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Preface

WELCOME to the International Workshop on Parsing Technologies.

The interest and the progress being made in the field of parsing is exciting. The technical 
program has been assembled to include all aspects of this technology. We hope it will stimulate 
further discussion, research and development in the field.

We hope the emphasis o f this workshop will center around the exchange o f ideas rather than the 
presentation of results. In this workshop, presenters should be prepared to discuss problems and 
techniques - with a particular emphasis on work-in-progress and unresolved difficulties.

The program committee has selected a variety o f areas for discussion, hoping that you will 
choose the set o f presentations that best match your interests and specialties. The variety should 
encourage discussion and exchange that should benefit all. We hope to encourage participation, 
discussion and even argument.

The workshop program and organization have been created through the efforts of a large number 
of people who have given generously of their time and talent.

I would like to thank each o f the comittee members: Bob Berwick, Harry Bunt, Jaime Carbonell, 
Eva Hajicova, Aravind Joshi, Ron Kaplan, Bob Kasper, Martin Kay, Match Marcus, Makoto 
Nagao and Yorick Wilks.

In addition, I would like to acknowledge contributions and extend my gratitude to the local 
arrangement people. Especially Joan Maddamma, the workshop secretary, who did most o f the 
administrative work for this volume and the workshop.

Masaru Tomita 
Workshop Chairman 
Carnegie Mellon University
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UNIFICATION AND CLASSIFICATION:  
AN EXPERIMENT IN INFORMATION-BASED PARSING

Robert T. Kasper 
USC/Information Sciences Institute 

Admiralty Way, Suite 1001 
Marina del Rey, CA 90292

When dealing with a phenomenon as vast and complex as natural language, an 
experimental approach is often the best way to discover new computational methods and 
determine their usefulness. The experimental process includes designing and selecting 
new experiments, carrying out the experiments, and evaluating the experiments. Most 
conference presentations are about finished experiments, completed theoretical results, or 
the evaluation of systems already in use. In this workshop setting, I would like to depart 
from this tendency to discuss some experiments that we are beginning to perform, and 
the reasons for investigating a particular approach to parsing. This approach builds on 
recent work in unification-based parsing and classification -b ased  know ledge  
representation, developing an architecture that brings together the capabilities of these 
related frameworks.

1 . Background: Two General Frameworks for Representing Information

1.1. Unification-based Grammars

A variety of current approaches to parsing in computational linguistics emphasize 
declarative representations of grammar with logical constraints stated in terms of feature 
and category structures. These approaches have collectively become known as the 
"unification-based" grammars, because unification is commonly used as the primary 
operation for building and combining feature structures. Some of the simplest of these 
grammatical frameworks, as exemplified by the PATR-II system [Shieber 1984], state 
constraints on features entirely in terms of sets of unifications that must be 
simultaneously satisfied whenever a grammatical rule is used. In such systems all 
constraints on a rule or lexical item are interpreted conjunctively. Many of the more 
recent frameworks also use other general logical connectives, such as disjunction, negation 
and implication, in their representation of constraints. The usefulness of such logical 
constraints is abundantly illustrated by linguistic models, including Systemic Grammar 
(SG) [Halliday 1976] and Head Driven Phrase Structure Grammar (HPSG) [Pollard&Sag 
1987], and by computational tools such as Functional Unification Grammar (FUG) [Kay 
1985]. For example, SG and FUG even use disjunctive alternations of features, instead of 
structural rules, as the primary units of grammatical organization. While the intuitive 
interpretation o f these logical constraints is rather straightforward, and they are quite 
natural for linguists to formulate, large-scale implementations of them have typically 
involved finding a delicate balance between expressive power and computational 
efficiency.

Some difficulties can be expected in developing a system for computing with disjunctive 
and negative feature constraints, because it has been established that common operations
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on such descriptions, such as unification and subsumption, arc NP-completc and require 
exponential time in the worst case. The most common and obvious way to deal with 
disjunctive constraints is to expand the grammatical description to disjunctive normal 
form (DNF) during a pre-processing step, thereby eliminating disjunction from the rules 
that are actually used by the parser. This method works reasonably well for small 
grammars, but it is clearly unsatisfactory for larger grammars, because it actually
requires exponential space and time in all cases. For even modest amounts of disjunction, 
the parser is forced to operate on a huge description, even in many cases where no
exponential expansion would be necessary.

It is possible to avoid exponential expansion for most practical grammars, and several 
unification algorithms for disjunctive feature descriptions have been developed in recent
years. The first of these algorithms was developed by Karttunen [Karttunen 1984]. His 
method of representing disjunction allowed value disjunction (i.e. alternative values of a 
single feature), but it did not allow general disjunction (i.e. constraints involving multiple 
features). Although it is possible to transform any description that contains general 
disjunction into a formally equivalent description that contains only value disjunction, this 
transformation may sometimes result in loss of efficiency or lack of clarity in the 
structures produced by a parser.

Two more recent algorithms [Kasper 1987, Eisele&Doerre 1988] allow general disjunctive 
descriptions, and avoid expansion to DNF by exploiting logical equivalences between
descriptions to produce normal forms that allow a more compact representation. Kasper's 
algorithm is based on a normal form that divides each description into definite and
indefinite components. The definite component contains no disjunction, and the indefinite 
component contains a list of disjunctions that must be satisfied. The Eisele&Doerre 
algorithm uses a different normal form that guarantees the detection o f any
inconsistencies during the normalization process by selectively expanding disjunctions 
that might possibly interact with other information in the description. Although a precise 
characterization o f the differences in performance between these algorithms involves
many subtleties, the Eisele&Doerre algorithm usually handles value disjunction more 
efficiently, and the Kasper algorithm usually handles general disjunction more efficiently. 
The crucial technique shared by both algorithms is the use of a normal form that allows 
early elimination of alternatives when they are inconsistent with definite information.

The Kasper algorithm was first implemented as an extension to the unification algorithm
of the PATR-II parser, and it has been further developed to handle conditional
descriptions and a limited type of negation [Kasper 1988a]. These extensions to PATR-II 
have been used to construct an experimental parser for systemic grammars [Kasper
1988b], which has been tested with a large grammar of English.

Although these methods for processing complex feature constraints are generally much 
more efficient than expansion to DNF, they still have several significant sources of
inefficiency:

1. a large amount of structure must be copied in order to guarantee correct unification;

2. consistency checks are required between components of a description that do not 
share any features in common, because unification cannot determine whether any 
dependencies exist between two structures without actually unifying them;

3. repeated computations are often required over sub-expressions o f descriptions, 
because the results of prior consistency checks are not saved.
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These sources of inefficiency are not unique to one method of parsing with disjunctive 
descriptions; similar shortcomings are commonly reported for most unification-based 
systems. For example, the Eisele&Doerre algorithm eliminates some redundant 
consistency checks, but it generally requires copying significant portions of a description 
to do so. The unification literature contains several techniques for reducing the amount of 
copying by structure sharing, but these techniques appear to solve only part of the 
problem. A more general approach to improving the efficiency of unification may be
available by adopting methods that are used in classification-based systems.

1.2. Classification-based Knowledge Representation

The KL-ONE family of knowledge representation systems organize information about 
objects and the relations between them into conceptual hierarchies (a combination of 
semantic networks and frames) according to class membership, where X is below Y in 
the hierarchy if X is a subclass or instance of the class Y. For example, a hierarchy of 
English word classes would probably contain Verbs, Modal-Verbs as a subclass o f Verbs, 
and the word "should" as an instance of Modal-Verbs. More formally, the hierarchy is a 
subsumption-ordered lattice based upon logical properties that can be deduced from the 
definitions of concepts and the facts known about particular objects. In these systems, 
classification  is the operation that places a new class or object into the lattice according to 
the subsumption order. A primary benefit of classification is that it organizes large 
collections of knowledge in such a way that properties shared in common by many objects 
only need to be represented once, yet they can still be efficiently accessed.

KL-ONE and similar frameworks have been used for semantic interpretation in some 
natural language processing systems, but usually in a way that is quite separate from the 
grammatical parsing process. Recent research indicates that it may be advantageous to 
make use of a classification-based framework for processing grammatical knowledge as 
well. Many formal properties are shared by the feature descriptions used in unification- 
based grammars and the terminological definitions used in KL-ONE. Generally speaking, 
linguistic categories correspond to concepts, and their features (or attributes) correspond 
to binary relations in the knowledge representation system. The similarity between these 
two types of descriptions has been most clearly documented by Smolka [Smolka 1988] in 
his development of a logic that integrates a significant combination of their expressive 
capabilities. Smolka has also shown that the subsumption and unification problems for 
this logic can be reduced to each other in linear time. Thus, systems based on either term 
subsumption or unification can be expected to solve a similar range of problems, although 
differing levels of non-asymptotic time/space efficiency can be expected. Theoretical 
results have also been based on the observation that feature structures can be implicitly 
organized into a subsumption lattice of types according to their information content. In 
most unification-based system s the lattice is not explicitly  constructed, but a 
classification-based system can be used to place the feature structures of a grammar and 
lexicon into a structure-sharing lattice, potentially improving both space and time 
efficiency.

Despite the underlying similarities between the KL-ONE framework and unification-based 
grammars, there are significant differences in the expressive capabilities that are usually 
provided. In particular, the knowledge representation systems typically have general 
constraints on relations with multiple values, whereas most unification-based systems do 
not provide a direct representation for features with set values. On the other hand, 
complex logical constraints involving disjunction and negation have been more extensively 
developed in unification-based systems than in classification-based systems. The LOOM 
system [MacGregor 1988], which has been developed at USC/ISI, appears to be the first in
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the KL-ONE family to have included general disjunction and negation in its concept 
definition language. The implementation of classification for disjunctive concepts has 
been based on the same strategy that was originally developed for unification with 
disjunctive feature descriptions [Kasper 1987]. The implementation of classification for 
concepts defined by negation is still in progress. With these extensions, the LOOM system 
should be able to handle the full range of constraints that have been used in linguistic 
descriptions of feature structures.

2, An Experiment In Classification-based Parsing

In order to explore a strategy for parsing based on classification, our first experiment will 
be to emulate the unification component of our parser for a large systemic grammar of 
English [Kasper 1988b] within the framework of LOOM. It appears to be straightforward 
to convert the feature constraints of the grammar into a set of definitions that can be 
processed by LOOM, because of the underlying correspondences between LOOM’S concept 
definitions and linguistic feature descriptions that we have already described. It is also 
straightforward to perform an operation that is equivalent to the unification of feature 
structures within LOOM. This is accomplished by forming an object which is defined as 
the conjunction of the objects corresponding to the feature structures.

Motivating this experiment are two primary goals:

1. to investigate the extent to which classification can be used to organize the knowledge 
contained in linguistic descriptions so that it can be more efficiently accessed during 
the parsing process;

2. to develop a suitable architecture for integrating semantic information into the parsing 
process, in a way that knowledge specific to application domains does not have to be 
re-organized for parsing.

2.1. Efficiency Considerations

The classification-based architecture used by LOOM solves a whole class o f related 
efficiency problems by explicitly constructing and maintaining a subsumption-ordered 
lattice of terms with inheritance. In particular, it may provide substantial improvements 
for some of the above mentioned sources of inefficiency that have been observed with 
unification-based parsers.

2 . 1 . 1 .  Structure  Sharing

The organization o f objects into a lattice automatically provides a great amount of  
structure sharing. Pointers are copied instead of structures whenever objects are defined 
or modified.

In most unification-based parsers, it is necessary to make new copies o f the feature 
structures that are associated with lexical items or grammatical rules whenever they are 
used in building a description of a sentence (or one of its constituents). In a classification- 
based system the entire structure does not need to be copied, because the description of a 
constituent can contain pointers to the classes of objects that it instantiates. This 
representation not only saves space, but it also allows the parser to make use o f  
information that has already been precomputed (during the classification process) for 
classes of objects in the grammar and lexicon.
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2.2. Integrating Semantic Information Into the Parsing Process

In order for practical natural language parsers to be produced with less effort per
application, it is desirable for the knowledge base of an application to also be usable by a 
general purpose parser. Existing systems often use semantic grammars that are specific to 
a particular application domain, or require substantial reorganization of the information
used by an application so that it can be used by the parser. A more effective use of
knowledge sources may be possible if linguistic features and information about an 
application's semantic domain are defined in the same general knowledge representation
framework. Using a classification-based system, links can be established between terms
of the semantic domain and terms of the linguistic knowledge base that correspond to 
them. This approach has already been explored in text generation research [Kasper 1989], 
where the links are established by stipulating that terms of the application domain 
specialize one or more terms of the linguistic model. This condition generally holds,
because the linguistic model contains primarily abstract features.

Another potential benefit o f using an integrated knowledge organization is early 
disambiguation according to features of the semantic domain. If objects of the semantic 
domain are directly linked in a knowledge base to lexical or grammatical features, the
parser can use information about those objects without any special purpose machinery.

3. Summary

We are developing an experimental parser using the classification-based architecture of
the LOOM knowledge representation system. The initial goal is to reproduce the
functionality of an existing unification-based parser, using a large grammar of English. If 
successful, this experiment should enable a comparison of classification and unification as 
mechanisms for parsing. A classification scheme appears to provide a way of 
substantially reducing several of the most general sources of inefficiency that arc
observed in current unification-based parsers. However, this conjecture needs to be 
examined by performing experiments with several real grammars and applications. 
Because the classification mechanism is based on general logical properties o f feature 
descriptions, it should be applicable to a broad class of grammars, just as unification- 
based parsers have been developed for grammars from a diverse range of linguistic 
theories and applications. In addition to providing an efficient engine for processing the 
constraints of linguistic feature descriptions, we also expect this type of information
organization to provide a strong basis for integrating semantic knowledge and knowledge
specific to particular applications into the parsing process.
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2 . 1 . 2 .  Indexing  Dependencies

The process of classification also keeps track of dependencies between different objects, 
eliminating the need for checking consistency between components of a description that 
have no features in common. In effect, an index is incrementally constructed from 
features to descriptions that contain them.

In most unification-based systems, feature structures are represented by directed graphs 
or terms. These representations effectively provide an index of features possessed by 
each object. This type of indexing is generally sufficient if only conjunctive constraints on 
features are used. When disjunctive constraints are also used, it becomes useful to keep 
track of dependencies between different parts of a complex description, in order to avoid 
repeated consistency checks between parts that share no features in common. A reverse 
index (from features to objects having those features) can be used to avoid these useless 
consistency checks. This second kind of index is created automatically when feature 
structures are classified into an explicit lattice.

2 . 1 . 3 .  Avoiding Redundant  Computations

The first time that a component of a description is classified, it is placed into a lattice 
containing all other descriptions in the knowledge base. The lattice structure makes full 
consistency checks unnecessary between objects that are known to be in a subsumption 
relationship. The object-oriented representation of the lattice also makes it possible to 
store the results of consistency checks between components of a description, so that they 
do not need to be repeated.

2 . 1 . 4 .  Using Classification as a Grammar Compiler

The classification-based architecture is also able to impose a system of type constraints on 
feature structures. Constraints may be placed on the sets of features that are required or 
prohibited for particular types of objects, and on the types of objects that may occur as 
the values o f particular features. Structures that violate one of these constraints are 
automatically marked as incoherent. In contrast, many of the unification methods used in 
computational linguistics have untyped feature structures. For applications o f limited 
scale, an untyped unification-based system may provide acceptable results with 
somewhat less overhead than a classification-based approach. In particular, an untyped 
feature system allows greater flexibility in the early stages of developing a grammar. 
However, for applications that are necessarily knowledge-intensive, a classification-based 
system is likely to be preferable, because it organizes a large collection of linguistic 
knowledge (and related nonlinguistic knowledge) in such a way that it can be more 
efficiently processed.

From another perspective, the classification-based system can be seen as carrying out a 
compilation procedure on a linguistic knowledge base. The initial loading (or compilation) 
of a large grammar into the system may be computationally expensive, but the result is a 
parser that may be considerably more efficient at run-time than current unification-based 
systems. In the early stages of developing a grammar, when not many sentences are 
parsed with a particular version o f the grammar before it is substantially revised, the 
benefits o f compilation may not be appreciated. When the system is actually used in an 
application, or tested on a large body of text, it may significantly improve performance.
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Using Restriction to Optimize Unification 
Parsing

D ale Gerdem ann * *

D epartm ent of Linguistics 
C ognitive Science Group 

Beckm an Institute for Advanced Science and Technology  
U niversity of Illinois

1 In troduction
Since Shieber (1985), restriction has been recognized as an important operation 
in unification parsing. 1 As Shieber points out, the most straightforward adap­
tation of Earley’s algorithm 2 for use with unification grammars fails because 
the infinite number of categories in these grammars can cause the predictor step 
in the algorithm to go into an infinite loop, creating ever more and more new 
predictions (i.e. the problem is that new predictions are not subsumed by pre­
vious predictions). The basic idea of restriction is to avoid making predictions 
on the basis of all of the information in a DAG, but rather to take some subset 
of that information (i.e. a restricted DAG-henceforth RD) and use just that 
information to make new predictions. Since there are only a finite number of 
possible RDs the predictor step will no longer go into the infinite loop described 
above. The price you pay for this move is that some spurious predictions will be 
made, but as Shieber points out, the algorithm is still correct since any spunous 
predictions will be weeded out by the completer step.

‘ Cognitive Science G roup, Beckm an In stitu te , 405 N. M athews, Urbana, 111 61801; 
daleQ tanki.cogvci.u iuc.edu

*1 would like to thank Alan Frisch, Erhard Hinrichs, Lucja Ivariska, Jerry M organ, Mike 
M endelson, and Tsuneko Nakatawa for their useful com m ents. Any deficiencies m ust rest with  
me. Thanks also to the UIUC Cognitive Science/A rtificial Intelligence fellowship com m ittee  
for the support that m ade this research possible.

*By unification parsing I m ean p a n in g  of unification grammars. See Seifert (1988) for a 
precise definition of a unification grammar.

3I will assume fam iliarity w ith the basic steps of E arley’s algorithm  as presented in Earley 
(1970). For an introduction to E arley’s algorithm  and its relationship to chart parsing in 
general see W inograd (1983).
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Shieber’s use of restriction in the predictor step is by now well established. 
On the other hand, there has been little discussion of the uses of restriction in 
other stages of parsing. In this paper, I will argue that restriction can be used 
to advantage in at least three additional ways. First, restriction can be used 
to significantly speed up the subsumption check on new predictions. Second, it 
can be used in the completer step in order to speed up the process of finding 
the correct states in the state sets to be completed. And third, it can be used 
to add a lookahead component to the unification parser. I will begin this paper 
by briefly reviewing Shieber’s use of restriction and then I will discuss the three 
additional uses for restriction mentioned above.

2 R estriction  in the Predictor Step
The original motivation for restriction was to avoid infinite cycles in the predic­
tor step of Earley’s algorithm. Shieber illustrates this problem with a “counting 
grammar” but the same point can be made using a type of grammar that is some­
what more familiar in recent linguistic theory. Specifically, infinite cycles can 
arise in grammars that handle 3ubcategorization with list valued features such 
as Head Driven Phrase Structure Grammar (Pollard and Sag, 1987) or PATR 
style grammars (Shieber, 1986). To illustrate the problem, suppose that we are 
parsing a sentence using a grammar with the PATR style rules in (1,2). The 
problem of non-termination can arise with this grammar since rule (2) allows 
for lexical items with indefinitely long subcategorization lists.

(1) zO —♦ xl x2
xO [ c a t  s ] 
x l [l] [ cat np ]

cat vp
x2 subcat

f ir s t  [1 ] 
rest end

(2 ) zO

xO

xl x2 
cat vp

cat vp

subcat
f ir s t
rest

[2! 1
11 ] . .

xl [1 ] 

x2 12)

The first step in parsing a sentence with this grammar is to find a rule whose 
left hand side unifies with the DAG described by the path equation {cat) =  s
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(i.e. the start DAG). Since the rule in (l) satisfies this requirement, the next 
step is to make a prediction for the xl daughter. In Earley’s algorithm as it was 
originally formulated (Earley 1970), the prediction for xl would simply be its 
category label (i.e. np). In this unification style grammar, however, category 
labels are just features like any other feature. Since the DAGs associated with 
each of the non-terminals (xO, x l , . . . ,  xn) in a rule may express just partial 
information about that non-terminal, it is possible that some non-terminals 
(such as x2 in the second rule) will not be associated with any category label at 
all. The natural solution, then, would be to make a prediction using the entire 
DAG associated with a given non-terminal. Suppose, now, that we have parsed 
the np in rule (1 ) and we’re ready to parse x2. The DAG associated with x2 
would be (3).

cat vp
[ cat np ]subcat f ir s t

rest end .

When this DAG unifies with the category on the left hand side of (2) we get 
the rule shown in (4).

(4) xO xl x2

xO

xl

cat
subcat
cat

subcat

vp
\2 \
vp

f irs t [i]
rest [2]

f i r s t  [ cat np ]
rest end

.  x2 I1!

Now, following the same procedure, the predictor would next make a pre­
diction for the non-terminal xl in (4). It can easily be seen that when the DAG 
associated with x l  unifies with the left hand side of rule (2) the predicted rule 
is almost the same as (4) except that the value for (subcat rest) in (4) becomes 
the value for (subcat rest rest) in the new predict ,i. In fact, the predictor 
step can continue making such predictions ad infinitum and, crucially, the new 
predictions will not be subsumed by previous predictions.

To solve this problem Shieber proposes that the predictor step should not 
use all of the information in the DAG associated with a non-terminal, but rather 
it should use some limited subset of that information. Of course, when some 
nodes of the DAG tire eliminated the predictor step can overpredict, but this 
does not affect the correctness of the algorithm since these spurious predictions 
will not be completable. Shieber’s proposal is basically that before the predictor 
step is applied, a RD should be created which contains just the information
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associated with a finite set of paths (i.e. a restrictor). 3 In this way, Shieber’s 
algorithm allows an infinite number of categories to be divided into a finite 
number of equivalence classes. Since the number of possible RDs is finite it 
becomes impossible to make the kind of infinite cycle of predictions illustrated 
above.

Primarily for notational reasons, I will define restriction in a slightly different 
manner from Shieber (1985). For our purpose here we can define the RD D’ of 
DAG D to be the least specific DAG D’ C D such that for every path P in the 
restrictor if the value of P in D is atomic then the value of P in D’ is the same 
as the value of P in D and if the value of P in D is complex then the value of 
P in D’ is a variable. This differs from Shieber’s definition in that reentrancies 
are eliminated in the RD. Thus the RD is not really a DAG but rather is a 
tree and hence it can be represented more easily by a simple list structure. For 
example,given the restrictor [(a b), (d e f), (d i j f) ], the RD for the DAG in
(5) (from Shieber 1985) will be represented by the indented list shown in (6), 
in which variables are indicated by [].4

a  [
b  c  ]

’ e  W  [ /  { 9  M l "

d *  [ ;  [ i l l

k  I m

( 6 )  [ [ a , [ [ 6 , c ] ] l ,

\ d ,  [ [ « , [ [ / ,  O i l ] ,

[ i ,  U  [ [ / .  I l l l l l l

3 R estr ic tion  in th e  Subsum ption  Test
The first use of restriction I will discuss involves the subsumption check on new 
predictions. In the original Earley’s algorithm (Earley 1970), a check was made 
on each new prediction to see that an identical prediction had not already been 
made in the same state set. Of course, if duplicate predictions are retained the 
parser can fall into the left recursion trap. In Shieber’s adaptation, however, this 
identity check is changed to the more general notion of a subsumption check. If 
a new DAG is predicted that is subsumed by a previous (more general) DAG,

aT he question of how to select an appropriate restrictor for greatest efficiency m ust remain 
a question for further research. See the conclusion of this paper for further discussion.

^E lim inating reentrancies from RDs may also be a reasonable thing to do from a com pu­
tational point of view . Judging from the particular restrictors used in Shieber (1985,1986) 
it would appear that reentrancies rarely occur in RDs. However, for some purposes it may 
be desirable to  include more inform ation in R D s. A  possible exam ple would be the use of 
parsing algorithm s for generation, in which it would be desirable to use as much top down 
inform ation as possible.

-11- Intemational Parsing Workshop '89



the new DAG is not retained since any DAGs that could be predicted on the 
basis of the new DAG could already have been predicted on the basis of the 
more general DAG. Clearly, the move from an identity check to a subsumption 
check is the right sort of move to make, but a subsumption check on arbitrarily 
large DAGs can be an expensive operation. This seems to be an ideal area in 
which restriction could be used to optimize the algorithm.

The move I propose is the following. Initially, new predictions are made in 
the manner suggested by Shieber; i.e. make a RD for the category “to the right 
of the Dot” and then collect all the rules from the grammar whose left hand side 
category unifies with this RD-these rules then constitute the new predictions. 
At this point I suggest that the RD used to find these predictions should be 
retained along with the new predictions; that is, a list of RDs that have been 
used to make predictions should be kept for each state set. I will call this list the 
RDJList. Then, the next time the parser enters the predictor step and creates 
a new RD from which to make new predictions, a subsumption check can be 
made directly between this RD and the RD_List. If the new RD is subsumed 
by any member of the RD_List then we can immediately give up trying to make 
any new predictions from this RD. Any predictions made from th RD would 
necessarily already have been made when the predictor encountered the more 
general RD in the RDJList. Thus we avoid both the expense of making new 
predictions and the expense of applying the subsumption test to weed these new 
predictions out. Moreover, since RDs are typically very small (at least given 
the sample restrictors given in Shieber (1985,1986)), the subsumption test that 
is performed on them can be applied very quickly.

As an example, suppose that some set of predictions has already been made 
using the RD, ([cat, np]], then there is no point in making predictions using 
[[cat, np],[num, sing]] since any such predictions would necessarily fail the sub­
sumption check; i.e., rules expanding singular noun phrases are more specific 
than (or subsumed by) rules expanding noun phrases unspecified for number. 
This particular case probably does not arise often in actual parsing, but cases 
of left recursion do arise for which this optimization can make a very signifi­
cant difference in processing speed. In fact our experience with the UNICORN 
natural language processing system (Gerdemann and Hinrichs 1988), has shown 
that for grammars with a large amount of left recursion, this simple optimiza­
tion can make the difference between taking several minutes of processing time 
and several seconds of processing time.

4 R estr ic tion  in the C om pleter Step
The next use of restriction I propose involves the completer step. The completer 
applies, in Earley’s algorithm, at the point where all of the right hand side of 
a rule in some state has been consumed, i.e., the point at which the “Dot” has 
been moved all the way to the right in some rule. At this point the completer
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goes back to the state set in which the state to be completed was originally 
predicted and searches for a prediction in this state set which has a category 
“to the right of the Dot* which can unify with the mother node of the rule in 
the state to be completed. This search can be quite time consuming since the 
completer must attempt to perform a unification for each state in this state set.

In each state, there is a variable F which indicates in which state set that 
stace was predicted so the completer can immediately go back to the Fth state 
set in order to make the completion. But there is no variable which indicates 
which state in the Fth state set could have been responsible for making that 
prediction. And, in fact, it would be quite difficult to implement such a direct 
backpointer since in many cases a particular state is really only indirectly re­
sponsible for some prediction in the sense that it would have been responsible 
for the prediction if it had not been for the subsumption check. For example, 
suppose we try to implement a system of backpointers as follows. Each state 
will be a quintuple (Lab,BP,Dot,F,Dag) where Lab is an arbitrary label, BP is 
a kind of backpointer which takes as its value the label of the state that was re­
sponsible for predicting the current state and Dot, F, and Dag are as in Shieber’s 
adaptation of Earley’s algorithm; i.e., Dot is a pointer to the current position 
in the rule represented by Dag, and F is the more general kind of backpointer 
which only indicates in which state set the original prediction was made. To 
illustrate the problem with this scheme, consider the partial state set in (7), in 
which the subscripted t indicates that this is the tth state set.

(7) [Labi, B P  1 , Dotl, F 1 , Dagl], [Lab2, B P 2 , Dot2, F2, Dag2\ , ...]

Now suppose the RD for Dagl is [[cat,np]] and that the RD for Dag2 is 
[[cat,np],[num,sing]]. When the predictor looks at state Labi it will make 
some number of predictions with backpointers to Labi as in (8) (For example, 
[Lab3,Labl,0,i,Dag3] is a new state with an arbitrary label, Lab3, a backpointer 
to state Labi, the Dot set at 0 indicating the beginning of the left hand side, 
F set to t indicating that the prediction was made in state set i, and Dag3 
representing the new rule).

(8) i [ . .. [Labi, B P 1 , Dotl, FI, Dagl], [Lab2, B P 2 , Dot2, F2, Dag2],
[LabZ, Labi, DotZ, DagZ], [LabA, Labi, Dot\, FA, Dagi] , ...]

But when the predictor looks at Lab2 no predictions will be made since its RD 
ifl subsumed by the RD of Labi. Thus even though (without the subsumption 
check) Lab2 could have been responsible for the predictions Lab3 and Lab4, no 
backpointers are created for Lab2 .

It is at this point that RDs can again help us out. The idea is that when 
the predictor attempts to make predictions on the basis of some state it adds 
a RD to that state and to all predictions made from that state as a kind of 
marker (or coindexing between a state and the predictions resulting from that
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state). The RD used for this coindexing will be either 1 .) the RD used to 
make the predictions or 2.) if no predictions were made because a more general 
RD had already been used to make predictions, then this more general RD 
is used as the marker. Now the completion step is greatly simplified. The 
completer can go back to the Fth state set and attempt unification only on states 
that have identical RD-markers. Clearly this move eliminates many attempted
unifications that would be doomed to failure. To implement this idea states
will be defined as quintuples (BP,FP,Dot,F,Dag) where BP is a RD acting as a 
backpointer, FP is a RD acting as a forward pointer and F,Dot, and Dag are as 
before. Now the analog of (7) will be (9).

(9) i [ . . . [BP 1 , F P  1 , Dotl, FI, Dagl\, [BP2, FP2, Dot2, F2, Dag2],...]

In (9) BPl and BP2 will each be instantiated to the value of the RD re­
sponsible for the prediction which created their respective state. F P l  and FP2 , 
however will be uninstantiated variable since these two states have not yet been 
responsible for creating any new predictions. Now assuming that the RDs for 
Dagl and Dag2 are as in (7) then when the predictor applies to the first state 
shown in (9), the result will be the state set shown in (10).

(10) ,[. . . [ B P l ,  [[cat, np]], Dotl, FI, Dagl],
[BP2, F P 2 , Dot2, F2, Dag2\,
[[[cat, np]], FP3, DotZ, F 3, Dag3],
[[[cat, np]], FPA, DotA, FA, DagA],...]

Then when the predictor looks at the second state in ( 10), no predictions 
will be made as before, however the predictor will register the attempt to make 
a prediction by instantiating the variable FP2 as in (11).

(1 1 ) i [ .  . . [ B P l ,  [[cat, np]], Dotl, F 1 , Dagl],
[BP2, [[cat, np]], Dot2, F2, Dag2\,
[[[cat, np]], FPZ, DotZ, F 3, Dag3],
[[[cat, np]], FPA, DotA, FA, DagA],...]

Now whenever the descendants of states 3 and 4 are ready to be completed, 
it will be easy to go back to this state set and find the states whose forward 
pointers are identical to the backpointers of the states to be completed. Thus 
many candidates for completion are immediately ruled out.

5 R estr ic tion  U sed  in Lookahead
The final use for restriction that I propose involves lookahead. Lookahead is one 
aspect of Earley’s algorithm which clearly needs modification in order to be used
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efficiently with unification grammars or natural language grammars in general. 
In the original algorithm, a calculation of lookahead was performed as part of 
the prediction step. A simple example can show the problem with Earley’s 
version of this procedure. In the S —► NP VP rule, when the predictor makes 
a prediction for NP, it is required to add a state for each possible lookahead 
string that can be derived from the VP. But given the large number of verbs or 
adverbs that can start a VP in a natural language this would require adding a 
huge number of states to the state set. Clearly we don’t want to simply list all 
the possible lookahead strings, but rather the correct approach would be to find 
what features these strings have in common and then add a smaller number of 
states with feature based lookaheads.

Aside from the question of what kind of lookahead to calculate, there are 
two other questions that need to be considered: first the question of when to 
calculate lookahead and second how to calculate it. Beginning with the when 
question, it is clear that unification grammars require lookahead to be calculated 
at a later point than it is in Earley’s approach. The reason for this is illustrated 
by rules like (2) repeated here as (12 )

(12) xO

xO

xl x2
cat vp 
subcat [l]

x l  [1 ] 

x2 [2]

cat

subcat

vp
f ir s t  [2] 
rest [l]

According to Earley’s approach, when a prediction is made for xl, the looka­
head for x2 should be calculated. But in this case, no features for x2 will be 
specified until after x l  is parsed. This is an extreme situation, but it illustrates 
a general problem. It is the normal case in a unification grammar for the result 
of parsing one category to affect the feature instantiations on its sister. Clearly, 
what needs to be done in this case is to parse x l  and then perform a lookahead 
on x2. Thus, lookahead should be calculated for a category immediately before 
the predictor applies to that category; i.e., lookahead can be considered a quick 
check to be made immediately before applying prediction. Unlike Earley’s orig­
inal algorithm, then, it is not necessary to put a lookahead string into a state 
to be checked at a later point.

The question, then, is how to calculate lookahead. In Earley’s version of the 
algorithm, there is a function, Hk which when applied to a category C returns 
a set of k-symbol strings of terminals which could begin a phrase of category 
C. When applied to unification grammars, however, the problem of having an 
infinite number of categories again appears. We certainly cannot list possible 
strings of preterminals that can begin each category. It is clear, then, that some

-15- Intemational Parsing Workshop '89



form of restriction is again going to be necessary in order to implement any kind 
of lookahead. One, relatively simple, way of implementing this idea is as follows. 
When the predictor applies to a category C, the first thing it does is make a RD 
for C. Then a table lookup is performed to determine what preterminal cate­
gories could begin C. Since there are potentially infinite preterminal categories, 
restriction must be applied here too. So more precisely, the table lookup finds 
a set of RDs that could unify with whatever actual preterminal could begin a 
phrase of category C. Let us call these RDs the preterminal RDs. Then before 
the predictor can actually make a prediction a check must be performed to ver­
ify that the next item in the input is an instance of a category that can unify 
with one of the preterminal RDs. If the check fails, then the prediction is aban­
doned. All that remains is to specify how the lookup table is constructed. One 
way such a table might be constructed would be to run the parser in reverse for 
generation as in Shieber (1988) . Thus, for each possible RD (given a particular 
restrictor), the generator is used to determine what preterminal RDs can begin 
a phrase of this category.

6 Conclusion
I have argued here that restriction can be used in unification parsing to effect 
three optimizations. First, it can be used to greatly speed up the subsumption 
test for adding new predictions to the state set, second it can be used to speed up 
the searching used in the completer step, and finally it can be used to implement 
a form of lookahead. The first two of these uses have been fully implemented 
within the UNICORN natural language processing system (Gerdemann and 
Hinrichs 1988). The use of restriction with lookahead is still under development.

In general, the fact that unification grammars may have categories of in­
definite complexity necessitates some way of focusing on limited portions of 
the information contained in these categories. It seems quite likely, then, that 
restriction would be useful even in other parsing algorithms for unification gram­
mars. The primary question that remains is what portion of the information 
in complex DAGs should be used in these algorithms; that is, the question is 
how to choos« a restrictor. Up to now, no general principles have been given for 
choosing a restrictor for greatest efficiency. Given the proposals in this paper, it 
becomes even more critical to find such general principles since restriction can 
affect the efficiency of several steps in the parsing algorithm.

References
[1] Jay Earley. An efficient context-free parsing algorithm. Communications of 

the ACM , 1970.

[2] Dale Gerdemann and Erhard Hinrichs. UNICORN: a unification parser for

-16- International Parsing Workshop '89



attribute-value grammars. Studies in the Linguistic Sciences, 1988.

[3] Carl Pollard and Ivan Sag. An Information-Based Approach to Syntax and 
Semantics: Volume 1 Fundamentals. CSLI Lecture Notes No. IS, Chicago 
University Press, Chicago, 1987.

[4] Roland Seiffert. Chart-parsing of unification-based grammars with ID\LP- 
rules. In Ewan Klein and Johan van Benthem, editors, Categories, Polymor­
phism and Unification, pages 335-54, CCS/ILLI, Edinburgh/Amsterdam, 
1987.

[5] Stuart Shieber. An Introduction to Unification-Based Approaches to Gram­
mar. CSLI Lecture Notes No. 4, Chicago University Press, Chicago, 1986.

[6] Stuart Shieber. A uniform architecture for parsing and generation. In 
COLING-88, pages 614-9, 1988.

[7] Stuart Shieber. Using restriction to extend parsing algorithms for complex- 
feature-based formalisms. In ACL Proceedings, 2Srd Annual Meeting, 
pages 145-52, 1985.

[8] Terry Winograd. Language as a Cognitive Process: Syntax. Ablex, Nor­
wood, 1983.

-17- Intemationai Parsing Workshop '89



An O verview  of  
Disjunctive Constraint Satisfaction

■John T. Maxwell III and Ronald M . Kaplan  

Xerox Palo Alto Research Center

Introduction

This paper presents a new algorithm for solving disjunctive systems of constraints. The algorithm 
determines whether a system is satisfiable and produces the models if the system is satisfiable. There 
are three main steps for determining whether or not the system is satisfiable:

1 ) turn the disjunctive system into an equi-satisfiable conjunctive system in polynomial time
2) convert the conjunctive system into canonical form using extensions of standard techniques 
■3) extract and solve a propositional ’disjunctive residue'

Intuitively, the disjunctive residue represents the unsatisfiable combinations of disjuncts in a 
propositional form based on the content of the constraints. Each of the transformations above 
preserves satisfiability, and so the original disjunctive system is satisfiable if and only if the 
disjunctive residue is satisfiable. If the disjunctions are relatively independent (as frequently happens 
in grammatical specifications), then the disjunctive residue is significantly easier to solve than  the 
original system.

The first three sections of this paper cover the steps outlined above. The fourth section describes how 
models can be produced. Finally, the last section compares this approach with some other techniques 
for dealing with disjunctive systems of constraints.

Turning Disjunctions into C onjunctions

B asic  L e m m a

Our method depends on a simple lemma for converting a disjunction into a conjunction of implications:

(1) 4>i V 4>2 is satisfiable iff ( p —*• 4>i ) A ( - 1 p -* 4)9 ) is satisfiable, 
where p is a new propositional variable.

Proof:
1) If 4)i v  $2  is satisfiable, then either 4>i is satisfiable or 4>2 is satisfiable. Suppose tha t  4>i is 

satisfiable. Then if we choose p to be true, then p —► is satisfiable because 4>i is satisfiable, 
and - l p-*  $2  is vacuously satisfiable because its antecedent is false. Therefore 
(p -+  <t>i ) A ( - l p -»  4)2 ) is satisfiable.

2) If ( p —► 4)i ) A ( i p - >  4>2 ) is satisfiable, then both clauses are satisfiable. One clause will 
be vacuously satisfiable because its antecedent is false and the other will have a true antecedent. 
Suppose that p -> 4>l is the clause with the true antecedent. Then 4>i must be satisfiable for p -+ 4>i to 
be satisfiable. But if 4>i is satisfiable, then so is 4>i V 4>2- Q E D.

Intuitively, the new variable p is used to encode the requirement that a t  least one of the disjuncts be 
true. In the rem ainder of the paper we use lower-case p to refer to a single propositional variable, and 
upper-case P to refer to a boolean combination of propositional variables. We call P 4> a contexted 
constraint, where P is the context and 4> is called the base constraint.

(Note that this lemma is stated in terms of satisfiability, not logical equivalence. A form of the lemma 
that emphasized logical equivalence would be: 4>t V 4)2 *"* 3p: ( p —► 4>l ) A ( - IP $2  )• )
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T u rn in g  a D is ju n c tive  S y s te m  into a C o n ju n c tive  S y s te m

The lemma given above can be used to convert a disjunctive system of constraints into an flat 
conjunction of contexted constraints in polynomial time. The resulting conjunction is satisfiable if and 
only if the original system is satisfiable. The algorithm for doing so is as follows:

(2 ) a) push all of the negations down to the literals
b) turn all of the disjunctions into conjunctions using the lemma above
c) flatten nested contexts with: I P t —* I Pj —* <J>)) <=* ( P t A Pj -* <$ )
d) separate conjoined constraints with: ( P, -» $ 1  A )) ** ( Pi $ 1  ) A ( P, -* 4)2 )

This algorithm is a variant of the reduction used to convert disjunctive systems to CNF in the proof 
that CNF is NP-complete[4], and is thus known to run in polynomial time. In effect, we are simply
converting the disjunctive system to an implicational form of CNF (note that P —* is logically
equivalent to ~>P V <t>)- CNF has the desirable property that if any one clause can be shown to be 
unsatisfiable, then the entire system is unsatisfiable.

E xam ple

The functional s tructure f of an uninflected verb in English has the following constraints in the 
formalism of Lexical-Functional G ram m ar[6 |:

(3) ((f INF) = - A ( f  TENSE) = PRES A -[(fSUBJ NUM) = SG A (f SUBJ PERS) = 3]) v  (f INF) = +

(In LFG notation, a constraint of the form (f a) = v asserts that fta) = v, where f is a function, a is an
attribute, and v is a value, (f a b) = v is shorthand for f(a)(b) = v.) These constraints say tha t  an 
uninflected verb in English is e ither a present tense verb which is not third person singular or it is 
infinitival. In the left column below this system has been reformatted so that it can be compared with
the results of applying algorithm (2 ) to it, shown on the right:

reformatted: converts to:

( (f INF) = - ( P t -*• (f INF) = - ) A

A (f TENSE) = PRES ( P-| -* (fTENSE) = PRES) A

A - [ (f SUBJ NUM) = SG ( p 1 A p 2 (f SUBJ NUM) x  SG ) A

A (fSUBJ PERS) = 3 ]) ( p 1 A ->p2 -► (f SUBJ PERS) * 3 ) A

V (f INF) = + ( “, P 1 - (f INF) = + )

Converting the Constraints to C anonical Form

A conjunction of contexted constraints can be put into an equi-satisfiable canonical form that  makes it 
easy to identify all unsatisfiable combinations of constraints. The basic idea is to s ta r t  with 
algorithms tha t  determine the satisfiability of purely conjunctive systems and extend each rule of 
inference or rewriting rule so tha t  it can handle contexted constraints. We illustrate  this approach by 
modifying two conventional satisfiability algorithms, one based on deductive expansion and one based 
on rewriting.

D ed u c tive  E x p a n s io n

Deductive expansion algorithm s work by determining all the deductions tha t  could lead to 
unsatisfiability given an initial set of clauses and some rules of inference. The key to extending a 
deductive expansion algorithm to contexted constraints is to show th a t  for every rule of inference tha t  
is applicable to the base constraints, there is a corresponding rule of inference th a t  works for contexted

-19- Intemational Parsing Workshop '89



constraints. The basic observation is that base constraints can be conjoined if their contexts are 
conjoined:

(4) ( Pi —> <J>i ) A ( P ‘2 —> 4>o ) =* ( Pi A P ‘2 —♦ 4>i A (|>2 )

If we know from the underlying theory of conjoined base constraints that <£i A <£2 —*■ 4)3, then the 
transitivity of implication gives us:

(5 ) ( Pi —* 4>i ) A ( P2 —* <J>2 ) =* ( Pi A P2 —<► 4>3 )

Equation (5) is the contexted version of A ^  $ 3. Thus the following extension of a standard
deductive expansion algorithm works for contexted constraints:

(6) For every pair of contexted constraints Pi —»<£1 and P 2 —* <po such that:
a) there is a rule of inference $  1 A $2 -+ (£3
b) P \  A P2 *  FALSE

c) there are no other clauses P3 —*• 4)3 such that P t A P 2 - P 3 
add Pi A P2 —* <$>3 to the conjunction of clauses being processed.

Condition (6b) is based on the observation that any constraint of the form FALSE —> (p can be discarded 
since no unsatisfiable constraints can ever be derived from it. This condition is not necessary for the 
correctness of the algorithm, but may have performance advantages. Condition (6c) corresponds to the 
condition in the standard deductive expansion algorithm that redundant constraints must be 
discarded if the algorithm is to terminate. We extend this condition by noting tha t  any constra in t of 
the form Pj —* 4> is redundant if there is already a constraint of the form Pj —► <£, where Pj -* Pj. This is 
because any unsatisfiable constraints derived from Pj -+ 4> will also be derived from Pj —* <£. Our 
extended algorithm term inates if the s tandard algorithm for simple conjunctions terminates. When it 
terminates, an equi-satisfiable disjunctive residue can be easily extracted, as described below.

R e w r i t in g

Rewriting algorithms work by repeatedly replacing conjunctions of constraints with logically 
equivalent conjunctions until a normal form is reached. This normal form usually has the property 
that all unsatisfiable constraints can be determined by inspection. Rewriting algorithms use a set of 
rewriting rules that specify what sorts of replacements are allowed. These are based on logical 
equivalences so that no information is lost when replacements occur. Rewriting rules are in terpreted 
differently from logical equivalences, however, in that they have directionality: whenever a logical 
expression matches the left-hand side of a rewriting rule, it is replaced by an instance of the logical 
expression on the right-hand side, but not vice-versa. To distinguish the two, we will use «-* for 
logical equivalence and »  for rewriting rules. (This corresponds our use of —► for implication and => 
for deduction above.)

A rewriting algorithm for contexted constraints can be produced by showing tha t  for every rewrite  
rule that is applicable to the base constraints, there is a corresponding rewrite rule for contexted 
constraints. Suppose tha t  $ 1  A <J>2 <=> <$>3 is a rewriting rule for base constraints. An obvious candidate 
for the contexted version of this rewrite rule would be to treat the deduction in (5) as a rewrite rule:

(7) ( Pi -*• $ 1  ) A ( P 2 —<► $2  ) <=> ( Pi A P2 -» $3  ) (incorrect)

This is incorrect because it is not a logical equivalence: the information that <p\ is true in the context 
Pi A -> P2 and that $2  is true in the context P 2 A —1 Pi has been lost as the basis of future deductions. If 
we add clauses to cover these cases, we get the logically correct:

(8) ( P i —►4)i ) A ( P 2—* $2 ) ^  ( Pi A - P 2 -*<J>i) A( P2 A - P t -> <£2 ) A ( Pi A P2 —♦ $3 )
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This is the contexted equivalent of <pi A $ 2 <=> $ 3. Note that the effect of this is that the contexted 
constraints on the right-hand side have unconjoinable contexts (that is, their conjunction is 
tautologically false). Thus, although the right-hand side of the rewrite rule has more conjuncts than 
the left-hand side, there are fewer implications to be derived from them.

Loosely speaking, a rewriting algorithm is constructed by iterative application of the contexted 
versions of the rewriting rules of a conjunctive theory. Rather than give a general .t iine  here, let us 
consider the particular case of a ttr ibute  value logic.

A p p lica t io n  to A t tn b u te - V a lu e  L og ic

Attribute-value logic is used by both LFG and unification-based grammars. We will s ta r t  with a 
simple version of the rewriting formalism given in Johnson[51. For our purposes, we only need two of 
the rewriting rules that Johnson defines[5 pp. 38-39]:

O) ti == t2 «  t2 « t l when ||t i|| < ||t2i| ( INI is Johnson's norm for terms. )

(10) t2=s tiA<t) «  t2~ t i  A <$>[t2/til  where <t> contains t2 and ||t2|| >  i|ti||

( <J>[t2/til denotes "4) with every occurrence of t2 replaced by ti". )

We turn equation (10) into a contexted rewriting rule by a simple application of (7) above:

( 1 1 ) ( P i - > t 2 =  t 1 ) A (  P2 -><t>)
»  ( Pi A ->P2 —► t2 = t L) A ( -  Pi A P2 -+<t>) A (  Pi A P 2 -+ ( t2 =  ti A<t>[t2/tiD)

We can collapse the two instances of 1 2 =  1 1 together by observing that ( P - * A A B )  *+
( p a  ) A ( P -> B ) and tha t  ( P{ -* A ) A ( Pj A ) «- ( P t V Pj -* A ), giving the simpler form:

(12) ( Pi -* t2 =  t i ) A ( P2 -*« 4>) «=> ( Pi -* t2 = ti ) A ( P2 A -  Pi -> 4>) A ( P2 A Pi -* 4>[t2/ti  1)

Formula (12) is the basis for a very simple rewriting algorithm for a conjunction of contexted 
attribute-value constraints.

(13) For each pair of clauses Pi —* tj =  t t and P 2 —> 4>:
a) if ||tj|| > INI,then set fc2 t0 tj and fci t0 else set fc2 t0 ̂  and t i t0 ti
b) if <|> mentions t 2 then replace P2 -* <P with ( P2 A -*Pi -> <J>) A ( P 2 A Pi -* <t>[t2/ t i l )

Notice that since Pi -* t2 =  ti is carried over unchanged in (12), we only have to replace P2 <t> in 
(13b). Note also that if P 2 A P t is FALSE, there is no need to actually add the clause P2 A Pi - *  <t>(t2/ti] 
since no unsatisfiable constraints can be derived from it. Similarly if P 2 A —1 ? !  is FALSE there is no 
need to add P 2 A ~1 Pi —► <t>.

E x a m p le

The following example illustrates how this algorithm works. Suppose that (15) is the contexted 
version of (14):

(14) [f2 =  f i V ( f i a )  =  c i ]A [ ( f2 a) =  c2 v ( f i a )  = c3] where q  * cj for all i * j

15) a. Pi -> f2 — fl
b. ^Pi -* II 0 r—

•

c. P2 -*> (f2 a) =C2
d. ~' P2 -> (fl a) = C3
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(For clari ty,  we omit the A's whenever  contexted const ra in t s  are d isplayed in a column.) There is an 
applicable rewrite rule for const r a in ts  ( 15a) and (15c) tha t  produces three  new const raints:

(16) pi — f2 = fi ^  Pi -*■ =
p2 -+ (T2 a) =  c2 ~"Pi a P2 -* (f-2 a) =  c2

pi A p2 -» (fi a) =  C9

Although there is an applicable rewri te  rule for ( 15d) and the last  clause of ( 16), we ignore it since p t 
A p9 A —-p2 is FALSE. The only o ther  pai r  of cons t ra in t s  tha t  can be rewr i t ten  are  ( 15b) and ( I 5d). 
producing three more const ra ints:

(IT) —1 pi -*> (fi a) =  ci <=> ~' Pi ~ " (fi a) =  ci
—1P2 — *  (fi a) =  C3 P i A t ?  ~ (fi a) =  c3

“’Pi A - p 2 -*> Cl = c 3

Since no more rewrites  are  possible, the normal  form ot ( 15) is thus:

18) a. Pi — f2 = fi
b. “■Pi -> (fl a) =  ci
c. - 1 pi A p2 — (f2 a) =  C2
d. Pi A - 1 p2 -*• (fi a) =  c3
e. Pi A P2 — (fi a) = C2
f. -1 Pi A p2 -» 0 II 0 CO

Extracting the Disjunctive Residue
When the rew riting algorithm is finished, all unsatisfiable combinations of base constraints will have 
been derived. But more reasoning must be done to determine from base unsatisfiabilities whether the 
disjunctive system is unsatisfiable. Consider the contexted constraint P -* <J>, where <J> is unsatisfiable. 
In order for the conjunction of contexted constraints to be satisfiable, it must be the case tha t  -• P is 
true. We call - ' P a  nogood, following deKleer's terminology! 1 ]. Since P contains propositional 
variables indicating disjunctive choices, information about which conjunctions of base constraints are 
unsatisfiable is thus back-propagated into information about the unsatisfiability of the conjunction of 
the disjuncts that they come from. The original system as a whole is satishable just  in case the 
conjunction of all its nogoods is true. We call the conjunction of all of the nogoods the residue ot the 
disjunctive system.

For example, clause (18f) asserts tha t  -*pi A ^ P 2 - » > ci = c 3. B utc i  = c 3 is unsatisfiable, since we know 
that ci * c3. Thus ~>( - 1 pi A - 1 P2) is a nogood. Since ci = c3 is the only unsatisfiable base constra in t in 
( 18 ), this is also the disjunctive residue of the system. Thus (14) is satisfiable because - l (~ lp i A  1 po) 
has at least one solution (e.g. pi is true and P2 is true).

Since each nogood may be a complex boolean expression involving conjunctions, disjunctions and 
negations of propositional variables, determining whether the residue is satisfiable may not be easy. 
In fact, the problem is NP complete. However, we have accomplished two things by reducing a 
disjunctive system to its residue. First, since the residue only involves propositionat variables, it can 
be solved by propositional reasoning techniques (such as deKleer's ATMS) that do not require 
specialized knowledge of the problem domain. Second, we believe tha t  for the particular case of 
linguistics, the final residue will be simpler than  the original disjunctive problem. This is because the 
disjunctions introduced from different parts of the sentence usually involve different a ttr ibu tes  in the 
feature structure, and thus they tend not to interact.

Another way that nogoods can be used is to reduce contexts while the rewriting is being carried out, 
using identities like the following:
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(19) ~,PiA( ~1Pi A  P2~* <t>) <=> Pi A ( P-2 —► c$>)

(20) - P i  A( Pi A P2-><$>) “’ Pi

(21) Pi A Pi <=> FALSE

Doing this can improve the performance since some contexts are simplified and some constraints are 
eliminated altogether. However, the overhead of comparing the nogoods against the contexts may 
outweigh the potential benefit.

Producing the M odels
Assuming that there is a method for producing a model for a conjunction of base constraints, we can 
produce models from the contexted system. Every assignment of tru th  values to the propositional 
variables introduced in (1 ) corresponds to a different conjunction of base constraints in the original 
system, and each such conjunction is an element of the DNF of the original system. Rather than 
explore the entire space of assignments, we need only enumerate those assignm ents for which the 
disjunctive residue is true.

Given an assignment of tru th  values tha t  is consistent with the disjunctive residue, we can produce a 
model from the contexted constraints by assigning the tru th  values to the propositional variables in 
the contexts, and then discarding those base constraints whose contexts evaluate to false. The 
minimal model for the rem aining base constraints can be determined by inspection if the base 
constraints are in normal form, as is the case for rewriting algorithms. (Otherwise some deductions 
may have to be made to produce the model, but the system is guaranteed to be satisfiable.) This 
minimal model will satisfy the original disjunctive system.

E xa m p le

The residue for the system given in (18) is - l ( _lpi A ->p2 ). This residue has three solutions : pi and 
P 2 both true, pi true and p2 false, and pi false and p2 true. We can produce models for these solutions 
by extracting the appropriate constraints from (18), and reading off the models. Here are the solutions 
for this system:

solution: constraints: model:

(22) pi true, p2 true: f2 = fi A (f i  a) =  C2 !![’ 1

(23) pi true, p2 false: f2 =  fi A (fi a) =  c3 !![• 1
(24) pi false, p2 true: (fl a) = ci A (f2 a) = C2 fl[a cl]

C om parison with Other T ech n iqu es

In this section we compare disjunctive constra in t satisfaction with some of the o ther techniques tha t  
have been developed for dealing with disjunction as it arises in gram m atical processing. These other 
techniques are framed in term s of feature-structure unification and a unification version of our 
approach would facilitate the comparisons. Although we do not provide a detailed specification of 
context-extended unification here, we note that unification can be thought of as an indexing scheme 
for rewriting. We s ta r t  with a simple illustration of how such an indexing scheme might work.
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U nifica tion  In d ex in g

Regarding unification as an  indexing scheme, the main  ques tion th a t  needs to be answered is where to 
index the contexts.  Suppose that  we index the contexts with the values  under  the at t r ibutes .  Then the 
a t t r ibute-value  (actual ly,  attribute-corc/Jexr-value) matr ix  for 125a) would be (25b):

(25) a. f a ) = c i V (,fb) = C2V(f a ) = c 3)
’  I p l e l l
a L - P I & ' P 2 C3J

b Q p l & p 2 c f | _

Since the contexts are  indexed unde r  the a t t r ibutes ,  two disjunct ions  will only in terac t  if they have 
a t t r ibutes  in common.  If they have no a t t r i bu te s  in common,  the i r  uni fica tion will be l inear  in the 
number  of a t t r i but es ,  r a th e r  than  mul t ipl ica t ive in the n um ber  of disjuncts.  For instance,  suppose 
that  (26b) is the a t t r i bu te  value mat r i x  for (26a):

(26) a. (f c ) =  C4 V ((f d) = C5 V (f e ) =  eg)
c (fi3 c 4] 

d [ } p3 &p 4  c5]

9 [ j p 3 & ' p 4  ctf]

(27)

Since these disjunctions have no a ttr ibu tes  in common, the a ttribute-value matrix  for the conjunction 
of (25a) and (26a) will be simply the concatenation of (25b) and (26b):

» Tpl Cl1a Lrp l & - p 2  c3j  

b Q-p l&p2 c2 j  

c [p3 c 4] 

d Q p 3 & p 4  c5]  

e [ } p 3 & ' p 4  c6]

The DNF approach to this problem would produce nine f-structures with eighteen attribute-value 
pairs. In contrast, our approach produces one f-structure with eleven attr ibute-value or context-value 
pairs. In general, if disjunctions have independent a ttr ibutes, then a DNF approach is exponential in 
the number of disjunctions, whereas our approach is linear. This independence feature is very 
important for language processing, since, as we have suggested, disjunctions from different parts of a 
sentence usually constrain different attributes.

K a r ttu n e n  s D is ju n c t iv e  V a lu es

Karttunen(7] introduced a special type of value called a "disjunctive value” to handle certain  types of 
disjunctions. Disjunctive values allow simple disjunctions such as:

(28) (f CASE) = ACC V  (f CASE) = MOM
to be represented in the unification data  s tructure  as:

( 2 9 > [Ca s e  {a c c  n o m £|

where the curly brackets indicate a disjunctive value. Karttunen 's  disjunctive values are not limited 
to atomic values, as the example he gives for the German article ’’die" shows:

(30) die = IN F L

£ ASE {NOM ACC}

( [S e n d e r  fem]] 
AGR J  [num ber s g J

([n u m b e r  p Q
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The corresponding a t t r ibute-context -value  matr ix  for our scheme would be:

131 die = IN FL

CASE

AGR

j p l  NOtfl
ACCJ

GENDER [p2 FEM]

NUMBER
fp2 SG]
L-p2 py

The advantage of disjunctive constraint satisfaction is tha t  it can handle all types of disjunctions, 
whereas disjunctive values can only handle atomic values or simple feature-value matrices with no 
external dependencies. Furthermore, disjunctive constraint satisfaction can often do better than 
disjunctive values for the types of disjunctions that they can both handle. This can be seen in (31), 
where disjunctive constraint satisfaction has pushed a disjunction further down the AGR feature than 
the disjunctive value approach in (30). This means that if AGR were given an a ttr ibu te  other than 
GENDER or NUMBER,  this new a ttr ibu te  would not interact with the existing disjunction.

However, disjunctive values may have an advantage of reduced overhead, because they do not require 
embedded contexts and they do not have to keep track of nogoods. It may be worthwhile to incorporate 
disjunctive values in our scheme to represent the very simple disjunctions, while disjunctive 
constraint satisfaction is used for the more complex disjunctions.

K asper 's  S u ccess ive  A p p r o x im a t io n

Kasper(8, 9] proposed tha t  an efficient way to handle disjunctions is to do a step-wise approximation 
for determining satisfiability. Conceptually, the step-wise algorithm tries to find the inconsistencies 
that come from fewer disjuncts first. The algorithm sta r ts  by unifying the non-disjunctive constraints 
together. If the non-disjunctive constraints are inconsistent, then there is no need to even consider the 
disjunctions. If they are consistent, then the disjuncts are unified with them one at a time, where each 
unification is undone before the next unification is performed. If any of these unifications are 
inconsistent, then its disjunct is discarded. Then the algorithm unifies the non-disjunctive constraints 
with all possible pairs of disjuncts, and then all possible triples of disjuncts, and so on. (This technique 
is called "k-consistency" in the constraint satisfaction literature[3].) In practice, Kasper noted that 
only the first two steps are computationally useful, and tha t  once bad singleton disjuncts have been 
eliminated, it is more efficient to switch to DNF than  to compute all of the higher degrees of 
consistency.

Kasper’s technique is optimal when most of the disjuncts are inconsistent with the non-disjunctive 
constraints, or the non-disjunctive constraints are themselves inconsistent. His scheme tends to 
revert to DNF when this is not the case. Although simple inconsistencies are prevalent in many 
circumstances, we believe they become less predominate as g ram m ars are extended to cover more and 
more linguistic phenomena. The coverage of a gram m ar increases as more options and alternatives  
are added, e ither in phrasal rules or lexical entries, so tha t  there are fewer instances of pure 
non-disjunctive constraints and a greater proportion of inconsistencies involve higher-order 
interactions. This tendency is exacerbated because of the valuable role that disjunctions play in 
helping to control the complexity of broad-coverage gram m atical specifications. Disjunctions permit 
constraints to be formulated in local contexts, relying on a general global satisfaction procedure to 
enforce them in all appropriate  circumstances, and thus they improve the m odularity and 
manageability of the overall gram m atical system. We have seen this trend towards more localized 
disjunctive specifications particularly  in our developing LFG gram m ars, and have observed a 
corresponding reduction in the num ber of disjuncts that can be eliminated using Kasper's technique. 
On the other hand, the number of independent disjunctions, which our approach does best on, tends to 
go up as modularity increases.

One other aspect of LFG gram m atical processing is worth noting. Many LFG analyses are ruled out 
not because they are inconsistent, but ra the r  because they are incomplete. That is, they fail to have an

-25- Intemational Parsing Workshop '89



attribute that a predicate requires (e.g. the object is missing for a transitive verb). Since incomplete 
solutions cannot be ruled out incrementally (an incomplete solution may become complete with the 
addition of more information), completeness requirements provide no information to eliminate 
disjuncts in Kasper's successive approximation. These requirements can only be evaluated in what is 
effectively a disjunctive normal form computation. But our technique avoids this problem, since 
independent completeness requirements will be simply additive, and any incomplete contexts can be 
easily read off of the attribute-value matrix and added to the nogoods before solving the residue.

Kasper's scheme works best when disjuncts can be eliminated by unification with non-disjunctive 
constraints, while ours works best when disjunctions are independent. It is possible to construct a 
hybrid scheme that works well in both situations. For example, we can use Kasper's scheme up until 
some critical point (e.g. after the first two steps), and then switch over to our technique instead of 
computing the higher degrees of consistency.

Another, possibly more interesting, way to incorporate Kasper's strategy is to always process the sets 
of constraints with the fewest number of propositional variables first. That is, if P3 A P4 had fe^ er
propositional variables than P { A P.,, then the rewrite rule in (32b) should be done before (32a):

(32) a. ( P L - *  <J>1 ) A ( P 0 -* <£9 ) => ( P L A P., -* (J>5)
b. ( P 3 -* <$>3 ) A ( P 4 -+ 4>4 ) =» ( P 3 A P 4 -* (J>6)

This approach would find smaller nogoods earlier, which would allow combinations of constraints that 
depended on those nogoods to be ignored, since the contexts would already be known to be inconsistent.

E ise le  a n d  D orre  s tech n iqu es

Eisele and Dorre[2] developed an algorithm for taking Karttunen 's  notion of disjunctive values a little 
further. Their algorithm allows disjunctive values to be unified with reen tran t  structures. The 
algorithm correctly detects such cases and "lifts the disjunction due to reentrancy". They give the 
following example:

Notice that the disjunction under the "a" a ttr ibu te  in the first m atrix is moved one level up in order to 
handle the reentrancy introduced in the second matrix  under the "b" attribute.

This type of unification can be handled with embedded contexts without requiring tha t  the disjunction 
be lifted up. In fact, the disjunction is moved down one level, from under "a" to under "b" and "c":

O vera ll

The major cost of using disjunctive constraint satisfaction is the overhead of dealing with contexts and 
the disjunctive residue. Our technique is quite general, but if the only types of disjunction tha t  occur 
are covered by one of the other techniques, then that technique will probably do better  than our
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scheme. For example, if all of the nogoods are the result of singleton inconsistencies (the result of 
unifying a single disjunct with the non-disjunctive part), then Kasper's successive approximation 
technique will work better because it avoids our overhead. However, if many of the nogoods involve 
multiple disjuncts, or if some nogoods are only produced from incomplete solutions, then disjunctive 
constraint satisfaction will do better than the other techniques, sometimes exponentially so. We also 
believe that further savings can be achieved by using hybrid techniques if the special cases are 
sufficiently common to w arran t the extra complexity.
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A Uniform Formal Framework for Parsing
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1 Introduction

Many of the formalisms used to define the syntax of natural (and programming) languages may 
be located in a continuum  tha t  ranges from propositional Horn logic to full first order Horn logic, 
possibly with non-Herbrand in terpreta tions. This s truc tu ra l  parenthood has been previously re­
marked: it lead to the development of Prolog [Col-78, Coh-88] and is analyzed in some detail 
in [PerW-80]. A notable outcome is the parsing technique known as Earley deduction [Per\V-83]. 

These formalisms play (at least) three roles:

d e s c r i p t i v e :  they give a finite and organized description of the syntactic s truc tu re  of the 
language,

a n a ly t i c :  they can be used to analyze sentences so as to retrieve a syntactic  s truc tu re  (i.e. 
a representation) from which the meaning can be extracted,

g e n e r a t i v e :  they can also be used as the specification of the concrete representation of 
sentences from a more struc tu red  abstract syntactic  representation (e.g. a parse tree).

The choice of a formalism is essential with respect to the descriptive role, since it controls the 
perspicuity with which linguistic phenom ena may be understood and expressed in actual language 
descriptions, and hence the tractabili ty  of these descriptions for the hum an mind.

Plowever, com puta tional trac tab ili ty  is required by the o ther two roles if we intend to use these 
descriptions for mechanical processing of languages.

The aim of our work, which is partially reported here, is to obtain  a uniform unders tanding  of 
the com puta tiona l aspects of syntactic  phenom ena within the continuum  of Horn-like formalisms 
considered above, and devise general purpose algorithmic techniques to deal with these formalisms 
in practical applications.

To a tta in  this goal, we follow a three-sided strategy:

• Systematic s tudy  of the lower end of the continuum , represented by context-free (C F) g ram ­
mars (simpler formalisms, such as propositional Horn logic do not seem relevant for our 

. purpose).
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• Systematic s tudy of the higher end of the continuum, i.e. first order Horn clauses,

• Analysis of the relations between intermediate formalisms and Horn clauses, so as to reuse 
for in term ediate  formalisms the understanding and algorithmic solutions developed for the 
more powerful Horn clauses.

This s tra tegy  is motivated by two facts:

• the com puta tional properties of both CF grammars and Horn clauses may be expressed with 
the same com puta tional model: the non-deterministic pushdown autom aton ,

• the two formalisms have a compatible concept of syntactic structure: the parse-tree in the 
CF case, and the proof-tree in the Horn clause case.

The greater simplicity of the CF formalism helps us in understanding more easily most of the 
com puta tional phenomena. We then generalize this knowledge to the more powerful Horn clauses, 
and finally we specialize it from Horn clauses to the possibly less powerful but linguistically more 
perspicuous in term ediate  formalisms.

In the rest of this paper we present two aspects of our work:

1 . a new unders tanding  of shared parse forests and their relation to CF gram m ars, and

2. a generalization to full Horn clauses, also called Definite Clause (DC) programs, of the push­
down stack com puta tional model developed for CF parsers.

2 C ontext-F ree Parsing

T hough much research has been devoted to this subject in the past, most of the practically usable 
work has concentra ted  on deterministic  push-down parsing which is clearly inadequate  for natural 
language applications and does not generalize to more complex formalisms. On the o ther hand 
there has been little formal investigation of general CF parsing, though many practical systems 
have been im plem ented based on some variant of Earley’s algorithm.

Our con tr ibu tion  has been t o ‘develop a formal model which can describe these variants in 
a uniform way, and encompasses the construction of parse-trees, and more generally of parse- 
forests. This model is based on the compilation paradigm  common in program ming languages and 
deterministic  parsing: we use the non-determ inistic 1 Pushdown A u tom aton  (P D A )  as a virtual 
parsing machine which we can sim ulate  with an Earley-like construction; variations on Earley’s 
a lgorithm  are then  expressed as variations in the compilation schema used to produce the PD A  code 
from the original CF gram m ar. This uniform framework has been used to compare experimentally 
parsing schem ata  w.r.t. parser size, parsing speed and size of shared forest, and in reusing the 
wealth of P D A  construction  techniques to be found in the literature.

This work has been reported elsewhere [Lan-74, BilL-88, Lan-88a]. An essential outcome, 
which is the object of this section, is a new understanding of the relation between CF gram m ars, 
parse-trees and parse-forests, and the parsing process itself. The  presentation is informal since our

1 In this paper, the abbreviation  P D A  alw ays im pnes the possibility of non-determ inism
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(1) S : : = NP VP

(2) S : : = S PP

( 3 ) NP : : = n

( 4 ) NP : : = d e t n

( 5 ) NP : : = NP PP

(6) PP : : = p r e p NP

( 7 ) VP : : = V NP

Figure 1 : A Context-Free G ram m ar Figure 2: G raph of the G ram m ar

purpose is to give an intuitive understanding of the concepts, which is our in terpre ta tion  of the 
earlier theoretical results.

Essentiadly, we shall first show that  both CF gram m ars and shared parsed forest may be repre­
sented by AND-OR graphs, with specific interpretations. We shall then argue th a t  this represen­
tational similarity is not accidental, and tha t  there is no difference between a shared forest and a 
gram m ar.

2 . 1  C o n te x t -fr e e  G r a m m a rs

Our running example for a CF gram m ar is the pico-grammar of English, taken from [Tom-87], 
which is given in figure 1 .

In figure ‘2 we give a graphical representation of this gram m ar as an AN D-OR graph. The 
notation for this AND-OR graph is unusual and emphasizes the difference between AND and OR 
nodes. OR-nodes are represented by the non-terminal categories of the gram m ar, and AND-nodes 
are represented by the rules (numbers) of the gram m ar. There  are also leaf-nodes corresponding 
to the term inal categories.

The OR-node corresponding to a non-terminal X has exiting arcs leading to each AND-node n 
representing a rule th a t  defines X. This arc is not explicitly represented in the graphical formalism 
chosen. If there is only one such arc, then it is represented by placing n immediately under X. This 
is the case for the O R-node representing the non-terminal PP. If there are several such arcs, they 
are implicitly represented by enclosing in an ellipse the OR-node X above all its son nodes n, n* , . . .  
This is the case for the OR-node representing the non-terminal NP.

The sons of an AND-node (i.e. a rule) are the gram m atical categories found in the right-hand- 
side of the rule, in that order. T he  arcs leading from an AND-node to its sons are represented 
explicitly. T he  convention for orienting the arcs is th a t  they leave a node from below and reach a 
node from above.
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This graph accurately represents the gram m ar, and is very similar to the graphs used in some 
parsers. For example, LR (0) parsing uses a graph representation of the g ram m ar tha t  is very 
similar, the main difference being tha t  the sons of AND-nodes are linked together from left to 
right, ra ther  than  being a ttached  separately to the AND-node [AhoU-72, DeR-71]. More simply, 
this graph  representation is very close to the d a ta  s tructures often used to represent conveniently 
a gram m ar in a com puter  memory.

A characteristic  of the A N D /O R  graph representing a gram m ar is th a t  all nodes have different 
labels. Conversely, any labelled A N D /O R  graph such th a t  all node labels are different may be read 
as — transla ted  into — a CF gram m ar such th a t  AND-node labels are rule names, OR-node labels 
represent non-term inal categories, and leaf-node labels represent terminal categories.

2.2 Parse trees and parse forests

Given a sentence in the language defined by a CF gram m ar, the parsing process consists in building 
a tree s truc tu re , the parse tree, th a t  shows how this sentence can be constructed  according to the 
g ram m atica l rules of the language. It is however frequent th a t  the CF syntax  of a sentence is 
ambiguous, i.e. th a t  several distinct parse-trees may be constructed for it.

Let us consider the g ram m ar of figure 1 .
If we take as example the sentence “I see a man with a mirror”, which trans la te  into the 

term inal sequence “n v det n prep det n”, we can build the two parse trees given in figures 3 
and 4 . Note th a t  we label a parse tree node with its non-terminal category and with the rule used 
to decompose it into constituents. Hence such a parse tree could be seen as an AN D -O R tree 
similar to the AN D-OR gram m ar graph  of figure 2. However, since all OR-nodes are degenerated 
(i.e. have a unique son), a  parse tree is just  an AND-tree.

T he  num ber of possible parse trees may become very large when the size of sentences increases: 
it may grow exponentially  with th a t  size, and may even be infinite for cyclic gram m ars (which 
seem of little linguistic usefulness [PerW-83, Tom-85]). Since it is often desirable to consider all
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Figure 5: Context and Subtree

I see a man with a mirror

Figure 6: A shared parse forest

possible parse trees (e.g. for semantic processing), it is convenient to merge as much as possible 
these parse trees into a single s truc tu re  tha t  allows them  to share common parts. This sharing 
save on the space needed to represent the trees, and also on the later processing of these trees 
since it may allows to share between two trees the processing of some common p a r ts2. The shared 
representation of all parse trees is called shared parse forest , or just parse forest.

To analyze how two trees can share a ( connected) part, we first notice th a t  such a part  may be 
isolated by cu tt ing  the tree along an edge (or arc) as in figure 5. this actually give us two parts: a 
subtree and a context (cf. figure 5). E ither of .these two parts may be shared in forests representing 
two trees. W hen a subtree is the same for two trees, it may be shared as shown in figure 7. W hen 
contexts are equal and may thus be shared, we get the s truc tu re  depicted in figure 8.

The  sharing of context actually corresponds to ambiguities in the analyzed sentence: the ellipse 
in figure 8 contains the head nodes for two distinct parses of the same subsentence u, th a t  both 
recognize v in the same non-terminal category NT. Each head node is labelled with the (num ber of) 
the rule used to decompose v in to  constituents in th a t  parse, and the common syntactical category 
labels the top of the ellipse. Not accidentally, this s truc tu re  is precisely the s truc tu re  of the 0 R -  
nodes we used to represent CF gram m ars. Indeed, an ambiguity is nothing bu t a choice between 
two possible parses of the same sentence fragment v as the same syntactic  category NT.

Using a com bination of these two forms of sharing, the two parse trees of figures 3 and 4 may 
be merged into the shared parse forest3 of figure 6 . Note tha t ,  for this simple example, the only

2T h e direct production of such shared representation by parsing a lgorithm s also corresponds to sharing in the 

parsing com putation  [Tom-87, Lan-74, BilL-88].

3T h is  graphical representation of shared forests is not original: to our knowledge it was first used by

T o m ita  [Tom-87], However, we believe that its com parat ive understanding as context sharing, as A N D -O R  tree
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Sentence:/\
UVW / \  \

Sentence:
UVW /  \

A

Figure 7: Two parses sharing a subtree Figure 8 : Two parses sharing a context

con tex t  being shar ed  is the  e m p ty  ou ter  contex t  of the  two possible parse tree,  t h a t  still s t a t es  th a t  
a p roper  parse  t ree m u s t  belong to the  syn tac t i c  ca tegory  S.

In this representation we keep our double labelling of parse tree nodes with both  the non­
terminal category and the rule used to decompose it into its constituents. As indicated above, 
ambiguities are represented with context sharing, i.e. by OR-nodes th a t  are the exact equivalent 
of those of figure 2. Hence a shared parse forest is an A N D -O R  graph*. Note however th a t  the 
same rule (resp. non-terminal) may now label several AND-nodes (resp. OR-nodes) of the shared 
parse forest graph.

If we make the labels distinct, for example by indexing them  so as not to lose their original 
information, we can then read the shared forest graph of a sentence 3 as a gram m ar T a. The  
language of this g ram m ar contains only the sentence s, and it gives s the same syntactic  s truc ture(s)
— i.e. the same parse tree(s) and the same ambiguities — as the original gram m ar, up to the above 
renaming of labels.

2 .3  P a r se  fo r e s ts  for in c o m p le te  s e n te n c e s

O ur view of parsing may be extended to the parsing of incomplete sentences [Lan-88a].
An example of incomplete sentence is . .  see . . . m i r r o r ” . Assuming th a t  we know tha t  

the first hole stands for a single missing word, and th a t  the second one stands for an arb itrary  
num ber of words, we can represent this sentence by the sequence “? v * n” . T he  convention is 
th a t  “? ” stands for one unknown word, and for any num ber of them.

Such an incomplete sentence 3 may be understood as defining a sublanguage C3 which contains 
all the correct sentences m atching  s. Any parse tree for a sentence in th a t  sublanguage may then be 
considered a possible parse tree for the incomplete sentence s. For example, the sentences “I see 
a man with a mirror” and “You see a mirror” are both  in the sublanguage of the incomplete 
sentence above. Consequently, the two parse trees of figures 3 and 4 are possible parse trees for 
this sentence, along with m any others.

or as gram m ar has never been presented. C on text sharing is called local ambiguity packing by T om ita.

4T h is graph may have cycles for infinitely am biguous sentences when the gramm ar of the language is itse lf cyclic.
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All parse trees for the sentence s = “? v * ii” may be merged into a shared parse forest that 
is represented in figure 9.

The  graph  of this forest has been divided into two parts by the horizontal grey line a  —
The term inal labels underscored with a represent any word in the corresponding term inal 

category. This is also true for all the term inal labels in the bo t tom  part  of the graph.
Tne forest fragment below the horizontal line is a (closed) subgraph of the original gram m ar 

of figure 2 (which we have completed in grey to emphasize the fact). It corresponds to parse trees 
of constituents  th a t  are completely undefined, within their syntactical categories, and may thus 
be any tree in th a t  category tha t  the gram m ar can generate. This occurs once in the forest for 
non-terminal PP a t  arc marked a  and twice for NP a t arcs marked p.

This bo ttom  part  of the graph brings no new information (it is just  the part  of the original 
g ram m ar reachable from nodes PP and NP). Hence the forest could be simplified by eliminating this 
bo ttom  subgraph , and labelling the end node of the a  (resp. (5) arc with PP* (resp. NP*), meaning
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an arb itrary  PP (resp. NP) constituent.

The complete shared forest of figure 6 may be interpreted as a CF gram m ar Qs. This gram m ar 
is precisely a gram m ar of the sublanguage C3 of all sentences that match the incomplete sentence 5 . 
Again, up to renaming of nonterminals, this gram m ar Q3 gives the sentences in Ca the same syntactic 
s truc tu re  as the original g ram m ar of the full language.

If the sentence parsed is the completely unknown sentence u =  then the corresponding 
sublanguage Cu is the complete language considered, and the parse forest for u is quite naturally  
the original gram m ar of the full language: The grammar o f  a CF language is the parse-forest o f  
the completely unknown sentence, i.e. the syntactic structure o f  all sentences in the language, in 
a non-trivial sense. In o ther words, all ono can say about a fully unknown sentence assumed to 
be correct, is tha t  it satisfies the syntax  ot the language. This s ta tem ent does take a stronger 
signification when shared parse forests are actually built by parsers, and when such a parser does 
return  the original gram m ar for the fully unknown sentence.

Parsing a sentence according to a CF gram m ar is just  extracting a parse tree fitting that 
sentence from the CF gram m ar considered as a parse forest.

Looking at these issues from another  angle, we have the following consequence of the above 
discussion: given a set of parse trees (i.e. appropriately decorated trees), they form the set of 
parses of a CF language iff they can be merged into a shared forest tha t  is finite.

In [BilL-88, Lan-88a] Billot and the au thor have proposed parsers tha t  actually build shared 
forests formalized as CF gram m ar. This view of shared forests originally seemed to be an artifact of 
the formalization chosen in the design of these algorithms, and appeared possibly more obfuscatory 
than  illuminating. It has been our purpose here to show th a t  it really has a fundam ental character, 
independently o f  any parsing algorithm.

This close relation between sharing structures and context-freeness actually hints to limitations 
of the effectiveness of sharing in parse forests defined by non-CF formalisms.

From an algorithmic point of view, the construction of a shared forest for a (possibly incomplete) 
sentence may be seen as a specialization of the original g ram m ar to the sublanguage defined by 
th a t  sentence. This shows interesting connections with the general theory of partial evaluation 
of programs [Fut-88], which deals with the specialization of programs by propagation of known 
properties of their input.

In practice, the published parsing algorithms do not always give shared forest with m axim um  
sharing. This may result in forests th a t  are larger or more complex, bu t does not invalidate our 
presentation.

3 H orn Clauses

The PD A  based compilation approach proved itself a fruitful theoretical and experim ental support 
for the analysis and unders tand ing  of general CF parsing a la Earley. In accordance with our 
s tra tegy  of uniform study  of the “Horn con tinuum ” , we extended this approach to general Horn 
clauses, i.e. DC programs.

This lead to the definition of the Logical Push-Down A u tom aton  (L P D A )  which is an operational 
engine in tended  to play for Horn clauses the same role as the usual PD A  for CF languages. Space
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limitations prevent giving here a detailed presentation of LPD As, and we only sketch the underlying 
ideas. More details may be found in [Lan-88b, Lan-88].

As in the CF case, the evaluation of a DC program may be decomposed into two phases:

• a compilation phase tha t  transla te  the DC program into a LPDA. Independently  of the 
later execution strategy, the compilation may be done according to a variety of evaluation 
schemata: top-down, bottom -up, predictive bottom -up, ... Specific optimization techniques 
may also be developed for each of these compilation schemata.

• an execution phase th a t  can in terpret the LPDA according to some execution technique: back­
track (depth-first), breadth-first, dynamic programming, or some combination [TamS-86].

This separation of concerns leads to a be tter  understanding of issues, and should allow a more 
systematic comparison of the possible alternatives.

In the case of dynamic program ming execution, the LPDA formalism uses to very simple struc­
tures tha t  we believe easier to analyze, prove, and optimize than  the corresponding direct con­
structions on DC programs [PerW-83, Por-86, TamS-86, Vie-87b], while remaining independent of 
the com puta tion  schema, unlike the direct constructions. Note tha t  predictive bottom -up compi­
lation followed by dynamic programming execution is essentially equivalent to Earley deduction as 
presented in [PerW-83, Por-86].

The  next sections include a presentation of LPDAs and their dynamic programming in terpre­
tation, a compilation schema for building a LPDA from a DC program, and an example applying 
this top-down construction to a very simple DC program.

3 . 1  L o g ica l P D A s  an d  th e ir  d y n a m ic  p r o g r a m m in g  in te r p r e ta t io n

A LPD A is essentially a PD A  th a t  stores logical atoms (i.e. predicates applied to argum ents) and 
substitu tions on its stack, instead of simple symbols. The symbols of the s tandard  CF PD A  stack 
may be seen as predicates with no argum ents (or more accurately with two argum ent similar to those 
used to transla te  CF gram m ars into DC in [PerW-80]). A technical point is th a t  we consider PDAs 
without “finite s ta te ” control: this is possible without loss of generality by having pop transitions 
tha t  replace the top two atoms by only one (this is s tandard  in LR(k) PD A parsers[AhoU-72]).

Formally a LPD A ^4 is a 6-tuple: ^4 =  (X , F , A , $, $f, 0 )
where X  is a set of variables, F  is a set of functions and constants symbols, A  is a set of stack 

0
predicate symbols, $ and $f are respectively the initial and final stack predicates, and 0  is a finite 
set of transitions  having one of the following three forms:

horizontal transitions:  B •—► C —  replace B by C on top of stack

push transitions:  B >—<► CB —  push C on top of former stack top B

pop transitions:  BD >—► C —  replace BD by C on top of stack

where B, C and D are A -a tom s, i.e. a toms built with A ,  F and X.

Intuitively (and approxim ately) a pop transition BD '—► C is applicable to a stack configuration 
with atom s A and A '  on top, iff there is a substi tu tion  s such tha t  B.s =  As  and Ds =  A s. T hen  A 
and A' are removed from the stack and replaced by Cs, i.e. the a tom  C to which s has been applied.
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Things are similar for other kinds of transitions. Of course a LPDA is usually non-deterministic 
w.r.t. the choice of the applicable transition.

In the case of dynamic programming interpretations, all possible com putation paths are ex­
plored, with as much sub-com putation sharing as possible. The algorithm proceeds by building a 
collection of items  (analogous to those of Earley’s algorithm) which are pairs of atoms. An item 
<A  A '>  represents a stack fragment of two consecutive atoms [Lan-74, Lan-88a]. If another item 
< A ' A "> was also created, this means tha t  the sequence of atoms A A 'A" is to be found in some 
possible stack configuration, and so on (up to the use o f  substitutions, not discussed here). The

O 0
com puta tion  is initialized with an initial item U =  < S H >. New items are produced by applying 
the LPDA transitions to existing items, until no new application is possible (an application may 
often produce an already existing item). T he  com putation terminates under similar conditions as 
specialized algorithms [PerW-83, Tam S-86, Vie-87b]. If successful, the com putation produces one

O
or several final items  of the form <$f $ > , where the argum ents of $f are an answer substitu tion 
of the initial DC program. In a parsing context, one is usually interested in obtaining parse-trees 
rather than  “answer subs ti tu tions’’. A parse tree is here a proof tree corresponding to the original 
DC program. Such proof trees may be obtained by the same techniques tha t  are used in the case 
of CF parsing [Lan-74, BilL-88, Bil-88], and th a t  actually in terpret the items and their relations as 
a shared parse forest s tructure .

Substitu tions are applied to items as follows (we give as example the most complex case): a 
pop transition  BD •—► C is applicable to a pair of items < A  A '>  and < E  E '> ,  iff there is a unifier 
s of < A  A '>  and <B  D > , and a unifier s' of A 's and E. This produces the item < C s s '  E V > .

3 .2  T o p -d o w n  c o m p ila t io n  o f  D C  p ro g ra m s in to  L P D A s

Given a DC program , m any different compilation schemata may be used to build a corresponding
LPD A  [Lan-88]. We give here a very simple and unoptimized top-down construction. T he  DC 
program  to be compiled is composed of a set of clauses 7 Ajt.o A j t , i , . . . ,A k,nk , where each 
A£,,• is a logical literal. T he  query is assumed to be the head literal Ao.o of the first clause 70.

The  construction of the top-down LPD A  is based on the in troduction of new predicate sym ­
bols Vjt,,-, corresponding to positions between the body literals of each clause 7^. The  predicate 
Vjt,o corresponds to the position before the leftmost literal, and so on. Literals in clause bodies 
are refuted from left to right. T he  presence of an instance of a position literal V ^ ^ t j t )  in the 
stack indicates th a t  the first : subgoals corresponding to the body of some instance of clause 7* 
have already been refuted. T he  argum ent bindings of tha t  position literal are the partial  answer 
subs ti tu t ion  com puted  by this partial  refutation.

For every clause 7 A^o A*fi , . . . , A k,nk > w« note tjt the vector of variables occurring in
the clause. Recall th a t  A*tl- is a literal using some of the variables in 7^, while V^,- is only a
predicate which needs to be given the a rgum ent vector t* to become the literal V ^ t * ) .
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T h e n  we can  def ine  th e  t o p - d o w n  L P D A  by th e  fol lowing t r a n s i t io n s :

1 . $ *—► V0to(to) $

2 . Vfc,;( t fc) — Afc.i+i Vjt.^tfc) — for every clause 7* and

for every position i in its body: 0 < i < n^

3. Afc.o ►— Vjt.o(tjt) — for every clause ~/k

4 . Vfcink(tfc) V fc/it( t fc/ ) i—• ^ ii+i ( t fc0 5 — / o r  every pair o f  clauses 7* an d  7*/ and

/ o r  every position i in the body o f  7 ;-': 0 < t < njt<

The final predicate of the LPDA is the stack predicate V0)no which corresponds to the end of the 
body of the first “query clause'’ of the DC program. The rest of the LPDA is defined accordingly. 

The following is an informal explanation of the above transitions:

1 . Initialization: We require the refutation of the body of clause 70, i.e. of the query.

2. Selection o f  the leftmost remaining subgoal: When the first i literals of clause 7* have been
refuted, as indicated by the position literal V ^ t * ) ,  then select the i +  l 3t literal A ^ .+ i to
be now refuted.

3. Selection o f  clause 7*: Having to satisfy a subgoal tha t  is an instance of A^o, eliminate it 
by resolution with the clause 7 The body of 7  ̂ is now considered as a sequence of new 
subgoals, as indicated by the position literal V^i0(tjt).

4. Return to calling clause 7*/: Having successfully refuted the head of clause 7* by refuting 
successively all literals in its body as indicated by position literal V^ink(t^), we retu rn  to the 
calling clause 7^  and “increm ent” its position literal from V;-/ t(t^/) to V^/it+1 (t^/), since the 
body literal Ak',i+i has been refuted as instance of the head of 7^.

Backtrack in te rp re ta tion  of a LPDA thus constructed essentially mimics the Prolog in te rp re ta ­
tion of the original DC program.

3 .3  A  v e r y  s im p le  e x a m p le

The following example has been produced with a prototype im plem entation realized by Eric Ville- 
monte de la Clergerie and Alain Zanchetta  [VilZ-88].

The  definite clause program  to be executed is given in figure 11. Note tha t  a search for all 
solutions in a backtrack evaluator would not term inate.

T he  solutions found by the com puter are: X2 3 f ( f ( a ) )

X2 = f ( a )

X2 * a

5If jfc =  Jt( then we rename the variable in t s i n c e  the transition corresponds to the use of two distinct variants 

of the clause 7 * .

Note also that  we need not define such a transition for all triples of integer k k and », but only for those triples 

such that the head of 7 *  unifies with the literal +
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********* PUSH T r a n s i t i o n s  B->BC * * * * * * * * * * *

p r e d i c a t e  : n a b l a . 2 . 0  

n a b l a . 2 . 0 (XI) -> q ( f ( X I ) ) n a b l a . 2 . 0 (X1)

p r e d i c a t e  : n a b l a . 0 .0  

n a b l a . 0 . 0 (X2 ) -> q(X2 ) n a b l a . 0 . 0 (X2)

p r e d i c a t e  : d o l l a r 0  

d o l l a r O O  -> n a b l a . 0 . 0 (X2 ) d o l l a r O O

* * * * * * * * *  H o r i z o n ta l  T r a n s i t i o n s  B->C ******

p r e d i c a t e  :q 

q ( l ( l ( a ) ) )  -> n a b l a . 1 . 0 ( )  

q(XI) -> n a b l a . 2 . 0 (X1)

p r e d i c a t e  : query 

query(X2) -> n a b l a . 0 . 0 (X2 )

p r e d i c a t e  : n a b l a . 0 .1  

n a b l a . 0 . 1(X2 ) -> answer(X2 )

********* pop T r a n s i t i o n s  BD->C ************

p r e d i c a t e  : n a b l a . 2.1 

n a b l a . 2 . 1( XI) n a b l a . 0 . 0 (X2) -> n a b l a . 0 . 1(X2) 

n a b l a . 2 . 1(X4 ) n a b l a . 2 . 0 (X1) -> n a b l a . 2 . 1(X1)

p r e d i c a t e  : n a b l a . 1.0 

n a b l a . 1 . 0 ()  n a b l a . 0 . 0 (X2 ) -> n a b l a . 0 . 1(X2 ) 

n a b l a . 1 . 0 ( )  n a b l a . 2 . 0 (Xl) -> n a b l a . 2 . 1(X1)

p r e d i c a t e  : n a b l a . 0 .1  

n a b l a . 0 . 1(X3 ) n a b l a . 0 . 0 (X2 ) -> n a b l a . 0 . 1(X2 ) 

n a b l a . 0 . 1(X2 ) n a b l a . 2 . 0 (X1) -> n a b l a . 2 . 1(X1)

Figure 10: Transitions of the LPD A.

Clauses: q( 1(1(a))):-.
q(Xl):-q(l(XI)).

Query: q(X2)

Figure 1 1 : The Definite Clause pro­

gram.

d o l l a r O O  , ( ) ( )  

nab la .  0 . 0 (XS) , d o l l a r O O  

q(X6) , n a b l a . 0 . 0 (X6 ) 

n a b l a . 2 . 0 (X7) , n a b l a . 0 . 0 ( X7 ) 

n a b l a . 1 . 0 ( )  , n a b l a . 0 . 0 ( 1 ( 1 ( a ) ))  

q ( l ( X 8 ) ) , n a b l a . 2 . 0 (X8 ) 

n ab la .  0 . 1(1 ( 1 ( a ) ))  , d o l l a r O O  

n a b l a . 2 . 0 ( 1 (X9 ) ) , n a b l a . 2 . 0 (X9)' 

n a b l a . 1 . 0 ( )  , n a b l a . 2 . 0 ( 1 ( a ) ) 

n a b l a . 2 . 1 ( 1 ( a ) ) , n a b l a . 0 . 0 ( 1 ( a ) ) 

n a b l a . 0 . l ( l ( a ) )  , d o l l a r O O  

q ( l ( l ( X 10) ) )  , n a b l a . 2 . 0 ( 1 (X10) )  * 

n a b l a . 2 . l ( l ( a ) )  , n a b l a . 2 . 0(a )  

n a b l a . 2 . 1(a)  , n a b l a . 0 . 0 ( a )  

n a b l a . 0 . 1 ( a )  , d o l l a r O O  

answer(a )  , d o l l a r O O  

a n s w e r ( l ( a ) )  , d o l l a r O O  

a n s w e r ( l ( l ( a ) ) ) , d o l l a r O O

*  su bsu m ed by: q ( f  (X 8))  , n a b l a .2  . 0(X8)

Figure 1 2 : Items produced by the dy­

namic program m ing in terp re ta tion .
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These solutions were obtained by first compiling the DC program into an LPDA according 
to the schema defined in section 3.2, and then interpreting this LPDA with the general dynamic 
program ming algorithm defined in section 3.1.

The LPDA transitions produced by the compilation are in figure 10. The collection of items 
produced by the dynamic programming com putation is given in the figure 1 ‘2 .

In the transitions prin tout of figure 10, each predicate name n a b l a . i . j  s tands for our V,,; . 
According to the construction of section 3.2, the final predicate should be n a b l a . 0 . 1 . For 

better  readability we have added a horizontal transition to a final predicate noted answer.

4 O ther linguistic formalisms

Pereira and W arren have shown in their classical paper [PerW-80] the link between CF grammars 
and DC programs. A similar approach may be applied to more complex formalisms than CF 
gram m ars, and we have done so for Tree Adjoining G ram m ars (TAG) [Lan-88c].

By encoding TAGs into DC programs, we can specialize to TAGs the above results, and easily 
build TAG parsers (using at least the general optimization techniques valid for all DC programs). 
Furthermore, control mechanisms akin to the agenda of chart parsers, together with some finer 
properties of LPD A  in terpre ta tion , allow to control precisely the parsing process and produce 
Earley-like left-to-right parsers, with a complexity 0 ( n 6).

We expect th a t  this approach can be extended to a variety of other linguistic formalisms, with 
or without unification of feature s tructures, such as head gram m ars, linear indexed gram m ars, 
com binatory categorial gram m ars. This is indeed suggested by the results of of Joshi, Vijay- 
Shanker and Weir th a t  relate these formalisms and propose CKY or Earley parsers for some of 
them [VijWJ-87, VijW-89].

The parse forests built in the CF case correspond to proof forests in the Horn case. Such proof 
forests may be obtained by the same techniques tha t  we used for CF parsing [BilL-88]. However 
it is not yet fully clear how parse trees or derivation trees may be extracted  from the proof forest 
when DC programs are used to encode non-CF syntactic  formalisms.

5 C onclusion

Our unders tand ing  of syntactic  s tructures and parsing may be considerably enhanced by comparing 
the various approaches in similar formal terms. Hence we a t te m p t  to formally unify the problems 
in two ways:

— by considering all formalisms as special cases of Horn clauses
— by expressing all parsing strategies with a unique operational device: the pushdown a u to m a ­

ton.
System atic formalization of problems often considered to be pragm atic issues (e.g. parse forests) 

has considerably improved our unders tanding  and has been an im portan t  success factor.
T he  links established with problems in o ther areas of com puter science (e.g. partia l  evaluation, 

da tabase  recursive queries) could be the source of interesting new approaches.
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Head-Driven Bidirectional Parsing: A Tabular Method
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1. Introduction

Tabular methods for context-free language analysis [Graham and Harrison, 1976, 

Graham et al., 1980], and in particular Earley's Algorithm [Earley, 1970], can be 

considered a major reference for natural language parsing. Even if independently 

conceived, Earley's Algorithm constitutes the basis for Chart parsing [Kay, 1980, 

Kaplan, 1973].
One basic aspect o f known tabular methods, i.e. that the analysis proceedes 

m onodirectionally, is a relevant limitation, that, although reasonable for artificial 
languages, seems reductive for natural language. A strong reason for a bidirectional 

approach within natural language analysis is that modem theories o f grammar emphasize 

the role o f a particular element inside each constituent (phrase), called the head; this 

element carries categorial as well as thematic information about other elements within the 

constituent. It turns out that the acceptability and the general skeleton of each constituent, 

crucially depend on such information. More concretely, a number o f possible partial 

interpretations would be pruned out earlier, on the basis o f functional information attached 

to the head, resulting in greater efficiency.
Some recent works in the framework o f Chart parsing [Steel and De Roeck, 1987, 

Stock et al., 1989] have pointed out the importance of bidirectionality for natural language 

analysis. Another work that deals with some form of bidirectionality [Bossi et a l ., 1983] 

can be found in the formal language literature, though the analysis given there 

presupposes Chomsky normal form grammars.
In this paper we shall introduce a tabular method coinceived for bidirectional context- 

free parsing, discuss some o f its relevant properties and through an example give an idea 

o f how the algorithm works.

2. Def in it ions

Assume a context-free grammar G=(N, E, P, S), where N is the finite set o f all non­

terminal symbols, Z is the set o f terminal symbols, P is a finite set o f productions, and 

Se N is the start symbol. L(G) represents the language generated by the grammar G. The 

productions in P are numbered from 1 to IPI1, and are all o f form Dp-» C p j ...  Cp ^ ) ,

1 The notation IPI here indicates the cardinality o f set P.
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.where k is a function defined over the set {1 ... IP!} and that takes values in the set Z* (the 

set o f positive integers). In the following, the natural number p  often will be used instead 

of the production associated with it. Without loss of generality, here it is assumed that the 

grammar G is in e-free  form (see [Aho and Ullman, 1972:147]); a more general 

formulation o f the algorithm does not lead to the loss o f the properties shown here.
A function x is defined over the set { 1...IPI} and it takes values in Z+. This function 

indicates, for every production p  in P, a position in the right-hand side o f the production, 
occupied by a symbol in N u l .  This position is called the head position , and the 

corresponding symbol is said to be in the head position  for production p. Every time, 
during the analysis, a symbol is recognized that is in head position for some production p , 
the presence o f the symbol Dp relative to production p  is then locally hypothesized

DEFINITION 2.1

A s ta t e  is defined to be any quadruple [p, I d o t , r d o t ,  m ] ,  with l< p ^ lP I, 
0<ldot<rdot<K(p), m e  { Im, rm).

The component p  indicates the corresponding production in P; the components Idot and 

rd o t  represent two distinct positions, one after the other, in the right-hand side o f  

production p. The component m is a simple indicator m -lm  indicates that the value of 

Idot cannot be further diminished, even if greater than zero, while m -rm  indicates that the 
value o f rd o t  cannot be increased further, even if it is less than 7z(p). Note that, by 

definition, one limitation excludes the other. The value is used for the indicator m in 

the absence o f both the limitations just described. The use o f the index m, as it will be 

shown, prevents the duplication o f “partial analyses” for substrings o f  w. Every state 

j=[p, Idot, rdot, m] may be understood to be a partial analysis relative to production p,  

for which the constituents Cpjdot+1  ... Cp/dot* belonging to the right-hand side, have 

been recognized. In the following, for convenience, the states will often be referred to in 
these terms. The symbol Is denotes the set o f all states.

DEFINITION 2.2

The function F is defined as follows:
F: N u l - ^ )

F(X )={5=[p, Idot, ldo t+ 1, -] I X=Cp ldol+1, x(p)=ldot+1}.

The set F(X) therefore contains all the states indicating partial analyses o f productions 

in which the symbol X occupies the head position.

DEFINITION 2.3

An equivalence relation Q,in Isx ls is defined so that for two generic states s=[p, Idot, 

r d o t , m] and j '= [ p \  Idot', r d o t ', m rj, sQ§' holds if  and only if  p - p \  I d o t - l d o t ' and 

rdo t= rdo t\
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3. The Algorithm

A recognizer  is an algorithm capable o f accepting a generic string w e L(G) for a 

particular grammar o f interest G. In all other cases, the string w is refused. A parser , 
instead, is an algorithm that can solve the problem of whether or not w  belongs to L(G) 
and is also able to indicate the possible derivation trees2 for every w e L(G). In this 

section, a recognizer algorithm for context-free languages is presented. The use o f a 

simple algorithm able to reconstruct the derivation trees by interpreting the recognition 

matrix T (see for example [Graham et Harrison 1983]) is sufficient to obtain a parser 

algorithm.
The algorithm uses a matrix T o f size (rt+l)x(n+l); each component fy  of this matrix 

takes values in the set Is), and is initialized with as empty set. The presentation o f the 

recognition algorithm is preceded by a schematic illustration of the computation involved.
The algorithm inserts into the recognition matrix T each state s that indicates a partial 

analysis previously obtained for the generic substring jWj. There is a one to one 

correspondence between the indicies of the analyzed substring jWj and the indices o f the 

component ry, in which state s has been inserted. The algorithm then processes each 

state, combining it with nearby states in an effort to extend the portions of the string 

dominated by these states. When the analysis relative to a particular state is completed  

(for both the right and left sides), if the constituent obtained is in a head position for some 

production p  in P, a new partial analysis for the production p  itself is inserted into matrix 

T. Note that the algorithm straightforwardly separates the problem of the combination o f  

different states from the problem of control. The algorithm in fact does not specify the 

order in which the different states must be considered, nor in which order every single 

state must be expanded in the two opposing sides. To that end, the algorithm uses a 
variable A which takes values in the set ^(IsxNxN).

ALGORITHM 3.1

Given a context-free grammar G=(N, E, P, S) in e-free form, let w = a\  ... an, n>0 , be 

an input string. D evelop a recognition matrix T, o f size (n+l)x(rt+ l), whose components 

fy  are coindexed from 0 to n for both sides.

b e g in

1. for  i in {1 .. n) do
2. for s in F(a.) do

3. add triple e=(s , M ,  /) to set A only if s Q sq

does not hold for any triple e q = ( s q , 

i - l ,  i)
4. while A not empty do

2 A derivation tree D associated with a string L(G), is a labeled tree formed by all the 
productions used in the derivation ofw, representing the correct hierarchic order.
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5. extract any element e=(s, i , j ) from the set A and
insert state s in fg ; apply each of the follow ing

procedures, in any order, to element e :
left-expander(e),

right-expander(e),

left-completer(e),

right-completer(e),

trigger(e);
6 . if  s=[p, 0, n(p), m]<= tQ n, for some p e  P such that Dp=S

7. then output(true)

8 . else output(error) 

en d .

The five procedures mentioned above are described in the following.

PROCEDURE 3.1 Left-expander

Precondition  The procedure is applied only when e - { s , iyJ) with s=[p, Idot, rdot , m], 
ldot>0 , m*lm.

Description The following two cases are possible.
C ase  1: Cpj dole N . For every s '= [p \  0, Kip'), /'</, such that D p'=Cpldot,

the state s ”=[p, Idot-1, rdot , -] is created and the triple e'=(s”, i \ j )  is insened in set A, 
only if  j"Q^q does not hold for any state in or for any triple £q=(5q, i \ j )  in A. If at 

least one state s ’ is found with the above properties, set m -rm  in s.
Case  2: C p ^ e l .  If Cp ĉjot=ai, the state s'=[p, ld o t - \y rdot, -] is created and the 

triple e'=(s\ i - 1, j )  is insened into set A, only if  j'C&q does not hold for any state s in 

t{ j or for any triple ^q=(5q, i - l , j )  in A. If C ^ ^ Q=a{, set m=rm in 5 .

This procedure is applied only if state s can be extended leftward (ldot>0) and only if  it

has not already been extended rightward that is, if it is not subsumed to the right

by a more updated state. There are two cases, depending upon whether the left-hand 
expansion symbol is a terminal symbol or not. If Cp ldol is a non-terminal symbol, the

search proceeds to the left o f state j, to any state s' (adjacent), that corresponds to a 
completed analysis rdot’=n(pr)) o f a constituent usable by state s (Dp.=Cpjdot)*

If successful, the analysis is extended in correspondence with state s, including the

constituent found nearby; state s then is marked with m -rm , since this has been 
subsumed on the left by a more updated state. If Cp Jdol is, instead, a terminal symbol,

and if  C an extension o f the analyses corresponding to state s is made, including

the terminal symbol a  ̂ Still, state s  is marked with m -r m  for the same reasons as in

Case 1. Furthermore, note that Procedure 3.1 never duplicates the triples in A, nor the 

states belonging to the same component o f recognition matrix T.
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PROCEDURE 3.2 Right-expander

Precondition The procedure is applied only when e-{s ,  i , j ) with s -[p ,  Idot, rdot, m\, 
rdot<n(p), m*rm.

Description There are the following two cases.
C a s e  1: Cp rdo[+1 e N . For every 5'=[/?', 0, K(p'),  m']<= t. j ’> j ,  such that 

D ,=C j ,, state s"=[p, Idot, rdo t+ l,  -] is created and triple e'=(s'\ i j ' )  is insertedp p,raot+i ^
into set A, only if j"C£q does not hold for any state sq in t^, or for any triple eq=Csq, i j l  

in A. If at least one state s' has been found with the properties described above, set m -lm  

in s.
Case 2: Cp rdot+1e I .  If Cp rdot+1=aj+1, the state s'=[p, Idot, rdo t+ l,  -] is created and 

the triple e '= (s \  i j + l )  is inserted in A, only if .s'Q?q does not hold for any state s q in

riJ+ r  15 c P,idot= a j + r  set m=lm  in s -

This procedure is symmetric to the left-expander  procedure, so the explanation is 

omitted.

PROCEDURE 3.3 Left-completer

Precondition  The procedure is applied only when e-{s ,  / , /) ,  with J=[p, 0 , 7i(p), m]. 
D escription  For every s'=[p', Idot', rdot', tj. /'</, rdot'ciip"), m'^rm. such that

Dp=Cp. rdot’+ r  state Idol’, r d o t ’+ 1 , -] is created and the triple e '-{s" , i \ j ) is
inserted in set A only if s"Q$q does not hold for any state in r-,j or for any triple 

e = (jq, i \ j )  in A. Furthermore, set m '-lm  for every s' found.

This procedure is applied whenever the analysis o f a constituent D p has been 

completed through a state s=[p, 0, Kip), m]. It proceeds by searching leftward of state j

for any adjacent state s' that has not yet been subsumed to the left (m'*rm) and is able to 
“expand” state 5 CDp= C p. rdot.+1). If successful, an extension o f the analysis

corresponding to s' is carried out, including the constituent D p. State s' is then marked

with m -lm ,  since it has now been subsumed on the right by a more updated state. Again, 

note that the procedure never duplicates triples in A, nor states belonging to the same 

component o f the recognition matrix T.

PROCEDURE 3.4 Right-completer

Precondition  The procedure is applied only when e -(s ,  i , j ), with s - [ p , 0, n (p), m].
D escrip tion  For every s ' - [ p \  Idot', rd o t ', m ^e f y . , /> / ,  ldot'>0, m W m , such that

D =C , , .  , state s"=[p, ldo t ' - \ , rd o t \  -] is created and the triple e'=(s", i j 9) is inserted p p ,laot ^  '
in set A only if  .y"C&q does not hold true for any state sq in or for any triple eq=(>yq, 

y") in A. Furthermore, set m - r m  for every s' found.

This procedure is symmetric to the left-completer  procedure, so the explanation is 

omitted.
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PROCEDURE 3.5 Trigger

Precondition  The procedure is applied only when e - ( s , i , j) ,  with j=[p, 0, K(p), m\.

Description  For every se  F(Dp), insert the triple e=(s, i, j)  in set A only if sQ?q does 

not hold for any state sq in t[j or for any triple eq=(sq, i, j ) in A.

The procedure is applied whenever the analysis of a particular constituent has been 

completed and this constituent occupies the head position in some production p. In this 

case a new state corresponding to a partial analysis for production p  is created, including 

the head. Once again, note that the procedure never duplicates triples in A, nor states 

belonging to the same component of the recognition matrix T.

4. Some Formal Properties of the Algorithm

In this section the most interesting properties of Algorithm 3.1 are stated. For a formal 

proof o f what follows refer to [Satta and Stock, 1989b]. Four major properties have been 

grouped under Invariant 4.1 below. Note that soundness and completeness for Algorithm

3.1 follow straightforwardly from statements (i) and (ii) in Invariant 4.1.

INVARIANT 4.1
*

( i)  s = [ p ,  Id o t ,  r d o t ,  m ] e  ti j o n l y  i / C p ldot+1 ... Cp rdot => a i+1 ... a j ,  i < j ,  

ldot+ 1 <x{p)<rdor,

(H) Cp^dot+i-.Cp^ot => i<j, Idot +1 <x(p)<rdot only if  a quadruple h=[h\,

hi, /13, h4\, hq>0, 1^7<4 exists such that s=[p , ldo t-h \, rdot-^h^, m ]e  ti_h3j+h^

(Hi) s=[p, Idot, rdot, lm \e only ifs'=[p, Idot, rdo t+ \,  tx \'yf > j \

(iv) s= [p , Idot, rdo t , rm ]e  r,j only i f s = [ p , Idot-1, rdo t , m ]e  f< i.

Algorithm 3.1 allows the extension o f a state to both the left and right sides. This 

possibility, if  not carefully controlled, can lead to the duplication o f an analysis, in the 

follow ing way. If a state s , relative to a partial analysis for a constituent Cs, is 

independently extended to both sides, it would lead to the introduction o f two partially 

overlapping states, s' and s ' \  for the same analysis. The completion o f  s' and 5 " then 
would lead to the duplication o f constituent Cs- The algorithm presented here uses the 

index m, associated with each state, so as to avoid partial overlapping for two (partial) 

analyses o f the same constituent. Formally, we define the partial overlapping relation as 

follow s.

DEFINITION 4.1 Partial Overlapping Relation

Tw o states s= [p ,  Idot , rdot, m ]e  ry and 5 = [p , Idot’, r d o t \  t[' j ’ are p a r t ia l ly  

overlapped (s‘Dsr) iff /< /'< /< /, ldot<ldot’< rdot<rdot\  and, furthermore, s subsumes the 

same constituents Cpjdot'+l—Cpjciot subsumed in s ’.

Note that for two states s= [p , Idot, rdot, m ] and J = [p , Idot’, r d o t \  m *] such that 
s(Ds\ it always holds that Idot'<z(p)<rdot. The following theorem can now be stated.
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THEOREM 4.1

Algorithm 3.1 never generates two states s and s' such that sUs'.

The following result regards space and time complexity for Algorithm 3.1. Such a 
result is intended for a Random Access Machine model of computation.

t h e o r e m  4.2

Algorithm 3.1 requires an amount of space 0 (n 2) and an amount of time 0(rc3), where 

n is the length of the input string.

5. A Brief  Example

In order to have an insight into Algorithm 3.1, an example regarding a simple 
computation is given here. Assume an unambiguous context-free grammar G=(N, I ,  P, 
S), where N =(S , A, B}, L={a, b, c, d, e) ,  and P is the production set given as follows:

1 : S —» A a , x (l)= 2 , 7t ( l)= 2 ;
2 : S -> B b , l(2 )= 2 , tt(2)=2;
3: A - » c A c ,  t(3)=2, 7T(3)=3;
4: A —> d ,  X(4)=l, 7t(4)=l;

5: B —> c B c , t(5)=2, ti(5)=3;

6: B -»  e , x(6 )= l,  7t(6 )= l.

From Definition 2.2 it follows that:

F(A) = {[3, 1 , 2 , - ] } ;  F(B) = {[5, 1 , 2 , - ] } ;

F(a) = {[1, 1 , 2 , - ] } ;  ¥(b)  = {[2, 1 , 2 , - ] } ;

F(*f) = {[4, 0, 1 , - ] } ;  F(e) = {[6 , 0, 1 , - ] };
F(S) = F(c) = 0 .

A run o f Algorithm 3.1 on the string w=cceccb  is simplified by the follow ing steps 

(the order o f application for the five procedures at line 5 is chosen at random).

1 ) ^ i= [6 , 0 , 1 , -] is inserted in ^ 3 and S2=[2 > 1 * 2 , - ]  is inserted in rj 5 , by 

line 3;
2 ) 3̂=[5 , 1 , 2 , - ]  is inserted in f2 3 by the trigger procedure;

3) 54=[5, 0, 2, -] is inserted in and m is set to rm in state 53 , by Case 2 o f

the left-expander procedure;
4) J5=[5 , 0, 3, -] is inserted in f 1>4 and m is set to Im in state s4 , by Case 2 of

the right-expander procedure;
5) 5‘6=[5 , 1 , 2 , - ]  is inserted in r1>4 by the trigger procedure;

6 ) j 7=[5, 1 , 3 , - ]  is inserted in and m is set to Im in state by Case 2 o f

the right-expander procedure;
7) 5g=[5 , 0, 3, -] is inserted in ^  and m is set to rm in state s-j, by Case 2 o f

the left-expander procedure;
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8) ^ - [ 5 ,  1 , 2 , - ]  is inserted in r0,5 by the trigger  procedure;

9) 5 io= [2 , 0, 2, -] is inserted in fQ,6 an<̂  m *s set t0 rm state by the
right-completer procedure;

1 0 ) the algorithm outputs true and then stops.

Note how the setting of the m components in states 53 and 55 prevents the expansion of 

partial analysis at both sides. Though not shown here, in more complicated cases the 

setting o f the m components permits the left-completer procedure to combine a state s with 

the “leftward largest” partial analyses that are adjacent to the left of s, preventing once 

more partial analysis duplication (vice versa for the right-completer procedure).

Finally, note that in the above example Algorithm 3.1 has constructed 10 states, while 

a run of the classic method o f Earley on the same string would have constructed 25 states. 
Furthermore, by defining x(p)= 1, l<p<lPI, Algorithm 3.1 mimics the left-corner strategy 

as stated in [Wir£n, 1987], resulting in the construction o f 17 states for the same analysis.

6. Final Remarks

This paper discusses a parsing algorithm that extends bidirectionally the classic tabular 

methods for context-free language analysis. The algorithm is given for e-free  form 

context-free grammars, but it is not difficult to extend it to the general case, for example 

by employing the same technique used in [Graham et al. 1980] in the treatment o f empty 

categories.

With respect to natural language parsing, the presented tabular method is compatible 

with the well known “Active Chart Parsing” technique, as pointed out in [Satta and Stock 

1989a]. Finally, the extension to Earley's Algorithm proposed in [Shieber 1985] for 

parsing complex-feature-based formalisms, could be equally applicable to the presented 

approach.
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Head-Driven Parsing
Martin Kay

Xerox Palo Alto Research Center and Stanford University

There are clear signs of a "Back to Basics" movement in parsing and syntactic 
generation. Our Latin teachers were apparently right. You should start with the 
main verb. This will tell you what kinds of subjects and objects to look for and 
what cases they will be in. When you come to look for these, you should also 
stan by trying to find the main word, because this will tell you most about what 
else to look for.

In the early days of research on machine translation, Paul Garvin advocated the 
applicadon of what he called the "Fulcrum" method to the analysis of sentences. If 
he was the last to heed the injunctions of his Latin teacher, it is doubtless because 
America followed the tradition of rewriting systems exemplified by context-free 
grammar and this provided no immediate motivation for the notion of the head of 
a construction. The European tradition, and particularly the tradition of Eastern 
Europe, where Garvin had his roots, tend more towards dependency grammar, but 
away from that of mathematical formalization which has been the underpinning 
of computational linguistics.

But the move now is towards linguistic descriptions that put more information 
in the lexicon so that grammar rules take on a more schematic quality. Little by 
little, we moved from rules like
( 1 )  V P l  - >  V P 2 NP

C a s e O f ( V P 2 )  =  D a t i v e  
C a s e O f ( N P )  =  D a t i v e

to rules that attain greater abstraction through the use of logical variables (or the 
equivalent), like

(2) VPl -> VP2 NP 
ObjCase(VP2) =■ Case
CaseOf(NP) - Case

Where the underlined Case is to be taken as the name of a variable. From there,
it was a short step to

( 3 )  V P l  - >  V P 2 X 

C o m p l e m e n t O f (VP2) -  X
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or even

( 4 )  V P 1  - >  V P 2 X 

C o m p l e m e n t S t r i n g O f ( V P 2 )  = X

Given rule (2), that parser knows what case the noun must have only after it has 
encountered the verb. Rules (3) and (4), do not even tell it that the complement 
must be a noun phrase. In (4) we cannot even tell how many complements ther 
will be. For most parsers, the problem is masked in these examples by the fact 
that they apply rules from left to right so that the value of the variable X is known 
by the time it is needed. In rule (4a), the matter is different.

( 4 a )  V P 1  - >  X V P 2

C o m p l e m e n t S t r i n g O f ( V P 2 )  = X

Needless to say, these things have not gone unnoticed, least of all by the 
participants in this conference. It has been noted, for example, that deftnite- 
clause grammars can be adjusted so as to look for heads before complements and 
adjuncts. If the head of a sentence is a verb phrase, then it is sufficient to write 
(6) instead of (5).

( 5 )  s  ( L e f t / R i g h t )
n p ( L e f t / M i d d l e ) , 
v p ( M i d d l e / R i g h t ) .

( 6 )  s ( L e f t / R i g h t )
v p ( M i d d l e / R i g h t ) ,  

n p ( L e f t / M i d d l e ) .

A rule that expands the verb phrase would be something like (7).

( 7 )  v p ( L e f t / R i g h t )
v e r b ( L e f t / M i d d l e ) , 

n p ( M i d d l e / R i g h t ) .

This time, the order is the usual one because the head is on the left1.

Of course, all this works if L e f t ,  M i d d l e ,  and R i g h t  are something like word 
numbers that provide random access to the parts of the sentence. To make the 
system work with difference lists, we need something more, for example, as in (8 ).

( 8 )  s ( L e f t / R i g h t )
a p p e n d ( X ,  M i d d l e ,  L e f t ) ,

v p ( M i d d l e / R i g h t ) ,  n p ( L e f t / M i d d l e ) .

We have now moved lo the Prolog convention of using caiulized names for variables.
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The reason for the addition is that the parser, embodied here in the set of rules 
themselves, has no way to tell where the verb phrase will begin. It must therefore 
consider all possible positions in the string, an end which, against all expectation, 
is accomplished by the a p p e n d  predicate. If a p p e n d  is not needed when something 
like word numbers are used, it is because the inevitable search of the string is 
being quietly conducted by the Prolog system as it searches its data base, rather 
than being programmed explcitely.

The old-fashioned parser had no trouble finding the beginnings of things 
because they were always immediately adjacent, either to the boundaries of the 
sentence, or to another phrase whose position was already known. Given the 
sentence

I sold my car to a student o f  African languages whom I met at a party

and given appropriate rules, the head-driven parser will correcdy identify "my 
car" as the direct object of "sold". But it will also consider for this role at least 
the following:

( 8 )  a  s t u d e n t
a  s t u d e n t  o f  A f r i c a n
a  s t u d e n t  o f  A f r i c a n  l a n g u a g e s
a  s t u d e n t  o f  A f r i c a n  l a n g u a g e s  w h o m  I  m e t
a  s t u d e n t  o f  A f r i c a n  l a n g u a g e s  w h o m  I  m e t  a t  a  p a r t y
A f r i c a n
A f r i c a n  l a n g u a g e s
A f r i c a n  l a n g u a g e s  w h o m  I  m e t
A f r i c a n  l a n g u a g e s  w h o m  I- m e t  a t  a  p a r t y
l a n g u a g e s
l a n g u a g e s  w h o m  I m e t  
l a n g u a g e s  w h o m  I  m e t  a t  a  p a r t y

a  p a r t y

It will reject them only when it fails to extend them far enough to the left to meet 
the right-hand edge of the word "sold". Likewise, the last four entries on the list 
will be constructed again as possible objects for the preposition "of'. As we shall 
see, this problem is not easy to put to set aside.

O f course, definite-clause grammars have other problems, when interpreted 
directly by a standard Prolog processor. The most notorious of these is that,
in their classical form, they cycle indefinitely when provided with a grammar
that involves left recursion. However this can be overcome by using a more 
appropriate interpreter such as the one given in Appendix A of this paper. It
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does not touch the question of the additional work that has to be done in parsing 
a sentence.

Two solutions to the problem suggest themselves immediately. One is to use 
an undirected bottom-up parsing strategy, and the other is to seek an appropriate 
adaptation of chart parsing to a directed, head-driven, strategy. The first solution 
works for the simple reason that the problem we are facing simply does not arise 
in undirected bottom-up processing. There is no question of finding phrases that 
are adjacent to, or otherwise positioned relative to, other phrases. The strategy is a 
purely opportunistic one which finds phrases wherever, and whenever, its control 
strategy dictates. A simple chart parser with these properties is given in Appendix 
B. It accepts only unary and binary rules, but this is not a real restriction because 
these binary rules can function as meta-rules that interpret the more general of 
the actual grammar according to something like the following scheme. Real rules 
have a similar format to that used in the program in Appendix A, namely

r r ( M o t h e r ,  [ L I ,  L2  . . .  L n ] , H e a d ,  [ R l ,  R2  . . .  R m ] )

Li ... Ln are the non-head (complement) daughters of ’Mother’ to the left of the 
head, and R\ ... Rm are those to the right. For convenience, we give the ones on 
the left in the reverse of the order in which they actually appear so that the one
nearest to the head is written first. We define the binary rule predicate referred
to in the algorithm somewhat as follows;

r u l e ( p ( M o t h e r ,  L,  R e s t ) ,  H e a d ,  N e x t )  
r r ( M o t h e r ,  L,  H e a d ,  [ N e x t  I R e s t ] )  . 

r u l e ( p ( M o t h e r , R e s t ,  [ ] ) ,  N e x t ,  H e a d )  
r r ( M o t h e r ,  [ N e x t  I R e s t ] ,  H e a d ,  [ ] ) .  

r u l e ( p ( M o t h e r , L ,  T ) , p ( M o t h e r ,  L,  [ H I T ] ) ,  H ) .

r u l e ( p ( M o t h e r ) , H,  p ( M o t h e r ,  [ H I T ] ,  [ ] ) .

One special unary rule is required, namely

r u l e ( M o t h e r ,  p ( M o t h e r ,  [ ] ,  [ ] ) ) .

The scheme is reminiscent of categorial grammar, p  ( C a t e g o r y ,  L e f t ,  R i g h t )  

is a partially formed phrase belonging to the given c a t e g o r y  which can be com ­
pleted by adding the items sepecified by the L e f t  list on the left, and the R i g h t  

list on the right.
This scheme has a certain elegance in that the parser itself is simple and does 

not reflect any peculiarities of head-driven grammar. Only the simple meta-rules 
given above are in any way special. Furthermore, the performance properties
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of the chart parser are not compromised. On the other hand, this inactive chart 
parser cannot be extended to make it into an active chan parser in a straightforward 
manner as our second solution requires. This is the crux of the matter that this 
paper addresses.

Suppose that the verb has been located that will be the head of a verb phrase, 
but that it remains to identify one or two objects for it on the right. A standard 
active chart parser does this by introducing active edges at the vertex to the 
right of the verb which will build the first object if the material necessary for its 
construction is available, or comes to be available. As the construction procedes, 
active edges stretch further and further to the right intil the construction is complete 
and the corresponding inactive edge is introduced. This works only because the 
phrase can be built incrementally starting from the left, that is, starting next to 
the phrase to which it must be adjacent. But this strategy is not open to the 
head-driven parser which must begin by locating, or constructing the head of the 
new phrase. The rest of the phrase must then be constructed outwards from the 
head. We are therefore forced to modify the standard approach.

We propose to enrich the notion of a chart so that instead of simply active 
and inactive edges, it contains five different types of object. Edges can be active 
and inactive, but they can also be pending or current. This gives four of the five 
kinds. The fifth we shall refer to simply as a seek. It is a record of the fact that 
phrases with a given label are being sought in a given region of the chart. A seek 
contains a label and also identifies a pair of vertices in the chart. It is irrelevant at 
the level of generality of this discussion whether we think of the seek as actually 
being located in, or on, one of the vertices, or being representable as a transition 
between them. A condition that the chart is required to maintain is that edges with 
the same label as that of a seek, both of whose end points lie within the region of 
the seek, must be current. Edges which are not so situated must be pending. The 
standard chart regime never calls for information in a chart to change, but that is 
not the case here. W^hen a new seek is introduced, pending edges are modified to 
become current as necessary to maintain the above invariant.

The fundamental rule (Henry Thompson’s term) of chart parsing is that an 
action is taken, possibly resulting in the introduction of new edges, whenever 
the introduction o f a particular new edge brings the operative end of an active 
edge together, at the same vertex, with an end of an inactive edge. If the label 
on the inactive edge is o f the kind that the active edge can consume, a new
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edge is introduced, possibly provoking new applications of the fundamental rule. 
The fundamental rule also applies in our enriched charts, but only to current 
edges-pending edges are ignored by it.

Suppose once again that a verb has been identified and that we are now 
concerned to find its sisters to the right. The verb can have been found only 
because there was a seek in existance for verbs covering the region in which it 
was found, and this, in its turn, will have come about because seeks were extant in 
that region for higher-level phrases, notably verb phrases. The objects we are now 
interested to locate must lie entirely in a region bounded on the left by the verb 
itself and, on the right, by the furthest right-hnd end of a VP seek that includes 
the verb. Accordingly, a new seek is established for NP’s in this region. The 
immediate effect of this will be to make current any pending edges in that region 
that are inactive and labeled NP, or active and labeled with a rule that forms NP’s.

It remains to discuss how active edges, whether current or pending, are 
introduced in the first place. The simplest solution seems to be to do this just as it 
would be in an undirected, bottom-up, parser. Whenever a current inactive edge 
is introduced, or a pending one becomes current, active edges are introduced, one 
for each rule that could accept the new item as head. However, these do not 
become current until a need for them emerges higher in the structure, and this is 
signaled by the introduction of a seek.

Consider, for example, the sentence the dog saw the cat and assume that 
dog , saw , and cat are nouns, saw  is also a transitive verb, and that the grammar 
contains the following rules:

r u l e ( s ( s ( N P , V P ) ) ,  [ n p ( N P ) ] ,  v p ( V P ) ; [ ] ) .
r u l e ( v p ( v p ( V ,  N P ) ) ,  [ ] ,  v ( V ) ,  [ n p ( N P ) ] ) .

r u l e ( n p ( n p ( D ,  N ) ) ,  [ d e t ( D ) ] ,  n ( N ) ,  [ ] ) .

The sequence o f events involved in parsing the sentence with a parser that follows 
a simple shift reduce regime, would be as follows:

1 .  A d d  p e n d i n g  f o r  d e t ( d e t ( t h e ) ) f r o m  0 t o  1 /
L e f t  *  [ ] ,  R i g h t  -  [ ]

2 .  A d d  p e n d i n g  f o r  n ( n ( d o g ) )  f r o m  1 t o  2 ,  L e f t  =  [ ] ,

R i g h t  -  [ ]
3 . A d d  e d g e  f o r  v ( v ( s a w ) )  f r o m  2 t o  3 ,  L e f t  =* [ ] ,

R i g h t  -  [ ]
4 .  A d d  e d g e  f o r  v p ( v p ( v ( s a w ) , _ 6 5 3 ) )  f r o m  2 t o  3 ,

L e f t  = [ ] /  R i g h t  -  [ n p ( _ 6 5 3 ) ]
5 .  A d d  e d g e  f o r  v p ( v p ( v ( s a w ) , _ 6 5 3 ) )  f r o m  2  t o  3 ,
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L e f t  =* [ ] ,  R i g h t  =  [ s  (_________________________________________________________6 5 3 ) ]
6 .  A d d  p e n d i n g  f o r  n ( n ( s a w ) ) f r o m  2 t o  3 ,  L e f t  = [ ] ,

R i g h t  = [ ]
7 .  A d d  p e n d i n g  f o r  d e t ( d e t ( t h e ) ) f r o m  3 t o  4 ,

L e f t  =  [ ] ,  R i g h t  = [ ]
8 .  A d d  e d g e  f o r  n ( n ( c a t ) ) f r o m  4 t o  5 R u l e  = 0 / 0 ,  L e f t  = [ ] ,

R i g h t  =  [ ]
9 .  A d d  e d g e  f o r  n p ( n p ( _ 6 9 0 , n ( c a t ) ) )  f r o m  4 t o  5 ,

L e f t  = [ d e t ( _ 6 9 0 ) ] ,  R i g h t  =  [ ]
1 0 .  A d d  e d g e  f o r  d e t ( d e t { t h e ) ) f r o m  3 t o  4 ,

L e f t  =  [ ] ,  R i g h t  = [ ]
1 1 .  A d d  e d g e  f o r  n p ( n p ( d e t ( t h e ) , n ( c a t ) ) )  f r o m  3 t o  5 

R u l e  »  r 4  /  1 ,  L e f t  =  [ ] ,  R i g h t  *  [ ]
1 2 .  A d d  e d g e  f o r  v p ( v p ( v ( s a w ) , n p ( d e t ( t h e ) , n ( c a t ) ) ) )  f r o m  2 t o  5 ,

L e f t  = [ ] ,  R i g h t  = [ ]
1 3 .  A d d  e d g e  f o r  s ( s ( _ 1 5 0 7 , v p ( v ( s a w )  , n p ( d e t ( t h e )  , n ( c a t ) ) ) ) )

f r o m  2 t o  5 ,  L e f t  = [ n p ( _ 1 5 0 7 )  ] , R i g h t  =  [ ]
1 4 .  A d d  e d g e  f o r  n ( n ( d o g ) )  f r o m  1 t o  2 ,  L e f t  =  [ ] ,

R i g h t  = [ ]
1 5 .  A d d  e d g e  f o r  n p ( n p ( _ 2 0 1 4 , n ( d o g ) ) )  f r o m  1 t o  2 ,

L e f t  =  [ d e t ( _ 2 0 1 4 ) ] ,  R i g h t  = [ ]
1 6 .  A d d  e d g e  f o r  d e t ( d e t ( t h e ) ) f r o m  0 t o  1 ,

L e f t  = [ ] ,  R i g h t  = [ ]
1 7 .  A d d  e d g e  f o r  n p ( n p ( d e t ( t h e ) , n ( d o g ) ) )  f r o m  0 t o  2 ,

L e f t  =  [ ] ,  R i g h t  = [ ]
1 8 .  A d d  e d g e  f o r  s  ( s  ( n p  ( d e t  ( t h e )  , n  ( d o g )  ) , v p  ( v  ( s a w )  ;

n p ( d e t  ( t h e ) , n  ( c a t ) ) ) ) )  f r o m  0 t o  5 ,  L i f t  =  [ ] ,
R i g h t  = [ ]

R e s u l t  = [ s ( s ( n p ( d e t ( t h e ) , n ( d o g ) ) , v p ( v ( s a w ) , n p ( d e t ( t h e ) , n ( c a t ) ) ) ) ) ] ,

We write a d d  e d g e . . .  when the edge being added is current. Notice that 
the edge for the word saw, construed as a verb, is initially introduced as current, 
because the goal is to find a sentence and a seek is therefore extant for S, VP, 
and V, covering the whole string. The N edge for saw, however, is pending. In 
step 4 , the active adge is introduced that will consume the object of saw  when it 
is found. This introduces a seek for NP and N between vertex 3and the end of 
the sentence. For this reason, when cat is introduced in step 8 , it is as a current 
edge. Notice, however, that the, in step 7, is introduced as pending, because it is 
not the head o f a NP. However, the introduction of the active NP edge in step 9 
causes the edge for the to be made current, and this is what happens in step 1 0 . 
The active S edge in step 13 activates the search for an NP before the verb so
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that all the remaining edges are introduced as current At the end of the process 
all pending edges have been made current except the one corresponding to the 
nominal interpretation of s a w .

The Prolog code that implements this strategy is considerably more com- 
picated that that for the techniques discussed earlier, and I have therefore not 
included it.

I believe that the strategy I have outlined is the natural one for anyone to adopt 
who is determined to work with a head-driven active chart parser. However, it is 
entirely unclear that the advantages that it offers over the simple undirected chart 
parser are worth its considerable added expense in complexity. Notice that, if one 
of the other nouns in the sentence just considered also had a verbal interpretation, 
the search for noun phrases would have been active everywhere. The longer the 
sentence, and therefore the more pressing the need for high performance, the more 
active regions there would be in the string and the more nearly the process as a 
whole would approximate that of the undirected technique. This should not, of 
course, be taken as an indictment o f head-driven parsing, which is interesting for 
reasons having nothing to do with performance. It does, however, suggest that the 
temptation to claim that it is also a natural source of efficiency should be resisted.

Appendix A -  A PARSER-GENERATOR FOR HEAD- 
D RIVEN G RAM M AR.

This is a simple head-driven recursive-descent parser. There is a distinction 
between the top level p a r s e  predicate and the s y n t a x  predicate to eliminate 
inessential arguments to the top level call, and also because the program can, 
with only minor modifications in s y n t a x ,  be used as a generator. The p r e d i c a t e  

h e a d  is assumed to be defined as pan o f the grammar. It is true of a pair of 
grammatical labels if  the second can be the head (of the head, o f the head ...) of 
the first. Having hypothesized the label of the eventual lexical head of a phrase 
that w ill satisfy the current goal, s y n t a x c a l l s  r a n g e  to find a word in the string 
with that label. If such a word is found, its position in the string will be given 
by the H R a n g e  (head range) difference list and it must, in any case, lie within 
the range o f the string given by M a x i  and M a x r .  The b u i l d  predicate constructs 
phrases with the given putative head so long as their labels stand in the h e a d  

relation to the goal.
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.......
* parse(String, Result) *

* String is a list of words *
* Struct is the structure (nondeterministicaiiy) returned if the parse
* succedes *
........
parse (String, Struct)

syntax(String/[]/Struct, String/[]).

* syntax((L/R)/Goal, Maxl/Maxr) ’
» *
* G is the Goal for the parsen. '
* L/R is a DL giving the bounds of the phrase satisfying the goal *
* Maxl/Maxr gives the string bounds for the current search. *
* tr
******...........*****......... ..................................

syntax(Range/Goal, Max)
head(Goal, Head), % Find lexical head for Goal
range(HRange/Head, Max), % Associate Head with actual

% word and string position,
buiId(Range/Goal, HRange/Head, Max). % Build bottom up based on Head.

* range((L/R)/Head, MaxL/MaxR) *
# «
* True of (1) position L/R in the string *
* (3) with grammatical description Head *
* (4) somewhere in the string range MaxL/MaxR (parsing) *
...........................................
%
% Whole maximum range explored.
% = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

range(_, X/X) !, fail.
%
% Next word in maximum range is the required head, 

range(L/R/Head, L/_) diet(L/R, Head).
%
% Try again one place to the right.

range(Head, [HiT]/MaxR) 
range(Head, T/MaxR).

/******...............
* D u i l d f (GL/GR)/Goal, (HL/HR)/Head, MaxL/MaxR)
* *
* Build phrases bottom up based on the Head located in the string at *
* HL/HR. The location of the phrase found will be GL/GR and it must *
* fall in the range MaxL/MaxR. *

build(X, X, _). % Current head is result,
build(GL/GR/Goal, HL/HR/Head, MaxL/MaxR) % Find rule matching Head

rr(Lhs, Left, Head, Right), head(Goal, Lhs),
build_left(Left, LL/HL, MaxL/HL), % Check left daughters
build_right(Right, HR/RR, HR/MaxR), % and right daughters,
buiid(GL/GR/Goal, LL/RR/Lhs, MaxL/MaxR). % Try building further on that.
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build_Ieft{[], X/X, _) . build_ie ft([HIT], L/R, MaxL/MaxR) 
syntax(HL/R/H, MaxL/MaxR),
buiid_ieft(T, L/HL, MaxL/HL).build_right([], X/X, _). 

buiId_right([HIT1, L/R, MaxL/MaxR) :- 
syntax(L/HR/H, MaxL/MaxR), 
build_nght (T, HR/R, HR/MaxR) .

A ppendix B -  A SIM PLE INACTIVE CHART PARSER

This is a chart version of a nondeterminisitc shift-reduce parser. Vertices of 
the chart are constructed from left to right, one on each recursive call to p a r s e / 3,  

A vertex is a list of edges headed by a number which is provided for convenience 
in printing. An edge takes the form [ l a b e l ,  n e x t - v e r t e x ] .  The predicate 
b u i i d _ e d g e  is given a word and its successor vertex and returns a completed 
vertex. It succeeds once for each entry that the word has in the dictionary and, 
for each one, calls b u i i d _ e d g e i .  This can succeed in three ways, all of which are 
collected into the list of edges contributing to the current vertex by virtue of the 
s e t o f  construction. The three possbilities are (1) The word’s lexical entry itself 
labels an edge; (2) A unary rule applies to the entry, and its left-hand side labels 
an edge, and (3) A binary rule matches the entry and an entry in the next vertex 
( m e m b e r  ( [ L a b e l ,  N e x t l ] ,  N e x t ) ) .  Each new label is passed to b u i l d - e d g e l  

to be processed in the same manner as the original lexical entry.

p a r s e ( S t r i n g ,  R e s u l t )
p a r s e ( S t r i n g ,  [ 0 ] ,  R e s u l t ) .

p a r s e ( [ ] ,  V ,  V)  .
p a r s e ( [ W o r d  I R e s t ] ,  [ N I N e x t ] ,  V e r t e x )

s e t o f ( E d g e ,  b u i l d _ e d g e ( W o r d ,  [ N I N e x t ] ,  E d g e ) ,  V ) ,
M i s  N + l ,
p a r s e ( R e s t ,  [ M | V ] ,  V e r t e x ) .

% N e x t  v e r t e x  n u m b e r  
% { M | V ]  i s  t h e  v e r t e x

b u i l d _ e d g e ( W o r d ,  N e x t ,  E d g e )  
d i e t ( W o r d ,  E n t r y ) , 
b u i l d _ e d g e l ( E n t r y ,  N e x t ,  E d g e ) .

b u i l d _ e d g e l ( E n t r y ,  N e x t ,  [ E n t r y ,  N e x t ] )  
b u i l d _ e d g e l ( E n t r y ,  N e x t ,  E d g e )  

r u l e ( L h s ,  E n t r y ) ,  
b u i l d _ e d g e l ( L h s ,  N e x t ,  E d g e ) . 

b u i l d _ e d g e l ( E n t r y ,  [ N I N e x t ] ,  E d g e )

% D i c t i o n a r y  l o o k u p

% S h i f t .
% R e d u c e  o n e  i t e m

% R e d u c e  t w o  i t e m s
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m e m b e r ( [ L a b e l ,  N e x t l ] ,  N e x t ) ,  
r u l e ( L h s ,  L a b e l ,  E n t r y ) ,  
b u i l d _ e d g e l ( L h s , N e x t l ,  E d g e ) .
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P a r s in g  w ith  P r in c ip le s :
P r e d ic t in g  a P h r a sa l N o d e  B e fo r e  I ts  H e a d  A p p e a r s 1 2

Edward G ibson  
D ep a r tm e n t  o f  P h i lo sop h y  

C arnegie  M ellon U nivers ity  
P itt sb u rg h ,  PA 15213  
ea fg ;3>cad. c s .cm u .ed u

1 In troduction

R ecent work in gen era t ive  sy n ta c t ic  th eory  has sh ifted  the co n cep tion  o f  a natural lan gu age  gram m ar from 
a h o m o g e n e o u s  se t  o f  phrase  s tru ctu re  (P S )  rules to  a h etero gen eo u s  se t  o f  w ell- form edness  con stra in ts  on  
rep resen ta t ion s  (see , for e x a m p le ,  C h o m sk y  (198 1 ) ,  S tow ell  (1 98 1 ) ,  C h o m sk y  (19 86 a )  and Pollard k  Sag  
(1 9 8 7 ) ) .  In th ese  theor ies  it is a ssu m ed  th a t  the gram m ar con ta ins  princip les  th a t  are in d ep en d e n t  o f  the  
language  b e in g  parsed , tog e th er  w ith  principles th at  are param eter ized  to  reflect the  varying behavior  o f  
different lan gu a ges .  However, there  is more to  a theory  o f  hu m an  sen ten ce  process in g  th an  ju s t  a theory  
of  l ingu is t ic  c o m p e te n c e .  A th eory  o f  p erform an ce  con s is ts  o f  b o th  l ingu is t ic  k n ow led ge  and a parsing  
a lgor ithm . T h is  paper  will in v es t ig a te  w ays o f  ex p lo i t in g  pr inc ip le -based  sy n ta c t ic  theories  d irect ly  in a 
parsing a lg o r ith m  in order to  d e term in e  w h eth er  or not a princip le-based  parsing a lg o r ith m  can be co m p a t ib le  
w ith  p sy ch o l in g u is t ic  ev id en ce .

P r in c ip le -b a sed  parsing  is an in terest in g  research topic  not o n ly  from a p sy ch o l in g u is t ic  po int  o f  v iew  but  
also from a practica l p o in t  o f  v iew . W h e n  PS rules are used, a sep ara te  gra m m a r  m u st  be w rit ten  for each  
language  parsed . E ach  o f  th ese  g ra m m ars  c o n ta in s  a great deal o f  red u n d an t  in fo rm a tion .  For exa m p le ,  
there m ay be tw o  rules, in different gram m ars,  th a t  are id en t ica l e x c e p t  for th e  order o f  the  c o n s t i tu e n t s  on  
the right han d  s ide , in d ica t in g  a d ifference in word order. T h is  r ed u n d an cy  can be avoided  by em p lo y in g  
a universal phrase  s tru c tu re  c o m p o n e n t  (n o t  n ecessarily  in the  form  o f  rules) a lon g  w ith  p aram eters  and  
a sso c ia ted  values. A p rincip les  and p ara m eters  approach  provides a s ing le  co m p a c t  g ra m m a r  for all lan gu ag es  
th at  would  o th e r w is e  be represen ted  by m an y  different (a n d  red u n d a n t)  PS gra m m ars .

A ny  m o d e l  o f  h u m an  parsing  m u st  d ic tate :  a) how stru ctu res  are projec ted  from the  lexicon; b) how  
s tru ctu res  are a t ta c h e d  to  on e  another; and c) w h a t  con stra in ts  affect th e  resu ltan t s tru ctu res .  T h is  paper will  
co n cen tra te  on  the  first tw o  c o m p o n e n t s  w ith  respect  to  pr inc ip le -based  parsing a lgor ithm s: n od e  p roject ion  
and s tru ctu re  a t ta c h m e n t .

T w o  basic con tro l s tru c tu res  e x is t  for any parsing a lgorithm : d ata -d r iven  con tro l and  h y p o th es is -d r iv en  
control.  E ven  if  a parser is p re d o m in a n t ly  h y p o th es is -d r iv en ,  the  p red ict ion s  th a t  it m ak es  m u st  at som e  
point be co m p a red  with th e  data that are presented  to  it. S o m e  d ata -d r iven  c o m p o n e n t  is therefore  necessary  
for any parsin g  a lg o r i th m . Thus, a reason ab le  h y p o th e s is  to  te s t  is th a t  the  h u m a n  p arsing  a lg o r i th m  is 
entire ly  d a ta -d r iv e n .  T h is  is e x a c t ly  th e  ap proach  th a t  is taken  by a n u m ber  o f  p r in c ip le -b ased  parsing  
a lgor ith m s (see ,  for e x a m p le ,  A b n e y  (1 9 8 6 ) ,  K a sh k et  (1 9 8 7 ) ,  G ib son  &: Clark (1 9 8 7 )  and P r itc h e t t  (1 9 8 7 ) ) .  
T h e se  p arsing  a lg o r i th m s  ea ch  in c lu d e  a n o d e  p roject ion  a lg or ith m  th a t  p ro jec t s  an in p u t  word to  a m a x im a l  
category, b u t  d o es  n o t  c a u se  th e  p ro jec t io n  o f  any  further nodes .

A lth o u g h  th is  s im p le  s t r a te g y  is a t tra c t iv e  b eca u se  o f  its s im p lic ity ,  it turns o u t  th a t  it c a n n o t  acc o u n t  
for certa in  p h e n o m e n a  o b serv ed  in th e  p rocess in g  o f  D u tch  (Frazier (1987):  see  S ec t io n  2 .1 ) .  A  c o m p le te ly  
d a ta-d r iven  n o d e  p r o je c t io n  a lg o r i th m  also  has difficulty a cc o u n t in g  for the  p ro cess in g  ea se  o f  a d jec t iv e -n o u n  
co n stru c t io n s  in E n g lish  (see  S e c t io n  2 .2 ) .  As a result o f  th is  ev id en ce ,  a purely  d a ta -d r iv en  n o d e  p ro jec t io n

1 Paper presented at the International Workshop on Parsing Technologies, August 28-31, 1989.

2 I would like to thank Robin Clark, Rick Kazm an, Howard Kurtzm an, Eric Nyberg and Brad Pritchett for their com m ents 
on earlier drafts of this paper, and I offer the usual disclaimer.
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a lgo r ith m  m u st  be rejected in favor o f  a n ode p roject ion  a lgo r ith m  th a t  has a pred ict ive  (h y p oth es is -d r iven )  
c o m p o n en t  Frazier (1 9 8 7 ) ) .

T h is  paper descr ibes  a n ode project ion  a lgo r ith m  th a t  is part o f  the C on stra in ed  Parallel Parser (C P P )  
(G ib so n  (1 9 8 7 ) ,  G ib son  k  C lark (1 98 7 )  and Clark & G ibson  (1 9 8 8 ) ) .  T h is  parser is based on the  principles  
o f  G o v e r n m e n t-B in d in g  theo ry  (C h o m sk y  (1981 ,  1986a)) .  Section  3.1 g ives an overview  o f  the C P P  m odel ,  
while  S ec t ion  3.2 d escr ibes  the n ode project ion  a lgor ithm . S ec t io n  3 .3  descr ibes  the a t ta c h m e n t  a lgorithm ,  
and includes  an e x a m p le  parse. T h ese  n ode project ion  and a t ta c h m e n t  a lgo r ith m s d e m o n s tra te  th a t  a 
p rinc ip le -based  parsing a lg or ith m  can a ccou nt  for the D u tch  and E nglish  d ata ,  while  avoid ing  the ex is ten ce  
o f  red u n d an t  phrase  s tru ctu re  rules. T h u s  it is co n c lu d ed  th a t  one  should  continue  to in vest iga te  hyp oth es is -  
driven prin c ip le -b ased  m o d e ls  in th e  search for an o p t im a l  p sycho l in gu is t ic  m od el .

2 D ata -D riven  N o d e  Projection: Empirical Pred ic tions and R esults

2.1 E vidence  from D u tch

C onsid er  th e  s e n te n c e  fragm en t  in ( 1 ):

( 1 )
... d a t  het m eisje  van Holland ...
... “th a t  the  girl from  H o l la n d ” ...

D u tc h  is like E nglish  in th a t  p rep os it io n a l  phrase modifiers o f  n ou n s  m ay  fo llow  the  noun . T h u s  th e  
p rep o s it ion a l  ph rase  van Holland  m ay  be a m odifier  o f  the  n oun  phrase  the girl in e x a m p le  ( 1 ).  U nlike  
E n glish ,  h ow ever, D u tc h  is S O V  in su b o r d in a te  c lauses.  Hence in ( 1 ) th e  p rep o s it io n a l  phrase  van Holland 
m ay also  be th e  a rg u m en t  o f  a verb to  fo llow. In particu lar , if the  word ghmlachte  ( “sm i le d ” ) fo llows the  
fragm en t in ( 1 ) ,  th en  th e  p re p o s it io n a l  phrase  van Holland  can a t ta c h  to  th e  nou n  ph rase  th a t  it follows,  
since  the  verb ghmlachte  has no lex ica l req u irem en ts  (see  ( 2 a ) ) .  If, on th e  oth er  h an d ,  the  word houdt 
( “lik es” ) fo llow s th e  fragm en t  in ( 1 ) ,  th en  the  P P  van Holland  m ust  a t ta ch  as a rg u m e n t  o f  the  verb houdt, 
since  the  verb requires su ch  a co m p le m e n t  (see  ( 2 b ) ) .

( 2 )
a .  ... d a t  [s [iVP het  m eisje  [pp  van H ol land  ]] [vp  g l im lach te  ]]

... “th a t  th e  girl from  H olland  s m i le d ” ...

b .  ... d a t  [5 [.vp het m eisje  ] [v p  [ v  [pp  van H olland ] [v h o u d t  ]]]]
... “th a t  th e  girl likes H o l la n d ”

F ollow in g  A b n e y  (1 9 8 6 ) ,  Frazier (1 9 8 7 ) ,  C lark k  G ib so n  (1 9 8 8 )  and n u m erou s o th ers ,  it is a s su m ed  th a t  
a t ta c h e d  s t r u c tu res  are preferred over u n a t ta c h e d  s tru ctu res .  If we a lso  a ssu m e  th a t  a phrasa l n o d e  is not  
p ro jec ted  unti l  its h ead  is e n c o u n te r e d ,  w e pred ict  th a t  p eop le  will en ter ta in  on ly  one  h y p o th e s is  for the  
se n te n c e  fra gm en t  in ( 1 ): th e  m odifier  a t ta c h m e n t .  T h u s  we predict th a t  it sh o u ld  take  longer to  parse  
the  co n t in u a t io n  houdt ( “likes” ) th a n  to  parse the  c o n t in u a t io n  ghmlachte  ( “s m i le d ” ), s ince  the  c o n t in u a t io n  
houdt forces the  p rep o s i t io n a l  p hrase  to  be  rea n a lyze d  as an arg u m en t  o f  th e  verb. How ever, contrary  
to th is  p red ic t ion ,  th e  verb th a t  a llow s a rg u m e n t  a t ta c h m e n t  is ac tu a l ly  parsed  faster th a n  the  verb th a t  
n e c e s s i ta t e s  m odifier  a t t a c h m e n t  in s e n te n c e  fra gm en ts  like ( 1 ).  If th e  verb had  been  p ro je c te d  before  its 
h ead  was e n c o u n te red ,  th en  th e  a r g u m en t  a t ta c h m e n t  o f  th e  P P  van Holland  w ou ld  b e  p oss ib le  at th e  sam e  
t im e  th a t  th e  m odifier  a t t a c h m e n t  is p o s s ib le .3 T h u s  Frazier con c lu d es  th a t  in so m e  cases  phrasa l n od es  
m u st  be p ro jec ted  before  their  lex ica l h ead s  have b een  en c o u n tered .

3 It is beyond the scope of this paper to offer an explanation as to why the argument attachm ent is in fact preferred,  to the 
modifier attachm ent. This paper seeks only to dem onstrate that the argument attachm ent possibility m ust at least be avai lable  
for a psychologically real parser. See Abney (1986), Frazier (1987) and Clark U  Gibson (1988) for possible explanations for the 
preference phenom enon.
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2.2 E vidence from  E nglish

A seco n d  piece o f  e v id e n ce  aga in st  this l im ited  ty p e  o f  n ode project ion  is provided by the  process ing  o f  noun  
phrases in E nglish  th a t  have m ore th an  one pre-head con st itu en t .

It is a ssu m ed  th a t  the pr im itive  op era t ion  o f  a t ta c h m e n t  is a sso c ia ted  w ith  a certain  process ing  cost.  
Hence the a m o u n t  o f  t im e  taken  to parse a sing le  input word is d irect ly  related to the  num ber o f  a t ta ch m e n ts  
that the  parser m ust  e x e c u te  to  incorporate  th a t  s tru ctu re  into the  ex is t in g  s tru ctu re (s ) .  If a phrasal node  
is not  p ro jec ted  until its head is en cou n tered ,  then  parsing the  final word o f  a head-final co n stru ct io n  will 
involve a t ta c h in g  all its pre-head s tru ctu res  at th a t  po int .  If, in a ddit ion ,  there is more th an  on e  pre-head  
structure  and no a t ta c h m e n ts  are poss ib le  until the head appears ,  then  a s ignificant p rop ortion  o f  process ing  
tim e sh ou ld  be sp e n t  in p rocess in g  the  head.

T h e  h y p o th es is  th a t  a phrasal n od e  is not p rojected  until its head is en cou n tered  can b e  te s ted  w ith  the  
English noun  phrase, s ince  the head o f  an English  noun phrase appears after a specifier  and any adjectival  
modifiers . For ex a m p le ,  consider  the E nglish  noun phrase the big red book. First , the word the is read and a 
determ iner  phrase is built .  S ince  it is a ssu m ed  th a t  nodes  are not p rojected  until their h ead s are encou ntered ,  
no noun phrase  is bu ilt  at th is  point .  T h e  word big is now read and causes  the  p roject ion  o f  an adjective  
phrase. A t ta c h m e n t s  are now a t t e m p te d  betw een  the two stru ctu res  built thus  far. N eith er  o f  th e  categories  
can be a rgu m en t ,  specifier  or modifier for the o th er ,  so  no a t ta c h m e n t  is poss ib le .  T h e  n e x t  word red now  
causes  th e  p roject ion  o f  an a d ject ive  phrase, and once  again no a t ta c h m e n ts  are p oss ib le .  O n ly  w h en  the  
word book is read and projec ted  to a noun  phrase can  a t ta c h m e n ts  take p lace. First th e  ad ject ive  phrase  
represent ing  red a t ta c h e s  as a m odifier  o f  the noun phrase  book. T h e n  th e  A P  rep resen t ing  big a t ta ch es  as 
a modifier o f  th e  no u n  phrase  ju s t  co n s tru c ted .  F in a lly  the  d eterm in er  phrase rep resen t ing  the a t ta c h e s  as 
specifier  o f  the  n ou n  p hrase  big red book.

T h u s  if we a ssu m e  th a t  a phrasa l n o d e  is not p rojected  until its head is parsed , we pred ict  th a t  a greater  
num ber o f  a t t a c h m e n ts  will take place  in parsing the  head th an  in parsing  any o th er  word in the  noun  
phrase. S ince  it is a s su m ed  th a t  an a t ta c h m e n t  is a sign if icant parser o p era t io n ,  it is p red ic ted  th a t  people  
sh ou ld  take m ore t im e  p arsing  the h ead  o f  the  noun phrase th an  th e y  take parsing the  o th er  words o f  the  
noun phrase . S in ce  there  is no p sy ch o l in gu is t ic  ev id en ce  th a t  p eop le  take m ore t im e  to  process  h eads  in 
head-final c o n s tr u c t io n s ,  I h y p o th e s iz e  th a t  phrasal nodes  are b e in g  p ro jec ted  before their h ea d s  are be in g  
enco u n tered .

3 H y p o th es iz in g  a P hrasal N o d e  Before Its H ead  A ppears

3.1 T he Parsing  M odel: T h e  C onstra ined  Parallel Parser

T h is  pap er  a s s u m e s  th e  C o n s tr a in e d  Paralle l Parser ( C P P )  as its m o d e l  o f  h u m a n  se n te n c e  p rocess in g  (see  
G ib son  (1 9 8 7 ) ,  G ib so n  & C lark  (1 9 8 7 )  and  Clark k  G ib so n  (1 9 8 8 ) ) .  T h e  C P P  m o d e l  is based  on  the  
princip les  o f  G o v e r n m e n t -B in d in g  T h e o r y  (C h o m sk y  (1981 ,  1986a));  crucially  C P P  has no se p ara te  m o d u le  
co n ta in in g  la n g u a g e -p a r t ic u la r  rules. F ollow ing  M arcus (1 9 8 0 ) ,  s tru ctu res  parsed under th e  C P P  m o d e l  are 
placed on  a s ta ck  and  th e  m o s t  recently  built  s tru ctu res  are p laced  in a d a ta  stru c tu re  called  the  buffer. 
T h e  parser bu ilds  s tru c tu re  by a t ta ch in g  n o d es  in the  buffer to  n o d es  on top  o f  th e  stack . U nlike  M arcus  
m od el,  the  C P P  m o d e l  a llow s m u lt ip le  rep resen ta t ion s  for the sa m e  in p u t  s tr in g  to  ex is t  in a buffer or s tack  
cell.  A l th o u g h  m u lt ip le  rep r esen ta t io n s  for the  sa m e  in p u t  s tr in g  are p e rm it ted ,  co n s tra in ts  on  p a ra lle lism  
frequently  ca u se  o n e  re p resen ta t io n  to  be preferred over the o th ers .  M o t iv a t io n  for th e  parallel h y p o th e s is  
com es from gard en  p a th  effects  an d  p ercep t io n  o f  a m b ig u ity  in a d d it io n  to  re la t ive  p r o cess in g  load effects.  
For in form a tio n  on  th e  particu lar  co n s tr a in ts  and their m o t iv a t io n s ,  see G ib so n  & Clark (1 9 8 7 ) ,  C lark & 
G ibson  (1 9 8 8 )  an d  th e  references c ited  in th ese  papers .
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3.1.1 L exical E ntries for C P P

A lexical en try  accessed  by C P P  c o n s is ts  of, am o n g  other  th in gs ,  a theta-gnd.  A th eta -gr id  is an unordered  
list o f  theta structures.  Each th e ta  stru ctu re  con s is ts  o f  a th em a t ic  role and assoc ia ted  su b ca teg o r iz a t io n  

form ation . O n e  th e ta  s tru ctu re  in a th eta -gr id  m ay be marked as indirect to  refer to its su b jec t .  For 
e x a m p le ,  the  word shout m igh t have the  fo llowing th e ta -g r id :4

( 3 )
((Subcat = PREP, Thematic-Role = GOAL)
(Subcat = COMP, Thematic-Role = PR0P0SITI0H))

W h e n  the  word shout  (or an inflected variant o f  shout)  is en co u n tered  in an in p u t  phrase, th e  th em atic
role agent  will be a ss ig n ed  to  its su b je c t ,  as long as this su b jec t  is a noun phrase. T h e  direct th e m a t ic  roles
goal  and proposition  will be ass igned  to p rep o s it ion a l  and com p lem en t iz er  phrases respect ive ly ,  as long as 
each  is presen t .  S ince  th e  order o f  th e t a  s tru ctu res  in a th eta -gr id  is not  relevant to  its  use in parsing, the  
above  th e ta -g r id  for shout  will be suffic ient to parse b o th  sen ten ces  in ( 4 ) .

( 4 )
a. T h e  m a n  sh o u t s  [pp  to the  w om an] [c p  th a t  Ernie sees the  rock]

b .  T h e  m a n  sh o u t s  [ c p  th a t  Ernie sees  the rock] [ p p  to the w om an]

3.1.2 X T heory  in C P P

T h e  C P P  m o d e l  a ssu m es  X T h e o r y  as present in C h o m sk y  (1 9 8 6 b ) .  X T h e o r y  has tw o  basic  principles:  
first, each  tree s t ru c tu r e  m u st  have a head; and  secon d , each  stru ctu re  m u st  h ave a m a x im a l  p ro jec t ion .  As  
a result  o f  th ese  pr in c ip les  and  o th er  princip les ,  (e.g.,  th e  0 -C r ite r io n ,  the E x te n d e d  P ro jec t io n  Princip le ,  
C ase T h e o r y ) ,  th e  p o s i t io n s  o f  a rg u m en ts ,  specifiers and- m odifiers  w ith  respect  to  th e  h ead  o f  a g iven  
s tru c tu r e  are l im ited .  In particu lar ,  a specifier  m a y  on ly  ap pear  as a s ister to  th e  on e-b ar  p ro jec t ion  below  
a m a x im a l  p ro jec t io n ,  and  th e  head , a long  w ith  its  arg u m en ts ,  m u st  ap p ear  be low  the o n e-b ar  project ion .  
T h e  orders o f  th e  specifier  and  a rg u m e n ts  relat ive  to  th e  head is la n gu a ge  d ep e n d e n t .  For e x a m p le ,  the  basic  
s tru c tu r e  o f  E n g lish  ca teg or ies  is sh o w n  b e lo w . Furtherm ore ,  b inary bran ch in g  is a ssu m e d  (K a y n e  (1 9 8 3 ) ) ,  
so th a t  m odif iers  are C h o m sk y -a d jo in e d  to  th e  tw o-bar or one-b ar  levels, g iv in g  one  p o ss ib le  s tru ctu re  for a 
p o s t -h e a d  m odif ier  b e low  on th e  right.

S p e c i f ie r ^ j^  S p e o f i e r ^ ^

X A rgum ent* ^ ^ ^ M o d i f l e r

X A rgum ent*

3.1.3 T h e  C P P  P arsing  A lg o r ith m

T h e  C P P  a lg o r i th m  is e s s e n t ia l ly  very s im p le .  A word is projec ted  v ia  n od e  p ro jec t ion  (see  S e c t io n  3.2)  
in to  th e  buffer. If a t t a c h m e n ts  are p o ss ib le  b e tw een  the  buffer an d  the  top  o f  th e  stack ,  th en  th e  results  
o f  th ese  a t t a c h m e n ts  are p laced  in to  the  buffer and  th e  sta ck  is p o p p ed .  A t ta c h m e n t s  are a t t e m p t e d  again  
unti l  no  longer p oss ib le .  T h is  entire  p roced ure  is rep ea te d  for each word in th e  in p u t  s tr in g .  T h e  formal  

C P P  a lg o r i th m  is g iven  below:

I. ( I n it ia l iz a t io n s )  S e t  th e  s ta ck  to  nil. S e t  th e  buffer to  nil.

4 In a more com plete theory, a syntactic  category would be determ ined from the them atic role (Chom sky (1986a)).
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2 (E n d in g  C o n d it io n )  If th e  en d  o f  the  input str ing  has been  reached and the buffer is em p ty  then  return  
the c o n ten ts  o f  the  stack  and stop .

3 If the  buffer is e m p ty  then  project  n od es  for each lexical entry  corresp on d in g  to  the  next word in the  
input s tr in g ,  and put th is  list o f  m a x im a l  project ions  into the buffer.

4 Make all poss ib le  a t ta c h m e n ts  b e tw een  the s tack  and the buffer, su b jec t  to the a t ta ch m en t  constra ints  
(see Clark & G ib son  (1 9 8 8 ) ) .  P u t  the  a tta ch ed  stru ctu res  in the buffer. If no a t ta c h m e n ts  are possible ,  
then put the  co n te n ts  o f  the  buffer on top o f  the stack.

5 . Go to  2.

3.2 The P roject ion  o f  N o d es  from the Lexicon

Node project ion  p roceed s  as fo llows. First a lex ica l i tem  is projected  to  a phrasal node: a Confirmed  n ode  
(C-node).  Follow ing  X T h eory ,  each  lexical entry  for a g iven  word is projec ted  m axim ally .  For ex a m p le ,  the  
word rock, w hich  has  b o th  a noun  and  a verb entry  w ould  be p rojected  to  at least two m a x im a l  projections:

(5)
a. [/vp [n 1 [jV rock ]]]

b. [vp [v  [v rock ]]]

N ex t ,  the  parser h y p o th e s iz e s  n o d es  w h ose  heads m ay appear  im m e d ia te ly  to the  right o f  the g iven  
C-node. T h e se  pred ic ted  s t ru ctu res  are called  hypothesized n od es  or H-nodes. A n  H -n od e  is defined to  be  
any node w hose  h ead  is to  .a e  right o f  all lex ical in p ut .  In order to d e te rm in e  w hich  H -n od e  s tru ctu res  to  
h yp oth es ize  from a g iven  C -n o d e ,  it is necessary  to  con su lt  the  argu m en t  p roperties  a sso c ia ted  w ith  the  C- 
n’ode together  w ith  th e  specifier  and  m odifier  properties  o f  the  n od a l ca teg o ry  and the word order properties
o f the language  in q u est ion .  It is a ssu m ed  th a t  th e  ab ility  o f  on e  ca teg ory  to act as specifier ,  modifier
or argum ent o f  a n o th er  ca teg o ry  is part o f  u n p a ram eter ized  U niversa l G ra m m ar . O n the  o th er  hand , the  
relative order o f  tw o  c a tego r ies  is a ssu m ed  to  be p aram eter ized  across different languages .  For ex a m p le ,  a 
determ iner phrase, if  it e x is t s  in a g iven  lan gu age ,  is universa lly  a llow able  as a specifier  o f  a n o un  phrase.  
W hether the  d e term in er  ap p ea rs  before or after its head noun  d ep en d s  on the  lan gu a ge-p art icu la r  values  
associated  w ith  the  p a ram eters  th a t  d e te rm in e  word order.

Three p ara m ete rs  are p rop o sed  to  a cc o u n t  for variat ion  in word order, on e  for each  o f  a rgu m en t ,  specifier  
and modifier p r o je c t io n s .5 For ea ch  la n g u a g e ,  each  o f  th ese  p aram eters  is a sso c ia ted  w ith  at least  one  value,  
where the p aram eter  va lu es  co m e from  th e  fo l low ing  set: {* h e a d * ,  * sa te l l i t e * } . 6 T h e  value head  ind icates  
that a c a teg o ry  C  cau ses  the  p ro jec t io n  to  th e  right o f  th o se  ca tegor ies  for w hich  C  m a y  be head. T h u s  
this value in d ica tes  h ea d - in it ia l  word order. T h e  value ^sate ll i te*  in d ica tes  th a t  a ca teg o r y  C  cau ses  the  
projection to  the  right o f  th o se  ca teg o r ie s  for w hich  C  m a y  be a sa te l l i te  category . H ence th is  va lue  in d icates
head-final word order. H -n od e  p ro jec t io n  from  a ca te g o ry  C  is defined  in ( 6 ) .

(6) u / 
(A rgu m en t ,  Specif ier ,  M odif ier )  H -N o d e  P ro jec t io n  from  ca tegory  C: If the  value a sso c ia te d  w ith  th e  (arg u ­
ment, specifier , m od if ier )  p ro jec t io n  p ara m eter  is *h ead * , th en  cau se  the  p roject ion  o f  (a rg u m en t ,  specifier , 
modifier) sa te l l i te s ,  an d  a t ta c h  t h e m  to  the  right b e low  the  ap prop ria te  p roject ion  o f  C .  If th e  value a ssoc i­
ated w ith  th e  (a r g u m e n t ,  spec if ier ,  m od if ier )  p ro jec t io n  p aram eter  is ^sate ll i te* , th e n  ca u se  the  p r o jec t ion  
of  (a rgum en t ,  specifier ,  m od if ier )  h ead s ,  and a t ta ch  th em  to  the  right a b ov e  the app ro pr ia te  p ro jec t io n  o f  

C.

In E nglish  th e  a rg u m en t  p r o jec t io n  p a ram eter  is se t  to  *head*, so  th a t  arg u m en ts  ap p ear  after th e  head.  
Hence, if a lex ica l en try  has req u irem en ts  th a t  m u s t  be  filled, th en  s tru ctu res  co rresp o n d in g  to  su b c a teg o r ized

5Furthermore, it is assum ed that the value of the modifier projection parameter defaults to the value of the argument 
projection parameter.

61 will use the term sate l l i t e  to indicate non-head constituents: arguments, specifiers and modifiers.
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catego r ies  are h y p o th es ized  and a t tach ed .  For exa m p le ,  the verb see su bcatego r izes  for a noun phrase, so an 
e m p ty  noun  phrase n ode is h y p o th es ized  and a ttach ed  as a rgu m en t  o f  the verb:

(7 )
[vp  [ v  [v see  ] [iVp e ]]]

T h e  specifier  p ro jec t io n  p a ram eter ,  on the  oth er  hand , is set to  -the value ^satellite* in English  so that  
specifiers appear  before their heads. If the  ca teg ory  a sso c ia ted  w ith  a C -n o d e  is an allowable specifier for 
oth er  ca tegor ies ,  then  an H -n od e  project ion  o f  each o f  these  categor ies  is built and the C -n od e  specifier is 
a tta ch ed  to each . For ex a m p le ,  s ince  a d eterm in er  m ay  specify  a noun phrase, an H -node noun phrase is 
h y p o th es ized  w h en  parsing  a d e term in er  in English:

( 8 )
[.VP [D e t P  [ D e V [oet the ]]] [at/ [/V t  ]]]

T h u s  the  n od e  p ro jec t io n  a lg o r ith m  provides a new d erivat ion  o f  langu ag e-p art icu lar  word order. In 
p rev iou s  pr in c ip le -b ased  sy s te m s ,  word order is derived from p aram eter ized  d irection  o f  a t ta c h m e n t  (see  
G ib so n  & Clark (1 9 8 7 ) ,  N y b erg  (19 8 7 ) ,  VVehrli (1 9 8 8 ) ) .  A n  a t ta c h m e n t  takes p lace from  buffer to  stack  
in h ea d -in it ia l  co n s tr u c t io n s  and  from stack  to  buffer in head-f ina l co n stru ct io n s .  S ince  a t ta c h m e n t  is now  
a u n iform  o p e r a t io n  as defined in ( 1 7 ) ,  th is  p a ram eter iza t ion  is no longer necessary. Instead ,  in head-  
in itia l  co n s tr u c t io n s ,  n o d es  now  project  to  the  n odes  th a t  th ey  m ay im m e d ia te ly  d o m in a te .  In head-f inal  
co n str u c t io n s ,  n o d e s  now  project  to  th ose  n o d es  th a t  th ey  m ay  be im m ed ia te ly  d o m in a te d  by.

T h e  p ro jec t io n  p a ram eters  as defined in ( 6 ) accou n t  for m an y  facts  a b o u t  word order across lan gu a ges .  
However, m o s t ,  if  n o t  all, la n g u a g e s  have cases  th a t  do  n ot  fit th is  clean p icture . For e x a m p le ,  while m odifiers  
in E nglish  are p re d o m in a n t ly  p o s t -h e a d ,  a d ject ives  appear  before the  h ead . A  single  g lob a l value for m odifier  
p ro jec t io n  p red ic ts  th a t  th is  s i tu a t io n  is im p oss ib le .  Hence we m u st  a ssu m e th a t  the  values g iven  for the  
p rojec t ion  p a ra m e ter s  are o n ly  d e fau lt  values. In order to form alize this idea, I a ssu m e the  e x is te n c e  o f  a 
hierarchy o f  ca te g o r ie s  and  words a s .s h o w n  below:

C a te g o ry

N o u n  Verb A d p o s it io n

Ernie rock ... see  e a t  ... to  on

It is a s su m ed  th a t  th e  va lue  for each  o f  the  p roject ion  p aram eters  is the  d efau lt  value for th a t  p ro jec t io n  
ty p e  w ith  resp ec t  to  a p articu lar  la n gu a ge .  However, a particu lar  ca teg o r y  or word m ay  have  a value  
a s s o c ia te d  w ith  it for a  p ro jec t io n  p a ra m e ter  in a d d it io n  to  the  defau lt  one.  If th is  is the  case, th en  on ly  
the  m o s t  sp ec if ic  va lue  is used .  For ex a m p le ,  in E n glish ,  th e  ca te g o ry  a d ject ive  is a sso c ia te d  w ith  the  
value ^ sa te l l i te*  w ith  r e sp ec t  to  m od if ier  projec t io n .  T h u s  E nglish  adjec t ives  ap p ear  before the  h ea d . T h e  
a d jec t iv e  tall  w ill therefore  ca u se  th e  p ro jec t io n  o f  b o th  a C -n o d e  ad jec t ive  phrase  and  an H -n od e  noun  
phrase:

( 9 )
a .  [AP tall ]

b- [jvp Lv' [a p  tall ] Dv' (/v e ]]]]

If recursive  a p p l ic a t io n  o f  p ro jec t io n  to  H -n o d es  were a llowed, th en  it w o u ld  b e  p oss ib le ,  in principle ,  
to  p ro jec t  an in f in ite  n u m b er  o f  n o d es  from  a s in g le  lexical entry. In E ng lish ,  for ex a m p le ,  a g en it iv e  noun  
p h rase  can  sp e c i fy  a n o th er  n ou n  phrase .  T h is  n o u n  phrase  m a y  a lso  be a g en it iv e  noun  phrase , and  so  on.  
If H -n o d es  cou ld  p r o jec t  to  further  H -n o d es ,  th en  it w ould  be n ecessary  to  h y p o th e s iz e  an infin ite  n u m ber  o f  
g e n it iv e  N P  H -n od es  for ev ery  g e n it iv e  N P  th a t  is read. A s a  result o f  th is  difficulty, the  H -n o d e  P ro jec t io n  
C o n s tr a in t  is p roposed:
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T h e  H -n od e  P ro jec t io n  C on stra in t:  O n ly  a C -n od e  m ay cause  the p roject ion  o f  an H-node.

As a result  o f  the  H -node  P ro jec t ion  C o n stra in t .  H -n od es  m ay not invoke H -node project ion .  For exam p le ,  
if  a specifier  cau ses  th e  p roject ion  o f  its head, the resulting  head ca n n o t  then  cause  the  project ion  o f  those  
ca tegor ies  th a t  it m ay specify . A s a result, the num ber o f  nodes  th a t  m ay  be projected  from a s ingle  lexical  
item  is severe ly  restr icted .

3.3 N o d e  A ttach m en t

G iven  the above  n ode pro jec t ion  a lgor ith m , it is n ecessary  to define an a lg or ith m  for a t ta c h m e n t  o f  nodes.  
Since s t ru ctu res  are p red ic ted  by the  n od e  p roject ion  a lgor ithm , the a t ta ch m en t  a lg o r ith m  m u st  d ic ta te  
how su b se q u e n t  s tru ctu res  m a tch  th ese  pred ict ions .  C onsider  th e  fo l low ing  two ex a m p les  from  English: the 
first is an e x a m p le  o f  specifier  a t ta ch m en t;  the secon d  is an e x a m p le  o f  argu m en t  a t ta c h m e n t .  In English,  
specifiers precede  the  head and a rg u m en ts  follow the head. It is desirable for the  a t ta c h m e n t  a lg or ith m  to 
h andle  b o th  k inds o f  a t ta c h m e n ts  w ith o u t  word order particu lar  s t ip u la t ion s .

F irst ,  s u p p o se  th a t  the  word the is on the s tack  as b o th  a d e term in er  phrase and an H -node noun phrase.  
F urtherm ore, su p p o s e  th a t  the  word woman  is p rojected  into the buffer as b o th  a nou n  phrase and an H -node  
clausa l phrase:'

( 11 )

Stack: [DetP [Det1 [Det th e  ]]]
[ N P  [D e t P  [ D e t 1 [Det  th e  ]]] for# for t  ]]]

Buffer: forp for' [ n  w o m a n  ]]]
[* P e « . . . .  [ n p  [n> [ n  w o m a n  ]]] for ' , . . . .  foreu . . .  e ]]]

T h e  a t t a c h m e n t  a lg o r i th m  sh o u ld  allow tw o a t ta c h m e n ts  at this point: the  H -nod e  N P  on  the  s tack  
u n it in g  w ith  each  N P  C -n o d e  in the  buffer. It m ight also s eem  reasonable  to allow the  bare d e term iner  
phrase to a t ta c h  d irect ly  as specifier  o f  each  noun  phrase. How ever, this kind o f  a t ta c h m e n t  is undesirab le  
for tw o reasons. F irst  o f  all , it m akes the  a t ta c h m e n t  op er a t io n  a d is ju nct ive  o p erat ion :  an a t ta c h m e n t  
would  involve  either  m a tch in g  an H -n od e  or m ee t in g  th e  sa te l l i te  requirem ents  o f  a category .  S eco n d  of  
all, it m ak es  H -n o d e  p r o jec t ion  u nn ecessa ry  in m o st  s i tu a t io n s  and therefore s o m e w h a t  s t ip u la t iv e .  T h a t  
is, a l low in g  a d is ju n c t iv e  a t t a c h m e n t  op e ra t io n  would  p erm it  m a n y  d er ivat ion s  th a t  never use an H -n od e ,  
so th a t  th e  need  for H -n od es  w ould  be restr icted  to  head-f ina l c o n s tru c t io n s  w ith  p re -h ead  sa te l l i te s  (see  
S ection  2).  It is therefore  des irab le  for all a t ta c h m e n ts  to  involve m a tc h in g  an H -n od e .

T w o  s tru c tu res  sh o u ld  be return ed  after a t ta c h m e n ts  in ( 1 1 ): a C -n o d e  noun  phrase  and  an H -n od e  
clausa l phrase:

( 12)
a .  [ n p  [DetP th e  ] for» for w o m a n  ]]]

b - [a -P c u .. .  [ n p  [ D e t P  th e  ] for' [ n  w o m a n  ]]] [ * ; , . . . .  [ * „ . . . . .  e 111

N ow  consid er  an E n g lish  arg u m en t  a t ta c h m e n t .  S u p p o se  th a t  a p rep os it ion a l  p hrase  rep resen t in g  the
word beside is on  th e  s ta ck  and  th e  noun  Fm nk  is rep resented  in the  buffer as a  noun  phrase  and  a  c lausa l  
phrase:

(13)
Stack: [pp  [p> [p b es id e  ] forp e ]]]
Buffer: forp for* fo/ Frank ]]]

[a -P c , . . . .  U p  [ n 1 [jv Frank ]]] [ * ' u . #. [ x cl. m. .  « ]]]

(10)

7 A noun phrase is projected to an H-node clausal (or predicate) phrase since nouns may be the subjects of predicates.
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Since  the  p rep os it io n  beside su b ca teg o r ize s  for a nou n  phrase, there  is an H -node N P  a ttach ed  as its o b jec t .  
T h e  a t ta c h m e n t  a lg o r i th m  sh ou ld  allow a s ing le  a t ta c h m e n t  at this point: the  noun  phrase  representing Frank 
u nit ing  w ith  the H -n od e  N P  o b jec t  o f  beside:

(14)
[pp [p‘ [p  b es id e  ] [ s p  Frank ]]]

As sh ou ld  be clear from th e  two e x a m p les ,  the p rocess  o f  a t ta c h m e n t  involves com parin g  a previously  
pred icted  c a teg o ry  w ith  a current category .  If the tw o categor ies  are compatible , th en  a t ta c h m e n t  m a y  be  

viable.

3.3.1 N o d e  C om p atib ility

Compatibility  is defined  in term s o f  unification , w hich  is defined term s o f  subsum ption.8 A stru ctu re  X  is 
said  to subsum e  a s tr u c tu re  V' if  X  is m ore general th a n  Y. T h a t  X co n ta in s  less specific  in form ation  them 
Y. So, for e x a m p le ,  a s tru ctu re  th a t  is spec if ied  as clausal  (e .g .  t lea d  o f  a p red ica te ) ,  but is not  specif ied  

for a particu lar  c a teg o r y  s u b s u m e s  a s tru ctu re  h av in g  the  categorv erb, s ince  verbs are p red icat ive  and thus  
c lau sa l ca tego r ies .  H en ce  stru ctu re  (15a) su b s u m e s  s tru ctu re  (15b):

(15)
a - [ * P CU . . .  e ]]]
b .  [vp  [v> [v  w alk  ]]]

T h e  unification  o p e r a t io n  is the  least upper b ou n d  op era to r  in the su b s u m p t io n  ordering on  in form ation  
in a s tru ctu re .  S in ce  s tru c tu r e  (15a) su b s u m e s  s tru ctu re  (15b), the  result  o f  u n ify ing  stru c tu re  (15a) w ith  
s tru c tu re  (15b) is s t r u c tu r e  (15b). T w o  stru ctu res  are compatible  if  the  un if ication  o f  th e  tw o  stru ctu res  is 
n on -n il .  T h e  in fo r m a t io n  on  a s tru c tu re  th a t  is relevant to a t ta c h m e n t  co n s is ts  o f  th e  n o d e ’s bar level (e.g., 
zero level, in te r m e d ia te  or m a x im a l) ,  and  the  n o d e ’s lex ica l features ,  (e.g.  ca tegory ,  case, etc).

3.3.2 A tta ch m en t

Roughly speaking, the attachment operation should locate an H-node in a structure on the stack along with 
a compatible node in a structure in the buffer. If both of these structures have parent tree structures, then 
these parent tree structures must also be compatible. In order to keep the process of attachment simple, it 
is proposed that each attachment have at most one compatibility This constraint is given in (16):9

(16)
Attachment Constraint: At most one nontrivial lexical feature unification is permitted per attachment.

A nontrivial unification is one that involves two nontrivial structures; a trivial unification is one that 
involves at least one trivial structure. For example, if the parent node of the buffer site is as of yet undefined, 
then the parent node of the stack site trivially unifies with this parent node. Only when both parents are 
defined is there a nontrivial unification.

Consider the effect of the following three requirements: first, the lexical features of the stack and buffer 
attachment sites must be compatible; second, the tree structures above the buffer and stack attachment sites 
must be compatible; and third, at most one lexical feature unification is permissible per derivation, (16).  
Since any attachment must involve at least one nontrivial lexical feature unification, that of the stack and 
buffer sites, any additional nontrivial unifications will violate the attachment constraint in (16). If both

8 See Sheiber (1986) for background on the possible uses of unification in particular grammar formalisms.

9 In fact, this constraint follows from the two assum ptions: first, a com patibility check takes a certain am ount of processing  
time; and second, attachm ents that take less tim e are preferred over those that take more time. See Gibson (forthcom ing) for 
further discussion.
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the buffer and stack attachment sites have parent tree structures, then the lexical features of these parents 
will need to be unified. Since the child structures will also need to be unified, (16) will be violated. Thus 
it follows that, in an attachment, either the buffer site or the stack site has no parent tree structure . 10

Since the order of the words in the input must be maintained in a final parse, only those nodes in a buffer 
structure that dominate all lexical items in that structure are permissible as attachment sites. For example, 
suppose that the buffer contained a representation for the noun phrase women in college. Furthermore, 
suppose that there is an H-node NP on the stack representing the word the. Although it would be suitable 
for the buffer structure representing the entire noun phrase women in college to match the stack H-node, it 
would not be suitable for the C-node NP representing college to match this H-node. This attachment would 
result in a structure that moved the lexical input women in to the left of the lexical input dominated by 
the matched H-node, producing a parse for the input women m the college. Since the word order of the
input string must be maintained, sites for buffer attachment must dominate all lexical items in the buffer
structure.

Once suitable maximal projections in each of the buffer and stack structures have been identified for 
matching, it is still necessary to check that their internal structures are compatible. For example, suppose 
that an identified buffer site is a C-node whose head allows exactly one specifier and a specifier is already 
attached. If the stack H-node site also contains a specifier, then the attachment should be blocked. On the 
other hand, if the stack H-node site does not contain a specifier, and other requirements are satisfied, then 
the attachment should be allowed.

Testing for internal structure compatibility is quite simple if all tree structures are assumed to be binary 
branching ones. The only possible attachment sites inside the stack H-node are those nodes that  dominate 
no other nodes. As long as there is some buffer node that both dominates all the buffer input and matches
the H-node attachment site for bar level, then the attachment is possible.

Attachment is formally defined in (17):

(17)
A structure W  in the buffer can attach to a structure X  on the stack iff all of (a), (b), (c ), (d) and (a) 
are true:
a. Structure W  contains a maximal projection node, Y ,  such that Y  dominates all lexical material in W \

b. Structure X  contains a maximal projection H-node structure, Z;
c. The tree structure above Y  is compatible with the tree structure above Z, subject to the attachment 

constraint in (16);
d. The lexical features of structure Y  are compatible with the lexical features of structure Z;
e. Structure Y  is bar-level compatible with structure Z.

Bar-level compatibility is defined in (18):

(18)
A structure U in the buffer is bar-level compatible with a structure V  on the stack iff all of (a), (b) and (c)
are true:
a. Structure U contains a node, S, such that S  dominates all lexical material in U ;
b. Structure V  contains an H-node structure, T, that dominates no lexical material;
c. The bar level of 5  is compatible with the bar level of T .

If attachment is viable, then W  contains a structure Y  that is bar-level compatible with a structure Z 
that is part of X .  Since Y  and Z are bar-level compatible, there are structures 5  and T  inside Y  and Z

10 It might seem that som e possible attachm ents are being thrown away at this point. T hat is, in principle, there might be 
a structure that can only be formed by attaching a buffer site to a stack site where both sites have parent tree structures. 
This attachm ent would be blocked by (1 6 ). However, it turns out that any attachm ent that could have been formed by an 
attachment involving more than one lexical feature unification can always be arrived at by a different attachm ent involving a 
single lexical feature unification. For the proof, see Gibson (forthcom ing).
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When the conditions for attachment are satisfied, structures W  and X  are united in the following way. 
First. \ V  and X  are copied to nodes W '  arid X '  respectively. Inside X '  there is a node, Z ' , that is a copy of 
Z. The lexical features of Z ' axe set to the unification of the lexical features of structures Y  and Z .  Next, 
structure V  in Z '  (corresponding to structure T  in Z )  is replaced by S ' , the copy of structure 5  inside W . 
The bar level of V  is set to the unification of the bar levels of structures 5  and T .

Finally, the tree structures above Y  and Z  are unified and this tree structure is attached above Z '  That 
is, if Z  has some parent tree structure and Y  does not, then the copy of this structure inside X '  is attached 
above Z ' . Similarly, if Y  has some parent tree structure and Z  does not, then the copy of this structure 
inside \ V  is attached above Z ' . If neither node has any parent tree structure (i.e., W  -  Y ,  X  =  Z), then 
the unification is trivial and no attachment is made. Since V and Z cannot both have parent tree structures 
(see (16) and the discussion following it), unifying the parent tree structures is a very simple process.

respectively, that satisfy the conditions o f  bar-level compatibility, ( 1 8 ).

3.3.3. E xam p le  A tta ch m en ts

As an illustration of how attachments take place, consider once again the noun phrase the big red book. First 
the determiner the is read and is projected to a C-node determiner phrase. Since a determiner is allowable 
as the specifier of a noun phrase and specifiers occur before the head in English, an H-node NP is also built. 
These two structures are depicted in (19):

(19)
a. [D e t P  th e  ]

b. [ivp [D e t P  the ] Lv' [/v e ]]]

Since there is nothing on the stack, these structures are shifted to the top of the stack. The word big 
projects to both a C-node AP and an H-node NP since an adjective is allowable as a pre-head modifier in 
English. These two structures are placed in the buffer (depicted in (20)).

( 2 0 )
a. [a p  b ig  ]

b. [ n p  [n ' [a p  b ig  ] [n 1 [/v « ]]]]

An attachment between nodes (19b) and (20b) is now attempted. Note that: a) node (20b) is a maximal 
projection dominating all lexical material in its buffer structure; b) node (19b) is a maximal projection H- 
node on the stack; c) the tree structures above these two nodes are compatible (both are undefined); and 
d) the categories of the two nodes are compatible. It remains to check for bar-level compatibility of the two 
structures. Since: a) the N'2 in structure (20b) dominates all the buffer input; b) the H-node in structure 
(19b) dominates no C-nodes; and c) N'x and N2 are compatible in bar level, the structures in (19b) and 
(20b) can be attached. The two structures are therefore attached by uniting N#x and N'2. The resultant 
structure is given in (2 1):

(21)
[np [D e t P  the ] [n' [a p  big ] [n' [̂ v « ]]]]

Structure (21),  the only possible attachment between the buffer and the stack, is placed back in the
buffer, and the stack is popped. Since there is now nothing left on the stack, no further attachments are 
possible at this time. Structure (21) is thus shifted to the stack. The word red now enters the buffer as a 
C-node adjective phrase and an H-node noun phrase:

( 22 )
a. [AP red ]
b. [ n p  [n ;  [a p  red  ] [n ' [ n  « ]]]]
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An attachment between nodes ( 2 1 ) and ( 2 2 b) is now attempted. Requirements (1 7 a )-( l7 d )  are satisfied 
and the requirement for bar-level compatibility is satisfied by the node labeled N3 in ( 2 1 ) together with N' 
in ( 2 2 b). Hence the structures are united, giving (23): * 4

(23)
[.vp [ D e t P  the ] [jv» [ A P  big ] [v' [ a p  red ] [,V; [,v e  ]]]]]

Since (23) is the only possible attachment between the buffer and the stack, it is placed in the buffer 
and the stack is popped. Since the stack is now empty, structure (23) shifts to the stack. The noun b o o k  

now enters the buffer as both a C-node noun phrase and an H-node clausal phrase:

(24)
a. [.vp [/v» [at book ]]]

b - [ x P c u . . .  [n p  Dv' [n  b o ° k  ]]] k i . . , .  e ]]]

Two attachments are possible at this point. The NP structure in (23) unites with each NP C-node on 
the stack, resulting in the structures in (25):

(25)
a - [vp [D e t P  the ] [v' [a p  big ] [v' [a p  red ] [^/ [ ^ >  book ]] [pp e] [ C p  e  ]]]]] 
b - [xp«i..„ [n p  the big red book ] e  ]]]

Note that only one attachment per structure takes place in the final parse step. Crucially, no more 
attachments per structure take place when parsing the head of the noun phrase than when parsing the pre­
head constituents in the noun phrase . 11 Thus, in contrast with the situation when nodes are only projected 
when their heads are encountered, the node projection and attachment algorithms described here predict 
that there should not be any slowdown when parsing the head of a head-final construction.

The Dutch data  described in Section 2.1 are handled in a similar manner.

4 Conclusions

This paper has described a) a principle-based algorithm for the projection of phrasal nodes before their 
heads are parsed, and b) an algorithm for attaching the predicted nodes. It is worthwhile to compare the 
new projection algorithm with algorithms that do not project H-nodes. The projection algorithm provided 
here involves more work and hence, on the surface, may seem somewhat stipulative compared to one that 
does not project H-nodes. However, it turns out that although projecting -to H-nodes is more complicated 
than not doing so, attachment when H-nodes are not present is more complicated than attachment when 
they are present. That is, if a projection algorithm causes the projection of H-nodes, it will have a more 
complicated attachment algorithm. For example, if H-nodes are projected when parsing the noun phrase 
t h e  w o m a n ,  the determiner the is immediately projected to an H-node noun phrase, which leads to a simple 
attachment. If H-nodes are not projected, then projection is easier, but attachment is that much more 
complicated. When attaching, it will be necessary to check if a determiner is an allowable specifier of a noun 
phrase: the same operation that is performed when projecting to H-nodes. Thus although the complexity of 
particular components changes , the complexity of the entire parsing algorithm does not change, whether or 
not H-nodes are projected. Since the proposed projection and attachment algorithms make better empirical 
predictions than ones that do not predict structure, the new algorithms are preferred.

Note that it is the number of attachm ents per structure that is crucial here, and not the number of total attachm ents, 
since attachm ents made upon two independent structures may be performed in parallel, whereas attachm ents made on the 
same structure m ust be performed serially. For exam ple, since structures (24a) wid (24b) are independent, attachm ents may 

e made to each of these in parallel. But if an attachm ent, B  relies on the result of another attachm ent A,  then attachm ent A 
must be performed first.
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Abstract
T h is paper addresses the issue of how to organize linguistic principles 

for efficient processing. B ased  on the general ch aracterization  of princi­
ples in term s o f purely com putation al properties, the effects of principle- 
ordering on parser perform ance are investigated . A novel parser that ex­
ploits the possible variation in principle-ordering to dynam ically  re-order 
principles is described. H euristics for m inim izing the am ount of unneces­
sary  work perform ed during the parsing process are also d iscussed.

1 In troduction
Recently, there has been some interest in the implementation of grammatical 
theories based on the principles and parameters approach (Correa [3], Dorr [4], 
Johnson [5], Kolb & Thiersch [6], and Stabler [10]). In this framework, a fixed set 
of universal principles parameterized according to particular languages interact 
deductively to account for diverse linguistic phenomena. Much of the work to 
date has focused on the not inconsiderable task of formalizing such theories. The 
primary goal of this paper is to explore the computationally-relevant properties 
of this framework. In particular, we address the hitherto largely unexplored issue 
of how to organize linguistic principles for efficient processing. More specifically, 
this paper examines if, and how, a parser can re-order principles to avoid doing 
unnecessary work. Many important questions exist: for example, (1) W hat 
effect, if any, does principle-ordering have on the amount of work needed to 
parse a given sentence? (2) If the effect of principle-ordering is significant, then 
are some orderings much better than others? (3) If so, is it possible to predict 
(and explain) which ones these are?

By characterizing principles in terms of the purely computational notions of 
“filters” and “generators” , we show how how principle-ordering can be utilized 
to minimize the amount of work performed in the course of parsing. Basically, 
some principles, like Move-a (a principle relating ‘gaps’ and ‘fillers’) and Free 
Indexing (a principle relating referential items) are “generators” in the sense 
that they build more hypothesized output structures than their inputs. Other 
principles, like the 0-Criterion which places restrictions on the assignment of 
thematic relations, the Case Filter which requires certain noun phrases to be

! The work of the first author is supported by an IBM Graduate Fellowship. R .C. Berwick  
is supported by NSF Grant DCR-85552543 under a Presidential Young Investigator's Award.
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marked with abstract Case, and Binding Theory constraints, act as filters and 
weed-out ill-formed structures.

A novel, logic-based parser, the Principle-Ordering Parser ( p o - p a r s e r ), 
was built to investigate and demonstrate the effects of principle-ordering. The 
p o - p a r s e r  was deliberately constructed in a highly-modular fashion to allow 
for maximum flexibility in exploring alternative orderings of principles. For in­
stance, each principle is represented separately as an atomic parser operation. 
A structure is deemed to be well-formed only if it passes all parser operations. 
The scheduling of parser operations is controlled by a dynamic ordering mech­
anism that attem pts to eliminate unnecessary work by eliminating ill-formed 
structures as quickly as possible. (For comparison purposes, the p o - p a r s e r  
also allows the user to turn off the dynamic ordering mechanism and to parse 
with a user-specified (fixed) sequence of operations.)

Although we are primarily interested in exploiting the (abstract) computa­
tional properties of principles to build more efficient parsers, the PO-PARSER is 
also designed to be capable of handling a reasonably wide variety of linguistic 
phenomena. The system faithfully implements most of the principles contained 
in Lasnik k. Uriagereka’s [7] textbook. That is, the parser makes the same gram- 
maticality judgements and reports the same violations for ill-formed structures 
as the reference text. Some additional theory is also drawn from Chomsky [1] 
and [2]. Parser operations implement principles from Theta Theory, Case The­
ory, Binding Theory, Subjacency, the Empty Category Principle, movement at 
the level of Logical Form as well in overt syntax, and some Control Theory. This 
enables it to handle diverse phenomena including parasitic gaps constructions, 
strong crossover violations, passive, raising, and super-raising examples.

2 T h e  Princip le Ordering P rob lem
This section addresses the issue of how to organize linguistic principles in the 
PO -PAR SER framework for efficient processing. iMore precisely, we discuss the 
problem of how to order the application of principles to minimize the amount 
o f ‘work’ that the parser has to perform. We will explain why certain orderings 
may be better in this sense than others. We will also describe heuristics that 
the PO -PA R SER  employs in order to optimize the the ordering of its operations.

But first, is there a significant performance difference between various order­
ings? Alternatively, how important an issue is the principle ordering problem 
in parsing? An informal experiment was conducted using the p o - p a r s e r  de­
scribed in the previous section to provide some indication on the magnitude of 
the problem. Although we were unable to examine all the possible orderings, it 
turns out that order-of-magnitude variations in parsing times could be achieved 
merely by picking a few sample orderings.2

2T he PO-PARSER has about twelve to sixteen parser operations. G iven a set of one dozen  
operations, there are about 500 m illion different ways to order these operations. Fortunately, 
only about h*Jf a m illion of these are actually valid, due to logical dependencies betw een the 
various operations. However, this is still far too m any to test exhaustively. Instead, only a few 
well-chosen orderings were tested  on a number of sentences from the reference. T he procedure

-76- Intemational Parsing Workshop '89



2 . 1  E x p la in in g  th e  V a r ia tio n  in P r in c ip le  O rd er in g

The variation in parsing times for various principle orderings that we observed 
can be explained by assuming that overgeneration is the main problem, or bot­
tleneck, for parsers such as the PO-PARSER. That is, in the course of parsing 
a single sentence, a parser will hypothesize many different structures. Most of 
these structures, the ill-formed ones in particular, will be accounted for by one 
or more linguistic filters. A sentence will be deemed acceptable if there exists 
one or more structures that satisfy every applicable filter. Note that even when 
parsing grammatical sentences, overgeneration will produce ill-formed structures 
that need to be ruled out. Given that our goal is to minimize the amount of 
work performed during the parsing process, we would expect a parse using an 
ordering that requires the parser to perform extra work compared with another 
ordering to be slower.

Overgeneration implies that we should order the linguistic filters to elimi­
nate ill-formed structures as quickly as possible. For these structures, applying 
any parser operation other them one that rules it out may be considered as 
doing extra, or unnecessary, work (modulo any logical dependencies between 
principles).3 However, in the case of a well-formed structure, principle ordering 
cannot improve parser performance. By definition, a well-formed structure is 
one that passes all relevant parser operations: Unlike the case of an ill-formed 
structure, applying one operation cannot possibly preclude having to apply an­
other.

2 .2  O p tim a l O rd er in g s

Since some orderings perform better than others, a natural question to ask is: 
Does there exist a ‘globally’ optimal ordering? The existence of such an ordering 
would have important implications for the design of the control structure of any 
principle-based parser. The PO-PARSER has a novel ‘dynamic’ control structure 
in the sense that it tries to determine an ordering-efficient strategy for every 
structure generated. If such a globally optimal ordering could be found, then 
we can do away with the run-time overhead and parser machinery associated 
with calculating individual orderings. That is, we can build an ordering-efficient 
parser simply by ‘hardwiring’ the optimal ordering into its control structure. 
Unfortunately, no such ordering can exist.

The impossibility of the globally optimal ordering follows directly from the 
“eliminate unnecessary work” ethic. Computationally speaking, an optimal 
ordering is one that rules out ill-formed structures at the earliest possible op­
portunity. A globally optimal ordering would be one that always ruled out every

involved choosing a default sequence of operation* and ‘scram bling’ the sequence by m oving  
operations as far as possible from their original positions (m odulo any logical dependencies 
betw een operations).

3In the PO-PARSER for exam ple, the Case Filter operation which require* that all overt 
noun phrases have abstract Case assigned, is dependent on both  the inherent and structural 
Case assignm ent operations. T hat is, in any valid ordering the filter m ust be preceded by 
both operations.
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possible ill-formed structure without doing any unnecessary work. Consider the 
following three structures (taken from Lasnik's book):

(1) a. *Johni is crucial [ c p [ i p  <1 to see this ]]
b. *[,vpJohni’s mother ][vp likes himselfi]
c. *Johni seems that hei likes t\

Example (1) violates the Empty Category Principle (ECP). Hence the op­
timal ordering must invoke the ECP operation before any other operation that 
it is not dependent on. On the other hand, example (lb) violates a Binding 
Theory principle, ‘Condition A’. Hence, the optimal ordering must also invoke 
Condition A as early as possible. In particular, given that the two operations 
are independent, the. optimal ordering must order Condition A before the ECP 
and vice-versa. Similarly, example (lc) demands that the kCase Condition on 
Traces’ operation must precede the other two operations. Hence a globally 
optimal ordering is impossible.

2 .3  H e u r is t ic s  for P r in c ip le  O rd er in g

The principle-ordering problem can be viewed as a limited instance of the well- 
known conjunct ordering problem (Smith & Genesereth [9]). Given a set of 
conjuncts, we are interested in finding all solutions that satisfy all the conjuncts 
simultaneously. The parsing problem is then to find well-formed structures 
(i.e. solutions) that satisfy all the parser operations (i.e. conjuncts) simultane­
ously. Moreover, we are particularly interested in minimizing the cost of finding 
these structures by re-ordering the set of parser operations.

This section outlines some of the heuristics used by the PO-PARSER to deter­
mine the minimum co6t ordering for a given structure. The p o - p a r s e r  contains 
a dynamic ordering mechanism that attempts to compute a minimum cost or­
dering for every phrase -ucture generated during the parsing process.4 The 
mechanism can be subdi led into two distinct phases. First, we will describe 
how the dynamic ordering mechanism decides which principle is the most likely 
candidate for eliminating a given structure. Then, we will explain how it makes 
use of this information to re-order parser operation sequences to minimize the 
total work performed by the parser.

2.3.1 Predicting Failing Filters
Given any structure, the dynamic ordering mechanism attempts to satisfy the 
“eliminate unnececessary work” ethic by predicting a “failing” filter for that

4 In their paper, Sm ith Sc G enesereth drew a distinction between “static” and “dynamic" 
ordering strategies. In static  strategies, the conjuncts are first ordered, and then solved in 
the order presented. By contrast, in dynam ic strategies the chosen ordering may be revised  
betw een solving individual conjuncts. Currently, the PO-PARSER em ploys a dynam ic strategy. 
T he ordering m echanism  com putes an ordering baaed on certain features of each structure  
to be processed. T he ordering m ay be revised after certain operations (e.g. m ovem ent) that 
m odify the structure in question.
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structure. More precisely, it will try to predict the principle that a given struc­
ture violates on the basis of the simple structure cues. Since the ordering mech­
anism cannot know whether a structure is well-formed or not, it assumes that 
all structures are ill-formed and attempts to predict a failing filter for every 
structure. In order to minimize the amount of work involved, the types of 
cues that the dynamic ordering mechanism can test for are deliberately limited. 
Only inexpensive tests such as whether a category contains certain features 
(e.g. ianaphoric, iinfinitival, or whether it is a trace or a non-argument) may 
be used. Any cues that may require significant computation, such as searching 
for an antecedent, are considered to be too expensive. Each structure cue is then 
associated with a list of possible failing filters. (Some examples of the mapping 
between cues and filters are shown below.) The system then chooses one of the 
possible failing filters based on this mapping.5

(2 )

S tru c tu re  cue P ossib le fsuling  filters
trace Em pty C ategory  Principle, and 

C ase  Condition on traces
intransitive C ase  Filter
passive T h eta  Criterion 

C ase  F ilter
non-argum ent T h eta  Criterion
-(-anaphoric Binding Theory Principle A
+  pronom inal Binding Theory Principle B

The correspondence between each cue and the set of candidate filters may 
be systematically derived from the definitions of the relevant principles. For 
example, Principle A of the Binding Theory deals with the conditions under 
which antecedents for anaphoric items, such as “each other” and “himself’, 
must appear. Hence, Principle A can only be a candidate failing filter for struc­
tures that contain an item with the -f-anaphoric feature. Other correspondences 
may be somewhat less direct: for example, the Case Filter merely states that 
all overt noun phrase must have abstract Case. Now, in the PO-PARSER the 
conditions under which a noun phrase may receive abstract Case are defined by 
two separate operations, namely, Inherent Case Assignment and Structural Case 
Assignment. It turns out that an instance where Structural Case Assignment 
will not assign Case is when a verb that normally assigns Case has passive mor­
phology. Hence, the presence of a passive verb in a given structure may cause 
an overt noun phrase to fail to receive Case during Structural Case Assignment 
— which, in turn may cause the Case Filter to fail.6

5 O bviously, there are many ways to im plem ent such a selection procedure. Currently, the
PO-PARSER uses a voting schem e based on the frequency of cues. The (unproven) underlying
assum ption ia that the probability of a filter being a failing filter increases w ith the number 
of occurrences of its associated cues in a given structure. For exam ple, the more traces there 
are in a structure, the more Likely it is that one of them  will violate some filter applicable to 
traces, such as the Em pty Category Principle (E C P).

8 It is possible to autom ate the process of finding structure cues sim ply by inspecting the 
closure of the definitions of each filter and all dependent operations. One m ethod of deriving
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The failing filter mechanism can been seen as an approximation to the 
Cheapest-first heuristic in conjunct ordering problems. It turns out that if the 
cheapest conjunct at any given point will reduce the search space rather than 
expand it, then it can be shown that the optimal ordering must contain that 
conjunct at that point. Obviously, a failing filter is a “cheapest” operation in 
the sense that it immediately eliminates one structure from the set of possible 
structures under consideration.

Although the dynamic ordering mechanism performs well in many of the test 
cases drawn from the reference text, it is by no means foolproof. There are also 
many cases where the prediction mechanism triggers an unprofitable re-ordering 
of the default order of operations. (We will present one example of this in the 
next section.) A more sophisticated prediction scheme, perhaps one based on 
more complex cues, could increase the accuracy of the ordering mechanism. 
However, we will argue that it is not cost-effective to do so. The basic reason is 
that, in general, there is no simple way to determine whether a given structure 
will violate a certain principle.7 That is, as far as one can tell, it is difficult to 
produce a cheap (relative to the cost of the actual operation itself), but effective 
approximation to a filter operation. For example, in Binding Theory, it is diffi­
cult to determine if an anaphor and its antecedent satisfies the complex locality 
restrictions imposed by Principle A without actually doing some searching for 
a binder. Simplifying the locality restrictions is one way of reducing the co6t 
of approximation, but the very absence of search is the main reason why the 
overhead of the present ordering mechanism is relatively small.8 Hence, having 
more sophisticated cues may provide better approximations, but the tradeoff is 
that the prediction methods may be almost as expensive as performing the real 
operations themselves.

2.3 .2  Logical D ep en d en c ies  and R e-ordering

Given a candidate failing filter, the dynamic ordering mechanism has to schedule 
the sequence of parser operations so that the failing filter is performed as early

cue* i> to collect the negation of all condition* involving category features. For exam ple, if an 
operation contain* the condition “n o t ( I t « «  ha*-f«atu r*  i n t r a n s i t i v * ) ” , then we can take 
the presence of an intransitive item  a* a possible reason for failure of that operation. However, 
this approach ha* the potentia l problem of generating too m any cues. A lthough, it m ay be 
relatively inexpen*ive to test each individual cue, a large number of cues will significantly  
increase the overhead o f the ordering m echanism . Furthermore, it turns out that not all cues 
are equally useful in predicting failure filter*. One solution m ay be to use “weight*" to rank 
the predictive u tility  of each cue w ith respect to each filter. T hen an adaptive algorithm  could  
be used to “learn" the weighting value*, in a manner rem iniscent of Sam uels [8]. The failure 
filter prediction process could then autom atically elim inate testing for relatively unim portant 
cue*. Thi* approach is currently being investigated.

7If *uch a schem e can be found, then it can effectively replace the definition of the principle 
itself.

8 W e ignore the additional co*t of re-ordering the sequence of operation* once a failing filter 
ha* been predicted. T he actual re-ordering can be made relatively inexpensive using various 
trick*. For exam ple, it ia po*«ible to “cache” or com pute (off-line) com m on ca*es of re-ordering 
a default sequence w ith respect to various failing filters, thu* reducing the cost of re-ordering 
to that o f a sim ple look-up.
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as possible. Simply moving the failing filter to the front of the operations queue 
is not a workable approach for two reasons.

Firstly, simply fronting the failing filter may violate logical dependencies be­
tween various parser operations. For example, suppose the Case Filter was cho­
sen to be the failing filter. To create the conditions under which the Case Filter 
can apply, both Case assignment operations, namely, Inherent Case Assignment 
and Structural Case Assignment, must be applied first. Hence, fronting the Case 
Filter will also be accompanied by the subsequent fronting of both assignment 
operations unless, of course, they have already been applied to the structure 
in question.

Secondly, the failing filter approach does not take into account the behaviour 
of generator operations. A generator may be defined as any parser operation 
that always produces one output, and possibly more than one output, for each 
input. For example, the operations corresponding to X  rules, Move-a, Free 
Indexing and LF Movement are the generators in the p o - p a r s e r . (Similarly, the 
operations that we have previously referred to as “filters” may be characterized 
as parser operations that, when given N  structures as input, pass N  and possibly 
fewer than N  structures.) Due to logical dependencies, it may be necessary in 
some situations to invoke a generator operation before a failure filter can be 
applied. For example, the filter Principle A of the Binding Theory is logically 
dependent on the generator Free Indexing to generate the possible antecedents 
for the anaphors in a structure. Consider the possible binders for the anaphor 
"himself” in “John thought that Bill saw himself” as shown below:

(3) a. *John, thought that Bill,- saw himself,
b. John, thought that Billy saw himself;
c.*John, thought that Billy saw himself*

Only in example (3b), is the antecedent close enough to satisfy the locality 
restrictions imposed by Principle A. Note that Principle A had to be applied 
a total of three times in the above example in order to show that there is only 
one possible antecedent for “himself”. This situation arises because of the gen­
eral tendency of generators to overgenerate. But this characteristic behaviour 
of generators can greatly magnify the extra work that the parser does when 
the dynamic ordering mechanism picks the wrong failing filter. Consider the 
ill-formed structure u*John seems that he likes t” (a violation of the princi­
ple that traces of noun phrase cannot receive Case.) If however, Principle B 
of the Binding Theory is predicted to be the failure filter (on the basis of the
structure cue “he” ), then Principle B will be applied repeatedly to the index­
ings generated by the Free Indexing operation. On the other hand, if the Case 
Condition on Traces operation was correctly predicted to be the failing filter, 
then Free Indexing need not be applied at ail. The dynamic ordering mech­
anism of the PO-PAR SER is designed to be sensitive to the potential problems 
caused by selecting a candidate failing filter that is logically dependent on many 
generators.9

9Obviously, there are m any different ways to accom plish this. One m ethod is to com pute
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2 .4  L in g u is t ic  F ilte r s  and  D e te r m in ism
In this section we describe how the characterization of parser operations in 
terms of filters and generators may be exploited further to improve the perfor­
mance of the p o - p a r s e r  for some operations. More precisely, we make use of 
certain computational properties of linguistic filters to improve the backtrack­
ing behaviour of the p o - p a r s e r . The behaviour of this optimization will turn 
out to complement that of the ordering selection procedure quite nicely. That 
is, the optimization is most effective in exactly those cases where the selection 
procedure is least effective.

We hypothesize that linguistic filters, such as the Case Filter, Binding Con­
ditions, ECP, and so on, may be characterized as follows:

(4) H ypothesis:  Linguistic filters are side-effect free conditions on
configurations

In terms of parser operations, this means that filters should never cause 
structure to be built or attempt to fill in feature slots.10 Moreover, computa­
tionally speaking, the parser operations corresponding to linguistic filters should 
be deterministic. That is, any given structure should either fail a filter or just 
pass. A filter operation should never need to-succeed more than once, simply 
because it is side-effect free.11 By contrast, operations that we have character­
ized as generators, such as Move-a and Free Indexing, are not deterministic in 
this sense. That is, given a structure as input, they may produce one or more 
structures as output.

the “distance” of potential failure filters from the current state of the parser in terms of the 
number of generators yet to be applied. Then the failing filter will be chosen on the basis of 
som e com bination of structure cues and generator distance. Currently, the PO-PARSER uses 
a slightly different and cheaper schem e. The failure filter is chosen solely on the basis of 
structure cues. However, the fronting m echanism  is restricted so that the chosen filter can  
only m ove a lim ited number of positions ahead .A' its original position. The original operation  
sequence is designed such that the distance of the filter from the front of the sequence is 
roughly proportional to the number of (outstanding) operations that the filter is dependent 
on.

10 So far, we have not encountered any linguistic filters that require either structure building  
or feature assignm ent. O perations such as 5-role and Case assignm ent are not considered  
filters in the sense of the definition given in the previous section. In the PO-PARSER, these  
operations will never fail. However, definitions that involve some elem ent of ‘m odality ’ are 
potentially  problem atic. For exam ple, C hom sky’s definition of an access ible  S U B J E C T ,  a 
definition relevant to the principles of Binding Theory, contains the following phrase 
a s s ig n me n t  t o  or o f  t h e  i n d e x  o f  (3 w ou ld  not  v io la t e  the  ( i -w i t hi n- i )  f i l ter  • (7 , . . .S, ...] . A 
transparent im plem entation of such a definition would seem  to require some m anipulation of 
indices. However, Lasnik (p .58) points out that there exists an empirically indistinguishable  
version o f acces s ib l e  S U B J E C T  w ithout the elem ent of m odality present in C hom sky’s version.

11 It turns out that there are situations where a filter operation (although side-effect free) 
could succeed more than once. For exam ple, the linguistic filter known as the “Em pty Cate­
gory Principle" (E C P ) im plies that all traces must be “properly governed” . A trace may satisfy  
proper governm ent by being either “lexically governed” or “antecedent governed” . Now con­
sider the structxire [c  p  VVhati d id  y o u  [ v p  re ad  ti]]. T he trace ti is both  lexically governed
(by the verb read) and antecedent governed (by its antecedent what). In the PO-PARSER the 
ECP operation can succeed twice for cases such as t\ above.
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Given the above hypothesis, we can cut down on the amount of work done by 
the p o - p a r s e r  by modifying its behaviour for filter operations. Currently, the 
parser employs a backtracking model of computation. If a particular parser op­
eration fails, then the default behaviour is to attempt to re-satisfy the operation 
that was called immediately before the failing operation. In this situation, the 
p o - p a r s e r  will only attempt to re-satisfy the preceding operation if it happens 
to be a generator. When the preceding operation is a filter, then the parser will 
skip the filter and, instead, attempt to resatisfy the next most recent operation 
and so on.12 For example, consider the following calling sequence:

Suppose that a structure generated by generator G2 passes filters and F2, 
but fails on filter F3 . None of the three filters could have been the cause of the 
failure by the side-effect free hypothesis. Hence, we can skip trying to resatisfy 
any of them and backtrack straight to G2.

Note that this optimization is just a limited form of dependency-directed 
backtracking. Failures are traced directly to the last generator invoked, thereby 
skipping over any intervening filters as possible causes of failure. However, the 
backtracking behaviour is limited in the sense that the most recent generator 
may not be the cause of a failure. Consider the above example again. The 
failure of F3  need not have been caused by G2. Instead, it could have been 
caused by structure-building in another generator further back in the calling 
sequence, say Gx. But the parser will still try out all the other possibilities in 
G2 first.

Consider a situation in which the principle selection procedure performs 
poorly. That is, for a particular ill-formed structure, the selection procedure 
will fail to immediately identify a filter that will rule out the structure. The 
advantages of the modified mechanism over the default backtrack scheme will 
be more pronounced in such situations — especially if the parser has to try 
several filters before finding a “failing” filter. By contrast, the behaviour of 
the modified mechanism will resemble that of the strict chronological scheme 
in situations where the selection procedure performs relatively well (i.e. when a 
true failing filter is fronted). In such cases, the advantages, if significant, will be 
small. (In an informal comparison between the two schemes using about eighty 
sentences from the reference text, only about half the test cases exhibited a 
noticeable decrease in parsing time.)

13T his behaviour can be easily sim ulated using the ‘c u t’ predicate in Prolog. We can route 
all calls to  filter operations through a predicate that calls the filter and then cuts off all internal 
choice points. (For independent reasons, the PO-PARSER does not actually use this approach.)
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3 Conclusions: The Utility of Principle-Ordering

From our informal experiments with the PO-PARSER, we have found that dy­
namic principle-ordering can provide a significant improvement over any fixed 
ordering. We have found that speed-ups varying from three- or four-fold to 
order-of-magnitude improvements are possible in many cases.13

The control structure of the PO-PARSER forces linguistic principles to be ap­
plied one at a time. Many other machine architectures are certainly possible. 
For example, we could take advantage of the independence of many principles 
and apply principles in parallel whenever possible. However, any improvement in 
parsing performance would come at the expense of violating the minimum (un­
necessary) work ethic. Lazy evaluation of principles is yet another alternative. 
However, principle-ordering would still be an important consideration for effi­
cient processing in this case. Finally, we should also consider principle-ordering 
from the viewpoint of scalability. The experience from building prototypes of 
the p o - p a r s e r  suggests that as the level of sophistication of the parser increases 
(both in terms of the number and complexity of individual principles), the effect 
of principle-ordering also becomes more pronounced.
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1. Introduction
Constructing a grammar which can parse sentences selected from a natural language corpus is a 
difficult task. One of the most serious problems is the unmanageably large number of ambiguities. 
Pure syntactic analysis based only on syntactic knowledge will sometimes result in hundreds of 
ambiguous parses. Martin [15] reported that his parser generated 455 ambiguous parses for the 
sentence:

List the sales o f products produced in 1973 with the products produced in 1972.

Through the long history of work in natural language understanding, semantic and pragmatic con­
straints have been known to be indispensable for parsing. These should be represented in some 
formal way and be referred to during or after the syntactic analysis process. AI researchers have 
been exploring the use of semantic networks, frame theory, etc. to describe both factual and intui­
tive knowledge for the purpose of filtering out meaningless parses and to aid in choosing the most 
likely interpretation. The SHRDLU system [22] by Winograd successfully demonstrated the pos­
sibility of sophisticated language understanding and problem solving in this direction. However, 
to represent semantic and pragmatic constraints, which are usually domain sensitive, in a well- 
formed way is a very difficult and expensive task. To the best of our knowledge, no one has ever 
succeeded in doing so except in relatively small restricted domains.

Furthermore, there remains a basic question as to whether it is possible to formally encode all of 
the syntactic, semantic and pragmatic information needed for disambiguation in a definite and 
deterministic way. For example, the sentence

Print for  me the sales o f stair carpets.

seems to be unambiguous; however, in the ROBOT system pure syntactic analysis of this sentence 
resulted in two ambiguous parses, because the “M E” can be interpreted as an abbreviation of the 
state of Maine[9]. Thus, this simple example reveals the necessity of pragmatic constraints for the 
disambiguation task. Readers may claim that the system which would generate the second inter­
pretation is too lax and that a human would never be perplexed by the case. However, a reader s 
view would change if he were told that the the sentence below had been issued previous to the 
sentence above.

Print fo r  ca the sales o f stair carpets.

Knowing that the speaker inquired about the business in California in the previous queries, it is 
quite natural to interpret “m e” as the state of Maine in this context. A problem of this sort usually 
calls for the introduction of an appropriate discourse model to guide the parsing. Even with a so­
phisticated discourse model beyond anything available today, it would be impossible to take ac­
count all previous sentences: The critical previous sentence may always be just beyond the capacity 
of the discourse stack.

Thus it is quite reasonable to think of a parser which disambiguates sentences by referring to sta­
tistics which encode various characteristics of the past discourse, the task domain, and the speaker. 
For instance, the probability that the speaker is referring to states and the probability that the
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speaker is abbreviating a name, are useful in disambiguating the example. If the probabilities of the 
above are both statistically low, one could simply neglect the interpretation of the state of “Maine" 
for “me”. Faced with such a situation, we propose, in this paper, to employ probability as a device 
to quantify language ambiguities. In other words, we will propose a hybrid model for natural lan­
guage processing which comprises linguistic expertise, i.e. grammar knowledge, and its probabilistic 
augmentation for approximating natural language. With this framework, semantic and pragmatic 
constraints are expected to be captured implicitly in the probabilistic augmentation.

Section 2 introduces the basic idea of the probabilistic parsing modeling method and Section 3 
presents the experimental results when this modeling method is applied to parsing problems of 
English sentences and of Japanese noun compound words. Detailed description of the method are 
given elsewhere.

2. Probabilistic Context-free Grammar

2.1 Extension to Context-free Grammar
A probabilistic context-free grammar is an augmentation of a context-free grammar [5]. Each of 
the grammar and lexical rules (r) , having a form of a -* /?, is associated with a conditional proba­
bility Pr\r) =  Pr{f} | a) . This conditional probability denotes the probability that a non-terminal 
symbol a , having appeared in the sentential form during the sentence derivation process, will be 
replaced with a sequence of terminal and non-terminal symbols /? . Obviously I a) =  I holds.

p
Processes of sentence generation from a sentence symbol 5 by a probabilistic context-free grammar 
will be carried out in an identical manner to the usual non-probabilistic context-free grammar. But 
the advantage of the probabilistic grammar is that the probability can be computed for each of the 
derivation trees, which enables us to quantify sentence ambiguities as described below.
The probability of a derivation tree t can be computed as a product of conditional probabilities of 
the rules which are employed for deriving that tree t.

Pr(t) = n  Prir) 
r * m

Here r denotes a rule of the form <x -* , and D(t) denotes an ordered set of the rules which are
employed for deriving the tree t. The next figure explains how the probability of a derivation tree 
t can be computed as a product of rule probabilities.

Pr{t) = Pr{NP. VP.ENDM \ S) x 
Pr{DET.N | NP) x 
^ t h e  | det) x  

Pr{boy | N) x  
Pr{V.NP | VP)x 
/V l̂ikes | V) x  

Pr{DET.N | NP) x  
/V(that | det) x  

Pr(gi ri  | N )  x  
Pr{. | ENDM)

Fig. 1 Probability of a Derivation Tree

An ambiguous grammar allows many different derivation trees to coexist for sentences. From the 
viewpoint of sentence parsing, we say that a sentence is ambiguous when more than two parsed 
trees, say f„ t2, ... are derived from the parsing process. Having a device to compute probability for 
a derivation tree as shown above, we can handle sentence ambiguity in a quantitative way. Namely, 
when a sentence s is parsed ambiguously into derivation trees t2, ... and a probability Pr[tj) is
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computed for each derivation tree the sum of the probabilities V can be regarded as the
probability that a particular sentence s will happen to be generated among other infinite possibil­
ities. More interesting is the ratio denoting relative probabilities among ambiguous derivation trees:

Pritj)

k

We can assume that it should denote the “likelihood” of each derivation tree. For example, con­
sider the following English sentence “Reply envelopes are enclosed for your convenience.” The sen­
tence is ambiguous because it can be parsed in two different ways; the first being in the imperative 
mode, and the second in the declarative.

r,: “ Reply (that) envelopes are enclosed for your convenience.”
[Pr{tx) +  Pr{t2))

tv. “ Reply envelopes (A kind o f  envelopes) are enclosed for your convenience.” = » ------- P ^ h )-------
(Pr(t i) +  P r it j )

These correspond to two different parsed trees, and t2. By computing Pr\t,) +  Pr{t2), we can es­
timate the probability that the specific sentence “Reply envelopes are ... ” is generated from among 
an infinite number of possible sentences. On the other hand, + PriQ) and
F>ri t2)l(P,i ti) +  P'ih)) £ ve measures of likelihood for interpretations and t2.

2.2 Estimation of Rule Probabilities from Data
The Forward / Backward algorithm, described in [11], popularly used for estimating transition 
probabilities for a given hidden-Markov-model, can be extended so as to estimate rule probabilities 
of a probabilistic context free gra m m ar in the following m a n n er.

Assume a Markov model, whose states correspond to possible sentential forms which appear in a 
sentence parsing process of a context free grammar. Then each transition between two states of the 
Markov model corresponds to an application of a context-free rule that maps one sentential form 
into another. For example, the state NP. VP can be reached from the state 5 by applying the rule 
5  —* hP.VP to a start symbol 5, the state ART.NOUN.VP can be reached from the state NP.VP 
by applving the rule NP -* ART.NOUN to the first NP of the sentential form NP.VP, and so on. 
Since ea*.h rule corresponds to a state transition between two states, parsing a set of sentences given 
as training data will enable us to count how many times each transition is traversed. In other words, 
it tells how many times each rule is fired when the given set of sentences is generated. For example, 
the transition from the state 5  to the state NP.VP may happen most frequently because the rule 
S -*■ NP.VP is commonly used in almost every declarative sentence; while the transition from the 
state ART.NOUN.VP to the state every.NOUN. VP may happen 103 times; etc. In a context-free- 
grammar, each replacement of a non-terminal symbol occurs independently of the context. There­
fore, counts of all transitions between states a.A.fi to a.B.C.p, with arbitrary a and /?, should be tied 
together.

Counting the transitions in such a way for thousands of sentences will enable us to estimate the rule 
probabilities {Pr{{3 | a)} which are the probabilities that left hand side non-terminal symbols a will 
be replaced with right hand side patterns /?. The actual iteration procedure to estimate these 
probabilities from N  sentences {B '} is shown below.

1. Make an initial guess of {Pr{fi | a)} such that P^P  I a) =  1 holds.

2. Parse each output sentence B‘ . Assume that grammar is ambiguous and that more than one 
derivation path exists which generate the given sentence B'. In such cases, we denote D'; as the 
j-th derivation path for the ith-sentence.

3. Compute the probability of each derivation path D'j in the following way:
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P*D ‘j) = f ]  Pr{r) 

'•  D‘,

This computes Pr[D‘j) as a product of the probabilities of the rules {r} which are employed to 
generate that derivation path D‘, .

4. Compute the Bayes a posteriori estimate of the count (?,(/?) which represents how many times 
the rule a — /? was used for generatmg the sentence Bl .

Here, n‘,(a, (3) denotes the number of times the rule a —* fi is used on the derivation path D'; .

5. Normalize the count so that the total count for rules with same left hand side non-terminal 
symbol a becomes 1.

6. Replace (Pr(p | a)} with [£(/?)} and repeat from step 2.

Through this process, the {Pr(P | a)} will approach the real transition probability[2,10]. This al­
gorithm has been proven to converge [3].

2.3 Parsing Procedure which computes Probabilities
To find the most-likely parse, that is, the parse tree which has the highest probability from among 
all the candidate parses, requires a lot of time if we calculate probabilities separately for each am­
biguous parse. The following is a parsing procedure based on the Cocke-Kasami-Young [1] 
bottom -up parsing algorithm which can accomplish this task very efficiently. By using it, the 
most-likely parse tree for a sentence will be obtained while the normal bottom -up parsing process 
is performed. It gives the maximum probability Max,/*^-) as well as the total probability of all 
parses at the same time.

The Cocke-Kasami-Young parsing algorithm maintains a two-dimensional table called the Well- 
Formed-Substring-Table (WFST). An entry in the table, W FST(i,j) , corresponds to a 
substring^, j), j words in length, starting at the i-th word, of an input sentence [1]. The entry 
contains a list of triplets. An application of a rule a -*• fly will add an entry (a, /?, y) to the list. This 
triplet shows that a sequence of fi.y which spans substring(i,j) is replaced with a non-terminal 
symbol a. (/?: is the pointer to another W FST  entry that corresponds to the left subordinate 
structure of a and y : is the pointer to the right subordinate structure of a.)

In order to compute probabilities of parse trees in parallel to this bottom -up parsing process, the 
structure of this W FST entry is modified as follows. Instead of having an one-level flat list of 
triplets, each entry of W FST was changed to hold a two-level list. The top-level of the two-level list 
corresponds to a left hand side non-terminal symbol, called as LHS symbol hereinafter. All com­
binations of left and right subordinate structures are kept in the sub-list of the LHS symbol. For 
instance, an application of a rule a -* py will add (/?, y) to the sub-list of a.

In addition to the sub-list, a LHS symbol is associated with two variables - MaxP and SumP. These 
two variables keep the maximum and the total probabilities of the LHS symbol of all possible right

j
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hand side combinations. MaxP and SumP can be computed in the process of bottom-up chart 
parsing. When a rule a -* fly is applied, MaxP  and SumP are computed as:

MaxP (cl) =  H ie !  X(Prob(a - *  0y) x MaxP{$) x MaxP(y)) 
y

SumP(a) =  y^(Prob{a -* (3y) x SumP(p) x SumP(y))
y

This procedure is similar to that of Viterbi algorithm[4] and maintains the maximum probability 
and the total probability in M axP  and SumP  respectively. M axP/SumP  gives the maximum relative 
probability of the most-likely parse.

3. Experiments
To demonstrate the capability of the modeling method, a few trials were made to disambiguate 
corpora of highly ambiguous phrases. Two of these experiments will be briefly described below. 
Details can be found elsewhere.

3.1 Disambiguation o f  English Sentence Parsing
As the basis of this experiment, the grammar developed by Prof. S. Kuno in the 1960's for the 
machine translation project at Harvard University [13,14,18] was used with some modification. 
The set of grammar specifications in the Kuno grammar, which are in Greibach Normal form, were 
translated into a form which is more favorable to our method. The 2118 original rules were refor­
mulated into 7550 rules in Chomsky normal form [l].
T r a i n i n g sentences were chosen from two corpora. One corpus is composed of articles from 
Datamation and Reader's Digest (average sentence length in words 10.85, average number of am ­
biguities per sentence 48.5) and the other from business correspondence (average sentence length 
in words 12.65, average number of ambiguities per sentence 13.5). A typical sentence from the latter 
corpus is shown below:

It was advised that there are limited opportunities at this time.

The 3582 sentences from the first corpus, and 624 sentences from the second corpus that were 
successfully parsed were used to train the 7550 grammar rules besides some lexical rules in each 
corpus.

Once the probabilities for rules are thus obtained, they can be used to disambiguate sentences by 
the procedure described in section 2.3.

SEN TEN C E 
PRONOUN ( we )
PRED ICA TE 

A U X ILIA R Y  ( do )
IN FIN ITE VERB PHRASE 

A DVERB TYPE1 ( not )
(A) 0.356 IN FIN ITE VERB PH RASE

VERB TY PE IT 1 ( utilize )
OBJECT 

: NOUN ( outside )
A DJ C LA U SE 

NOUN ( a r t )
PRED. WITH NO OBJECT 

VERB TY PE VT1 ( services )
(B) 0.003 IN FIN ITE VERB PH RASE

: VERB TY PE IT 1( uukze )
: O BJECT

PREPOSITION ( outside )
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N O U N  OBJECT 
: N O U N  ( a r t )

OBJ ECT 
: N O U N  ( services )

(C)0.641 I N F I N I T E  VERB P H R A S E  
VERB T Y P E  IT1( utilize )
OBJ ECT 

: N O U N  ( outside )
OBJ ECT MA ST ER 

N O U N  ( art )
OBJ ECT MA ST ER 

: N O U N  ( services )
PE R I O D  

AD VE RB TYPE1 ( directly )
PRD ( . )

Fig. 2 Parse Tree for “We do not utilize

Figure 2 shows the parsing result for the sentence ‘Ve do not utilize outside art services directly. . 
which turned out to have three ambiguities.
As shown in the figure, ambiguities come from the three distinct substructures, (A), (B) and (C), 
for the phrase “utilize outside art services.". The derivation (C) corresponds to the most common 
interpretation while in (A) "art” and "outside” are regarded respectively as subject and object of 
the verb "services”. In (B), "art service” is regarded as an object of the verb "utilize” and "outside” 
is inserted as a preposition. The numbers 0.356, 0.003 and 0.641 signify the relative probabilities 
of the three interpretations. As shown in this case, the correct parse (the third one) gets the highest 
relative probability, as was expected.
Some of the resultant probabilities obtained through the iteration process for each of the gram m ar 
rules and the lexical rules are shown below.

Rules for “ 1IT6” 1 Rules for “S E ” 3
(0.11054) IT6 -  BELIEVE - ( a ) (0.21602) SE -  A A A  4X V X  P D  — (c)
(0.10685) IT6 -  K N O W -( b ) (0.15296) SE -* P R N  VX P D  — (d)
(0.08562) IT6 -  F IN D (0.15229) SE -  N N N  V X  PD
(0.07628) IT6 -  T H IN K (0.11965) SE -  A V I S E
(0.03525) IT6 -  CALL (0.04730) SE -  PRE N Q  SE
(0.03280) IT6 -  R E A L IZ E (0.04457) SE -  N N N  A C  V X  P D

(0.02616) SE -  A V 2 SE
Rules for “ IT 3” 2

(0 .16055) IT3 -  G E T Rules for “ V X ” 4
(0 .12447) IT3 -* M A K E (0.19809) V X  -* VT1 N 2  -
(0.1 1988) IT3 -  H A V E (0.10704) V X  -  PRE N Q  V X
(0.08132) IT3 -  SEE (0.08790) V X -  VII
(0.06477) IT3 -  KE E P (0.07500) V X  -  A U X  BV
(0.06363) IT3 -  BELIEVE (0.05455) V X  -  A V I VX

Fig. 3 Rule probabilities estimated by iteration

Numbers in the parentheses on the left of each rules denote probabilities estimated from the iter­
ation process described in the section 3.3. For example, the probabilities that the words believe, 
and know have the part of speech IT6 are shown as 11. 1\% and 10.7\%  on lines (a) and (b) re­
spectively. Line (c) shows that a sequence AAA (article and other adjective etc.) 4X (subject noun 
phrase), VX(predicate) and PD (period or post sentential modifiers followed by period) forms a 
sentence (SE) with probability 21.6\% . Line (d), on the other hand, shows that a sequence PRN

Infinite form of a mono-transitive verb which takes a noun-clause object
infinite form of a complex-transitive verb which takes an object and an objective compliment
sentence
predicate

-90- Intemational Parsing Workshop '89



(pronoun), VX and PD forms a sentence (SE) with probability 15.3 %. In such ways, the proba­
bility findin gs convey useful information for language analysis.

Table 1 summarizes the experiments. Test 1 corresponds to the corpus of articles from Datamation 
and Reader's Digest, while Test 2 derived from the business correspondence. In both cases, the 
base Kuno gram m ars were successfully augmented by probabilities.

a. Corpus test l test2
b. Number of sentences used for training 3582 624
c. Number of sentences checked manually 63 21
d. Number of sentences with no correct parse 4 2
e. Number of sentences where highest prob. 

was given to the most natural parse 54 18
f. Number of sentences where highest prob. 

was not given to the right one 5 1

Table 1. Summary of English sentence parsing

3.2 Disambiguation o f  Japanese Noun Compound Word Parsing
Analyzing structures of noun compound words is difficult because noun compound words usually 
do not have enough structural clues for syntactic parsing[17]. Particularly in the Japanese language, 
noun compound words consist only of a few types of components, and pure syntactic analysis will 
result in many ambiguous parses. Some kind of mechanism which can handle inter-word analysis 
of constituent words is needed to disambiguate them.

We applied our probabilistic modeling method for disambiguating parsing of Japanese noun com­
pound words. It was done by associating rule probabilities to basic construction rules of noun 
compound words. In order to make rule probabilities sensitive to inter-word relationship of com­
ponent words, words were grouped into finer categories (jV,, N2, jV3, ... S m). The base rules were 
replicated for each combination of right hand side word categories. Since we assumed that the 
right-most word of the right hand side inherits the category from the left hand side parent, a single 
■V -♦ ;V/V rule was replicated to m  x m  rules. For these m x  m rules, separate probabilities were 
prepared and estimated. The method described in the section 2.2 was used to estimate these 
probabilities from noun compound words actually observed in text.

Once probabilities for rules were estimated, the parsing procedure described in the section 2.3 was 
used to compute relative probability of each parse tree i.e. the likelihood of the parse tree among 
others.

In this experiment, we categorized words by a conventional clustering technique which groups 
words according to neighboring word patterns. For example, 'oil" and 'co a l' belong to the same 
category in our method because they frequently appear in similar word patterns such as “ ~  
burner”, “ ~  consum ption”, “ ~  resources”. 31,900 noun compound words picked from abstracts 
of technical papers [12] were used for this categorization process. Twenty eight categories were 
obtained through this process for 1000 high-frequency 2-character kanji primitive words, 8 catego­
ries for 200 prefix single-character words, and 10 categories for 400 suffix single-character 
words[16]. Base rules deriving from different combination of these 46 word categories resulted in 
5582 separate rules. These base rules are displayed below.

< word > ~* <2 character kanji primitive word >

< word > —► < word > < word >
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< word > —* < prefix single character word > < word>

< word > -* < word > < suffix single character word >

5582 conditional probabilities of these rules were estimated from 28,568 noun compound words.

.After training was successfully done, 153 noun compound words were randomly chosen, parsed b\
the procedure shown in the section 3.3 and the parse trees were examined by hand. The check was
made whether the correct parse is given the highest probabilities. Among the 153 test words, 22
was uniquely parsed and 131 test words were parsed with more than two alternative parse trees.
Among 131, in 92 cases, the right parses were given the highest probabilities.

Show below are parsing results for two noun compound words.

word 1: ^(medium) # l$ | (s c a le )  ( integrated) [o]5& (ci rcui t)

word 2: /J'(small) # if£ (sca le>  \ \ l f j  (o le c tr  ic i ty) (company)

(Word order is the same both in English and in Japanese).

For both of these cases, 5 alternative parse trees were given. Obtained parse trees were computed
with relative probabilities, the likelihood, among other alternative parses. Ln the first sentence, the
5-th parse tree, which is the most natural, got the highest probability 0.43. In the second case, the 
3rd parse tree, which is the most natural, got the highest probability 1.0.

word 1 "medium scale integrated circuit"

structure of parsed tree shown in 
bracket notation

meaning implied from structure prob.

1 medium [ [ scale integrated ] circuit] a medium-size 
"scale-integrated-circuit"

0.17

2 medium [ scale [ integrated circuit] ] a medium-sized integrated 
circuit which is scale (?)

0.04

3 [medium scale ] [ integrated circuit] an integrated-circuit 
of medium-scale

0.19

4 [ medium [ scale integrated ] ] circuit a medium-size circuit which 
is scale-integrated

0.17

5 [ [ medium scale ] integrated ] circuit a circuit which is 
medium-scale integrated

0.43

case 2 'small scale electricity company"

1 small [ [ scale electricity ] company] a small company which 
serves scale-electricity

0.0

2 small [ scale [ electricity company] ] a company which is small, 
serves electricity, and is 
something to do with scale

0.0

3 [ small scale ] [ electricity company] a company which serves electricity 
and which is small scale

1.0

4 [ small [ scale electricity ] ] company a company which services 
small scale-electricity

0.0
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5 [ [ small scale ] electricity ] company a company which services 0.0
small scale electricity
(micro electronics?)

4. Concluding Remarks
N-gram modeling technique [20] has been proven to be a powerful and effective method for lan­
guage modeling. It has successfully been used in several applications such as speech recognition, 
text segmentations, character recognition and others.[11,6,7,19,21] At the same time, however, it 
has proved to be difficult to approximate language phenomena precisely enough when context de­
pendencies expand over a long distance. A direct means to remedy the situation is (a) to increase 
.V of N-gram or (b) to increase the length of basic units from a character to a word or to a phrase. 
If the vocabulary size is M, however, the statistics needed for m a i n t a i n i n g the equivalent precision 
in the N-gram model increase in proportion to M N. The situation is s i mi la r  m (b). Increasing the 
length of the basic unit causes an exponential increase in vocabulary size. Hence an exponential 
increase of the required statistics volume follows in (b) as well. This shows that the N-gram model 
faces a serious data gathering problem when a task has a long-context dependency. Obviously, the 
parsing of sentences creates this sort of problem.

On the other hand, the method introduced here aims to remedy this problem by c o m b in in g a 
probabilistic modeling procedure with linguistic expertise. In this hybrid approach [7,8], linguistic 
expertise provides the framework of a grammar, and the probabilistic modeling method augments 
the grammar quantitatively.

Since the probabilistic augmentation process is completely automatic, it is not necessary to rely on 
human endeavor which tends to be expensive, inconsistent, and subjective. Also the probabilistic 
augmentation of a grammar is adaptable for any set of sentences.

These two important features make the method useful for various problems of natural language 
processing. Besides its use for sentence disambiguation demonstrated in the section 3.4, the method 
can be used to customize a given grammar to a particular sub-language corpus. Namely, when a 
grammar designed for a general-corpus is applied to this method, the rules and the lexical entries 
which are used less frequently in the corpus will automatically be given low or zero probabilities. 
Alternately, the rules and the lexical entries which require more refinement will be given high 
probabilities, thus the method helps us to tune a grammar in a top-down manner. The method is 
also useful for improving performance of top-down parsing when used for obtaining hints for re­
ordering rules according to the rule probabilities.

In this way, although all possible uses have not been explored the method proposed in this paper 
has enormous potential application, and the author hopes that a new natural language processing 
paradigm may emerge from it.

Use of probability in natural language analysis may seem strange, but it is in effect a only simple 
generalization of common practice: Namely, the usual top-down parsing strategy forces a true or 
false (1 or 0) decision, i.e. to choose one alternatives from others on every non-deterministic choice 
point.

And most importantly, by use of the proposed method a grammar can be probabilistically aug­
mented objectively and automatically from a set of sentences picked from an arbitrary corpus. On 
the other hand, the representation of semantic and pragmatic constraints in the form of usual se­
mantic networks, frame theory, etc., requires a huge amount of subjective human effort.
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ABSTRACT

In a natural language processing system, a large amount o f ambiguity and a large 
branching factor are hindering factors in obtaining the desired analysis for a given sentence 
in a short time. In this paper, we are proposing a sequential truncation parsing algorithm 
to reduce the searching space and thus lowering the parsing time. The algorithm is based 
on a score function which takes the advantages o f probabilistic characteristics o f syntactic 
information in the sentences. A preliminary test on this algorithm was conducted with a 
special version o f our machine translation system, the ARCHTRAN, and an encouraging 
result was observed.

Motivation

In a natural language processing system, the number o f possible analyses associated with 
a given sentence is usually large due to the ambiguous nature o f natural languages. But, it is 
desirable that only the best one or two analyses are translated and passed to the post-editor 
in order to reduce the load o f the post-editor. Therefore, in a practical machine translation 
system, it is important to obtain the best (in probabilistic sense) syntax tree having the best 
semantic interpretation within a reasonably short time. This is only possible with an intelligent 
parsing algorithm that can truncate undesirable analyses as early as possible.

There are several methods to accelerate the parsing process [Su 88b], one o f which is 
to decrease the size o f the searching space. This can be accomplished with a scored parsing 
algorithm that truncates unlikely paths as early as possible [Su 87a, 87b] and hence decreases 
the parsing time.

As for the searching strategy for the scored parsing algorithm, it may be either parallel or 
sequential. But in our system, a time limit is used to stop the parsing process when a sentence 
is taking too long to parse because its length or because it has a very complicated structure. 
Therefore, the sequential searching strategy is better for us than the parallel approach because
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wc arc likely to have some complete syntax trees to work with even if the parsing was 
suspended abnormally when its time expires. On the other hand, the parallel approach will 
not have this advantage because none of the on-going paths have traversed to the end.

In this paper, we are proposing a sequential truncation algorithm for parsing sentences 
efficiendy. This algorithm employs the score function we proposed in [Su 8 8a]. However, 
this algorithm is different from the one proposed in [Su 87a, 87b], which described a parallel 
truncation algorithm for scored parsing. Here, we are adopting a sequential truncation method. 
While we are using this sequential approach, a large speed-up in the parsing time has been 
.jb served.

Definition of the Score Function
In a scored parsing system, the best analysis is selected base on its score. Several scoring 

mechanisms have been proposed in the literatures [Robi 83, Benn 85, Gars 87, Su 88a]. 
The one we adopt is the score function based on the conditional probability we proposed in 
[Su 8 8a]. How to select the best analysis of a sentence is now convened into the problem 
of finding the semantic interpretation (Semi), the syntactic structure (Synj) and the lexical 
categories (LeXk) that maximize the conditional probability of the following equation,

S C O R E  (Sem ,, S y n j L e x t ) 
=  P  ( S e m t ' S y n j i L e x k \ w \ . . . w n )  

=  P  ( S e m t \ S y r i j ' L e x j e w i " W n )  * P  ( S y r i j  |Zexjt(u;i...u;n) * P  ( L e x ^ w i ^ w n )   ̂  ̂

=  S C O R E a t m  { S e m i )  * S C O R E s y n  ( S y n j ) * S C O R E u x ( L e x *) ,

where w i to wn stands for the words in the given sentence and the last three product terms 
are semantic score, syntactic score and lexical score respectively. Since we are using 
just the syntactic information in our current implementation, we will focus only on the 
syntactic aspect o f this score function (i.e. S C O R E j y n ( S y n j ) ,  which can be approximated 
by S C O R E s y n { S y n j )  «  P ( S y n j \ L e x k ) =  P { S y r i j \ v i „ v n ) ,  where V! to vn are the lexical 
categories corresponding to w i to wn).

To show the mechanism informally, first refer to the syntax tree in Fig. 1. shown here 
with its reduction sequences (produced with a bottom-up parsing algorithm), where Li is i-th 
phrase level consists o f terminals and nonterminals. The transition from a phrase level Lj to 
the next phrase level Li+i corresponds to a reduction or derivation of a nonterminal at time ty.

A

U - { A , }
B C L 7 - (  B, C }

L 6 - { B .  

L5 -  { a

F. G } 

F. W4 }

D E F G U - {  a W3. W4 }

1 I I  1 U - { D , E, W3, W4 }
h i  h 2 t4 h 5 L2 -  { D, W2, W3, W4 }

w l  w2 w3 w4 U  -  { WL W2, W3, W4 >
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The syntax score of the tree in Fig. 1 can be formulated as the following conditional 
probability equation, where li and r* are the left and right contexts of the reducing symbols:

S C O R E s y n  ( S y n A )  

=  P  . L 2 \ L \ )

=  P  ( L s \ L 7 . . L 2 , L \ )  *  P  ( L j \ L s . . . L \ )  * . . .  *  P  ( L 2 \ L \ )  ^

~  ^ ( { ^ } |  { h , B , C , r j } )  *  P ( { C } |  { l e , F ,  G , r 6 } )  *  . . .  *  P ( { £ > } |  { ’/ l i u ; l f r 1 } )

Eq. 2 can be further reduced to the following equation if only one left and one right context 
symbol are considered where “0” is the null symbol.

S C O R E S y n  ( S y n A )

«  P ( { ^ }  | { 0 ,  B , C ,  0 } )  *  P ( { C }  | { B , F , G , 0 } )  *  . . .  *  P ( { D }  | { 0 , u , 1 , U ; 2 } )  ( 3 )

If we want to calculate the score at the point where a word is just being fetched (compact 
multiple reductions and one shift into one step), the S C O R E ^ n f S y r i A )  can also be approximated 
into the following equation.

S C O R E 3 y n ( S y n A )  

=  P ( L s L 7 . . L 2 \ L i ) 

= ^ ( ^ 8,£7 ,£61^ 5,£4...£1 ) * P (£51^ 4,£3...£1 ) * P (LitLz\L2,L\) * P(Ij2\Li) (4) 
*  P ( L s L 7 L6 \L5) * P ( L s\L<) * P ( L < L z\L2 ) * P ( L 2 \L1) 
* P ( L s \ L 5 ) * P ( L s \ L < )  * P ( L < \ L 2 ) * P ( L 2 III)

Two assumptions were made in formulating Eq. 2 -4 . First, it is assumed that the forming 
of phrase level i is only dependent on its immediate lower phrase level, since most information 
percolated from other lower levels is contained in that level. And second, a reduction is only 
locally context sensitive to its left or right context at each phrase level. This assumption is 
also supported in other systems as well [Marc 80, Gars 87].

A simulation based solely on this syntactic score was conducted and reported in [Su 8 8a] 
with a full-path searching algorithm. The result shows that the correct syntactic structures o f  
over 85% of the test sentences were successfully picked when a total o f three local left and 
right context symbols were consulted.
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The Sequential Truncation Algorithm
Using the score function defined in the previous section, we will present the idea of 

sequential truncation algorithm with Fig. 2.

stepO

shift

step 1 

shift

step 2
shift j 

/r e d u c e  shift j

1

shift !
reduce

/
ii
i

^  shift !
X

reduce
\  shift

N . ^  !
ret̂ vjeduce shift j

word 1 wad 2 word 3

Fig. 2 The searching tree

Each path in Fig. 2 corresponds to a possible derivation of a given sentence. The parser 
will use the depth-first strategy to traverse the searching tree. But during the searching process, 
the parser compares the score of each path accumulated so far with a running threshold C(ai) 
(a detailed definition will be given in the following section) at each step i when the next 
word is fetched. If the score of the path is less than the running threshold C(ai), it will be 
truncated, i.e. blocked, and the next path will be tried. This process continues until we get 
the first complete parse tree (i.e. when the whole sentence is reduced to a S node). After 
we obtain the first complete parse tree, a lower bound for the scores is acquired. The parser 
will continue to traverse other pathes, but from now on, the score o f each path will also be 
compared with the final accumulated score o f the first complete parse tree in addition to be 
compared with the running threshold. This additional comparison is similar to the branch and 
bound strategy employed in many A l applications [Wins 84] and it w ill accelerate the parsing 
process further. The whole process is shown in the flow chart in Fig. 3. If the test fails 
in either case, this path will be truncated. Continuing in this manner, we may get a second 
complete parse tree which has a final score higher than the first one. In this case, we will 
replace the lower bound with the final score o f the second parse tree and repeat the whole 
process until the end o f the entire searching process.

If all the paths are blocked without arriving at any complete parse tree, we can adopt one 
of two possible strategies. First, we could loosen the running thresholds, i.e. lowering the 
C(qO, and try the deepest path gone so far again. Second, we can process this sentence in 
fail-soft mode. The fail-soft mechanism will skip and discard the current state and attempts 
to continue the parsing at some later point
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The effectiveness o f the sequential truncation algorithm depends on the distribution of 
scores o f the database and the input sentences. As we can see, for each syntax tree can be 
expressed as the product o f a sequence of conditional probability as shown in Eq. 4. Each 
term in the product corresponds to a transition between two ’’shift" actions and is evaluated 
immediately after a ’’shift". Taking the logarithm on both sides o f Eq. 4, we get the following  
equation where X* denotes a sequence o f phrase levels at i-th step and L is the length of the 
sentence.

L
log ( S C O R E s)l„ ( S y n ) )  =  J ^ l o g  P { X ,  (5)

1=1

j
If we define y j  =  ^  log P  ( X i \ X i - \ ) , then yj denotes the accumulated logarithmic score 

i= l
up to the j-th word which is also the j-th shift of the sentence.

Suppose we have M sentences with their correct parse trees in the database. For each 
parse tree, we can evaluate yj by using the logarithmic score function defined before. So for 
the k-th sentence in the database, we obtain a sequence y*, y *, , where y*denotes
the accumulated logarithmic score o f the k-th sentence and L* denotes the length o f the k-th 
sentence.
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If wc regard each parse tree in the database as a sample point in a probability outcome 
space, we may regard Y* as a random variable which maps each parse tree into an accumulated 
logarithmic score (note, for a sentence with length L^, it will be associated, with random
variables : Vi, V2,...*£„)• So y*, with k from 1 to M, will be the samples of the random
variable Yi. Since each sentence has its own length, the number of samples in the database 
for different random variable Yi will not be the same.

Using the samples in the database, we can draw a histogram for each Yi. We then
approximate each histogram by a continuous density function / y ( y ) .  To allow a fraction 
Qi, say 99%, of the best parse trees to pass the test at step i, we can set a constant C(c*i) 
such that P { Y X> C  ( a t )) =  a t. For each path, Yj is the random variable of the accumulated 
logarithmic score up to the i-th shift, and C(ai) is the running threshold that we will use to 
compare with the running accumulated logarithmic score at step i. Those paths with running 
accumulated logarithmic score yi less than C(c*i) would be blocked. Using the notation 
defined above, the probability of obtaining the desired parse tree for a sentence with length 

L k

L* would be Yi a »*
»= i

If we set Zi as the random variable which maps all the possible paths of all the sentences 
we want to parse into the accumulated logarithmic score at i-th word, then all the paths, 
whether they can reach the final state of the searching tree or not, will have a set of running 
accumulated logarithmic scores. Fig. 4 shows the relation between the density function ( 2 ) 
of running score o f the input text and the density function f y  (y)  of cumulative score of the 
database. In the figure, the dashed lines are the means of the density functions. Since the 
step-wise cumulative score in the database is evaluated using the correct parse tree that we 
have selected, we would expect that the expectation value of Yi will be greater than that o f Zi, 
that is, E[Yi] > E[Zi]; and the variance of Yi is less than that of Zi, that is Var[Yi]<Var[Zi].

means

to be 
tancated

Q cc j)
4a. a wcreecase

to be 
truncated

Q « i)
4b. a better case

Rg.4 Relationship between the running sccre cf the inpU text 
and the cumrnulative score of the database

Let f t  denotes F'z (C (cti))y  where F'z (z )  is the cumulated distribution function o f Zi, 
then f t  is the probability that a path will be truncated at the i-th step o f the searching tree. 
By using this sequential truncation method, the searching space would then be approximately

reduced to ( 1  -  f t ) ,  which is a small portion o f the original searching space generated by a

full path searching algorithm. Therefore the efficiency o f parsing is increased. Since f t  in Fig. 
4a is less than that in Fig. 4b, which correspond to the situation that has a large expectation
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difference (E[Y,]-E[Zi]) and a small variance ratio (Var[Yi]/Var{Zi]), the underlying grammar
that has the property of Fig. 4b would benefit most from this algorithm. In addition, we can
see that if we increase the running threshold C(c*i), we will get a greater fa and a lower aj.

Lk
The parsing efficiency will thus increase, but the probability (i.e. [ ]  a ,)  that we will get the

»=i
desired parse tree would decrease. How to select a good C(aO to achieve a desired parsing 
success rate would be discussed in the following section.

How to set the running threshold
Using the model given in the last section, the probability that we will get the global

optimal solution, i.e. the parse tree with the largest probability, for a sentence with length L 
L

is K l =  [ ]  <*„ where K l is a constant pre-selected by the system designer as a compromise

between the parsing time and the post-editing time. Assuming that the average branching 
factor for each path at each stage is a constant N, then the average total number of paths 
we have to try is :

9 ( < * i =  N  +  N  * ( 1  -  fa )  * N  +  N  * ( 1  -  fix) * N  * ( 1  -  h )  * N  +  -  
=  N  * ( \  +  N  * h ( a \ )  +  N 2 * h ( a i )  * h (012) +  ...)

/  L—l i \  <*>
=  J V * f l  +  ^ . / V '  * J"I h (a j) 1

In Eq. 6 , in order to minimize the path number, the relation h ( a \ )  <  h (0:2 ) ... <  h (a ^ )  
must holds because h(aj) has a larger coefficient than h(ai+i).

The problem of selecting an appropriate running threshold C(aO is now converted into

one o f minimizing g(ai...a:L) under the constraint of a{ =  K l - Taking the logarithm on
1 = 1

L
both sides, we get £  log a t =  log K l . Then the Lagrange multiplier A is used to get 

1 = 1
L

g* ^ * Y j °9  a «- Taldng the partial derivative o f g* with respects
1=1

to a i...a L , we will get the following equations :

* L
^ - = 0 ,  - ^ - = 0 ,  ... =  0 , and  ^ l o g  a i  =  log K l (7)
d a \  oa'i , 00LL l=1

There are (L + l) variables, which are a i...aL , and A, and (L + l) equations. So, 
can be solved by the numerical method. Since a* is usually very close to 1, we can linearize 
the function h(ai) in the region around <**=1 and approximate by h (a ,)  % a * a,- +  b. In this 
way, we can substitute h(aj) in the above equation by a * a* -I- b to simplify the calculation.

During our derivation, we have assumed that the average branching factor at each stage 
is a constant N. This constraint can be relaxed by assuming the average branching factor at 
i-th stage to be N*. In this way, we will get a more complicated expression for g (a i...aL ), 
but it can still be solved in the same way.

The running threshold C(o;i) can now be computed off-line by selecting different Kl 
for different sentence length L. We will call this set of C (a0  the “static running threshold”,
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because once they are computed, they will not be changed during the sentence parsing. 
However, if we arrive at a complete parse tree with much higher final accumulated running 
score than the final accumulated running threshold, then even if a path can pass all the 
accumulated running thresholds it might still be discarded when it is being compared with 
the final accumulated running score. So, the running threshold should be adjusted to reflect a 
high final accumulated running score. Therefore, it would be better if the running threshold 
is changed to C '(ai)=C (ai)+A C (aj), where A C (ai) is set to 7  * (y* — C  (a ,) ) ,  where 0< 7 < 1  
and y* is the accumulated logarithmic score o f the current best parse tree at the i-th step, 
and 7  is a tunning constant pre-selected by the system designer. C'(aj) is then the “dynamic 
running threshold”. Using the dynamic running threshold, the efficiency of parsing would 
be further improved.

If it so happen that all the pathes are blocked before any complete parse tree is formed, 
we can find the deepest path (let us assuming it to be at the j-th step) among the blocked ones 
and continue it with a lowered running threshold of C'(aj )=y'] , where y' is the score of this 
path at the j-th step. Since the procedure to lower the running threshold is quite complicated 
and uses up memory space in run time, it might be better just invoke the fail-soft mechanism 
for sentences whose paths are all blocked.

Testing

We completed two preliminary testings of truncation algorithm with special versions of 
our English-Chinese MT system and a database o f 1430 sentences.

In the first experiment, the sentence parsing time needed by a charted parser that uses 
bottom-up parsing with top-down filtering is compared with the time needed by the same 
charted parser with truncation mechanism. From the test, we found that the average sentence 
parsing time by the charted parser with truncation is improved by a factor o f four. For some 
sentences, the improvement can go as high as a factor o f twenty. This result is encouraging 
because minimizing parsing *time is critical to a practical MT system.

Nevertheless, we noted that our output quality has degraded slightly. By this, we mean 
that the best selected tree produced by the charted parser with no truncation is not among 
the trees produced by the charted parser with truncation. Exploring this problem further, we 
discovered that the chart [Wino 83] used during parsing is in conflict with the truncation 
mechanism. The reason for having chart is to be able to store all subtrees that were parsed in 
previous path traversal. So, when we backtrack to the next path and arrive at the same range 
o f inputs, the same subtrees can be used again without reparsing. However, the idea behind 
the truncation mechanism is to discard subtree in the context in which it has low probability. 
Therefore, if  we adopt the truncation mechanism during parsing, not every subtree between a 
string o f inputs is successfully constructed and stored into the chart. For example, in Fig. 5, 
there are two possible subtrees between b and c when the pathes in the block A are expanded.

-102- Intemational Parsina Workshop '89



Lj R2 c a t ext

Fig. 5 . Chart with truncation mechanism

In Fig. 5, one of the subtrees is discarded and the other is stored into the chart. There are 
two reasons why a subtree may be discarded. First, it might be caused by a natural language’s 
constraints on the context dependency. Second, a subtree might be discarded because o f its 
small running accumulated score (and thus truncated by the truncation mechanism.) Either 
will leave us a chart with incomplete subchart. So, this will result in the best possible tree 
being missing as a side-effect o f using this chart. For instance, in Fig. 5, the best tree might 
be the second subtree with the left context o f L2 and with the right context o f R2 (i.e., its 
probability is the highest.) But, since the path expansion starting from the left context o f Li 
has the second subtree discarded because its probability under the context o f Li and Ri is 
small, the best tree will never be formed. Therefore, with a chart having incomplete subcharts, 
the possibility o f obtaining the best tree is determined by the pathes traversed before.

One solution to this incompatibility problem is to mark the sections o f the chart that are 
complete. Hence, if an incomplete subchart is encountered again, it will be reparsed. On the 
other hand, if a complete set o f chart is encountered, the subtrees can be copied directly from 
the chart. Another solution is to suspend the truncation mechanism when a set is being tried 
the first time. And if subtrees are copied directly from the chart, the truncation mechanism  
resumes its normal function. In this way, it is guaranteed that every subchart in the chart is 
complete. Both o f these solutions increase our sentence parsing time as the overhead. This 
compromise, however, is unavoidable if the advantages o f using chart are to be maintained.

In the second experiment, we converted the charted parser for the first experiment into 
one with sequential searching strategy and without the use o f the chart. Similar sentence 
parsing test is conducted for this chartless parser but with a smaller analyses grammar. The 
result shows that the total parsing time for this parser with truncation mechanism added is 
better than the same parser without truncation by the factor o f three.

From the positive results o f the above two experiments, we have shown the inclusion 
o f the sequential truncation algorithm is advantageous for a MT system. In addition, we 
have also shown the feasibility o f harmonize the use of chart and the truncation algorithm. 
Currently, we are in the process of resolving the incompatibility problem between the chart 
and the truncation mechanism and constructing a working system with this solution.
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Conclusion
In a natural language processing system, it is important to arrive at a good analysis for a 

sentence in a relatively short time. One way to achieve this is to decrease the parsing time 
by reducing the searching space. We have proposed a sequential truncation algorithm with 
a score function to achieve this goal.

In this sequential truncation strategy, a sequence of running thresholds are used to bound 
the searching space during each step of the scored parsing. In addition, a path can also be 
blocked by the branch-and-bound mechanism if its accumulated score is lower than that of an 
already completed parse tree. There are several reasons for adopting this strategy. First, the 
first parse tree with a moderate quality can be found quickly and easily. Second, the running 
threshold serves to truncate part of the path that is quite unlikely to lead to the best analysis, 
and thus greatly reduces the searching space.

We have made a pilot test on the truncation mechanism with a charted parser that adopts 
bottom-up parsing with top-down ‘"tering. With a database of 1430 sentences, the result 
indicates an average improvement ir le  sentence parsing time by the factor of four (for some 
sentences the improvement goes as . gh as a factor of twenty). However, we also discovered 
an incompatibility problem between the use of chart and the truncation mechanism. In another 
pilot test we conducted on the truncation mechanism, the sentence parsing time is tested for 
a chartless parser that adopts sequential parsing strategy. The result shows an improvement 
in parsing time by a factor o f three for the inclusion of the truncation mechanism. These 
encouraging results demonstrate a great promise for the sequential truncation strategy.

As our current research topic, we shall resolve the incompatibility problem between the 
chart and the truncation algorithm and include the solution into our working MT system, the 
ARCHTRAN.
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Abstract

An LR parser for probabilistic context-free grammars is described. Each of 
the standard versions of parser generator (SLR, canonical and LA.LR) may be 
applied. A graph-structured stack permits action conflicts and allows the 
parser to be used with uncertain input, typical of speech recognition 
applications. The sentence uncertainty is measured using entropy and is 
significantly lower for the grammar than for a first-order Markov model.

1. INTRODUCTION

1.1 Background

The automatic recognition of continuous speech requires more than signal 
processing and pattern matching: a model of the language is needed to give 
structure to the utterance. At sub-word level, hidden Markov models [1] 
have proved of great value in pattern matching. The focus of this paper is 
modelling at the linguistic level. Markov models are adaptable and can 
handle potentially any sequence of words [2]. Being probabilistic they fit 
naturally into the context of uncertainty created by pattern matching. 
However, they do not capture the larger-scale structure of language and 
they do not provide an interpretation. Grammar models capture more of the 
structure of language, but it can be difficult to recover from an early 
error in syntactic analysis and there is no watertight grammar.

A systematic treatment of uncertainty is needed in this context, for the 
following reasons:

(1 ) some words and grammar rules are used more often than others;
(2) pattern matching (whether by dynamic time warping, hidden Markov 

modelling or multi-layer perceptron [3]) returns a degree of fit for each 
word tested, rather than an absolute discrimination; a number of possible 
sentences therefore arise;

(3 ) at the end of an utterance it is desirable that each of these 
sentences receive an overall measure of support, given all the data so that 
the information is used efficiently.

The type of language model which is the focus of this paper is the 
probabilistic context-free grammar (PCFG). This is an obvious enhancement 
of an ordinary CFG, the probability information initially intended to 
capture (1 ) above, but as will be seen this opens the way to satisfying (2 ) 
and (3). An LR parser [4,5] is used with an adaptation [6 ] which enlarges
the scope to include almost any practical CFG. This adaptation also allows
the LR approach to be used with uncertain input [7], and this approach
enables a grammar model to interface with the speech recognition front end
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as naturally as does a Markov model

1.2 Probabilistic Context-Free Grammars

A "probabilistic context-free grammar (PCFG)" [8-10] is a 4-tuple <N,T,R,S> 
where N is a nonterminal vocabulary including the start symbol S, T is a 
terminal vocabulary, and R is a set of production-rules each of which is a 
pair of form <A a , p>, with AeN, a€(NuT)*, and p a probability. The 
probabilities associated with all the rules having a particular nonterminal 
on the LHS must sum to one. A probability is associated with each 
derivation by multiplying the probabilities of those rules used, in 
keeping with the context-freeness of the grammar.

A very simple PCFG can be seen in figure 1: the symbols in uppercase are 
the nonterminals, those in lowercase are the terminals (actually 
preterminals) and A denotes the null string.

2. LR PARSING FOR PROBABILISTIC CFGs

The LR parsing strategy can be applied to a PCFG if the rule-probabilities 
are driven down into the parsing action table by the parser generator. In 
addition, one of the objectives of using the parser in speech recognition 
is for providing a set of prior probabilities for possible next words at 
successive stages in the recognition of a sentence. The use of these prior 
probabilities will be described in section 3.1. In what follows it will be 
assumed that the grammars are non-left-recursive, although null rules are 
allowed.

2 . 1 SLR Parser

The first aspect of parser construction is the closure function. Suppose 
that I is an SLR kernel set consisting of LR(0) items of the form

<A -» a-£, p>

The item probability p can be thought of as a posterior probability of the 
item given the terminal string up to that point. The computation of 
closure(I) requires that items

<B -> ■ 7r» PbPt>

be added to the set for each rule <B -» 7 r, pr> with B on the LHS, provided 
pBpr exceeds some small probability threshold e, where pB is the total 
probability of items with B appearing after the dot (in the closed set).

New kernel sets are generated from a closed set of items by the goto 
function. If all the items with symbol Xe(NuT) after the dot in a set I 
are

<Ak ak -X/9k , pk> for k-l,...,nx , with px - £ pk
k - 1

then the new kernel set corresponding to X is

(<Ak -> akX-£k , pk/px> for k-1, . . . , nx}

and goto(I,X) is the closure of this set. The set already exists if there
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is another set which has the same number of elements, an exact counterpart 
for each dotted item, and a probability for each item that differs from
that for its counterpart in the new set by at most e.

Starting from an initial state I0 consisting of the closure of

{<S' -> -S, 1>>

where S' is an auxiliary start symbol, this process continues until no 
further sets are created. They can then be listed as I0 ,Ii,....

Each state set Ira generates state m and a row in the parsing tables 
"action" and "goto". The goto table simply contains the numbers of the 
destination states, as for the deterministic LR algorithm, but the 
action table also inherits probabilistic information from the grammar.

(1) For each terminal symbol b, if there are items in Im such that the
total Pb>f, and the shift state n is given by goto(Im ,b) - In , then

action[m,b] - <shift-to-n, pb>

(2) For each nonterminal symbol B, if Pb>« and goto(Im ,B)-In then 

goto[m,B] - n

(3) If < S ' -> S • , p> G Im then action[m,$] - <accept, p>

(4) If <B -> 7 * , p> E Ira where BhS' then

action[m , FOLLOW(B) ] - <reduce-by B -» 7  , p>

For the very simple grammar shown in figure 1 the parsing tables turn out 
as shown in figure 2, with shift-reduce optimisation [4,5] applied. The 
probability of each entry is underneath.

The range of terminal symbols which can follow a B-reduction is given by
the set FOLLOW(B) which can be obtained from the grammar by a standard
algorithm [4], For a probabilistic grammar, the probability p attached to 
the reduce item cannot be distributed over those entries because when the 
tables are compiled it is not determined which of those terminals can 
actually occur next in that context, so the probability p is attached to 
the whole range of entries.

The probability associated with a shift action is the prior probability of 
that terminal occurring next at that point in the input string (assuming no 
conflicts). Completing the set of prior probabilities involves following 
up each reduce action using local copies of the stack until shift actions 
block all further progress. The reduce action probability must be 
distributed over the shift terminals which emerge. This is done by 
allocating this probability to the entries in the action table row for the 
state reached after the reduction, in proportion to the probability of each 
entry. Some of these entries may be further reduce actions in which case a 
similar procedure must be followed, and so on.

2.2 Canonical LR Parser 

For the canonical LR parser each item possesses a lookahead distribution:

<A -> a * /?, p, {P(at) m >
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The closure operation is more complex than for the SLR parser, because of 
the propagation of lookaheads through the non-kernel items. The items to 
be added to a kernel set to close it take the form

' 7r » PbPt i (PB(aj))j = l.... i t  i )

so that all the items with B after the dot are then

<Ak -> ajj • , pk, { Pk(ai ) } 1=1 ,..., in> for k-1, . . . , nB

and
n B Pk lT l F 

P8 (aj) - I —  I P (/9ka 1 ,aJ)Plt(a1) 
k - 1  Pb i- 1

Fwhere P (^ka 1 ,aJ) is the probability of aj occurring first in a string
derived from £kai, which is easily evaluated. A justification of this will
be published elsewhere. The lookahead distribution is copied to the new 
kernel set by the goto function.

The first three steps of parsing table construction are essentially the 
same as for the SLR parser. In step (4), the item in Im takes the form

<B -» 7  • , p, (P(a1 ) ) 1 = 1.,T|> where B*S '

The total probability p has to be distributed over the possible next input 
symbols at, using the lookahead distribution:

actionfm.ai] - <reduce-by B -» 7 , pP(at)>

for all i such that pP(ai)>c. The prior probabilities during parsing 
action can now be read directly from the action table.

2.3 LALR Parser

Merging the states of the canonical parser which differ only in lookaheads 
for each item causes the probability distribution of lookaheads to be lost, 
so for the LALR parser the LR(1) items take the form

<A -» a- (3, p, L> where LCT.

The preferred method for generating the states as described in [4] can be 
adapted to the probabilistic case. Reduce entries in the parsing tables 
are then controlled by the lookahead sets, with the prior probabilities 
found as for the SLR parser.

2.4 Conflicts and Interprecat Lon

An action conflict arises whenever the parser generator attempts to put two 
(or more) different entries into the same place in the action table, and 
there are two ways to deal with them. The first approach is to resolve 
each conflict [11]. This is a dubious practice in the probabilistic case 
because there is no clear basis for resolving the probabilities of the 
actions in conflict. The second approach is to split the stack and pursue 
all options, conceptually in parallel. Toraita [6 ] has devised an efficient 
enhancement of the LR parser which operates in this way. A graph- 
structured stack avoids duplication of effort and maintains (so far as
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possible) the speed and compactness of Che parser. With this approach the 
LR algorithm can handle almost any practical CFG, and is highly suited to 
probabilistic grammars, the main distinction being that a probability 
becomes attached to each branch.

The generation and action of the probabilistic LR parser can be supported 
by a Bayesian interpretation. This is in keeping with the further 
adaptation of the algorithm to deal with uncertain input.

3. UNCERTAIN INPUT DATA

3.1 Prediction and Updating Algorithm

The situation envisaged for applications of the probabilistic LR parser in 
speech recognition is depicted in figure 3. The parser forms part of a 
linguistic analyser whose purpose is to maintain and extend those partial 
sentences which are compatible with the input so far. With each partial 
sentence there is associated an overall probability and partial sentences 
with very low probability are suspended. It is assumed that the pattern 
matcher returns likelihoods of words, which is true if hidden Markov models 
are used. Other methods of pattern matching return measures which it is 
assumed can be interpreted as likelihoods, perhaps via a transformation.

let (s-1 ,2 ,...) represent partial sentences up to stage m (the stage 
denoted by a superscript). let D represent the data at stage m, and (D) 
represent all the data up to stage m. Each branch 1^ predicts words
a™ (perhaps via the LR parser) with probability P(aj|r^ ), so the total 
prior probability for each word aj is

PCajKD)1"'1) - Is P(a” | C 1 )P(rrI|ID)"'1)

Using Bayes' theorem the posterior probabilities of the words are

P(Dn,ia”)P(a” | (D)™"1)
P(aj | (D) )

P(D” |aT)P(aTUD)"1)

inwhere P(D“ |a“) is the likelihood. If we define the extended branch r sJ 
as then after some manipulation the probability of this is

p ( a ^ | r r 1 ) P ( r r 1 | { D ) m " 1 )  m  n

PCrTjl (D)“ ) --------- ---------- -------- — ------------ P(a” I (D) ) (1)
P (a j | (D ) )

This shows that the posterior probability of a™ is distributed over the 
extended partial sentences in proportion to their root sentences s  ̂
contribution to the total prior probability of that word. If P(rsj| (D) )<e 
then the branch is suspended. The next set of prior probabilities can now 
be derived and the cycle continues.

These results are derived using the following independence assumptions: 

P(a?|a*,D“) - P(a^ | a") and P(D"|a“ ,Dk) - P(D’ |a”) 

which decouple the data at different stages.
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Figure 4 shows successive likelihoods, entered by hand for a (rather 
contrived) illustration using the grammar in figure 1. At the end the two 
viable sentences (with probabilities) are

"pn tv det n pron tv pn" (0.897)
"det n pron tv pn tv pn” (0.103)

Notice that the string which maximises the likelihood at each stage,

"pn tv pron tv pron tv pn"

might correspond to a line of poetry but is not a sentence in the language.

The graph-structured stack approach of Tomita [6 ] is used for non- 
deterministic input. Each path through the stack graph corresponds to one 
or more partial sentences and the probability P(r^|{D)m } has to be 
associated with each partial sentence r^.

3.2 Entropy of the Partial Sentences

Despite the pruning the number of partial sentences maintained by the 
parser tends to grow with the length of input. It seems sensible to base 
the measure of complexity upon the probabilities of the sentences rather 
than their number, and the obvious measure is the entropy of the 
distribution. The discussion here will assume that the proliferation of 
sentences is caused by input uncertainty rather than by action conflicts. 
This is likely to be the dominant factor in speech applications.

The sentence entropy is defined as

- - Z P(r”j| (D)“) log p<r^ji (dj")
s  > J

where natural logarithms are used. A related measure called "perplexity"
[1 2 ], defined as

?s " exp(H^)

is the equivalent (in entropy) number of equally-likely sentences. 
Substituting for P( j | {D }™) from equation (1) leads to

K? - - P(a*|(D)“)[ log P(a*|(D)°) - /l" ]
where

. m r-> _  . _ m— 1 . ■ . _ , o — 1 . - _ . „ m -1 . tn m -1.---P(I\ | a j, {D } ) log P(TS | a j, { D } )

is the entropy contributed by the sentences at stage m - 1  predicting word 
aj. The quantities /ij can be evaluated with the prior probabilities.

It can be shown that the sentence entropy has an upper bound as a function 
of the likelihoods:

w s <  log Ijexp(*j)
.  „ e x p (A * )

withequality when P(D | a %) <x ----------------------.
P (a. j | ID) )

The constant of proportionality does not matter. Figure 5(a) shows this
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upper bound for the grammar in figure 1, and it can be seen chat che 
perplexity is equivalent to 35 equally-1 ikely sentences after 10 words

The upper bound is very pessimistic because it ignores the discriminative 
power of the pattern matcher. This could be measured in various ways but 
it is convenient to define a "likelihood entropy" as

and the "likelihood perplexity" is _ jn P™ ” exp(K^).

The maximum sentence entropy subject to a fixed likelihood entropy can be 
found by simulation. Sets of random likelihoods with a given entropy can 
be generated from sets of independent uniform random numbers by raising 
these to an appropriate power. Permuting these so as to maximise the 
sentence entropy greatly reduces the number of sample runs needed to get a 
good result. These likelihoods are then fed into the parser and the 
procedure repeated to simulate the recognition process. The sentence 
entropy is maximised over a number of such runs.

The likelihoods which produce the upper bound line shown in figure 5(a) 
have a perplexity which is approximately constant at 6 .6 . This line is 
reproduced almost exactly by the above simulation procedure, using a fixed 
J3L °f 6 . 6  with 30 sample runs.

The simulation method is easily adapted to compute the average sentence
entropy over the sample runs. For this it is preferable to average the
entropy and then convert to a perplexity rather than average the measured 
perplexity values. This process provides an indication of how the parser 
will perform in a typical case, assuming a fixed likelihood perplexity as a 
parameter (although this could be varied from stage to stage if required).

Figure 5(a) shows how the average compares with the maximum for a fixed T L
of 6 .6 , and how the sentence perplexity is reduced when the likelihoods are
progressively more constrained - 5.0, 3.0 and 2.0).

3.3 Comparison with Inferred Markov Model

Markov models have some advantages over grammar models for speech 
recognition in flexibility and ease of use but a major disadvantage is 
their limited memory of past events. For an extended utterance the number 
of possible sentences compatible with a Markov model may be much greater 
than for a grammar model, for the same data. Demonstrating this in the 
present context requires the derivation of a first-order Markov model from 
a probabilistic grammar [13].

The uncertainty algorithm of section 3.1 will operate largely unchanged 
with the prior probabilities obtained from the transition probabilities 
rather than from the LR parser. Figure 5(b) contains results corresponding 
to those in (a), for the Markov model inferred from the grammar in figure
1. The upper bound reaches 409 after 10 words, for a likelihood perplexity 
of approximately 6.3, reducing to 37 for the average (after 30 sample 
runs). This falls with the likelihood perplexity but is higher than for 
the grammar model. The sentence perplexity for the grammar is twice that 
for the inferred Markov model after from six to nine words depending on 
This comparison is reproduced for other grammars considered.
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(1 ) S ^ NP VP, 1 . 0 (5) REL -> pron VP, 0.3
(2 ) NP -> pn, 0 4 (6 ) VP -» iv, 0.5
(3) NP -» det n REL, 0.6 (7) VP -» tv NP, 0.5
(4) REL -> A, 0 7

Figure 1: A simple probabilistic grammar.
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STATE
ACTION GOTO

pn det n pron iv tv $ S NP REL VP

0 sr2
0.4

si
0 .6

s2 s 3
1 s4

1 .0
2 acc
3 sr6

0.5
s5

0.5

1 .0
srl

4 s6
0.3

r4 r4
0.7

r4 sr3
5 sr2 si

--- >
sr 70.4 0 .6

6 sr6
0.5

s5
0.5

sr5

Figure 2: SLR and LALR parsing Cables for the grammar in figure 1.

Figure 3: Linguistic control block diagram for speech recognition.

TERMINAL
> STAGE (m)

1 2 3 4 5 6 7 8

pn 0.9 0.3 0.4 0.9
det 0 .2 0.4

n 0 .2 0.5
pron 0 .8 0.7

I V

tv 0 .8 0 .1 0.9 0 .8
$ 1 .0

Figure 4: Likelihoods for illustration of uncertainty algorithm.
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INTRODUCTION
T he purpose o f  parsing natural language is essentia lly  to ass ign  to a linear input string o f  

sym bols  a formalized structural description that reflects the underlying linguistic  (syntactic 
and/or  sem antic) properties o f  the utterance and can be used for further information  
process ing .

In most practical applications, this delinearization  [4] is acheived by so m e  kind o f  
recursive panern matching strategy w hich  accepts texts in standard orthographic writing, i .e .  
com p osed  o f  discrete sym bols  (the letters and signs o f  som e  specified alphabet) and blocks o f  
svm b ols  (words separated by blanks) as input, and rewrites them step by step, in accordance  
with (1) a lexicon and (2) a finite set o f  production rules defined in a formal gram m ar, into a 
parse tree or a bracketed string. This approach is co m m o n ly  restricted to the dom ain  o f  the 
sen ten ce  as maximal unit o f  linguistic p rocess ing ,  thus adhering to the traditional view that 
larger units like paragraphs, texts and d iscou rse ,  are formed by mere juxtaposit ion o f  
autarchic, independently parsed sentences.

C learly , this kind o f  procedure developed for parsing written language material is not im ­
mediately applicable to speech process ing  purposes. For o n e .  natural hum an speech does not 
norm ally  present itself in the acoustical m edium  as a s im ple  linear string o f  discrete ,  well  
demarcated and easily  identifiable sy m b o ls ,  but constitutes a con tinu ou sly  varying signal  
w h ich  incorporates virtually unlimited allophonic  variations, reductions, e l i s io n s ,  repairs,  
overlapping segm ental representations, grammatical def ic ien c ies ,  and potential am bigu ities  at 
all levels o f  linguistic  description. T here  are no "blanks" and "punctuation marks" to define  
w ords or indicate sentential boundaries in the acoustic d om ain .  Syntactic structures at least in 
spon tan eou s speech  are often fragmentary or h ighly irregular, and cannot be easi ly  defined  
in terms o f  established grammatical theory [26]. Last not least, important com p on en ts  o f  the 
total m essa g e  are typically encoded and transmitted by nonverbal and even nonvocal m eans o f  
co m m u n ica t io n  [ i s ] .

O n  the other hand, hum an speakers organize  and present their speech output in terms o f  
w ell  defined and clearly delimited chunks rather than as an unstructured, am orp hous chain  o f  
s ign a ls .  T h is  div ision into chunks is represented a m on g  other parameters in the time co u rse  
o f  v o ice  fundam ental frequency ( F 0 ) w here  it appears as a seq u en ce  o f  coh eren t intonation 
units optionally  delimited by pauses and/or  periods o f  laryngeaiization [19], and con ta in ing  at 
least on e  salient pitch m ovem ent [9].[20]. H um an  listeners are able to perceive these  units as 
"natural groups" form ing  a kind o f  performance structure [ 12],  w hich  reflects the information 
structure o f  the utterance [ 14] and is used to decode the intended m eaning  o f  the transmitted  
m essa g e .  T h is  involves ( I )  ch op p ing  up the m essage  into information units in accordance  with  
the speaker 's  and listener's  shared state o f  kn ow led ge .  (2) organ iz ing  these units both  
internally and externally  in terms o f  given and new inform ation, and (3) se lect ing  o n e  or at 
the m ost two e lem en ts  in each unit as points o f  p rom in en ce  within the m essa ge .

SYSTEM OVERVIEW
W h ile  written lan gu age  input is generally  presented to the parser with both the terminal 

svm bols ( i .e .  w ords) and the starting symbols or roots ( i .e .  sen ten ces)  c learly  delineated and  
set o f f  from each  other by spaces and/or  punctuation marks, thus im p os in g  the parsing  
algorithm  with the task to identify som  kind o f  intermediate structure(s) representation  
c o m p o sed  o f  variables  from a finite set o f  non-terminal sym bols or categories  ( i .e .  the phrase  
structure, constituent structure, functional structure, e tc ) ,  essentia l ly  the reverse applies  
w h en  parsing con n ected  speech  input. That is , the cont in u o u sly  varying sp eech  s ignal is 
presented to the analys is  with som e  kind o f  intermediate structure(s) representation either  
im m ediate ly  ob servab le  ( e .g .  the vo iced -u nvo iced  distinction betw een individual speech  
so u n d s)  or readily d ed ucib le  ( e .g .  the prosodic  structure expressed  in patterns o f  intonation  
and accentuat ion) without prior know ledge  o f  h igh er- leve l linguistic  in form ation , thus leaving  
the parser with the task to recogn iz e  (or rather support the recognit ion  of) both the individual  
w ords and the full s en ten ces .

T h is  reverse relat ionship betw een text parsing on on e  s ide and speech  parsing on  the  
other is illustrated schem atica l ly  in figure 1. It must be appreciated in this context that the  
interm ediate structure(s)  representations in text versus speech  parsing are neither identical  
nor n ecessa r i ly  isom orp h ica l .
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TEXT INPUT
SPEECH INPUT

INTERMEDIATE
STRUCTURES

LEXICON PARSER GRAMMAR

(  WORDS " )  (SENTENCE^

F igu re  1 Parsing N L  text versus parsing connected  speech

T h e speech  parsing algorithm presented in this study is thus initiated by a data-driven  
, spCeCh segm entation  stage that exploits the prosodically  cued chunking present in the  

acousticsi! speech  signal and uses it to perform automatic, speaker- independent segm entation  
o f  con t in u o u s  speech  into functionally defined intonation/information units. For this purpose.

o  g lobal declination  lines are computed by the linear regression  method, w h ich  approximate  
the trends in time o f  the peaks (topline) and vallevs (baseline) o f  F .  across  the utterance  
C om putation  is reiterated every time the Pearson Product Moment Correlation Coefficient drops  
below  a preset level o f  acceptability. Segmentation is thus performed without prior know ledge  
ot h igher - lev e l  linguistic information, with the termination o f  on e  unit being determ ined bv 
the general resetting o f  the intonation contour w herever  in the utterance it may occu r .

Earlier studies in the correlations between prosodv and gram m ar have sh o w n  that the 
intonation units thus established t im e-align  in a clearly defined way with units o f  linguistic  
structure that can be described  in probabilistic terms with respect to three interlacing levels  
ot analysis: constituent structure, linear word count and duration [ i ] . [ : o ] .  F u rth erm ore ,  o n c e  
the extent o f  an intonation unit has been established both in the time and in the frequency  
d o m a in ,  areas o f  p r om in en ce  can easily  be detected as overshoot ing  or undershoot ing  F  
ex cu rs io n s  that provide valuable points o f  departure for further linguistic  analys is and island  
parsing strategies.

A detailed description o f  the segm entation  algorithm together with an evaluation o f  its 
p erform ance  on three m ed ium  sized Sw edish  texts read by four native speakers (two fem ale ,  
two m ale) is presented in [21 ]. P rob lem s o f  classif ication by m eans o f  h ierarchically  
orga n ized ,  non -p aram etr ic .  m ult ip le-hypothes is  c lassif iers are d iscussed  in [6], A statistical 
evaluation  and coarse  classif ication  o f  the t im e-a l ignm ent between the intonation units 
established by our segm entation  algorithm and features o f  linguistic  structure at the level o f  a 
com p le te  sen ten ce  (S ) .  c la u se  (C ).  noun phrase (S U B ) ,  verb phrase (V P ) ,  adverbial m odifier  
(A D V )  and parenthetical construction  (PAR) can be found in [20] and [21 ].

T h e  present paper deals specifically  with design aspects o f  a parsing a lgorithm  that 
accepts the output o f  the speech  segm entation  stage as input and uses it

1 - to build a case gram m ar representation o f  the orig inal
speech  utterance:

2 - to gu id e  the word recognition process  by generating
expectations resulting from partial linguistic  analyses.

In the fo l low in g  sec t ion s ,  the gram m ar form alism , the lexicon and the parser will be  
presented  as separate m od u les .  P rob lem s o f  integration with other language  m odels  
( l in gu ist ic  and stochastic) will be d iscu ssed  in the sum m ary .
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G R A M M A R

T h e gram m ar form alism adopted for syntactic /sem antic  parsing o f  the speech input is 
based on F il lm ore 's  case gra m m a r  [ 1 1 ] . A ccord in g  to this approach, a sentence in its basic
structure (deep structure as opposed to surface structure) is com posed  o f  a modality
com p on en t  M  and the proposition  P:

S => M  + P (1)

w here M  defines a series o f  m odes w hich  describe aspects o f  the sentence as a whole:

M *  tense, a sp e c t . . .m ood (2)

and P con sists  o f  the verb together with various cases related to it:

P => V erb +  C t +  C  ̂ C n (3)

with the indices in C , denoting that a particular case relationship can on ly  occur  o n ce  in a 
proposition .

Each case is defined according to Simmons [28] as:

C *  K +  N P  (4 )

w h ere  K (w hich  mav be null) stands for the preposition w hich  introduces the noun phrase
and defines its relationship with the verb:

K *  Prep (5)

and the noun phrase N P  is defined as:

N P  => (P rep)*  +  (D et)*  +  (A d jIN )*  +  N  +  (S I N P )*  (6)

in w h ich  the parentheses denote optional e lem en ts ,  the asterix m eans that the e lem en t  may be
repeated, and the vertical bar indicates alternation.

A  full case  gram m ar representation can thus be described as a tree structure in the form .

S

M o d a l i ty

W ith in  the general fram ework o f  case  gram m ar, the fo l low ing  m odes  and their respective  
p oss ib le  va lues  have been adopted:

T E N S E  - present,  past, future
A S P E C T  - perfect, im perfect
E S S E N C E  - positive, negative, indeterminate
F O R M  - s im p le ,  em phatic ,  progress ive
M O D A L  - can . may, must
M O O D  - declarative, imperative, interrogative
M A N N E R  - adeverbial
T I M E  - adverbial
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The modality of the utterance as a whole is ultimately determined by the combination of the 
individual values assigned to each of the modes listed above.

At least five of these eight modes, i.e. form. mood, essence and the adverbials of time 
and manner have been shown to be directly reflected in the intonation contours of natural 
human speech (e.g. [2].[5 ].[2 0 ].[27]). For instance, emphatic pronunciation appears to be 
universally signaled by larger pitch movements both in the local (emphatic accent) and in the 
global (wider k e y )  domain. Imperative mood, in addition to displaying on the average shorter 
durations per intonation unit, is usually associated with higher F  0  onsets and steeper
declination line falls, whereas declarative mood is typically cued by low. target-value F

offsets, often combined with a short period of laryngealization or devoicing. Adverbials. botft 
of manner and time, are commonly processed in terms of separate intonation units,
especially w'hen they appear at utterance-final positions. The interrogative mood, at least as 
far as non-WH-questions are concerned, is signaled intonationally in most languages studied 
so far by rising intonation patterns, terminally and/or globally (the latter predominantly with 
respect to the topline).

As shown earlier, the speech segmentation algorithm not only aims to unearth the
underlying intonation/information structure of the utterance, but also represents the
calculated values of various intonation unit parameters (i.e. duration, declination slope, 
onset, offset and resetting, for the baselines and toplines respectively) in a 10-parameter
vector which is used for a first broad classification and hierarchization (see references
[6],[20] and [2i] for further details). Individual values are measured in Hz ( F  -values) or
milliseconds (durations) and represented in separate probability density functions (P D F )  
which allows for (1) finer grain. (2) fast computation of average means, standard deviations 
and modal targets, and (3) direct comparison and categorization of individual intonation unit 
parameters reflecting m o d a l i t y  by simple and robust VQ methods.
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Figure 2 Intonation unit param eters for on e m ale speaker
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In su m m ary , modality provides essential information about the propositional content o f  
the utterance. It also provides valuable cues  to word order (e .g .  interrogative mood is often  
associated with inverted word ord er) ,  word structure (e .g .  imperative sentences usually  lack a 
lexical express ion  for the subject, w hich is co m m on ly  understood to be the addressed  
p erson ) ,  and constituent identity. D eterm in ing  the modality at an early stage o f  the parsing  
process by probabilistic evaluation o f  the intonational cues specified by the segm entation  
algorithm thus helps (1) to establish important aspects o f  the overall m eaning  o f  the  
utterance, and (2) to judge the plausibility o f  alternative word order hypotheses.

Proposition
In traditional case gram m ar, the main verb in the proposition constitutes the kernel to 

w h ich  the cases  are attached, and the auxiliary verbs contain much o f  the information about  
modality. It is thus important to detect and identify the verbal e lem ents o f  the utterance at an 
early stage o f  the parsing process .

It has been sh ow n  earlier that on ce  the extent o f  an intonation unit is established both in 
the time and in the frequency dom ain , areas o f  p rom in en ce  can easily  be spotted as 
oversh oot in g  or undershooting pitch excu rsion s  that reach outside the F 0 range defined by 
the com puted  b asel ine-top line  configuration . Unfortunately , only  a sm all proportion o f  these  
prom inent pitch obtrusions (less than one  third, i .e .  3 1 .6  %. in our accum ulated  Sw edish  
material com p ris in g  10 440  running  words and 7 0 4  sentences o f  read speech  recorded by  
four native speakers) have been found to be directly associated with the verbal constituents in 
natural hum an sp eech , and thus provide an im mediate cue for the detection and identification  
o f  the case head. O n the other hand, these v erb -p rom in en ce  co in c id en ces  - at least in our  
S w ed ish  material - have been found to be strongly related:

1 - to prom inent pitch obtrusions in the initial parts o f  the 
individual intonation units ( 8 1 .7  %). w hereas prom in en ce  in 
the final parts appears to be predominantly associated with  
nominal constituents (77 .1  % ):
2 - to lower average F 0 values o f  overshoot ing  pitch 
prom in ence  (typically around 12 H z for our male speakers  
and 17-2 0  Hz for their fem ale counterparts) ,  w hereas pitch 
pro m in en ce  in connection  with focal accent or em p hasis  on  
nom inals  reaches on the average significantly  h igher values.

T h is  latter p h e n o m en o n  apparently applies irrespective to the position o f  the pitch 
obtrusion  with regards to earlier or later sect ions o f  the intonation unit.

In su m m a ry ,  about on e  third o f  the prom inent pitch obtrusions com puted by the speech  
segm entation  algorithm  are directly associated with verbal constituents ,  and can thus be  
regarded as reliable cu es  to indicate verbal case  heads in connected  sp eech  parsing. O n  the 
other hand, the ov erw h e lm in g  majority o f  prom inent pitch excu rs io n s  t im e-a lign  with  
n om inal co n stru ct ion s ,  i .e .  s ign a ling  the "important", "new", "unpredictable" words  
carrying  most o f  the sem antic  information content in the utterance, w hereas  most o f  the  
potential verbal ca se  heads are associated with n on-obtrusive  pitch m ovem en ts  inside the  
b a se l in e -to p lin e  configuration .

A lbeit  for ob v iou s  reasons this situation is far from optimal for a casefram e approach to 
con tin u o u s  sp eech  parsing, w e  con s id er  the fact to be able to reliably identify about o n e  third 
o f  the potential verbal case  heads in natural hum an sp eech , and to use them to construct a 
skeleton  o f  verb kernels around w hich  a case  gram m ar representation o f  the original  
utterance can be built,  as a p rom isin g  step in the right direction.

Several attempts have been reported in the literature to extend the traditional case -  
theoretic approach to include even  nom inal case fra m es ,  i .e .  to construct ca se  gram m ars that 
use  case fra m es  not on ly  to d escribe  verbs but also the head nouns o f  nou n  phrases (see  for 
instance  [15]).  W ork  in this direction is o n g o in g  and will be reported in later papers.

A  fuller presentation o f  the gram m ar com p o n en t  built for parsing c o n t in u o u s  sp eech  
input, together with an im plem entation study for Sw edish  speech  input is prepared for  
presentation at C O L I N G  9 0 .
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LE X IC O N

The lexicon to be used with the parser is specially designed for speech processing 
applications (text-to-speech. speech recognition, speech coding, etc) and supports the 
caseframe approach to continuous speech parsing outlined in this studv. Its format is defined 
as a Swedish monolingual dictionary which contains in addition to the standard entries (head, 
homograph index, part-of-speech. inflexion code, morphological form classes, etc) also:

1 - a narrow phonetic transcription reflecting standard
pronunciation usage:

2 - the textual frequency rating based on a one-million word
korpus of Swedish newspaper articles:

3 - an indexed caseframe description for each verb entry.

For the latter purpose, the following reduced set of cases has been adopted from Stockwell. 
Schachter and Partee [29]. with definitions compiled by the author:

AGENT - animate instigator of the action
DATIVE - animate recipient of the action
INSTRUMENTAL - inanimate object used to perform the

action
LOCATIVE - location or orientation of the action
NEUTRAL - the thing being acted upon (combining

the objective and the factive in 
Fillmore's original list of cases

A caseframe is thus defined as an ordered array composed of the entire set of cases

casefram e = a rra y [a g e n t . . .  n e u tr a l] (8)

in which each case can be either required ( req )  or optional (o p t )  or disallowed (d is) and 
must be marked accordingly.

Since several different verbs often share the same particular kind of caseframe. we 
propose to store the entire set of 3 5 logically possible caseframes as an indexed list, using 
the indices as pointers (identifiers) with the respective verb entries in the lexicon. Thus, 
instead of listing the complete caseframe specification together with the lexical entry as in the 
following example for the Swedish verb "hacka" (to chop):

hacka 3 type: verb  
i n f l :  v l 
freq : 4
tran: [ 2 hakka] 
case: agent -  req 

d a tiv e  -  d is  
in stru m en ta l -  opt 
lo c a t iv e  -  opt 
n eu tra l -  opt

using the indexed representation format results in the more space-economic and search- 
effective structure:

hacka 3 type: verb  
in f l :  v l  
freq : 4
tran: [ 2 hakka] 
case: 97

O b serv e  that the entry " t y p e :  v e r b "  might at first g lance appear redundant in v iew  o f  the  
fact that to begin  with on ly  the verb entries are listed with ca sefram es.  As indicated in the  
previous sect ion ,  how ever ,  we plan to include casefram e descriptions even for n ou ns  and
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other nom inal constructions , with feature descriptions based on research on valency theory  
currently  conducted at the department o f  computational linguistics . Further lexical work, is 
also directed towards the extension o f  individual case states marked as " r e q "  or " o p t "  with  
probabilistic lexical hypotheses derived from K W IC -studies  o f  coherent speech .

PARSER
G iven the potentially ungrammatical and often highly fragmentary nature o f  con tinu ou s  

speech  input, the actual parsing o f  the prosodicallv segm ented  utterance is performed  
fo l low ing  a flexible ,  m ultiple-strategy, constru ction -sp ec if ic  approach as proposed am on g  
others bv Carbonell Sc Hayes [s ]) .  Kw asnv & Sondheim er  [24] and W eisch ed e l  & Black [31]. 
A fundamental objective associated with this kind o f  approach is to integrate general signal  
p rocess in g  and natural language process ing  techniques (both linguistic and stochastic) in 
order to fully exploit the com bination  o f  partial information obtained at various stages o f  the 
analys is .

As sh ow n  earlier, the output o f  the speech segm entation algorithm and input to the parser 
is a linear seq u en ce  o f  parameter vectors representing the L PC -coeffic ients  and pitch value  
estimates o f  the original con tin uous speech utterance at 16m s-intervals,  with the F 0 contour  
segm en ted  into prosodically  defined intonation/information units.  Typical prosodic structure  
representations are exem plified  below in Figure 3 for three short sam ples o f  Sw edish  (m ale  
speaker, h igh-quality digital record ing) .  E nglish  (fem ale speaker, poor-quality a na logu e  
recording) and Japanese (m ale speaker, toll-qualitv analogue recording) speech .

S W E D I S H  (male speaker) E N G L I S H  (female speaker) J A P A N E S E  (male speaker)

Cr>mmgen kom klockan J pd m orjonen 14 < \ 1 264 och 
England n od  mfor mbordeskngets khm at A 'migen torn *or 
Jen misslyckade H ennk III. to* annu i k lo tirrt i Lewes. 
*uvu<u>ad i grevskapei Sussej omgiven a* ana sot date r 
Ujtiike 7000 man. Hon *ade nvligen merkomnyi fran 
Fr& iknkr 1 ttadent jastnmg rt normtMtdi^ka tom  ann* 
reser tig  oanfran den iago bebrggelten i tinden. befann 
sig Pnns E fcard. kungens ton. och k a n  tom  Langtkank. 
Edvard k ommen dr rnOt JOOO txn + ta  nddare

The *rm  Mrw U nhods im Marketing m m  mat* some ihtnk o f 
Vain* A nm inu . *+*ch can tx  defined a t an odtecitve and 
imagine*iv* took at a p ro + x i or iernce io tee i f  il is 
poesidie io mad* u more profitable at tom* cost or to 
supply the idem dnaiiry at a lower cost, or o f System telling. 
~nich meant that a com jnv. instead o f telling an \toiote4  
machine or component, offers a com pete  system a com pete  
factory or pom tr disindtnion system.

Nihon no dona m atht m mo ryokm  go \adi\mm anmomt. 
Sono n m a  m  mm yofu no rypkan mo anm ant

4r**d »m kjito Nthaek-fi no *ado m o-*omon m  nmntm  
desho Myaiesn w  yo ft no hotem  to wo chigaimatm

Yado m  isudu *o jochm go heya «i annat shu t kart anom  
»a iugu Lunano ni iikanntuti

H nm  no mannada nj chmana h iL u  shoimiodM go an. 
anota tab*ton w  tu+ m nm an
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F igu re  3 Prosod ic  structure representation for three short 
sam ples o f  S w ed ish .  E nglish  and Japanese speech .  A rrows  
indicate areas o f  pro m in en ce  outside the F Q range defined by  
the b ase l in e -top lin e  configuration .

T h e  calculated values o f  the intonation unit parameters duration, dec lination ,  onse t ,  offset  
and resetting, for the base l ines  and toplines respectively, are stored in a 10-param eter vector  
and used  for a first broad classif ication  and hierarchization o f  the material.

O n c e  the sp eech  segm entation  algorithm has established the extent o f  an
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intonation/information unit both in the time and in the frequenv d om ain ,  areas o f  
p rom in en ce  can be easily spotted as overshooting or undershooting pitch excursions  reaching  
outside the F 0 range defined by the computed baseline-topline  configuration. P rom in ence  is 
measured by the H z-distance above topline or below baseline respectively (com pare figure 2).

Based on the probabilistic data for verb-prominence correspondences established in the
previous section, the verbal components of the utterance are localized and used as points of
departure for further linguistic processing. As shown among others by Waibel [30] for 
English and Bannert [j] for German, these pitch obtrusions provide the must reliable cue for 
the automatic detection if s t r e s s  in continuous speech recognition, i.e. marking the 
"important'' words carrying most of the semantic information content in the utterance. In 
addition, stressed syllables are commonly pronounced with longer durations and better 
articulation, which qualifies them as "islands of phonemic reliability", generally scoring 
better recognition rates than the unstressed (reduced, neutralized) parts of the utterance.

Parsing is run in parallel with the acoustic-phonetic classifier, following a hypothesis- 
driven island parsing strategy, i.e. using the areas of prominence (islands of reliability) as 
points of departure for inside-out processing. In other words, the classifier first forms a 
hypothesis about the phonetic identity of the speech segment(s) at the center of prominence. 
After that, the island is gradually expanded in both directions by verifying neighbour phone 
candidates using continuously variable hidden Markov models (H M M ) [25] based on 
precompiled allophone/diphone/triphone statistics [16] and bounded by phonological 
constraints expressed in the form of finite state transition networks as proposed among others 
by Church [ioj.

Island expansion  proceeds to the beginn ing  and end o f  the respective intonation /in form a­
tion unit, thus constructing  a phone lattice that spans the entire duration o f  the IU .  A  word  
lattice o f  the input utterance is hypothesized on the basis o f  information about (1) the most  
probable num ber o f  words predicted for the respective intonation/information unit as derived  
from the broad classif ication [21]. (2) the language specific  know ledge about the phonotactic  
properties within words and across words defined by the phon ology-con stra in ed  d iphone and
triphone m od els .  (3) the expected case identities generated by the caseframe  entries in the
lex ico n ,  and (4) the lexical identities listed in a Sw edish  pronunciation lexicon [17]. Syntactic  
( in c lu d in g  m orphologica l)  constraints are on ly  weakly defined in a constituent-based  context-  
free gram m ar formulation (C F G ),  w hich is aimed to permit su ccessfu l  parses even  for 
fragm entary and/or  gramm atically  deficient speech input and is expected to support the 
p runing  o f  "unprom ising" parses at an early stage o f  the analysis.

It must be appreciated in this context that on ly  about on e  fifth o f  all in tonation /in form a­
tion units unearthed by the speech segm entation  algorithm (1 8 .2 %  in our Sw ed ish  material) 
align in a s im ple  o n e - to -o n e  fashion with full sen ten ces ,  w hile  the majority (8 1 .8 %  in the 
S w edish  material) a ligns with features o f  constituent structure in the su b -sen ten ce  dom ain .  
T his  im plies that the ov erw h e lm in g  majority o f  full sentences (grammatical as well as
ungram m atica l)  contained in continu ou s speech is processed  in terms o f  several  
in tonation/inform ation  units. Empirical study o f  our accum ulated Sw edish  speech  material 
revealed an average o f  2 .3 6  IU s  per sentence  with three clearly defined m odes  at 2 ,  3 and 5
IU s  [20]. It must be appreciated in this context that sentences  com p osed  o f  4  or m ore
intonation/inform ation  units typically contain parallel structures su ch  as enu m era t io n s ,
appositions , parentheticals and rhetorical repetitions.

G iven  the limited nu m b er  o f  actually o ccu rr ing  IU -p e r -sen ten c e  conste llat ions represented  
by the com b ination  o f  (1) the most probable num ber o f  IU s  per sen ten ce ,  (2) the internal  
properties o f  each  individual IU  specified in a 10-parameter vector con ta in ing  duration,  
on se t ,  offset,  s lop e  and resetting values for the basel ine  and topline respectively , and (3) the  
scored  lattice o f  constituent label(s) derived from the coarse-c lass if ication  procedure ,  the su b ­
p roblem  o f  sen ten ce  generation by intonation unit concatenation can be con ven ien t ly  solved  
bv a finite-state parsing strategy such  as proposed by G ibbon  [ 13]. i .e .  u s in g  a finite-state 
automation  (F S A ) with transition probabilities attached to each arc.

S U M M A R Y  AND CONCLUSIONS
T h e  speech  segm en tation ,  classification and hierarchization co m p on en ts  have been  

developed for Sw ed ish  speech  input. T esting  the algorithm for E n glish  and Japanese sp eech  
input is o n g o in g  and sh ow s prom ising  results. Further research focuses  on  im provem ents in 
the definition o f  the linguistic  description format (i.e . incorporating n om inal ca se fram es ,  
attaching probability scores  for cases  in the " o p t "  state, includ ing  lexical hypotheses with
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the casefram e entries ,  integrating the case grammar with a functional grammar com p on en t ,  
etc) .

W e like to believe that the approach presented in this study show s promise not only  for 
spoken input parsing in general,  but for a num ber o f  practical applications in the field of  
speech process ing  including te lecom m unication ,  interpreting telephony, automatic keyword  
extraction, and text-to-speech synthesis .  Linear regression lines are easily calculated and 
require onlv  little computational effort, w hich makes the segmentation algorithm a fast, 
robust and objective technique for computer speech applications. M odulating voice  for 
increased informativitv exploits a natural strategy that human speakers use quite automatically  
in com m u n ica t ive  situations involving channel defic iency  (e .g .  due to static, transm ission  
noise ,  or masking effects) and/or different kinds o f  ambiguity P rom inent pitch
ex cu rs io n s  (together with greater segm ental durations) constitute a universally used feature o f  
language that is em ployed  to signal new versus g iven , contrastive versus presupposed ,  
thematic versus rhematic information in connected speech utterances [7] and can thus be used  
as a reliable cu e  to quickly identify the sem antically  potent keywords in the m essa ge .  In 
addition, the frequency range covered by voice phenom ena  (intonation, accentuation ,  
larvngealization) lies safely within the normal band limits o f  te lecom m u nication ,  w hich  
qualifies F 0 as a natural, versatile, and access ib le  code for hum an-com puter  interaction via 
te lephone.

F inallv .  text-to-speech systems using standard syntactic parsers designed to find 'm ajor  
svntactic boundaries" at w hich  the intonation contour needs to be broken into separate units  
that help the listener to decode the m essage ,  invariably co m e up with the sam e two kinds o f  
problem s [23]:

1 - they tend to produce not one (the most probable, sem antically  most
plausible) but several alternative parses:

2 - they produce too many boundaries at falsely detected or inappropriate
sen ten ce  locations.

Perceptual evaluation o f  these synthesized contours reveals that listeners get distracted and  
often even piainlv confused  by too many prosodicallv  marked boundaries ,  w h ile  too few  
prosodic  breaks just sound like as if the speaker sim ply is talking too fast. T h ese  find ings not 
onlv  sh o w  that the am ount o f  segm entation and the corresp on den ce  between syntactic and  
prosodic units are dependent on the rate o f  sp eech , but that listeners apparently neither  
expect,  nor need, nor even want prosodically  cued information about all the potential 
r ich n ess  in syntactic  structure described by modern syntactic theories,  in order to decode  the 
intended m ean in g  o f  an utterance.
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P a rs in g  C on tin u o u s  S p eech  by HMM-LR M ethod
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Abstract
This paper describes a speech parsing method called HMM-LR. In HMM-LR, an LR parsing table 

is used to predict phones in speech input, and the system drives an HMM-based speech recognizer 
directly without any intervening structures such as a phone lattice. Very accurate, efficient speech 
parsing is achieved through the integrated processes of speech recognition and language analysis. 
The HMM-LR method is applied to large-vocabulary  speaker-dependen t Jap an ese  phrase 
recognition. The recognition rate is 87.1% for the top candidates and 97.7% for the five best 
candidates.

1 Introduction
This paper describes a speech parsing method called HMM-LR. This method uses an efficient 

parsing mechanism, a generalized LR parser, driving an HMM-based speech recognizer directly 
without any intervening structures such as a phone lattice.

Generalized LR parsing [1] is a kind of LR parsing [2], originally developed for programming 
languages and has been extended to handle arbitrary context-free grammars. An LR parser is guided 
by an LR parsing table automatically created from context-free grammar rules, and proceeds left-to- 
right without backtracking. Compared with other parsing algorithms such as the CYK (Cocke- 
Younger-Kasami) algorithm [3] or Earley’s algorithm [4], a generalized LR parsing algorithm is the 
most efficient algorithm for natural language grammars.

There have been some applications of generalized LR parsing to speech recognition. Tomita [5] 
proposes an efficient word lattice parsing algorithm. Saito [6] proposes a method of parsing phoneme 
sequences tha t  include altered, missing and/or extra phonemes. However, these methods are 
inadequate because of the information loss due to signal-symbol conversion. The HMM-LR method 
does not use any intervening structures. The system drives an HMM-based speech recognizer 
directly for detecting/verifying phones predicted using an LR parsing table.

HMM (Hidden Markov Models) [7] has the ability to cope with the acoustical variation of speech 
by means of stochastic modeling, and it has been used widely for speech recognition. In HMM, any 
word models can be composed of phone models. Thus, it is easy to construct a large vocabulary speech 
recognition system.

This paper is organized as follows. Section 2 describes the LR parsing mechanism. Section 3 
describes HMM. Section 4 describes the HMM-LR method. Section 5 describes recognition 
experiments using HMM-LR. Finally, section 6 presents our conclusions.

2 LR Parsing
2.1 LR P ars ing

LR parsing was originally developed for programming languages. It is applicable to a large class 
of context-free grammars.
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The LR parser is deterministically guided by an LR parsing table with two subtables (action table 
and goto table). The action table determines the next parser action ACTION[s,a] from the state s 
currently on top of the stack and the current input symbol a. There are four kinds of actions, shift, 
reduce, accept and error. Shift  means shift one word from input buffer onto the stack, reduce means 
reduce constituents on the stack using the grammar rule, accept means input is accepted by the 
grammar, and error means input is not accepted by the grammar. The goto table determines the next 
parser state GOTO[s,A] from the state s and the grammar symbol A.

The LR parsing algorithm is summarized below.

1. Initialization. Set p to point to the first symbol of the input. Push the initial state 0 on top of 
the stack.

2. Consult ACTION[s,a] where s is the state on top of the stack and a is the symbol pointed to by 
P-

3. If ACTION[s,a] = “shift s' ”, push s’ on top of the stack and advance p to the next input symbol.
4. If ACTION[s,a] ^ “reduce A— p”, pop |0| symbols off the stack and push G O TO is 'A ] where s’ is 

the state now on top of the stack.
5. If ACTION[s,a] = ,laccept”, parsing is completed.
6. If ACTION[s,a] = “error”, parsing fails.
7. Return to 2.

2 .2  Genera l ized LR Pars ing
Standard LR parsing cannot handle ambiguous grammars. For an ambiguous grammar, the LR 

parsing table will have multiple entries (conflicts). As a general method, a stack-splitting mechanism 
can be used to cope with multiple entries. Whenever a multiple entry is encountered, the stack is 
divided into two stacks, and each stack is processed in parallel. Thus, it is possible to use LR parsing 
to handle an ambiguous grammar which describes natural language.

e o u k r S

0 s5 s2
1 s7,r3 r3
2 s9 s 10
3 r2

(1) S ->  N P V 4 sS S11

(2) S -»  V 5 s 13

(3) NP - ♦  N 6 acc

(4) NP —» N P 7 r6

(5) N - » k o r « 8 r4

(6) P ->  o 9 s14

(7) V - *  k u r e 10 si 5

(8) V -»  o k u r e 11 s 10
12 r1
13 s 16

Fig.l  Example grammar 14 s 17
15 s 18
16 s 19
17 r5 r5
18 Xl
19 $20
20 r8

Fig .2  LR parsing table
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A  s i m p le  e x a m p l e  g r a m m a r  is  s h o w n  in  F i g . l ,  a n d  th e  LR p a r s in g  ta b le ,  c o m p i le d  from th e  

g r a m m a r  a u t o m a t i c a l ly ,  is  s h o w n  in  F i g . 2. T h e  le f t  p a r t  is th e  a c t io n  ta b le  a n d  th e  r ig h t  p art  is  the  

g oto  ta b le .  T h e  e n tr y  “a c c ” s t a n d s  for th e  a c t io n  "accep t",  a n d  b la n k  s p a c e s  r e p r e s e n t  “ erro r” . T h e  

t e r m in a l  s y m b o l  r e p r e s e n t s  th e  e n d  o f  th e  in p u t .

3. HM M  (H id d en  M a rk o v  M o d els)
H M M  is  e f f e c t iv e  in  e x p r e s s i n g  s p e e c h  s t a t i s t i c a l l y ,  so i t  h a s  b e e n  u s e d  w i d e l y  for s p e e c h  

re c o g n it io n .
F i g . 3 s h o w s  a n  e x a m p l e  o f  a p h o n e  m o d e l .  A  m o d e l  h a s  a c o l l e c t io n  o f  s ta te s  c o n n e c t e d  by  

tra n s it io n s .  T w o  s e t s  o f  p r o b a b i l i t i e s  are  a t t a c h e d  to e a c h  t r a n s i t io n .  O n e  is  a tran sitio n  p ro b ab ility  

a LJ, w h ic h  p r o v id e s  th e  p r o b a b i l i t y  for t a k i n g  t r a n s i t i o n  from  s t a t e  i to s t a t e ; .  T h e  o th e r  is  a n  output 

p ro b a b ility  btJk, w h ic h  p r o v id e s  th e  p r o b a b i l i t y  o f  e m i t t i n g  code k w h e n  t a k i n g  a t r a n s i t i o n  from  s t a te  

i to s t a t e  j .
T h e  fo rw a rd -b a ck w a rd  a lg o r ith m  [7] c a n  be u s e d  to e s t i m a t e  th e  m o d e l ’s p a r a m e t e r s  g iv e n  a 

c o l le c t io n  o f  t r a i n i n g  d a ta .  A f te r  e s t i m a t i n g  th e  m o d e l ’s p a r a m e t e r s ,  th e  fo rw ard  a lg o r ith m  ( tre llis  

a lg o r ith m )  c a n  be u s e d  to v e r i f y  p h o n e s  a s  fo l lo w s .

1 (f  =  0 & i =  0)  

a j ( 0  =  0 ((t =  0 & i *  0) or (t ^  0 & i =  0))

'Zj (a.j(t-l)ajibjiiyt))

a,(0 is the probability th a t  the Markov process is in state i having generated code sequence 
y i,y 2 ,...,yi. The final probability for the phone is given by apiT) where F is a final state of the phone 
model and T  is a length of input code sequence.

4. H M M -L R  M eth o d
4.1 Basic M echan ism

In standard LR parsing, the next parser action (shift, reduce, accept or error) is determined using 
the current parser state and next input symbol to check the LR parsing table. This parsing 
mechanism is valid only for symbolic data and cannot be applied simply to continuous data such as 

speech.
In HMM-LR, the LR parsing table is used to predict the next phone in the speech. For the phone 

prediction, the grammar terminal symbols are phones instead of the grammatical category names 
generally used in natural language processing. Consequently, a lexicon for the specified task is

embedded in the grammar.
The following describes the basic mechanism of HMM-LR (see Fig.4). First, the parser picks up all 

phones which the initial state of the LR parsing table predicts, and invokes the HMM to verify the 
existence of these predicted phones. During this process, all possible parsing trees are constructed in

Fig. 3 HMM phone model
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parallel. The HMM phone verifier receives a probability array which includes end point candidates 
and their probabilities, and updates it using an HMM probability calculation process (the forward 
algorithm). This probability array is attached to each partial parsing tree. When the highest 
probability in the array is lower than a threshold level, the partial parsing tree is pruned by 
threshold level, and also by beam-search technique. The parsing process proceeds in this way, and 
stops if the parser detects an accept action in the LR parsing table. In this case, if the best probability 
point reaches the end of speech data, parsing ends successfully. A very accurate, efficient parsing 
method is achieved through the integrated process of speech recognition and language analysis. 
Moreover, HMM units are phones, and any word models can be composed of phone models, so it is 
easy to construct a large vocabulary speech recognition system.

4 .2  A l g o r i t h m

To describe an algorithm for the HMM-LR method, we first introduce a data structure named cell. 
A cell is a structure with information about one possible parsing. The following are kept in the cell:

•  LR stack, with information for parsing control.
•  Probability array, which includes end point candidates and their probabilities.

The algorithm is summarized below.

1. Initialization. Create a new cell C. Push the LR initial state 0 on top of the LR stack of C. 
Initialize the probability array Q of C;

Qit) =
t = 0 
1

Gram m ar rules

V —* Vn t m („) Vcon |(n )
V « ,m 1  - " " O t h I I
Vn «m2 -*  m  o
V n .m j  -*  m  o  r a
Vconj 1 - *  r U
VCOn,2 «  u
VCon,3 - *  «

Pre-compile

H M M  phone models

m - .
/m /

/c

/ts//o/ \

Phone
prediction

ch
ts

ch 70
ts 65
r 30

Verification
score

Verif ication  \

' ' V X / W
Input  speech: mochiiru

LR tab le

jtate m  o ch U  r —

0 $1
1 s2
2 s3 $4 sS

Lookup

HMM-LR
Recognition results

ch -► .......
r

o f - *  ts -► .......

r “► X (Pruning)

Fig. 4 Basic mechanism of HMM-LR
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2. Ramification of cells. Construct a set
S = {(C, s, a, x) | 3C, a, x ( C is a cell & C is not accepted

& sis  a state ofC & ACTION[s,a}= x & "error” }.
For each element (C, s, a, x) € S, do operations below. If a set S is empty, parsing is completed.

3. l i x - ushift s' ”, verify the existence of phone a. In this case, update the probability array Q of
the cell C by the following computation.

QU) (t = 0)
aKO = 0 (t = 0 & i *  0)

1 j  ( d j i t - D a j f i j i i y t ) )

Q(t) =
0 (f =  0) 

a pit)

If max Q(i) (i= 1...T) is below a threshold level set in advance, the cell C is abandoned. Else
push s ’ on top of the LR stack of the c C.

4. If x-"reduce  A—0”, same as standa. . ^R parsing.
5. If x = "accept” and Q{T) is larger than a threshold level, the cell C is accepted. If not, cell C is

abandoned.
6. Return to 2.

Recognition results are kept in cells. Generally, many recognition candidates exist, and it is 
possible to rank these candidates using a value Q{T).

The set S constructed in step 2 above is quite large. It is possible to set an upper limit on the 
number of elements in S by beam-search technique. It is also possible to use local ambiguity packing
[1] to represent cells efficiently.

5. Experiments
The HMM-LR method is applied to speaker-dependent Japanese phrase recognition. Duration 

control techniques and separate vector quantization are used to achieve accurate phone recognition. 
Two duration control techniques are used, one is phone duration control for each HMM phone model 
and the other is state duration control for each HMM state [8]. Phone duration control is carried out 
by weighting HMM output probabilities with phone duration histograms obtained from training 
sample statistics. State duration control is realized by state  duration penalties calculated by 
modified forward-backward probabilities of training samples. In separate vector quantization, 
spectral features, spectral dynamic features and energy are quantized separately. In the training 
stage, the output vector probabilities of these three codebooks are estimated simultaneously and 
independently, and in the recognition stage all the output probabilities are calculated as a product of 
the output vector probabilities in these codebooks.

The grammar used in the experiments describes a general Japanese syntax of phrases and is 
written in the form of context-free grammar. Lexical entries are also written in the form of context- 
free grammar. There are 1,461 grammar rules including 1,035 different words, and perplexity per 
phone is 5.87. Assuming that the average phone length per word is three, the word perplexity is more 
than 100.

Table 1 shows the phrase recognition rates for three speakers. The average recognition rate is 
87.1% for the top candidate and 97.7% for the five best candidates. Japanese is an agglutinative 
language, and there are many variations of affixes after an independent word. The problem here is 
tha t  recognition errors are often mistakes caused by these affixes.
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Table 1 Phrase recognition rates

6. Conclusion
In this paper, we described a speech parsing method called HMM-LR, which uses a generalized LR 

parsing mechanism and an HMM-based speech recognizer. The experiment results show that an 
HMM-LR method is very effective in continuous speech recognition.

An HMM-LR continuous speech recognition system is used as part of the SL-TRANS (Spoken 
Language TRANSlation) system developed at ATR Interpreting Telephony Research Laboratories.
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ABSTRACT
An analysis method for Japanese spoken sentences based on HPSG has been developed. Any 

analysis module for the interpreting telephony task requires the following capabilities: (i) the 
module must be able to trea t spoken-style sentences; and, (ii) the module must be able to take, as 
its input, lattice-like structures which include both correct and incorrect constituent candidates of 
a speech recognition module. To satisfy these requirem ents , an analysis  method has been 
developed, which consists of a gram m ar designed for treating spoken-style Japanese sentences 
and a parser designed for taking as its input speech recognition output lattices. The analysis 
module based on this method is used as part of the NADINE(Natural Dialogue Interpretation 
Expert) system and the SL-TRANS (Spoken Language T ransla tion) system.

1. IN TR O D U CTIO N
An analysis module for a spoken sentence translation system, or an interpreting telephony 

system requires the following capabilities:
(i) the module must be able to treat spoken-style sentences; and,
(ii) the module must be able to accept not only strings but also lattice-like structures where the 
analysis module directly drives a speech recognition module (e.g., a phoneme or word recognition 
module but not a whole sentence recognition module) or where the analysis module takes as its 
inputs  part ia l  speech recognition resu lts  including both co rrec t  and inco rrec t  sen tence  
constituents.

To satisfy these requirements, an analysis method has been developed which consists of a 
g ram m ar framework designed for treating spoken-style Japanese sentences and a unification- 
based parser designed for taking as its input speech recognition result lattices.

The g ram m ar framework is unification-based lexico-syntactic and is essentially based on 
H P S G U 0 1  and JPSG121. This is because:
(i) a lexico-syntactic approach is modular in the sense that most of the grammatical information is 
to be specified in descriptions of lexical items; and that it is therefore easy to extend a gram m ar 
simply by adding new lexical items to the lexicon or adding new information to lexical items; and
(ii) the JPSG  fram ew ork  can essentia lly  capture  constra in ts  between complex p red ica te  
constituents and their complements. This capability is important because spoken-style Japanese 
sentences often have complex predicate constituents.
The gram m ar framework is extended from these g ram m atica l  fram ew orks by introducing 
features related to semantic and pragmatic constraints!12).

The parser developed is essentially based on the active chart parsing algorithm!11) because 
the algorithm is as efficient as Earley's algorithm!1) or any other CFG parsing algorithm and,
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moreover, has the capability of controlling parsing strategies to avoid exhaustive searches. The 
parser is extended to treat constraints in Typed Feature Structures (TFS) by using TFSP links (as 
defined in Section 3).

The analysis method proposed in this paper is used in the analysis module of the NADINE 
system[4-9i and the NADINE system is used as the machine translation module of the SL-TRANS 
system. In the SL-TRANS system, input speech is recognized by the Japanese bunsetsu1 phrase 
recognition module based on the HMM-LR method!8! and the module outputs the sequence of 
bunsetsu phrase lattices, each of which consists of bunsetsu phrase structure candidates. The 
outputs are filtered by a bunsetsu dependency filter module(51 which outputs sentence lattices 
consisting of fewer bunsetsu phrase structure candidates than the HMM-LR produces.

The NADINE system takes as its input a sentence lattice and outputs an English sentence. 
The analysis module based on this paper’s method takes a sentence lattice and outputs typed 
feature s truc tu res  which represen t syntactic , sem antic  and pragm atic  information of the 
sentence. Then, the transfer and generation modules output an English sentence.

In this paper, Section 2 describes the gram m ar framework and Section 3 describes the parser 
and the analysis method.

2. G R A M M A R  FR A M EW O R K  FOR SPO K EN -STY LE J A P A N E S E  SEN TEN C ES
The gram m ar built up to analyze spoken-style Japanese sentences is essentially based on 

HPSG and JPSG. The gram m ar describes not only syntactic and semantic information but also 
discourse and pragmatic information in an integrated way by using TFS descriptions.

Resolution of omitted obligatory cases (or zero-pronouns) is very important because

Fig. 1 Overview of the SL-TRANS system (modules related to the analysis module)

1. a basic phonological phrase consisting of a jiritsugo-word such as a noun, verb, or adverb 
followed by zero or more fuzokugo-v/ords such as auxiliary verbs, postpositional particles, or 
sentence final particles.
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(i) pronouns referring to the speaker and the hearer seldom appear in spoken-style sentences and 
these omitted cases make sentences more ambiguous, and
(ii) in order to t ran s la te  these sentences into na tu ra l  E ng lish  sen tences , they m ust  be 
supplemented.
If they are not supplemented, for example, Japanese  sentences without agent subject case 
expressions m ust often b e . t ra n s la te d  into u nna tu ra l  English passive sentences (e.g., “A 
registration form will be sent” instead of “I will send you a registration form'). In this paper's 
analysis, such omitted cases are resolved by using constraints on the uses of deictic expressions 
and their case elements, and so on.

2.1. Treatment of Syntactic and Semantic Information
Spoken-style Japanese  sentences often have complex sentence final predicate phrases 

consisting of main predicates and combinations of auxiliary verbs and sentence final particles. In 
such a predicate phrase, its head consti tuen t s tipu lates  the properties of the complement 
occurring just on its left such as its part of speech, conjugational type, and conjugational form. 
Such stipulations are easily described in the SUBCAT feature value in the head. A SUBCAT 
feature value is a list of complement constituent specifications.

For example, in the lexical description (1) of the causative auxiliary verb “seru”, the SUBCAT 
feature  value specifies th a t  the aux il ia ry  tak es  as its com plem en t a verb ph rase  with  
conjugational type CONS (for consonant type) and conjugational form VONG (for voice negative 
type), and two postpositional phrases (PPs), a PP marked by “ni” and a PP marked by ga . 
Moreover, it specifies that the VP must be located just before the auxiliary and that the relative 
order between two PPs is free. The SEMF feature, which is a bundle of sem antic  features, 
specifies the semantic selectional restrictions and, in the description, the SEMF feature value of 
the ga-PP specifies that the PP must refer to an animate object.

[[syn [[morph [[ctype vow][cform aspl-or-infn]]]
[head [[pos v]

[modi [[caus +]]]

[subcat [[first [[syn [[morph [[ctype cons][cform vong]]]
[head [[pos v]

[modi [[caus -][deac -] ...]]]]
[subcat [[first [[syn [[head [[form ga]

. . . ] ]  . . . ]  . . . ]
[sem ?causee] ] ]

[rest end ] ] ] ] ]
[sem ?caused]]]

[rest (:perm-list [[syn [[head [[formga] ...]] ...]]
[semf [[human +]]]
[sem ?causer]]
[[syn [[head [[formni] ...]] ...]]
[sem ?causee]])]]] ...] ...]

[sem [[relation cause]
[causer ?causer]
[causee ?causee]
[ c a u s e d  ? c a u s e d ] ] ] ]  ^

where “?” is the prefix of the tag and structures denoted by the same tag are token identical, and 
":perm-list” is a macro which takes as its argum ents a set of typed feature structure  descriptions 
and returns as its value the disjunction of permuted lists made of the set.
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F u r t h e r m o r e ,  th e  C O H  fe a t u r e  ( C a t e g o r y  O f  H e a d )  in a c o m p l e m e n t  or a d ju n c t  c o n s t i t u e n t  

s p e c i f i e s  i t s  h e a d  c o n s t i t u e n t s .  C o m b in a t io n s  o f  C O H  a n d  S U B C A T  f e a t u r e s  a l l o w  f l e x i b l e  

g r a m m a t i c a l  d e s c r i p t io n s .

J a p a n e s e  p r e d ic a t e  c o n s t i t u e n t s  b e lo n g  to g ro u p s:  a m e m b e r  o f  th e s e  g r o u p s  m u s t ,  w i t h  s o m e  

e x c e p t i o n s ,  o c c u r  in  a s t r i c t l y  o n e - d i m e n s i o n a l  s e q u e n c e ;  t h e s e  g r o u p s  c o r r e s p o n d  to s e m a n t i c  

h i e r a r c h i e s .  A n e w  h e a d  f e a t u r e  M O D L  (for m o d a l i t y )  h a s  b e e n  d e v i s e d  to a l l  a n d  o n ly  p r e d ic a t e s  

w it h  g r a m m a t i c a l l y  o r d e r e d  c o n s t i t u e n t s .  F or  e x a m p l e ,  in th e  a b o v e  d e s c r i p t io n  (1), th e  M O D L  

f e a t u r e  v a lu e  o f  th e  f i r s t  S U B C A T  v a lu e  e l e m e n t  s p e c i f i e s  t h a t  th e  c o m p l e m e n t  v er b  p h r a s e  

s h o u l d  n o t  in c lu d e  a n y  a u x i l i a r y  v er b s .

B e s i d e s  th e  p r e d ic a t e  c o n s t i t u e n t  o r d e r  s p e c i f i c a t io n ,  th e  M O D L  f e a t u r e  is  a l s o  u s e d  to r e s t r ic t  

s y n t a c t i c  a n d  s e m a n t i c  b e h a v io r  o f  s u b o r d i n a t e  (a d v e r b ia l )  p h r a s e s .  F or  e x a m p l e ,  c e r t a i n  fo r m a l  

a d v e r b s  ( i .e . ,  s u b o r d i n a t e  c o n ju n c t io n s )  r e q u ir e  a s  th e i r  c o m p l e m e n t s  v erb  p h r a s e s  w i t h o u t  t i m e  

or p la c e  m o d i f i e r s .  S u c h  r e q u i r e m e n t s  r e d u c e  a m b i g u i t i e s  o f  a d v e r b ia l  p h r a s e  m o d i f i c a n d s .  T h e  

M O D L  f e a t u r e  in c o n j u n c t io n  w i t h  th e  S E M F  f e a t u r e  c o n t r i b u t e  to r e d u c in g  th e  n u m b e r  o f  v e r b a l  

m o d i f ic a n d  a m b i g u i t i e s .

2 .2 .T re a tm e n t  of P ra g m a t ic  C o n s t ra in ts  on Uses of E x p re ss io n s
This g ram m ar framework treats discourse or pragmatic constraints on uses of expressions in 

order to select plausible analysis candidates and to resolve certain kinds of zero-pronouns. An 
analysis candidate  includes not only syntactico-sem antic  descriptions such as a sem antic  
interpretation (the SEM feature value) but also annotations or a set of conditions under which the 
interpretation is valid. For example, the sentence

Watashi ni tourokuyoushi o o-okuri itadake masu ka
I DAT registration form ACC HON-send RECEIVE-FAVOR POLITE QUESTION

seems to have two analysis candidates corresponding to phrase structures (a) and (b) in Fig.2 
(they correspond to “Could you please send me a registration form?” and IT'Could I please send a 
registration form?”). However, the analysis candidate corresponding to (b) has the following 
annotations:

common phrase structure  of (a) and (b) 
phrase structure  (a) v

----------phrase structure  (b)

W atashi ni tourokuyoushi wo o-okuri itadake masu

Fig.2 Two derivation trees of the sentence 
‘watashi ni tourokuyoushi o o-okuri itadake masu ka“
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[ [ r e l a t i o n  c o n d e sc e n d ]
[ a g e n t  ? s p e a k e r ]
[ o b j e c t  ? s u b j e c t _ s e m ]
[ c o m p a r a t i v e - o b j e c t  ? s p e a k e r ] ]

[ [ r e l a t i o n  e x p r e s s - m o r e - e m p a th y ]
[ a g e n t  ? s p e a k e r ]
[ o b j e c t  ? s u b j e c t _ s e m ]
[ c o m p a r a t i v e - o b j e c t  ? s p e a k e r ] ]

( where ? s p e a k e r  refers to the speaker and ?sub  j e c t_ s e m  is the semantic representation of the
subject of “itadake”).

Accordingly, these conditions are unnatural (e.g., the speaker expresses more empathy to a 
person other than himself) but (a) does not have such unnatural conditions. Thus, the analysis (a) 
is selected as a more plausible candidate than (b).

These annotations are also used for zero-pronoun resolution. In the analysis (a), the subject 
and indirect object o {"'itadake' are missing. However, (a) has the following annotations:

[ [ r e l a t i o n  c o n d e sc e n d ]
[ a g e n t  ? s p e a k e r ]
[ o b j e c t  ? s u b je c t_ s e m ]
[ c o m p a r a t i v e - o b j e c t  ? i n d i r e c t - o b j e c t _ s e m ] ]

[ [ r e l a t i o n  e x p r e s s - m o r e - e m p a t h y ]
[ a g e n t  ? s p e a k e r ]
[ o b j e c t  ? s u b je c t_ s e m ]
[ c o m p a r a t i v e - o b j e c t  ? i n d i r e c t - o b j e c t _ s e m ] ]

and by searching for discourse participants satisfying these conditions, candidates of missing 
elements can be found.

In order to obtain such annotations, lexical descriptions have PRAG| RESTRS features which 
include constraints in terms of RESPECT, CONDESCEND, POLITE, EXPRESS-MORE- 
EMPATHY and so on.

Plausibility scores based on these annotations are used in conjunction with other kinds of 
scores described below to select plausible analysis candidates. Zero-pronoun resolution is applied 
after parsing Annotations are used in conjunction with conditions under which utterances of 
sentences are interpreted as certain types of illocutionary acts, and conditions under which 
actions in general are rational.

3. FEATURE STRUCTURE PROPAGATION PARSER
3.1. Active Chart Parser with Feature Structure Propagation Links

The active chart parsing algorithm has properties suitable for parsing na tu ra l  language 
efficiently. In particular, it has two excellent properties for treating speech recognition result 
lattices:
(i) it does not limit its inputs to only strings but can accept lattice structures — thus, it can parse 
speech recognition result lattices directly; and,
(ii) it has the capability of controlling the order of parsing by adapting a method of selecting 
pending edges from the pending edge list, which works as an agenda. Thus, by adap ting  a 
selection method based on certain criteria  which, at least, reflects speech recognition resu lt  
plausibility, plausible parses can be obtained in the early stages without exhaustive search.
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However, this second property makes structure sharing difficult in unification-based CFG 
parsing, or CFG parsing augmented by constraints described in typed feature structures (TFSs). 
In unification-based parsing, there often exist edges with the same content except for their TFSs. 
When an active edge is continued with an inactive edge, if there is already an edge with the same 
contents except for its TFSs as the continuation edge, edge sharing may seem to be able to be 
achieved by adding the continuation edge's TFSs into the existing edge’s. However, this makes 
parsing incomplete because the existing edge may have been used previously to construct larger 
edges due to the parsing order freeness and because newly added TFSs are not used to construct 
larger edges or used as part of larger edges.

In order to solve this problem, the TFS P ro p a g a t io n  p a r s e r  (in short, T F S P  p a rse r )  has 
been developed. The parser is essentially based on active chart parsing and each edge of the 
parser  has a set of TFSs represen ting  syntactic , sem antic  and pragm atic  in form ation  of 
corresponding partial phrase structures. The parser is extended to have special links called TFS 
Propagation links (TFSP links).

A TFSP link in an edge remembers how the TFSs of the edge were previously propagated and 
specifies how TFSs newly added into the edge should be used. That is, a TFSP link of an active 
edge points to a continuation edge having as its annotation the inactive edge used to construct the 
continuation edge. Then, when a TFS is added to an active edge, for each TFSP link of the edge, 
the TFS is unified with each TFS of the link's inactive edge and then the unification result TFS is 
added into the link's continuation edge if the unification succeeds. By using TFSP links, new edge 
creation is necessary only when there is no edge with a certain s tarting  vertex, ending vertex, 
label and remainder symbol sequence. The TFSP link makes edge structure sharing possible.

Fig.3 TFSP links
Suppose the case where the inactive edge G  has been created from the active edge (D and 

the inactive edge G  and the inactive edge ©  has been created from the active edge ®  and the 
inactive edge G .  The TFSP link ©  is created between G  and © . In this case, when the 
active edge ®  is continued with the inactive edge G ,  the successful unification result TFSs of 
® ’s and G ’s TFSs are added to the edge G .  The edge has a TFSP link and then the newly 
added TFSs are unified with TFSs in ®  and the successful unification results are propagated 
to the edge ©  as specified by the TFS link G .  If there are already TFS links in the edge © , 
the newly added TFSs are  also propagated in the ways specified by these links.
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The TFSP link enables the parser to reduce unnecessary edge structure creation and TFS 
unification. When an active edge is continued with an inactive edge, the continuation edge is 
meaningful only when it has at least one consistent TFS corresponding to the continuation edge. 
Therefore, the necessary computation is reduced to finding a pair of active and inactive edge TFSs 
which are consistent or can be unified. It is not necessary to compute the other pairs' unification 
after finding a first pair unless TFSs representing whole sentence structures are required later. 
This is made possible by using TFSP links because they can not only unify TFSs immediately and 
propagate unification result if desired, but they can also propagate information on how to unify 
them later. This reduces unnecessary unification computation when the edges are not used as 
parts of the parses of the whole sentences, especially when the TFSP parser does not need to find 
all possible parses exhaustively.

The unification method used in the TFSP parser has the following characteristics:
(1) It uses Kasper's disjunctive feature structure unification algorithm^). This allows not only for 
efficient descriptions of each lexical item (such as efficient coding of SUBCAT feature values for 
treating complement order scrambling and word meanings with conditions for disambiguation), 
but also packing descriptions of homonyms. Disjunctive lexical descriptions work like Polaroid 
wordsl31.
(2) As for the definite feature structure unification algorithm, the incremental copy unification 
algorithm which allows cyclic s truc tu res!7! is adopted to t re a t  cyclic constra in ts  including 
SUBCAT and COH features.

3.2. Agenda Control Mechanism and Plausibility Score
In order to select the most plausible analysis candidate in the early stages, the TFSP parser 

selects the pending edge with the best edge score among the pending edge list during parsing, and 
selects the TFS with the best TFS score among sets of TFSs in complete edges, each of which has 
as its label the s ta r t  symbol, as its remainder symbol sequence an empty sequence, as its starting 
vertex the leftmost vertex of the chart, and as its ending vertex the rightmost vertex of the chart 
just  after parsing finishes. Parsing finishes when a certain number of TFSs have been created 
with scores better than certain criteria determined by the input sentence length (e.g., the number 
of bunsetsu structures).

The edge score mainly contributes to first obtaining a plausible syntactic structure. The edge 
score for treating speech recognition result lattices is essentially based on the following:
(a) speech recognition score,
(b) surface string length, and
(c) edge type such as active, inactive, or just-proposed.
When a new edge is created, the edge score is calculated from information on the active edge and 
the inactive edge. Moreover, when a new TFSP link is created and the links point to an existing 
continuation edge, the edge score of the continuation is recalculated.

The TFS score mainly contributes to obtaining syntactico-semantically and pragmatically 
plausible s tructure and is essentially based on the following:
(d) phrase structure  complexity (the number of phrase structure tree nodes),
(e) unfilled complements (the number of elements in SLASH feature value), and
(0 violation of pragmatic constraints on expression usage (the unnatura l relationships in the 
PRAG|RESTRS feature value).

The behavior of the TFSP parser is illustrated by an example. Suppose the case where a 
speech recognition result lattice includes the following sentence candidates and the nominative
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postposition “ga” has a better speech recognition score than the topic marker "wa'” (Fig.4). The 
parser first tries to build up the structure including "ga” due to the speech recognition score 
preference because there are no other differences between structures including “ga” and "wa”. 
However, the bu i ld ing-up  process stops when com bining  s t ru c tu re s  co rrespond ing  to 
“tour okay oils hi ga” and “o-okuri” because of TFS unification failure between SEMF feature 
values of the verb's subject [[animate + 1] and the nominative noun phrase [[animate -]]. Then, 
the parser adopts the structure containing “wa” and analyzes the semantics of the topic noun 
phrase as playing a semantic object role in the “okuru” (sending) relationship.

In this case, the agent subject is m iss ing  and the p a rse r  ou tp u ts  as the sem an tic  
representation:

[[relation okuru-1]
[agent ?subject_sem]
[recipient ?indirect-object_sem]
[object [[parameter ?x]

[restriction [[relation tourokuyoushi-1]
[object ?x] ] ] ] ] ]

However, the parser also outputs pragmatic constraints on the person referred to by the subject 
based on the lexical descriptions of the honorific verb “itashi” as follows:

[[relation condescend]
[agent ?speaker]
[object ?subject_sem]
[comparative-object ?indirect-object_sem]]

After parsing, the analysis module searches for the person to whom the speaker can condescend, 
and if there is no person other than the speaker and the hearer in the discourse of the utterance, 
the missing subject is analyzed as referring to the speaker. Then, the following semantic  
representation is obtained:

[[relation okuru-1]
[agent ?speaker]
[recipient ?hearer]
[object [[parameter ?x]

[restriction [[relation tourokuyoushi-1]
[object ?x] ] ]] ] ]

From this semantic representation, the output sentence “I send you a reg is tra tion  form .” is 
obtained.

(Lit.) A reg istra tion form w i l l  send (something).

a
Tourokuyoushi N O M \ o-okuri itashi masu

-*-•-------------------»♦------------------ x>
Registration form  HON-send do-CONDECEND POLITE

UTPfC

(Lit.) As fo r  the reg istra tion form, (I) w i l l  send it. °  Bunsetsu boundary

Fig.4 Example of speech recognition result lattice sequence (simplified).
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This analysis method is applied to speech recognition results of sentences in 2 task-oriented 
dialogues about “the secretarial service of the international conference”. The HMM-LR speech 
recognition module with a bunsetsu  dependency filter outputs for each spoken sentence a 
sequence of bunsetsu phrase lattices. These 2 dialogues consist of 37 sentences. The speech 
recognition module outputs correct results (i.e., sequences of bunsetsu lattices each of which 
includes the correct bunsetsu structure) for 35 sentences. This analysis method is applied to these 
35 sentences.

These sentences consists of 76 bunsetsu phrases and 112 bunsetsu structure candidates. That 
is, a bunsetsu phrase has about 1.47 bunsetsu structure candidates.

For this experiment, a gram m ar was prepared which includes not only lexical items required 
for accepting correct bunsetsu structures in the dialogue, but also all lexical items consisting of all 
bunsetsu structure candidates. The gram m ar consists of 13 general rules including morphological 
rules and about 300 lexical entries.

The analysis method obtains correct sentence analysis results for 34 sentences; adequate 
English sentences are obtained from these correct analysis results. The sentence recognition rate 
of this method is about 97% and the total sentence recognition rate including the HMM-LR speech 
recognition module is 92%. The single incorrect analysis result structure, which corresponds to 
the Japanese sentence “tourokuyoushi mo o-okuri itashi masu  ‘ (lit. “I will send you a registration 
form, too") instead of “tourokuyoushi o o-okuri itashi masu“ (lit. ‘7  will send you a registration 
form"), includes as the incorrect speech recognition part only an incorrect modal particle “mo” 
with a higher speech recognition score than the correct case particle “o”, and the incorrectly 
recognized structure is perfectly grammatical. In this case, to obtain the correct result requires 
taking account of the differences in presuppositions derived from these particles and comparing 
these presuppositions with the context of the utterances.

4. CONCLUSION
In this paper, a new analysis method is proposed for Japanese spoken sentences using a 

g ram m ar framework for treating spoken-style Japanese sentences and a new parser called the 
TFSP parser. The g ram m ar framework is essentially based on HPSG and JPSG, and is designed 
to trea t not only syntactic and semantic information but also pragmatic information. Analysis 
results based on this fram ew ork include sem antic  in te rp re ta t ions  of input sentences with 
annotations on constraints on the uses of these sentences. The TFSP parser has been developed to 
allow edge structure sharing in unification-based analyses. This method is used as the analysis 
module of the NADINE system and the SL-TRANS system.

The analysis method is applied to HMM-LR speech recognition result lattices. In parsing 
lattices, selecting the pending edge with the best score allows the parser to first find plausible 
candidates. Constraints described in TFSs filter out syntactically or semantically ill-formed 
structures. The experimental results show that this method is effective in sentence speech 
recognition. In the experiments, recovering from incorrect recognition requires utterance context 
understanding including understanding of utterance presuppositions.
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ABSTRACT

Authentic text as found in corpora cannot be described completely by a formal 
system, such as a set of grammar rules. As robust parsing is a prerequisite for any 
practical natural language processing system, there is certainly a need for techniques 
that go beyond merely formal approaches. Various possibilities, such as the use of 
simulated annealing, have been proposed recently and we have looked at their suitabil­
ity for the parse process of the DLT machine translation system, which will use a 
large structured bilingual corpus as its main linguistic knowledge source. Our findings 
are that parsing is not the type of task that should be tackled solely through simulated 
annealing or similar stochastic optimization techniques but that a controlled applica­
tion of probabilistic methods is essential for the performance of a corpus-based parser.
On the basis of our explorative research we have planned a number of small-scale 
implementations in the near future.

1. Introduction
Usually a parser is viewed as a program that takes a sentence in a particular language as its 
input and delivers one or more analyses for that sentence. This is no different in the present 
prototype of DLT (Distributed Language Translation), a multilingual translation system under 
development at the Dutch software house BSO. In the prototype, we use an ATN-parser that 
delivers ail syntactic analyses of an input sentence in the source language (SL). Each analysis 
undergoes structural and lexical transfer resulting in one or more target language (TL) trees.1
In order to limit the size of the ATN, we have used Technical English as the basis for our 
grammar. This type of English has been specially designed for writing technical manuals. It 
has certain limitations, such as the number of verb forms to be used, the number of elements 
that may be coordinated, sentence length and the like. Nevertheless, it proves to be very diffi­
cult to specify a complete grammar, let alone formulate grammar rules. Moreover, even with 
such a limited grammar we have to deal with the combinatorial explosion due to the parsing of 
ambiguous sentences.

1 In fact, D LT consists of two separate but similar translation processes. The first translates the S L  into 
the IL, D L T ’s Esperanto-based Intermediate Language; the second translates from the IL into the TL.
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A typical complication of a translation system is that, apart from the SL grammar for the 
parser, we need a grammar for TL generation and a contrastive grammar (metataxis) to link 
source and target language. Then, there are three dictionaries, one for each language and one 
for the language pair. Finally, semantic information has to be included. On a prototype scale, it 
is already difficult to maintain consistency between the various knowledge sources, but for a 
large-scale industrial version this is almost impossible.
Two recent inventions by members of the DLT research team have contributed to the solution 
of the complications mentioned previously. Van Zuijlen (1988) has introduced the Structured 
Syntactic Network (SSN) to achieve the compact representation of all dependency-type ana­
lyses of a sentence in a single structure. The problem of consistency of knowledge sources has 
been tackled by Sadler (1989), who has proposed the Bilingual Knowledge Bank (BKB), a 
large structured bilingual corpus. It contains for each sentence the preferred syntactic analysis 
and translation in the given context, as well as certain other referential and co-referential infor­
mation. An important structural element is the Translation Unit (TU), a dependency subtree for 
which there is a non-compositional translation, e.g. expressions like kick the bucket.
The introduction of the BKB places the various processes commonly found in a translation sys­
tem (parsing, structural transfer, semantic evaluation, generation) in a different perspective. We 
will not deal here with structural transfer and generation but concentrate on the consequences 
for the parse process, which will be dealt with in a number of sections:

linguistic theory and representation;
- interfacing parser and BKB;
- corpus-based parsing;
- probabilistic methods.
We conclude with a few remarks about research we have planned for the near future.

2. Linguistic Theory and Representation
The linguistic theory used in DLT is Dependency Grammar, one of the less frequently used 
formalisms in natural language processing projects (see Schubert (1987) for a discussion on its 
suitability for machine translation). The dependency grammar of a language describes syntac­
tic relations or dependencies between pairs of words. The relation is directed, i.e. one word, 
the governor governs (dominates) the other, the dependent. In general, the dependencies range 
over word classes (syntactic categories) rather than specific words. A useful feature of depen­
dency grammar is that the resulting analysis may be used direcdy by the semantic component 
of the translation system, i.e. a single type of representation suffices for all processes in the 
system.
The syntactic relations in dependency grammar are derived from the function of a word in the 
sentence. For example, man is the subject of walks in The man walks. It is important to realize 
that dependency grammar is primarily concerned with words; there are no phrasal categories.
A dependency tree has a geometry that is quite different from that of a constituent tree (Figure 
1). Notice that in a constituent tree nodes are either phrasal or lexical, but that in a depen­
dency tree nodes are always lexical. The branches of a dependency tree are labeled with syn­
tactic relations. A dependency tree is not ordered, which means that a particular relation is 
only defined by the governor and the dependent and not by the position of the dependent with 
respect to other dependents. In the example word order does play a role to identify the subject 
and the object of the sentence but order is not reflected in the representation.
In order to facilitate the interfacing between the BKB and the parse process (see Section 3), we 
use an alternative representation, which we will refer to as a Dependency Link
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sees

t h e  t h e  o l d  t h e  b o y  s e e s  t h e  o l d  man

Figure 1. [a] dependency tree and [b] constituent tree for the sentence The boy sees the old 
man.

OBJ

/ DET \
/  ATR1\\

. . /  / ~ i \
the boy sees the old man

Figure 2. The dependency link representation of The boy sees the old man.

Representation (DLR). A dependency link consists of a governor, a dependent and their rela­
tion. The link is projective, i.e. it takes the position of- governor and dependent with respect to 
each other into account. We obtain a graphical representation of a DLR by writing down the 
sentence as a linear string of words and then draw the dependencies as arcs (Dependency 
Links) connecting the words. Figure 2 shows the dependency link representation of The boy 
sees the old man.

CIRC

th e  boy s e e s  th e  o ld  man w ith  a t e l e s c o p e
Figure 3. The dependency link representation of The boy sees the old man with a telescope.

The DLR shown in Figure 2 has the same representative power as a dependency tree. How­
ever, in contrast to a tree, connections in a DLR are by reference and, as a consequence, it is 
possible to represent directed graphs as well. Graphs are a means to represent multiple analyses 
of a sentence in a single representation. The ideas behind such a representation for dependency 
grammar, the SSN, are discussed in Van Zuijlen (1988). The dependency link may be viewed 
as a common building brick for trees as well as SSNs. This is shown in Figure 3 where we see 
the two analyses for The boy sees the old man with a telescope in a single DLR. By selecting 
either the link man-ATR2-with or sees-CTRC-with we obtain the respective interpretations. The 
set of dependency links that constitute one interpretation is called an ensemble.
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As the BKB is the only source of linguistic knowledge in the DLT system, interfacing between 
the BKB and each process is needed. In this section, we will give a brief sketch of how the 
interfacing between parser and BKB is organized. The BKB is bilingual, but the parser has 
only to deal with the SL side of the BKB. It is convenient, therefore, to view it as a large 
dependency tree bank. This tree bank contains the dependency trees of a large number of sen­
tences, with each dependency tree consisting of one or more translation units. The TUs have 
no direct significance for the parser, but it is important to establish which TUs are contained in 
the input sentence. This is done in the following way.
After recognition of a word in the input string the TUs of which it is part are retrieved from 
the BKB. The parser does not deal with the TUs directly but interprets them as one or more 
dependency links. For each word there is a (possibly empty) set of DLs that either govern or 
depend on the word. By combining DLs into ensembles we obtain dependency trees the pro­
jection Oinearization) of which has to match the input string. So parsing is not carried out by 
parse tree construction guided by the input string but by matching the input string with the pro­
jection of a parse tree synthesized from dependency links (Figure 4).

3. Interfacing Parser and BKB

in p u t  s t r i n g

Figure 4. Parsing with a treebank. The words in the input string control the retrieval of TUs 
from the BKB. Each TU consists of a number of DLs which are used to synthesize an analysis 
tree. The projection of this tree should match the input string.

The dependency links that are "used" for the analysis (in Figure 4 connected with the analysis 
tree by dotted lines) select in mm those parts of the TUs retrieved from the BKB that are 
relevant for the translation of the input string.
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An important requirement for the parse process is that the analysis result matches with the 
BKB, such that it may be syntactically as well as semantically evaluated. In that respect the 
use of a structured corpus has a number of advantages.
(1) the coverage of the parser is such that all linguistic phenomena in the corpus will be dealt 

with;
(2) the syntactic knowledge retrieved from the corpus on a particular item is consistent with 

other types of knowledge;
(3) since various types of knowledge are available simultaneously, incremental evaluation of 

(partial) analyses is relatively simple.
This is evident for input sentences that are literally present in the BKB and for which -  in a 
manner of speaking -  direct pattern matching is possible. However, we want to extend the cov­
erage beyond that and, therefore, we have done some explorative research in the field of 
corpus-based parsing, primarily by reviewing work of others in the light of our specific needs.
Recent work in corpus-based parsing has a common characteristic. A parsed corpus is used as 
a source of linguistic knowledge and probabilistic methods are used to arrive at an analysis. 
Basically, parse trees are randomly generated until the optimal parse tree is found with respect 
to an evaluation measure based on comparison of the parse tree with the corpus. Robustness is 
guaranteed since, whatever the value of the evaluation, one of the analyses will be better than 
all others. The search space associated with the investigation of all possible parse trees for a 
sentence is very large and, therefore, Haigh, Sampson & Atwell (1988) apply simulated anneal­
ing in their Annealing Parser for Realistic Input Language (APRIL) as an efficient way to find 
this optimal parse tree for a complete sentence. Atwell, O’Donoghue & Souter (1989) have 
developed the Realistic Annealing Parser (RAP) which also uses simulated annealing but works 
incrementally, thus reducing the search space drastically. Both projects evaluate the resulting 
trees with corpus information, either in the form of a tree bank (Haigh et al. 1988) or first 
order recursive Markov chains (Atwell et al. 1989).
Comparing APRIL and RAP shows that a slightly different approach to the same problem 
already results in a large reduction of the search space. This justifies the question whether 
simulated annealing is really a very suitable technique. If we examine the literature on that 
point (e.g. Aarts and Korst 1989) we find that the problems for which it is successfully applied 
are of the "traveling salesman" type, in other words, problems that are highly unstructured and 
have a large search space which is defined in advance. The search space consists of the dis­
tances associated with all possible tours. There is a clear relation between a tour and the total 
distance; it is obtained by summation of the distances of each pair of connected cities. The dis­
tance is always defined between two points and it can be measured; there is no configuration 
of cities for which no solution can be found. The search space may become very large and 
simulated annealing serves as a means to investigate it efficiently.
At first sight, parsing a language seems to be a similar problem. We have a number of words 
(cities) and, in the case of a dependency grammar representation, we have to find optimal con­
nections between them. For each connected pair of words we compute the grammaticality of 
the connection (distance) by comparing it with the linguistic information we have available. 
Here the problem starts. The "syntactic distance" cannot be calculated straightforwardly but has 
to be approximated on a probabilistic basis, e.g. by counting the number of occurrences of the 
particular relation in a corpus. If the relation never occurs it is not possible to say anything 
sensible about the distance. We might assign a default value to it, but we have no certainty that 
it contributes to an optimal solution. This in contrast with the "traveling salesman" problem 
where a long distance between two points does not exclude the connection from being part of

4. Corpus-Based Parsing
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the optimal solution.
The temporary acceptance of "odd" constructions in simulated annealing parsers is motivated 
by the fact that during the search of a new solution the current solution is changed by means 
of a number of primitive modifications which may lead to intermediary results which are not 
well-formed. The acceptance of these results doesn’t depend x>n their leading to a solution 
which may be evaluated by comparing it with the linguistic information available but on a sto­
chastic function that states the probability with which a "bad" result is to be accepted. What is 
missing is the observation that language is structured and enables predictions on the basis of 
available partial information. So instead of a random walk (or unguided city tour) it is possible 
to select those transformations that are most likely to lead to an optimal solution.2 
A corpus is very useful to make such predictions and if we intend to use the same corpus for 

the evaluation of the solutions we have the certainty that we only generate those solutions that 
are verifiable.
Again we may observe a difference with the "traveling salesman" problem. The latter has a 
predefined solution space and it is easy to specify primitive transformations that will lead from 
one solution to the other. In the case of parsing the solution space is not predefined but has to 
be generated on the basis of the linguistic information available. This is either a set of gram­
mar rules or a tree bank based on a parsed corpus.
Souter (1989) discusses how difficult it is to express the grammatical information contained in 
a such corpus in a limited number of rules. In fact, thousands of rules are needed, many of 
which are only applied once or twice. He observes a close resemblance between a rule- 
frequency curve and the more familiar word-frequency curve (Zipf 1936). These findings sup­
port the idea that the usual grammar with a few hundred rules is not very adequate and may 
contain "gaps". Also, our experience with the DLT prototype has made clear to us that a rule- 
based approach has unacceptable limitations. Still, we are not convinced that it is necessary to 
apply statistical optimization all the time when a corpus is used to find the correct analysis. 
When dealing with input that is covered by the corpus the latter may be viewed as large set of 
rules and a solution will be found in a straightforward, efficient manner. Nevertheless, there is 
room for probabilistic methods and in the next section we will discuss some applications.

5. Probabilistic Methods
It should be clear from the discussion in the previous section that probabilism is only useful 
when it is applied in a controlled way. For the parse process in a BKB-based DLT system 
there are three application areas:
- handling input errors and unusual input; 

restricting the number of analyses;
- ordering of alternatives.
We will discuss each of these areas in the following subsections.

5.1. Incorrect and Unusual Input
As far as the parser is concerned incorrect and unusual input relate to input for which no 
acceptable solution can be found by straightforward matching with the BKB. The main differ­
ence is that if the input is incorrect the user should be consulted for clarification. If the input is 
unusual a solution should preferably be found without asking. The border between the two is

2 In RAP (Atwell et &1. 1989) the rate o f convergence is improved by introducing a bias towards the 
transformation o f  low-valued parts of die tree.
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determined by the fact whether it is possible to find a single analysis that matches with the 
BKB.
The ability to process deviant input is a requirement for any robust parser. In RAP and APRIL 
this is achieved by always generating a parse tree, even if the result is implausible. For our 
application this will not do. Each analysis should match with the BKB, otherwise translation is 
not possible. If such an analysis cannot be obtained the parser should try and find out what is 
wrong and, if necessary, consult the user -  preferably by making some sensible suggestions.

5.1.1. Input Errors
Input errors may be of various types which ask for different approaches. However, a general 
principle is that we need to know what the "correct” version is in order to say something sensi­
ble about the deviations. This is a severe requirement, but if an error has only local conse­
quences and if there is enough surrounding context it should be possible to determine the cause 
of the deviation.
Since error analysis may need a combined effort of different knowledge sources, the BKB 
approach seems to be ideal for intelligent error handling. Some types of errors we may con­
sider are:
(1) word form errors;
(2) syntactic deviations;
(3) spelling mistakes.
Errors of type (1) or (2) are relatively easy to detea by comparing the input to the linguistic 
information available. An interesting method to deal with such grammatical errors has been 
suggested by Chamiak (1983). In a rule-based parser a rule for which one or more atomic tests 
(e.g. agreement) fail is not applied. By modifying the tests it is possible to assign a kind of 
applicability measure to a rule. Instead of returning simply "yes” or "no" each test returns a 
value that is added to the current value of the applicability measure if the test succeeds and 
subtracted if the test fails.
Chamiak’s proposal is also very useful when a grammar is based on a corpus. For instance, it 
could be that, considering their word class, two words have a relation but that there is a 
mismatch between their features. An example is The boy see the man, in which subject-vert> 
agreement is violated. However, by establishing that the boy could be a subject and that see 
takes one and that complete feature unification is not possible the parser classifies the error. 
The user will then be consulted for clarification, e.g. by being presented two correct alterna­
tives one of which must be chosen;
(a) The boys see the old man
(b) The boy sees the old man
By using corpus information a likelihood value could be assigned to each alternative, which 
may be decisive if one alternative turns out to be far more plausible than any of the others, in 
which case user consultation is not needed.
There are errors that cannot be described on the basis of features or syntactic structures, but 
may be solved by using knowledge on individual words or their relations. In such cases a 
corpus-based system is superior. A typical example is a misspelled word, such as foz, which 
might be fez ot fox. By taking the context into account and comparing it with corpus informa­
tion the selection of one or the other alternative is supported. Compare;
(a) In Morocco men wear a caftan and a foz.

(b) The foz hunts at night.
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The context in (a) points to the interpretation fez, whereas the context in (b) points to the 
interpretation fox.

5.1.2. Unusual Input
In this section we will show by means of a simple example how use of a corpus supports the 
handling of unusual input. We mentioned earlier that in dependency grammar dependencies 
range over word classes. There are cases, however, in which a word has a syntactic function 
that is not typical for its word class. Nouns, such as week, month and year, may be used as 
time adverbials, as in / saw him last week. We don’t want to call week an adverb because it 
cannot perform the same functions as an adverb. On the other hand, we don’t want to extend 
the functions that are possible for nouns because only a small number of nouns may be used in 
the same way as week.
In a rule-based parser categories are used to formulate some general distributional criteria, as it 
is not feasible to state for a each word the syntactic functions it may perform. Such informa­
tion is, however, available in a corpus. We may find:
(1) He came last week.
(2) I have had a very bad week.
(3) A week is enough to finish this job.
From the available parse trees we derive the distribution of week in terms of governing or 
depending relations. Now suppose that we have the input sentence He arrives next month, but 
that we don’t have direct evidence that month could perform the same function as week in (1). 
The parser will then compare the distribution of month and week, in order to establish if they 
are used in the same way, i.e. show syntactic synonymity. The more correspondence is found, 
the higher the probability that month may indeed be used as a time adverbial.
The method to establish the possibility for month to be used as time adverbial may also be 
applied in other cases. The syntactic context of a word may suggest a function or even word 
class for which there is no direct evidence. For example, in He computers all the time the noun 
computer is used as verb. From the corpus we may deduce that in English "any noun may be 
verbed" and that the use of computer as a verb is acceptable.

5.2. Restricting the Number of Alternatives
An exhaustive parser often generates alternatives without taking aspects of language use into 
account. For a system that features user interaction this results in asking the user questions 
about alternatives that are counter-intuitive. Consider, for example,

Daily inspections should be performed.
Here daily modifies inspections and although it could modify the verb in an alternative 
analysis, this interpretation is only evident when daily is placed at the end of the sentence:

Inspections should be performed daily.
This is an example in which a corpus could be used to limit the number of possible analyses 
and, thus, assist the system to behave sensibly in the eyes of the user.
The fact that the corpus sometimes extends and sometimes restricts the number of possible 
interpretations indicates that there is an important lexical influence in syntax which causes 
words to behave differently from what we expect, considering their word classes. This sug­
gests that a strict separation between syntax and semantics (or at least language use) is not pos­
sible in the case of "realistic" language. The acceptability of certain distributions cannot be 
explained syntactically; there is no reason why only specific nouns may serve as adverbials. 
By the same token, there is no reason to exclude some potential analyses other than by
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observing that a language user would never interpret them that way.

5.3. Ordering Alternatives
An interact1, e translation system will have to deal with alternative analyses of the SL sentence, 
even if some of them may be excluded in advance. Particularly in the case of coordination or 
post-modifier sequences there may by a number of alternatives that have to be taken into 
account. By using the graph representation we introduced in Section 2 it is possible to 
represent the alternatives in a compact way. There are various techniques to prevent the com­
binatorial explosion caused by the generation of the alternatives (see e.g. Tomita 1985), but 
then we are faced with the problem of evaluating them efficiently. We intend to solve this in 
the following way.
We start with the incremental generation of all dependency links that are part of one or more 
of the potential analyses, resulting in a DLR of the input. The DLs that constitute the best 
analysis according to a given evaluation function are made active, all others are made dor­
mant. If the multiple analyses are caused by structural ambiguity, such as alternative attach­
ment points, then a simple transformation suffices to generate an alternative analysis. In Fig­
ure 3, for example, the activation of DL man-ATR2-with and the deactivation of DL sees- 
CIRC-with or vice versa results in an alternative analysis. So, a transformation is performed by 
activating/deactivating of a pair of DLs with a common dependent.
The set of DLs with a common dependent forms a choice point. Only DLs that are elements 
of choice points will have to be considered in the search for alternatives. To order the alterna­
tives, that is to find the second best given the current optimum, it may be necessary to perform 
more than one transformation without knowing what the sequence of transformations is. If 
there is a large number of choice points, systematic evaluation of all analyses is not feasible 
and a stochastic optimization technique is necessary. In contrast with the parsing of arbitrary 
input, such a technique is applicable here since certain requirements are met (Aarts & Korst 
1989: 100). The solution space (i.e. a representation of all possible solutions) is given by the 
DLR and there is a primitive transformation (the activation/deactivation of a pair of DLs) to 
generate an alternative solution. All the same, in very simple cases it is better to evaluate and 
compare alternatives directly. In view of this, it is advantageous to have an adaptive optimiza­
tion technique that is able to select the most efficient strategy.

6. Future Work
The result of our explorative research has been that we see many interesting aspects in corpus- 
based parsing in connection with probabilistic methods. However, application in a BKB-based 
DLT system asks for an approach that is different from related proposals by others. Therefore, 
we have planned a number of small-scale implementations in order to find out to what extent 
the various ideas and suggestions put forward in this paper are indeed feasible.
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PREDICTIVE NORMAL FORMS FOR 
FUNCTION COMPOSITION IN 

CATEGORIAL GRAMMARS

Robert E. Wall, University of Texas at Austin 
and

Kent Wittenburg, MCC

Abstract: Extensions to Categorial Grammars proposed to account for 
nonconstitutent conjunction and long-distance dependencies introduce the problem of  
equivalent derivations, an issue we have characterized as spurious ambiguity from the 
parsing perspective. In Wittenburg (1987) a proposal was made for compiling Categorial 
Grammars into predictive forms in order to solve the spurious ambiguity problem. This 
paper investigates formal properties o f grammars that use predictive versions o f function 
composition. Among our results are (1) that grammars with predictive composition are in 
general equivalent to the originals if and only if a restriction on predictive rules is applied,
(2) that modulo this restriction, the predictive grammars have indeed eliminated the problem 
of spurious ambiguity, and (3) that the issue o f equivalence is decidable, i.e., 
for any particular grammar, whether one needs to apply the restriction or not to ensure 
equivalence is a decidable question.

1. Introduction . Steedman (1985, 1987), Dowty (1987), Moortgat (1988), Morrill 
(1988), and others have proposed that Categorial Grammar, a theory o f syntax in which 
grammatical categories are viewed as functions, be generalized in order to analyze 
"noncanonical" syntactic constructions such as wh-extraction and nonconstituent 
conjunction. A consequence o f these augmentations is an explosion of semantically 
equivalent derivations admitted by the grammar, a problem we have characterized as 
spurious ambiguity from the parsing perspective (Wittenburg 1986). In Wittenburg
(1987), it was suggested that the offending rules o f these grammars could take an 
alternate predictive form that would eliminate the problem o f spurious ambiguity. This 
approach, consisting o f compiling grammars into forms more suitable for parsing, is 
within the tradition o f discovering normal forms for phrase structure grammars, and thus 
our title. Our approach stands in contrast to those which are attempting to address the 
spurious ambiguity problem in Categorial Grammars through the parsing algorithm itself 
rather than through the grammar (see Pareschi and Steedman 1987; Moortgat 1987, 1988; 
Hepple and Morrill 1989; Koenig 1989; Gardent and Bes 1989). Our approach is more 
in line with the tack that Bouma (1989) is taking, although his formulation o f categorial 
systems differs radically from our own, more traditional set o f assumptions.

In Wittenburg (1987) it was conjectured that predictive forms for Categorial Grammars 
were equivalent to the source forms and that they did indeed eliminate spurious 
ambiguity. Here we report on formal results that have ensued from these original 
conjectures. W e have found that, on the whole, the conjectures proved valid although we 
have discovered that the relationship between predictive normal forms for these grammars 
and their source forms are more complicated than was implied by the earlier paper. As 
we will show, an additional condition is necessary to ensure equivalence of these 
grammars and eliminate spurious ambiguity from the picture.
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2. Source G ram m ar (G) In this paper we focus on the role of basic function 
composition as a way of illustrating the effects o f predictive normal forms. For these 
proofs then, we assume a form of Categorial Grammar that is considerably more restricted 
than those advocated by van Bentham (1986), Steedman (1987), Moortgat (1988), Morrill
(1988), and others. As the work o f these authors shows, the simple Categorial Grammars 
we assume here are not linguistically adequate. We do not consider the effects o f type- 
raising nor of generalized conjunction here, nor do we address the issue of generalized 
composition. While we intend to address these points in future work, the simplifications 
w e assume here allow us to uncover an intidal set o f properties associated with the use of 
predictive combinators.

We assume for our source grammar G the following combinatory rules together with a 
lexically assigned system o f categories of the usual recursive sort That is, we assume a set 
o f basic categories, say, {S, NP, N }. If X and Y are categories, so are X /Y  and Y\X. 
Our notation follows Steedman (1987) and Dowty (1985) in that the domain type appears 
consistently to the right o f a slash and a range type to the left. Left directionality is then 
indicated by a left-leaning slash, and right directionality by a right-leaning slash. 
Semantically, we assume that lexical categories introduce functional constants in lambda 
terms where the arity o f the functions bears an obvious and direct relation to the syntactic
type.1 Here are example lexical entries.

kicks: S\NP/NP John: S/(S\NP) a: NP/N platypus: N
XxXy  ((k ick s x ) y) \ f ( f  john) Xx(a x ) p latypus

W e assume the following set o f combinatory rules:

Forward function application (fa>) Backward function application (fa<)

X /Y  Y -> X Y XVY -> X
f  a f(a) a f  f(a)

Forward function composition (fc>) Backward function composition (fc<)

X /Y  Y/Z -> X/Z Y\Z X \Y  -> X\Z
f  g Xx(f(g(x))) = Bfg g f  Xx(f(g(x))) = Bfg

Given these semantics, G yields equivalence classes o f derivations, where equivalence is
defined modulo (3-conversion of semantic terms.2 The two sources o f spurious ambiguity 
in G are summarized by the following equivalences generalized over directional variants of 
the rules:

1 Although we use the term semantics here to describe the relevant issues of derivational ambiguity, it 
should be understood that we dealing with a syntactic domain. One might think of our semantics as 
defining the syntactic structures yielded by derivations using these grammars.
2This definition of equivalence does not take quantifier scope differences into account. It is more in 
harmony with the predictive normalization techniques to assume that scoping structure is not necessarily 
isomorphic to the derivation tree, a position also advocated by Steedman (1987) and Moortgat (1988).
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(apply (compose X Y) Z) = (apply X (apply Y Z))

(compose X (compose Y Z)) = (compose (compose X Y) Z)

An example illustrating the first o f these equivalences follow s:1

S S
f(fi(a)) f(g(a))

......................................fa> ....................................fa>
S/NP FVP
A .x(f(g (x))) g (a )

...........................fc> ......................fa>
S/FVP FVP/NP NP S/FVP FVP/NP NP

f  g a f  g a

Assuming the terminal string "John kicks a platypus", complete derivations would 
yield the equivalent derivational terms ((kicks (a p latypus))John).

The numbers o f these equivalent derivations increase "almost exponentially” in string 
length, with the Catalan series (Wittenburg 1986).

3. P redictive N orm al Form  (G') A predictive normal form version o f  G replaces each 
composition rule with two predictive variants.2

Forward-predictive forward function composition (fpfc>)

X/(Y/Z) Y/W -> X/(W /Z)
f g Xh(f(Bgh)) = Xh(f(Xx(g(h(x)))))

Backward-predictive forward function composition (bpfc>)

W/Z X\(Y/Z) -> X\(Y/W )
g f  Xh(f(Bhg))= Xh(f(Xx(h(g(x)))))

Backward-predictive backwards function composition (bpfc<)

Y\W  X\(Y\Z) -> X\(W \Z)
g f  Xh(f(Bgh)) = Xh(f(Xx(g(h(x)))))

Forward-predictive backwards function composition (fpfc<)

X/(Y\Z) W \Z -> X/(Y\W )
f  g Xh(f(Bhg))= Xh(f(Xx(h(g(x)))))

^FVP is used as a notational convenience for the category S\NP. 

^These rules are derivable in the Lambek calculus (Lambek 1958).
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W e will now consider, first, the question o f ambiguity in G'. Second, we will take up the 
question o f whether G and G' are equivalent

4. A m biguity in G' Is there ambiguity in G'? We will consider first cases that are 
analogous to the derivations in G known to give rise to spurious ambiguity. Our proof is 
by induction on the height of a derivation tree.

In G, spurious ambiguity arises from the use of composition. Consider any maximal 
subtree o f fc> in a derivation in G, i.e.,

A/E

etc.

A/B B/C C/D D/E

Since it is part o f a derivation of S, it must feed into an instance of fa at the top (either as 
functor or as argument) — if it fed into fc, this tree would not be a maximal fc tree.

So subderivations in G with fc> must be o f one o f the following forms:

Case 2 (G): F

C/D D/E

In either case, there is one and only one derivation in G’ for the same category sequence.

Case 1 (G'): . Case 2 (G’):
A F

A/B B/C C/D D/E E F/(A/E) A/B B/C C/D D/E

The cases o f fc< are parallel. And since fc> and fc< cannot appear together in a maximal fc 
tree because o f directionality clash, all cases are accounted for.

Case 1 (G): A

A/B B/C C/D D/E E
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We have shown here that cases o f spurious ambiguity in G do not give rise to analogous 
spurious ambiguity in G', but o f course there may be new sources of ambiguity in G' that 
we have not yet considered.

Can there be any cases o f derivational ambiguity in G'? That is, can there be derivation 
trees o f the form

for (possibly complex) categories A, B, C, X, Y, Z, where mothers are derived from 
daughters using just the rules o f fa and predictive function composition? An exhaustive list 
of all the combinatory possibilities reveals just two types:

Type 1: X = Y/Y and Z = Y\Y
The central category Y can combine first by fa with Y/Y to its left or with Y\Y to its 

right, to yield Y in either case. This Y can then combine with the remaining category by fa 
to give Y again:

Y fa> Y fa<

/  Y fa< fa> Y \
7 /  \  /  \ \

Y/Y Y Y\Y Y/Y Y Y\Y

But this is a genuine ambiguity, not a spurious one, for the topmost Y can be assigned 
different semantic values by the two derivations. If [[YAH] = f, [[Y]] = a, and [[Y\Y]] = 
g, the left derivation yields f(g(a)) and the right one g(f(a)).

In the more general case, we might have m instances o f Y/Y to the left o f the Y and n 
instances o f  Y\Y to the right In such a situation the number o f syntactically and 
semantically distinct derivations would be the (m-i-n)th Catalan number. And since only 
fa> and fa< are used, the same ambiguity, if it is present, will be found in both G and in 
G ’.

Type II: A predictive combination rule is involved in the derivation. We will illustrate 
with just one case; the others are similar, differing only the directions o f the slashes and the 
order o f constituents.

Consider the derivation tree
E fpfc>

/  \
D  fa> \

/  \  \
A B C

in which each mother node is derived from its daughters by the indicated rule. Since E is
derived by f p f o ,  D  must be o f  the form XJ(Y/Z) and C o f the form Y/W; hence E is o f  the
form X/(W /Z). Then because D is derived by fa>, it follows that A must be of the form
(X/(Y/Z))/B. That is, the derivation tree is of the form
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X/(W /Z) fpfc 
/  \

X/(Y/Z) f a > \ .

(X/(Y/Z))/B B Y/W

for (possibly complex) categories B, W, X, Y, Z.
Given the rules o f fa and predictive composition, there is a distinct derivation tree 

yielding X/(W/Z) from the category sequence (X/(Y/Z))/B, B, YAV; namely,

X/(W/Z) fa>

fpfc

(X/(Y/Z))/B B YAV

N ow  because (X/(Y/Z))/B becomes X/(W /Z) by fa>, it follows that X/(Y/Z) = X/(W /Z), 
and so Y = W. Further, B combines with YAV (i.e., Y/Y) to give B again, so B is required 
to be o f the form R/(Y/Y), for some R. (Note that R/(Y/Y) could also combine with Y/Y  
by fa>, but nothing prevents fpfc> from applying here as well.) In summary, G' allows 
the following sort of derivational ambiguity (and others symmetrical to it);

XJ(Y/Z) fpfc> X/(Y/Z) fa>

/
X/(Y/Z) fa>

/  \
(X/(Y/Z))/(R/(Y/Y)) R/(Y/Y) Y/Y (X/(Y/Z))/R/(Y/Y)) R/(Y/Y) Y/Y

Is this a spurious or a genuine ambiguity? Letting the three leaf constituents have
semantic values f, g, and h, respectively, we obtain >i[f(g)(Bhi)] for the root node o f the
left tree and f[Xi[g(Bhi)]] for the root o f the tree on the right (Bhi denotes the composition 
of functions h and i.) These expressions are certainly non-equivalent for aribitrary
functions f, g, h. 1 At any rate, we might ask if  this sort o f ambiguity can lead to an 
explosion o f combinatorial possibilities like the one we were trying to rid ourselves o f in 
the first place. The worst case would be when there is a sequence o f n categories Y/Y  
extending rightward, thus:

(X/(Y/Z))/(R/(Y/Y)) R/(Y/Y) Y/Y Y /Y . . . Y/Y

N ow  R/(Y/Y) can combine with Y/Y's by fpfc, yielding R/(Y/Y) each time, then combine 
with the large category on the left by fa> to give X/(Y/Z), which can then combine with any 
remaining Y /Y ’s by fpfc> to give X/(Y/Z) back again. The lone instance o f fa> can thus

JEven so, it appears that if these functions are constrained by the form of the categories to which they are 
assigned (e.g., h must be a function from [[Y]]-type things to [[Y]]-type things, etc.), then the two 
expression may be equivalent and the ambiguity is a "spurious" one in the language of G'. At any rate, 
this point is moot given succeeding comments that these derivations need to be ruled out for G' to be 
equivalent to G.
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occur at any point in the derivation, and if there are n Y/Y’s, there will be n+1 distinct 
derivation trees. Thus, the number o f derivations grows only linearly with the number of 
occurrences o f Y/Y, not with a Catalan growth rate.

5. E quivalence o f  G and G' In considering equivalence o f these grammars, we first 
take up the question o f whether L(G) is a subset o f L(G') followed by the question of  
whether L(G') is a subset o f L(G).

5.1. Predictive composition includes composition Proof sketch: We show by induction on 
the depth o f derivation trees that any derivation in G has a derivation in G'.

Any derivation o f category S in G must end in fa> (or fa<). Consider the extension by 
depth one o f a derivation tree headed by fa x  W e consider 4 (not always mutually 
exclusive) cases. (Others include the symmetrical < variants and those that are excluded by 
directionality clashes).

s s s s

( 1) (2) ( 3 ) ( 4 )

Cases (1) and (3) are common to G and G'. Consider case (2). From the defmitions o f  
fa> and fc>, the categories o f the derivation must be as shown on the left, where Y and Z 
are any categories.

G ’:

S/Y Y/Z S/Y Y/Z Z

In G' there is a corresponding derivation from the same sequence o f  categories, as shown 
on the right There is also this derivation in G, but G', lacking fc>, has only this one for 
this category sequence.

Consider case (4).

G:

S/(X/Z) X/Y Y/Z

S/(Y/Z) 
fpfc>

S/(X/Z) X/Y Y/Z
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G' lacks fc>, but fpfc> allows (just) one derivation for this category sequence. The other 
cases symmetrical to these follow similarly.

5.2. Doe's LfG) subsume LfG')? Consider the following derivation in G':

S
fa>
\

B/(C/D)

S/(B/(C/D)) B/(E/D) E/C

There is no corresponding derivation in G. (Neither fa> nor fc> is applicable to the given 
categories.) Thus, in general, L(G) does not include L(G') and the grammars are not 
equivalent

What can be done about the non-equivalence of G' and G?

1. R estrict rule application  in G': One may stipulate that the result 
category o f a predictive rule cannot serve as argument in any other rule. (In 
function application X/Y Y => Z we take Y to be the argument category. In 
predictive rule X/(Y/Z) Y/W => X/(W/Z) we take the Y/W to be the argument 
For backwards rules, the argument category is the leftmost term.) In the derivation 
just above, the predictive rule fpfc> "feeds” fa> as argument If derivations in G’ 
are restricted in this way, L(G') is provably included in L(G), and the grammars
are weakly equ ivalent1

Moreover, the same restriction banishes all cases o f Type II ambiguity noted in 
Sec. 4 above. Observe that Type II ambiguity depends on predictive rules in G’ 
being able to "feed” the arguments o f further instances of predictive rules. Thus,
G' becomes free o f any spurious ambiguity.

This approach might be thought to be reminiscent o f Pareschi and Steedman 
(1987), where spurious ambiguity is addressed through procedural means in 
parsing. Yet our approach here actually need not constrain the parsing algorithm at 
all. A node formed by a predictive rule can be flagged, say, by a feature, while 
those formed by fa would not be. All combinatory rules could then have a feature 
on their "argument" categories that would block when encountering this flag. This 
rather minimal amount o f additional bookkeeping could easily be accommodated in 
the parsing strategy o f one's choice: top-down, bottom-up, left-right, breadth- 
first, or whatever. Thus, what at first might appear to be a constraint on parsing 
would be more accurately described as a modification to the grammar.

2. Grin and bear it: Recasting the grammar in "predictive normal form" 
eliminates all cases o f spurious ambiguity occasioned by sequences of function 
composition, a problem which is known to crop up very frequently in actual

1 For lack of space, we do not include the full proof here. It is parallel to the 
proof in Sec. 5.1 showing the inclusion of L(G) in L(G’). Any derivation in this
newly restricted G' is provably replacable by a derivation in G.
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applications and to cause serious delays in parsing times. On the other hand 
because of the complexity and the rather specific forms of the categories which 
give rise to the spurious ambiguities and the "spurious derivations" in the G’ 
examples above, it seems reasonable to suppose that such cases are unlikely to be 
encountered very often in ordinary applications. In any event, as we noted above, 
the number o f Type II ambiguous derivations in G’ grows only linearly and not in ’ 
Catalan fashion with increasing string length and would not be expected to lead to 
intolerable parsing times. The slight profligacy o f G’ over G might, therefore, 
present no serious practical problem.

For those still inclined to worry, we offer the following reassuring fact: a predictive normal 
form grammar can misbehave only if categories of sufficient "complexity" can be derived 
from the given set of categories in the lexicon, e.g., a category of the form S/(X/(W /Z)) in 
the case o f non-equivalence above and of the form (X/(Y/Z))/(R/(Y/Y)) in the instances o f  
Type II ambiguity. But given such a grammar and the lexical categories it is a decidable
question whether any categories of the undesired complexity can arise during a derivation.1 
(We wish to thank Jim Barnett for suggestions on how to prove this.) Thus one can tell . 
whether a particular G' is equivalent to G and is free from spurious ambiguity.2

6. C onclusion The main result o f this paper is that we have shown that Categorial 
Grammars with predictive variants o f function composition rules can satisfy the 
requirements for normalization, namely, that the "compiled" grammars preserve 
equivalence and that they do so with the benefit o f eliminating the parsing problem 
occasioned by spurious ambiguity. We have also enumerated decidability proofs of  
interest. Our next task is to explore the predictive normal form strategy with more 
expressive, and more nearly adequate, Categorial systems such as those that incorporate 
some form o f generalized composition and conjunction, type-raising, etc. What we expect 
to find is that if predictive normalization techniques are applicable at ail, the predictive 
grammars will have a relationship to their source forms that parallels the one we have 
uncovered here. In other words, we expect the restriction on the use o f predictive rules is 
in general necessary for preserving equivalence when using predictive combinators.
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Parsing Spoken Language 
Using Combinatory Grammars*

Mark Steedman 
Computer and Information Science, U.Penn.

Combinatory Grammars are a generalisation of Categorial Grammars to include operations on function 
categories corresponding to the combinators of Combinatory Logic, such as functional composition and 
type raising. The introduction of such operations is motivated by the need to provide an explanatory ac­
count of coordination and unbounded dependency. However, the associativity of functional composition 
tends to engender an equivalence class of possible derivations for each derivation permitted by more tra­
ditional grammars. While all derivations in each class by definition deliver the same function-argument 
relations in their interpretation, the proliferation of structural analyses presents obvious problems for 
parsing within this framework and the related approaches based on the Lambek calculus (Moortgat).

This problem has been called the problem of “spurious ambiguity” , (although it will become apparent 
that the term is rather misleading). A number of ways of dealing with it have been proposed, including 
compiling the grammar into a different form (Wittenburg), “normal form”-based parsing (Hepple and 
Morrill, Koenig), and a “lazy” chart parsing technique which directly exploits the properties of the 
combinatory rules themselves to provide a unified treatment for “spurious” ambiguities and “genuine” 
attachment ambiguities (Pareschi and Steedman).

Recent work suggests that the very free notion of syntactic structure that is engendered by the 
theory is identical to the notion of structure that is required by recent theories of phrasal intonation 
and prosody. Intonational Structure is notoriously freer than traditional syntactic structure, and is 
commonly regarded as conveying distinctions of discourse focus and propositional attitude. It is argued 
that the focussed entities, propositions, and abstractions that are associated with a given intonational 
structure can be identified with the interpretations that the grammar provides for the non-standard 
constituents that it allows under one particular derivation from an equivalence class. The constituent 
interpretations corresponding to each possible intonational tune belong to the same equivalence class, 
and therefore reduce to the same canonical function argument relations. However, it is apparent that the 
ambiguity between derivations in the same equivalence class is not spurious at all, but meaning-bearing.

Of course, not all structural ambiguities are resolved by distinctions of intonation. (An example is 
PP attachment ambiguity). It follows that some of the techniques proposed for written parsing must 
be implicated as well. However, the theory opens the possibility of unifying phonological and syntactic 
processing, as well as simplifying the architecture required for integrating higher-level modules in spoken 
language processing.

*1 am grateful to Julia Hirschberg, Aravind Joahi, M itch Marcu«, Janet Pierrehumbert, and Bonnie Lynn W ebber for 
com m ents and advice. T he research was supported by DARPA grant no. N0014-85-K 0018, ARO grant no. DAAG 29-84- 
K-0061, and NSF grant no. CER MCS 82-19196.
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Structure and Intonation

Phrasal intonation is notorious for structuring the words of spoken utterances into groups which fre­
quently violate orthodox notions of constituency. For example, the normal prosody for the answer (b) 
to the following question (a) imposes the intonational constituency indicated by the brackets (stress is 
indicated by capitals):

(1) a. I know that brassicas are a good
source of minerals, but what are 
LEGumes a good source of?

b. (LEGumes are a good source of)
VITamins.

Such a grouping cuts right across the traditional syntactic structure of the sentence. The presence of 
two apparently uncoupled levels of structure in natural language grammar appears to complicate the 
path from speech to interpretation unreasonably, and to thereby threaten a number of computational 
applications.

Nevertheless, intonational structure is strongly constrained by meaning. Contours imposing brack­
etings like the following are not allowed:

(2) #  Three doctors (in ten prefer cats)

Halliday [5] seems to have been the first to identify this phenomenon, which Selkirk [16] has called 
the “Sense Unit Condition” , and to observe that this constraint seems to follow from the function of 
phrasal intonation, which is to convey distinctions of focus, information, and propositional attitude 
towards entities in the discourse. These entities are more diverse than mere nounphrase or propositional 
referents, but they do not include such non-concepts as “in ten prefer cats.”

One discourse category that they do include is what E. Prince [15] calls “open propositions” . Open 
propositions are most easily understood as being that which is introduced into the discourse context by 
a Wh-question. So for example the question in (1), What art. legumes a good source of? introduces an 
open proposition which it is most natural to think of as a functional abstraction, which would be written 
as follows in the notation of the A-calculus:

(3) \x[good'(source' x ) legumes']

(Primes indicate interpretations whose detailed semantics is of no direct concern here.) When this 
function or concept is supplied with an argument v itam ins ', it reduces to give a proposition, with the 
same function argument relations as the canonical sentence:

(4) good' (source1 vitamins')legumes'

It is the presence of the above open proposition rather than some other that makes the intonation contour 
in (1) felicitous. (I am not claiming that its presence uniquely determines this response, nor that its 
explicit mention is necessary for interpreting the response.)

All natural languages include syntactic constructions whose semantics is also reminiscent of functional 
abstraction. The most obvious and tractable class are Wh-constructions themselves, in which exactly 
the same fragments that can be delineated by a single intonation contour appear as the residue of the 
subordinate clause. But another and much more problematic class are the fragments that result from 
coordinate constructions. It is striking that the residues of wh-movement and conjunction reduction are
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also subject to something like a “sense unit condition” . For example, strings like “in ten prefer cats” 
are not conjoinable:

(5) *Three doctors in ten prefer cats,
and in twenty eat carrots.

While coordinate constructions have constituted another major source of complexity for natural language 
understanding by machine, it is tempting to think that this conspiracy between syntax and prosody might 
point to a unified notion of structure that is somewhat different from traditional surface constituency.

Combinatory Grammars.

Combinatory Categorial Grammar (CCG, [17]) is an extension of Categorial Grammar (CG). Elements 
like verbs are associated with a syntactic “category” which identifies them as functions, and specifies 
the type and directionality of their arguments and the type of their result:

(6) eats (S\HP)/HP: e a t '

The category can be regarded as encoding the semantic type of their translation. Such functions can 
combine with arguments of the appropriate type and position by functional application:

(7) Haxry e a ts  apples

HP (S \ IP ) / IP  SP 

SNIP
--------------------------<

S

Because the syntactic functional type is identical to the semantic type, apart from directionality, this 
derivation also builds a compositional interpretation, eats' apples' harry ' , and of course such a “pure” 
categorial grammar is context free. Coordination might be included in CG via the following rule, allowing 
any constituents of like type, including functions, to form a single constituent of the same type:

(8) X  conj X  => X

(9) I cooked and ate a frog 

HP (SNMP)/IP conj (S\SP)/IP SP

(SNIP)/IP

(The rest of the derivation is omitted, being the same as in (7).) In order to allow coordination of 
contiguous strings that do not constitute constituents, CCG generalises the grammar to allow certain 
operations on functions related to Curry’s combinators [4]. For example, functions may compose, as well 
as apply, under the following rule

(10) Forward Composition:
X / Y  : F Y /Z  :G  X / Z  : Az F (G x)
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The most important single property of combinatory rules like this is that they have am invariant seman­
tics. This one composes the interpretations of the functions that it applies to, as is apparent from the 
right hand side of the rule.1 Thus sentences like I cooked, and might eat, the beans can be accepted, 
via the following composition of two verbs (indexed as B, following Curry’s nomenclature) to yield a 
composite of the same category as a transitive verb. Crucially, composition also yields the appropriate 
interpretation, assuming that a semantics is also provided for the coordination rule.

( 1 1 ) co o k e d  and s i g h t  e a t  

(S \N P )/N P  c o n j (S \N P )/V P  VP/HP
--------------- >B

(S \N P )/H P
--------------------------------------------------------------------- 1

(S\W P)/N P

Combinatory grammars also include type-raising rules, which turn arguments into functions over functions- 
over-such-arguments. These rules allow arguments to compose, and thereby take part in coordinations 
like I cooked, and you ate, the legumes. They too have an invariant compositional semantics which 
ensures that the result has an appropriate interpretation. For example, the following rule allows the 
conjuncts to form as below (again, the remainder of the derivation is omitted):

(12) Subject Type-raising:
N P  : y => S / { S \ N P ) : AF Fy

(13) I cookad and you at*

■P ( S \ I P ) / I P  conj IP ( S \ I P ) / I P
-------------->T ------------- >T
S / ( S \ I P )  3 / (3 \IP )
-------------------------------->B -------------------------------->B

3 / IP 3 /IP
-----------------------------------------------------------------1

3/IP

Intonation in a CCG.

Inspection of the above examples shows that Combinatory grammars embody an unusual view of surface 
structure, according to which strings like Betty might eat are constituents. In fact, according to this 
view, surface structure is a much more ambiguous affair than is generally realised, for they must also 
be possible constituents of non-coordinate sentences like Betty might eat the mushrooms, as well. (See
[11] and [19] for a discussion of the obvious problems that this fact engenders for parsing written text.) 
An entirely unconstrained combinatory grammar would in fact allow more or less any bracketing on a 
sentence. However, the actual grammars we write for configurational languages like English are heavily 
constrained by local conditions. (An example would be a condition on the composition rule that is 
tacitly assumed here, forbidding the variable Y in the composition rule to be instantiated as NP, thus 
excluding constituents like *[eat the]yp/^).

The claim of the present paper is simply that particular surface structures that are induced by 
the specific combinatory grammar that was introduced to explain coordination in English are identical 
to the intonational structures that are required to specify the possible intonation contours for those

1 The rule uses the notation of the A-calculus in the sem antics, for clarity. T his should not obecure the fact that it is 
functional com position itself that is the prim itive, not the A operator.
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same sentences of English.2 More specifically, the claim is that that in spoken utterance, intonation 
largely determines which of the many possible bracketings permitted by the combinatory syntax of 
English is intended, and that the interpretations of the constituents are related to distinctions of focus 
among the concepts and open propositions that the speaker has in mind. Thus, whatever problems for 
parsing written text arise from the profusion of equivalent alternative surface structures engendered by 
this theory, these “spurious” ambiguities seem to be to a great extent resolved by prosody in spoken 
language. The theory therefore offers the possibility that phonology and parsing can be merged into a 
single unitary process.

The proof of this claim lies in showing that the rules of combinatory grammar can be annotated 
with intonation contour schemata, which limit their application in spoken discourse, and to showing 
that the major constituents of intonated utterances like (l)b, under the analyses that these rules permit, 
correspond to the focus structure of the context to which they are appropriate, such as (l)a.

I shall use a notation which is based on the theory of Pierrehumbert [12], as modified in more recent 
work by Selkirk [16], Beckman and Pierrehumbert [2], [13], and Pierrehumbert and Hirschberg [14], I 
have tried as far as possible to take my examples and the associated intonational annotations from those 
authors.

I follow Pierrehumbert in assuming two abstract pitch levels, and three types of tones, as follows. 
There are two phrasal tones, written H and L, denoting high or low “simple” tones — that is, level 
functions of pitch against time. There are also two boundary tones, written HV% and L’/«, denoting an 
intonational phrase-final rise or fall. Of Pierrhumberts six pitch accent tones, I shall only be concerned 
with two, the H* accent and the L+H*. The phonetic or acoustic realisation of pitch accents is a complex 
matter. Roughly speaking, the L+H* pitch accent that is extensively discussed below in the context of 
the L+H* LH% melody generally appeaxs as a maximum which is preceded by a distinctive low level, and 
peaks later than the corresponding H* pitch accent when the same sequence is spoken with the H* L 
melody that goes with “new” information, and which is the other melody considered below.

In the more recent versions of the theory, Pierrehumbert and her colleagues distinguish two levels 
of prosodic phrase that include a pitch accent tone. They are the intonational phrase proper, and 
the “intermediate phrase” . Both end in a phrasal tone, but only intonational phrases have additional 
boundary tones H'/, and L'/,. Intermediate phrases are bounded on the right by their phrasal tone alone, 
and do not appear to be characterised in F0 by the same kind of final rise or fall that is characteristic 
of true intonational phrases. The distinction does not play an active role in the present account, but
I shall follow the more recent notation of prosodic phrase boundaries in the examples, without further 
comment on the distinction.

There may also be parts of prosodic phrases where the fundamental frequency is merely interpolated 
between tones, notably the region between pitch accent and phrasal tone, and the region before a pitch 
accent. In Pierrehumbert’s notation, such substrings bear no indication of abstract tone whatsoever.

A crucial feature of this theory for present purposes is that the position and shape of a given pitch 
accent in a prosodic phrase, and of its phrase accent and the associated right-hand boundary, are 
essentially invariant. If the constituent is very short -  say, a monosyllabic nounphrase -  then the whole 
intonational contour may be squeezed onto that one syllable. If the constituent is longer, then the pitch 
accent will appear at its left edge, the phrasal tone and boundary tone if any will appear at its right edge, 
and the intervening pitch contour will merely be interpolated. In this way, the tune can be spread over 
longer or shorter strings, in order to mark the corresponding constituents for the particular distinction 
of focus and propositional attitude that the melody denotes.

Consider for example the prosody of the sentence Fred ate the beans in the following pair of discourse

2 There is a precedent for the claim  that prosodic structure can be identified with the structures arising from the inclusion  
of associative operations in grammar in the work of M oortgat [9] and Oehrle [10], and in [?]
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(1 4 )  Q: W e l l ,  w hat a b o u t  t h e  BEAns?
Who a t e  THEM?

A: FEED a t e  t h e  B E A -n s .
H*L L+H*LH'/,

(15 )  Q: W e l l ,  w hat a b o u t  FRED?
What d i d  HE e a t ?

A: FRED a t e  t h e  BEAns.
L+H* LHV. H* LL7.

In th ese  c o n te x t s ,  the  m ain  s tressed  sy l lab les  on b o th  Fred and  the beans receive a p itch  accen t ,  but a 
different one.  In (1 4 ) ,  the  p itch  accen t con tou r  on  Fred is H*, w hile  th a t  on  beans is L+H*. (I base  these  
a n n o ta t io n s  on  P ierreh u m b ert  and H irsch b erg ’s [14, ex. 33] d iscuss ion  o f  this ex a m p le . )

In th e  seco n d  e x a m p le  (15 )  a b ove ,  the  p itch  accen ts  are reversed: this t im e  Fred is L+H* and  beans is 
H*. T h e  a s s ig n m e n t  o f  th ese  to n e s  s e e m  to reflect the  fact th a t  (as  P ierreh u m b ert  and  Hirschberg point  
o u t )  H* is used  to  m ark in form ation  th a t  th e  speaker  b e lieves  to  be new to the hearer. In co n tras t ,  L+H* 
seem s  to  b e  used  to  m ark in fo rm atio n  w hich  the  current speaker  k n o w s to  be  g iven  to  th e  hearer (b eca u se  
th e  current hearer asked th e  orig inal q u e s t io n ) ,  b u t  w hich  c o n s t i tu te s  a novel to p ic  o f  co n v ersa t ion  for 
the  sp eak er ,  s t a n d in g  in a co n tra s t iv e  re la t ion  to  som e other given  in form a tio n ,  c o n s t i tu t in g  th e  p rev iou s  
top ic .  (I f  th e  in fo rm a tio n  were m erely  g iven , it w ou ld  receive no to n e  in P ie r r e h u m b e r t ’s term s —  or 
be left o u t  a l to g e th e r . )  T h u s  in (1 5 ) ,  the L+H* LH'/, phrase  in c lu d in g  th is  accen t  is sp rea d  across the  
p h rase  Fred ate. 3  S im ilarly , in (1 4 ) ,  the  sa m e  tu n e  is confined to  th e  o b jec t  o f  the  o p e n  p ro p o s i t io n  ate 
the beans, b eca u se  th e  in to n a t io n  o f  th e  orig inal q u e st ion  in d ica tes  th a t  e a t in g  b ea n s  as opposed to some 
other comestible is the  n ew  topic .

settings, which are adapted from Jackendoff [7, pp. 260]:

Syntax-driven Prosody.

T h e  L+H* LH*/. in to n a t io n a l  m e lo d y  in ex a m p le  (15)  b e lo n g s  to  a ph rase  Fred ate ... w h ich  corresp on d s  
un d er  th e  co m b in a to ry  theo ry  o f  gra m m a r  to  a g r a m m a tic a l  co n s t i tu e n t ,  c o m p le te  w ith  a tran s la t ion  
eq u iv a len t  to  th e  o p en  p r o p o s i t io n  \x[(ate' x ) fred!). T h e  c o m b in a to r y  th eory  th u s  offers a way to  
ass ign  co n to u rs  like L+H* LH'/. to  su ch  novel co n s t i tu e n t s ,  en tire ly  under th e  contro l o f  in d e p e n d e n t ly  
m o t iv a te d  rules o f  gr a m m a r .  For e x a m p le ,  th e  rule o f  forward c o m p o s i t io n  sh o u ld  be  m a d e  su b je c t  to  a 
restr ic t ion  w h ich  is in th e  term s o f  P ie r r e h u m b e r t ’s th e o r y  an e x tr e m e ly  na tura l  on e ,  a m o u n t in g  to  the  
s tra igh tforw a rd  in ju n ct io n  “D o n ’t a p p ly  th is  rule across an in to n a t io n a l  phrase  or in te r m e d ia te  phrase  
b o u n d a r y ” . T h e  m o d if ied  rule a llow s th e  fo l low in g  der iva t io n  for Fred ate . . . ,  in w h ich  for on ce  the  
s e m a n t ic  in ter p re ta t io n  is in c lu d ed :4

3 An alternative prosody, in which the contrastive tune ia confined to Fred, seems equally coherent, and m ay be the 
one intended by Jackendoff. I believe that this alternative is inform ationally d istinct, and arises from an am biguity as to 
whether the topic of this discourse is Fred or W hat Fred ate.  It is accepted by the present rules.

4 Again primes indicate interpretations whose details are of no concern here. It will be apparent from the derivations 
that the assum ed sem antic representation is at a level prior to the explicit representation of m atters related to quantifier 
scope.
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(16) Fred

HP: f r e d ’ ( S \ N P ) / H P : a t e  '
L+H* LH’/.

------------------ >T
S / ( S \ H P ) : )  P P I r e d ’

L+H*
-------------------------------------->B

S / H P : X x  ( a t e ’ X) I r e d '
L+H*LH'/,

T h e  o p t io n s  in co rp ora ted  in th e  ton a l a n n o ta t io n s  o f  the  rule allow the  L+H* LH’/, tu n e  to  spread across  
any seq u en c e  th a t  can  be c o m p o sed  by rep ea ted  a p p lica t ion s  o f  the  rule. For ex a m p le ,  if the  reply to  the  
sa m e  q u est ion  What did Fred eat? is FRED must have eaten the BEANS , th en  th e  tu n e  will typ ica lly  
be spread  over Fred must have eaten as in the fo l low ing  derivat ion ,  in w hich  m uch o f  the  sy n ta c t ic  
and se m a n t ic  de ta i l  has b een  o m it t e d  in th e  in terests  o f  brevity:

(1 7 )  Fred m ist  have ea te n

HP (SNMP)/VP VP/VPen VPen/HP 
L+H* Lift

------ >T
L+H*

L+H*

L+H*
---------------------- >B

L+H*LH%

On th e  a s s u m p t io n  th a t  forward fu nct io n a l  a p p l ica t ion  bears a c o m p le m e n ta r y  restr ic t ion ,  and can  
co m b in e  any in to n a t io n  co n tou rs  to  y ie ld  their c o n c a te n a t io n ,  e x ce p t  w h en  the  le f tm o s t  is a bare phrasal  
ton e  or phrasa l to n e  and  b o u n d a ry  to n e ,  the  d erivat ion  o f  (1 5 )  can be c o m p le te d  as follows:

(1 8 )  Fred ate the beans

IP :f r e d ’ (S \ I P ) / I P :ate * IP /I :  t h e ’ I:bean*’ 
L+H* LHX H* LLX

----------- >T ............ ............... — >
S / ( S \ I P ) :  I P :the ’ bean*’
>P P fred* H* LLX
L+H*

S/IP:>X (a te*  I )  fred*
L+ge LSI
---------------------------------

3: a t e '  ( the* beans*) fred*
L+I* LIX H* LLX

T h e  d iv is io n  in to  c o n tr a s t iv e /g iv e n  o p en  p ro p os it ion  versus new  in fo rm atio n  is a p p rop r ia te ,  and no  o th er  
d erivat ion  is a llow ed , g iven  th is  in to n a t io n  con tou r .  R e p e a te d  a p p l ica t io n  o f  th e  c o m p o s i t io n  rule, as in
(1 7 ) ,  w ou ld  a llow  th e  L+H* LH*/, co n tou r  to  sp read  further, as in (FRED must have eaten) the BEANS.

In co n tras t ,  th e  in to n a t io n  c o n tou r  on  (1 4 )  w ill n ot  p e rm it  the  a n n o ta te d  c o m p o s i t io n  rule to  apply,  
b ec a u se  Fred en d  w ith  a L b o u n d a ry  in to n a t io n ,  so  th e  bracketing  im p o sed  in (1 5 )  (a n d  the  fo rm ation  o f
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the corresponding open proposition) is simply not allowed. However, since forward functional application 
is unrestricted, the following derivation of (14) is allowed. Again, the derivation divides the sentence 
into new and given information consistent with the context given in the example:

(19) Fr«d th« b«an»

IP:fr«d» (3 \IP ) /IP :m t« »  IP /I : th « >  I:b«*n*'
H* L  L+H* LHX

S/CSMP): I P : th« ’ b«an*>
> P  P fr«d>  L+H* LHX

H* L
------------------------------------------>

S \ I P :« a t ’ ( th « * b«&na’ )
L+H* LHX

3: b«ana’ ) f r a d ’
H* L L+H* LHX

The effect of the rules is to annotate the entire predicate as an L+H* LH'/,. It is emphasised that this 
does not mean that the tone is spread, but that the whole constituent is marked for the corresponding 
discourse function — roughly, as contrastive. The finer grain information that it is the object that is 
contrasted, while the verb is given, resides in the tree itself. Similarly, the fact that boundary tones are 
associated with words at the lowest level of the derivation does not mean that they are part of the word, 
nor that the word is the entity that they are a boundary of  It is prosodic phrases that they bound, 
and these also are defined by the tree. No other analysis is allowed for (19). Other cases considered by 
Jackendoff are considered in a more extended companion to the present paper [19], and are shown to 
yield only contextually appropriate interpretations.

Conclusions.

The problem of so-called “spurious” ambiguity, or multiple semantically equivalent derivations, now 
appears in a quite different light. While the semantic properties of the rules (notably the associativity 
of functional composition that engenders the problem in the first place) do indeed guarantee that these 
analyses are semantically equivalent at the level of Argument Structure, they are nonetheless meaning- 
bearing at the level of Information Structure. To call them “spurious” is rather misleading. What is 
more, while there are usually a great many different analyses for any given sequence of words, intonation 
contour often limits or even eliminates the non-determinism arising from this source.

The significance of eliminating non-determinism in this way should not be under-estimated. Similar 
intonational markers are involved in coordinate sentences, like the following ‘right-node-raised” example:

(20) I will, and you won’t, eat mushrooms

In such sentences the local ambiguity between composing won’t and eat and applying the latter to 
its argument first is a genuine local ambiguity, equivalent to a local attachment ambiguity in a more 
traditional grammar, for only one of the alternatives will lead to a parse at all. And the correct 
alternative is the one that is selected by the restriction against forward composition across prosodic 
phrase boundaries.

However, the extent to which intonation alone renders parsing deterministic should also not be over­
stated. There still axe sources of non-determinism in the grammar, which must be coped with somehow. 
Most obviously, there are sources common to all natural language grammars, such as the well-known 
PP-attachment ambiguities in the following example:
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(21) Put.the block in the box on the table.

While intonation can distinguish the two analyses, they do not seem to be necessarily so distinguished. 
There is also a residuum of so-called spurious ambiguity, because function categories bearing no tone 
are free to forward compose and to apply.

It is important to observe that this ambiguity is widespread, and that it is a true ambiguity in 
discourse interpretation. Consider yet another version of the example with which the paper began, 
uttered with only an H* LL% tune on the last word:

( 2 2 )

Legumes are a good source of Vitamins.
H* LL%

Such an intonation contour is compatible with all the analyses that the unannotated CCG would allow. 
However, such an utterance is also compatible with a large number of contextual open propositions. 
For example, it is a reasonable response to the question What can you tell me about legumes? But it 
is similarly reasonable as an answer to What are legumes?, or to What are legumes a good source of? 
The ambiguity of intonation with respect to such distinctions is well-known , and it would simply be 
incorrect not to include it . (See discussion in [1] and [8] for alternative proposals for ways of resolving 
it that are compatible with the present proposal.)

According to the present theory, the pathway between phonological form and interpretation is much 
simpler than has been thought up till now. Phonological Form maps directly onto Surface Structure, via 
rules of combinatory grammar annotated with abstract intonation contours. Surface Structure is identical 
to intonational structure, and maps directly onto Focus Structure, in which focussed and backgrounded 
entities and open propositions are represented by functional abstractions and arguments. Such structures 
reduce to yield canonical Function-Argument Structures. The proposal thus represents a return to the 
architecture proposed by Chomsky [3] and Jackendoff [7]. The difference is that the concept of surface 
structure has changed. It now really is only surface structure, supplemented by “annotations” which do 
nothing more than indicate the information structural status and intonational tune of constituents at 
that level.

While many problems remain, both in parsing written text with grammars that include associative 
operations, and at the signal-processing end, the benefits for automatic spoken language understanding 
are likely to be significant. Most obviously, where in the past parsing and phonological processing have 
delivered conflicting structural analyses, and have had to be pursued independently, they now are seen 
to be in concert. Processors can therefore be devised which use both sources of information at once, thus 
simplifying both problems. Furthermore, a syntactic analysis that is so closely related to the structure 
of the signal should be easier to use to “filter” the ambiguities arising from lexical recognition. What 
is likely to be more important in the long run, however, is that the constituents that arise under this 
analysis are also semantically interpreted. The paper has argued that these interpretations are directly 
related to the concepts, referents and themes that have been established in the context of discourse, 
say as the result of a question. The shortening and simplification of the path from speech to these 
higher levels of analysis offers the possibility of using those probably more effective resources to filter 
the proliferation of low level analyses as well.
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R ecogn ition  o f C om binatory Categorial Gram m ars and Linear 
Indexed Gram m ars

1 In trod u ction

In recent papers [14,15,3] we have shown th a t  Com binatory  Categorial G ram m ars  (CCG), Head G ram ­
mars (H G ), Linear Indexed G ram m ars  (LIG), and Tree Adjoining G ram m ars  (TAG) are weakly equiv­
alent; i.e., they generate the same class of string languages. Although it is known th a t  there are 
polynomial-time recognition algorithms for HG and TAG [7,11], there  are no known polynomial-time 
recognition algorithms th a t  work directly with CCG or LIG. In this paper we present polynomial­
time recognition algorithms for CCG and LIG th a t  resemble the CKY algorithm for Context-Free
G ram m ars  (C F G ) [4,16].

The tree sets derived by a C FG  can be recognized by finite  state tree au to m a ta  [10]1. This 
is reflected in CFL bo ttom -up  recognition algorithms such as the CKY algorithm. Intermediate 
configurations of the recognizer can be encoded by the sta tes  of these finite s ta te  au to m a ta  (the 
nonterm inal symbols of the g ram m ar). The similarity of TAG, CCG, and LIG can be seen from the 
fact th a t  the  tree sets derived by these formalisms can be recognized by pushdown  ( ra ther  than  finite 
s ta te )  based tree au to m a ta .  We give recognition algorithms for these formalisms by extending the 
CK Y algorithm  so th a t  in term ediate  configurations are encoded using stacks. In [6] a chart parser for 
CCG is given where copies of stacks (derived categories) are stored explicitly in each chart entry. In 
Section 4 we show th a t  storing stacks in this way leads to exponential run-time. In the algorithm we 
present here the stack is encoded by storing its top element together with information about where 
the rem ainder of the stack can be found. Thus, we avoid the need for multiple copies of parts  of the 
same stack through  the sharing of common substacks. This reduces the num ber of possible elements 
in each en try  in the  chart  and results in a polynomial time algorithm since the time complexity is 
related to the num ber  of elements in each chart entry.

It is not necessary to  derive separa te  algorithms for CCG, LIG, and TAG. In proving th a t  these 
formalisms are equivalent, we developed constructions th a t  m ap g ram m ars  between the different for­
malisms. We can m ake use of these constructions to adap t an algorithm for one formalism into an 
algorithm  for another. First we present a discussion of the recognition algorithm  for LIG in Section 22.

1A bottom-up finite state tree automaton reads a tree bottom-up. The state that the automaton associates with each 
node that it visits will depend on the states associated with the children of the node.

2 We consider LIG that correspond to the Chomsky normal form for CFG although we do not prove that all LIG have 
an equivalent grammar in this form. A discussion of the recognition algorithm for LIG in this form is sufficient to enable 
us to adapt it to give a recognition algorithm for CCG, which is the primary purpose of this paper.

K. Vijay-Shanker

Department of CIS 
University of Delaware 

Delaware, DE 19716

David J. Weir

Department of EECS 
Northwestern University 

Evanston, IL 60208

-172- International Parsing Workshop '89



We present the LIG recognition algorithm first since it appeares to be the clearest example involving 
the use of the notion of stacks in derivations. In Section 3 we give an informal description of how to 
m ap a CCG to an equivalent LIG. Based on this relationship we adapt the recognition algorithm for 
LIG to one for CCG.

2 Linear Indexed  Gram m ars

An Indexed G ram m ar [l] can be viewed as a CFG in which each nonterminal is associated with a 
stack of symbols. In addition to rewriting nonterminals, productions can have the effect of pushing 
or popping symbols on top of the stacks tha t  are associated with each nonterminal. A LIG [2] is an 
Indexed G ram m ar in which the stack associated with the nonterminal of the LHS of each production 
can only be associated with one of the occurrences of nonterminals on the RHS of the production. 
E m pty  stacks are associated with o ther occurrences of nonterminals on the RHS of the production. We 
write A[--] (or A[--7 ]) to denote the nonterminal A  associated with an a rb itra ry  stack (or an arbitrary 
stack whose top symbol is 7 ). A nonterm inal A  with an em pty stack is written  A[].

D e f in i t io n  2.1 A LIG, G, is denoted by (V>/, Vj, V>, 5, P )  where

V'v is a finite set of nonterminals,
V j  is a finite set of terminals,
Vj is a finite set of indices (stack symbols),
S  6 Vn  is the s ta r t  symbol, and
P  is a  finite set of productions, having one of the following forms.

/ t N -  A1[] . . .A, - ["] . . .An(] A H - . 4 1[ ] . . . A , [ - 7 ] . . .A„[ ]  A[] —* a

where A, A \ , . . . ,  A n 6 Vn  a ^d flG { e } U V j .

The relation = >  is defined as follows where a  € V f  and T i , T 2 are strings of nonterminals with
G

associated stacks.

• If A[--7 ] — A i [ ] . . . A t [ " ] . . . A n [] € P  then

T iA [ q 7 ]T 2 = >  T 1 A 1 [ ] . . . A , [ a ] . . . A „ [ ] T 2

• If A[-] ~  A1[ ] . . . A j[ - i ] . . . A „ [ ]  € P  then

T ,A [a]T 2 =>• T 1A i [ ] . . . A , [ a 7 ] . . . A n[]T2 

In each of these two cases we say th a t  A, is the d i s t i n g u i s h e d  child of A in the derivation.

• If A[] a 6  P  then
r l A [ } T 2 = > r i a r 2

The language genera ted  by a LIG, G, L ( G ) =  { w  | S[] ==>• w  }.
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In considering the recognition of LIG, we assum e th a t the underlying CFG is in Chom sky Normal 
Form; i.e., e ither two nonterm inals (w ith their stacks) or a single term inal can appear on the RHS of a 
rule. A lthough we have not confirmed w hether this yields a norm al form, a recognition algorithm  for 
LIG in this form of LIG is sufficient to enable us to develop a recognition algorithm  for CCG. We use 
an array  L consisting of n2 elem ents where the string to be recognized is a x ..  .a n . In the case of the 
CKY algorithm  for CFG  recognition each array  elem ent L t<J contains th a t subset of the nonterm inal 
symbols th a t can derive the substring ax ..  .a ; . In our algorithm  the elem ents stored in L i j  will encode 
those nonterm inals and associated stacks th a t can derive the string a, . .  . a^.

In order to ob tain  a polynom ial algorithm  we m ust encode the stacks efficiently. W ith each 
nonterm inal we store only the top of its associated stack and an indication of the  element in L 
where the next p a rt of the stack can be found. This is achieved by storing sets of tuples of the form 
(.4 , 7 , A ' , 7 ' ,p,  q) in the array  elem ents. Roughly speaking, a tuple (A, 7 , A', 7 ', p, <7) is stored in I tiJ 
when A [q7 /7 ] = >  a , . .  .aj  and A/[q;7 /] —̂  ap . . , a q where q  is a string of stack symbols and A is 
the unique distinguished descendent of A in the derivation of a , . .  . a ; .

Note th a t tuples, as defined above, assum e the presence of a t least two stack symbols. We must 
also consider two o ther cases in which a nonterm inal is associated with either a stack of a single 
elem ent, or w ith the em pty  stack. Suppose th a t A is associated w ith a stack containing only the single 
sym bol 7 . This case will be represented using tuples of the form (A, 7 , A ' , p ,  <7) ( w- ” indicates that 
an em pty  stack  is associated w ith A '). W hen an em pty  stack is associated w ith A we will use the tuple 
(A, - ,  - ) .  In discussing the general case for tuples we will use the form (A, 7 , A ', 7 ', p, <7) with
the understand ing  th a t:  A' G VN or 7 , 7 ' £ V/ or and p, q are integer betw een 1 and n or
T he algorithm  can be understood  by verifying th a t at each step the following invariant holds.

P r o p o s i t io n  2.1 (A , 7 , A', 7 ', p, q) £ L XyJ if and only if one of the following holds.

If -y' ^  — then  A[7 ] = >  a , . . .  a p_i A'[ }aq+\ . . .  a ; and A'[ol~i'\ ===> ap . . . aq for some a  E 

V f  where A ' is a distinguished descendent of A. Note th a t this implies th a t for 
a ll 0  e  V f ,  A[j3~f] a l- . . . a p_ iA /[/3]a, + 1 . . . a j .  T hus, for (3 = 0 7 ',  A [aY f ]  =^>

a,-. . . a p_ i A '[a7 /] a ,+ i . .  .aj  which implies A [a7 ;7 ] =̂ => a , . .  .a j .

If 7 7 =  -  ^  A' then  A[7 ] ==> a,-.. .a3 and A'[] ap .. .aq.

If A' =  -  then  A[] =̂ => a t- . .  .aj.

Wre now describe how each en try  L i j  is filled. As the algorithm  proceeds, the  gap betw een i and j  
increases until it spans the  en tire  inpu t. T he inpu t, <zi. . .  an , is accepted if (S , , —) E L\  n.
New entries are added to  the  a rray  elem ents according to the  productions of the  g ram m ar as follows.

1. T he p roduction  A[»7] -+ A i[]A 2[-] is used while filling the  a rray  elem ent L i j  as follows. For 
every k  where i < k < j ,  check the previously com pleted array  elem ents L itk and  L k+\,j for 
( A i , * - , a n d  some (A 2, 72, A3,73 ,P , <?), respectively. If these entries are found add 
(A , 7 , A2, 72? k  +  1, j )  to  L i j .  If 72 =  73 =  ^3  =  P =  q = ~  we Place ( A ,7 ,A 2, - , f c +  l , j )  in 
L i j .  From  these entries in L iyk and Ifc+i.j we know by P roposition  2.1 th a t A x[] =̂=> a t- . . . a fc

2.1 Recognit ion of LIG
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and .4.2[a] ==> a,k+i . .  .a ; for some a  E V}- . T hus, Afcry] ==> a, •. •a: . The production A[**-y] — 

Ai[*-]A2[] is handled similarly.

2. Suppose A[-*] —*> A i[].42[--7 ] is a production. W hen filling L tyJ we m ust check whether the
tuple ( A i , i s  in L x and ( A2, 7 , A3, 73 , p, q) is in L k+lyJ for some k between i 
and j .  If we do find these tuples then we check in L v<q for some (A 3 , 73, A4, 74, r, s). In this 
case we add (A , 73 , A4, 74, r, s) to  L{j .  If 73 = -  then the stack associated with A3 is empty, 
74 =  A 4 =  r = s = —, and we add the tuple ( A, r , 5 ) to L{yJ. T he above steps can be
related  to Proposition  2.1 as follows.

(a) If 73 5* -  then for some a  € V /, A4[q74J =^> ar . .  . a 3 a subderivation of .43 (0:7473] =̂=> 

av . . . a q a subderivation of A2[c*74737] ==> a * + i . . . a j .  Com bining this w ith A i[] ==>

a , . . .  a t  we have A [q7 473] ===> a, . . .  a ; .

(b) If 73 =  — then  A3[] av . . . a q is a subderivation of A2[7 ] ==>• ^k+ 1 - . . a j .  C o m b in i n g  

w ith Ai [ ] ==> a,-. .  .a* , we get A[] = = > < Z j...a j.

P roductions of the  form A[-*] —1► Ai[-*7 ]A2[] are handled similarly.

3 . Suppose A[] — a is a p roduction . This is used by the algorithm  in the initialization of the  array
L. If the term inal sym bol a is the sam e as the  i th sym bol in the  input string , i.e., a =  a ,, then 
we include (A , -  in the  a rray  elem ent Z ,tl.

2 .2  C o m p le te  A lg o r ith m

For i := 1 to n do

Li.i := {(>1, I A []-»  a,}

For i := n to 1 do 
For j  := j to n do

For k := i to j  — 1 do

Step la. For each production A(--7] — Ai[]A2[--]
if (A i, - ,  , - )  € Li'k and (A2 , 72 , A3 , 7 3 , p, q) € Lk+i,j
then Li j  := Li j  U  { (A, 7 , A2, 72 , k +  1 ,;) }

Step lb. For each production A[--7] —*> Ai[--]A2[]
if (Ai ,  7 1 , A3 , 7 3 , p ,  q) €  Li,!, and (A2) —, —, —, —) € L k + i j

then Li j  1 —- Li j  U {(A,7>Ai,7i>*i^')}

Step 2a. For each production A[- ] —* Ai[]A2[--7 ]
if (A 2 , 7 i A3 , 7 3 , p, q) €  £*+i,;> (A3 , 7 3 , A4, 74 , r, s) € £ Pl?, and ( A i € L%,k 
then Li j  .=  Li j  U { ( A, 7 3 > A4, 74> }

S/ep 2 b. For each production A[--] —*• Ai[--7]A2[]
if (Ai ,  7 , A3 , 73, p, ?) 6 (A3, 73, A4, 74, r , 5) G Ip,}, and (A2) —, - ,  , - )  6 £*+ 1 ,;
then L i j  := L i j  U  { (A, 73, A4 , 74, r, s) }
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2 .3  C o m p le x ity  o f  th e  A lg o r ith m

Any array  elem ent, say Z j j ,  is a set of tuples of the form (A, 7 , A', 7 ', p, q) where p and q are either 
integers betw een i and j ,  or i =  j  =  The num ber of possible values for A, A', 7 , and 7 ' are each 
bounded by a constan t. Thus the num ber of tuples in L XJ is at m ost 0 ( ( j  — t)2). For a fixed value 
of i , j , k ,  steps l a  and lb  will a tte m p t to place at most 0 ( ( j  —  i )2) tuples in L{j .  Before adding m y  
tuple to  L i j  we first check w hether the tuple is already present in th a t array  elem ent. This can be 
done in constan t tim e on a RAM by assum ing th a t each array  elem ent L XtJ is itself an (i -f 1) x ( j  4- 1 ) 
array. A tuple of the form ( A, 7 , A', 7 ', p, q) will be in the (p ,q) th elem ent of L Xi] and a tuple of the 
form (A, —, —, —, —, - )  will be in the (i +  l , j  +  l ) th elem ent of L xj .  Thus these steps take at most 
0 ( { j  ~  0 2) tim e- Similarly, for a fixed value of i, j ,  and fc, steps 2a and 2b can add at m ost 0 ( ( j  -  i )2) 
d istinct tuples. However, in these steps 0 ( ( j  — i )4) not necessarily distinct tuples may be considered. 
There are 0 ( ( j  — i )4) such tuples because the integers p , q , r , s  can take values in the range between i 
and j .  Thus steps 2a and 2b m ay each take 0 ( ( j  — i )4) tim e for a fixed value of i , j , k .  Since we have 
three in itial loops for i, j ,  and k,  the tim e com plexity of the algorithm  is 0 (n 7) where the length of 
the input is n.

3 C om binatory  C ategorial G ram m ars

CCG [9,8] is an extension of Classical C ategorial G ram m ars in which bo th  function composition 
and function application are allowed. In addition , forw ard and backw ard slashes are used to  place 
conditions concerning the relative ordering of adjacent categories th a t are to  be combined.

D e f in i t io n  3 .1  A C C G , G, is denoted by (V j, V)v, 5 , / ,  R) where

V j  is a  finite set of term inals (lexical item s),
V)v is a finite set of nonterm inals (atom ic categories),
5  is a  distinguished m em ber of Vjv,
/  is a function th a t m aps elem ents of Vj  U {e} to  finite subsets of C (Vj\r), the set of 
categories ,3 where C(V}v) is the  sm allest set such th a t  Vjv C C ( V ^ )  and  c i ,c 2 G C(Vjv) 
implies ( c i / c 2), ( c i \ c 2) € C(VN),
R is a finite set of com binatory  rules.

T here  are four types of com binatory  rules involving variables x , y , z , z \ , . . .  over C(V)y) and where

It € { \ > / } 4-

1 . forward application: > i x / y )  V ~ '* x

2 . backward application: y ( x \ y )  -+ x
For these rules we say th a t  ( x / y )  is the  prim ary  category and y  the  secondary category.

3 . generalized forward com position  for som e fixed n >  1 :

( x / y )  ( .  • . ( y | l * l ) | 2  • • • | » * n )  -*■ (* • • ( * | l * l ) | 2  • • - In^n)

3 Note that /  can assign categories to the empty string, e, though, to our knowledge, this feature has not been employed
in the linguistic applications of CCG.

4There is no type-raising rule although its effect can be achieved to a limited extent since /  can assign type-raised
categories to lexical items.
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4. generalized backw ard com position for some n > 1:

(• - * (2/ | l-l  )|2 • • -ln*n) ( A y )  —’ (• • . ( x | i * i ) | 2 • • -ln*n)

For these rules ( x / y )  is the prim ary category and ( . .  )|2 . . .  |n*n) the secondary category.

R estrictions can be associated with the use of each com binatory  rule in R.  These restrictions take the 
form of constra in ts  on the in stan tia tions of variables in the rules.

1. T he leftm ost nonterm inal ( t a r g e t  c a te g o ry )  of the prim ary category can be restric ted  to be in 
a given subset of Vjv.

2. T he category to which y is in stan tia ted  can be restricted  to  be in a given finite subset of C (V \) .  

D erivations in a C C G , G  =  (V j, Vyv, 5 , / ,  R),  involve the use of the  com binatory  rules in R. Let = >
G

be defined as follows, where T i ,  T 2 € [C{VN ) u  VT )m and c ,c i ,c 2 € C ( V N ).

• If R  contains a com binatory  rule th a t has CiC2 — c as an instance then

T ic T 2 ==> T iG ic2T 2

• If c 6 / ( a )  for some a 6 Vt  U { c } and c £ C ( V )v) then

T ic T 2 =► T i a T 2
G

T he string  languages generated  by a C C G , G , L( G)  =  { it; | 5  w \ w € V f  }.

In the  present discussion of CCG recognition we m ake the following assum ptions concerning the 
form of the  g ram m ar.

1 . In order to  simplify our p resen tation  we assum e th a t the  categories are parenthesis-free. The 
algorithm  that we present can be adapted in a straightforward way to handle parenthesized cate­
gories and this more general algorithm is given in [1 2 ].

2. We will assum e th a t  the  function /  does not assign categories to  the  em pty  string . This is 
consisten t w ith the linguistic use of CCG although we have not shown th a t  th is is a  norm al form 
for CC G .

3.1 The LIG/CCG Relationship
In this section, we describe the  relationship  betw een LIG and CCG by discussing how we can construct 
from  any CC G  a  weakly equivalent LIG. T he weak equivalence of LIG and CCG was established 
in [15]. T he purpose of this section is to  show how a CCG recognition algorithm  can be derived from 
the  a lgorithm  given above for LIG.

Given a C C G , G =  ( V j, V\r, 5 , / ,  R ), we construct an equivalent LIG, G' =  (V j, V)v, VjvU{/, \} ,  S ,P )» 
as follows. Each category in c 6 C(V]v) can be represented  in G' as a  non term inal and associated 
stack  A[a] where A  is the  ta rg e t category of c and a  € ({/»\}V)v)* suck A a  =  c. N ote th a t we 
are assum ing th a t  categories are parenthesis-free.

177- International Parsing Workshop '89



We begin by considering the function, / ,  which assigns categories to each element of V j-  Suppose 
th a t c E f ( a )  where c G C ( V h ) and a G Vt - We should include the production A[a] —* a where 
c -  A a  in P. For each com binatory  rule in R  w'e may include a num ber of productions in P. From the 
definition of CCG it follows th a t the length of all secondary categories in the rules R  is bounded by 
some constan t. Therefore there are a finite num ber of possible ground instan tia tions of the secondary 
category in each rule. Thus we can remove variables in secondary categories by expanding the number 
of rules in R. The rules th a t result will involve a secondary category c G C(Vjv)  and a prim ary category 
of the form x / A  or x \A  where A  6 Vyv is the target category of c. The rule m ay also place a restriction 
on the value of the targe t category of x.  In the case of the prim ary categories of the  com binatory 
rules there is no bound on their length and we cannot remove the variable th a t will be bound to the 
unbounded p a rt of the category (the  variable x above). Therefore the rules contain a single variable 
and are linear w ith respect to  this variable; i.e., it appears once on either side of the rule.

It is stra igh tfo rw ard  to  convert com binatory rules in this form into  corresponding LIG productions. 
We illu s tra te  how this can be done with an exam ple. Suppose we have the following com binatory rule.

x / A  A / B \ C \ B  -  x / B \ C \ B

where the ta rg e t category of x  m ust be either C  or D.  This is converted into the following two 
productions in P.

C [ - /B \C \B ]  -  C [ -M ]  A [ /B \C \B ]  D [ - /B \C \B ]  -  D[- / A]  A { /B \C \B ]

Notice th a t  these LIG productions do not correspond precisely to  our earlier definition. We are 
pushing and popping m ore th a t  one sym bol on the stack and we have not associated em pty  stacks with 
all bu t one of the  RHS nonterm inals. A lthough this clearly does not affect weak generative power, as 
we will see in the  next section, it will require a m odification to the recognition algorithm  given earlier 
for LIG.

3 .2  R e c o g n it io n  o f  C C G

In order to  produce a CCG recognition algorithm  we extend the LIG recognition algorithm  given in 
Section 2.2. From  the previous section it should be clear th a t the CCG and LIG algorithm s will be 
very sim ilar. Therefore we do not present a detailed description of the  CCG  algorithm . We use an 
array , C , w ith n 2 e lem ents, C tJ  for 1 < t <  j  < n. T he tuples in the  array  will have a slightly different 
form  from  those of the  LIG algorithm . This is because each derivation step m ay depend on more than  
one sym bol of the  category  (stack ). T he num ber of such sym bols is bounded by the g ram m ar and is 
equal to  the  num ber of sym bols in the  longest secondary category. We define th is bound for a CCG, 
G  =  (V j, V}v, 5 , / ,  R )  as follows. Let 1(c) =  k if c € ( { /A } ^ jv ) fc- Let 5(G ) be the m axim um  1(c) of 
any category c G C(V}v) such th a t  c can be the secondary category of a com binatory  rule in R.

As in the  LIG a lgorithm  we do not store  the  en tire  category explicitly. However, ra th e r  th an  storing 
only the  top sym bol locally, as in the  LIG algorithm , we store  some bounded num ber of sym bols locally 
together w ith a indication of where in C  the  rem ainder of the  category can be found. This m odification 
is needed since a t each step  in the  recognition algorithm  we m ay have to  exam ine the top  s (G)  symbols 
of a category. W ith o u t this extension we would be required to  trace  th rough  c(G)  entries in C  in order 
to  exam ine the  top  c(G)  sym bols of a  category and the  a lgo rithm ’s tim e com plexity would increase.
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An en try  in C  will be a six-tuple of the form ( A ,a ,/3 ,7 ,p ,  q) where A E V /y ,,a ,(3 E ( { / A K v V  
and one of the two cases applies.

or 2 < 1(a) < s(G)  — 1, l((3) =  s(G ) -  1, 7 E { / ,  \  }Viv , 1 < p < q < n

0 < 1(a) < 23(G ) — 2, (3 =  €, 7 = p = q —

An en try  (A,  a,  (3,~/,p,q) is placed in C t,j when

• If /3 =  € and 7 — p — q — -  then A a a, . .  . a 7.
G

• If (3 £  e then  for some a '  E ( { / , \  }V/v)*, A a '/3a  a , . . . a ; and A a '/?7 = ^ > a „ . . . a 7.
G G

The steps of the algorithm  th a t apply for exam ples of forw ard application and forw ard composition 
are as follows.

• x / A  A  —► x  E R
For each k  betw een i and j ,  we look for ( B ,  a ,  /?, 7 , p, <7) E C,,* and (A , - )  E C*+liJ
where B  is a  possible ta rge t category of x  and the string (3a has /A  as a suffix. If we find these 
tuples then  do the following.

If 1(a) > 3  or (3 =  e then  include ( B , a ' , / 3 , i , p , q )  in C tJ where a = a ' / A

If 1(a) = 2 and (3 ^  e then  look in Cp<q for some (B ,  a ',  /?', 7 ', r, s) such th a t (3 is a suffix of
/3'a ', and include (B , a '"a " , fi', 7 ', r, 3 ) in C t)J where a  =  q " /A  and  a ' =  q //;7 .

If 1(a) =  / A  then  we know th a t  (3 =  e and 7 =  p =  g =  —, and we should add ( 5 ,  e, £, —, - )
in

• x / A  A \ B / C  —*• x \ B / C  E i?
For each A: betw een i and j ,  we look for (A ', a ,  j3, 7 ,p , <?) E C,,^ and ( A , \ B / C ,  e, - )  E Cjt+i.j 
where A ' is a possible ta rg e t category of x  and /A  is a suffix of /3a. If we find these tuples then 
do the following.

If l(j3 ) =  s (G)  — 1 or 1(a)  =  2,s(G) — 3 then  include ( A ' , \ B / C ,  /3', / A , i ,  k)  in C , j  where (3'/A 
is a  suffix of (3a such th a t  l((3') — s (G)  — 1 .

If l((3) =  0 and  1(a) < 2s(G)  — 3) then  include ( A', \ B / C a \  e, —, —, —) in C ,tJ where a ' / A = 
(3a.

Each of th e  o th e r form s of com binatory  rules can be trea ted  in a sim ilar way yielding an algorithm 
th a t  closely resem bles the  LIG algorithm  presented in Section 2 .2 . Note th a t in a  com plete algorithm, 
the  forw ard com position exam ple th a t  we have considered here would have to  be m ade m ore general 
since the  num ber of cases th a t  m ust be considered depends on the  length of the  secondary category in 
the rule. T he tim e com plexity of the  full CCG  recognition algorithm  is the  sam e as th a t  of the LIG 
algorithm ; i.e., 0 ( n 7).
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4 Im portance o f Linearity

T he recognition algorithm s given here have polynom ial-tim e complexity because each array  element 
(e -g-» L XyJ in LIG recognition) contains a polynomial num ber of tuples (w ith respect to  the difference 
betw een j  and i). These tuples encode the top symbol of the stack (or top symbols of the category) 
together with an indication of where the next p a rt of the stack (category) can be found. If we had 
stored  the entire  stack  in the  array  elem ents5, then each array  en try  could include exponentially many 
elem ents. The recognition com plexity would then be exponential.

It is in teresting  to  consider why it is not necessary to store the entire stack in the array  elements. 
Suppose th a t (A , 7 , .4', 7 ', p, q) 6 L i j .  This indicates the existence of a tuple, say (A ', 7 ', A", 7 ", r, s), 
in L Pyq. It is crucial to  note th a t when we are adding the first tuple to L X<J we are not concerned about 
how the second tuple came to be put in L p<q. This is because the productions in LIG (com binatory 
rules in C C G ) are linear w ith respect to  their unbounded stacks (categories). Hence the derivations 
from different nonterm inals and their associated stacks (categories) are independent of each other. In 
Indexed G ram m ars, productions can have the form A[-*7 ] —*> A i [--] A 2 [*•]. In such productions there is 
no single distinguished  child th a t inherits the  unbounded stack from the nonterm inal in the LHS of the 
production . In a bo ttom -up  recognition algorithm  the identity  of the entire  stacks associated with A\ 
and A2 has to  be verified. This nullifies any advantage from the sharing of stacks since we would have 
to  exam ine the com plete stacks. A sim ilar situation  arises in the  case of coordination schem a used to 
handle certain  forms of coordination in D utch. A coordination schem a has been used by Steedm an [9] 
th a t  has the  form x con j x  —► x  where the variable x  can be any category. W ith  this schem a we have 
to  check the iden tity  of two derived categories. This results in the loss of independence  am ong paths 
in derivation trees. In [13] we have discussed the notion of independent pa ths in derivation trees with 
respect to  a range of gram m atica l form alisms. We have shown [12 ] th a t when CCG are extended with 
this coord ination  schem a the recognition problem  becomes N P-com plete.

5 C onclusion

We have presented  a general schem e for polynom ial-tim e recognition of languages generated by a 
class of g ram m atica l form alism s th a t  are m ore powerful th an  C FG . This class of form alism s, which 
includes LIG, C C G , and  TA G , derives m ore complex trees th an  C FG  due the  use of an additional 
s tack -m an ipu la ting  m echanism . Using constructions given in [15,3], we have described how a recog­
nition algorithm  presented  for LIG can be adap ted  to  give an algorithm  for C C G . These are the first 
polynom ial recognition algorithm s th a t  work directly w ith these form alism s. This approach can also 
be used to  yield TA G  recognition a lgorithm , a lthough the TAG algorithm  is not discussed in this 
paper. A sim ilar approach  has been independently  taken  by Lang [5] who presents a Earley parser for 
TA G th a t appears to  be very closely related  to  the algorithm s presented here.

5In the chart parser for CCG given by Pareschi and Steedman [6] the entire category is stored explicitly in each chart 
entry.
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Handling of Ill-designed Grammars in 
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ABSTRACT
In this paper, we show that some non-cyclic context-free grammars with e-rules cannot be han­

dled by Tomita’s algorithm properly. We describe a modified version of the algorithm which remedies 
the problem.

1. Introduction
Tomita’s parsing algorithm [8,9] is an efficient all-paths parsing method which is driven by an LR 

parse table with multi-valued entries. The parser employs an acyclic parse graph instead of the conven­
tional LR parser stack. The parser starts as an ordinary LR parser, but splits up when multiple actions 
are encountered. Multiple parses are synchronized on their shift actions and are joined whenever they 
are found to be in the same state.

The parallel parsing of all possible paths makes this algorithm suitable for parsing nearly all the 
arbitrary context-free grammars. In fact, one may view this method as a precompiled form of Earley’s 
algorithm [2,3]. Earley [2] proposed a form of precompiled approach to his method in the case of a res­
tricted class of grammars which has undecidable membership. Tomita’s algorithm, on the other hand, is 
intended for use with general grammars. Since the method uses a parse table, it achieves considerable 
efficiency over the Earley’s non-compiled method which has to compute a set of LR items at each stage 
of parsing. In this respect, Tomita’s algorithm can indeed be considered as a breakthrough in efficient 
parallel parsing in practical systems. However, there seem to be at least two types of context-free gram­
mars that cannot be handled by this method properly. The first type are cyclic grammars. These gram­
mars have infinite ambiguity and therefore have to be excluded from syntactic analyses. The second 
kind of grammars include certain context-free grammars with e-productions. Some of these are unambi­
guous and some have bounded, bounded direct or unbounded degrees of ambiguity.

Grammars of the latter type may seldom be used to describe the syntax of natural language. In 
fact, we consider them as somewhat ill-designed. But, they may creep in easily when one is designing a 
natural language grammar with e-rules. Such rules cause unexpected infinite loops in parsing. In this 
paper, we modify the parsing algorithm so that it can handle the second type grammars.

The modification introduces cyclic subgraphs in the original graph-structured parse stack. These 
subgraphs correspond to the parsing of null substrings in the input sentence. Thus, the modification 
incurs no cost to the grammars or the inputs that do not need this feature. We believe that adding such 
a feature to Tomita’s algorithm is very desirable. Because, it enriches the method to be comparable to 
Earley’s algorithm in its coverage, and yet it is in a precompiled form.

In the following sections, we discuss the two types of the grammars that cause problems in the 
original algorithm, and we present the modified algorithm.

2. The Two Types of Grammars
Cyclic grammars are those in which a non-terminal, like A, can derive itself (i.e., A =^=> A). 

and G2 are examples of cyclic grammars.
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- 2 -

G
S A 
A —> S 
A —» x

G 2:
S -> S S 
S —> x 
S —> £

In G lt A = = >  S = >  A, and in G2, S = = >  S S = = >  S. Cyclic grammars produce infinite number 
of parse trees for a finite length input such as "x" in L ^ )  and U G ^. They cause problem in every 
parsing algorithm. Therefore, they have been avoided in describing syntax of languages traditionally.

Both Earley’s and Tomita’s algorithms will fail to detect the cyclicity of and G 2. Given an
input sentence x , one can however obtain the minimal parses with respect to either grammar by 
Earley’s algorithm and only with respect to Gt by Tomita’s algorithm. The second algorithm will not 
terminate when the grammar G2 is used. Tomita [8] discusses the cyclic grammars and rules out their 
inclusion in natural language parsing. Such exclusion can be achieved through a simple test before gen­
erating a parse table (see [1] for example).

Among the second kind grammars that cannot be handled with the original algorithm are the 
examples G 3, G4, G5 and G6 below.

G3:
S —> A S b 
S —> x 
A —» £

G4:
S -> M 

’ S —> N 
M —> A M b 
M -> x 
N —» A N b 
N —» x 
A —» £

G 5:
S -» A S b 
S —» x 
A -> t 
A -> £

G6:
S - > M N  
M -»  A M b  
M —> x 
N —» b N A 
N -> x 
A —> £

G 3 is unambiguous, G4 has bounded ambiguity, G5 has bounded direct ambiguity while G6 *has 
unbounded ambiguity (see Apendix 1 for the definition of these terms). One may note that in these 
grammars, unlike cyclic grammars, there are only finite number of parse trees for a given finite length 
input.

A property common to these grammars is that there exists a non-terminal, say S, such that 
^ + > a S p  where ot ——■> £ but (3 =/=> e. For example, in G 3 or G5, S can be rewritten as 
S A S b ■> S b. Rules like these may be excluded from a grammar by using an appropriate 
test (see Appendix 2). However, one may keep or include such rules in a grammar for the following 
reasons.

(1) To capture some rare phenomena, for example, embedded that-sentences
[[ THAT [[THAT . . . [[THAT SI VP 1 . . .1 VP]] VP] in which a number of terminal ’that’s are omit­
ted.

(2) Grammars with E-productions are more concise and readable than the grammars without £-rules. In 
fact, elimination of £-rules from a grammar may increase the size of the grammar exponentially. There­
fore, one may use rules similar to the examples G 3 to G6 to compact the grammar and the parse table, 
knowing that their presence should not affect the correct parsing of valid inputs.
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(3) More frequently, such rules may appear in a grammar when e-productions are introduced without an 
adequate care. It is important to note that replacement of these rules (and their associated symbols) may 
not always be easy.

Grammars G 3 through G6 can be parsed by Earley’s algorithm with no problem. For example, 
consider the sentence xbbb e L(G3). That algorithm will produce the following states.

state 0 state 1 state 2 state3
root —» .S#, 0 S —> x., 0 S —> ASb., 0 S —> ASb., 0
S -> .ASb, 0 x —> root S.#, 0 b —> root —> S J ,  0 b —> root —> S.#, 0
S —> .x, 0 S —> AS.b, 0 S -> AS.b,0 S AS.b,0
A —» e., 0
S —> A.Sb, 0

state 4
S —> ASb., 0 
root —» S.#, 0 
S —> AS.b, 0

state 5

root —» S#., 0

However, the above grammars cause an infinite loop in Tomita’s algorithm. Applying the algorithm for 
e-grammars (given in [8]) to the input sentence xbbb and the parse table for G 3 , the result will be an 
infinite graph-structured stack as shown below.

State x b # A S  Grammar Gy.
(1) S —> A S b
(2) S —» x
(3) A -> e

0 re3,sh3 2 1
1 acc
2 re3,sh3 2 4
3 re 2 re2
4 sh5
5 rel rel

Action table Goto table

U  0.0 U  0,1 U 02 U  0.3

In Tomita’s algorithm the state nodes created in the parse graph are partitioned into UQl U lt . . . , 
Un where each £/, is the set of state vertices which are created before shifting of word a 1+1 in the input 
Furthermore, in the presence of e-productions, each U[ is partitioned into Ui 0, C/Itl, Ul2, . . •• Each 
Ui j denotes the set of state vertices created while parsing the j-th null construct after the i-th input
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symbol a, is shifted and before the shifting of next actual input symbol ai+1 takes place. Tomita 
assumes that the number of null constituents between every adjacent pair of input symbols is always 
finite. Though his assumption is correct for non-cyclic grammars, it cannot be incorporated as such in 
the parser since it will require arbitrary and complex lookaheads in general case. As noted earlier this 
strategy fails in the example grammars.

It is interesting to note that the same strategy will succeed in the case of LR grammar G 3 which 
is the reverse of G 3 .

C'3:
S —> b S A 
S —> x 
A —> e

The difference between G3 and G3 is that in G3 a null deriving constituent appears on the left part of a 
recursive phrase, while in G 3, it appears on the right side of the recursive construct. Thus, the parser 
for G3 does not know how many A’s it has to create before consuming the first input word "x". In the 
case of G3 , the left context provides enough information to limit the number of empty constructs to a 
finite size.

One may observe that though G3 is an unambiguous grammar, it is not LR(k) for any k. Viewing 
differently, one may argue that such grammars can be parsed deterministically and more efficiently by 
non-canonical parsers. Marcus’ parser [5] and bottom-up variations of it described in [6,7] can handle 
this grammar in a much better way, since they create the rightmost A in the parse tree first. The reader 
may also consult [6,7] to see the advantage of these parsers over Tomita’s algorithm when grammars 
like G 7 are to be parsed.

G7:
S —> a S a 
S -> B S b 
S —> C S c 
B —> a 
C —> a 
S —» x

However, we should emphasis that the whole thrust and advantage of Tomita’s parser lies in obtaining 
multiple parses with respect to ambiguous grammars such as those in examples G4 to G6.

In the following section, we modify Tomita’s algorithm in a way that the second type grammars 
can be handled within this framework. In doing so, we believe that we are introducing a version of 
Tomita’ algorithm which is a partially-precompiled equivalent of Earley’s parser and can be applied to 
all non-cyclic context-free grammars.

3. Modified Algorithm
To accommodate grammars like G3 to G6 within Tomita’s parsing method, we allow cycles in

the graph-structured parse stack. These cycles are introduced in the parse graph in a very restricted way.
Each cyclic subgraph represents a regular expression that corresponds to parsing of a null substring 
between two adjacent input symbols. Unlike Tomita’s algorithm for e-grammars [8], we do not partition 
each Ui any further. So, the set of state vertices of each cyclic subgraph entirely lies within a single £/,. 
Obviously, cycles are created within £/, only if parsing of the input sentence requires them. Since the 
parse graph is now cyclic, we do reductions along arbitrary paths (i.e., paths that are not simple and 
may contain repetitive vertices or arcs). Such paths are usually termed (directed) walks in graph theory.

Our approach though is intuitive, it has its roots in LR theory. In LR parsing, the finite automaton
(from which a parse table is extracted) represents the set of all viable prefixes of the grammar in closed 
form. The parse stack, on the other hand, represents an actual viable prefix (of a right sentential form) 
in open form. The actual viable prefix is built from the input symbols which are consumed by the LR
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parser. It is necessary to hold the actual viable prefix in the stack so that the parser can be provided 
with the exact left context. However, in the modified all-paths parser we do not need to keep the null- 
deriving segments of the left context in open form. For example, in parsing sentences like xb. .b e 
L(G3), e and A. . .A are the viable prefixes when the parser scans the first input symbol "x". Since each 
A derives a null string and we do not know exacdy how many of them we should assume, we represent 
the left context in the closed form e+AA*. The corresponding parse graph will appear as the figure in 
below when "x" is just shifted. The parser will pick as many A’s as it needs from this regular expres­
sion when the remainder of the sentence is seen.

AI)

Similarly, consider the example grammar G5 and the parse table for it as shown below. One will 
obtain the following snapshot of the parse graph after the parser consumes the prefix txb of the sentence 
txb. . .b, and all the appropriate reductions are done.

state t X b # A S

0 sh4/e4 sh3je4 2 1
1 acc
2 sh4je4 sh3je4 2 5
3 re2 re2
4 re 3 re 3
5 sh6
6 rel rel

Grammar G5
(1) S —» A S b
(2) S —» x
(3) A —» t
(4) A —» e

Action table Goto table

U r U i 
i--------1

U 2
I--------1

U,
I--------1

i— i
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In this example, the left context just before shifting the word "x" can represented as the regular 
expression (AA* A + A ) A*. For clarity, the bold faced A represents the non-terminal obtained by 
reducing "t". For the same reason, we are not combining identical symbol vertices which are adjacent to 
the same state vertex, (a measure of optimization suggested in [8]), in the illustrated examples or in the 
algorithm that to follow.

As another example, an interested reader using the parse table in Appendix 3 may verify that U0 
for the grammar G% will have the following format.

Cg:
S —> x 
S B S b 
S —> A S b 
B —> A A 
A —> £

In the above examples, we have used an LALR(l) parser generator, similar to YACC [4], to 
obtain the parse tables with multi-valued entries. Tomita [8,9] also uses LALR(l) tables, however, using 
non-optimized LR(1) tables will decrease the number of superfluous reductions in general.

We are now in a position to present the modified algorithm. For simplicity, we give an algorithm 
for a recognizer rather than a parser. The recognizer can be augmented in a way similar to that of [81 to 
provide a parser that also creates the parse foresL

Recognition Algorithm:

PARSE (G, a j • • • a„)
• T := 0 .
•  a . :=
•  r = FALSE.
• Create a vertex v0 labeled s 0 in T.
• U0 := (v0).
• For i := 1 to n do PARSEWORD (i).
•  Return r.

PARSEWORD (i)
•  A := Ui.
•  R := 0 ;  Q ; = 0 ,
• Repeat

' if A * 0  then do ACTOR 
else if R * 0  then do COMPLETER 

until R = 0  and A = 0 .
• Do SHIFTER.

ACTOR
• Remove an element v from A.
• For all a  6 ACTION (STATE (v), a1+1) do

begin
if a  = ’accept’ then r := TRUE;
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if a  = ’shift s ’ then add <v ,s> to Q; 
if a  = ’reduce p’ then

for all vertices w such that there exists a directed
walk of length 2 I RHS (p) I from v to w /* For e-rules this is a trivial walk, i.e. w=v */ 
do add <w ,p> to R

end.

COMPLETER
• Remove an element <vv ,p> from R.
• N := LHS (p); s := GOTO (STATE (w), N)..
• If there exists u e U, such that STATE(u) = s then

begin
if there does not exist a path of length 2 from u to w then 

begin
create a vertex z labeled N in T;
create two arcs in T from u to z and from z to w;
for all v g  (.Ui - A) do
/* In the case of non-e-gram mars this loop executes for v -u  only */ 

for all q such that ’reduce q’ e ACTION (STATE (v), aI+1) do 
for all vertices t such that there exists a directed walk of 
length 2 I RHS (q) I from v to t that goes through vertex z 
do add <t ,q> to R

end
end

else I* i.e., when there does not exist u e £/,• such that STATE (u) = s */ 
begin

create in r two vertices u and z labeled s and N respectively; 
create two arcs in T from u to z and from z tow ; 
add u to both A and £/,

end.

SHIFTER
• Ui+j := 0 .
• Repeat

remove an element <v ,s> from Q; 
create a vertex x labeled al+1 in T; 
create an arc from x to v;
if there exists a vertex u e Ui+l such that STATE (u) = s then 

create an arc from u to x
else

begin
create a vertex u labeled s and an arc from u to x in T; 
add u to £/i+1 

end.
until Q = 0 .

As noted earlier, the above recognition algorithm can be changed into a parsing algorithm to pro­
duce the shared parse forest among the different parses. In the parsing algorithm the elements of R are 
triples <w, p, L> where L is a list of vertices that represent RHS symbols of p. One must note that our 
algorithm creates e-deriving non-terminals that may be shared as a son by other non-terminals that are 
in ancestor-descendant relationship in the parse forest. To illustrate this point, we show the full parse 
graphs and corresponding parse trees of example sentences in Appendix 4. As an alternative, in build­
ing a parse forest one may replicate a null yielding subtree whenever this subtree participates in a
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reduction where at least one other sibling has non-empty yield.
As a final remark, we may add that the above algorithm can obtain the minimal parses in the case 

of cyclic grammars, but does not detect their cyclicity. It is also possible to precompile some subsets 
of each C/, that are obtained under the transitions with respect to null-deriving non-terminals.

4. Conclusion
We have modified Tomita’s parsing algorithm so that it can handle some ill-designed grammars 

with e-rules that caused a problem in the original algorithm. We have introduced cycles in the parse 
graph in a restricted way. This makes the parse graph in the new algorithm a cyclic directed graph in 
some general cases. However, the new algorithm works exacltly like the original one in case of gram­
mars that have no £-productions. This algorithm has no extra costs beyond that of the original algo­
rithm.

We believe that the modified algorithm is a precompiled equivalent of Earley’s algorithm with 
respect to its coverage, though we have not provided a formal proof for it  The resulting algorithm sug­
gests that Tomita’s graph-structured parsing approach can be used with a broader class of context-free 
grammars.

Appendix 1: Ambiguous grammars

Definition: A context-free grammar G has bounded ambiguity of degree k if each sentence in L(G) has 
at most k distinct derivation trees.

Definition: A context-free grammar G has unbounded ambiguity if for each i>l, there exists a sentence 
in L(G) which has at least i distinct derivation trees.

Definition: The degree of direct ambiguity of a non-terminal A with respect to a string x is the number 
of distinct tuples (p, x irx 2> • • • .*»). where p is a production A -» B XB 2 • • • Bn, and x {x 2 • • • xH=x is 
a factorization of x such that Bi =^=> x, for 1 < 1  £ n.

Definition: A context-free grammar has bounded direct ambiguity of degree k if the degree of direct 
ambiguity of any of its non-terminals with respect to any string is at most k.

For example, the grammar G 5 has direct ambiguity of degree 2, in spite of being unboundedly 
ambiguous.

Appendix 2: Identifying the e-grammars that cannot be parsed by the original algorithm.
LetG  = ( N , T , P , S ) b e a  context-free grammar with e productions. The following algorithm 

decides whether G can be parsed by the original algorithm.

(1) Compute the set of non-terminals E = ( C IC =£=> e } that can derive a null string.

(2) Let p c  N x N be a binary relation such that (A,B) € p if and only if A -> C jC 2 • • • CnB a  is a
production in P and C, e E for 1 <i £ n.

(3) Compute p+ the closure of p. If there exists a non-terminal A where (A A ) 6 p+ then G cannot be
parsed by the Tomita’s original algorithm for e-grammars.
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Appendix 3: Parse Table for G ra m m a r  G s

state X b # A B S Grammar G 8
(1) S -» x
(2) S -> B S b0 sh2j-e5 4 j 1

1 acc (3) S -* A S b
2 rel rel (4) B - )  A A
3 sh2je5 4 3 5 (5) A -4 e
4 sh2/e5 6 3 7
5 sh8
6 sh2,re4je5 6 3 7
7 sh9
8 re2 re 2
9 re 3 re 3

Action table Goto table

Appendix 4: Parsing of example sentences
The following figures illustrate parsing of the sentences xbbb € L(G3) and bbbx e L(G3). The 

dotted lines indicate the rejected paths. The shared non-terminals are shown in italics.

Ur U i U- u- u<

Parse graph and parse tree of the sentence xbbb e L(Gi)

S
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Parse graph and parse tree of the sentence bbbx g L(G$)

One may observe that the parse graph and the parse tree of the sentence bbbx e L(G3) are 
different from those that one can obtain by using Tomita’s algorithm for e-grammars [8]. The modified 
recognizer creates a single A node in the parse graph whereas Tomita’s recognizer will create three A 
vertices. In our representation of parse tree, the null yielding subtree with root A is shared among the 
S nodes that are descendants of each other. However as it was noted in the paper, the parser could 
replicate such subtrees in the parse tree if one wishes so.
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ANALYSIS OF TOMITA'S ALGORITHM FOR GENERAL CONTEXT-FREE PARSING1

JAMES R. KIPPS (KIPPS@RAND-UNIX.ARPA)
The RAND Corporation, Santa Monica, CA 90406

Abstract. A variation on Tom ita’s algorithm is analyzed in regards to its time and space complexity. 
It is shown to have a general time bound of 0 (n p’+1), where n is the length of the input string and p 
is the length of the longest production. A modified algorithm is presented in which the time bound is 
reduced to 0 ( n 3). The space complexity of Tom ita’s algorithm is shown to be proportional to n2 in 
the worst case and is changed by at most a constant factor with the modification. Empirical results 
are used to illustrate the trade off between time and space on a simple example. A discussion of two 
subclasses of context-free grammars that can be recognized in 0 (n2) and O(n) is also included.

1. INTRO DUCTIO N
Algorithms for general context-free (CF) parsing, e.g., Earley’s algorithm (Earley, 1968) and the 

Cocke-Younger-Kasami algorithm (Younger, 1967), are necessarily less efficient than algorithms for 
restricted CF parsing, e.g., the LL, operator precedence, and LR algorithms (Aho and Ullman, 1972), 
because they must simulate a multi-path, nondeterministic pass over their inputs using some form 
of search, typically, goal-driven. While many of the general algorithms can be shown to theoretically 
perform as well as the restricted algorithms on a large subclass of CF grammars, due to the inefficiency 
of goal expansion the general algorithms have not been widely used as practical parsers for programming 
languages.

A basic characteristic shared by many of the best known general algorithms is that they are top- 
down parsers. Recently, Tomita (1985) introduced an algorithm for general CF parsing defined as a 
variation on standard LR parsing, i.e., a table-driven, bottom-up parsing algorithm. The benefit of this 
approach, is that it eliminates the need to expand alternatives of a nonterminal at parse time (what 
Earley refers to as the predictor operation). For Earley’s algorithm, the predictor operation is one 
of two 0 ( n 2) components. While eliminating this operation would not change the algorithm’s time 
bound of 0 (n 3), it could be significant to practical parsing. It is of interest to analyze the complexity 
of Tom ita’s algorithm and see how it compares.

Upon examination, Tom ita’s algorithm is found to have a general time complexity of 0 (n^+1), 
where n is as before and p is the length of the longest production in the source grammar. Thus, this 
algorithm achieves 0 (n 3) for grammars in Chomsky normal form (Chomsky, 1959) but has potential 
for being worse when productions are of unrestricted lengths. In this paper, I present a modification 
of Tom ita’s algorithm that allows it to run in time proportional to n3 for grammars with productions 
of arbitrary lengths.

2. TOMITA'S ALGORITHM
The following is an informal description of Tom ita’s algorithm as a recognizer; familiarity with 

standard LR parsing is assumed. Tomita views his algorithm as a variation on standard LR parsing. 
The algorithm takes a shift-reduce approach, using an extended LR parse table to guide its actions. 
The extended parse table records shift/reduce and reduce/reduce conflicts as multiple action entries, 
so the parse table can no longer be used for strictly deterministic parsing. The algorithm simulates a 
nondeterministic parse with pseudo-parallelism. It scans an input string xi • • xn from left to right, 
following all paths in a breath-first manner and merging like subpaths when possible to avoid redundant 
computations.

1 T h is  work was su pported  by the Defense A dvanced Research P ro jects Agency, under contract number
M D A -903-85-C-0030.
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The algorithm operates by maintaining a number of parsing processes in parallel. Each process 
has a stack, scans the input string from left-to-right, and behaves basically the same as the single 
parsing process in standard LR parsing. Each stack element is labeled with a parse state and points 
to its parent, i.e., the previous element on a process’s stack. The top-of-stack is the current state of a 
process.

Each process does not actually maintain its own separate stack. Rather, these “multiple” stacks 
are represented using a single directed acyclic (but reentrant) graph called a graph-structured stack. 
Each stack element corresponds to a vertex of the graph. Each leaf of the graph acts as a distinct 
top-of-stack to a process. The root of the graph acts as a common bottom-of-stack. The edge between 
a vertex and its parent is directed toward the parent. Because of the reentrant nature of the graph (as 
explained below), a vertex may have more than one parent.

The leaves of the graph grow in stages. Each stage Ui corresponds to the zth symbol x, from the 
input string. After x, is scanned, the leaves in stage Ui are in a one-to-one correspondence with the 
algorithm’s active processes, where each process references a distinct leaf of the graph and treats that 
leaf as its current state. Upon scanning x,+i, an active process can either (1) add an additional leaf to 
Ui, or (2) add a leaf to £/,•+1 . Only processes that have added leaves to f/j+i will be active when x*+2 
is scanned.

In general, a process behaves in the following manner. On x<, each active process (corresponding 
to the leaves in U i-1 ) executes the entries in the action table for x< given its current state. When a 
process encounters multiple actions, it splits into several processes (one for each action), each sharing 
a common top-of-stack. When a process encounters an error entry, the process is discarded (i.e., its 
top-of-stack vertex sprouts no leaves into Ui by way of that process). All processes are synchronized, 
scanning the same symbol at the same time. After a process shifts on Xj into Ui, it waits until there 
are no other processes that can act on x, before scanning x,+i.

The Shift Action. A process (with top-of-stack vertex v) shifts on Xi from its current state s to 
some successor state s' by

(1) creating a new leaf v' in Ui labeled s';
(2) placing an edge from v' to its top-of-stack v (directed towards v); and
(3) making v' its new top-of-stack vertex (in this way changing its current state).

Any successive process shifting to the same state s' in Ui is merged with the existing process to form a 
single process whose top-of-stack vertex has multiple parents, i.e., by placing an additional edge from 
the top-of-stack vertex of the existing process in Ui to the top-of-stack vertex of the shifting process. 
The merge is done because, individually, these processes would behave in exactly the same manner 
until a reduce action removed the vertices labeled s' from their stacks. Thus, merging avoids redundant 
computation. Merging also ensures that each lead" in any Ui will be labeled with a distinct parse state, 
which puts a finite upper-bound on the possible number of active processes and, thus, limits the size 
of the graph-structured stack.

The Reduce Action. A process executes a reduce action on a production p by following the chain 
of parent links down from its top-of-stack vertex v to the ancestor vertex from which the process began 
scanning for p earlier, essentially “popping” intervening vertices off its stack. Since merging means a 
vertex can have multiple parents, the reduce operation can lead back to multiple ancestors. When this 
happens, the process is again split into separate processes (one for each ancestor). The ancestors will 
correspond to the set of vertices at a distance v from v, where p equals the number of symbols in the 
right-hand side of the pth production. Once r luced to an ancestor, a process shifts to the state s'
indicated in the goto table for Dp (the nonterminal on the left-hand side of the pth production) given
the ancestor’s state. A process shifts on a nonterminal much as it does a terminal, with the exception 
that the new leaf is added to Ui_i rather than Ui] a process can only enter Ui by shifting on x,.
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The algorithm begins with a single initial process whose top-of-stack vertex is the root of the 
graph-structured stack. It then follows the general procedure outlined above for each symbol in the 
input string, continuing until there are either no leaves added to Ux (i.e., no more active processes), 
which denotes rejection, or a process executes the accept action on scanning the n + 1st input symbol 
‘H,’ which denotes acceptance.

3. ANALYSIS OF T O M IT A ’S ALGORITHM
In this section, a formal definition of Tomita’s algorithm is presented as a recognizer for input 

string xi • • • xn . This definition is understood to be with respect to an extended LR parse table (with 
start state So) constructed from a source grammar G.

Notation. The productions of G are numbered arbitrarily 1, • • •, d, where each production is of 
the form Dp — Cpi • • Cpp (1 < p < d) and where p is the number of symbols on the right-hand side 
of the pth production.

Definition. The entries of the extended LR parse table are accessed with the functions ACTIONS 
and GOTO.

• ACTIONS(s,x) returns a set of actions from the action table along the row of state s under 
the column labeled x. This set will contain no more than one of a shift action shs' (shift to 
state s) or an accept action acc; it may contain any number of reduce actions rep  (reduce 
using production p). An empty action set corresponds to an error.

• GOTO(s,£>p) returns a state s' from the goto table along the row of state s under the column
labeled with nonterminal Dp.

Definition. Each vertex of the graph-structured stack is a triple (i,s, l),  where i is an integer 
corresponding to the ith input symbol scanned (at which point the vertex was created as a leaf), 5 is a 
parse state (corresponding to a row of the parse table), and / is a set of parent vertices. The processes 
described in the last section are represented implicitly by the vertices in successive £/,-’s. The root of 
the graph-structured stack, and hence the initial process, is the vertex (O,So,0).

The Recognizer. The recognizer is a function of one argument REC(x! • • • x„). It calls upon
the functions SHIFT(t;,.s) and REDUCE(u,p). SHIFT(v,s) either adds a new leaf to {/,• labeled 
with parse state s whose parent is vertex v or merges vertex v with the parents of an existing leaf. 
REDUCE(u,p) executes a reduce action from vertex v using production p. REDUCE calls upon the 
function ANCESTORS(u,p), which returns the set of all ancestor vertices a distance of p from vertex v. 
These functions, which vary somewhat from the formal definition given in Tomita (1985),2 are defined 
in Figure 3.1.

In REC, [1] adds the end-of-9entence symbol H ’ to the end of the input string; [2] initializes the 
root of the graph-structured stack; [3] iterates through the symbols of the input string. On each symbol 
X,-, [4] processes the vertices (denoting the active processes) of successive C/,-_i’s, adding each vertex to 
P  to signify that it has been processed. On each vertex v, [5] executes the shift, reduce, and accept 
actions from the action table according to v's state s. After processing the vertices in {/<—ii [6] checks 
whether a vertex was added to ensuring that at least one process is still active before scanning 
x,-+i.

In SHIFT, [7] shifts a process into state s by adding a vertex to £/, labeled s. If a vertex labeled 
s already exists, v is added to its parents, merging processes; otherwise, a new vertex is created with 
a single parent v.

2 Tom ita’s functions REDUCE and REDUCE-E have been collapsed into a single REDUCE function; also 
added were the ANCESTORS function and the concept of a “clone” vertex. While these changes do not alter 
Tom ita’s algorithm significantly, they were helpful in developing ideas about its complexity.
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REC(xi ••• xn)
[1] let xn+1 := H

let Ui := [ ] (0 < i < n)
[2] let U0 := [(O,5o ,0)j
[3] for i from 1 to n +  1

let P := [ ]
[4] for Vv = (i — 1,5,/) 5./. u E U i- i

let P := P o [v]
[5] if 3 ‘sh s'* € ACTIONS (s, x,) , SHIFT(v,s') 

for V're p» € ACTI0NS(s,x.) , REDUCE(u.p) 
if *acc’ € ACTIONS(s,Xj), accept

[6] if Ui is empty, reject 
SHIFT(v , s )

[7] if 3vf = (i,s,l) s.t. v' £  Ui
let / := / U {u} 

else
let Ui := Ui o [(i, s, {i/})]

REDUCE(u,p)
[8] for Vt>i' =  ( j ' ^ s ' J i )  s.t. vi' € ANCESTORS(v,p)

let s" := GOTO ( s ' , Dp)
[9] if 3v" =  { i - l , s " , l " )  s.t. v" 6 Ui_!

[10] if Vi' e I"
do nothing (ambiguous) 

else
[11] if 3i?2; = {j ' yS'J^)  s.t. V2 € I"

let vc" := (* -  1, s", {vi'})
for V're p* € ACTI0NS(5/',x.), REDUCE(yc",p) 

else
[12] let I" := I" U {u!7}
[13] if u" 6 P

let v," := (i- l,s", {iV})
for V're p» € ACTIONS(s^.x*), REDUCE( ,p)

else
[14] let := C/i-i o [(< - 1, s " ,  { v , 1})]

ANCESTORS (v = (j , s , l ) , k )
[15] if =  0

retum({u})
else
retum((Jv<€/ ANCESTORS(u'.jb - 1))

Fig. 3.1—Tom ita’s Algorithm

In REDUCE, [8] iterates through the ancestor vertices a distance of p from v, setting s" to the 
state indicated in the goto table under Dv given the ancestor’s state s '. Each ancestor vertex v\ is 
shifted into U i-i on s " . [9] checks whether such a vertex v" already exists. (If not, [14] adds a vertex 
labeled s" to [/,•_i.) If v" does already exist, [10] checks that a shift from the current ancestor vx' has 
not already been made. (If it has, then some segment of the input string has been recognized as an 
instance of the same nonterminal Dp in two different ways, and the current derivation can be discarded 
as ambiguous; otherwise, vi' is merged with the parents of the existing vertex.) Before merging, [11] 
checks whether v\ is a “clone” vertex, created by [13] in an earlier call to REDUCE (as described 
below). If ui' is not a clone, [12] adds it to the parents of v" , merging processes. [13] checks if v" 
has already been processed. If so, then it missed any reductions through rV. To correct this, v" is 
“cloned” into vc" (i.e., a variant on v" with a single parent u^), and all reduce actions executed on v" 
are now executed on vc" .
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Returning to [11], when reducing on a null production, ANCESTORS will return a clone vertex as 
the ancestor of itself. If a variant v-i of already exists in the parents of v" , then V\ is a clone of u2' . 
At this point v" has already been processed, meaning that there could still be reductions that have 
not gone through the single parent of ui'. To correct this, v" is again cloned, and all reduce actions 
executed on v" are executed on the new clone vc" .

Finally, in ANCESTORS, [15] recursively descends the chain of parents of vertex v, returning the 
set of vertices a distance of k from v.

The General Case. Tomita’s algorithm is an 0 (n /’+ l) recognizer in general, where p is the greatest 
p in G. The reasons for this are as follows:

(a) Since each vertex in Ui must be labeled with a distinct parse state, the number of vertices in 
any Ui is bounded by the number of parse states;

(b) The number of parents / of a vertex v — (i , s , l ) in Ui is proportional to i. Because processes
could have begun scanning for some production p in each Uj  (j  < i), a process in Ui could
reduce using p and split into ~  i processes (one for each ancestor in a distinct Uj ) .  Then
each process could shift on Dp to the same state in Ui and, thus, that vertex could have ~  i 
parents;

(c) For each x. + i, SHIFT will be called a bounded number of times (at most once for each vertex
in Ui) .  SHIFT executes in a bounded number of steps.

(d) For each x,+i and production p, REDUCE(u,p) will be called a bounded number of times in 
REC, and REDUCE(uc",p) (the recursive call to REDUCE) will be called no more than — i 
times. The reason for the former is the same as in (c). The latter is due to the conditions on 
the recursive call, which maintain that it can be called no more than once for each parent of 
a vertex in Ui, of which there are at most proportional to z;

(e) REDUCE(v,p), because at most ~  i vertices can be returned by ANCESTORS, executes in 
~  i steps plus the steps needed to execute ANCESTORS.

(f) ANCESTORS(u,p) executes in ~  if  steps in the worst case. While at most — i processes could 
have begun scanning for p, the number of paths by which any single process could reach v in 
Ui is bounded by the number of ways the intervening input symbols can be partitioned among 
the p vocabulary symbols in the right-hand side of production p. For a process that started 
from Uj (j  < *), the number of paths to v in Ui in the recognition of p can be proportional to

o o  o

E l  • £  i-
mi =ji =mj

Summing from ;  =  0, • • •, i gives a closed form proportional to if . A N C ESTO R S^",p), where 
vc" =  (», «{v'}), executes in ~  if ~ l steps because there is that many ways ~  i ancestor vertices 
could reach v' and only one way v' could reach vc"\

(g) The worst case time bound is dominated by the time spent in ANCESTORS, which can be 
added to the time spent in REDUCE. Since REDUCE(v,p), with a bound ~  ip , is called only 
a bounded number of times, and REDUCE(uc//,p), with a time bound of ~  i?_1, is called at 
most ~  i times, the worst case time to process any x, is ~  i?, for each : =  0, • • •, n +  1 and 
longest production p\

(h) Summing from i =  0, • • •, n +  1 gives REC a general time bound proportional to n^+1.

As a result, this bound indicates that Tom ita’s algorithm only belongs to complexity class 0 (n 3) 
when applied to grammars in Chomsky normal form (CNF)3 or some other equally truncated notation.

3 In CNF, productions can have one of two forms, A —*■ BC or A —* a; thus, the length of the longest 
production is at most 2.
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Although any CF grammar can be automatically converted to CNF (Hopcraft and Ullman, 1979), ex­
tracting useful information from derivation trees produced by such grammars would be time consuming 
at best (if possible at all).

4. MODIFYING T O M I T A ’S ALGORITHM FOR N3 T IM E
In this section, Tom ita’s algorithm is made an 0 { n 3) recognizer for CF grammars with productions 

of arbitrary length. Essentially, the modifications are to the ANCESTORS function. ANCESTORS is 
the only function that forces us to use steps. It is interesting to note that ANCESTORS can take 
this many steps even though it returns at most ~  i ancestor vertices and even though there are at 
most ~  i intervening vertices and edges between a vertex in U,- and its ancestors. This indicates that 
ANCESTORS can recurse down the same subpaths more than once. The efficiency of ANCESTORS 
and Tom ita’s algorithm can be improved by eliminating this redundancy.

The modification described here turns ANCESTORS into a table look-up function. Assume 
there is a two-dimensional “ancestors” table. One dimension is indexed on the vertices in the graph- 
structured stack, and the other is indexed on integers k =  1, • • •, p, where p equals the greatest p. Each 
entry (v,k)  is the set of ancestor vertices a distance of k from vertex v. Then, ANCESTORS(v,fc) re­
turns the (at most) ~  i ancestor at (v, k) in — 1 steps. Of course, the table must be filled dynamically 
during the recognition process, so the time expended in this task must also be determined.

In Figure 4.1, ANCESTORS is defined as a table look-up function that dynamically generates 
table entries the first time they are requested. In this definition, the ancestor table is represented by 
changing the parent field I of a vertex v =  (i,s ,/)  from a set of parent vertices to an ancestor field a. 
For a vertex v — (:, s, a), a consists of a set of tuples (k , /*), such that It is the set of ancestor vertices 
a distance of k from v.

Figure 4.1 illustrates the necessary modifications made to the definitions of Figure 3.1; the function 
REC is unchanged. In SHIFT, [1] adds a vertex to Ui labeled s. If such a vertex does not already exist, 
one is created whose ancestor field records that v is the ancestor vertex at a distance of 1; otherwise, 
v is added to the other distance-1 ancestors.

In REDUCE, [2] iterates through the ancestor vertices a distance of p from v, setting s" to the 
state indicated in the goto table under Dp given the ancestor’s state s'. Each ancestor vertex v\ is 
shifted into Ui- 1  on s". [3] checks whether such a vertex v" already exists. (If not, [10] will add a 
vertex labeled s" to U i-1 .) If v" does already exist, [4] checks that a shift from the current ancestor 
v\ has not already been made. If it has, then vi' can be discarded as ambiguous; if not, then vi' 
can be merged with the other ancestors a distance of 1 from v" . Before merging, [5] checks whether 
ui' is a clone vertex as described in Section 3. If ui' is a clone (the result of being reduced on a null 
production), v" is again cloned, and all reduce actions executed on v" are executed on the new clone 
vc" . After the application of REDUCE, [6] updates the ancestor table stored in v" to record entries 
made in the ancestor field ac" of the clone when k > 2. Otherwise, if vi' is not a clone, [7] adds it to 
the distance-1 ancestors of v", merging processes. [8] checks if v" has already been processed. If so, 
then it missed any reductions through v \ ' , so v" is cloned into ve" and all reduce actions executed on 
v" are now executed on v " . After reducing vc" , [9] updates the ancestor table stored in v" to record 
entries made in the ancestor field ac" of the clone when k > 2.

In ANCESTORS, [11] searches a (the portion of the ancestor table stored with v) for ancestor 
vertices at a distance of k from v. If an entry exists, those vertices are returned; if not, [12] calls 
ANCESTORS recursively to generated those vertices and, before returning the generated vertices, 
records them in the ancestor field of v.

The question now becomes how much time is spent filling the ancestor table. For 
ANCESTORS(v,p), time is bounded in the worst case by ~  i2 steps, while for ANCESTORS^*",?), 
it is bounded by — i steps. In general, ANCESTORS(v,fc), where v = ( i,s ,a ) , will take ~  i steps 
to execute the first time it is called (one for each recursive call to ANCESTORS(t/,A: -  1), where
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SHIFT(v.s)
[1] il 3v' =  (z',s,a) s.t. v' G U{ A (1,/) 6 a,

let / := / U {v} 
else

let U{ := C/i o [<i,s,[(l,{v})])]

REDUCE(v.p)
[2] for Vui' =  ( j \ s ' , a x') s.t. v\' G ANCESTORS(u,p)

let s" := GOTO (s', D p)
[3] if 3v" = (z - 1, s", a") s.t. u" G tfi-i A  (l.H € a"
[4] if v\ G I"

do nothing (ambiguous) 
else

[5] if 3u2' = (j/,s/,a2/) s.t. u2' G I"
let we" := (z-l,s",ac") s.t. ac" = [(l>i'}>] 
for V're p> G ACTIONS (s", x,) , REDUCE ( vc" ,p)

[6] let /fcl := /fcl U  /fc3 s.t. € a" A (Ar, /*a) € ac" ( k > 2)
else

[7] let I" := /" U { V }
[8] if v" G P

let uc" : = (z - 1, s", a " )  s.t. ac" = [(1, {vi;})]
for V're p> G ACTIONS(s",x ,), REDUCE( vc" ,p)

[9] let lkl := lkl U /*, s.t. (k , lkl) G a" A ( M * a) G ac" (fc>2) 
else

[10] let U i- i := «/i_i o [(*- 1,*", {«!'})]

ANCESTORS (v  =  ( j , s , a ) , k )
[11] if k =  0,

return({u}) 
else
if 3 ( k, / k) G a,  
retun xdie) 

else
[12] let It := Uv'6M(l,/l)€a ANCESTORS (v' ,k - 1) 

let a := a U { { k , l k)}  
retum(/fc)

Fig. 4.1—Modified Algorithm

v' G l\ and (l,/i) G a) and — 1 steps thereafter. When ANCESTORS(v,p) is executed, there are ~  z 
such “virgin” vertices between v and its ancestors, and so this call can execute ~  z2 steps in the worst 
case. ANCESTORS(vc",p) is called only after the call to ANCESTORS(v,p) has been made, where 
ve" is a clone of v. This means that ~  z of the vertices between v' and the ancestor vertices have been 
processed, so the call to ANCESTORS(t/,p — 1) could take at most proportional to z steps for each of 
a bounded number of intervening vertices.

Given this, the upper bound on the number of steps that can be executed by the total calls on 
REDUCE for a given x, is proportional to z2. Summing from z =  0, • • •, n -I- 1 gives ~  n3 steps as the 
worst case upper bound on the execution time of the modified algorithm.

5. SPACE BOUNDS
The space complexity of Tom ita’s algorithm as it appears in Section 3 is proportional to n2 in the 

worst case. This is because the space requirements of the algorithm are bounded by the requirements of 
the graph-structured stack. There are a bounded number of vertices in each U, of the graph-structured 
stack, and each vertex can have at most ~  z parents. Summing again from i =  0, • • •, n +  1 gives — n2 
as the worst case space requirement for the graph-structured stack.
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W it h  th e  m o d if ica t io n  o f  S ect ion  4. the  sp ace  requirem ents o f  the graph-structured  stack are 
increased  by at m o s t  a co n stan t  factor o f  n 2 . T h is  is becau se  the m od if ica t ion  replaces the ~  i parents  
o f  a vertex  in U,- w ith  at m o st  ~  pi entries in the ancestors field. So, for a vertex  v =  ( : , s , a )  s.t.  v 
G U ,,  the  ancestors  field a will be a su b se t  o f  { ( c , / c) | l  <  c <  p) where | /c | ~  i. S u m m in g  from i — 
0 | . . . ) n +  1 g ives  <— pn 2 or ~  n 2 st ill  as a worst case upper b ou nd  on  space.

6. EMPIRICAL RESULTS
T h e  var ia t ion  on  T o m i t a ’s a lg o r i th m  presented  in S ect ion  3 and the  m odif ied  a lg o r i th m  presented  

in S ec t ion  4 have b o th  been im p lem e n te d  in C. T h e  graphs in figures 6.1 and 6.2 sh ow  em pir ica l  
results c o m p a r in g  the  t im e  and sp ace  requirem ents o f  b o th  im p lem en ta t io n s .  Each t i m e / s p a c e  graph  
set corresp on ds to  the gram m ars ,  G 1, G 2 , and G 3 , w hich are d o m in a te d  by p r od u ct ion s  o f  len g th  2, 3 

and 4.
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S S 
x

s teps
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106 - 
105 - 
104

103 
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G 2: S 
S 
S
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S S S 
S x 
x

T o m ita ’s

Modified

T o m ita ’s

Modified
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1 i "i------1------1------ r~
10 20 30 40 50

(b)

Tomita’s

Modified

“ i------1------1------1------ r~
10 20 30 40  50

(c)

Fig. 6.1—Comparison of Time Complexity

The time graphs in Figure 6.1 measure the number of calls to SHIFT, REDUCE, and ANCES­
TORS. The input sentences are strings of x’s of length 10 to 50. Our analysis of time complexity 
predicts that the modified algorithm will take roughly the same number of steps for each grammar, 
while the steps taken by Tom ita’s algorithm will increase as a function of the length of the dominant 
production. The empirical data gathered from our two implementations agrees with this prediction. 
When n = 50, the modified algorithm took ~  7000 steps for grammar G1 in Figure 6.1 (a), ~  6000 for 
G2 in Figure 6.1 (6), and — 10000 for G3 in Figure 6.1 (c); Tom ita’s algorithm took ~  44,000 steps 
for grammar G l, ~  660, 000 for G2, and ~  7, 300,000 for G3.

s p a c e s p a c e s p a c e

(a) (*) to
Fig. 6.2—Comparison of Space Complexity

The space graphs in Figure 6.2 measure the number of edges required by the graph-structured stack 
(in Tom ita’s algorithm) and the length of entries in the ancestors table (in the modified algorithm). 
The number of vertices required is the same for both algorithms and is not counted; space that can 
be reclaimed before scanning successive x ,’s is also not counted. Our analysis of space complexity
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predicts that Tom ita’s algorithm will require ~  n2 space and that the modified algorithm will require 
at most a factor of n 2 additional space. The empirical evidence also agrees with this prediction. The 
space requirements of the modified algorithm differs from Tomita’s algorithm by a factor of ~  2.1 for 
grammar G1 in Figure 6.2 (a), ~  3.9 for G2 in Figure 6.2 (6), and ~  4.7 for G3 in Figure 6.2 (c).

7. LESS THAN N3 T IM E
Several of the better known general CF algorithms have been shown to run in less than 0 (n 3) 

time for certain subclasses of grammars. Therefore, it is of interest to ask if Tom ita’s algorithm, as 
well as the modified version presented here, can also recognize some subclasses of CF grammars in less 
than 0 (n 3) time. In this section, I informally describe two such subclasses that can be recognized in 
0 ( n 2) and O(n)  time, respectively. The arguments for their existence parallel those given by Earley 
(1968), where they are formally specified.

Time 0 (n2) Grammars. ANCESTORS is the only function that forces us to use ~  i? steps in 
Tom ita’s algorithm and ~  r  steps in the modified algorithm. We determined that this could happen 
when a ancestor vertex v' from Uj (j  < i) reached the reducing vertex v in Ui by more than a single 
path, i.e., the symbols x;- • • • x, were derived from a nonterminal Dp in more than one way, indicating 
that grammar G is ambiguous. If G were unambiguous, then there would be at most one path from 
a given v' to v. This means that the bounded calls to ANCESTORS(t>,p) can take at most ~  steps 
and that ANCESTORS(uc",p) can take at most a bounded number of steps. The first observation is 
due to the fact that there are ~  i ancestor vertices that can be reached in only one way. Similarly, 
the second observation is due to the fact that if A N C ESTO R S^",p) took ~  i steps, returning ~  i 
ancestors, and was called ~  i times, then some ancestor vertices must have shifted into Ui in more 
than one way, which would be a contradiction, meaning grammar G must be ambiguous. So, if the 
grammar is unambiguous, then the total time spent in REDUCE for any x< is ~  i and the worst case 
time bound for the Tom ita’s algorithm is 0 ( n 2). A similar result is true for the modified algorithm.

Time O(n) Grammars. In his thesis, Earley (1968) points out that “ . . .  for sc le grammars the 
number of states in a state set can grow indefinitely with the length of the string being recognized. 
For some others there is a fixed bound on the size of any state set. We call the latter grammars 
bounded state grammars.” While Earley’s “states” have a different meaning than states in Tomita’s 
algorithm, a similar phenomena occurs, i.e., for the bounded state grammars there is a fixed bound on 
the number of parents any vertex can have. In Tom ita’s algorithm, bounded state grammars can be 
recognized in time O(n) for the following reason. No vertex can have more than a bounded number of 
ancestors (if otherwise, then — i vertices could be added to the parents of some vertex in Ui, proving 
by contradiction that the grammar is not bounded state). This means that the ANCESTORS function 
can execute in a bounded number of steps. Likewise, REDUCE can only be called a bounded number 
of times. Summing over the x* gives us an upper bound ~  n. Again, a similar result is true for the 
modified algorithm. Interestingly enough, Earley states that almost all LR(k) grammars are bounded 
state, as well, which suggests that Tom ita’s algorithm, given fc-symbol look ahead, should perform 
with little loss of efficiency as compared to a standard LR(fc) algorithm when the grammar is “close” 
to LR(fc). Earley also points out that not all bounded state grammars are unambiguous; thus, there 
are non-LR(fc) grammars for which Tom ita’s algorithm can perform with LR(&) efficiency.

8. CONCLUSION
The results in this paper support in part Tom ita’s claim (1985) of efficiency for his algorithm. 

With the modification introduced here, Tom ita’s algorithm is shown to be in the same complexity 
class as existing general CF algorithms. These results also give support to his claim that his algorithm 
should run with near LR(fc) efficiency for near LR(fc) grammars.

It should be noted that while the modification to Tom ita’s algorithm has theoretic interest it 
would detract from a practical parser. Realistic grammars are constrained by the fact that they must 
be human-readable. Since human-readable grammars should never realize the worst-case 0 (n^+ l) time
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bound of Tom ita’s algorithm, the benefits of the ancestors table in the modified algorithm would not 
balance out its overhead cost. In this regard, the modified algorithm should not be viewed as an 
“improvement” over Tom ita’s algorithm but as a means of illustrating its place among other general 
CF algorithms.

The variation on Tomita’s algorithm described in this paper, as well as the modified algorithm, 
have been implemented in both LISP a ..i  C at The RAND Corporation. The LISP implementation 
(Kipps, 1988) is distributed with ROSIE (Kipps et al., 1987), a language for applications in artifi­
cial intelligence with a highly ambiguous English-like syntax. The C implementation is part of the 
RAND Translator-Generator project, which is developing a “next generation” YACC4 for non-LR(fc) 
languages.
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The Computational Complexity of Tom ita’s 
Algorithm

M a r k  J o h n s o n  

A p r i l  26 ,  19S9

1 Introduction
The Tomita parsing algorithm adapts Knuth’s (1967) well-known parsing algo­
rithm for LR()t) grammars to non-LR grammars, including ambiguous gram­
mars. Knuth’s algorithm is provably efficient: it requires at most 0 (n |G |) units 
of time, where |G| is the size of (i.e. the number of symbols in) G and n is 
the length of the string to be parsed. This is often significantly better than 
the 0 (n 3|G |2) worst case time required by standard parsing algorithms such as 
the Earley algorithm. Since the Tomita algorithm is closely related to K nuth’s 
algorithm, one might expect that it too is provably more efficient than the Ear­
ley algorithm, especially as actual computational implementations of Tom ita’s 
algorithm outperform implementations of the Earley algorithm (Tomita 1986, 
1987).

This paper shows that this is not the case. Two main results are presented in 
this paper. First, for any m there is a grammar Lm such that Tomita’s algorithm 
performs Q(nm) operations to parse a string of length n. Second, there is a 
sequence of grammars G m such that Tomita’s algorithm performs f2(nc1Gm') 
operations to parse a string of length n. Thus it is not the case that the Tomita 
algorithm is always more efficient than Earley’s algorithm; rather there are 
grammars for which it is exponentially slower. This result is forshadowed in 
Tomita (1986, p. 72), where the author remarks that Tomita’s algorithm can 
require time proportional to more than the cube of the input length. The result 
showing that the Tomita parser can require time proportional to an exponential 
function of the grammar size is new, as fair as I can tell.

2 T he Tom ita Parsing A lgorithm
This section briefly describes the relevant aspects of the Tomita parsing al­
gorithm: for further details see Tomita (1986). Familiarity with Knuth’s LR
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parsing algorithm is presumed: see the original article by Knuth (1967), Aho 
and Ullman (1972), or Aho, Sethi and Ullman (1986) for details.

The Tomita algorithm and Knulh’s LR parsing algorithm on which it is based 
are both shift-reduce parsing algorithms, and both use the same LR automaton 
to determine the parsing actions to be performed. The LR automaton is not 
always deterministic: for example, if the grammar is ambiguous then at some 
point in the analysis of an ambiguous string two difTerent parsing actions must be 
possible that lead to the two distinct analyses of that string. Knuth’s algorithm 
is only defined for grammars for which the parsing automaton is deterministic: 
these are called the LR(k) grammars, where k is the length of the lookahead 
strings. Tomita’s algorithm extends Knuth’s to deal with non-deterministic LR 
automata.

Tomita’s algorithm in effect simulates non-determinism by computing all of 
the LR stacks that result from each of the actions jf a non-deterministic LR 
automaton state. Tomita’s algorithm mitigates the cost of this non-determinism 
by representing the set of all the LR stacks possible at a given point of the parse 
as a multiply-rooted directed acyclic graph called a graph-structured stack, which 
is very similiar to a parsing chart (Tomita 1988). Each node of this graph 
represents an LR state of one or more of the LR stacks, with the root nodes 
representing the top states of LR parse stacks. The graph contains exactly one 
leaf node (i.e. a node with no successors). This leaf node represents the start 
state of the LR autom ata (since this is the bottom element of all LR parse 
stacks), and each maximal path through the graph (i.e. from a root to the leaf) 
represents an LR parse stack.

As each item in the input string is read all of the parsing actions called 
for by the top state of each LR stack are performed, resulting in a new set of 
LR stacks. Because of the way in which the set of LR stacks are represented, 
Tom ita’s algorithm avoids the need to copy the each LR stack in its entirity 
at non-deterministic LR automaton states; rather the top elements of the two 
(or more) new stacks are represented nodes whose successors are the nodes 
that represent the LR stack elements they have in common. Similiarly, if the 
same LR state appears as the top element of two or more new stacks then these 
elements are represented by a single node whose immediate successors are the set 
of nodes that represent the other elements of these LR stacks. This “merging” of 
identical top elements of distinct LR stacks allows Tom ita’s algorithm to avoid 
duplicating the same computation in different contexts.

Finally, Tomita employs a packed forest representation of the parse trees in 
order to avoid enumerating these trees, the number of which can grow expo­
nentially as a function of input length. In this representation there is at most 
one node of a given category at any string location (i.e. a pair of beginning and 
ending string positions), so the number of nodes in such a packed forest is at 
most proportional to the square of the input length. Each node is associated 
with a set of sequences of daughter nodes where each sequence represents one 
possible expansion of the node; thus the trees represented can easily be “read
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off” the packed forest representation.

3 C o m p l e x i t y  as a F u n c t i o n  of  I n p u t  L e n g t h
The rest of this paper shows the complexity results claimed above. This section 
describes a sequence of grammars Lm such that on sufficiently long inputs the 
Tomita algorithm performs more than Q(nm) operations to parse an input of 
length n. This result follows from properties of the packed forest representation 
alone, so it applies to any algorithm that constructs packed forest representa­
tions of parse trees.

Consider the sequence of grammars Lm for m > 0 defined in (1), where 
5 m + 2 abbreviates a sequence of S ’s of length m + 2.

5 — a
5 —> 5 5  (1)
S  _* 5 m+2

All of these grammars generate the same language, namely the set of strings 
a + . Consider the input string a M + 2 for n > m. By virtue of the first two rules in 
(1) any ncin-empty string location can be analyzed as an 5. Thus the number of 
different sequences of daughter nodes of the matrix or top-most 5  node licensed 
by the third rule in (1) is {mn+l) the number of ways of choosing different right 
string positions of the top-most 5 node’s first m +  1 daughters. Since (m + L) 
is a polynomial in n of order m +  1, it is bounded below by cnm for some 
c > 0 and sufficiently large n, i.e. Since any algorithm which
uses the packed forest representation, such as Tom ita’s algorithm, requires the 
construction of these sequences of daughter nodes, any such algorithm must 
perform Q(nm) operations.

Finally, it should be noted that this result assumes that the sequences of 
daughter nodes are completely enumerated. It might be possible these sequences 
could themselves be “packed” in such a fashion that avoids their enumeration, 
possibly allowing the packed forest representations to be constructed in polyno­
mial time.

4 C om plexity  as a Function o f G ram m ar Size
This section shows that there are some grammars such that the total number 
of operations performed by the Tomita algorithm is an exponential function of 
the size of the grammar.

The amount of work involved in processing a single input item is proportional 
to the number of distinct top states of the set of LR stacks corresponding to 
the different non-deterministic analyses of the portion of the input string shown 
so far. By exhibiting a sequence of grammars in which the number of such
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states is an exponential function of the size of the grammar we show that the 
total number of operations performed by the Tomita algorithm can be at least 
exponentially related to the size of the grammar.

Consider the sequence of grammars for m > 0 defined in (2).

5 -  Ai 
.4, -  BjAi 
Ax -  Bj 
Bj — a

(2)
0  < i < m
0 < i, j  < m , i ^  j  
0 < i , j  < m , i jk j
0 < j  < m

All of the grammars Gm generate the same language, namely the set of 
strings a + . Since these grammars are ambiguous they are not LR(t) for any k.

Consider the behaviour of a non-deterministic LR parser for the grammar 
Gm on an input string an where n > m. The items of the start state are shown 
in (3).

0 < i , j  < m , ^  j

S  — -.4,- 
Ai -  ■BjAi  
A t -  -Bj 
Bj — a

The parser shifts over the first input symbol a to the state shown in (4)

(3)

[Bj  —♦ a-] 0 < j  < m (4)
This is a non-deterministic state, since all of the m  reductions Bj  — a are 

possible parsing actions from this state. Suppose that the reduction to Bkl is 
chosen. The state that results from the reduction to Bkl is shown in (5). There 
are m such states.

0 < j  < m t i £  j, k ! (5)

Ai —- Bj.-, • .4,
Ai  -  B k r  
Ai — BjAi  
Ai -  Bj 
Bj  — a

After shifting over the next input symbol the parser again reaches the same 
ambiguous state as before, namely the state shown in (4). Suppose the reduction 
to Bki *s chosen. If B t, =  B*, then the resulting state is the one shown in (5).
On the other hand, if Bt, Bjei then the resulting state is as shown in (6).
There are m (m — l)/2  distinct states of the form shown in (6), so after reducing
B k 2 there will be m(m +  l)/2  distinct LR states in all.

Ai
Ai
Ai
Ai
B,

Bkt • Ai

■B}Ai
Bj
•a

(6)

•206- International Parsing Workshop '89



It is n o t  h a rd  to  see  t h a t  a f ter  n >  m  i n p u t  s y m b o l s  h a v e  b e e n  r e a d  a n d  
r e d u c e d  t o  5 t ,  . . . B k K r e s p e c t i v e l y  t h e  r e s u l t i n g  s t a t e  wi l l  b e  as  s h o w n  in ( 7 ) .

0 <  i, j  <  m ,  i j ,  k\  • . . . (7)

.4, — B±n • .4,

.4 , -  B kn,- 

.4 , — ■BJA l 

.4 , — Bj  
Bj  — -a

S i n c e  t he r e  are 2 m — 1 d i s t i n c t  s u c h  s t a t e s ,  t he  T o m i t a  pa r se r  m u s t  p e r f o r m  
at  l e as t  2 m — 1 c o m p u t a t i o n s  per  i n p u t  i t e m  a f t er  t h e  f irst m  i t e m s  h a v e  b e e n  
r ead .  S i n c e  \Gm\ — 5 m 2 — m  =  0 ( m 2 ), t h e  r at io  o f  t h e  a v e r a g e  n u m b e r  o f  
c o m p u t a t i o n s  pe r  i n p u t  i t e m  for a s u f f i c i e n t l y  l o n g  s t r i n g  t o  g r a m m a r  s i z e  is 
Q ( 2 rn/ m 2 ) =  Q ( c m ) for s o m e  c >  1. T h u s  t he  t o t a l  n u m b e r  o f  o p e r a t i o n s  
p e r f o r m e d  by t h e  par se r  i< Q ( c |G,n )̂, e x p o n e n t i a l  f u n c t i o n  o f  g r a m m a r  s ize .

5 C o n c l u s i o n
T h e  r e s u l t s  j u s t  d e m o n s t r a t e d  d o  n o t  s h o w  t h a t  T o m i t a ’s a l g o r i t h m  is a l w a y s  
s l o w e r  t h a n  p o l y n o m i a l l y  b o u n d e d  a l g o r i t h m s  s u c h  as E a r l e y ’s,  in f a c t  in p r a c t i c e  
it is s i g n i f i c a n t l y  f as t er  t h a n  E a r l e y ' s  a l g o r i t h m  ( T o m i t a  1 9 8 6 ) .  O n  t h e  o t h e r  
h a n d ,  t h e  r e s u l t s  p r e s e n t e d  he re  s h o w  t h a t  t h i s  s u p e r i o r  p e r f o r m a n c e  is n o t  
j u s t  a  p r o p e r t y  o f  t h e  a l g o r i t h m  a l o n e ,  b u t  a l s o  d e p e n d  o n  p r o p e r t i e s  o f  t h e  
g r a m m a r s  ( a n d  p o s s i b l y  t he  i n p u t s )  u s ed .  It w o u l d  b e  i n t e r e s t i n g  t o  i d e n t i f y  
t h e  p r o p e r t i e s  t h a t  are  r eq u ir ed  for e f f i c ie nt  f u n c t i o n i n g  o f  T o m i t a ’s a l g o r i t h m .

S e c o n d ,  i t  m i g h t  p o s s i b l e  to  m o d i f y  T o m i t a ’s a l g o r i t h m  s o  t h a t  i t  p r o v a b l y  
r eq u ir es  a t  m o s t  p o l y n o m i a l  t i m e .  For e x a m p l e ,  r e q u i r i n g  al l  g r a m m a r s  u s e d  
by t h e  a l g o r i t h m  to  be in C h o m s k y  N o r m a l  F o r m  w o u l d  p r o h i b i t  t h e  g r a m m a r s  
u s e d  t o  s h o w  t h a t  T o m i t a ’s a l g o r i t h m  d o e s  n o t  a l w a y s  run in p o l y n o m i a l  t i m e .  
W h e t h e r  t h i s  r e s t r i c t i o n  w o u l d  e n s u r e  p o l y n o m i a l  t i m e  b e h a v i o u r  w i t h  r e s p e c t  
t o  i n p u t  l e n g t h  is an o p e n  q u e s t i o n  ( n o t e  t h a t  t h e  g r a m m a r s  u s e d  t o  s h o w  t h e  
e x p o n e n t i a l  c o m p l e x i t y  w i t h  r e s p e c t  to  g r a m m a r  s i z e  are a l r e a d y  in C h o m s k y  
N o r m a l  F o r m ) .

F i n a l l y ,  t h e  n o n - p o l y n o m i a l  b e h a v i o u r  o f  T o m i t a ’s a l g o r i t h m  w i t h  r e s p e c t  
t o  i n p u t  l e n g t h  f o l l o w e d  f r o m  t h e  p r o p e r t i e s  o f  t h e  p a c k e d  f or es t  r e p r e s e n t a ­
t i o n  o f  p a r s e  t r ee s ,  s o  it  f o l l ow s  t h a t  a n y  a l g o r i t h m  w h i c h  u s e s  p a c k e d  f or es t  

r e p r e s e n t a t i o n s  wi l l  a l so  e x h i b i t  n o n - p o l y n o m i a l  b e h a v i o u r .
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Probabilistic Parsing for Spoken Language Applications
S t e p h a n i e  S e n e f f  

S p o k e n  L a n g u a g e  S y s t e m s  G r o u p  
L a b o r a t o r y  for  C o m p u t e r  S c i e n c e  

M I T  C a m b r i d g e ,  M A  0 2 1 3 9

A bstract
A new n atural lan gu a ge  sy s te m ,  T i n a , has been d eve lo p ed  for ap p lica t io n s  involv ing  sp ok en  language  

tasks, which  in tegrates  key ideas from c o n tex t  free gram m ars,  A u g m en ted  T ransit ion  N etw orks ( A T N ’s) [6], 
and Lexical F u n ctiona l G ra m m a rs  ( L F G ’s) [1]. T h e  parser uses a best-first  search stra tegy ,  w ith  probability  

a ss ig n m en ts  on all arcs o b ta in ed  a u to m a t ica l ly  from a se t  o f  e x a m p le  sen ten ces .  A n initial context-free  

gram m ar, derived  from the ex a m p le  sen ten ces ,  is first converted  to a probabil is t ic  network stru cture .  Control  
inc ludes  b o th  top -d ow n  and b o t to m -u p  cycles ,  and key p aram eters are passed  am o n g  n od es  to  deal w ith  long­
d is tan ce  m o v em en t ,  a greem en t ,  and sem a n t ic  con stra in ts .  T h e  probabil it ies  provide a natural m ech an ism  

for ex p lo r in g  m ore co m m o n  g ra m m a tic a l  co n s tru ct io n s  first. O n e  novel feature  o f  T i n a  is th a t  it provides  

an a u to m a t ic  s e n ten c e  g en eration  capability ,  which has been very effective for id ent ify in g  overgeneration  

prob lem s. A fully  in tegrated  spoken  language  sy s t e m  using this parser is under d eve lo p m en t .

1 Introduction
Most parsers have been designed with the assum ption th a t the inpu t word stream  is determ in­

istic: i.e., a t any given point in the parse tree it is known with certain ty  w hat the next word is. As 
a consequence, these parsers generally cannot be used effectively, if at all, to provide linguistically 
directed constra in t in the speech recognition com ponent of a speech understanding  system . In a 
fully in tegrated  speech understanding  system , the recognition com ponent should only be allowed 
to propose partial word sequences th a t the natu ral language com ponent can in terp ret; any word 
sequences th a t are syntactically  or sem antically anomalous should probably be pruned prior to the 
acoustic m atch , ra th e r than  exam ined for approval in a verification mode. To operate in such a 
fully in tegrated  m ode, a parser has to have the capability of considering a m ultitude of hypotheses 
sim ultaneously. The control stra tegy  should have a sense of which of these hypotheses, considering 
both  linguistic and acoustic evidence, is most likely to be correct at any given in stan t in tim e, 
and to  pursue th a t hypothesis only increm entally before reexam ining the evidence. The linguistic 
evidence should include probability  assignm ents on proposed hypotheses; otherw ise the perplexity 
of the  task becomes too high for practical recognition applications.

This paper describes a natu ral language system , T i n a , which addresses m any of these issues. 
The g ram m ar is constructed  by converting a set of context-free rew rite rules to a form th a t merges 
common elem ents on the right-hand side (RHS) of all rules sharing the same left-hand side (LHS). 
Elem ents on the LHS become parent nodes in a family tree. Through exam ple sentences, they 
acquire knowledge of who their children are and how they can in terconnect. Such a transform ation  
perm its considerable s tru c tu re  sharing among the rules, as is done in typical shift-reduce parsers [5]. 
Probabilities are established on arcs connecting pairs of right siblings ra ther than  on rule produc­
tions. This has several advantages, which will be discussed later. C ontex t-dependen t constra in ts
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to deal with agreem ent and gaps are realized through simple logical functions applied to flags or 
features passed am ong im m ediate relatives.

2 G e n e r a l  D e s c r i p t i o n

T i n a  is basically a context-free gram m ar, im plem ented by expansion at run-tim e into a network 
struc tu re , and augm ented with flags/param eters tha t activate filtering operations. The gram m ar 
is built from a set of train ing sentences, using a bootstrapping  procedure. Im ally, each sentence 
is transla ted  by hand into a list of the rules invoked to parse it. After the gram m ar has built 
up a substan tia l knowledge of the language, many new sentences can be parsed autom atically , or 
with minimal intervention to add a few new rules increm entally. The arc probabilities can be 
increm entally updated  after the successful parse of each new sentence.

The process of converting the rules to a network form is straightforw ard. All rules with the 
same LHS are combined to form a. s truc tu re  describing possible interconnections among children of 
a parent node associated with the left-hand category. A probability m atrix  connecting each possible 
child with each o ther child is constructed by counting the num ber of times a particu lar sequence of 
two siblings occurred in the RHS s of the common rule set, and normalizing by counting all pairs 
from the particu lar left-sibling to a n y  right sibling. Two distinguished nodes, a START node and 
an END node, are included among the children of every gram m ar node. A subset of the g r a m m a r  

nodes are term inal nodes whose children are a list of vocabulary words.
This process can be illustrated  with the use of a simple exam ple. Consider the following three 

rules:

NP =$> ARTICLE NOUN

NP => ARTICLE ADJECTIVE NOUN

NP => ARTICLE ADJECTIVE ADJECTIVE NOUN

These would be converted to a. network as shown in Figure 1, which would be associated with a 
gram m ar node nam ed NP.  Since a d j e c t i v e  is followed twice by n o u n  and once by a d j e c t i v e ,  

the network shows a probability of 1/3 for the self loop and 2 /3  for the advance to NOUN.  Notice 
th a t the system  has now generalized to include any num ber of adjectives in a row.

.33

.33

F ig u re  1: Probablistic  Network Resulting from three C ontext-Free Rules given in Text.

A functional block diagram  of the control stra tegy  is given in Figure 2. At any given tim e, a 
set of active parse nodes are arranged on a priority queue. Each parse node contains a pointer to 
a corresponding g ram m ar node, and has access to all the inform ation needed to pursue its partial 
theory. The top node is popped from the queue, and it then creates a num ber of new nodes (either
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c h i ld r e n  or  r i ght  s i b l i n g s  d e p e n d i n g  011 i t s  s t a t e ) ,  a n d  in s e r t s  t h e m  i n t o  t h e  q u e u e  a c c o r d in g  to  

th e i r  p r o b a b i l i t i e s .  If t h e  n o d e  is an  END n o d e ,  it  c o l l e c t s  up all s u b p a r s e s  f r o m  it s  s e q u e n c e  o f  

le f t  s i b l i n g s ,  b a c k  t o  t h e  START n o d e ,  a n d  p a s s e s  th e  in f o r m a t i o n  up to  t h e  p a r e n t  n o d e ,  g iv i n g  

t h a t  n o d e  a  c o m p l e t e d  s u b p a r s e .  T h e  p r o c e s s  ca n  t e r m i n a t e  o n  t h e  first s u c c e s s f u l  c o m p l e t i o n  o f  a  

s e n t e n c e ,  o r  t h e  N t h  s u c c e s s f u l  c o m p l e t i o n  if  m o r e  t h a n  o n e  h y p o t h e s i s  is d e s i r e d .

F ig u re  2: Functional Block Diagram of Control Strategy.

A parse in T i n a  begins with a single parse node linked to the gram m ar node S ENTENCE,  which 
is entered on the queue with probability 1.0. This node creates new parse nodes with categories like 
S TATEMENT,  QUESTI ON,  and REQUEST,  and places them  on the queue, prioritized. If S TATEMENT is 
the m ost likely child, it gets popped from the queue, and returns nodes ind icating  SUBJECT,  IT, etc., 
to  the queue. W hen SUBJ ECT reaches the top of the queue, it activates units such as NOUN- GROUP  

(for noun phrases and associated post-m odifiers), g e r u n d ,  and n o u n - c l a u s e .  Each node, after 
in stan tia tin g  first-children, becomes inactive, pending the retu rn  of a successful subparse from a 
sequence of children. Eventually, the cascade of first-children reaches the term inal-node ARTICLE,  

which proposes the words “the ,” “a ,” and “an ,” testing  these hypotheses against the in p u t stream . 
If a  m atch w ith “th e ” is found, then the a r t i c l e  node fills its subparse slot with the en try  (ARTICLE  

“th e ” ), and activates all of its possible right-siblings.
W henever a term inal node has successfully matchcd an input word, the path  probability  is
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reset to 1.0. Thus the probabilities t h a t  are  u s e d  t o  p r i o r i t i z e  t h e  q u e u e  represent not t h e  total 
path  probability  but rather the probability given  t h e  par t i a l  w o r d  s e q u e n c e .  Each path  climbs up 
from a term inal node and back down to a next term inal n o d e ,  with each new node adjusting the 
path  probability  by m ultiplying by a new conditional probability. The resulting conditional path 
probability for a next word represents the probability of th a t word in its syntactic  role given all 
preceding words in their syntactic roles. W ith this strategy, a partial sentence does not become 
increasingly im probable as more and more words are added. l .

Because of the sharing of common elements on the right hand side of rules, T i n a  can au to ­
m atically generate new rules th a t were not explicitly provided. For instance, having seen the rule 
X => A B C and the rule X => B C D, the system  would autom atically  generate two new rules, 
X => B C, and X => A B C D. A lthough this property can potentialy  lead to certain problem s with 
overgeneration, there are a num ber of reasons why it should be viewed as a feature. F irst of all, it 
perm its the system  to generalize more quickly to unseen structu res. For exam ple, having seen the 
rule A U X -Q U E ST IO N  => AUX s u b j e c t  PR ED IC A TE (as in "May I go?” ) and the rule A U X -Q U E ST IO N  

=> h a v e  S U B JE C T  LINK PR.ED -a d j EC T IV E  (as in “Has he been good?” ), the system  would also 
understand  the forms a u x - q u e s t i o n  => h a v e  s u b j e c t  p r e d i c a t e  (as in “Has he left?” ) and 
A U X -Q U E ST IO N  => a u x  s u b j e c t  l i n k  p r e d - a d j e c t i v e  (as in ‘‘Should I be careful?” ).2 Secondly 
it greatly  simplifies the im plem entation, because rules do not have to be explicitly m onitored during 
the parse. Given a particu lar parent and a particu lar child, the system  can generate the allowable 
right siblings w ithout having to note who the left siblings (beyond the im m ediate one) were. Fi­
nally, and perhaps most im portan tly , probabilities are established on arcs connecting sibling pairs 
regardless of which rule is under construction. In this sense the arc probabilities behave like the 
fam iliar word-level bigram s of simple recognition language models, except th a t they apply to sib­
lings a t m ultiple levels of the hierarchy. This makes the probabilities meaningful as a product of 
conditional probabilities as the parse advances to deeper levels of the parse tree and also as it 
retu rns to higher levels of the parse tree. All of the conditionals can be made to sum to one for 
any given choice, and everything is m athem atically  sound.

One negative aspect of such cross fertilization is th a t the system  can potentially  generalize to 
include forms th a t are agram m atical. For instance, the forms “Pick the box u p ” and “Pick up 
the box,” if defined by the same LHS name, would allow the system  to include rules producing 
forms such as “Pick up the box up” and “Pick up the box up the box!” This problem  can be 
overcome either by giving the two structu res different LHS names or by grouping “up the box” 
and “the box up” into d istinct parent nodes, adding another layer to the hierarchy on the RHS. 
A th ird  a lternative  is to include a p a r t i c l e  slot among the features which, once filled, cannot be 
refilled. In fact, there  were only a few situations where such problems arose, and they were always 
correctable.

3 C onstraints and Gaps

This section describes how T in a  handles several issues th a t are often considered to be part of 
the task  of a parser. These include agreem ent constra in ts, sem antic restrictions, subject-tagg ing  for 
verbs, and long d istance m ovem ent (often referred to as gaps, or the trace, as in “(which article)*

‘ Som e m odification of this schem e will be necessary when the input stream  is not determ in istic . See [4] for a 
d iscussion  of these very im portan t issues regarding scoring in a best-first search.

2T h e auxiliary  verb se ts the mode of the main verb to be root, or p ast particip le as app rop riate .
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do you think I should read (£,)?” ). T in a  is particulary  effective in handling gaps. Complex cases of 
nested or chained gaps are handled correctly, and appropriately ill-formed gaps are rejected. The 
mechanism  resembles the Hold register idea of ATN’s [6] and the trea tm ent of bounded dom ination 
m etavariables in LFG ’s ([1], p. 235 ff), but I believe it is more straightforw ard than  both of these.

3.1  D e s ig n  P h ilo so p h y

Our approach to the design of a constraint mechanism is to establish a simple framework that 
is general enough to handle syntactic, sem antic, and, ultim ately, phonological constraints using 
identical functional procedures. The gram m ar is expressed as context-free rewrite rules without 
constrain ts. The constrain ts reside instead with the individual nodes of the tree th a t are established 
when the gram m ar is converted to a network structu re . In effect, the constrain t mechanism is thus 
reduced from a two-dimensional to a one-dimensional dom ain. Thus, for exam ple, it would not be 
perm itted  to write an f-structure [1] equation of the form S U B J ^ f  => NP associated with the rule 
vp => V E R B  NP  I NF ,  to cover, “I told John to go.” Instead, the NP node (regardless of its parent) 
would generate a C U R R E N T - F O C U S  from its subparse, which would be passed along passively to the 
verb “go.” The verb would then simply consult the C U R R E N T - F O C U S  (regardless of its source) to 
establish its subject.

3 .2  C o n s tr a in ts

Each parse node comes equipped with a num ber of slots for holding constrain t inform ation that 
is relevant to  the parse. Included are person and num ber, case, determ iner ( d e f i n i t e ,  I N D E F I N I T E ,  

p r o p e r ,  etc .), mode ( R O O T ,  f i n i t e ,  etc.), and sem antic categories. These features are passed along 
from node to node: from parent to child, child to  parent, and left-sibling to right-sibling. C ertain 
nodes have the power to ad just the values of these features. The ad justm ent may take the form 
of an unconditional override, or it may involve a unification with the value for th a t feature passed 
to the node from a parent, sibling, or child. The filters are restricted in power in two im portan t 
ways: 1) A filter can only operate  on da ta  th a t are available to the im m ediate parse node th a t 
in stan tia tes  the filter, and 2) A filter m ust be restricted in action to simple logical operations such 
as A N D ,  S E T ,  R E S E T ,  etc.

Some specific exam ples of constra in t im plem entations will help explain how this works. C ertain 
nodes specify pe rso n /n u m b er/d e te rm in er restrictions which then propagate up to higher levels 
and back down to la te r term inal nodes. Thus, for exam ple, A n o u n - P L  node sets the num ber to 
PLURAL,  but only i f  the  left sibling passes to it a description for num ber th a t includes PLURAL as 
a possibility ( o t h e r w i s e  it dies, as in “each b o a ts” ). This value then propagates up to the s u b j e c t  

node, across t o  t h e  PREDICATE node, and down to the verb, which then  m ust agree with PLURAL,  

unless its MODE is m arked as non-finite. Any non-auxilliary verb node blocks the transfer of any 
predecessor person /num ber inform ation to its right siblings, reflecting the fact th a t verbs agree in 
person /num ber with their subject but not their object.

A more complex exam ple is a com pound noun phrase, as in “Both John and M ary have decided 
to go.” Here, each individual noun is singular, but the subject requires the plural form of “have.” 
T i n a  deals w ith th is by m aking use of a node category a n d - n o u n - p h r a s e ,  which sets the num ber 
constra in t to  PLURAL fo r  its parents, and blocks the transfer of num ber inform ation to its children. 
Some nodes also have special powers to set the mode of the verb e ither for their children or for 
their right-siblings. Thus, for exam ple, “have” as an auxilliary verb sets mode to PAST-PARTICIPLE
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for its nght-siblings. The category GERUND sets the mode to PRESENT-PARTlCIPLE for its children. 
W henever a p r e d i c a t e  node is invoked, the verb’s mode has always been set by a predecessor.

SEN T EN C E

QUESTION

Figure 3: Example of a Parse Tree Illustrating a Gap.

3 .3  G a p s

The mechanism to deal with gaps resembles in certain respects the Hold register idea of ATN’s, 
but with an important difference, reflecting the design philosophy that no node can have access 
to information outside of its immediate domain. The process of getting into the Hold register (or 
the f l o a t - o b j e c t  slot, using my terminology) requires two steps, executed independently by two 
different nodes. The first node, the generator, fills the CURRENT- FOCUS  slot with the subparse 
returned to it by its children. The second node, the activator, moves the CURRE NT - F OCUS  into 
the FLOAT- OBJ ECT position, for its children. It also requires that the f l o a t - o b j e c t  be absorbed 
somewhere among its descendants by a designated absorber node. The C UR RE NT - F OCUS  only gets 
passed along to siblings and their descendants, and hence is unavailable to activators at higher 
levels of the parse tree. Finally, certain ( blocker) nodes block the transfer of the FLOAT- OBJECT to 
their children.

A simple example will help explain how this works. For the sentence “(How many pies),- did 
Mike buy (t,)?n as illustrated by the parse tree in Figure 3, the q - s u b j e c t  “how many pies” is 
a generator, so it fills the C UR RE NT - F OCUS  with its subparse. The DO- QUESTI ON is an activator; 
it moves the CURRE NT - F OCUS  into the f l o a t - o b j e c t  position. Finally, the object of “buy,” an 
absorber, takes the q - s u b j e c t ,  as its subparse. The DO- QUESTION refuses to accept any solutions 
from its children if the FLOAT- OBJ ECT has not been absorbed. Thus, the sentence “How many pies 
did Mike buy the pies?” would be rejected. Furthermore, the same DO- QUESTI ON node deals with
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t h e  yes/no  question “Did Mike buy t h e  p i e s ? /  e x c e p t  in t h i s  c a s e  t h e r e  is no  c u r r e n t - f o c u s  and 
h e n c e  no gap.

More com plicated sentences involving nested or chained traces, are handled staightforwardly 
by this scheme. For instance, the phrase, “(the violin), th a t (these Sonatas); are easy to play 
( tj )  on ( t , ) ” can be parsed correctly by T i n a ,  identifying “Sonatas” as the object of “play” and 
“violin” as the object of "on .” This works because the v e r b - p h r a s e - p - o ,  an activator, writes over 
the FLOAT- OBJECT “violin” with the new entry "Sonatas,” but only for its children. The original 
FLOAT- OBJECT is still available to fill the OBJECT slot in the following prepositional phrase.

The exam ple used to illustrate  the power of ATN's [6], M ohn was believed to have been sho t,” 
also parses correctly, because the OBJECT node following the verb “believed” acts as both an 
absorber and a (re)generator. Cases of crossed traces are autom atically  blocked because the second 
CURRENT- FOCUS  gets moved into the FLOAT- OBJECT position at the time of the second activator, 
overriding the preexisting FLOAT-OBJ ECT set up by the earlier activator. The wrong FLOAT-OBJECT  
is available at the position of the first trace, and the parse dies:

*(W hich books), did you ask John (w here)j Bill bought ( t,)  (t^)?

The CURRENT- F OCUS  slot is not restricted to nodes tha t represent nouns. Some of the generators 
are adverbial or adjectival parts-of-speech ( p o s ) .  An absorber checks for agreem ent in POS before 
it can accept the FLOAT- OBJECT as its subparse. As an exam ple, the question, “(How oily), do you 
like your salad dressing ( t ,) ? ” contains a Q- SUBJECT "how oily” th a t is a.11 adjective. The absorber 
PRED- ADJ ECTI VE accepts the available fioat-object as its subparse, but only after confirming tha t 
POS is ADJECTI VE.

The CURRE NT - F OCUS  has a num ber of o ther uses besides its role in movement. . It always 
contains the  subject whenever a verb is proposed, including verbs th a t are predicative objects of 
ano ther verb, as in “I want to go to C hina.” In the case of passive voice, it contains ’NIL at the 
tim e of in stan tia tion  of the verb. It has also been found to be very effective for passing sem antic 
inform ation to be constrained by a future node, and it plays an integral role in pronoun-reference. 
These issues are addressed more fully in [4]

3 .4  S e m a n tic  F ilte r in g

In the most recent version of the parser, we im plem ented a num ber of sem antic constrain ts using 
procedures th a t were very sim ilar to those used for syntactic constrain ts. We found it effective 
to filter on the A C T l V E - N O U N ’s sem antic category, as well as to constrain absorbers in the gap 
m echanism  to require a m atch on sem antics before they could accept a f l o a t - o b j e c t .  Sem antic 
categories were im plem ented in a hierarchy such th a t, for exam ple, r e s t a u r a n t  autom atically  
inherits the  m ore general properties b u i l d i n g  and p l a c e .  We also in troduced sem antically-loaded 
categories a t the low levels of the parse tree. It seems th a t, as in syntax , there is a trade-off between 
the num ber of unique node-types and the num ber of constrain t filtering operations. At low levels 
of the parse tree it seems more efficient to label the categories, whereas inform ation th a t m ust pass 
through higher levels of the hierarchy is b e tte r done through constra in t filters.
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4 Practical Issues

Two unique practical aspects of T i n a ’s design are its generation-m ode capability and its ability 
to build a gram m ar autom atically  from a set of parsable sentences. We have found generation 
mode to be an essential tool for identifying overgeneration problems in the gram m ar. The ability 
to au tom atically  provide a subset gram m ar for a set of sentences makes it easy to design a very 
specific, well constrained gram m ar, leading to improved perform ance in restricted-dom ain spoken 
language tasks.

G eneration mode uses the same low-level routines as those used by the parser, but chooses 
only a single pa th  based on the outcom e of a random -num ber generator. Since all of the arcs 
have assigned probabilities, the parse tree is traversed by generating a random  num ber at each 
node and deciding which arc to take based on the outcom e, using the arc probabilities to weight 
the alternatives. Occasionally, the generator chooses a path  which leads to a dead end, due to 
unantic ipated  constrain ts. In this case, it can back up and try again. Table 1 contains five examples 
of consecutively generated sentences. Since these were not selectively draw n from a larger set, they 
accurately  reflect the current perform ance level. Because a num ber of sem antic filtering operations 
have been applied within this task, most of the generated sentences are sem antically as well as 
syntactically  sound.

It is a two-step procedure to acquire a gram m ar from a specific set of sentences. The rule set 
is first built up gradually, by parsing the sentences one-by-one, adding rules a n d /o r  constrain ts 
as needed. Once a full set of sentences has been parsed in this fashion, the parse trees from the 
sentences are au tom atically  converted to the set of rules used to parse each sentence. The training 
of both  the rule se t.and  the probability assignm ents is established directly from the provided set 
of parsed sentences; i.e. the parsed sentences are the gram m ar.

A nother useful feature of TINA is th a t, as in LFG ’s, all unifications are nondestructive, and as a 
consequence explicit back-tracking is never necessary. Every hypothesis on the queue is independent 
of every o ther one, in the sense th a t activities performed by pursuing one lead do not d isturb  the 
o ther active nodes. This feature makes T i n a  an excellent candidate  for parallel im plem entation.
The control s tra tegy  would simply ship off the most probable node to an available processor.

T a b le  1: Sam ple sentences generated consecutively by the most recent version of T i n a .

Do you know the most direct route to Broadway Avenue from here?
Can I get Chinese cuisine a t Legal’s?
I would like to  walk to the subway stop from any hospital.
Locate a T -stop  in Inm an Square.
W hat kind of res tau ran t is located around M ount A uburn in Kendall Square of East Cambridge?

5 D iscussion

This paper describes a new gram m ar form alism  th a t addresses issues of concern in building a 
fully in tegrated  speech understand ing  system . The gram m ar includes arc probabilities reflecting 
the frequency of occurrence of the syntactic  s truc tu res within the dom ain. These probabilities are
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used to control the order in which hypotheses are considered, and are trained autom atically  from 
a set of parsed sentences, which makes it straightforw ard to tailor the gram m ar to a particular 
need. Ultim ately, one could imagine the existence of a very large gram m ar th a t could parse almost 
anything, which would be subsetted for a particular task by simply providing it with a set of 
exam ple sentences within th a t task.

I believe th a t, at the tim e a set of word candidates is proposed to the acoustic m atcher of a 
recognizer, all of the constrain t available from the restrictive influence of syntax, sem antics, and 
phonology should have already been applied. The parse tree of T i n a  can be used to express 
various constrain ts ranging from acoustic-phonetic to sem antic and pragm atic. Each parse node 
would contain slots for all kinds of constrain t inform ation -  syntactic filters such as person, number 
and mode, sem antic filters such as the permissible sem antic categories for the sub jec t/ob jec t of 
the hypothesized verb, and acoustic-phonetic filters (for instance, restricting the word to begin 
with a vowel if the preceding word ended in a flap, as in "W ha/ is” ). As the parse tree advances, 
it accum ulates additional constrain t filters tha t further restrict the num ber of possible next-word 
candidates. Thus the task of the predictive com ponent is form ulated as follows: given a sequence 
of words th a t has been in terpreted  to the fullest capability of the syntactic/sem antic/phonological 
com ponents, w hat are the likely words to follow, and what are their associated a priori probabilities?

W hile T IN A ’s term inal nodes are lexical words, I believe th a t the nodes should continue down 
below the word level. Prefixes and suffixes alter the m eaning/part-of-speech in predictable ways, 
and therefore should be represented as separate subword gram m ar units th a t can take certain 
specified actions. Below this level would be syllabic units, whose children are subsyllabic units such 
as onset and rhyme, finally term inating  in phoneme-like units. Acoustic evidence would enter at 
several stages. Im portan t spectral m atches would take place at the term inal nodes, but duration 
and in tonation  pa tte rn s would contribu te to scores at many higher levels of the hierarchy.

Three different task-specific versions of T i n a  have been im plem ented. The first one was designed 
to handle the 450 “phonetically rich” sentences of the T IM IT  database [2]. The system  was then 
ported  to the DARPA Resource M anagem ent dom ain. A num ber of evaluation m easures have been 
applied for these tasks, as described in [3]. L ittle else will be said here, except to note th a t perplexity 
was reduced nine-fold for the Resource M anagem ent task when arc probabilities established from 
the tra in ing  d a ta  were incorporated , instead of using the equal-probability  scheme. The latest 
version has been tailored to the new V o y a g e r  task, under developm ent a t MIT. This task involves 
navigational assistance within a geographical region. Our goal is to utilize constraints offered 
by both  syntax  and sem antics so as to reduce perplexity as much as possible w ithout sacrificing 
coverage. The parser is im plem ented on the Symbolics Lisp machine and runs quite efficiently. A 
sentence, en tered  in tex t form, is typically processed in a fraction of a second.

An effort to  in teg rate  the V o y a g e r ,  version of T i n a  with the S u m m i t  speech recognition 
system  [7] is curren tly  underway. Two im portan t issues are 1) how to combine the scores for 
the recognition com ponent and the predictive com ponent of the gram m ar, and 2) how to take 
advantage of appropria te  pruning strategies to prevent an explosive search problem. The fully 
in tegrated  spoken language system  will use T i n a  both to constrain the recognition space and to 
provide an inpu t to the back-end. Our current approach is to link together all words and all s ta rt-  
times th a t are equivalent w ithin the parse, letting  them  proceed at a pace in accordance with the 
best-scoring w ord /tim e for the set. V iterbi pruning can take place within the recognizer, by having 
each term inal node initialize the recognizer with all the active phonetic nodes provided by its set 
of active hypotheses.
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Connectionist Models of Language

James L. McClelland

Traditional models of language processing process language by rule. This approach faces two p. oblems. 
First, there are difficulties in using the rules during processing, since often one rule must be pitted against 

another. In this case traditional approaches face the difficult problem of deciding which rule should win in 

such cases. Second, there are difficulties in acquiring rules, since it is often hard to know when a rule 

should be proposed, or when a sentence should be handled as one of many special cases.

In the connectionist approach my colleagues and I have been taking, language processing is viewed as a 

constraint satisfaction process. Each constituent of a sentence is viewed as imposing constraints on the 

representation of the state or event described by the sentence. During processing, as each constituent is 

encountered/it constrains the evolving representation of the sentence.

The knowledge that governs this constraint satisfaction is stored in the strengths of the connections 

among the units in a connectionist network. These connection strengths encode the knowledge that is 

traditionally encoded in the form of rules, but have the advantage that they are naturally capable of 

capturing constraints that differ in magnitude or degree. The acquisition of these connection strengths 

occurs through a connection adjustment process based on the back-propagation learning algorithm. The 

algorithm performs gradient descent in a measure of the extent to which the answers that the network 

gives to questions about the event described by a sentence actually match the probability that those 

answers are correct given the sentence. This algorithm is able to learn to assign the correct 

interpretations even when there are conflicting cues to the correct interpretation of a sentence.

To date this approach has been applied successfully to the processing of one-clause sentences. W e  

have shown that it can learn to assign meanings to sentences containing vague and ambiguous words; 

that it fills in implicit arguments, and that it can use both word meaning and word order information 

correctly in making assignments of constituents to roles.

Current extensions focus on improving the rate of learning and on extending the approach to sentences 

of arbitrary complexity. In this regard we have recently established that a simpler variant of the model 

used for the comprehension of one-dause sentences is capable of learning, from a finite set of examples, 

to process all of the infinite corpus of sentences generated by a Finite State Automaton.
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A Connectionist Parser Aimed at Spoken Language

Ajay Jain Alex Waibel
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Abstract

We describe a connectionist model which learns to parse single sentences from sequential word input. A parse in 
the connectionist network contains information about role assignment, prepositional attachment, relative clause 
structure, and subordinate clause structure. The trained network displays several interesting types of behavior. 
These include predictive ability, tolerance to certain corruptions of input word sequences, and some generalization 
capability. We report on experiments in which a small number of sentence types have been successfully learned by 
a network. Work is in progress on a larger database. Application of this type of connectionist model to the area of 
spoken language processing is discussed
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Introduction
Traditional methods employed in parsing natural language have focused on developing powerful formalisms to 

represent syntactic and semantic structure along with rules for transforming language into these formalisms. The 
builders of such systems must accurately anticipate and model all of the language constructs that their systems will 
encounter. Spoken language, with its weak grammatical structure, complicates matters. We believe that 
connectionist networks which learn to transform input word sequences into meaningful target representations offer 
advantages in this area.

Much work has been done applying connectionist computational models to various aspects of language 
understanding. Some researchers have used connectionist networks to implement formal grammar systems for use 
in syntactic parsing [1,5, 10,6]. These networks do not learn their grammars. Other work has focused on 
semantics [8, 11,3,2] but either ignored parsing, or the networks did not learn to parse. The networks presented in 
this paper learn their own "grammar rules" for transforming an input sequence of words into a target representation, 
and learn to use semantic information to do role assignment

The remainder of this paper is organized as follows. First, there is a description of our network formalism. Next, 
we describe in detail a modest experiment in which a network was taught to parse a small class of sentences. We 
show how the network behaves with some novel sentences and with sentences that have been corrupted as in spoken 
language. Then, we show how we have generalized our architecture to model a much larger class of sentences and 
discuss the work as it currently stands. Lastly, we offer some concluding remarks about this work and suggest 
future directions.

Network Formalism
The most common type of deterministic connectionist network is a back propagation network [9]. Processing 

units are connected to each other, and each connection has an associated weight Connections are unidirectional. 
Units have an activity value and an output value which is usually a sigmoidal function of the activity. For a 
connection from unit A to unit B, we define the stimulation along the connection to be the output value of unit A 
multiplied by the weight associated with the connection. A unit’s activity is simply the sum of the stimulation along 
each of its input connections. A network learns input / output mappings by iteratively updating its weight values 
using a gradient descent technique.

Spoken language is an inherently sequential domain, and standard back propagation is not well suited to such a 
task. Recently, some recurrent extensions to back propagation where sequences of connections can form cycles 
have been proposed that can handle sequential input [4,7]. Our networks extend these notions by explicitly 
accounting for time in our processing units. Units have activities which decay during each discrete time step by a 
constant factor. Thus, the activation of a unit can be built up over time from repetitive weak stimulation. Activity 
values are also damped to prevent unstable behavior. By gently "integrating" activities, the network has time to 
adapt to new information smoothly.

The activity of a unit is passed through a sigmoid squashing function to produce an output value as in standard 
back propagation. In addition, a value called the velocity is calculated. It is the rate of change of the output of a 
unit. Each connection in the network has two weights associated with it -- one for the output value and one for the 
velocity value. The velocity values are important to represent dynamic behavior which depends on changes in 
activation more than on absolute activation.

In order to facilitate symbolic processing, we use special units, called gating units, which gate the connections 
between groups of units. Fig. 1 diagrams the behavior of gating units. Slot C represents a particular word. It can be
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Figure 1: Gating Units

assigned to either slot A or slot B. The connections from the units of Slot C to both Slots A and B are gated by the 
two units below the slots (the connections are not shown here). In this case, the gating unit for slot A becomes 
active (see the right hand side of the diagram), and the pattern of activation across slot C becomes active across sloe 
A. This type of assignment behavior can, in principle, be learned by a network without using gating units but is 
computationally wasteful.

Parsing Sentences
Our domain for this experiment consists of active and passive sentences consisting of up to 3 noun phrases and 2 

verb phrases each. There are three roles for nouns to fill for each verb -- agent, patient, and recipient. The network 
also models subordinate and relative clause structure as well as prepositional attachment The lexicon consists of 40 
words which are divided into 7 ''asses -- nouns, verbs, adjectives, adverbs, auxiliaries, prepositions, and 
determiners. Each word is defined at most once within a class, but some words belong to two classes.

Words are represented as patterns of activation across a set of feature units. There are seven sets of feature units, 
one for each class of words. The pattern for a word consists of two parts: a feature part and an identification part. 
The feature part contains a small set of binary features encoding semantic information about a word. The 
identification part serves to disambiguate words which have identical feature parts (like a serial number). This 
allows one to add words to the lexicon which have the same features as existing words without any re-training of the 
network (the modifiable connections of the network do not connect to any identification units). Our 40 word lexicon 
is in a virtual sense much larger than 40 words. Each word is associated with one unit in the network which has 
hard-wired connections to excite the appropriate pattern across the feature units. A sentence is presented to the 
network by stimulating the word units corresponding to the words in the sentence each for a short time in sequence.

The target representation for sentences in the network has two levels: the Phrase level and the Structure level. 
Refer to Fig. 2 for a picture of the network structure. The Phrase level consists of groups of units called blocks, 
each of which contain a noun or a verb and its modifiers. A noun block has slots for a noun, two adjectives, a 
preposition, and a determiner. A verb block has slots for a verb, an auxiliary, and an adverb. There are 3 noun 
blocks and 2 verb blocks. Each block captures a phrase. The blocks are filled in order, with the first noun phrase 
occupying the first noun block, the second NP occupying the second noun block, and so on. The exact ordering 
relationship between the verb phrases and the noun phrases is lost in this representation, but due to the simplicity of 
the sentences this is not a problem.

The units in the Structure level describe the relationships between the phrases in the Phrase level the clauses they 
make up. There are six relationships possible:

• Agent: Noun block (NB) is agent of Verb block (VB). Group of 3 by 2 units.
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Figure 2: Network Structure

• Patient: NB is patient of VB. Group of 3x2.

• Recipient: NB is recipient of VB. Group of 3x2.

• Prepositional Modification: NB modifies other NB. Group of 3x3.

• Relative Clause: VB modifies NB. Group of 2x3.

• Subordinate Clause: VB subordinate to other VB. Group of 2x2.
The sentence, "John gave a bone to the old dog." is shown in Fig. 2.

In Fig. 2, the units shown in thick lined boxes have modifiable input connections -  they learn their behavior. The 
gating units at the Phrase level share a group of hidden units. These hidden units have connections from the feature 
units, the noun and verb blocks, and the gating units themselves. The Phrase level forms a recurrent subnetwork. 
The representation units of the Structure level also share a set of hidden units. These hidden units "see" all that the 
other set of hidden units see plus the structure representation units. The Structure level also forms a recurrent 
subnetwork. None of the hidden units have connections to the identification bit portions of the slots in the network.

The network whose performance we will characterize below was trained in two phases. First, the gating units in 
the Phrase level which are responsible for the behavior of the slots of the noun and verb blocks were trained. Their 
behavior is quite complex. They must learn to turn on when a word appears across the feature units for their slot 
(and their slot is supposed to be filled), stay on until the word disappears (even after the word has been assigned to 
the slot), mm off sharply, and stay off even when another word appears across their feature units. They must also 
learn to overwrite or empty out incorrectly assigned slots. Words get assigned incorrectly when they have 
representations in more than one class and there is insufficient information to disambiguate the usage. The word 
"was" has representations both as a verb and as an auxiliary verb. The network must assign it to both the auxiliary 
and the verb slots of the current verb block, and disambiguate the assignment when the next word comes in by either 
overwriting the verb slot with the real verb or emptying out the auxiliary slot

The next phase involves adding the Structure level and training the structure representation units. The targets for
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the structure units are set at the beginning of a sentence and remain the same for the whole sentence. This forces the 
units to try to make decisions about sentence structure as early as possible; otherwise, they accumulate error signals. 
On the surface, it may seem that these units should have more or less monotonic behavior. However, the sentences 
in our domain do not necessarily contain sufficient information at word presentation time to make accurate decisions 
about the word’s function. This coupled with the network’s attempt to make decisions early causes the structure 
units to have surprisingly complicated activation patterns over time.

A set of 9 sentences was used to train the gating units of the Phrase level. They were selected to be the smallest 
set of sentences which would cover a reasonably rich set of sentences for training the Structure units. The network 
generalized very well to include "compositions" of sentence types from the initial set of 9. It was tolerant of varying 
word speed and silences between words. This is an important property, useful for integration of speech systems 
with natural language processing.

From this network, the Structure units were added. Eighteen sentences which were correctly processed at the 
Phrase level were chosen to train the Structure level. A variety of sentences was included. There were more active 
constructions than passive, more single clause than two clause sentences. Many different role structures were 
present in the training set. The network learned the set successfully.

Network Performance
The trained network displays several interesting properties on both the sentences in the training set and other new 

input sentences. A novel sentence is one which is not isomorphic to a training sentence modulo the identification 
bits of the words in the sentences. Thus, "Peter gave Fido the bone" is not different from "John gave Fido the bone." 
However, "Peter gave Fido the snake" is different since "snake" is animate, but "bone" is not.

The sentence "A snake ate the girl." is an example of the simplest type from the training set. The behavior of the 
key structure units corresponding to the roles of verb block 1 are shown in Fig. 3. Each box contains the indicated
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Figure 3: A snake ate the girl.

relationship units. The horizontal axis corresponds to time. Each word is presented for ten time steps. The first row 
of each box corresponds to the first noun phrase, the second to the second noun phrase and so on. The initial 
representation shows low activities for all of the relationship units. During presentation of the First word, the agent 
unit representing the First noun becomes quite active. It has not yet quite decided on its final value however, as can 
be seen by the oscillations. The other units are all either weakly active or oscillating. When the verb "ate" is 
presented, the agent unit corresponding to noun 1 fires strongly since it is now clear that the sentence is not a passive 
construction. Similarly, the patient unit for noun 2 becomes more active since "ate" is transitive. The last part of the 
sentence further verifies the correct representation. If "near the house" is appended to the sentence (forming a
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sentence not in the training set), it gets attached to 'the girl".

In spoken language, determiners and other short function words tend to be poorly articulated. This is indeed a 

persistent problem for speech recognition systems, as it leads to word deletions. Despite such deletions, our network  

makes appropriate role assignments with such sentences as "Snake ate girl." The role assignment is agent / patient 

as in the uncorrupted sentence. N on-speech  interjections are also possible as in, "A snake (ahh) ate the girl." A  

speech recognition system could  easily  interpret the non-speech "ahh" as "a". Our network puts the non-speech a 

in the determiner slot o f  the second noun block, and then overwrites it with "the". The result is a good  parse o f  the 

il l-formed sentence. Similarly, s im ple stuttering does not adversely affect network performance in many cases. It is 

important to note that this behavior was not taught in any w ay to the network.
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Figure 4: The snake was given by the man to Fido.

A more complicated sentence is given by, "The snake was given by the man to Fido." as shown in Fig. 4. It was 
not in the training set. There was only one sentence with a similar structure in the training sec "The bone was given 
by the man to the dog." They differ significandy in that "snake" is animate and less significantly in their detailed 
noun phrase structure. Fig. 4 shows a similar display as before. For the duration of the first two words of this 
sentence, the units behave as they did in the previous one. However, the passive construction indicated by "was 
given" causes the agent unit for the first noun to decay and the agent unit for the third noun to grow. This is because 
several other passive sentences in the training set were structured where the third noun was the agent. The word 
"by" causes the agent units to move toward their final positions and indicate by the man is the agent block. The 
recipient and patient units make their final decisions with a little residual oscillation at this time as well. At the 
arrival of "to Fido" finally, the correct parse is locked up.

In the previous example, the network seized the preposition "by" to make its role assignments. The network is 
also able to use semantic cues from words in the absence of meaningful function words. Fig. 5 show the network s 
behavior on the sentence, "A snake was given an apple by John." Here, the network must rely on the semantic 
features of "snake" and "apple" to make the proper role assignment. Since "snake" is animate, and apple is not, their
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Figure 5: A snake was given an apple by John.

roles are assigned as recipient and patient, respectively. This occurs when "an apple" is processed. The opposite 
role assignment is made in, "A bone was given the dog by John." The heuristic learned by the network is that 
inanimate objects are preferred as patients over animate objects.

Single clause sentences dominated the training set, but a few two clause sentences were presented to explore the 
network’s ability to learn the interactions among clauses. Since the network architecture allowed for only three 
noun phrases with two verb phrases, these sentences were quite simple. The network learned to recognize 
subordinate clauses as in, "John slept after he ate an apple." It also learned to recognize sentence terminal relative 
clauses as in, "John kissed the girl who slept" Generalization capability in the two clause sentences was not tested 
extensively due to the paucity of sentences constructible within the constraints of the task. Minor variations in the 
noun phrase structure from the training sentences were properly treated.

In summary, we have observed four key features in the network’s performance. It is able to combine syntactic, 
semantic, and word order information effectively to perform its task. The network tries to be predictive, making 
decisions about the structure of the sentence as soon as sufficient information becomes available. When the network 
is uncertain, the units oscillate among sets of possible future states in a way that is detectable by the network via the 
velocity weights. The network responds reasonably to sentences which have been modified from those in its 
training set

Extending the Architecture
The architecture described above is still limited in its present form. To extend and scale it to more complex 

sentences and to allow for a more flexible representation, we have designed a more general architecture. The new 
architecture is modular, hierarchical, and recurrent. It has four levels: Phrase, Clause Structure, Clause Roles, and 
Interclause. The Phrase level is analogous to that of the network described earlier, but differs in three important 
ways. The words in the lexicon all share the same feature units instead of being separated into classes. The phrases 
are not separated into verb and noun blocks; the input sentence is parsed into blocks of contiguous words which
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form phrases. The sentence "The old dog who was sleeping was given a bone by John" would be split up into "(The 
old dog)'(who) (was sleeping) (was given) (a bone) (by John)". The Clause Structure level uses the evolving Phrase 
level representation to split the sentence into its constituent clauses: "(The old dog) (was given) (a bone) (by John) 
and "(who) (was sleeping)". The Clause Roles level does the role assignment and noun phrase attachment for each 
of the clauses as they are mapped. For example, "(The old dog)" would be called the recipient, "(a bone)' the 
patient etc. The final level, Interclause, encodes the fact that the embedded clause is relative to "(The old dog)".

Interclause Level

Clause Structure Level

The old dog who was sleeping was given a bone by John

Phrase Level

"The old dog who was sleeping was given a bone by Jonn."

Figure 6: New Representation 

Fig. 6 shows the representation of this sentence.

At the Phrase level and the Clause Roles level, the network consists of horizontally replicated modules which are 
trained on all of the phrases and clauses from a set of sentences. This artificially creates the effect of a very large 
training set on a very large network without the cost associated with building such networks. The Cause Structure 
and Interclause levels cannot be treated in this manner since they deal with whole sentence structure.

We are currently exploring such a network on a set of over 200 sentences. These include sentences with passive 
constructions, center embedded clauses, and some lexical ambiguity. Preliminary results on the individual modules 
comprising the network have been encouraging, and we hope to begin testing on the fully integrated network 

shortly.

Conclusion
We have presented a connectionist architecture which learns to incrementally parse sentences. Our networks 

exhibit behavior that could potentially be extremely useful for the integration of speech and language processing. 
Tolerance to corruptions of input including ungrammaticality, word deletions and insertions, and varying word 
speed are all desirable for speech applications. Connectionist networks appear to be less rigid than more formal 
systems thereby allowing them to handle a wider variety of sentences given only a limited initial set of examples. 
Their ability to learn complex dynamical behaviors from diverse knowledge sources makes them well suited for 

speech processing applications.
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Abstract

This paper describes the parsing scheme in the <$DmDia lOG speech-to-speech dialog translation system, with 
special emphasis on the integration of speech and natural language processing. We propose an integrated architec­
ture for parsing speech inputs based on a parallel marker-passing scheme and attaining dynamic participation of 
knowledge from the phonological-level to the discourse-level. At the phonological level, we employ a stochastic 
model using a transition matrix and a confusion matrix and markers which carry a probability measure. At a 
higher level, syntactic/semantic and discourse processing, we integrate a case-based and constraint-based scheme 
in a consistent manner so that a priori probability and constraints, which reflect linguistic and discourse factors, are 
provided to the phonological level of processing. A probability/cost-based scheme in our model enables ambiguity 
resolution at various levels using one uniform principle.

1. Introduction

This paper discusses a method of integrating speech recognition and natural language processing. In order to 
develop speech-based natural language systems such as a speech-to-speech translation system and a speech input 
natural language interface, an integration of speech recognition and natural language processing is essential, because 
it improves the recognition rate of the speech inputs. Improvement of the recognition rate can be attained by an 
integration of natural language processing with speech recognition, providing a more appropriate assignment of a 
priori probability to each hypothesis and imposes more constraints to reduce search space. Thus, the quality of 
the language model is an important factor. Since our goal is to create accurate translation from speech input, a 
sophisticated parsing and discourse understanding scheme are necessary. We propose an architecture for parsing 
speech inputs that integrates speech (phonological-level processing) and natural language processing with full 
syntactic/semantic analysis and discourse understanding.

In our system, we assume that an acoustic processing device provides a symbol sequence for a given speech 
input In this paper, we assume that a phoneme-level sequence is provided to the system1. The phoneme sequence 
given from the phoneme recognition device contains substitution, insertion and deletion of phonemes, as compared 
to a correct transcription which contains only expected phonemes. We call such a phoneme sequence a noisy 
phoneme sequence. The task of phonological-level processing is to activate a hypothesis as to the correct phoneme 
sequence from this noisy phoneme sequence. Inevitably, multiple hypotheses can be generated due to the stochastic 
nature of phoneme recognition errors. Thus, we want each hypothesis to be assigned a measure of its being correct 
In the stochastic models of speech recognition, a probability of each hypothesis is determined by ^CylA) x P(h). 
P(y\h) is the probability of a series of input sequence being observed when a hypothesis h is articulated. P(h) is 
an a priori probability of the hypothesis derived from the language model. Apparently, when phonological-level 
processing is the same, the system with a sophisticated language model attains a higher recognition rate, because 
a priori probability differenciates between hypotheses of high acoustic similarity which would otherwise lead to 
confusion. At the same time, we want to eliminate less-plausible hypotheses as early as possible so that the search 
space is kept within a certain size. We use syntactic/semantic and discourse knowledge to impose constraints which 
reduce search space, in addition to the probability-based pruning within the phonological level.

1 We use Matsushita Institute’s Japanese speech recognition systemlMorii et. iL, 19851 for a current implementation.
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2.1. O verview

0DMDIALOG is a speech-to-speech dialog translation system based on a massively parallel computational model 
[Kitano, 1989b] [Kitano et. al., 1989b] 2. It accepts speaker-independent continuous speech inputs. Some of the 
significant features of # D m D ia lo g  include:
I. Use of a hybrid parallel paradigm as a basic computational scheme, which is an integrated model of a direct 
memory access (DMA) type of a massively parallel marker passing scheme and a connectionist network;
II. Dymanic utilization of knowledge from morphophonetics to discourse by distributively encoding this knowl­
edge in a memory network on which actual computations are performed;
HI. Integration of case-based and constraint-based processing to capture linguistically complex phenomena 
without losing cognitive realities;
IV. A cost-based ambiguity resolution scheme which applies to all levels of ambiguity (from phoneme recognition 
to discourse context selection)[Kitano et. al., 1989a];
V. Almost concurrent parsing and generation, so that a pan of a sentence can be translated before the whole 
sentence is parsed [Kitano, 1989a].
The philosophy behind our model is to view parsing as a process on a dynamic system where the law of energy 
conservation, entropy production and other laws of physics can be effective analogies. We also demand that our 
model be consistent with psycholinguistic studies.

2.2. A Baseline Algorithm
We employ the hybrid parallel paradigm in order to model two distinct aspects of the parsing: information building 
and hypothesis selection. In the hybrid parallel paradigm, a parallel marker-passing scheme and a connectionist 
network are integrated and computations are performed directly in a memory network. Knowledge from the mor- 
phophonetic level to the discourse level is represented as a memory network which is consists of nodes and links. 
Several types of nodes are in the memory network.
Concept Sequence Class (CSC) captures configurational patterns of linguistic phenomena such as phoneme se­
quences, concept sequences and plan sequences. CSCs have an internal structure. The internal structure is composed 
of a label, IS-A links, a sequence, presuppositions, effects, and constraint equations. This structure is same for all 
CSCs except CSCs in the phonological layer.
Concept Class (CC) represents concepts such as phonemes, concepts, and plans.
Concept Instance (Cl) arc instances of CCs. They are used to represent discourse entities[Webber, 1983] and 
instance of utterances.
Nodes are connected by labelled links. Abstraction links (IS-A) and compositional links (PART-OF) are typical 
types of links. The memory network is organized in a hierarchical manner. There are hierarchies of nodes repre­
senting concepts from specific instances (using CIs) to general concepts (using CCs) and hierarchies of structured 
nodes representing relations of concepts which are indexed into relevant concepts and specific instances (using CIs 
and their links). When CSCs represent specific cases, they arc already co-indexed to the specific instances in the 
memory network. Abstract CSCs hold various constraints described as constraint equations, presuppositions and 
effects. These abstract CSCs arc instantiated during parsing and newly created specific CSCs are indexed into the 
memory network as cases of utterance. Parsing with abstract CSCs is computationally more expensive than parsing 
with cases, but it maintains productivity of the knowledge.

Three types of markers (A-, P-, and C-Markers) arc used for parsing. Two other types of markers, G- and 
V-Markers arc used for generation; thus they arc not described in this paper.
Activation M arkers (A-Markers) contain information including discourse entities, features and cost They prop­
agate upward through abstraction links.
Prediction M arkers (P-Markers) predict possible next activations. They contain binding lists (a list of role- 
instance pairs binded so far), a measure of cost, and linguistic and pragmatic constraints.
Contextual M arkers (C-Markers) are used as an alternative to a connectionst network and indicate contextual 
priming. C-Markers are not used when the connectionist network is fully deployed.

2. <2>DMDIAL0G Project

2#  indicate* that our rystem is a speech input system. This notation is a tradition of the Center for Machine Translation. Dm implies 
that the system was initially designed as a direct memory access (DMA) based system. However, our system evolved differently from the 
DMAPlRiesbeck and Martin, 19851 and now Dm implies both DMA and dynam ics m odel Lng which reflects our philosophy of viewing a cognitive 
process as a dynamic process governed by the laws of physics. D IA L O G  means that our system translates dialogs.
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Figure 2: Movement of P-Markers in Layered Sequences

A basic cycle of our algorithm is as follows:

1. Activation:
For each input symbol, a corresponding node is activated and an A-Marker is created. A unit of input may 
be either a phoneme or a word, depending on the input device. The A-Marker is passed up through IS-A 
links. The A-Marker contains information relevant to the processing of that layer.

2. A-P-Collision:
When an A-Marker and a P-Marker collide at a certain element of a CSC, the P-Marker is moved to the next 
possible concept element of the CSC. At this stage, constraints are checked.

3. Prediction:
As a result of moving P-Markers to the next possible element of the CSC, predictions are made describing 
possible next inputs.

4. Recognition (Network Modification and Information Propagation):
When the CSC is accepted, (1) the memory network may be modified as a side-effect, and (2) an A-Marker 
containing aggregated information is passed up through IS-A links.

The movements of P-Markers on a CSC are illustrated in figure 1. In (a), a P-Marker (initially located on <r0) 
is hit by an A-Marker and moved to the next element. In (b), two P-Markers are used and moved to e2 and e2. In 
the dual prediction, two P-Markers are placed on elements of the CSC (on e0 and e\). This dual prediction is used 
for phonological processing.

Figure-2 shows movement of a P-Marker on the layers of CSCs. When the P-Marker at the last element of the 
CSC gets an A-Marker, the CSC is accepted and an A-Marker is passed up to the element in the higher layer CSC. 
Then, a P-Marker on the element of the CSC gets the A-Marker, and the P-Marker is moved to the next element 
At this time, a P-Marker which contains information relevant to the lower CSC is passed down and placed on the 
first element of the lower CSC. This is a process of accepting one CSC and predicting the possible next word and 
syntactic structure.

3. Phonological Parsing

This section describes phonological-level activities. We assume a noisy phoneme sequence, as shown in Figure 3, 
to be the input of the phonological-level processing. In order to capture the stochastic nature of speech inputs, we 
adopt a probabilistic model similar to that used in other speech recognition research. First, we describe a simple
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Figure 3: Examples of Noisy Phoneme Sequences

model using a static probability matrix. In this model, probability is context-independent Then, we extend the 
model to capture context-dependent probability.

3.1. The Organization of the Phonological Processing
The algorithm described as a baseline algorithm is deployed on phonetic-level knowledge. In the memory network, 
there are CSCs representing the phoneme sequence for each lexical entry. The dual prediction method is used in 
order to handle deletion of a phoneme.

We use a probabilistic model to capture the stochastic nature of speech processing. Probability measures involved 
are: a priori probability given by the language model, a confusion probability given by a confusion matrix, and a 
transition probability given by a transition martix.

A priori probability is derived from the language model and is a measure of which phoneme sequence is likely 
to be recognized. A method of deriving a priori probability is described in the section on syntax/semantic parsing 
and discourse processing.

A confusion matrix defines the output probability of a phoneme when an input symbol is given. Given an input 
sign iit the confusion matrix ay determines the probability that the sign i, will be recognized as a phoneme pj. It 
is a measure of the distance between symbols and phonemes as well as a measure of the cost of hypotheses that 
interpret the symbol i, as the phoneme pj. In the context-dependent model, the confusion matrix will defined as a,y* 
which gives a probability of a symbol /, to be interpreted as a phoneme pj at a transition ft. We call such matrix a 
dynamic confusion matrix.

A transition matrix defines the transition probability which is a probability of a symbol /,♦ i to follow a symbol 
I,-. For an input sequence z'o ii • • • the a priori probability of transition between io and i\ is given by 
Since we have a finite set of input symbols, each transition can be indexed as f*. The transition probability and 
the confusion probability are intended to capture the context-dependency of phoneme substitutions -  a phenomena 
whereby a certain phoneme can be actually articulated as other phonemes in certain environments.

3.2. Context-Independent Model
First, we explain our algorithm using a simple model whose confusion matrix is context-independent. Later, we 
describe the context-dependent model which uses a dynamic confusion matrix. Initially, P-Markers contain a priori 
probability (*/) given by the language model. In #DmDialog, the language model reflects full natural language 
knowledge from syntax/semantics to discourse. The P-Markers are placed on each first and second element of 
CSCs representing expected phoneme sequences. For an input symbol A-Markers are passed up to all phoneme 
nodes that have a probability^) greater than the threshold (Th). When a P-Marker, which is at i-th element, 
and an A-Marker collide, the P-Marker is moved to the i+l-th and i+2-th elements of the sequence (This is a 
dual prediction). When the next input symbol il+i generates an A-Marker that hits the P-Marker on the i+l-th 
element, the P-Marker is moved using the dual prediction method The probability density measure computed on 
the P-Marker is as follows:

ppm(i) = ppm{i — 1) x a*.,,*., x b (1) 
ppm( 0) = *i (2)

where ppm(i) is a probability measure of a P-Marker at the i-th element of the CSC which is a probability of 
the input sequence being recognized as a phoneme sequence traced by the P-Marker.
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CSCs involved:
<  Po Po Po
<  Po Po P 1
<  Po P 1 Po
<  Po P 1 P\
<  ^1  Po Po 
< p  1 PoPi
<  p  1 Px P i
< P1 />!

Figure 4: A Part of a State-Transition Diagram

In Figure-4, an input sequence is /0 *i • • • i*. Py in the diagram denotes a phoneme Pj at i-th element of the 
CSC. pij is a state rather than an actual phoneme, and Pj in the CSC refers to the actual phoneme. P-Markers at 
Poo, Poi , Pm, P-Markers on the 0-th element of the CSCs referring P0, Px, and P2t respectively, are hit by A-Markers 
Eventually, P-Markers are moved to the next element of CSCs. For instance, Poo will move to pio, p lu Pio, P7 1  

depending on which CSC the P-Marker is placed on. Probabilities are computed with each movement A P-Marker 
at p u has the probability tt0. When the P-Marker received an A-Marker from ilt the probability is re-computed
3I|^ u ^  T° X x apio,p,\ ‘ Transitions such as poo —* pi\ and poo —* pio insert an extra phoneme
which does not exist in the input sequence. Probability for such transitions are computed in such a way as:
T° x x x x A P-Marker at p \0 does not get an A-Marker from i\ due to the threshold.
In such cases, a probability measure of the P-Marker is re-computed as r 0 x x at* * * .  This represents a
decrease of probability due to an extra input symbol.

P-Markers at the last element (p„) and one before the last 0 , - 0  are involved in the word boundary problem. 
When a P-Marker at pH is hit by an A-Marker, the phoneme sequence is accepted and an A-Marker that contains 
the probability and the phoneme sequence is passed up to the syntactic/semantic-level of the network. Then, the 
next possible words are predicted using syntactic/semantic knowledge, and P-Markers are placed on the first and the 
second element of the phoneme sequence of the predicted words. When a P-Marker at pH. { is hit by an A-Marker, 
the P-Marker is moved to pH and, independently, the phoneme sequence is accepted, due to the dual prediction, and 
the first and the second elements of the predicted phoneme sequences get P-Markers.

33.  The Context-Dependent Model
I ae context-dependent model can be implemented by using the dynamic confusion matrix. The algorithm described 
above can be applied with some modifications. First, A-Markers are passed up to phonemes whose maximun output 
probability is above the threshold. Second, output probability used for probability calculation is defined by the 
dynamic confusion matrix.

ppn<0 = ppm(i — 1) x x V a , (3)

where k denotes a transition from i,_2 to t,_ i . It is interesting that our context-dependent model is quite similar 
to the Hidden Markov Model (HMM) when the transition of the state of P-Markers are synchronously determined 
by, for example, certain time intervals. We can implement a forward-passing algorithm and the Viterbi algorithm 
IViterbi, 19671 using our model. This implies that when we decide to employ the HMM as our speech recognition 
model, instead of a current speech input device, it can be implemented within the framework of our model.

3.4. Probability Cost Equality
Since we have been using the cost-based ambiguity resolution scheme [Kitano e t  al., 1989a], the equivalency 
of the probabilistic approach and the cost-based approach need to be discussed. Our motivation in introducing 
the cost-based scheme was to perceive parsing as a dynamic process. Thus the hypothesis with the least cost, 
hence minimum workload, is selected as the best hypothesis. When a stochasity is introduced, the process that 
requires more workload is less likely to be chosen. Thus, qualitatively, higher probability means less cost and lower
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probability m eans higher cost. P robability/cost conversion  equations are3:

P  =  e ^ r ~  (4 )

c o s t  =  - C l o g P  (5 )

In the actual implementation, we use a cost-based scheme because use of probability requires multiplication, 
whereas use of cost requires only addition which is computationally less expensive than multiplication. It is also 
a straightforward implementation of our model that perceives parsing as a physical process (an energy dispersion 
process). Thus, in the cost-based model, we introduce an accumlated acoustic cost (AAC) as a measure of cost 
which is computed by:

aac(i) = aac(i -  1 )+ ccii_t)Pi_1 + fc*_ -  pe (6)

where aac(i), cc* .,.* .,, and pe are an AAC measure of the P-Marker at i-th element, confusion cost
between /,_ i and p,_ i, transition cost between /,_2 and /._ i , and phonetic energy, respectively. Phonetic energy 
reflects an influx of energy from external acoustic energy.

4. Syntactic/Semantic Parsing
Unlike most other language models employed in speech recognition research, our language model is a complete 
implementation of a natural language parsing system. Thus, complete semantic interpretations, constraint checks, 
ambiguity resolution and discourse interpretations are performed. The process of prediction is a part of parsing in 
our model, thereby attaining an integrated architecture of speech input parsing. In syntactic/semantic processing, 
the central focus is on how to build the informational content of the utterance and how to reflect syntactic/semantic 
constraints at phonological-level activities. Throughout the syntactic/semantic-level and discourse-level, we use a 
method to fuse constraint-based and case-based approaches. In our model, the difference between a constraint-based 
process and a case-based process is a level of abstraction; the case-based process is specific and the constraint- 
based process is more abstract The constraint-based approach is represented by various unification-based grammar 
formalisms [Pollard and Sag, 19871 [Kaplan and Bresnan, 19821. We use semantic grammar which combines 
syntactic and semantic constraints4. In our model, propagation of features and unification are conducted as a 
feature aggregation by A-Markers and constraints satisfaction performed by operations involving P-Markers. The 
case-based approach is a basic feature of our model. Specific cases of utterances are indexed in the memory 
network and reactivated when similar utterances are given to the system. One of the motivations for the case-based 
parsing is that it encompasses phrasal lexicons [Becker, 197515. The scheme described in this section is applied to 
discourse-level processing and attains an integration of the syntactic/semantic-level and the discourse-level.

4.1. Feature Aggregation
Feature aggregation is an operation which combines features in the process of passing up A-Markers so that minimal 
features are carried up. Due to the hierarchical organization of the memory network, features which need to be 
carried by A-Markers are different depending on which level of abstraction is used for parsing. When knowledge of 
cases is used for parsing, features are not necessary because this knowledge is already indexed to specific discourse 
entities. Features need to be carried when more abstract knowledge is used for parsing. For example, the parsing of 
a sentence She runs can be handled at different levels of abstraction using the same mechanism. The word she refers 
to a certain discourse entity so that very specific case-based parsing can directly access a memory which recalls 
previous memory in the network. Since previous cases are indexed into specific discourse entities, the activation can 
directly identify which memory to recall When this word she is processed in a more abstract level such as PERSON, 
we need to check features such as number and gender. Thus, these features need to be contained in the A-Marker. 
Further abstraction requires more features to be contained in the A-Marker. Therefore, the case-based process and 
the constraint-based process is treated in one mechanism. Aggregation is a cheap operation since it simply adds

3 The equations are based on the Max well-Boltzmann distribution P  = e .

4Thi* does not preclude use of unification grammar formalism in our system. In fact, we are now developing a cross-compiler that compiles 
grammar rule* written in LFG into our network. Designing of a croM-compder from HPSG to our network is also underway.

3Discussions on benefits of phrasal lexicons for parsing and generation are found in [Riesbeck «nd Martin, 19851 [Hovy, 19881.
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new features to existing features in the A-Marker. Given the fact that unification is a computationally expensive 
operation, aggregation is an efficient mechanism for propagating features because it ensures only minimal features 
are aggregated when features are unified. This is different from another marker-passing scheme which carries an 
entire feature [Tomabechi and Levin, 1989]. When an entire feature is carried, whole features are involved in the 
unifiction operation even through some of features are not necessary.

The feature aggregation is applied in order to interface with different levels of knowledge. At the phonological 
level, only a probability measure and a phoneme sequence are involved- Thus, when an A-Marker hits a CC node 
representing a certain concept, i.e. female-per son-3 sg for she, the A-Marker does not contain any linguistically 
significant information. However, when the A-Marker is passed up to more abstract CC nodes, i.e. person, linguisti­
cally significant features are contained in the A-Marker and unnecessary information is discarded. When a sentence 
is analyzed at the syntactic/semantic-level, a prepositional content is established and is passed up to the discourse- 
level by an A-Marker, and some linguistic information which is necessary only within the syntactic/semantic-level 
is discarded.

4.2. Constraint Satisfaction
Constraint is a central notion in modem syntax theories. Each CSC has constraint equations which define the 
constraints imposed for that CSC depending on their level of abstraction. CSCs representing specific cases do not 
have contraint equations since they are already instanciated and the CSCs are indexed in the memory network. 
The more abstract the knowledge is the more they contain constraint equations. Feature structures and constraint 
equations interact in two stages. At the prediction stage, if a P-Marker placed on the first element of the CSC already 
contains a feature structure that is non-nil, the feature structure determines, according to the constraint equations, 
possible feature structures of A-Markers that subsequent elements of the CSC can accept. At an A-P-Collision 
stage, a feature structure in the A-Marker is tested to see if it can meet what was anticipated. If the feature structure 
passes this test, information in the A-Marker and the P-Marker is combined and more precise predictions are made 
on what can be acceptable in the subsequent element. For She runs, we assume a constraint equation (AGENT 
NUM = ACTION NUM) associated with a CSC, for example, <AGENT ACTION>. When a P-Marker initially 
has a feature structure that is nil, no expectation is made. In this example, at an A-P-Collision, an A-Marker has 
a feature structure containing (NUM = 3s) constraints for the possible verb form which can follow, because the 
feature in the A-Marker is assigned in the constraint equation so that (AGENT NUM 3s) requires (ACTION NUM 
3s). This guarantees that only a verb form runs can be legitimate6. When predicting what comes as a ACTION, P- 
Markers can be passed down via IS-A links and only lexical entries that meet (ACTION NUM 3s) can be predicted. 
When we need to relax grammatical constraints, P-Markers can be placed on every verb form, but assign higher a 
priori probabilities for those which meet the constraint A unification operation can be used to conduct operations 
described in this section. As a result of parsing at the syntactic/semantic-level, the prepositional content of the 
utterance is established. Since our model is a memory-based parsing model, the memory network is modified to 
reflect what was understood as a result of previous parsing.

4 3. Prediction
From the viewpoint of predicting the next hypothesis at the phonological level, case-based parsing provides the 
most specific prediction and gives high a priori probability. Prediction by more abstract knowledge provides less 
specific predictions and gives weaker a priori probability compared to case-based prediction. Thus, we have a set 
of hypotheses with strong preferences predicted by the case-based process and a set of hypotheses (this includes 
hypotheses predicted by the case-based process) predicted by the constraint-based process. Of course, the strength 
of the preference is dependent on the level of abstraction the parsing has required. Even in the constraint-based 
process, if the level of abstraction is low, the prediction has strength comparable to the case-based prediction.

5. Integration of Discourse Knowledge

At the discourse-level, the focus is on how to recognize the intention of the utterance, interpret discourse phenomena 
and predict next possible utterances. ^D mD ialog uses discourse knowledge such as (1) discourse plans, and (2)

6When we use abstract notation such as NP or VP, the same mechanism applies and captures linguistic phenomena.

-236- Intemationai Parsing Workshop '89



discourse entities and their relations. We use hierarchic^ discourse plan sequences, represented by CSCs7, to 
represent and provide specificity as well as productivity of discourse plans. Hierarchical discourse plan sequences 
represent possible sequences of utterance plans which may be actually performed by each speaker. Plan hierarchies 
are organized for each participant of the dialog in order to capture complex dialog often taking place in a mixed- 
initiative dialog. Each element of the plan sequence represents a domain-specific instance of a plan or an utterance 
type [Litman and Allen, 1987] which can be dynamically derived from abstract dialog knowledge and domain 
knowledge. Abstract plan sequences are close to plan schemata described in [Litman and Allen, 1987] since they 
represent very generic constraints as well as the relationship between an utterance and a domain plan. There is also 
knowledge for the discourse structure[Cohen and Fertig, 1986] [Grosz and Sidner, 1985]. When an element of the 
plan sequence of this abstraction is activated, the rest of the elements of the plan sequence have constraints imposed 
which are derived from the information given to the activated elements. This ensures coherence of the discourse. 
When a plan sequence case is activated, it simply predicts the next plan elements because these specific plan 
sequences are regarded as records of past cases and, thus, most constraints are already imposed and the sequence 
is indexed according to the specific constraints. In addition, use of order constraints of CSC representations allows 
us to handle order-freeness of subdialog conversations. Furthermore, unlike scripts or MOPstSchank, 1982], a plan 
sequence has an internal structure which enables our model to impose constraints which ensure coherency of the 
discourse processing.

As a result of the discourse understanding, possible next utterances can be predicted. P-Markers are passed down 
to nodes representing these utterances. Eventually, they reach the phonological level and give a priori probability 
to each hypothesis. Similar to predictions from syntactic/semantic-level, the strength of the prediction is dependent 
upon the level of abstract knowledge involved.

6. A Cost-based Ambiguity Resolution Scheme

A cost-based disambiguation scheme is a method of evaluating each hypothesis based on the cost assigned to it  
Costs are added when (1) phonemes are replaced, inserted, or dropped during recognition of noisy speech inputs 
(we use a cost converted from a probability measure at the phonological-level), (2) a new instance is created, (3) a 
concept without contextual priming is used, or (4) constraints are assumed when using CSCs. Costs arc subtracted 
when (1) a concept with discourse prediction is used, or (2) a concept with contextual priming is used. Basic 
equations are:

CSC, = ^  CCij + ^  constraintsk + biasi (7)
j *

C C j -  LEXj + instantiated -  priming j (8)
LEX  i =  -Clog/* (9)

where C C ijy constraintsk, biasi denote a cost of the j-th element of CSC,, a cost of assuming the k-th constraints, and
the lexical preference of CSC,, respectively. L E X j, instantiated, p riming j denote a cost of the lexical node LE X j, a 
cost of creating new Cl by referential failure, and contextual priming, respectively. LEXj is a cost converted from the 
probability measure at the phonological level as described earlier. The acc urn la ted acoustic cost, computed by the 
equation (6), can be used instead of converting probability by equation (9). Then, the cost-based scheme is adopted 
at every level of processing. In the cost-based disambiguation scheme, we choose the least costly hypothesis based 
on the above equations.

Our model parses utterances under a given context Thus, the cost assigned to a certain hypothesis is not always 
the same. It is dependent on the context; that is, the initial conditions of the system when the utterance is entered. 
The initial condition of the system is determined based on the previous course of discourse. The major factors 
are the state of the memory network modified as a result of processing previous utterances, contextual priming, 
and predictions from discourse plans. The memory network is modified based on the knowledge conveyed by the 
series of utterances in the discourse as described briefly in the previous section. Contextual priming is imposed 
either by using a C-Marker passing or by a connectionist network. The mechanism of assigning preference is 
based on top-down prediction using discourse knowledge. Such prediction provides a priori probability at the 
phonological-level.

7Thii mean* that order-strict or order-free constraints ipply in determining the order of the pUn sequence.
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The cost-based ambiguity resolution scheme is applied to the reference problem including definite and indefinite 
reference, pronoun reference, etc. We use activation/cost-based reference where each reference hypothesis incures 
cost and the least-cost hypothesis will be selected. The cost for each hypothesis is computed based of activation lev­
els of each discourse entities and semantic restrictions. The method does not assume a layered network [Tomabechi 
and Levin, 1989] and, thus, we can coherently handle problems including the reference to the related objects.

7. Preliminary Evaluations and Discussions

Currently, ^D mDialog is being tested on the conference registration domain based on simulated telephone con­
versation experiments by ATR. The use of dialog-level knowledge has proven to be effective in in reducing the 
perplexity of the task. We took as an example a small test set from the ATR corpus, and the perplexity of this task 
with no prediction knowledge was 247.0. Using sentential level knowledge this figure was reduced to 19.7, and 
using dialog level knowledge it was reduced to 2.4. However, the problem is that (1) the domain of our experiment 
is relatively small, and (2) when we cover more complex discourse, prediction from the discourse-level may be 
less specific. We are now evaluating our model with larger test sets.

We employ the probabilistic model for the following reason: the use of phonological knowledge alone, such 
as phonological rules and distinctive feature theory, cannot sufficiently cope with the stochastic nature of speech 
recognition. However, phonological knowledge would be useful for analyzing and estimating probability matrices. 
By contrasting feature types, such as voicing, instead of collecting all the phonemic data, we would reduce the 
amount of data needed for building the probability matricestChurch, 1987].

The hierarchical organization of the memory network is a key feature in integrating constraint-based and case- 
based processing. Although we suffer from some overhead by concurrently parsing one sentence at different levels 
of abstraction, the capability of handling both specific and abstract knowledge in a consistent manner seems more 
significant. The feature aggregation method is a useful technique to keep overhead to a minimum.

The implementation of <£DmDialog on a parallel machine is an interesting topic. We believe the benefits of our 
model can be best explored with parallel machines and that its implementation may be relatively straightforward. 
Actually, a part of our model has been implemented on a custom VLSItKitano, 1988].

8. Related Works

Several efforts have been made to integrate speech and natural language processing. [Tomabechi et. al., 1988] 
attempts to extend the marker-passing model to speech input Their model uses environment without probabilistic 
measure which would allow environmental rules to be applied. Since mis recognitions are somewhat stochastic, 
lack of the probability measure seems a shortcoming in their model. The MINDS system [Young e t al., 1989] 
is an attempt to integrate speech and natural language processing implementing layered prediction. They reported 
that use of layered prediction involving discourse knowledge reduced the perplexity of the task. This is consistent 
with our claim. [Church, 1987] discusses speech recognition using phonetic knowledge such as environment and 
a distinct feature matrix. We share similar motivations, but we try to incorporate this knowledge in a probabilistic 
model. [Saito and Tomita, 1988] [Kita e t  al., 1989] and [Chow and Roukos, 1989] are examples of approaches to 
integrate speech with unification-based parsing, but, unfortunately, discourse processing has not been incorporated. 
Marker-passing models of parsing such as [Riesbeck and Martin, 1985] and [Tomabechi and Levin, 1989] captured 
only one side of parsing (case-based or constraint-based), in contrast to our model which incorporates both aspects 
in one scheme.

9. Conclusion

This paper describes a method of speech-natural language integration in # D mD ialog. The probability/cost-based 
model is used to capture the stochastic nature of speech inputs. The language model in our model is a parser itself 
and directly connected to the phoneme processing by means of cost measures, a priori probability, and constraints 
to limit search space. Addition of the discourse understanding scheme further improved the power of the language 
model to constrain and predict phonological processes. As a result reduction of the perplexity was observed and 
the recognition rate was improved. Feature aggregation in the hierarchically organized memory network was a 
useful scheme to integrate case-based and constraint-based parsing. The parallel marker-passing approach seems a 
viable alternative for designing an integrated architecture for parsing speech inputs.

-238- International Parsing Workshop '89



Acknowledgement
We would like to thank members of the Center for Machine Translation for useful discussions. Especially, Hideto 
Tomabechi, Hiroaki Saito and Jaime Carbonell helped us with insightful advice. Discussions on speech recognition 
with Sheryl Young and Wayne Ward were especially useful. Lyn Jones was patient enough to proofread this paper 
for us. We also would like to thank ATR Interpreting Telephony Laboratories for allowing us to use a corpus of the 
conference registration domain for our research. Matsushita Research Institute is allowing us to use their speech 
recognition system.

Appendix: Implementation

<*>DMDlALOG has been implemented on IBM-RT-PC which runs CMU-CommonLisp on the Mach operating system 
and HP-9000 runs HP-CommonLisp. Speech recognition and synthesis devices (Matsushita Research Institute’s 
Japanese speech recognition device and DECTalk) are connected to perform real-time speech-to-speech translation.
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ABSTRACT

We present a concise survey of approaches to the context-free parsing prob­
lem of natural languages in parallel environments. The discussion includes parsing 
schemes which use more than one traditional parser, schemes where separate 
processes are assigned to the ‘non-deterministic’ choices during parsing, schemes 
where the number of processes depends on the length of the sentence being parsed, 
and schemes where the number of processes depends on the grammar size rather 
than on the input length. In addition we discuss a connectionist approach to the 
parsing problem.

1. Introduction

In the early 1970’s papers appeared in which ideas on parallel compiling for programming 
languages and parallel executing of computer programs were investigated. In these papers parallel 
lexical analysis, syntactic analysis (parsing) and code generation were discussed. At that time vari­
ous multi-processor computers were introduced (CDC 6500, 7600, STAR, ELLIAC IV, etc.) and the 
first attempts were made to construct compilers which used more than one processor when compil­
ing programs. Slowly, with the advent of new parallel architectures and the ubiquitous application 
of VLSI, interest increased and presently research on parallel compiling and executing is 
widespread. Although more slowly, a similar change of orientation occurred in the field of natural 
language processing. However, unlike the compiler construction environment with its generally 
accepted theories, in natural language processing no generally advocated -  and accepted -  theory of 
natural language analysis and understanding is available. Therefore it is not only the desire to 
exploit parallelism for the improvement of speed but it is also the assumption that human sentence 
processing is of an inherently parallel nature which makes computer linguists and cognitive scien­
tists turn to parallel approaches for their problems.

Parallel parsing methods have been introduced in the areas of theoretical computer science, 
compiler construction and natural language processing. In the area of compiler construction these 
methods sometimes refer to the properties of programming languages, e.g. the existence of special 
keywords, the frequent occurrence of arithmetic expressions, etc. Sometimes the parsing methods 
that have been introduced were closely related to existing and well-known serial parsing methods, 
such as LL-, LR-, and precedence parsing. Parallel parsing has often been looked upon as deter­
ministic parsing of sentences with more than just a single serial parser. However, with the mas­
sively parallel architectures that have been designed and constructed, together with the possibility to 
design special-purpose chips for parsing and compiling in mind, also the well-known methods for 
general context-free parsing have been re-investigated in order to see whether they allow parallel 
implementations. Typical results in this area are O (n)-time parallel parsing algorithms based on the 
Earley or the Cocke-Younger-Kasami parsing methods. In order to study complexity results for 
parallel recognition and parsing of context-free languages theoretical computer scientists have intro­
duced parallel machine models and special subclasses of the context-free languages (bracket 
languages, input-driven languages). Methods that have been introduced in this area aim at obtaining 
lower bounds for time and/or space complexity and are not necessarily useful from a more practical 
point of view. A typical result in this area tells us that context-free language recognition can be
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done in 0  (lo^n) time using n 6 processors, where n is the length of the input string.
In the area of natural language processing many lands of approaches and results can be dis­

tinguished. While some researchers aim at cognitive simulation, others are satisfied with high per­
formance language systems. The first-mentioned researchers may ultimately ask for numbers of 
processors and connections between processors that approximate the number of neurons and inter­
connections in the human brain. They model human language processing with connectionist models 
and therefore they are interested in massive parallelism and methods which allow low degradation 
in the face of local errors. In connectionist and related approaches to parsing and natural language 
analysis the traditional methods of language analysis are often replaced by strongly interactive dis­
tributed processing of word senses, case roles and semantic markers. A more modest use of paral­
lelism may also be useful. For any system which has to understand natural language sentences it is 
necessary to distinguish different levels of analysis (see e.g. Nijholt[ 1988], where we distinguish 
the morphological, the lexical, the syntactic, the semantic, the referential and the behavioral level) 
and at each level a different kind of knowledge has to be invoked. Therefore we can distinguish dif­
ferent tasks: the application of morphological knowledge, the application of lexical knowledge, etc.
It is not necessarily the case that the application of one type of knowledge is under control of the 
application of any other type of knowledge. These tasks may interact and at times they can be per­
formed simultaneously. Therefore processors which can work in parallel and which can communi­
cate with each other may be assigned to these tasks in order to perform this interplay of multiple 
sources of knowledge. Finally, and independent of a parallel nature that can be recognized in the 
domain of language processing, since operating in parallel with a collection of processors can 
achieve substantial speed-ups, designers and implementers of natural language processing systems 
will consider the application of available parallel processing power for any task or subtask which 
allows that application.

In this paper various approaches to the problem of parallel parsing will be surveyed. We will 
discuss examples of parsing schemes which use more than one traditional parser, schemes where 
‘non-deterministic’ choices during parsing lead to separate processes, schemes where the number of 
processes depends on the length of the sentence being parsed, and schemes where the number of 
processes depends on the grammar size rather than on the input length. Our aim is not to give a 
complete survey of methods that have been introduced in the area of parallel parsing. Rather we
present some approaches that use ideas that seem to be characteristic for many of the parallel pars­
ing methods that have been introduced.

2. From One to Many Traditional Serial Parsers

Introduction
As mentioned in the introduction, many algorithms for parallel parsing have been proposed. Con­
centrating on the ideas that underlie these methods, some of them will be discussed here. For an 
annotated bibliography containing references to other methods see Nijholt et al[ 1989]. Since we 
will frequently refer to LR-parsing a few words will be spent on this algorithm. The class of LR- 
grammars is a subclass of the class of context-free grammars. Each LR-grammar generates a deter­
ministic context-free languages and each deterministic context-free language can be generated by an 
LR-grammar. From an LR-grammar an LR-parser can be constructed. The LR-parser consists of 
an LR-table and an LR-routine which consults the table to decide the actions that have to be per­
formed on a pushdown stack and on the input The pushdown stack will contain symbols denoting 
the state of the parser. As an example, consider the following context-free grammar.

1. S —» NP VP 4. PP -> *prep NP
2. S -> S PP 5. VP -> *v NP
3. NP *det *n

With the LR-construction method the LR-table of Fig. 1 will be obtained from this grammar. It is 
assumed that each input string to be parsed will have an endmarker which consists of the $-sign.

An entry in the table of the form ‘shn’ indicates the action ‘shift state n on the stack and 
advance the input pointer’; entry ‘ren’ indicates the action ‘reduce the stack using rule n \  The
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state •det *n *v  •prep $ NP PP VP S
0 sh3 2 1
1 sh5 acc 4
2 sh6 7
3 sh8
4 re 2 re 2
5 sh3 9
6 sh3 10
7 re 1 re 1
8 re3 re3 re3
9 re4 re4

10 re5 re5

Fig. 1 LR-parsmg table for the example grammar.

entry ‘acc’ indicates that the input string is accepted. The right part of the table is used to decide the 
state the parser has to enter after a reduce action. In a reduce action states are popped from the 
stack. The number of states that are popped is equal to the length of the right hand side of the rule 
that has to be used in the reduction. With the state which becomes the topmost symbol of the stack 
(0- 10) and with the nonterminal of the left hand side of the rule which is used in the reduction (5 , 
NP, VP, or PP) the right part of the table tells the parser what state to push next on the stack. In Fig. 
2 the usual configuration of an LR-parser is shown.

LR-
routine

LR-
table

Fig. 2 LR-parser.

More than One Serial Parser
Having more than one processor, why not use two parsers? One of them can be used to process the 
input from left to right, the other can be used to process the input from right to left. Each parser can 
be assigned part of the input When the parsers meet the complete parse tree has to be constructed 
from the partial parse trees delivered by the two parsers. Obviously, this idea is not new. We can 
find it in Tseytlin and Yushchenko! 1977] and it appears again in Loka[1984]. Let G = (jV, I ,P, S ) 
be a context-free grammar. For any string a e  V* let a* denote the reversal of a. Let 
G* = (N ,L ,P \S )  be the context-free grammar which is obtained from G by defining 
PR = {/. A -*a* | i. A ->ae P }. It is not difficult to see that, when we start a left-to-right top-down 
construction of a parse tree with respect to G at the leftmost symbol of a string w and a bottom-up 
right-to-left construction of a parse tree with respect to G* at the rightmost symbol of w, then -  
assuming the grammar is unambiguous -  the resulting partial parse trees can be tied together and a 
parse tree of w with respect to G is obtained. If the grammar is ambiguous all partial trees have to 
be produced before the correct combinations can be made. Similarly, we can start with a bottom-up 
parser at the left end of the string and combine it with a top-down parser starting from the right end 
of the string. Especially when the grammar G allows a combination of a deterministic top-down (or 
LL-) parser and a deterministic bottom-up (or LR-) parser this might be a useful idea. However, in 
general we can not expect that if G is an LL-gram mar, then G* is an LR-grammar and conversely.

Rather than having one or two parsers operating at the far left or the far right of the input, we 
would like to see a number of parsers, where the number depends on the ‘parallelism’ the input 
string allows, working along the length of the input string. If there is a natural way to segment a
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string, then each segment can have its own parser. Examples of this strategy are the methods 
described in Lincoln[1970], Mickunas and Schellf 1975], Fischer[1975], Carlisle and Friesen[1985] 
and Lozinskii and Nirenburg[1986]. Here we confine ourselves to an explanation of Fischer’s 
method. Fischer introduces ‘synchronous parsing machines’ (SPM) that LR-parse part of the input 
string. Each of the SPM’s is a serial LR-parser which is able to parse any sentence of the grammar 
in the usual way from left to right. However, at least in theory, Fischer’s method allows any symbol 
in the input string as the starting point of each SPM. For practical applications one may think of 
starting at keywords denoting the start of a procedure, a block, or even a statement. One obvious 
problem that emerges is, when we let a serial LR-parser start somewhere in the input string, in what 
state should it start? The solution is to let each SPM carry a set of states, guaranteed to include the 
correct one. In addition, fey each of these states the SPM carries a pushdown stack on which the 
next actions are to be performed. An outline of the parsing algorithm follows.

For convenience we assume that the LR-parser is an LR(0) parser. No look-ahead is neces­
sary to decide a shift or a reduce action. In the algorithm M denotes the LR-parsing table and for 
any state s,R(s)  denotes the set consisting of the rule which has to be used in making a reduction in 
state s. By definition, R (s ) = {0} if no reduction has to be made in state s.
(1) Initialization.

Start one SPM at the far left of the input string. This SPM has a single stack and it only con­
tains Jo. ^ e  initial state. Start a number of other SPM’s. Suppose we want to start an SPM 
immediately to the left of some symbol a. In the LR-parse table M we can find which states 
have a non-empty entry for symbol a. For each of these states the SPM which will be started, 
possesses a stack containing this state only. Hence, the SPM is started with just those states 
that can validly scan the next symbol in the string.

(2) Scan the next symbol.
Let a be the symbol to be scanned. For each stack of the SPM, if state s is on top, then
(a) if M (s, a) = sh s ', then push s ' on the stack;
(b) if M  (s, a) = 0 ,  then delete this stack from the set of stacks this SPM carries.
In the latter case the stack has been shown to be invalid. While scanning the next input sym­
bols the number of stacks that an SPM carries will decrease.

(3) R e d u c e ?
Let Q = [si,  • • • ,J„) be the set of top states of the stacks of the SPM under consideration. 
Define

R ( Q ) = U R ( s ) .
**Q

(a) if R(Q)  = (0), then go to step (2); in this case the top states of the stacks agree that no 
reduction is indicated;
(b) if R (2 )  = [ i}, < *  0, and i = A ->y4, then, if the stacks of the SPM are deep enough to pop 
off | t; | states and not be empty, then do reduction i;
(c) otherwise, if we have insufficient stack depth or not all top states agree on the same reduc­
tion, we stop this SPM (for the time being) and, if possible, we start a new SPM to the immedi­
ate right.

An SPM which has been stopped can be restarted- If an SPM is about to scan a symbol already 
scanned by an SPM to its immediate right, then a merge of the two SPM’s will be attempted. The 
following two situations have to be distinguished;
•  If the left SPM contains a single stack with top state s, then s is the correct state to be in and we 

can select from the stacks of the right SPM the stack with bottom state s. Pop s from the left 
stack and then concatenate the two. All other stacks can be discarded and the newly obtained 
SPM can continue parsing.

•  If the left SPM contains more than one stack, then it is stopped. It has to wait until it is res­
tarted by an SPM to its left. Notice that the leftmost SPM always has one stack and it will 
always have sufficient stack depth. Therefore there will always be an SPM coming from the 
left which can restart a waiting SPM.
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In step (3c) we started a new SPM immediate to the right of the stopped SPM. What set of states 
and associated stacks should it be started in? We cannot, as was done in the initialization, simply 
take those states which allow a scan of the next input symbol. To the left of this new SPM reduc­
tions may have been done (or will be done) and therefore other states should be considered in order 
to guarantee that the correct state is included. Hence, if in step (3) (Q) | > 1, then for each 5 in Q,
provided R (5 ) = (0), we add s to the set of states of the new SPM and in case R{s) = [i) we add to 
the set of states that have to be earned by the new SPM also the states that can become topmost 
after a reduction using production rule i (perhaps followed by other reductions).

This concludes our explanation of Fischer’s method. For more details and extensions of these 
ideas the reader is referred to Fischer[ 1975].

‘Solving’ Parsing Conflicts by Parallelism?
To allow more efficient parsing methods restrictions on the class of general context-free grammars 
have been introduced. These restrictions have led to, among others, the classes of LL-, LR- and 
precedence grammars and associated LL-, LR- and precedence parsing techniques. The LR- 
technique uses, as discussed in the previous section, an LR-parsing table which is constructed from 
the LR-grammar.

If the grammar from which the table is constructed is not an LR-grammar, then the table will 
contain conflict entries. In case of a conflict entry the parser has to choose. One decision may turn 
out to be wrong or both (or more) possibilities may be correct but only one may be chosen. The 
entry may allow reduction of a production rule but at the same time it may allow shifting of the next 
input symbol onto the stack. A conflict entry may also allow reductions according to different pro­
duction rules. Consider the following example grammar G:

1. S —» NP VP 5. NP —► NP PP
2. S —> S PP 6. PP —» *prep NP
3. NP —» *n 7. V P—>*vNP
4. NP —> *det *n

The parsing table for this grammar, taken from Tomita[19851, is shown in Fig. 3.
state *det *n *v *prep S NP PP VP S

0 sh3 sh4 2 1
1 sh6 acc 5
2 sh7 sh6 9 8
3 shlO
4 re3 re3 re3
5 re2 re2
6 sh3 sh4 11
7 sh3 sh4 12
8 re 1 re 1
9 re 5 re5 re 5

10 re 4 re4 re 4
11 re6 re6,sh6 re6 9
12 re7,sh6 re7 9

Fig. 3 LR-parsing table for grammar G.

Tomita’s answer to the problem of LR-parsing of general context-free grammars is ‘pseudo- 
parallelism’. Each time during parsing the parser encounters a multiple entry, the parsing process is 
split into as many processes as there are entries. Splitting is done by replicating the stack as many 
times as necessary and then continue parsing with the actions of the entry separately. The processes 
are ‘synchronized’ on the shift action. Any process that encounters a shift action waits until the 
other processes also encounter a shift action. Therefore all processes look at the same input word of 
the sentence.

Obviously, this LR-directed breadth-first parsing may lead to a large number of non­
interacting stacks. So it may occur that during parts of a sentence all processes behave in exactly 
the same way. Both the amount of computation and the amount of space can be reduced
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considerably by unifying processes by combining their stacks into a so-called ‘graph-structured’ 
stack. Tomita does not suggest a parallel implementation of the algorithm. Rather his techniques 
for improving efficiency are aimed at efficient serial processing of sentences. Nevertheless, we can 
ask whether a parallel implementation might be useful. Obviously, Tomita’s method is not a 
‘parallel-designed’ algorithm. There is a master routine (the LR-parser) which maintains a data 
structure (the graph-structured stack) and each word that is read by the LR-parser is required for 
each process (or stack). In a parallel implementation nothing is gained when we weave a list of 
stacks into a graph-structured stack In tact, when this is done, Tomita’s method becomes closely 
related to Earley’s method (see section 4) and it seems more natural -  although the number of 
processes may become too large -  to consider parallel versions of this algorithm since it is not res­
tricted in advance by the use of a stack. When we want to stay close to Tomita’s ideas, then we 
rather think of a more straightforward parallel implementation in which each LR conflict causes the 
creation of a new LR-parser which receives a copy of the stack and a copy of the remaining input (if 
it is already available) and then continues parsing without ever communicating with the other LR- 
parsers that work on the same string. On a transputer network, for example, each transputer may act 
as an LR-parser. However, due to its restrictions on interconnection patterns, sending stacks and 
strings through the network may become a time-consuming process. When a parser encounters a 
conflict the network should be searched for a free transputer whereas the stack and the remainder of 
the input should be passed through the network to this transputer. This will cause other processes to 
slow down and one may expect that only a limited ‘degree of non-LR-ness’ will allow an appropri­
ate application of these ideas. Moreover, one may expect serious problems when on-line parsing of 
the input is required.

3. Translating Grammar Rules into Process Configurations
A simple ‘object-oriented’ parallel parsing method for e-free and cycle-free context-free grammars 
has been introduced by Yonezawa and Ohsawa[1988]. The method resembles the well-known 
Cocke-Younger-Kasami parsing method, but does not require that the grammars are in Chomsky 
Normal Form (CNF). Consider again our example grammar G:

1. S -» NP VP 5. NP —» NP PP
2. S -> S PP 6. PP -» *prep NP
3. NP -» *n 7. VP -> *v NP
4. NP *det *n

The parsing table for this grammar, taken from Tomita[1985], is shown in This set of rules will be 
viewed as a network of computing agents working concurrently. Each occurrence of a (pre- 
)terminal or a nonterminal symbol in the grammar rules corresponds with an agent with modest pro­
cessing power and internal memory. The agents communicate with one another by passing subtrees 
of possible parse trees. The topology of the network is obtained as follows. Rule 1 yields the net­
work fragment depicted in Fig. 4.

In the figure we have three agents, one for NP, one for VP and a ‘double’ agent for 5. Suppose the 
jVP-agent has received a subtree 1t . It passes t { to the VP-agem. Suppose this agent has received a 
subtree t 2. It checks whether they can be put together (the ‘boundary adjacency test’) and, if this 
test succeeds, it passes (f { t2) to the 5-agent This agent constructs the parse tree (5 (f { t2)) and dis­
tributes the result to all computing agents in the network which correspond with an occurrence of 5 
in a right hand side of a rule. The complete network for the rules of G is shown in Fig. 5. As can be 
seen in the network, there is only one of these 5-agents. For this agent (5 (rt t 2) )  plays the same 
role as t x did for the NP-agent If the boundary adjacency test is not successful, then the VT-agent 
stores the trees until it has a pair of trees which satisfies the tesL

Fig. 4 From rules to configuration.
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Fig. 5 Computing agents for grammar G.

As an example, consider the sentence The man saw a girl with a telescope. For this particular 
sentence we do not want to construct from a subtree 1 1 for a telescope and from a subtree t j  for saw 
the girl a subtree for a telescope saw a girl, although the rule S NP VP permits this construction. 
Therefore, words to be sent into the network are provided with tags representing positional informa­
tion and during construction of a subtree this information is inherited from its constituents. For our 
example sentence the input should look as

(0 1 the)(l 2 man)(2 3 saw)(3 4 aX4 5 girl)(5 6 withX6 7 aX7 8 telescope).
Combination of tokens and trees according to the grammar rules and the positional information can 
yield a subtree (3 5 (NP ((*det a)(*n girl)))) but not a subtree in which (0 1 the) and (4 5 girl) are 
combined. Each word accompanied with its tags is distributed to the agents for its (pre-)terminal(s) 
by a manager agent which has this information available.

If the context-free grammar which underlies the network is ambiguous, then all possible parse 
trees for a given input sentence will be constructed. It is possible to pipe-line constructed subtrees 
to semantic processing agents which filter the trees so that only semantically valid subtrees are dis­
tributed to other agents. Another useful extension is the capability to unparse a sentence when the 
user of a system based on this method erases (‘backspaces to’) previously typed words. This can be 
realized by letting the agents send anti-messages that cancel the effects of earlier messages. It 
should be noted that the parsing of a sentence does not have to be finished before a next sentence is 
fed into the network. By attaching another tag to the words it becomes possible to distinguish the 
subtrees from one sentence from those of an other sentence. The method as explained here has been 
implemented in the object-oriented concurrent language ABCIV1. For the experiment a context- 
free English grammar which gave rise to 1124 computing agents has been used. Sentences with a 
length between 10 and 30 words and a parse tree height between . 0 and 20 were used for input. 
Parallelism was simulated by time-slicing. From this simulation it followed that a parse tree is pro­
duced from the network in O (n x h )  time, where n is the length of the input string and h is the 
height of the parse tree. Obviously, simple examples of grammars and their sentences can be given 
which cause an explosion in the number of adjacency tests and also in the number of subtrees that 
will be stored without ever being used. Constructs which lead to such explosions do not usually 
occur in context-free descriptions of natural language.

There are several ways in which the number of computing agents can be reduced. For exam­
ple, instead of the three double NP-agents of Fig. 5 it is possible to use one double iVf-agent with 
the same function but with an increase of parse trees that have to be constructed and distributed. 
The same can be done for the two 5-agents. A next step is to eliminate all double agents and give 
their tasks to the agents which correspond with the rightmost symbol of a grammar rule. It is also 
possible to have one computing agent for each grammar rule. In this way we obtain the 
configuration of Fig. 6. It will be clear what has to be done by the different agents.
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Fig. 6 Agents for grammar rules.

Another configuration with a reduced number of computing agents is obtained if we have an 
agent for each nonterminal symbol of the grammar. For our example grammar we have four agents, 
the 5-, the NP-, the VP-, and the PP-agent. We may also introduce agents for the pre-terminals or 
even for each word which can occur in an input sentence. We confine ourselves to agents for the 
nonterminal symbols and discuss their roles. In Fig. 7 we have displayed the configuration of com­
puting agents which will be obtained from the example grammar.

The communication between the agents of this network is as follows.
(1) The 5-agent sends subtrees with root 5 to itself; it receives subtrees from itself, the PP-agent, 

the NP-agent, and the VT-agent.
(2) The jVP-agent sends subtrees with root NP to itself, the 5-agent, the VP-agent and the PP- 

agent; it receives subtrees from itself and from the PP-agent; moreover, input comes from the 
manager agent.

(3) The VP-agent sends subtrees with root VP to the 5-agent; it receives subtrees from the NP- 
agent; moreover, input comes from the manager agent.

(4) The PP-agent sends subtrees with root PP to the 5-agent and to the WP-agent; it receives sub­
trees from the NP-agent; moreover, it receives input from the manager agent.

Fig. 7 Agents for nonterminal symbols.

The task of each of these nonterminal agents is to check whether the subtrees it receives can be put 
together according to the grammar rules with the nonterminal as left-hand side and according to 
positional information that is carried along with the subtrees. If possible, a tree with the nontermi­
nal as root is constructed, otherwise the agent checks other trees or waits until trees are available.

4. From Sentence Words to Processes

Cocke-Younger-Kasami’s Algorithm
Traditional parsing methods for context-free grammars have been re-investigated in order to see 
whether they can be adapted to a parallel processing view. In Chu and Fu[1982] parallel aspects of 
the tabular Cocke-Younger-Kasami algorithm have been discussed. The input grammar should be
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in CNF, hence, each rule is of the form A -» BC or A a. This normal form allows the following 
bottom-up parsing method. For any string x = a \ a 2 ' - - a n to be parsed an upper-triangular 
(/i + l)x(n + l) recognition table T is constructed. Each table entry t i%J with i<j  will contain a subset 
of N (the set of nonterminal symbols) such that A e tt J if and only if A =>*ai+l • ■ ■ ar  Assume that 
the input string, if desired terminated with an endmarker, is available on the matrix diagonal. Suing 
x belongs to L{G)  if and only if 5 € t 0 n when the construction of the table is completed.
(1) Compute as i ranges from 0 to n-1 , by placing A in rI (+1 exactly when there is a produc­

tion A —> a.+i in P.
(2) Set d = 1. Assuming /t>, w has been formed for 0 < i < n -d,  increase d with 1 and compute r, } 

for 0 <i <n- d  and j  = i +d where A is placed in when, for any k such that i <k < j, there is 
a production A —>BC e P with B e ti k and C e

In a similar form the algorithm is usually presented (see e.g. Graham and Harrison [1976]). Fig. 8 
may be helpful in understanding a parallel implementation.

0.1 0.2 0.3 0.4 0.5

1.2 1.3 1.4 1.5

2.3 2.4 2.5

3.4 3.5

4.5

Fig. 8 The upper-triangular CYK-table.

Notice that after step (1) the computation of the entries is done diagonal by diagonal until entry r0>/, 
has been completed. For each entry of a diagonal only elements of preceding diagonals are used to 
compute its value. More specifically, in order to see whether a nonterminal should be included in 
an element ; it is necessary to compare (t k and with k between i and j. The amount of storage 
that is required by this method is proportional to n2 and the number of elementary operations is pro­
portional to n 3. Unlike Yonezawa and Oshawa’s algorithm where positional information needs an 
explicit representation, here it is in fact available (due to the CNF of the grammar) in the indices of 
the table elements. For example, in r14 we can find the nonterminals which generate the substring 
of the input between positions 1 and 4. The algorithm can be extended in order to produce parse 
trees.

From the recognition table we can conclude a two-dimensional configuration of processes. 
For each entry ; of the upper-triangular table there is a process PLj  which receives table elements 
(i.e., sets of nonterminals) from processes P ij-\  and Pl+\ j .  Process PltJ transmits the table ele­
ments it receives from / \ y_i to Pij+\ and the elements it receives from Pt+ \j to Pi~\j. Process Pi%i 
transmits the table element it has constructed to processes P i- \ j  and P i j+\. Fig. 9 shows the inter­
connection structure for n = 5. As soon as a table element has been computed, it is sent to its right 
and upstairs neighbor. Each process should be provided with a coding of the production rules of the 
grammar. Clearly, each process requires 0  (n) time. It is not difficult to see that like similar algo­
rithms suitable for VLSI-implementation, e.g. systolic algorithms for matrix multiplication or transi­
tive closure computation (see Guibas et al[ 1979] and many others) the required parsing time is also 
0  (n). In Chu and Fu[1982] a VLSI design for this algorithm is presented (see also Tan[1983]).

Earley’s Algorithm
The second algorithm we discuss in this section is the well-known Earley’s method. It is not essen­
tially different from the CYK algorithm. Since the method maintains information in the table 
entries about the righthand sides of the productions that are being recognized, the condition that the 
grammar should be in CNF is not necessary. For general context-free grammars Earley parsing 
takes 0  (n 3) time. This time can be reduced to 0  (n2) or 0  (n) for special subclasses of context-free
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Fig. 9 Process configuration for C Y K ’s algorithm.

grammars. Many versions of Earley’s method exist In Graham and Harrison[1976] the following 
tabular version can be found. For any string x = a {a 2 ' "  aH to be parsed an upper-triangular 
(n + l)x(/i + l) recognition table T is constructed. Each table entry titJ will contain a set of items, i.e., 
a set of elements of the form A —>a-p (a dotted rule), where A —»a{3 is a production rule from the 
grammar and the dot • is a symbol not in N uE. The computation of the table entries goes column 
by column. The following two functions will be useful. Function PREDICTiiV—>2° ,  where 
D = {A —>ot*(31 A -» a p €  P }, is defined as

PREDICT(A) = (£->a-|31 P, a=>*e and 3 y e  V* withA=>*flY).
Function PRED:2W—>2D is defined as 

PRED(X) = U  PREDICTS).
A e X

Initially, r0.0 = PRED({S}) and all other table entries are empty. Suppose we want to compute the 
elements of column j, j  > 0. In order to compute titJ with i * j  assume that all elements of the 
columns of the upper-triangular table to the left of column j  have already been computed and in 
column j  the elements tKj for i <k < j  have been computed.
(1) Addfl -xM p-Yto ti j  if B -xx-affye t i j - \ ,a  -  cl, andf3=>*£.
(2) Add B -» o 4 p 7  to t i j ,  if, for any k such that i <k < j, B -> a-A $ye titk, A —xo-e t^j and 

3=**e.
(3) Add B ->aA p7  to titj if B ->a*Aftye fltl, {3=** e and there exists C e N such that A =>*C and 

C -> a y e  titj.
After all elements ti } with of column j  have been computed then it is possible to com-
pute t j j .
(4) L e t X j = [ A e N  \ B- > a - A $ e  t i j , 0 < , i Z j - \ ) .  Then t j j  = PRED(Xy).
It is not difficult to see that A-xj-fJer,-,; if and only if there exists y e  V* such that 
5=>*aj • • • diAy and a=>*al+l • • • ar  Hence, in r0>)* we can read whether the sentence was correct. 
The algorithm can be extended in order to produce parse trees, t

Various parallel implementations of Earley’s algorithm have been suggested in the literature 
(see e.g. Chiang and Fu[1982], Tan[1983] and Sijstermans[1986]). The algorithms differ mainly in 
details on the handling of e-rules, preprocessing, the representation of data and circuit and layout 
design. The main problem in a parallel implementation of the previous algorithm is the computation 
of the diagonal elements f, t, for 0 £ i  <,n. The solution is simple. Initially all elements tlti, 0<i<>ny

t  When Earley’s algorithm was introduced, it was compared with the exponential time methods in which successively every 
path was followed whenever a non-deterministic choice occurred. Since in Earley’s algorithm a 'simultaneous’ following of 
paths can be recognized, it was sometimes considered as a parallel implementation of the earlier depth-first algorithms (see 
e.g. Langl 1971 J).
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are set equal to PREDICIXjV), where N is the set of nonterminal symbols. The other entries are 
defined according to the steps (1), (2) and (3). As a consequence, we now have A -»ct-p € t, y if and 
only if a=>*al+i • • • aj. In spite of weakening the conditions on the contents of the table entries the 
completed table can still be used to determine whether an input sentence was correct Moreover, 
computation of the elements can be done diagonal by diagonal, similar to the CYK algorithm.
(1) Set tu  equal to PREDICT(N), 0<z <n.
(2) Set d = 0. Assuming has been formed for 0</ < n -d, increase d with 1 and compute t, s

for 0 < i < n -d  and j  = i +d according to:
(2.1) Add# ->atfp7 to ti%J if B -xx-apyG tt ,_i, a = a, and (3=>*e.
(2.2) Add B ->cx4p-y to tt , if, for any lc such that i <k <j ,B  —»a\4(3yG it k, A -»co- e tk , and 

P=>*e.
(2.3) Add B —>oA(3 y to (tj  if B — r) (, (3=s>*e and there exists C e N such that A =o*C 

and C —»(D* € titj.
VLSI designs or process configurations which implement this algorithm in such a way that it takes
0  (n) time (with 0 ( n 2) cells or processes can be found in Chiang and Fu[1982], Tan[1983] and Sij- 
stermans[1986] (see also Fig. 9 and its explanation).

5. Connectionist Parsing Algorithms
Only few authors have considered parsing in connectionist networks. It is possible to distinguish a 
dynamic programming approach based on the CYK algorithm (Fanty[1985]), a Boltzmann machine 
approach (Selman and Hirst[1985,1987]) and an interactive relaxation approach (Howells[1980]). 
We confine ourselves to an explanation of Fanty’s method since it fits rather naturally in the frame­
work of parsing strategies we have considered in the previous sections. A connectionist Earley 
parsing algorithm can be found in the full version of the present paper.

Fanty’s strategy is that of the CYK parser. The nodes that will be part of the connectionist 
network are organized according to the positions of the entries of the upper-triangular recognition 
table. For convenience we first assume that the grammar is in CNF. The table’s diagonal will be 
used for representing the input symbols. This representation will be explained later. For each non­
terminal symbol each entry in the table which is not on the diagonal will represent a configuration of 
nodes. These nodes allow top-down and bottom-up passing of activity. We first explain the 
bottom-up pass. Consider a particular entry, say with j - i  >2, of the upper-triangular matnx. In 
the traditional algorithm a nonterminal symbol X is added to the set of nonterminal symbols associ­
ated with the entry if there are symbols Y e r, * and Z e such that X —»YZ is in P. In the connec­
tionist adaptation of the algorithm we already have a node for each nonterminal symbol in entry r,j. 
Therefore, rather than adding a symbol, here node X at position t^j is made active if node Y at posi­
tion tik and node Z at position t̂ j are active. In general there will be more ways to have a realiza­
tion of the production X -+YZ at position For example, a node for X at entry 3 can be made 
active for a production X->YZ if there is an active node for Y at /12 and for Z at t 2 ,5 , or for Y at 1 1>3 
and for Z at /3 j , or for Y  at /1>4 and for Z at r4i5. This separation is realized with the help of match 
nodes in the configuration of each entry of the table. The use of match nodes is illustrated in Fig. 10 
for a node forX at position f 15 of a CYK-table. Here we have shown the three match nodes, one for 
each possible realization of X —>YZ, for this node at this particular position. For these match nodes 
to become active all of their inputs must be on. The node for X becomes active when at least one of 
its inputs (coming from its match nodes) is on. In the figure only match nodes for separate realiza­
tions of the same production are included. Obviously, match nodes should also be included at this 
position for all possible realizations of the other productions with lefthand side X. In this way all 
the inputs that can make the node for X at this particular position active can be received in a proper 
way. Observe that if during the recognition of a sentence in an entry more than one match node for 
a nonterminal is active then the sentence is ambiguous.

In our explanation the assumption j - i  >2 for entry tij was made. Since the grammar is in 
CNF we have realizations of productions of the form X — in the entries with j - i  - 1. In these 
entries no match nodes are needed since in each entry there can be only one realization of a produc­
tion with a given lefthand side. We assume that there is a node for each terminal symbol in each
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Y <ij> Z<23> <13>, Z<35> 1̂<14> Z<43>
Fig. 10 Botrom-up passing of activity.

position at the diagonal of the matrix. Parsing starts by activating the nodes which correspond with 
the input symbols. Then activation passes bottom-up through the network, first with realizations of 
productions of the form X —>a, next with realizations of productions of the form X-+YZ. The input 
is accepted as soon as the node for the start symbol in the topmost entry of the column of the last 
input symbol becomes active.

Until now we have discussed a network which accepts (or rejects) an input string. In order to 
obtain a representation of the parse tree or parse trees a second, top-down, pass of activity is neces­
sary. To perform this top-down pass we assume that each node mentioned so far consists of a 
bottom-up and a top-down unit. The bottom-up units are used as explained above. In Fig. 11 both 
bottom-up and top-down passing of activity is illustrated in a configuration of nodes for an entry titj 
with j - i >  2. Each node is represented as consisting of a leftmost or bottom-up and a rightmost or 
top-down unit.

A top-down unit becomes active when it receives input from its bottom-up counterpart and at least 
one external source. In order to activate the top-down unit of the node for the start symbol in the 
upper right comer of the table we assume that it receives input from its bottom-up counterpart and 
from the node at position t where n is the length of the input, which is used to represent end- 
marker $ of the input and which is made active when parsing starts. Hence, when the input is 
recognized this unit becomes active and it passes activity top-down. All top-down units which 
receive this activation and which receive activation from their bottom-up counterparts become 
active. In this way activity is passed down to the terminal nodes and the active top-down nodes of 
the network represent the parse tree(s). The parse in the connectionist network completes in 0  (n) 
time.

Above our assumption was that grammars are in CNF. This is not a necessary condition, but 
it facilitates the present discussion. See Fanty[ 19851 or the full version of this paper for possible 
relaxations of this condition and the consequences for the lime complexity.
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6. Conclusions
A survey of some ideas in parallel parsing has been presented. In the field of natural language pro­
cessing the Earley and CYK method are well known. Sometimes closely related methods such as 
(active) chart parsing are used. Because of this close relationship a parallel implementation along 
the lines sketched above is possible. Chan parsing (and Earley parsing) can be done with a more 
modest number of processors if an agenda approach is followed (see e.g. Grisham and Chi- 
traof 1988]). Earley’s algorithm can be modified to transition networks and extended to ATN’s (see 
e.g. Chou and Fu[ 1975]). Therefore it is worthwhile to investigate a similar parallel approach to the 
parsing of ATN’s. No attention has been paid to ideas aimed at improving upper bounds for the 
recognition and parsing of general context-free languages. An introduction to that area can be 
found in Chapter 4 of Gibbons and Rytterf 1988]. Neither have we been looking here at the connec- 
tionist approaches in parsing and natural language processing as they are discussed in the papers of 
Cottrell and Small[1984], Waltz and Pollackf 1985], McClelland and Kawamoto[1986] and 
Small[1987]. More references to papers on parallel parsing can be found in Nijholt et al[ 1989].
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COMPLEXITY AND DECIDABILITY 
IN LEFT-ASSOCIATIVE GRAMMAR1

ROLAND HAUSSER

1. Formal Rule Schemata of Generative Grammar
Left-associative grammar (LA-grammar) is a comparatively new formalism. By way of introduction, let 
us compare it with more widely known systems, namely phrase structure grammar (PS-grammar) and 
categorial grammar (C-grammar).

The formalism of PS-grammar is based on the rewriting systems of Post (1936). Rewriting rules have 
the following form:
(1.1) The Schema of a Phrase-Structure Rewriting Rule

By replacing (rewriting) the symbol A with B and C, this rule generates a tree structure with A dominaung 
B and C. Conceptually, the derivation order of rewriting rules is top-down.

The formalism of C-gram mar is based on the categorial-canceling rules of LeSnieswki (1929) and 
Ajdukiewicz (1935). Categorial-canceling rules have the following form:
(1.2) The Schema of a Categorial Canceling Rule

“ (yix) • Pen =* a % )
This rule schema combines a and 0 into a0  by canceling the Y in the category of a  with the corresponding 
category of 0. The result is a tree structure with a 0  of category X dominating a  and 0. Conceptually, the 
derivation order of categorial-canceling rules is bottom-up.
(1.3) The Schema of a Left-Associative Rule

r,: [CAT-1 CAT-2] => [rp,- CAT-3]

A left-associative rule r, maps a sentence start (represented by its category CAT-1) and a next word 
(represented by its category CAT-2) into the rule package rp,- and a new sentence start (represented by its 
category CAT-3). A state in LA-grammar is defined as an ordered pair, consisting of a rule package and 
a sentence start. In the next composition, the rules in the rule package are applied to the sentence start 
resulting from the last composition and a new next word.

The different rule schemata result in three different conceptual derivation orders.
(1.4) Three Grammatical Derivation Orders

LA-grammar C-grammar PS-grammar

LA-grammars are input-output equivalent to their parsers and generators in that (i) they take the same 
input (i.e., an unanalyzed surface string), (ii) generate the same output (a left-associative syntactic analysis),

1The results reported in this paper are published in Hausser, R. (1989) Computation o f Language, Springer-Verlag Berlin-New 
York (Symbolic Computation -  Artificial Intelligence), June 1989.

A — B C

/  \  

/  \  

/  \
X  \

bottom-up left-assoc. bottom-up amalgamating top-down expanding
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and (iii) use the sam e rules in the sam e derivation order. In other words, LA-gram m ar achieves “absolute 
type transparency”2 because it is strongly input-output equivalent to its parsers and generators.

PS-grammar and C-grammar, on the other hand, are unsuitable for direct parsing. Parsers for context- 
free PS-grammars, for example, cannot possibly apply the rules of the grammar directly because the rules 
rewrite an initial start symbol, while the parser takes sentences as input The standard solution to this 
dilemma consists in computional routines which reconstruct the grammatical analysis in an indirect way 
by building large intermediate structures (e.g., “state sets”, “charts”, “tables”) which are not part of the 
grammar.

2. Syntax and Semantics
The tree structures generated by PS-grammar and C-grammar are semantically motivated constituent 

structures. Constituent structures are based on substitution and movement tests which are intended to reveal 
which parts of the sentence belong most closely together. The completely regular tree structure of LA- 
grammar, on the other hand, is based on the notion of possible continuations and reflects the time-linear
nature of language.

As an example of a left-associative parse consider (2.1).
(2.1) A Sample Derivation
NEWCAT> (z Fido found a bone.)
Elapsed real time * 779 milliseconds 
User cpu time * 660 milliseconds 
System cpu time « 20 milliseconds 
Total cpu time - 680 milliseconds 

Linear Analysis:

*START_0
1

(NA) FIDO 
(N SC V) FOUND 

*NOM+FVERB_3 
2

(SC V) FIDO FOUND 
(SQ) A 

*FVER3+MAIN_4
3

(SQ V) FIDO FOUND A 
(SN) BONE 

*DET+NOUN_2
4

(V) FIDO FOUND A BONE 
(V DECL) .

*CMPLT_13
5

(DECL) FIDO FOUND A BONE .

Hierarchical Analysis:
(PROPOSITION-5_6_13

(MOOD (DECLARATIVE-5_6_13))
(PROP-CONTENT

((SENT-2_6_13 (SUBJ ((NP-1_6_13 (NAME (FIDO-l_6_13)))))
(VERB (FIND—2_6_13))
(DIR-OBJ
((NP-3_6_13 (REF (A-3_6_13 SG-4_6_13))

(NOUN ((BONE-4_6_13))))))))))

2 Berwick A. Weinberg (1984), p. 41.
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NAME REF NOUN
I I I

I I I I
FIDO A SG BONE

The algorithm of left-associative grammar (LA-grammar) always combines a sentence start and a next 
word into a new sentence start. In a semantically interpreted LA-grammar, a homomorphic semantic hier­
archy is constructed simultaneously with the linear syntactic parse. The semantic hierarchy expresses many 
of the intuitions central to constituent structure and may be displayed as a structured list or, equivalently, 
as a tree structure. The following discussion of LA-grammar is limited to the formal properties of the 
linear syntax.

3. The Mathematical Definition
(3.1) Formal Definition of Left-Associative Grammar5
An LA-grammar is defined as a 7-tuple <W, C, LX, CO, RP, STs, ST^ >, where

1. W is a finite set of word surfaces.

2. C is a finite set of category segments.

3. LX C (W x C )  is a finite set comprising the lexicon.

4. CO = (coo ... co«_!) is a finite sequence of total recursive functions from (C* x C )  into C- u {J,}.
called categorial operations.

5. RP = (rpo ... rp„_i) is an equally long sequence of subsets of n called rule packages.

6. STs = {(rp* ca t,) ,...} is a finite set of initial states, where each rp, is a subset of n called a start rule
package and each cat, e C .

7. ST/r = {(rp/ catf), ...} is a finite set of final states, where each rp/ e RP and each cat/- e C*.

For theoretical reasons, the categorial operations are defined as total functions. In practice, the categorial 
operations are defined on easily-recognizable subsets of (C* x C+), where anything outside these subsets 
is mapped into the arbitrary “don’t care” value {JL}, making the categorial operations total.

3 Let us recall some notation from set theory needed in this definition. If X if a set, then X+ is the “positive closure." i.e., the 
set of all concatenations of elements of X. X* is the Kleene closure of X, defined u X * U « ,  where t is the “empty sequence.” The 
power set of X is denoted by 2X . If X and Y are sets, then (X x Y) is the Cartesian product of X and Y, i.e., the set of ordered pairs 
consisting of an element of X and an element of Y. For convenience, we also identify integers with sets, i.e., n = {i | 0 < i < n}.
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An LA-gram m ar is specified  by (i) a lex icon  L X , (ii) a set o f  start states ST s, (iii) a sequence o f  
rules, each defined as an ordered pair (co, rp,), and (iv) a set o f  final states ST F. This general format o f  
L A-gram m ars is illustrated below  with the context-sensitive language atbkck.

(3.2) The Definition of a.kl /c k

LX -dtf { [a  (be)], [b (b)]. [c (c )]}
S T { ( { r - 1 ,  r-2} (b e))}  
r-1: [(X ) (be)] => [{r-1 , r-2} (bX c)], 
r-2: [(bX c) (b)] => [{r-2 , r-3} (X c)], 
r-3: [(cX ) (c)] => [{r-3 } (X )]
ST/r { [rp-3 €]}.

L A -gram m ar is equally suitable for parsing and generation. The only difference is that in parsing the 
next w ord is provided by the input string, w hile in generation the next word is chosen  from the lex icon . The 
gram m atical analysis provided by LA-parsers and LA-generators is sim ply a trace o f  the com putation. The 
declarative lingu istic analysis and the com putation are m erely different aspects o f  the sam e left-associative  

structure.

(3.3) Parsing aaabbbccc with Active Rule Counter
NEWCAT> (z a a a b b b c c c )
; 1: Applying rules (RULE-1 RULE-2)
; 2: Applying rules (RULE-1 RULE-2)
; 3: Applying rules (RULE-1 RULE-2)
; 4: Applying rules (RULE-2 RULE-3)
; 5: Applying rules (RULE-2 RULE-3)
; 6: Applying rules (RULE-2 RULE-3)
; 7: Applying rules (RULE-3)
; 8: Applying rules (RULE-3)
; Number of rule applications: 14.

* START-0
1

(B C) A 
(B C) A 

•RULE-1
2

(B 3 C C) A A 
( B O A  

"RULE-1
3

( B 3 B C C C )  A A A  
(B) B 

'RULE-2
4

( B B C C C )  A A A B 
(B) B 

•RULE-2
5

( B C C C )  A A A B B
(B) B 

•RULE-2
6

( C C C )  A A A B B B
(C) C 

•RULE-3
7

(CC) A A A B B B C  
(C) C 

•RULE-3
8

(C) A A A B B B C C
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(C) c
*RULE-3
9

(NIL) A A A 3 3 3 C C C

The parse is called  with the function “(z N ote that categories precede the surfaces in (3 .3). Each 
le ft-associative com position  is characterized by a word number ( e .g ., 4 ), a sentence start consisting o f  a 
category and a surface (e .g ., (B B C C) A A A B ), a next word (e .g ., (B ) B ), and a rule (e .g ., *R U L E -2). 
The result o f  the com position  is show n in the first line o f  the next “history section ” (e .g ., (B C C C) A A  
A B B ) .

A s an illustration o f  the relation betw een an LA-gram m ar and its generator, consider the fo llow ing  
derivation o f  w ell-form ed expressions up to length 12 using the grammar for a*b*c* defined in (3.2).

(3.4) Generating the Representative Sample of a*b*c*
NEWCAT> (gram-gen 3 ' (a b c) )

Parses of length 2:
A 3

2 (C)
A A

1 (B 3 C C)

Parses of length 3:
ABC

2 3 (NIL)
A A B

1 2  (B C C)
AAA

1 1  (B B 3 C C C)

Parses of length 9:
A A A B 3 3 C C C

1 1 2 2 2 3 3 3  (NIL)
A A A A B 3 B B C

1 1 1 2 2 2 2 3  ( C C C )

Parses of length 10:
A A A A B B B B C C

1 1 1 2 2 2 2 3 3  (CC)

Parses of length 11:
A A A A B B 3 3 C C C

1 1 1 2 2 2 2 3 3 3  (C)

Parses of length 12:
A A A A B B B B C C C C

1 1 1 2 2 2 2 3 3 3 3  (NIL)

A fter loading the sam e gramm ar as used for parsing, the function ‘gram -gen ’ is ca lled  w ith tw o  
argum ents: the “recursion factor” o f  the grammar (cf. Section  6 ), and a list o f  the words to be used .4 
T he output is a system atic generation, starting with w ell-form ed expressions o f  length 2. Each derivation  
consists o f  a surface, a sequence o f  rules, and a result category. A s an exam ple o f  a s in g le  derivation, 
consider (3 .5 ).

4In another version, ’gram-gen’ is called with the maximal surface length rather than the recursion factor.
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(3.5) A Complete Well-Formed Expression in a*b*c*

A A A 3 3 3 C C C
1 1 2 2 2 3 3 3  (NIL)

The surface and the rule sequence are lined up so that it is apparent which word was added by which rule. 
Derivation (3.5) characterizes a complete well-formed expression because it represents the rule state (rp-3 
e), which is element of the set of complete well-formed expressions of the LA-grammar for a*b*c* defined 
in (3.2).

4. Generative Capacity and the Chomsky Hierarchy
The most basic formal result in LA-grammar is that it generates all—and only—the recursive languages. 
That LA-grammar generates all recursive languages follows from the fact that a categorial operation can 
be any total recursive function.5 That LA-grammar generates only the recursive languages, on the other 
hand, is due to the linear structure of the derivation: at each left-associative composition there is only a 
finite number of sentence starts, each with a finite rule package, and a finite number of next word readings, 
resulting in a finite number of new sentence starts.6

Furthermore, we may show that the automata-theoretic hierarchy of regular, context-free, and context- 
sensitive languages is clearly reflected in the formalism of LA-grammar. Specifically, regular languages 
are generated by LA-Grammars with rules using only empty categorial operations, e.g.,
(4.1) LA-Rule with Empty Categorial Operation

Tr. [c CAT-2] => [rp,- e]
The proof is based on a systematic translation procedure from Finite State Automata into LA-grammars 
with rules like (4.1).7

Context-free languages are generated by LA-grammars with categorial operations which work only 
on the first segment of CAT-1 or CAT-3, e.g., 

r,: [(a X)(a)] => [rp, (X)]
or

r«: [(X)(a)] => [rp, (a X)]
where X is a variable for sequences of category segments. The proof is based on the corresponding 
restrictions on pushdown automata. In particular, the automaton may look only at the top of the stack, 
represented in the rule by CAT-1, and the automaton may only push or pop one element at a time from 
the stack (with the corresponding result represented by CAT-3).

Context-sensitive languages are generated by LA-grammars where the length of the categories is 
bounded by C • n, where C is a finite constant and n is the length of a complete well-formed input 
expression. The proof is based ori the corresponding restrictions on linearly bounded automata.

(5) The Hierarchy o f  A-LAGs, B-LAGs, and C-LAGs
A more natural way of dividing possible languages in LA-grammar than the Chomsky hierarchy is the 
hierarchy of A-LAGs, B-LAGs, and C-LAGs. This new hierarchy is based on the properties of the 
categorial operations of the rules of LA-grammar. The crucial formal property of a categorial operation— 
from a complexity point of view—is whether or not it has to search through indefinitely-long sentence-start 
categories.

3 For a detailed proof see Hausser (1989), Theorem 2, p. 135.
6For t  detailed proof see Hausser (1989), Theorem 1, p. 134.
7 For a detailed discussion see Hausser (1989). Section 8.2. A more general characterization of the regular language* i* given in 

Theorem 3, p. 138.
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(5.1) Definition of the Class of C-LAGs
The class of constant LA-grammars, or C-LAGs, consists of grammars where no categorial 
operation co, looks at more than k segments in the sentence-start categories, for a finite constant 
k}  A language is called a C-language iff it is recognized by a C-LAG.

LA-granmars for regular and context-free languages are all C-LAGs because in regular languages the 
length of the sentence-start category is restricted by a finite constant, and in context-free languages the 
categorial operation may only look at a finite number of segments at the beginning of the sentence-start 
category. But the LA-grammars for many context-sensitive languages, e.g., a*b*c* (cf. (3.2)), a*b*c*d*e*, 
WW, and WWW, are also C-LAGs.

Generally speaking, an LA-grammar is a C-LAG if its rules conform to the following schemas: 
r,: [(seg-l...seg-k X) CAT-2] => [rp,- CAT-3] 

r,: [(X seg-l...seg-k) CAT-2] => [rp, CAT-3] 

r,: [(seg-l...seg-i X seg-i+l...seg-k) CAT-2] => [rp, CAT-3]
Thereby, CAT-3 may contain at most one sequence variable (e.g., X).

On the other hand, if an LA-grammar has rules of the form 
r,: [(X seg-l...seg-k Y) CAT-2] => [rp, CAT-3] 

the grammar is not a constant LA-grammar. In non-constant LA-grammars CAT-3 may contain more than 
one sequence variable (e.g., X and Y).

Non-constant LA-grammars are divided into the B-LAGs and A-LAGs.
(5.2) Definition of the Class of B-LAGs

The class of bounded LA-grammars or B-LAGs consists of grammars where for any complete 
well-formed expression E the length of intermediate sentence-start categories is bounded by 
C • n, where n is the length of E and C is a constant. A language is called a B-language if it 
is recognized by a B-LAG, but not by a C-LAG.

(5.3) Definition of the Class of A-LAGs
The class of A-LAGs consists of all LA-grammars because there is no limit on the length of 
the categories, or on the number of category segments read by the categorial operations. A 
language is called an A-language if it is recognized by an A-LAG, but not by a B-LAG.

The three classes of LA-grammars defined above are related in the following hierarchy:
(5.4) The Hierarchy of A-LAGs, B-LAGs, and C-LAGs

The class of A-LAGs recognizes all recursive languages, the class of B-LAGs recognizes 
all context-sensitive languages, and the class of C-LAGs recognizes many context-sensitive 
languages, all context-free languages, and all regular languages.

(6) Decidability
For arbitrary context-free grammars it is undecidable whether the languages generated are ambiguous, in 
an inclusion relation, or equivalent In LA-grammar, on the other hand, questions of ambiguity, emptiness, 
inclusion, and equivalence are decidable for a large subset of the C-LAGs which includes context-sensitive 
languages. These results are based on the fact that the derivational structure of LA-grammar clearly exhibits 
the occurrence of grammatical recursions.

The following definition is based on the notion of “abstract derivations”. Two derivations are represented 
by the same abstract derivation if they differ only in the choice of words, but exhibit the same sequence of 
rules and the same sequence of categories. In an abstract derivation different words of the same category, 
e.g., (table (sn)) and (chair (sn)), are represented by one abstract word, e.g., (A (sn)).

8Thii finite constant will vary between different grammars.
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(6.1) Definition of a Grammatical Recursion
An abstract derivation exhibits a grammatical recursion if and only if

1. the surface exhibits two or more identical subsequences which are directly adjacent,

2. the rule sequence exhibits two or more identical subsequences which correspond to the surface, and

3. each instance of the recursion affects the sentence-start category in a regular way.

How sentence-start categories are affected by a recursion depends on the type of the recursion. LA-grammar 
distinguishes between (i) constant, (ii) increasing, (iii) decreasing, and (iv) simultaneously increasing and 
decreasing grammatical recursions. A recursion is constant if the sentence start categories at the beginning 
of two adjacent loops are identical. A recursion is increasing if the sentence start category at the beginning 
of the second loop is longer than the sentence start category at the beginning of the first loop. And 
correspondingly for the other cases.

Here is how the algorithm recognizes and types recursions: Assume the generator has derived a string 
of length n, and is in the process of adding the n+lst word—e.g., A—by means of a certain rule, e.g. 1.
(6.2) Example of a Grammatical Recursion

....... ABCABC A

....... 123123 1 (cat)

The algorithm for recognizing recursions checks whether the current rule, i.e., rule 1, has two predecessors. 
If so, it checks whether the (abstract) surfaces added by the occurrences of rule 1 are all the same. If 
so, it checks whether the rule sequences and the surface sequences between the occurrences of rule 1 are 
identical. If all these conditions are satisfied, a recursion has been recognized. Finally, the recursion is 
typed by comparing the categories of the expression in question with its shorter predecessors ending in 
surface A and rule 1.

The crucial problem for proving decidability in LA-grammar is to determine how often grammatical 
recursions have to be applied in order for the set of completions to be a “representative sample”. In the 
class of C-LAGs, the grammatical structure provides a “recursion factor” which specifies how often the 
increasing recursions of the grammar have to be applied in order to arrive at a representative sample. 
During the generation of longer and longer expressions, the system keeps track of increasing recursions 
and stops the recursion as soon as the number specified by the recursion factor has been reached.

In most C-LAGs this procedure results in a finite set of derivations which is representative in the 
sense that all sentence types generated by the grammar are exemplified in iL Such a representative sample 
provides the basis for deciding ambiguity, inclusion, equivalence, and (non-)emptiness of C-LAGs.

Not all C-LAGs are decidable, however. In C-LAGs with simultaneously increasing and decreasing 
recursions such that the increase is greater than the decrease the recursion factor does not guarantee 
the derivation of a representative sample. Those C-LAGs where the process of a systematic derivation, 
controlled by a grammar-dependent recursion factor, results in finite sets of representative samples are 
called D-LAGs (“Decidable C-LAGs”). An example of a D-LAG is a*b*c*, for which a representative 
sample is derived in (3.4).

Can the technique of proving the subset and the equality relationship, as well as ambiguity and (non-)- 
emptiness for a large class of context-free and context-sensitive languages be used for PS-grammars as well? 
Because PS-grammars have a different derivational structure, the method of deriving longer and longer 
sentence starts cannot be applied directly in PS-grammar. The only possibility would be a systematic 
translation of PS-grammars into C-LAGs, and proving the properties in question indirecdy by way of the 
weakly equivalent C-LAGs.

However, this approach requires that there is a general algorithm for translating PS-grammars into 
LA-grammars. No such algorithm has been found. Furthermore, experience writing LA-grammars for
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languages described originally as PS-grammars has shown that the construction of the LA-grammar is 
never based on the PS-grammar for the language, but proceeds from the language directly. Thus, it is 
unlikely that such an algorithm exists.

(7) The Com plexity of Sound C-LAGs
Earley (1970) showed that the Earley algorithm recognizes unambiguous context-free grammars in 

|G|2 ■ n2, but ambiguous context-free grammars in |G|2 • n2 (where |G| is the size of the grammar and n the 
length of the input string). Thus, computational complexity in PS-grammar depends not only on the class 
of the grammar, e.g., regular, context-free, or context-sensitive, but also on whether or not the grammar is 
ambiguous.

It is similar in LA-grammar: computational complexity depends not only on whether the grammar 
is a C-LAG, B-LAG, or A-LAG, but also on whether or not the grammar is ambiguous. LA-grammar
distinguishes three levels of ambiguity:
(7.1) Three Levels of Ambiguity in LA-Grammar

1. unambiguous grammars

2. syntactically-ambiguous grammars

3. lexically-ambiguous grammars

Syntactic ambiguity is defined in terms of the input-compatibility of rules.
(7.2) Three Types of Input Conditions

1. Incompatible input conditions: Two rules have incompatible input conditions if there exist no input 
pairs which are accepted by both rules.

2. Compatible input conditions: Two rules have compatible input conditions if there exists at least 
one input pair accepted by both rules, and there exists at least one input pair accepted by one rule, 
but not the other.

3. Identical input conditions: Two rules have identical input conditions if it holds for all input pairs 
that they are either accepted by both rules, or rejected by both rules.

(7J) Definition of Unambiguous LA-Grammars

An LA-grammar is unambiguous if and only if (i) it holds for all rule packages that their rules 
have incompatible input conditions, and (ii) there are no lexical ambiguities.

Examples of incompatible input conditions are [(a X)(b)] and [(c X)(b)], as well as [(a X)(b)] and [(a 
X)(c)].
(7.4) Definition of Syntactically-Ambiguous LA-Grammars

An LA-grammar is syntactically ambiguous if and only if (i) it has at least one rule package 
containing at least two rules with compatible input conditions, and (ii) there are no lexical 
ambiguities.

For example, [(a X)(b)] and [(X a)(b)] represent compatible input conditions.
(7.5) Definition of Lexically-Ambiguous LA-Grammars

An LA-grammar is lexically ambiguous if its lexicon contains at least two analyzed words 
with identical surfaces.
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Because the categorial operations of C-LAGs look at no more than k sentence-start category segments, 
for some constant k, the application of a rule may be taken as the “primitive operation” for purposes of 
complexity analysis. Unambiguous C-LAGs are proven to parse in linear time. This result follows from 
definition (7.3), and is significant insofar as it applies not only to the (non-deterministic) context-free but 
also to many context-sensititive languages (e.g., akbkck as defined in (3.2)).

In the case of syntactically ambiguous LA-grammars, the crucial source of computational complexity 
are recursive ambiguities. In sound LA-grammars recursive ambiguities are restricted by the single return 
principle.
(7.6) The Single Return Principle (SRP)

If a syntactic ambiguity arises inside a recursion, then only one of the branches resulting from 
the ambiguity may feed back into the recursion.

As a consequence of the SRP, sound LA-grammars have—at most—(C • n) readings.^ Furthermore, the 
SRP does not decrease the generative capacity of an LA-grammar.10 Because for any LA-grammar there 
exists a weakly equivalent sound LA-grammar, any syntactically ambiguous C-language can be parsed in 
n2.

In the case of systematic lexical ambiguity, finally, there are two choices. One is to eliminate the lexical 
ambiguities by means of neutral categories. The other is to “pack” the readings, which may be exponential 
in number, into a single representation. It may be shown that these strategies are always possible within 
the class of C-LAGs.11 In summary, if a language can be generated or recognized by a C-LAG then there 
exists a C-LAG which will parse it in n2.

R eferences

Ajdukiewicz, K. (1935) "Die syntaktische Konnexiidt,” Studia Philosophica, 1:1-27.

Berwick, R.C., and A.S. Weinberg (1984) The Grammatical Basis of Linguistic Performance: Language Use and 
Aquisition. The MIT-Press, Cambridge, Massachusetts.

Earley, J. (1970) "An Efficient Context-Free Parsing Algorithm, ” CACM 13(2):94-102.

Hausser, R. (1989) Computation of Language, Springer-Verlag Berlin-New York (Symbolic Computation -  Artificial 
Intelligence), June 1989.

Hopcroft, J.E., and Ullman, J.D. (1979) Introduction to Automata Theory, Languages, and Computation. Addison- 
Wesley Publishing Company, Reading, Massachusetts.

Leiniewski, S. (1929) "Grundzuge ernes neuen Systems der Grundlage der Mathematik," Fundamenta Mathemancae, 
Wan aw.

Post, E. (1936) "Finite Combinatory Processes —  Formulation I,” Journal of Symbolic Logic, I.

9C is some finite, grammar dependent constant reflecting the number of rules introducing recursive ambiguities and n is the length 
of the input.

10See Hausser (1989), Theorem 11, p. 224.
u Noie that the problem of Boolean satisfiability (cf. Hopcroft & Ullman (1979), p. 325) exceeds not only the power cf context-free 

grammars, but also of C-LAGs. An LA-grammar would not only have to build longer and longer categories in order to keep track cf 
the different value assignments, but it would also have to check through the category each time it encounters another proportional 
variable. It is this second requirement which violates the definition of C-LAGs.

-263- Intemational Parsing Workshop '89



The selection of a parsing strategy for an on-line machine translation  
system in a sublanguage domain. A new practical comparison.

Patrick Shann
University o f Geneva (ISSCO) & University of Zurich^, Switzerland

1. Introduction

The paper reports the results o f a practical comparison of different parsing strategies. The research 
was carried out in the context of a larger project for the development o f a machine translation (MT) 
system for translating avalanche forecast bulletins from German to French. The design of the MT 
system requires controlled input and no post-editing o f the translated texts. The parsing experiment 
had as a goal to select the most suitable parsing strategy for a parser that allows the composition of the 
sentences in on-line fashion with mouse and windowing2. In order to guarantee correct translation, the 
input system accepts only words and sentences that are known by their grammar and dictionary and it 
refuses wrong input. To minimize input errors, the user can select the possible next words with the 
mouse from different windows, which display the choices at a particular point in the sentence. The 
sentences are parsed word by word from left to right so that wrong input is detected immediately.
After each word, the input device has to predict, with the help of the parser, all the words that can 
possibly continue the sentence that is being made. For our type of on-line parser, time is critical. The 
interface window has to be refreshed immediately after each word chosen by the user.

When we looked for a suitable parser, no comparison existed between Tomita's extended LR parser 
and enhanced chart parsers (top-down filter, rule compiling and lookahead) using different strategies 
(CKY, LC, B P ) apart from Tomita's own comparison with the Earley parser (TD). Furthermore, 
practical tests (Wiren 1987) are normally performed by using only simple phrase structure grammars 
and by measuring pure parse time. In our experiment we were interested in real time performance 
(what is seen by a user). Since the grammar type can heavily influence the overall processing 
efficiency, we chose to base our experience on three grammar types in the paradigm of context-free 
parsing (monadic, simple features and unification). Our parsing experiment is a continuation of the 
work of J.Slocum (1981a) and M.Tomita (1985) on parsing algorithms and parsing strategies. The 
emphasis o f the research lies on the real-world performance of the parsers in connection with different 
grammar types rather than on the theoretical space and time complexity of the parsers.

2. Description of the parsers

In our experiment, we have compared the Tomita parser with four chart-parsers4 that have different 
nile-invocation strategies. In this section we will introduce the different parsing strategies and the 
improvements that can be made, i.e. top-down filtering, lookahead and rule compilation.

2 .1 .  Chart parsers

Our four chan parsers can be distinguished in the way they define the two basic operations Combine 
and Propose5. Combine is the procedure that builds new edges in the chart by combining existing 
ones, Propose is the rule invocation strategy that predicts new edges on the basis of the grammar. In 
the next chapter we define the basic algorithms. TTie improvements o f the chart parsers are described 
in the following chapters on top-down filtering, lookahead and rule compilation.

2 .1 .1 .  Four different chart parsers: TD, LC, CKY, BI

Let G be a context-free grammar with S as start symbol. We will represent terminal symbols by 
lowercase letters: a, b, c; nonterminals by capitals: A, B, C; strings o f terminals or nonterminals

^ This research has been supported by a grant from the University o f Zurich.
A system with a similar input facility is reported by H.R.Tennant (1983).

3 S. Steel & A. De Roeck (1987).

We assum e basic familiarity with chart parsing and with Tomita’s LR parsing algorithm. For further literature on charts see
Wir^n (1987), for LR parsing Aho & Ullman (1979).

Our Combine is more general than W inograds (1983) since we use a C K Y  variant with complete edges only.
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with Greek letters: a, p, y, vertices by: i, j, k; edges 1 as pairs of the rule in dotted notation and their 
left and right vertices. We will call the first symbol to the right of the dot in an active edge the required 
category. In the following example of an active edge, <A -> B • C D I i,j>, C is the required category,
i the left and j the right vertex. TD, LC are implemented in such a way that they use only active edges, 
CKY only complete edges and BI active and complete edges.

2 . 1 .1 . 1 .  Top-down (TD)

This strategy can be considered as Earley-like since it is very similar to Earley's algorithm apart from 
the fact that it does not use a lookahead Some authors describe its Combine as the 'fundamental rule' 
of chart parsing2.

Combine
Whenever a complete edge Ec <A -> a • I j,k> is added to the chart, combine it with all active 
edges Ea <B -> p • Cy I ij>  ending at Ec’s starting point j if Ec's category A corresponds to Ea's 
required category C and build the corresponding new edges <B -> pC ■ y I i,k>.

Propose
Whenever an active edge Ea <A -> a • Bp I i j>  is added to the chart, if its required category B is 
a nonterminal, for every rule B -> y in the grammar G that expands Ea's required category B 
add an empty active edge Ex <B -> • y I j j>  .

The parse runs top-down and is triggered by the first active edge <S -> • a  I 0,0> expanding a with all 
the rules that have the start symbol S as left-hand side. It proceeds in a strict left-to-right fashion, the 
next input word is read when all Proposes and Combines up to the current input point have been 
executed. Opposed to the TD strategy are the two typical bottom-up parsers LC and CKY. Instead of 
using the rule selecting mechanism for building new hypotheses or active edges on the basis of 
required categories, the bottom-up parsers trigger the rules from the categories of complete edges.

2 . 1 . 1 . 2 .  Left-corner (LC)

As a bottom-up technique new edges are proposed on the basis o f complete edges. The corresponding 
grammar rules are triggered if the first symbol o f the right-hand side (RHS) o f the rule , the 'left- 
corner', has the same category as the complete edge. LC and TD have the same 'Combine' and expand 
active edges from left to right.

Propose
Whenever a complete edge Ea <A -> a • I i j>  is added to the chart, for every rule B -> Ap in 
the grammar G whose left-corner symbol A has the same category as Ea, add an active edge En 
<B -> A • p I i,j> to the chart.

2 . 1 . 1 . 3 .  Cocke-Kasami-Younger (CKY)

The second bottom-up parser is a variant of the Cock-Kasami-Younger algorithm. It is similar to CKY 
in the sense that it is pure bottom-up and combines only complete edges, but the grammar rules are not 
restricted to Chomsky normal form. To achieve this, Combine works from the right to the left and the 
rules are proposed on the rightmost symbol of the right-hand side.

Propose
Whenever a complete edge Ea <A -> a • I i j>  is added to the chart, propose all rules B -> pA in 
the grammar G, whose rightmost symbol is A.

1 Edges con-espond to Earley's (1970) ’states’ and to ’items’ in Aho & Ullman (1977).
2 H. Thompson (1981). We will describe the two operations in a similar style to Thompson and Wir6n (1987).

-265- International Parsing Workshop '89



Combine
Whenever a complete edge Ec <A -> a • I i j>  is added to the chart, for each rule B -> pA that is 
proposed on A and for each combination of consecutive1 complete edges starting with Ec and 
going to the left whose categories satisfy the sequence pA build a new complete edge En <B -> 
PA-1 k,j> starting at the vertex k of its left-most edge and ending at the right vertex j of Ec.

2 . 1 .1 . 4 .  Bi-directional (BI)

De Roeck (1987) gives the following motivation for bi-directional rule invocation. Form a linguistic 
point o f view, certain phenomena like traces are best analysed top-down whereas others are best 
discovered from evidence in the string, e.g. in coordination, the conjunction is the best evidence for 
triggering the rule. But in the two bottom-up chart parsers the rules are triggered by a fixed handle, 
which is either the left-most or the right-most symbol o f the RHS of a rule. In bi-directional chart 
parsing the linguist can tailor the rule invoking strategy locally by annotating the rules if they are used 
top-down or bottom-up. For bottom-up rules, one has to indicate which symbol they are triggered on. 
A rule for coordinating Np’s can be annotated for example 'up' on the conjunction: Np -> Np Conj 
Np {up Conj}. When the complete edge for Conj is added to the chart, this rule will be triggered and 
it will add an active edge that tries to combine with an NP to the left as well as to the right. The 
Propose of the bi-directional parser acts accordir.i the the annotation o f the rules. In order to avoid 
duplication Combine has been implemented in such a way that it first combines to the left and only 
then to the right. We have to expand the dotted rule notation in the sense that a colon marks the 
beginning o f the recognized symbols of an edge and the dot the end o f the recognized parts. Symbols 
to the right o f a colon and to the left o f a dot have been recognized. Our implementation proposes only 
to the right. An active edge can be left-active, if it is expecting a symbol to the left

Etqpqss
Whenever a complete edge Ea <A -> : y • I i j>  is added to the chart, for every rule B -> aAp 
annotated bottom-up on the symbol A, add an active edge En <B -> a : A • p I i,j> to the chart. 
Whenever an active edge Ea <A -> : a • Bp I i j>  is added to the chart, if its required category B 
is a nonterminal, add an empty active edge Ex <B ->*51 j,j> for each rule in the grammar G 
that is annotated down and that expands Ea's required category B.

Combine
Whenever a left active edge Ea <A -> a : y  • p I i,j> is added to the chart, for each combination of 
complete edges starting with Ea and going to the left whose categories satisfy the sequence a
build a new active edge En <A -> : ay • p I k,j> starting at the vertex k o f its left-most edge and 
ending at the right vertex j of Ea.
Whenever a complete edge Ec <A -> a • I j J o  is added to the chart, combine it with all active 
edges Ea <B -> : p • Cy I i,j> ending at Ec's starting point j if Ec’s category A corresponds to 
Ea’s required category C and build the corresponding new edges <B -> : p C • y I i,k>.

The bi-directional chart parser was included in the tests for verifying the hypothesis if  triggering 
annotations o f the rules reduce the search space and improve the overall performance.

2.1.2.  Top-down filter (tdf)

In general, bottom-up algorithms have a reduced search space by the fact that they are data-driven. On 
evidence o f complete edges, that are present in the string, they are faster in finding the corresponding 
rules. They do not have to explore the whole search space of the grammar as the TO parser that is 
over-productive in active edges. On the other hand, bottom-up parsers have problems in dealing with 
rules that have common right parts as in the following example: 'CD' is the common right string o f  
both rules A -> BCD and A -> CD. Both rules will fire on a string 'BCD'. Bottom-up chart parsers 
are over-productive in complete edges that do not attach to phrases on the left. The next two chapters 
deal with filters to reduce over-production o f useless edges: top-down-filtering, a method for bottom-

1 Two complete edges can be combined to the left if the starting vertex o f the first edge corresponds to the ending vertex of the 
second one.
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up parsers to reduce the production of useless complete edges and lookahead, a method to reduce the 
production of unnecessary active edges, useful for TD, LC and BI.

Top-down-filtering is described like running a top-down parser in parallel with a bottom-up parser1. 
The bottom-up parser proposes new edges while the top-down process checks if they can be derived 
from the root. The tdf rejects all proposed rules that will generate phrases that can't be attached to the 
left context. The tdf uses a "reachability relation R where AftB holds if there exists some derivation 
from A to B such that B is the left-most element in a string derived from A" (Wiren 1987, cf also Pratt 
1975). The reachability relation R can be precompiled so that the tdf can check in constant time if Jl 
holds for a new proposed edge.

In the LC parser, the tdf is implemented in the following way: For each nonterminal category A the 
transitive closure of the categories that are reachable from A are precalculated . At each vertex, the tdf 
keeps a list of the reachable categories. Vertex 0 is initialised with the list of the categories that are 
reachable from the root category. For each new active edge En, the tdf adds the categories that are 
reachable from the new required category to the tdf -list of reachable categories at the ending vertex of 
En. In the function Propose, the tdf checks for every proposed rule if its left-hand side category is in 
the list of the reachable categories of the current vertex. Only rules that pass the tdf lead to the creation 
of new active edges.

2.1.3 .  Lookahead (la)

Top-down-filtering cuts down the production o f useless complete edges in bottom-up parsing by 
checking if they can combine with the left context The lookahead function verifies if a new edge can 
be attached to the right context. Wiren (1987) reports an experiment where la was used successfully to 
reduce the over-production o f active edges in TD or LC2. La is based on the same reachability relation 
as tdf but is loolang to the right. Each time an active edge is proposed, the la function checks if the 
new required category Cn can reach the preterminal category of the next input word ai+i, that is if 
CnR.ai+i holds. We have tested all our parsers without lookahead.

2.1.4.  Rule compilation

The third method for reducing the number o f edges in chart parsing is precompiling the grammar rules 
into decision trees. Assume two rules used by a LC parser, A -> BC and A -> BDE. The two rules 
have the common left part B and can therefore be merged into a single combined rule with a shared 
part B: A -> B (C, DE). In parsing, the two rule scan share the common pan B which is represented 
by a single active edge. TD and LC compile the rules by factoring out similar left parts. CKY 
combines from right to left and does therefore the factoring from the right. BI, based on annotations of 
single rules, uses both ways o f building its rule decision trees. Note that building decision trees for 
rules is related to the way in which the canonical set of items is built for the construction o f LR parsing 
tables. The first step in making a new canonical LR set is done by taking all the items in a set that have 
the same category to the right o f the dot. Building decision trees from rules also groups them together 
on the basis o f the next category that has to be recognized.

2.2. Tomita's extended LR parser (TOM)

Tomita's Parser (Tomita 1985) is a generalised version o f a LR shift-reduce parser. It is based on two 
data structures: a graph structured stack and a parser forest for representing the result. The graph- 
structured stack allows nondeterministic parsing o f ambiguous grammars with LR shift-reduce 
technique. Tomita (1988) shows that his graph-structured stack is very similar to the chart in chart 
parsing. The parse forest allows an efficient representation o f the result While the number o f parses 
can grow exponentially, the parse forest grows polynomially. In order to see which part o f the 
program is responsible for efficiency, we compare two versions o f Tomita's parser, one with and one 
without parse forest

1 J. Slocum  (1981b), M .K ay (1982), Pratt (1975), Wirdn (1987).
2 Earley uses the lookahead in a different way: The lookahead is in his Completer and not in the Predictor, as in Wirdns 
program m s.
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2 .3 .  The gram m ar types

Each parser can be run with three different types of context-free grammars. This is done by adding 
annotations to the context-free rule skeleton. Whenever all constituents of a context-free rule are 
found, before the new edge is constructed, the parser calls for a rule-body procedure (Slocum 1981b) 
that evaluates the annotations o f the rule. Each grammar type has a different module for evaluating the 
rule-body procedure. If the rule-body procedure returns an error because a test has failed, the new 
edge is discarded.

The first grammar type uses simple phrase structure rules with monadic categories that have no 
annotations. The second grammar type has annotations that go with simple sets of attribute-value pairs 
where the values are atomic. These annotations allow testing and assigning features to particular nodes 
of the context-free rules. The third grammar type is unification based and uses complex features and 
annotations in the PATR-II style. The three grammar types vary the rule-body procedure overhead 
(unification being very time consuming) and therefore show a more realistic picture of the behaviour 
of the parsers in real context.

3 .  Previous em pirica l com parisons

In this section we report the results o f three practical comparisons o f parsers relevant to our 
experiment: Slocum who compared particularly LC and CKY with top-down filter, Tomita who 
compared his extended LR parser with Earley's parser and Wiren who compared TD and LC with top- 
down filter and lookahead. Each of the comparisons gives an incomplete picture. They usually 
compare two basic strategies with different refinements like top-down filtering etc.

One o f the important points for comparisons is stressed by Slocum (1981b): Theoretical calculations 
about worst case behaviour o f algorithms can be quite inaccurate because they often neglect the 
constant factors that seem to have a dominant effect in practical situations. He writes: "In order to 
meaningfully describe performance, one must take into account the complete operational context of the 
natural language processing system, particularly the expenses encountered in storage management and 
applying rule-body procedures” since a significant portion of the sentence analysis effort may be 
invested in evaluating the rule-body procedures. To measure performance accurately he suggests 
including "everything one actually pays for in real computing world: Paging, storage management, 
building interpretations, rule-body procedure, etc., as well as parse time".

3 . 1 .  Slocum : two bottom -up chart parsers, LC vs. C KY

Slocum has conducted two experiments, one at SRI and the second one at LRC, which is more 
important for us. In the second experiment, he carefully compared two bottom-up chart parsers: LC 
and CKY enhanced with top-down filtering and early constituent tests1. He used the German analysis 
grammar 500 rules) o f the MT system that was under development at the time at LRC and a corpus 
of 262 sentences going from 1 - 39 words per sentence (15,6 words/sentence average). The rule-body 
procedures were rather considerable for a parser test but interesting for realistic performance 
evaluation. They consisted o f "the complete analysis procedures for the purpose o f subsequent 
translation which includes the production o f a full syntactic and semantic analysis via phrase-structure 
rules, feature tests and operations, transformations and case frames".

Given his grammar and test sentences Slocum establishes two things:

1) LC with tdf (without early constituent test) performs best, better than CKY (which is the opposite 
of the common expectation). He comments that a tdf increases the search space, but that the overhead 
is balanced in practice by the fact that the tdf reduces the number of phrases and therefore particularly 
the rule-body procedure overhead, which is considerable in his case. "The overhead for filtering in LC 
is less than that in CKY. This situation is due to the fact that LC maintains a natural left-right ordering 
of the rule constituents in its internal representation, whereas CKY does not and must therefore 
compute it at run time."

1 The early constituent test calls for the parser to evaluate that protion of the rule body-procedure which tests the first 
constituent, as soon as it is discovered, to determine if it is acceptable’' (Slocum  1981b)
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2) "The benefits of top-down filtering are dependent on sentence length: in fact filtering is detrimental 
for shorter sentences. Averaging over all other strategies, the break-even point for top-down filtering 
occurs at about 7 words.”

We conclude this section with a statement from Slocum about filters: "Filtering always increases pure 
parse time because the parser sees it as pure overhead The benefits are only observable in overall 
system performance, due primarily to a significant reduction in the time/space spent evaluating rule- 
body procedures." TTiis point will be important in our comparisons since we use three different 
grammar types with rule-body procedures that take increasingly more time.

3 . 2 .  Tom ita: The Tom ita parser vs. Earley's algorithm

Tomita (1985) compared his parser empirically with two versions of the Earley algorithm (E-I and E-
II). In our terminology this would correspond to TD and TD+la. WTiile the Tomita parser was 
producing a parse forest, E-I and E-13 were run as recognizers and produced no parse.

In the comparison, four pure context-free phrase-structure grammars were used, consisting of a 
varying number o f rules: G1 8, G2 40, G3 220 and G4 400 rules. These grammars were tested with 
two sets o f sentences, SI: 40 sentences from texts and S2: 13 artificial sentences that have an 
increasing number of prepositional phrases (1 to 13). These artificial sentences are useful for testing 
growing sentence ambiguity since the number o f parses grows exponentially (Martin et al. 1981).

Tomita’s experiment shows that his algorithm works 5 to 10 times faster than Earley's standard 
algorithm (TD), and 2 to 3 times faster than Earley's improved algorithm (TD+la). He states that this 
result is due to the pre-compilation of the grammar into an LR table. Tomita summarizes that his 
algorithm "is significantly faster than Earley's algorithm, in the context of practical natural language 
processing.. .  Its parsing time and space remain tractable when sentence length, sentence ambiguity 
or grammar size grows in practical applications."

3 . 3 .  W iren: top-dow n and bottom -up chart parsers, TD  vs. LC

Wiren compared in his experiment two basic chart parsers with several improvements, TD versus LC, 
both with lookahead, LC with top-down filtering1. He tested his parsers with grammars G1 to G3 
from Tomita, with a reduced number of the two sentence sets, S21 and S2.

The results o f his experiments show that the "directed methods" - based on top-down filtering and 
lookahead - reduce significantly the number o f edges and perform better than undirected parsers. 
Tested independendy, the selectivity filter (lookahead in our terminology) turned out to be much more 
time efficient than top-down filtering that degraded time performance as the grammar grew larger2. 
"The maximally directed strategy - .. .  with selectivity and top-down filtering - remained the most 
efficient one throughout all the experiments, both with respect to edges produced and time consumed." 
It performed better than TD with lookahead.

Putting the results o f the three experiments together, we would expect that improved LC performs best 
amongst chart parsers. Since the Tomita parser has only been compared with TD, we can expect a 
different result by comparing it with improved bottom-up chart parsers that compile their rules into 
decision trees (cf. chap. 2.1.4). Tomita and Wir6n measure pure parsing time determined by CPU 
time minus time for garbage collection. Their grammars are pure CF grammars using little rule-body 
procedure time and it is therefore difficult to predict what the interaction will be between filtering 
overhead and rule-body procedure and how this will influence overall performance.

4 .  T h e  com p arison

4 . 1 .  T he parsers

Our main goal was the selection o f a suitable parsing strategy for our on-line MT-system. Since our 
application is time critical, one o f the important questions was what combination o f parser and rule-

1 LC k la Kilbury has already been used by Slocum. What it comes down to is that new active edges subsume the complete edges 
that have provoked their proposal. Since we use that variant o f LC (cf. 2 .1.1.2) coming from Slocum  (1981a), we dont
distinguish betw em  a standard LC  and the Kilbury variant. -2 6 9 -  International Parsing Workshop '89
1 W irfn explains this puzzle with implementational reasons.



body procedure is best for our purpose. One of the objectives was to verify if the Tomita parser is as 
efficient as predicted if it is compared to improved bottom-up chart parsers. Since no comparison 
existed between all the basic rule invocation strategies for chan parsers, we decided to compare the 
Tomita parser with four chart parsers. To guarantee the comparability of the chart parsers, we chose 
Slocum's implementation (1981a) as basic design for all chan parsers. We added two supplementary 
rule invocation strategies to his bottom-up left-comer (LC) and Cocke-Kasami-Younger strategy 
(CKY), namely a top-down Earley-like strategy (TD) and a bi-directional strategy (BI). The basic 
chart parsers were augmented by two enhancements, i.e. top-down filtering and compilation of the 
rules into decision trees. We took the Tomita parser as described by Tomita (1985) and added a 
second version without the parse forest representation. Since its LR(0) parsing table has no 
lookahead, we added no lookahead to the chart parsers.

All the programs are implemented in Allegro Common Lisp and tested on a Macintosh II (MC68020 
with 5 MB RAM). As main parameters we compared number o f edges, number of rule-body procedure 
executions and over-all time.

4 . 2 .  The gram m ars and sentences

The first test uses small grammars (22 and 80 rules) together with the same 50 artificial sentences. The 
monadic grammars are tested with all 9 parsing strategies (TOM +/-parse forest; TD, LC, CKY, BI, 
the bottom-up parsers +/-tdf), for features and unification grammars we use TOM without parse forest 
and all the chart parsers. The 50 test sentences are constructed artificially to control parameters like 
sentences ambiguity, sentences length and three linguistic phenomena, i.e. PP-attachment, relative 
clauses and coordination. They can be classified into two groups, one where ambiguity grows 
exponentially with increasing sentence length (PP-attachment and coordination), and a second group, 
where the sentence length does not influence ambiguity (they have 1 to 3 readings). The sentence 
length varies from 3 to 24 words. Each grammar type has two small grammars with approximately 25 
resp. 80 rules.

The second test compares a reduced number of parsers (TOM, TD, LC, CKY, bottom-up +/-tdf) with a 
bigger monadic grammar based on the German avalanche corpus that has 750 rules and 300 lexical 
items. The 50 test sentences were taken from the avalanche corpus, their length varies from 6 to 42 
words (average 19 words per sentence).

5 .  T est-resu lts  and d iscussion

Before we comment, we will give a brief outline of how we present the test-results in appendix 1 and
2. The seven tables in appendix 1 summarize the statistics for each grammar and set of sentences. We 
give the total number o f edges and the total time for each parser over all sentences. The figures for 
time indicate overall time1 that includes rule-body procedure etc. The reader should be careful in the 
interpretation of the timings; these figures are dependent on machine, lisp system and the way in 
which the algorithms are programmed. Nevertheless, we think that they give an indication o f relations. 
Appendix 2 shows a limited number of diagrams to illustrate the figures graphically.

In appendix 1, each table shows three fields, one for the number of edges and two for timings: 1) the 
total time for all sentences and 2) the time for 26 sentences with low ambiguity. The second group of 
test sentences includes relative clauses and coordinations. The number o f words per sentence goes 
from 5 to 23 words (13 average) and they have 1 to 5 readings. Time is measured in milliseconds. The 
column 'diff indicates the difference o f the parsers from Tomita which is set to 1. In the field ’time 
all', we added the average time per word (ms/word) in order to have a figure that can easily be 
compared across the different tests. We have listed the number of edges because this figure is often 
given as measurement for parser performance. But one can observe that the rankings based on the 
number o f edges and the one based on timing do not correspond. This is due to the particular way in 
which the chart parsers are implemented. As we have mentioned in chap. 2.1.1, TD and LC keep 
only active edges in the chart, whereas CKY has only complete edges and BI both. For TOM, we 
counted the number o f shift operations.

Since there is limited space for diagrams, most o f them show three parsers: TOM, TD and LC +/-tdf. 
All the diagrams display the time/word relation for a particular grammar and a sentence set. Diagram 1

1 Since we have forced a garbage collection before each sentence, the garbage collector does not interfere with the timings.
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and 2 show PP-attachment (high ambiguity: a 20 word sentence has 132 parses), diagram 3 the 
time/word relation for the 750 rule grammar and all the avalanche sentences. Diagram 4 represents the 
times for LC +/-tdf with the three different grammar types for a set of coordinations in high ambiguity. 
Diagram 5 shows all parsers with a set o f relative clauses that have low ambiguity.

5 . 1 .  The chart parsers

Our tests confirm Slocum's and Wirdn’s data: the left-comer parser (LC) with top-down filtering is 
overall the most efficient chart parser. It ranks highest among the chart parsers with all grammar types 
and grammar sizes. The only exceptions are monadic and feature grammars o f the size of 80 rules with 
low ambiguity sentences (see below 5.3.). Earley-like top-down (TD) with the two small grammars is 
highly overproductive in active edges and therefore a bad choice if it is used without lookahead 
Diagram 1 and 2 show how TD is influenced negatively by the ,rammar size, the grammar in diagram
2 has three times more rules. Strangely enough, in the large grammar (table 3 and diagram 3), TD is 
converging towards LC as the sentences grow longer. In diagram 3, one can see well its initial 
overhead of active edges .

The bi-directional chart parser (BI) was included in the tests for verifying the hypothesis if triggering 
annotations on the rules reduce the search space and improve the overall performance. None o f our 
tests could confirm such a hypothesis. It seems that top-down filtering or lookahead influence 
performance to a greater extent than linguistic triggering annotations. BI did not perform better with 
any particular set o f test sentences or grammars.

5 . 2 .  The Tom ita  parser and chart parsers

Diagram 1 and 2 show how the Tomita parser (to+) performs best in situations o f high ambiguity. 
Taking the overall timings in table 1 and 2, TD is 4.75 to 6.53 times slower than TOM (and our 
comparison stops at sentences with 20 words with 132 readings). The situation is less dramatic if  we 
take LC+tdf. Here the difference is 1.67 to 1.9. But, if  we take our grammar o f 750 rules with its low  
ambiguity sentences, the gap is much smaller: 1.38 for LC+tdf and 2.15 for TD. A closer look at 
diagram 1 and 2 shows that TOM without parse forest (to-) is roughly equivalent to LC+tdf (lc+). We 
therefore think that the major speed gain o f TOM comes from its parse forest, which is an efficient 
way o f packing the parse trees. But, this representation could be used with any parser and is not 
specific o f TOM. In diagram 3, TOM and LC+tdf show a constant time difference. Precompiling the 
grammar rules into a LR parsing table or precompiling them into decision trees does not make a crucial 
difference, even with very long sentences o f up to 42 words and a large grammar of 750 rules.

5 . 3 .  F ilters, gram m ar size and rule-body procedures

This chapter tries to address the complex interaction between parsing strategy, grammar size, sentence 
ambiguity and overheads for top-down filtering and rule-body procedure. There is no standard 
grammar size. According to the grammar type, the size varies. We estimate that unification grammars, 
which are highly lexical, might have 50 to 100 rules, grammars with simple features around 5001, and 
monadic grammars several thousand rules.
In general, a TD parser is disadvantaged if  the grammar has a high branching factor because o f its 
overproduction o f active edges (cf. chap. 2.1.3.). Bottom-up parsers suffer from rules with common 
right factoring in the right-hand side o f the rules (cf. chap. 2.1.2.). A grammar might produce 
different results about TD overproduction or top-down filters according to its branching factor or right 
factoring. The effect of a top-down filter is not always a good one. V/e have contradicting results 
about top-down filtering. In the test with the monadic grammar o f 750 rules, the two chart parsers 
with top-down filter 0c+  and cky+) perform better than their counterparts without filter. Diagram 3 
also shows a converging TD and a diverging LC-tdf (lc-) as the sentence length increases. This is due 
to the high right factoring o f that grammar. The opposite result is shown by monadic and feature 
grammars with 75 rules together with the sample o f low ambiguity sentences. In these cases, the 
overhead from the top-down filter deteriorates the efficiency of the chart parsers with top-down filter. 
Unfiltered parsers with sentences up to 19 words are faster than the filtered ones. This result is 
influenced by the nature o f the grammar as well as its size since the top-down filter with the small 
grammars ( 22 or 30 rules) shows a positive e ffect

1 The Metal German analysis grammar, which is based on simple features, has 500-600 rules,
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Another tradeoff is between top-down filter and rule-body procedure. In our tests we compare three 
different types of rule-body procedures: no annotadons in monadic grammars or simple features and 
unification. Monadic grammars and simple feature grammars have a small rule-body procedure 
whereas the overhead for unification is considerable (2/3 for unification and 1/3 for pure parsing). 
Diagram 4 shows optically that the top-down filter has a positive effect as the rule-body procedure 
grows. With a time consuming rule-body procedure, a top-down filter becomes vital for the overall 
efficiency. This statement should not be interpreted as a generalization about simple feature grammars 
versus unification. Our point is independent of a particular grammar type but has to do with the 
relation between pure parse time and rule-body procedure time.

5 . 4 .  Sentence length

As we reported in chap. 3.1., Slocum claims that the benefits of top-down filtering are dependent on 
the sentence length and that the break-even point for top-down filtering (averaged over LC and CKY) 
occurs at about 7 words. As we have shown above, the question is more complex and influenced 
furthermore by the number of parses as well as by the nature and by the size of the grammar (right 
factoring and branching factor). Some of our tests show clearly that the length of the sentence is not 
necessarily the main parameter. We believe that no generalization is possible unless all the mentioned 
factors are taken into account.

5 . 5 .  Final choice

The choice of the parsing strategy for our MT-system was guided by the following ideas: Possible 
candidates for an on-line parser that parses strictly from left to right are TOM, LC+tdf and TD. Given 
the performance, TD was ruled out. The question of the grammar type was more difficult to solve.
The grammar has to predict all the sentences but only the correct ones, no overproduction is allowed. 
We therefore have to subclassify heavily by using a system of about 100 grammatical and semantic 
features. The worst cases for an empirical efficiency test are sentences with high ambiguity. Diagram 4 
shows the performance of the three grammar types where the 20 word sentence has the highest 
ambiguity. The average time per word varies heavily according to the grammar type: monadic - 70 ms, 
features - 160 ms and unification -1267 ms. Unification is slower by a factor o f about 20. This factor 
would be increased by the search for possible next words because it is not a simple matching of 
categories but a complicated search that has to take into account all the instantiated variables from 
constituents that have already been found Given this poor expectation for unification grammar in on­
line parsing, we were left with two grammar types, and we opted for simple monadic grammars, 
rather as a matter of computational simplicity. Together with monadic grammars, we chose the Tomita 
parser, because it was slightly more performant with the large grammar for the avalanche corpus, and 
last but not least, because o f its elegance. We like the idea o f precompiling the grammar into a LR 
table.

We have come to the conclusion that it is very difficult to test empirically the performance of 
algorithms or better o f programs and to find good generalizations1. Nevertheless, we believe that we 
have shown that the parse forest representation is to a large extent responsible for the good 
performance o f the Tomita parser, and second, that the difference in efficiency between the Tomita 
parser without the parse forest representation and an enhanced left-comer parser with top-down 
filtering and compiled rules is small. Two points of empirical research have not been addressed in our 
tests, which could also help the practitioners o f computational linguistics when they have to select their 
parsing strategies: 1) We have excluded the use of a lookahead We think that this point needs further 
investigation (i.e. TOM with an LALR table versus LC+tdf with la). 2) Since the parse forest 
representation is highly efficient, its benefits in combination with unification grammars need more 
clarification.
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Appendix 1 a

Table 1 Monadic gram m ar: 22 rules

edges rank diff time all 
(ms)

rank diff ms/word time 2 rank diff

lc+ 6532 5 3.08 24049 2 1.67 38 8000 3 1.07
Ic- 13332 8 6.28 41418 7 2.88 66 12301 6 1.64

o + 3 44 9 2 1.62 33 219 4 2.31 53 1 2901 7 1.72
cky- 6886 6 3.24 34 634 5 2.41 55 9599 4 1.28
bi + 6497 4 3.06 44 483 8 3.10 71 1 5850 9 2.1 1
bi- 9655 7 4.55 36265 6 2.52 58 1 0033 5 1.34
td 1 9766 9 9.31 6821 7 9 4.75 1 09 12985 8 1.73
tom 2124 1 1 .00 14364 1 1.00 23 7498 1 1.00
to-2 3881 3 1 .83 25756 3 1.79 41 7940 2 1.06

Table 2 M onadic gram m ar: 75 rules

edges rank diff time all 
(ms)

rank diff ms/word time 2 rank diff

lc+ 622 4 5 3.38 24418 3 1.90 39 841 7 6 1.36
Ic- 902 0 8 4.90 27834 6 2.16 44 7318 5 1.18
cky+ 280 3 2 1.52 389 80 7 3.03 62 16481 7 2.66

cky- 488 4 6 2.65 25650 4 1.99 41 6150 1 0.99

bi + 747 6 4 4.06 56649 8 4.40 90 20 084 8 3.24

bi- 827 7 7 4.50 25815 5 2.00 41 6730 4 1.09

td 3 3 0 2 8 9 17.95 84130 9 6.53 134 20665 9 3.33

tom 1840 1 1.00 12883 1 1.00 21 6200 2 1.00

to-2 31 1 7 3 1 .69 2 1899 2 1.70 35 6382 3 1.03

Table 3 M onadic  gram m ar: 750 rules

edges rank diff time all 
(ms)

rank diff ms/word

lc + 369 3 3 1.94 2 01 32 2 1.28 21
Ic- 18411 6 9 .67 511 32 6 3.26 54
cky+ 1923 2 1.01 36715 4 2.34 39
cky- 6 662 4 3.50 407 85 5 2.60 43
td 16951 5 8.90 337 17 3 2.15 35
tom 1904 1 1.00 15684 1 1.00 16

Abbreviations

+ + top-down filter (tdf)
- tdf

tom Tomita + parse forest
to-2  Tomita - parse forest
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Appendix 1b

Table  4 Featuro grammar: 30 rulea

edges rank diff time all
(ms)

rank diff ms/word time 2 rank diff

lc + 6067 4 2.10 38669 1 0.93 62 11434 2 1.06
Ic- 12666 7 4.39 7641 5 6 1.85 122 18483 8 1.71
cky + 2661 1 0.92 470 15 3 1.14 75 15233 4 1.41
cky- 5304 3 1.84 69844 5 1.69 1 1 1 16213 5 1.50
bi + 61 65 5 2.14 64901 4 1.57 103 17517 7 1.62
bi- 10266 6 3.56 818 69 7 1.98 130 14050 3 1.30
td 2 1 6 6 9 8 7.52 114548 8 2.77 182 16982 6 1.57
to-2 288 3 2 1.00 41368 2 1.00 66 10818 1 1.00

Table  5 Feature grammar: 80 rulea

edges rank diff time all 
(ms)

rank diff ms/word time 2 rank diff

lc + 6232 4 2.02 4 1265 1 0.96 66 12383 3 1.04

Ic- 896 3 7 2.91 60867 6 1.42 97 14649 5 1.23

cky + 2831 1 0.92 57884 4 1.35 92 2 0668 6 1.73

cky- 4871 3 1.58 592 48 5 1.38 94 13983 4 1.17

bi + 7459 5 2.42 80217 7 1.87 128 26467 8 2.22

bi- 819 8 6 2.66 49901 3 1.16 79 11967 2 1.00

td 3 2 7 9 2 8 10.64 13565 0 8 3.16 216 249 85 7 2.10

to-2 3083 2 1.00 4 2985 2 1.00 68 11917 1 1.00

Tab le  6 Unification gram m ar: 30 rulea

edges rank diff time all 
(ms)

rank diff ms/word time 2 rank diff

lc + 544 9 3 1.79 144349 1 0.91 251 234 33 1 0.93

Ic- 1 1446 6 3.75 525 2 5 0 7 3.32 913 747 50 8 2.97

cky+ 281 3 1 0.92 153500 2 0.97 267 2 72 33 3 1.08

cky- 706 8 4 2.32 5 3 3 5 1 5 8 3.38 928 73167 7 2.91

bi+ 8 675 5 2.85 2 1 0 3 0 0 5 1.33 366 2 90 34 5 1.16

bi- 14247 7 4.67 3 0 7 9 4 9 6 1.95 536 3 7 8 6 6 6 1.51

td 18795 8 6.16 1 69 68 4 4 1.07 295 2 79 83 4 1.11

to-2 3 04 9 2 1.00 1 58 03 2 3 1.00 275 25 1 3 2 2 1.00

Tab le  7 Unification  gram m ar: 80 ru le *

edges rank diff time all 
(ms)

rank diff ms/word time 2 rank diff

lc+ 5519 3 2.00 1 08 38 2 1 0.95 188 20531 2 1.03

Ic- 125 27 7 4 .54 272181 8 2.39 473 4 2 5 4 9 8 2.14

cky+ 2 483 1 0.90 122 61 8 3 1.08 213 2 76 03 3 1.39

cky- 570 0 4 2.07 2 6 8 4 6 8 7 2.36 467 4 1 4 8 5 7 2.09

bi+ 6770 5 2.45 135834 4 1.19 236 2 9 9 1 8 4 1.51

bi- 12232 6 4.43 189650 6 1.67 330 3 0 2 1 7 5 1.52

td 3 4 0 9 3 8 12.36 146 20 3 5 1.29 254 31551 6 1.59

to-2 2 75 9 2 1.00 11 3750 2 1.00 198 19866 1 1.00
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A bstract

This paper describes the conversion of a set of feature grammar rules into a deterministic 
finite state machine that accepts the same language (or at least a well-defined related language).
First the reasoning behind why this is an interesting thing to do within the Edinburgh speech 
recogniser project, is discussed. Then details about the compilation algorithm are given. Finally, 
there is some discussion of the advantages and disadvantages of this method of implementing 
feature based grammar formalisms.

1 B ackground

Real-time continuous speech recognition is still not possible but is becoming more possible each 
year. One of the many problems in recognition is doing symbolic analysis in the higher levels of 
the system  in a reasonable time.

W ithin CSTR, we are investigating analyses using high level GPSG-type formalisms (like that 
in [Gazdar85]) to describe the grammar of various restricted domains. This high level notation is 
then automatically compiled into a basic feature grammar formalism called FBF ([Thompson89]) 
thus compiling out aliases, feature passing conventions etc. This FBF grammar is then used directly 
in the run-time recogniser within a chart parser.

However, at run tim e, the many hypotheses predicted by the lower levels of the system give 
rise to many partial constituents in the chart. Thus a large amount of time was spent in the chart 
doing unification. However, when we look at the real requirements of the lower level of the system  
(lexical access), we note that what is required in the majority of cases is merely a simple prediction 
of the next possible symbol in a sentence from a given state.

Consequently we started to think about ways to provide this information as quickly as possible. 
Obviously representing the grammar as a Finite State Machine would make lexical access prediction 
significantly faster. As we currently write our grammars in a high level formalism it seems wrong 
to throw that information away and start again, so we hope to find some form of compilation from 
feature grammars to finite state grammars.

Of course, the first theoretical point to note is that feature grammars are, in essence, context- 
free thus allowing more complex languages to be described than FSGs. For example, there does
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not exist an equivalent finite state grammar for the (context-free) grammar

S —► a S b 
S —* a b

Which describes the language anbn where n is greater than or equal to 1. However if we set a finite 
limit on n then there does exist a (possibly very large but finite) FSM. Thus we could accept anbn 
only where n is greater than or equal to one but less than some finite number d.

In terms of natural language, an equivalent example is the restriction that you can only have 
up to n levels of centre embedding within a language. This seems to be no less a restriction on a 
language than the restrictions you are imposing on that language when you try to write a grammar 
for it in the first place, irrespective of the grammar formalism.

Practically, there may be other problems in writing a compilation function from feature gram­
mars to finite state grammars. There is of course the problem of the size of FSM created, as 
well as the time that is needed to generate it. Both these question were open at the start of our 
investigation.

Because we hoped that this compilation need only be run occasionally and that the high level 
formalism could be debugged using a conventional chart parser, we feel that compilation tim e can 
be up to 12 hours without any problem. As for the resulting FSM, it seems that with today’s 
workstations up to 100,000 transitions might be acceptable. But the question still remained: how 
big a feature grammar can be compiled within these constraints?

2 T he Initial S tructures

The grammarian first writes a grammar in the high level GPSG-like notation which is then trans­
lated to FBF. This translation is relatively simple, it merely converts the user-written form into an 
internal Lisp form, expanding aliases, feature passing conventions etc. The FBF formalism seemed 
like a good input to the FSM compiler as it is well defined and quite fixed within our system.

FBF is effectively an assembly language for feature grammars. It is much in the spirit of PATR-
II ([Shieber86]) but differs in that it uses term unification rather than graph unification as its basic 
operation, though that distinction if not important here.

The inputs to the FSM compilation are:

•  a distinguished category

•  a set of feature grammar rules.

•  a set of lexical entries

The lexicon consists of a mapping of atomic symbols to categories. In actual fact within our 
system  these atoms are not words but preterminals. It is these preterminals which label the arcs 
of the generated finite state machine.

It should be added that FBF is not a prerequisite for this technique. Any feature grammar 
notation would be suitable (though the code would have to be changed).
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3 The Com pilation Process

The com pilation takes place in five stages:

•  conversion into in ternal s truc tu res for fast access. This consists of the conversion of categories 
in the gram m ar and lexicon into an in ternal form, consisting of an atom ic type and a list of 
feature values, thus unification can be done more efficiently. Also, two indexes are created
— one for the gram m ar and one for the lexicon — both  indexed by category type, allowing 
efficient access to them .

•  conversion of the gram m ar to a non-determ inistic finite s ta te  m achine. This is the main part
— see the the next section for details about this.

•  removal of error s ta tes  from the non-determ inistic finite s ta te  m achine. S tates can be created 
which cannot lead to final sta tes, these are removed as well as all arcs pointing to them .

• determ inising. S tandard  determ inising of the finite s ta te  m achine (as described in [Hopcroft79 
p. 22])

•  analysis to produce sta tistics, th is finds the size, average and m axim um  branching rates.

4 The A ctu a l Conversion

The conversion is done by building “agenda s ta tes” on an agenda and processing them  until the 
agenda is em pty. An “agenda s ta te ” consists of the following:

•  A dep th  — the num ber of rew rites th a t are required to  get the  first category in the rem ainder

•  a list of rem aining categories — these are the categories (preterm inal or otherwise) th a t have 
yet to  be found before the end of a sentence is reached

•  A set of variable bindings

•  a s ta te  in the non-determ inised m achine

The basic loop s ta r ts  w ith  an initial “agenda s ta te ” w ith  the following settings:

•  a  dep th  of 0

•  a  list con tain ing  only the  distinguished category

•  a set of em pty  bindings

•  the  in itial s ta te  of the (non-determ inistic) FSM  

The processing is as follows:

Take an “agenda s ta te ” from  the  agenda and take its rem ainder. R ew rite the  first category in 
the  rem ainder, using the gram m ar, in all ways, recursively un til e ither the  dep th  lim it is m et or a 
lexical category is found (i.e. a category which is in the  lexicon).

R ew rites are m ade by replacing the first category w ith  the  righ t hand  side of a gram m ar rule, 
whose left hand  side unifies w ith the first category. T hus a rew rite  changes the  first category,
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increments the depth, and possibly binds some variables1. Also, in addition to the right hand side, 
a special “end-subrule” marker («m) is added so that we can tell when to decrease the depth count. 
For example: S  may rewrite as follows2

S ==>
NP VP em = >
Det Noun em VP em

Then for each rewrite, check the lexicon and find all entries that can match the first category.
Add a transition to the state in the current “agenda state” , labelled with that lexical item, to a
new state, in the non-deterministic FSM.

This may be a (truly) new state or an already existing state. Each state in the non-deterministic 
FSM has a “state descriptor” which symbolizes which categories from this state would lead to a final 
state. The state descriptor is constructed by taking the remaining categories list and dereferencing 
the variables, removing the “end-subrules” markers, and replacing any unbound variables with a 
unique atom name representing a variable3. Thus no unification is required in searching, a simple 
Lisp EQUAL is adequate (actually a more complex indexing system  is used).

When looking for a “new state” , the state descriptor of the required state is constructed and a 
(rather large) index is checked to find if such a state already exists, if so the new transition points 
to the state related to that “state descriptor” .

If a truly new state is required a corresponding new “agenda state” is created. The “cdr” of 
the remaining categories list is taken: that is the next category is found in the remainder list, any 
“end-subrule” markers which precede it are removed and the depth is decremented.

5 A n  E xam ple

For the sake of brevity the example grammar used here is only a standard context-free grammar 
with atomic categories rather than a feature grammar. Thus we use EQUAL as our test operator, 
while with feature grammars we would use unification, and record any resulting bindings.

Given the following grammar:

S — NP VP  
NP —► Det Noun 
NP —► PropNoun 
VP — Verb NP

And a lexicon as follows:

th e  —♦ Det 
boy —► Noun 
Hanako —♦ PropNoun 
saw —► Verb

1 Because variable* are “uniquified* at each instantiation of a rule the correct bindingi are ensured throughout the
conversion.

3 Atomic symbols are used here as categories for brevity
9This is actually over-general, as variables which have been bound to one variable, and hence co-referenced, but 

not (yet) bound to a literal, will still be treated as distinct by this method.

-280- Intemational Parsing Workshop 89



Let us go through some of the steps. The first stage is an agenda sta te  of the form4:

depth : 0 rem ainder: (S) sta te : al

There are two possible rew rites

depth : 2 rem ainder: (PropNoun em VP em) 
depth : 2 rem ainder: (D et Noun em VP em)

We then  add transitions from al to two new sta tes  labelled with “th e ” and “Hanako” like so:

Hanako

We then  create  two new “agenda s ta te s” and add them  to the agenda

dep th : 1 rem ainder: (VP em) sta te : a2
depth : 2 rem ainder: (Noun em VP em) sta te : aS

Now consider the  second one. As Noun is already a lexical category, there is no need to  rewrite 
it. We can add a transition  from aS to a “new s ta te ” . To find the “s ta te  descrip tor” of this “new 
s ta te ” we first remove the first category, and then remove any “em” m arkers, decrem enting the 
dep th  accordingly. The resulting rem ainder and dep th  is

depth : 1 rem ainder: (VP em)

Then we create the “s ta te  descrip tor” from  this new rem ainder, which will give sim ply (VP), which 
is the  sam e as the  descrip to r of s2. Thus th is new arc labelled w ith  “boy” will go from  aS to a2. 
Like this:

Hanako

Thus we only need one occurrence of the VP despite there being two “types” of NP. Of course 
in larger grammars, we would probably have two parts of the FSM representing VPs, one dealing 
with singular subject VPs, and the other with plural VPs (actually there may be more depending 
on the distinctions made in the grammar). This of course means building a large FSM, but that 
is, in part, the object of this exercise, trading space (i.e. the size of the FSM) with time (reducing 
the number of unifications required).

4no bindings are shown as we dealing with a  sim ple atom ic C F G
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5 .1  G e t t in g  L o o p s  fro m  R e c u r s io n

Consider the following three rules in isolation:

NP — NP PP 
NP —► Det Noun 
PP — Prep NP

If we can collapse recursion into loops, we can represent these three rules by the very simple FSM

prep

We have two problems to deal with here, left recursion, and right recursion. Left recursion is a 
lot harder to deal with than right recursion. With left recursion, during the rewrite stage we must 
check to see if we have already used the rule during this rewrite. If we detect this, we construct 
the new rewrite in a different way.

Instead of replacing the first category with its expansion, we find: what the non-recursive 
rewrites are; and the rules which introduce the rewrites. For the sake of description we will consider 
the case where there is only one non-recursive and one recursive rule, as in this example. Thus we 
have a “non-recursive rewrite” (Det Noun en) and a “non-recursive part of a recursive rule” (PP 
em — from the rule NP —► NP P P ). We then construct a new remainder (for an “agenda state”)

( “non-recursive rewrite”
( “non-recursive part of a recursive rule” )
“top remainder”

)

When there are multiple occurrences of the first two parts we must form remainders for the cross- 
product of them. However in our example, suppose we start with the remainder (NP VP e a ) , the 
three parts are

non-recursive rewrite Det Noun ea
non-recursive part of recursive rule PP ea
top remainder VP ea

Thus the complete rewrite is

(D et Noun ea (PP ea ) VP ea)

The “looping part” in brackets, (PP ea), does not appear in the “state descriptor” and hence 
this state is treated the same as (D et Noun ea VP ea). The important feature is this: when the 
categories before the bracketed part have been dealt with and we have remainder of the form ( (PP 
ea) VP ea), we construct two new “agenda states” , one with remainder (PP ea VP ea) and the 
other (VP ea ) .
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This of course is too general as we are now trea ting  the sta tes w ith the “s ta te  descrip tors” (Det 
Noun em VP em) and (Det Noun em (PP em) VP ea) as the same, which may not be true. W hat 
we need to  do is ensure th a t after the “looping p a rt” we can get back to the same sta te  which did 
not follow th a t  p a rt. (Assuming no variable bindings have m ade th a t join inappropria te).

Right recursion is a lot easier, having generated a state w ith the remainder (PP em VP em), 
we rewrite to (p rep  NP em em VP em). After removing the prep  we will be left w ith a remainder 
of (NP em em VP em). Because we ignore “depth” and the “end-subrule” markers in generating 
“state descriptors” , the “state  descriptor” of (NP em em VP em) is the sam e as that of (NP em VP 
em) , despite the different depths and number of “end-subrule” markers. Thus after the preposition  
we can return to the point in the FSM where we require an NP followed by a VP.

It is true that this N P is “different” from the other. One is an NP w ithin a P P  the other is the 
subject of a sentence, but because we are merely doing recognition  th is is all we need.

N otice that this m atching of states by a sta te descriptor is not guaranteed  to merge similar 
sta tes, since there m ay be cases where one remainder does not start w ith a lexical category and 
another does. These may represent the sam e state if the first category can be written to the a 
remainder the sam e as the other (and only that rem ainder). This m eans th at we will not guarantee 
the m ost m inim al FSM  during com pilation, but will collapse many states.

6 C om plexity  R esults

It is not surprising that this is possible. The really interesting part is whether useful grammars can 
be converted to reasonably sized finite state m achines in reasonable tim e.

T he code is w ritten in Com m on Lisp and runs on a number of different m achines. It had to be 
re-w ritten a number of tim es to get the performance we wished. It has been true that the spectre 
of unacceptable com putational com plexity has been just round the corner a number of tim es but 
so far we have kept it at bay.

D escribing the size of a grammar is difficult, but to give som e idea o f the feasibility of this 
m ethod o f running feature gram mars, one of our current gram mars, which consists of 31 G PSG- 
like rules, describes declarative sentences w ith the following features:

transitive and intransitive verbs 
copula sentences
m ultiple adjectives, and intensifiers in N Ps
quantifiers
noun com pounding
N P  conjunction

The N P  conjunction  was quite a drastic addition, which increased the size of the resulting FSM  by 
an order o f m agnitude.

T he gram mar described above can be converted to  a non-determ inistic FSM  of about 9,000  
s ta tes5 in around one hour on a Sun 4 /2 6 0  w ith 32M egabytes of m em ory. We feel th is is well 
w ithin  our 12 h o u r / 100,000 sta te  lim it. But although th is grammar is bigger than many “toy  
gram m ars” , it is still rather sm all and not really large enough to cover a significant proportion of 
the dom ain we wish to  cover.

5without conjunction the FSM is lew than 1,000 atate*
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It should be added that we have had problems in determinismg some of the generated FSMs. 
Though the conversion stage has taken around an hour, determinising has failed to finish in 75 
hours, producing a much larger FSM than its non-determinised equivalent. This does suggest t h a t  

perhaps we should only produce non-deterministic FSMs as output.

7 C om m ent

So the basic question is, “is it worth it?”

The major loss in moving from a chart parser using a feature grammar to a finite state machine 
is the loss of a parse tree. One of the reasons for adding a sentence grammar to a speech recogniser 
is to enable (eventually) some form of semantic analysis. There is an argument that because vast 
numbers of hypotheses have to be dealt with by a speech recogniser, perhaps running with a FSM 
as a grammar would be effective during recognition, and that post-processing of the few sentences 
found could be done with a chart parser.

Then again perhaps speed is not the real thing to worry about, a fast chart parser and unification 
algorithm might work almost as well (especially if machines are doubling in speed every year).

It is true that the technique is practically limited, no matter how fast machines get there will 
always be grammars which cannot be converted in reasonable time and/or produce finite state 
machines with too many states.

And as noted before, the algorithm does produce a FSM which accepts the subset of the language 
described by the feature grammar where the “depth” less than the given lim it, plus some extra 
sentences not originally accepted by the feature grammar. These extras are because of two faults 
in the conversion algorithm, namely in joining the end of left recursive rules and not constraining 
where variables have been co-indexed by another variable (and not an atomic value).

This over-generation seems to encourage the idea of using a real chart parser to post-process 
and correct the sentences accepted by the FSM (though the types of grammars which cause these 
problems are not common in our domain, so far).

^ r;thin our working framework (speech recognition) this method does produce useful results. 
As can still allow our grammarians to write a high level description, but still have a fast 
implementation of their grammar. So in spite of the short comings we will probably use this 
technique for the foreseeable future.
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A n Efficient Enum eration  A lgor ithm  of  Parses
for A m biguous  C ontext-Free Languages

Abstract

An efficient algorithm  that enum erates parses of ambiguous context-free languages is described, and its time 
and space complexities are discussed.

W hen context-free parsers are used for natural language parsing, pa ttern  recognition, and so forth, there 
may be a great num ber of parses for a sentence. One common strategy for efficient enum eration of parses is 
to assign an appropriate  weight to each production, and to enum erate parses in the order of the to tal weight 
of all applied production. However, the existing algorithm s taking this strategy can be applied only to the 
problems of lim ited areas such as regular languages; in the other areas only inefficient exhaustive searches 
are known.

In this paper, we first introduce a hierarchical graph suitable for enum eration. Using this graph, enu­
meration of parses in the order of acceptablity is equivalent to finding paths of this graph in the order 
of length. Then, we present an efficient enum eration algorithm  with this graph, which can be applied to 
arbitrary context-free gram m ars. For enum eration of k parses in the order of the to tal weight of all applied 
productions, the time and space complexities of our algorithm  are 0 ( n 3 + k n 2) and 0 ( nz +  fcn), respectively.

1 Introduction

Context-free parsers are commonly used for na tu ra l language parsing, pa tte rn  recognition, and so forth. 
In these applications, there may be a great num ber of parses (or derivations) for a sentence, only a few 
of which would be needed in later processes. Therefore, we look up only a few promising parses and do 
not make an inefficient exhaustive search of parses. In order to find a few promising parses efficiently, we 
often take a stra tegy  th a t an appropriate  weight is assigned to each production and parses are looked up in 
the order of the to ta l weight of all applied productions. If the assigned weight is selected carefully to have 
strong correlation to w hether a parse is accepted or not, looking up parses in the order of the to ta l weight is 
equivalent to enum eration of parses in the order of acceptability. For example, in the punctuation  problem  
of Japanese sentences, the num ber of the phrases of the sentence is known to be an excellent candidate  for 
the weight of parses. However, the algorithm s proposed so far th a t took this stra tegy  are applied only to 
the problems of the lim ited areas such as regular languages, and they are not applied to general context-free 
languages.

In this paper, we present an efficient enum eration algorithm  based on this strategy, which can be applied 
to general context-free gram m ars. We introduce a d a ta  s truc tu re  suitable for enum eration of parses named
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a parse graph, and present how to construct a parse graph in section 3. W ith a parse graph, a path between 
two special vertex, some of whose arcs are replaced iteratively by the path denoted by their labels, represents 
a right parse of the parsed sentence. Because the length of paths represents the to ta l weight of all applied 
productions for parses, enum eration of parses in the order of the total weight of all applied productions is 
equivalent to finding paths on the parse graph in the order of length. In section -4. we show the outline of 
how to enum erate the parses of the ambiguous sentence in the order of their weight, using the parse graph. 
We also discuss the time and space complexities of the algorithm  in tha t section.

2 Context-Free Parsing Algorithm

Several general context-free parsing algorithm s have been proposed so far, namely Cocke-Y ounger-K asam i 
algorithm [2, 3], Earley’s algorithm[4], V aliant’s algorithm[5j, G raham -H arrison-R uzzo  algorithm [6, 8], and 
so forth. The features of these algorithm s are the following. Cocke-Y ounger-K asam i algorithm  (CYK 
algorithm  for short) is a kind of the bottom  up parsing algorithm s, and has 0 ( n 3 ) time complexity, w h e r e  n 

is the length of the sentence. In this algorithm , the gram m ar is required to be w ritten in Chomsky normal 
form. E arley’s algorithm  is a kind of the top down parsing algorithm s, and has 0 ( n 3) time complexity. 
By con trast with CYK algorithm , no special production form is required in Earley’s algorithm . V aliant’s 
algorithm  and G raham -H arrison-R uzzo  algorithm  (GHR algorithm  for short) are the modified versions of 
CYK algorithm  and Earley’s algorithm , respectively. Both of them use the technique of m atrix  m ultiplication 
in order to reduce the time complexity, The time complexity of V aliant’s algorithm  is 0 ( n 2 81) and th a t of 
GHR algorithm  is 0 ( n 3/ lo g  n). However, in both algorithm s, the overhead for m atrix  m ultiplication is so 
large th a t these algorithm s don’t seem suitable for the practical use.

In this paper, we adopt E arley’s algorithm  as the base of our algorithm  because of the following two 
reasons:

(1) No special production form is required.

(2) E arley’s algorithm  seems more suitable than  V aliant’s algorithm  and GHR algorithm  because the 
overhead of these two algorithm s is quite large.

Let G = (V^v, Vt , P , S )  be a gram m ar, where Vy  is the set of nonterm inal symbols, Vj  is the set of 
term inal symbols, P  is the set of productions, and 5  € Vy  is the s ta r t symbol. In Earley’s algorithm , the 
item  lists /q, A , . . . ,  I n+i are created, where n is the length of the parsed sentence. Each item list consists 
of several i tems [A — a ■ /3 (p ), / ] ,  where A  — a ft G P, p is the index num ber of the production, is the 
m eta symbol th a t shows how much of the right side of the production has been recognized so far, and /  is 
an integer which denotes the position in the input string at which we began to look for th a t instance of the
production. The set of item  lists {/o, A , . . . , / n , / n+i} is called the parse list.

As for the tim e and space complexities for Earley’s algorithm , the following are known[l].

( e - 1 )  The time and space complexities for parsing a sentence by E arley’s algorithm  are 0 ( n 3) and 0 ( n 2),
respectively, where n is the length of the parsed sentence.

( e - 2 )  T he tim e com plexity for deriving a parse from the parse list is 0 ( n 2), where n is the length of the 
parsed sentence.
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3 Parse Graphs

3.1 T h e  fe a tu res  o f  p arse  grap h s

The parse graph is a directed graph which consists of several connected com ponents. Each connected 
com ponent is called a layer of the parse graph. Each layer is an acyclic graph that has only one source, 
and it corresponds to either a nonterm inal symbol or an integer. An layer corresponding to a nonterm inal 
symbol has only one sink. W ith this graph, we can extract parses more efficiently than with a parse list of 
Earley’s algorithm . As shown in the next section, a path between two special vertex, some of whose arcs 
are replaced iteratively by the path denoted by their labels, represents a right parse of the parsed sentence. 

In the rem ainder of this paper, we use the following notations.

L ( f )  The layer corresponding to an integer / .

L{A)  The layer corresponding to a nonterm inal symbol .4.
L(v)  The layer containing a • tex v.
L(e)  The layer containing an .̂rc e.
Uj(A') The source of the layer L( X ) ,  where X  is either an integer, a nonterm inal 

symbol, a vertex, or an arc. 
vt(A)  The sink of the layer L{A),  where .4 is a nonterm inal symbol. Note th a t the 

layer corresponding to a nonterm inal symbol has only one sink.

In the parse graph, each arc has one of the following labels.

(1) An index num ber of the production p, which denotes the derivation by .4 — a (p).

(2) A nonterm inal symbol A, which denotes the derivation A ^  e.

(3 ) The index of a vertex v , which denotes the path  from u,(y) to v.

W hen we describe the arc e =  (m, v) with its label of each kind, we use the notations e(p), e(A),  e[u], or
the alternative notations (u,t> ;(p)), ( u , v \ ( A) ) ,  (« ,u ;[v j), respectively.

Instead of an item of the form [A — ot-fi (j>), / ]  in Earley’s algorithm , we use the trip let [.4 — or-/? (p), / ,  y]
as an item of our algorithm  for constructing a parse graph, where v is the index of a vertex.

For exam ple, we parse the sentence xx of the gram m ar shown in Figure 1. The parse list and the parse 
graph generated from this sentence are shown in Figure 2 and Figure 3, respectively.

In Figure 3, the label “(2)” of the arc from vertex # 8  to vertex # 9  indicates the derivation by 5  — 5 /  (2), 
the label “ (5 )” of the arc from vertex # 0  to vertex # 1  indicates the derivation 5 ^ 6 ,  and the label “[7]” 
of the arc from vertex # 2  to vertex # 8  indicates the paths from vertex # 0  to vertex # 7 .
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Our algorithm  for constructing a parse graph is based on Earley’s algorithm . In Earley’s algorithm , one of 
three operations is performed on each item, depending on its form, to add more items to the item lists. In 
our algorithm , these operations not only add more items to item lists but also add new vertices and arcs to 
the parse graph, shown as follows.

3.2 A n  a lg o r ith m  for c o n s tr u c tin g  a p arse  graph

S  -  € (1)
S  — S J (2)
J  -  F (3)
J  -* / (4)
F  —* x (5)
I  —► X (6)

Figure 1: An ambiguous context-free gram m ar
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Io

h

S' — •5$ (0), 0, 0
s — (1), 0, 0
s — ■S J (0), 0, 0

' S' — S - $ (0), 0, 1
s — 5 • .7 (2), o, 2
J — ■F (3), 0, 0
J — ■I (4), 0, 0
F — ■i (5), 0, 0
I —- ■i (6), 0, 0

F — x • (5), 0, 0
I — x- (6), 0, Q
J — F- (3), 0, 4
J — I- (4), 0, 6
s — SJ- (2), 0, 8
S' — S - $ (0), o, 10
s — 5 • J (2), 0, 11
J — ■F (3), 1, 12
J — ■I (4), 1, 12
F — ■x (5), 1, 12
I —* ■I (6), 1, 12

F — X" (5), 1, 12
I — I- (6), 1, 12
J — F- (3), 1, 14
J — I- (4), 1, 16
S — SJ- (2), 0, 18
S' — s  ■ $ (0), 0, 20
s — 5  • J (2), 0, 21
J — ■F (3), 2, 22
J — ■I (4), 2, 22
F — ■x (5), 2, 22
I — ■X (6), 2, 22

S' — 5$. (0), o, 20

Layer 0:

.i ?**0 j z u 0 j .2lK 3
2 8 g

|- (- -K D

\ ( 3 )

h'-^KD >
5 ,/ *  7

[51 / < 4>

6

[9] K D
10

^Uoiizi*o<2i>o
11 18 19

[19]

20

[19]
* o

21

Layer 1:

r — K D
13

\ ( 3 )  

^  >  15 /▼ 17

[151 / < 4>

12 18

Layer 2:

o
22

Layer S:

y-
V»<S) vi(S)

(p) : a label "production p" 

[v] : a label “vertex v“

<S> : a label "nonterminal S'

Figure 3: A parse graph for the sentence xx of the 
gram m ar in Figure 1

h  :

re 2: A parse list for the sentence xx of the 
gram m ar in Figure 1
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The scanner  is performed when an item in Ij is of the form [.4 — a ■ aJ + l 3 (p) , f , v] .  It puts the item
[*4 — a a j +1 • 3 {p), / ,  v] to Ij + l .

O p e r a t io n  2 ( p r e d ic to r )

The predictor is performed when an item in Ij is of the form [.4 — a • B 3  [p) , f ,  v]. It adds items [B — 
•7 k (Pk) * j  i i>iO)] for B-productions B  — ~{k (pk) to Ij, except in the case where these items have already 
been added to Ij. If the vertex v, ( j )  have not been created yet, the predictor creates v,{j )  to the layer 
L( j ) .  Especially, in the case where B => C LC2 • • • Cm e and C LC V --C m G Vy,  the predictor adds the
vertices vs{B) ,  v u  u2, . . . ,  ym_ !, vm , vt{B),  and the arcs ( t>,( B),  v{\ (C L)), ( ,  i'2;(C 2)), ( e?2, vy, (C3)),
( t'm — 2 1 ym — I i (C m— L ) ) t ( ^m — 1 ? L'm ; (Cm)), ( um, (p)) to 1 ( 5 )  if they are not in L{B) ,  and performs one
of the following:

(a )  If an item  of the form [.4 — q B  • 3 (p ) , f , w ] is already in Ij, then add the arc (v , w \ ( B )) to the parse
graph.

(b )  O therwise, add the vertex w and the arc ( v ,w' , (B) )  to the parse graph, and add the item  [.4 —
q B  • 0 [ p) , f , w]  to Ij.

O p e r a t io n  3 ( c o m p le te r )

The completer is performed when an item in Ij is of the form [.4 — a • (p) , f , v] .  It performs one of the 
following:

(a )  If /  =  j ,  then the item would be processed by the predictor. Therefore, the com pleter does nothing.

(b )  If /  ^  and there exists an item of the form [A — ,3 • (9-),/, u] ( p ^  q, u ^  v ) in /j, and the arc
( u, w ; (<7)) in the parse graph, then add the arc ( v , w\ (/>)) to the parse graph.

(c) Otherw ise, add a new vertex 1  and a new arc {v , x; (p) )  to the parse graph. Furtherm ore, for all items
of the form [Bk — Ik ■ Abk ipk),  f k , ^k]  in / / ,  perform  one of the following:

( c - 1 ) If there exists an item  of the form [Bk — 7*.4 • 6 k (pk ) , f k , Vk ] in Ij  where uk ̂  v*, then add a
new arc [uk , i>*;[1 ]) to the parse graph.

( c -2 ) O therw ise, add a new vertex vk and a new arc (u*, t;*; [z]) to the parse graph, and add a new 
item  [Bk — 7kA ■ 6 k (Pk), A , Vfc] to Ij.

We describe our algorithm  for constructing a parse graph as follows:

A lgorith m  1. A n a lgorithm  for con stru ctin g  a parse graph

A context-free gram m ar G = {Vy,  V j, P, S)  and a sentence a La2 • • • an are given.

[step 1 ] Add the m eta symbol “$n to the tail of the sentence. Add the production S'  — 5$ (0 ) to P.
C reate the parse graph consisting of r , ( 0 ). C reate the item  list Iq consisting of [5 ' — -5$ (0), v,(0)].

[step 2 ] C reate the item lists Iq , / 1 , . . . ,  /„+i in order, by perform ing the following operations from k = 1 
to k = n.

O p e r a t i o n  1 ( s c a n n e r )
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(1 ) Perform the predictor or the completer to add items to the item list Ik, until no more items can 
be added to I

(2 ) Then, perform the scanner to add items to Ik+i-

[s te p  3] If / n+i has an item of the form [5/ —* 5$ • (0), u], then it means that the parser accepts the 
sentence, and the algorithm  term inates. Otherwise, it means tha t the parser rejects the sentence, and 
the algorithm  term inates.

Note that this algorithm  is the same as Earley's algorithm except the portion for constructing a parse 
graph.

As for the time and space complexities of this algorithm , the following theorem  holds.

T h e o r e m  1. The time and space complexities of our algorithm  are both 0 ( n 3), where n is the length 
of the sentence.

(proof) Consider the number of items in the item lists. Acc«. .ding to three operations, namely the 
scanner, the predictor and the com pleter, each item list does not have items such th a t their first and second 
com ponents are the same. Therefore, each item list has 0 ( n ) items, because the num ber of the kinds of the 
first com ponent is constant, and tha t of the second com ponent is not more than n +  2. Hence, the num ber 
of items of the parse list is 0 ( n 2), because the parse list consists of n  +  2 item lists. Consider the time and 
space complexities of the operations per item.

(1) As for the scanner, the time and space complexities are both 0 (1 ).

(2) As for the predictor, at most 0( \P\ )  items are added to the item list, and 0 ( |P |)  vertices and arcs are
added to the parse graph, where |P | denotes the num ber-of the productions. Therefore, the tim e and 
space complexities are both 0 ( |P |)  =  0 (1 ).

(3) As for the com pleter, if the second component of the performed item is / ,  the com pleter scans all items
in I f ,  adds at most 0 ( n )  items to the item list, and adds at most 0 ( n )  vertices and arcs to the parse 
graph. Therefore, the time and space complexities are both  0 (n ) .

Consequently, the time and space complexities of the operations per item is 0 (n ) .  Therefore, the tim e and 
space complexities of the parse graph construction algorithm  are both 0 ( n 3). □

Com pared with (e-1) in section 2, the tim e complexity for constructing a parse graph is the same as 
E arley’s algorithm , but the space complexity is worse because the num ber of arcs in a parse graph is 0 ( n 3).

4 Enum eration o f  Parses

4.1 Extracting parses

In order to ex tract parses from a parse graph, we introduce a traversal paths of a parse graph. The no tation  
7r(u,  v )  represents traversal paths from u  to v.

A traversal path from a vertex it to a vertex v is defined as follows provided th a t L(u)  =  L(v).

(1 ) A null sequence is defined as a traversal path if u  =  v .
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( 2 )  The sequence of the arcs where e x =  ( i t , - ,  i \ ) ,  is defined as a traversal pa,th if a  =  u i , v i  =

Uo, U2 =  « 3 .  • • • . y n - l  =  « n ,  =  y -

( 3 )  Let e i e 2 • • • c n be a traversal path from u to v . in which an arc e;  is labeled with a nonterm inal symbol
.4. The-sequence of the arc e'i • • • e,_ i tt( i’3( .4). i’t(.4))e,-+i • • • en in which e,(.4) is replaced by a traversal 
path  JrfwjM), is defined as a traversal path.

(4 ) Let eieo • • • en be a traversal path from u to u, in which an arc e, is labeled with the index of a vertex
v. The sequence of the arc eL • • • e ,_ Lx (vs[v), v )e, + l • • • en in which e,[u] is replaced by a traversal path 
ic[v, (v) ,v)  is defined as a traversal path.

Especially, the traversal path that has only the arcs labeled with the index of the production is called a 
proper traversal path. The notation r* (u , v) represents proper traversal paths from u to v. This notation is 
also used to represent the sequence of the labels of the proper traversal paths.

As for the relationship between proper traversal paths and parses, the following theorem  holds.

T heorem  2. If there exist two items [A — or • 7  ( p), / ,  u] E / j ,  [-4 — a/3 • 7  (p), / ,  v] € Ik, where
a ,/? , 7  G V m, the sequence of the labels r* (u ,v )  is the reverse order of the sequence of the production 
num bers used for the rightm ost derivation aJ + 1 • • • .

r m

(proof) It is easy to prove this theorem  by induction on the length of the derivation sequence. □

Let u((0) be the third com ponent v of the item [5' —• 5 S ■ (0), 0, v] € / n+ 1 - According to theorem  2, 
the sequences of the labels 7rm( u,(0), vt(0)) represent the right parses of the parsed sentence. An exam ple of 
a proper traversal path  of the parse graph in Figure 3 is shown in Figure 4, where Uj(0) is vertex # 0  and 
yt(0) is vertex # 20 .

A right parse can be ex tracted  from the parse graph by searching a proper traversal pa th  from i/f(0) 
toward tfj(O). This extraction can be done w ithout backtracking, because each layer has only one source. 
Therefore, the following theorem  holds.

T heorem  3. If the given gram m ar is cycle-free, the tim e complexity for ex tracting  a parse is O(n), 
where n is the length of the sentence.

(proof) If the gram m ar is cycle-free, the length of the parse is O(n) .  Therefore, the tim e complexity is 
O(n) .  □

C om pared with (e-2 ) in section 2, the time complexity for ex tracting  a parse is be tte r than  Earley’s 
algorithm .

4.2 An algorithm for parse enumeration

Using a parse graph, enum eration of the parses in the order of the to ta l weight is equivalent to enum eration 
of the proper traversal paths from ^j(O) to vt(0) in the order of the length. W hile m any researchers have 
developed the algorithm s for finding the k shortest paths[9, 10, 11, 12, 13], we apply one of them  developed 
by K atoh, Ibaraki and Mine[10] to the parse graph recursively. Because of the lack of the space, we explain
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vs(S) vt(S) \0  /  4 7 12 13

right parse: 1 5 3 2 5 3 2

Figure 4: A proper traversal path from vertex # 0  to vertex #20

only the outline of the algorithm . The details of the algorithm  are described in [14]. In the following 
discussion, the k- th shortest traversal path from i/,(0) to vt(0) is referred to as x*.

First of all, derive the shortest path tree for v,(0), denoted as T ( v s(0)), which consists of the arcs of the 
shortest paths from i!,(0 ) to all o ther vertices. The shortest path  tree can easily be derived in the algorithm  
for constructing  a parse graph, x 1 can be extracted  from T (uJ(0)). tt2 consists of the path  o fT (v ,(0 ))  from 
MO) to a vertex u, the arc (u, v) where v is one of the vertices on 7T1, and the subpath  of from v to v*(0). 
Therefore, the num ber of the candidates of tt2  is the same as the sum o f  the in-degree of all vertices on the 
shortest path . As for the parse graph, the length of the shortest path and the in-degree of a vertex are both 
0 (n )[ l4 ] , and hence we can derive tt2  in 0 ( n 2). In order to derive t 3, all paths from vf(0) to ut(0) except 
tt1 and x 2 are divided into three sets as follows (see Figure 5 ):

(1) The set of paths th a t join the subpath  common to tt1 and tt2. The shortest path in this set is referred
to as i a .

(2) T he set of paths th a t jo in  x 1, and contain the subpath  common to x l and x2 as their final subpath .
The shortest pa th  in this set is referred to as x*,.

(4) The set of paths th a t jo in  x 2, and contain the subpath  common to x 1 and x2 as their final subpath .
The shortest pa th  in this set is referred to as xc.

xa , Xi, and xc can be derived in the same m anner as deriving x2 in 0 ( n 2), respectively, x 3 is the shortest one 
of xa , Xfc, and xc, and the rest of these paths are stored in another set as the candidates of x 4. x 4, x 5, . . .  are 
derived by repeating the sim ilar calculation. Therefore, the time and space complexities of the enum eration 
of the k shortest paths are 0 ( n 3 +  k n2) and 0 ( n 2 +  k n ), respectively.

In the above discussion, the k shortest paths are derived. However, we can also derive the k longest
paths in the sam e m anner.
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Figure 5: The relation among t l , x2, and t 3 

Table 1: The time and space complexities of our algorithm s (n :the length of the sentence)

Com plexity Construction of parse graph Enum eration of k parses
Tim e 0 ( n 3) 0 ( n 3 +  k n 2)
Space 0 ( " 3) 0 ( n 2 4- kn)

We sum m arize the tim e and space complexities of our algorithm s in Table 1.

5 Conclusion

In this paper, we have presented an algorithm  for the enum eration of the parses in the order of the accept­
ability. This algorithm  can be applied to the general context-free languages. In order to enum erate parses 
efficiently, we have in troduced a d a ta  s truc tu re  suitable for the enum eration called the parse graph. Using 
a parse graph, we can enum erate k parses in the order of acceptability efficiently in 0 ( n z +  k n 2).
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A M o r p h o l o g i c a l  P a r s e r  f o r  L i n g u i s t i c  E x p l o r a t i o n
D a v i d  Weber  

Summer I n s t i t u t e  o f  L i n g u i s t i c s

1 .  INTRODUCTION

T h i s  p a p e r  d e s c r i b e s  AMPLE, a m o r p h o l o g i c a l  p a r s e r  ( i . e . ,  a  
p r o g r a m  t h a t  p a r s e s  w o r d s  i n t o  m o r p h e m e s ) . AMPLE g r e w  o u t  o f  
w o r k  i n  c o m p u t e r  a s s i s t e d  d i a l e c t  a d a p t a t i o n ,  a s  d e s c r i b e d  i n  
s e c t i o n  1 .  I t  c o n t a i n s  no  l a n g u a g e - s p e c i f i c  c o d e ,  b e i n g  
c o n t r o l l e d  e n t i r e l y  t h r o u g h  e x t e r n a l ,  u s e r - w r i t t e n  f i l e s ,  t h e  
n o t a t i o n s  o f  w h i c h  w e r e  d e s i g n e d  f o r  l i n g u i s t s .  AMPLE’ s  
c o n s t r u c t s  a r e  l i n g u i s t i c :  " a l l o m o r p h " , " m orphem e" ,  " c o n d i t i o n i n g  
e n v i r o n m e n t " ,  " c o - o c c u r r e n c e  c o n s t r a i n t " ,  e t c .

AMPLE1s  f u n d a m e n t a l  a l g o r i t h m  i s  ( i )  t o  d i s c o v e r  a l l  
p o s s i b l e  d e c o m p o s i t i o n s  o f  a  w o r d  i n t o  a l l o m o r p h s ,  a n d  ( i i )  t o  
e l i m i n a t e  t h o s e  w h i c h  f a i l  a n y  c o n d i t i o n s ,  c o n s t r a i n t s  o r  t e s t s  
i m p o s e d  b y  t h e  u s e r .

T h i s  m a t c h - a n d - f i l t e r  a l g o r i t h m  a l l o w s  a  h i g h l y  m o d u l a r  
a p p r o a c h  t o  m o r p h o l o g i c a l  p a r s i n g .  S t r o n g  r e j e c t i o n  o f  i n c o r r e c t  
a n a l y s e s  i s  a c h i e v e d  b y  t h e  c o m b i n e d  e f f e c t  o f  d i v e r s e  f i l t e r s ,  
e a c h  e x p r e s s e d  s i m p l y  i n  a  n o t a t i o n  a p p r o p r i a t e  t o  t h e  p h e n o m e n a .

AMPLE i s  a  g o o d  t o o l  f o r  e x p l o r i n g  m o r p h o l o g y  b e c a u s e  o f  t h e  
f l e x i b i l i t y  r e s u l t i n g  f r o m  t h i s  m o d u l a r i t y .  And i t  i s  u s a b l e  b y  
c o m p u t a t i o n a l l y  n a i v e  l i n g u i s t s  b e c a u s e  i t s  n o t a t i o n s  a r e  
l i n g u i s t i c  r a t h e r  t h a n  c o m p u t a t i o n a l .

2. COMPUTER ASSISTED DIALECT ADAPTATION
C o m p u t e r  a s s i s t e d  d i a l e c t  a d a p t a t i o n  (CADA) a t t e m p t s  t o  e x p l o i t  
t h e  s y s t e m a t i c  r e l a t i o n s h i p s  b e t w e e n  c l o s e l y - r e l a t e d  l a n g u a g e s  t o  
p r o d u c e  d r a f t s  o f  t e x t  i n  t a r g e t  l a n g u a g e s  f r o m  s o u r c e  l a n g u a g e s  
t e x t s .  ( I n i t i a l  e x p l o r a t i o n s  a r e  d e s c r i b e d  i n  W eber a n d  Mann,  
1 9 7 9 . )  CADA w o r k s  o v e r  n o n - t r i v i a l  d e g r e e s  o f  l a n g u a g e  
d i f f e r e n c e  b e c a u s e ,  b e t w e e n  c l o s e l y - r e l a t e d  l a n g u a g e s ,  m o s t  o f  
t h e  d i f f e r e n c e s  a r e  s y s t e m a t i c .  T h e s e  r e s u l t  f r o m  t h e  
g e n e r a l i z a t i o n  o f  r e g u l a r  d i a c h r o n i c  c h a n g e s ,  t h u s  i m p a c t i n g  t h e  
l a n g u a g e  h e a v i l y .  By c o n t r a s t ,  i r r e g u l a r  o r  i d i o s y n c r a t i c  
c h a n g e s  c a n n o t  b e  g e n e r a l i z e d ,  s o  t e n d  t o  h a v e  a  l i m i t e d  I m p a c t .  
S o  b e t w e e n  c l o s e l y  r e l a t e d  l a n g u a g e s ,  s y s t e m a t i c  d i f f e r e n c e s  
p r e d o m i n a t e .

D i f f e r e n c e s  a r e  s y s t e m a t i c  o n l y  r e l a t i v e  t o  s o m e  a n a l y s i s .  
F o r  e x a m p l e ,  b e t w e e n  o n e  d i a l e c t  o f  Q u e c h u a  a n d  a n o t h e r ,  t h e  
c h a r a c t e r  s t r i n g  r a  m i g h t  c o r r e s p o n d  t o  r a ,  r l ,  r u  o r  r q u ,  b u t  
t h e  c o n t e x t  i n  w h i c h  e a c h  i s  a p p r o p r i a t e  c a n n o t  b e  d e t e r m i n e d  
s i m p l y  b y  i n s p e c t i n g  a d j a c e n t  c h a r a c t e r  s t r i n g s  ( i n  t h e  s o u r c e  
d i a l e c t  t e x t ) .  H o w e v e r ,  i f  o n e  c a n  d e t e r m i n e  t h e  i d e n t i t y  o f  t h e  
m orph em e i n  w h i c h  r a  o c c u r s ,  t h e  d i f f e r e n c e s  b e c o m e  s y s t e m a t i c :  
w h e n  i t  i s  t h e  p a s t  t e n s e  s u f f i x ,  t h e n  i t  c o r r e s p o n d s  t o  r q a ; 
w h e n  i t  i s  t h e  p u n c t u a l ,  i t  c o r r e s p o n d s  t o  r l  o r  r a ,  d e p e n d i n g  o n  
m o r p h o l o g i c a l  c o n t e x t ;  w h e n  i t  i s  t h e  d i r e c t i o n a l  ' o u t 1 , i t  
c o r r e s p o n d s  t o  r q u  o r  r q a ,  a n d  s o  f o r t h .
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E x p e r i e n c e  i n  v a r i o u s  l a n g u a g e  f a m i l i e s  [ Q u e c h u a ,  T u c a n o a n ,  
C a k c h i q u e l  ( M a y a n ) ,  Campa ( A r a w a k a n ) ,  an d  t h e  P h i l i p p i n e  t y p e ]  
h a s  s h o w n  t h a t ,  f o r  l a n g u a g e  f a m i l i e s  w i t h  r i c h  m o r p h o l o g i e s ,  
p a r s i n g  w o r d s  i n t o  m o r p h e m e s  m a k e s  m o s t  d i f f e r e n c e s  s y s t e m a t i c ,  
t h e r e b y  p r o v i d i n g  a  s u f f i c i e n t  a n a l y t i c  b a s e  o n  w h i c h  t o  do  
a d a p t a t i o n .

CADA's a n a l y t i c  e n g i n e  b e g a n  a s  a  Q u e c h u a - s p e c i f i c  
m o r p h o l o g i c a l  p a r s e r  w r i t t e n  i n  INTERLISP (W eber a n d  Mann, 1 9 7 9 ) .  
T h i s  p a r s e r  w a s  r e - i m p l e m e n t e d  i n  C f o r  s m a l l  s y s t e m s  ( K a s p e r  a n d  
W e b e r ,  1 9 8 6 a , b ) .  T h i s  i m p l e m e n t a t i o n  w a s  s u b s e q u e n t l y  a d a p t e d  t o  
t h e  T u c a n o a n  l a n g u a g e  f a m i l y  o f  C o l o m b i a  ( R e e d  1 9 8 6 ,  1 9 8 7 ) ,  t o  
Campa l a n g u a g e s  ( A r a w a k a n  o f  P e r u ) ,  a n d  t o  P h i l i p p i n e  l a n g u a g e s .  
G u i d e d  b y  t h e s e  e x t e n s i o n s ,  a g e n e r a l  m o r p h o l o g i c a l  p a r s e r  h a s  
b e e n  d e v e l o p e d ,  c a l l e d  AMPLE ( W e b e r ,  B l a c k  a n d  M c C o n n e l ,  1 9 8 8 ) .

AMPLE f i t s  i n t o  w o r d - b y - w o r d  a d a p t a t i o n  a s  i n d i c a t e d  i n  
T a b l e  1:

w o r d  a n a l y s e s — > | TRANSFER | — > m o d i f i e d  
+ -------------------- + w o r d  a n a l y s e s

A +■ 
M 
P 
L 
E

+ S 
T 
A 
M 
P

-------------------- +

I
ANALYSIS |

+ --------------------- +
n o r m a l i z e d  

w o r d s

| TEXTIN |

+ ------------------------------ +

I
s o u r c e  d i a l e c t  t e x t

+ ---------------------- +
I I
j SYNTHESIS|
I I
+ ---------------------- +

n o r m a l i z e d
w o r d s

| TEXTOUT |

t a r g e t  d i a l e c t  t e x t

Table 1: THE MAJOR MODULES OF WORD-LEVEL CADA
The f o l l o w i n g  i l l u s t r a t e s  how e a c h  m o d u l e  o f  T a b l e  1 c o n t r i b u t e s  
t o  a d a p t i n g  f r o m  P a c h i t e a  Q u e c h u a  A y w a r k a y k a r g a n  ' t h e y  w e r e  
g o i n g 1 t o  t h e  c o r r e s p o n d i n g  H u a n c a  Q u e c h u a  f o r m ,  L l y a l k a l a :
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P a c h i t e a :  A y w a r k a y k a r g a n
TEXTIN

a y w a r k a y k a r q a n
ANALYSIS

a y w a -  - r k a  - y k a  - r q a
♦ a y w a -  -PLIMPF -IMPF -PST

- n
- 3

TRANSFER

\  /  
\  /

X 
/  \

/  \
* r i -  -IMPF -PLIMPF -PST

SYNTHESIS
11 - y a - l k a  - l a

l i y a l k a l a
TEXTOUT

H u a n c a :  L l y a l k a l a

I n  a d d i t i o n  t o  s e r v i n g  a s  t h e  a n a l y t i c  b a s e  f o r  a d a p t a t i o n ,  
AMPLE h a s  b e e n  u s e d  t o  a u t o m a t e  t h e  g l o s s i n g  o f  t e x t s  ( s e e ,  e . g . ,  
W eber 1 9 8 7 a ) , t o  d e t e c t  s p e l l i n g  e r r o r s ,  a n d  p e r h a p s  m o s t  
s i g n i f i c a n t l y ,  t o  a d v a n c e  u s e r s '  u n d e r s t a n d i n g  o f  t h e  m o r p h o l o g y  
o f  v a r i o u s  l a n g u a g e s .

V a r i o u s  e x t e r n a l  f a c t o r s  h a v e  s h a p e d  AMPLE: i t s  c o n s t r u c t s ,
m e c h a n i s m s  a n d  n o t a t i o n s  m u s t  b e  f a m i l i a r  t o  l i n g u i s t s ;  i t s  d a t a  
f i l e s  s h o u l d  b e  u s e f u l  f o r  o t h e r  c o m p u t a t i o n a l  an d  
n o n —c o m p u t a t i o n a l  p u r p o s e s ;  i t  m u s t  r u n  e f f e c t i v e l y  o n  p e r s o n a l  
c o m p u t e r s  w i t h  s m a l l  m e m o r i e s ;  a n d  c r u c i a l l y ,  i t  m u s t  b e  a b l e  t o  
c o p e  w i t h  v e r y  d i v e r s e  p h e n o m e n a  w i t h o u t  u n d u l y  c o m p r o m i s i n g  
l i n g u i s t i c  i n t e g r i t y .

AMPLE t a k e s  t e x t  a s  i n p u t .  I t  i d e n t i f i e s  w o r d s  an d
n o r m a l i z e s  t h e m  a c c o r d i n g  t o  u s e r - s p e c i f i e d  r u l e s  ( e . g . ,  c h a n g e  b  
t o  p  b e f o r e  a )  . T h i s  a l l o w s  t h e  i n t e r n a l  r e p r e s e n t a t i o n  t o  
d i f f e r  f r o m  t h e  e x t e r n a l  o r t h o g r a p h y  ( w h i c h  m i g h t  e v e n  b e  a
p h o n e t i c  r e p r e s e n t a t i o n ) . E a c h  w o r d  i s  s u b j e c t e d  t o  a  
d e p t h - f i r s t ,  a l l  p a t h s  a n a l y s i s .  The  t e x t  i s  o u t p u t  a s  a
d a t a b a s e — o n e  r e c o r d  p e r  w o r d — w i t h  f i e l d s  f o r  t h e  ( p o s s i b l y  
a m b i g u o u s )  a n a l y s i s ,  p u n c t u a t i o n ,  w h i t e  s p a c e ,  f o r m a t  m a r k i n g ,  
a n d  c a p i t a l i z a t i o n  i n f o r m a t i o n .

AMPLE h a s  v a r i o u s  " b i a s e s . "  I t  i s  b a s e d  o n  t h e  a s s u m p t i o n  
t h a t  m o r p h e m e s  e x i s t .  I t  a p p l i e s  d i r e c t l y  t o  c o n c a t e n a t i v e  
m o r p h o l o g y ;  n o n - c o n c a t e n a t i v e  p h e n o m e n a  u s u a l l y  h a v e  t o  b e  
c o e r c e d  i n t o  c o n c a t e n a t i v e  s o l u t i o n s .  F o r  e x a m p l e ,  t o o k  c o u l d  b e  
a n a l y z e d  a s  t a k e + P A S T  ( a s  s u g g e s t e d  b y  B l o c k  1 9 4 7 ) .  To a p p l y  
AMPLE t o  f u s i o n a l  l a n g u a g e s  g e n e r a l l y  r e q u i r e s  l a r g e  n u m b e r s  o f  
f u s e d  c o m b i n a t i o n s  c o n s t r a i n e d  b y  d e c l e n s i o n  o r  c o n j u g a t i o n  
c l a s s .  F i n a l l y ,  AMPLE t a k e s  a n  i t e m / a r r a n g e m e n t  r a t h e r  t h a n  a n
i t e m / p r o c e s s  a p p r o a c h  ( H o c k e t t  1 9 5 4 ) .  T h e r e  a r e  n o  " u n d e r l y i n g  
f o r m s "  f r o m  w h i c h  s u r f a c e  f o r m s  a r e  d e r i v e d .

3. GENERAL AMPLE DESCRIPTION
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AMPLE h a s  m a in  m o d u l e s :  SETUP, TEXTIN and  ANALYSIS. SETUP 
r e a d s  f i l e s  c o n t a i n i n g  i n f o r m a t i o n  a b o u t  t h e  l a n g u a g e ,  c r e a t i n g  
i n t e r n a l  s t r u c t u r e s  f o r  TEXTIN a n d  ANALYSIS. M ost  s i g n i f i c a n t l y ,  
SETUP r e a d s  o n e  o r  m ore  d i c t i o n a r i e s ,  c r e a t e s  a t r i e  s t r u c t u r e
b a s e d  o n  a l l o m o r p h s  ( c h a r a c t e r  s t r i n g s )  f o r  a c c e s s i n g  t h e
i n f o r m a t i o n  a b o u t  t h a t  a l l o m o r p h  a n d  t h e  morpheme i t  r e p r e s e n t s .

TEXTIN i d e n t i f i e s  t h e  w o r d s  o f  t h e  t e x t ,  p u t t i n g  t o  o n e  s i d e  
w h i t e  s p a c e ,  c a p i t a l i z a t i o n  i n f o r m a t i o n ,  f o r m a t  m a rk u p ,  an d  
p u n c t u a t i o n .  U s e r - s p e c i f i e d  o r t h o g r a p h i c  c h a n g e s  a r e  a p p l i e d ,  
a l l o w i n g  t h e  i n t e r n a l  w o r k i n g  r e p r e s e n t a t i o n  t o  d i f f e r  f r o m  t h e  
p r a c t i c a l  o r t h o g r a p h y  o f  t h e  t e x t .

A n a l y s i s  p a r s e s  b y  ( i )  d i s c o v e r i n g  a l l  p o s s i b l e  s e q u e n c e s  o f  
m a t c h i n g  a l l o m o r p h s  a n d  ( i i )  f i l t e r i n g  t h e s e  w i t h  t h e  t e s t s  t h a t  
t h e  u s e r  w r i t e s  i n  v a r i o u s  l i n g u i s t i c a l l y - o r i e n t e d  c o n s t r a i n t
l a n g u a g e s  ( a s  d e s c r i b e d  b e l o w ) . T h i s  p r o c e e d s  b o t t o m - u p ,
l e f t - t o - r i g h t  a n d  e x h a u s t i v e l y ,  i . e . ,  a l l  p o s s i b l e  c o m b i n a t i o n s  
o f  m a t c h i n g  m o r p h e m e s  a r e  d i s c o v e r e d ,  a n d  a l l  w h i c h  p a s s  t h e
t e s t s  a r e  r e t u r n e d  i n  t h e  o u t p u t .  M a t c h i n g  a n d  f i l t e r i n g  a r e
i n t e g r a t e d  s o  a s  t o  a b a n d o n  f a l s e  p a t h s  a s  e a r l y  a s  p o s s i b l e .

T h e r e  a r e  tw o  t y p e s  o f  t e s t .  S u c c e s s o r  t e s t s  a p p l y  w h e n  a  
m a t c h i n g  a l l o m o r p h  i s  c o n s i d e r e d  a s  t h e  n e x t  p o s s i b l e  morpheme o f  
a n  a n a l y s i s .  F i n a l  t e s t s ,  g e n e r a l l y  i n c o r p o r a t i n g  n o n - l o c a l  
d e p e n d e n c i e s ,  a r e  d e f e r r e d  u n t i l  a n  e n t i r e  d e c o m p o s i t i o n  i s  
d i s c o v e r e d ,  o n e  w h i c h  p a s s e s  a l l  s u c c e s s o r  t e s t s .

More s p e c i f i c a l l y ,  a s  p r o c e s s i n g  p r o c e e d s ,  a  p a r t i a l  
a n a l y s i s  i s  m a i n t a i n e d .  W h e n e v e r  a  m a t c h i n g  a l l o m o r p h  i s
d i s c o v e r e d ,  s u c c e s s o r  t e s t s  a r e  a p p l i e d  b e t w e e n  t h e  p a r t i a l  
a n a l y s i s  ( u s u a l l y  i t s  l a s t  m orph em e)  a n d  t h e  morphem e u n d e r  
c o n s i d e r a t i o n  a s  a  s u c c e s s o r  ( f o r  w h i c h  s o m e  a l l o m o r p h  h a s  b e e n  
m a t c h e d ) .  F o r  e x a m p l e ,  i n  a n a l y z i n g  r l k a y k a a m a r a n  ' h e  w a s
w a t c h i n g  m e 1 , ^he f o l l o w i n g  s t a g e  w o u l d  b e  r e a c h e d :

s e e  IMPFV
I I

PARTIAL ANALYSIS: r i k a -  - y k a :
POSSIBLE SUCCESSOR: -m a 10BJ

REMAINING STRING: m a r a n

One o f  t h e  s u c c e s s o r  t e s t s ,  t o  t a k e  a n  e x a m p l e ,  i n s u r e s  t h a t
v o c a l i c  l e n g t h  ( r e p r e s e n t e d  h e r e  a s  a  c o l o n )  i s  n o t  f o l l o w e d  b y  
s y l l a b l e - c l o s i n g  s u f f i x  ( s i n c e  l o n g  v o w e l s  c a n n o t  o c c u r  i n  a  
c l o s e d  s y l l a b l e ) .

S u c c e s s o r  t e s t s  h a v e  t h e  a d v a n t a g e  o f  e l i m i n a t i n g  f a l s e  
p a t h s  b e f o r e  t h e y  c o n s u m e  m o r e  c o m p u t a t i o n ,  b u t  t h e y  c a n  n o t  
a p p e a l  t o  f o l l o w i n g  m o r p h e m e s ,  s i n c e  t h e s e  h a v e  n o t  y e t  b e e n  
i d e n t i f i e d .  B u t  f i n a l  t e s t s  a p p l y  c o n s t r a i n t s  t o  a n  e n t i r e
a n a l y s i s ,  s o  c a n  e x p r e s s  f o r w a r d - r e f e r r i n g  c o n s t r a i n t s .  F o r  
e x a m p l e ,  a  f i n a l  t e s t  m i g h t  s a y  t h a t  a  m o r p h o p h o n e m i c a l l y
a f f e c t e d  u n i t  m u s t  b e  f o l l o w e d  ( n o t  n e c e s s a r i l y  a d j a c e n t l y )  b y  a  
t r i g g e r  f o r  t h e  p r o c e s s .  A l s o ,  f i n a l  t e s t s  c a n  i m p o s e  
w e l l - f o r m e d n e s s  c o n s t r a i n t s  e x p r e s s e d  o n  a  p a r t i c u l a r  m orp hem e;  
e . g .  i t  m i g h t  c o n s t r a i n  t h e  c a t e g o r y  o f  t h e  f i n a l  m o r p h e m e .
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4 .  PHENOMENA

AMPLE c a n  h a n d l e  a w i d e  v a r i e t y  o f  p h e n o m e n a .  U n i t s  may b e  
p r e f i x e s ,  r o o t s  o r  s u f f i x e s ,  r e a l i z e d ,  n u l l ,  o r  t h e  r e d u p l i c a t i o n  
o f  a n  a d j a c e n t  s e g m e n t  M orphem es  may h a v e  m u l t i p l e  a l l o m o r p h s .  
AMPLE c a n  h a n d l e  t h e  r e d u p l i c a t i o n  o f  a d j a c e n t  s e g m e n t s  ( a l t h o u g h  
t h e  m e c h a n i s m  may b e  c l u m s y  i n  som e c a s e s ,  a s  d i s c u s s e d  b e l o w ) .  
I n f i x a t i o n  i s  h a n d l e d ,  e v e n  w hen o b s c u r e d  b y  p r i o r  o r  s u b s e q u e n t  
a f f i x a t i o n  o r  r e d u p l i c a t i o n .  The c o m p o u n d i n g  o f  r o o t s  i s  h a n d l e d  
( b u t  n o t h i n g  h a s  b e e n  d o n e  t o  t r e a t  t h e  c o m p o u n d i n g  o f  
m o r p h o l o g i c a l l y - c o m p l e x  w o r d s ) .

4.1. Types of unit
AMPLE c a n  d e a l  w i t h  r o o t s ,  s u f f i x e s  an d  p r e f i x e s  ( o f  c o u r s e ! ) .  
More i n t e r e s t i n g l y ,  i t  c a n  d e a l  w i t h  i n f i x e s ,  s u c h  a s  t h o s e  o f  
P h i l i p p i n e  l a n g u a g e s ,  f o r  w h i c h  a n  i n f i x  may b e  w i t h i n  a  r o o t  o r  
w i t h i n  a  p r e f i x ,  a n d  w h e r e  r e d u p l i c a t i o n  may a p p l y  a f t e r  
i n f i x a t i o n .  AMPLE a l l o w s  com p oun d  r o o t s ,  p o s s i b l y  c o n s t r a i n e d  b y  
t h e  c a t e g o r i e s  o f  t h o s e  r o o t s .

AMPLE a l l o w s  n u l l  a l l o m o r p h s .  The o c c u r r e n c e  o f  n u l l s  m u st  
b e  s t r o n g l y  c o n s t r a i n e d ,  s i n c e  t h e y  a r e  n o t  c o n s t r a i n e d  b y  t h e  
c h a r a c t e r s  o f  t h e  w o r d  b e i n g  a n a l y z e d .  F o r  e x a m p l e ,  i n  Napo  
Q u i c h u a ,  t h e  a g e n t i v e  n o m i n a l i z e r  h a s  n o  p h o n o l o g i c a l  
r e a l i z a t i o n ,  d u e  t o  i t s  l e n i t i o n  a n d  u l t i m a t e  l o s s .  Bu t  t h e r e  i s  
a s t r o n g  c o n s t r a i n t  o n  i t s  o c c u r r e n c e :  i t  m u s t  b e  a t  a  b o u n d a r y  
w h e r e  a n  u n i n f l e c t e d  v e r b  i s  e i t h e r  w o r d  f i n a l  o r  f o l l o w e d  b y  
s u f f i x e s  t y p i c a l  o f  n o u n s .  When a d a p t i n g  t o  P a s t a z a  Q u i c h u a ,  
w h e r e  t h e  a g e n t i v e  i s  / h / , i t  i s  t h u s  p o s s i b l e  t o  i n s e r t  / h /  i n  
t h e  a p p r o p r i a t e  p l a c e s  w i t h  c o n s i d e r a b l e  a c c u r a c y .  ( F o r  e x a m p l e ,  
r l t a  { -  r i -  ' g o '  - 0  ' a g e n t i v e 1 - t a  ' a c c u s a t i v e 1 , m e a n i n g  ' t o  t h e  
o n e  who g o e s ' )  c a n  b e c o m e  r i - j - t a .

4.2. Phonologically conditioned allosorphy
The o c c u r r e n c e  o f  e a c h  a l l o m o r p h  i n  a n  a n a l y s i s  may b e  
c o n s t r a i n e d  b y  i t s  p h o n o l o g i c a l  o r  m o r p h e m ic  e n v i r o n m e n t ,  e i t h e r  
l o c a l l y  o r  a t  a  d i s t a n c e .

4.2.1. Issues of representation
The p r a c t i c a l  o r t h o g r a p h y  o f  t h e  t e x t  b e i n g  a n a l y z e d  may n o t  b e
t h e  b e s t  r e p r e s e n t a t i o n  f o r  d o i n g  a n a l y s i s .  ( F o r  e x a m p l e ,  i n
a n a l y z i n g  S p a n i s h ,  i t  m i g h t  b e  d e s i r a b l e  t o  e l i m i n a t e  t h e  
o r t h o g r a p h i c  a l t e r n a t i o n  b e t w e e n  z  a n d  c  ( c f .  r a i z ,  r a i c e s ) .
L i k e w i s e ,  f o r  L a t i n  o n e  m i g h t  w i s h  t o  c o n v e r t  x  i n t o  k s ,  s o  t h a t
a  m orphem e b o u n d a r y  c o u l d  b e  p o s i t e d  b e t w e e n  t h e  Jc a n d  t h e  s  ( c f .  
r e x  » / r e k s / ,  r e g i s ) . O r t h o g r a p h i c  c h a n g e s  s u c h  a s  t h e s e  c a n  b e  
made b y  t h e  TEXTIN m o d u l e .

4.2.2. Conditions on allomorphs
A l l o m o r p h s  may b e  r e s t r i c t e d  b y  p h o n o l o g i c a l  ( c h a r a c t e r  s t r i n g )  
e n v i r o n m e n t .  F o r  e x a m p l e ,  t h e  f o l l o w i n g  s a y s  t h a t  m may o n l y  
o c c u r  f o l l o w e d  b y  p .  ( \ ®  A® t h e  f i e l d  c o d e  f o r  " a l l o m o r p h " . )

\ a  m /  __p
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C l a s s e s  o f  p h o n o l o g i c a l  s e g m e n t s  c a n  b e  d e f i n e d ,  an d  t h e n  u s e d  i n  
c o n s t r a i n i n g  e n v i r o n m e n t s .  F o r  e x a m p l e ,  t h e  f o l l o w i n g  d e f i n e s  
t h e  c l a s s  o f  l a b i a l s  an d  s t a t e s  t h a t  m m u st  p r e c e d e  o n e  o f  th em :

\ s c l  + l a b i a l  p b f  v  
\ a  m /  __ [ + l a b i a l ]

4.2.3. Multiple allomorphs
Any morpheme may h a v e  m u l t i p l e  a l l o m o r p h s .  F o r  e x a m p l e ,  t h e  

s e c o n d  p e r s o n  p o s s e s s i v e  i n  m o s t  Q u e c h u a  l a n g u a g e s  h a v e  t h r e e
a l l o m o r p h s ,  c o n s t r a i n e d  a s  f o l l o w s  ( w h e r e  " [V ]  __ i n d i c a t e s  " n o t
f o l l o w i n g  a v o w e l ) :

\ a  n i k i  /  “ [V] _ | h a t u n n i k i  ' y o u r  b i g  o n e '
\ a  k i  /  i  __  j w a s i k i  ' y o u r  h o u s e '
\ a  y k i  /  [V] __  j u m a y k i  ' y o u r  h e a d 1

R e d u p l i c a t i o n  i s  h a n d l e d  a s  a  s p e c i a l  c a s e  o f  m u l t i p l e  
a l l o m o r p h s ,  w h e r e  e a c h  p o s s i b i l i t y  i s  e n u m e r a t e d  a l o n g  w i t h  t h e  
e n v i r o n m e n t  i n  w h i c h  i t  c o u l d  o c c u r  ( s o ,  e . g . ,  p a  b e f o r e  p a . . M 
p e  b e f o r e  p e ,  e t c .  I f  t h e  r e d u p l i c a t e d  f r o m  i s  a l w a y s  a  p r e c i s e  
s u b s t r i n g  o f  w h a t  p r e c e d e s  o r  f o l l o w s ,  i t  i s  p o s s i b l e  t o  s t a t e  
t h i s  a s  a  g e n e r a l  c o n s t r a i n t  r a t h e r  t h a n  w i t h  e a c h  a l l o m o r p h .

4.3. Morphophonemics
P h e n o m e n a  i n v o l v i n g  b o t h  a l t e r e d  f o r m  ( p h o n o l o g y )  a n d  morphem e  
i d e n t i t y  p r e s e n t  n o  s p e c i a l  c h a l l e n g e  b e c a u s e  b o t h  t h e  c h a r a c t e r  
s t r i n g  b e i n g  a n a l y z e d  a n d  t h e  p o s i t e d  m o r p h e m e s  a r e  a v a i l a b l e .

4.3.1. Morpheme environment constraints on allomorphs
I t  i s  p o s s i b l e  t o  r e s t r i c t  t h e  o c c u r r e n c e  o f  a n  a l l o m o r p h  b y  t h e  
i d e n t i t y  o f  a  m orp h em e;  e . g . ,  t h e  f o l l o w i n g  s a y s  t h a t  a n  m u s t  b e  
d i r e c t l y  f o l l o w e d  b y  t h e  m orphem e i d e n t i f i e d  a s  PQR:

\ a  a n  + /  _PQR

4.3.2. Properties and tests
I t  i s  p o s s i b l e  t o  a s s i g n  p r o p e r t i e s  t o  a l l o m o r p h s  a n d  m o r p h e m e s  
a n d  t o  u s e  t h e s e  l n  a  v e r y  g e n e r a l  c o n s t r a i n t  l a n g u a g e .  F o r  
e x a m p l e ,  s u p p o s e  i n h e r e n t l y  a p p l i c a t i v e  v e r b s  may n e v e r  c o - o c c u r  
w i t h  t h e  a p p l i c a t i v e  s u f f i x  APPL; t h i s  c a n  b e  i n c o r p o r a t e d  b y  
a s s i g n i n g  t h e  p r o p e r t y  " a p p l i c a t i v e "  t o  a p p l i c a t i v e  v e r b s  a n d  
i m p o s i n g  t h e  f o l l o w i n g  t e s t :

I F  ( c u r r e n t  p r o p e r t y  i s  a p p l i c a t i v e )
THEN (FOR _ALL_RIGHT

NOT (RIGHT m orphname i s  APPL))

4.4. Morphotactlcs
AMPLE h a s  g o o d  m e c h a n i s m s  f o r  i m p o s i n g  m o r p h o t a c t i c  c o n s t r a i n t s  
T h e r e  a r e  t h r e e  m a i n  t y p e s :  c a t e g o r i a l ,  o r d e r i n g ,  a n d  morphem e  
c o - o c c u r r e n c e  c o n s t r a i n t s .
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R o o t s  a r e  a s s i g n e d  o n e  o r  more  c a t e g o r i e s ,  an d  a f f i x e s  a r e  
a s s i g n e d  o n e  o r  m ore  c a t e g o r y  p a i r s .  The l e f t  p a r t  o f  a c a t e g o r y  
p a i r  i s  c a l l e d  t h e  " f r o m c a t e g o r y "  an d  c o r r e s p o n d s  r o u g h l y  t o  t h e  
a f f i x ' s  " s u b c a t e g o r i z a t i o n  f r a m e . "  The r i g h t  p a r t  i s  c a l l e d  t h e  
" t o c a t e g o r y "  an d  c o r r e s p o n d s  r o u g h l y  t o  i t s  " c a t e g o r y " . )

I n  t e r m s  o f  t h e s e  c a t e g o r i e s ,  t e s t s  c a n  b e  i m p o s e d  w h i c h  
" s t r u c t u r e "  t h e  v e r b .  To i l l u s t r a t e ,  c o n s i d e r  a l a n g u a g e  w i t h  
d e r i v a t i o n a l  s u f f i x e s  ( c a u s a t i v e ,  a p p l i c a t i v e ,  p a s s i v e ,  e t c . )  
an d  i n f l e c t i o n a l  p r e f i x e s .  What i n f l e c t i o n  i s  p e r m i t t e d  a n d / o r  
r e q u i r e d  d e p e n d s  o n  t h e  c a t e g o r y  a f t e r  d e r i v a t i o n ,  a n d  " p r i o r "  
i n f l e c t i o n .  L i k e w i s e ,  t h e  d e r i v a t i o n a l  p o s s i b i l i t i e s  d e p e n d  on  
t h e  c a t e g o r y  o f  t h e  r o o t  a n d  a n y  " p r i o r "  d e r i v a t i o n .  T h u s ,  t h e  
c o n s t r a i n t s  m u s t  p r o p a g a t e  f i r s t  p r o g r e s s i v e l y  f r o m  t h e  r o o t  
t h r o u g h  t h e  s u f f i x e s  an d  t h e n  r e g r e s s i v e l y  t h r o u g h  t h e  p r e f i x e s  
t o  t h e  b e g i n n i n g  o f  t h e  w o r d :

S
/ \

/  U
/  / \

/  /  z
/  /  / \

/  /  X \
/  /  / \  \  

/  /  /  \  \
R / S  T /U  V W/X Y /Z  
p f x  p f x  r o o t  s f x  s f x

T h i s  c a n  b e  a c h i e v e d  b y  f o u r  t e s t s :  ( i )  f o r  s u f f i x e s  ( w h e r e b y  V=W
a n d  X=Y a b o v e ) :

l e f t  t o c a t e g o r y  i s  c u r r e n t  f r o m c a t e g o r y

( i i )  f o r  p r e f i x e s  ( w h e r e b y  U=R a b o v e ) :  

c u r r e n t  t o c a t e g o r y  i s  l e f t  f r o m c a t e g o r y

( i i i )  t o  i d e n t i f y  t h e  c a t e g o r y  a f t e r  d e r i v a t i o n  w i t h  t h a t  o f  t h e  
c l o s e s t  p r e f i x  (Z*T a b o v e ) :

I F  ( c u r r e n t  t y p e  i s  p r e f i x  AND r i g h t  t y p e  i s  r o o t )
THEN ( c u r r e n t  f r o m c a t e g o r y  i s  FINAL t o c a t e g o r y )

( i v )  t o  e n s u r e  t h a t  t h e  c a t e g o r y  o f  t h e  w h o l e  w o r d  (S  a b o v e )  i s  
an  a c c e p t a b l e  t e r m i n a l  c a t e g o r y ,  we cam d e c l a r e  a  c l a s s  o f  s u c h  
c a t e g o r i e s  ( c a l l e d  "f i n a l c a t e g o r i e s " ) a n d  s t a t e :

IN IT IA L  t o c a t e g o r y  i s  member f i n a l c a t e g o r i e s

T h u s ,  a l t h o u g h  AMPLE p r o c e s s e s  f r o m  l e f t  t o  r i g h t ,  i t  i s  p o s s i b l e  
t o  m o d e l  t h e  p e r c o l a t i o n  o f  f e a t u r e s  f r o m  a  r o o t  t h r o u g h  t h e  
l a y e r s  o f  a f f i x a t i o n ,  t o  t h e  f i n a l  r e s u l t i n g  c a t e g o r y  o f  t h e  
w o r d .

4 . 4 . 1 .  C a t e g o r i a l  c o n s t r a i n t s
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4.4.2. Ordering
The u s e  o f  c a t e g o r y  a l o n g  t h e  l i n e s  d e s c r i b e d  i n  t h e  p r e v i o u s  
s e c t i o n  may s t r o n g l y  r e s t r i c t  t h e  o r d e r  i n  w h i c h  a f f i x e s  o c c u r .  
H o w e v e r ,  f u r t h e r  o r d e r i n g  c o n s t r a i n t s  may n e e d  t o  b e  i m p o s e d .  
T h i s  c a n  b e  d o n e  b y  g i v i n g  e a c h  a f f i x  a  number ( n o t  n e c e s s a r i l y  
u n i q u e )  a n d  i m p o s i n g  a  s u c c e s s o r  t e s t  l i k e  t h e  f o l l o w i n g :

l e f t  o r d e r c l a s s  < c u r r e n t  o r d e r c l a s s

T h i s  s a y s  t h a t  e v e r y  m o r p h e m e ' s  number m u st  b e  g r e a t e r  t h a n  o f
t h e  p r e c e d i n g  m o rp h em e ,  s o  i n s i s t s  t h a t  t h e  o r d e r c l a s s  s t r i c t l y  
i n c r e a s e .  I f  "< = " w e r e  u s e d  i n s t e a d  o f  " <" ,  t h e  o r d e r  w o u l d  b e  
n o n - d e c r e a s i n g .

The t e s t  c o u l d  a l s o  b e  m o d i f i e d  t o  t o l e r a t e  m o r p h e m e s  t h a t  
a r e  n o t  c o n s t r a i n e d  b y  o r d e r ,  s u c h  a s  Q u e c h u a  - J i a  ' j u s t 1 . To do  
s o ,  we a s s i g n  - 1 2 a  o r d e r c l a s s  0 ,  a n d  t h e n  t h e  f o l l o w i n g  s u c c e s s o r  
t e s t  p a s s e s  i t :

( c u r r e n t  o r d e r c l a s s  = 0 )
OR ( l e f t  o r d e r c l a s s  <= c u r r e n t  o r d e r c l a s s )

To make o r d e r i n g  c o n s t r a i n t s  a p p l y  o v e r  o n e  o r  m o re  " f l o a t i n g "  
a f f i x e s ,  we g i v e  t h e  f o l l o w i n g  f i n a l  t e s t :

I P  ( ( c u r r e n t  o r d e r c l a s s  = 0 )
AND (F0R_S0ME_LEFT (LEFT o r d e r c l a s s  ~= 0 ) )
AND (F0R_S0ME_RIGHT (RIGHT o r d e r c l a s s  0 ) ) )

THEN (LEFT o r d e r c l a s s  <= RIGHT o r d e r c l a s s )

4.4.3. Morpheme co-occurrence constraints
AMPLE h a s  a  s i m p l e  b u t  e f f e c t i v e  c o n s t r a i n t  l a n g u a g e  f o r  i m p o s i n g  
c o n d i t i o n s  o n  t h e  c o - o c c u r r e n c e  o f  m o r p h e m e s .  The  f o l l o w i n g ,  f o r  
e x a m p l e ,  s a y s  t h a t  PLIMPF c a n  o n l y  o c c u r  p r e c e d i n g  IMPFV:

\ m c c  PLIMPF /  _ IMPFV

The f o l l o w i n g  s a y s  t h a t  t h e  c o n d i t i o n a l  m orphem e CND m u s t  b e  
p r e c e d e d  ( n o t  n e c e s s a r i l y  c o n t i g u o u s l y )  b y  a  f i r s t ,  s e c o n d ,  o r  
t h i r d  v e r b a l  p e r s o n  s u f f i x  ( r e s p e c t i v e l y  named 1 ,  2 ,  a n d  3 ) :

\ m c c  CND /  1 . . /  2 . . /  3 . .

T he  f i r s t  l i n e  o f  t h e  f o l l o w i n g  d e f i n e s  a  c l a s s  o f  m o r p h e m e s  DIR,  
a n d  t h e  s e c o n d  s a y s  t h a t  PLDIR m u s t  p r e c e d e  a  d i r e c t i o n a l ,  t h e  
r e c i p r o c a l  o r  t h e  r e f l e x i v e :

\ m c l  DIR IN OUT UP DWN
\ m c c  PLDIR /  [D IR ]  _ /  RECIP __ /  REF _
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5. AMPLE AS A TOOL FOR LINGUISTIC EXPLORATION
AMPLE h a s  som e f e a t u r e s  t h a t  e n h a n c e  i t s  u s e f u l n e s s  a s  an  
e x p l o r a t o r y  t o o l :

1 .  I t  r e t u r n s  t h e  o r i g i n a l  w o r d  ( t h e  \ a  f i e l d ) ,  t h a t  w o r d ' s  
d e c o m p o s i t i o n  ( \ d ) ,  an d  t h e  a n a l y s i s  ( \ a ) ;  f o r  e x a m p l e ,  
t h e  f o l l o w i n g  w o u l d  b e  r e t u r n e d  f o r  r i r k a n s a p a n a s h l  ' t h e y  
now w e n t  ( i t  i s  r e p o r t e d ) ' :

\ a  < VI g o  > PST 3 PLUR NOW REPORT 
\ d  r i - r k a - n - s a p a - n a - s h i  
\w  r i r k a n s a p a n a s h l

2 .  AMPLE r e p o r t s  a l l  a n a l y t i c  f a i l u r e s ,  i n d i c a t i n g  how f a r  
i n t o  t h e  w o r d  i t  w a s  a b l e  t o  p r o c e e d  a n d  w h e t h e r  o r  n o t  
i t  m a t c h e d  a  r o o t .  T h i s  o f t e n  p r o v i d e s  a s u f f i c i e n t  c l u e  
t o  why t h e  w o r d  f a i l e d  t o  b e  a n a l y z e d .  F o r  e x a m p l e ,  t h e  
f o l l o w i n g  r e p o r t  ( f o r  Q u e c h u a )  m a k e s  i t  c l e a r  t h a t
( 1 )  t h e  r o o t  f e s  ( h w e s  a f t e r  o r t h o g r a p h y  c h a n g e s )  i s  n o t  
a v a i l a b l e  a s  a  r o o t ,  a n d  ( i i )  t h e r e  i s  a n  i n c o m p a t i b i l i t y  
b e t w e e n  t h e  s u f f i x e s  - r J  a n d  - m a : :

R o o t  F a i l u r e :  h w e s q a  [ | f e s q a  ]
A n a l y s i s  F a i l u r e :  r o q o r i m a a c h u n  [ r o q o r i m a: c h u n  ]

3 .  AMPLE r e p o r t s  o n  t h e  e f f e c t i v e n e s s  o f  e a c h  t e s t :  f o r  b o t h  
t h e  u s e r - d e f i n e d  a n d  b u i l t - i n  t e s t s ,  i t  r e p o r t s  how many  
t i m e s  e a c h  t e s t  w a s  a p p l i e d  ( i n  t h e  o r d e r  o f  a p p l i c a t i o n )  
a n d  how many a n a l y s e s  w e r e  f i l t e r e d  o u t  b y  t h e  t e s t :

CATEGORY_ST c a l l e d  1 0 9 3 6  t i m e s ,  f a i l e d  7 4 3 6 .
0RDER_ST c a l l e d  3 5 0 0  t i m e s ,  f a i l e d  3 9 2 .

F0RESH0RTEN__ST c a l l e d  3 1 0 8  t i m e s ,  f a i l e d  3 6 .
ML0WERS_ST c a l l e d  3 0 7 2  t i m e s ,  f a i l e d  2 .

4 .  The u s e r  cam c o n t r o l  w h i c h  t e s t s  a r e  a p p l i e d  and  t h e  
o r d e r  o f  t h e i r  a p p l i c a t i o n .  T h i s  m a k e s  i t  p o s s i b l e  t o  
s e e  t h e  e f f e c t i v e n e s s  o f  e a c h ,  a n d  t h e i r  j o i n t  e f f e c t .

5 .  A m b i g u i t y  l e v e l s  a r e  r e p o r t e d  a s  f o l l o w s :

2 w o r d s  w i t h  0 
6 2 0  w o r d s  w i t h  1 

73  w o r d s  w i t h  2
2 w o r d s  w i t h  3
3 w o r d s  w i t h  4

a n a l y s e s . 
a n a l y s i s . 
a n a l y s e s . 
a n a l y s e s . 
a n a l y s e s .

6 .  I t  i s  p o s s i b l e  t o  t r a c e  AMPLE1s  p a r s i n g  a c t i v i t y .  F o r  
e x a m p l e ,  t h e  f o l l o w i n g  i s  t h e  f i r s t  p a r t  o f  t h e  t r a c e  f o r  
t h e  Q u e c h u a  w o r d  n i m a r a n :
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P a r s i n g  n i m a r a n  
r o o t :  n i ,  * n i  V2
s f x :  ma, 1 0 ,  V 2 / V 1 ,  o r d e r :  7 0 ,  u l l o n g  M l o w e r s ,  f s h r t n d  

s f x :  r a ,  PST, V l / V l ,  o r d e r :  8 0 ,  f o r e s h o r t e n s
s f x : n , 3 P , N 0 / N 0 ,  o r d e r :  140 /  CV]

S u f f i x  t e s t  CATEGORY_ST f a i l e d .
s f x : n , 3 P ,  R 1 / R 0 ,  o r d e r :  140 /  [V]

S u f f i x  t e s t  CATEGORY ST f a i l e d .
S f x : n , 3 P , N l / N O , o r d e r :  140 /  [V] _

S u f f i x  t e s t  CATEGORY ST f a i l e d .
s f x : n , 3 ,  V I / V 0 , o r d e r :  1 2 0 ,  f o r e s h o r t e n s

No m ore  s u f f i x e s  f o u n d .
End o f  w o r d  f o u n d ;  c h e c k i n g  f i n a l  t e s t s

A n a l y s i s  s t r i n g :  < V2 * n i  > 10 PST 3 
D e c o m p o s i t i o n :  n i - m a - r a - n

A f t e r  a c h i e v i n g  t h i s  a n a l y s i s ,  AMPLE c o n t i n u e s  
c o n s i d e r i n g  o t h e r  p o s s i b i l i t i e s .

A f u t u r e  v e r s i o n  o f  AMPLE w i l l  a l l o w  s e l e c t i v i t y  i n  t r a c i n g ,  more  
i n f o r m a t i o n  i n  t h e  a n a l y s i s  ( e . g . ,  t h e  c a t e g o r y  p a i r s  u s e d  i n  a n  
a n a l y s i s ) ,  an d  q u a n t i f y i n g  t h e  c o n t r i b u t i o n  o f  s p e c i f i c  
m o r p h e m e s ,  t e s t s ,  e t c .  t o  a n a l y s i s .

6. CONCLUDING REFLECTIONS
AMPLE' s  m a t c h - a n d - f i l t e r  a l g o r i t h m  p e r m i t s  a  h i g h l y  m o d u l a r  
a p p r o a c h  t o  m o r p h o l o g i c a l  p a r s i n g .  S t r o n g  r e j e c t i o n  o f  i n c o r r e c t  
a n a l y s e s  c a n  b e  a c h i e v e d  b y  t h e  c o m b i n e d  e f f e c t  o f  d i v e r s e  
f i l t e r s ,  e a c h  o f  w h i c h  may b e  q u i t e  s i m p l e .  D i r e c t  r e p o r t i n g  o f  
t h e s e  l i n g u i s t i c  c o n s t r a i n t s  i s  p o s s i b l e  b e c a u s e  t h e y  a r e  n o t  
c o m p i l e d  i n t o  som e  i n a c c e s s i b l e  f o r m .  And t h i s  a l g o r i t h m  h a s  
p r o v e n  t o  b e  r e a s o n a b l y  e f f i c i e n t .

Our s u c c e s s  w i t h  t h e  m a t c h - a n d - f i l t e r  a l g o r i t h m  s u g g e s t s  
t h a t  m o r p h o l o g y  h a s  a  m o d u l a r  o r g a n i z a t i o n .  T h a t  i s ,  t h e  
o r g a n i z a t i o n  o f  m o r p h o l o g y  may r e s e m b l e  t h e  C h o m s k i a n  a p p r o a c h  t o  
s y n t a x ,  w h e r e  d i v e r s e  p r i n c i p l e s  o r  t h e o r i e s ,  h e r e  e x p r e s s e d  a s  
f i l t e r s ,  j o i n t l y  b u t  m o d u l a r l y  d e f i n e  a c c e p t a b i l i t y .

E a c h  f i l t e r  i s  e x p r e s s e d  s i m p l y  i n  a  n o t a t i o n  a p p r o p r i a t e  t o  
t h e  p h e n o m e n a  a n d  f a m i l i a r  t o  t h e  u s e r s ,  i n  t h i s  c a s e  l i n g u i s t s .  
T h i s  m a k e s  i t  q u i t e  s t r a i g h t  f o r w a r d  f o r  l i n g u i s t s  t o  s e t  u p  a  
m o r p h o l o g i c a l  p a r s e r  f o r  a  l a n g u a g e .  E x p e r i e n c e  h a s  r e p e a t e d l y  
s h o w n  t h a t  d o i n g  s o  l e a d s  t h e  u s e r  t o  new i n s i g h t s  i n t o  t h e  
m o r p h o l o g y .  B e c a u s e  t h e r e  a r e  v a r i o u s  c o n s t r a i n t  l a n g u a g e s  a n d  
m e c h a n i s m s ,  AMPLE c a n  b e  u s e d  t o  m o d e l  v a r i o u s  c o n c e p t i o n s  o f  t h e  
m o r p h o l o g y ,  a n d  t o  q u i c k l y  t e s t  t h e s e  a g a i n s t  l a r g e  a m o u n t s  o f  
d a t a .

The  m o d u l a r i t y  a f f o r d e d  b y  t h e  m a t c h - a n d - f i l t e r  a p p r o a c h  
a l s o  m a k e s  AMPLE v e r y  e x t e n s i b l e :  a s  o t h e r  c o n s t r a i n t  l a n g u a g e s  
a r e  d i s c o v e r e d  ( a n d  n o t a t i o n s  d e v e l o p e d )  t h e y  c a n  b e  i n t e g r a t e d  
i n t o  AMPLE. F o r  e x a m p l e ,  we a r e  c o n s i d e r i n g  a n  a l t e r n a t i v e  ( o r  
c o m p l e m e n t )  t o  t h e  c a t e g o r y  s y s t e m  t h a t  w o u l d  a l l o w  c a t e g o r i e s  t o  
b e  d e f i n e d  a s  s e t s  o f  f e a t u r e s ,  i n c o r p o r a t i n g  p e r c o l a t i o n ,  
r e d u n d a n c y  r u l e s  a n d  f e a t u r e  a d d i t i o n  r u l e s ;  s e e  i n  W eber  1 9 8 7 b .
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We e x p e c t  AMPLE t o  b e  u s e f u l  i n  c o n j u n c t i o n  w i t h  v a r i o u s  
s y n t a c t i c  p a r s e r s .  I n  o n e  e x p e r i m e n t ,  a u n i f i c a t i o n - b a s e d  p a r s e r  
( a d a p t e d  f r o m  a n  e a r l y  v e r s i o n  o f  P A T R -II )  p a r s e s  s e n t e n c e s  ( o r  
s e n t e n c e  f r a g m e n t s )  u s i n g  AMPLE o u t p u t .  The morpheme  
d i c t i o n a r i e s ,  a r e  r e a d  o n c e  b y  AMPLE f o r  t h e  m o r p h o l o g i c a l  
i n f o r m a t i o n  a n d  a g a i n  b y  t h e  s y n t a c t i c  p a r s e r  =o r  t h e  s y n t a c t i c  
p a r s e r .

We h o p e  t h a t  i n  t h e  n e x t  f e w  y e a r s  AMPLE w i l l  b e  a p p l i e d  t o  
a  much w i d e r  r a n g e  o f  l a n g u a g e s .

c u r r e n t  a d d r e s s :  D a v i d  Weber
6 0 0 4  S t a n t o n  A v e . A - 1 5  
P i t t s b u r g h ,  PA 1 5 2 0 6
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THE PARALLEL EXPERT PARSER: A MEANING-ORIENTED, 
LEXICALLY-GUIDED, PARALLEL-INTERACTIVE 

MODEL OF NATURAL LANGUAGE UNDERSTANDING

G.  ADRIAENS 
S i e m e n s  NLP R e s e a r c h  

& K a t h o l i e k e  U n i v e r s i t e i t  L e u v e n  
M. T h e r e s i a s t r a a t  2 1  

B - 3 0 0 0  L e u v e n ,  B e l g i u m  
+ 3 2  1 6  2 8 5 0 9 1  

( s i e g e e r t @ k u l c s . u u c p  o r  
s i e g e e r t @ b l e k u l 6 0 . b i t n e t  o r  
s i e g e e r t S c s . k u l e u v e n . a c . b e )

Abstract

T h e  P a r a l l e l  E x p e r t  P a r s e r  ( P E P )  i s  a  n a t u r a l  l a n g u a g e  a n a l y s i s  m o d e l  
b e l o n g i n g  t o  t h e  i n t e r a c t i v e  m o d e l  p a r a d i g m  t h a t  s t r e s s e s  t h e  p a r a l l e l  
i n t e r a c t i o n  o f  r e l a t i v e l y  s m a l l  d i s t r i b u t e d ,  k n o w l e d g e  c o m p o n e n t s  t o  a r r i v e  
a t  t h e  m e a n i n g  o f  a  f r a g m e n t  o f  t e x t .  I t  b o r r o w s  t h e  i d e a  o f  w o r d s  a s  
b a s i c  d y n a m i c  e n t i t i e s  t r i g g e r i n g  a  s e t  o f  i n t e r a c t i v e  p r o c e s s e s  f r o m  t h e  
W o r d  E x p e r t  P a r s e r  ( S m a l l  1 9 8 0 ) ,  b u t  t r i e s  t o  i m p r o v e  o n  t h e  c l a r i t y  o f  
i n t e r a c t i v e  p r o c e s s e s  a n d  o n  t h e  o r g a n i z a t i o n  o f  l e x i c a l l y - d i s t r i b u t e d  
k n o w l e d g e .  A s  o f  n o w ,  e s p e c i a l l y  t h e  p r o c e d u r a l  a s p e c t s  h a v e  r e c e i v e d
a t t e n t i o n :  I n s t e a d  o f  h a v i n g  w i l d - r u n n i n g  u n c o n t r o l l a b l e  i n t e r a c t i o n s ,
PEP r e s t r i c t s  t h e  i n t e r a c t i o n s  t o  e x p l i c i t  c o m m u n i c a t i o n s  o n  a  s t r u c t u r e d  
b l a c k b o a r d ;  t h e  c o m m u n i c a t i o n  p r o t o c o l s  a r e  a  c o m p r o m i s e  b e t w e e n  m a x i m u m  
p a r a l l e l i s m  a n d  c o n t r o l l a b i l i t y .  A t  t h e  s a m e  t i m e ,  i t  i s  n o  l o n g e r  j u s t  
w o r d s  t h a t  t r i g g e r  p r o c e s s e s ;  w o r d s  c r e a t e  l a r g e r  u n i t s  ( c o n s t i t u e n t s ) ,  
t h a t  a r e  i n  t u r n  i n t e r a c t i n g  e n t i t i e s  o n  a  h i g h e r  l e v e l .  L e x i c a l
e x p e r t s  c o n t r i b u t e  t h e i r  a s s o c i a t e d  k n o w l e d g e ,  c r e a t e  h i g h e r - l e v e l  
e x p e r t s ,  a n d  d i e  a w a y .  T h e  l i n g u i s t s  d e f i n e  t h e  l e v e l s  t o  b e  c o n s i d e r e d ,  
a n d  w r i t e  e x p e r t  p r o c e s s e s  i n  a  l a n g u a g e  t h a t  t r i e s  t o  h i d e  t h e  p r o c e d u r a l  
a s p e c t s  o f  t h e  p a r a l l e l - i n t e r a c t i v e  m o d e l  f r o m  t h e m .  P r o b l e m s  i n c l u d e  
t h e  p o s s i b i l i t y  o f  d e a d l o c k  s i t u a t i o n s  w h e n  p r o c e s s e s  w a i t  i n f i n i t e l y  f o r  
e a c h  o t h e r ,  t h e  w a y  t o  e f f i c i e n t l y  p u r s u e  d i f f e r e n t  a l t e r n a t i v e s  ( a s  o f  
n o w ,  t h e  s y s t e m  j u s t  u s e s  d o n ' t - c a r e  d e t e r m i n i s m ) ,  a n d  t e s t i n g  w h e t h e r  t h e  
p r o t o c o l s  a l l o w  l i n g u i s t s  t o  f u l l y  e x p r e s s  t h e i r  n e e d s .  PEP h a s
b e e n  i m p l e m e n t e d  i n  F l a t  C o n c u r r e n t  P r o l o g ,  u s i n g  t h e  L o g i x  p r o g r a m m i n g  
e n v i r o n m e n t .  C u r r e n t  r e s e a r c h  i s  o r i e n t e d  m o r e  t o w a r d s  t h e  p r o b l e m  o f
d i s t r i b u t e d  k n o w l e d g e  r e p r e s e n t a t i o n .  A b s t r a c t i o n s  a n d  g e n e r a l i z a t i o n s  
a c r o s s  l e x i c a l  e x p e r t s  c o u l d  b e  m a d e  u s i n g  p r i n c i p l e s  f r o m  o b j e c t - o r i e n t e d  
p r o g r a m m i n g  ( i n t r o d u c i n g  g e n e r i c ,  p r o t o t y p i c a l  e x p e r t s ;  c p .  H a h n  1 9 8 7 )  . 
T h o u g h t s  a l s o  g o  i n  t h e  d i r e c t i o n  o f  a n  i n t e g r a t i o n  o f  t h e  c o a r s e - g r a i n e d  
p a r a l l e l i s m  w i t h  k n o w l e d g e  r e p r e s e n t a t i o n  i n  a  f i n e - g r a i n e d  p a r a l l e l  
( c o n n e c t i o n i s t )  w a y .
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1. Introduction

I n  t h e  c o u r s e  o f  t h e  l a s t  d e c a d e ,  i n t e r e s t  i n  p a r a l l e l  m a c h i n e s  a n d  
a p p l i c a t i o n s  h a s  s t e a d i l y  b e e n  g r o w i n g  i n  t h e  d i f f e r e n t  d i s c i p l i n e s  t h a t  
d e a l  w i t h  n a t u r a l  l a n g u a g e  u n d e r s t a n d i n g  ( N L U ) . T h i s  o f  c o u r s e  h o l d 3  i n  
t h e  f i r s t  p l a c e  f o r  r e s e a r c h e r s  i n  c o m p u t e r  s c i e n c e  a n d  A I ,  w h o  h a v e  
a l w a y s  b e e n  i n t e r e s t e d  i n  c o m p u t a t i o n a l  p r o c e s s e s  ( s e e  e . g .  K o w a l i k  1 9 8 8 ) .  
R e c e n t  d e v e l o p m e n t s  i n  ( c o m p u t a t i o n a l )  l i n g u i s t i c s  a n d  c o g n i t i v e  
p s y c h o l i n g u i s t i c s  s h o w  t h a t  t h e s e  N L U - r e l a t e d  d i s c i p l i n e s  h a v e  a l s o  b e e n  
m o v i n g  t o w a r d s  p a r a l l e l  m o d e l s .  A m a j o r  f a c t o r  i n f l u e n c i n g  t h i s
d e v e l o p m e n t  i s  t h e  r a p i d l y  g r o w i n g  i n t e r e s t  i n  I n t e r a c t i v e  a p p r o a c h e s  t o  
NLU ( s e e  e . g .  B r i s c o e  1 9 8 7 ,  A l t m a n n  1 9 8 8 ,  A l t m a n n  & S t e e d m a n  1 9 8 8 ) .  
B r i e f l y ,  t h e s e  m o d e l s  m o v e  a w a y  f r o m  t h e  t r a d i t i o n a l  l i n g u i s t i c s - i n s p i r e d  
v i e w s  o f  l a n g u a g e  u n d e r s t a n d i n g  a s  n o n - i n t e r a c t i v e ,  i . e .  a s  a  s e r i a l
a p p l i c a t i o n  o f  p r o c e s s i n g  m o d u l e s  w h o s e  s o l e  m e a n s  o f  c o m m u n i c a t i o n  i s  a  
u n i d i r e c t i o n a l  i n p u t - o u t p u t  c h a n n e l  ( c p .  F o r s t e r  1 9 7 9 ) .  T h e r e  i s  a  g r o w i n g  
b e l i e f  ( b a s e d  o n  e x p e r i e n c e  i n  c o m p u t a t i o n a l  l i n g u i s t i c s  a n d  o n  
p s y c h o l i n g u i s t i c  e x p e r i m e n t a t i o n )  t h a t  n o n - i n t e r a c t i v e  m o d e l s  a r e  
i n c o r r e c t ,  a n d  i n t e r a c t i v e  o n e s  a l l o w i n g  m o r e  f l e x i b l e  c o m m u n i c a t i o n s
a m o n g  c o m p o n e n t s  ( m a i n l y  t o  d e a l  w i t h  a m b i g u i t y )  p r o v e  t o  b e  s u p e r i o r .  
A l t h o u g h  m a t t e r s  a r e  m o r e  c o m p l i c a t e d  t h a n  s t a t e d  h e r e ,  i t  w i l l  b e  c l e a r  
t h a t  I n t e r a c t i v e  m o d e l s  l e n d  t h e m s e l v e s  e a s i l y  t o  p a r a l l e l  a r c h i t e c t u r e s  
( s e e  a l s o  A d r i a e n s  & H a h n  f o r t h c o m i n g ) . F o r  t h e  p r e s e n t a t i o n  o f  t h e

P a r a l l e l  E x p e r t  P a r s e r ,  I  w i l l  o n l y  b r i e f l y  d i s t i n g u i s h  t w o  k i n d s  o f
a p p r o a c h e s  t o  p a r a l l e l  NLU .  On t h e  o n e  h a n d ,  t h e r e  i s  w h a t  c a n  b e  c a l l e d
f l n e - g r a l n  p a r a l l e l i s m ;  o n  t h e  o t h e r  h a n d ,  t h e r e  i s  c o a r s e - g r a l n
p a r a l l e l i s m .  W i t h  f l n e - g r a l n  p a r a l l e l  N L U  I  r e f e r  b a s i c a l l y  t o  t h e  
c o n n e c t i o n i s t  a p p r o a c h  a n d  i t s  d e c e n d a n t s .  C o n n e c t i o n i s t  m o d e l s
f e a t u r e  h u g e  n e t w o r k s  o f  s m a l l  n o d e s  o f  i n f o r m a t i o n ;  c o m p u t a t i o n  i s
r e p r e s e n t e d  b y  f l u c t u a t i o n s  o f  t h e  a c t i v a t i o n  l e v e l s  o f  n o d e s  a n d  b y
( p a r a l l e l )  t r a n s m i s s i o n  o f  e x c i t a t i o n  a n d  i n h i b i t i o n  a l o n g  c o n n e c t i o n s .  
( F o r  c o n n e c t i o n i s m  i n  g e n e r a l ,  s e e  F e l d m a n  & B a l l a r d  1 9 8 2 ,  V a n L e h n  1 9 8 4 ,  

H i l l i s  1 9 8 6 ,  M c C l e l l a n d  & R u m e l h a r t  1 9 8 6 ;  f o r  c o n n e c t i o n i s t  m o d e l s  o f  NLU,  
s e e  C o t t r e l l  & S m a l l  1 9 8 3 ,  C o t t r e l l  1 9 8 5 ,  P o l l a c k  & W a l t z  1 9 8 5 ,  M c C l e l l a n d
& R u m e l h a r t  1 9 8 6 ) .  W i t h  c o a r s e - g r a l n  p a r a l l e l  N L U ,  I  r e f e r  t o  a  m o r e  
m o d e s t  k i n d ,  i n  w h i c h  t h e  s m a l l e s t  i t e m  o f  i n f o r m a t i o n  i s  m o r e  c o m p l e x  
t h a n  a  n o d e  i n  a  c o n n e c t i o n i s t  m o d e l  ( i t  m a y  b e  a  r u l e ,  f o r  i n s t a n c e ) , b u t  
i n  w h i c h  o n e  a t t e m p t s  t o  k e e p  t h e  p a r a l l e l  c o m p u t a t i o n  i n v o l v i n g  t h e  i t e m s  
o f  i n f o r m a t i o n  m o r e  u n d e r  c o n t r o l  t h a n  c a n  b e  d o n e  i n  a  c o n n e c t i o n i s t  
m o d e l .  ( F o r  e x a m p l e s  o f  c o a r s e - g r a i n  p a r a l l e l  NLU,  s e e  H i r a k a w a
1 9 8 3 ,  M a t s u m o t o  1 9 8 7  o r  G r a n g e r ,  E i s e l t  & H o l b r o o k  1 9 8 6 ) .

T h e  r e s e a r c h  p r e s e n t e d  h e r e  i s  o f  t h e  l a t t e r  t y p e  o f  p a r a l l e l  N L U .  
A p o t e n t i a l l y  p a r a l l e l  NLU s y s t e m  ( t h e  W o r d  E x p e r t  P a r s e r ,  S m a l l  1 9 8 0 )  h a s  
b e e n  d r a s t i c a l l y  r e v i s e d  s o  a s  t o  a l l o w  a  t r u l y  p a r a l l e l  i m p l e m e n t a t i o n  
( v i z .  i n  F l a t  C o n c u r r e n t  P r o l o g ,  u s i n g  t h e  L o g i x  e n v i r o n m e n t  ( S i l v e r m a n  

e t  a l . 1 9 8 6 ) ) ;  w e  c a l l  t h e  r e s u l t i n g  s y s t e m  t h e  P a r a l l e l  E x p e r t  P a r s e r
( P E P ,  D e v o s  1 9 8 7 ) .

2. The Word Expert Parser (WEP) revisited

T h e  W o r d  E x p e r t  P a r s e r  (WEP,  S m a l l  1 9 8 0 )  i s  a  n a t u r a l  l a n g u a g e  
u n d e r s t a n d i n g  p r o g r a m  i n  t h e  A I  t r a d i t i o n  o f  s e m a n t i c  p a r s i n g  ( s e e  a l s o  
H i r s t  1 9 8 3 ,  H a h n  1 9 8 6 / 1 9 8 7 ,  C o t t r e l l  1 9 8 5 ,  A d r i a e n s  1 9 8 6 a / b  f o r  
W E P - i n s p i r e d  o r  - r e l a t e d  w o r k ) . T h e  o r g a n i z a t i o n  o f  t h e  m o d e l  d i f f e r s
s t r o n g l y  f r o m  t h a t  o f  a  " c l a 3 3 i c a l ,, NLU s y s t e m .  R a t h e r  t h a n  h a v i n g  a  
n u m b e r  o f  c o m p o n e n t s  o f  r u l e s  t h a t  a r e  a p p l i e d  ( s e r i a l l y )  t o  l i n g u i s t i c
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i n p u t  b y  a  g e n e r a l  p r o c e s s ,  WEP c o n s i d e r s  t h e  w o r d s  t h e m s e l v e s  a s  a c t i v e  
a g e n t s  ( w o r d  e x p e r t s )  t h a t  i n t e r a c t  w i t h  e a c h  o t h e r  a n d  w i t h  o t h e r  
k n o w l e d g e  s o u r c e s  i n  o r d e r  t o  f i n d  t h e  m e a n i n g  o f  a  f r a g m e n t  o f  t e x t .
W o r d s  a r e  i m p l e m e n t e d  a s  c o r o u t i n e s ,  i . e .  p r o c e s s e s  t h a t  r u n  f o r  a
w h i l e  ( b r o a d c a s t i n g  i n f o r m a t i o n  o r  p e r f o r m i n g  s i d e - e f f e c t  o p e r a t i o n s  t o  
r e f i n e  t h e  r e p r e s e n t a t i o n  o f  t h e  m e a n i n g  o f  a  t e x t  f r a g m e n t ) , a n d  s u s p e n d  
w h e n  t h e y  h a v e  t o  w a i t  f o r  i n f o r m a t i o n  f r o m  o t h e r  e x p e r t s .  T h e
i n f o r m a t i o n  t h e y  s e n d  o r  w a i t  f o r  a r e  e i t h e r  s i g n a l s  r e l a t i n g  t o  t h e
s t a t u s  o f  t h e  p a r s i n g  p r o c e s s  ( b r o a d c a s t  o n  a  d e d i c a t e d  s i g n a l  c h a n n e l )  o r  
c o n c e p t s  t h a t  r e p r e s e n t  t h e  m e a n i n g  o f  p a r t s  o f  t h e  l i n g u i s t i c  i n p u t  
( b r o a d c a s t  o n  a  d e d i c a t e d  c o n c e p t  c h a n n e l ) . T h e  e x p e r t s  c o o r d i n a t e  t h e  

u n d e r s t a n d i n g  p r o c e s s  i n  t u r n ,  e v e n t u a l l y  c o n v e r g i n g  t o w a r d s  a  c o n c e p t u a l  
s t r u c t u r e  t h a t  r e p r e s e n t s  t h e  m e a n i n g  o f  a  t e x t  f r a g m e n t .

A l t h o u g h  t h e  m o d e l  i n s p i r e d  s e v e r a l  r e s e a r c h e r s ,  i t  h a s  r e c e i v e d  
l i t t l e  a t t e n t i o n  i n  t h e  l i n g u i s t i c  c o m m u n i t y  ( b u t  s e e  B e r w i c k  1 9 8 3 )  a n d  
h a s  b e e n  c o n s i d e r e d  a s  " a n  i n t e r e s t i n g  r a r i t y " .  M o r e o v e r ,  t h e  o r i g i n a l  
r e s e a r c h e r s  h a v e  a b a n d o n e d  t h e  m o d e l  i n  f a v o r  o f  t h e  c o n n e c t i o n i s t
a p p r o a c h  m e n t i o n e d  a b o v e .  Y e t ,  t h e  o r i g i n a l  m o d e l  s t i l l  h a s  s o m e
i n t e r e s t i n g  f e a t u r e s  t h a t  a r e  w o r t h y  o f  f u r t h e r  c o n s i d e r a t i o n ;  o n  t h e
o t h e r  h a n d ,  b o t h  f o r  l i n g u i s t i c  a n d  f o r  c o m p u t a t i o n a l  r e a s o n s ,  s o m e
d r a s t i c  r e v i s i o n s  a r e  n e e d e d .

3. From WEP to PEP

I n  g e n e r a l ,  t h e  i d e a  o f  p a r a l l e l  i n t e r a c t i n g  p r o c e s s e s  i s  a  v e r y
a t t r a c t i v e  o n e  i f  o n e  w a n t s  a  f l e x i b l e  p a r s e r  c a p a b l e  o f  u s i n g  a n y  t y p e  o f  
i n f o r m a t i o n  a t  a n y  m o m e n t  i t  n e e d s  i t .  T h i s  b a s i c  p r i n c i p l e  o f  WEP h a s  
b e e n  r e t a i n e d  f o r  P E P .  Y e t ,  a l t h o u g h  t h e  d e s i g n  o f  t h e  s y s t e m  s e e m e d  t o
l e n d  i t s e l f  e a s i l y  t o  a  p a r a l l e l  i m p l e m e n t a t i o n ,  l i n g u i s t i c  a n d
c o m p u t a t i o n a l  f l a w :  i n  t h e  m o d e l  h a v e  m a d e  d r a s t i c  r e v i s i o n s  n e c e s s a r y
b e f o r e  t h i s  c o u l d  a c t u a l l y  b e  d o n e .

3.1 True parallelism

A l t h o u g h  WEP c l a i m e d  t o  b e  " p o t e n t i a l l y  p a r a l l e l " ,  i t  h e a v i l y  ( a n d  
i m p l i c i t l y )  r e l i e d  o n  s e q u e n t i a l i t y  t o  m a k e  i t s  p r i n c i p l e s  w o r k .  
E s p e c i a l l y  f o r  t h e  r e s t a r t i n g  o f  s u s p e n d e d  e x p e r t s ,  a  l a s t - i n  f i r s t - o u t  
r e g i m e  ( s t a c k )  t o o k  c a r e  o f  c o n t e n t i o n  f o r  m e s s a g e s :  t h e  e x p e r t  t h a t
p l a c e d  a n  e x p e c t a t i o n  f o r  a  m e s s a g e  l a s t ,  m o s t l y  g o t  i t  f i r s t .  A l s o ,  t o  
a v o i d  c o m p l i c a t i o n s  i n  e x p e r t  c o m m u n i c a t i o n ,  n o  n e w  e x p e r t s  w e r e  
i n i t i a l i z e d  b e f o r e  t h e  q u e u e  o f  r e a d y - t o - r u n  e x p e r t s  w a s  e m p t y .  T h e  
a d h e r e n c e  t o  t h i s  s e q u e n t i a l i z a t i o n ,  n o t  t o  m e n t i o n  t h e  s i d e - e f f e c t s  
i n v o l v e d ,  o b v i o u s l y  m a d e  W E P ' s  c l a i m  o f  b e i n g  " p o t e n t i a l l y  p a r a l l e l "  

i n v a l i d .
I n  a  t r u l y  p a r a l l e l  e n v i r o n m e n t ,  s e q u e n t i a l i t y  c a n  n o  l o n g e r  b e  

r e l i e d  o n .  PEP u s e s  p a r a l l e l i s m  w h e n e v e r  p o s s i b l e :  f o r  t h e  e x e c u t i o n  o f
e x p e r t  c o d e  AND f o r  i n i t i a l i z i n g  n e w  e x p e r t s  ( i n i t i a l i z i n g  a l l  o f  t h e m  a s  
s o o n  a s  t h e y  a r e  r e a d  a n d  m o r p h o l o g i c a l l y  a n a l y z e d ) . I n  o r d e r  t o
r e a l i z e  t h i s ,  t h e  m o s t  i m p o r t a n t  d e p a r t u r e  f r o m  t h e  o r i g i n a l  m o d e l  i s  t h a t  
e x p e r t s  a r e  n o  l o n g e r  o n l y  a s s o c i a t e d  w i t h  w o r d s  ( t h e  o n l y  l i n g u i s t i c  
e n t i t i e s  a c k n o w l e d g e d  b y  W E P ) . We w i l l  n o w  d i s c u s s  w h a t  e x p e r t s  a r e
a s s o c i a t e d  w i t h ,  a n d  h o w  t h e  n e w  v i e w  o f  e x p e r t s  l e a d s  t o  c l e a r e r  a n d  m o r e  
e x p l i c i t  c o n c e p t s  o f  w a i t i n g  a n d  c o m m u n i c a t i n g  i n  a  p a r a l l e l  e n v i r o n m e n t .
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3.2 Word-Expert* vcriua Concept-Experts at different level*

A m a j o r  i t e m  o f  c r i t i c i s m  u t t e r e d  a g a i n s t  WEP h a s  b e e n  t h a t  i t  
c o n s i d e r s  t h e  w o r d  a s  t h e  o n l y  e n t i t y  t o  b e  t u r n e d  i n t o  a n  e x p e r t  p r o c e s s .  
L i n g u i s t i c a l l y  s p e a k i n g ,  t h e  e x i s t e n c e  o f  l a r g e r  c o n s t i t u e n t s  i s  
u n d e n i a b l e  a n d  m u s t  b e  t a k e n  i n t o  a c c o u n t ,  w h a t e v e r  m o d e l  o n e  a d v o c a t e s .  
F r o m  t h e  c o m p u t a t i o n a l  v i e w p o i n t ,  s q u e e z i n g  a l l  i n t e r a c t i o n s  i n t o  w o r d s  
m a k e s  i t  a l m o s t  i m p o s s i b l e  t o  f i g u r e  o u t  w h a t  i s  g o i n g  o n  i n  t h e  o v e r a l l  
p a r s i n g  p r o c e s s  ( T h i s  n o n - t r a n s p a r e n c y  i s  o n e  o f  t h e  r e a s o n s  w h y  
f u l l y - i n t e g r a t e d  i n t e r a c t i v e  m o d e l s  a r e  n o t  s o  p o p u l a r ) . W o r d s  h a v e  t o  
d e c i d e  o n  e v e r y t h i n g ,  f r o m  m o r p h o l o g i c a l  i s s u e s  t o  p r a g m a t i c  i s s u e s ,  w i t h  
j a m m e d  c o m m u n i c a t i o n  c h a n n e l s  a s  a  r e s u l t .

I n  P E P ,  e x p e r t s  a r e  a s s o c i a t e d  w i t h  c o n c e p t s  r a t h e r  t h a n  w i t h  w o r d s .  
I t  i s  v e r y  n a t u r a l  t o  d o  s o :  w o r d s  a r e  o n l y  u s e d  t o  e v o k e  t h e  c o n c e p t s
t h a t  c o n s t i t u t e  t h e  m e a n i n g  o f  a  f r a g m e n t  o f  t e x t .  S t i l l ,  c o n c e p t s
h a v e  a  c o n c r e t e  l i n k  t o  w o r d s  a n d  c a n  b e  r e g a r d e d  a s  b e i n g  a s s o c i a t e d  w i t h  
t h e  g r o u p  o f  w o r d s  t h a t  e v o k e s  t h e m .  E . g .  i n  " t h e  y o u n g  g i r l "  t h r e e  
c o n c e p t s  c a n  b e  d i s c o v e r e d ,  a s s o c i a t e d  w i t h  t h e  b a s i c  w o r d - g r o u p s  " t h e " ,  
" y o u n g "  a n d  " g i r l " .  A t  a  h i g h e r  l e v e l  a  c o m p o u n d  c o n c e p t  c o n s t i t u t i n g  . t h e  
m e a n i n g  o f  t h e  e n t i r e  c o n s t r u c t  " t h e  y o u n g  g i r l "  i s  i n v o k e d .

C o n c r e t e l y ,  i n  PEP a  s p e c i f i c  d a t a  s t r u c t u r e  ( t h e  e x p e r t  f r a m e )  i s  
a s s o c i a t e d  w i t h  e v e r y  e x p e r t .  T h e  h i e r a r c h y  t h a t  o r i g i n a t e s  f r o m  t h e
c o n c e p t s  i s  r e f l e c t e d  b y  t h e  i n t e r c o n n e c t i o n  o f  t h e  e x p e r t  f r a m e s .  T h e s e  
a r e  v e r t i c a l l y  r e l a t e d  b y  l e v e l  i n t e r d e p e n d e n c i e s ,  a n d  h o r i z o n t a l l y  b y  t h e
r e l a t i v e  r o l e  t h e  c o n c e p t s  o f  t h e  f r a m e s  p l a y  i n  t h e  f r a m e  t h a t  i s  b e i n g
b u i l t  o u t  o f  t h e m  o n e  l e v e l  h i g h e r .  B e s i d e s  i t s  l e v e l ,  a n  e x p e r t  f r a m e
h a s  t h r e e  a t t r i b u t e  s l o t s :  a  f u n c t i o n  a t t r i b u t e  ( s t a t i n g  w h a t  t h e  r o l e
i s  t h e  e x p e r t  c o n c e p t  p l a y s  a t  a  s p e c i f i c  l e v e l ) , a  c o n c e p t  a t t r i b u t e
( r e p r e s e n t i n g  t h e  c o n t e n t s  o f  t h e  e x p e r t )  a n d  a  l e x i c a l  a t t r i b u t e  ( s i m p l y  

c o r r e s p o n d i n g  t o  t h e  g r o u p  o f  w o r d s  a s s o c i a t e d  w i t h  t h e  c o n c e p t ) . B e l o w ,  
w e  w i l l  s e e  t h a t  t h i s  d e f i n i t i o n  o f  a n  e x p e r t  f r a m e  i s  c r u c i a l  f o r  t h e  
r e s t r i c t e d  c o m m u n i c a t i o n  p r o t o c o l  a m o n g  e x p e r t s .

T h e  " a n a l y s i s  p r o c e s s "  c o n s i s t s  o f  t h e  c o l l e c t i o n  o f  c u r r e n t l y  a c t i v e  
e x p e r t s  t h a t  t r y  t o  e s t a b l i s h  n e w  c o n c e p t s .  I f  a  n e w  c o n c e p t  c a n  
s u c c e s s f u l l y  b e  f o r m e d ,  t h e  c o r r e s p o n d i n g  e x p e r t  i s  a d d e d  t o  t h e  a n a l y s i s  
p r o c e s s ,  w h i l e  t h e  c o m b i n e d  c o n c e p t ' s  e x p e r t s  m a y  d i e .  T h e y  p a s s  t h e i r
e x p e r t  f r a m e s ,  a n d  s o  t h e  c o n t a i n e d  i n f o r m a t i o n ,  t o  t h e  n e w  e x p e r t ,  w h i c h
w i l l  u s u a l l y  i n c o r p o r a t e  t h e m  i n  i t s  o w n  e x p e r t  f r a m e .  N o t i c e  t h a t  t h i s  
v i e w  h a s  i n t e r e s t i n g  s o f t w a r e  e n g i n e e r i n g  a s p e c t s  n o t  p r e s e n t  i n  WEP:  
b y  h a v i n g  a  l e v e l e d  a p p r o a c h  e x p e r t  c o d e  b e c o m e s  m o r e  l o c a l ,  m o d u l a r  a n d  
a d a p t a b l e .  T h e  d y n a m i c  p r o c e s s  h i e r a r c h y  e n a b l e s  t h e  l i n g u i s t / e x p e r t
w r i t e r  t o  w r i t e  g e n e r i c  o r  p r o t o t y p i c a l  e x p e r t s  t h a t  c a n  b e  p a r a m e t e r i z e d  
w i t h  t h e  v a l u e  o f  t h e  c o n c e p t  t h e y  r e p r e s e n t  ( c p .  o b j e c t - o r i e n t e d
p r o g r a m m i n g )  .

A f i n a l  n o t e  a b o u t  t h e  l e v e l s .  E a c h  l e v e l  i s  i n t e n d e d  t o  d e a l
w i t h  a  m o r e  o r  l e s s  i n d e p e n d e n t  p a r t  i n  t h e  d e r i v a t i o n  a n d  c o m p o s i t i o n  o f  
m e a n i n g .  H o w e v e r ,  w e  l e a v e  i t  u p  t o  t h e  l i n g u i s t s  w r i t i n g  t h e  e x p e r t
p r o c e s s e s  t o  d e c l a r e  ( 1 )  w h a t  l e v e l s  t h e y  w a n t  t o  c o n s i d e r  a n d  ( 2 )  w h a t  
t h e  a p p r o p r i a t e  f u n c t i o n s  a r e  t h a t  t h e y  w a n t  t o  u s e  a t  t h e  r e s p e c t i v e  
l e v e l s .  B y  c o m b i n i n g  t h i s  f l e x i b l e  f i l l i n g  i n  o f  a  r i g o r o u s l y  d e f i n e d  
m o d e l ,  w e  f o r c e  t h e  l i n g u i s t - u s e r  t o  c l e a r l y  s p e c i f y  t h e  e x p e r t s  a n d  h e l p  
h i m  t o  k e e p  t h e  e x p e r t s  r e l a t i v e l y  s m a l l  ( h e n c e ,  m o r e  r e a d a b l e )  a n d  t o  
f i g u r e  o u t  m o r e  e a s i l y  w h e r e  t h i n g s  c o u l d  g o  w r o n g  m  t h e  p a r s i n g  p r o c e s s .  
A p o s s i b l e  h i e r a r c h y  o f  l e v e l s  m i g h t  b e :  m o r p h e m e ,  w o r d ,  c o n s t i t u e n t ,
c l a u s e ,  s e n t e n c e  ( e a c h  l e v e l  h a v i n g  i t s  o w n  f u n c t i o n  a t t r i b u t e s ) . I n  t h e  
s o m e w h a t  o v e r s i m p l i f i e d  e x a m p l e  b e l o w ,  t h r e e  l e v e l s  w i l l  b e  u s e d  ( b e t w e e n  
b r a c k e t s :  t h e  r e s p e c t i v e  f u n c t i o n  a t t r i b u t e s ) ,  v i z .  w o r d _ l e v e l
[ a r t i c l e ; a d j e c t i v e ; s u b s t a n t i v e ] , c o n s t i t u e n t _ l e v e l  [ a c t i o n ; a g e n t ; o b j e c t ] ,  
a n d  s e n t e n c e  l e v e l .
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3.3 Broadcasting versus Explicit Communication

E x p e r t s  a r e  t h e  a c t i v e  c o m p o n e n t s  o f  t h e  a n a l y s i s  s y s t e m .  Ne w  
c o n c e p t s  c o m e  i n t o  e x i s t e n c e  o n l y  t h r o u g h  t h e i r  i n t e r a c t i o n .  S i n c e  
p a r a l l e l i s m  w a s  a  m a j o r  g o a l  o f  t h e  PEP a p p r o a c h ,  t h e  c o m m u n i c a t i o n  
p r o t o c o l s  h a v e  b e e n  b a s e d  o n  e x p l i c i t  i d e n t i f i c a t i o n  o f  t h e  e x p e r t  f r a m e s  
i n v o l v e d  i n  s o m e  i n t e r a c t i o n ,  w h i c h  a l l o w s  o n e  t o  k e e p  c o m m u n i c a t i o n  u n d e r  
c o n t r o l .  Two k i n d s  o f  c o m m u n i c a t i o n  t a k e  p l a c e :

(1) Mttrlbutm-rmfining:

E x p e r t s  a r e  a l l o w e d  t o  r e f i n e  t h e  a t t r i b u t e s  o f  e x p e r t  
f r a m e s . T h e  a t t r i b u t e s  a r e  c o n s i d e r e d  t o  b e  i n f o r m a t i o n  t h a t  
i s  a c c e s s i b l e  b y  a l l  e x p e r t s .

(2) attrlbutm-problng:

B a s i n g  t h e m s e l v e s  o n  t h e  a t t r i b u t e s  o f  t h e  p r o b e d  e x p e r t  f r a m e s ,  
e x p e r t s  d e c i d e  w h i c h  w a y  t o  g o  i n  t h e  a n a l y s i s  p r o c e s s .  A l l  a t t r i b u t e  
p r o b i n g  i s  i n  t h e  c h o o s e _ a l t  p r e d i c a t e ,  t h a t  i s  d e s c r i b e d  i n  t h e  n e x t  
s u b s e c t i o n .

3 . 4 Suspending/Re•timing :
Explicit Machinery versus Declarative Reading

I n  t h e  c o u r s e  o f  t h e  a n a l y s i s  p r o c e s s ,  e x p e r t s  w a l k  t h r o u g h  a  
d i s c r i m i n a t i o n  n e t w o r k ,  g r a d u a l l y  r e f i n i n g  a n d  c o n s t r u c t i n g  t h e  m e a n i n g  o f  
a  t e x t  f r a g m e n t .  T h e  p r e d i c a t e  t h a t  a l l o w s  e x p e r t s  t o  d e c i d e  w h i c h  w a y  
t o  g o  i n  t h i s  p r o c e s s  o n  t h e  b a s i s  o f  i n f o r m a t i o n  t h e y  e x p e c t  t o  g e t  f r o m  
o t h e r  e x p e r t s  i s  t h e  c h o o s e _ a l t  p r e d i c a t e :

choose_alt([
alt(frame (frame-specification,

attribute_condition), 
invoke(expert)), 

alt(frame (frame-specification,
attribute_condition) , 
invoice (expert) ) ,

else (invoice (expert))
] )  •

I t  c o n s i s t s  o f  a  n u m b e r  o f  a l t e r n a t i v e s  a n d  a n  o p t i o n a l  e l s a t i v e .  T h e
a l t e r n a t i v e s  c o n t a i n  a  t e s t ,  w h i c h  m a y  f a i l ,  s u s p e n d  o r  s u c c e e d .  I n  t h e  
l a s t  c a s e  t h e  c o r r e s p o n d i n g  e x p e r t  m a y  b e  i n v o k e d .  I f  t e s t s  f r o m  s e v e r a l  
a l t e r n a t i v e s  s u c c e e d , ,  a n  a r b i t r a r y  c o r r e s p o n d i n g  e x p e r t  i s  i n v o k e d ,  
w h e r e a s  t h e  o t h e r s  a r e  n o t  f u r t h e r  c o n s i d e r e d  ( d o n ' t - c a r e  c o m m i t t e d  
c h o i c e ;  s e e  a l s o  b e l o w  a n d  D e v o s  1 9 8 7 ,  h o w e v e r ,  f o r  a  s u g g e s t i o n  o f  h o w  t o  
r e a l i z e  n o n - d e t e r m i n i s m  i n  v i e w  o f  a m b i g u i t y ) . O n l y  a f t e r  f a i l u r e  o f
a l l  t e s t s  i s  t h e  e l s a t i v e - e x p e r t  e x e c u t e d .

T e s t s  c o n s i s t  o f  a  f r a m e - s p e c i f i c a t i o n  a n d  a n  a t t r i b u t e - c o n d i t i o n . 
T h e  l a t t e r  c o n s t i t u t e s  t h e  a c t u a l  t e s t  o n  t h e  a t t r i b u t e  o f  t h e  f r a m e  
s e l e c t e d  b y  " f r a m e - s p e c i f i c a t i o n ” . T h i s  f r a m e  c a n  b e  r e f e r r e d  t o  w i t h
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t e s t  f r a m e  i n  t h e  c o r r e s p o n d i n g  i n v o k e d  e x p e r t .  O n e  w i l l  a l r e a d y  h a v e  
n o t i c e d  t h a t  t h e  c h o o s e _ a l t  p r e d i c a t e  d o e s  n o t  c o n t a i n  a n y  e x p l i c i t  
s c h e d u l i n g  c o m m a n d s . I n d e e d ,  t h e  i n t e n t i o n  i s  t o  e n t i r e l y  m a s k  t h e
p r o g r a m  f l o w  b y  a  d e c l a r a t i v e  r e a d i n g .  H o w e v e r ,  f l o w  c o n t r o l  r e m a i n s  
n e c e s s a r y  a n d  i t  i s  r e a l i z e d  b y  s u s p e n d i n g  a n  e x p e r t  r o u t i n e  ( o r  a  b r a n c h  
i n  t h e  c h o o s e _ a l t  p r e d i c a t e ,  s i n c e  t h e  a l t e r n a t i v e s  i n  t h e  c h o o s e _ a l t  m a y  
b e  e x e c u t e d  i n  p a r a l l e l ) , i f  i t  r e q u i r e s  i n f o r m a t i o n  t h a t  i s  n o t  y e t
a v a i l a b l e .  O n l y  a f t e r  t h i s  r e q u i r e d  i n f o r m a t i o n  i s  f i l l e d  i n ,  d o e s  t h e  
e x p e r t - r o u t i n e  r e s u m e .  T h i s  c a n  c h e a p l y  b e  i m p l e m e n t e d  u s i n g
r e a d - o n l y  u n i f i c a t i o n  ( S h a p i r o  1 9 8 6 ) .  I n t u i t i v e l y ,  p r e d i c a t e s  t h a t
p r o b e  f o r  i n f o r m a t i o n  s u s p e n d ,  i f  t h e  v a r i a b l e  t h a t  s u p p l i e s  t h i s  
I n f o r m a t i o n  i s  n o t  y e t  i n s t a n t i a t e d .  T h i s  s u s p e n s i o n  t a k e s  p l a c e
d u r i n g  u n i f i c a t i o n  o f  t h e  F l a t  C o n c u r r e n t  P r o l o g  ( F C P)  p r e d i c a t e  ( s e e  
b e l o w ) ,  i n t o  w h i c h  e x p e r t  r o u t i n e s  a r e  c o m p i l e d .  R e s u m p t i o n  o c c u r s  
w h e n e v e r  t h e  r e q u i r e d  v a r i a b l e  g e t s  i n s t a n t i a t e d .  S u s p e n s i o n  o f  a  
c h o o s e _ a l t  b r a n c h  m a y  t a k e  p l a c e  i n  t h e  f o l l o w i n g  c a s e s :

( 1 )  I f  t h e  s e a r c h  f o r  t h e  t e s t f r a m e  r e q u i r e s
i n f o r m a t i o n  t h a t  i s  n o t  y e t  a v a i l a b l e ,  i t  s i m p l y
s u s p e n d s .  A s  a  r e s u l t  t h e  f r a m e - s p e c i f i c a t i o n
a l w a y s  l e a d s  t o  t h e  s e l e c t i o n  o f  a  f r a m e  i n  a  
d e t e r m i n i s t i c  w a y .  H e n c e ,  e x p l i c i t  c o m m u n i c a t i o n
b e c o m e s  p o s s i b l e .

( 2 )  T h e  a t t r i b u t e - t e s t  s u s p e n d s  u n t i l  t h e  i n f o r m a t i o n  t o  
b e  t e s t e d  i s  a v a i l a b l e .

T h e r e  i s  o n e  o t h e r  p r e d i c a t e  o r  c o m m a n d  t h a t  m a y  c a u s e  s u s p e n s i o n  o f  
a n  e x p e r t ,  v i z .  b e g i n _ l e v e l  ( a _ l e v e l j . T h e  e x e c u t i o n  o f  a n  e x p e r t
t h a t  s p e c i f i e s  b e g i n _ l e v e l ( a _ l e v e l ) , i s  o n l y  r e s u m e d  a f t e r  a l l  a t t r i b u t e s  
o f  i n c o r p o r a t e d  e x p e r t  f r a m e s  a r e  s p e c i f i e d .  T h i s  f i l l i n g  i n  o f
a t t r i b u t e s  t a k e s  p l a c e  b e t w e e n  d i f f e r e n t  e x p e r t  f r a m e s  o n  t h e  s a m e  l e v e l  
( i n t r a - l e v e l  c o m m u n i c a t i o n ) . W i t h  r i g i d  r u l e s  a s  t o  w h i c h  e x p e r t  f i l l s  i n  

w h i c h  f r a m e ,  i t  i s  p o s s i b l e  t o  p r o v e  t h a t  t h e  e x p e r t  c o d e  i 3  d e a d l o c k  
f r e e .  T h e s e  r u l e s  w i l l  f u r t h e r  b e  r e f e r r e d  t o  a s  t h e  d e a d l o c k  a v o i d a n c e  
r u l e s .  I t  s u f f i c e s  e . g .  t o  p r o v e  t h a t  e v e r y  f r a m e  t h a t  i 3  a t  t h e  l o w e s t
l e v e l  t h a t  s t i l l  c o n t a i n s  u n f i l l e d  f r a m e s ,  w i l l  e v e n t u a l l y  b e  f i l l e d  i n .
I t  m u s t  t h e n  n o t  b e  d i f f i c u l t  t o  c o n s t r u c t  a  d e a d l o c k  a n a l y s e r ,  t h a t  
c h e c k s  w h e t h e r  t h e  d e a d l o c k  a v o i d a n c e  r u l e s  a r e  v i o l a t e d .  T h i s  h a s  n o t  
y e t  b e e n  f u r t h e r  e l a b o r a t e d .

H o w e v e r ,  t o  e n s u r e  f l e x i b i l i t y  ( e s p e c i a l l y  f r o m  l i n g u i s t i c  
c o n s i d e r a t i o n s )  w e  a r e  f o r c e d  t o  a l l o w  i n t e r - l e v e l  c o m m u n i c a t i o n .  e . g .  
i n  s e n t e n c e s  a s  " t h e  l i t t l e  g i r l  l o v e d  h e r  t o y " ,  w h e r e  " h e r "  i s  l e v e l  
e q u i v a l e n t  t o  " l i t t l e " ,  b u t  a n a p h o r i c a l l y  r e f e r s  t o  " t h e  l i t t l e  g i r l " ,  
w h i c h  w i l l  p r o b a b l y  b e  a t  a  h i g h e r  ( h e n c e ,  d i f f e r e n t )  l e v e l  t h a n  " h e r " .  
I n  t h i s  c a s e  d e a d l o c k  f r e e  c o d e  i s  n o t  e a s y  t o  g u a r a n t e e ,  b e c a u s e  o f  t h e  
p o s s i b i l i t y  o f  c i r c u l a r  w a i t i n g  o f  e x p e r t s  f o r  o n e  a n o t h e r .  I t  i s  o u r  
h o p e  t h a t  w e  c a n  a l s o  i n c o r p o r a t e  r e s t r i c t e d  a n d  w e l l - s p e c i f i e d  u s e  o f  
t h i s  i n t e r - l e v e l  c o m m u n i c a t i o n  i n  t h e  d e a d l o c k  a v o i d a n c y  r u l e s .

T h e  s y s t e m  a s  y e t  d e s i g n e d ,  i m p l e m e n t s  a  d o n ' t - c a r e  c o m m i t t e d - c h o i c e  
b e t w e e n  t h e  a l t e r n a t i v e s  o f  a  c h o o s e _ a l t  p r e d i c a t e .  T h i s  m e a n s  t h a t  a n  
a r b i t r a r y  a l t e r n a t i v e  t h a t  s u c c e e d s ,  w i l l  b e  c h o s e n  t o  d e t e r m i n e  t h e  
e x p e r t ' s  b e h a v i o u r .  We a r e  w e l l  a w a r e  o f  t h e  f a c t  t h a t  d o n ' t - c a r e  
c o m m i t t e d - c h o i c e  i s  n o t  a l w a y s  w h a t  o n e  w a n t s  i n  A l  a p p l i c a t i o n s .  We 
m e r e l y  c h o s e  t h i s  ( e a s y )  o p t i o n  h e r e  i n  o r d e r  n o t  t o  b u r d e n  t h e  d e s i g n  a n d  
i m p l e m e n t a t i o n  w i t h  o n e  m o r e  s e r i o u s  p r o b l e m .  Two  a l t e r n a t i v e s  t o  b e  
e x p l o r e d  i n  t h e  f u t u r e  a r e  t h e  f o l l o w i n g .

T h e  f i r s t  i s  i n t e r m e d i a t e  b e t w e e n  d o n ' t - c a r e  c o m m i t t e d - c h o i c e  a n d  
f u l l  n o n - d e t e r m i n i s m .  T o  e a c h  a l t e r n a t i v e  i n  t h e  c h o o s e _ a l t  c o m m a n d  a  
p r i o r i t y  i s  a s s i g n e d .  T h e  a l t e r n a t i v e s  a r e  t h e n  t r i e d  o u t  b y  d e s c e n d i n g  
p r i o r i t y ,  a l l o w i n g  t h e  m o r e  l i k e l y  o n e s  t o  s u c c e e d  f i r s t .  ( T h e s e  
p r i o r i t i e s  w i l l  o f t e n  r e f l e c t  f r e q u e n c y  o f  o c c u r r e n c e  o f  s p e c i f i c
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l i n g u i s t i c  s t r u c t u r e s . )  A p r i o r i t i z i n g  a p p r o a c h  l i k e  t h i s  o n e  w i l l
h o w e v e r  r e q u i r e  m o r e  s y n c h r o n i s a t i o n  a m o n g  t h e  a l t e r n a t i v e s  o f  t h e  
c h o o s e _ a l t  t o  e n s u r e  a  u n i q u e  s e m a n t i c s  o f  t h e  c o m m a n d .

T h e  s e c o n d  i s  f u l l  n o n - d e t e r m i n i s m .  No p r i o r i t i e s  a r e  a s s i g n e d  t o  
a l t e r n a t i v e s ,  a n d  t h e  s y s t e m  i s  c a p a b l e  o f  u n d o i n g  a  w r o n g  c h o i c e  d u r i n g  
t h e  a n a l y s i s  p r o c e s s .  I t  c a n  g o  b a c k  t o  a  c h o i c e  p o i n t  a n d  t r y  o u t
a n o t h e r  a l t e r n a t i v e  w h o s e  t e s t  s u c c e e d s .  A ( c o s t l y )  i m p l e m e n t a t i o n
o f  t h i s  s t r a t e g y  s h o u l d  b e  b a s e d  o n  C o n c u r r e n t  P r o l o g  c o d e  ( S h a p i r o  1 9 8 6 )  
t h a t  c o n t a i n s  a  c o p y  o f  t h e  g l o b a l  e n v i r o n m e n t  f o r  e a c h  a l t e r n a t i v e  i n  t h e  
c h o o s e  a l t  c o m m a n d .  T h i s  C o n c u r r e n t  P r o l o g  c o d e  w o u l d  t h e n  h a v e  t o  b e
f l a t t e n e d  t o  FCP ( C o d i s h  & S h a p i r o  1 9 8 5 ) .

3.5 An Exampla Analysis

B e l o w  w e  p r e s e n t  t h e  c o d e  o f  s o m e  s a m p l e  e x p e r t s  t h a t  a l l o w  t h e
a n a l y s i s  o f  t h e  s e n t e n c e  " t h e  l i t t l e  g i r l  e a t s  t h e  a p p l e " .  T h e  e x a m p l e  i s
s i m p l i f i e d ,  b u t  i l l u s t r a t e s  w e l l  t h e  c r u c i a l  e l e m e n t s  o f  P E P .  F i r s t  t h e
a p p r o p r i a t e  l e v e l s  a n d  f u n c t i o n s  a r e  d e c l a r e d .  T h e n  f o l l o w s  t h e  c o d e  o f
t h e  a c t u a l  e x p e r t s .  R e m e m b e r  t h a t  e x p f r a m e  r e f e r s  t o  t h e  f r a m e  t h a t  i s  
a s s o c i a t e d  w i t h  t h e  e x p e r t  a n d  t e s t f r a m e  r e f e r s  t o  t h e  f r a m e  t h a t  w a s  
r e f e r r e d  t o  i n  t h e  a l t e r n a t i v e  o f  t h e  p r e c e d i n g  c h o o s e _ a l t  c o m m a n d ,  
" b e g i n  f r a m e "  s e t s  t h e  a p p r o p r i a t e  l e v e l  a n d  " r e f i n e _ f u n c t i o n "  a n d
" r e f i n e _ c o n c e p t " d o  t h e  f i l l i n g  i n  o f  t h e  a t t r i b u t e s  o f  t h e  s p e c i f i e d
f r a m e .  T h e  l e x i c a l  a t t r i b u t e  i s  a u t o m a t i c a l l y  f i l l e d  i n  w h e n  b e g i n n i n g
t h e  f r a m e .  T h e  e x a m p l e  r e s t r i c t s  i t s e l f  t o  c h o o s e _ a l t  c o m m a n d s  t h a t  
o n l y  r e q u i r e  i n t r a —l e v e l  commur.  _ c a t i o n . W h e n  t h e  s e n t e n c e  i s  r e a d ,  t h e
c o r r e s p o n d i n g  e x p e r t s  a r e  i n i t i a l i z e d  a n d  s t a r t  t o  r u n  i n  p a r a l l e l .  T h e
r e s t  o f  t h e  c o d e  i s  s e l f - e x p l a n a t o r y .

d«clic<(laval(
word_l«v«l
( function(articla,adjactiva,substantive 1 ) , 

conicituant_laval 
( function i action,agant,objact]),

»antanca_iavai 
(funct ion[))

] ) •

tha : -
bagin_frama(word_laval), 
rafina_function (axpfrajaa, 'articla'). 
rafina conctpt (axpfra»a, kind(*d*fining*)), 
rafina_concapt (a*pfra»a, vaiua(*dafinad*)).

littia :-
bagin_frai*a <word_laval) ,
rafina function(axpframa, ' adjactiva'),
rafina_concapt(axpframa, kind (*adjactival*)).
ref in«_conc»pt (axpf rama, vaiua ( “young, »i»all*)).

girl :-
bagin_frama (*»ord_l«va 1) ,
rafina function(axpfrarea. 'juitantiv*'), 
rafina concapt(axpfraraa, kind("par son*) ),
rafina_concapt(axpframa, vaiua(*fanaia, chiid_or_raaidan*)) , 

choo»a_alt
([a i t (frama(»inu»(1).function(aquai('articla'))).
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invoke(article_incorporation)) ,
• It(frame(minus(1),function(equal('adjective' ) ) ) , 

invoke(adjectiv*_incorporation) ) , 
else (invoice (no_incorporation) ) I ) .

apple analogous to the code for girl.

adjective_incorporation :— 
incorporate(testframe), 
choose_alt

([alt(frame(minus(1),function(equal('article'))), 
invoke(article_incorporation)), 

else(invoke(no_incorporation)) ]).

article_incorporation
incorporate(test frame),
begin frarae (constituent_level),
refin*_conc*pt(*xpframe, kind("unused")),
refine_concept(expframe, value("unused")).

no_incorporation
b*gin_fram*(constituent_level),
refine_concept (expframe, kind ("unused")),
refine_concept(expframe, value("unused")).

eats begin_frane(constltuent_level) ,
refine_function(expframe, 'action'),
refine_concept(expfrane, kind ("ingest") ),
refine_concept(expframe, value("Ingest_food")),
chooie_alt

([alt(frame(plus(3),concept(view('eatable'))), 
invoke(eat_something)),

els* (....................... ) ) ] ) .

eat_soi»*thing : —
ref ine_f unction (test f raja*, ' object' ) ,
incorporate (tastfraja*) ,
choos*_alt

((alt(fraa*(minus(1),concept(view(' parson*))), 
invoke(to**on*_*ats_saa*thing)),

•ls*(.......... '............ )) 1).

scxa*an*_*at s_ao«ething 
r*fin*_function (t*stfram*. ’ agent' ) , 
incorporate (tastfrajaa) , 
b«gin_fraa*(s«nt*nc*_level), 
show solution.
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4. A  Parallel Implementation

I n  t h e  l a s t  s e c t i o n  o f  t h i s  p a p e r  t h e  i m p l e m e n t a t i o n  ( i n  a  l o g i c  
p r o g r a m m i n g  l a n g u a g e )  o f  a l l  a s p e c t s  o f  PEP d i s c u s s e d  s o  f a r  w i l l  r e c e i v e  
a  c l o s e r  l o o k .  F o r  t h i s  I m p l e m e n t a t i o n  L o g i x  h a s  b e e n  u s e d ,  a  F l a t  
C o n c u r r e n t  P r o l o g  e n v i r o n m e n t  ( S i l v e r m a n  e t  a l .  1 9 8 6 ) .

4.1 General Model Organization

T h e  p r o t o t y p e  r e a l i z a t i o n  o f  t h e  PEP m o d e l  a l l o w i n g  f o r  c o r r e c t  
a n a l y s i s  o f  v e r y  s i m p l e  s e n t e n c e s  ( s u c h  a s  " T h e  m a n  e a t s " ,  "A m a n  e a t s " ,  
"Man e a t s " )  c o n s i s t s  o f  a n  e x p e r t  l a n g u a g e  (EL)  t o  b e  u s e d  b y  t h e  l i n g u i s t  
w h e n  w r i t i n g  h i s  e x p e r t s ,  a  p r e c o m p i l e r  t h a t  t r a n s f o r m s  t h e  e x p e r t s  t o  FCP  
c o d e  a n d  t h e  L o g i x  FCP c o m p i l e r / e m u l a t o r , t h e  p r o g r a m m i n g # e n v i r o n m e n t . 
L i n g u i s t s  a r e  o f f e r e d  t h e  E L,  w h i c h  o n l y  c o n t a i n s  p r e d i c a t e s  a t  a  h i g h  
l e v e l  o f  a b s t r a c t i o n .  T h e y  m a y  f u r t h e r  t u n e  t h e  e x p e r t  l e v e l s  d i s c u s s e d  
e a r l i e r  a n d  t h e  f u n c t i o n  a t t r i b u t e s  t h e y  w i l l  b e  u s i n g  a t  e a c h  l e v e l  t o  
t h e i r  o w n  n e e d s .  T h e y  a r e  o n l y  a l l o w e d  t o  u s e  t h e  EL p r e d i c a t e s  a c c o r d i n g  
t o  t h e i r  o w n  s p e c i f i c a t i o n  o f  l e v e l s  a n d  f u n c t i o n  a t t r i b u t e s .  T h e  EL i s  
t h e n  p r e c o m p i l e d  t o  F C P .  T h e  m a i n  r e a s o n  f o r  t h e  a p p r o a c h  o f
p r e c o m p i l i n g  i s  t h a t  f l a t t e n i n g  t e c h n i q u e s  h a v e  t o  b e  u s e d  o n  t h e  
p r e d i c a t e s .  T h e s e  t e c h n i q u e s  a r e  t h e  d o m a i n  o f  c o m p u t e r  s c i e n t i s t s  a n d  
t h e  l i n g u i s t  s h o u l d  n o t  b e  b o t h e r e d  w i t h  t h e m .  ( P r e c o m p i l i n g  a l s o  o f f e r s  
i m p o r t a n t  a d d i t i o n a l  a d v a n t a g e s  s u c h  a s  s y n t a x  c h e c k i n g ,  c h e c k i n g  o f  
p o t e n t i a l  d e a d l o c k ,  e t c . ;  t h e s e  f e a t u r e s  a r e  s t i l l  u n d e r  d e v e l o p m e n t ) .

4.2 Data-Structures:
Frame Interconnection and Blackboard Information

T h e  l e x i c a l - m o r p h o l o g i c a l  a n a l y z e r  s c h e d u l e s  a n d  i n v o k e s  t h e  
e x p e r t s  c o r r e s p o n d i n g  t o  t h e  e l e m e n t a r y  l e x i c a l  u n i t s  a n d  o u t p u t s  a  
b l a c k b o a r d ,  i . e .  a  m a t r i x  w i t h  s l o t s  w h o s e  c o l u m n s  c o r r e s p o n d  t o  t h o s e  
u n i t s  a n d  w h o s e  r o w s  c o r r e s p o n d  t o  a  l e v e l .  E a c h  e x p e r t  h a s  o n e  e x p e r t  
f r a m e  a s s o c i a t e d  w i t h  i t ;  t h i s  e x p e r t  f r a m e  f i l l s  o n e  s l o t  o f  t h e  
b l a c k b o a r d .  I n  t h e  b e g i n n i n g  o f  t h e  a n a l y s i s  p r o c e s s  a l l  f r a m e s  a n d  t h e  
b l a c k b o a r d  c o n t a i n  u n i n s t a n t i a t e d  s l o t s .  E x p e r t s  g r a d u a l l y
i n s t a n t i a t e  t h e  s l o t s .  R e f e r r i n g  t o  a n o t h e r  e x p e r t ' s  e x p e r t  f r a m e  
r e q u i r e s  w a l k i n g  t o  i t  o v e r  t h e  b l a c k b o a r d .  T h e  w a l k  i s  d e f i n e d  i n  a  
u n i q u e  w a y .  A l l  s l o t s  o n  t h e  p a t h  s h o u l d  b e  i n s t a n t i a t e d ,  o t h e r w i s e  t h e  
w a l k  s u s p e n d s  a n d  w a i t s  f o r  t h e  i n s t a n t i a t i o n .  T h i s  i s  e l e g a n t l y  
i m p l e m e n t e d  u s i n g  t h e  r e a d - o n l y  u n i f i c a t i o n  o f  t h e  p a r a l l e l  P r o l o g  
v e r s i o n s .  S l o t s  t h a t  w i l l  n e v e r  b e  o f  a n y  u s e  a n y  m o r e ,  a r e  i n s t a n t i a t e d  
t o  d u m m y  c o n s t a n t s  i n  o r d e r  n o t  t o  i n d e f i n i t e l y  b l o c k  s u s p e n d e d  w a l k s .
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5. Conclusion* and further r«««arch

I n  t h i s  p a p e r  a  f u r t h e r  d e v e l o p m e n t  o f  t h e  p r o c e d u r a l  v i e w  o f  
n a t u r a l  l a n g u a g e  a n a l y s i s  (NLU) a s  p r o p o s e d  b y  S m a l l ' s  W o r d  E x p e r t  P a r s e r  
h a s  b e e n  p r e s e n t e d .  T h e  P a r a l l e l  E x p e r t  P a r s e r  t r i e s  t o  p r e s e n t  a  t r u l y  
d i s t r i b u t e d  a n d  p a r a l l e l  i n t e r a c t i v e  m o d e l  o f  NLU w i t h  c l e a r l y  d e f i n e d  
e x p e r t s  o n  d i f f e r e n t  l e v e l s ,  h i e r a r c h i c a l l y  c o n c e i v e d  e x p e r t  f r a m e s  a n d  
r i g i d l y  r e s t r i c t e d  c o m m u n i c a t i o n  p r o t o c o l s .

B e s i d e s  f u r t h e r  w o r k  o n  t h e  i m p l e m e n t a t i o n  a n d  w r i t i n g / t e s t i n g  
m o r e  c o m p l e x  e x p e r t s ,  t h e  n e c e s s a r y  m o d e l  o f  k n o w l e d g e  ( c o n c e p t )  
r e p r e s e n t a t i o n  t h a t  h a s  t o  c o m p l e t e  t h e  f r a m e w o r k  i s  a  m a j o r  i s s u e  f o r  
f u r t h e r  r e s e a r c h .  A s  m e n t i o n e d  a b o v e ,  H a h n  ( 1 9 8 7 )  h a s  a l r e a d y  w o r k e d  o n  
t h i s  m a t t e r ,  i n t r o d u c i n g  g e n e r i c ,  p r o t o t y p i c a l  e x p e r t s .  T h i s  i s  n o t  j u s t  
a  k n o w l e d g e  r e p r e s e n t a t i o n  m a t t e r ,  b u t  a l s o  o n e  o f  i n t e g r a t i n g  p a r a l l e l  
P r o l o g  w i t h  a n  o b j e c t - o r i e n t e d  f r a m e w o r k  ( B o u r g o i s ,  f o r t h c o m i n g ) .
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0. Introduction

Of the parallel systems currently available, far and away the most common are loosely coupled 
collections of conventional processors, and this is likely to remain true for some time. By loosely 
coupled I mean that the processors do not share memory, so that some form of stream or 
message-passing protocol is required for processor-processor communication. It follows that in most 
cases the programmer must make explicit appeal to communication primitives in the construction of 
software which exploits the available parallelism. Even in shared-memory systems, the absence of 
parallel constructs from available programming languages may mean that appeal to a similar 
communication model may be necessary, at least in the short term.

Although not ideally suited to loosely coupled systems, the general problem of parsing for speech and 
natural language is of sufficient importance to merit investigation in the parallel world. -This paper 
reports on explorations of the computation.communication trade-off in parallel parsing, together with the 
development of an portable parallel parser which will enable the comparison of a variety of parallel 
systems.

1. Parsing for Loosely Coupled Systems

Given the prevalence of loosely coupled systems, although one might suppose that shared-memory 
parallelism offers greater scope for the construction of parallel parsing systems, and parallel chart 
parsers in particular, none-the-less it is a good idea to look at what can be done in the loosely coupled 

case.

Loosely coupled parallel systems can be expected to do best, that is, show a nearly linear (inverse) 
relationship between solution time and number of processors, when the problem at hand is (isomorphic 
to a) tree-search problem with large initial fan-out and compact specifications of sub-problems and 
results. In such problems, the ratio of communication to computation is low, so the loose coupling does 

not significantly impede linear speed-up. Large problems can be broken down into as many pieces as 
there are processors, cheaply distributed to them, and the results cheaply returned.

Parsing of single sentences is not obviously suited to loosely coupled parallel systems. Whether one 
attacks single-sentence parsing by some form of left-to-nght breadth-first parse, or by some form of 
all-at-once bottom-up breadth-first parse, very high communication costs would seem to be involved. 
The only hope would seem to be to pursue the latter route nevertheless, and see whether the 
communication costs can be brought down to an acceptable level. There are a number of different 
dimensions along which one might try to parallelise the parsing process, but insofar as they involve the
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distribution of sub-problems, they are highly likely to require the representation of partial solutions. 
Since this is a primary characteristic of the active chart parsing methodology, my investigations have 
focussed on parallel implementations of active chart parsers.

II. Parallelism and the Chart

We start with the observation that chart parsing seems a natural technique to base a parallel parser on. 
Its hallmarks are the reification of partial hypotheses as active edges, and the flexibility it allows in terms 
of search strategy, and it would seem straight-forward to adapt a chart parser doing pseudo-parallel 
breadth-first bottom-up parsing into a genuinely parallel parser. Indeed with a shared-memory parallel 
system, the BBN Butterfly'", I have done just that, and the result exhibits the expected linear speed-up. 
The approach used was simply to allow multiple processors to remove entries from the queue of 
hypothesised edges and add them to the chart in parallel, performing the associated parsing tasks and 
thereby in some cases hypothesising further edges onto the queue. Locks were of course required to 
prevent race conditions m updating the chart and edge queue, but instrumentation suggested that there 
was rarely contention for these locks and they had little adverse impact on performance.

Clearly this approach would not be appropriate in the loosely coupled case. One could of course use 
some system which supports virtual shared memory to implement a shared chart and edge queue. But 
this would defeat the whole purpose, as the parser would be serialised by the processor responsible for 
maintaining the shared structures. What I have explored instead is retaining the same granularity of 
parallelism, namely the edge, but accepting that at least some of the chart itself will have to be 
distributed among the processors.

III. Distributing the Chart

I have explored the approach of distributing the chart among the processors in several implementations 
of a chart parser for the Intel Hypercube™, a loosely coupled system, and for a network of Lisp 
workstations. A memory-independent representation of the chart is used, allowing edges to be easily 
encoded for transmission between processors. The chart is distributed among the processors on a 
vertex by vertex basis. Vertices are numbered and assigned to processors in round-robin fashion. 
Edges 'reside' on the processor which holds their 'hot' vertex, that is, their right-hand vertex if active, 
left-hand if inactive. From this it can be seen that once a new edge is delivered to its 'home' 
processor, that processor has all the edges required to execute the fundamental rule with respect to 
that new edge. Each processor also has a copy of the grammar, so it can perform rule invocation as 

necessary, and a copy of the dictionary, so that once the input sentence is distributed, pre-terminal 
edge creation can proceed in parallel.

The following three figures illustrate the distribution of vertices and edges for a simple example 
sentence and grammar, assuming a three processor system.
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4: S - >  NP VP

2: V P - >  V

Vertices are numbered circlos. Edges are thin if active, thick if inactive, and their contents are noted. 
They are numbered on a per processor basis. Those with superscripts, e.g. 40, are ones which
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originated on another processor, whose number is given by the superscript. Of the eleven edges, four 
had to be transmitted from where they were created by the action of the fundamental rule to where they 

belonged.

Transmission of edges, as noted above, requires a memory-independent representation. This is 
accomplished by flattening the structure of the edges, by making all their contents indirect references. 
Thus where m the single processor or shared memory parallel processor versions edges con ta in ed  their 
endpoint vertices and label elements (category, dotted rules, daughters), in the loosely coupled version 
edges n am e  their endpoint vertices, and index their label elements relative to appropriate baselines.

Note that this means that when parsing is completed, a complete parse is not available on any single 
processor. If it is required, then it will have to be assembled by requesting sub-parses from appropriate 

processors, recursively.

IV. Communication vs. Computation —Results for the Hypercube

Testing to date has been confined to a two processor system. The edge distribution scheme described 
above was installed into an existing serial chart parser. Considerable care has been taken within the 
limits imposed by the host system communications primitives to keep communication bandwidth to a 
minimum (approx. 100 bits/edge in a single packet). Even with a relatively trivial grammar and lexicon 
and simple sentences of limited ambiguity, two processors are faster than one under some 
circumstances. In order to explore the computation/communication trade-off, and to simulate the 
operation of the system with more complex grammatical formalisms which would require substantially 
greater per-edge computation, a parameterised wait-loop was added to the function implementing the 
fundamental rule. As the duration of that loop increased, the parse-time increased less rapidly for the 
two processor case than for the single-processor case, so that although in the initial, un-stowed, 
condition, a single processor parsed faster than two, when the fundamental rule was slowed by a factor 
of around four, two processors were faster than one. Figure 2 below illustrates this for the sentence 
The oran g e  sa w  sa w  the o ran g e  sa w  with the o ran g e s a w  with a standard grammar which allows for 
PP attachment ambiguity and a lexicon in which oran g e  is ambiguous between N and A and saw is 
ambiguous between N and V. The times plotted are to the discovery of the second parse, as the 
termination detection algorithm described below had not yet been implemented.
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1 2 3 4 5

Task weight

Figure 2. Graph of results of 2 processor H yp e rcu b e ex p erim en t

It is hoped that further experimentation with larger cubes will shortly be possible.

V. Towards Wider Comparability —The Abstract Parallel Agenda

With an eye to allowing an easy extension of this work to other systems, and more principled 
comparison between systems, I have gone back to the original serial chart parser (Thompson 1983) 
from which the Hypercuber" system was constructed, and produced an abstract parallel version. The 
original parser was based on a quite general agenda mechanism, and the abstraction was largely 
performed at this level. A multi-processor agenda system, allowing the programmer to schedule the 
evaluation of any memory-independent form on any processor at a specified priority level is provided, 
together with a novel means of synchronisation and termination. Implemented in Common Lisp, all this 
agenda system requires for porting to a new system is the provision of a simple 'remote funcall’ 
primitive.

VI. Termination and Synchronisation

Termination detection in distributed systems is a well-known problem. It arises obtrusively in any 
parallel approach to chart parsing, since this depends on an absence of activity to detect the completion 
of parsing. The abstract parallel agenda mechanism which underlies the portable parallel parser uses a 
new (we think —see Thompson, Crowe and Roberts forthcoming for discussion) algorithm for effective 
synchronisation of task execution (of which termination is a special case). It is thus possible to 

reconstruct not only the prioritisation function of an agenda (run this in preference to this), but also the 
ordering function (run this only if that is finished). Unlike some existing termination algorithms, this one
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is particular appropriate where no constraints can be placed on processor connectivity (any processor 
may, and usually does, send messages to any other processor). It requires only a modest increase in 
the number of primitive operations which must be supported to port the agenda system —all that is 
required is a simple channel for FIFO queueing of control messages between a designated boss’ 
processor and the rest. The overhead imposed by the scheme on normal operation is effectively 
zero—communication remains asynchronous until near to a synchronisation point. Essentially the 
scheme operates by each processor keeping track of the number of tasks created vs. the number of 
tasks run locally. When a processor is idle waiting for synchronisation, it sends its counts to the boss. 
When the boss has a complete set of counts which tally, it requests them again. If they haven't 
changed, synchrony is signalled. Thus in the best case 4'n fixed length messages are required to 
synchronise n processors.

VII. Testing the Portable System —Results of network experiment

For this experiment four Xerox 1186 processors running lnterlisp-0 and connected by a 10MB Ethernet 
were used, running the parallel system on top of the abstract parallel agenda. Communication for the 
implementation of the agenda was via the Courierr“ remote procedure call mechanism, whose hallmark 
is reliability, not speed. Results were obtained during a period of low network loading, and three trials 
were performed. The times used in the figures below are the fastest times obtained over the trials, 
which were quite consistent from one to the next. Figure 3 shows processing time versus number of 
processors for each of three sentences, using the same grammar and lexicon as in the previous 
experiment, and for a fourth sentence, using a much larger and more realistic grammar with 70 rules 
and an appropriate lexicon (the failure to find any parses was caused by a typing error in the grammar, 
detected too late for correction). Table 1 gives the sentences, the number of active and inactive edges 

involved and the number of parses found.

Sentence active inactive parses
edges edges

a: The orange saw saw the orange saw. 46 22 1

b: The orange saw saw the orange saw with
the orange saw. 88 43 2

c: The orange saw saw the orange saw with
the orange saw with the orange saw. 166 82 5

d: The front-end consists of those phases that
depend primarily on the source-language. 285 58 0

Table 1. Sentences used in the network experiments
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Parse Time vs. Number of Processors

Number of processors
Figure 3. Graph of results of network experiment

Clearly not much encouragement can be taken from this experiment. Although there is some speed-up 
from two to three processors in some cases, overall the pattern is one where communication costs 
clearly dominate, so no advantage is gained. With slower processors and/or faster networks, we might 
hope to see better results, especially given the results in section IV, but the appropriateness of this 
approach to networked systems must remain in doubt in the absence of better evidence.

VIII. Alternative Patterns of Edge Distribution

One possible alternative decomposition of the task, which might offer some hope of improving the 
computation/communication trade-off. would be to transmit only inactive edges, but to send them to all 
processors. Then every processor would have the complete inactive chart, and could run active edges 
from start to finish without ever sending them anywhere. In order to distribute the computational load, 
rule invocation would be distributed on a per vertex basis. That is, each processor would only do 

bottom up rule invocation for those inactive edges which began at a vertex owned by that processor. 
The plus side of this route is that it sends only inactive edges around, which are simpler to encode, that 
the final result is available on a single processor, indeed on all processors, without having to be 
assembled, and that active edge processing is more efficient. The minus side is that the inactive edges 
have to be sent to all processors. In the simple example given in Figure 1, this actually balances 
out—four edges in the original implementation, two edges twice in the alternative one. A further 
experiment with the network system was conducted to explore this approach. The same sentences as
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before were used, but this time with the new edge distribution pattern. Table 2 below compares 
sentence b from Table 1, The o ran g e sa w  saw the o ran g e  saw with the o ran g e  saw . in terms of the 
number of edges of each type processed locally and transmitted under the two patterns for different 
numbers of processors. In each case, the figures are given as a|b, where a is the number for the 
original pattern, and b is the number in the inactive-edge-only pattern.

# of processors Active Inactive Total
local xmitted local xmitted local xmitted

2 59|88 29|0 26|36 17|25 85|124 46|25
3 57|88 3110 29)54 14.(50 86|142 45|50
4 47|88 4110 23|72 20)75 70|160 61175

Table 2. Edges processed locally versus transmitted for two edge distribution patterns

The increase in local edges is somewhat artifactual, coming in part from the replication of lexical edge 
construction across all processors. Clearly only for small numbers of processors is there a net gain in 
number of edges transmitted. The effect this has on processing time is pretty much as one would 
expect. Figure 4 shows the times for sentence b for both patterns. The curve with points labelled "o" 
is for the original pattern, that with points labelled "i" is for the alternative, mactive-edge-only pattern.

Two Distribution Strategies

Number of processors
Figure 4. Graph of alternative distributions strategies for parsing sentence b
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As expected, only in the two processor case do we see an advantage to the alternative approach. In 
general it is clear that the principle determinate of processing time is number of edges transmitted —the 
overhead in the network communication dominates all other factors. The obvious conclusion is that, 
particularly as processors speeds increase, it will take very high bandwidth mter-processor 
communication, perhaps only achievable with special purpose architectures, to make at least this 
edge-distribution approach to parallel parsing worthwhile.

References

Thompson. Henry S. 1983. "MCHART -- A Flexible, Modular. Chart Parsing System", in P ro ceed in g s  
o f  the National C on feren ce  on Artificial In telligence, AAAI, Menlo Park. Ca.

Thompson, Henry S., Crowe. Alan and Roberts. Gary forthcoming. "Termination and Synchronisation 
m Distributed Event Systems".

MCHART is available via electronic mail in both serial and parallel versions, implemented in a relatively 
installation-independent Common Lisp. Requests to hthompson@uk.ac.edinburgh (JANET), 
hthompson%edinburgh.ac.uk@nsfnet-relay.ac.uk (ARPANet).

-328- Intemational Parsing Workshop '89

mailto:edinburgh.ac.uk@nsfnet-relay.ac.uk


Paralle l Generalized LR  Parsing  
based on Logic P ro g ram m in g

Hozumi TANAKA Hiroaki NUMAZAKI
T o k y o  I n s t i t u t e  o f  T e c h n o l o g y T o k y o  I n s t i t u t e  o f  T e c h n o l o g y

Abstract

A generalized LR parsing algorithm, which lias been developed by Tomita[Tomita 86], 
can treat a context free grammar. His algorithm makes use of breadth first strategy 
when a conflict occcurs in a LR parsing table. It is well known that the breadth first 
strategy is suitable for parall processing. This paper presents an algorithm of a par­
allel parsing system (PLR) based on a generalized LR parsing. PLR is implemented 
in GHC[Ueda 85] that is a concurrent logic programming language developed by 
Japanese 5th generation computer project. The feature of P L R  is as follows: Each 
entry of a LR parsing table is regarded as a process which handles shift and re­
duce operations. If a process discovers a conflict in a L R  parsing table, it activates 
subprocesses which conduct shift and reduce operations. These subprocesses run in 
parallel and simulate breadth first strategy. There is no need to make some subpro- 
.cesses synchronize during parsing. Stack information is sent to each subprocesses 
from their parent process. A simple experiment for parsing a sentence revealed the 
fact th a t  PLR  runs faster than PAX[Matsumoto 87][Matsumoto 89] tha t  has been 
known as the best parallel parser.

1 Introduction

As the length of a sentence becomes longer, the number of parsing trees increases and it will take 
a lot of time to parse a sentence. In order to achieve fast parsing, we should look for a parallel 
parsing system based on the most efficient and general parsing algorithms. One of parallel 
parsing systems we have ever known is PAX[Matsumoto 87][Matsumoto 89] tha t  is based on 
C hart  parser. It is well known th a t  L R  parser is the most efficient paser, since L R  parsing 
algorithm runs deterministicly for any L R  gram m ar which is a subset of context free grammar. 
Unfortunately, L R  gram m ar is too weak to parse sentences of natural languages. When we 
apply L R  parsing algorithm to context free gram m ar, it is an usual case tha t  conflicts appears 
in a L R  pasing table. So we need to generalize the L R  parsing algorithm in order to process 
these conflicts. There  are two kinds of strategies to resolve the conflicts, namely a depth first 
stra tegy and a breadth  first strategy. Nilsson[Nilsson 86] has adopted a dep th  first s tra tegy  and 
Tom ita[Tom ita 86] a breadth  first s trategy which is called a generalized L R  parsing. As it is easy 
for us to simulate the breadth  first strategy by parall processing technique. We have developed 
a parallel generalized LR  parsing system (PLR) based on the generalized L R  parsing algorithm 
which makes use of a breadth  first strategy.
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After we will give a brief introduction of LR parsing algorithm in section 2, we will describe 
our PLR system details of which will be explained in section 3. PLR is implemented in a 
concurrent logic programming language called GHC[Ueda 85] that is developed by Japanese 
5th generation computer project. One of the most significant feature of PLR is to regard each 
entry of a LR parsing table as a process which handles shift and reduce operations. If the 
process discovers a conflict in a LR parsing table, it creates and activates subprocesses in order 
to process shift and reduce operations in the conflict. These subprocesses run in parallel and
simulate breadth first strategy. There is no need to make subprocesses synchronize during
parsing. Stack information is sent to each subprocesses from their parent process. In order to 
understand PLR algorithm we will show a trace of actual parsing in subsection 3.6.

In section 4, we will explain some results of the experiment which parses sentences using 
PLR and PAX. The experiment revealed the fact that PLR runs faster than PAX that is one of 
the best parallel parsers.

2 G e n e r a l i z e d  L R  P a r s i n g  a l g o r i t h m

The generalized LR parser is guided by a LR parsing table which is generated from grammar
rules given. Fig.2 shows an ambiguous English grammar. Fig.2 shows a LR parsing table 
generated from the English grammar. The LR parsing table is devided into two parts, an action 
table and a goto table.

The lefthand side of the table is called ’action tab le’, the entry of which is determined by 
a pair of generalized LR parser’s state  (the row of the table) and a lookahead preterm inal(the 
column of the table) of an input sentence. There are two kinds of operations, a shift and a 
reduce operations. Some entries of the LR table contains more than two operations which mean 
th a t  there is a conflict in the entry, and a parser should conduct more than two operations at 
once.

The symbol ’sh N’ in some entries means that generalized LR parser has to push a lookahead 
preterminal on the LR stack and go to ’s ta te  N’. The symbol ’re N’ means tha t  generalized LR 
parser has to reduce several topmost elements on the stack using a rule numbered ’N \  The 
symbol ’acc’ means tha t  generalized LR parser ends with success of parsing. If an entry doesn’t 
contain any operation, generalized LR parser recognizes an error.

The righthand side of the table is called a ’goto tab le’ which decides a s ta te  tha t  the parser 
should enter after every reduce operation. The LR table shown in fig.2 has 4 conflicts at the 
s ta te  14 (row number 14) and s ta te  16 for the column of ’p ’ and ’relp’. Each of four entries, 
which have a conflict, contains two operations, a shift and a reduce operation. Such a conflict is 
called a ’shift-reduce conflict’. When a parser encounters a conflict, it cannot determine which 
operation should be carried out first. In PLR explained in the next section, conflicts will be 
resolved using parallel processing technique and we do not mind the order of the operations in 
a conflict.

3 I m p l e m e n t a t io n  o f  P L R

PLR is implemented in GIIC th a t  is a concurrent logic programming language developed by 
Japanese 5th generation computer project. In our system, each entry in a LR parsing table are 
regarded as a process which will handle shift and reduce operations. If the process discovers 
a conflict in a LR parsing table, it activates subprocesses in order to process shift and reduce
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(1) S — NP, VP.
(2)' s — S, PP.
(3) NP — NP, RELC

( 0 NP — NP, PP.
(5) NP — det, noun.
(6) NP — noun.

( ' ) NP — pron.
(8) VP — v, NP.

(9) RELC — relp, VP.
(10) PP — P, NP.

fig.l: Ambiguous English grammar

det noun pron V P relp % NP PP VP RELC S
0 sh l sli2 sh3 5 4
1 sh6
2 re6 re6 re6 re6
3 re7 re7 re7 re7
4 sh7 acc 8
5 shlO sh7 sh9 12 11 13
6 re5 re5 re5 re5
7 sh l sh 2 sli3 14
8 re2 re2
9 shlO 15
10 sh l sh2 sh3 16
11 rel rel
12 re4 re4 re4 re4
13 re3 re3 re3 re3
14 relO sh7/re  10 sh 9 /re l0 relO 12 13
15 re9 re9 re9 re9
16 re8 sh7/re8 sh9/re8 re8 12 13

fig.2: LR parsing table obtained from fig.l gram m ar
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(1) a:- true| b,c.
(2) b:- tr 11 e| true.
( 3 )  c:- t r u e|  t r u e .

fig.3: typical stat nent of GIIC

operations in the conflict. These subprocesses run in parallel and simulate breadth first strategy 
for the generalized LR parsing. There is no need to make subprocesses synchronize during 
parsing. Stack information is sent to each subprocesses from their parent process.

3 .1  B r ie f  I n tr o d u c t io n  o f  G H C

Before explaining the details of PLR algorithm, we will give a brief introduction of GHC. Typical 
GHC statem ents are given in fig.3. Roughly speaking, the vertical bar in a GHC statem ent of 
fig.3 works as a cut symbol of Prolog. When a goal ’a ’ is executed, i  process corresponding to 
the sta tem ent (1) is activated and the body becomes a new goal in which ’b ’ and ’c’ are excuted 
simultaneously, since GHC adopts AND-parallel strategy. In other word, subprocesses V  and 
V  are created by a parent process ’a ’ and they run in paralell. Although GHC has a few of 
synchronization mechanisms, it will not be necessary for you to understand them.

3 .2  D e s c r ip t io n  o f  P L R  A lg o r ith m

At first, PLR creates a list of preterminals of an input sentence which will be parsed. PLR 
parser begins activating an action process which corresponds to the LR table entry determined 
by the s ta te  ’O’ and the first preterminal in the preterminal list. The action process activates the 
other processes according to the comands specified in the LR talbe entry. Activated processes 
recieves stack information from the parent process and also perform some comands specified in 
the corresponding LR table entry. The process activation will continue until some processes find 
out an ’acc’ or an ’erro r’ entry. If we have a conflict during parsing, more than two subprocesses 
will be activated at once and run in parallel. There are three kinds of processes which are 
activated in PLR parser.

• action process:

An action process carries out shift and /or  reduce operations. In case of a shift operation, 
the action process pushes a lookahead preterminal on a stack and activates a new process 
which corresponds to new state  given by the shift operation. When an action process 
encounters a reduce operation, a reduce process will be activated and recieve stack infor­
mation from the parent action process. If an action process finds a conflict, more than two 
subprocesses will be activated each of which perform either a shift or a reduce operation. 
These subprocesses run in parallel. If an action process enconters an ’acc’ operation, the 
action process will extract the result of the parsing and end with success. On the contrary, 
if all of the above conditions are not satisfied, an action process will end with failure.

• reduce process:

Using a gram m ar rule specified by a reduce operation, the reduce process makes a reduction 
of an appropriate  portion of stack, and the reduce process activates a goto process in order 
to enter a new state .
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• goto proccss:

Using stack information given by a reduce process, a goto process activates an action 
process to enter a new state.

In the following subsections, we will give the GIIC definition of PLR processes obtained by 
the LR table shown in fig 2.

3 .3  D e f in it io n  o f  A c t io n  P r o c e s s

Followings are examples of definitions of an action process.

1. Suppose an action process iO’ that corresponds to the entry in fig.2 whose row and column 
are 0 and ’noun’ respectively. As the entry contains ’sh 1’, the process has to activate a 
subprocess which carries out a shift operation. The definition of the process ’iO’ is shown 
below.

iO(noun, S lack , [noun,NextCat|List], Info) :- true |
i l (N e x tC a t ,  [[l,noun]|Stack], [NextCat|Listj, Info).

In the above process definition, the predicate ’iO’ is a process name, and its first argument 
is a lookahead preterminal ’noun’. The second argument is ’S tack’ on which information 
about state , grammatical categories and the'o ther information are pushed. The third is a 
list of preterminals of an input sentence. The fourth outputs  ’Info’, the results of parsing. 
The subprocess ’i 1 ’ is activated and carries out a ’sh 1’ operation. The subprocess ’i l ’ 
recieves a new stack which consists of ’S tack’, s tate  ’T’ and a preterminal ’noun’. Note 
tha t  in the third argument of the process ’i l ’, preterminal ’noun’ is eliminated from the 
list of preterminals, since preterminal ’noun’ should be shifted.

2. Consider an entry of s ta te  ’2’ and a lookahead preterminal V  in fig.2. The definition of 
action process ’i2’ is given below :

i 2 ( v , S tack , List, Info) true |
re6(v, S tack , List, Info).

In the body of an action process ’i2’, a subprocess ’re6’ is activated in order to conduct a 
reduce operation. The subprocess ’re6’ recieves the same stack information and a preter­
minal list as those of the parent process ’i2’. The detail of the reduce process will be 
explained later.

3. Consider an entry of s ta te  ’14’ and a lookahead preterminal ’p ’ in fig.2. We will find out 
a shift-reduce conflict, ’sh 7 /re  10’. The definition of an action process ’i l 4 ’ is as follows.

i l4 ( p ,  S tack , [p,NextCat|List], Info) true |
i7 (N ex tC a t,  [[7,p]|Stack], [NextCat|List], Infol), 
re 10( p , S tack , [p,NextCat|List], Info2), 
merge(Infol , Info2 , Info).
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In the body of the proccss ’i l 4 ’, both subprocesses 'i7’ and 're 10* carry out a shift and a 
reduce operation simultaneously. The ’merge’ process is a built-in process which merges 
the outpu t produced by the subprocesses ’iT’ and ’re 1 O’.

4. Consider the entry of state ’4’ and a lookahead preterminal ’S’ in fig.2. We will find out 
’acc’ in the entry which indicates a success of parsing. The definition of the action process 
’i4’ is as follows.

il($, [[_,Resu11.]|_], Info) true |
11) fo = [ Res

In the body of the action process ’i4’,’[Result]’ is sent to the fourth argument ’Info’, and 
finally the action process 'i4’ terminates with success.

5. If no operation is specfied in an entry, an error handling process has to be activated. We 
have to define an error handling process in some states if necessary. The following is a 
definition of an error process in state  ’0 ’ which should be placed at the end of definitions 
of the process ’i0’.

otherwise.
i0(_ -  Info) true |

Info =  [].

The sta tem ent ’otherwise’ is a built-in s ta tem ent which declares tha t  GHC statem ents 
below ’otherwise’ should be executed after all GHC stetements before ’ohterwise’ fails.

3.4 Definit ion of  Reduce Process

The following definition of a reduce process ’relO’ is an example of reduce actions correspondds 
to the gram m ar rule numbered 10 in fig.l( (10) PP  —p,NP).

relO(NextCat., Old Stack , List, Info)
OlclS tack=[[_,Tl] ,[_,T2] ,[S tate,T3] [Tail] |
p p (S ta te ,  N ex tC a t ,  [pp,T2,Tl], [[State,T3]|Tail], L is t,  Info).

In the second argum ent of ' r e l 0 \  the topmost two elements of ’OldStack’ are popped and sent 
to a goto process ’p p ’ iu which the third argument ’[pp ,T 2 ,T l]’ constructs a syntactic  tree whose 
root is ’p p ’ in accordance with the gram m ar rule 10 in fig.l. The name of the goto process ’pp’ 
is the name of the lefthand side nonterminal symbol in the gram m ar rule 10. The first argument  
’S ta te ’ is a new s ta te  number extracted from ’OldStack’. Note that the reduce process ’relO’ 
passes a next incomming proterminal ’N ex tC a t’ to the ’pp ’ process, since a reduce process does 
not consume any incomming preterminals.

3.5 Definit ion of  Goto Process

After a reduce operation is carried out, a goto process is activated in order to enter a new state 
in which a new action process will be activated. At that time, the goto process uses both an 
incomming nonterminal symbol and a s ta te  number on the top of the stack.
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We will give a sample definition of goto processes.

s(0 , Next-Cat , Tree, S tack , List, Info) true |
i l (N e x tC a t ,  [[4,Tree]|Stack], List, Info).

The process ’s ’ defined above is activated after ’s ’ is constructed by a reduce process in state
’O’. As the entry of row ’0 ’ and column ’s ’ in the LR table of fig.2 includes ’4’, the goto process
’s ’ activates an action process ’i4’ pushing state  ’4 ’ and tree information onto the stack.

3.6 A n  E x a m p le  o f  P L R  P a r s in g

Given a LR table of fig.2, a Iran slate r generates the following definitions of parsing processes.

i 0 ( d e t , S t a c k , [ _ , N e x t C a t l L i s t ]  , In fo )  : - t r u e  I
i l ( N e x t C a t , [ [ l , d e t ]  I S t a c k ] , [ N e x t C a t l L i s t ] , In fo )  .

i O ( n o u n ,S t a c k , [_ , NextCat I L i s t ] , I n f o ) t r u e  I
i 2 ( N e x t C a t , [ [ 2 ,n ] I  S t a c k ] , [NextCat I L i s t ]  , I n f o ) .

i 0 ( p r o n , S t a c k , [_ .N e x tC a t1 L i s t ] , I n f o ) : -  t r u e  I
i 3 ( N e x t C a t , [[3  ,p ro n ] I  S t a c k ] , [NextCatI L i s t ] , I n f o ) .

o th e r w i s e .
i 0 ( _ , _  , _ , I n f o ) t r u e  1 I n f o = [ ] .

i l ( n o u n , S t a c k , [ _ , N e x t C a t l L i s t ] , I n f o ) : -  t r u e  I
i 6 ( N e x t C a t , [ [ 6 , n o u n ] 1 S t a c k ] , [ N e x t C a t i L i s t ] , I n f o ) .

Following is an example of PLR parsing, 

input sentence : i open the door with a key .

Parsing begins with activating the following action process ’iO’. 
i0(pron,[[0,[]]], [pron,v,det,noun,p,det,noun,$],Info)

‘Stack ‘List of Preterminal 
Lookahead

Activates the action process ;i3’ for ’shift 3 ’. 
i3(v,[[3,pron],[0,[]]], [v ,det,noun,p,det,noun,$ ] ,Info)

Activates the reduce process ’ie7} for 'reduce 7 ’. 
re7(v,[[3,pron],[0,[]]],[v,det,noun,p,det,noun,$],Info)

[[3,pron], [0,[]]] = [[_,T1],[State,T2]1 Tail]
Activates the goto process ’n p ’. 
np(0,v ,[np,pron], [[0,[]]], [v,det,noun,p,det,noun,$],Info)
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‘State 'Tree ‘Stack

Activates the action process ’i5’ for ’goto 5'. 
i5(v, [[5,[np,pron]] , [0, []]], [v,det,noun,p,det,noun,$],Info)

Activates the action process }il0’ for ’shift 10’. 
i10(det, [[10 ,v] , [5,[np.pron]], [0,[]]], [det,noun,p,det,noun,$],Info)

i 1 6 ( p , [ [ 1 6 ,  [np , d e t  , n o u n ] ] , [ 1 0 , v ] , [5 ,  [ n p . p r o n ] ] , [ 0 , [ ] ] ] , [ p , d e t , n o u n ,$] , I n f o )
A c o n f l i c t  ’ s h i f t  7 / re d u c e  8 ’ o c c u re s .
A c t iv a t e s  ’ i 7 ’ and ’r e 8 ’ p r o c e s s e s  s im u l ta n e o u s ly .

i 7 ( d e t , [ [ 7 , p ] I [ [ 1 6 , [ n p . d e t , n o u n ] ] , [ 1 0 , v ] , [ 5 , [ n p . p r o n ] ] , [ 0 , [ ] ] ] ] ,  [ d e t I  [ n , $ ] ] , Info) 
r e 8 ( p , [ [ 1 6 , [ n p , d e t , n o u n ] ] , [ 1 0 , v ] , [ 5 ,  [ n p . p r o n ] ] ,  [0 , [ ] ] ] ,  [p , d e t  I [ n o u n , $ ] ] , I n f o )

Both p r o c e s s e s  end w ith  s u c c e s s  and produce  the  fo l lo w in g  r e s u l t s  i n  ’ I n f o 1 . 
i4($,[ [4 . [s .[ n p , p r o n ],[vp ,v , [n p,[ n p...],[ p p , p , [ n p ...]]]]]], [0,[]]],[$],In fo )  

I n f o * [ s , [ n p .p r o n ]  , [ v p ,v ,  [ n p , [n p , d e t , n o u n ] , [ p p , p , [ n p ,d e t , noun]] ] ] ]

14 ($ , [ [4  , [s , [s , [n p .p ro n ]  , [v p , v , [np , [ n p . . . ] ] ] ] ,  [pp , p , [np . . . ] ] ] ] ,  [0 , [ ] ] ] , [ $ ] ,  In f  o) 

I n f o = [ s , [ s , [ n p . p r o n ] , [ v p ,v ,  [n p , [ n p . d e t , n o u n ] ] ] ] , [ p p , p , [ n p , d e t ,noun ]] ]

4 T h e  R e s u l t s  o f  A  E x p e r im e n t

We conducted an experiment to parse many English sentences with many P P  a ttachm ents  such 

as :
NP.v.NP 
NP,v,NP,PP 
NP,v,N P,PP,PP 
N P ,v ,N P,PP .PP ,PP

In the experiment, PLR and PAX are used to parse sentences. The number enclosed by paren­
thesis in fig.4 indicates the number of parsing trees. PLR  runs 1.4 times faster than PAX that 
was known as the best parallel parser in the past. In order to get all parsing trees of a sentence 
with 9 PP  a ttachm ents, PLR takes about 65 sec. on Sun-3/260 workstation. It means th a t  PLR 

produces a parsing tree only every 4 msec.
The reader should note th a t  the PLR  which we explained in this paper does not use a 

graph s tructured stack. For comparison, the results of parsing which makes uses of the graph 
struc tu red  stack is shown by a solid line. The  PLR  parser with a graph structured stack runs 
10 times slower than the one without a graph s tructured stack. The  reason is tha t  the former
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fig.4: The result of Parsing time

causes many processes to wait for synchronization. We are now considering the reason why PLR 
parser without the graph structured stack runs so fast. One of the reasons is tha t  PLR parser 
without the graph does not. cause many processes to suspend for synchronizations.

5 C o n c l u s i o n

We described an exaple of the implementation of the PLR algorithm in GHC in which each 
entry of the LR table is regarded as a process which handles shift and reduce operations. When 
a conflict occurs in an entry of the LR table, the corresponding parsing process activates two or 
more subprocesses which run in parallel and simulate breadth Jirst strategy of the generalized 
LR parsing. Each subprocess is given the stack information from the parent process and runs 
further to execute a shift and a reduce operation.

The  experiment has revealed that PLR runs faster than PAX that has been known as the 
best parallel parser. PLR runs so fast tha t  it will be a promising parser for processing many 
complex natura l language sentences.

However, PLR has many problems to be solved, for example, handling of gapping and idiom, 
and integration of syntactic and semantic processing which are urgent problems to be solved in 
the near future.
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Abstract
In this paper, we investigate the processing of the so-called ‘lexicalized ’ gram m ar. In ie x ic a iiz e d ’ 

g ram m ars (Sch abes, Abeille and Josh i, 1988), each elem entary stru ctu re is sy stem atica lly  associated 
with a lexical ‘h ead ’ . T h ese stru ctu res specify extended dom ains of locality (as com pared to C F G s) over 
which constrain ts can be sta ted . Th e ‘g ram m ar’ con sists o f a lexicon where each lexical item  is associated  
with a finite num ber of stru ctu res for which that item  is the ‘h ead ’ . There are no separate  gram m ar 
rules. There are, of course, ‘ ru les’ which tell us how these stru ctu res are com bined.

A general tw o-pass parsing strategy  for ‘lexicalized ’ g ram m ars follows naturally. In the first stage , 
the parser selects a set of elem entary stru ctu res associated  with the lexical item s in the input sentence, 
and in the second stage  the sentence is parsed with respect to this set. We evaluate this stra tegy  with 
respect to two ch aracteristics. F irst, the am ount of filtering on the entire gram m ar is evaluated: once 
the first p ass is perform ed, the parser uses only a subset of the gram m ar. Second, we evaluates the use of 
non-local inform ation : the stru ctu res selected during the first pass encode the m orphological value (and 
therefore the position  in the strin g) of their ‘h ead ’; this enables the parser to use non-local inform ation 
to guide its search.

We take Lexicalized Tree A djoin ing G ram m ars as an instance of lexicalized gram m ar. We illu strate  
the organization  of the gram m ar. Then we show how a general Earley-type T A G  parser (Sch abes and 
Josh i, 1988) can take advan tage of lexicalization. Em pirical d a ta  show th at the filtering of the gram m ar 
and the non-local inform ation  provided by the tw o-pass stra tegy  im prove the perform ance of the parser.

We explain  how con strain ts over the elem entary stru ctu res expressed by unification equations can be 
parsed  by a sim ple extension  of the Earley-type T A G  parser. Lexicalization  gu aran tees term ination  of 
the algorithm  w ithout sp ec ia l devices such as restrictors.

1 Lexi cal i zed Gr a mma r s
Most current lingu istic theories give lexical accounts o f several phenom ena that used to be considered purely 
syn tactic . T h e inform ation  put in the lexicon is thereby increased in both  am ount and com plexity: see, for 
exam ple, lexical rules in LFG (K aplan  and Bresnan, 1983), G PSG  (G azdar, Klein, P ullum  and Sag, 1985), 
HPSG (Pollard  and Sag, 1987), C om binatory C ategorial G ram m ars (S teedm an  1985, 1988), K arttu n en ’s 
version o f  C ategoria l G ram m ar (K arttun en  1986, 1988), som e versions of G B theory (C hom sky 1981), and 
Lexicon-G ram m ars (G ross 1984).

We say that a gram m ar is ‘lex ica lized ’ if it consists of:1

•  a finite set o f stru ctures associated  w ith each lexical item , which is intended to be the ‘h ead ’ o f these  
structures; the stru ctures define the dom ain o f locality  over which constrain ts are specified; constrain ts  
are local w ith  respect to  their lexical ‘h ea d ’;

•  an op eration  or op eration s for com posing the structures.

N otice that C ategorial G ram m ars (as used for exam ple by A des and S teedm an, 1982 and S teed m an , 1985 
and 1988) are lexicalized  according to  our definition since each basic category has a lexical item  associated  
with it.

•T h is  work is p a rtia lly  su p p o rte d  by ARO g ra n t DA A29-84-9-007, D A RPA  g ran t N0014-85-K 0018, N SF g ran ts  MCS-82- 
191169 an d  D C R -84-10413. We have benefited  from  o u r d iscussions w ith  A nne A beille, L auri K a rttu n e n , M itch  M arcus and 
S tu a rt Shieber. We would also like to  th a n k  E llen Hays.

By lex icaliza tion  we m ean  th a t  in  each s tru c tu re  there  is a  lexical item  th a t  is realized. We do  no t m ean  sim ply add ing  
feature  s tru c tu re s  (such as h ead) a n d  u n ification  eq u atio n s to  th e  ru les of the  form alism .
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A general tw o-step  parsing strategy for ‘lexicalized’ gram m ars follows naturally. In the first stage, the 
parser se lects a set o f elem entary structures associated  with the lexical item s in the input sentence, and in 
the second stage the sentence is parsed with respect to this set. T he strategy is independent o f the nature 
of the elem entary structures in the underlying gram m ar. In principle, any parsing algorithm  can be used in 
the second stage.

T he first step  selects a relevant subset o f the entire gram m ar, since only the structures associated  with  
the words in the input string are selected  for the parser. In the worst case, this filtering wou: . select the 
entire gram m ar. T he number of structures filtered during this pass depends on the nature of the input string  
and on characteristics o f the grammar such as the number of structures, the number of lexical entries, the 
degree o f lexical am biguity, and the languages it defines.

Since the structures selected  during the first step encode the m orphological value o f their ‘h ead ’ (and  
therefore its position  in the input string), the first step also enables the parser to use non-local inform ation to 
guide its search. T h e encod ing o f the value of the ‘h ead ’ of each structure constrains the way the structures  
can be com bined. It seem s that this inform ation is particularly useful for parsing algorithm s that have som e 
top-dow n behavior.

T h is parsing strategy  is general and any standard parsing technique can be used in the second step . 
Perhaps the advantages o f the first step could be captured by som e other technique. However this strategy  
is extrem ely  sim ple and is consistent w ith  the linguistic m otivations for lexicalization .

2 Lexi cal i zed TAGs
N ot every gram m ar is in a ‘lex ica lized ’ form .2 In the process of lexicalizing a gram m ar, we require that 
the ‘lex ica lized ’ gram m ar produce not only the sam e language as the original gram m ar, but also the sam e  
structures (or tree set).

For exam ple, a C FG , in general, will not be in a ‘lex ica lized ’ form. T he dom ain o f locality  o f CFGs 
can be easily  extend ed  by using a tree rewriting gram m ar (Schabes, A beille and Joshi, 1988) that uses only  
su b stitu tion  as a com bining operation . T h is tree rew riting gram m ar consists o f a set o f trees that are not 
restricted to be o f depth  one (as in C F G s). S u b stitu tion  can take place only on non-term inal nodes o f the 
frontier o f each tree. S u b stitu tion  replaces a node marked for su b stitu tion  by a tree rooted  by th e sam e label 
as the node (see Figure 1; the su b stitu tion  node is marked by a down arrow j,).

However, in the general case, C FG s cannot be ‘lex ica lized ’, if only su b stitu tion  is used. Furtherm ore, in 
general, there is not enough freedom  to choose the ‘h ead ’ of each structure. T h is is im portant because we 
w ant the choice o f the ‘h ead ’ for a given structure to be determ ined on purely lingu istic grounds.

If adjunction  is used as an additional operation  to  com bine these structures, C FG s can be lexicalized. 
A djunction  builds a new tree from  an auxiliary tree 0  and a tree a  . It inserts an auxiliary tree in smother 
tree (see Figure 1). A djunction  is m ore powerful than su b stitu tion . It can weakly sim u late su b stitu tion , but 
it also generates languages that could not be generated w ith su b stitu tion .3

S u b stitu tion  and adjunction  enable us to  lexicalize C FG s. T h e ‘h ead s’ can be freely chosen (Schabes, 
A beille and Josh i, 1988). T h e resulting system  now falls in the class o f m ildly con text-sen sitive  languages 
(Joehi, 1985). E lem entary structures o f extend ed  dom ain o f locality  com bined w ith su b stitu tion  and adjunc­
tion y ield  Lexicalized T A G s.

TA G s were first introduced by Joshi, Levy and Takahashi (1975) and Joshi (1985). For more details  
on the original definition o f T A G s, we refer the reader to  Joehi (1985), Kroch and Joehi (1985), or Vijay- 
Shanker (1987). It is known that Tree A djoining Languages (T A L s) are m ildly con text sensitive . TALs 
properly contain  context-free languages.

2 N otice the  sim ila rity  of the  defin ition  of ‘lex icalized’ g ram m ar w ith  th e  offline p a rsib ility  co n stra in t (K ap lan  and  B resnan  
1983). As consequences of ou r defin ition , each s tru c tu re  has a t least one lexical item  (its  ‘h e a d ’) a tta c h e d  to  it and  all sentences 
are finitely  am biguous.

3 It is also possib le to  encode a con tex t-free  g ram m ar w ith  aux iliary  trees using  a d ju n c tio n  only. However, a lth o u g h  the 
languages co rrespond , the  set of trees do no t co rrespond .
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TAGs with substitution and adjunction are naturally lexicalized.4 A Lexicalized Tree Adjoining Grammar 
is a tree-based system that consists of two finite sets of trees: a set of initial trees, I  and a set of auxiliary 
trees A (see Figure 2). The trees in I U A  are called e lem en ta ry  trees. Each elementary tree is constrained 
to have at least one terminal symbol which acts as its ‘head’.

Figure 2: Schcmaiic initial and auxiliary trees

The t re e  set of a TAG G , T(G)  is defined to be the set of all derived trees starting from S-type initial 
trees in I. The s tr in g  language generated by a TAG, C(G), is defined to be the set of all terminal strings 
of the trees in T{G).

By lexicalizing TAGs, we have associated lexical information to the ‘production’ system encoded by the 
TAG trees. We have therefore kept the computational advantages of ‘production-like’ formalisms (such as 
CFGs, TAGs) while allowing the possibility of linking them to lexical information. Formal properties of 
TAGs hold for Lexicalized TAGs.

As first shown by Kroch and Joshi (1985), the properties of TAGs permit us to encapsulate diverse syn­
tactic phenomena in a very natural way. TAG’s extended domain of locality and its factoring recursion from 
local dependencies lead, among other things, to localizing the so-called unbounded dependencies. Abeille 
(1988a) uses the distinction between substitution and adjunction to capture the different extraction prop­
erties between sentential subjects and complements. Abeille (1988c) makes use of the extended domain of 
locality and lexicalization to account for NP island constraint violations in light verb constructions; in such 
cases, extraction out of NP is to be expected, without the use of reanalysis. The relevance of Lexicalized 
TAGs to idioms has been suggested by Abeille and Schabes (1989).

4 In som e earlie r work of Joshi (1969, 1973), the  use of th e  two opera tio n s ‘adjoining* and  ‘rep la ce m en t’ (a  re stric ted  case of 
su b s titu tio n ) was in v es tig a ted  b o th  m ath em a tica lly  and  linguistically . However, these  investiga tions d ea lt w ith  strin g  rew riting  
system s an d  n o t tree  rew riting  system s.
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We will now give some examples of structures that appear in a Lexicalized TAG lexicon.
Some examples of initial trees are (for simplicity, we have omitted unification equations associated with 

the trees):5

S
s

NP
A NP0i  VP NP01 VP NPol VP NPoA

01  N <“ >> I  (“ ’ ) j, (“ 3> (0,4) v< X ^ P z  (a ,)

boy saw saw put P̂ i NP2>1
Examples of auxiliary, trees (they correspond to predicates taking sentential complements or modifiers):
S S S

/\ A ANP01 VP NPol VP NPo± VP VP N

v ŝ ^ n a  ( 0 1 )  (/?2) v s ^ n a  ( 0 2 )  v^vWna ( 0 4 )  a^n* n a  ( 0 b )

I I  I I I
th in k  prom ise s*w has P ^ t ty

In this approach, the argument structure is not just a list of arguments. It is the syntactic structure 
constructed with the lexical value of the predicate and with all the nodes of its arguments that eliminates 
the redundancy often noted between phrase structure rules and subcategorization frames.6

2.1  O r g a n iz a t io n  o f  th e  G r a m m a r

A Lexicalized TAG is organized into two major paxts: a lexicon and t ree  families, which are sets of 
trees. Although it is not necessary to separate trees from their realization in the lexicon, we chose to do so 
in order to capture some generalities about the structures. TAG’s factoring recursion from dependencies, 
the extended domain of locality of TAGs, and lexicalization of elementary trees make Lexicalized TAG an 
interesting framework for grammar writing. Abeille (1988b) discusses the writing of a Lexicalized TAG for 
French. Bishop, Cote and Abeille (1989) similarly discuss the writing of a Lexicalized TAG grammar for 
English.

2.1.1 T ree  Families

A t ree  fam ily is essentially a set of sentential trees sharing the same argument structure abstracted from 
the lexical instantiation of the ‘head’ (verb, predicative noun or adjective). Because of the extended domain 
of locality of Lexicalized TAG, the argument structure is not stated by a special mechanism but is implicitly 
stated in the topology of the trees in a tree family. Each tree in a family can be thought of as all possible 
syntactic ‘transformations’ of a given argument structure. Information (in the form of feature structures) 
that is valid independent of the value of the ‘head’ is stated on the tree of the tree family. For example, the 
agreement between the subject and the main verb or auxiliary verb is stated on each tree of the tree family. 
Currently, the trees in a family are explicitly enumerated.

5T h e  trees a re  sim plified  an d  th e  fea tu re  s tru c tu re s  on  th e  trees are n o t displayed. 1 is th e  m ark  for su b s ti tu tio n  nodes. • 
is the  m ark  for the  foot node of am aux iliary  tree  an d  N A  s ta n d s  for null a d ju n c tio n  co n stra in t. T h is  is th e  only ad junc tion  
co n stra in t not in d irectly  s ta te d  by fea tu re  s tru c tu re s . We p u t indices on  some n o n -term in als  to  express sy n tac tic  roles (0 for 
su b je c t, 1 for first o b jec t, e tc .) . T h e  index show n on th e  em p ty  s tr in g  («) a n d  the  co rrespond ing  filler in  th e  sam e tree  is for 
th e  pu rp o se  of in d ica tin g  th e  filler-gap dependency .

6 O p tio n a l a rg u m en ts  are s ta te d  in the  s tru c tu re .



The following trees, among others, compose the tree family of verbs taking one object (the family is 
named npOVnpl):7

NP01 VP

VO NP,1 

'anpO Vnpl)

NPojV/t VP

I / \
e, VO NP,1

(3 ROnpOVnpl) RlnpOVnp 1)

Ei VO NPti 

a WOnpO Vnpl) [a W1 npO Vnpl)

anpOVnpl is an initial tree corresponding to the declarative sentence, /3ROnpOVnpl is an auxiliary tree 
corresponding to a relative clause where the subject has been relativized, (3RlnpOVnp 1 corresponds to the 
relative clause where the object has been relativized, aWOnpOVnpl  is an initial tree corresponding to a 
wh-question on the subject, a WlnpOVnpl  corresponds to a wh-question on the object.

2.1.2 T h e  Lexicon

The lexicon is the heart of the grammar. It associates a word with tree families or trees. Words are not 
associated with basic categories as in a CFG-based grammar, but with tree-structures corresponding to 
minimal linguistic structures. Multi-level dependencies can thus be stated in the lexicon.

It also states some word-specific feature structure equations (such as the agreement value of a given verb) 
that have to be added to the ones already stated on the trees (such as the equality of the value of the subject 
and verb agreements).

An example of a lexical entry follows:

loves ,  V : npOVnpl {VP. b : <mode> = in d ,
V P .t :< ag r  pars>=  3,
V P .t :< a g r  nua>= s in g u la r ,
VP. t : < t«nse>=pr«sent}  .

It should be emphasized that in our approach the category of a word is not a non-terminal symbol but a 
multi-level structure corresponding to minimal linguistic structures: sentences (for predicative verbs, nouns 
and adjectives) or phrases (NP for nouns, AP for adjectives, PP for prepositions yielding adverbial phrases).

2.2 Parsing Lexicalized TAGs
An Earley-type parser for TAGs has been developed by Schabes and Joehi (1988). It is a general TAG parser. 
It handles adjunction and substitution. It can take advantage of lexicalization. It uses the structures selected 
after the first pass to parse the sentence. The parser is able to use the non-local information given by the first 
step to filter out prediction and completion states. It is extended to deal with feature structures for TAGs 
as defined by Vijay-Shanker and Joshi (1988). The extended algorithm we propose always terminates when 
used on Lexicalized TAGs without special devices such as restrictors. Unification equations are associated 
with both extended linguistic structures and lexical information given by the ‘head’. This representation 
allows a more natural and more direct statement of unification equations.

7T h e  trees axe sim plified, o is the  m ark  for the  node un d er w hich th e  ‘h e a d ’ w ord of the  tree  is a tta ch e d .
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If an offline behavior is adopted, the Earley-type parser for TAGs can be used with no modification for 
parsing Lexicalized TAGs. First the trees corresponding to the input string are selected and then the parser 
parses the input string with respect to this set of trees.

However, Lexicalized TAGs simplify some cases of the algorithm. For example, since by definition each 
tree has at least one lexical item attached to it (its ‘head’), it will not be the case that a tree can be predicted 
for substitution and completed in th- same states set. Similarly, it will not be the case that an auxiliary tree 
can be left predicted for adjunction and right completed in the same states set.

But most importantly the algorithm can be extended to take advantage of Lexicalized TAGs. Once the 
first pass has been performed, a subset of the grammar is selected. Each structure encodes the morphological 
value (and therefore the positions in the string) of its ‘head’. Identical structures with different ‘head’ values 
are merged together (by identical structures we mean identical trees and identical information, such as feature 
structures, stated on those trees).8 This enables us to use the ‘head’ position information while processing 
efficiently the structures. For example, given the sentence

The i men 2 who 3 saw 4 th® 5 woman 5 who 7 saw g John 9 axe m  ^aPP7 11 

the following trees (among others) are selected after the first pass:9

2.2 .1  Taking A d van tage o f  L exicalization

NP

A
NP S

/ \

s

VD s NPqI  v p
NP / \  NP NP *

/ \  NPb v p  X  I / \

D D i N comp I A  D i N N V A
I I I e‘ v Np>x I I I  II I I  | I I I

tb«(i.5) wbo(3.7) ••»(«.*> womans) John^ are(io> b*ppy(lt)
The trees for men and for woman are distinguished since they carry different agreement feature structures 

(not shown in the figure).
Notice that there is only one tree for the relative clauses introduced by saw but that its ‘head’ position 

can be 4 or 8. Similarly for who and the.
The ‘head’ positions of each structure impose constraints on the way that the structures can be combined 

(the ‘head’ positions must appear in increasing order in the combined structure). This helps the parser to 
filter out predictions or completions for adjunction or substitution. For example, the tree corresponding to 
men will not be predicted for substitution in any of the trees corresponding to saw since the ‘head’ positions 
would not be in the right order.

We have been evaluating the influence of the filtering of the grammar and the ‘head’ position information 
on the behavior of the Earley-type parser. We have conducted experiments on a feature structure-based 
Lexicalized English TAG whose lexicon defines 200 entries associated with 130 different elementary trees.10 
Twenty five sentences of length ranging from 3 to 14 words were used to evaluate the parsing strategy. For 
each experiment, the number of trees given to the parser and the number of states were recorded.

In the first experiment (referred to as one pass, OP), no first pass was performed. The entire grammar 
(i.e., the 130 trees) wag used to parse each sentence. In the second experiment (referred to as two passes 
no ‘h e a d N S ) ,  the two-pass strategy was used but the ‘head’ positions were not used in the parser. And 
in the third experiment (referred to as two passes wtth ‘head’, H), the two-pass strategy was used and the 
information given by the ‘head’ positions was used by the parser.

The average behavior of the parser for each experiment is given in Figure 3. The first pass filtered on 
average 85% (always at least 75%) of the trees. The filtering of the grammar by itself decreased by 86% the

8 U nlike o u r prev ious suggestions (Schabes, Abeiile an d  Josh i, 1988), we do no t d is tin g u ish  each s tru c tu re  by its  ‘head’ 
p o sition  since it increases unnecessarily  th e  n u m b er of s ta te s  of th e  E arley  parser. By fac to rin g  recursion , th e  E arley  parser 
enables us to  process only once p a r ts  of a  tree  th a t  are  asso c ia ted  w ith  several lexical item s selecting  th e  sam e tree . However, 
if te rm in a tio n  is req u ired  for a  p u re  top-dow n p a rser, it is necessary  to  d istin g u ish  each s tru c tu re  by its ‘h e a d ’ position .

9T h e  exam ple  is sim plified  to  i llu s tra te  o u r po in t.
10T h e  trees a re  d iffe ren tia ted  by th e ir  topology an d  th e ir  fea tu re  s tru c tu re s  b u t not by th e ir  ‘h e a d ’ value.

-344* International Parsing Workshop '89



number of states ( (N H -  OP)/OP) .  The additional use of the information given by the ‘head’ positions 
further decreased by 50% ((H -  N H ) / N H )  the number of states. The decrease given by the filtering of the 
grammar and by the information of the head positions is even bigger on the number of attempts to add a 
state (not reported in the table).11

This set of experiments shows that the two-pass strategy increases the performance of the Earley-type 
parser for TAGs. The filtering of the grammar affects the parser the most. The information given by head’ 
p.sition in the first pass allows further improvement of the parser’s performance (- 50% of the number 
of states on the set of experiments). The bottom-up non-local information given by the ‘head’ positions 
improves the top-down component of the Earley-type parser.

(NH-OPJ/OP (H-OP)/OP (H - NH)/NH
(%) (%) (%)

#  trees -85 -85 0
#  states -86 -93 -50

Figure 3: Empirical evaluation of the two-pass strategy

We performed our evaluation on a relatively small grammar and we did not evaluate the variations across 
grammars. The lexical degree of ambiguity of each word, the number of structures in the grammar, the 
number of lexical entries, and the length (and nature) of the input sentences are parameters to be considered. 
Although it might appear easy to conjecture the influence of these parameters, the actual experiments are 
difficult to perform since statistical data on these parameters are hard to obtain. We hope to perform some 
limited experiments along those lines.

2.3 P a r s in g  F e a tu r e -B a s e d  T A G s

As defined by Vijay-Shanker (1987) and Vijay-Shanker and Joshi (1988), to each adjunction node in an 
elementary tree two feature structures are attached: a top and a bottom feature structure.12 When the 
derivation is completed, the top and bottom features of all nodes are unified simultaneously. If the top and 
bottom features of a node do not unify, then a tree must be adjoined at that node. This definition can be 
easily extended to substitution nodes. To each substitution node we attach one feature structure which acts 
as a top feature. The updating of feature structures in the cases of adjunction and substitution is shown in 
Figure 4.

1 A s ta te  is effectively ad d ed  to  a  s ta te s  se t if it does no t exist in the  set already.
T h e  to p  fea tu re  s tru c tu re  co rresp o n d s to  a  view to  th e  to p  of the  tree  from  th e  node. T h e  b o tto m  fea tu re  corresponds to 

the view to  th e  b o tto m .
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Figure 5: Examples of unification equations

2.3 .1  U n ifica tio n  E qu ation s

As in PATR-II (Shieber, 1984, 1986), we express with unification equations dependencies between DAGs13 
in an elementary tree. The extended domain of locality of TAGs allows us to 9tate unification equations 
between features of nodes that may not necessarily be at the same level.

The system consists of a TAG and a set of unification equations on the DAGs associated with nodes in 
elementary trees.

An example of the use of unification equations in TAGs is given in Figure 5.14
Notice that coindexing may occur between feature structures associated with different nodes in the tree. 

Top or bottom features of a node are referred to by a node name (e.g. Sr)15 followed by A (for top) or 
.b (for bottom). The semicolon states that the following path specified in angle brackets is relative to the
specified feature structure. The feature structure of a substitution node is referred to without A or .b. For
example, VP~rA:<agr num> refers to the path <agr num> in the top feature structure associated with the 
adjunction node labeled by VPr and NP-0:<agr> refers to the path <agr> of the substitution node labeled 
by N Pq.

Notice that the top and bottom feature structures of all nodes in the tree a 6 (Figure 5) cannot be 
simultaneously unified: if the top and bottom feature structures of 5  are unified, the mode will be ind which 
cannot unify with p p u rt ( V P  node). This forces an adjunction to be performed on 5  (e.g. adjunction of 0$ 
to derive a sentence like Has John written a book?) or on V P  (e.g. adjunction of 07 to derive a sentence like 
John has written a book). The sentence John written a book is thus not accepted.

Notice that in the tree q 6 agreement is checked across the nodes N P 0, S  and VP.  These equations handle 
the two cases of auxiliary : N P q has written NP\  and has N P q written NP\?.  The corresponding derived 
trees are shown in Figure 6. 71 derives sentences like John has written a book. It is obtained by adjoining
07 on the VP node in ar6. 72 derives sentences like Has John written a book?. It is obtained by adjoining 0s 
on the S  node in a 6. The obligatory adjunction imposed by the mode feature structure has disappeared in 
the derived trees j i  and 72. However, to be completed, j i  and y2 need N P -trees to be substituted in the
nodes labeled by N P  (e.g. John and a book).

13 D irec ted  Acyclic G rap h s w hich rep resen t th e  fea tu re  s tru c tu re s .
14 In these  exam ples we have m erged the  in fo rm atio n  s ta te d  on th e  trees an d  in th e  lexicon. W e w rite  un ification  equations 

above th e  tree  to  w hich they  apply. We have also p rin te d  to  th e  right of each node th e  m a tr ix  re p re se n ta tio n  of th e  to p  and  
b o tto m  fea tu re  s tru c tu re s .

15 We im plic itly  requ ire  th a t  each node  have a  un ique  nam e in an  e lem en tary  tree . If necessary, su b sc rip ts  d ifferen tia te  nodes 
o f the  sam e category .
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written

Figure 6: N P q has written NP\  and Has N P 0 written N Pi ?

2 .3 .2  E x ten sio n  to  th e E arley -typ e  Parser

The Earley-type algorithm for TAGs (Schabes and Joshi, 1988) can be extended to parse Lexicalized TAG 
with unification equations on elementary trees. The extension is similar to the one proposed by Shieber (1985) 
in order to parse the PATR-II formalism but it does not require the use of restrictors. For the recognition of 
a substituted tree, we choose to check that unification constraints are compatible at the prediction step and 
we pass information only at the completion step. For the recognition of an adjunction, we choose to check 
only that unification constraints are compatible at the Left Predictor, Left Completor and Right Predictor 
steps and we pass information only at the Right Completor step.

What follows is an informal explanation of the extension to the Earley-type parser. A new component D 
is added to the states manipulated by the Earley-type parser. D specifies the feature structures associated 
with each node of the tree represented by the state. It is a set of feature structures. The manipulation of 
the other components of a state remain the same. We will ignore these components of a state and focus our 
attention here on the manipulation of the set of feature structures D.

The Scanner, Move-dot-down and Move-dot-up processors behave as before and copy the DAG D to the 
new state.16 The Left Predictor predicts all possible adjunctions and also tries to recognize the tree with 
no adjunction. In case no adjunction is left predicted, the Left Predictor adds the new state only if the top 
and bottom feature structures are compatible (see Figure 7). If they are compatible, a new state is added 
but top and bottom feature structures are not unified. They will be unified in the Right Predictor. Then, 
if no adjunction has been left predicted, the Right Predictor moves the dot up and unifies top and bottom 
feature structures (see Figure 7).

The recognition of an adjunction with features is shown in Figure 7.17 At each step of the recognition of 
an adjunction, the compatibility of the feature structures is checked. The information is passed only at the 
Right Completor step.

18 Iden tica l s ta te s  have iden tica l com ponen ts, iden tica l feature  s tru c tu re s  D.
17 A s u b s ti tu te d  tree  is recognized  in  a  sim ilar way and  is no t exp lained  here.
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t Pradctar
b no tofjncton

l f t {Jb

Left Predictor, no a

Right Predictor, no

Figure 7: No Adjunction Recognition of an adjunction
For aon-lexicalized TAGs, this approach does not guarantee termination of the algorithm (for similar 

reasons as for CFG-based unification grammar, Shieber, 1985). However for Lexicalized TAGs, even when 
recursion occurs, the termination of the algorithm is guaranteed since the recognition of a tree entails the 
recognition of at least one input token (its ‘head’) and since information is passed only when a tree is 
completely recognized. If information were passed before the Right Completor step (in case of adjunction), 
restrictors (as defined by Shieber, 1985) can be used to guarantee termination. However we believe that in 
practice (for the Lexicalized TAGs for French and English) passing information at an earlier step than the 
Right Completor step does not improve the performance.

3 C onclusion
In ‘lexicalized’ grammars, each elementary structure is systematically associated with a lexical ‘head’. These 
structures specify extended domains of locality (as compared to the domain of locality in CFGs) over which 
constraints can be stated. The ‘grammar’ consists of a lexicon in which each lexical item is associated with 
a finite number of structures for which that item is the ‘head’.

Lexicalized grammars suggest a natural two-step parsing strategy. The first step selects the set of 
structures corresponding to each word in the sentence. The second step tries to combine the selected 
structures.

We take Lexicalized TAGs as an instance of lexicalized grammar. We illustrate the organization of the 
grammar. Then we show how the Earley-type parser can take advantage of the two-step parsing strategy. 
Experimental data show that its performance is thereby drastically improved. The first pass not only filters 
the grammar used by the parser to produce a relevant subset but also enables the parser to use non-local 
bottom-up information to guide its search. Finally, we explain how constraints over these structures expressed 
by unification equations can be parsed by a simple extension of this algorithm. Lexicalization guarantees 
termination of the algorithm without a special mechanism such as the use of restrictors.

The organization of lexicalized grammars, the simplicity and effectiveness of the two-pass strategy (some 
other technique would perhaps achieve similar results) seem attractive from a linguistic point of view and for 
processing. We are currently exploring the possibility of extending this approach to Categorial Grammars.
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Abstract
This paper describes a parsing system  used in a fram ework for the developm ent o f Natural 

Language grammars. It is an interactive environment suitable for writing robust NL applications 
generally. Its heart is the SAIL parsing algorithm that uses a Phrase-Structure Grammar with 
extensive augmentations. Furthermore, some particular parsing tools are em bedded in the system , 
and provide a powerful environment for developing grammars, even o f large coverage A

1. Introduction
Every parsing system should embed a set of tools or mechanisms which should provide an aid 

In treating a minimum set of linguistic phenomena. Designing SAIL we have mainly taken into 
account the generality of the parsing system in order to give a wide freedom to the grammar designer, 
so as to investigate many possible solutions in grammar design in order to adopt the best of them. 
SAIL (System for the Analysis and Interpretation of Language) Is the parsing algorithm of the SAIL 
Interfacing System (SIS) (/Marino 1988a/. /Marino 1988b/, /Marino 1989/), and Just because of Its 
features of generality the design has been driven by some general aspects which derive from various 
theoretical as well as computational accounts.

1. Whatever representation is adopted for the structure of the parsed sentences, it is agreed that 
complex sets of syntactic and/or semantic features must describe the linguistic units. Therefore, it Is 
necessary to provide feature handling mechanisms. This point has suggested to us a way of providing 
a very rich language for handling feature structures (FS in the following). FSs are represented as 
trees where each arc is labelled by an attribute, and nodes can be pointers to the following 
alternative paths or a pointer to a leaf node where the value for the path spanned so far Is found. 
They can store many kinds of information thanks to their efficient processing provided by a core set 
of functions.

2. Some linguistic phenomena encountered In parsing NL, such as long-distance dependency or 
the ability of treating some context-sensitive cases, led us to see the SAIL grammar rules as processes 
executed by a processor, a role covered by the parser. The rules of a grammar have associated some 
information related to their status of processes which are scheduled In a priority queue, according to 
some their priority of execution (/Knuth 1973/, /Aho et al. 1983/). This also allows, for Instance, 
that the execution of some rule can be requested to perform context-sensitive recognition, or some 
rules can exchange between each other some information under the form of m essages to perform the 
treatment of long-distance dependency.

3. The parser is structured as a bottom-up (shift reduce) all-paths algorithm, and a formalism  
for the grammar rules was defined to allow syntactic processing in parallel with sem antic 
processing. The grammar of SAIL is a Phrase-Structure Grammar (PSG) with extensive  
augm entations, so that we also take advantage from the com positlonallty principle naturally

^This work has been carried out within the framework of the ESPRIT Project P527 CFID 
(Communication Failure in Dialogue: Techniques for Detection and Repair).
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em bedded In bottom -up  parsers. As m entioned  above, the parser is seen  as a processor, th u s one of its 
m ain  ta sk s is to sch ed u le  the p r o c e sse s /r u le s  to run in a priority q ueue. This queue is not com pletely  

u n d er control o f the parser s in ce  the gram m ar ru les and the d ictionary can  a lso  is su e  som e specific  
op eration s or req u ests ab out the m an agem ent o f the sch ed u lin g  task.

4. The need  o f  a flexible front-end  for the u ser  is o f prim ary im portan ce to provide a powerful 
an d  co m p lete  d ev e lo p m en t en v iro n m en t. The u se r  in terface  b u ilt  over SAIL, the SIS. is the  

fram ew ork w here a u ser  can  in teract w ith  the und erly in g  p arsing sy stem  in d evelop in g  gram m ars. 
T his interface provides a se t o f com m and s, defined  by m ean s o f a sem an tic  gram m ar, that are cau gh t  

and p rocessed  by SAIL and can  handle m any p ossib le requ ests of the user.

In th e follow ing sectio n  w e give a brief d escrip tion  o f the gram m ar and d iction ary  form at and  

how  a gram m ar is d efined  in SAIL. S ection  3 g ives an  overview  o f the SAIL p arsin g  system , parser  

organ iza tion , an d  d a ta  stru c tu r es  It u se s . S ection  4 d escr ib es  the p arsin g  to o ls  ava ilab le  in the 

sy stem  and their p u rp oses. F inally, section  5 sh o w s Just on e exam p le o f a gram m ar fragm ent w here  
som e p arsin g  tools d escribed  in the previous sectio n s are used.

2. The SAIL Grammar
The Grammar Format

T he form alism  w e ad op t to e x p re ss  gram m ar ru les , ca lled  C om p lex  G ram m ar U nit (CGU), 
d efin e s  a  sy n ta c tic  and  a se m a n tic  sid e  called  sy n ta c tic  ru le an d  se m a n tic  ru le, resp ective ly . T he  

sy n ta c tic  ru le co n ta in s  the production , the tests , the actio n s an d  the recovery action s. The sem a n tic  

ru le c o n ta in s  th e se m a n tic  co u n terp a rt o f  th e sy n ta c tic  te s t s  an d  a c t io n s . T he p resen ce  o f  the  

s y n ta c t ic /s e m a n t ic  recovery  a c t io n s  is a very p ow erfu l m ea n  to u n d er ta k e  a ltern a tiv e  a c t io n s  

w h e th er  the ru le fa ils  e ith er  m a tc h in g  the r ig h t-h a n d  s id e  o f  th e p ro d u ctio n  or ch e c k in g  the  

sy n ta c t ic /s e m a n tic  te s ts . In th is  w ay the ru les n eed  not to be crud ely  rejected  w h en  th ey  fall but. for 

in sta n ce , th ey  can  activate other ru les that could  be applied  su ccessfu lly .

A ru le in SAIL is w ritten  d efin in g  all the p rev iou s CGU's item s. In ad dition , it Is a lso  n ece ssa r y  to 

provide the s ta tu s  o f the ru le /p r o ce ss , so  that It can  be properly taken into accou n t by the parser. The 

s ta tu s  sa y s  w h eth er  a  ru le can  be sch ed u led  for ap plication  or not by the parser. It ca n  be active or 

in a c tiv e . A ctive ru le s  a lw ays are sc h e d u led  by the parser, w h erea s in active ru le s  are n o t (inactive 

ru les can  be se en  a s  s leep in g  rules). The s ta tu s  p lays a central role in the organ ization  o f  a gram m ar. 
As an  exam p le, if  a rule d e tec ts  so m e right or w rong con d ition s in the p arsin g  stru ctu re  it can  either  
se t  active  or activate an  in active rule.

Su m m arizin g , a  gram m ar ru le is  com p osed  o f three m ain  item s: 1) the sta tu s: active or inactive); 2) 
the p rod u ction  in con text-free (CF) form at, in the follow ing d en oted  b y  A <— w^ ... w n . n  >1. w here the  

le ft-arrow  m eans th a t  th e  le ft-h a n d  s id e  is  red u ced  from  th e r ig h t-h a n d  s id e  a cco rd in g  to the  

b ottom -u p  strategy o f  parsing; 3) the au gm en ta tion s.

T he p rod u ction  is  au gm en ted  w ith  an  ad d ition al item , called  the son -flag  list. T h is list sa y s  for every  

ca tegory  in  th e  righ t-h an d  sid e  w h eth er  the corresp on d in g  n ode m a tch ed  in th e p a rsin g  stru ctu re  

m u st be con sid ered  a s  a so n  o f the le ft-h an d  sid e or not. If a son -flag  is se t  to +■ for a  r igh t-h an d  sid e  

category  the corresp on d in g  m atch ed  n ode is a  so n  o f th e left-h an d  sid e  node, o th erw ise  it is  n ot a son  

n od e if  th e  flag is -. We h ave two ty p es o f  p rod u ction  d ep en d in g  on  its  stru ctu re: CF an d  con text-  

sen sitiv e  (CS) p rod uction s. CF productions, represented  by A <— w  j ... w n , are defined  like:

(A (W! ... w n)

(+ ... ♦))
w h ere a ll n o d e s  m a tc h e d  b y  th e  r ig h t-h a n d  sid e  m u st  b e s o n s  o f  th e  le ft-h a n d  s id e  n od e . CS  

p rod u ction s represen ted  by: c j  ... Cp A Cp+ i ... Cq *- c j  ... Cp w j ... w n Cp+j ... Cq, 1 £ p £ q, n  > 1, are
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(A (ci ...CpWj ...w n Cp+i ... Cq)
(- ... - ... -))

w here on ly  the n o d es w ith  a p lu s flag in sid e a con text o f m in u s-flagged  n od es are so n s  o f the left- 

hand  side node. ̂

The a u g m en ta tio n s  cover the syn tactic  and sem a n tic  te sts  and actio n s of the CGU m odel. T hey are 

the body o f a rule and are p ieces of Lisp code execu ted  by the parser during the application o f the rule. 
S ta tu s , prod uction  and au g m en ta tio n s is the inform ation  provided by th e gram m ar w riter for every  

rule o f a gram m ar. A rule is a n am ed in sta n ce  of a com p lex  d ata  stru ctu re defined  accord ing to the 

follow ing defrule format:
(defrule

■:gname gnome
:mame m am e
■.production <production> [<son-flag-list>]

[ status <status>
:syn-tests <code>
:sem-tests <oode>
:syn-actlons <code>
:sem-actions <oode>
:syn-recovery-actions <code>
:sem-recovery-actions <code>] )

gname is th e gram m ar nam e w here the rule m am e  is defined. T h ese two n a m es m u st  be provided in

every rule defin ition  s in ce  in the SIS w e can  have m ore th an  one gram m ar availab le w h ich  m u st  be
referred to by a nam e. A gram m ar u su a lly  is defined by a defgramm d eclaration  o f the form:

(defgramm gname [root] ) 
w h ere root is the root category  o f gnam e. T h is d ec la ra tio n  s e ts  up  all d a ta  s tr u c tu r e s  for the  

gram m ar b eing defined  and m u st be issu ed  before an y  rule definition.

The Dictionary Format
A ny d iction ary  o f a gram m ar co n ta in s  a se t  o f form s that are a sso c ia ted  w ith  a se t  o f syn tactic  

an d  se m a n tic  in form ation . A  form is w hatever seq u en ce  o f w ords w^ w 2 ... w n . W hen n= 1 w e have a  

single form, oth erw ise  a m ultiple form (n> 1). For an y  form, be it s in g le  or m ultip le, the first word w j  

is ca lled  the key form. T he k ey  form  is th e m ean  for storin g  an d  retrieving a ll in form ation  o f the  

w hole form  in the d a ta  s tru ctu res  b u ilt  by the defgramm d eclaration . A ny form  h a s a sso c ia ted  three  

k in d s o f  in fo rm a tio n , form ing an  in terp re ta tio n : sy n ta c tic  category; se m a n tic  va lu e: a  s e t  o f  

fea tu res. A form  ca n  h ave m ore th an  on e interpretation . In th is  ca se , a  s e t  o f in terp retation s m u st be 

d efin ed  su p p ly in g  a s  th e first item  the key form; afterw ards, for every se q u e n c e  o f  w ord s follow ing  

th e k ey  form , th e  s e t  o f  in terp re ta tio n s . An en try  o f  th e d ic tio n a ry  is  d efin ed  a cco rd in g  to the

2 T h is  d e fin itio n  le a v es  free the u se r  o f  d efin in g  ru le s  w ith  d isc o n t in u o u s  c o n s t itu e n ts  in  th e  

sy n ta c tic  rep resen ta tio n . C urrently  th e parser d o es n ot em b ed  an y  stra teg y  for a  full trea tm en t o f  

th e se  c a s e s  s in c e  th e c la ss ic a l d efin ition  o f ad jacen cy  is  im p lem en ted . T h is s tru ctu re  w a s  in itia lly  

m otivated  in  order to d efine C S ru les by on ly  on e rule, and  n ot b y  two (see S ectio n  4.). Furtherm ore, 

s u c h  a  s tru ctu r e  a llo w s a  faster  sea rch  in the p arsin g  stru ctu re , perform ed b y  th e  m a tch er  o f the  

p rod u ction , w h en , for in sta n c e , far c o n st itu e n ts  m u st  b e id en tified  for lo n g -d ista n c e  ta sk s . A nyw ay, 
s ta te d  th e  im p ortan t role th a t ca n  be covered  b y  the rep resen ta tion  o f  d isc o n tin u o u s  co n s t itu e n ts  

(see /B u n t  at al. 1 9 8 7 /) , ex ten sion  o f the parser about th is topic can  be on e o f our future tasks.

defined like:
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(defentry keyform gnome 
(defform form

(aet-int :category <caienory>
(.•semual <semcal> 
features <features>\ )+ )+ ) 

w here keyform  m u st be a strin g  o f ju s t  one word, e .g ., "dog", "train", etc.; the form  m u st  be either the 

n u ll str in g  "" for the sin g le  form keyform, or a strin g  o f  on e or m ore w ords. Every form  defin ition  of 

th is  k ind  is sa id  to be in defentry form at. <category> Is the sy n ta ctic  category and  <semval>  is the 

sem a n tic  va lu e. The fea tu res m u st be provided in the follow ing format:

<features> ::= ( {[< attribute s>) (<value>))+ )
<attributes>  ::= a seq u en ce o f feature attributes
<ualue> ::= a valu e for the feature attribu tes

As an exam ple:
( ((GENDER) (MASC))

((NUMBER) (SING))
((KIND-OF ARG1) (THING)) )

Here are som e exam p les o f d iction ary  en tries. The m ost trivial o f them  is:
(defentry "train" m y_gram m ar  

(defform ""
(aet-int :category Noun))) 

w here the sin g le  form  train is  defined  by on e in terp retation  o f category N oun. An exam p le o f a  sin g le  

form  w ith  two in terp reta tion s is  the following:
(defentry "tree" m y_gram m ar  

(defform ””
(aet-int : category  N oun

.•features ( ((KIND-OF OBJ) (PLANT)) ))

(aet-int : category  N oun
:featu res ( ((KIND-OF OBJ) (DATA-STRUCTURE)) )))) 

w here tree is defined as a p lant an d  a s  a d ata  stru cture. An exam p le of m ultip le form Is:
(defentry "in" m y_gram m ar  

(deffonn ""
(aet-int : ca tegory  Prep))

(defform "the"
(aet-int :category  Com pPrep)))

w here in  is  d efined  a s  a  preposition  an d  ln  the a s  a  com p oun d  preposition.

The Feature Structures
In the cu rren t sy ste m  w e have ad opted  a d a ta  stru ctu re  th at ca n  be at the sa m e tim e efficien t to 

be p ro cessed , h o m o g e n e o u s and reu sa b le  in variou s p la ces  o f the sy stem . T h is is w hy the sa m e d ata  

s tru c tu r es  are p ro cessed  at d ifferent t im es in d ifferent p laces o f the sy stem . For in sta n ce , th e  lex ica l 
In form ation  lo o k ed -u p  from  th e  d ictio n a ry  Is stored  at p a rsin g  tim e ln  th e term in a l n o d e s  o f the  

p a rsin g  stru c tu r e  the p arser b u ild s. T h u s, it is  o b v io u s to give th e  sa m e  form at to th e  d a ta  in  the  

d iction ary  an d  in th e n o d es o f  the p arsin g  stru ctu re . F eature stru c tu r es , in  th eir c la ss ic a l defin ition  

a s  s e t s  o f  a ttr ib u te-v a lu e  pairs, are a sso c ia te d  w ith  ea c h  in terp retation  o f  a n y  form  in  the d iction ary  

an d  o f  a n y  n od e ln  th e  p a rsin g  stru c tu r e . F S s  are treated  a s  trees , an d  it is  p o ss ib le  to m an age  

str u c tu r e s  from  th e b o ttom  o f the p a rsin g  stru c tu r e  by m ea n s  o f  a  sp ec ific  p ack age  o f  fu n ctio n s,

following form at:
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ca lled  F ea tu re  S tr u c tu re  H an d ler  (FSH). a llow in g  th e m ain  o p era tio n s  on  F Ss a s  crea tion , 
m odification , d eletion . C urrently, th is  package con ta in s 12 m ain op eration s that can be applied  on  
F Ss. O ver th is  s e t  o f  low  level op eraU on s on  F Ss we have d evelop ed  a se t  o f graph fu n ctio n s  
a ccessib le  by the user, w hich act on the FSs assoc ia ted  with the nodes of the parsing structure.

Rules with Non-Operative Productions [NOP Rules)
W hen n on-operative p rod uction s are defined in som e rule they do not build  a n ew  node, b ut can  

perform  variou s a c tio n s, su c h  a s  activatin g  other ru les, or a lterin g  se m a n tic  stru ctu res. There are 

three types o f non-operative p roductions d epending on the NOP category u sed  in the left-hand  side:
{ <NOP> I <NOP-ASE> I <NOP-SE> } <- w L ... wn 

If <NOP> is u sed  th en  on ly  the syn tactic  rule is applied  and the sem a n tic  rule is never considered . 
O nly th e sem a n tic  rule can  be applied  and  the syn tactic  one is ignored by u s in g  the category <NOP- 
SE>. Finally, b oth  the ru les are applied  by u sin g  the category <NOP-ASE>. As w e sh a ll see  in Section
4. th is  kind o f  p rod uction  can  be u sefu l in CS recogn ition , providing an  a lternative w ay for defining  

CS ru les. M oreover, NOP ru les are a lso  u se fu l w h en  it is n ece ssa r y  to control the activation  o f real 
ru les, w ith  the objective o f lim iting the in d eterm in ism  of the parser.

3. Overview of the SAIL Parsing System
In th is section  w e d escribe briefly the parser, the d ata  stru ctu res it h an d les, and how  it works. 

S tartin g  from the FSH core p ackage, we have adopted  th is  d a ta  stru ctu re  w herever p o ssib le  Inside, 
the parsin g  sy stem  as the figure below  sh ow s. The parser b u ild s a parsing stru ctu re u nd er the form o f  

a graph, w here each  n ode co n ta in s two k in d s o f inform ation: an  in tern a l stru ctu re  o f d a ta  u sed  by  

th e p a rsin g  a lgorith m  on ly , an d  the lin g u istic  (sy n ta ctic  an d  sem a n tic ) in form ation  s e t  b y  th e  

gram m ar ru les. B oth  th ese  stru ctu res are represented  in a u n iq u e FS m anaged  by the parser and the  

ru n n in g  gram m ar by u s in g  the u nd erly in g  FSH fu n ction s. A ny sou rce  gram m ar m u st  have a se t  o f 

ru les  an d  a se t  o f d iction ary  form s w ritten  in the form ats d escrib ed  previously . G ram m ar ru les can  

m ake u se  o f two s e ts  o f fu n ction s: the graph fu n ctio n s, w h ich  u se  the FSH p ack age to u p d ate the  

lin g u is t ic  s tr u c tu r e s  o f  the graph , an d  th e p arser m a n a g e m e n t fu n c tio n s  to h a n d le  the variou s  

p arsin g  too ls and  m ec h a n ism s (see S ection  4.).

The p arser is  a C F -b ased  on e, orig inally  derived from the ICA (Im m ediate C o n stitu e n t A nalysis) 

algorith m  d escr ib ed  in /G r ish m a n  1 9 7 6 / .  It is  a  b o tto m -u p  sh ift-re d u ce  a c tio n -b a se d  a lgorithm , 

perform in g le ft-to -r ig h t s c a n n in g  a n d  red u ction  in  a n  im m ed ia te  c o n s t itu e n t  a n a ly s is . T he d a ta  

stru ctu re it w ork s on  is  a  graph w here all p ossib le  p arse-trees are con n ected . T he graph is com p osed
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o f n o d es that can  be term inal or n on -term in al. T erm inal n od es are b u ilt in corresp on d en ce  to a 

sc a n n ed  form, w h ereas n on-term in als are built w henever a rule (other than  a NOP rule) is  applied .
T he p arsin g  sy stem  w as d esign ed  to view  the gram m ar ru les a s  p ro cesses  to be execu ted , and  the 

parser a s  the p rocessor. At an y  m om ent, the parser, following a priority sch em a, h an d les a q u eu e of 
p ro ce sse s  aw aitin g  execu tion . In fact w e can  have different types of ru les w ith  different priorities of 

ex ecu tio n . So it is p ossib le  that a rule, w h en  applied , se n d s  a requ est for execu tion  o f a n o th er rule 

in sertin g  the called  rule in the appropriate p osition  in the q ueue. After a sc a n n in g  or a reduction , the 

parser gets a se t o f active ru les w hich  are the applicab le ru les at that m om ent. W hen the parser takes  

su c h  a se t  - called  a p acket - for every rule in the p ack et3 it b u ild s a p rocess d escrip tor and in serts  

it in the q u eu e. We call su c h  a p rocess d escrip tor an  ap plication  sp ecification  (AS), w hile the q u eu e is 

ca lled  the ap p lica tion  sp ec ifica tion  lis t  (ASL). A Ss are com p osed  o f  all the n e c e ssa r y  in form ation  

u sefu l to execu te  the p rocess  on  the proper context. A Ss in a given ASL are ordered d ep en d in g  upon  

the ru le involved  in an  AS. In general, if stan d ard  active ru les have to be execu ted . ASL is h and led  

w ith  a LIFO policy . T he p arser  perform s all p o ss ib le  red u ctio n s  b u ild in g  m ore th a n  on e n ode if 

n ecessa ry , ex tractin g  one AS at a tim e before an a lyzin g  the n ext on e. After an  AS is ex tracted  from  

ASL the p arser se a rc h e s  a m atch  for the right-h an d  sid e on  th e graph. The m atch in g , if su cc ess fu l, 
retu rn s on e or m ore s e ts  o f n od es, ca lled  redu ction  se ts . For every redu ction  se t. the ap p lica tion  of 

the ru le is tried. In th is  w ay w e can  co n n ect together all p o ssib le  p arses for a se n te n c e  in  a u n iq ue  

stru ctu re . The com p lete algorithm  o f the parser is therefore:
Until the end o f the sentence is reached:

Scan a form:
build a new terminal node for the scanned form;
For everu interpretation o f the node:

get the packet o f rules corresponding to its category and for every rule tn 
the packet insert in ASL the AS;

For everu AS in ASL:
get the first AS from the top o f ASL;
get the rule specified in the AS, it is the current rule, and access the node 
specified in the AS. it is the current node:
starting from  the current node perform the match on the graph using the
production o f the current rule:
if at least one reduction set is found then:

For everu reduction set:
if the tests  o f  the current rule hold then: 

execute the actions o f the current rule: 
if a new non-termtncd node is built then: 

get the packet o f rules corresponding to its category and 
for every rule in the p a ck et insert in ASL the AS;

else:
apply the recovery actions o f the current rule;

else:
apply the . recovery actions o f the current rule;

3A packet Is a set of active rules. Any grammar Is partitioned as a set of packets such that, for 
every category cat of the grammar, the packet P(cat) is the set of those rules that have cat as the right­
most category in their right-hand side. This partitioning is useful for getting the rules applicable at a 
given moment and it Is used by the matcher of the productions.
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4. Parsing Tools
Rule Disabling/ Enabling Operations

A s sta ted  previously, ru les can  a ssu m e two different s ta te s , active or inactive. The rule's sta te  is 
d eterm in ed  at the m om ent o f rule definition. In addition, it is p ossib le  to ch an ge the sta te  during ‘.he 
p arse by u sin g  two sp ecific  fun ction s. In the application  o f a rule, o th ers m ay be ch an ged  from active 

to in active , perform ing a d isab lin g  op eration , or ch an ged  from  in active  to active, perform ing an  

en ab lin g  operation . It is  p ossib le  to ch an ge the sta te  of one or m ore ru les at a tim e and the ru les can  

a lso  perform  se lf-en ab lin g  and se lf-d isab lin g  operation s. C h an ges o f s ta te  effected  during a parsing  

are n ot p erm an en t. At the en d  o f each  p arsin g  the ru les are recon figured  as in d icated  in their  
orig in a l d efin itio n .

Dictionary-Driven and Rule-Driven Activation
The m ech a n ism  o f activation  o f ru les can  be u sed  in  our parsing sy stem  in  order to im prove the 

d eterm in ism  o f the parser. We rem ark that the parsing algorithm  is b asica lly  a b ottom -u p  parallel 
n on -determ in istic  parser, so  that partition ing a gram m ar as a se t  o f active an d  Inactive ru les, and  

driving their ap p lica tion  by an  activation  m ech an ism , w e can  ach ieve a great control on the parser  

d irectly  from  th e gram m ar, w ith o u t em b ed d in g  sp ec ific  con tro l s tr a te g ie s  w ith in  th e  p arsin g  

a lg o r ith m .
A ctivation  o f ru les  ca n  be effected  d uring the two m ain  p h a se s  of the parser activity: sc a n n in g  an d  

red u ction . D iction ary-d riven  activa tion  ca n  be perform ed w h en  the p arser s c a n s  a form  d efin ed  

w ith  an  in terp reta tion  like the following:
(set-int

category <category>
isemval <semval>
features (((queue) (rule-name+))))

The sp ec ia l feature queue a d v ises  the parser o f a preference for sp ec ific  ru les to apply  w h en  the form  

is sc a n n ed . T h is preference is  In depend en t o f the sta te  o f the ru les sp ecified  an d  the A Ss are q u eu ed  

in ASL w ith ou t con sid er in g  the p acket corresp ond ing  to category being sca n n ed . A s a co n seq u en ce  of 

th is  m e c h a n ism  o f activa tion , the fifth an d  s ix th  line o f  the p arser a lgorithm  m u st  be ch an ged  a s  

follow s: Q£± the packet o f rules corresponding to Us category and for every rule in the packet insert 
in ASL the AS unless the interpretation requires rule activation by the special feature queue. In this 
case insert in ASL the AS o f  the rules supplied as values o f the special feature queue.
R ule-driven  activation , at level o f  red u ction  task , ca n  be accom p lish ed  b y  u s in g  a devoted  fun ction , 
ca lled  ru le-actiya tion . w h o se  a rg u m en ts  are the n a m e s o f th e ru les  to activate, an d  p rovid es for 

q u e u in g  A S s in  ASL for every n am e sp ecified . In b oth  the typ es o f activation , the activated  ru les are 

ap p lied  Ju st o n ce  im m ed ia te ly  after the sc a n n in g  or the term in ation  o f  the activatin g  rule. T he sta te  

o f  th e activa ted  ru le is  n o t m odified  an d  activation  o f m ore th an  on e ru le a t a  tim e is  p o ss ib le , a s  

w ell a s  n ested  activa tion s.

Context-Sensitive Rules
CS  ru les  w ere n ot d irectly  Im plem ented  in  ou r p arsin g  sy stem , b u t th ey  w ere availab le b y  n atu re  

(in ad d ition  to th e w ay cu rren tly  defined  in S ection  2.) th a n k s to th e  ru le-activa tion  m ec h a n ism  an d  

NOP ru les . T h e com p lete  ap p lica tion  for a  CS p rod uction  aAJ3<— cqffi is  m ade in  two ste p s . T he first 

on e co n cern s a  con tex t d eterm in ation , th e con tex t b eing rep resen ted  by the right-h an d  sid e o f  the CS  

p rod u ction . (r $ . T he se co n d  on e is  ju s t  an ap p lica tion  o f the CF p rod u ction  A<- y, if and  on ly  if the  

first s te p  h a s  d eterm in ed  th e co n tex t w h ere th e CF p rod u ction  is  a p p lica b le . T h is  ca n  b e ea s ily
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a cco m p lish ed  by d efin ing a NOP rule for the con tex t d eterm in ation  as first step . A fterw ards, th is  

NOP rule m u st activate the CF rule a s secon d  step , building the node A in the proper context.

Message Passing
T he m e ssa g e  p a ss in g  m e c h a n ism  is a p a rs in g  too l th a t m a k e s  p o ss ib le  a sy n c h r o n o u s  

o p era tio n s on  lin g u istic  data . T h is w ay o f p ro cess in g  im p lies the co -op eration  b etw een  two ru les  

w h ich  in teract w ith  each  other exch an g in g  som e inform ation  by m ean s o f a sen d in g  an d  a receiving  

ta sk  perform ed at the two in d ep en d en t tim es o f ru le ap p lication . The sen d in g  ta sk  is perform ed by  

the se n d in g  ru le at a Ume T^, sen d in g  a m essa g e  for an oth er  rule. This latter rule m u st perform  the 

receiving ta sk  to receive the m essa g e  at its ex ecu tio n  tim e T2 . (T2 >T i). S in ce the relevant lin gu istic  

d a ta  the p arser  w ork s on  are stored  a s  F S s, the m e ssa g e s  are F Ss. We have im p lem en ted  two 

a p p ro a ch es o f m essa g e  p a ssin g . The first on e m a k es u se  o f a g lobal FS w here a n y  rule can  store  

global fea tu res. A ny rule during a p arse can  a c c e s s  th is  global FS and w h atever feature va lu e. This 

type o f FS is the global cou n terp art o f the FS stored  in every node o f  the graph stru cture: the FS o f a 

n ode is  local and  can  on ly  be a c c e sse d  b y th e n o d es linked  to its n ode by a d irect con n ecU on  link. 
Therefore,- there b eing no right o f privacy on  featu res in the global FS, th is  particu lar stru ctu re m u st  

be a cc essed  w ith  care by the ru les s in ce it can  be a  p lace o f conflicts am ong them .
The se co n d  ap proach  provides a  stru ctu re  that p reserves the right o f privacy o f the m essa g es . A lso in 

th is  c a se  the m e ssa g e s  are FSs, and are stored  in  a sort o f m ailbox, called  m essage-b ox . A ny rule can  

refer to the m essa g e -b o x  to store a m essa g e , sp ec ify in g  the d estin a tio n  rule. O n the o ther sid e, an y  

ru le ca n  refer to the m e ssa g e -b o x  to get m e ssa g e s , an d  on ly  th e m e ssa g e s  a d d ressed  to it w ill be 

availab le. Let u s  con sid er the two c a s e s  sh ow n  in the follow ing partial p arse-trees.

We su p p o se  som e inform ation , created  or ra ised  in the node SN from the term inal sid e b y  the rule Rs. 
m u st  b e  u sed  in  th e n od e RN b u ilt  b y  th e ru le Rr. (1) sh o w s th a t th e m e ssa g e -b o x  cou ld  be u sed  

b y p a ssin g  the n o d es N 1.N 2. T h is is  u se fu l w h en  (som e) d a ta  from  SN  are n ot relevant for p rocessin g  

in  N I an d  N 2. g a in in g  th e  ad v a n ta g e  th a t n o  m em ory sp a c e  is  w a sted  u s in g  th e n o d e s  N 1.N 2 for 

ra isin g  th e d a ta  from  SN  to RN. On the o th er sid e , (2) sh o w s a  ca se  w here n o  p ath  e x is ts  b etw een  SN  

an d  RN. T herefore, th e on ly  co n n ectio n  b etw een  the n o d es can  be a  com m on  stru ctu re  a c c e s se d  b y  

th em . T he u s e  o f  th e  m e ssa g e -b o x  is very  e a sy  s in c e  all th e w ork  is d o n e b y  two fu n ctio n s . T he  

fu n ctio n  •en d m *g  m a k es a  cop y  o f  a s u b s e t  o f  th e F S s o f  the n o d es it can  a c c e s s  (i.e ., th e  n o d es  

co rresp o n d in g  to the left- an d  righ t-h an d  s id e  o f th e production) an d  sto re s  it in th e m essa g e -b o x . 

The fu n ction  recelvem sg gets a  m essa g e  u n d er the form  o f F S an d  stores it in the n od e corresponding  

to the le ft-h an d  sid e  o f  th e p rod uction .

All th e fu n ction s: sendm sg, receivem *g, and  th o se  for h an d lin g  the global FS  are im plem en ted  u sin g  

the FSH p ackage.
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The exam p le sh o w s a fragm ent o f a gram m ar w h ose  aim  is to drive the parser accord ing to a 
sp ecific  stra tegy  o f recogn ition  ach iev ing  as resu lt an  optim ized parsing stru cture, i.e.. the m inim um  
n u m b er o f n od es strictly  n ecessa ry  is built.
The recogn ition  o f in defin itely  long c la u se s  o f the form X and X  and ... X could  be ach ieved  by u sing  

the p roductions: AND <— NP "and NP. AND <— AND *and NP. w here, for in stan ce. X  can  be an  NP and  
•and  is the category o f and. T h ese p rod uction s produce a parsing stru ctu re of the kind sh ow n  below. 
B eing k the n um ber o f con ju n ction s, the num ber of the n od es N(k) b uilt by th ese  two p rod uction s is 

given by: N(k) = TN(k) + NTN(k), TN(k) = 2k  + 1. NTN(k) = ( l/2 )k (k  + 1).

AND

5. An Example: SAILing X and X and ... X

NP "and NP *and NP *and NP *and NP

TN(k) d eter m in es  th e n u m b er o f  the term in al n od es, and  NTN(k) the n u m b er o f  th e n on -term in a l 
n od es. For the graph above N(4) = 19, s in ce  TN(4) = 9  and  NTN(4) = 10. T h is kind o f p arsing stru ctu re  

is n ot op tim ized , b e s id e s  N(k) is  a q u ad ratic  fu n ction  o f k. In the figure above w e have draw n  in  

boldface lin es  the p arsin g  stru ctu re w ith  the m in im u m  n u m b er o f  n o d es w e w ant. For th is  optim ized  

stru ctu re  NTN(k) is  a  lin ear fu n ction  o f k: NTN(k) = k. Therefore, th e form ula for the optim ized  case  

N0 (k) is: N0 (k) = 3 k +  1.
O ur gram m ar fragm en t is b a sed  on  a w atch -ru le , ca lled  C h eck -an d -ru le , th a t c h e c k s  w h eth er  the  

p arser h a s  a lread y b u ilt a node o f category AND follow ed b y ’an d  NP. T h is ru le h a s  th e production: 

<NOP> <- AND 'a n d  NP. an d  if its  right-h an d  sid e h a s no m atch  it m ea n s th a t the first n ode AND  

h a s to be b uilt. C h eck -an d -ru le  h a s  the follow ing defin ition .

(defrule
:gnam e m y j r a m m a r
:m a m e  C h eck -an d -ru le

:p rod u ction  (<NOP> (AND "and NP))

:sta tu s a c tiv e
:sy n -a c t lo n s  (rule-activation '(M ak e-and -ru le NP))
:sy n -re co v e ry -a c tio n s  (rule-activation '(M ak e-flrst-and -ru le NP)))

T h e s y n -a c t io n s  are ap p lied  if th e r igh t-h an d  s id e  h a s  a  m a tch  an d  th e  ru le M ak e-an d -ru le  is  

a ctivated  to b u ild  a n on -term in a l n od e AND. The sy n -reco v ery -a ctio n s are ap plied  w h en  th e parser  

h a s  to b u ild  for th e  first tim e a n ode AND. an d  the rule M ak e-first-an d -ru le is  activated . T h ese  two  

activated  ru les  m u st be in active s in ce  the w atch -ru le  h a s  the w ork o f activatin g  them .

(defrule
:gnam e m y _ g ra m m a r
:m a m e  M a k e-flr s t-a n d -r u le

p r o d u c tio n  (AND (NP *and NP))

:sta tu s in active )
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(defrule
:gnam e m y .g r a m m a r
:m a m e M ak e-an d -ru le
:produ ction  (AND (AND ’ and NP)) 
:statu s in active )

6. Final Remark*
S om e rem arks ab ou t the p arsin g  sy stem  an d  the parsin g  too ls d escrib ed  so  far are Ln order. A 

first p o in t co n cern s the priority a ssig n ed  to ru les. It is clear th at w e can  have three m ain  k in d s o f  

rules: activated  ru les, NOP ru les and stan d ard  ru les. T h is Is a lso  their d ecrea sin g  priority order of 

ex ecu tio n : a c tiv a ted  ru les  h ave th e h ig h e s t  priority  s in c e  th ey  are a n a tu ra l co m p letio n  an d  

ex te n sio n  o f the activatin g  rule: NOP ru les can  aflect stru ctu res u sed  by stan d ard  (non-NOP) ru les in 

their p ack et, therefore th ey  n eed  to be properly sc h e d u led  w ith  a h igher priority th an  the o th ers. 
Furtherm ore, th is  c la ssifica tion  sh o w s how  CGUs are n ot a m ere p lace o f a declarative d escrip tion  of 

a gram m ar, b u t th ey  are a lso  a p lace w here a p rocedu ral d escr ip tion  o f  a c tio n s  co n cern in g  the  

p arsin g  p ro cess  can  be given. T h is Is a pow erful w ay, w h en  co n d itio n s are d etec ted , o f  a lterin g  the 

n a tu ra l b eh a v io u r  o f  the p arser th a t fo llow s a p ara lle l b o tto m -u p , n o n -d e te r m in is t ic  stra tegy . 
A ction s taken  follow  th e d etection  o f som e s itu a tio n  in th e p arsing stru ctu res, e .g ., th e  activation  o f  

a ru le in stea d  o f a n oth er  w h en  a  m issp e llin g  Is found  ln  the in p u t, and  a p arsin g  p ro ce ss  ca n  be 

driven  by a gram m ar w here on ly  the n ece ssa r y  ru les  for co n tex t d etec tion  are s e t  active an d  th o se  

d evoted  to b u ild  s tr u c tu r e s  in active . T h is w ay o f  se tt in g  con tro l o f  th e p arser p la ces  th is  p arsin g  

sy stem  ln the category o f  s itu a tlo n -a ctio n  p arsers (/W lnograd 1 9 8 3 /) .
U n fortu n ately  th is  paper ca n n o t be a p lace for a  w ide d escrip tion  o f exam p les o f gram m ars u s in g  the  

p arsin g  to o ls  o f  SAIL. S om e ru n n in g  ex a m p les, a s  w ell a s  th a t d escr ib ed  above, ca n  b e foun d  ln  

/M a rin o  1 9 8 8 a / .  M oreover, som e Ill-form ed Input c a s e s  h ave b een  faced, e .g ., le x ic a l/sy n ta c tic  111- 
fo rm ed n ess, co n stra in t v io la tion , co n st itu e n t  sh u fflin g , m iss in g  c o n st itu e n ts , in  /F errari 1 9 8 9 / .  A  

w id e report o f th e  w ork  d evelop ed  in  th e fram ew ork  o f  th e E u rop ean  ESPRIT Project P 5 2 7  CFID 

u sin g  th e SAIL Interfacing S y stem  is In /D eliv era b le  9 /  w here, am ong o th er th in gs, the d escrip tion  
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A bstract

In a natural language processing system designed for language learners, it is necessary to accept 
both well-formed and ill-formed input. This paper describes a method of maintaining parsing 
efficiency for well-formed sentences while still accepting a wide range of ill-formed input.

1. Introduction

The Athena Language Learning Project is developing advanced educational software for foreign 
language learners. One of the tools we are developing is a natural language parser for use by 
first through fourth semester students of various languages. This parser must be able to recover 
from and correct a wide range of morphological, syntactic, and semantic errors, and yet still run 
in real time. We have designed a system where all of these errors can be handled by the parser 
uniformly and efficiently.

2. Description of the Parser

Our parser is a nondeterministic LA LR(l) parser, written in Common Lisp, similar to that of 
Tomita [1] but differing in several significant ways.

•  First, we associate a reduction function with each rule in the grammar. Whenever 
a reduce action is performed by the parser it calls the corresponding reduction func­
tion, which constructs the new node of the parse tree from the nodes on the right 
side of the production. As it does this, it may perform various tests on its input and 
either mark errors on the new node or, rarely, return NIL to fail. This is similar to 
the system of relaxation of predicates used by Weischedel and Black [2] and others; 
we mark errors where they allowed predicates to be relaxed, and return NIL from 
reductions where their predicates failed.
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• Second, in order to properly handle linguistic phenomena like movement and bind­
ing, we needed to make the parser context sensitive. We did this by associating 
context sensitive information about a parse with each parse stack. This information 
is passed in to each reduction function, which examines and modifies the infor­
mation as appropriate in order to build the new node.

• Third, we did not want the parser to return every possible  parse of the student’s 
input, given the relaxed rules of our grammar. A strict grammar for a natural lan­
guage already has to consider many possible parses of the input— allowing er­
roneous input increases the problem by an order of magnitude or more. Computing 
all these parses would be a waste of time, and would make the system unusably 
slow. Instead, we only want the parser to return the “most likely” parses.

• Fourth, we decided that it was essential for our parser to perform semantic analysis 
at the same time as syntactic analysis in order to reduce ambiguity. Even though 
syntactic errors are common for language learners, semantic errors are more un­
usual. If parsing can be guided by semantic constraints as well as syntactic ones, 
then we can expect to come up with the better interpretations of the student’s input 
with less work.

Adding context sensitive information to each parse stack had the significant disadvantage that it 
became impractical to use some of Tomita’s more sophisticated techniques such as graph- 
structured stacks and local ambiguity packing.* However, abandoning these techniques allowed 
us to take advantage of a different one: a best-first searching strategy. Creating graph-structured 
stacks requires the use o f breadth-first search in order to keep all of the parse stacks 
synchronized on the input. Without graph-structured stacks, it becomes possible to advance dif­
ferent parses o f a sentence at different rates, forging ahead with parses that look promising, and 
postponing work on less likely ones.

3. M arking Errors

In our parser, every word and every node in the parse tree contains an error-count which is in­
itially zero. Whenever an error is detected, our code increases the error-count of the word or 
node and attempts to generate a plausible corrected node.

Four kinds of errors are detected by the lexical analysis pass o f the parser, and are marked on 
individual words before they are parsed.

errors in the lexicon Some errors are so common that we have anticipated them by entering
them direcdy into the lexicon. For instance, use of the wrong gender 
ending on a noun in Spanish, e.g., “abriga” for “abrigo” {"overcoat”). 
Lexical lookup returns a word marked with an error.

spelling errors When regular lexical lookup fails, we run a spelling checker to search
for known words with similar spellings. Each misspelled word is 
marked with an error.

•This was because, in order for rwo parse stacks to be merged, the context sensitive information associated with 
each stack had to be compatible. This situation was so rare that the bookkeeping involved wasted more time than 
was saved.
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blocked word errors Irregular forms of words are stored in the lexicon as subentries of their
regular forms. After lexical lookup, a second pass checks the irregular 
subentries of the returned word to make sure none of them should have 
been used instead. If it determines that one should have, it marks the 
word with an error before returning it. For sample, the Spanish word 
“tenio” in place of “tuvo”, or the English word “haved” in place of 
“had”.

surface filter errors The surface filter looks at the stream of words returned by lexical
lookup and performs arbitrary surface operations, such as splitting 
“compound” words into their components, combining single meanings 
given by more than one word, and insuring that words are properly con­
tracted. As it does this, it marks any errors it finds on the appropriate
words. In English, for instance, a surface filter checks for correct
“a/an” alternation as in “a dog” vs. “an apple”.

It is important to understand that the lexical analysis pass may return several different interpreta­
tions for a single word, some of which may have errors while others may not. For instance, in 
English the word “seed” could either be the correct singular form of the noun “seed” or the 
incorrect (blocked) past tense of the verb “to see”.

Three other kinds of errors are detected during parsing and are marked on nodes by the reduction 
functions that create those nodes.

structural errors

agreement errors

semantic errors

The grammar productions anticipate certain structural errors, similar to 
the way that the lexicon anticipates certain lexical ones. For instance, 
Spanish detects improper use of preposition-like words, e.g., “encima la 
mesa” instead of “encima de la mesa” {"on (top of) the table”).

The reduction functions mark errors as appropriate for any context de­
pendent and/or independent syntactic requirements which are violated 
by the current constituents. In English, the noun phrase “a books” 
would be marked with an agreement error and assumed to be plural.

The reduction functions also access the case frame interpreter, which 
builds semantic structure and marks any necessary errors. Even though 
the semantic structures are separate from the syntactic nodes of the 
parse tree, semantic errors are marked on the nodes of the parse tree so 
that they will be visible to the parser.2

4. How Parsing Proceeds

Now that we have explained how we mark errors on the words and nodes of a parse tree, we can 
explain how these errors are used by the parser to direct parsing. At this point it is helpful to 
introduce a term for the information that is stored about a partially-completed parse. We call this 
infomation the parse state, or pstate for short. A pstate contains the following information:

2The semantic structures built by the case frame interpreter introduce a new level o f ambiguity— each represents 
any number o f possible semantic interpretations of the constituent. The error-count of a case frame is the error- 
count o f  its best interpretation.
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• The traditional LALR parse stack of alternating nodes and state numbers.

• The current word of the input, which is the cu nt look-ahead token for the LALR 
parser and will be the next word shifted onto the parse stack.

• An error-count, which is used to determine which pstate is “best” in the best-first 
search for a successful parse.

• Context-sensitive infomation which varies from language to language.

The most interesting pan of a pstate for this discussion is the error-count, which is used to direct 
the best-first parsing. The error-count of a pstate is the sum of the error-counts of the noaes in 
its parse stack, plus the error-count of its current word.

The parser keeps a sorted list of pstates. Pstates with the same error-count are ordered ar­
bitrarily. Each step through the parser pops the first (best) pstate off of this list and looks up the 
next actions for the pstate in the LALR tables. For each action, the parser does the following:

• If the action is a shift action, it shifts the current word onto the parse stack. A new 
pstate is created for each possible following word, and the following words are 
made the current words of the new pstates. Each new current word’s error-count is 
added to the error-count for its pstate.

• If the action is a reduce action, then the arguments to the reduction, which are the 
right side constituents, are popped off the parse stack and passed to the reduction. If 
the reduction constructs a result node, a new pstate is created, the node is pushed 
onto its parse stack, and the node’s error count is added to the pstate’s error-count.

Each pstate created during the above procedure is inserted in its proper position in the list of 
pstates, and the procedure is repeated with the new best pstate. This continues until either the list 
of pstates becomes empty, in which case parsing has failed, or enough pstates parse to comple­
tion that the remaining (worse) pstates are simply thrown away. To determine when to throw 
away pstates, we maintain a range which we call the style threshold. Whenever the error-count 
of a pstate becomes larger than the error-count of the best successful parse plus the style 
threshold, that pstate is removed from the list of pstates and thrown away. However, no pstates 
are thrown away until there is a successful parse.

4.1. An Exam ple

As an example o f how this system works, w e’ll describe the parsing o f the sentence “Dije donde 
llovi6,” which is incorrect Spanish for “(I) said where (it) rained.” “Donde” with no accent is a 
subordinating conjunction, as in “I’ll go where you go.” “D6nde”, with an accent, is a pro-PP 
introducing a complement clause, as in “I said where it rained.” Unsurprisingly, students of 
Spanish use the wrong form quite often. Lexical analysis of “donde” in our system returns two 
words, the subordinating conjunction and the pro-PP, the latter marked with an error-count of 
500 for the lack of an accent.

The parser starts with a single pstate, call it A, where the current word is “dije”, the first word in 
the input sentence. The grammar first pushes various empty nodes onto the parse stack, includ­
ing an empty COMP and a pro subject, and eventually shifts “dije”. Since the next word, 
“donde”, is ambiguous, the parser must now split this pstate into two new pstates, B and 
C. Pstate B receives the subordinating conjunction as its current word, and has its error-count
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increased by 0. Pstate C receives the pro-PP, and has its error-count increased by 500. Process­
ing of pstate C is then postponed because it’s not the best available pstate.

Parsing continues with pstate B. The subordinate clause “donde llovio” is completed and at­
tached to the S node dominating “dije”. Now the sentence is ready to be finished off. But 
finishing it off precludes the possibility of more arguments being parsed, and the verb “dije”, 
which requires a direct object or complement clause, has received neither. The case frame inter­
preter marks an error of 600 for a missing argument, and when this is added to pstate B, it is no 
longer the best pstate. Thus pstate B is now postponed in favor of pstate C.

Parsing of pstate C now resumes at the point it was left off, and by parsing “donde llovio” as a 
complement clause, continues to a successful completion. If the style threshold is less than 100, 
parsing will stop, and pstate C, with an error-count of 500, will be returned. Otherwise, parsing 
of pstate B will resume until it is successfully completed with an error-count of 600, and both 
pstates B and C will be returned.

5. Anticipated Errors

Because the error-count of a pstate determines whether or not the pstate should be actively 
pursued, postponed, or thrown away, it is vitally important for error-counts to be accumulated as 
soon as possible.

Take, for example, the sentence “You drink too much beer.” This sentence has two interpreta­
tions: the obvious one, and an erroneous one where a case-blocking modifier has been placed 
between the verb and the direct object (this reading should be “You drink beer too much”). The 
error in the second interpretation is in the placement of the AD VP “too much” within the V P—  
there is nothing wrong with the ADVP itself. Conceptually, therefore, the error should be 
marked on the VP. But before this VP can be built, the erroneous modifier and the direct object 
must be parsed; this will waste a lot of work before this reading’s pstate is postponed in favor of 
the first reading, and eventually discarded unfinished due to the style threshold. Alternatively, 
we can build a modifier node around the ADVP node and mark the error there, saving the time it 
takes to parse the direct object Or best of all, before starting to build the ADVP in the first 
place, we can build an empty node and mark the error on it. Thus this pstate will be postponed 
as soon as the empty error node is created— before either the ADVP or the direct object have 
been parsed.

We call these errors, which are marked on empty nodes before the erroneous input, anticipated  
errors. In many ways, anticipated errors are the most important category of error, because they 
have the greatest influence on the speed of parsing. Anticipated errors allow us to postpone or 
discard a pstate before we have wasted a great deal of time on it.

We handle many structural errors by writing explicit productions to parse ill-formed input, and 
these errors can always be anticipated. For instance, in our system we can write a rule such as:

VP => V3AR MOD,BAD-MOD? OBJ

This rule says: “To parse a VP, parse a VBAR, optionally followed by a MOD marked with the 
BAD-M OD error, followed by an OBJ.” This is automatically expanded by our LALR table gen­
erator into:
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VP => VBAR MOD,BAD-MOD? OBJ

MOD,BAD-MOD? =>
MOD,BAD-MOD? => MOD,BAD-MOD

MOD,BAD-MOD => BAD-MOD MOD

BAD-MOD => (create an empty error node)

These rules will mark the partially completed parse with an error as soon as the parser decides 
that there is a MOD after the VBAR, before the MOD, OBJ, or VP has been created. Since 
parsing is best first, this partial parse will be postponed until it is the best parse available—  
which may never happen. However, if the parse does become the best available, the work done 
to construct the VBAR will not have been wasted. Processing of this partial parse will continue 
right where it left off.

Some structural errors are too complex to anticipate through the use of the LALR table 
generator’s error facililty. For example, in Spanish, infinitive sbar complement clauses must be 
introduced with one of two different complementizers, “a” or “de”; or with no complementizer at 
all, depending on the higher verb. English speakers, who are accustomed to always using the 
particle “to”, frequently choose the wrong complementizer in Spanish. Since all three structures 
(either complementizer or none at all) are potentially correct in Spanish, there is no place in any 
production to mark the error.

We can still anticipate the error, however, by having the reduction function called when the com­
plementizer is reduced look at the higher verb. We can find the higher verb using the context- 
sensitive information that is kept with each pstate. We call the case frame interpreter to deter­
mine whether the higher verb allows an SBAR complement clause, and if so, whether the verb 
allows the given complementizer. We push a small error if the wrong complementizer was used 
and a very large error if no clause is allowed at all.

6. Conclusions

We have written grammars for Spanish, English, French, German, Russian, and Classical Greek. 
The most comprehensive o f these is for Spanish, where the grammar contains over five hundred 
context-free productions.

The following data demonstrates the time saved by using best-first parsing and by trimming un­
likely pstates through use o f the style threshold. Time is measured by the total number o f reduc­
tions performed during parsing the input, counting both successful and trimmed pstates. We 
generally set the style threshold at 30 to allow for slight variations in interpretations o f the input. 
Setting the style threshold to a very large number (such as 10,000) approximates what would 
happen if an equivalent grammar were run using Tomita’s parser.
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Dije donde llovio.

“(I) said where (it) rained.”

Style threshold # of parses # of reductions

0 1 680

30 1 680

100 2 1,010
10,000 19 3,549

Hace buen tiempo en BogotA.

“(It) makes good weather in Bogota.”

Style threshold # of parses # of reductions

30 1 831

10,000 22 7499
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ABSTRACT

The U n ification -based  G ram m ars seem  to be ad eq u ate  fo r  the an a ly sis  o f  
agg lu tin ative  lan g u ag e s  such a s  K o rean , etc. In this p ap e r , the m erits o f  L ex ica l 
F u n ction al G ram m ar is analyzed  an d  the structure o f  K o rean  Syntactic A nalyzer 
is d escrib ed . V erbal com plex category  is u sed  fo r  the an a ly s is  o f  sev era l linguistic 
phenom ena an d  a  new attribute o f  UNKNO W N is defined fo r  the an a ly sis  o f
g ram m atica l re lation s.

1. Introduction

In these days, various kinds of Unification-based Grammars are developed and widely 
researched(l,2]. Lexical Functional Grammar(LFG)[3,4] is one of them and seems to 
meet well for the grammatical characteristics of Korean.

We have developed a Korean natural language parser, KOSA(KOrean Syntactic
Analyzer) which is based on the LFG. It is the analysis part of the KEMTS(Korean- 
English Machine Translation System) which is our current machine translation system.

In this chapter the grammatical characteristics of Korean and the merits of LFG
formalism are presented.

1-1. The Grammatical Characteristics of Korean

Korean which is classified into the Ural-Altaic languages and belongs to the
agglutinative languages is greatly different in the linguistic structures from the Indo-
European languages such as English.

Korean adopts a short-clause as the unit of the spacing words. One short-clause
is constructed by the concatenation of one or more morphemes of individual lexical
categories. The concatenation is restricted by word conjoin conditions.

The most common patterns of short-clauses are ’verb(suffix) + ’ and ’noun(postnoun) 
+ ’. In such patterns, morphemes belonging to verb or noun bring the major informations. 
But because Korean is an agglutinative language, such morphemes have no conjugation 
and cannot have auxiliary informations freely. In Korean, such auxiliary informations 
are expressed by suffixes or postnouns which follow verb or noun, and their informations 
have an important role on the analysis of Korean[10].

Suffixes represent grammatical informations such as modality, tense, mood, voice, 
and etc. In Korean, agreement rules about gender, number or person are not developed  
well, but various idiomatic expressions of complex patterns are widely used.

The major function of the postnoun is to show the grammatical relation(GR) between  
an NP and a verb. Unlike the Indo-European languages in which the G R  information 
is directly obtained from the structure of the sentence, in Korean postnoun tells the 
G R. So there is no need to distinguish NP and PP, and the order of NPs does not
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affect on the meaning. This brings on the relatively free word order of Korean.
When postnoun with other kind of information is used, the postnoun with the GR  

information is omitted frequently. To analyze such cases, inferences using various 
knowledges and heuristics are required.

1-2. The Merits of LFG for Korean Analysis

LFG has several merits for the analysis of Korean sentences. Some of them comes 
from the fact that Korean is not a well structured language.

The first merit is the fact that the primitives of LFG are the grammatical relations
(G Rs) such as SUBJ, OBJ, etc., but not the phrases such as NP, VP, etc. In English,
the GRs of NPs can be detected from the order in the phrase tree. For example, we 
can see that NP! is the SUBJ of S and NP2 is the OBJ of S from the c-structure 
for English in F ig .l-a , but this is not permitted for Korean as shown in F ig .l-b , because
of the free word order of NPs. LFG offers a convinient way to analyze the implicit
GRs, and more extended analysis methods will be proposed in chapter 4.

(tSUBJ)-* fM
NP,1

VP
1

t«i t-* (tOBJ)-*
N V NP:

1

John 1 ikes
tM
N •

Mary

(t(iGR)J-i (K*GR))-
NP NP

A A
tM t*i
N P

t*i t“ i 
N P

VC

John i Mary reul

^  Fig-1. GR of NPs in two C-structures

The second merit is the fact that postnouns and suffixes in Korean can be easily 
and efficiently analyzed with lexical rules.

Also LFG provides convenience of invoking the inference mechanisms with 
grammatical devices and constraint conditions for various purposes such as the 
determination of UNKNOWN attributes.

In the design of KOSA, we tried to maximize such merits of LFG. Following 
chapters will describe the structure of KOSA and the techniques that we adopt.

2. The Structure of KOSA

Korean Syntactic Analyzer, KOSA is a Korean parser based on LFG. It analyzes 
a Korean sentence and extracts the grammatical informations in the form of an f-structure. 
The output of KOSA can be used in various applications. KOSA has developed as the 
analysis module of a Korean-English Machine Translation System, KEMTS and the output 
of KOSA is used as the intermediate structures for translation.

KOSA consists of three modules: LexAnal, CstrAnal and FstrAnal. Fig-2 shows the 
block diagram of KOSA. Each section describes the structure of each module.
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L e x A n a l

C s t r A n a l :

A Korean Sentence

! S h o r t C l a u s e S p l i t  
S h o r t C l a u s e A n a l
T o k e n G e n e r a t e

T o k e n  L i s t

D C G  P a r s e r

O S t r u c t u r e

W o r d  C o n j o i n  j 

C o n d i t i o n s  I

L e x i c a l  R u l e s  
A t t a c h e d  R u l e s

S y n t a c t  ic 
R u l e s

L e x i c o n

F s  t r A n a  1: ! I F s t r E x t r a c t
F s t r C h e c k

F - S t r u c t u r e  f o r  K o r e a n
Fig-2. Block Diagram of KOSA

2-1. The Structure of LexAnal Module

LexAnaJ module analyzes a Korean sentence into the token strings and consists of 
three phases: ShortClauseSplit, ShortClauseAnal and TokenGenerate.

The ShortClauseSplit phase splits a Korean sentence into a number of short-clauses 
using blanks and punctuation symbols as the delimeters. This phase can be constructed 
easily as a simple finite state automata.

Each short-clause is analyzed into morphemes in the ShortClauseAnal phase. As 
shown in section 1-1, the concatenations of morphemes are restricted by the word conjoin 
conditions which check the lexical categories, the phonology and the semantics. Although 
the word conjoin conditions seem to be complicated, they are just simply some local 
rules which deal only adjacent morpheme pairs. So this phase can be implemented as 
an automata, too.

TokenGenerate phase generates the token strings from the morphemes. In this phase, 
some morpheme patterns are combined into one complex token. Among some kinds of 
complex tokens, verbal complex(VC) tokens are the most important. Typically a verb 
and its following suffixes are combined into one VC token. But there also exist more 
complex VC token types, and they are discusses in chapter 3. By generating complex 
tokens, many local linguistic phenomena can be excluded from the CstrAnal/FstrAnal 
modules. Because these modules analyze the global relationship among the sentence 
constituents, the approach of combining morphems can greatly enhance the efficiency. 
This phase is implemented as the recursive pattern rewriting rules.

2-2. The Structure of CstrAnal Module

The syntactic rules of the CstrAnal module are shown in Fig-3, and these rules 
are enough to analyze most Korean sentences. Complex tokens are dealt like the simple 
tokens according to their lexical categories. Each syntactic rule has functional schemata 
showing the method of unification. By adding these functional schemata to each branch
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of the phrase trees, the c-structures are constructed.
(•(-G R ))= . .=(*ADJ)

S(Typc] - >  ( NP A VP )* V{Typc]

S{Typc] - >  Sfconnective] S(Typc]

NPfType] - >  N PfTypc]
•=* ♦= 4

NPJTvpe] - >  S(nominative] PJType] 
i=('AXXT) •=;

NPtTypc] - >  ADJ NP(Type]
( ’( « R ) ) = *  •=*

NP(Typc] -->  NPfpossesive/conjunctive] NPfTypc]
• 4 ‘XADJ)

( ‘UNKNOWN)»» »=»
NPfTypcJ - >  S{modify] NPfTypc]

t= i
A VP - >  ADV

* = I
A VP - >  S{ adverb]

Fig-3. The Syntactic Rules of KOSA

(SI) shows the structure of a simple sentence and (S2) shows the coordinative
sentences. (NP1) and (NP2) show the basic structures of NPs and (NP3)-(NP5) show 
the constituents which can modify the NPs. With above rules, postnouns are combined 
with nouns(or nominal clauses) at the lowest level of the c-structure, but this has no
problem because the postnouns supply only the auxiliary informations.

The unhierarchical syntactic rule (SI) makes the forms of c-structures flat and brings 
on much ambiguity especially on the position of NPs. So above rules examine context- 
sensitive constraints to decrease the ambiguity. The applications of rules are restricted 
by the context-sensitive informations in the bracket. But this approach is not enough
to prohibit the ambiguity of NP’s position. To resolve such ambiguity, the possibility 
for the unification of f-structures should be examined.

This module is implemented with the DCG(Definite Clause Grammar) parser[5] on 
PROLOG.

2-3. The Structure of FstrAnal Module

The FstrAnal module consists of two phases: FstrExtract and FstrCheck.
Because CstrAnal module results much ambiguity, FstrAnal module should cover 

the task of filtering out illegal c-structures as well as the task of analyzing the f-structures. 
Two phases of this module, will function as a two-level filter and generate the result 
f-structures from correct c-structures only.

FstrExtract phase extracts the f-structures of the input sentence from the c-structures 
by the bottom-up unification algorithm[3,6]. The complexity of the unification algorithm 
in KOSA is not heavy, and is the level of general unification algorithm for LFG 
formalism. Even though the grammatical characteristics of Korean are not reflected well 
by the unification algorithm, they are reflected through the lexicon informations and 
the functional schemata shown in section 2. Attached rules are used to extract the 
functional schemata for the verbal complex tokens in this phase. Chapter 3 will describe 
the functions of the attached rules.

FstrCheck phase examines the extracted f-structures whether they are grammatical 
or not. Grammatical devices and constraint conditions of LFG are utilized for KOSA, 
but some constraint conditions are modified and extended in order to solve Korean

( s i )

(S2)

(NP1)

(NP2)

(NP3)

(NP4)

(NP5)

(AVP1)

(AVP2)
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linguistic phenomena. Some heuristics to the determine the unknown GR values of NPs 
are used in this phase. Section 4-2 will describe the modifications/extensions and the 
heuristics.

3. The Introduction and Usage of VC category

In English, there is the VP category which consists of all sentence constituents except 
the subject of the sentence. But such a category can’t be found in Korean because 
of the free word order among the NP constituents including the subject constituents. 
So Korean verb seems to be directly governed by the S category.

Verbs are ususally combined with suffixes or another morphemes into complex tokens
in TokenGenerate phase. In this chapter, various usages of the VC category which means
the lexical category of verbal complex tokens will be shown.

3-1. Analysis of Auxiliary Informations in Suffixes

In Koean, there are many suffixes with complex and various usages. But most of
them does not affect on the meaning of the verb supplying only the auxiliry informations.
So when the FstrExtract phase extracts the functional schemata for a VC token which 
consists of a verb and its following suffixes, the auxiliary informations of suffixes are 
appended to the functional schemata of the verb.

For example, Korean word ’meok-eot-da' means ’ate’. ’meok’ is a verb which means
’eat’, 'eoC is a past-tense suffix, and ’da’ is a ending suffix for descriptive sentences. 
The FstrExtract phase appends these informations from lexicon like below.

vc([v(m*o/fc),f(«>»,tense),f(<£a,final)]) :
(fPRED) = ’EAT<(tSU BJ)(rO BJ)>’
(fTENSE) -  PAST 
(tMODE) = DESC

3-2. Analysis of Idiomatic Expressions

Koean has many idiomatic expressions on the predicate part. If idiomatic expressions 
are analyzed in CstrAnal/FstrAnal modules, the c-structures and the functional schemata 
can become much more complicated. So KOSA combines each idiomatic expression into 
one VC token in TokenGenerate phase, and obtains their functional schemata from the 
attached rules in FstrExtract phase. This approach greatly diminishes the overhead of
CstrAnal and FstrAnal modules.

For example, a Korean idiomatic predicate ’meok-eul soo eop-da’ consists of three 
short-clauses and five morphemes. It means ’cannot eat’, and can be thought as ’eat’ 
with auxiliary information of negative possibility. So KOSA, combines this expression 
into one VC token and the attached rule adds the functional schemata, (rPOSSIVILITY) = 

to those from lexicon. Below is the result token and functional schemata.

vc([v(mro4),f(eu l,modify),n(joo),v (e o p ),f(d a ,final)]) :
(rPRED) -  ’E A T <(tSU B J)(rO B J)> ’
(tMODE) -  DESC 
(t POSSIBILITY) -

3-3. Analysis of Duplicated Constituents Expressions

Some Korean sentences have duplicated subjects or duplicated objects. This 
phenomenon is called as duplicated constituents problem, and KOSA analyzes the typical 
case of this problem using VC category.

For example, in Korean ’Cheolsoo-ga ki-ga keu-da’ means ’Cheolsoo is tali’. Because
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postnoun ’ga ’ is a subject marker, there exist two subjects ’Cheolsoo-ga and 'ki-ga'. As 
'ki' means ’height’ and 'keu means ’big’, 'kei-ga keu means ’be tali’. In Korean, the 
verb, ’ki-keu’ which means ’be tall’ is also used. Like this, many Korean adjective verbs 
are often expressed in the form of a subject and following simple adjective verb. So 
KOSA combines ’ki-ga keu-da' into one VC token, and the attached rule interprets it 
just like ’ki-keu-da'. Similar method is applied to verbs which require duplicated objects.

3-4. Analysis of Passive/Causative Expressions

In Korean, passive/causative expressions are all represented using suffixes. For 
example, ’meok-hi-da’ means ’be eaten’, and 'hi is a suffix showing passiveness. Similarly 
’meok-i-da’ means ’let ... eat’, and ’/’ is a suffix showing causativeness.

KOSA combines such an expression into one VC token, and obtains the functional 
schemata for this token using the methods proposed by Kaplan[7,8],

For ’meok-hi-da’ and 'meok-i-da', the attached rule for passiveness/causativeness 
transforms the functional schemata of ’meok-da' like below.

\c(\v(mtok),i(da,final)]) : = >  vc([v(m*o*),f(/u\pass),i(da,final)]) :
(?PRED) -  ’E A T <(tSU B J)(fO B J)> ’ (»PRED) »  ’EA T <(tO BLAGT)(tSU B J)> ’
(rMODE) =• DESC OMODE) =» DESC

\d[\r{meok),t(da,final)]) : - >  vc([v(m*o*),f(/,cause),f(<£j,final)]) :
( tPRED) =  ’ EA T < ( fSUBJ)( tOBJ) >  ’ (tPRED) =  'LET<(rSUBL)(rOBJ2)(rXCOM P)>(rO BJ)’
(rMODE) =  DESC ( tXCOMP PRED) -  ’EA T <(tSU B J)(tO B J)> '

(tXCOMP SUBJ) =- (tOBJ2)
( tXCOMP OBJ) => (tOBJ)
(rMODE) = DESC

4. Determination Techniques of Grammatical Relations

The G R of Korean NPs are mainly determined by the postnouns. The G R value 
of P is transmitted by ’t = i ’ to the NP, and indirectly used by ’(t( iG R ))=  i’[9].

But sometimes the GRs of NPs cannot be determined by the postnouns for two 
reasons. One reason is the omission of the postnoun showing the GR value. Another
reason comes from the relation between the relative clauses and the antecedents. (Relative
clause precede its antecedent, in Korean.) Here the antecedent has a role as an NP
in the relative clause. But the postnoun of the antecedent shows only the GR for main
clause, and the GR for relative clause is unknown.

Even in such cases, we should find the hidden GRs for correct analysis. This chapter
describes the determination techniques of such unknown GRs.

4-1. Introduction of UNKNOWN Attributes

Because the heuristics to determine the unknown GR value should refer to the 
global relations among the VC and another NPs, the f-structure of the sentence should
be able to be extracted before the heuristics are invoked. So we have introduced the
UNKNOWN attribute to represent the temporary GR values. It is inserted and used 
during the FstrExtract phase, and changed to the correct GR value by the heuristics
in FstrCheck phase. . , __

The UNKNOWN is inserted by two methods. When the postnoun showing the OR 
value is omitted, the ’null’ postnoun whose lexicon information has the functional 
schemata, ’(tGR) = UNKNOWN’ is inserted in TokenGenerate phase. By the functional 
schemata’, UNKNOWN becomes the attribute representing the NP whose GR is unknown. 
For the relative clause, syntactic rule (NP5) in section 2-2 inserts the UNKNOWN 
attribute whose value is the f-structure for the antecedent to the relative clause.
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5-1. Analysis Result of LexAnal Module 

after ShortQauseSplit phase: five short-clauses are generated

[ 'woori-ga', ’ta-n’, 'bihaenggi-neun', 'Seoul-e', 'dochakha-et-da' ]

after ShortClauseAnal phase: eleven morphemes are generated

[ aoun(we), post(^a,sub}-mark), verb( take-on), suffbc(n, modify), 
noun(airplane), post(n*im, topic), noun(Seoul), post(*,obl1<x-mark), 
vcrb(arrive), suf£Lx(*f,tense), suffix(<ia,final) ]

after TokenGenerate phase: eight tokens are generated

[ noun(we), post(^a,sub}-mark), vc([verb(take-on), suffix(n,modify)]), 
noun (airplane), post(n*u/i, topic), noun(Seoul), post^.obl^-mark), 
vc([verb(arrive),suffix(«,tense),suffix(da,final)]) ]

5-2. Analysis Result of CstrAnal Module 

after CstrAnal module: two alternative c-structures are generated as below

S

0 ( ‘GR)>* (t(*GR))*» (»(*GR))m t-i (<iGR))*i
NP NP NP VC NP ' ' NP" VC

i ( i f ^ . i  I ( iVnKNOV̂ ^
N P S NP N P arrive S NP N P arrive

f i  f i  t-i I I (K ‘GR)W ^t'’ »
we ga VC N P Seoul e NP VC

take-on
• f i  f i  I

neun N P take-on

s

7 m

0(*GR))-<
NP

f  i f  i
NP N P

f  i | |
P Seoul e

neun
airplane | | airplane

ve ga

5-3. Analysis Result of FstrAnal Module

functional schemata of morphemes obtained from lexicon

noun(we): (tPRED) *  ’PRO* noun(airplane): (tPRED) =  ’AIRPLANE’
(tNUM) »  PLURAL tioun(Seoul): ( tPRED) =* ’SEOUL’
(tPERS) -  3

verb(take-oo): (tPRED) -  TA K E -O N <(tSU B J)(tO E J)> ’
verb(arrive): (tPRED) »  ’A R R IV E <(tSU B J)(tOBLlo c) > ’

posted): (tGR) -  SUBJ suffix(/i): ( tMODE) =  MODIFY
post(n«un): (fTOPIQ *  ’ +  ’ suffix(«): (tTENSE) =  PAST
pcst(*): (K3R) =• OBLloc  suffii(<&): (tMODE) =■ DESC

functional schemata of complex tokens obtained by lexical rules

vc([verb(take~oa), suffix(/i,modify)]):
( tPRED) =  T A K E-O N <(»SU B J)(tO B J)> ’
( tMODE) -  MODIFY

vc([verb( arrive) ,suf&c(er, tense) ,suffix(d!a .final) ]):
(tPRED) -  ’A RR IV E<(fSU BJ)(tO BLLOC) > ’
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4-2. Extension of Constraints for U N K N O W N

There are several grammatical devices and constraint conditions in LFG, but some 
of them are used in modified or extended forms for the effective use of UNKNOW NS.

Because Korean sentences can have multiple NPs with unknown G R values, f- 
structure with multiple UNK NO W N attributes should be permitted and the consistency 
constraint should be relaxed. KOSA has solved this problem without any change of the 
unification algorithm by attaching index numbers to the UN K N O W N  attributes as 
U N K N O W N ^ UN K N O W N 2,...  when they are inserted.

The completeness/coherence constraint sould be extended for sentences with multiple 
UNKNOW NS. This extension is similar to that stated in [8], but the number of 
U N K N O W N  attributes can be more than one here. So the extended completeness/ 
coherence constraint is as following: The number of UN K N O W N  attributes should be 
less than or equal to the number of unsaturated grammatical functions of the PRED  
value for the intermediate f-structures, and should be equal for the final f-structures.

4-3. Heuristics for GR-Determination of the UNKNOW NS

For the complete analysis, the hidden G R values of the UN K N O W N  attributes should 
be determined. KOSA uses three heuristics to determine them.

First is the simple mapping method. If there is only one U N K N O W N  attribute 
in an f-structure and one unsaturated grammatical function, the G R  value of the
U N K N O W N  is determined as the unsaturated grammatical function.

If the number of the UN K N O W N  attributes is N(more than one), there should
be also N unsaturated grammatical functions. Then they can be matched in N! different 
ways. To select the most proper mapping, two heuristics are used.

One heuristic is the agreement-point comparison method. The lexicon informations 
for nouns contain the semantic markers. They are transmitted to the values of 
U N K N O W N  attributes. Each unsaturated grammatical function has the agreement-point
information for each semantic feature on range [-1.0.. 1.0]. This is also given from the 
lexicon. For each mapping, the sum of agreement-points is calculated and the mapping 
of the highest score is selected. Because the number N is not so large, this heuristic
does not bring a heavy overhead on examination.

The other heuristic is used when the agreement-points of several mappings are tied
at the highest. Although NPs have almost free order in Korean, we can find the common
word orders among them. The orders are not indispensable, but usual sentences follow  
them. So we can use these common word orders to determine the G R  values of the 
UNKNOW NS. To find the order between the NPs without referring to the c-structure, 
we can utilize the index number attached to the UNKNOW NS.

5. Sentence Analysis Example of KOSA

In this chapter, the analysis steps of KOSA will be illustrated for following example. 
The first line of the example is the real Korean input, the second line is the input
sentence written in Roman alphabet, the third line shows the meanings of morphemes 
belonging to the noun or verb category, and the last line shows the meaning of input 
sentence. For easy understanding, we replaced the Korean characters with Italic-style and 
morphemes belonging to the noun or verb category with English word.

s.^514.
woori-ga ta-n bihaenggi-neun Seoul-t dochakha-et-da.
we take-oa airplane Seoul arrive
The airplane which we took on arrived at Seoul.
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6. Conclusion

We have introduced the structure of KOSA, a natural language parser for Korean, 
and discussed some related issues. In the design of KOSA, the overall Concept of LFG 
formalism is adopted, and LFG is confirmed to meet well for the grammatical 
characteristics of Korean. But some additional concepts for analysis are developed for 
KOSA further. Among them, the usages of verbal complex category and some heuristics 
concerned with the UNK NO W N attributes are formulated and discussed. In English, 
there are similar grammatical functions to the UN K NO W N such as TOPIC. But Korean 
NPs are far more flexible and free from the restriction of grammatical structures. And 
sentences with multiple UNKNOW NS are also common. So the heuristics that meet well 
for Korean are necessary, and the heuristics shown here can also be used to recover 
the omitted NPs.

Main issues of current research includes the usage of NP tokens, each of which 
consists of a noun and its following postnouns, and replacement of the functional schemata 
’( t ( iG R ) )= i’ with a GR-determine function. The NP token concept has the same origin 
as the usage of VC category, and can provides the reduction of overhead for the CstrAnal/ 
FstrAnal modules. The GR-determine function is expected to b e . very useful for more 
complete and efficient analysis of the relations between verbs and NPs.
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(rTENSE) = PAST 
(tMODE) = DESC

- after FstrExtract phase: two alternative f-structures are generated as below

P R E D  '  A R R  I  V E < S U B J  ,  O B L _ L O C >  '

M O D E  D E S C

:  T E N S E  P A S T

|  O B L _ L O C  ( —

:  P R E D  ' S E O U L '

!  G R  O B L _ L O C

U N K N O W N

S U B J

I f
I  P R E D  ' A I R P L A N E '  

I  C R  U N K N O W N j

|  T O P I C  

X A D J  r~
P R E D  ' T A K E - O N < S U B J , O B J > '  

M O D E  M O D I F Y

j  U N K N O W N 2

j  P R E D  ' W E '  

!  C R  S U B J

'  A R R I V E < S U B J , O B L _ L O C >  '  

D E S C

P R E D  

M O D E  

T E N S E  P A S T  

O B L _ L O C  r —

j  P R E D  ' S E O U L '  

C R  O B L _ L O CL
U N K N O W N

P R E D  ' A I R P L A N E '

C R  U N K N O W N !

T O P I C  ' ♦ '

X A D J

P R E D  ' T A K E - O N < S U B J . O B J > '  

M O D E  M O D I F Y

U N K N O W N 2 - - - - - - - - - - - - -

S U B J

1

l*ts

P R E D  ' W E '  

C R  S U B J

- after FstrCheck phase: final f-structure

left alternative: rejected as illegal
<  SU BJ,OBL_LOC> : {OBL_LOC,UNKNOWN1(SUBJ} 

=  >  cohcrcocy constraint violation 
<SU B J,O B J>  : {UNKNOWN^}

= >  completeness constraint violation

right alternative: selected
< SUBJ,OBL_LOC> : {OBL.LOC,UNKNOW N,}

=*> UNKNOWNj turns out to be SUBJ 
< S U B J,0 B J>  : {UNKNOWN2,SUBJ}

= >  UNKNOWN^ turns out to be OBJ

PRED ' ARRIVE<SUBJ.OBL_LOC>'
MODE DESC
TENSE PAST 
OBL_LOC

PRED 'SEOUL'
CR OBL_LOC

SUBJ
PRED
GR
TOPIC
XADJ

'AIRPLANE'
UNKNOWN!

PRED 'TAKE-ON<SUBJ,OBJ>‘ 
MODE MODIFY
OBJ •----------------
SUBJ

PRED 'WE' 
GR SUBJ
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In section 4, several  problems of the first method are described. And in the successive section, a 
modified implementa t ion  is showed. We explain three modifications. The first  modification is to uses 
the information of any proper a t t r i but es  on the node. This  informat ion is manual ly  described in 
augmen te d rewri t ing-rules .  The informat ion consists of the nam es of relat ions and the calculation of 
a r gum en ts  for the relat ions.  The second modification is to raises the prior i ty of the s t ructure  which 
appears  the cooccurrences judged solely as correct  all through the period of acquisit ion.  The thi rd is to 
collect cooccurrence dat a  on two phases.

In section 6 , we show the analysis performance of the modified version on our experiment. The 
results show that modified version shows better performances than the previous version, when 
relatively small number of acquired data is utilized. Furthermore we show another experiment which 
measures the appearance rate of acquired cooccurrences data in each parsed text with the measurement 
of an analysis performance in each text. By this measurement, we can confirm that texts having high 
appearance ratio are analyzed more accurately than texts having low appearance ratio.

2. Features of the utilized parser

In our method, cooccurrence data are collected with a parser. Here, we utilize a parser of a 
English-to-Japanese machine translation system named KATE. The analysis technique for a English  
sentence is based on augmented context free grammar like LINGOL. Cook-Kasami-Younger algorithm  
and Early algorithm are implemented with some fast parsing techniques[2 ] in this parser. Other 
features of the parser are :

(1) Each node of syntactic trees generated by the parser has attributes information which is the
meaning representation of the sub-tree governed by the node.

(2) On each node, a governor (the word which represents the phrase) is given as one of attributes.
(3) We can register partial patterns of possible syntactic trees, and when a rule generates such a

pattern on parsing stage, then the application of the rule is inhibited. These inhibiting patterns 
are used for the suppression of ambiguous trees.

Examples of generated trees and governors are showed bellow. [Fig 1,21 

[ figure 1 An example of an analysis jqs ] [ Figure 2 An example of an analysis tree ]

CL
I governor play

r~
NP

CI-I governor play

VP
governor governor

I play

NP
governor

I
VP

governor
play

PRON
governor 

I
r~

VPS

VP
governor

play

ADV
governor 

wed

NP
governor

play

I play

governor
tennis

NOUN
governor 
tennis

tennis w ell

PRON VPS 
governor 

I

NP
governor

play
governor

we*
NOUN 

I governor 
wel

NOUN
I

NOUN
governor
tennis

governor
wed

play tennis well

3. Acquisition and usage of relationships between governors in a simple version

Details of the first method are explained here. We call the program for this method a simple 
version. This version is more easily implemented than the modified version described in section 5, but 
lacks the accuracy in collecting cooccurrence data, We show this method for explanation purposes.
3.1  Discrimination procedure of a cooccurrence and maintenance of stored cooccurrence-data
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Learning Cooccurrences by using a parser

Kazunori Matsumoto Hiroshi Sakaki Shingo Kuroiwa  

KDD Kamifukuoka R&D Labs.
Saitama, Japan

ABSTRACT

This paper describes tw o  methods for the acquisition and utilization of lexical cooccurrence 

relationships. Under these method, cooccurrence relationships are obtained from tw o  kinds of inputs 

: example sentences and the corresponding correct syntactic structure. The first of the tw o  methods  

treats a set of governors each element of which is bound to a element of sister nodes set in a 

syntactic structure under consideration, as a cooccurrence relationship. In the second method, a 

cooccurrence relationship name and affiliated attribute names are manually given in the description 

of augmented rewriting rules. Both methods discriminate correctness of cooccurrence by the use of 

the correct syntactic structure mentioned above.

Experiment is made for both methods to find if thus obtained cooccurrence relationship is useful 

for the  correct analysis.

1. Introduction

Much attention should be paid for the role of m inutely described grammar and real world 
knowledge in order to improve natural language analysis performance. In this respect, the authors
have tried to acquire and use coocurrence data for the im provem ent of analysis performance. By
com bining a parser and an acquisition m echanism , we im plem ented a learning program of lexical 
cooccurrence data. The program has two kinds of inputs, exam ple sentences and the corresponding 
correct structures. The related study of learning grammar from sentences and their sem antic structure 
is conducted in LAS[1] (Language Learning System) by Anderson. He is of the opinion that most of 
grammars are derived from sem antic structures. We advocate the use of syntactic structures, because 
information such as cooccurrence is a reflection of the real world and is easily  derived from syntactic  
structure. Furtherm ore we im plem ented a parser to utilize the acquired lexical data.

This paper describes above mentioned two methods for acquiring lexical cooccurrences and also
describes the experim ent results of the methods.

The result of the experim ents shows (1) a reduction of the. number of alternative analysis trees (2) 
the increase on probability of selecting a correct analysis tree. The experim ents m ight be influenced by 
the used sentences and the nature of the used grammar. However we believe that our methods 
proposed here is one of the prom ising ways to reflect real world knowledge to sentence analysis.

At first, we explain  the parser we use. This parser is based on augm ented CFG. And the parser 
produces a forest (m ultip le analysis trees), and selects a single structure from the forest.

In section 3, the first of the above methods is showed. The method has two features : (1) 
Comparing generated analysis structures with the correct structure which should be generated by a 
parser for a treated sentence, each sequence of the governors on sister nodes is judged into two cases, 
correct case or wrong one. (2) The sequence which is alw ays judged as a wrong case through the 
period of acquisition, is utilized for reducing analysis trees generated by the parser.

Experim ents are made to m easure effects of the second feature above. The result shows : when the 
set of exam ple sentences are equivalent to the set of analyzed sentences, very few am biguous analysis 
trees are generated. A lm ost all the selections of generated trees, then, are successful. H owever when  
the set of exam ples are not equivalent to the set of analyzed sentences, only one third of ambiguous 
trees are elim inated  and probability of selection decreases a little  in com parison with a original (no

action) case. .379.  International Parsing Workshop '89



A n d  w e  m e a s u r e  th e  t r a n s i t i o n  o f  fo l lo w in g  th r e e  v a lu e s  a s  th e  a n a l y s i s  p e r f o r m a n c e  o f  the  p a r se r
w i t h  th e  a m o u n t  o f  i n c r e a s i n g  i n p u t t e d  p a ir s  a s  a p a r a m e t e r .

(a) a v e r a g e  o f  th e  n u m b e r  o f  g e n e r a t e d  t r e e s  p er  a s e n t e n c e

(b) p r o b a b i l i t y  o f  g e n e r a t i n g  a c o r r e c t  a n a l y s i s  tr e e

(c) p r o b a b i l i t y  o f  s e l e c t i n g  a c o r r e c t  a n a l y s i s  t r e e

W e  m a d e  tw o  e x p e r i m e n t s  to m e a s u r e  a b o v e  v a lu e s .

O n e  is  m e a s u r e d  in  th e  c o n d i t io n  t h a t  th e  s e t  o f  s e n t e n c e s  for t h e  a c q u i s i t i o n  p r o g r a m  is e q u i v a l e n t  

to th e  s e t  o f  s e n t e n c e s  a n a l y z e d  b y  th e  p a r se r .  A c t u a l l y  w e  c a n ’t m a k e  th e  s e t  o f  in p u t t e d  p a ir s  

e q u i v a l e n t  to th e  s e t  o f  m o d e l  s e n t e n c e s  in  a p r a c t i c a l  o c c a s io n .  B e c a u s e  o f  .n e  m o n o t o n o u s  i n c r e a s e  o f  

a c q u ir e d  c o o c c u r r e n c e  d a t a  in  e a c h  c a t e g o r y ,  h o w e v e r ,  w e  c o n s i d e r  th e  r e s u l t  o f  t h i s  e x p e r i m e n t  g i v e s  a

p r o s p e c t iv e  v i e w  o f  th e  e f f e c t  o f  th e  f i l t e r in g .  W e  o b s e r v e  f o l l o w i n g  r e s u l t s .  [ F i g . 3]

(a) W i t h  th e  i n c r e a s e  o f  in p u t t e d  p a ir s ,  a v e r a g e  o f  t r e e s  d e c r e a s e s  a l m o s t  m o n o t o n o u s ly .  F i n a l l y ,  

th e  a v e r a g e  b e c o m e s  a p p r o x i m a t e  1 .0  s t a r t i n g  fr o m  2 .5  a t  th e  b e g i n n i n g .  (A in  F ig .3  s h o w s  th e  

r e d u c t i o n  o f  t r e e s )

(b) P r o b a b i l i t y  o f  g e n e r a t i n g  a  c o r r e c t  t r e e  s e v e r e l y  g o e s  d o w n ,  w h e n  a m o u n t  o f  in p u t t e d  p a ir s  a re  

few .  A n d  f i n a l l y  th e  p r o b a b i l i t y ,  o f  c o u r s e ,  b e c o m e s  e q u a l  to th e  p r o b a b i l i t y  in i t ia l .

(c) P r o b a b i l i t y  o f  s e l e c t i n g  a c o r r e c t  t r e e  a l s o  g o e s  d o w n ,  w h e n  i n p u t t e d  p a ir s  a r e  fe w ,  a n d  a f t e r

n u m b e r  o f  in p u t t e d  p a ir s  e x c e e d s  o n e  th ir d  o f  th e  n u m b e r  o f  f i n a l  in p u t t e d  p a ir s ,  th e

p r o b a b i l i t y  b e c o m e s  b e t t e r  t h a n  t h a t  o f  th e  b e g i n n i n g .  (C in  F ig .3  s h o w s  th e  i m p r o v e m e n t )

T h e  s e c o n d  e x p e r i m e n t  is  m a d e  in  th e  c o n d i t io n  t h a t  th e  s e t  o f  2 , 4 0 0  s e n t e n c e s  i n p u t t e d  for th e  

a c q u i s i t i o n  p r o g r a m  is  n o t  e q u i v a l e n t  to th e  s e t  o f  8 0 0  s e n t e n c e s  p a r s e d .  F o l l o w i n g  o b s e r v a t i o n  is  

m a d e .

(a) W i t h  th e  i n c r e a s e  o f  i n p u t t e d  p a ir s ,  th e  a v e r a g e  o f  t r e e s  d e c r e a s e  w i t h  a  s o m e w h a t  

n o n m o n o t o n ic .  (A in  F i g . 4 s h o w s  th e  r e d u c t i o n  o f  n u m b e r  o f  t r e e s )

(b) A s  in  th e  c a s e  o f  th e  p r e v i o u s  e x p e r i m e n t ,  p r o b a b i l i t y  o f  g e n e r a t i n g  a  c o r r e c t  t r e e  g o e s  d o w n

s e v e r e l y  a t  t h e  b e g i n n i n g  b u t  d o e s  n o t  r e s u m e  th e  i n i t i a l  s t a t e .  (B in  F i g . 4)

(c) P r o b a b i l i t y  o f  s e l e c t i n g  a  c o r r e c t  t r e e  a ls o  g o e s  d o w n  a t  th e  b e g i n n i n g  a n d ,  w h a t  is  w o r s e ,  th e

p r o b a b i l i t y  f i n a l l y  b e c o m e s  lo w e r  t h a n  t h a t  o f  th e  i n i t i a l  s t a t e ,  in  s p i t e  o f  th e  a s s i s t i n g  e f f e c t  o f

r e d u c i n g  a m b i g u i t i e s .  (C in  F i g . 4)

4. Problems in the simple version

This section explains eight problems of the previous simple implementation.
Problem [1] : Meaningless and purposeless data acquired.

Because the previous version discriminates and classifies all the sequences of governors appearing
in all the rewriting rules, the learning program acquires purposeless cooccurrence data from the
governors which represents no cooccurrence relationships. For example, in the case of the rule TEXT 
—► CL END, which means a clause and a end-mark make a sentence, the previous program obtains the 
sequence of governors of CL and END. However, this sequence is useless to be utilized for parsing. 
Problem [2] : Cooccurrence data judged as to be always wrong but easily revised in the future

In accordance with the increase of inputted pairs for the leaning program, the sequence of 
governors judged as to be always wrong so far may encounter a case where the sequence is judged as
to be correct. Probability of reclassification for acquired cooccurrence data varies with the rewriting-
rule related to the acquired data. For instance, in Fig.2, a sequence <3well£> for the rule NP —► 
NOUN is the sequence judged as wrong. If the discrimination for this sequence doesn’t contradict any 
discrimination caused by inputted data for the learning program, this sequence is judged as to be 
always wrong and used for the filtering. However, we can easily mention the example where this 
filtering works adversely.
Problem [3] : There exists the governor which is independent of a cooccurrence.
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I n s u f f i c i e n t  s e m a n t i c  a n a l y s i s  c a u s e s  th e  g e n e r a t i o n  o f  u n p r o p e r  s y n t a c t i c  t r e e s ,  l ik e  o n e  in F i g . 2. 

O u r  p r o g r a m  c o m p a r e s  e a c h  g e n e r a t e d  t r e e  w i t h  th e  c o r r e c t  t r e e  o f  c o r r e s p o n d i n g  s e n t e n c e ,  an d  

c l a s s i f i e s  th e  s e q u e n c e  o f  g o v e r n o r s  a p p e a r in g  on  s i s t e r  n o d e s  in to  tw o  c l a s s e s  for e a c h  r e w r i t i n g - r u .

W h e n  th e  s e q u e n c e  o f  th e  g o v e r n o r s  o c c u r s  on  th e  f o l l o w in g  tw o  c o n d i t io n s ,  th e  p r o g r a m  j u d g e s  the

s e q u e n c e  a s  a c o r r e c t  c o o c c u r r e n c e  d a ta ,  o t h e r w i s e  j u d g e s  a s  a w r o n g  c o o c c u r r e n c e  d a ta .

(1) th e  s a m e  r u le  w h ic h  f i e ld s  th e  r e m a r k e d  s e n t e n c e  is  a p p l i e d  in  th e  c o r r e c t  s y n t a c t i c  t r e e ;

(2) In e a c h  s u b - n o d e  o f  th e  a p p l i e d  r u le ,  th e  t e r m i n a l  w o r d s  s e q u e n c e  r e w r i t t e n  is  th e  s a m e  a s  th e  

t e r m i n a l  w o r d s  s e q u e n c e  r e w r i t t e n  b y  c o r r e c t  a p p l i c a t i o n s  in  th e  c o r r e c t  tr e e .

If  w e  a s s u m e  th e  t r e e  in  F i g . l  is  a c o r r e c t  s y n t a c t i c  t r e e  w e  o b t a in ,  f r o m  th e  t r e e s  in  F i g . l  a n d

F i g . 2, w e  o b t a i n  f o l l o w i n g  c o r r e c t  c o o c c u r r e n c e  d a t a  a n d  w r o n g  c o o c c u r r e n c e  d a ta .

C o rrec t  c o o c c u r r e n c e  d a t a  fr o m  Fig.1 & F ig .2
I p la y for C L -*■ N P  V P

<3 I for N P P R O N
<3 p la y w e l l for V P —* V P  A D V

p la y t e n n i s for V P —► V P 6  N P
t e n n i s > for N P — N O U N

W r o n g  c o o c c u r r e n c e  d a t a fr o m Fig.1 & F ig .2
<3 p la y w e l l for V P —  V P 6  N P

w e l l for N P —  N O U N
< t e n n i s w e l l > for N O U N ->  N O U N  N O U N

In accordance with this discrim ination procedure, the sequence of governors may be judged as 
correct cooccurrence data in one example sentence and be judged as wrong cooccurrence data in 
another. So the program stores the sequence of the governors into three categories. First is the set of 
sequences being alw ays judged as correct cooccurrence data by the discrim ination procedure. The 
second is the set of sequences being always judged as wrong cooccurrence data. And the last is the set 
of sequences being judged as correct cooccurrence data in one or more cases and judged as wrong in 
one or more cases. Our learning program m aintains these three categories through the period when 
exam ple sentences and their correct structures are inputted. In this section, we simply call the 
sequence of governors as cooccurrence data.
3 .2  Experiment for acquiring cooccurrence data

We make an experim ent for acquiring cooccurrence data with the use of the above mentioned 
learning program. About 3,200 exam ple sentences are collected from a English  grammar text[3] and 
exam ple sentences in a dictionary. We assum e each exam ple sen tence has a s itu a tion  free 
interpretation, so if sem antics analysis is successful, very few ambiguous analysis trees are generated.

We m easure the number of cooccurrence data in each category at every 50 inputted pairs of 
sentences and correct structures. We observe that :

(1) Each number of acquired cooccurrence data increases monotonously.
(2) F inally, from 3,200 sentences, the program acquires about 10,0000 kinds of cooccurrence data

belonging to the first category, about 5,000 kinds and 4,000 kinds respectively belonging to the 
second and the third.

However, our detailed observation finds a part of acquired cooccurrence data purposeless or
m ischievous. This problem is described later in section 4.
3 .3  Filtering technique based on the cooccurrence data

We im plem ented the parser which utilizes acquired cooccurrence data. W hen the sequence of the 
governors appearing on a rule application belongs to the set of acquired cooccurrence judged as to be 
alw ays wrong, the parser doesn’t apply the rule. This paradigm suppresses the excessive application of
rules and reduces generated trees. So the probability of selecting proper analysis tree may increase.
We call this paradigm ‘F iltering  based on cooccurrence (judged as to be alw ays wrong).’
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c o o c c u r r e n c e  d a t a  fro m  t h i s  w r o n g  tr e e ,  i f  w e c o n s id e r  <£ s t i l l  m u cn $>  for a r u le  A D J  

ju d g e d  a s  to be a l w a y s  w r o n g .

[ r:gure 6 Partial trees for "There is stil much money'' ]

ADV ADJ is

a) correct tree THERVP
govenor be

b) wrong tree THERVP
I govcnor be

VP1
VP1 ADV

govenor
be

govenor
still

NP govenor 
money

NOUN
| govenor
I money

ADJ NOUN
govenor
much

govenor
money

be still much money

govenor
be

NP
govenor 
money

NOUN
govenor
money

ADJ
govenor
much

NOUN 
govenor 
money

ADV ADJ

be

govenor
still

govenor
much

still much money
Problem [8] : Ambiguity in rule application orders causes the cooccurrence data which should be judged 
as correct to be judged as wrong.

We assume two rewriting rules, A -* B A and -> A C. If categories appear in the sequence of B A 
C and applications of each rule are successful, the parser generates two trees [Fig.7]. Appearance here 
of attributes related to the cooccurrence is assumed in Fig.7.

According to the discrimination procedure in section 3. 1, regardless of whether the tree-1 is correct 
or tree-2 is correct, both the cooccurrence < 3 ( 3 a £ > f o r A —> B A  and the cooccurrence <?r for A 
C A become purposeless.

' [ Figure 7 Two ambiguous trees]

A
ATree-1 governor a

governor a
Tree-2

governor a
governor a

governor f t
A  governor a  Q

governor y
governor /3

^governor a  Q  
governor y

5. M odified version of learning and usage

This section shows a modified version of the previous program. This modified version solves the 
problem [1]—[7] in the previous section. Only problem [8] is out of scope, but we have a basic idea to 
reduce this kind of ambiguity with the use of the inhibited pattern technique in section 2.

Three major modification is described bellow.
Modification [1] : Manual description of cooccurrence names and their attributes names in rewriting  
rules.

Rich input data is required by the system in order to determine what relations exists or what 
attributes are used in each relation. Therefore we consider that the kind of a cooccurrence relationship  
and the names of used attributes which appear in the cooccurrence should be described manually for  ̂
the sake of effective learning by examples.

For this reason, we now extend the description method of the rewriting rules used in the former 
version. In this extended description, a cooccurrence relationship is depicted as a function of any
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In th e  c a s e  o f  th e  r u le  C L  -+  N P  A D V  V P ,  w h ic h  m e a n s  a n o u n  p h r a s e  a n d  a d v e r b  a n d  a verb  

p h r a s e  m a k e  a c l a u s e ,  th e  g o v e r n o r s  o f  N P  a n d  V P  h a v e  a c o o c c u r r e n c e  r e la t io n s h i p .  B u t  th e  g o v e r n o r  

o f  A D V  is  a l m o s t  i n d e p e n d e n t  o f  th i s  r e la t io n s h i p .

Problem [4] : T h e  s a m e  r e l a t i o n s h i p  o f  c o o c c u r r e n c e  in  d i f f e r e n t  r e w r i t i n g  r u le s  c a n ’t be d e a l t  w i th .

F o r  e x a m p l e ,  th e  c o o c c u r r e n c e  r e l a t i o n s h i p  b e t w e e n  N P  a n d  V P  for a r u le  C L  —► N P  V P  a n d  the  

c o o c c u r r e n c e  r e l a t i o n s h i p  b e t w e e n  N P  a n d  V P  for a r u le  C L  —* N P  A D V  V P  a r e  id e n t i f i e d  a s  d i f f e r e n t  

r e l a t i o n s  b y  th e  p r e v i o u s  v e r s i o n .  H o w e v e r ,  d e a l i n g  w i t h  b o th  r e l a t i o n s h i p s  a s  th e  s a m e  w i l l  b e  m o re  

a d v i s a b l e  for th e  u t i l i z a t i o n  o f  c o o c c u r r e n c e .

Problem [5] : T h e r e  e x i s t s  c o o c c u r r e n c e  r e l a t i o n s h i p s  w h ic h  c a n ’t b e  r e p r e s e n t e d  w i t h  th e  s e q u e n c e  o f  

g o v e r n o r s  o n  s i s t e r  n o d e s .

T h i s  p r o b le m  is  c o n s i d e r a b l y  a f f e c t e d  by  th e  g r a m m a r  u s e d .  F o r  th e  c a s e  o f  F i g . 5, w e  e x p l a i n  th is  

p r o b le m .  F r o m  a r u le  V P  —► V P  P P  (w h ic h  m e a n s  a  n o u n  p h r a s e  a n d  a  p r e p o s i t i o n a l  p h r a s e  m a k e  a 

n o u n  p h r a s e ) ,  th e  s e q u e n c e  <3r e a d  y o u >  for th e  r u le  V P  —► V P  P P  is  j u d g e d  a s  c o r r e c t ,  i f  th e  s t r u c t u r e  

o f  F i g . 5 is  a  c o r r e c t  s t r u c t u r e .  H o w e v e r ,  i f  th e  f o l l o w i n g  s e n t e n c e  :

I r e a d  th e  l e t t e r  f r o m  y o u .  

is  in c l u d e d  in  in p u t t e d  p a ir s ,  a  c o n t r a d i c t io n  m a y  o ccu r .  A  p r e p o s i t io n a l  p h r a s e  o c c u r r e d  in  th is  

s e n t e n c e  c a n  m o d i f y  a  n o u n  p h r a s e .  A n d  i f  a r u le  V P  —► V P  P P  is  a p p l i e d  w r o n g ly ,  th e  s e q u e n c e  

r e a d  you£> for th e  r u le  V P  —* V P  P P  is  j u d g e d  a s  w r o n g .  H e r e ,  th e  a c q u ir e d  s e q u e n c e  b e c o m e s  

p u r p o s e l e s s  for to be u t i l i z e d .

In  t h i s  c a s e ,  c o o c c u r r e n c e  d a t a  for  th e  r u le  V P  - *  V P  P P  s h o u l d  b e  r e p r e s e n t e d  a s  t h e  r e la t io n  

b e t w e e n  th e  g o v e r n o r  o f  V P ,  th e  p r e p o s i t i o n  o f  P P ,  a n d  t h e  g o v e r n o r  o f  P P .

[ Figure 5 Part of a structre for "1 read the letter with you" ]

VP

name^ vaĴ  
namcjl vain represents attributes of a node

name j represents the name of an attribute 
vai j represnts the value for the name ?

Problem [6] : In the previous version, information of cooccurrence data judged as to be alw ays correct 
is not utilized.

Suppress of generated trees affects the selection of trees. Moreover information of correct 
cooccurrence data can improve the selection of a correct tree by the parser.

In the use of inform ation of correct cooccurrence, however, following two problems become 

important.
Problem [7] : W hen a rule is applied at the occasion of an unproper application on lower level, the 
cooccurrence data which should be judged as correct may be judged as wrong.

We explain th is problem with using Fig.6. In F ig.6, two analysis trees are generated. From a 
correct structure, the sequence <3 much money for a rule N O U N  —► ADJ NO U N  is judged as correct. 
And from a wrong structure, the sam e sequence is judged as wrong. So the data of this sequence 
becomes purposeless. If the application of a rule ADJ —* ADV ADJ in the wrong structure fails, the 
sequence <3much m o n e y s  is only judged as correct in this sentence. We should not acquire
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a re  o b t a i n e d  in  a s i n g l e  r e w r i t i n g  ru le .  F u r t h e r m o r e  th e  r e s u i t  s n o w s  th e  n u m b e r  o f  'c o o c c u r r e n c e  d a ta  

j u d g e d  a s  to be  c o r r e c t  a n d  w r o n g  s i m u l t a n e o u s l y ’ is  a b o u t  o n e  fo u r t h  o f  th e  s i m p le  v e r s io n .  T h is  

p h e n o m e n o n  is  c a u s e d  b y  m a n u a l  d e s c r i p t io n s  for c o o c c u r r e n c e  r e l a t i o n s h i p s ,  b e c a u s e  t h e s e  d e s c r ip t io n  

s u p p r e s s  th e  a c q u i s i t i o n  o f  m e a n i n g l e s s  c o o c c u r r e n c e  d a t a  a n d  th e  a c q u i s i t i o n  o f  d a t a  e a s i l y  r e c la s s i f i e d .

W e  a l s o  e x a m i n e  th e  e f f e c t  o f  th e  2 -p a s s  a c q u i s i t i o n .  W e  o b s e r v e  t h a t  a b o u t  10% ‘c o o c c u r r e n c e  d a ta  

j u d g e d  a s  c o r r e c t  a n d  w r o n g  s i m u l t a n e o u s l y ’ on  th e  f i r s t  p h a s e  a r e  o b t a i n e d  a s  ‘th e  d a t a  j u d g e d  as  to 

be a l w a y s  c o r r e c t ’ o n  th e  s e c o n d  p a s s  o f  a c q u is i t i o n .

6 .2  Experiment of using acquiring cooccurrence data w ith  modified version

W e  m a k e  tw o  e x p e r i m e n t s  w i t h  m o d i f ie d  v e r s i o n  l i k e  in  s e c t i o n  3 .3 ,  in  o r d e r  to th e  t r a n s i t i o n  o f  

n e x t  th r e e  v a l u e s  : (a) a v e r a g e  o f  th e  n u m b e r  o f  g e n e r a t e d  t r e e s  p e r  a s e n t e n c e  (b) p r o b a b i l i t y  o f  

g e n e r a t i n g  a c o r r e c t  t r e e  (c) p r o b a b i l i t y  o f  s e l e c t i n g  a  c o r r e c t  tr ee .

T h e  f i r s t  is  u n d e r  th e  c o n d i t io n  t h a t  th e  s e t  o f  s e n t e n c e s  for a c q u i s i t i o n  is  e q u i v a l e n t  to th e  s e t  o f  

s e n t e n c e s  for a n a l y s i s .  T h e  s e c o n d  is  for th e  c o n d i t io n  t h a t  th e  s e t  o f  s e n t e n c e s  for a c q u i s i t i o n  is  n o t  

e q u i v a l e n t  to th e  s e t  o f  a n a l y z e d  s e n t e n c e s .  W e  u s e  th e  s a m e  s e t  for a c q u i s i t i o n  a n d  th e  s a m e  s e t  for 

a n a l y s i s  a s  in  e x p e r i m e n t s  o f  th e  s i m p le  v e r s i o n  o n  e a c h  tw o  e x p e r i m e n t .

A t  th e  f i r s t  e x p e r i m e n t  w e  o b s e r v e  f o l l o w in g  r e s u l t s  [ F i g . 9] :

(a) W i t h  th e  i n c r e a s e  o f  i n p u t t e d  p a ir s ,  th e  a v e r a g e  o f  g e n e r a t e d  t r e e s  d e c r e a s e s  m o n o t o n o u s ly  l ik e  

in  th e  e x p e r i m e n t  for th e  s i m p l e  v e r s io n .  B u t  a t  th e  f i n a l  s t a t e ,  th e  e f f e c t  o f  r e d u c in g  th e  

n u m b e r  o f  t r e e s  is  l e s s  t h a n  t h a t  o f  th e  s i m p l e  v e r s i o n .  ( C o m p a r e  w i t h  A in  F ig .3  ,8)

(b) When amount of inputted data are few, adverse effect of failing to generate a correct tree in the 
modified version is less than that in the simple version. Furthermore the range of fluctuation 
in the probability through this experiment is less than that in the simple version.

(c) When amount of inputted data is few, the probability of selecting a correct tree increases, which 
is differ from the simple version. The probability at the final state is lower than that of the 
simple version. (Compare with C in Fig.3,8)

A n d  w e  o b s e r v e  f o l l o w i n g  r e s u l t s  [F ig .  10] a t  th e  s e c o n d  e x p e r i m e n t  :

(a) With increase of inputted data, the average of generated trees also decreases. This decrease is 
more monotonous than that of the simple version, but the effect of suppressing trees is less 
than that of the simple version. (Compare with A in Fig.4,9)

(b) The experiment under the simple version shows the sever decrease of the probability of 
generating a correct tree, when inputted data is few. On the other hand, this experiment shows 
little decrease of this probability even when inputted data is few. Moreover the final probability 
is better than that of the simple version. (Compare with B in Fig.4,9)

(c) The decline of the probability of selecting a correct tree is very slight in comparison with the 
simple version, when inputted data are few. The final probability by this modified version 
slightly exceed that by the simple version. (Compare with C in Fig.4,9)

6. 3 Performance analysis for the ratio of acquired cooccurrence data
We define the proportion of cooccurrence data obtained through the learning by examples to the 

cooccurrence data appearing in a parsed text as the ratio of acquired cooccurrence data. This section 
describe the experiment which treats the relation between analysis performance and the ratio of
acquired cooccurrence data.

We choose 2,400 sentences for acquisition and six variations of sentence sets for analysis. Here, 
each of six sets is not equivalent to the set for acquisition. At first, we measure the ratios of acquired 
cooccurrence data for each of six sets, and measure performance for each of six sets with the use of 
acquired cooccurrence data. By these measurement we obtain following prospective view through the 

experiment.
When we compare, for each of those six sets, differences between the average of the number of

generated trees by the parser without cooccurrence data and that with cooccurrence data, the difference
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a t t r i b u t e s  in e x i s t i n g  nodes and, moreover,  tnese a t t r ioutes  usea are aepictea as functions of any 
a t t r i b u t e s  in  a l l  th e  n o d e s .

T h e  p r o g r a m  o f  m o d i f i e d  v e r s i o n  d e a l s  w i t h  c o o c c u r r e n c e  d a t a  a s  b e l l o w  ;

In th e  p h a s e  o f  a c q u i s i t i o n ,  th e  p r o g r a m  d e c id e  th e  n a m e  o f  c o o c c u r r e n c e  a n d  th e  n a m e s  o f  u sed  

a t t r i b u t e s  in  th e  c o o c c u r r e n c e ,  in  a c c o r d a n c e  w i t h  th e  d e s c r i p t io n  o f  a r e w r i t i n g  ru le .

A c q u ir e d  c o o c c u r r e n c e  d a t a  is  j u d g e d  s i m i l a r l y  l ik e  in  th e  p r e v io u s  m e t h o d ,  a n d  s t o r e d  in to  th r e e  

c a t e g o r i e s  l i k e  in  th e  s i m p l e  v e r s io n .

W e  s h o w  h o w  th e  m o d i f i e d  v e r s i o n  s o l v e s  th e  p r o b le m s  [1] — [51 m e n t i o n e d  in  th e  p r e v io u s  s e c t io n  

u t i l i z i n g  f o l l o w in g  e x a m p l e s .

Problem [1] : In th e  r u le s  s u c h  a s  T E X T  - *  C L  E N D ,  w h ic h  h a v e  no c o o c c u r r e n c e  th e r e  s h o u l d  be  no 

d e s c r i p t io n  o f  c o o c c u r r e n c e .

P r o b le m  [2] : In  th e  r u le s  s u c h  a s  N P  - *  N O U N ,  w h ic h  t e n d  to b e  e a s i l y  r e v i s e d  th e  c o o c c u r r e n c e  

s h o u l d  n o t  be  u t i l i z e d .
P r o b le m  [3] : In th e  r u le  o f  C L  - »  N P  A D V  V P ,  c o o c c u r r e n c e  d a t a  s h o u l d  be  d e s c r ib e d  w i t h  an 

a t t r ib u t e  o f  N P  a n d  a n  a t t r i b u t e  o f  V P ,  b e c a u s e  w e  c o n s i d e r  c o o c c u r r e n c e  r e la t io n  e x i s t s  b e t w e e n  a 

g o v e r n o r  o f  N P  a n d  a  g o v e r n o r  o f  V P .

Problem [4] : W e  s h o u l d  d e c la r e  th e  s a m e  c o o c c u r r e n c e  in  b o th  r u le s  o f  C L  - *  N P  A D V  V P  a n d  C L  ->  

N P  V P .
P r o b le m  [5] : W h e n  w e  d e c la r e  th e  c o o c c u r r e n c e  in  th e  r u le  V P  —*■ V P  P P ,  w e  s h o u l d  c h o o s e  the  

g o v e r n o r  o f  V P ,  th e  p r e p o s i t i o n  o f  P P ,  a n d  th e  g o v e r n o r  o f  th e  P P  a s  th e  e l e m e n t s  o f  th e  c o o c c u r r e n c e .  

M o d i f i c a t i o n  [2] : U t i l i z a t i o n  o f  c o o c c u r r e n c e  d a t a  j u d g e d  a s  to b e  a l w a y s  c o r r e c t  in  s e l e c t i o n  p h a s e .

In p r o b le m  [6] w e  p o in t e d  o u t  th e  e f f e c t  o f  u s i n g  c o o c c u r r e n c e  d a t a  j u d g e d  a s  to b e  a l w a y s  correct.

H e n c e ,  w e  i m p l e m e n t  n e x t  p a r a d i g m  :

W h e n  a  c o o c c u r r e n c e  d a t a  j u d g e d  a s  to b e  a l w a y s  c o r r e c t  o c c u r s  in  a  g e n e r a t e d  t r e e  o n  t h e  se le c t io n  

p h a s e ,  t h e  p a r s e r  g i v e s  th e  t r e e  a  h i g h  p r io r i t y  for t h e  s e l e c t i o n  p u r p o s e .

M o d i f i c a t i o n  [3] : A c q u i s i t i o n  for c o o c c u r r e n c e  d a t a  is  e x e c u t e d  in  2 - p a s s e s .

T o  s o l v e  t h e  p r o b le m  [7] ,  w e  m o d i f ie d  th e  p r o c e d u r e  o f  a c q u i r i n g  c o o c c u r r e n c e  d a ta .  O n  th e  first

p a s s  o f  a c q u i s i t i o n ,  th e  a c q u i s i t i o n  o f  c o o c c u r r e n c e  is  e x e c u t e d  a s  in  th e  p r e v i o u s  v e r s i o n .  A f t e r  t h e  end  

o f  th e  f i r s t  p a s s ,  th e  m o d i f i e d  p r o g r a m  c l e a r  th e  b o t h  s t o r a g e s  o f  ‘c o o c c u r r e n c e  j u d g e d  a s  to be  a lw a y s  

c o r r e c t ’ a n d  ‘c o o c c u r r e n c e  j u d g e d  a s  to b e  c o r r e c t  a n d  w r o n g  s i m u l t a n e o u s l y .  T h i s  p r o g r a m  e x e c u t e s  the 

a c q u i s i t i o n  a g a i n  f r o m  t h e  b e g i n n i n g  o f  in p u t t e d  p a ir s  w i t h  t h e  f i l t e r i n g  b a s e d  o n  a c q u ir e d  

c o o c c u r r e n c e .
In  th e  c a s e  o f  F i g .6 ,  i f  t h e  s e q u e n c e  <3m u c h  t i m e >  i s  j u d g e d  a s  to  b e  a l w a y s  w r o n g  a t  th e  e n d  of 

th e  f i r s t  p a s s  o f  a c q u i s i t i o n ,  a  w r o n g  t r e e  in  F i g . 6  c a n ’t b e  g e n e r a t e d  b y  th e  p a r s e r  o n  th e  s e c o n d  pass  

o f  a c q u i s i t i o n .  F o r  t h i s  r e a s o n ,  th e  s e q u e n c e  <3 m u c h  t i m e >  i s  n o t  j u d g e d  a s  w r o n g  in  t h i s  s e n t e n c e .

6. Acquisition and usage of cooccurrence data in the modified version
T h e  r e s u l t  t r e a t e d  h e r e  i s  th e  o n e  for  th e  m o d i f i e d  v e r s i o n .  W e  m a k e  a n  e x p e r i m e n t  w i t h  t h e  same  

e x a m p l e  s e n t e n c e s  a s  u s e d  fo r  t h e  s i m p l e  v e r s i o n ,  b u t  t h e  u s e d  g r a m m a r  i s  s l i g h t l y  d i f f e r e n t .  The 

a u t h o r s  b e l i e v e  t h i s  s l i g h t  d i f f e r e n c e  i s  n e g l i g i b l e  for th e  c o m p a r i s o n  w i t h  th e  s i m p l e  v e r s i o n  a n d  the 

m o d i f i e d  v e r s i o n .

6.1 Experiment of acquiring cooccurrence data by the m odified version
A c c o r d i n g  to  t h e  s a m e  w a y  o f  t r e a t m e n t  in  th e  s i m p l e  v e r s i o n ,  w e  m e a s u r e  t h e  n u m b e r  o f  each 

s t o r e d  c o o c c u r r e n c e  d a t a  for  t h e  m o d i f i e d  v e r s i o n .  T h e  r e s u l t  s h o w s  e a c h  s t o r e d  d a t a  increase

m o n o t o n o u s l y  w i t h  th e  i n c r e a s e  o f  i n p u t t e d  p a ir s .  [ F i g . 8]

T h e  r e s u l t  i s  s i m i l a r  to t h a t  o f  th e  s i m p l e  v e r s i o n  in  3. 1. M o r e  ' c o o c c u r r e n c e  d a t a  j u d g e d  a s  to be

a l w a y s  c o r r e c t ’ a n d  m o r e  ‘c o o c c u r r e n c e  d a t a  j u d g e d  a s  to  b e  a l w a y s  w r o n g  a r e  o b t a i n e d  in  th e  m odifie

v e r s i o n  t h a n  in  t h e  s i m p l e  v e r s i o n .  T h i s  m a y  b e  th e  r e a s o n  w h y  o n e  o r  m o r e  cooccu* r e n c e  r e la t io n sn ip
-385- International Parsing Workshop 89



Figure 3 P erform ance of the sim ple version ] [ F igure 9 P erfo rm ance of the m odified version ]
( Learmg sentences *  Parsed sentences ) ( Learing sentences » Parsed sentences

Inputted pairs

[ Figure 4 Performance of the simple version ]
( Learing sentences =*= Parsed sentences )

Inputted pajrs

Figure 10 Performance of the modified version]
( Learing sentences =*= Parsed sentences )

Inputted pairs

Figure 8 Number of the three kinds of cooccurrence data

In Fig. 3 , 4 , 9 , 1 0

-o- Average of generated
trees per a sentence

-o- Probability of generating
a correct tree (%)

Probability of selecting
a correct tree (%)

♦  coo ccu rren ce  d a ta  judged  a s  to be  alw ays correct
-*• coo ccu rren ce  d a ta  judged  a s  to be alw ays wrong - 388-

co o ccu rren ce  d a ta  judged  a s  to be correct an d  wrong sim u ltaneously
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by th e  h i g h e r  r a t io  t e x t  t e n d s  to be  la r g e r  th a n  a lo w  r a t io  t e s t  [F ig .  11]. A n d  a h ig h e r  r a t io  t e x t  te n d s

to h a v e  l e s s  a d v e r s e  e f f e c t  on  th e  p r o b a b i l i t y  o f  g e n e r a t i n g  a c o r r e c t  t r e e  th a n  a lo w e r  r a t io  te x t

[F ig .  12]. F u r t h e r m o r e  a h i g h e r  r a t io  t e x t  is  l i k e l y  to h a v e  b e t t e r  p r o s p e c t  on  th e  p r o b a b i l i t y  o f

s e l e c t i n g  a c o r r e c t  t r e e  t h a n  a lo w  r a t io  t e x t .  [F ig .  13]

[ Figure 11 Difference of the average of generated trees ]
[Figure 12 Difference of the probability of generating a correct tree]
[ Figure 13 Difference of probabiiity of selecting a correct tree]

Figur* 12Figur* 11 Figur* 13

a ~ • _

7. Conclusion
We observe cooccurrence data acquired by the modified version has less adverse effects on sentence 

analysis than by the sim ple version under the circum stance of relatively few acquired data. Though we 
consider sentences used in our experim ents are basic and lim ited, we may conclude information of 
cooccurrence which human being has is very useful for acquiring cooccurrence relationships.

We conclude both of the sim ple version and the modified version are effective to suppress the 
generation of unproper tree structures by a parser and to raise the probability of selecting proper 

structures by a parser.
Authors believe in the modified version has more potential to learn cooccurrence by exam ples than 

the sim ple version.
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I. Mutual Information

Church and Hanks (1989) discussed the use of the mutual information statistic in order to identify a 
variety of interesting linguistic phenomena, ranging from semantic relations of the doctor/nurse type 
(content word/content word) to lexico-syntactic co-occurrence constraints between verbs and prepositions 
(content word/function word). Mutual information, I(x,y), compares the probability of observing word x 
and word y together (the joint probability) with the probabilities of observing x and y independently 
(chance).

rt  \ i P ( X , V )I(x;y) — log 2 —
P{x) P{y)

If there is a genuine association between x and y, then the joint probability P(x,y)  will be much larger 
than chance P{x) P(y),  and consequently I(x\y)  »  0, as illustrated in the table below. If there is no 
interesting relationship between x and y, then P(x,y)  ~  P(x) P{y),  and thus, I(x\y)  = 0 .  If j: and y 
are in complementary distribution, then P(x,y)  will be much less than P(x) P{y),  forcing I{x\y)  «  0. 
Word probabilities, P(x)  and P( y ), are estimated by counting the number of observations of x and y in a 
corpus, f {x)  and f i y) ,  and normalizing by N, the size of the corpus. Joint probabilities, P(x,y),  are 
estimated by counting the number of times that x is followed by y in a window of w words, f w{x,y),  
and normalizing by N (w -  l ) .1

2. Phrasal Verbs

Church and Hanks (1989) also used the mutual information statistic in order to identify phrasal verbs, 
following up a remark by Sinclair.

“ How common are the phrasal verbs with set! Set is particularly rich in making combinations 
with words like about, in. up, out, on, off, and these words are themselves very common. How 
likely is set off to occur? Both are frequent words; [set occurs approximately 250 times in a 
m i l l i o n  words and] off occurs approximately 556 times in a million words... [T]he question we 
are asking can be roughly rephrased as follows: how likely is off to occur immediately after setl 
... This is 0.00025 x0.00055 [P(jc> / ’(y)], which gives us the tiny figure of 0.0000001375 ...
The assumption behind this calculation is that the words are distributed at random in a text [at 
chance, in our terminology]. It is obvious to a linguist that this is not so, and a rough measure 
of how much set and off attract each other is to compare the probability with what actually 
happens... Set off occurs nearly 70 times in the 7.3 million word corpus

1. The window size parameter allows us to look at different scales. Smaller window sizes will identify fixed expressions (idioms), 
noun phrases, and other relations that hold over short ranges; larger window sizes will highlight semantic concepts and other 
relationships that hold over larger scales.
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Parsing, 

Word Associations 

and 

Typical Predicate-Argument Relations

Kenneth Church 
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Patrick Hanks 
Donald Hindle

Abstract

There are a number of collocational constraints in natural languages that ought to play a more important 
role in natural language parsers. Thus, for example, it is hard for most parsers to take advantage of the 
fact that wine is typically drunk, produced, and sold, but (probably) not pruned. So too, it is hard for a 
parser to know which veibs go with which prepositions (e.g., set up) and which nouns fit together to 
form compound noun phrases (e.g., computer programmer). This paper will attempt to show that many 
of these types of concerns can be addressed with syntactic methods (symbol pushing), and need not 
require explicit semantic interpretation. We have found that it is possible to identify many of these 
interesting co-occurrence relations by computing simple summary statistics over millions of words of 
text. This paper will summarize a number of experiments carried out by various subsets of the authors 
over the last few years. The term collocation will be used quite broadly to include constraints on SVO 
(subject verb object) triples, phrasal verbs, compound noun phrases, and psychoiinguistic notions of 
word association (e.g., doctor!nurse).
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• to/in: alluding/vbg, adhere/vb, amounted/v bn, relating/vbg, amounting/vbg, revert/vb, re- 
verted/vbn, resorting/vbg, relegated/vbn

• to/to: obligated/vbn, trying/vbg, compelled/vbn, enables/vbz, supposed/vbn, intends/vbz, vow- 
ing/vbg, tried/vbd, enabling/vbg, tends/vbz, tend/vb, intend/vb, tries/vbz

Thus, we see there is considerable leverage to be gained by preprocessing the corpus and manipulating 
the inventory of tokens.

4. Preprocessing with a  Syntactic P arser

Hindle has found it useful to preprocess the input with the Fidditch parser (Hindle 1983) in order to ask 
about the typical arguments of verbs. Thus, for any of verb in the sample, we can ask what nouns it 
takes as subjects and objects. The following table shows the objects of the verb drink that appeared at 
least two times in a sample of six million words of AP text, in effect giving the answer to the question 
“ what can you drink?” Calculating the co-occurrence weight for drink, shown in the third column, 
gives us a reasonable ranking of terms, with it near the bottom. This list of drinkable things is 
intuitively quite good.

Object Frequency Mutual Information

<quantity> beer 2 12.34
tea 4 11.75
Pepsi 2 11.75
champagne 4 11.75
liquid 2 10.53
beer 5 10.20
wine 2 9.34
water 7 7.65
anything 3 5.15
much 3 2.54
it 3 1.25
<quantity> 2 1.22

A standard alternative approach to the classification of entities is in terms of a hierarchy of types. The 
biological taxonomy is the canonical example: a penguin is a bird is a vertebrate and so on. Such “ is- 
a” hierarchies have found a prominent place in natural language processing and knowledge 
representation because they allow generalized representation of semantic features and of rules. There is 
a wide range of problems and issues in using “ is-a” hierarchies in natural language processing, but two 
especially recommend that we investigate alternative classification schemes like the one reported here. 
First, "is-a” hierarchies are large and complicated and expensive to acquire by hand. Attempts to 
automatically derive these hierarchies for words from existing dictionaries have been only partially 
successful (Chodorow, Byrd, and Heidora 1985). Yet without a comprehensive hierarchy, it is difficult
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Some Interesting Associations with “ Doctor” 
in the 1987 AP Corpus (N = 15 million; w = 6) 

I(x; y) f(x, y) f(x) x fly) y

8.0 2.4 111 honorary 621 doctor
8.0 1.6 1105 doctors 44 dentists
8.4 6.0 1105 doctors 241 nurses
7.1 1.6 1105 doctors 154 treating
6.7 1.2 275 examined 621 doctor
6.6 1.2 1105 doctors 317 treat
6.4 5.0 621 doctor 1407 bills
6.4 1.2 621 doctor 350 visits
6.3 3.8 1105 doctors 676 hospital:
6.1 1.2 241 nurses 1105 doctors

Some Less Interesting Associations with “ Doctor”

-1.3 1.2 621 doctor 73785 with
-1.4 8.2 284690 a 1105 doctors
-1.4 2.4 84716 is 1105 doctors

[P(x,y) = 10/(1.3 106 ) »  P(x)  P(y)]. That is enough to show its main patterning and it 
suggests that in currently-held corpora there will be found sufficient evidence for the description 
of a substantial collection of phrases... (Sinclair 1987b, pp. 151-152)

It happens that set ... off was found 177 times in the 1987 AP Corpus of approximately 15 million 
words, about the same number of occurrences per million as Sinclair found in his (mainly British) 
corpus. Quantitatively, l(s e t\o ff ) = 3.7, indicating that the probability of set ... off is 23-7 = 13 times 
greater than chance. This association is relatively strong; the other particles that Sinclair mentions have 
scores of: about (-0.9), in (0.6), up (4.6), out (2.2), on (1.0) in the 1987 AP Corpus of 15 million words.

j . Preprocessing the Corpus with a Part of Speech Tagger

Phrasal verbs involving the preposition to raise an interesting problem because of the possible confusion 
with the infinitive marker to. We have found that if we first tag every word in the corpus with a part of 
speech using a method such as Church (1988) or DeRose (1988), and then measure associations between 
tagged words, we can identify interesting contrasts between verbs associated with a following 
preposition to/in and verbs associated with a following infinitive marker to/to. (Part of speech notation 
is borrowed from Francis and Kucera (1982); in = preposition; to = infinitive marker, vb = bare verb; 
vbg = verb + ing; vbd = verb + ed; vbz = verb + s; vbn = verb + en.) The score identifies quite a 
number of verbs associated in an interesting way with to\ restricting our attention to pairs with a score 
of 3.0 or more, there are 768 verbs associated with the preposition to/in and 551 verbs with the infinitive 
marker to!to. The ten verbs found to be most associated before to!in are:
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frequencies of frequences (the number of bigrams with count r). Then r*, the estimated expected value 
of r in similar corpus of the same size, is

Nr +,
r* = NxE(Pr(x y )) = ( r+1)  — —

Nr

and the variance of r is

o 2(r) = N 2a 2(Pr(x y))  = r* (1 + ( r +1) *  -  r*)

6. Just a Powerful Tool

Although it is clear that the statistics discussed above can be extremely powerful aids to a lexicographer, 
they should not be overrated. We do not aim to replace lexicographers with self-organizing statistics; 
we merely hope to provide a set of tools that could gready improve their productivity. Suppose, for 
example, that a lexicographer wanted to find a set of words that take sentential complements. Then it 
might be helpful to start with a table of t-scores such as:

t x_____________ y _

74.0 said that
50.9 noted that
43.3 fact that
41.9 believe that
40.7 found that
40.1 is that
40.0 reported that
39.5 adding that
38.6 Tuesday that
38.4 Wednesday that

It might be much quicker for a lexicographer to edit down this list than to construct the list from 
intuition alooe. It doesn’t take very much time to decide that Tuesday and Wednesday are less 
interesting than the others. Of course, it might be possible to automate some of these decisions by 
appropriately preprocessing the corpus with a part of speech tagger or a parser, but it will probably 
always be necessary to exercise some editorial judgment.

7. Practical Applications

The proposed statistical description has a large number of potentially important applications, including:
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to use such classifications in the processing of unrestricted text Secondly, for many purposes, even 
knowing the subclass-superclass relations is insufficient; it is difficult to predict which properties art 
inherited from a superclass and which aren’t, and what properties are relevant in a particular linguistic 
usage. So for example, as noted above, despite the fact that both potatoes and peanuts are edible foods 
that grow underground, we typically bake potatoes, but roast peanuts. A distnbution-based 
classification, if successful, promises to do better at least on these two problems.

5. Significance Levels

If the frequency counts are very small, the mutual information statistic becomes unstable. This is the 
reason for not reporting objects that appeared only once with the verb drink. Although these objects 
have very large mutual information scores, there is also a very large chance that they resulted from some 
quirk in the corpus, or a bug in the parser. For some purposes, it is desirable to measure confidence 
rather than likelihood. Gale and Church have investigated the use of a t-score instead of the mutual 
information score, as a way of identifying “ significant” bigrams.

The following table shows a few significant bigrams ending with potatoes, computed from 44 million 
words of AP news wire from 2/12/88 until 12/31/88. The numbers in the first column indicate the 
confidence in standard deviations that the word sequence is interesting, and cannot be attributed to 
chance.

t X y

4 .6 sweet potatoes
4.3  ' mashed potatoes
4.3 * potatoes
4.0 and potatoes
3.8 couch potatoes
3.3 of potatoes
3.3 frozen potatoes

•
ooc4 fresh potatoes

2.8 small potatoes
2.1 baked potatoes

These numbers were computed by the following formula

t = E{Prjx y))  -  E(Pr(x) Pr(y))

7 '-(x y)) + 0 2(?r(x) P r ( y »

where E(Pr(x y))  and a 2(Pr(x y))  are the mean and variance of the probability of seeing word x 
followed by word y. The means and variances are computed by the Good-Turing method (Good 1953).

Let r be the number of times that the bigram x y  was found in a corpus of N words, and let N r be the
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8. Alternatives to Collocation for Recognition Applications

There have been quite a number of attempts to use syntactic methods in speech recognition, beginning 
with the ARP A speech project and continuing on to the present. It might be noted, however, that there 
has not been very much success, perhaps because syntax alooe is not a strong enough constraint on 
language use (performance). We believe that collocational constraints should play an important role in 
recognition applications, and attempts to ignore collocational constraints and use purely syntactic 
methods will probably run into difficulties.

Syntactic constraints, by themselves, though are probably not very important. Any psycholinguist knows 
that the influence of syntax on lexical retrieval is so subde that you have to control very carefully for all 
the factors that really matter (e.g., word frequency, word association norms, etc.). On the other hand, 
collocational factors (word associations) dominate syntactic ones so much that you can easily measure 
the influence of word frequency and word association norms on lexical retrieval without careful controls 
for syntax.

There are many ways to demonstrate the relative lack of constraint imposed by syntax. Recall the old 
television game show, “The Match Game,” where a team of players was given a sentence with a 
missing word, e.g, “ Byzantine icons could murder the divine BLANK,” and asked to fill in the blank 
the same way that the studio audience did. The game was ‘interesting’ because there are enough 
constraints in natural language so that there is a reasonably large probability of a match. Suppose, 
however, that we make our speech recognition device play the match game with a handicap; instead of 
giving the speech recognition device the word string, “ Byzantine icons could murder the divine 
BLANK,” we give the speech recognition device just the syntactic parse tree, [S [NP nn nns] [VP 
[AUX md ] v [NP at jj BLANK ]]], and ask it to guess the missing word. This is effectively what we 
are doing by limiting the language model to syntactic considerations alone. Of course, with this the 
handicap, the match game isn’t much of a game; the recognition device doesn’t have a fair chance to 

guess the missing word.

We believe that syntax will ultimately be a very important source of constraint, but in a more indirect* 
way. As we have been suggesting, the real constraints will come from word frequencies and 
collocational constraints, but these questions will probably need to be broken out by syntactic context. 
How likely is it for this noun to conjoin with that noun? Is this noun a typical subject of that verb? 
And so on. In this way, syntax plays a crucial role in providing the relevant representation for 
expressing these very important constraints, but crucially, it does not provide very much useful 
constraint (in the information theoretic sense) all by itself.2

2. Much of the work on language modeling for speech recognition has tended to concentrate on search questions. Should we still 
be using Bates’ island driving approach (Bale* 1975), or should we try something newer such aa Tomita’s so-called generalized 
LR(k) parser (Tomita 1986)? We suggest that the discussion should concentrate more on describing the facts, and less on how 
they are enforced.
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• enhancing the productivity of lexicographers in identifying normal and conventional usage,

• enhancing the productivity of computational linguists in compiling lexicons of lexico-syntactic 
facts,

• providing disambiguation cues for parsing highly ambiguous syntactic structures such as noun 
compounds, conjunctions, and prepositional phrases,

• retrieving texts from large databases (e.g., newspapers, patents), and

• constraining the language model both for speech recognition and opucal character recognition
(OCR).

Consider the optical character recognizer (OCR) application. Suppose that we have an OCR device such 
as (Kahan, Pavlidis, Baird 1987), and it has assigned about equal probability to having recognized
“ farm” and “ form,” where the context is either: (1) “ federal___credit” or (2) “ som e____of.” We
doubt that the reader has any trouble specifying which alternative is more likely. By using the following 
probabilities for the eight bigrams in this sequence, a computer program can rely on an estimated 
likelihood to make the same distinction.

,r y Observations per million words

federal farm 0.50
federal form 0.039
farm credit 0.13
form credit 0.026
some form 4.1
some farm 0.63
form of 34.0
farm of 0.81

The probability of the tri-grams can be approximated by multiplying the probabilities of the the two 
constituent bigrams. Thus, the probability of federal farm credit can be approximated as 
(0 .5x 10_6)x (0 .1 3 x  10"6) = 0 .0 6 5 x l0 -12. Similarly, the probability (or federal form credit can be 
approximated as (0 .0 3 9 x l0 -6 )x (0 .0 2 6 x l0 ~ 6 ) = O.OOlOxlO-12. The ratio of these likelihoods 
shows that “ Caim” is (0 .0 6 5 x l0 ~ l2)/(0 .0 0 1 0 x l0 “ 12) = 65 times more likely than “ form” in this
context. In the other context, “ som e___of,” it turns out that “ form” is 273 times more likely than
“ farm.” This example shows how likelihood ratios can be used in an optical character recognition 
system to disambiguate among optically confusable words. Note that alternative disambiguation 
methods based on syntactic constraints such as part of speech are unlikely to help in this case since both 
“ form” and “ farm” are commonly used as nouns.
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9. Conclusion

In any natural language there are restrictions on what words can appear together in the same 
construction, and in particular, on what can be arguments of what predicates. It is common practice in 
linguistics to classify words not only on the basis of their meanings but also on the basis of their co­
occurrence with other words. Running through the whole Firthian tradition, for example, is the theme 
that “ You shall know a word by the company it keeps” (Firth, 1957).

“ On the one hand, bank co-occurs with words and expressions such as money, notes, loan, 
account, investment, clerk, official, manager, robbery, vaults, working in a, its actions. First 
National, of England, and so forth. On the other hand, we find bank co-occurring with river, 
swim, boat, east (and of course West and South, which have acquired special meanings of their 
own), on top of the, and of the Rhine." (Hanks 1987, p. 127)

Harris (1968) makes this “ distributional hypothesis” central to his linguistic theory. His claim is that: 
“ the meaning of entities, and the meaning of grammatical relations among them, is related to the 
restriction of combinations of these entities relative to other entities,” (Harris 1968:12). Granting that 
there must be some relationship between distribution and meaning, the exact nature of such a 
relationship to our received notions of meaning is nevertheless not without its complications. For 
example, there are some purely collocational restrictions in English that seem to enforce no semantic 
distinction. Thus, one can roast chicken and peanuts in an oven, but typically fish and beans are baked 
rather than roasted: this fact seems to be a quirk of the history of English. Polysemy provides a second 
kind of complication. A sentence can be parsed and a sentence can be commuted, but these are two 
distinct senses of the word sentence-, we should not be misled into positing a class of things that can be 
both parsed and commuted.

Given these complicating factors, it is by no means obvious that the distribution of words will directly 
provide a useful semantic classification, at least in the absence of considerable human intervention. The 
work that has been done based on Harris’ distributional hypothesis (most notably, the work of the 
associates of the Linguistic String Project (see for example, Hirschman, Grishman, and Sager 1975)) 
unfortunately does not provide a direct answer, since the corpora used have been small (tens of 
thousands of words rather than millions) and the analysis has typically involved considerable 
intervention by the researchers. However, with much larger corpora (10-100 million words) and robust 
parsers and taggers, the early results reported here and elsewhere appear extremely promising.
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Such a system can serve as the basis of a practical, linguistically-biased system using LFG and is a 
prerequisite for an effective set of grammar writing rind debugging tools which operate at the level of LFG 
itself. The parsing algorithm described here is intended for use in an automatic speech understanding 
(ASR) system project (currently funded by the Royal Signals and Radar Establishment), where a data 
driven strategy coupled with a strong TD predictive- capability is highly desirable.
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Unification Grammars

An Efficient, Primarily Bottom-Up Parser
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Abstract
The search for efficient parsing strategies has a long history, dating back to at least the 

Cocke/Younger/Kusami parser of the early sixties. The publication of the Earley parser in 1970 has had a 
significant influence on context-free (CF) parsing for natural language processing, evidenced by the 
interest in the variety of chart parsers implemented since then. The development of unification grammars 
(with their complex feature structures) has put new life into the discussion of efficient parsing strategies, 
and there has been some debate on the use of essentially bottom-up or top-down strategies, the efficacy 
of top-down filtering and so on.

The approacn to parsing described here is suitable for complex category, unification-based grammars. 
The concentration here is on a unification grammar which has a context-free backbone, Lexical- 
Functional Grammer (LFG). The parser is designed primarily for simplicity, efficiency and practical 
application.

The parser outlined here results in a high-level, but still efficient, language system without making a 
requirement on the grammar/lexicon writer to understand its implementation details. The parsing 
algorithm operates in a systematic bottom-up (BU) fashion, thus taking earliest advantage of LFQ’s 

concentration of information in the lexicon and also making use of unrestricted feature structures to 

realize LFG’s Top-Down (TD) predictive potential. While LFG can make special use of its CF backbone, 
the algorithm employed is not restricted to grammars having a CF backbone and is equally suited to 
complex-feature-based formalisms.

Additionally, the algorithm described (which is a systematic left-to-right (left comer) parsing algorithm) 
allows us to take full advantage of both BU and TD aspects of a unificatin-based grammar without 
incurring prohibitive overheads such as feature-structure comparison or subsumption checking. The use 

of TD prediction, which in the Earley algorithm is allowed to hypothesize new parse paths, is here 

restricted to confirming initial parses produced BU, and specializing these according to future (feature) 
expectations.
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Score: see section 3.1, Computing Preferences, below.
Lexical Frame: see section 2.1, Text Lexicon, below.
Predictions and Requirements: grammatical predictions and constraints, both as found in the language 

object itself and as synthesized from subordinated language objects (see section 2.1, Text Lexicon, 
below).

Preceding and Remaining Text: the sentential context, or local sentence buffers; (preceding words are 
needed to check on grammatical predictions and requirements that can be either forward or back­
ward in the sentence). When the remaining text is exhausted, the language object is a candidate 
sentence representation.

Subordinated Language Objects: subordination refers to the way an NP is subordinated to a PP, an AP 
is subordinated to an NP, and a phrase element is subordinated to the phrase head. A corresponding 
label list holds labels associated with each stack element.

name: technician (string data type) filler a word from the text
type: word (string data type) filler WORD or phrase: NP, 

AP, PP, VP, or CL (clause)
score: . 1.75 (short-floai data type) filler preference/priority value
frame: (POS . noun)

(SENSE . 0)
(GRAMMAR . noun/count) 
(SEM-TYPE . human) 
(PRAG . occupations)

(association List) filler a lexical semanuc frame 
instantiated to some particular 
word sense of the object named

requirement: ml (list of atoms) filler codes for grammatical 
requirements from GRAMMAR slou

predicticn: nil (list of atoms) filler codes for grammatical 
predictions from GRAMMAR slots

previous: (The) (list of words) filler, previous words in the sentence
remainder (measures 

alternating 
current 
with an 
ammeter)

(list of words) filler subsequent words in the sentence

cases: ml (list of labels) filler case and function labels 
marking constituent relations

subordinate: nil (a LIFO stack of 
language objects)

filler Language objects 
that form the state of the parse 
and are linguistically subordinate 
to the current language object.

Fig. 1: Language object fo r  "technician" (before coalescing).

1.2. Preference Machine Control
PREMO receives two inputs: a text to be parsed, and a lexicon of semantic objects specific to 

that text. The algorithm of the preference machine, after loading the priority queue with scored 
language objects for every sense of the first word in the sentence, is as follows (Fig. 2):
1. Delete-Max - retrieve the highest priority language object in the queue. (If the sentence buffer

for that object is empty then go to 8).
2. Get-Lexical - retrieve the list of sense frames associated with the first word in the sentence

buffer within the current language object
3. Make-Language-Object(s) - instantiate a new language object for every sense of the new word,

with an appropriate initial preference score.
4. Copy-Language-Object - create a copy of the current high priority language object to pair with

each new language object.
5. Coalesce - If more than a single grammar rule applies to the pair, copies of the pair are made.

Combine the pairs of language objects, subordinating one to the other.
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ABSTRACT

PREMO is a knowledge-based Preference Semantics parser with access to a large, lexi­
cal semantic knowledge base and organized along the lines of an operating system. The 
state of every partial parse is captured in a structure called a language object, and the 
control structure of the preference machine is a priority queue of these language objects.
The language object at the front of the queue has the highest score as computed by a 
preference metric that weighs grammatical predictions, semantic type matching, and 
pragmatic coherence. The highest priority language object is the intermediate reading 
that is currently most preferred (the others are still “ alive,” but not actively pursued); 
in this way the preference machine avoids combinatorial explosion by following a 
“ best-first” strategy for parsing. The system has clear extensions into parallel process­
ing.

1. Introduction
PREMO: The PREference Machine Organization, is an architecture, modelled as an operating sys­

tem, for parsing natural language. Each “ ready” process in the system captures the state of a partial 
parse in a “ process control block” structure called a language object. The control structure is a priority 
queue of competing parses, with priority given to each parse “ process” on the basis of a preference 
semantics evaluation. The “ time-slice” for each process is whatever is needed to move forward one 
word in a local process sentence buffer (where each process operates on a private copy of the current sen­
tence). After every time slice, the preference/priority for the currently “ running” parse is re-computed 
and the language object for that process is returned to the priority queue. The first process to emerge 
from the queue with its sentence buffer empty is declared the winner and saved This strategy is both a 
run-time optimization and an application of the “Least Effort Principle” of intuitively plausible language 
processing. The parsing is robust in that some structure is returned for every input, no matter how ill- 
formed or “ garden-pathological” it is.

1.1. Language Object Structures
The basic data structure manipulated by the preference machine is called a language object (Fig. 1). 

Each language object is a complex structure containing at least the following attributes:
Name and Type: every object name is a word from the text. Object type defaults to word until a word is 

found to be part of phrase, then that object is changed to type phrase. The head of a phrase is the 
language object with its co-members subordinated to it.

t This research w u  supported by the New Mexico State University Computing Research Laboratory — grateful acknowledgement ts 
accorded lo the members of the CRL Natural Language Group for their continuing interest and support.
• Present address: Department of Computer Science, North Dakou Sute University, Fargo, ND 58103.
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The PREMO grammatical formalism is non-standard, being not a phrase-structured produc­
tion system of rewrite rules but rather a phrase-triggered system of situation-action rules. The 
Coalesce procedure lies at the heart of the PREMO algorithm. This routine accepts a pair of 
language objects:

1. the current high priority language object as retrieved (and perhaps copied) from the priority 
queue, and

2. a new language object representing a single word sense of the next word in the sentence 
buffer of the current high priority language object

Every language object that is retrieved from the priority queue is of type phrase, and every new 
language object created from the sentence buffer of the currently running parse is of type word. The 
rules of the phrase grammar have a triple of symbols on the left hand side representing: (1) the 
phrase type of the current high priority language object; (2) the phrase type of the language object 
on the top of the stack of the current high priority language object; and (3) the syntactic category of 
the newly created language object There are one or more triples of symbols on the right hand side 
of each grammar rule specifying: (1) the phrase type of the new language object; (2) the action to 
be performed on the new language object; and, (3) the location where the action is to take place 
(Fig. 3).

2.2. Syntactic Structures

(phrase-type-A phrase-type-B category-C) => (phrase-type-D { operation l location x)
=> (phrase-type-O 2 operation2 location 2)
=> . . .

=> (phrase-type-D, operationH location*)
Fig. 3: The gloss for a generic grammar rule: if given a language object of phrase-cype-A, whose 

top-of-stack language object is of phrase-type-B, and confronting a new language object 
of grammatical category-C, then for each i from 1 to n, make a copy of the pair, change the 

new language object copy into phrase-type-D,, and perform operationi 
(either Sub, Push, or Subto), at locationt (within the New, Old, or Old-Sub language object).

The set of possible phrase types is limited, at present 10 these five: Adjective phrase, Noun 
phrase, Prepositional phrase, Verb phrase, and Cause (a generic Other phrase type). Although 
several action triples (all of which get executed), could appear on the right hand side of a rule, in 
the current implementation no rule exceeds five action triples and most are three or less. Further, 
the pan of speech set in the lexicon derived from LDOCE has 10 members: adjective, adverb, con­
junction, determiner, interjection, noun, predeterminer, preposition, pronoun, and verb. These three 
facts conspire to give a limiting factor to the total size of the grammar rule seL

This grammar is a phrase (or constituent) grammar and not a sentence grammar. The parser 
posits a sentence analysis only when its sentence buffer is consumed; until that point phrases are 
constructed and coalesced with each other as they are encountered, without regard to sentence level 
structure. The Coalesce decision is a syntactic one, with the resulting superordinate language 
object effectively assuming the status of the head of the entire existing structure. Either the new 
language object is inserted somewhere within the highest priority language object as a subordinate, 
or the highest priority object is subordinated to the new object (Fig. 4). In the second case the new 
object is effectively elevated to the status of superordinate, and it is this coalesced language object 
that is inserted into the priority queue (with a suitably computed preference score).
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6. Compute-Preference - assign a new priority score to each of the language objects resulting from
coalescing pairs.

7. Enqueue - insert the coalesced language objects onto the priority queue in preference score
order. Go to 1.

8. Inter-sentential Processes - save the language object at the front of the priority queue and flush
the queue. If there are no more sentences, return; otherwise, read the next sentence in the text 
and load the priority queue with scored language objects for every sense of the first word in 
the new sentence. Go to 1.

2. Global Data
Global system data structures include a text-specific lexicon, and a context structure derived 

from Longman’s Dictionary of Contemporary English (LDOCE; Procter et al. 1978), and a phrase 
grammar.

2.1. Text Lexicon
LDOCE is a full-sized dictionary in machine-readable form, designed for learners of English 

as a second language, and containing several non-standard features (grammar, type, and pragmatic 
codes). A PREMO sub-system produces text-specific lexicons from selected machine-readable dic­
tionary definitions (Wilks, Fass, Guo, McDonald, Plate and Slator, 1987, 1988, 1989). The input to 
this sub-system is unconstrained text; the output is a collection of lexical semantic objects, one for 
every sense of every word in the text. Each lexical semantic object in this lexicon contains gram­
matical and sub-categorization information, often with general (and sometimes specific) grammati­
cal predictions; content word objects also have semantic selection codes; and many have contextual 
(pragmatic) knowledge as well. As a natural side-effect of the lexicon construction, a relative con­
textual score is computed for each object that bears such a code; these scores provide a simple 
metric for comparing competing word senses for text-specific contextual coherence, and so directly 
address the problem of lexical ambiguity. Besides exploiting those special encodings supplied with 
the dictionary entries, the text of selected dictionary definitions are analyzed, through parsing and 
pattern matching, to further enrich the resulting representation (Slator, 1988a, 1988b; Slator and 
Wilks 1987, 1989).
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3.1. Computing Preferences
When a new language object is first created it receives a preliminary preference score. An ini­

tial value is given between 1.0 and 2.0 that depends on the word’s sense number (the lower the 
word sense, the higher, closer to 2.0, the score). Immediately thereafter, various attributes of the 
language object are evaluated and the initial score is adjusted. Adjustments to scores are either 
“ minor,” “ standard,” or “ major” (in the current implementation these are 2%, 10%, and 50% 
respectively), and can be in either direction. In the current implementation preliminary scores are 
decreased in the case of an “ interjection” part of speech, or for an LDOCE time-and-frequency 
code of “ archaic” or “ rare.” Preliminary scores are increased if the language object is for a 
phrasal definition (such as “ alternating current” ), or is for a closed class word, or if it makes a 
grammatical prediction, or if it is a word with only a single sense definition. Finally, scores are 
strongly influenced, in either direction, by the position of the word with respect to a restructured 
pragmatic hierarchy computed for the text. For example, if the text has a scientific orientation then 
the scientific senses of words are given preferential increases and the other senses of those words 
are given decreased scores (such as the scientific senses, as opposed to the political and musical 
senses, of “ measure” ).

After the Coalesce decision has been made, and one language object has been subordinated 
to the other, a new score is assigned to the result. These scores are computed according to the fol­
lowing criteria:
Predictions and Requirements: The lexical semantic frames have GRAMMAR slots that contain 
predictions and requirements: some general and some specific. Some general codes mark nouns as 
“ a countable noun followed by the infinitive with to," and others mark verbs as “ ditransitive and 
followed by a that clause.” 1 There are also specific predictions: particular senses of “ sat” and 
“ lay” predict an adverb or preposition, and particularly “ down.” And there are some absolute 
requirements: one sense of “ earth” requires the article “ the.” These are collected and checked as 
language objects are being coalesced, and subordinate predictions are “ synthesized” into their 
superordinate language object Naturally, when a prediction is fulfilled the preference/priority is 
increased; and when a prediction is made but not fulfilled, scores are decreased. The degree to 
which scores are changed is still being experimented with, the currently implemented heuristic is to 
effect larger changes for more specific predictions.
Subordination: When language objects are coalesced the current implementation awards minor 
increases to pairings that follow a notion of natural order, for example, a Verb phrase subordinating 
a Noun phrase is a natural event to expect, but an Adjective phrase subordinating a Verb phrase 
less so. Both must be permitted, since it is possible to construct an example of either.
Semantic Matching: Content words in the text lexicon have semantic codes placing them in the 
LDOCE type hierarchy (types like abstract, concrete, or animate). Nouns and adjectives have a 
single code identifying their place in the hierarchy; verbs have 1, 2, or 3 codes identifying selection 
restrictions on their arguments. Semantic matching is done, and scores are adjusted for semantic 
coherence, whenever a pair of language objects are coalesced such that (1) an adjective (or a nomi­
nal) modifies a noun phrase head, or (2) a noun phrase is being attached as an argument to a verb, 
or (3) a noun phrase is being attached as the object of a preposition, or (4) a prepositional phrase is 
being attached as an argument to a verb. In the current implementation increases (but not decreases) 
are computed as a function of distance in the type hierarchy. If a head prefers, say, an animate 
argument and is presented with an abstract word sense, the increase will be quite small as opposed 
to being presented with a competing human word sense.

3.2. Semantic Structures
When the Coalesce decision is being made, PREMO looks to see if one language object is 

being subordinated to the other with a “ push” operation. If so, a new constituent is being started 
and it is appropriate to affix a semantic label onto the subordinate object, since it is about to

1 Such as attempt in “ in attempt to climb the mountain,” and warn in “ He warned her (that) he would come.”
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Fig. 4: PREMO Coalesce Operations

At any given point in a parse, there will always be a language object construed as the head of 
the parse, whichever language object has the superordinate status, of the pair being coalesced, will 
become the head as per the rules of the grammar (where status is generally a reflection of the usual 
syntactic dominance, with PP’s dominating NP’s, and VP’s dominating everything).

3. Preference Semantics
PREMO is a know ledge-based Preference Semantics parser (Wilks 1972, 1975a, 1975b,

1978), with access to the large, lexical semantic knowledge base created by the PREMO lexicon- 
provider subsystem. Preference Semantics is a theory of language in which the meaning for a text 
is represented by a complex semantic structure that is built up out of smaller semantic components; 
this compositionality is a fairly typical feature of semantic theories. The principal difference 
between Preference Semantics and other semantic theories is in the explicit and computational 
accounting of ambiguous, metaphorical, and non-standard language use.

The links between the components of the semantic structures are created on the basis of 
semantic preference and coherence. In text and discourse theory, coherence is generally taken to 
refer to the meaningfulness of text Fass (1987) suggests that in NLP work such as Preference 
Semantics the notions of “ satisfaction” and “ violation” (of selection restrictions or preferences) 
and the notion of “ semantic distance” (across structured type hierarchies) are different ways of 
characterising the meaningfulness of text; they capture different coherence relations. The original 
systems of Preference Semantics (Wilks 1972, 1975a, 1975b, 1978), were principally based on the 
coherence relation of “ inclusion” (semantic preferences and selection restrictions); the emphasis in 
PREMO is more on the coherence relation based on semantic distance, although the original 
notions of coherence also survive.

In Preference Semantics the semantic representation computed for a text is the one having the 
most semantically dense structure among the competing “ readings.” Semantic density is a property 
of structures that have preferences regarding their own constituents, and satisfied preferences create 
density. Density is compared in terms of the existence of preference-matching features, the lack of 
preference-breaking features, and the length of the inference chains needed to justify each sense 
selection and constituent attachment decision. The job of a Preference Semantics parser, then, is to 
consider the various competing interpretations, of which there may be many, and to choose among 
them by finding the one that is the most semantically dense, and hence preferred.

-405- International Parsing Workshop '89



code carried by technician.

Iteration 4: The language object [VP'.measures] with its subordinated language object 
[ N technician,The] on the top of its stack, is popped from the queue and the 4 senses of alternate, 
along with the language object for the phrasal alternating current, are instantiated; 5 copies of 
['VP:measures] are then created and paired with them. Phrasal objects are preferred by PREMO, 
and nothing occurs to outweigh that preference. The question to be decided is which of these two 
readings should be preferred;

4. (VP NP noun) => ((NP push old) <or> (NP sub old-sub)) 
that is, does alternating current represent the start of a new NP constituent, or is it the new head of 
the ongoing top-of-stack NP constituent (in this case [NP:technician,The]). The semantic code car­
ried by alternating current is abstract-physical-quality which is a poor match with the human of 
[NP:technician,The] but a good match with the second argument code of [VP-.measure], which is 
abstract. Therefore the new NP constituent reading receives the better preference/priority score 
and assumes the position at the head of the PQ. However, first a label must be attached to the NP 
constituent that is about to disappear from the top-of-stack as a result of the “ push” operation. In 
this case, since the verb prefers and receives a human subject, this NP is labelled “ Agentive.”
Iterations 5-11: The high priority language object on the front of the PQ is ['V?:measures] which 
now subordinates both {NP:technician,The] and [NP:alternating current]. The continuation of the 
sentence buffer in [VP:meayure.s] is now with an ammeter. The next several iterations are con­
cerned with pushing a PP onto the subordinate stack of \yP:measures] and then subordinating 
\N?:ammeter,an] as the object of the PP. The current implementation recognizes 3 senses of the 
preposition with representing the ACCOMPANIMENT, POSSESSION, and INSTRUMENT cases. 
Each of these is coalesced with [NP:ammeter,an] and pushed onto the subordinate stack of 
[VP'.measures]. The INSTRUMENT reading is preferred on the basis of semantic matching 
between the selection restriction code on the object of the preposition, which is concrete, and the 
semantic code for ammeter, which is movable-solid.
Iteration 12: The final iteration retrieves the language object for the [VP-.measures] from the front 
of the PQ and finds the sentence buffer is empty. It is at this point that the case label marking the 
top-of-stack element (which is [PP:wt'//i,[NP:<3mmererlan]]), as the INSTRUMENT case is actually 
affixed. This language object is then saved as the interpretation of sentence (1), the queue is flushed 
and PREMO reads whatever sentence text follows, or if none follows, PREMO ends.

4.1. Toward Solving a Hard Problem
Two contrasting methods of word sense selection have been described here. The earlier 

method was first explored by the Cambridge Language Research Unit, beginning in the mid-1950s. 
This method performed a global analysis, (Mas term an 1957, as described in Wilks, 1972), that 
relied on a thesaural resource. This method was good at choosing word senses coherent with the 
other words in the text, by using a system of looking to the sets of words found under common 
thesaural heads, and performing set intersections. The problem is that the less “ coherent” word 
senses are missed and so, for example, in a physics text only the scientific sense of mass will 
chosen and, therefore, the word mass in the phrase mass of data will come out wrong in that text.

The other method is Preference Semantics that performs a local analysis that relies on seman­
tic type markers. This method is good at choosing word senses that best fit with other words in a 
sentence, by using a system of matching and comparing among the various primitive elements that 
make up the meanings of words. The problem is that this can be fooled into preferring word senses 
that only seem to be best. The standard example, attributed to Phil Hayes, is the following.
(2) A hunter licked his gun all over and the stock tasted good.

In this example, the challenge is to choose the correct sense of stock. The problem is that the 
local evidence supplied by the verb to taste points towards the “ stock as soup” reading, which is 
wrong. Granted, this is something of a pathological example, but it is famous and it captures the 
flavor of the objection.
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disappear under the new top-of-stack. These labels identify the functional or semantic relations that 
hold between a language object and its superordinate. The LDOCE hierarchies, in conjunction with 
the lexical semantic frame contained within each language object, and the “ frame enriching” pro­
cedures developed for the lexicon are brought to bear at this point (Slaior and Wilks, 1987, 1989); 
as well as the hand-coded definitions for prepositions that we must admit to creating since LDOCE, 
from our point of view, does not include useful case information in their preposition definitions.

Every sentence in a text is eventually represented by a single language object. These 
language objects are named for the word seen to be the head of the dominating phrase in the sen­
tence, and are of type phrase (and presumably of phrase type VP, in the usual grammatical case). 
Each of the subordinated phrases in the sentence is stacked within this superordinate language 
object, along with a corresponding relation label.

4. PREMO Example
Consider the following sentence:

(1) The technician measures alternating current with an ammeter.
First PREMO loads the lexicon specific to this text, which contains 26 frames for content 

words. These 26 frames are: alternate (3 adjective senses, 1 verb sense), ammeter (1 noun sense), 
current (3 adjectives, 4 nouns), measure (8 nouns, 3 verbs, 1 adjective), technician (1 noun sense), 
and the phrase “ alternating current” (1 noun sense). LDOCE defines about 7,000 phrases.
PREMO performs a contextual analysis by appeal to the pragmatic codes as organized into a spe­
cially restructured hierarchy. This results in the various Science and Engineering word senses 
receiving increased preference/priority scores while most other word senses receive decreased 
scores. This context setting mechanism is discussed at length in Slator (1988a, 1988b), Slator and 
Wilks (1987, 1989) and Fowler and Slator (1989).

Then, PREMO initializes the priority queue (PQ) with language objects for both the adverbial 
and definite determiner senses of The (the first word in the sentence), at which point the loop of the 
algorithm in section 1.2, Preference Machine Control is entered. In the first iteration the deter­
miner is instantiated as an Adjective phrase [AP'.The], as is the adverb reading, according to the 
rules of the grammar. The analysis of sentence (1) requires a total of 12 iterations through this loop. 
Notice that sentence (1) is 336-way ambiguous if just the number of senses of polysemous content 
words are multiplied out (a ltern a ted , times current=l, times measurc=\2, equals 336), and that 
that number grows to 1008 if the three cases of with are included.
Iteration 2: The PQ contains three language objects for The, of which the definite determiner is 
slightly preferred. This object is popped from the queue, and the next word in its sentence buffer, 
technician is retrieved from the lexicon and instantiated as a language object There is only a sin­
gle sense of technician and only a single grammar rule action for the situation:

1. (AP nil noun) => (NP sub old).
This means technician becomes an NP with the determiner The subordinated to it 
{NP'.technician.The]. This act of coalescing results in a minor increase being assigned to 
VSP'.technician.The], and it returns to the priority queue.
Iteration 3: The language object [NP:technician,The] is popped from the queue and the 11 senses 
of the next word in its sentence buffer, measure, are instantiated; then 11 copies of 
[N’P'.technician.The] are created and paired with them. The two major grammar competitors during 
this iteration are:

2. (NP AP noun) => (NP sub old)
3. (NP AP verb) => (VP sub old)

that is, measures as a noun becoming the new head of [NP:technician,The], as opposed to measures 
as the head of a verb phrase taking \N?:technician,The) as an argument.

The criteria for comparing these readings (and the fact that PREMO prefers the second, VP 
analysis), reduces to the fact that the noun measures carries an abstract semantic code which does 
not match well with the human semantic code carried by technician; while the verb measures car­
ries a human selection restriction for its first argument, which matches exactly with the semantic
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PREMO analysis for text (4) Current can be measured.

((measured VP 4.757666S0 "v" '’0300" (ENFL SUBJECT))
(((be VP 4.077573S0 "v" ’’0008" (INFL))

((can VP 3.028026s0 ”v" ”0100" nil)))
(■Current NP2.763158S0 "n" ”0100" nil)))

PREMO analysis for The geographer measures river basin flow near a lake.

((measures VP 4.354593S0 "v" ”0100" (LOCATIVE OBJECT 1 AGENTIVE)) 
(((near PP 2.406232S0 "prep” ”0000" (OBJECT1))

(((lake NP 2.719298S0 "n" "0000" (DET))
((a AP 0.9075S0 "indefinite" "0100" nil)))))

(Cflow NP 1.433986S0 ”n" ”0500" (KIND-OF))
(((river*basin NP 2.178159S0 "n" "0000" (DET))

((the AP 0.9982499S0 "definite" "0100" nil)))))
((geographer NP 1.693873S0 "n" "0000" (DET))
((The AP 0.9982499S0 "definite" "0100" nil)))))

Fig. 5: PREMO Analyses for Texts (3) and (4).

The ocher two language objects displayed both show the first sense of measure each with 
three language objects on the subordinate stack. In each case these subordinate language object con­
stituents represent the AGENT (technician and geographer), and the OBJECT (alternating current 
and river basin flow), of the measuring action. Text (3) also has a prepositional phrase attached in 
the INSTRUMENT case while text (4) has a prepositional phrase attached in the LOCATIVE case.

In spite of this success, the problem of mediating the tension between global and local 
sources of information is still not completely solved. PREMO assumes text coherence and so while 
Preference Semantics provides a naturally local sort of analysis procedure these local effects can be 
overcome by appeal to global context. However, it is still possible to find examples, such as text (2) 
above, that do not have any context (a common situation in the computational linguistics literature, 
where space constraints and custom preclude long examples). And in the absence of this global 
information PREMO will not perform any better than any other system of analysis. That is, if text
(2) were embedded in a longer exposition about hunters and guns, then the probability is high that 
the correct sense of stock would be chosen. If however, text (2) were embedded in an exposition 
about food and cooking, PREMO would almost certainly get this wrong. And in the absence of 
context PREMO will choose the “ soup stock” reading because the notion of gun stocks having a 
taste is not one that finds much support in a system of semantic analysis.

5. Comparison to Other Work
The original Preference Semantics implementations (Wilks 1972, 1975a, 1975b, 1978), 

operated over a hand coded lexicon of semantic formulae. Input strings were segmented into 
phrases beforehand, and coherence was essentially a matter of counting “ semantic ties” inferred by 
pattern matching between formulae. PREMO operates over a machine-readable lexicon that is at 
once much broiler and shallower than the original. To make up for this, preference scoring in 
PREMO is much more finely grained and takes more into account (grammatical predictions, prag­
matic context, etc.). If anything, PREMO is grammatically weaker than the original work, while 
being more robust in the sense that syntactic anomalies and ill-formed input are processed the same 
as anything else.

A group at Martin Marietta (Johnson, Kim, Sekine, and White, 1988; White 1988), built a 
language understander based on Preference Semantics, but modified by their own interpretation of 
Wilks, Huang, and Fass (1985). Their NLI system is frame-based and much of the system’s 
knowledge resides in the lexicon, which is constructed by hand. The parsing process is separated
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PREMO attempts to tackle these contrasting analysis problems by bringing together both glo­
bal and local information. To demonstrate this, consider the analysis of the following two short 
texts. The first is familiar from the example in Section 4, above.
(3) Current can be measured.

The technician measures alternating current with an ammeter.
The following text is intended to parallel the first one.
(4) Current can be measured.

The geographer measures river basin flow near a lake.

The point at issue is choosing the correct sense of current in each case. In text (3) it is the 
engineering/electrical sense that should be chosen. In text (4), however, it is the geology-and- 
geography sense of current that is correct. In the absence of other evidence, the geology-and- 
geography sense is the one most systems would choose, since this is the more common usage of 
the word in the language (and the lowest numbered word sense in LDOCE, which reflects this 
notion of default preference). And since most systems have no notion of global text coherence, 
most would get the wrong sense of current in text (3) at first reading. It is conceivable that the
sense selection for current could be corrected after further text has been processed, but few if any
systems attempt this, and it is far from obvious how this should be done in general. PREMO gets 
both of these texts right, by choosing the correct sense of current in each case, and making all of 
the other word sense and attachment decisions (see fig. 5).

In Fig. 5, each line element represents a condensation of a language object. Language objects 
are complex items which this diplay merely summarizes. The form of these displays is as follows: 

(<name> <phrase-type> <score> <part-of-speech> <sense-number> <stack-labels>) 
and the lower language objects are on stacks, as indicated by their indentations. And so, the first 
language object reads as this: the third sense of the verb measure (the linking verb sense), has two 
elements on its subordinate stack, one marked as a verb inflection (the language object for be. 
which itself has a language object on its internal stack marking verb inflection, the language object 
for can), and the other stack element (note, the second sense of current), marked as the subject of 
the measuring. The third language object in Fig. 5 has the identical interpretation, except that the 
subject of the measuring is the first sense of current rather than the second.

PREMO analysis for text (3) Current can be measured.

(Cmeasured VP 4.855569S0 "v" "0300" (INFL SUBJECT))
(((be VP 4.197S0 "v" "0008" (INFL))

((can VP 3.174O81S0 "v" "0100" nil)))
(Current NP 2.985294S0 "n" "0200" nil)))

PREMO analysis for The technician measures alternating current with an ammeter.

((measures VP 4.68685S0 "v" "0100" (INSTRUMENT OBJECT1 AGENTTVE)) 
(((with PP 3.726117S0 "prep" "0000" (OBJECT1))

(((ammeter NP 2.814706S0 "n" "0000" (DET))
((an AP 1.815S0 "indef "0000" nil)))))

(alternating*current NP 3.838235S0 "n" "0000" nil)
((technician NP 0.8368717S0 "n" "0000" (DET))
((The AP 0.9982499S0 "definite" "0100" nil)))))
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into three autonomous modules: BuildRep (a constituent parser), Validate (a sort of constituent 
filter), and Unify (which incrementally builds a semantic structure from validated constituents).
The principle differences between their system and PREMO lies in their criteria for abandoning 
non-productive paths (their domain constraints allow them to prune on the basis of semantic 
implausibility), and in their lack of a high level control structure (it is possible in there system for 
every parse to be abandoned and nothing returned).

Preference Semantics has also been used for parsing by Boguraev (1979), Carter (1984,
1987), and Huang (1984, 1988). However, this work uses a conventional parsing strategy in which 
syntax drives the parsing process depth-first and Preference Semantics is used within a semantics 
component that provides semantic verification of syntactic constituents. PREMO has a more flexi­
ble, more breadth-first parsing strategy in which syntax, semantics, and pragmatics interact more 
freely. The Meta5 semantic analyzer of Fass (1986, 1987, 1988), based on the system of Collative 
Semantics, which extends Preference Semantics, operates over a rich hand-coded lexicon comprised 
of a network of “ sense frames.’’ The principal goal of this system is to identify and resolve meta­
phorical and metonymous relations and, with its rich semantic knowledge base, Meta5 is able to 
produce deep semantic analyses which are quite impressive, although constrained to a somewhat 
narrow range of examples.

6. Discussion
PREMO employs a uniform representation at the word, phrase, and sentence levels. Further, 

at every step in the process there is a dominating language object visible; that is, there is always a 
“ well-formed partial parse” extant. This gives an appealing processing model (of a language 
understander that stands ready to accept the next word, whatever it may be), and a real-time flavor, 
where the next word is understood in the context of existing structure. PREMO intentionally 
exploits everything that LDOCE offers, particularly in the area of grammatical predictions, and also 
in terms of the TYPE hierarchy as given, and the PRAGMATIC hierarchy as restructured, as well 
as extracting semantic information from the text of definitions.

One of the PREMO design principles is “ always return something” and that policy is 
guaranteed by keeping every possibility open, if unexplored (this is the PREMO approximation to 
back-tracking). Another design principle is to cut every conceivable comer by making “ smart” 
preference evaluations. The potential remains however, for worst case performance, where the 
preference/priority scores work out so that every newly coalesced pair immediately gets shoved to 
the bottom of the priority queue. If this happens the algorithm reduces to a brute search of the 
entire problem space.

By exploiting the operating system metaphor for control, PREMO inherits some very attrac­
tive features. First, PREMO avoids combinatorial explosion by ordering the potential parse paths 
and only pursuing the one that seems the best. This is antithetical to the operating system principle 
of “ fairness,” a point where the metaphor is intentionally abandoned in favor of a scheme that has 
some faint traces of intuitive plausibility. The competition between parses, based as it is on the 
tension between the various preference/priority criteria is vaguely reminiscent of a “ spreading 
activation” system where the various interpretations “ fight it out” for prominence. The PREMO 
architecture is, of course, utterly different in implementation detail, and it is not at all obvious how 
it could be equivalently converted, or that this metaphor is even a fruitful one. Second, the operat­
ing system metaphor is an extendible one; that is, it is possible to conceive of PREMO actually 
being implemented on a dedicated machine. Further, since the multiplication factor at each cycle 
through the algorithm is small (in the 40-60 range for the near-worst case of 10-12 word senses 
times 4-5 applicable grammar rules), and since each of these pairings is independent, it is easy to 
imagine PREMO implemented on a parallel processor (like a Hypercube). Each of the pairs would 
be distributed out to the (cube) processing elements where the coalescing and preference/priority 
scoring would be done in parallel.
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A — > B C (1)
are used to combine horizontally adjacent regions. In addition, rules like

B
A --> (2)

C
can be used in the 2-dimensional context-free grammar to combine vertically adjacent regions.

A region can be represented with a non-terminal symbol and 4 positional parameters: x, y, X and Y, 
which determine the upper-left position and the lower-right position of the rectangle (assuming that the 
coordinate origin is the upper-left corner of the input text).

Horizontally adjacent regions, (B, x8, yB, x B, Ys) and (C, x,., yc , Xc , Yc), can be combined only if
• yB - yc.
• YB = Yc , and

•  X B =  Xq .

The first two conditions say that B and C must have the same vertical position and the same height, and 
the last condition says that B and C are horizontally adjoining.

Similarly, vertically adjacent regions, B and C, can be combined only if
• x0 = xc ,

• Xg 3 Xq, and

• yb = /c-
A new region, (A, xB, yB, Xc , Yc), is then formed. Figure 1-1 shows examples of adjacent regions, and 
figure 1-2 shows the results of combining them using rules (2 ) and (1).

B

C

Figure 1-1: Examples of Adjacent Regions

Let Q be a 2D-CFG (N, I ,  PH> Pv, S), where

N: a set of non-terminal symbols 
I :  is a set of terminal symbols 
PH: a set of horizontal production rules 
Pv : a set of vertical production rules 
S: start symbol

Let LEFT(p) be the left hand side symbol of p. Let RIGHT(p, i) be the i-th right hand side symbol of p. 
Without loss of generality, we assume each rule in PH is either in the form of

A — > B C or A — > b
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Abstract

2-Dimensional Context-Free Grammar (2D-CFG) for 2-dimensional input text is introduced and efficient 
parsing algorithms for 2D-CFG are presented. In 2D-CFG, a grammar rule's right hand side symbols can 
be placed not only horizontally but also vertically. Terminal symbols in a 2-dimensional input text are 
combined to form a rectangular region, and regions are combined to form a larger region using a 2- 
dimensional phrase structure rule. The parsing algorithms presented in this paper are the 2D-Ear1ey 
algorithm and 2D-LR algorithm, which are 2-dimensionally extended versions of Earley’s algorithm and 
the LR(O) algorithm, respectively.

1. In troduction
Existing grammar formalisms and formal language theories, as well as parsing algorithms, deal only 

with one-dimensional strings. However, 2-dimensional layout information plays an important role In 
understanding a text. It is especially crucial for such texts as title pages of artldes, business cards, 
announcements and formal letters to be read by an optical character reader (OCR). A number of projects 
[1 1 ,6 ,7 ,2 ], most notably by Fujisawa et al. [4], try to analyze and utilize the 2-dimensional layout 

information. Fujisawa et al., unlike others, uses a procedural language called Form Definition Language 
(FDL) [5, 12] to specify layout rules. On the other hand, in the area of image understanding, several 
attempts have been also made to define a language to describe 2 -dimensional images [3 , 10].

This paper presents a formalism called 2-Dimensional Context-Free Grammar (2D-CFG), and two 
parsing algorithms to parse 2-dimensional language with 2D-CFG. Unlike all the previous attempts 
mentioned above, our approach is to extend existing well-studied (one dimensional) grammar formalisms 
and parsing techniques to handle 2-dimensional language. In the rest of this section, we informally 
describe the 2-dimensional context-free grammar (2D-CFG) in comparison with the 1-dimensional 
traditional context-free grammar.

Input to the traditional context-free grammar is a string, or sentence; namely a one-dimensional array of 
terminal symbols. Input to the 2-dimensional context-free grammar, on the other hand, is a rectangular 
block of symbols, or text, namely, a 2-dimensional array of terminal symbols.

In the traditional context-free grammar, a non-terminal symbol represents a phrase, which is a 
substring of the original input string. A grammar rule is applied to combine adjoining phrases to form a 
larger phrase. In the 2 -dimensional context-free grammar, on the other hand, a non-terminal represents a 
region, which is a rectangular sub-block of the input text. A grammar rule is applied to combine two 
adjoining regions to form a larger region. Rules like

1Th» research was supported by the National Science Foundation under contract IRI-8858085.
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Method:
For each p € PHu P v such that LEFT(p) = S, add an item (p, 0, 0, 0, n, m) to /00.

For each item (p, d, x, y, X, Y) in lY],
If d = |p|, do COMPLETOR 
If RIGHT(p, d+1) e N, do PREDICTOR 
If RIGHT(p, d+1) e  I ,  do SHIFTER

PREDICTOR: For all q € P h a P v such that LEFT(q) = RIGHT(p, d+1), add an item (q, 0, i, j, X, Y) to

V
SHIFTER: If a j+1 j+1 = RIGHT(p, d+1), and if i<X a j<Y, then add an item (p, d+1, i, j, X, j+ 1) to /|+1 y

COMPLETOR: For all items (p\ d \ x’, y', X’, Y’) in such that RIGHT(p’, d’+1) = LEFT(p), do the 
following:

• Case 1.- pe PHAp’e PH —  Add an item (p\ d’+1, x’, y’ X’, Y) to /jjt if Y’-Y  v  d’=0.

• Case 2. p e Pva p ’ g  Ph —- Add an item (p\ d’+1, x’, y’ X’, Y) to /Xy, if Y’-Y  v  d'-O.

• Case 3. pe PHAp’ e Pv —- Add an item (p\ d’+1, x’, y’ X, Y’) to /xY, if X’-X  v d’-O.

• Case 4. p € PVAp’ e Pv Add an item (p\ d’+1, x\ y’ X, Y) to /ij( H X’-X  v d’-O.

(1) S — > A A (3) B — > b b b
c  d

(2) A — > B (4) C - - > c
C

(5) C - - > d

Figure 2-1: Example Grammar and Text
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Figure 1-2: After applying rule (2) and (1), respectively 

and each rule in Pv is in the form of

a  — > B
c

Where A,B,C € N and b € I .  This form of grammar is called 2-dimensional Chomsky Normal Form  
(2D-CNF), and an arbitrary 2D-CFG can be converted into 2D-CNF. The conversion algorithm is very 
similar to the standard CNF conversion algorithm, and we do not describe the algorithm in this paper.

The subsequent two sections present two efficient 2D parsing algorithms: 2D-Ear1ey and 2D-LR.

2. The 2D -E arley  Parsing A lgorithm  

Input:
2D-CFQ G = (N, I ,  PH, Pv , S) and an input text

a n  * 21 ......... *nl
*12 *22 ............... *n2

*lm *2» *nm
where a  ̂ e I .

O utput:
A parse table

ôo îo ............... n̂O

/,j is a set of items and each item is (p, d, x, y, X, Y), where p is a rule in PH or Pv, d is an integer to 
represent its dot position (0 < d < |p|, where |p| represents the length of p’s left hand side). The integers 
x and y represent the item’s origin (x,y) or the upper-left comer of the region being constructed by the 
item. The integers X and Y represent its perspective lower-right comer, and the parser’s horizontal 
(vertical) position should never exceed X (Y) until the item is completed.
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3. The 2D-LR Parsing Algorithm
A 2D-LR(0) parsing table consists of three parts: ACTION, G O TO -R IG HT and G OTO -DOW N. Figure

3-1 is a 2D-LR(0) table obtained from the grammar in Figure 2-1.

ST ACTION GOTO-RIGHT GOTO-DOWN

b c d $ s A B C  S A B C

0 sh3 8 1 4
1 sh3 2 4
2 rel rel rel rel
3 r«3 re3 re3 re3
4 sh6 sh7 5
5 re2 re2 re2 re2
6 re4 re4 re4 re4
7 ro5 re5 ro5 re5
8 acc

Figure 3-1: A 2D-LR Parsing Table

As in Standard LR parsing, the runtime parser performs shift-reduce parsing with a stack guided by this 

2D-LR table. Unlike standard LR(0), however, each item in the stack is represented as (s, x, y, X, Y), 
where s is an LR state number, and (x,y) represents the current position in the input text. X and Y 
represent right and lower limits, respectively, and no positions beyond these limits should ever be 
explored until this state is popped off the stack.

Initially the stack has an item (0, 0, 0, n, m), where n and m are the number of columns and rows in the 

input text, respectively.

Now let the current elements in the stack be

... (S31 Ygi Xg, Y^) B2 (^2» * 2’ y2' ^ 2’ ^ 2) (®1 » * 1» y v  ^ 1 '
where the right most element is the top of the stack. Also assume that the current input symbol aij is b, 
where i » x ^ 1  and j = y ,+ 1 . According to the parsing table, we perform SHIFT, R EDUCE or ACCEPT.

SHIFT:
If A C TIO N (s1, b) = sh s0, then if x1 < X 1 a y 1 < Y v push b and (s0, x ^ l ,  y1t X v  y ^ l )  onto the stack. 

REDUCE:
If A C TIO N (s1, b) *  re p, then let k be |p|+1 and do the following:

• Case 1. p e  PH and G O T O -R IG H T ^ , LEFT(p)) = s0 —  If YM  *  Y 1 then pop 2#|p| elements
from the stack, and push LEFT(p) and (s0, xv  yv X^ Y t ).

• Case 2. p e  PH and G O TO -D O W N(sk, LEFT(p)) = s0] —  If YM  *  Y 1 then pop 2*|p| elements
from the stack, and push LEFT(p) and (s0, x ,̂ Y 1f xv  Yk).

• Case 3. p e  Pv and G O TO -R IG H T(sk, LEFT(p)) = s0 —  It Xk_t *  X 1 then pop 2#|p| elements
from the stack, and push LEFT(p) and (s0, X v  yk, X^ y ^ .

• Case 4. p e  Pv and G O TO -D O W N (sk, LEFT(p)) -  s0 —  If Xk.1 -  X 1 then pop 2*|p| elements
from the stack, and push LEFT(p) and (s0, xv  y v  X v  Yk).

Figure 3-2 shows an example trace of 2D-LR parsing with the grammar in Figure 2-1.
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3 - - >  A A 0,  0,  2,  2 |

A — > B 0,  0,  2,  2 
C

B — > b 0,  0,  2,  2

B — > b 0,  0,  2,  1 

S - - >  A A 0 , 0 , 2,  2

A - - >  B 1 , 0 , 2 , 2
C

B — > b 1 , 0 , 2 , 2

B - - >  b 1 , 0 , 2 , 1

S — > A A 0 , 0 , 2 , 2

A —

C 

C

> .B 
C

0,  0,  1,  2 I C —  > c

■> c  0 , 1 , 1 , 2  |
I

•> d 0 , 1 , 1 , 2 |

■> . B 
C

■> c  

■> d

0,1,1,2 
1 , 0 , 2 , 2

1,1,2,2 
1 , 1 ,2,2

C — > d 1 , 1 , 2 , 2

------------ c-----------
I

0,  0,  1,  2 | A — > B
I .c

A — > B
.C

1 , 0 , 2 , 2

Figure 2-2: An Example of 2D-Ear1ey Parsing
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A 1 --> c
A2 — > BI A1 BI

A3 -
B2 

-> A2 
B2

A4 — > Cl A3 Cl

A1 -
C2 

-> A4
C2

ccccc 
bbb cbbbc 

c bcb cbcbc 
bbb cbbbc 

ccccc

bbbbbbb
bcccccb
bcbbbcb
bcbcbcb
bcbbbcb
bcccccb
bbbbbbb

BI — > b

Bl — > BI 
b

B2 — > b 
B2 — > b B2 b

START — > A1

ccccccccc 
cbbbbbbbc 
cbcccccbc 
cbcbbbcbc 
cbcbcbcbc 
cbcbbbcbc 
cbcccccbc 
cbbbbbbbc 
ccccccccc

Cl - - >  Cl 
c

C2 --> c 
C2 — > c C2 c

ccccccccccccc 
cbbbbbbbbbbbc 
cbcccccccccbc 
cbcbbbbbbbcbc 
cbcbcccccbcbc 
cbcbcbbbcbcbc 
cbcbcbcbcbcbc 
cbcbcbbbcbcbc 
cbcbcccccbcbc 
cbcbbbbbbbcbc 
cbcccccccccbc 
cbbbbbbbbbbbc 
ccccccccccccc

Figure 4-1: Example Grammar I

> M 1 1 V c Bl — > b Cl —  > c
A2 — > Al Bl b

Bl — > Bl Cl -->
c
Cl

A3 — >
B2
A2 B2 — > b C2 — > c

A4 — > Cl A3 B2 — > b B2 C2 — > c
Al — > A4 START — > Al

C2

cbbbb 
ebb ccbbb 

c ccb cccbb 
ccc ccccb 

ccccc

cbbbbbb
ccbbbbb
cccbbbb
ccccbbb
cccccbb
ccccccb
ccccccc

cbbbbbbbb 
ccbbbbbbb 
cccbbbbbb 
ccccbbbbb 
cccccbbbb 
ccccccbbb 
cccccccbb 
ccccccccb 
ccccccccc

cbbbbbbbbbbbb
ccbbbbbbbbbbb
cccbbbbbbbbbb
ccccbbbbbbbbb
cccccbbbbbbbb
ccccccbbbbbbb
cccccccbbbbbb
ccccccccbbbbb
cccccccccbbbb
ccccccccccbbb
cccccccccccbb
ccccccccccccb
ccccccccccccc

Figure 4-2: Example Grammar II
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(0,0,0,2,2)
(0,0,0,2,2) b (3,0,1,2,1)
(0,0,0,2,2) B (4,0,1,1,2)
(0,0,0,2,2) B (4,0,1,1,2) c (6, 1, 1, 1, 2)
(0,0,0,2,2) B (4,0,1,1,2) C (5, 0, 2, 2, 2)
(0,0,0,2,2) A (1,1,0,2,2)
(0,0,0,2,2) A (1, 1,0,2,2) b (3,2,0,2, 1)
(0, 0, 0, 2, 2) A (1, 1, 0, 2, 2) B (4,1,1,2, 2)
(0,0,0,2,2) A (1,1,0,2,2) B (4,1.,1,2, 2)
(0,0,0,2,2) A (1,1,0,2,2) B (4,1,1,2, 2)
(0,0,0,2,2) A (1,1,0,2,2) A (2,2,0,2,2)
(0,0,0,2,2) S (8,2,0,2,2)

Figure 3-2: Example Trace of 2D-LR Parsing

4. More Interesting 2D Grammars
This section presents a couple of more interesting example grammars and texts. Example Grammar I 

generates nested rectangles of b’s and c’s, one after the other. In the grammar, B1 represents vertical 
bars (sequences) of b’s, and B2 represents horizontal bars of b’s. Similarly, C1 and C2 represent vertical 
and horizontal bars of c’s, respectively. A1 then represents rectangles surrounded by c’s. A2 represents 
rectangles surrounded by c’s which are sandwiched by two vertical bars of b’s. A3 further sandwiches A2  
with two horizontal b bars, representing rectangles surrounded by b’s. Similarly, A4 sandwiches A3 with 
two vertical c bars, and A1 further sandwiches A4 with two horizontal c bars, representing rectangles 

surrounded by c’s.

A similar analysis can be made for Grammar II, which generates triangles of b’s and c’s.

Grammar III generates all rectangles of a's which have exactly 2 b’s somewhere in them. Xn 
represents horizontal lines of a s with n b’s. Thus, XO, X1 and X2 represent lines of a ’s, keeping track of 
how many b’s are inside. Yn then combines those lines vertically, keeping track of how many a’s have 
been seen thus far (n being the number of b’s). Therefore, Y2 contains exactly two b’s.

The example given in this section is totally deterministic. In general, however, a 2D-LR table may have 
multiple entries, or both G O TO -D O W N  and G O TO -R IG H T may be defined from an identical state with an 

identical symbol. Such nondeterminism can also be handled efficiently using a graph-structured stack as 

in Generalized LR Parsing [8 , 9].
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5. Concluding Remarks
In this paper, 2D-CFG, 2-dimensional context-free grammar, has been introduced, and two efficient 

parsing algorithms for 2D-CFG  have been presented. Traditional one-dimensional context-free grammars 
are well studied and well understood (e.g. [1 ]), and many of their theorems and techniques might be 
extended and adopted for 2D-CFG, as we have done in this paper for Earley’s algorithm and LR parsing.
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XO — > [ampty] YO — > [empty] Y2 — > YO 
X2

xo — > XO a YO — > YO
xo Y2 — >

XI — > xo b
YI — > YO

XI --> XI a XI Y2 —  >

X2 — > XI b YI --> YI
XO START -

X2 — > X2 a
a aa aaaaaaaa aaa aaaaaaa
a ab aaaaaaaa aaa aaaabaa
a aa aaaaaaaa bba aabaaaa
a aa aaaaaaab aaa

aaa
aia
aaa

XI

XO

Figure 4-3: Example Grammar III
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is small. Only rcduccd, streamlined feature information is available in each entry; subcat­
egorization, or valency, information is not distinguished by word senses.

2. The second dictionary access (for reattachment) consults a far richcr sourcc than before. For 
English, we make central use of online dictionary entries -- both their definitions and their 
example sentences. W7 and the Longman Dictionary o f ('nntcmporary English (LDOCE) are 
available to us. We can parse the definitions and examples with PEG, and use the syntactic 
information that PEG provides in order to bootstrap our way into semantics. The amount 
of information per word obtainable during this second access is huge -- much greater than what 
is typically described, even for lexicalist systems.

3. The third access (for paragraph modeling) again includes full natural language text. Since this 
component is only at a very early stage, there is not much to be said about it. We envision a 
NL knowledge base that contains information from every available sourcc, from word lists to 
dictionaries and beyond, to encyclopedias.

It is interesting that the purposes of the separate components divide so neatly along linguistic levels: 
syntax, semantics, discourse. We do not mean to insist that the ultimate version of this system 
would need to have its components so cleanly divided. Neither has separation of the components 
been done for reasons of theoretical elegance or symmetry, but simply because the necessities of 
broad-coverage NLP have brought it about.

1. A syntactic sketch: PEG

PEG is an augmented phrase structure grammar which has been useful in a number of different 
settings -  text critiquing and machine translation, to name two. PP.G's significant characteristics 
include:

• binary rules, in most cases (Jensen 1987);
• a wealth of conditions on the operation of the rules -  conditions that range from those that

are strongly general, and express real grammatical patterns of the language, to those that are 
quite specific, and are intended to filter out certain semantically anomalous parses;

• a "relaxed" or "textual" approach to parsing, which means that we consistently avoid the use
of selectional ("semantic ") information to condition the parse, and that we also try, in so far
as possible, to avoid, or at least to soften, the use of subeatcgorization (valency) information 
for that purpose. We assume, for example, that almost any verb can have a sense which will 
fit almost any frame; and that almost any noun might be used as an argument to almost any 
verb; and that the job of a computational parsing grammar is not to separate grammatical and 
ungrammatical sentences, but to provide the most reasonable analysis for any input string. 
The system is certainly able to distinguish grammatical from ungrammatical input, but this can 
be done by commenting on, rather than by failing to accept, an ungrammatical string.

The lexicon that supports this initial syntactic parse started out, in 1981, as a list of all the main 
entries in W7 -  minus, of course, morphological variants that could be productively described by 
rules. W7 claims to have 130,000 entries; after morphological variants were subtracted, the list 
contained 63,850 entries. That number has been increased from time to time; it now stands at 
roughly 70,000. As stated earlier, the goal of this lexicon is to supply useful syntactic information 
for every word of the language, including neologisms.

Because it contains so many entries, this lexicon provides very broad coverage. However, for each 
entry it contains only very limited information. The information is for parts of spcech, morphology 
(tense, number, etc.), and word class features (transitive, ditransitivc, factive, ctc.). The features arc 
mostly binary (present or absent), but include some lists, such as lists of verbal particles.

Word class features are valency features -- granted. But both the presentation and the use of these 
features are different from what is described for most other parsing systems. First, no attempt is 
made to specify the nature of the valency arguments. Second, although different parts of speech for 
a single word arc listed and marked separately, all other sense distinctions, within each part of 
speech, arc collapscd. One Icxical item might have many, often contradictory, feature markings. 
The word "go," for example, appears in the lexicon as follows:
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A Broad-coverage Natural Language Analysis 
System

Karen Jensen 
IBM 

April, 1989

0. Introduction

This paper discusses the components of our broad-covcrage natural language analysis system, as 
they appear at this time.

A broad-coverage goal requires a robust and flexible natural language processing base, one that is 
adaptable to linguistic needs and also to the exigencies of computation. The Programming l a n ­
guage for Natural language Processing (PLNLP: lleidorn |9 72) is well suited for this task. 
PLNLP provides a general programming capability, including a rule-writing formalism and algo­
rithms for both parsing ("decoding") and generation ("encoding'). Although linguistic scholarship 
and linguistic intuitions motivate our system strongly, we have chosen not to commit our compu­
tational formalism to any of the reigning linguistic theories. To quote Ron Kaplan:

the problem  is that, at least in the current state o f  the art, (linguists) don t k n o w  which generalizations  
and restrictions are really go ing  to be true and correct,  and which nre cither accidental ,  uninteresting  
or false. T h e  data just isn t in... (K aplan  1985. p. 5)

So our work is experimental, descriptive, and data-driven. This docs not mean that it has no the­
oretical implications. Any functioning unit of this size is an embodiment of some theory. The 
theory behind this program of grammar development just hasn't l>ccn thoroughly articulated yet.

The system that is emerging has, so far, three components:

1. The PLNLP English Grammar (PF.G) makes an initial syntactic analysis for each input sen­
tence (Jensen 1986).

2. ['he reattachmcnt component takes syntactically consistent, but semantically inaccurate, 
parses, and then reattaches constituents, when ncccssary, based on information gained from a 
rich semantic data base (Jensen and Binot 1987).

3. I lie paragraph modelling component rcccivcs sentence parses and, for connected text, builds 
them into logically consistent and coherent models of the chunks of discourse that arc typically
called paragraphs (Zadrozny and Jensen 1989).

Iland-in-hand with each of these components goes a separate dictionary .access.

1. The first dictionary acccss (for PFG) is to a lexicon that is essentially just a glorified word list. 
However, it is a word list that, when couplcd with morphological rules and a default strategy
provided by the acccss mechanism, aims at supplying an entry for every word of the language, 
including neologisms. We started with the full online W chuer'i Seventh New Collegiate. Dic­
tionary (W7). Wc have modified this word list somewhat, but (inly to enlarge it -- never to 
reduce its scopc Although th\* word coverage is great, the amount of information per word
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to  o t h e r  record s .  F o r  e x a m p l e ,  the  v a lu e  o f  the  P R M O D S  a t tr ih u tc  is a p o in te r  to  the  n o u n  p h ra se  
( N P 1 )  w h ic h  c o v e r s  the  n o u n  " g eo m etry ."

A l l  o f  th e  a n a ly s i s  in f o r m a t io n  is carr ied  in th e  r eco rd  s tru c tu re .  F o r  c a se  o f  r e c o g n i t io n ,  h o w e v e r ,  
w e  a lso  d i sp la y  a va r ia n t  o f  th e  s ta n d a r d  parse  tree:

NP1 N0UN1* "geometry"
VERB 1* If * fl

I S

NP2 DETP1 ADJ1* "a"
AJP1 AVPl ADV1* 

ADJ2* "old"
N0UN2* f t . »» science

PUNC1 »» ii

Figure 2. Parse tree for the same sentence

Note that the start node presents the value of the SFGTYP2 attribute from Fig. I, plus a number 
(each node is numbered for easy reference). The other, fairly standard, node names are the values 
of the SCGTYP2 attributes in their corresponding records. Trees are produced by a routine that 
uses just five attributes from the record structure: PRMODS, I IFAD, PSMOOS, SFGTYP2, and 
STR. Since such a tree is conventionally said to depict phrase- or constitucnt-structurc, it might 
be said that these five attributes make up the constituent structure for the parse.

More than constituent structure is contained in the records, however. During the operation of the 
grammar rules, attributes arc assigned that point to subject, object, indirect objcct, predicate 
nominative, etc. In other parlance, these might be assigned by "...a function that goes from the 
nodes of a tree into f-structure space" (Kaplan 1985, p. II). Figure I shows two examples, SUB­
JECT and PRFDNOM. Such attributes, and their values, could be said to present the functional 
structure. The TOPIC of the sentence is also computed, based on some exploratory work done in 
Davison 1984. Other attributes will be added during further processing, and these attributes will 
define higher levels of analysis. Progress in the analysis seems not to involve jumping between 
levels, but rather a smooth accumulation (and sometimes an erasing) of attributes and values.

Now, some people might object that the same analysis could be obtained by using subcategori­
zation frames (together, perhaps, with sclcctional features on NPs), cither as conditions on the rules 
or, within a lexicalist framework, as statements within the dictionary, to be honored by the rules. 
According to this way of thinking, we would control multiple parses by exercising valency infor­
mation, not by ignoring it. From experience, we have found this to be a dangerous path, for several 
reasons. The most forceful reason is that real text (at least, real FngJish text) just does not behave 
in the well-disciplined fashion that such specifications would require. If we really want to do 
broad-coverage parsing, then we have to be prepared for many imaginative uses of words to occur; 
and strict subcategorization docs not allow for that.

Strict subcategorization cxpccts, for example, that verbs will occur in well-defined contexts. "Give" 
should be cither transitive or ditransitivc, surely not intransitive. Hut what about the sentence I 
gave at the office"? It's no good saying that there is an "understood" NP; if the computational 
grammar depends on the prcscncc of at least one objcct in contcxt, then this sentence will fail to 
parse. And even though there arc subcatcgorizational differences between "go" and "know" (by our 
own earlier definitions), it is possible to use go" with a //^/-complement, as in:

I said, no. And then he goes, "See you later."

or with a w/i-complcmcnt, as in:

We'll go whatever amount (i.e., bail) is necessary.

These real-life facts of language tend in one direction: stated in extreme form, any word can, and 
might, be used in any contcxt. Rut to mark every verb in the tcxicon with every possible subcat-
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go(NOUN SING)
go(VFRB COPL INF PLUR PRFS I RAN)

The first definition of "go," as a SINGular NOUN, collapses’two difTcrent noun entries for "go" in 
W7. One is the Japanese game; the other has seven subsenses, including 'the act or manner of 
going"; 'the height of fashion"; etc. The definition of "go" as a VF.RB collapses 19 intransitive or 
COPLulative senses (e.g., "to go crazy"), and six TRANsitivc senses (e.g., to eo his wav," "to 20 
bail for").

TTie word "Tcnow" also has two entries: 

know(NOUN SING)
know(VF,RB INF NPTOV PLUR PRFS TTIATCOMP I RAN WIICOMP)

This means that "know" can he a singular noun ("in the know") or a verb. If it is a verb, besides 
being INFinitive, PLURal, and PRFSent, it might he expected, with fair frequency, to have one 
of the following complementation types:

NPTOV: We know him to he a good man.
TIIATCOMP: We know that he is here.
TRAN: We know him.
WIICOMP: We know what he wants.

The great advantage to this collapsing strategy (affectionately known as "smooshing") is that it helps 
to avoid multiple parses in a simple, straightforward way. And this is no trivial accomplishment: 
a broad-coverage, bottom-up parallel parser can easily strangle on proliferating parses. With simple 
lexical information, however, we can expect a manageable number of parses, even in the worst case. 
We aim for a single parse that carries forward all of the necessary data. We like to think of this as 
a syntactic sketch; we have also called it an "approximate parse. The techniques for writing this 
kind of grammar are varied, and use all sorts of syntactic and morphological hooks. We can exploit 
the presence of valency features, but we try to blunt their force, using them to favor one situation 
over another, rather than as strict necessary conditions for the success of a certain rule.

The result of the operation of PFG's augmented phrase structure rules, coupled with the stream­
lined lexicon just described, is an attribute-value data structure (in PI NI P terms, a "record struc­
ture"). Here is a somewhat pared-down example of the top-level record produced from the simple 
input sentence, "Geometry is a very old science":

SEGTYPE ’SENT'
SEGTYP2 'DECL1
STR " geometry is a very old science"
RULES 4000 4080 5080 7200
BASE 'BE'
POS VERB
INDIC SING PRES COPL PERS3
PRMODS NP1 "geometry"
HEAD VERB1 "is"
PSMODS NP2 "a very old science"
PSMODS PUNC1
SUBJECT NP1 "geometry"
PREDNOM NP2 "a very old science"
TOPIC NP1 "geometry"

Figure 1. PI,NLP record for "Geometry is a very old

Attribute names are in the left-hand column; their values arc to the right. The attributes 
SFG I YPF and SFGTYP2 refer to different labelings of the topmost node; S I R has as its value 
the character string covered by this node; and RUI.FS contains a list of rule numbers, a deriva­
tional history for the parse at this level. POS indicates the possible parts of speech of the BASF,; 
the INDIC ator features arc fairly self-explanatory. Most of the values in Fig. I are actually pointers
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Fhe question mark indicates doubt about the acceptability of the coordinate NP inside PP5: 'the 
river Nile and the consequent destroying of the boundaries of farm lands.'' Should NP4, "the 
consequent destroying..,'' be and-eel with NP2, "the river Nile," or with the NP in PP3, "the annual 
overflow../'?

Question marks are placed at various points in the parse tree by a routine that is sensitive to 
problematic constructions in English. We could have produced two separate analyses; but, given 
the large number of such attachment situations, this approach would have led straight to the fatal 
trap of proliferating parses. The question marks, in effect, collapse different possible parses, and 
allow for efficient handling of ambiguities (Jensen 1986, pp. 22-2.1).

Human readers of the sentence will not hesitate to say that the NP attachment shown in PP3 of 
Figure 3 is not the intended one; the attachment indicated by the question mark is what we want. 
Our problem is how to enable the computer to determine that.

Tlie sort of information that enables the right decision to be made, in this and similar cases, gen­
erally falls under the rubric of "background or commonscnsc knowledge. I he usual method for 
making such knowledge available to a computer program has been to hand-codc the relevant con­
cepts, in whatever format. Although some hand-coding will undoubtedly be nccessary and valu­
able, we approach the problem from another angle.

Written text is itself a rich source of information. It can be viewed as a knowledge base; the lan­
guage that it is written in, even though this is a natural language, is a knowledge representation 
language. In particular, reference works like dictionaries actually contain a storehouse of 
commonscnse knowledge. We can parse the entries in an online dictionary with a syntactic gram­
mar. and retrieve a surprising amount of the information that is nccessary to resolve syntactic am­
biguities, like the one displayed in l;ig. 3 (Hinot and Jensen 1087, Jensen and Binot 1088).

I he problem presented in Fig. 3 reduces to a question: which of the following pairs is more likely?

■ overflow and destroying
• Nile and destroying

Hearing in mind the old adage that likes conjoin," we will consider that pair more likely whose 
terms can be more easily related through dictionary entries -- including both definitions arid exam­
ple sentences. (Das Gupta 1087 also uses dictionary entries for interpreting conjoined words.)

Decisions on where to start these search procedures will ultimately be important, but here we avoid 
them. Assume that we start with the first pair, first word. The noun definition for "overflow'' in 
W7 begins:

overflow...n 1: a flowing over: INUNDATION

Here "inundation" is asserted to be a synonym for "overflow." I he noun "inundation" has no de­
finition of its own, but is merely listed under the verb "inundate

inundate...vt...: to cover with a flood: OVFRFI.OW

Ihe circularity of the synonym definitions is no problem, bccausc now we can infer something new 
about "overflow ": it involves the act of covering by means of a flood. I he definition of "flood" in 
W7 is not much help, but in LDOCE, the first example sentence quoted in the entry for the noun 
"flood," when analyzed by PEG, takes us right where wc want to go:

flood..n... I... I he town was destroyed by the floods after the storm.

Focusing on only the relevant information, these dictionary entries present a small part of a con­
ceptual network:
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egorization frame would be absurd, of course. And to add some sort of 'recovery ' procedures into 
the grammar would be costly. The most sensible way to regard subcategorization (valency frames) 
is as codified frequency information. A verb that is marked transitive is quite frequently used in its 
transitive sense -- that's all.

This docs not mean that we ignore the semantic implications of valencies. On the contrary, what 
we do is postpone the differentiation of word senses until after the initial syntactic sketch is com­
pleted. This strategy allows us to get our hands on any input string, assign it some (reasonable, 
we hope) structure, and then interpret the input, whatever it might be. Before making the inter­
pretation, however, the parse may have to pass through the rcattachmcnt component.

2. Semantic readjustment

No matter how clever the grammarian's exploitation of word order, word class, and morphological 
hooks is, there are many analyses in Fnglish that just will not yield a correct analysis from syntax 
alone. Among these are the correct attachment of prepositional phrases and of relative and other 
embedded clauses; the optimal structure of complex noun phrases; and the degree of structural 
ambiguity exhibited by coordinated elements (Langendocn, p.c.). There arc no markers, in Rnglish, 
that serve to disambiguate these constructions; the plain fact is that semantic (or even broader, 
contextual) information is required.

Consider the following parse, summarized in Pig. 3 by its tree structure. Where the correct structure 
cannot be determined by syntax, attachment is arbitrarily made to the closest available node, en­
couraging right branching.

DECL2 NP6

VERB2*
AJP1

DETP7 
NOUN9* 
PP1

was
ADJ3*
PP3

ADJ1* » » . ! _ .  t f  this
re-measuring

PP2 PREP1* "of"
DETP2 ADJ2* "the"
NOUN 1* "land"
f t f tnecessary
PP4 PREP2* "due to r t

DETP3 ADJ4* "the"
AJP2 ADJ5* f t  -Iannual i t

N0UN2* t » f i I Ioverflow
PP5 PP6 PREP3* f t  r f f  of

NP2 DETP4 ADJ6* t f .  i  t t  the
NP3 NOUN3* f t  . t t  river
N0UN4* ffKT • 1 11Nile

? C0NJ1* f f  , 11 and
NP4 DETP5 ADJ7* "the"

AJP3 ADJ8* i t  , i t  consequent
NOUNS* t i i  . «» destroying
PP7 PP8 PREP4* "of"

DETP6 ADJ9* "the"
N0UN6* "boundaries"
PP9 PP10 PREP5*

NP5 N0UN7*
N0UN8* "lands

»» c Itof 
(f c  f farm

PUNC1

I igur e V I’ a rs c  tree f o r  a s e n t e n c e  w i t h  s t r uct ur a l  a m b i g u i t y
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We have not yet implemented this particular disambiguation, although it is similar to work reported 
on in Jensen and Binot 1087. Many technical issues remain to be investigated. Tor one example, 
there is the problem of how to combine two (or more) dictionaries -- in this case, W7 and I .IXXT, 
-  in a way that allows for efficient access to, and processing of, all the information that they con­
tain. We want to set such problems aside for the moment, and assume that they will be solved. 
The point is that vast, rich, and potentially rewarding networks of information exist in written text, 
and much of that information is of the hitherto elusive "commonsensc sort.

1 his is our second dictionary access. The amount of information available at this stage of proc­
essing is immense and complexly structured. It is, needless to say, much greater than what is af­
forded by any of the current lexicalist frameworks. It avoids the pitfalls of straight hand-coding -  
incompleteness, and time required -- and it points to a new wav of looking at knowlcdcc bases. 
The prospect of a system that uses natural language in order to understand natural language is 
pleasingly recursive. Words may yet prove to be the most adequate knowledge representation tools.

3. The paragraph as a discourse unit

Beyond the semantic readjustment component lies the whole world of connected text processing. 
This area is generally referred to as "discourse/' We take the paragraph (loosely defined) to be the 
first formal unit of discourse. It is the smallest reasonable domain of anaphora resolution, and the 
smallest domain in which topic and coherence can be reliably defined (Zadrozny and .lenscn 1989, 
p. 1, pp. 4(T).

The sentences in Figures 2 and 3 are actually part of a paragraph taken from a reading compre­
hension exercise in a well-known scries used by countlcss prospective collcgc students who want 
to prepare for the standard Scholastic Aptitude l'cst (Brownstein et al. I()87, pp. 144-5). Here is 
the complete text:

Geometry is a very old science. We are told by Herodotus, a Greek historian, that geometry 
had its origin in Fgypt along the banks of the river Nile. The first record we have of its study 
is found in a manuscript written by .Ahmcs, an Fgyptian scholar, about 1550 B .C .  This 
manuscript is believed to be a copy of a treatise which dated back probably more than a 
thousand years, and describes the use of geometry at that time in a very crude form of sur­
veying or measurement. In fact, geometry, which means "earth measurement," received its 
name in this manner. ITiis re-measuring of the land was necessary due to the annual overflow 
of the river Nile and the consequent destroying of the boundaries of farm lands. This early 
geometry was very largely a list of rules or formulas for finding the areas of plane figures. 
Many of these rules were inaccurate, but, in the main, they were fairly satisfactory.

Figure 6. Paragraph from Barron 'a,flow to prepare for the S A T

I’FG parse trees for the paragraph in Fig. <S, sentence by sentence, are presented in Appendix A.

If we arc going to make discourse sense of this text, however, we n^cd something more than a linear 
concatenation of syntactic sentence parses -- just as, in order to make syntactic sense out of a sen­
tence, w e  need something more than a linear concatenation of w o r d s .  A  popular and effective way 
of modeling this non-linear set of sentence relationships is as a network with nodes connected by 
arcs (e.g., Sowa 1984). We can label the nodes with content words and the arcs with function (or 
relation) names, for a simple beginning. For now, we use a fairly intuitive set of relation names, 
rather than take the time to explain precisely how each arc gets labeled.

I he basic network for one sentence derives not directly from the surface syntactic structure, but 
from the underlying prcdicatc-argumcnt structure, which itself is derived from the surface structure, 
after all necessary readjustments have been made (Jensen forthcoming). Here is a network repre­
sentation, or model, for the first sentence in the geometry paragraph:
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Figure 4. Network connecting "overflow" to 'destroying 

and the path from "overflow" to "destroying" is clear in three steps

Any attempt to connect "Nile'' with destroying" is bound lo take longer. We can link "'Nile'' with 
"river" (this link is actually present in W7, in the Pronouncing (n/cttcer); but we still have to get 
from "river'' to "water," and then from "water" to "flood," and from flood" to "destroy'' (a total of 
four steps). The link between "water" and "flood" is also likely to incur a penalty, ; ince moving 
from "water" to flood" is difficult (i.e., flood" docs not appear in the definition of water"), al­
though moving in the reverse direction is easy ("water' docs appear in the definition of "flood "). 
On this basis, we can revise the analysis of the sentence in I ig. * to reflect the more likely coordi­
nate structure:

DECL2 NP6

VERB2*
AJP1

DETP7
N0UN9*
PP1

was
ADJ3*
PP3

ADJ1* "this" 
"re-measuring" 
PP2 PREP 1* 
DETP2 ADJ2* 
N0UN1* "land"

necessary
PP4
NP2

CCJNJ1*
NP5

PREP2*
DETP3
AJP2
N0UN2*
PP5

"and" 
DETP5 
AJP3 
NOUN5* 
PP7

"of"
"the"

"due to"
ADJ4* "the" 
ADJ5* "annual" 
"overflow"
PP6 
NP3

PREP3* "of"
DETP4 ADJ6* "the"
NP4 N0UN3* "river’
N0UN4* "Nile"

ADJ7- "the"
AD.J8* "consequent"
Mi , . IIdestroying 
PP8 PREP4* "of"
DETP6 ADJ9* "the"
N0UN6* "boundaries"
PP9 PP10 PREPS* "of"

NP6 N0UN7* "farm"
N0UN8* "lands"

PUNC1

ligure 5. Readjusted parse for sentence in l :igure
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In order to build the link between "necessary" and "geometry," we have to know that "re-measuring 
of the land" is a paraphrase for "geometry." We are told that "earth measurement" is a synonym 
for "geometry" in the fifth sentence. Syntax allows us to say that "NOON measurement" and 
"measurement of NOUN" arc possible equals. If we can establish that "earth measurement" and 
land re-measuring" arc equals, then the problem is solved. "Measurement" and "re-measuring" are 
transparently related, so the problem reduces to finding a link between "earth" and "land."

This, of course, is quite 5asy to find in dictionaries and thesauri. In LDOCE, one definition of 
"earth" contains land" as a synonym, and vice versa (actually, the first four definitions for "land' 
contain the word "earth" in a critical position in the parse). Similar conditions exist in W7. Roget's 
Thesaurus (RT) lists "land" as a synonym for "earth" and "earth" as a synonym for "land." Q.E.D.

The intended purpose for paragraphs like the one we have been playing with, of course, is to test 
a reader's comprehension ability by requiring sensible answers to questions based on the informa­
tion in the paragraph. In Brownstcin et al., the first tcM conccrning our paragraph is

(1) The title below that best expresses the ideas of this passage is

and the possible solutions are

(A) Plane Figures
(B) Beginnings of Geometry
(C) Manuscript of Ahmes
(D) Surveying in E;,gypt
(E) Importance of the Study of Geometry

It-is tempting to ask whether a program that is able to build and manipulate the P-modcl in Fig. 
8 could also answer (I) successfully
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Figure 7. A network representation for "Geometry is a very old science"

To build a model for an entire paragraph (a P-modcl), the trick now is to map the network for each 
consecutive sentence onto the network for the prcccding sentence or sentences, joining nodes 
whenever possible. Stated simply, nodes can be joined when they mean the same thing. To a first 
approximation, sameness of meaning can be defined by:

1. use of the same word;
2. use of a synonym or paraphrase;
3. use of a pronoun reference;
4. use of zero anaphora (e.g., ellipsis in coordination).

Identification of "same word" is easy enough, and syntax will suffice to determine the referents for 
most cases of zero anaphora, and for many pronouns. However, there arc also many pronoun 
referents that cannot be syntactically resolved, and nothing in syntax will identify synonyms and 
paraphrases. This fact has prevented the development of a formal discourse model (Hond and 
Haves 1983, p. 16).

For a solution to the problems of pronoun reference and synonym identification, wc turn again to 
reference works written in natural language. Dictionaries and thesauri are full of such information.

Here is part of the model that can be built for the paragraph in Fig. 6 It includes information from 
only the first, second, fifth, and sixth sentences in that paragraph. Fven so, many details have been 
left out:
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• Each component makes its own dictionary access or accesses, and the dictionaries associated 
with different components will differ in the type and amount of information they contain.

• The written text of standard reference works is used as a repository for much of the background 
or commonsense knowledge that is necessary to solve many analysis problems. This know­
ledge base can be accessed with the syntactic parser that forms one component of the system.
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Without going into any formal explanation of topic definition, let’s assume that we can identify the 
node labeled "geometry" as the main idea, or topic, of the paragraph. (Note that it occupies a 
central position in the network.) So we discard all possible answers to (I) except for those that 
contain the word "geometry." This leaves us with two candidates. (B) and (f:). We then search the 
graph around the "geometry" node, looking for related nodes that express either "beginnings" or 
"importance of the study of." The latter alternative is not easy to find. But the "origin'' node can 
be immediately identified with "beginnings." In W7, the entry for beginning" has "origin" as a 
synonym, and the second sense definition for "origin" is 'rise, heginning, or derivation from a 
source..." Furthermore, origin" and "beginning" arc mutual synonyms in RT.

Resolving the referent for the possessive pronoun "its" in the second sentence of our test paragraph 
allQwed us to draw the arc between the "geometry" and "origin" nodes in Fig. 8, which we now la­
bel:

Figure (). Network for the answer to (I)

In this subgraph, the preferred answer to question (1) is clear: the title that best expresses the ideas 
in the test passage is (B), Beginnings of Geometry."

Obviously a tremendous amount of important detail has been left out in order to produce this 
blueprint for a formal model of a discourse unit. The challenges of implementation lie ahead. But 
the general structure seems promising, and most promising of all is the possibility of finding a re­
pository of background knowledge, already coded for us. in online natural language sources.

Here is another comprehension question on the same paragraph:

(2) It can be inferred that one of the most important factors in the development of geometry as a 
science was

An answer must be picked from the following alternatives:

(A) Ahmes' treatise
(B) the inaccuracy of the early rules and formulas
(C) the annual flooding of the Nile Valley
(D) the destruction of farm crops by the Nile
(F) an ancient manuscript copied by Ahmes

We suggest that the preferred answer to (2) can also bo found by using the I’-modcl in Fig. S, in 
conjunction with a good dictionary and thesaurus; and we leave this as an exercise for the interested 
reader.

4. Conclusion

1 his paper contains an overview of our broad-coverage NI, analysis system, including components 
that already exist, that are currently being worked on, and that arc projected for the future. Some 
aspects of our system that differentiate it from other NI, analysis systems are

• It is not modeled along the lines of any currently accepted linguistic theory; rather it is highly 
experimental and data-driven.

• Separate components are emerging from this experimental process; they coincidc roughly with 
the accepted linguistic levels: syntax, semantics, discourse.

PO 55
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Sentence  3:

DECL1 NP1 DETP1 ADJ1* "the"
AJP1 ADJ2* "first"
N0UN1* "record"
RELCL1 NP2 PRON1* "we"

VERB1* "have"
PP1 PP2 PREP 1* "of"

DETP2 ADJ3* "its"
NOUN2* "study"

AUXP1 VERB2* "is"
VERB3* "found"
PP3 PP4 PREP2* "in"

DETP3 ADJ4* "a"
N0UN3* "manuscript"
PTPRTCL1VERB4* "written"

? ? PP5 PP6 PREP3* "by"
N0UN4* "Ahmes"
PUNC1
NAPP0S1 DETP4 ADJ5* "an"

NP3 N0UN5* "Egyptian"
N0UN6* "scholar"
PUNC2

? ? ? ? PP7 PP8 PREP4* "about”
YEAR1* "1550"
LABEL1 N0UN7* "B.C."

PUNC3
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Appendix A

Sentence 1:

DECL1 NP1 N0UN1* M , itgeometry
VERB 1* II . If

I S

NP2 DETP1 ADJ1* "a"
AJP1 AVP1 ADVI* if it very

ADJ2* "old"
NOUN2* tt . ft science

PUNC1 it if

Sentence 2: 

DEC LI NP1 PRON1* t t  t t  we
AUXP1 VERB 1* • t  _  i t  are
VERB2* "told"
PP1 PP2 PREP1* I f ,  ftby

N0UN1* "Herodotus"
PUNC1 ft tf 

J
NAPP0S1 DETP1 ADJ1* "a"

NP2 N0UN2* "Greek1
N0UN3* t t i  , . i t  historian
PUNC2 ft ft

VP1 C0MPL1 "that"
NP3 N0UN4* ft . ft geometry
VERB3* "had"
NP4 DETP2 ADJ2* ft . . tt its

NOUN5* "origin ft

? PP3 PP4
NOUN6*

PREP2*
"Egypt1

? ? PP5 PP6
DETP3
N0UN7*
PP7

in

PREP3* "along”
ADJ3* "the"
"banks"
PP8 PREP4* "of" 
DETP4 ADJ4* "the" 
NPS N0UN8* "river’ 
N0UN9* "Nile"

PUNC3
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Sentence  5:

PP1 PP2
N0UN1*
PUNCl

PREP1*
II r  .11f a c t  
f f  »!

9

it . it i n

NP1 N0UN2* ft , ff g e o m e t r y
PUNC2 ff ff

y
? RELCL1 NP2

VERB 1*
PR0N1*  
it ii m e a n s

" w h i c h ”

NP3 PUNC3
NP4
N0UN4*
PUNC4

ff ft ff

N0UN3* " e a r t h "  
" m e a s u r e m e n t "
m i  i»

>
VERB2* II . ,11r e c e i v e d
NP5 DETP1

N0UN5*
A DJ1*
M  nname

i» , .  mi t s

? PP3 PP4 PREP2 * i i  . i i
m

DETP2 ADJ2* M . , . i it h i s
N0UN6* " m a n n e r m

PUNC5

S e n t e n c e  6:

DECL1 NP1 DETP1 ADJ1* f t  . t  . f t  t h i s
NOUNI* " r e - m e a s u r i n g "
PP1 PP2 PREP1* " o f "

DETP 2 ADJ2* " t h e "
N0UN2* " l a n d "

VERB1* " w as"
AJP1 AD J3* it un e c e s s a r y

PP3 PP4 PREP2* " d u e  t o f f

DETP 3 ADJ4* " t h e "
AJP2 ADJ5* a n n u a l f t

N0UN3* " o v e r f l o w "
PP5 PP6 PREP3* f t  , - f t  o f

NP2 DETP4 ADJ6* " t h e "
NP3 N0UN4* it , Mr i v e r
N0UN5* l » v t  • 1 I IN i l e

? C 0 N J1* " a n d "
NP4 DETP5 ADJ7* " t h e "

AJP3 A DJ8* " c o n s e q u e n t "
N0UN6* i i ,  , . Md e s t r o y i n g
PP7 PP8 PREP4* " o f "

DETP6 AD J9* " t h e "
NOUN7* " b o u n d a r i e s "
PP9 P P 10  PREPS*

NP5 N0UN8*
N0UN9* " l a n d s

PUNCl " . "

" o f "
"farm"
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Se ntence  4:

DECL1 NP1 DETP1 ADJ1* i i . ii t h i s
N0UN1* n , .itm a n u s c r i p t

VP1 AUXP1 VERB1* u . iti s
VERB2 * " b e l i e v e d "
INFCL1 INFTOl

VERB3*
NP2

" t o "
" b e"
DETP2
N0UN2*
PPI

" p r o b a b l y "

" t h a n "

" a  t h o u s a n d "

C 0N J1*  " a n d "
VP2 VERB5* " d e s c r i b e s "

ADJ2* it it a
m itc o p y
PP2 PREP 1* " o f "
DETP3 ADJ 3* "a"
N0UN3* it. , . it t r e a t i s e
RELCL1 NP3 PR0N1* " w h ic h "

VERB4* " d a t e d "
AVP1 ADV1* " b a c k "
AVP2 AVP3 ADV2*

ADV3* " m ore"
PP3 PP4 PREP2*

QUANP1 A DJ4*

N0UN4* " y e a r s '  
PUNC1 " "

NP4 DETP4
N0UN5*

ADJ5*
M I tu s e

" t h e "

PP5 PP6 PREP3* ff r - Ho f
N0UN6* i t  . ug e o m e t r y

. . t t  t i m e? ? PP7 AVP4 ADV4* " a t  t h a t
? ? ? PP8

DETP5
PREP4*
ADJ6*

ft . ft 
m

"a"
AJP1 AVP5

ADJ7*
ADV5* 
ft i tt c r u d e

t t  t t  v e r y

NOUN7* i t  c  i » fo r m
PP9 P P 10

NP5
PREP5*
N0UN8*

t t  f i t  o f
" s u r v e y i n g "

? ? ? C 0 N J2*
NP6

i t  t t  o r
N0UN9* " m e a s u r e m e n t "

PUNC2
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Sentence  7:

DECL1 NP1

VERB1*
AVPl

NP2

ADJ1* "this" 
ADJ2* "early”
r* . iigeometry

ADV1* "very' 
"largely" 
ADJ3* "a"

DETP1
AJP1
N0UN1* 
f t  ?» was
AVP2
ADV2*
DETP2
NOUN2* "list"
PP1 PP2 PREP1* "of"

NP3 N0UN3* "rules"
C0NJ1* "or"
NP4 N0UN4* "formulas"

? PP3 PREP2 "for"
VERB2* "finding"
NP5 DETP3 ADJ4* "the"

N0UN5* "areas"
PP4 PP5 PREP3* 

AJP2 ADJ5* 
NOUN6* "figures

"of"
"plane"

PUNC1

Sentence 8:

CMPD1 DECLI NP1 QUANP1 ADJ1* II ,-lfmany of
DETP1 ADJ2* "these"
N0UN1* ft -1 1 rules i t

VERB1* t t  i t  were
AJP1 ADJ3* "inaccurate"

PUNC1 ft ft>
C0NJ1* C0NJ2*

PUNC2
"but"
If »t 

9

DECL2 PP1 PP2 PREP1* I t  . I Im
DETP2 ADJ4* i i . ,  i tthe
NOUN2* It _  . Itm a in
PUNC3 tt tt 

9

? NP2
VERB2*

PRON1* 
tt tt were

"they"

AJP2 AVPl ADV1* • i f  . i  i t  fairly
ADJ5* "satisfactory"

PUNC4 t i  i t
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c) Figure 3 shows three performance curves as follows.

(i)Figre 3 (A) maps size of the polarizeddata base as a 
percentage of the original data base alng the Y axis as the structure of the 
data base is varied from fully structured to free form along the X axis for a 
constant data base size.

(ii) Figure 3 (B) maps size of the polarized data base along the Y 
axis as a function of the size of the original data base along the x axis for a 
data base of contstant structure.

(ill) Figure 3 (C) shows access time above a certain threshold is 
independent of the size of the original data base.

P S E U D O - P ARSING A L G O R I T H M

The Pseudo-parsing S W I F T -  A N S W E R  algorithm of this invention 
comprises the -following steps.

a) Separation of a natural language text into senteneces , phrases and
words.

b) Separation of Words into non-context and context words.

c) Separation of non-context words into noise words such as 
pronouns and prepositions a n d c o m m o n  words such as C o m m o n  words 
appearing too frequently in a file or data base.

d) Alphabetizing all context words.

e) Mapping frequency and location of all non-contex t words with 
respect to source data original files.

NOTE: The above mentioned five steps of the Pseudo parsing 
algorithm are applied to the natural language unstructred files in the batch 
mod e  and then again to the spontaneous convoluted questions in the real 
time mode.

f) performing mathematical operations such as taking highest 
c o m m o n  factor and lowest c o m m o n  mu ltiple of the statistical information 
that correponds to context words in the question.

-443- International Parsing Workshop ’89



PSEUDO PARSING S W I F T - A N S W E R  A L G O R I T H M
b y

(c) S Pal Asija 19 8 9 
Patent Attorney & Professional Engineer 
7 Woonsocket Ave , Shelton, Conn. 06484 

PH: (203)-736-9934 or 736-0774

INT R O D U C TION

Pseudo parsing S W I F T - A N S W E R  algorithm is a subset of patented 
( 4 , 270 , 182) S W I FT - A N W E R algorithm which is based on the firstpure 
software algorithm patent ever issued anywhere in the world. It is also a 
federal Trademark registered in the principal register of the Unites States 
Patent and Trademark Office. It isan acronym which stands for Special 
W or d Index Full Tex t A1 ph a Numeric Storage With Easy Retrieval. It is 
called Pseudo parsing because it deviates substantially from conventional 
parsing algorithms, even though itaccomplishes confusingly similar 
objectives. It isnot a software package nor a key word search system.

NOT A K E Y W O R D  S Y STEM

Some AI(Artificial Intelligence) experts and computational linguists 
have erroneously perceived this system as a keyword system and 
therefore have evaluated and crticized itas such. But in reality it is not a 
keyword system. In fact the system never asks the user for the r -ywords. 
Keywords if a n y are automatically created and managed by this system. It 
is strictly internal to the system and therefore completely transparent to 
the user.

Just as in h u ma n t o h u m a n  communications in this h u ma n / ma c h i n e 
communication system also, neither the machine nor the h u m a n  being is 
conscious of any keywords. W h e n  you ask a h u ma n  being a question he or 
she does not ask you for key words, even t ho ugh the respondant may 
subconsciously select and use some keywords to properly respond to you. 
Just as the user does not care what the subconscious of the respondant 
does , the user also does not care what the internal software of the system 
does to properly respond to the users communications.

BRIEF DESCRIPTION OF THE D R A W I N G

a) Figure 1 shows the program flow chart of the S W I F T - A N S W E R  
algorithm.

b) Figure 2 shows the S W I F T - A N S W E R  Data Flo Diagram.
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This unique algorithm creates the illusion of artificial intelligence 
without even using a conventional "Spell-Check” dictionary let alone 
spoon feeding rules of parsing, grammar, programming and knowledge of 
the world. The artificial intelligence if any in this system is inherent in the 
structure of the algorithm which makes it ind e pe nd en t of the knowledge 
domanin of the data base.

FIVE PAHS E ALGOR IT HM

a) Installation phase during which the computer asks you a series of 
q ues t ions to get toknow your computer environment and your 
applicational needs including your data bases , so that itcan load 
appropriate operating system, interface mod ul es and drivers.

b) Batch Phase during which the algorithm pre-processes each file 
specified in phase (a) and extracts certain things from them.

c) Real Time Phase during which the same algorithm is applied to the 
question as was applied to the files in phase (b).

d) Priority phase during which the prioritizing algorithm ranks all 
possible answers without going to the data base files.

e) Presentation Phase during which the algorithm presents answers 
in the order established in the priority phase (a) supra by fetching them 
from the original files.

P O W E R F U L  A L G O R I T H M

The power of the algorithm can be traced to the following precepts 
and principles.

a) All natural languages saturate. As a language saturates and the 
data base grows larger the probability of a new word appearing goes down 
and the proabability of a repeat word goes up. The length of the index does 
not increase although volume of cross-indexing does.

b) S om e  words such as most pronouns and propositions do not mean 
m u c h  even to people let alone computers
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Note: This step in turn generates a lsitof prioritized answer which 
specified that the best answer based upon the totality of this question 
begins on disc so and so , sec to r so and so and is so man y  bytes long and 
the second best answer begins on disc so and so, sector so and so and is so 
m an y  bytes longand soon.

g) applying the user transparent boolean logic to different 
permutations and combinations of the contextwords in the question.

NOTE: The pseudo parsing iscompleted at this step. The remaining 
steps described in the patent deal with fetching and presenting the right 
answer in the right format to the user.

U N I Q U E A L G 0 R I_T H M

The algorithm isunique compared to the prior art because itisthe 
only software that responds to a users erroneous spontaneous questions 
primarily because it performs the following user transparent functions 
automatically.

a) Automatic LIUs (Logical Information Units)
b) Automatic & Unlimited Dictionary.
c) Automatic Key Words
d) Automatic Boolean Logic
e) Automatic Prioritizing of Answers
f) Automatic Fault Tolerance
g) Automatic Context Determination.
h) Automatic D B M  (DataBase Management)

Th e following functions and features are not automated.

a) Questions & Reframing of questions
b) Interpretation of Answers
c) Specification of the USER environment
d) Creation of the Unstructured Source Data Base
e) Selection of Special Features
f) Inputting of additional context de pe nda n t c o m m o n  words and 

'synonyms & antonyms' iesearchonyms.
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c) HCF (Highest C o m m o n  Factors) and LCM (Least C o m m o n  Multiple) 
of all data across dictionary words which the computer has not been pre­
told as meaningless to h u m a n beings from the question contain valuable 
information.

d) Prioritizing sub-algorithm is based on hierarchical relevence of 
decreasing order. Most relevent being the shortest LIU containing all 
words of the question most number of times closest together. The 
algorithm computes and gives starting access location an d length.

e) Faul t tolerance b y left and right shift with and without addition of 
d u m m  y characters and deletion of characters . The extent being 
proportional to the size of the wor d and the degree of fault tolerance 
specified by the user in phase (a) in para 14 supra.

f)The power of Binary Search and Boolean logic can be made user 
transparent.

g) Everything people type or put on a machine readable media 
probably means something to them notwithstanding livelydemo given 
sometimes by the inventor.

h) Syno n y m s  and antonyms both refer to the same contevt.

i) V o n - N e u m a n n  serial computer is no match for the parallel 
processing brain which is not too well understood to begin with. .

j)Most words inmost data bases and concomitant software are 
spelled correctly.

k) Its naive to think that knowledge engineers can spoonfeed 
knowledge of the universe to the computer.

100%

FULLY STRUCTURE FREE SIZE OF ORIGINAL DATA BASE SIZE OF ORIGINAL DATA BASE
STRUCTURED FORM

Figure 3
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which will be clarified, in Sect. 3 belou) the type of 
representations characterized till now, ue present in Fig. 1 
an underlying representation of the sentence (1).

(1) In August, a seminar on parsing technologies will 
be organized by CMU in Pittsburgh.

seminar-Specif-Sing Pittsburgh-in-Def-Sing

pars i ng

Fig. 1

2.2 A dependency oriented account of s y n t a c t i c (o - s e m a n t i c ) 
relations offers a rather straightforward way for a 
formulation of a lexically-driven parsing procedure, since a 
great part of the relevant information is projected from the 
frames belonging to the lexical entries of the heads. In the 
description ue subscribe to, valency slots are not 
understood just in the sense of obligatory or regular kinds 
of complementation, but are classified into
(i) inner participants (theta roles, each of which can be 
present at most once with a single head token) and free 
mod if icat i o n s ;
(ii) obligatory and optional; this distinction can be made 
with both kinds of complementations quoted under (i) 
depending on the specific heads.

As for (i), five inner participants are being 
distinguished (for motivation, see Panevova, 1974; Hajicova 
and Panevova, 1984), namely deep subject (Actor), deep 
object (Patient, Objective), Addressee, Origin (Source) and 
Effect; among free modifications, there belong Instrument, 
Locative, Directional, Manner, several temporal adverbials, 
adverbials of cause, condition, regard, General
relationship, etc. As for (ii), an operational test was 
formulated that helps to determine which of the
complementations with a given lexical head is obligatory 
(although perhaps deletable) and which is optional; the test 
is based on judgements on the coherence of a simple dialogue
(see Panevova, 1974).

Both (i) and (ii) are reflected in the valency frames 
of individual lexical entries in the lexicon. Thus, e.g., 
for the verb t o  c h a n g e ,  the valency frame consists of two 
obligatory slots for Actor and Objective, two optional slots 
for Source and Effect (to c h a n g e  s o m e t h i n g  f rom s o m e t h i n g
i n t o  s o m e t h i n g ) and a list of free modifications, which can
be stated once for all the verbs. If one of the free
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A D e p e n d e n c y - B a s e d  P a r s e r  f o r  T o p i c  a n d  F o c u s

Eva Haj icova 
Faculty of Mathematics and Physics 

Charles University 
Halostranske n. 25 

118 00 Praha 1 
C z e c h o s 1ovak i a

1. Introduction

A deepened interest in the study of suprasegmental 
features of utterances invoked by increasing attempts at a 
build-up of algorithms for speech recognition and synthesis 
quite naturally turned attention of the researchers to the 
linguistic phenomena known for decades under the terms of 
theme-rheme, t o p i c - c o m m e n t , topic-focus. In the present 
paper ue propose a linguistic procedure for parsing 
utterances in a "free word order" language, the resulting 
structure of which is a labelled M-rooted tree that 
represents (one of) the (literal) meaning(s) of the parsed 
utterance. Main attention will be paid to the written fora 
of language; however, due regard will be also paid to (at 
least some of) the suprasegmental features and additional 
remarks will be made with respect to parsing strategies for 
written and spoken English.

2. Dependency-Based Output Structures

2.1. The procedure is based on the linguistic theory of 
functional generative description as proposed by Sgall (cf. 
Sgall, 1964,1967; Sgall et al., 1986). The representation of 
the meaning(s) of the sentence - i.e. the output of the 
analysis - is a projective rooted tree with the root 
labelled by a complex symbol of a verb and its daughter 
nodes by those of the complementations of the verb, i.e. 
participants (or - in another terminology - the cases, 
theta-roles, valency ), as well as adverbials. The relation 
between the governor (the verb) and the dependants (its 
daughter nodes) is a kind of dependency between the two 
nodes. The complementations of the daughter nodes (and their 
respective complementations, etc.) are again connected with 
their governors by an edge labelled by a type of dependency 
relation. The top-down dimension of the tree thus reflects 
the structural characteristics of the sentences. The left- 
to-right dimension represents the deep word order, see Sect.
3 below. Structures with coordination may be then 
represented by complex dependency structures (no longer of a 
tree character) with a third dimension added to the tree 
structure (Piatek, Sgall and Sgall, 1984), or, 
alternatively, nodes of quite special properties can be 
added to the tree itself (M o c k o r o v a , 1989). Such a type of 
description can dispense with problems of constituency and 
"spurious" ambiguity and offers an effective and economic 
way of representing sentence meaning.

To illustrate (with several simplifications, some of
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(3)(a) I do linguistics on Sa.nda.ys.
( 3 ) ( b ) On Sundays, I do I i ngu i s  t  i c s .

In the representations of meaning as characterized in Sect.
2, we distinguish:

(i) contextually bound (CB) and non-bound (CN) nodes, 
where "contextually" covers both verbal co-text and 
situational context;

(ii) the dichotomy of topic and focus;
(iii) the hierarchy of communicative dynamism (deep 

word o r d e r ).
To illustrate the points (i) through (iii), let us take 

the sentence (5) if uttered after (4), as na example.
(4) Hou did John organize the books in his library?
(5) He arranged his books on nature in an alphabetic 

order in his bedroom.
(In his library, p h i 1o s o p h i c a 1 books are arranged 
c h r o n o l o g i c a l l y . )

(i) CB nodes: he, arranged, . his, books, his
NB nodes: nature, alphabetic, order, bedroom

(ii) topic: he arranged his books on nature
focus: in an alphabetic order in his bedroom

(iii)deep word order (dots stand for the modifications of
the nodes explicitly mentioned)
he - ...books... - arranged - order... - ...bedroom

3.2 The impact of the three aspects (i) through (iii) can be 
illustrated by the examples (6) through (8), respectively:

(6)(a) (You have just listened to our night concert.)
The compositions of Chopin were played by S. 
R i c h t e r .  We will devote to him also our next 
p r o g r a a a e .
him = Richter

(6)(b) (You listen to our night concert.)
C h o p i n ’s compositions were played by S. R i c h t e r .
We will devote to him also our next p r o gr am m e .  
him = Chopin

(7)(a) Staff only behind the c o u n t e r .
(7)(b ) Staff only behind the counter.
(8)(a) It was John who talked to feu girls in many 

t o w n s .
(8)(b) It was John who talked in many towns to few 

girls.
The distinction between (a) and (b) in (6) consists in 

the different preference of anaphoric use of referring 
expressions if the possible referent is mentioned in the 
previous context by an NB or a CB element (as C h o p i n in (a) 
or in (b), respectively); in both cases, the anaphoric 
elements are in the topic part of the sentence.

The sentence (7)(a) differs from (7)(b) only in that
t h e  c o u n t e r  is in the focus part of (a), while staff is in
the focus part of (b), which difference leads to a 
significant distinction in interpretation: (a) holds true if
the members of the staff are (to stay) only behind the 
counter and nowhere else, while (b) holds true if the space 
behind the counter is (to be) occupied only by the members 
of the staff; in contrast to (b), the sentence (a) holds 
true also if there is somebody else than a member of the 
staff in that space. In (7), the relevant semantic 
distinction is rendered by a different placement of the 
intonation center; in (3) above* the same effect results
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modifications is obligatory with a certain head (e.g. 
Directional with arrive, Appurtanance with b r o t h e r , Material 
uith f u l  1 ) , this has to be indicated in the valency frame of 
the relevant head. 2.3 Dependency can be operationally 
defined on the basis of endocentricity (cf. Sgall and 
Panevova, 1989, following Kulagina ,1958). If in a syntactic 
construction one of two members of the construction can be 
left out, while the other retains the distributional 
properties characteristic for the given pair, -then the 
member that can be omitted is considered to depend on the 
other: e.g., in Jim rea d a book the sentence part a book
can be omitted without the sentence losing its 
grammaticality; thus, the verb rather than t h e  book is the 
head of the construction. The set of word classes that is 
determined on independent grounds can then be used to 
identify the "direction of dependency" in other (exocentric) 
constructions: though in Jim b o u g h t a book the sentence part 
a book cannot be omitted, b u y and read are assigned a single 
word class (cn independent morphemic and syntactic criteria) 
and thus it may be postulated that b o u g h t rather than a 
book is the governor (head) of the construction b o u g h t a 
b o o k . In a similar vein, a construction such as J im re&d can 
be substituted in its syntactic position (as constituting a 
sentence) by a subjectless verb in many languages (cf. Latin 
P l u i t \  also in English I t  rains the surface subject i t  has 
no semantic value: it cannot be freely substituted by a noun
or by another pronoun and is equivalent to the Latin 
ending).

2.4 It is not our objective in the present paper to contrast 
dependency structures with those of phrase structure 
grammar. Let us only mention in conclusion of this section, 
that among the main advantages of dependency trees there is 
the relatively small number of nodes; the basic syntactic 
hierarchy can be described without any non-terminal nodes 
occurring in the representations of s e n t e n c e s ,a 1 though in 
their derivations non-terminals can be used without the 
limitations characteristic of G a i f m a n ’s approach to 
dependency. In addition, if function words are understood as 
mere grammatical morphemes having no syntactic autonomy, 
then their values can be treated as indices, i.e. parts of 
complex labels of nodes, as illustrated in Fig. 1 above. In 
this way, the component parts of syntactically autonomous 
units can be represented correctly as having other syntactic 
properties than the autonomous units themselves, and the 
representations do not get necessarily complicated.

3. The Semantic Impact of Topic-Focus Articulation

3.1 The topic-focus articulation of an utterance has an 
impact on the semantic interpretation of the given 
utterance. It is important to notice that (a) and (b) are 
two different sentences in (2) as well as in (3), though the 
semantic difference is much more important in (3) than in
(2). With (2) the two sets of propositions to which the two 
sentences correspond assign the value "true" to the sanje 
subset of possible worlds, which is not the case with (3) .
(The intonation center is denoted by italics.).

(2)(a) Mother is c o m i n g .
(2)(b) M o t h e r is coming.
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order is determined first of all by the scale of
communicative dynamism, it is evident that the former cases 
in (A) and (B) do not present so many difficulties for the 
recognition procedure as the latter cases do.

A written "sentence" corresponds, in general, to 
several spoken sentences uhich differ in the placement of 
their intonation center, cf., e.g., ex. (3) above. In 
languages with the "free" word order this fact does not
bring about serious complications with written technical 
texts, since there is a strong tendency to arrange the
sentences in such texts so that the intonation center falls 
on the last word of the sentence (if this word is not
enclitical).

4.31 A procedure for the identification of topic and focus 
in Czech written texts can then be formulated as follows (we 
use the term ’c o m p l e m e n t a t i o n ’ or ’sentence p a r t ’ to denote 
a subtree occupying the position of a participant or free 
modification as discussed in Sect. 2 above):
(i)(a) If the verb is the last word of the surface shape of 

the sentence (S S ) , it always belongs to the focus.
(i)(b). If the verb is not the last word of the SS, it 

belongs either to the topic, or to the focus.
Note: The ambiguity accounted for by the rule (i)(b) can be
partially resolved (esp. for the purposes of the practical 
systems) on the basis of the features of the verb in the 
preceding sentence: if the verb of the analyzed sentence is
identical with the verb of the preceding sentence, or if a 
relation of synonymy or meaning inclusion holds between the 
two verbs, then V belongs to the topic. Also, a semantically 
weak, general verb such as t o  b e , t o  b e c o m e , t o  c a . r r y out, 
most often can be understood as belonging to the topic. In 
other cases the primary position of the verb is in the 
f o c u s .
(ii) The complementations preceding the verb are included in 

the topic.
(iii) As for the complementations following the verb, the

boundary between topic (to the left) and focus (to the 
right) may be drawn between any two complementations, 
provided that those belonging to the focus are arranged 
in the surface word order in accordance with the
systemic ordering.

(iv) If the sentence contains a rhematizer (such as e v e n ,
aiso, o n l y ) ,  then in the primary case the
complementation following the rhematizer belongs to 
the focus and the rest of the sentence belongs to
the topic.

N o t e .  This concerns such sentences as H e r e  e v e n  a d e v i c e  o f  
t h e  f i r s t  t y p e  can b e  u s e d . ;  in a secondary case the 
rhematizer may occur in the topic,e.g., if it together with 
the sentence part in its scope is repeated from the 
preceding co-text.

4.32 Similar regularities hold or the analysis of spoken
sentences with normal intonation. However, if a non-final 
complementation carries the intonation center (IC), then

(a) the bearer of the IC belongs to the focus and all
the complementations standing after IC belong to 
the topic;

(b) rules (ii) and (iii) apply for the elements
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from a word order change.
The clefting in (8) univocally points to John as the 

focus of the sentence, the rest being its topic; the two 
sentences (a) and (b) differ as to the (deep) order of 
Locative and Addressee. This distinction again has an 
important semantic impact: with (a), there was a group of
girls who were few, and the same group was talked to in many
towns, while with (b) John talked in each of the many towns 
with (maybe) a (different) small group of girls. This
difference need not be reflected in the surface word order:
the same effect is reached by a shift of intonation center, 
see (9)(a ) and (b ).

(9)(a) John talked to few girls in many t o w n s .
(9)(b) John talked to few g i r l s  in many towns.

4. Parsing Procedure for Topic and Focus

4.1 The proposed procedure of automatic identification of
topic and focus is based on two rather strong hypotheses:
(i) the boundary between topic and focus is always placed so 
that there is such an item A in the representation of 
meaning that every item of this representation that is less 
(more) dynamic than A belongs to the topic (focus); in the 
primary case the verb meets the condition on A and is itself 
included in the focus;
(ii) the grammar of the particular language determines an
ordering of the kinds of complementations (dependency 
relations) of the verb, of the noun, etc., called ’systemic 
o r d e r i n g ’ (SO). The deep word order within focus is 
determined by this ordering; with sentences comprising 
contextually bound items, these items stand to the left in 
the hierarchy of communicative dynamism and their order
(with respect to their governors) is determined by other
factors. An examination of Czech in comparison with English 
and several other languages has led to the conclusion that 
the SO of some of the main complementations is identical for 
many languages, having the form Actor - Addressee - 
Objective, As for Instrument, Origin, Locative, it seems 
that English differs from Czech in that these three 
complementations follow Objective in English, though they 
precede it in Czech. It need not be surprising that 
languages differ in such semantically relevant details of 
their grammatical structures as those concerning SO
similarly as they appear to differ in the semantics of 
verbal aspects, of the articles, of dual number, etc.

We assume further that every sentence has a focus, 
since otherwise it would convey no information relevant for 
communication; however, there are sentences without topic.

4.2 For an automatic recognition of topic, focus and the
degrees of CD, two points are crucial:

(A) Either the input is a spoken discourse (and the
recognition procedure includes an acoustic analysis), or 
written (printed) texts are analyzed.

(B) Either the input language has (a considerable
degree of) the so-called free word order (as in Czech,
Russian, Latin, Warlpiri) or its word order is determined
mainly by the grammatical relations (as in English, French).

Since written texts usually do not indicate the 
position of intonation center and since the "free'* word
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on automatic identification of topic and focus in spoken 
utterances only the position of the intonation center; a 
question naturally arises whether other features of 
intonation patterns such as tune and phrasing (in terms of 
P i e r r e h u m b e r t ) can help as clues for sentence disambiguation 
as for its topic and focus. Schmerling (1971) was the first, 
to our knowledge, to propose that the different 
interpretations of C h o m s k y ’s ’range of permissible f o c u s ’ 
(which basically corresponds to our ’deep word o r d e r ’, see 
Hajicova and Sgall, 1975) are rendered on the surface by 
different intonation patterns; most recently, Pierrehumbert 
and Hirschberg (1989, Note 5) express a suspicion that the 
accented word in such cases (within an N P ) need not have 
the same prominence in all the interpretations; they also 
admit that similar constraints on the accenting of parts of 
a VP are even less understood.

5. Parsing Sentences in a Text

To resolve some complicated issues such as the 
ambiguity of pronominal reference, a whole co-text rather 
than a single sentence should be taken into account. Several 
heuristics have been proposed to solve this problem; e.g., 
Hobbs (1976) specifies as a common heuristics for pronominal 
resolution the determination of the antecedent on the basis 
of the h e a r e r ’s preference of the subject NP to an NP in the 
object position (in a similar vein, Sidner ,1981, in her 
basic rule tests first the possibility of co-specification 
with what she calls ’actor f o c u s ’), the other strategy 
including inferencing and factual knowledge. Following up 
our investigation of the hierarchy of activation of items of 
the stock- of knowledge shared by the speaker and the hearer 
(see Hajicova and Vrbova, 1982; Hajicova, 1987; Hoskovec, 
1989; Hajicova and Hoskovec, 1989), we maintain that also 
this hierarchy should be registered for parsing sentences in 
a text. We propose to use a partially ordered storage space, 
reflecting the changes of the activation (prominence) of the 
elements of the information shared by the speaker and the 
hearer. The rules assigning the degrees of activation after 
each utterance take into account the following factors:
(i) whether the given item was mentioned in the topic part
or in the focus part of the previous utterance: mentioning
in the focus part gives the item the highest prominence, 
mentioning in the topic part is assumed to assign a one 
degree lower activation to the given item;
(ii) grammatical means by which the given item is rendered
in the surface shape of the utterance: mentioning by means
of a (weak) pronoun gives a lower prominence than mentioning 
by means of a noun;
(iii) association with the items explicitly mentioned in the
utterance: items which are associated with the items
explicitly mentioned in the preceding utterance get a 
certain level of prominence, though lower than those 
mentioned explicitly; it is assumed that the association 
relations can be classified according to the ’c l o s e n e s s ’ of 
the items in question so that some types of associations
receive higher degrees of activation than others (e.g., is-a
relation ^s ’c l o s e r ’ in this sense than the part-of 
re 1at i o n );
(iv) non-mentioning of a previously mentioned item: an item
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standing before the bearer of the intonation 
center ;

(c) the rule (i)(b) is applied to the verb (if it does 
not carry the IC).

4.33 As for the identification of topic and focus in an
English written sentence, the situation is more complicated 
due to the fact that the surface word order is to a great 
extent determined by rules of grammar, so that intonation 
plays a more substantial role and the written form of the
sentence displays much richer ambiguity. For English texts 
from p o 1y t e c h n i c a 1 and scientific domains the rules stated 
for Czech in Sect. 4.31 should be modified in the following 
ways :
(i)(a) holds, if the surface subject of the sentence is a 

definite N P ; if the subject has an indefinite 
article, then it mostly belongs to the 
focus, and the verb to the topic; however, marginal 
cases with both subject and verb in the focus, or 
with subject (though indefinite) in t)^e topic and 
the verb in the focus are not excluded;

(i)(b) holds, including the rules of thumb contained in the 
note ;

(ii) holds, only the surface subject and a temporal 
adverbial can belong to the focus, if they do not have 
the form of definite NP ’ s ;

(iii) holds, with the following modifications:
(a) if the rightmost complementation is a local or 

temporal complementation, then it should be checked 
whether its lexical meaning is specific (its head 
being a proper name, a narrower term, or a term not 
belonging to the subject domain of the given text) 
or general (a pronoun, a broader term); in the 
former case it is probable that such a modification 
bears the IC and belongs to the focus, while in the 
latter case it rather belongs to the topic;

(b) if the verb is followed by more than one 
complementation and if the sentence final position 
is occupied by a definite NP or a pronoun, this 
rightmost complementation probably is not the 
bearer of IC and it thusfinite NP or a pronoun, this 
rightmost complementation probably is not the 
bearer of IC and it thus belongs to the topic;

(c) if (a) or (b) apply, then it is also checked which 
pair of complementations disagreeing in their word 
order with their places under systemic ordering is 
closest (from the left) to IC (i.e. to the end of 
the focus); the boundary between the (left-hand part 
of the) topic and the focus can then be drawn 
between any two complementations beginning with the 
given pair;

(i v ) ho Id s .

4.34 If a spoken sentence of English is analyzed, the 
position of IC can be determined more safely, so that it is 
easier to identify the end of the focus than with written 
sentences and the modifications to rule (iii) are no longer 
necessary. The procedure can be based on the regularities 
stated in Sect. 4.32.

Up to now, we have taken into account in our discussion
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that has been introduced into the activated part of the 
stock of shared knowledge but is not mentioned in the 
subsequent utterances loses step by step its prominence;
(v) not only the immediate degree of activation after the 
given utternace is relevant for the assignment of reference 
but also the sequence of degrees of salience from the whole 
preceding part of the text; thus if an item is being 
mentioned subsequently for several times in the topic of the
sentence, its salience is maintained on a high level and it
is more likely an antecedent for pronominal reference than 
an item that appeared in the focus part (with no prominence 
history) and received thus the highest degree of activation.

6. Concluding Remarks

Since even in such languages as English or French, 
surface word order corresponds to the scale of communicative 
dynamism to a high degree (although such grammatical means 
as passi v i z a t i o n , or the inversion of aaAe out of to a a k e  

i n t o  , etc., often are necessary here to achieve this 
correspondence), it is useful in automatic language 
processing to reflect the word order of the input at least
in its surface form. If the effects of the known surface
rules on the verb placement, on the position of adjectives, 
genitives, etc., before (or after) nouns, and so on, are 
handled, and if the items mentioned in the preceding 
utterance are stored (to help decide which expressions are 
contextually bound), then the results may be satisfactory.

N o t e s .

1 With (2) as well as with (3) the presuppositions 
triggered by (a) and (b) differ, so that different subsets 
of possible worlds get the value ’f a l s e 1 ; e.g., C 2)(b ) 
differs from (2 )(a) in presupposing that someone is coming.

2 For the solution of such cases, it again is useful to 
"remember" the lexical units contained in the preceding 
utterance, cf. the Note to (i)(b) in Sect. 4.31 above.

3 It is more exact to understand the association 
relationships in terms of natural language inferencing 
(concerning the occurrence of a single associated item) than 
in terms of the activation of the whole set of items 
associated with an occurrence of a possible ’a n t e c e d e n t ’.

4 This has been done, at least to a certain degree, in 
the experimental systems of English-to-Czech and Czech-to- 
Russian translation, implemented in Prague.

Re ferences

Hajicova, E. (1987), Focussing - A Meeting Point of 
Linguistics and Artificial Intelligence. In: Artificial
Intelligence II - Methodology, Systems, Applications (ed. 
by Ph. Jorrand and V. Sgurev), Amsterdam, 311-322.

Hajicova, E. and T. Hoskovec (1989), On Some Aspects of 
Discourse Modelling. In: Fifth Int. Conference on
Artificial Intelligence and Infor m a t i o n - C o n t r o 1 Systems 
of Robots (eds. I. Plander and J. Miklosko), Amsterdam.

Hajicova, E. and J. Panevova (1984), Valency (Case) Frames 
of Verbs. In: Sgall (1984), 147-188.

-456- ' International Parsing Workshop '89



incorporating all of the above. Ue describe the parser in the 
sections that follow.

1.1 EXISTING PARERS AND OUR APPROACH

All the implementations of GPSG reported in the literature use a 
rather straight forward approach of first expanding the entire 
rule set by using the available metarules, in the process 
augmenting the set of rules, and finally the normal context free 
parser is run on this new set of rules.

Thus there are two basic steps involved :-

1. Rule expansion using the available metarules
2. Actual parsing using the expanded set of rules.

It should be noted that in such an implementation one does not 
need to bother about the metarules after the first stage.

An inherent drawback with this approach is that if the initial 
set of rules is of sizeable cardinality, then a number of rules 
may get added to the set, (a large number of these rules may 
never get used during the actual parse of a sentence), thus not 
only causing memory storage problems, but also slowing down the 
system considerably.

The main motivation of this paper is to describe a method for 
parsing GPSG without initial expansion (i.e. our implementation 
expands metarules as and when necessary). Further, in our- 
implementation we have assumed in ID-LP format for the rules, 
thus making them more compact.

Because of the above reasons, it has become necessary to make 
some changes to an ordinary context-free parsing algorithm to 
suit our requirements (i.e. to incorporate dynamic expansion and 
the ID-LP format of rules).

2 PARSING ALGORITHM
The essential characteristics of our approach towards a solution 
of the problem has been listed over the next few pages.

2.1 DYNAMIC STRUCTURE OF RULES
As has been mentioned earlier, our implementation gets new rules 
from old ones as the parsing proceeds. Under such a situation, 
it becomes necessary to suspend parsing temporarily, only to 
return to it after a rule of the appropriate type has been 
generated by expanding sing one or more metarules some 
appropriate rule from the already available set.

At this stage a decision has to be taken as to whether the 
rule which was recently derived should be stored for further use 
or should be discarded. Here the choice should be guided by the
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SUHMARY
A parser is described here based on the Cocke-Young-Kassami 
algorithm which uses immediate dominance and linear precedence 
rules together with various feature inheritance conventions. The 
meta rules in the grammar are not applied beforehand but only 
when needed. This ensures that the rule set is kept to a minimum. 
At the same time, determining what rule to expand by applying 
which meta-rule is done in an efficient manner using the met a ­
rule reference table. Since this table is generated during 
"compilation” stage, its generation does not add to parsing 
time.

1 INTRODUCTION
GPSG as introduced by G a z d a r •e t .a l . gives a formalism to parse 
natural languages assuming they are context free. The phrase 
structure rules are like the normal CFG rules, except that 
features are added to the categories. These features are used by 
Feature Co-occurence Restrictions, Feature specification 
Defaults, Head Feature Convention, Foot Feature Principle and 
Control Agreement Principle, during parsing.

The second important feature of GPSG, and towards which this 
paper is mainly directed, is the metarule. A major problem of a 
complete natural language grammar is its size, which causes 
difficulties as far as memory requirements and efficiency of any 
practical parser are concerned. GPSG tries to overcome this, 
partly, by keeping the rule set to the minimum. In addition to 
the minimal set of rules, it has certain metagrammatical 
structures to generate rules from the previously defined minimal 
set. Thus the number of rules at any time are the minimum 
possible, reducing the search time of the parser. In addition, 
this captures certain linguistic generalisations (e.g. active- 
passive ) .

Lastly GPSG goes to the thematic representation directly from the 
c-structure (in contrast to other formalisms like LFG). The IL 
formula is built up as parsing proceeds.

Our endeavour is, thus, to build a natural language parser
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(b) Get the position of the current rule in the rule table 
corresponding to II. Let this be 12.

(c) Get the position of the current metarule m in the 
metarule list. Let this be HI.

3.4 Now append the triplet (II 12 Ml) to the contents of
the meta reference table entry pointed to be the index
found in step 3.2 above.

The above takes care of cases where one level of expansion of
metarules is sufficient. But in general a rule could be expanded
successively more than once by the same or by different metarules 
before it can be used for parsing. Thus it is necessary to 
extend the meta-reference entries to handle the problem.

Basically a triplet (II 12 HI) as defined above corresponds to a 
rule which is produced by applying metarule Ml to the 12th. 
entry in the Ilth. sub-structure of the rule table. Let the 
resultant rule be Rl. Now R1 may expand some metarule whose 
position is M2 to produce a rule R 2 , and so on, until at some 
stage we get a rule Rn which is not meta expandable any further. 
The termination is guaranteed because GPSG is equivalent in power 
to CFG.

In the compilation stage we must now make entries in the met a ­
reference table for each of R l ... R n , because any of them may be 
necessary during parsing. This can be done as follows:-

R1 is the rule corresponding to (II 12 Ml)

For i : = 1 to n do
Ri is Hi applied on R(i-l),

Get an index to the meta-reference table using rhs
categories of Ri 

To this entry append ((II 12 Ml) M 2...Mi)
Here Ml,M2...,Mi gives the successive position in the metarule 
list of the metarules to be applied.

An example will clarify the situation: 
consider a metarule of the form

(VP--> U N P )====>(VP--->U (optional(PP[by])}).
where U is any set of categories.
This generates the passive counterparts of active sentences.

Now if we have a rule of the type
0 . .VP--> V NP NP,

/* The features etc. have been omitted for simplicity * /
after first expansion we shall get two rules, namely:

1..VP--> V NP,
2..VP--> V NP P P .

Further, because of the given structure of the intermediate rules 
and the metarules under consideration, a second expansion is 
possible. Consider the rule V P — > V NP PP (rule 2 above). Uhen 
the above metarule is expanded using this rule, we get the
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relative gain in time by s t o r i n g  the rule (as o p p o s e d  to re- 
expanding) against the storage overhead. The type of sentences to 
be parsed may also play a role in this decision. For example, it 
may be worthwhile to store the rule which gets generated during 
parsing. Equivalently the other approach may be tried.

For this type of implementation, metarules become in important
part of parsing. Further justification on this issue is given in 
the next section.

2.2 TABLE BUILDING

Ue have seen in the previous section that an important aspect of 
our parser implementation is the generation of rules at an 
intermediate stage.

A native way to tackle the problem would be to go over the entire 
set of rules and metarules when a failure occurs, and try each
metarule-rule combination to find one which produces a rule of 
the required type, and then carry on with the parser. But this
will obviously be highly inefficient.

To cut down the time of generating rules and trying them out, a 
table can be constructed to help us select the metarule-rule 
combination. This is what is done.

In the first stage (called the metarule compilation stage) we go 
over all the r u 1e-met a r u 1e combinations to build up a reference 
table which can be consulted by the parser (during the second 
stage) to get the required rules efficiently. Compilation is a 
one time job and, therefore, does not affect the complexity of 
the actual parser.

The rule set can be structured for faster access to the relevant 
rules. In our current implementation we have structured the rule 
set on the basis of the number of categories (non-terminals) on 
the right-hand-side (rhs henceforth).

The metarule reference table is built up in the compilation stage 
as folIowa :-

1. For each rule r do the following.
2. Store the rule in the appropriate entry of a new table 

called the RULE TABLE, which is the one that the parser 
refers to. (For our case store it with all other rules 
which have the same number of rhs c a t e g o r i e s ) .

3. For each metarule m that can be applied on r do
3.1 apply m on r yielding a new rule s
3.2 hash the rhs categories of the newly produced rule s to

get an index into another table called the HETA-REFERENCE 
table.

3.3 Build up a meta reference entry as follows
(a) Get index (here number of rhs categories) of the input

rule r. Let this be II.
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1) make the algorithm work for an ID/LP grammar,
2) make the algorithm work for grammars not in Chomsky Normal 

Form (C N F ),
3) allow for meta-rule expansion during parsing 

Ue discuss these one by one.

1) In order to handle ID/LP grammars, we have to just look for a 
rule with the required nonterminals on the right hand side, with 
no importance attached to the order (except of course,for 
precedence relations)

2)In order to account for grammars which are not in CNF, we had 
to increase the nesting of the loops which handle rules of the 
form

A ---- > BI B2
in the CYK algorithm. The loop depth should now be (k-1) in 
order to handle rules like

A ---- > BI B2 . . .Bk
(See algorithm extract given below)

3) In order to get new rules from the old, we have to make some 
additions to the CYK algorithm. A part of the algorithm is given 
below :-
/ *

The algorithm to handle grammars not in CNF and to 
allow for metarule application during parsing is 
shown below. This handles all rules which have k 
nonterminals on the right hand side.

* /
procedure 1 e ngth_k(i ,j) ;
begin

for al := 1 to j-k+1 do
for bl := 1 to j-al-k+2 do

for cl := 1 to j-al-bl-k + 3 do

for jl := 1 to j - a l-bl-cl...-il-k+j do
RULESET := RULESET U { new rules obtained by

expanding the metarules 
as required by the 
parser }

/* it is in the above line that we get the new 
set of rules as demanded by the parser */ 

CYK(i.j) :=
C Y K (i ,j) U <A | A ---- > B 1 B 2 ...Bk

is a production, and 
Bl is in C Y K (i ,a l ) ,
B2 is in CYK(i+al,bl)

Bk is in C Y K ( i+ a l + b l . . . + j 1 ,
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f o l l o w i n g  p a i r  of r u l e s

3 . .  V P - - >  V PP
4 . .  VP - - >  V PP PP

Similarly the rule VP --> V NP (rule 1 above) will generate two
rules of the form:

5 . . VP - - >  V
6 . . VP - - >  V PP

Now since none of the newly generated rules are meta-expandable 
the process will stop. The meta referencea table entries will be 
of the following nature :

/* Let us assume that there is just this one metarule in the meta­
list, and that the initial rule (rule 0 above) is the only one
present in the rule array corresponding to length of rhs 
t h r e e , i .e,

11 is 3
12 is 1, and 
Ml is 1

* / (a) Corresponding to rhs <V,NP,PP> and <V,NP> we
shall have entries of the type ((3 1 1)),while
(b) Corresponding to any other possible collection 

of rhs categories, for example <V,PP>, the entry 
will look like ((3 1 1 )  1), which incorporates two 
levels of meta expansion.

A point of importance is that since one expansion of a 
metarule can produce more than one output rule (e.g. 
rules (1) & (2) from rule (0) above ) the meta expander must 
check for category names before returning the generated rule.

For example if meta expansion is called with parameters (V,NP)in 
the above situation, then only rule (1) should be returned, the 
other has to be discarded .

Another change could be incorporated regarding the structuring of 
the set of input rules. One can use a hashing technique similar 
to the one used for storing meta reference entries. Thus, rules 
would be stored not by the number of rhs categories, but hashed 
according to the categories present in the rhs. This would make 
rule access at parse time much faster and direct because during a 
bottom-up parse we have to reduce a given set of rhs categories 
into the corresponding left hand side. This would however mean 
keeping more entries in the rule table.

2.3 THE PARSING ALGORITHM

The parsing algorithm we have used is the well known Cocke-Young- 
Kassami (CYK) algorithm, with a few modifications. The 
differences are for the following requirements. Ue have to :
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have three right hand sides. Now when the parser sees that it
requires a rule containing V PP PP (as in (1)) it makes the 
following c a l 1

(return-meta-expanded ’(V PP PP))

The triplet that is obtained from the table lookup is (3 4 1)
which calls the meta rule expander to apply (3) to (2) which
returns (1). The parser then continues its normal course after
adding the generated rule to the appropriate rule-list.

2.4 THE SYSTEM STRUCTURE
The block structure of the compiler and parser is given below 

with the dotted-line separating the two. The part above the 
dotted line is done only once when the grammar is "fed” in. 
First the rules specified by the grammar designer are stored in 
an appropriate data structure. The compiler then applies the 
various feature restriction principles to this rule set (similar 
to the Edinburgh approach described in Philips (86)), makes the 
feature bindings and then indexes them according to the number of 
categories on the right hand sides. In addition it also creates 
the all important Meta-rule reference table. Both these tables 
are then passed to the parser which then, using the lexicon, 
works as described before.

R u l e s / £>a t t a

N \ £ T A  R U L E S STRviC . 

------------------------

r --------------------------------------------

R u l e  t a s l e M 6 T A  R u l e

e r e  hJCfc

T A & L E

L 6 * I C O N

---
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e n d  ;
j - a l - b l . . . -  j 1 )  }

As can be seen from the algorithm extract given above, the m e t a ­
rules are expanded here. Once we have the required RHS 
(B 1 ,B 2 ...B k ), it is hashed to a value in the meta-rule reference 
table which returns us a triplet of the form (II 12 HI) where

11 stands for the index of the rule-table i.e the table 
which contains all the rules according to the number of 
right hand sides they have.

12 stands for the number of the rule in the II entry of the 
rule index table

HI stands for the number of the metarule which needs to be 
used.

Ue discuss an example to illustrtate the algorithm. 

Example: In the parsing of the sentence

A mango was given to Sita by Ram 

the rule

VP —  > V PP[pform to ] PP[pform by ] ---(1)
is r equir e d .

NP VP
/ \

a mango
V

was

g i v e n ' to' Sita by Ram

Initially we only have the rule

VP --> V NP PP --- (2)
and the meta rule

VP -->U NP ===>

VP[ vform pas] ---> U(PP[pform by]) ---  (3)

Suppose (V PP PP) hashes to 20. Also assume that the meta rule
(3) is the first meta rule in the meta rule list and rule (2) is 
the fourth rule in the rule list which contains all rules which
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beforehand but only when needed. This ensures that the rule set 
is kept to a minimum. At the same time, determining what rule to 
expand by applying which meta-rule is done in an efficient manner 
using the meta-rule reference table.

The Cocke-Young-Kassami algorithm has been modified to work 
on the context free grammar without converting it to Chomsky 
Normal form. Conversion would l*ad to an increase in number of 
rules, and would also affect the dominance relationships. The 
modified algorithm continues to be a polynomial time algorithm on 
the length of the input sentence.

The implementation of the parser has been tested with a 
small grammar and with a small number of meta rules. To get 
performance figures, it needs to be tested more extensively. 
Experiments can also be conducted regarding when the generated 
rules should be stored for future use and when they should be 
d i s c a r d e d .

Our parser, at the moment, does not have the Kleene Closure 
facility to handle conjunctive/disjunctive sentences. It is a 
simple matter, however, to add this.
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2.5 HANDLING FEATURE RESTRICTIONS

The heart of GPSG is made up of the set of <feature, feature- 
value> pairs associated with every syntactic category. GPSG 
introduces some rule and conventions to associate values with 
these features in required manner.

Some of these restrictions should cause values to be given to
features during actual parsing of a sentence, while others should
pass up the tree certain feature values which get instantiated at 
parse time to ensure a valid parse.

Our implementation handles such problems at the compilation stage 
by considering fully expanded categories, where feature values 
corresponding to a particular feature which is as yet
uninstant iat ed are bound to a unique variable, and the variable
is shared among all instances of the same feature in the rule, 
which have to be bound tc e t h e r . This approach is similar to the 
Edinburgh parser.

Later, during the actual parse, if any variable gets bound to a 
value, then all other instances of the same variable in the rule 
also get the same value. Any mismatch leads to rejection.

For example, in the rule 

A ---> B 1 , B 2 . . . Bk

the variable valued features in A get bound to their values as
instantiated in Bl,B2...Bk. Ue are assuming that the RHS of a
rule is fully instantiated during the parse i.e once a category is 
added to the CYK table, no more features are added to it. This 
approach has forced us to use multiple entries in the lexicon.

For example, the entry for ’t h e ’ contains two entries, one each 
for singular and plural respectively.

3 SEMANTICS

The IL formula for the input sentence is built up as the parsing 
proceeds. Each node in the parse tree being built contains the 
IL formula of the node. Using the type information and the 
Semantic Interpretation Schema, the IL formula of the mother is
built up from the IL formulae of its children. Finally the node
S (the start symbol) contains the IL formula of the input 
sentence. After parsing finishes, transformations as required by 
GPSG (e.g. the passive-active transformation, paraphrases etc.) 
are applied to the IL formula of the root.

4 CONCLUSIONS

The parser described here uses immediate dominance and linear 
precedence rules together with various feature inheritance 
conventions. The meta rules in the grammar are not applied
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