s k y ’s ’range of permissible f o c u s ’
(which basically corresponds to our ’deep word o r d e r ’, see
Hajicova and Sgall, 1975) are rendered on the surface by
different intonation patterns; most recently, Pierrehumbert
and Hirschberg (1989, Note 5) express a suspicion that the
accented word in such cases (within an N P) need not have
the same prominence in all the interpretations; they also
admit that similar constraints on the accenting of parts of
a VP are even less understood.

5. Parsing Sentences in a Text

To resolve some complicated issues such as the
ambiguity of pronominal reference, a whole co-text rather
than a single sentence should be taken into account. Several
heuristics have been proposed to solve this problem; e.g.,
Hobbs (1976) specifies as a common heuristics for pronominal
resolution the determination of the antecedent on the basis
of the h e a r e r ’s preference of the subject NP to an NP in the
object position (in a similar vein, Sidner ,1981, in her
basic rule tests first the possibility of co-specification
with what she calls ’actor f o c u s ’), the other strategy
including inferencing and factual knowledge. Following up
our investigation of the hierarchy of activation of items of
the stock- of knowledge shared by the speaker and the hearer
(see Hajicova and Vrbova, 1982; Hajicova, 1987; Hoskovec,
1989; Hajicova and Hoskovec, 1989), we maintain that also
this hierarchy should be registered for parsing sentences in
a text. We propose to use a partially ordered storage space,
reflecting the changes of the activation (prominence) of the
elements of the information shared by the speaker and the
hearer. The rules assigning the degrees of activation after
each utterance take into account the following factors:
(i) whether the given item was mentioned in the topic part
or in the focus part of the previous utterance: mentioning
in the focus part gives the item the highest prominence,
mentioning in the topic part is assumed to assign a one
degree lower activation to the given item;
(ii) grammatical means by which the given item is rendered
in the surface shape of the utterance: mentioning by means
of a (weak) pronoun gives a lower prominence than mentioning
by means of a noun;
(iii) association with the items explicitly mentioned in the
utterance: items which are associated with the items
explicitly mentioned in the preceding utterance get a
certain level of prominence, though lower than those
mentioned explicitly; it is assumed that the association
relations can be classified according to the ’c l o s e n e s s ’ of
the items in question so that some types of associations
receive higher degrees of activation than others (e.g., is-a
relation ^s ’c l o s e r ’ in this sense than the part-of
re 1at i o n);
(iv) non-mentioning of a previously mentioned item: an item

-455- „ International Parsing Workshop ’89

standing before the bearer of the intonation
center ;

(c) the rule (i)(b) is applied to the verb (if it does
not carry the IC).

4.33 As for the identification of topic and focus in an
English written sentence, the situation is more complicated
due to the fact that the surface word order is to a great
extent determined by rules of grammar, so that intonation
plays a more substantial role and the written form of the
sentence displays much richer ambiguity. For English texts
from p o 1y t e c h n i c a 1 and scientific domains the rules stated
for Czech in Sect. 4.31 should be modified in the following
ways :
(i)(a) holds, if the surface subject of the sentence is a

definite N P ; if the subject has an indefinite
article, then it mostly belongs to the
focus, and the verb to the topic; however, marginal
cases with both subject and verb in the focus, or
with subject (though indefinite) in t)^e topic and
the verb in the focus are not excluded;

(i)(b) holds, including the rules of thumb contained in the
note ;

(ii) holds, only the surface subject and a temporal
adverbial can belong to the focus, if they do not have
the form of definite NP ’ s ;

(iii) holds, with the following modifications:
(a) if the rightmost complementation is a local or

temporal complementation, then it should be checked
whether its lexical meaning is specific (its head
being a proper name, a narrower term, or a term not
belonging to the subject domain of the given text)
or general (a pronoun, a broader term); in the
former case it is probable that such a modification
bears the IC and belongs to the focus, while in the
latter case it rather belongs to the topic;

(b) if the verb is followed by more than one
complementation and if the sentence final position
is occupied by a definite NP or a pronoun, this
rightmost complementation probably is not the
bearer of IC and it thusfinite NP or a pronoun, this
rightmost complementation probably is not the
bearer of IC and it thus belongs to the topic;

(c) if (a) or (b) apply, then it is also checked which
pair of complementations disagreeing in their word
order with their places under systemic ordering is
closest (from the left) to IC (i.e. to the end of
the focus); the boundary between the (left-hand part
of the) topic and the focus can then be drawn
between any two complementations beginning with the
given pair;

(i v) ho Id s .

4.34 If a spoken sentence of English is analyzed, the
position of IC can be determined more safely, so that it is
easier to identify the end of the focus than with written
sentences and the modifications to rule (iii) are no longer
necessary. The procedure can be based on the regularities
stated in Sect. 4.32.

Up to now, we have taken into account in our discussion
-454- International Parsing Workshop 89

Hajicova, E. and P. Sgall (1975), Topic and Focus in
Transformational Grammar, Papers in Linguistics 8, 3-58.

Hajicova, E. and J. Vrbova (1982), On the Role of Hierarchy
of Activation in the Process of Natural Language
Understanding, in Horecky (1982), 107-113.

Hobbs, J. R. (1976), Pronoun Resolution. Rep. 76-1, Dept,
of Computer Science, City College, City Univ. of New
Y o r k .

Horecky, J., ed. (1982), Coling 82 - Proceedings of the
Ninth Int. Conf. on Computational Linguistics, Prague -
Ams t e r d a m .

Hoskovec, T. (1989), Modelling a Pragmatical Background of
Discourse. In: Al ’89, Prague, 289-296.

Kulagina, 0. S. (1958), Ob odnom sposobe opredelenija
grammaticeskich ponjatij, Problemy kibernetiki 1, 203-

v 2 1 ?*Mockorova, Z. (1989)j Generalizivane podkladove zavislostni
struktury (Generalazed Underlying Dependency Structures),
diploma theses

Panevova, J. (1974), On Verbal Frames in Functional
Generative Description I, Prague Bulletin of Mathematical
Linguistics 22, 3-40; II, 23 (1975), 17-52.

Pierrehumbert J. and J. H i r s c h b e r g . (1989), The Meaning of
Intonational Contours in the Interpretation of Discourse.

Piatek M . , Sgall, J. and P. Sgall (1984), A Dependency Base
for a Linguistic Description. In: Sgall (1984), 63-97.

Schmerling ,S. F. (1971), Presupposition and the Notion of
Normal Stress. In: Papers from the Seventh Regional
Meeting. Chicago Linguistic Society , 242-253.

Sgall, P. (1964), Generative Beschreibung und die Ebenen des
S p r a c h s y s t e m s , presented at the Second International
Symposium in Magdeburg, printed in Zeichen und System der
Sprache III, 1966, Berlin, 225-239.

Sgall, P. (1967), Functional Sentence Perspective in a
Generative Description. In: Prague Studies in
Mathematical Linguistics 2, 203-225.

Sgall, P., ed. (1984), Contributions to Functional Syntax,
Semantics, and Language Comprehension, Amsterdam
Prague.

Sgall, P., Hajicova, E. and J. Panevova (1986), The Meaning
of the Sentence in Its Semantic and Pragmatic Aspects,
Dordrecht - Prague.

Sgall, P. and J. Panevova (1989), Dependency Syntax - A
Challenge, Linguistics 15.

Sidner, C. L. (1981), Focusing for Interpretation of
Pronouns. American Journal of Computational Linguistics
7, 217-231.

-457- International Parsing Workshop '89

that has been introduced into the activated part of the
stock of shared knowledge but is not mentioned in the
subsequent utterances loses step by step its prominence;
(v) not only the immediate degree of activation after the
given utternace is relevant for the assignment of reference
but also the sequence of degrees of salience from the whole
preceding part of the text; thus if an item is being
mentioned subsequently for several times in the topic of the
sentence, its salience is maintained on a high level and it
is more likely an antecedent for pronominal reference than
an item that appeared in the focus part (with no prominence
history) and received thus the highest degree of activation.

6. Concluding Remarks

Since even in such languages as English or French,
surface word order corresponds to the scale of communicative
dynamism to a high degree (although such grammatical means
as passi v i z a t i o n , or the inversion of aaAe out of to a a k e

i n t o , etc., often are necessary here to achieve this
correspondence), it is useful in automatic language
processing to reflect the word order of the input at least
in its surface form. If the effects of the known surface
rules on the verb placement, on the position of adjectives,
genitives, etc., before (or after) nouns, and so on, are
handled, and if the items mentioned in the preceding
utterance are stored (to help decide which expressions are
contextually bound), then the results may be satisfactory.

N o t e s .

1 With (2) as well as with (3) the presuppositions
triggered by (a) and (b) differ, so that different subsets
of possible worlds get the value ’f a l s e 1 ; e.g., C 2)(b)
differs from (2)(a) in presupposing that someone is coming.

2 For the solution of such cases, it again is useful to
"remember" the lexical units contained in the preceding
utterance, cf. the Note to (i)(b) in Sect. 4.31 above.

3 It is more exact to understand the association
relationships in terms of natural language inferencing
(concerning the occurrence of a single associated item) than
in terms of the activation of the whole set of items
associated with an occurrence of a possible ’a n t e c e d e n t ’.

4 This has been done, at least to a certain degree, in
the experimental systems of English-to-Czech and Czech-to-
Russian translation, implemented in Prague.

Re ferences

Hajicova, E. (1987), Focussing - A Meeting Point of
Linguistics and Artificial Intelligence. In: Artificial
Intelligence II - Methodology, Systems, Applications (ed.
by Ph. Jorrand and V. Sgurev), Amsterdam, 311-322.

Hajicova, E. and T. Hoskovec (1989), On Some Aspects of
Discourse Modelling. In: Fifth Int. Conference on
Artificial Intelligence and Infor m a t i o n - C o n t r o 1 Systems
of Robots (eds. I. Plander and J. Miklosko), Amsterdam.

Hajicova, E. and J. Panevova (1984), Valency (Case) Frames
of Verbs. In: Sgall (1984), 147-188.

-456- ' International Parsing Workshop '89

incorporating all of the above. Ue describe the parser in the
sections that follow.

1.1 EXISTING PARERS AND OUR APPROACH

All the implementations of GPSG reported in the literature use a
rather straight forward approach of first expanding the entire
rule set by using the available metarules, in the process
augmenting the set of rules, and finally the normal context free
parser is run on this new set of rules.

Thus there are two basic steps involved :-

1. Rule expansion using the available metarules
2. Actual parsing using the expanded set of rules.

It should be noted that in such an implementation one does not
need to bother about the metarules after the first stage.

An inherent drawback with this approach is that if the initial
set of rules is of sizeable cardinality, then a number of rules
may get added to the set, (a large number of these rules may
never get used during the actual parse of a sentence), thus not
only causing memory storage problems, but also slowing down the
system considerably.

The main motivation of this paper is to describe a method for
parsing GPSG without initial expansion (i.e. our implementation
expands metarules as and when necessary). Further, in our-
implementation we have assumed in ID-LP format for the rules,
thus making them more compact.

Because of the above reasons, it has become necessary to make
some changes to an ordinary context-free parsing algorithm to
suit our requirements (i.e. to incorporate dynamic expansion and
the ID-LP format of rules).

2 PARSING ALGORITHM
The essential characteristics of our approach towards a solution
of the problem has been listed over the next few pages.

2.1 DYNAMIC STRUCTURE OF RULES
As has been mentioned earlier, our implementation gets new rules
from old ones as the parsing proceeds. Under such a situation,
it becomes necessary to suspend parsing temporarily, only to
return to it after a rule of the appropriate type has been
generated by expanding sing one or more metarules some
appropriate rule from the already available set.

At this stage a decision has to be taken as to whether the
rule which was recently derived should be stored for further use
or should be discarded. Here the choice should be guided by the

-459- International Parsing Workshop '89

Parsing Generalized Phrase Structure
Grammar with Dynamic Expansion

Navin Budhiraja
Subrata ttitra
Harish Karnick
Rajeev Sangal

Department of Computer Science and Engineering
Indian Institute of Technology Kanpur

Kanpur 208 016 India

SUHMARY
A parser is described here based on the Cocke-Young-Kassami
algorithm which uses immediate dominance and linear precedence
rules together with various feature inheritance conventions. The
meta rules in the grammar are not applied beforehand but only
when needed. This ensures that the rule set is kept to a minimum.
At the same time, determining what rule to expand by applying
which meta-rule is done in an efficient manner using the met a ­
rule reference table. Since this table is generated during
"compilation” stage, its generation does not add to parsing
time.

1 INTRODUCTION
GPSG as introduced by G a z d a r •e t .a l . gives a formalism to parse
natural languages assuming they are context free. The phrase
structure rules are like the normal CFG rules, except that
features are added to the categories. These features are used by
Feature Co-occurence Restrictions, Feature specification
Defaults, Head Feature Convention, Foot Feature Principle and
Control Agreement Principle, during parsing.

The second important feature of GPSG, and towards which this
paper is mainly directed, is the metarule. A major problem of a
complete natural language grammar is its size, which causes
difficulties as far as memory requirements and efficiency of any
practical parser are concerned. GPSG tries to overcome this,
partly, by keeping the rule set to the minimum. In addition to
the minimal set of rules, it has certain metagrammatical
structures to generate rules from the previously defined minimal
set. Thus the number of rules at any time are the minimum
possible, reducing the search time of the parser. In addition,
this captures certain linguistic generalisations (e.g. active-
passive) .

Lastly GPSG goes to the thematic representation directly from the
c-structure (in contrast to other formalisms like LFG). The IL
formula is built up as parsing proceeds.

Our endeavour is, thus, to build a natural language parser

-458- Intemational Parsing Workshop '89

(b) Get the position of the current rule in the rule table
corresponding to II. Let this be 12.

(c) Get the position of the current metarule m in the
metarule list. Let this be HI.

3.4 Now append the triplet (II 12 Ml) to the contents of
the meta reference table entry pointed to be the index
found in step 3.2 above.

The above takes care of cases where one level of expansion of
metarules is sufficient. But in general a rule could be expanded
successively more than once by the same or by different metarules
before it can be used for parsing. Thus it is necessary to
extend the meta-reference entries to handle the problem.

Basically a triplet (II 12 HI) as defined above corresponds to a
rule which is produced by applying metarule Ml to the 12th.
entry in the Ilth. sub-structure of the rule table. Let the
resultant rule be Rl. Now R1 may expand some metarule whose
position is M2 to produce a rule R 2 , and so on, until at some
stage we get a rule Rn which is not meta expandable any further.
The termination is guaranteed because GPSG is equivalent in power
to CFG.

In the compilation stage we must now make entries in the met a ­
reference table for each of R l ... R n , because any of them may be
necessary during parsing. This can be done as follows:-

R1 is the rule corresponding to (II 12 Ml)

For i : = 1 to n do
Ri is Hi applied on R(i-l),

Get an index to the meta-reference table using rhs
categories of Ri

To this entry append ((II 12 Ml) M 2...Mi)
Here Ml,M2...,Mi gives the successive position in the metarule
list of the metarules to be applied.

An example will clarify the situation:
consider a metarule of the form

(VP--> U N P)====>(VP--->U (optional(PP[by])}).
where U is any set of categories.
This generates the passive counterparts of active sentences.

Now if we have a rule of the type
0 . .VP--> V NP NP,

/* The features etc. have been omitted for simplicity * /
after first expansion we shall get two rules, namely:

1..VP--> V NP,
2..VP--> V NP P P .

Further, because of the given structure of the intermediate rules
and the metarules under consideration, a second expansion is
possible. Consider the rule V P — > V NP PP (rule 2 above). Uhen
the above metarule is expanded using this rule, we get the

-461- International Parsing Workshop '89

relative gain in time by s t o r i n g the rule (as o p p o s e d to re-
expanding) against the storage overhead. The type of sentences to
be parsed may also play a role in this decision. For example, it
may be worthwhile to store the rule which gets generated during
parsing. Equivalently the other approach may be tried.

For this type of implementation, metarules become in important
part of parsing. Further justification on this issue is given in
the next section.

2.2 TABLE BUILDING

Ue have seen in the previous section that an important aspect of
our parser implementation is the generation of rules at an
intermediate stage.

A native way to tackle the problem would be to go over the entire
set of rules and metarules when a failure occurs, and try each
metarule-rule combination to find one which produces a rule of
the required type, and then carry on with the parser. But this
will obviously be highly inefficient.

To cut down the time of generating rules and trying them out, a
table can be constructed to help us select the metarule-rule
combination. This is what is done.

In the first stage (called the metarule compilation stage) we go
over all the r u 1e-met a r u 1e combinations to build up a reference
table which can be consulted by the parser (during the second
stage) to get the required rules efficiently. Compilation is a
one time job and, therefore, does not affect the complexity of
the actual parser.

The rule set can be structured for faster access to the relevant
rules. In our current implementation we have structured the rule
set on the basis of the number of categories (non-terminals) on
the right-hand-side (rhs henceforth).

The metarule reference table is built up in the compilation stage
as folIowa :-

1. For each rule r do the following.
2. Store the rule in the appropriate entry of a new table

called the RULE TABLE, which is the one that the parser
refers to. (For our case store it with all other rules
which have the same number of rhs c a t e g o r i e s) .

3. For each metarule m that can be applied on r do
3.1 apply m on r yielding a new rule s
3.2 hash the rhs categories of the newly produced rule s to

get an index into another table called the HETA-REFERENCE
table.

3.3 Build up a meta reference entry as follows
(a) Get index (here number of rhs categories) of the input

rule r. Let this be II.

-460- International Parsing Workshop '89

1) make the algorithm work for an ID/LP grammar,
2) make the algorithm work for grammars not in Chomsky Normal

Form (C N F),
3) allow for meta-rule expansion during parsing

Ue discuss these one by one.

1) In order to handle ID/LP grammars, we have to just look for a
rule with the required nonterminals on the right hand side, with
no importance attached to the order (except of course,for
precedence relations)

2)In order to account for grammars which are not in CNF, we had
to increase the nesting of the loops which handle rules of the
form

A ---- > BI B2
in the CYK algorithm. The loop depth should now be (k-1) in
order to handle rules like

A ---- > BI B2 . . .Bk
(See algorithm extract given below)

3) In order to get new rules from the old, we have to make some
additions to the CYK algorithm. A part of the algorithm is given
below :-
/ *

The algorithm to handle grammars not in CNF and to
allow for metarule application during parsing is
shown below. This handles all rules which have k
nonterminals on the right hand side.

* /
procedure 1 e ngth_k(i ,j) ;
begin

for al := 1 to j-k+1 do
for bl := 1 to j-al-k+2 do

for cl := 1 to j-al-bl-k + 3 do

for jl := 1 to j - a l-bl-cl...-il-k+j do
RULESET := RULESET U { new rules obtained by

expanding the metarules
as required by the
parser }

/* it is in the above line that we get the new
set of rules as demanded by the parser */

CYK(i.j) :=
C Y K (i ,j) U <A | A ---- > B 1 B 2 ...Bk

is a production, and
Bl is in C Y K (i ,a l) ,
B2 is in CYK(i+al,bl)

Bk is in C Y K (i+ a l + b l . . . + j 1 ,

-463- Intemational Parsing Workshop '89

f o l l o w i n g p a i r of r u l e s

3 . . V P - - > V PP
4 . . VP - - > V PP PP

Similarly the rule VP --> V NP (rule 1 above) will generate two
rules of the form:

5 . . VP - - > V
6 . . VP - - > V PP

Now since none of the newly generated rules are meta-expandable
the process will stop. The meta referencea table entries will be
of the following nature :

/* Let us assume that there is just this one metarule in the meta­
list, and that the initial rule (rule 0 above) is the only one
present in the rule array corresponding to length of rhs
t h r e e , i .e,

11 is 3
12 is 1, and
Ml is 1

* / (a) Corresponding to rhs <V,NP,PP> and <V,NP> we
shall have entries of the type ((3 1 1)),while
(b) Corresponding to any other possible collection

of rhs categories, for example <V,PP>, the entry
will look like ((3 1 1) 1), which incorporates two
levels of meta expansion.

A point of importance is that since one expansion of a
metarule can produce more than one output rule (e.g.
rules (1) & (2) from rule (0) above) the meta expander must
check for category names before returning the generated rule.

For example if meta expansion is called with parameters (V,NP)in
the above situation, then only rule (1) should be returned, the
other has to be discarded .

Another change could be incorporated regarding the structuring of
the set of input rules. One can use a hashing technique similar
to the one used for storing meta reference entries. Thus, rules
would be stored not by the number of rhs categories, but hashed
according to the categories present in the rhs. This would make
rule access at parse time much faster and direct because during a
bottom-up parse we have to reduce a given set of rhs categories
into the corresponding left hand side. This would however mean
keeping more entries in the rule table.

2.3 THE PARSING ALGORITHM

The parsing algorithm we have used is the well known Cocke-Young-
Kassami (CYK) algorithm, with a few modifications. The
differences are for the following requirements. Ue have to :

-462- International Parsing Workshop '89

have three right hand sides. Now when the parser sees that it
requires a rule containing V PP PP (as in (1)) it makes the
following c a l 1

(return-meta-expanded ’(V PP PP))

The triplet that is obtained from the table lookup is (3 4 1)
which calls the meta rule expander to apply (3) to (2) which
returns (1). The parser then continues its normal course after
adding the generated rule to the appropriate rule-list.

2.4 THE SYSTEM STRUCTURE
The block structure of the compiler and parser is given below

with the dotted-line separating the two. The part above the
dotted line is done only once when the grammar is "fed” in.
First the rules specified by the grammar designer are stored in
an appropriate data structure. The compiler then applies the
various feature restriction principles to this rule set (similar
to the Edinburgh approach described in Philips (86)), makes the
feature bindings and then indexes them according to the number of
categories on the right hand sides. In addition it also creates
the all important Meta-rule reference table. Both these tables
are then passed to the parser which then, using the lexicon,
works as described before.

R u l e s / £>a t t a

N \ £ T A R U L E S STRviC .

r --

R u l e t a s l e M 6 T A R u l e

e r e hJCfc

T A & L E

L 6 * I C O N

-465- International Parsing Workshop '89

e n d ;
j - a l - b l . . . - j 1) }

As can be seen from the algorithm extract given above, the m e t a ­
rules are expanded here. Once we have the required RHS
(B 1 ,B 2 ...B k), it is hashed to a value in the meta-rule reference
table which returns us a triplet of the form (II 12 HI) where

11 stands for the index of the rule-table i.e the table
which contains all the rules according to the number of
right hand sides they have.

12 stands for the number of the rule in the II entry of the
rule index table

HI stands for the number of the metarule which needs to be
used.

Ue discuss an example to illustrtate the algorithm.

Example: In the parsing of the sentence

A mango was given to Sita by Ram

the rule

VP — > V PP[pform to] PP[pform by] ---(1)
is r equir e d .

NP VP
/ \

a mango
V

was

g i v e n ' to' Sita by Ram

Initially we only have the rule

VP --> V NP PP --- (2)
and the meta rule

VP -->U NP ===>

VP[vform pas] ---> U(PP[pform by]) --- (3)

Suppose (V PP PP) hashes to 20. Also assume that the meta rule
(3) is the first meta rule in the meta rule list and rule (2) is
the fourth rule in the rule list which contains all rules which

-464- International Parsing Workshop '89

beforehand but only when needed. This ensures that the rule set
is kept to a minimum. At the same time, determining what rule to
expand by applying which meta-rule is done in an efficient manner
using the meta-rule reference table.

The Cocke-Young-Kassami algorithm has been modified to work
on the context free grammar without converting it to Chomsky
Normal form. Conversion would l*ad to an increase in number of
rules, and would also affect the dominance relationships. The
modified algorithm continues to be a polynomial time algorithm on
the length of the input sentence.

The implementation of the parser has been tested with a
small grammar and with a small number of meta rules. To get
performance figures, it needs to be tested more extensively.
Experiments can also be conducted regarding when the generated
rules should be stored for future use and when they should be
d i s c a r d e d .

Our parser, at the moment, does not have the Kleene Closure
facility to handle conjunctive/disjunctive sentences. It is a
simple matter, however, to add this.

ACKNOWLEDGEMENT

Insightful Suggestions by Vineet Chaitanya and B.N. Patnaik thro-
-ughout the course of this work are gratefully acknowledged.

REFERENCES

[1] Allwood et.al., Logic in Linguistics, Cambridge University
P r e s s , 1977.

[2] Dowty et.al., Introduction to Montague Semantics, D. Reidel,
1981 .

[3] Gazdar, G., Klein, E., Pullum, G.K., and Sag, I.A.,
Generalized Phrase Structure Grammar, basil Blackwell, 1985.

[4] Gazdar, G., Phrase Structure Grammar, in The Nature of
Syntactic Representation, P. Jacobson and G.K. Pullum
(eda.)' D. Reidel, 1982.

[5] Mitra, S. and Budhiraja, N . , A Parser for Generalized Phrase
Structure Grammar, B.Tech. thesis, Dept, of Computer Sc.
and Engg., I.I.T., Kanpur, 1988.

[6] Phillips, J.D., and Thompson, H.S., A Parser for Generalized
Phrase Structure Grammar, Res. Paper 289, Dept. of
Artificial Intelligence, University of Edinburgh, 1986.

[7] Shieber, S.M., Direct Parsing of ID/LP Grammars, Linguistics
and Philosophy, 7,2.

-467- Intemational Parsing Workshop '89

2.5 HANDLING FEATURE RESTRICTIONS

The heart of GPSG is made up of the set of <feature, feature-
value> pairs associated with every syntactic category. GPSG
introduces some rule and conventions to associate values with
these features in required manner.

Some of these restrictions should cause values to be given to
features during actual parsing of a sentence, while others should
pass up the tree certain feature values which get instantiated at
parse time to ensure a valid parse.

Our implementation handles such problems at the compilation stage
by considering fully expanded categories, where feature values
corresponding to a particular feature which is as yet
uninstant iat ed are bound to a unique variable, and the variable
is shared among all instances of the same feature in the rule,
which have to be bound tc e t h e r . This approach is similar to the
Edinburgh parser.

Later, during the actual parse, if any variable gets bound to a
value, then all other instances of the same variable in the rule
also get the same value. Any mismatch leads to rejection.

For example, in the rule

A ---> B 1 , B 2 . . . Bk

the variable valued features in A get bound to their values as
instantiated in Bl,B2...Bk. Ue are assuming that the RHS of a
rule is fully instantiated during the parse i.e once a category is
added to the CYK table, no more features are added to it. This
approach has forced us to use multiple entries in the lexicon.

For example, the entry for ’t h e ’ contains two entries, one each
for singular and plural respectively.

3 SEMANTICS

The IL formula for the input sentence is built up as the parsing
proceeds. Each node in the parse tree being built contains the
IL formula of the node. Using the type information and the
Semantic Interpretation Schema, the IL formula of the mother is
built up from the IL formulae of its children. Finally the node
S (the start symbol) contains the IL formula of the input
sentence. After parsing finishes, transformations as required by
GPSG (e.g. the passive-active transformation, paraphrases etc.)
are applied to the IL formula of the root.

4 CONCLUSIONS

The parser described here uses immediate dominance and linear
precedence rules together with various feature inheritance
conventions. The meta rules in the grammar are not applied

-466- International Parsing Workshop '89

NOTES:

NOTES:

NOTES:

006.35 I612p 1989 c.l
International Workshop on
Parsing Technologies
[Proceedings] :

University Libraries
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

ROOM USE ONLY|AU6 2 3 HUM
UNTIL__._____

DEMCO

