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Sesame Street at BioNLP 2019

Dina Demner-Fushman, Kevin Bretonnel Cohen, Sophia Ananiadou, and Junichi Tsujii

Recent years have seen an explosion of workshops, community challenges, corpora and publicly
available tools in the biomedical and clinical language processing domain. That trend continues in
2019. In a significant advance, this year the original BioNLP-ST challenge matured into an open
platform capable of providing technical support and sustaining any group that is interested in organizing
a biomedical language processing challenge [1], while the BioNLP Special Interest Group continues
supporting Shared Tasks in emerging areas of research through the annual meeting. This year, BioNLP-
ST presents research directions explored by 72 teams for inference and entailment in the medical domain,
and their contribution to domain-specific information retrieval and question answering systems [2].

The BioNLP meeting has now been ongoing for 18 years. BioNLP continues to stay the flagship and
the generalist meeting in biomedical language processing, accepting noteworthy work independently of
the tasks and sublanguages studied. BioNLP also continues promoting research in languages other than
English, this year presenting work in Romanian, Portuguese, Spanish, and Chinese [3, 4, 5, 6], primarily
covering development of resources for these languages.

The quality of submissions continues to impress the program committee and the organizers. BioNLP
2019 received 72 submissions to the workshop, and 21 for the Shared Task. Of the work submitted
to the workshop, 14 papers were accepted for oral presentation and 24 as poster presentations. This
year, various deep learning architectures are explored in all papers, with continuing focus on interesting
new models and in-depth exploration of the state-of-the-art publicly available tools. Most of the work
uses BERT [7] or BERT models trained on PubMed, with one paper exploring BERT and ELMo on
ten biomedical benchmarking datasets [8] and many others using and exploring embeddings and neural
networks for chemical recognition [9], concept extraction and coding [10], relation extraction [11, 12,
13], and phenotyping [14].

As for the past several years, the themes in this year’s papers and posters continue to focus equally on
clinical text and biological language processing. They also reveal sustained interest in social media and
consumer language processing [15].

As it has been for the past 18 years, the workshop is truly a community-wide effort of the authors
producing high quality work that is already contributing to acceleration of foundational biomedical
research [16, 17, 18, 19] and clinical practice [20, 21, 22, 23] through improvements in information
retrieval and extraction, question answering, diagnosis and clinical decision support [24]. We are equally
happy to see sustained contributions from those who started forming the field of BioNLP research, and
first-time contributions that show the increasing interest in the domain. We are particularly indebted to
our reviewers who reviewed a higher than usual workload in a very short time. Their judgments resulted
in a program that will undoubtedly advance both the BioNLP research and the practical areas that it
serves. Due to space and time constraints, we could only accept the papers that were recommended for
acceptance by at least two reviewers. We hope that the authors of the papers that could not be accepted
received good feedback that will help them improve their work.
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Abstract

Assessing how individuals perform different
activities is key information for modeling
health states of individuals and populations.
Descriptions of activity performance in clini-
cal free text are complex, including syntactic
negation and similarities to textual entailment
tasks. We explore a variety of methods for the
novel task of classifying four types of asser-
tions about activity performance: Able, Un-
able, Unclear, and None (no information). We
find that ensembling an SVM trained with lexi-
cal features and a CNN achieves 77.9% macro
F1 score on our task, and yields nearly 80%
recall on the rare Unclear and Unable sam-
ples. Finally, we highlight several challenges
in classifying performance assertions, includ-
ing capturing information about sources of as-
sistance, incorporating syntactic structure and
negation scope, and handling new modalities
at test time. Our findings establish a strong
baseline for this novel task, and identify in-
triguing areas for further research.

1 Introduction

Information on how individuals perform activi-
ties and participate in social roles informs concep-
tualizations of quality of life, disability, and so-
cial well-being. Importantly, activity performance
and role participation are highly dependent on the
environment in which they occur; for example,
one individual may be able to walk around an of-
fice without issue, but experience severe difficulty
walking along mountain paths. Thus, determin-
ing what level of performance an individual can
achieve for activities in different environments is
critical for identifying ability to meet work re-
quirements, and designing public policy to support
the participation of all people.

However, the interaction between individuals
and environments makes modeling performance

*These authors contributed equally to this work.
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information a complex task. Assessments of ac-
tivity performance within clinical healthcare set-
tings are typically recorded in free text (Bog-
ardus et al., 2004; Nicosia et al., 2019), and
exhibit high flexibility in structure. = Syntac-
tic negation can be present, but is not neces-
sarily indicative of inability to perform an ac-
tion; for example, Patient can walk with
rolling walker and Patient cannot
walk without rolling walker are both
likely to be used to assert the ability of the patient
to walk with the use of an assistive device. Infor-
mation about performance may also be given with-
out a clear assertion, as in the cane makes
it difficult to walk. Thus, extraction
of performance information must not only distin-
guish between positive and negative assertions, but
also those which cannot be clearly evaluated.

To the best of our knowledge, this is the first
work to explore assertions of activity performance
in health data. We explore a variety of meth-
ods for classifying assertion types, including rule-
based approaches, statistical methods using com-
mon text features, and convolutional neural net-
works. We find that machine learning approaches
set a strong baseline for discriminating between
four assertion types, including rare negative as-
sertions. While this work focuses on a relatively
constrained and homogeneous corpus, error anal-
ysis suggests several broader directions for future
research on classifying performance assertions.

2 Related Work

Though this is the first work focusing on the po-
larity of activity performance, three areas of prior
work are particularly relevant to this research.
The first is concerned with applying NLP tech-
niques and linguistic annotation to information
about whole-person function, particularly activity

Proceedings of the BioNLP 2019 workshop, pages 1-10
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performance. Harris et al. (2003) experimented
with term extraction for the purpose of terminol-
ogy discovery to support information retrieval re-
lating to functioning, disability and health, using
linguistic, n-gram and hybrid techniques. Bales
et al. (2005) and Kukafka et al. (2006) modified
and applied the MedLEE NLP Extraction tool to
code Rehabilitation Discharge Summaries using
ICF (World Health Organization, 2001) encod-
ings. Kuang et al. (2015) studied UMLS term
coverage of functional status terms found in VA
clinical notes and in social media sources, report-
ing that there is a need to extend existing termi-
nologies to cover this area. Finally, Thieu et al.
(2017) reported on an effort to build an anno-
tated corpus of Physical Therapy (PT) notes from
the Clinical Center of the National Institutes of
Health (NIH) with functional status information.
This corpus was also used for an investigation
into using named entity recognition (NER) tech-
niques to extract information about patient mobil-
ity (Newman-Griffis and Zirikly, 2018).

The second area is research on negation. Nega-
tion detection is a well-researched area (Morante
and Sporleder, 2012), and both negation and un-
certainty have historically been studied in the clin-
ical NLP context (Mowery et al., 2012; Peng et al.,
2018). Previous work studied the use of incorpo-
rating dependency parsers to help in identifying
the scope (Sohn et al., 2012; Mehrabi et al., 2015).
Recent work in this area involves the use of neural
network models, where Long Short-Term Mem-
ory (LSTM), or variations of it, yielded compet-
itive results on negation (cues and scope) detec-
tion (Taylor and Harabagiu, 2018).

One highly-related work to ours is Wu et al.
(2014), which investigates detection of binary se-
mantic negation status (i.e., the presence or ab-
sence of a finding, as opposed to syntactic nega-
tion) for clinical findings in EHR text. However,
as Action Polarity is defined in terms of the in-
teraction between an individual and a specific en-
vironment, it adds a layer of complexity to non-
interactive physiological observations. Gkotsis
et al. (2016) investigate using parsing-based scop-
ing limitations for negation detection in complex
clinical statements, though their focus is specifi-
cally on mentions of suicide.

Finally, classifying the assertion status of ac-
tivity performance descriptions bears similarities
to the problem of recognizing textual entailment

(RTE) (Dagan et al., 2006; Marelli et al., 2014).
RTE asks whether a given premise entails a spe-
cific hypothesis, and has historically been pursued
in the general domain, though, recent efforts have
developed datasets in biomedical literature (Ben
Abacha et al., 2015; Ben Abacha and Demner-
Fushman, 2016) and in clinical text (Romanov and
Shivade, 2018). Our task, by asking whether a
given description entails ability to perform an ac-
tion in the an environment, is more constrained
than RTE, but poses a related research challenge.

3 Data

We use an extended version of the dataset initially
described by Thieu et al. (2017), consisting of 400
English-language Physical Therapy initial assess-
ment and reassessment notes from the Rehabili-
tation Medicine Department of the NIH Clinical
Center. These text documents have been annotated
to identify descriptions and assessments of mo-
bility status, typically including one or more spe-
cific Actions; for example, Pt walked 300’
with rolling walker (Action underlined).

Each Action annotation was assigned one of
four Polarity values, indicating what (if any) in-
formation the containing mobility description pro-
vides about the subject’s ability to perform the
given Action in the context of any described envi-
ronmental factors.! The Polarity labels are defined
in the following paragraphs.

Able The subject is able to complete the
activity in the environment described. For ex-
ample,
minutes before tiring;
now requires assistance of one
person with transfers, it is unknown
whether the patient can perform the action in-
dependently, but they are able to do so with the
assistance described.

Unable The subject is not able to complete
the activity in the environment described; for
example, He is unable to walk. More
specific information may also be included,
as in Pt is now unable to walk more
than 50 feet.

Unclear Some information is provided about
the subject’s ability to perform the action, but not

She states she can walk 20
in the case of

'Tt is important to note that the Polarity label is depen-
dent on the environmental factors described. For example, an
individual may be able to walk a certain distance using an as-
sistive device such as a rolling walker, but unable to walk that
same distance independently.



Label | Train Test | Total
Able | 1,536 446 | 1,982
Unable 54 23 77
Unclear | 158 48 206
None | 1,784 478 | 2,262
Total | 3,532 995 | 4,527

Table 1: Number of samples with each Polarity label in
train and test data.

enough to make a definitive positive or negative
judgment. For example, in The cane makes
it difficult to walk, it is undetermined
whether the subject can or cannot walk. This label
also includes some cases of negated environmen-
tal factors; for example, unable to propel
wheelchair independently.

None No direct information about ability
to perform the action is provided. =Common
examples of this label refer to a scale that is
either unavailable or distant in the document, as
in Ambulation: 1. Other cases refer to a
specific aspect of performing an action, without
evaluation, as in tendency during gait
to quickly extend the leg from
swing to stance.

We randomly split the 400 documents into 320
training records and 80 testing records, stratified
by distribution of Polarity labels. Table 1 provides
frequencies of each label in these splits.

4 Methods

We investigate a variety of methods to classify the
Polarity values of Action annotations. Rule-based
methods have been used to great effect in clinical
information extraction (Kang et al., 2013; Chap-
man et al., 2007), and form an important baseline
for our task. We also make use of several com-
mon machine learning methods, such as support
vector machines and k-nearest neighbors, along
with more recent neural models such as convolu-
tional neural networks (CNN). Finally, we exper-
iment with ensembled combinations of our best-
performing models. These approaches are de-
scribed in the following subsections.

4.1 Rule-based

A UIMA (Ferrucci and Lally, 2004) based
pipeline was constructed to identify action polar-
ity from components of v3NLP-Framework (Di-
vita et al., 2016). Leveraging the relationship of

our task to detecting contextual attributes such as
negation, the conTEXT (Chapman et al., 2007) al-
gorithm embedded in the v3NLP-Framework was
augmented with a few additional entries including
“able” and “independent” as asserted evidence and
“unable” as negative evidence.

The conTEXT algorithm relies on a lexicon
of evidence and accompanying clues to indicate
when evidence found to the right or left of a rel-
evant entity within a bounded window should be
applied. We used the sentence containing an Ac-
tion mention as the bounds of its context window.
An Action Polarity UIMA annotator was built to
assign Polarity, given an Action annotation. This
annotator is downstream from the conTEXT anno-
tator that assigned negation, assertion, conditional,
hypothetical, historical, and subject attributes to
named entities. Within conTEXT-processed enti-
ties, we assigned Unable polarities to actions that
had previously been attributed with negative and
assigned Able polarities that had previously been
assigned only asserted attributes. Actions that
were tagged as conditional or hypothetical were
not assigned a Polarity.

The v3NLP-Framework pipeline includes doc-
ument decomposition annotators to identify sec-
tions, section names, sentences, slots and values,
questions and their answers, and to a lesser ex-
tent checkboxes (Divita et al., 2014). Action men-
tions in clinical text occur within the boundaries of
each of these elements. ConTEXT addresses ac-
tion mentions within prose, but is not relevant for
action mentions found in the semi-structured con-
structs. The Action Polarity annotator was thus
augmented with additional rules to aid in polar-
ity assignment based on where the mention was
found. The most relevant rules are as follows:

e Action mentions that are in the slot part
of a slot:value construct get their polarity
assignment from positive or negative evi-
dence in the value part of the construct. Ta-
ble 2 provides guidelines to assigning polar-
ity from slot:value and question and answer
constructs.

e Action mentions that are within Goals or Ed-
ucation sections do not get a polarity. The
section name is known for each named en-
tity. For the time being, section names with

“plan,” “goals,” “education,” “intervention”

and “recommendations” qualify. These are

LR T3



Slot criteria Value criteria Assigned Polarity ~ Example
Asserted Action  Asserted Evidence Able Transfers: Independent
Asserted Action ~ Negated Evidence Unable Transfers: Unable
Negated Action Negated Evidence Able Difficulty Walking: No
Negated Action Asserted Evidence Unable Unable to Walk: yes
Asserted Action ~ Numbers Unclear Transfers: 4
Asserted Action  No context evidence ~ Unclear Sit to stand: minimal assist
Asserted Action  No value None Stand to sit:
Multiple Actions  Doesn’t matter None Difficulty with chores, shopping,
driving: Yes
Table 2: Table of slot:value rules for Action Polarity
considered to be hypothetical constructs. The Feawres | NB_ RF kNN SVM DNN
. A . Unigrams | 41.3 77.3 67.0 78.6 79.8
exception to this is if a goal is noted to have tAction | 421 737 568 809  78.0
been met, it gets an Able Polarity. +Embeddings | 416 643 663 78.8  80.9
+Both | 43.0 65.1 652 817 79.6

e Action mentions within only the value part
of the slot:value construct were handled the
same way as Action mentions within prose.

4.2 Machine learning models

We evaluated the following common machine
learning-based classification methods for our Po-
larity labeling task:?

e Random forest (RF), using 100 estimators;

e Naive Bayes (NB), using Gaussian estima-
tors;

e k-nearest neighbors (kNN), using k=5 with
Euclidean distance;

e Support vector machine (SVM), with linear
kernel;

e Deep neural network (DNN), using a 100-
dimensional hidden layer followed by a 10-
dimensional hidden layer.

For a given Action mention a contained in a
Mobility description m, we explored using both
bag of binary unigram features* and word em-
bedding features as model input. For both kinds
of features, we experimented with using the con-
text words in m — a (i.e., all words in m except
for the Action mention itself) only, and including
the text of the Action mention a. Word embed-
ding features were calculated by averaging the em-
beddings of all words used (either context alone
or averaging context words and Action mention

2We used the implementations of each method in Scikit-
Learn (Pedregosa et al., 2011).

3We experimented with d € 10, 100, and number of lay-
ers € 1,2, 3.

“Binary unigram features consistently matched or outper-
formed unigram counts in our experiments.

Table 3: Macro F1 over Polarity classes in 5-fold cross
validation feature selection experiments. All experi-
ments start with binary unigram features using con-
text words alone, and add Action words, embedding
features from context words, or both (i.e., unigrams
and embedding features from context and Action words
combined). The best performing model configurations
are marked in bold.

words together); we used pretrained FastText (Bo-
janowski et al., 2017) embeddings from Wikipedia
and newswire, including subword information.’
Where both unigram and embedding features are
used, they are concatenated as a single feature vec-
tor.

4.2.1 Feature selection

In order to identify the best combination of fea-
tures for the task, we performed five-fold cross
validation experiments on the training data. As
shown in Table 3, we found that three model con-
figurations achieved statistically equivalent macro
F1 in cross validation (p > 0.001 with bootstrap
permutation test, 2 = 10000 (Berg-Kirkpatrick
etal., 2012)).° These are RF with unigram features
(78.5% F1), the 2-layer DNN with unigram and
embedding features from context only (80.9%),
and SVM with all features, i.e. unigrams and em-
beddings with both the mobility description and
Action mention texts (81.7%).”

Given the class imbalance in our dataset,

Shttps://fasttext.cc/docs/en/
english-vectors.html

%We use significance threshold p = 0.001 throughout this
paper, as a conservative Bonferroni correction for multiple
testing. To have sufficient resolution to those low threshold,
we use 10,000 replicates in bootstrapping.

"Complete results tables will be made available online.



Model | Able Unable Unclear None|Macro
NB (All)| 68.2 15.1 256 629 43.0
RF (Uni)| 84.5 68.1 69.9 86.7| 773
KNN (Uni)|73.5 53.3 62.6 785]| 67.0
SVM (All)| 86.3 76.2 764 87.8 | 81.7
DNN (Uni+Emb) | 85.0 76.8 74.3 87.5 | 80.9

Table 4: Five-fold cross validation results (F1) by class
with best configurations of learned baselines. A/l indi-
cates using unigrams, embeddings, and Action mention
features; Uni indicates using unigram features from
context words only, and Uni+Emb indicates both uni-
gram and embedding features from context words. The
best result in each column is marked in bold.

we also analyzed per-class performance of each
model. Interestingly, as Table 4 illustrates, we
found that all models except Naive Bayes were
surprisingly robust to this imbalance, with both
SVM and DNN achieving over 76% F1 on the
smallest class (Unable). Across all four classes,
the SVM and the 2-layer DNN yield statistically
equivalent performance (p > 0.001); we therefore
use absolute macro F1 to choose SVM as the best
baseline model for comparing across approaches.

4.2.2 CNN model

We adopt the Convolutional Neural Network
(CNN) architecture introduced in Kim (2014). In
our architecture, shown in Figure 1, we com-
bine word embeddings with character embed-
dings, to reduce the impact of out-of-vocabulary
rate as opposed to using words alone. Addition-
ally, character-level CNNs have been shown to im-
prove the results of text classification (Zhang et al.,
2015), but the improvement is more evident with
larger data sizes.

word,
char,
Context —I
around —|
action —|
mention j
word,
char,
Context Convolutional  Max pooling Fully
Representation layerwith connected
multiple filter layer with

softmax

Figure 1: CNN architecture for Polarity classification.

Although our task is close to negation detec-
tion, it differs in that we do not need to detect the
span of the Action: we take as inputs the Action
mention and its parent mobility mention (a self-
contained text span that can be considered a sen-

Embeddings | Able Unable Unclear None | Macro
prev_all | 82.3  48.7 31.8 869 | 624
nextall | 79.3 32.3 535 827 | 649
full_all| 87.6 63.4 650 894 | 764

full_char | 66.0 45.7 729 78.7 | 658
full word | 86.1 42.4 60.3 88.0 | 69.2

Table 5: CNN performance using different inputs.

tence). Unlike sequence tagging problems, where
Long-Short Term Memory (LSTM) architectures
would be a good fit (Fancellu et al., 2016), we treat
the problem as a text classification task.

We experiment with character and word embed-
dings of the following inputs:

e previous context (prev): the set of words pre-
ceding and including the action mention.

e next context: the set of words following and
including the action mention.

e full context: the union of prev and next.

We also compare the impact of using character
(full_char) or word (full_ word) embeddings only
as opposed to combining both (*_all), as shown in
Table 5. We note that relying on part of the context
significantly drops the Unable performance. How-
ever, as expected, prev outperforms next, given
that the words preceding the Action mention carry
most of the ability-related information. For the
rare Unable class, character embeddings outper-
form word embeddings, with F1 72.9% on the test
set; the highest across all systems.

Hyperparameters were optimized on a dev set
(we used a 90/10 train/dev split), yielding a learn-
ing rate of 0.0001, dropout of 0.5, embeddings
size 100, and Adam optimization (Kingma and Ba,
2014) with L2 regularization.

4.3 Ensemble models

Ensembling methods have been shown to improve
performance in a variety of classification tasks
(Buda et al., 2018), including in class-imbalanced
tasks (Ju et al., 2018). In order to combine the
strengths of each modeling approach, we therefore
experimented with ensembling all three systems,
using two ensembling strategies:

Majority voting Predictions from the single
best configurations of the SVM and CNN models®
were combined to make a single decision. When

8 Adding rule-based predictions degraded performance in
this case.



System Able Unable Unclear None Macro F1
Pr Rec Fl Pr Rec F1 Pr Rec Fl Pr Rec Fl
Rule-based | 58.3 71.3 64.2 | 20.3 522 293 | 88 12,5 103 | 80.2 542 64.7 42.1
SVM | 834 86.8 851|621 783 69.2 | 630 70.8 66.7|90.0 843 87.0 77.0
CNN | 86.0 89.2 87.6 | 722 565 634|812 542 650|890 89.7 894 76.4
All (DNN chooser) | 87.5 86.3 86.9 | 56.7 739 642|667 708 687 903 89.5 89.9 77.4
SVM+CNN (Voting) | 82.3 90.8 864 | 62.1 783 69.2 | 62.1 750 679|945 822 879 77.9

Table 6: Precision (Pr), Recall (Rec), and F1 for each model evaluated on the test set. Top rows are individual
models, bottom rows are ensembled results. The best result in each column is marked in bold.

the systems agreed, that label was chosen as out-
put; in the case of disagreement, we chose the pre-
dicted label that was less frequent in training data,
in order to prefer the strengths of individual mod-
els on rare classes.

DNN chooser Predictions from all three sys-
tems (rule-based and the best pretrained SVM and
CNN models)’ were passed as inputs to a DNN
with a single 10-unit hidden layer.'"® In order to
compensate for the class imbalance in our dataset,
which would lead to preferring the CNN due to its
higher precision, we identified all training samples
that the three models disagreed on and grouped
them by label, and identified the smallest of these
disagreement sets. We then sampled no more than
twice this number of points from each disagree-
ment set, yielding a training sample of 182 points.

Using this downsampled training set, we trained
the DNN to predict which, if any, of the systems
chose the correct answer. As multiple systems
may have made the correct prediction, this is a
multi-label classification task. At test time, the
system with highest probability output from the
DNN was chosen as the reference decision for the
final classification.

We also experimented with three approaches to
predict the final class directly: using a DNN with
the predictions of each system as input, using an
SVM with predictions as input, and adding rule-
based and CNN predictions as additional features
to the SVM with lexical features. All variants un-
derperformed the chooser in cross validation ex-
periments on training data, thus we omit them
from our results.

5 Results

The test results of the systems we compared are
given in Table 6. The ensembled systems achieve

For the chooser, adding rule-based predictions consis-
tently improved results over just SVM and CNN.

1%Experiments with a 64-unit hidden layer, to cover all pos-
sible label combinations, yielded the same results in cross
validation.

the best overall performance, with 77.4% macro
F1 with the DNN chooser and 77.9% with ma-
jority voting. Due in large part to the class im-
balance in the dataset, the SVM, CNN, and en-
semble methods do not yield statistically signifi-
cantly different results in most cases (p > 0.001),
although the voting ensemble does produce sig-
nificantly higher precision on None samples than
other methods (p < 0.001).

While performance is considerably better on the
more frequent Able and None classes, the learned
systems achieve good results on Unclear and the
very rare Unable. Figure 2 shows the confusion
matrices for all systems. The most common con-
fusions are with Able and None, with only a small
number of false positives for Unable and Unclear
and no confusion between the two in the machine
learning approaches.

Comparing between individual systems, the
CNN is best at making the important distinction
between Able and Unable. It consistently achieves
high precision across all classes, but suffers large
drops in recall for the rare labels. The SVM model
reverses this tradeoff, yielding high recall for Un-
able and Unclear, but much lower precision. The
ensembled methods are able to strike a good mid-
dle ground, keeping the high recall of the SVM
without sacrificing too much of the CNN’s preci-
sion.

6 Discussion

As is evident from the results, correctly classify-
ing the minority classes Unable and Unclear is not
trivial. This is not only caused by the lack of data
for training those classes, but in the case of Un-
clear, also by its semantic ambiguity — even for
humans.

An important area of confusion is when actions
are hypothetical, as is the case for plans, recom-
mendations or feelings towards an action (e.g.
eager to walk), which should all be tagged
as None. Semantic problems can also arise around
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(d) Ensemble (DNN chooser)

Figure 2: Confusion matrices for results on the test set.

the use of an assistive device. In the following
synthetic example, the annotated polarity is Able:
she is unable to ambulate more
than a few feet without support.
Without the mention of assistance, it would have
been Unable. In future work, assistance mentions
will be modeled explicitly to better capture this.

Overall, we obtain models that perform well
across the board, where each approach has differ-
ent strengths as illustrated in Figure 2. Out of the
955 test instances, the rule-based approach clas-
sifies 37 correctly that no other system got right.
Likewise, SVM and CNN have 27 and 25 unique
true positives, respectively. 46 instances get mis-
classified by all classifiers. The ensemble is able
to pick up on 31 of the unique true positives from
the machine learning systems, but consistently ig-
nores valid suggestions from the rule-based ap-
proach. This suggests that different ensembling
parameters should be considered to take better ad-
vantage of the rule-based system’s strengths.

Below, we discuss system-specific observations
in more detail.

6.1 Rule-based

The following failures were observed in the train-
ing and testing output:

Scoping negation The scope for assigning
negation attribution was set to be within sentential
boundaries. Ideally, the scope should be tighter
at the major phrase level. However, v3NLP-
Framework does not currently employ a depen-
dency graph parser. Breaking on phrasal bound-
aries was not successful, primarily due to the in-
ability to distinguish between list markers such as
commas, coordinating conjunctions (and/or), and
true scope limiting phrasal boundaries. Several
false negatives were due to the incorrect Unable
assignment because of negation scoping.

Identifying variants of slots and values accu-
rately Negation and assertion assignment are de-
pendent upon whether the action is within prose,



a slot or a value. A number of errors were due to
multiple slot:value constructs within the same line
making it difficult identifying the values, and/or
nested constructs (i.e., the value of a slot:value
construct was also a slot:value construct).

Nested sections A number of missed None er-
rors were the result of mis-identifying what sec-
tion the annotation was within, and picking up
an inner section name. Several other issues arose
from the use of spaces as delimiters between slots
and values, as well as slots and values embedded
within bulleted lists.

Pertinent negatives (Divita et al., 2014) A
statement where the action mention had clear neg-
ative evidence really meant the patient could per-
form an action. For example, no trouble
walking. An easy amelioration would be to
gather constructs like “no trouble” and add them
to the assertion evidence lexicon.

6.2 Machine learning

The machine learning systems are prone to failures
in sentences that have multiple Action mentions, if
their Polarity differs. This is because the systems
do not take into account sentence structure. Sim-
ilarly, sentence length seems to have a negative
effect on performance, as it dilutes the informa-
tion salient to the focus mention. In future work,
we would limit the context information to exclude
other mentions’ contexts, add parse tree informa-
tion relevant to the focus mention, or improve the
neural network architecture to better model the se-
quential nature of the data.

The models would also benefit from better cap-
turing semantic similarity. An example would
be Pt. is fearful to start walking
again (class: None), where the modality ex-
pressed by fearful might not have been learned
from the training data. Additionally, lemmati-
zation, stemming and character embeddings can
blunt the impact of such unseen tokens, but using
embeddings from large corpora would be more ro-
bust.

Finally, one potential limitation in our machine
learning results is our use of pretrained embed-
dings from web text. As Newman-Griffis and
Zirikly (2018) show, when only a small amount
of text from the target domain is available, out-
of-domain embeddings can roughly match perfor-
mance with in-domain embedding features; how-
ever, developing or tuning more targeted word em-

beddings for use in this dataset is a useful area of
future work.

6.3 Generalizability

It is important to note that the dataset used in
this study was derived from one specialty — Phys-
ical Therapy — within a single institution — the
NIH Clinical Center. Thus, the texts analyzed
are likely to be more homogeneous than would
be a broader dataset. Evaluating generalization
of our findings to free text from other healthcare
subdomains and other institutions, and describing
ways in which performance assertions vary be-
tween these sources, is a valuable area of future
work.

7 Conclusion

We have presented an evaluation of several ap-
proaches for the task of classifying whether a
given description of an individual performing an
activity indicates that they are able to perform
it, unable, unclear, or insufficient information to
determine. We found that machine learning ap-
proaches with lexical features perform surpris-
ingly well on the task, including detecting the rarer
labels of Unable and Unclear, and that an en-
sembled approach sets a strong baseline of 77.9%
macro F1 for our dataset. In-depth analysis of sys-
tem errors suggested several intriguing problems
for future work. For instance, we intend to inves-
tigate hybrid models and test how information re-
lated to report formatting, section structure, slot
info and assistive devices could improve the per-
formance. To clarify the confusion of a patient’s
ability, we need models that can differentiate be-
tween factual and hypothetical statements (e.g. Pt
can runvs. Pt dislikes running). Ad-
ditionally, we would like to incorporate contextual
representations such as ELMo (Peters et al., 2018)
and BERT (Devlin et al., 2018) into our models.

To our knowledge, this is the first work expand-
ing on the problem of clinical negation detection
to complex interactions between individuals and
their environments. This work joins a growing
body of research on application of NLP techniques
to information about activity performance and role
participation, and identifies several research chal-
lenges in adapting NLP methods to this new do-
main.
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Abstract

The objective of this work is to develop an
automated diagnosis system that is able to
predict the probability of appendicitis given
a free-text emergency department (ED) note
and additional structured information (e.g., lab
test results). Our clinical corpus consists of
about 180,000 ED notes based on ten years of
patient visits to the Accident and Emergency
(A&E) Department of the National Univer-
sity Hospital (NUH), Singapore. We propose
a novel neural network approach that learns
to diagnose acute appendicitis based on doc-
tors’ free-text ED notes without any feature
engineering. On a test set of 2,000 ED notes
with equal number of appendicitis (positive)
and non-appendicitis (negative) diagnosis and
in which all the negative ED notes only con-
sist of abdominal-related diagnosis, our model
is able to achieve a promising Fj 5-score of
0.895 while ED doctors achieve Fj 5-score of
0.900. Visualization shows that our model
is able to learn important features, signs, and
symptoms of patients from unstructured free-
text ED notes, which will help doctors to make
better diagnosis.

1 Introduction

Medical diagnosis is an important task which re-
quires high accuracy and efficiency, especially for
patients admitted to the accident and emergency
(A&E) department of a hospital. These patients
have a wide range of medical conditions. How-
ever, it is highly improbable for a medical doctor
to gain expertise in all medical fields. Therefore,
it is very challenging for the attending doctors to
perform quick and accurate diagnosis in order to
prevent further complications.

Most of the relevant and useful information
(e.g., signs and symptoms) is in the form of
free text notes entered by medical doctors. The
text does not consist of well-formed and well-
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structured sentences, but rather sentence frag-
ments containing medical abbreviations and fre-
quent misspelling (due to the time constraints im-
posed on doctors).

The task addressed in this paper is to diagnose
acute appendicitis, a binary classification task.
Appendicitis was chosen because of the fact that
the lifetime risk of having appendicitis is high
(8.6% for males and 6.7% for females (Addiss
et al., 1990)). Furthermore, there would be high
clinical impact if our system is successful. Besides
reducing the number of misdiagnoses, our system
is expected to help reduce cost by minimizing the
number of patients requiring Computed Tomogra-
phy (CT) scans. CT scans are performed by doc-
tors when they are unsure whether a patient suffers
from appendicitis. Although CT scans were found
to be 98% accurate in diagnosing acute appendici-
tis (Rao et al., 1998), they are harmful to our body
—one CT scan emits approximately 400! times the
radiation of a regular chest X-ray. Moreover, there
is an exponential increase (from 2.9% to 82.4% in
22 years) in CT scan utilization without any im-
provement in outcomes (Repplinger et al., 2016;
Markar et al., 2014).

We propose a neural network model, which is
a combination of a convolutional neural network
(CNN) (LeCun et al., 1989), a recurrent neural
network (RNN) (Elman, 1990), and a residual net-
work (He et al., 2016) inspired by their recent suc-
cesses in multiple tasks. RNN has proven to be
successful in natural language processing (NLP)
tasks such as machine translation (Bahdanau et al.,
2015), automated essay scoring (Taghipour and
Ng, 2016), and question answering (Kundu and

"https://www.fda.gov/
radiation-emittingproducts/
radiationemittingproductsandprocedures/
medicalimaging/medicalx-rays/ucmll5329.
htm (Accessed on 7 June, 2019)
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Ng, 2018). CNN has also been successfully used
in NLP (Collobert et al., 2011; Chollampatt and
Ng, 2018). The main strength of neural networks
is that we can train the model without any feature
engineering. Therefore, the model is scalable and
generalizable to learn other diseases.

2 Automated Diagnosis

In this section, we define the diagnosis task and
the evaluation metric used for measuring the per-
formance of the automated diagnosis system.

2.1 Task Description

We formulate the task as a binary classification
problem. Given a free-text ED note, and optional
real-valued features (from the structured fields),
the model is required to classify the ED note as
positive appendicitis (represented by a 1), or neg-
ative appendicitis (represented by a 0). This is ac-
complished by producing a probability score, and
comparing the score against a threshold, such that
the class is positive if the probability score exceeds
the threshold.

The corpus of hospital ED notes used in this pa-
per is obtained from the National University Hos-
pital (NUH), Singapore, spanning a period of ten
years. However, the diagnosis stored in each ED
note is not the true diagnosis. The ground truth
is stored in the discharge summary (DS) of a pa-
tient after the patient is discharged from the hos-
pital. Our corpus consists of about 180,000 ED
notes and DS pairs. Each ED note contains 440
words on average.

The ED notes are written in sentence fragments
and point forms, and very often contain abbre-
viations, symbols, and misspelled words. This
adds to the difficulty in diagnosing appendicitis.
Moreover, the free-text ED notes contain patients’
personal health information (PHI) such as name,
identification number, and contact number. The
ED notes need to be anonymized (by removing the
PHI) before they are used for research purposes.
We have developed a simple and efficient algo-
rithm to anonymize the ED notes (Yuwono et al.,
2016) and it is used in this work.

2.2 Evaluation Metric

The standard evaluation metrics of binary classi-
fication are recall, precision, specificity, F-score,
and Fy s-score. The last two are shown in Equa-
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precision X recall
F1 =2X

precision + recall
precision X recall

Fys = (1+0.52
05 = (1+ ) (0.52 x precision) + recall

ey

Let TP, FP, FN, and TN denote true positive, false
positive, false negative, and true negative respec-
tively. The positive class refers to class 1 (appen-
dicitis), while the negative class refers to class 0
(not appendicitis). As clinicians favor precision
and specificity over recall, we have adopted Fj 5-
score as our main evaluation metric. We aim to
have FP as low as possible to prevent patients from
being operated on when they do not have appen-
dicitis. Clinicians view FN as more tolerable (as
compared to FP), because doctors are still required
to investigate the condition of patients not diag-
nosed as appendicitis until they recover.

3 Neural Networks

3.1 Model Architecture

We have created a novel neural network architec-
ture named convolutional residual recurrent neural
network (CR2). Our architecture is illustrated in
Figure 1.

Lookup Table Layer: The first layer of our
neural network projects each word into a dypr
dimensional space. Given a sequence of words
W represented by their one-hot representations
(w1, wa, ..., wys), the output of the lookup table
layer (LT') is given by Equation 2.

LT(W) = (:EWl7 EWQ, ceny EWM)

= (Xl,XQ, ...,XM)

2

where E is the word embedding matrix which is
learnt during training and M is the number of
words in an ED note.

Convolution Layer: After the dense represen-
tation of the input sequence is computed from the
lookup table layer, it is fed as the input to a con-
volution layer to extract local features. Given a
window of word representations of length [, (i.e.,
X1, X2, ..., X7), they are first concatenated to form
vector X, and then an output convolution vector ¢
of length d,. is computed as shown in Equation 3.

c=W,x+b 3)
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Figure 1: Our neural network architecture (CR2).

W, and b are the trainable weight and bias pa-
rameters respectively, and they are shared across
all windows in a sequence.

Residual Layer: We perform the sum op-
eration on the sequence of the word embeddings
X = x1,x2,...,Xx)r) and the output of the con-
volutional layer (C = cy, cg, ..., cp) as shown in
Equation 4.

Sum(X,C)=X+C 4)
To be able to perform the sum operation as shown
above, the dimension of the word embeddings
(drr) and the dimension of the output vectors of
the convolution layer (or the number of filters) (d..)
have to be equal.

Recurrent Layer: After combining local fea-
tures extracted by the convolution layer with the
original dense word representations, the result-
ing vectors are fed as input to a recurrent layer.
The recurrent layer processes the input to gener-
ate a representation of a given ED note. There
are three well-known RNN units: basic recurrent
units (Elman, 1990), gated recurrent units (GRU)
(Cho et al., 2014), and long short-term mem-
ory units (LSTM) (Hochreiter and Schmidhuber,
1997). Based on our experimental results, LSTM
outperforms the other two units and hence we only
use LSTM as our RNN unit.

LSTM is able to learn to preserve or forget in-
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formation. To control the flow of information,
LSTM uses three gates to forget or pass informa-
tion to the next time step. The formal definition of
LSTM is described in Equation 5.

it = o(W;x; + Ujhs_1 + by)

fi =0c(Wsx; +Urhy_1 + by)
¢; = tanh(W,x; + Uchy_1 + b,)
ci=iioc¢+foc_

o, = 0(Wyx¢ + Ushy—1 +by,)

h; = o; o tanh(c;)

&)

X is the input vector at time {. LSTM produces
one vector h, at each time step ¢ (hg is the zero
vector). W; W, W. W, U; Uy, U.U, are
weight matrices and b;,bs,b., b, are the bias
vectors. The circle symbol o denotes element-wise
multiplication and o denotes the sigmoid func-
tion. The output of the recurrent layer is H =
(hi,hy,...,hys). Following (Taghipour and Ng,
2016), we use every output of the intermediate
states of the RNN and perform summing (resid-
ual) and then pooling in the next layer to have a
better representation of the entire ED note.

Residual Layer: We perform the sum oper-
ation on the sequence of the output vectors from
the recurrent layer (H h{,hs,....hy/) and
the output vectors of the previous residual layer



(Sum(X, C)) as shown in Equation 6.

R=Sum(H,X+C)=H+X+C (6)
To be able to perform the sum operation as shown
above, the dimension of the word embedding vec-
tors (dr 1), output vectors of the convolution layer
(d;), and output vectors of the hidden RNN layer
(d,) have to be equal.

Attention layer: Visualizing the learned
model is of high importance in the medical do-
main. By using an attention mechanism, we
can show the degree of importance of words and
phrases.  Attention mechanism has been suc-
cessful in many recent studies (Bahdanau et al.,
2015; Hermann et al., 2015; Rush et al., 2015).
The outputs of the previous residual layer R
(r1,ro,...,rp) are used as inputs of the attention
layer. In other words, this layer receives M vec-
tors of size d,, where d, is the output dimension
of the recurrent layer. R is a rich representation
of the words in the ED note using a combina-
tion of word embeddings, CNN outputs, and RNN
outputs. Each vector r; is multiplied by a learn-
able real-valued weight s} between 0 and 1 before
adding the elements of all M vectors into a single
vector a as a form of weighted average. The func-
tions of the attention layer are defined in Equation
7.

st = v - tanh(W,ry)
sy = softmax(s);

M (7)
a = Z S;I‘t

t=1

‘W, is a trainable matrix of size d, X d,- and v is a
trainable vector of size d,. To learn more complex
functions, W,. is introduced to increase the num-
ber of parameters and tanh is introduced to add
non-linearity. W,. and v are shared across all time
steps t. To make sure that the weights for all time
steps sum to 1, the softmax function is performed
on all the weights s = (s1, s2, ..., sps). The atten-
tion layer is able to learn to assign varying weights
to different time steps ¢ depending on the input r;.
The main advantage of having an attention layer
is that we can retrieve the weight s; for each time
step, and hence we are able to visualize and mea-
sure the importance of each word in the ED note.
Linear Layer with Sigmoid Activation: If
there are no additional real-valued features, the
input of this layer is the vector a. Otherwise, it

14

will be [a, 1], the concatenation of a and 1, where 1
contains the additional real-valued features which
will be described in the next subsection. The lin-
ear layer maps the input vector into a single scalar
value. This mapping is a simple linear transfor-
mation, therefore the computed scalar value is un-
bounded. Since we are expected to predict either
class 0 or 1, we will use a sigmoid function to en-
sure the scalar value is in the range (0,1). The
mapping of the linear layer after applying the sig-
moid function is shown in Equation 8.

s(x) =o(w-x+0) (8)
where x is the input vector a or [a,l], w is the
weight vector, and b is the bias value.

3.2 Additional Real-valued Features

Before using additional real-valued features such
as lab results in the neural network, the values
need to be normalized. We have adopted normal
sigmoid to normalize the real-valued features
which is shown in Equation 9. Z and o represent
the mean and standard deviation for a particular
feature (e.g., white blood cell count).

(z — )

normal(z) =
o

1

normal_sigmoid(z) = 1 o—nomal(z)

There are also entries where ED notes are not
accompanied by any lab results. To deal with
missing values, we calculate the mean (Z) of all
existing entries in the training set of that particular
feature (e.g., white blood cell count) and then use
the average value to fill in the gap.

In order to include the L real-valued normalized
features 1 = (I1,ls,...,11) in the model, we con-
catenate L real numbers (after normalizing them)
to the output of the attention layer, before going
into the next layer. The input of the final layer will
be [a, 1], a vector of size d, + L. Figure 2 illustrates
the process above.

3.3 Training

We use the RMSProp optimization algorithm
(Dauphin et al., 2015) to minimize a loss function
over the training data. Given NN training ED notes
and their corresponding true class s (either 0 or
1), the model computes the predicted score s; in
the range of (0,1) for all training ED notes and
then updates the network weights such that the loss
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Figure 2: Concatenation of real-valued features before
the final layer.

function is minimized. The loss function we have
adopted in our system is the binary cross-entropy
loss function as shown in Equation 10.

N

=D stlog(si) + (1 — s7) log(1 — 7)
i=1

L(s,s")

(10)

In our data set, the distribution of the classes is
highly imbalanced — the proportion of ED notes
in class 0 can be as high as 98.4%, with the re-
maining 1.6% ED notes in class 1. To tackle
this problem, we have adopted a weighted binary
cross-entropy loss function, where each class is
weighted inversely proportional to the class fre-
quency in the training data to allocate more weight
to the less frequent class, similar to the technique
used by (Chollampatt et al., 2016) for rescaling.

To prevent overfitting, we have adopted dropout
(Srivastava et al., 2014) regularization. We also
clip the gradient if the gradient norm is larger than
a certain threshold. We train the neural network
for a specified number of epochs and evaluate the
model on a validation set in every epoch. The
epoch with the highest Fj 5-score on the valida-
tion set is then selected as the final model.

3.4 Threshold Adjustment

The output or score of the neural network is a real
number between 0 and 1. However, we need to
transform the score to either 1 (positive) or O (neg-
ative) to solve our binary classification problem.
Therefore, there is a need to set a threshold as the
decision boundary. The default threshold used to
split the two classes is 0.5. For example, if the pre-
diction score is greater than 0.5, then the predicted
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class is positive (appendicitis); otherwise negative
(not appendicitis).

The aforementioned threshold can be used to
tune the model to have lower FP but higher FN,
and vice versa. In this paper, we would like to
achieve the lowest possible FP, trading for a higher
FN. To achieve this, we use the validation set to
search for a threshold with the best Fj 5-score.
First, we use the model in the current epoch to
predict the score of each instance in the validation
set. Second, we sort the validation instances in as-
cending order of the predicted scores. Third, we
perform a linear search to find the cut-off thresh-
old to achieve the best F{ 5-score on the validation
set. This is repeated in every epoch, resulting in a
unique threshold for each epoch. The epoch with
the best Fj 5-score (using its own unique thresh-
old) on the validation set is used as the final model
to evaluate the test set, using the same threshold
used in the validation set.

4 [Experiments

4.1 Setup

Our network has several hyper-parameters which
need to be set. We use the RMSProp optimizer
with decay rate of 0.9 and learning rate of 0.001.
Mini-batch? size is 32 and the model is trained
for 25 epochs. The vocabulary is created using
all words in the training set. Out-of-vocabulary
words are replaced by a special <unknown> to-
ken. Words that contain any digits are replaced
by a special <num> token. The network is regu-
larized by using dropout (Srivastava et al., 2014)
with probability 0.5. During training, if the norm
of the gradient exceeds 10, it will be clipped to a
maximum value of 10. Word embedding dimen-
sion (dy ), output dimension of the hidden layer
for the RNN (d,.), and the number of filters for the
CNN (d.) are set to 300. The convolution win-
dow size (1) is set to 3. We initialize the lookup
table layer with our custom pre-trained word em-
beddings which are trained using our entire cor-
pus of 180,000 ED notes excluding the notes used
as validation and test set. We use the word2vec
skip-gram model (Mikolov et al., 2013) to train
our word embeddings. Although the lookup table

To create mini-batches for training, all the ED notes in
a mini-batch are padded using a dummy token to have the
same length. To remove the effect of padding tokens during
training, they are masked to prevent the network from mis-
calculating the gradients.



layer is initialized with pre-trained word embed-
dings, the lookup table layer is trainable and not
fixed. We utilize 4 additional features from the
structured patient data, namely age, gender, and
two lab test results (white blood cell count and
neutrophils), and incorporate them into the net-
work as described in Section 3.2.

4.2 Dataset

We have about 180,000 ED notes and DS pairs in
total. The class distribution of the ED notes in the
entire corpus is shown in Table 1 (second and third
column). The first class listed in the first column is
the class predicted by ED doctors in the ED notes,
while the second class listed in the first column is
the true diagnosis class obtained from the DS.

4.2.1 Dataset 1: Natural Distribution
(Original Dataset)

Using the corpus shown in Table 1, we randomly
sample 10% for training, 10% for validation, and
10% for test. The number of ED notes is 18,111,
18,108, and 18,107 respectively following its nat-
ural class distribution (about 1.6% positive ED
notes). To speed up training, we only use ED notes
with 750 words or less in the training set, resulting
in 16,854 instead of 18,111 ED notes for training.
We do not impose any length limit for both the
validation and test set.

Class | Number of ED notes | Percentage
++ (TP) 2,194 1.2 %
+— (FP) 1,071 0.6%
—+ (FN) 796 0.4 %
——(TN) 177,210 97.8 %

Total 181,271 100 %

Table 1: Class distribution of ED notes.

4.2.2 Dataset 2: Equal Class Distribution
with Random Negative ED Notes

In our second dataset, we obtain a subset of the
181,271 ED notes (from Table 1) to create a
dataset with 50% positive and 50% negative ED
notes. There are 2,980, 1,000, and 2,000 ED notes
for training, validation, and test respectively with
equal distribution of positive and negative classes
in each set. The negative ED notes consist of ran-
domly sampled ED notes of all diagnosis classes
that are not appendicitis.
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4.2.3 Dataset 3: Equal Class Distribution
with Abdominal-related Negative ED
Notes

Our third dataset is very similar to our second
dataset (in Section 4.2.2) with the same class dis-
tribution. The only difference is that the negative
ED notes in this dataset only consist of abdominal-
related diagnosis instead of any random diagnosis
that is not appendicitis. The number of ED notes
in the training, validation, and test set are the same
as those in dataset 2. The 1,000 positive ED notes
in this test set are identical to the 1,000 positive ED
notes in the test set in dataset 2. Dataset 3 is more
challenging than dataset 2 because the signs and
symptoms of appendicitis are very similar to those
of other abdominal conditions. The class distribu-
tion of all three test sets is shown in Table 2.

4.3 Results and Discussions

The experimental results of the best model (CR2,
described in Sections 3 and 4.1) on the three
datasets are summarized in Table 3.

We train the neural network model (end to end)
on a single GPU (Nvidia TITAN X Pascal), and
the training time is 3.2 hours for dataset 1, and 35
minutes for each of the datasets 2 and 3. After the
model is trained, it is able to perform acute appen-
dicitis diagnosis rapidly, at 400 ED notes per sec-
ond. The best single CR2 model is chosen based
on the highest Fj 5-score on the validation set over
50 runs with different seeds. The average score for
the CR2 model in each column is calculated over
50 runs with different seeds. The + sign repre-
sents the standard deviation over the 50 runs.

We have two baseline methods, namely a max-
ent (maximum entropy, also known as logistic
regression) classifier and an Alvarado rule-based
scoring system. This is inspired by prior work
(Deleger et al., 2013) which performs appendici-
tis risk stratification using an Alvarado rule-based
scoring system with features obtained from free
text. Before using the aforementioned two meth-
ods, the texts are first tokenized, and negation are
detected through Negex (Chapman et al., 2001),
a simple regular expression rule-based algorithm
which has been modified to suit our needs. For
maxent, a list of words is built from the training
ED notes and we obtain the bag-of-words repre-
sentation for each ED note, add the lab results and
other structured fields, and then use them as fea-
tures to train a maxent classifier.



Class Dataset 1 Dataset 2 Dataset 3
’ # ED notes % # ED notes % # ED notes %
++ (TP) 216 1.2 % 734 36.7 % 734 36.7 %
+— (FP) 104 0.6 % 6 0.3 % 36 1.8 %
—+ (FN) 78 0.4 % 266 13.3 % 266 133 %
——(TN) 17,709 97.8 % 994 49.7 % 964 482 %
Total 18,107 100 % 2,000 100 % 2,000 100 %
Table 2: Class distribution of ED notes in test sets.
model [ TP FP [ FN [ TN | Rec [ Prec | Spec | FI [ F05 [ Acc
Dataset 1
ED 216 104 78 17,709 0.735 0.675 0.994 0.704 0.686 0.990
ME 138 126 156 17,687 0.469 0.523 0.993 0.495 0.511 0.984
Alv 124 90 170 17,723 0.422 0.579 0.995 0.488 0.539 0.986
Best 141 90 153 17,723 0.480 0.610 0.995 0.537 0.579* 0.987
Avg 154.8 109.2 139.2 17,703.8 0.527 0.588 0.994 0.553 0.573 0.986
+169 | +£18.8 | +£16.9 +18.8 +0.058 | +0.021 40.0011 +0.030 +0.016 | 40.00046
Dataset 2
ED 734 6 266 994 0.734 0.992 0.994 0.844 0.927 0.864
ME 952 62 48 938 0.952 0.939 0.938 0.945 0.941 0.945
Alv 617 12 383 988 0.617 0.981 0.988 0.758 0.877 0.803
Best 912 27 88 973 0.912 0.971 0.973 0.941 0.959* 0.943
Avg 912.1 28.6 87.9 971.4 0.912 0.970 0.971 0.940 0.958 0.942
+17.1 +6.1 +17.1 +6.1 +0.017 | £0.0058 | £0.0061 | +£0.0076 | +0.0037 | =0.0069
Dataset 3
ED 734 36 266 964 0.734 0.953 0.964 0.829 0.900 0.849
ME 880 125 120 875 0.880 0.876 0.875 0.878 0.876 0.878
Alv 617 72 383 928 0.617 0.896 0.928 0.731 0.821 0.773
Best 831 79 169 921 0.831 0.913 0.921 0.870 0.895* 0.876
Avg 832.1 84.2 167.9 915.8 0.832 0.908 0.916 0.868 0.892 0.874
+28.8 | £12.2 | £28.8 +12.2 +0.029 | +£0.0096 | £+0.0122 | £0.0125 | +0.0045 | +0.0095

Table 3: Summary of the best model against ED doctors and the baselines on three datasets. The baseline for the
statistical significance tests is underlined and statistically significant improvements (p < 0.05) are marked with
** ME stands for Maxent, Alv stands for Alvarado, Best stands for Best CR2, and Avg stands for Avg CR2.

In acute appendicitis diagnosis, there is an ex-
isting well-known scoring system, namely Al-
varado score (Alvarado, 1986). It is also known as
MANTRELS score, which is a mnemonic to re-
member the score factors (signs, symptoms, and
lab readings) — Migration of pain to the right
lower quadrant, Anorexia, Nausea or vomiting,
Tenderness in the right lower quadrant, Rebound
pain, Elevated temperature (fever), Leukocytosis
(high white blood cell count), and Shift of neu-
trophils to the left. The score for each factor is
1(M), 1(A), 1(N), 2(T), 1(R), 1(E), 2(L), and 1(S)
respectively. The score for each factor present in
a patient will be added together to obtain the fi-
nal score. A higher score indicates that a patient
is more likely to have appendicitis. The aforemen-
tioned 8 factors are detected through a regular ex-
pression (with negation) on the ED notes that have
been preprocessed with Negex. Different thresh-
old values (scores strictly greater than the thresh-
old will be classified as positive, and negative oth-
erwise) are explored and the threshold with the

best Fj 5-score is chosen. The thresholds for Al-
varado scoring in datasets 1, 2, and 3 are 6, 5, and
5 respectively.

Our neural network model (CR2) outperforms
the two baselines in Fjs-score on all three
datasets. We also perform a statistical signifi-
cance test (p < 0.05) to determine whether the
obtained improvement is statistically significant.
We found that our neural network improvements
against maxent on all datasets are statistically sig-
nificant. This shows that our neural network
model is superior to the maxent classifier and Al-
varado scoring system.

Based on the first row in Table 3, we can see that
ED doctors’ performance is better compared to our
model. This is mainly caused by class imbalance
(1.6% positive and 98.4% negative). Learning
and predicting on a dataset with extremely skewed
class distribution is challenging. However, as we
can see from the results, the performance of our
best model is close to that of ED doctors, with 14
fewer FP instances and 75 more FN instances out
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of 18,107 ED notes in the test set.

Based on the results of dataset 2 and 3, our
model achieved lower FP+FN (in other words,
higher accuracy) when compared to ED doctors.
With equal distribution of positive and negative
ED notes, our model performs better than ED doc-
tors with much lower FN in exchange for slightly
higher FP. Our model’s Fj 5-score exceeds that of
ED doctor on dataset 2 and is very close to that of
ED doctor on dataset 3. Our model also consis-
tently achieves better sensitivity (recall) than the
ED doctor.
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Figure 3: Visualization of how our model interprets a
positive ED note.
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Figure 4: Visualization of how our model interprets a
negative ED note.

To visualize the model and gain insights into
how the model assigns importance to words and
phrases, we retrieve the weights of the attention
layer. The weights can be used to show the de-
gree of importance of words and phrases in an ED
note. From our observation, the model is able to
pick up meaningful signs and symptoms of ap-
pendicitis most of the time. Figure 3 shows the
visualization of our model, with appendicitis fea-
tures highlighted, such as rif pain, and tenderness
with rebound. In Figure 3, darker shade of red
color indicates a higher weight assigned to a word.
These signs and symptoms have been validated
and used in practice as features of the Alvarado
scoring scheme (Alvarado, 1986). On the other
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hand, the model is also able to pick up the features
of non-appendicitis. In Figure 4, the model is able
to pick up diarrhea and a few other features sug-
gesting non-appendicitis.

We will explore other neural network architec-
tures and more (deeper) layers in the future. We
will also design our experiments to be able to fully
utilize the entire 180,000 ED notes to train and val-
idate our model.

5 Conclusion

In this paper, we tackle the task of automated diag-
nosis using free-text ED notes. We present a ma-
chine learning model which is able to learn from
free text and optional additional features without
any feature engineering. We show that the per-
formance of our novel neural network architecture
is promising and close to the performance of ED
doctors. Analysis of the visualization shows that
the attention layer is able to meaningfully learn
the importance of words and phrases in ED notes
and to change its emphasis depending on the con-
text of the words. This is helpful in highlighting
certain key description (i.e., signs and symptoms)
that might have been missed otherwise by medical
doctors in a real-life setting.
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Abstract

This paper proposes a dataset and method for
automatically generating paraphrases for clin-
ical questions relating to patient-specific in-
formation in electronic health records (EHRSs).
Crowdsourcing is used to collect 10,578
unique questions across 946 semantically dis-
tinct paraphrase clusters. This corpus is then
used with a deep learning-based question para-
phrasing method utilizing variational autoen-
coder and LSTM encoder/decoder. The ulti-
mate use of such a method is to improve the
performance of automatic question answering
methods for EHRs.

1 Introduction

The useful information present in electronic health
records (EHRs) is hard to access due to many of its
usability issues (Zhang and Walji, 2014). Question
answering (QA) systems have the potential to re-
duce the time it takes for users to access informa-
tion present in the EHRs. However, the effective-
ness of such QA systems largely depends on the
variety of questions they are capable of handling.
Automated paraphrasing techniques are known to
improve the performance of QA models in gen-
eral domain by generating different variations of
a question (Duboue and Chu-Carroll, 2006; Fader
etal., 2013; Berant and Liang, 2014; Bordes et al.,
2014a,b; Dong et al., 2015; Narayan et al., 2016;
Chen et al., 2016; Dong et al., 2017; Abujabal
et al., 2018b). Thus, automatic generation of high
quality paraphrases for patient-specific EHR ques-
tions has the potential to improve performance of
the clinical QA systems.

Paraphrasing is a technique of rewording a
given phrase such that its lexical and syntactic
structure is different but its semantic information
is retained (Bhagat and Hovy, 2013). For instance,
the following two questions can be considered as
paraphrases of each other.
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o What medications am I currently taking?

e What are my current medications?

Such EHR-related questions are usually
targeted toward specific clinical information
(Roberts and Demner-Fushman, 2016). For ex-
ample, the aforementioned questions are intended
to get information regarding medications. In
such a scenario, paraphrases can be considered as
different ways of accessing the same medical data.
As such, automatic clinical paraphrase generation
can help in increasing the breadth of questions for
training a clinical QA system.

While automated paraphrase generation is well-
studied in the general domain (Madnani and Dorr,
2010; Androutsopoulos and Malakasiotis, 2010),
very few studies have focused on clinical para-
phrasing (Hasan et al., 2016; Adduru et al., 2018;
Neuraz et al., 2018). On the other hand, clin-
ical text simplification, which aims at generat-
ing easier to read paraphrases, has received rela-
tively more attention (Zeng-Treitler et al., 2007;
Elhadad and Sutaria, 2007; Deléger and Zweigen-
baum, 2008; Kandula et al., 2010; Pivovarov and
Elhadad, 2015; Qenam et al., 2017; Adduru et al.,
2018; Bercken et al., 2019). However, these
works in the clinical domain are not representa-
tive of QA needs as the usefulness of paraphrases
is largely application-specific (Bhagat and Hovy,
2013). Also, existing datasets for clinical para-
phrasing consist of either short phrases (Hasan
et al., 2016) or webpage title texts (Adduru et al.,
2018), both of which are not suitable to build
a paraphrase generator for QA. One can resort
to using external tools such as Google Translate
for generating question paraphrases (Neuraz et al.,
2018), but these general-purpose tools are not tai-
lored to the medical domain (Liu and Cai, 2015).

In this paper, we propose a clinical paraphras-
ing corpus CLINIQPARA with questions which
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can be answered using EHR data'. We further
propose a deep learning-based automated clinical
paraphrasing system utilizing a variational autoen-
coder (VAE) and a long short-term memory recur-
rent neural network (LSTM) (Gupta et al., 2018).
To our knowledge, this is the first work aimed at
automatically generating paraphrases without us-
ing any external resource for questions specifically
focused on retrieving patient-specific information
from EHRs. Our main contributions are summa-
rized as follows:

e Crowdsourcing a large paraphrasing corpus
of questions which are answerable using the
data from EHR.

e Application of VAE in context to clinical
paraphrasing task.

The rest of the paper is structured as follows.
Section 2 explores related work in the domain of
clinical paraphrasing. Then, Sections 3 and 4 dis-
cuss our dataset generation and model implemen-
tation details respectively. Next, Section 5 eval-
uates the results of our clinical paraphrasing sys-
tem. Finally, Section 6 discusses our findings, and
Section 7 provides a concluding summary.

2 Background

We begin this section by detailing work related
to clinical text simplification and paraphrasing in
Sections 2.1 and 2.2 respectively. Then, we high-
light some of the current work in general-domain
paraphrasing for QA as part of Section 2.3.

2.1 Clinical Text Simplification

As stated earlier, many studies have focused on
clinical text simplification. Text simplification dif-
fers from paraphrasing as the former is a uni-
directional task whereas the latter can be consid-
ered as bi-directional textual entailment (Androut-
sopoulos and Malakasiotis, 2010), but the meth-
ods nonetheless provide useful context for our
work. Elhadad and Sutaria (2007) and Deléger and
Zweigenbaum (2008) relied on parallel or com-
parable corpora to construct paraphrase pairs of
specialized and lay medical texts. Zeng-Treitler
et al. (2007) and Kandula et al. (2010) either re-
placed the difficult clinical phrases in text with
simpler synonyms or included uncomplicated ex-
planations for them. Qenam et al. (2017) concen-
trated on just substituting the difficult terms with

"The corpus is available upon request.
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more comprehensible ones. Much of the simplifi-
cation work in the clinical domain has been tar-
geted toward lexical methods to convert or ap-
pend the complex phrases present in the origi-
nal sentence with their simpler alternatives (Pivo-
varov and Elhadad, 2015). Such simplification ap-
proaches usually make use of external vocabular-
ies to map the difficult clinical terms. While these
techniques reduce the complexity of a sentence at
the lexical level, they generally leave the syntactic
structure of a sentence unchanged. For instance,

e Patient suffered from myocardial infarction.

e Patient suffered from heart attack.

These variations correspond to a specific cate-
gory of paraphrases named synonym substitution
(Bhagat and Hovy, 2013) and amount to a smaller
subset of possible paraphrases.

Alternatively, Adduru et al. (2018) and Bercken
et al. (2019) constructed clinical simplification
datasets from various web-based sources such
as WebMD, MedicineNet, Wikipedia, and Sim-
pleWikipedia utilizing sentence alignment tech-
niques. While this approach is capable of gener-
ating more variations of a given sentence, it is still
a simplification task and hence not suitable to be
incorporated in a QA system (Bhagat and Hovy,
2013).

2.2 Clinical Text Paraphrasing

Comparatively, less focus has been drawn to-
ward clinical paraphrase generation. Hasan et al.
(2016) built their dataset by combining an exist-
ing general domain paraphrasing corpus PPDB
2.0 (Pavlick et al., 2015) with the UMLS (Uni-
fied Medical Language System) metathesaurus.
Specifically, they utilized fully specified names of
medical concepts present in UMLS. Though their
corpus contains medical terms, it comprises of
comparatively shorter length phrases rather than
complete sentences.

Adduru et al. (2018) also created a paraphras-
ing corpus utilizing the titles of web articles from
Mayo Clinic along with Wikipedia. While this
dataset consists of complete clinical sentences,
they are atypical of the patient-specific EHR ques-
tions.

Neuraz et al. (2018) used the Google Trans-
late API to generate paraphrases for question tem-
plates in French. They utilized these generated
template paraphrases to augment the size of their



Scenario 18: You’ve been having some low back pain recently, and want to make an appointment
with your doctor’s office through the doctor’s website, but the system isn’t clear. Write a short (up
to 15 word), grammatical, one-sentence question asking how you make an appointment. No need to
state it is confusing, simply ask a question.

Question: How do I make an appointment?

Scenario 41: Your elderly mother has been taking Metformin (a diabetes drug). She is forgetful and
requires someone to organize her pills for each day. However, the person that normally organizes her
pills hasn’t done it for this week, and you need to know what the instructions are for your mother’s
Metformin prescription. Write a short (up to 15 word), grammatical, one-sentence question asking
her doctor for this dosage information. You question must contain the word *Metformin’.

Question: What are my mother’s Metformin dosage instructions?

Scenario 43: You recently had an automobile accident, and you’ve started taking physical therapy
to help recover. Your first appointment went well, but you forgot to write down when your next
appointment was scheduled for. Write a short (up to 15 word), grammatical, one-sentence question

asking your doctor for this information. Your question must contain ’physical therapy’.
Question: When is my next physical therapy appointment?

Table 1: Three scenarios used to build the CLINIQPARA corpus, along with a canonical question (not provided to

annotators).

development dataset for natural language under-
standing task without evaluating the quality of
the paraphrases. Such general-purpose machine
translation systems lack the ability to capture the
domain-specific nuances of biomedicine (Liu and
Cai, 2015). This suggests the need for a question
paraphrasing dataset targeted toward clinical do-
main.

As discussed earlier, existing clinical paraphras-
ing datasets are not suitable for building a para-
phrase generation system for clinical questions.
To the best of our knowledge, the proposed para-
phrasing corpus is the first which aims at clinical
questions.

2.3 Paraphrasing for Question Answering

There are several question paraphrasing corpora
available for the general domain such as WikiAn-
swers (Fader et al., 2013), PPDB (Ganitkevitch
et al., 2013), PPDB 2.0 (Pavlick et al., 2015),
GraphQuestions (Su et al., 2016), and ComQA
(Abujabal et al., 2018a). However, there is a
scarcity of such datasets for clinical questions.

The proposed corpus consists of questions
which can be answered using EHR data. Such a
corpus would have utility beyond QA systems as
well, like in question similarity (Luo et al., 2015;
Nakov et al., 2017), and in particular could serve
as a standard paraphrase corpus for the medical
domain.
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3 Dataset Construction

In order to quickly and efficiently collect hundreds
of paraphrases, we utilized the crowdsourcing
platform Amazon Mechanical Turk (AMT). In-
stead of prompting AMT workers with a question
and directly asking for paraphrases—which could
prime the workers and bias them toward very sim-
ilar paraphrases—we presented them with a short,
3-6 sentence imaginary scenario that placed them
in a situation where a specific piece of information
was required (such as their current medications).
The workers were then asked to provide questions
directed to their doctor to answer that information
need. After the crowd-sourced questions were col-
lected, they were manually organized into distinct
paraphrase clusters. This was necessary because
some questions address the information need but
are not logically equivalent paraphrases. These
steps are discussed in more detail below.

3.1 Scenario Creation

To ensure a wide variety of EHR questions, we
first came up with 11 top-level topic categories
people might ask about: medications, other treat-
ments, labs, immunizations, imaging, other ex-
ams, problem list, past medical history, family
history, appointments, and documents. For each
of these categories, 2-8 scenarios were created to
capture relevant questions about the topic. In total,
50 scenarios were created. Table 1 shows three of
these scenarios along with the canonical question
expected by the scenario.
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3.2 Crowdsourcing bigram features. This allowed us to sort the ques-

The 50 scenarios were uploaded to AMT in three
batches, one scenario per Human Intelligence Task
(HIT). Workers were required to provide three
questions per HIT, since first question might be
obvious and not result in a particularly diverse set
of paraphrases. Each HIT was assigned to 100
workers and the annotators were paid $0.08/HIT.
Workers were required to be proficient in English,
but otherwise no requirements were imposed and
no demographic data was collected.

The initial validation process was minimal.
HITs were rejected if the workers did not provide
3 questions, or if none of the questions were valid.
93% of submitted HITs were approved. Of the re-
jections, 73% were due to not providing 3 ques-
tions. Many of the rejections due to invalid ques-
tions were for questions that were completely un-
related to the scenario.

3.3 Paraphrase Cluster Creation

After collecting a set of questions for each sce-
nario using crowdsourcing, the next step was to
manually organize the questions into paraphrase
clusters (Figure 1). We consider a paraphrase clus-
ter to be composed only of exact paraphrases. That
is, questions are paraphrases only if they should
have the same semantic representation.

The first two steps in paraphrase construction
were designed to ease the manual burden of para-
phrase cluster assignment. First, questions were
merged into case-independent unique sets. Sec-
ond, questions were clustered using Dirichlet Pro-
cess Mixture Model clustering with unigram and
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tions so that very similar questions, which are
likely to be paraphrases, are annotated in succes-
sion. The remainder of this process required man-
ual annotation for each question (with some com-
puter assistance).

Each paraphrase cluster is represented by a
canonical form. For each unique question, given
the correct list of paraphrase clusters, the annota-
tor selected a cluster that is the semantic match,
or created a new cluster if none existed. Each
new paraphrase cluster was assigned several val-
ues, notably including whether it was grammat-
ical. Invalid questions (non-responsive, spurious
responses that are common with crowdsourcing)
were placed in either the INVALID-related cluster
(invalid questions which were related to the sce-
nario), or the INVALID-unrelated cluster. Finally,
a canonical form was assigned to valid clusters.

The entire process in Figure 1 was repeated for
each scenario. Since there were 100 workers per
HIT, and 3 questions per worker, up to 300 ques-
tions needed to be clustered per scenario (with 50
scenarios, there were 15,000 questions). There
were much fewer than 300 unique questions per
scenario, and the process took between 30-40 min-
utes for most scenarios.

After ignoring casing and whitespace, there
were an average of 240 unique questions per sce-
nario. Three annotators manually clustered the
questions (three scenarios were clustered as a
group, with the remaining scenarios being cluster-
ing individually). Ignoring invalid questions (9%),
and ungrammatical questions (6%), there were a



—_——_——————

Reconstructed
Paraphrased
Sentence

Encoder
LSTMs

————————

Latent
Representation
z~N(y,0)

Paraphrased
Sentence

Sentence
Figure 3: Architecture of the paraphrasing model based
on VAE-LSTM.

median of 2.8 and mean of 5.6 paraphrase clus-
ters, with a minimum of 5 questions, per scenario.
Table 2 shows the paraphrase clusters for one of
the scenarios.

4 Paraphrase Generator

An overall framework of our paraphrasing system
is presented in Figure 2.

4.1 Preprocessing

First, we normalize the medical concepts and
mask the person references and digits present in
the question. This is carried out to make sure the
questions from different scenarios are consistent.
Consider the following questions and their masked
versions:

e What types of cancer does my father have?

— What types of concept does my human have?
e Was it in 2003 that | had my appendectomy?

— Was it in digits that [ had my concept?

After this step, we further deduplicate the ques-
tions and remove clusters with only 1 question (as
a minimum of two questions are required for eval-
uating paraphrasing).

We then construct paraphrase pairs using the
created clusters of paraphrases. Specifically, we
generate all combinations of questions which are
present in the same cluster. This results in
over 258,000 unique question-paraphrase pairs for
10,578 questions distributed across 946 semanti-
cally distinct paraphrase clusters.

4.2 Model

We use a deep learning model based on VAE-
LSTM (Gupta et al., 2018), the architecture of
which is presented in Figure 3. One of the main
characteristics of VAE that makes it a good choice
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for paraphrasing task is that its latent representa-
tion is continuous. In other words, the encoder
outputs a distribution rather than discrete values.
This enables the decoder to produce naturalistic
outputs even in the cases where latent code does
not correspond to any of the already viewed in-
puts.

The model consists of two parts, namely, encod-
ing and decoding. On the encoding side, the orig-
inal sentence is first passed to an encoder LSTM
which constructs a vector representation x for the
sentence. Then, another encoder LSTM takes
as input x along with the paraphrased sentence
whose vector representation y is generated as the
output. Finally, a feedforward neural network gen-
erates the VAE encoder’s mean (u) and standard
deviation (o) parameters using y.

Both original and paraphrased sentences are fed
into their respective encoder LSTMs using word
embeddings. We train the word embeddings on
our paraphrasing corpus using word2vec (Mikolov
et al., 2013) and keep them fixed while training the
paraphrasing system.

In the decoding phase, we first generate a vector
representation x by passing the original sentence
to an encoder LSTM. Ultimately, a decoder LSTM
reconstructs the paraphrased sentence using x and
a latent code z which is sampled from N (u, o).
While z is fed to the decoder LSTM only at an
initial stage, z is taken as input at each of its stages.

During training, we aim to maximize the objec-
tive function shown below in Equation 1, thereby
learning the VAE parameters.

0(07(15;'7;73/) = Eq¢(z|a:,y)[10g(p9(y’zvx))]
— KL(gy (2|2, 9) || p(2)) (1)

where g4(z|z,y) is a posterior distribution (en-
coder model) on z that the VAE aims at keep-
ing closer to its prior p(z) (commonly a standard
normal distribution). KL represents the Kullback-
Leibler divergence which intuitively gives a simi-
larity measure between the two distributions. At
the decoder side, py(y|z, ) is a distribution on
y, given the latent code z and vector x, whose
expectation [E is taken with respect to g4(z|z,y).
The objective function gives a lower bound on the
true likelihood of the data. We follow the training
mechanism proposed by Bowman et al. (2016).
During testing, the encoder part is ignored and
paraphrases are generated for a given question us-
ing z sampled from a standard normal distribution.



Scenario:

You just realized you should have a doctor’s appointment coming up soon, but cannot find it on your
calendar. Write a short (up to 15 word), grammatical, one-sentence question asking your doctor about
your next appointment.

Cluster 1 (229 questions, 164 unique): When is my next appointment?
When is my next appointment? (frequency = 32)

What time is my next appointment? (6)

When is my next scheduled appointment? (5)

Can you tell me when my next appointment is? (4)

When is my next appointment scheduled? (4)

When is my next appointment scheduled for? (4)

What is the date and time of my next appointment? (3)

(... 157 more ...)

Cluster 2 (38 questions, 33 unique): Do I have an appointment soon?
Do I have an appointment coming up? (3)

Do I have a doctor’s appointment coming up soon? (2)

Do I have an appointment soon? (2)

Do I have an upcoming appointment scheduled? (2)

(... 29 more ...)

Cluster 3 (3 questions): Do I have an appointment this week?

Am I scheduled to come in to your office this week for an appointment?
Do I have an appointment this week?

Is my appointment scheduled for this week?

Cluster 4 (2 questions): Can I make an appointment?
Can I make an appointment?
Will you be able to make an appointment any soon?

Cluster 5 (1 question): How long until my next appointment?
How long until my next doctor’s appointment?

Cluster 6 (1 question): Is my appointment this week or next?
Is my appointment scheduled for this week or next week?

Cluster 7 (1 question): Is my appointment next week?
Was my appointment scheduled for next week?

Cluster 8 (1 question): Is my appointment on Tuesday?
Is my scheduled appointment for Tuesday?

Cluster 9 (1 question): Is my appointment this month?
Do you have a record of my having made an appointment for later this month?

Cluster INVALID-related (34 questions)

Can you give me an appointment card?

How long will this appointment last?

What happens if I miss the appointment?

What will you be discussing in regards to my next check up?
Will I be meeting with you or with your assistant?

(... 29 more ...)

Cluster INVALID-unrelated (17 questions)

According to my lab results, what vitamins or supplements should I be taking?
Do you have the results of my mri?

How is my BMI?

What does this medicine do?

What symptoms should I watch for?

(... 12 more ...)

Table 2: Paraphrase Clusters for Scenario 3. Only a sample of questions are shown.
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The presence of input question at the decoder side
enables the model to generate its paraphrases.

We utilize the same model parameters as Gupta
et al. (2018). Namely, the dimension of the word
embedding is 300; the dimension of the encoder
and decoder is 600; the latent space dimension is
1100; the encoder has 1 layer; the decoder has 2
layers; the learning rate is 5 x 1075; the dropout
rate is 30%; the batch size is 32. We use PyTorch
for implementing the model and run all our exper-
iments on an NVidia Tesla V100 GPU (32G).

4.3 Evaluation

The paraphrased questions generated by the model
are re-incorporated with the concept, person
names, and digits which were extracted during the
preprocessing step. The paraphrases are evaluated
using standard paraphrase evaluation metrics such
as BLEU (Papineni et al., 2002), METEOR (Lavie
and Agarwal, 2007), and TER (Snover et al.,
2006), which are shown to work well for the para-
phrase identification task (Madnani et al., 2012).
BLEU score assesses the lexical similarity of gen-
erated paraphrases with the reference ones using
exact matching while METEOR additionally takes
into account the word stems and synonyms. TER
score measures the edit distance (number of edits
required to convert one sentence into another) be-
tween generated and reference paraphrases. So,
higher BLEU and METEOR scores are better
whereas a lower TER score is preferable. Since
we have multiple paraphrases for each question in
our corpus, we calculate these metrics for the gen-
erated paraphrases against all the available ground
truth paraphrases.

To evaluate the performance measures on all the
parts of CLINIQPARA dataset, we perform 10-fold
cross validation. Specifically, we split our dataset
by scenarios (into 10 groups each containing 5
scenarios) and sequentially test the performance of
model on each group of 5 scenarios after training
it on the other 45. We report the individual and
average scores from all these runs in our results.

We further evaluate the performance of our
model on the Quora dataset®, which contains over
400k pairs of questions of which around 150k
pairs are paraphrases. We train on 90% of these
paraphrase pairs and test on the remaining 10%.

We also perform human evaluation of the gen-

*https://data.quora.com/First-Quora-Dataset-Release-
Question-Pairs
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Metric

Dataset  —proG METEOR TER
Quora 16.70 20.60 77.4
CLINIQPARA 1325 2147  91.93

Table 3: Performance of our paraphrasing system using
automated evaluation metrics.

Fold Metric
(Scenarios) BLEU METEOR TER
1-5 19.25 23.56 92.58
6-10 12.27 19.25 94.01
11-15 18.79 21.93 78.17
16-20 9.72 19.30 91.46
21-25 9.20 20.97 103.25
26-30 16.45 23.66 84.98
31-35 6.07 19.84 111.62
36-40 11.24 20.40 95.05
41-45 14.08 22.33 85.18
46-50 15.48 23.44 82.97
Average 13.25 21.47 91.93

Table 4: Results on CLINIQPARA using automated
evaluation metrics for 10-fold cross validation. Each
fold contains 5 scenarios over which the model is tested
after being trained on the other 45 scenarios.

erated paraphrases for quantifying the aspects not
covered solely by the automated evaluation met-
rics. For the CLINIQPARA dataset, we randomly
select a set of 300 questions from all the scenarios.
For each of these questions, we further choose a
ground truth paraphrase as well as a system gen-
erated paraphrase in a random fashion. This result
in a total of 600 pairs of question paraphrases, 300
from the gold dataset and 300 generated by the
paraphrasing system. The constructed set is sep-
arately evaluated by two annotators who are asked
to rate the paraphrases based on two parameters:
fluency of the questions as natural language and
their relevance to the original question. Both of
these scores range from 1 (worse) to 5 (best). For
each paraphrase, the final score is calculated by
averaging the scores provided by the two annota-
tors. The fact that a paraphrase is ground truth
or generated by the model is hidden from the an-
notators to avoid bias. For the Quora dataset, we
directly report the human evaluation results from
Gupta et al. (2018).



Dataset Type Relevance | Fluency
Quora Ground Truth 4.82 4.94
VAE-LSTM 3.57 4.08
CLINIQPARA Ground Truth 4.69 4.70
VAE-LSTM 1.88 3.65

Table 5: Results of human evaluation. Range of scores
is between 1 (worst) and 5 (best).

Input Question

Do you know when my next appointment is going to be?

Generated Paraphrases

1. Can you please confirm the date and time of my ap-
pointment?

2. On what day and what time do [ have my appointment?
3. Do you have the date and time for my appointment?

4. Can you tell me when I am scheduled for my appoint-
ment.

Table 6: Example paraphrases generated by the model
for an input question from Scenario 3 (Good).

5 Results

The results on CLINIQPARA (our dataset) and
Quora dataset using automated evaluation metrics
are shown in Table 3. More granular cross val-
idation results on CLINIQPARA are presented in
Table 4. Moreover, the results of our human eval-
uation process are shown in Table 5. Some of the
system-generated paraphrases are included in Ta-
bles 6 and 7. Table 6 shows the examples from a
fold which performed well during the cross valida-
tion step whereas Table 7 includes examples from
a low-performing fold.

6 Discussion

The quality of generated paraphrases is promis-
ing, but further investigation is required to deter-
mine if performance is sufficient for use in train-
ing a downstream QA system. We note that the
METEOR score on CLINIQPARA was compara-
ble to that of the results on the Quora dataset. This
shows the potential of our paraphrasing system in
generating paraphrases similar to the ground truth
paraphrases. Our system performed well on the
Quora dataset in terms of BLEU score, which can
be attributed to the larger size of the Quora dataset
in terms of unique questions (150k in Quora vs.
10.5k in CLINIQPARA).

On analyzing the results of the qualitative evalu-
ation, we observe that the majority of the errors are
related to change in the person reference or ask-
ing about frequency-related information. For in-
stance, the original question “When shall I come
for my next physical therapy?” asking about the
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Input Question

Is my latest CAT scan impression complete?

Generated Paraphrases

1. Was my CAT scan impression successful or not?

2. Was my CAT scan impression a success?

3. Was my diagnosis CAT scan impression?

4. does my father ’s file show how many times he has CAT
scan impression?

Table 7: Example paraphrases generated by the model
for an input question from Scenario 32 (Moderate).

user’s next appointment for a therapy is modified
to a question “May I have the number of times
my father has physical therapy?” asking about
the number of times the user’s father has under-
gone the therapy. A similar trend can be seen in
the second example where the original question
“Can you please give me the dosage details on the
metformin mom takes?” is concerned about get-
ting the dosage information for the user’s mother
whereas the system generated question “Could
you tell me the amount of time my father has met-
formin?” is related to the frequency of metformin
intake of the user’s father. Further qualitative eval-
uation can help pointing out more specific prob-
lems with the model.

Our future work includes experimenting with
more advanced embedding techniques (Peters
et al., 2018; Devlin et al., 2018). We also plan to
handle some of the aforementioned errors by in-
corporating additional constraints such as restrict-
ing the question paraphrase pairs in our corpus
to contain only semantically similar masked ref-
erences.

7 Conclusion

Automatic paraphrase generation of clinical ques-
tions can improve the performance of the QA sys-
tems. Little work has been focused on clinical
paraphrasing, let alone concentrating on clinical
questions. We have proposed a new clinical para-
phrasing corpus CLINIQPARA, containing ques-
tions which can be answered using EHRs. Our
model based on VAE-LSTM has the potential to
generate quality clinical paraphrases.
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Abstract

Systematic comparison of methods for relation
extraction (RE) is difficult because many ex-
periments in the field are not described pre-
cisely enough to be completely reproducible
and many papers fail to report ablation stud-
ies that would highlight the relative contribu-
tions of their various combined techniques. In
this work, we build a unifying framework for
RE, applying this on three highly used datasets
(from the general, biomedical and clinical do-
mains) with the ability to be extendable to new
datasets. By performing a systematic explo-
ration of modeling, pre-processing and train-
ing methodologies, we find that choices of pre-
processing are a large contributor performance
and that omission of such information can fur-
ther hinder fair comparison. Other insights
from our exploration allow us to provide rec-
ommendations for future research in this area.

1 Introduction

Relation Extraction (RE) has gained a lot of in-
terest from the community with the introduction
of the Semeval tasks from 2007 by (Girju et al.,
2007) and 2010 by (Hendrickx et al., 2009). The
task is a subset of information extraction (IE) with
the goal of finding semantic relationships between
concepts in a given sentence, and is an impor-
tant component of Natural Language Understand-
ing (NLU). Applications include automatic knowl-
edge base creation, question answering, as well as
analysis of unstructured text data. Since the in-
troduction of RE tasks in the general and medical
domains, many researchers have explored the per-
formance of different neural network architectures
on the datasets (Socher et al., 2012; Zeng et al.,
2014; Liu et al., 2016b; Sahu et al., 2016).
However, progress in RE is hampered by repro-
ducibility issues as well as the difficulty in assess-
ing which techniques in the literature will general-
ize to novel tasks, datasets and contexts. To assess
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the extent of these problems, we performed a man-
ual review of 53 relevant neural RE papers' citing
the three datasets (Hendrickx et al., 2009; Segura-
Bedmar et al., 2013; Uzuner et al., 2011). The
procedure for finding these papers is highlighted
in (Chauhan, 2019).

Reproducibility Reproducibility is important
for validating previous work and building upon it
(Fokkens et al., 2013). Lack of reproducibility can
be attributed to many factors such as difficulty in
availability of source code (Ince et al., 2012) and
omission of sources of variability such as hyperpa-
rameter details (Claesen and De Moor, 2015). We
found that only 16 out of the 53 relevant papers
had released their source code. 14 out of 53 pa-
pers were evaluated on multiple datasets, but the
source code was publicly available for only five of
those. Despite this, much of this code was lack-
ing in modularity to be easily extendable to new
datasets. In many cases, the process of reproduc-
ing the paper results was often unclear and lack
of documentation made this more difficult. Even
though most papers mentioned some hyperparam-
eter details, important details were missing such
as number of epochs, batch size, random initial-
ization seed, if any, and details about early stop if
that technique was applied.

Ablation Studies Lack of generalizability is
caused by a dearth of appropriate empirical evalu-
ation to identify the source of modeling gains. Ab-
lation studies are important for identifying sources
of improvements in results. Among the 53 papers
that we looked at, 20 of the 24 papers in the gen-
eral domain performed ablation studies. However,
only 10 out of 29 papers in the medical domain
performed one. Among these ablation studies,

"The 53 papers were filtered from a list of 728 papers
skimmed for relevance. Appendix A contains paper details.

Proceedings of the BioNLP 2019 workshop, pages 30—47
Florence, Italy, August 1, 2019. (©2019 Association for Computational Linguistics



key details related to pre-processing were missing,
which we found critical in our experiments.

In the absence of such information about causes
of large variability of results, fair comparison of
models becomes difficult. In this paper, we present
an open-source unifying framework enabling the
comparison of various training methodologies,
pre-processing, modeling techniques, and evalu-
ation metrics. The code is available at https:
//github.com/geetickachauhan/
relation-extraction.

The experimental goals of this framework are
identification of sources of variability in results
for the three datasets and provide the field with
a strong baseline model to compare against for
future improvements. The design goals of this
framework are identification of best practices for
relation extraction and to be a guide for approach-
ing new datasets.

By performing systematic comparison on three
datasets, we find that 1) pre-processing choices
can cause the largest variations in performance, 2)
reporting scores on one test set split is problem-
atic due to split bias. We perform other analyses
in section 5 and also include recommendations for
future research in this field in section 7.

Upon testing various combinations of our ap-
proaches, we achieve results near state of the art
ranges for the three datasets: 85.89% macro F1
for Semeval 2010 task 8 dataset (Hendrickx et al.,
2009) i.e. semeval, 71.97% macro F1 for DDI
Extraction 2013 (Segura-Bedmar et al., 2013) i.e.
ddi and 71.01% micro F1 for i2b2/VA 2010 re-
lation classification dataset (Uzuner et al., 2011)
ie. 12b2. We refer to ddi and 12b2 as medi-
cal datasets, as they belong to the biomedical and
clinical domains, respectively.

Dataset Rel Eval Agreement Det
semeval 18 Macro 0.6-0.95 No
ddi 5 Macro >0.8; 0.55-0.72 Yes
i2b2 8 Micro - Yes
Table 1: Dataset information, with columns Rel =

number of relations, Eval = evaluation metric (all F1
scores), Agreement = Inter-annotator agreement, Det =
whether detection task from section 3.4 was evaluated
on. Rel column only includes relations used in offi-
cial evaluation metric. ddi was built from two sep-
arately annotated sources and therefore contains two
inter-annotator agreements.
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2 Datasets

We summarize important information about these
datasets in table 1. We introduce detection and
classification tasks in section 3.4, but also indicate
the tasks evaluated for each dataset in table 1.

Semeval 2010 semeval consists of 8000 train-
ing sentences and 2,717 test sentences for the
multi-way classification of semantic relations be-
tween pairs of nominals. Not included in the offi-
cial evaluation is an Other class which is consid-
ered noisy, with annotators choosing this class if
no fit was found in the other classes. It is impor-
tant to note that this is a synthetically generated
dataset, and detection scores were not calculated
due to the noisy nature of the Other class.

DDI Extraction ddi consists of 1,017 texts
with 18,491 pharmacological substances and
5,021 drug-drug interactions from Pubmed articles
in the pharmacological literature. None class in-
dicating no interaction between the drug pairs is
included in the evaluation metric calculation.

i2b2/VA 2010 relations i2b2 consists of dis-
charge summaries from Partners Healthcare and
the MIMIC II Database (Saeed et al., 2011). They
released 394 training reports, 477 test reports and
877 unannotated reports. After the challenge, only
a part of the data was publicly released for re-
search. None relation was present in the data and
not considered in the official evaluation.

3 Methodology

Our framework breaks up processing into dif-
ferent stages, allowing for future modular addi-
tion of components. First, a formatter con-
verts the raw dataset into a common comma sep-
arated value (CSV) input format accepted by the
pre—-processor, and this information is then
fed to the mode 1, which performs the training, af-
ter which evaluation is performed on the test
set. With our framework, we test the following
variations in the main components:

3.1 Pre-Processing

We test various pre-processing methods after per-
forming simple tokenization and lower-casing of
the words: entity blinding used by Liu et al.
(2016b), stop-word and punctuation removal, and
digit normalization commonly applied for ddi in
(Zhao et al., 2016), and named entity recognition



related replacement (we call this NER blinding).
We used the spaCy framework? for tokenization
and to identify punctuation and digits.

Entity blinding and NER blinding are similar
concept blinding techniques where the first is per-
formed based on gold standard annotations, while
the second is performed by running NER on the
original sentence. We replace the words in the
sentence matching the entity or named entity span
with the target label and use those for training and
testing.

Entity labels for semeval were not anno-
tated with type information, whereas ddi identi-
fied drugs and 12b2 identified medical problems,
tests and treatments. Therefore, entity labels for
semeval were ENTITY, for ddi were DRUG
and for 1 2b2 were PROBLEM, TREATMENT and
TEST. In this paper, we use fine-grained concept
type to refer to the presence of more than one con-
cept type, as in the the case of 12b2.

NER labels for semeval consisted of those
provided by the large english model by spaCy
and provided standard types such as PERSON and
ORGANIZATION, whereas those for the medical
datasets was provided by the scispacy medium
size model® and did not provide types. In this case,
blinding consisted of replacing the words in the
sentence by Entity.

We chose the spaCy model for NER to com-
plement the extendable design goals of REflex.
Other options such as cTAKES (Savova et al.,
2010) for clinical data and MetaMAP* for
biomedical data are highly specific to the dataset
type and require running additional scripts outside
of the RE f 1ex pipeline.

3.2 Modeling

We employ a baseline model based upon (Zeng
et al., 2014), (Santos et al., 2015) and (Jin et al.,
2018), which is a convolutional neural network
(CNN) with position embeddings and a ranking
loss (referred to as CRCNN in this paper). We
initialize the model with pre-trained word em-
beddings: the senna embeddings by Collobert
et al. (2011) for the general domain dataset and
the PubMed-PMC-wikipedia embeddings re-
leased by Pyssalo et al. (2013) for the medical
domain. We test several perturbations on top of
CRCNN model, such as piecewise max-pooling, as
“https://github.com/explosion/spaCy

3https://allenai.github.io/scispacy/
*https://metamap.nlm.nih.gov
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suggested by Zeng et al. (2015) and the more re-
cent ELMo embeddings by Peters et al. (2018). To
compare different featurizations of contextualized
embeddings, we also employ the embeddings gen-
erated by the BERT model (rather than the stan-
dard fine-tuning approach). For ELMo, we use
the Original (5.5B) model weights in semeval
and PubMed contributed model weights in the
medical datasets released by (Peters et al., 2018).
For BERT, we use the BERT-large uncased model
(without whole word masking) in semeval re-
leased by (Devlin et al., 2018), BioBERT by
(Lee et al., 2019) in ddi and Clinical BERT by
(Alsentzer et al., 2019) in i 2b2.

The fine-tuning approach, which tends to be
computationally expensive, has been thoroughly
explored for multiple tasks, including medical re-
lation extraction by Lee et al. (2019), but the
approach of featurizing them with an existing
model has not been explored in the literature as
much. We tested different ways of featurizing the
BERT contextualized embeddings for researchers
who want to utilize a less computationally inten-
sive technique, while still aiming for performance
gains for their task.

Because ELMo provides token level embed-
dings, we chose to concatenate them with the
word and position embeddings from CRCNN be-
fore the convolution phase. However, BERT pro-
vides word-piece level as well as sentence level
embeddings. The first was concatenated similar
to ELMo (which we call BERT-tokens), while the
second was concatenated with the fixed size sen-
tence representation outputted after convolution of
word and position embeddings (BERT-CLS).

3.3 Training

We explore two ways of doing hyperparame-
ter tuning: manual tuning and random search
(Bergstra and Bengio, 2012).

Evaluating on three datasets meant that we
needed to identify a default list of hyperparame-
ters by tuning on one of the datasets before we
could identify the hyperparameter list for the other
two. We chose semeval for initial tuning due
to its larger literature and because the CRCNN
model was originally evaluated on this dataset.
We started with reference hyperparameters listed
in Zeng et al. (2014) and Santos et al. (2015) and
identified default hyperparameters after tuning on
a dev set randomly sampled from the training data



of the semeval dataset. These default hyperpa-
rameters® were used as starting points for manual
tuning on the medical datasets as well as random
search for all datasets.

We perform manual tuning on a subset of the
hyperparameters, mentioned in table 2. In or-
der to avoid overfitting in cross validation pointed
out by Cawley and Talbot (2010), we perform a
nested cross validation procedure, keeping a dev
fold for hyperparameter tuning and a held out fold
for score reporting.

On these dev folds, we perform paired t-tests for
each of the perturbations to the parameters listed
in table 2. Our first pass involves changing one hy-
perparameter per experiment and noting the ones
that cause a statistically significant improvement,
which helps us identify a narrower list of hyperpa-
rameters to tune on. We further refine the hyper-
parameter values in our second pass by testing on
values similar to those that were leading to statis-
tically significant improvements in the first pass.
For example, if we noticed that lower epoch val-
ues were helpful in the first pass, we tested them in
combination with the other optimal hyperparame-
ter values (from first pass) in the second pass.

For each of the datasets, we tuned based on their
official challenge evaluation metrics listed in sec-
tion 2. ddi and i2b2 had 5-fold nested cross
validation performed on them, whereas semeval
had 10-fold cross validation performed.

Random search was performed based on the
official evaluation metrics for each dataset, on a
fixed dev set randomly sampled from the training
data. Final distributions are listed in table 3.

3.4 Evaluation

The official challenge problems for all datasets
compared models based on multi-class classifica-
tion, but for the medical datasets, we were also
interested in looking at the changes in model per-
formance if we treated the task as a binary classi-
fication problem. This was based on the rationale
that in the drug literature, for example, pharma-
cologists would not want to sacrifice the ability
to identify a potentially life threatening drug in-
teraction pair, even if the type of the drug pair is
not known. Therefore, we report results for both
multi-class and binary classification scenarios. For
clarity, we refer to them in the rest of the paper as
classification and detection respectively.

Slisted in source code
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Detection results were obtained using our eval-
uation scripts by treating existing relations as one
class, ignoring the types outputted by the model.
The other class in this task was the None or Other
class, representing non-existing relations. Note
that we did not re-train our model for this.

In addition to evaluating on two tasks for the
medical and one task for the general dataset, we
comment on the implications of different evalua-
tion metrics in section 5.5.

4 Results

For experiments on the medical datasetsi.e. 12b2
and ddi, we used hyperparameters found from
manual search individually performed on them.
semeval had the default hyperparameters used
for its experiments. These sets of hyperparame-
ters were used in all experiments other than those
reported in table 6, where we compare hyperpa-
rameter tuning methodologies.

Once we had a fixed set of hyperparameters for
each dataset, we tested the perturbations for pre-
processing as well as modeling in tables 4 and
5. Perturbations on the hyperparameter search are
listed in table 6 and compare performance with
different hyperparameter values found using dif-
ferent tuning strategies.

We generate the standard classification and the
additional detection scores by the procedure de-
scribed in section 3.4, and report these results un-
der the Class and Detect columns.

We also report additional experiments in tables
7 and 8 based on the improvements found in tables
4 and 5. For all results tables, we report official
test set results at the top, with accompanying cross
validated results (averaged over all folds with their
standard deviation) in smaller font below them.®

5 Discussion

Recently, CNNs have achieved strong perfor-
mance for text classification and are typically
more efficient than recurrent architectures (Bai
etal., 2018; Kalchbrenner et al., 2014; Wang et al.,
2015; Zhang et al., 2015b). The speed of our base-
line CRCNN model allows us to explore multiple
alternatives for every stage of our pipeline. We
discuss these results pertaining to the classifica-
tion task for all datasets and the detection task for

®Results tables for metrics other than the official ones

were omitted in the interest of space, but their analysis ex-
ists in section 5.5.



Hyperparameter Values
epoch {50,100,150,200}
Ir decay [1e-3, 1e-4, 1e-5]
sgd momentum {T, F}
early stop {T, F}
pos embed {10, 50, 80, 100}
filter dimension {50, 150}
filter size 2-3-4, 3-4-5
batch size {70, 30}

Table 2: Hyperparameters explored for the first pass
of manual search. Ir decay means learning rate decay
at [60, 120] epochs, pos embed refers to the position
embedding size.

Hyperparameter Distributions
epoch uniform(70, 300)
Ir {constant, decay}
Ir init uniform(le-5, 0.001)
filter size 2-3,2-3-4,2-3-4-5

3-4-5, 3-4-5-6
early stop {T, F}
batch size uniform(30, 70)

Table 3: Hyperparameter distributions for random

search. Those written in { } are picked with equal prob-
abilities. The learning rate (Ir) was uniformly initial-
ized, and decayed from 0.001 to the intialized value at
half of the number of epochs. If early stop was true,
patience was set to a fifth of the number of epochs. We
ran 100-120 experiments for each dataset to search for
optimal hyperparameters.

the medical datasets.

5.1 Pre-processing

Often, papers fail to mention the importance of
pre-processing in performance improvements. Ex-
periments in table 4 reveal that they can cause
larger variations in performance than modeling.

We applied pre-processing changes with the
CRCNN model with default hyperparameters for
semeval and manual hyperparameters for the
medical datasets.  All comparisons are per-
formed against the original pre-processing tech-
nique, which involved using the original dataset
sentences in training and test.

Punctuation and digits hold more importance
for the ddi dataset, which is a biomedical dataset,
compared to the other two datasets. We looked
at examples where this technique led to an incor-
rect prediction, but original pre-processing led to
a correct one to investigate the source of perfor-
mance further. The examples indicate that removal
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of punctuation is driving worse performance com-
pared to the normalization of digits. A detailed
analysis for these is present in (Chauhan, 2019).

Stop word removal is a common technique in
Natural Language Processing (NLP) to simplify
the sentence by cutting out commonly used words
such as the and is in order to simplify the sentence.
We found that stop words seem to be important
for relation extraction for all three datasets that we
looked at, to a smaller degree for 12b2 compared
to the other two datasets. Looking at examples
misclassified by this technique revealed important
stop words for different relations, which indicates
that the removal of stop words is not beneficial in
the relation extraction setting. Example types are
shown in (Chauhan, 2019).

The availability of fine-grained concept types
is likely to boost performance in relation extrac-
tion settings. The i2b2 dataset provided fine-
grained concept types in the form of medical prob-
lem, test and treatments. Entity blinding causes
almost 9% improvement in classification perfor-
mance and 1% improvement in defection perfor-
mance. In contrast, ddi only provided gold stan-
dard annotations for drug types in the sentence,
and while this does not cause statistically signifi-
cant improvements for cross validation, it does im-
prove test set classification performance by about
1.5% and detection performance by 1%. For these
medical datasets, NER blinding consisted of re-
placing the detected named entities by Entity be-
cause named entity types were not available. Due
to the coarse-grained nature of the entities, it hurts
classification performance significantly, and de-
tection performance a little.

While entity blinding hurts performance for
semeval, possibly due to the coarse-grained na-
ture of the replacement, NER blinding does not
hurt performance. Looking at misclassified exam-
ples for entity blinding and NER blinding tech-
niques supports this hypothesis (Chauhan, 2019).

To recall, entity blinding involved replacement
of entity words by Entity, while NER blinding in-
volved replacing named entities in the sentence
with labels such as ORGANIZATION and PER-
SON. In settings where fine-grained entity blind-
ing may not be helping, they may be helpful
as added features into the model, as shown by
(Socher et al., 2012).

For the medical datasets, while classification
performance varies highly with different pre-



Dataset | semeval ddi i2b2
Preprocess Class Detect Class Detect
. 81.55 65.53 81.74 59.75 83.17
Original
80.85 (1.31) 82.23(0.32)  88.40 (0.48) 70.10 (0.85)  86.45 (0.58)
. - 72.73 67.02 82.37 68.76 84.37
Entity Blinding
71.31 (1.14) | 83.56 (2.05)» 89.45(1.05)* | 76.59 (1.07)  88.41(0.37)
. 81.23 63.41 80.49 58.85 81.96
Punct and Digit
80.95 (1.21)e | 80.44(1.77)  87.52(0.98) | 69.37 (1.43)»  85.82(0.43)
. 72.92 55.87 76.57 56.19 80.47
Punct, Digit and Stop
7161 (1.25) | 78.52(1.99) 85.65(1.21) | 68.14 (2.05)  84.84 (0.77)
NER Blinding 81.63 57.22 79.03 50.41 81.61
80.85 (1.07)» | 78.06(1.45)  86.79 (0.65) | 66.26 (2.44)  86.72 (0.57)

Table 4: Pre-processing techniques with CRCNN model. Row labels Original = simple tokenization and lower
casing of words, Punct = punctuation removal, Digit = digit removal and Stop = stop word removal. Test set results
at the top with cross validated results (average with standard deviation) below. All cross validated results are
statistically significant compared to Original pre-processing (p < 0.05) using a paired t-test except those marked

with a e

Dataset | semeval ddi i2b2
Modeling Class Detect Class Detect
CRCNN 81.55 65.53 81.74 59.75 83.17
80.85 (1.31) | 82.23(0.32)  88.40(0.48) | 70.10(0.85) 86.45 (0.58)
. . 81.59 63.01 80.62 60.85 83.69
Piecewise pool
80.55 (0.99)s | 81.99 (0.38)  88.47(0.48) | 73.79 (0.97) 89.29 (0.61)
BERT-tokens 85.67 71.97 86.53 63.11 84.91
85.63 (0.83) 85.35(0.53)  90.70 (0.46) | 72.06 (1.36) 87.57 (0.75)
BERT-CLS 82.42 61.3 79.63 56.79 81.91
80.83 (1.18)* | 82.71(0.68)s 88.35(0.77) | 67.37(1.08) 85.43 (0.36)
ELMo 85.89 66.63 83.05 63.18 84.54
84.79 (1.08) 84.53(0.96)  90.11 (0.56) | 72.53 (0.80) 87.81(0.34)

Table 5: Modeling techniques with original pre-processing. Test set results at the top with cross validated results
(average with standard deviation) below. All cross validated results are statistically significant compared to CRCNN
model (p < 0.05) using a paired t-test except those marked with a . In terms of statistical significance, comparing
contextualized embeddings with each other reveals that BERT-tokens is equivalent to ELMo for 12b2, but for
semeval BERT-tokens is better than ELMo and for ddi BERT-tokens is better than ELMo only for detection.

processing techniques, detection is relatively un-
affected. In a setting where one cares more about
detection of relationships rather than multi-class
classification, one would be able to get away with
using non-complicated pre-processing techniques
to maintain reasonable performance.

5.2 Split Bias

All three datasets evaluate models based on one
score on the test set, which is common practice
for NLP challenges. Reporting one score as op-
posed to a distribution of scores has been shown to
be problematic by Reimers and Gurevych (2017)
for sequence tagging. Recently, Crane (2018) dis-
cuss similar problems for question-answering. We
show that even if you keep the same random ini-
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tialization seed (all our experiments have a fixed
random initialization seed), split bias can be an-
other source of variation in scores.

In our experiments, significance testing of some
cross validated results reveals no significance even
when the test set result improves in performance.
This is particularly concerning for ddi where en-
tity blinding (called drug blinding in the litera-
ture) is used as a standard pre-processing tech-
nique without ablation studies demonstrating its
effectiveness. Our results suggest the contrary:
entity blinding seems to help test set performance
for dd1i in table 4, but shows no statistical signifi-
cance. Table 8 further demonstrates that using this
in conjunction with other techniques results in test
score variations despite being statistically insignif-



Dataset | semeval ddi i2b2
Hyperparam Tuning Class Detect Class Detect
81.55 62.55 80.29 55.15 81.98
Default
80.85 (1.31) 81.62 (1.35) 87.76 (1.03) | 67.28 (1.83)  86.57 (0.58)
- 65.53 81.74 59.75 83.17
Manual Search
82.23 (0.32)  88.40 (0.48)s | 70.10 (0.85) 86.45 (0.58)
82.2 62.29 79.04 55.0 80.77
Random Search
81.10 (1.26)s | 75.43 (1.48) 83.54 (0.60) | 60.66 (1.43) 82.73 (0.49)

Table 6: Hyperparameter tuning methods with original pre-processing and fixed CRCNN model. Test set results
at the top with cross validated results (average with standard deviation) below. All cross validated results are
statistically significant compared to Default with p < 0.05 except those marked with a ¢. Note that hyperparameter
tuning can involve much higher performance variation depending on the distribution of the data. Therefore, even
though there is no statistical significance in the manual search case for the held out fold in the ddi dataset, there was
statistical significance for the dev fold which drove those set of hyperparameters. For both ddi and i2b2 datasets,

manual search is better than random search with p < 0.05.

; Task Classification Detection
Technique
70.46 86.17
E +ent
77.70(1.26) 89.36 (0.50)
70.56 85.66
B +ent
76.72(1.04)  88.63 (0.33)
. 70.62 86.14
E + piece + ent
79.41 (0.53)  90.37 (0.44)
. 71.01 86.26
B + piece + ent
79.51 (1.09) 90.34 (0.53)
. 69.73 85.44
piece + ent
78.12 (1.10) 89.74 (0.44)
. 63.19 84.92
E + piece
74.76 (0.68) 89.90 (0.37)
. 63.23 85.45
B + piece
74.67 (0.89) 89.61 (0.68)

; Task Classification Detection
Technique
68.69 83.72
E + ent
86.25 (1.54) 91.35 (0.90)
70.66 85.35
B +ent
85.79 (1.54) 91.26 (0.63)

Table 8: Additional experiments for ddi. E = ELMo,
B = BERT-tokens, ent = entity blinding. Results are not
statistically significant compared to BERT-tokens and
ELMo models respectively from table 5 and not from
each other either.

was applied in the model by Luo et al. for 12b2.
We also tested the improvements offered by differ-

Table 7: Additional experiments for 1 2b2. E = ELMo,
B = BERT-tokens, ent = entity blinding, piece = piece-
wise pooling. All results are statistically significant
compared to BERT-tokens and ELMo models respec-
tively from table 5 and piece + ent row is statistically
significant compared to piecewise pool model as well
as entity blinding model. These are all statistically sig-
nificantly better than the CRCNN model from table 5

icant.

No statistical significance is seen even when the
test set result worsens in performance for BERT-
CLS in table 5 where it hurts test set performance
on ddi but is not statistically significant when
cross validation is performed.

5.3 Modeling

In table 5, we tested the generalizability of the
commonly used piecewise pooling technique pro-
posed in (Zeng et al., 2015), a variant of which
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ent featurizations of contextualized embeddings,
which has not been explored much for relation ex-
traction.

Modeling changes were applied with the
original pre-processing technique for the
CRCNN model with default hyperparameters
for semeval and manual hyperparameters
for the medical datasets. All comparisons are
performed with the baseline performance of the
CRCNN model.

While piecewise pooling helps i2b2 by 1%,
it hurts test set performance on ddi and doesn’t
affect performance on semeval. While it may
be intuitive to split pooling by entity location, this
technique is not generalizable to other datasets.

We also found that while contextualized embed-
dings generally boost performance, they should
be concatenated with the word embeddings before
the convolution stage to cause a significant boost
in performance. We found ELMo and BERT-
tokens to boost performance significantly for all



datasets, but that BERT-CLS hurt performance for
the medical datasets. While BERT-CLS boosted
test set performance for semeval, this was not
found to be a statistically significant difference
for cross validation. Note that we featurized
ELMo similarly to BERT-tokens and the details
are present in section 3.2.

This indicates that the technique of featurizing
the contextualized embeddings is important for a
CNN architecture. Concatenating the contextual-
ized embeddings with the word embeddings keeps
a tighter coupling, which is helpful for relation ex-
traction where the word level associations are es-
sential in predicting the relation type.

5.4 Hyperparameter Tuning

Bergstra and Bengio (2012) show the superior-
ity of random search over grid search in terms
of faster convergence, but leave to future work
automating the procedure of manual tuning, i.e.
sequential optimization. Bayesian optimization
strategies could help with this (Snoek et al., 2012)
but often require expert knowledge for correct ap-
plication. We tested how manual tuning, requiring
less expert knowledge than Bayesian optimization,
would compare to the random search strategy in
table 6. For both 12b2 and ddi corpora, manual
search outperformed random search.

5.5 Evaluation Metrics

Picking the right evaluation metric for a dataset is
critical, and it is important to choose a metric that
has the biggest delta between different model per-
formances for example types we care about. Ta-
bles for different metric results for all datasets are
provided in Appendix B.

When using micro and macro statistics (preci-
sion, recall and F1), class imbalance dictates the
one to pick. Macro statistics are highly affected
by imbalance, whereas micro statistics are able to
recover well. Despite suffering due to class imbal-
ance, though, macro statistics may be more appro-
priate than micro as they provide stronger discrim-
inative capabilities by providing equal importance
to classes of smaller sizes. However, micro statis-
tics are as discriminative as macro statistics in set-
tings when the classes are relatively balanced. We
are going to talk about the classification tasks in
the next two paragraphs.

Compared to semeval, ddi and 12b2 suf-
fer from stark class imbalances. semeval has a

37

number of examples in non-Other classes rang-
ing from 200 or 300 to 1000. Other class has
about 3000 examples which are not included in
the official metric calculations. ddi has one class
with 228 examples, while the others have about
1000 examples. The None class has 21,948 exam-
ples which is included for the official score cal-
culations. 12Db2 has five classes in the 100-500
range, while the others contain about 2000 exam-
ples. None is the largest class with 19,934 exam-
ples.

Using micro statistics is reasonable for i2b2
because the highly imbalanced class is not in-
cluded in the calculations. Therefore, this metric
is able to be as discriminative as macro statistics.
For example, test set micro F1 between baseline
and entity blinding techniques is 59.75 and 68.76,
while that for macro F1 is 36.44 and 43.76. In con-
trast, using micro statistics is a bad idea for ddi
because the performance on the None class would
drive most of the predictive results of the model.
For example, micro-F1 between baseline and NER
blinding is 88.69 and 86.18, whereas macro-F1 is
65.53 and 57.22. semeval does not have a stark
contrast between micro and macro scores due to
Other class not being included in the calculation.
Using either metric to evaluate models is reason-
able for this dataset.

The detection task does not suffer from such
variations due to the lower class imbalance. For
example, ddi dataset micro-F1 between baseline
and NER blinding model is 90.01 and 88.74, while
macro-F1 is 81.74 and 79.03. This further sug-
gests that modeling differences and pre-processing
differences cause more variation in performance in
settings when the class imbalance is higher.

6 Comparison with SOTA

The best classification test set results found are
listed in table 9. Note that we do not compare
the extraction task for datasets other than ddi be-
cause the official challenges only compared classi-
fication results. Even though the official challenge
did not rank models based on the detection task,
recent papers in the ddi literature mention these
results.

Wang et al. (2016) report a result of 88% on
semeval and do not provide any public source
code for replication purposes. Despite being be-
low the state of the art range, REf1lex provides
the best performing publicly available model for



Dataset Result Technique
semeval 85.89 E

ddi 71.97, 86.53 B

i2b2 71.01 B + piece + ent

Table 9: Best test set classification results for all
datasets, except ddi where detection results are men-
tioned after the classification results. piece = Piece-
wise pooling, ent = entity blinding, E = ELMo, B =
BERT-tokens. Result corresponds to F1 scores, macro
for semeval and ddi, but micro for 12b2.

this dataset. Zheng et al. (2017) report the best re-
sult on ddi (77.3%) but perform negative instance
filtering, which is a highly specific pre-processing
technique that does not fit with the flexible na-
ture of REf1ex. This technique cuts specific ex-
amples from the dataset, but the paper is unclear
about whether train as well as test data are short-
ened. If the test data is being shortened, the per-
formance comparison becomes unfair due to eval-
uation on different test samples. Unfortunately,
source code was not publicly available to answer
these questions.

Note that Zhao et al. (2016) show that negative
instance filtering causes a 4.1% improvement in
test set performance. If REf1lex were to use this
pre-processing technique, it would reach close to
the state-of-the-art (SOTA) number on the classi-
fication task. On the other hand, results from the
detection results outperform this model by 2.53%.

Sahu et al. (2016) (code unavailable) report a
state of the art result of 71.16% on i2b2, which
the results in table 9 are able to match. Note that
(Rink et al., 2011) report a result of 73.7% with a
support vector machine, but they used a larger ver-
sion of the dataset. Comparison against different
subsets of the dataset would not be fair.

Comparison against these numbers demon-
strates that REflex is the only open-source
framework, providing performance near SOTA
ranges for the three datasets. Therefore, REf1ex
can be used as a strong baseline model in future
relation extraction studies.

7 Conclusion

Our findings reveal variations offered by pre-
processing and training methodologies, which of-
ten go unreported. They indicate that comparing
models without having these techniques standard-
ized can make it difficult to assess the true source
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of performance gains. Our key findings are:

1. Pre-processing can have a strong effect
on performance, sometimes more than modeling
techniques, as is the case of 12b2. Concept types
seem to offer useful information, perhaps reveal-
ing more general semantic information in the sen-
tence that can help with predictions. Fine-grained
Gold standard annotated concept types are most
beneficial, but those from automatically extracted
packages may also be useful as long as they con-
sist of multiple types. Punctuation and digits may
hold more importance in biomedical settings, but
stop words hold significance in all settings.

2. Reporting on one test set score can be prob-
lematic due to split bias, and a cross validation ap-
proach with significance tests may help ease some
of this bias. Drug blinding for ddi is commonly
used in the literature but does not seem to offer any
statistically significant improvements. Therefore,
it is unnecessary to use in this domain.

3. Contextualized embeddings are generally
helpful but the featurizing technique is important:
for CNN models, concatenating them with the
word embeddings before convolution is most ben-
eficial.

4. Picking the right hyperparameters for a
dataset is important to performance. We suggest
an initial manual hyperparameter search based
on cross validation significance tests because that
may be sufficient in most cases. If one is not
pressed for time, random search is a reasonable au-
tomated option for hyperparameter tuning, but re-
quires more experience for picking the right search
space and the right distributions for the hyperpa-
rameters.

5. Picking the right evaluation metrics for a new
dataset should be driven by class imbalance issues
for the classes chosen to be evaluated on.
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Abstract

Despite recent advances in the application of
deep neural networks to various kinds of med-
ical data, extracting information from unstruc-
tured textual sources remains a challenging
task. The challenges of training and interpret-
ing document classification models are ampli-
fied when dealing with small and highly tech-
nical datasets, as are common in the clinical
domain. Using a dataset of de-identified clini-
cal letters gathered at a memory clinic, we con-
struct several recurrent neural network mod-
els for letter classification, and evaluate them
on their ability to build meaningful represen-
tations of the documents and predict patients’
diagnoses. Additionally, we probe sentence
embedding models in order to build a human-
interpretable representation of the neural net-
work’s features, using a simple and intuitive
technique based on perturbative approaches to
sentence importance. In addition to showing
which sentences in a document are most in-
formative about the patient’s condition, this
method reveals the types of sentences that lead
the model to make incorrect diagnoses. Fur-
thermore, we identify clusters of sentences in
the embedding space that correlate strongly
with importance scores for each clinical diag-
nosis class.

1 Introduction

While the majority of clinical data is made up
of structured information (Jee and Kim, 2013),
which can often be readily integrated into data
models for research, there is a significant amount
of semi-structured and unstructured data which
is increasingly being targeted by machine learn-
ing practitioners for analysis. As a general rule,
this unstructured data is more difficult to analyse
due to an absence of a standardised data model
(Ann Alexander and Wang, 2018). Unstructured
clinical data includes a variety of media, such
as video, audio, image and text-based data, with
the majority of such data being made up of text
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and images. Recently, there has been a series of
breakthroughs in the application of machine learn-
ing techniques for medical imaging data in or-
der to achieve expert-level performance on diag-
nosis tasks (Rajpurkar et al., 2017). However, ma-
chine learning models using semi-structured and
unstructured textual data from the clinical domain
have received less attention and to date have not
seen the same degree of successful application.
Examples of unstructured medical data featuring
“free text” include discharge summaries, nursing
reports and progress notes. Historically, one of
the challenges of applying natural language pro-
cessing (NLP) methods to clinical data has been
the often limited amount of data available, which
has traditionally necessitated a reliance on manual
feature engineering and relatively shallow textual
features (Shickel et al., 2018).

Taking a novel dataset of labelled clinical letters
compiled at a memory clinic as the target data do-
main, we build state-of-the-art deep learning mod-
els for the task of clinical text classification, and
evaluate them on their ability to predict a clin-
ician’s diagnosis of the patient. However, deep
learning models generally require very large train-
ing datasets. Our approach to the problem there-
fore incorporates transfer learning, and we make
use of embedding data from pre-trained models
trained on large corpora. In order to investigate
the relative usefulness of word-level and sentence-
level information, we train and evaluate several
models, including a ULMFiT model (Howard
and Ruder, 2018) and two long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
models: one trained on word embedding repre-
sentations of the documents and one trained on
sentence embedding representations (Basile et al.,
2012).

An infamous problem of deep neural networks
is that they are “black boxes”, with the details
of how they represent and process information

Proceedings of the BioNLP 2019 workshop, pages 4857
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being uninterpretable to humans. To shed light
on how a recurrent neural network models clini-
cal documents in order to correctly predict a pa-
tient’s diagnosis, we investigate two complemen-
tary approaches to model interpretation. Firstly,
we develop a simple measure of sentence impor-
tance and demonstrate its effectiveness in inter-
preting a complex LSTM model’s decision mak-
ing process. Secondly, we discover clusters in the
high-dimensional space of the sentence embed-
ding model and test their correlation with feature
importance scores for a given diagnosis class. This
analysis yields insights into a model’s representa-
tion of the clinical notes, allowing us to automat-
ically extract clusters of sentences that are most
relevant to the model’s predictions.

2 Related Work

Document classification is a well-researched task
in NLP that has been tackled using a wide vari-
ety of machine learning models, such as support-
vector machines (SVMs) (Manevitz and Yousef,
2001), convolutional neural networks (CNNs)
(Conneau et al., 2016) and recurrent neural net-
works (RNNs) (Yogatama et al., 2017). In the
clinical domain, document classification models
have been used in diverse tasks such as predicting
cancer stage information in clinical records (Yim
etal., 2017), extracting patient smoker-status from
health records (Wang et al., 2019) and classifying
radiology reports by their ICD-9CM code (Garla
and Brandt, 2013). The problem of categorising
clinical free text documents is closely related to
several subtasks in the area of Electronic Health
Record (EHR) analysis, including information ex-
traction and representation learning. Information
extraction is an umbrella term that covers diverse
subtasks such as expanding abbreviations using
contextual information, and the automatic anno-
tation of temporal events (e.g. mapping from in-
puts such as “The patient was given stress dose
steroids prior to his surgery” to output “[stress
dose steroids] BEFORE [his surgery]” (Sun et al.,
2013). Other NLP problems in this field that are
relevant to free text analysis are outcome predic-
tion and de-identification.

There are many ways to construct a represen-
tation of the input data that can be provided to
a document classification model. A popular al-
ternative to older approaches to text representa-
tions, such as bag-of-words (BoW), is to em-
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Class | #doc. | # sent. | # sent. (masked)
D 32 1420 1225
M 30 1140 985
N 44 1767 1547

Table 1: Number of documents and sentences in the
clinical notes dataset. D: Dementia, M: MCI, N: Non-
impaired.

bed the input tokens in a high-dimensional vec-
tor space, resulting in each word being mapped
to a list of real-valued numbers (a “word embed-
ding”). One simple method of extracting word em-
beddings involves concatenating the hidden layer
activations observed in a trained language model
after processing all words up to the target word.
As language models automatically learn rich se-
mantic and syntactic features of words, these em-
beddings can provide valuable input features for
downstream information extraction tasks. While
the dimensions in the embedding space can cor-
respond to interpretable features, this is not gen-
erally the case. However, a major motivation for
using word embeddings is the ability to re-use pre-
trained embeddings, essentially resulting in a form
of transfer learning (Pan et al., 2010). In this study
we use 300-dimensional fastText word embed-
dings (Bojanowski et al., 2017) which were pre-
trained on the Common Crawl dataset using the
skipgram schema (Mikolov et al., 2013), which in-
volves predicting a target word based on nearby
words.

Similar to word embeddings, sentence embed-
dings are high-dimensional vectors that can rep-
resent features of a sequence of words. Our use
of sentence embeddings is motivated by the fact
that, for small amounts of data, it may be more
difficult for a recurrent neural network to capture
diagnosis-relevant dependencies over many word
vectors than it is to classify a document made up of
a smaller number of semantically richer sentence
vectors. In this study we use 4096-dimensional
InferSent embeddings (Conneau et al., 2017) that
were extracted from a model pre-trained on the
Common Crawl dataset.

After training recurrent models using these
state-of-art NLP techniques to predict the diagno-
sis class associated with each document, we ex-
plore ways of visualizing and understanding how
the models incorporate these vectors in order to
make accurate predictions.



Model Accuracy | Precision | Recall | F1 Score
Random 0.333 0.333 | 0.333 0.333
Max. class 0.415 0.138 | 0.333 0.196
BoW-+Random Forest 0.425 0.417 | 0.413 0.414
LSTM (fastText word emb.) 0.543 0.636 | 0.502 0.502
LSTM (InferSent sentence emb.) 0.690 0.702 | 0.669 0.674
ULMFiT 0.571 0.437 | 0.500 0.440

Table 2: Results (average over 5 folds) for the diagnosis classification task for the masked dataset. Precision, recall

and F1 score are macro-averaged across the classes.

3 Data

We collected a corpus of consultation reports com-
piled by clinicians at a memory clinic to use as the
data domain for the document classification task.
Each report is anonymised and describes the clin-
ican’s review of a patient who suffers from mem-
ory or cognitive issues. Each report is labelled
by one of three classes, corresponding to the di-
agnoses of dementia, mild cognitive impairment
(MCI) and non-impaired. The documents can be
considered semi-structured, as they are made up
of free-text details that follow a loose narrative
trajectory. The notes typically begin with a de-
scription of the patient’s history and symptoms,
and ultimately conclude with recommendations on
how to proceed which may include scheduling a
follow-up appointment, arranging further tests, or
organising a treatment course based on the avail-
able evidence.

From this corpus, we build a version of the notes
in which explicit diagnostic information is masked
out. For example, the sentence “We would recom-
mend commencing on a Rivastigmine patch 4.6 mg
for 24 hours and then to be increased to 9.5 mg
for 24 hours once daily if tolerated.” would not be
included in the masked diagnosis dataset, as the
drug Rivastigmine is used to treat mild to mod-
erate Alzheimer’s disease and Parkinson’s, and so
its mention here trivially identifies the diagnosis.
In this work, we are interested in the ability to
make predictions from more subtle diagnostic sig-
nals, requiring our model to build semantic repre-
sentations of cognitive impairment that go beyond
counting the occurrence of single words. Table 1
presents summary metrics of the datasets.

Deep learning models are generally trained and
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tested on very large datasets, in contrast to the
small corpus of demential letters that we have
gathered, and in contrast to clinical note databases
generally. This motivates our use of transfer learn-
ing.

Tackling the problems of training and interpret-
ing models trained on datasets of this scale is di-
rectly relevant to the real world challenges of us-
ing natural language processing to support clin-
ical decisions, such as identifying patients who
may be applicable to participate in a clinical trial
(Sarmiento and Dernoncourt, 2016). Annotating
gold-standard training examples for such prob-
lems is resource intensive (Savkov et al., 2016).
We would therefore like to build robust and gen-
eral models given a small amount of samples. Re-
cent work on training large language models on
massive amounts of data thus has much poten-
tial for zero-shot classification of natural language
documents (Yogatama et al., 2017).

4 Models and Evaluation

We investigate the relative performance of LSTM
models trained with a sequence of word embed-
dings, LSTM models trained with a sequence of
sentence embeddings, and a state-of-the-art doc-
ument classification model, ULMFiT. One moti-
vation for choosing these experimental models is
to investigate which models can capture long-term
dependencies across a clinical document, given a
relatively small amount of samples (n=106). In
addition to these three models, we also test a ran-
dom forest baseline model, a model that randomly
selects the class and a model that chooses the
most common class (which is non-impaired). The
random forest model is trained to classify a doc-
ument based on its bag-of-words representation.
All models are cross-validated using 5 folds of



There were no behavioural
from very mild
He was not clinically
He scored 15 on
He continues to take
at times has
taken his Insulin

problems of note apart
anxiety
depressed
the Geriatric Depression Scale
his medication unsupervised but
forgotten if he has
or not

Figure 1: Visualisation of sentence importance with respect to the successful classification of non-impaired for a
subset of a document. Sentences that were found to be important for the classification of non-impaired are coloured
green while a sentence that increases the chance of a misclassification (i.e. an incorrect MCI diagnosis) is coloured
red. The saturation of the colours corresponds to how much a given word contributes to a sentence’s InferSent

embedding

the dataset, ensuring that the class distribution is
equal across all folds. The ULMFiT model is pre-
trained on the Wikitext-103 dataset (Merity et al.,
2017) and fine-tuned using default hyperparam-
eters (fine-tuning epochs=25, fine-tuning batch
size=8, fine-tuning learning rate=0.004, train-
ing epochs=50, training batch size=32, training
learning rate=0.01) which have been shown to be
robust across various tasks (Howard and Ruder,
2018). The LSTM model’s hyperparameters were
chosen by a grid-search. Both the sentence em-
bedding LSTM and the word embedding LSTM
were made up of one hidden layer with 256 hid-
den units.

The classification results for the models for the
masked dataset are presented in Table 2. Each
of our three models perform significantly better
than chance and better than the random forest
baseline model, with the LSTM model trained
with sentence-embedding sequential input achiev-
ing the best performance. For this amount of
training data, we would expect models that are
trained on shorter sequences of more semantically
enriched pre-trained vectors (i.e. sentence em-
beddings) to perform better than much longer se-
quences of vectors with less dimensions (i.e. word
embeddings). This is because much of the work
of combining word-level tokens into a contextual
representation that is relevant to a statistical model
of human language has already been done when
training with pretrained representations extracted
at the sentence-level. Somewhat surprisingly, the
model trained on sentence embeddings outper-
formed the fine-tuned ULMFiT. Future work may
shed light on how the amount of training samples
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can affect the choice of whether to use fine-tuning
or pre-trained embedding representations as model
input.

5 Model Interpretability: Calculating
Sentence Importance Scores

After demonstrating the effectiveness of using
pre-trained sentence embeddings to classify the
clinical documents, we investigated model inter-
pretability by calculating a measure of the impor-
tance of each sentence in the sequence of sen-
tences to the model’s prediction for a document.
We propose a measure of feature importance based
on perturbative approaches to variable importance
(Breiman, 2001), which estimate the importance
of variables by iteratively randomly perturbing
each variable and observing the change in loss.
This technique is similar to measuring informa-
tion gain (Quinlan, 1986), but rather than selecting
important components of fixed input, we rate the
importance of a sentence vector in the sequence
of sentence vectors presented to our sequential
LSTM classifier. For example, in order to gener-
ate the importance score for the first sentence in a
document made up of m sentence embeddings, we
construct an augmented version of the document
containing all but the first sentence, and examine
the resulting change in the prediction for that doc-
ument. More formally, for sentence n, we gener-
ate the following version of the document d (with
ground truth label c) with sentence n removed:

dn = [80,81, ceeySn—1,Sn+1,-- .,Sm_l]

Next, the augmented document d,, is fed into
the trained LSTM (using the best-in-fold model



Ratio Sentence

-3.469 “He and his wife both report agitation disinhibition and irritability”
0.078 “He would say that he feels depressed at times”

0.149 | “She was tremulous which <NAME> felt was most likely due to anxiety”
2.108 “He had an equivalent score of 19 / 30 on the MMSE”

8.105 “He had an equivalent score of 29 / 30 on the MMSE”

12.887 “He had an equivalent score of 22 / 30 on the MMSE”

Table 3: Sentences sorted by feature importance for a correct diagnosis of non-impaired. Sentences with low
scores do not support a prediction of non-impaired within the context of the corresponding clinical letter.

from Section 3, which achieved an accuracy of
73%) and we measure the network’s output logit
for the correct class. The importance score is cal-
culated as the ratio of the model’s output for the
correct class excluding the sentence to the model’s
output for the correct class including a given sen-
tence.

logit(c| dy,)

logit(c| d)

The most important sentences minimise this ra-
tio. When the ratio is over 1, the inclusion of
the sentence in the document leads to a smaller
probability of selecting the correct class, and so
sentences that maximise the ratio are the most
misleading sentences with respect to the correct
classification. Examples of highly important and
highly misleading sentences across the corpus for
a diagnosis of non-impaired are presented in Ta-
ble 3. The average sentence importance trajectory
over each class was also investigated and is pre-
sented in in Figure 2.

ratio, =

Figure 1 presents a section of a clinical letter
for a patient with a diagnosis of non-impaired,
with sentences coloured green or red depending
on whether they increase or decrease the chance
of correctly classifying the document. Within
each sentence, the contribution of a word to the
InferSent sentence embedding is visualised by
colour saturation. We can see that the importance
measure provides intuitive insights into how the
recurrent neural network models the document.
For example, the final sentence in Figure 1 de-
creases the chance of classifying the document
as non-impaired because it states that the patient
sometimes forgets to take their medicine — in iso-
lation this sentence could naively be considered to
imply a diagnosis of memory impairment, but as
the model processes the full document it is able to
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Figure 2: Average sentence importance over each class,
as a function of sentences’ position in the texts. Sen-
tence importance ratios are normalised within each
document and split by in-document position into 20
bins. For each class, we plot the negative of the av-
erage for each bin.

accumulate evidence and predict the correct diag-
nosis. By examining the contribution of each word
to the InferSent vectors, we can see that negat-
ing words such as “not” are handled appropriately
within the sentence embedding (e.g. “not clini-
cally depressed” increases the probability of a cor-
rect non-impaired classification). Our model in-
terpretation technique therefore demonstrates how
the LSTM sentence embedding model improves
on the simple bag-of-words baseline, where the
word “depressed” would be incorrectly taken as
negative evidence for a non-impaired diagnosis.

6 Cluster Analysis

In order to investigate the relationship between
sentence importance and the sentence embedding
space, we performed a cluster analysis. The 4096-
dimensional sentence embeddings were projected
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Figure 3: 2-dimensional projection of sentence embedding vectors. (a): 30 clusters were identified and labelled
using mean shift clustering. (b) - (d): Heat maps of sentence vectors coloured by sentence importance for each
class reveal clusters of sentences that are relevant to a given diagnosis. Colour scales indicate normalised values;

brighter colours indicate more important sentences.

to two dimensions using t-SNE (van der Maaten

and Hinton, 2008). We used the mean shift clus-
tering technique (Yizong Cheng, 1995), an algo-
rithm that does not require the number of clusters

to be specified in advance, to discover clusters of

similarly represented sentences in this space (Fig.

3(a)). Sentences that are important for the model’s
classification of a specific diagnosis are visualised

by colouring the sentences using the correspond-

ing importance score. This step was performed for

each of the three classes (Fig. 3(b)-(d)).

Correlation tests were used to investigate the re-
lationship between sentence clusters and their im-
portance to a model’s prediction for each class.
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For each class ¢ and for each cluster ¢/, we first
gather the sentences that appear in documents of
class c. Next, we assign each sentence a value of 1
or 0 depending on whether the sentence is in clus-
ter cl. Using Spearman’s Rho, we calculate the
correlation between this value and the sentences’
importance scores for the given class. In each
trial, sentences that do not appear in documents
of the target class are excluded. The results re-
ported in Table 4 show the clusters that were found
to be significantly correlated with at least one of
the classes’ importance scores. It was found that
15 out of the 30 automatically discovered sentence
clusters can be considered significantly important



in the model’s decision making.

To assist in interpreting the information cap-
tured by each cluster, we depict the clusters using
the most frequent bigrams across all of that clus-
ter’s sentences (Table 4). For example, one cluster
(corresponding to cluster 20 in Figure 3(a)) con-
tains sentences that mention the individual’s fam-
ily (significantly positively associated with a non-
impaired diagnosis), while cluster 22 corresponds
to sentences about the patient’s blood pressure and
heart rate (significantly negatively associated with
a non-impaired diagnosis). Again, these results
show the utility of combining sentence importance
measures with sentence embeddings to reveal the
clinically relevant detail in the documents.

7 Discussion

The results presented in Table 3 demonstrate the
sentences that are most significant and most mis-
leading for the LSTM InferSent model with re-
spect to the diagnosis of non-impairment. We
can see that the most significant sentences are
those that refer to patients’ mood and anxiety
disorders. These types of sentences are over-
represented in the non-impaired group. The types
of sentences that are most misleading to the di-
agnosis of non-impaired are those of the format
“[pronoun] had an equivalent score of [score] /
30 on the MMSE”. An obvious question regarding
this result is whether information about MMSE
scores can be represented by the InferSent em-
beddings in such a way as to distinguish it from
other sentences that differ only, but importantly,
by a single integer value. We can see that the rela-
tionship between the significance of the sentence
to the actual results in the sentence is non-linear.
The 84 mentions of the Mini-Mental State Exami-
nation (MMSE) test are equally divided across the
3 classes; as there are more non-impaired docu-
ments in the dataset overall, the model benefits
from learning not to predict this diagnosis when it
encounters any sentence embedding in the MMSE
cluster (cluster 17 in Figure 3(a); the correspond-
ing points in Figure 3(d) indicate their decreased
importance for this category). Further analysis
may include using diagnostic classifiers (Hupkes
et al., 2018) to test whether a model can accurately
decide whether the first of two given sentence em-
beddings reports a larger score.

Figure 2 shows the average sentence signifi-
cance across the documents for each of the three
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classes. For all classes, we can see that the im-
portance of sentences tends to increase with their
in-document position. This trend may correspond
to the semi-structured nature of the documents, re-
flecting information becoming more relevant to a
diagnosis towards the end of a document. An-
other possible explanation could be that the re-
current neural network is unable to capture long-
distance dependencies given the small amount of
samples in the dataset, resulting in a kind of re-
cency bias in the model’s processing (since the
model only makes its prediction at the end of the
sequence of sentences). Further work may involve
systematically changing the position of each sen-
tence within each document in order to investigate
the effect that this has on the importance scores
associated with each sentence.

Table 4 shows that no clusters were significantly
correlated with the class dementia, with all re-
ported clusters being significantly correlated with
at least one of MCI or non-impaired. Exclud-
ing cluster 18, all of the clusters that are signif-
icant for both MCI and non-impaired form pairs
of negative vs. positive correlations between these
two classes, suggesting that the model learns pri-
marily to discriminate between these classes. Ex-
amining the confusion matrix for the model, we
found that the model has a true positive rate of
1.0 and 0.89 for MCI and non-impaired, and min-
imises the amount of false positives between these
two classes. However, the model performs poorly
when the actual document corresponds to a di-
agnosis of dementia (with a true positive rate of
0.29). This is consistent with the observation that
none of the clusters significantly correlate with
this class. While this insight could be gained from
examining the confusion matrix alone, the advan-
tage of employing the interpretation methods de-
veloped in this paper is that they allow us to gain
an understanding of how the model’s processing
of sentences over time leads to these inequalities,
suggesting avenues of attack for constructing more
accurate representations of the documents going
forward.

In future work, we plan to gather more clini-
cal documents that describe patients with mem-
ory impairment and continue our analysis of lan-
guage modelling and classification in this distri-
bution. We hope to subsequently apply state of the
art contextualised embeddings such as ELMO (Pe-
ters et al., 2018) and BERT (Devlin et al., 2018)



Cluster | Top bigrams in cluster Rhop Rhoy Rhoy

) “behaV1oura1 'pro’t,)lems , “neurological deficit”, 0.036 L0155 | 0 ]d0kHk
extra pyramidal

3 “short term”, “years ago”, “poor short” -0.022 0.032 0.119%*%*

5 “famlly hlstor?/ , d’l’sease dementia”, 0.039 0,147+ 0.146%**
alzheimers disease

7 “actwl.tles. daily”, dal’l,y living”, ~0.013 _0.121* 0.155% %+
remains independent

9 “medlca.l hlst(fy , “ischaemic heart”, 0.003 0.161%%% | —0.13]%++
heart disease

10 “mefmory ﬂHency , “verbal fluency”, 0.033 0.133%% | —0.097*
points lost

12 “rr.nspl.acmg. 1tems : cognitive checklist”, 0.000 0.143%% | —0.098%
disorientation time

17 “30 mmse”, “mmse equivalent”, “29 30” -0.040 —0.193*** 0.112%%*

1g | cognitivetesting?, 710D ace™, 20010 | —0.171%% | —0.181%%
addenbrooke cognitive

20 “unaccqmpan’l’ed morning”, “four children”, 0022 0,029 0.165%%*
two children

“blood pressure’, “bpm regular”,

22 - —0.045 0.130%* | —0.124%*x*
examination pulse

23 “b12 ff)late s 'scr’e’:enlng bloods™, ~0.022 0.022 —0.089*
thyroid function

24 “current medications”, “mg daily”, “40 mg” 0.021 0.181%** | —0.106**

’5 “gerlatrlc cz?pressmn , “depression scale”, 0.010 0.182%*% | —0.229
scored 15

7 “onset. progression”, Erogressmn described”, 0.064 0.132%% | —0.113%%*
physical examination

Table 4: Automatically discovered sentence clusters that significantly correlate with sentence importance for at
least one class. For each cluster and for each class, we use Spearman’s Rho to test the correlation between a
sentence’s importance with respect to the class of interest, and whether or not the sentence is in the given cluster.
The most frequent within-cluster bigrams were extracted after removing stop words from the sentences. * p<0.05,
** p<0.01, *** p<0.001, Bonferroni corrected. D: Dementia, M: MCI, N: Non-impaired.

to a larger corpus in order to further use feature
extraction to build and understand meaningful se-
mantic representations of cognitive impairment as
described by clinicians. As part of this work, we
aim to examine how models trained on the writ-
ing style of one clinician apply to those written
by others, as the corpus used in this study was
sourced from a small number of clinicians. We
suspect that analysing a model’s inter- and intra-
clinician performance metrics will yield useful in-
sights into how well the model has generalised,
and how clinicians may differ in terms of the sub-
tle but diagnosis-relevant information they include
in the documents.
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8 Conclusion

We showed the effectiveness of using pre-trained
sentence embeddings and recurrent neural net-
works for a document classification task using a
corpus of natural language clinical reports. The
sentence-level LSTM model performed better than
both an LSTM trained on word embeddings and a
simple bag-of-words baseline. Following this re-
sult, we developed a simple and intuitive perturba-
tive measure of sentence importance for the sen-
tences in the corpus. After demonstrating how this
measure can be used to interpret the success and
failure cases of a trained model, we used cluster
analysis to identify regions in the sentence embed-
ding space that are significantly correlated with
sentence importance for specific diagnosis classes.



By reviewing the most frequent bigrams in each
cluster and examining the sign of Spearman’s Rho
for each corresponding correlated class, we can
interpret how differential processing of sentence
vectors within each cluster can lead to class im-
balances in the model’s predictions, demonstrating
the power of our approach for model interpretabil-
ity and evaluation.
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Abstract

Inspired by the success of the General Lan-
guage Understanding Evaluation benchmark,
we introduce the Biomedical Language Un-
derstanding Evaluation (BLUE) benchmark
to facilitate research in the development of
pre-training language representations in the
biomedicine domain. The benchmark consists
of five tasks with ten datasets that cover both
biomedical and clinical texts with different
dataset sizes and difficulties. We also evaluate
several baselines based on BERT and ELMo
and find that the BERT model pre-trained
on PubMed abstracts and MIMIC-III clinical
notes achieves the best results. We make the
datasets, pre-trained models, and codes pub-
licly available at https://github.com/
ncbi-nlp/BLUE_Benchmark.

1 Introduction

With the growing amount of biomedical informa-
tion available in textual form, there have been
significant advances in the development of pre-
training language representations that can be ap-
plied to a range of different tasks in the biomedi-
cal domain, such as pre-trained word embeddings,
sentence embeddings, and contextual representa-
tions (Chiu et al., 2016; Chen et al., 2019; Peters
et al.,, 2017; Lee et al., 2019; Smalheiser et al.,
2019).

In the general domain, we have recently ob-
served that the General Language Understand-
ing Evaluation (GLUE) benchmark (Wang et al.,
2018a) has been successfully promoting the de-
velopment of language representations of general
purpose (Peters et al., 2017; Radford et al., 2018;
Devlin et al., 2019). To the best of our knowledge,
however, there is no publicly available bench-
marking in the biomedicine domain.

To facilitate research on language representa-
tions in the biomedicine domain, we present the
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Biomedical Language Understanding Evaluation
(BLUE) benchmark, which consists of five dif-
ferent biomedicine text-mining tasks with ten cor-
pora. Here, we rely on preexisting datasets be-
cause they have been widely used by the BioNLP
community as shared tasks (Huang and Lu, 2015).
These tasks cover a diverse range of text genres
(biomedical literature and clinical notes), dataset
sizes, and degrees of difficulty and, more impor-
tantly, highlight common biomedicine text-mining
challenges. We expect that the models that per-
form better on all or most tasks in BLUE will ad-
dress other biomedicine tasks more robustly.

To better understand the challenge posed by
BLUE, we conduct experiments with two base-
lines: One makes use of the BERT model (Devlin
et al., 2019) and one makes use of ELMo (Peters
et al., 2017). Both are state-of-the-art language
representation models and demonstrate promising
results in NLP tasks of general purpose. We find
that the BERT model pre-trained on PubMed ab-
stracts (Fiorini et al., 2018) and MIMIC-III clini-
cal notes (Johnson et al., 2016) achieves the best
results, and is significantly superior to other mod-
els in the clinical domain. This demonstrates the
importance of pre-training among different text
genres.

In summary, we offer: (i) five tasks with ten
biomedical and clinical text-mining corpora with
different sizes and levels of difficulty, (ii) codes
for data construction and model evaluation for
fair comparisons, (iii) pretrained BERT models on
PubMed abstracts and MIMIC-III, and (iv) base-
line results.

2 Related work

There is a long history of using shared lan-
guage representations to capture text semantics in
biomedical text and data mining research. Such re-
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search utilizes a technique, termed transfer learn-
ing, whereby the language representations are pre-
trained on large corpora and fine-tuned in a variety
of downstream tasks, such as named entity recog-
nition and relation extraction.

One established trend is a form of word embed-
dings that represent the semantic, using high di-
mensional vectors (Chiu et al., 2016; Wang et al.,
2018c; Zhang et al., 2019). Similar methods
also have been derived to improve embeddings of
word sequences by introducing sentence embed-
dings (Chen et al., 2019). They always, however,
require complicated neural networks to be effec-
tively used in downstream applications.

Another popular trend, especially in recent
years, is the context-dependent representation.
Different from word embeddings, it allows the
meaning of a word to change according to the con-
text in which it is used (Melamud et al., 2016; Pe-
ters et al., 2017; Devlin et al., 2019; Dai et al.,
2019). In the scientific domain, Beltagy et al. re-
leased SciBERT which is trained on scientific text.
In the biomedical domain, BioBERT (Lee et al.,
2019) and BioELMo (Jin et al., 2019) were pre-
trained and applied to several specific tasks. In the
clinical domain, Alsentzer et al. (2019) released a
clinical BERT base model trained on the MIMIC-
IIT database. Most of these works, however, were
evaluated on either different datasets or the same
dataset with slightly different sizes of examples.
This makes it challenging to fairly compare vari-
ous language models.

Based on these reasons, a standard benchmark-
ing is urgently required. Parallel to our work, Lee
et al. (2019) introduced three tasks: named en-
tity recognition, relation extraction, and QA, while
Jin et al. (2019) introduced NLI in addition to
named entity recognition. To this end, we deem
that BLUE is different in three ways. First, BLUE
is selected to cover a diverse range of text genres,
including both biomedical and clinical domains.
Second, BLUE goes beyond sentence or sentence
pairs by including document classification tasks.
Third, BLUE provides a comprehensive suite of
codes to reconstruct dataset from scratch without
removing any instances.

3 Tasks

BLUE contains five tasks with ten corpora that
cover a broad range of data quantities and diffi-
culties (Table 1). Here, we rely on preexisting
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datasets because they have been widely used by
the BioNLP community as shared tasks.

3.1 Sentence similarity

The sentence similarity task is to predict simi-
larity scores based on sentence pairs. Following
common practice, we evaluate similarity by using
Pearson correlation coefficients.

BIOSSES is a corpus of sentence pairs
selected from the Biomedical Summarization
Track Training Dataset in the biomedical do-
main (Sogancioglu et al., 2017).! To develop
BIOSSES, five curators judged their similarity, us-
ing scores that ranged from O (no relation) to 4
(equivalent). Here, we randomly select 80% for
training and 20% for testing because there is no
standard splits in the released data.

MedSTS is a corpus of sentence pairs se-
lected from Mayo Clinic’s clinical data ware-
house (Wang et al., 2018b). To develop MedSTS,
two medical experts graded the sentence’s seman-
tic similarity scores from 0 to 5 (low to high sim-
ilarity). We use the standard training and testing
sets in the shared task.

3.2 Named entity recognition

The aim of the named entity recognition task is
to predict mention spans given in the text (Ju-
rafsky and Martin, 2008). The results are evalu-
ated through a comparison of the set of mention
spans annotated within the document with the set
of mention spans predicted by the model. We eval-
uate the results by using the strict version of preci-
sion, recall, and F1-score. For disjoint mentions,
all spans also must be strictly correct. To construct
the dataset, we used spaCy? to split the text into a
sequence of tokens when the original datasets do
not provide such information.

BCS5CDR is a collection of 1,500 PubMed titles
and abstracts selected from the CTD-Pfizer cor-
pus and was used in the BioCreative V chemical-
disease relation task (Li et al., 2016).> The dis-
eases and chemicals mentioned in the articles were
annotated independently by two human experts
with medical training and curation experience.
We use the standard training and test set in the

"http://tabilab.cmpe.boun.edu.tr/
BIOSSES/

https://spacy.io/

Shttps://biocreative.bioinformatics.
udel.edu/tasks/biocreative-v/
track-3-cdr/



Corpus Train Dev  Test Task Metrics Domain Avg

sent len
MedSTS, sentence pairs 675 75 318  Sentence similarity Pearson Clinical 25.8
BIOSSES, sentence pairs 64 16 20  Sentence similarity Pearson Biomedical 229
BC5CDR-disease, mentions 4182 4244 4424 NER F1 Biomedical 22.3
BC5CDR-chemical, mentions 5203 5347 5385 NER F1 Biomedical 22.3
ShARe/CLEFE, mentions 4628 1075 5195 NER F1 Clinical 10.6
DDI, relations 2937 1004 979  Relation extraction micro F1 ~ Biomedical 41.7
ChemProt, relations 4154 2416 3458 Relation extraction micro F1  Biomedical 343
i2b2 2010, relations 3110 11 6293 Relation extraction F1 Clinical 24.8
HoC, documents 1108 157 315 Document classification F1 Biomedical 253
MedNLI, pairs 11232 1395 1422 Inference accuracy  Clinical 11.9

Table 1: BLUE tasks

BCS5CDR shared task (Wei et al., 2016).

ShARe/CLEF eHealth Task 1 Corpus is a col-
lection of 299 deidentified clinical free-text notes
from the MIMIC II database (Suominen et al.,
2013).* The disorders mentioned in the clini-
cal notes were annotated by two professionally
trained annotators, followed by an adjudication
step, resulting in high inter-annotator agreement.
We use the standard training and test set in the
ShARe/CLEF eHealth Tasks 1.

3.3 Relation extraction

The aim of the relation extraction task is to pre-
dict relations and their types between the two enti-
ties mentioned in the sentences. The relations with
types were compared to annotated data. We use
the standard micro-average precision, recall, and
F1-score metrics.

DDI extraction 2013 corpus is a collection of
792 texts selected from the DrugBank database
and other 233 Medline abstracts (Herrero-Zazo
et al., 2013).° The drug-drug interactions, includ-
ing both pharmacokinetic and pharmacodynamic
interactions, were annotated by two expert phar-
macists with a substantial background in pharma-
covigilance. In our benchmark, we use 624 train
files and 191 test files to evaluate the performance
and report the micro-average F1-score of the four
DDI types.

ChemProt consists of 1,820 PubMed abstracts
with chemical-protein interactions annotated by
domain experts and was used in the BioCre-
ative VI text mining chemical-protein interactions
shared task (Krallinger et al., 2017).° We use the

*https://physionet.org/works/
ShAReCLEFeHealth2013/

*http://labda.inf.uc3m.es/ddicorpus

*https://biocreative.
bioinformatics.udel.edu/news/corpora/
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standard training and test sets in the ChemProt
shared task and evaluate the same five classes:
CPR:3, CPR:4, CPR:5, CPR:6, and CPR:9.

i2b2 2010 shared task collection consists of
170 documents for training and 256 documents
for testing, which is the subset of the original
dataset (Uzuner et al., 2011).” The dataset was
collected from three different hospitals and was
annotated by medical practitioners for eight types
of relations between problems and treatments.

3.4 Document multilabel classification

The multilabel classification task predicts multiple
labels from the texts.

HoC (the Hallmarks of Cancers corpus) con-
sists of 1,580 PubMed abstracts annotated with ten
currently known hallmarks of cancer (Baker et al.,
2016).3  Annotation was performed at sentence
level by an expert with 15+ years of experience
in cancer research. We use 315 (~20%) abstracts
for testing and the remaining abstracts for train-
ing. For the HoC task, we followed the common
practice and reported the example-based F1-score
on the abstract level (Zhang and Zhou, 2014; Du
et al., 2019).

3.5 Inference task

The aim of the inference task is to predict whether
the premise sentence entails or contradicts the hy-
pothesis sentence. We use the standard overall ac-
curacy to evaluate the performance.

MedNLI is a collection of sentence pairs se-
lected from MIMIC-III (Romanov and Shivade,
2018).° Given a premise sentence and a hy-
gggagzggjggfpus—biocreative—vi/

"https://www.i2b2.0rg/NLP/DataSets/

$https://www.cl.cam.ac.uk/~sb895/HoC.
html

‘https://physionet.org/physiotools/
mimic-code/mednli/



pothesis sentence, two board-certified radiologists
graded whether the task predicted whether the
premise entails the hypothesis (entailment), con-
tradicts the hypothesis (contradiction), or neither
(neutral). We use the same training, development,
and test sets in Romanov and Shivade (Romanov
and Shivade, 2018).

3.6 Total score

Following the practice in Wang et al. (2018a) and
Lee et al. (2019), we use a macro-average of F1-
scores and Pearson scores to determine a system’s
position.

4 Baselines

For baselines, we evaluate several pre-training
models as described below. The original code for
the baselines is available at https://github.
com/ncbi-nlp/NCBI_BERT.

4.1 BERT

4.1.1 Pre-training BERT

BERT (Devlin et al., 2019) is a contextualized
word representation model that is pre-trained
based on a masked language model, using bidirec-
tional Transformers (Vaswani et al., 2017).

In this paper, we pre-trained our own model
BERT on PubMed abstracts and clinical notes
(MIMIC-III). The statistics of the text corpora on
which BERT was pre-trained are shown in Table 2.

Corpus Words Domain
PubMed abstract > 4,000M Biomedical
MIMIC-III > 500M Clinical

Table 2: Corpora

We initialized BERT with pre-trained BERT
provided by (Devlin et al., 2019). We then con-
tinue to pre-train the model, using the listed cor-
pora.

We released our BERT-Base and BERT-Large
models, using the same vocabulary, sequence
length, and other configurations provided by De-
vlin et al. (2019). Both models were trained with
5M steps on the PubMed corpus and 0.2M steps
on the MIMIC-III corpus.

4.1.2 Fine-tuning with BERT

BERT is applied to various downstream text-
mining tasks while requiring only minimal archi-
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tecture modification.

For sentence similarity tasks, we packed the
sentence pairs together into a single sequence, as
suggested in Devlin et al. (2019).

For named entity recognition, we used the BIO
tags for each token in the sentence. We considered
the tasks similar to machine translation, as predict-
ing the sequence of BIO tags from the input sen-
tence.

We treated the relation extraction task as a sen-
tence classification by replacing two named en-
tity mentions of interest in the sentence with pre-
defined tags (e.g., @GENES$, @DRUGS) (Lee
et al., 2019). For example, we used “@CHEMI-
CALS protected against the RTI-76-induced inhi-
bition of @ GENES$ binding.” to replace the orig-
inal sentence “Citalopram protected against the
RTI-76-induced inhibition of SERT binding.” in
which “citalopram” and “SERT” has a chemical-
gene relation.

For multi-label tasks, we fine-tuned the model
to predict multi-labels for each sentence in the
document. We then combine the labels in one doc-
ument and compare them with the gold-standard.

Like BERT, we provided sources code for fine-
tuning, prediction, and evaluation to make it
straightforward to follow those examples to use
our BERT pre-trained models for all tasks.

4.2 Fine-tuning with ELMo

We adopted the ELMo model pre-trained on
PubMed abstracts (Peters et al., 2017) to accom-
plish the BLUE tasks.!? The output of ELMo em-
beddings of each token is used as input for the
fine-tuning model. We retrieved the output states
of both layers in ELMo and concatenated them
into one vector for each word. We used the maxi-
mum sequence length 128 for padding. The learn-
ing rate was set to 0.001 with an Adam optimizer.
We iterated the training process for 20 epochs with
batch size 64 and early stopped if the training loss
did not decrease.

For sentence similarity tasks, we used bag of
embeddings with the average strategy to transform
the sequence of word embeddings into a sentence
embedding. Afterward, we concatenated two sen-
tence embeddings and fed them into an architec-
ture with one dense layer to predict the similarity
of two sentences.

Yhttps://allennlp.org/elmo



Our BERT

Task Metrics SOTA* ELMo BioBERT Base Base Large Large
®  P+M)  P)  P+M)
MedSTS Pearson 83.6 68.6 84.5 845 84.8 84.6 83.2
BIOSSES Pearson 84.8 60.2 82.7 89.3 91.6 86.3 75.1
BC5CDR-disease F 84.1 83.9 85.9 86.6 854 82.9 83.8
BC5CDR-chemical F 93.3 91.5 93.0 935 924 91.7 91.1
ShARe/CLEFE F 70.0 75.6 72.8 754 771 72.7 74.4
DDI F 72.9 78.9 78.8 78.1 794 79.9 76.3
ChemProt F 64.1 66.6 71.3 725  69.2 74.4 65.1
i2b2 F 73.7 71.2 72.2 744 764 73.3 73.9
HoC F 81.5 80.0 82.9 853 83.1 87.3 85.3
MedNLI acc 73.5 71.4 80.5 822 84.0 81.5 83.8
Total 78.8 80.5 822 823 81.5 79.2

* SOTA, state-of-the-art as of April 2019, to the best of our knowledge: MedSTS, BIOSSES (Chen et al.,
2019); BC5CDR-disease, BCSCDR-chem (Yoon et al., 2018); ShARe/CLEFE (Leaman et al., 2015);
DDI (Zhang et al., 2018). Chem-Prot (Peng et al., 2018); i2b2 (Rink et al., 2011); HoC (Du et al., 2019);
MedNLI (Romanov and Shivade, 2018). P: PubMed, P+M: PubMed + MIMIC-III

Table 3: Baseline performance on the BLUE task test sets.

For named entity recognition, we used a Bi-
LSTM-CRF implementation as a sequence tag-
ger (Huang et al., 2015; Si et al., 2019; Lample
et al., 2016). Specifically, we concatenated the
GloVe word embeddings (Pennington et al., 2014),
character embeddings, and ELMo embeddings of
each token and fed the combined vectors into the
sequence tagger to predict the label for each to-
ken. The GloVe word embeddings!' and character
embeddings have 100 and 25 dimensions, respec-
tively. The hidden sizes of the Bi-LSTM are also
set to 100 and 25 for the word and character em-
beddings, respectively.

For relation extraction and multi-label tasks, we
followed the steps in fine-tuning with BERT but
used the averaged ELMo embeddings of all words
in each sentence as the sentence embedding.

5 Benchmark results and discussion

We pre-trained four BERT models: BERT-Base
(P), BERT-Large (P), BERT-Base (P+M), BERT-
Large (P+M) on PubMed abstracts only, and the
combination of PubMed abstracts and clinical
notes, respectively. We present performance on
the main benchmark tasks in Table 3. More de-
tailed comparison is shown in the Appendix A.

Uhttps://nlp.stanford.edu/projects/
glove/

62

Overall, our BERT-Base (P+M) that were pre-
trained on both PubMed abstract and MIMIC-III
achieved the best results across five tasks, even
though it is only slightly better than the one pre-
trained on PubMed abstracts only. Compared to
the tasks in the clinical domain and biomedical do-
main, BERT-Base (P+M) is significantly superior
to other models. This demonstrates the importance
of pre-training among different text genres.

When comparing BERT pre-trained using the
base settings against that using the large settings,
it is a bit surprising that BERT-Base is better
than BERT-Large except in relation extraction and
document classification tasks. Further analysis
shows that, on these tasks, the average length
of sentences is longer than those of others (Ta-
ble 1). In addition, BERT-Large pre-trained on
PubMed and MIMIC is worse than other models
overall. However, BERT-Large (P) performs the
best in the multilabel task, even compared with
the feature-based model utilizing enriched ontol-
ogy (Yan and Wong, 2017). This is partially be-
cause the MIMIC-III data are relatively smaller
than the PubMed abstracts and, thus, cannot pre-
train the large model sufficiently.

In the sentence similarity tasks, BERT-Base
(P+M) achieves the best results on both datasets.
Because the BIOSSES dataset is very small (there



are only 16 sentence pairs in the test set), all BERT
models’ performance was unstable. This prob-
lem has also been noted in the work of Devlin
et al. (2019) when the model was evaluated on the
GLUE benchmarking. Here, we obtained the best
results by following the same strategy: selecting
the best model on the development set after sev-
eral runs. Other possible ways to overcome this
issue include choosing the model with the best per-
formance from multiple runs or averaging results
from multiple fine-tuned models.

In the named entity recognition tasks, BERT-
Base (P) achieved the best results on two biomedi-
cal datasets, whereas BERT-Base (P+M) achieved
the best results on the clinical dataset. In all
cases, we observed that the winning model ob-
tained higher recall than did the others. Given that
we use the pre-defined vocabulary in the original
BERT and that this task relies heavily on the to-
kenization, it is possible that using BERT as per-
taining to a custom sentence piece tokenizer may
further improve the model’s performance.

6 Conclusion

In this study, we introduce BLUE, a collection of
resources for evaluating and analyzing biomedical
natural language representation models. We find
that the BERT models pre-trained on PubMed ab-
stracts and clinical notes see better performance
than do most state-of-the-art models. Detailed
analysis shows that our benchmarking can be used
to evaluate the capacity of the models to un-
derstand the biomedicine text and, moreover, to
shed light on the future directions for developing
biomedicine language representations.
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Abstract

The goal of this work is to utilize Electronic
Medical Record (EMR) data for real-time
Clinical Decision Support (CDS). We present
a deep learning approach to combining in real
time available diagnosis codes (ICD codes)
and free-text notes: Patient Context Vectors.
Patient Context Vectors are created by averag-
ing ICD code embeddings, and by predicting
the same from free-text notes via a Convolu-
tional Neural Network. The Patient Context
Vectors were then simply appended to avail-
able structured data (vital signs and lab results)
to build prediction models for a specific condi-
tion. Experiments on predicting ARDS, a rare
and complex condition, demonstrate the utility
of Patient Context Vectors as a means of sum-
marizing the patient history and overall condi-
tion, and improve significantly the prediction
model results.

1 Introduction

A key goal in critical care medicine is the early
identification and timely treatment of rapidly pro-
gressive, life-threatening conditions, such as Sep-
sis, Septic Shock, and Acute Respiratory Distress
Syndrome (ARDS). Such life-threatening condi-
tions, are both rare, and at the same time, com-
plex and heterogeneous, involving the interaction
of multiple risk factors, comorbidities, and current
symptoms. Hospital alert systems typically rely
on screening of structured data such as vital signs
and lab results, and, in the case of such rare condi-
tions, are often associated with “alert fatigue” and
require manually entered clinical judgement.

The information needed for a reliable risk eval-
uation of such rare and complex conditions is typi-
cally dispersed across the patient EMR, and avail-
able at different times throughout the patient stay.
The patient demographics, past medical and visit
history, chronic conditions, risk factors, current
signs and symptoms can be found in the form of
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clinical notes (e.g. nursing notes, radiology re-
ports, etc.), diagnosis and procedure codes, vital
signs, lab orders and results. The challenge of
real-time CDS systems is the variability and the
availability of real-time EMR data, resulting from
different charting behaviors, health care delivery
models, hospital settings, etc.

The goal of this work is to utilize all available
EMR patient information for real-time predictive
modelling. While our experiments are focused on
identifying ARDS cases, the described method is
applicable to a variety of use cases needing infor-
mation dispersed across the EMR patient record.
The primary contribution of this work is the use
of low-dimensional representation of the patient’s
history, current symptoms and conditions, which
we refer to as Patient Context Vector. At pre-
diction time, Patient Context Vectors are gener-
ated from the combination of available up-to-date
ICD codes (if any) and available nursing notes.
Patient Context Vectors (vectors of real numbers)
are then simply added to the list of existing struc-
tured data variables (vital signs and lab results)
and used to identify patients at risk of developing
life-threatening conditions that require rapid inter-
vention.

2 Method

In this work, we combine ICD codes, clinical
notes, vital signs, lab results, and demographic in-
formation to build a real-time ARDS prediction
model. Low-dimensional representation of ICD
codes (ICD embeddings) is generated from a large
corpus of patient ICD records. Patient visit EMR
data is used to look up recorded up-to-date ICD
codes, clinical notes, vital signs, and lab results.
The visit ICD codes are converted to embeddings
and averaged to produce Patient Context Vectors.

Pertinent patient information might not be nec-
essarily ”ICD-coded” during prediction time, but
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can be available in the form of nursing notes. A
deep learning model was trained to predict the pa-
tient’s Patient Context Vector from nursing notes.
The Patient Context Vectors obtained from avail-
able in the system ICD codes, and from free-text
notes are then used in conjunction with vital signs,
and lab results to predict the patient’s outcome.
Details for each step of the approach are provided
in subsequent sections.
2.1 Dataset

We utilized the freely available database com-
prising deidentified health-related data associated
with over 40,000 patients who stayed in critical
care units of the Beth Israel Deaconess Medical
Center between 2001 and 2012: the MIMIC3 In-
tensive Care Unit (ICU) database (Johnson et al.,
2016). The dataset contains over 2 million free-
text clinical notes and over 650,000 diagnosis
codes for over 58,000 visits. Included ICUs are
medical, surgical, trauma-surgical, coronary, and
cardiac surgery recovery units. EMR data includes
vital signs, laboratory results, diagnosis codes,
free text nursing notes, radiology reports, medi-
cations, discharge summaries, treatments, etc.
2.2 ICD Embeddings and Patient Context

Vectors

Clinicians viewing properly coded patient di-
agnosis codes (ICD9 and ICD10 codes') are typ-
ically capable of deducing the overall condition,
history, and risk factors associated with a patient.
Intuitively, the totality of patient’s diagnosis codes
represent a meaningful medical summary of the
patient. Diagnosis codes are used to describe
both current diagnoses (e.g. Community-acquired
Pneumonia ), but also a variety of additional facts.
For example, ICD codes can describe patient’s his-
tory and chronic conditions (e.g. Chronic kid-
ney disease; Personal history of traumatic frac-
ture; etc.); information regarding past and current
treatments and procedures (e.g. Infection due to
other bariatric procedure). In some cases, ICD
codes contain information such as the patient age
group (e.g. Sepsis of newborn; Elderly multi-
gravida); expected outcome (Encounter for pal-
liative care); patient’s social history (e.g. Adult
emotional/psychological abuse); the reason for the
visit, (e.g. Railway accidents; Motor Vehicle acci-
dents, etc).

While there are a large number of ICD codes
(around 15,000 ICD9 codes and around 68,000

1The International Classification of Diseases, (© The World Health Orga-
nization.
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ICD10 codes), they tend to be interdependent,
and to co-occur. For example, Pneumonia ICD
codes are often accompanied with ICD codes
describing Cough, Fever, Pleural effusion, etc.
Inspired by word embeddings (Mikolov et al.,
2013), it has been suggested that this medical code
co-occurence can be exploited to generate low-
dimensional representations of ICD codes: ICD
Embeddings (Choi et al., 2016b,a; Kartchner et al.,
2017).

All available MIMIC3 patient data was used to
generate the ICD embeddings following the ap-
proach of (Choi et al., 2016b). In our approach, we
attempted to generate a low-dimensional represen-
tation of the patient history, symptoms, risk fac-
tors, diagnosis, etc, by averaging the patient ICD
code embeddings (creating Patient Context Vec-
tors). The optimum size of the vectors was deter-
mined to be 50.

2.3 Predicting Patient Context Vectors from
Clinical Texts

While averaged ICD embeddings appear to be a
useful summary of the overall patient history, con-
dition, symptoms, and risk factors, ICD code data
is not necessarily available for real-time CDS sys-
tems. Some ICD codes associated with patients’
history and symptoms might be entered early on
in the EMR system. However, diagnosis ICD
codes are typically obtained after tests and lab re-
sults and might not be available during prediction
time. Similarly, not all relevant patient history and
symptoms are necessarily ICD-coded.

At the same time, nursing notes typically con-
tain all currently available information, even if not
present in the form of ICD codes. Nursing notes
include information such as past medical history,
reason for visit, current symptoms, summary of
test outcomes, etc.

In order to capture information present in free-
text notes, we also built a word-level CNN model
that predicts the patient Patient Context Vector
from the note text. The model was trained
on available nursing and discharge notes and
achieved a mean squared error of 0.179 on the val-
idation set. The network was trained on 1,081,176
free-text notes, with pre-trained word-embeddings
of size 100. The texts were truncated/padded to
the 90th percentile length (785 tokens). The net-
work consists of a Convolutional, Max Pooling
layers, followed by 2 hidden layers of size 500.
The last layer uses linear activation with loss func-



tion of mean squared error to predict the Patient

Context Vector.

2.4 Patient Context Vectors in Prediction
Models

In order to test the utility of the Patient Con-
text Vectors for predicting patient outcomes, we
focused on building a real-time ARDS prediction
model. ARDS is a rare and life-threatening condi-
tion that require an early intervention (Fan et al.,
2017).

ARDS patients were limited to adult patients
only (age 18 or older). The patients inclusion cri-
teria consist of the presence of acute respiratory
failure and continuous mechanical ventilation, ex-
cluding patients with acute exacerbation of asthma
or chronic obstructive pulmonary disease (Bime
et al., 2016) 3. This resulted in 4,624 ARDS ad-
missions from a total of 48,399 admissions.

An ARDS prediction model was built utilizing a
combination of vital signs, lab results, ICD codes
and free-text notes. Features considered in the
baseline predictive model building include: 1) vi-
tal signs: heart rate, respiratory rate, body tem-
perature, systolic blood pressure, diastolic blood
pressure, mean arterial pressure, oxygen satu-
ration, tidal volume, BMI; 2) laboratory tests:
white blood cell count, bands, hemoglobin, hema-
tocrit, lactate, creatinine, bicarbonate, pH, PT,
INR, BUN, blood gas measurements (partial pres-
sure of arterial oxygen, fraction of inspired oxy-
gen, and partial pressure of arterial carbon diox-
ide); 4) motor, verbal, and eye sub-score of Glas-
gow Coma Scale ; and 5) demographics: gender
and age.

In addition to the baseline features (available in
structured format in MIMIC), we also included as
features the patient’s Patient Context Vectors com-
puted from ICD codes and from notes. In real-time
CDS systems, it is likely that not all ICD or nurs-
ing notes will be available at prediction times. To
test this most realistic scenario, we also built a Pa-
tient Context Vector by averaging the first half of
the patient’s ICD codes, and the first half of the
patient’s nursing notes CNN model predictions.

A Gradient Boosting Machine (GBM) model
(Friedman, 2001) and a Distributed Random For-
rest Model (DRF) (Geurts et al., 2006) were used
to predict ARDS patients from the total popula-

Zhttps://github.com/ema-/patient-context-vectors

*Inclusion ICD9 Codes: 51881, 51882, 51884, 51851, 51852, 51853,
5184, 5187, 78552, 99592, 9670, 9671, 9672; Exclusion ICD9 Codes: 49391,
49392, 49322, 4280
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GBM
Features AUC | P R F1
Baseline 90.42 | 41.76 | 67.80 | 51.68
Baseline + ICD 93.30 | 53.02 | 68.44 | 59.75
Patient Context Vector
Baseline + Notes 91.88 | 48.25 | 64.25 | 55.11
Patient Context Vector
Baseline + first 93.59 | 56.35 | 66.52 | 61.01
half of notes/ICD
DRF
Features AUC | P R F1
Baseline 89.14 | 38.58 | 66.43 | 48.81
Baseline + ICD 92.08 | 51.87 | 63.75 | 57.20
Patient Context Vector
Baseline + Notes 91.18 | 47.89 | 62.11 | 54.08
Patient Context Vector
Baseline + first 92.61 | 57.02 | 61.08 | 58.98
half of notes/ICD

Table 1: 10-fold cross-validation GBM and DRF results of

predicting ARDS patients. P=Precision, R=Recall, F1= F1-
score for the positive (ARDS) class. The Baseline set of fea-
tures consists of vital signs, lab results, Glasgow Coma Scale
score, gender and age, in the form of structured data. “Base-
line + ICD Patient Context Vector” includes all baseline fea-
tures, plus the Patient Context Vector (of size 50). “Baseline
+ Notes” includes all baseline features, plus Patient Context
Vectors predicted from all visit nursing notes. “Baseline +
first half of notes/ICD” includes the average of the first half
of entered visit ICD codes embeddings, and Patient Context
Vectors predicted from the first half of the visit nursing notes.

tion of adult patients. In all cases default model
parameters were used (h20). All results were pro-
duced via 10-fold cross evaluation. Table 1 shows
the result from the experiments.

Introducing information from both ICD codes
and nursing notes data significantly increased the
overall performance. Most importantly, the com-
bination of the use of half of the visit notes (used to
predict Patient Context Vectors) and the first half
of the patient ICD codes produced the best results
in both models (GBM and DRF), and proves the
utility of the method for combining structured and
free-text data for prediction models.

The benefit of averaged ICD-code embeddings,
and using notes to predict the same embedding
vectors is also illustrated by the model variable im-
portances shown in Figures 1 - 4. As shown, the
predictive value of certain embedding dimensions
is on a par with important vital signs, such as Tidal
Volume, Glasgow Coma Scale, and Mean Respi-
ratory Rate. Intuitively, clinicians’ experience uti-
lizes all information present in nursing notes (also
coded as ICD codes) to evaluate a patient’s condi-
tion. Our approach demonstrates that it is possible
to summarize that knowledge by combining nurs-
ing and ICD codes in the form of predicted and
averaged ICD embeddings.
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Figure 2: DRF scaled variable importance of Baseline
model features.
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of ICD codes/notes.
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3 Related Work

A large volume of literature on combining
structured and free-text EMR data pre-processes
the free-text data by applying some information
extraction (IE) technique (most frequently, Med-
ical Concept detection). For example, DeLisle et
al.(2010) and Zheng et al. (2014) apply free-text
search on the notes to find a set of hand-crafted
non-negated symptoms, later used as variables in
their ML models. Ford et al. (2016) present
a review of various approaches to IE from free-
text notes for the purpose of detecting cases of a
clinical condition, often in conjunction with struc-
tured data. The majority of approaches extract
UMLS* or SNOMED-CT’ concepts from free-
text with their negation status with various off-the-
shelf tools (Gundlapalli et al., 2008; Carroll et al.,
2011; Karnik et al., 2012; Ananthakrishnan et al.,
2013; Zheng et al., 2014).

More recently, deep learning has been used to
combine free-text and structured EMR data. Rele-
vant ICD embeddings work was mentioned in Sec-
tion 2.2. Shickel et al. (2018) present a survey of
various deep learning techniques. Most notably,
Miotto et al. (2016) convert notes to concepts,
which are then used in conjunction with structured
data to build a Deep Patient representation in an
unsupervised manner via denoising autoencoders.

4 Conclusion

Intuitively, the information available in notes
and ICD codes, enhances the knowledge of the
overall patient condition, which is indicative of the
patient outcome. Results show that Patient Con-
text Vectors can be easily combined with struc-
tured data in the form of vital signs an lab results
and improve significantly the prediction model re-
sults. Results also indicate that Patient Context
Vectors are suitable for real-time CDS as they per-
form equally well when only the first half of avail-
able ICD codes and notes is used.
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MoNERo: a Biomedical Gold Standard Corpus for the Romanian
Language
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Abstract

In an era when large amounts of data are gen-
erated daily in various fields, the biomedical
field among others, linguistic resources can
be exploited for various tasks of Natural Lan-
guage Processing. Moreover, increasing num-
ber of biomedical documents are available in
languages other than English. To be able to
extract information from natural language free
text resources, methods and tools are needed
for a variety of languages. This paper presents
the creation of the MoNERo corpus, a gold
standard biomedical corpus for Romanian, an-
notated with both part of speech tags and
named entities. MoNERo comprises 154,825
morphologically annotated tokens and 23,188
entity annotations belonging to four entity se-
mantic groups corresponding to UMLS Se-
mantic Groups.

1 Introduction

Natural Language Processing (NLP) is a research
area that provides methods to convert (human-
understandable) unstructured textual information
into (machine-readable) structured data and uses
it for different objectives. NLP techniques can
be used to process and exploit the large amount
of biomedical information which is continuously
generated. Examples of such repositories are
MEDLINE!, which contains more than 25 mil-
lion documents belonging to the biomedical do-
main, or PubMed Central®, which is an archive
of biomedical journal literature and contains more
than 5 million full-text articles. These resources
can be exploited and used together with different
NLP systems previously adapted to the biomedi-
cal field to improve the quality of the health care

"https://www.nlm.nih.gov/bsd/medline.
html

https://www.nlm.nih.gov/bsd/medline.
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process, to further develop research in the field
and benefit both physicians and patients. Infor-
mation Extraction (IE) tools can be used to ex-
tract relevant information from biomedical textual
resources (Goeuriot et al., 2017; Li et al., 2017).
Reaching suitable results for this NLP subtask is
not trivial and there is still room for improve-
ment of results. Advances of these IE tools de-
pend on the existence of annotated resources spe-
cific to the field of study (Wilbur et al., 2006;
Thompson et al., 2009; Kilicoglu, 2017), anno-
tated corpora being relevant in both phases: de-
velopment of the models that will determine the
behaviour of the system and system performance
evaluation. Even though the availability of these
resources has increased lately, the main part of the
efforts have been directed to the development of
annotated corpora for English in different subdo-
mains. However, MoNERo is a resource created
for the Romanian language that helps the develop-
ment of named entity recognition and classifica-
tion task especially for this language. Romanian
benefits from the existence of other corpora cre-
ated in our institute: the representative corpus of
contemporary language (CoRoLa) (Barbu Mititelu
et al., 2018), a balanced corpus (ROMBAC) (Ion
etal., 2012), the corpus annotated with verbal mul-
tiword expressions (Barbu Mititelu et al., 2019).
Just like all of these, MoNEROo is annotated at the
morphological level. However, it stands out given
its annotation with four types of Named Entities
(NEs) for the medical domain, which are relevant
to the identification of: anatomy parts, diseases
and disorders, chemicals and drugs, and medical
procedures.

This paper has four main objectives: (i) to
present the construction of a biomedical gold stan-
dard corpus annotated both with part-of-speech
tags and named entities; (ii) to present general
statistics over the corpus; (iii) to release the final
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version of the corpus to the scientific community,
(iv) to show the contribution in the development
of NLP tools for Romanian language. All the re-
sults are discussed in parallel for the two types of
annotations.

2 Related Work

This section reviews relevant corpora annotated
with NEs specific to the biomedical domain.

1. For English we mention:

e CLEF corpus (Roberts et al., 2009) —
it contains 150 documents of clinical
narratives, histopathology reports and
imaging reports. It was subtracted from
a corpus of 565,000 documents and
manually annotated with six types of
NEs (condition, intervention, investiga-
tion, result, drug or device, locus);

i2b2 corpus (Uzuner et al., 2010) — it
contains 1243 discharge summaries au-
tomatically pre-annotated, out of which
a subset of 251 was manually revised.
This corpus contains seven types of NEs
(medications, dosages, modes, frequen-
cies, durations, reasons of administra-
tion, list/narrative);

NCBI corpus (Dogan et al., 2014) — a
gold-standard corpus for disease men-
tions and concepts that contains 793 ab-
stracts extracted from PubMed;

CHEMDNER corpus (Krallinger et al.,
2015) — a corpus of 10,000 abstracts col-
lected from PubMed annotated with two
types of NEs: chemicals and drugs.

2. For French there is the Quaero corpus
(Névéol et al., 2014) which contains 103,056
words collected from three types of docu-
ments: texts with information on drugs ex-
tracted from European Medicines Agency
(EMEA), titles from research articles com-
prised in MEDLINE and patents. This corpus
was annotated with ten types of NEs defined
using UMLS: anatomy, chemical and drugs,
devices, disorders, geographic areas, living
beings, objects, phenomena, physiology, pro-
cedures.

3. For Spanish the following corpora exist:
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e [xaMedGS corpus (Oronoz et al., 2015)
— it is composed of 142,154 discharge
records out of which 75 were annotated
with two types of NEs: diseases and
drugs;

DrugSemantics corpus (Moreno et al.,
2017) — it has 226,729 tokens anno-
tated with ten types of NEs: chemi-
cal composition, disease, drug, excipi-
ent, food, medicament, pharmaceutical
form, route, therapeutic action, and unit
of measurement.

All these corpora are available and have had a
significant role in information extraction research,
especially in named entity recognition (NER) re-
search and were developed for well-established
purposes, having in mind the possibility of re-
usability.

3 Corpus Development Description

3.1 Selection of Corpus Documents

The gold standard morphologically and named en-
tity annotated Romanian medical corpus (MoN-
ERo) was extracted from the BioRo corpus
(Mitrofan and Tufis, 2018), a Romanian biomed-
ical corpus. MoNERo contains texts extracted
from three types of documents: scientific medi-
cal literature books, scientific medical journal ar-
ticles and medical blog posts, but predominant are
those coming from medical literature. The medi-
cal books were chosen as the main source because
they contain descriptive materials, full of domain-
specific terms. In addition, the texts are of good
quality and the use of medical terms is correct.
The medical journal® from which a part of the texts
were extracted is a scientific journal that addresses
the specialists, so the language used is specific to
the medical domain. In the case of blog posts those
collected were texts of popularization and aware-
ness of various medical problems.

The texts were selected so that they belong to
three medical subdomains: cardiology, diabetes
and endocrinology (see table 3). The main mo-
tivation behind choosing these three medical do-
mains is that our textual resources available were
centered around the pathology of Diabetes. Since
Diabetes is an endocrine disorder it is naturally in-
cluded in the Endocrinology category. In the same

*https://rmj.com.ro/



time because of a very close relation between dia-
betes and cardiovascular diseases we also obtain a
significant category from Cardiology field. Other
categories such as neurology, nephrology would
have had a very low contribution and we chose not
to take them separately but in Diabetes field, be-
cause the terms were related to diabetes complica-
tions.

The selection was made based on the metadata
scheme associated with each document present in
the BioRo corpus. The order of the sentences was
preserved.

All these texts are Intellectual Property Right
(IPR) cleared, thus enabling us to make it avail-
able to the community (see section 6).

3.2 MoNERo Annotation Scheme

The annotation scheme of MoNERo has two dif-
ferent levels: (i) a morphologic level at which all
part of speech tags were revised by an experienced
linguist; and (ii) a named entity level at which NEs
were identified and classified in the corresponding
semantic group.

3.2.1 Part of Speech Annotation Scheme

The process of the annotation of the corpus with
part of speech tags had two phases: automatic
annotation (all the texts comprised in this cor-
pus were previously processed when included in
BioRo, the source from which MoNERo was ex-
tracted) and manual verification of the tags allo-
cated by the tool used (see below section 3.3.1).
Here we present the manual verification phase
which was done by an expert linguist. The an-
notation scheme used for morphologic annota-
tion was based on the MSD tagset developed in
the Multext-East project (Dimitrova et al., 1998),
which contains 715 tags for Romanian. This tagset
is very complex and precise, containing fourteen
classes of words (noun, verb, adjective, adverb,
pronoun, determiner, article, adposition, conjunc-
tion, numeral, interjection, abbreviation, residual
and particle), each class having a set of attributes
such as: type, gender, number, case, definiteness,
clitic, verb form, tense, person, degree, etc. (Tufis
etal., 1997).

3.2.2 Named Entities Annotation Scheme

In the case of named entities identification the an-
notation scheme was based on UMLS* (Unified
Medical Language System) semantic groups. This

*https://semanticnetwork.nlm.nih.gov/
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resource contains concepts from different termi-
nologies specific to the biomedical domain. More-
over, UMLS is organized as a hierarchical se-
mantic network that comprises semantic types and
semantic relations. All the semantic types are
grouped in 15 semantic groups (McCray et al.,
2001). For this work the annotation scheme con-
tains four semantic groups chosen from the UMLS
scheme: anatomy, chemicals and drugs, disorders
and procedures. The attributes of each entity type
are described below:

1. Anatomy (ANAT): body location or region,
body part, organ, or organ component, body
substance, body system, cell, fully formed
anatomical structure, tissue;

Chemicals and Drugs (CHEM): amino
acid, peptide, protein, antibiotic, biologically
active substance, chemical, clinical drug, hor-
mone, organic chemical, pharmacologic sub-
stance, receptor, steroid, vitamin;

. Disorders (DISO): acquired abnormality,
anatomical abnormality, cell or molecular
dysfunction, congenital abnormality, disease
or syndrome, experimental model of disease,
finding, injury or poisoning, sign or symp-
tom;

Procedures (PROC): diagnostic procedure,
health care activity, laboratory procedure,
molecular biology research technique, ther-
apeutic or preventive procedure.

Examples for each type can be seen in Table 1.

Named Entity | Example
Anatomy pancreqs E‘ papcreas )”
nerv optic (‘“optic nerve”)
Chemicals “ .
paracetamol (“paracetamol’)
and acid folic (“folic acid”)
Drugs
. diabet (“diabetes”)
Disord s
150raers fibrilatie (“fibrillation”)
EKG (“EKG”)
P
rocedures CT (“CT")
Table 1: Examples of named entities extracted from

MoNERo.



The main reason for choosing these four types
of entities was a trade off between the minimum
number of entities (due to an increased complex-
ity of the annotation process) and the maximum
relevance for our corpus. However we had some
challenges. For example, Physiology was a cate-
gory that could be included, but due to the fact that
the medical texts available were mainly related to
pathology, the contribution would have been lim-
ited (less than 5%).

Having a tokenized corpus with each token on
a separate line, we chose IOB2 (Insid-Outside-
Beginning) (Sang and Veenstra, 1999) as the an-
notation format for named entities. Lately, this
format has become popular within the scientific
community, being also supported by the CoNLL
challenges °. The B-tag is used for the first token
of every NE, I-tag indicates the token that is inside
a named entity and O-tag is used for surrounding
tokens that do not belong to a NE (/n/O schimb/O,
HDL-colesterolul/ B-CHEM, apolipoproteinele/B-
CHEM A/I-CHEM si/O B/I-CHEM sunt/O su-
periori/O ca/O indicatori/O de/O risc/B-DISO
cardiovascular/I-DISO ./0) (“On the other hand,
HDL-cholesterol and lipoproteins A and B are su-
perior as cardiovascular risk indicators.”). For ease
of reading, in all the examples below we chose not
to mention the O-tag, but only the B- and I-tags.

3.3 Annotation Guidelines

3.3.1 Part of Speech

In the initial phase the corpus was automatically
preprocessed (sentence split, tokenized, lemma-
tized) and annotated with POS tags using the
TTL annotator (Ion, 2007; Mitrofan and Tufis,
2018), which was trained on news corpora of
about 200,000 tokens with POS labeling checked
by trained linguists (Tufig, 2000). The accuracy
for this task was 98.23%. When TTL was trained
in order to perform domain adaptation for biomed-
ical domain the accuracy was 97.83% (Mitrofan
and Ion, 2017). Therefore, in order to annotate
this corpus with POS tags the baseline model was
chosen. The second phase of the annotation pro-
cess, which makes the focus of this paper, was to
manually check all the automatically assigned la-
bels. A trained and experienced linguist revised all
the tokens included in MoNERo. For this task the
guidelines were:

1. correct the token if needed;

5http: //www.conll.org/previous—-tasks
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. correct the lemma if needed;
. correct the POS tag if needed;

. compounds written as separate words should
be split.

3.3.2 Named Entities

The guidelines for named entity annotation were:

1. acomplex entity will not be decomposed into
simpler entities belonging to different seman-
tic groups; only one semantic group will be
associated to the longest entity (cancer de fi-
cat (“liver cancer”) will be annotated only as
a disorder, not as a disorder (cancer/B-DISO
de/I-DISO ficat/I-DISO (‘“‘cancer”/B-DISO)
“of”/I-DISO “liver”/I-DISO) and an anatom-
ical part (ficat/B-ANAT (“liver’/B-ANAT));
so, there is no embedded annotation;

. in cases when one head noun is shared
by two or more biomedical named enti-
ties (coordinations or disjunctions) the an-
notation will be done as follows: in case
of coordinations ateroscleroza aortei si a
vaselor periferice (‘“‘atherosclerosis of the
aorta and peripheral vessels”), should be
annotated as ateroscleroza/B-DISO aortei/l-
DISO si vaselor/I-DISO periferice/I-DISO or
in case of disjunctions celule beta pancre-
atice sau hepatice (“pancreatic beta or hep-
atic cells”) should be annotated as celule/B-
ANAT beta/I-ANAT pancreatice/I-ANAT sau
hepatice/lI-ANAT);

. discontinuous entities will be annotated
as contiguous terms and classified in the
same semantic group: in the examples
Anevrismele/B-DISO pot fi fusiforme/I-
DISO (aspect cilindric al vasului/B-ANAT
sangvin/I-ANAT) sau  sacciforme/I-DISO
(“Aneurysms/B-DISO may be fusiforms/I-
DISO (cylindrical appearance of the blood/B-
ANAT vessel/I-ANAT) or sacciforms/I-
DISO”) the NEs Anevrismele fusiforme and
anevrismele sacciforme are discontinuous;

. in case of cascaded constructions when one
entity is incorporated in another entity (eg.
parenthetical constructions) the annotation
will be done as: Anevrismele/B-DISO
pot fi fusiforme/I-DISO (aspect cilindric
al vasului/B-ANAT sangvin/I-ANAT) sau



sacciforme/[-DISO  (“Aneurysms/B-DISO
may be fusiforms/I-DISO (cylindrical
appearance of the blood/B-ANAT vessel/I-
ANAT) or sacciforms/I-DISO”). Within the
discontinuous NE Anevrismele sacciforme
there is another NE, vasului sangvin.

3.4 Annotation Development
3.4.1 Part of Speech Tags

Even though the accuracy of the automatic anno-
tation with POS tags was very high (subsection
3.3.1), given the high number of POS tags in the
Romanian MSD tagset, there was a lot of manual
work to be done by the linguist. This task involved
manual validation of tokenization, lemmatization,
and also correcting the errors of part of speech and
errors of morphological categories (see 3.5.1) for
each token.

3.4.2 Named Entities

For the named entities annotation task two annota-
tors were employed: one physician and one expe-
rienced annotator, both having Romanian as native
language. The physician was chosen as annotator
due to her capacity of understanding the medical
field. Prior to the annotation process there was a
training period for both annotators. In this phase
they debated issues such as whether or not to anno-
tate overlapping terms, when and if complex terms
should be decomposed, how conjunctions should
be treated.

Even though the initial guidelines gave them in-
structions on what should and should not be anno-
tated, they collaborated and discussed throughout
the annotation process. Even if the identification
of a biomedical entity was a relatively easy task,
fitting it into the correct semantic group some-
times required prior knowledge of the biomedical
vocabulary. Therefore the experienced annotator
has accessed various terminological resources in
order to better understand the terms and to cate-
gorized them into the correct semantic group. In
a post-annotation phase, the two annotators dis-
cussed the annotation differences in order to reach
agreement.

3.5 Discussion Over the Annotation Process

3.5.1 Part of Speech

During the manual correction process of the part
of speech tags the annotator encountered several
types of errors generated by the tool used:
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1. tokenization errors: wrong segmentation of
time intervals (2000-2001) was annotated as
a single token), typos that led to wrong tok-
enization of the word (fi cat instead of ficat
(“liver™));

lemmatization errors: in case of the unknown
words (adenoamd instead of adenom (“ade-
noma”)) or in case of morphologically am-
biguous forms: the form copii can be the
plural indefinite of either the masculine noun
copil (“child”) or of the feminine noun copie
(“‘copy”); given this homography, the lemma-
tizer mistakes one of the words with the other
one;

. tagging errors where classified in two cate-
gories:

e errors of part of speech — wrong auto-
matic identification of the part of speech
(nouns as adjectives, adjectives as ad-
verbs and vice versa, verbs as adjec-
tives);

wrong identification of the morphologi-
cal class — the part of speech is correctly
identified but some of the specifications
are wrongly identified: gender, number,
case, etc.

Even though the overall error rate of the tool
used was low (1.77% see section 3.3.1) and pre-
annotation with POS tags of the corpus was use-
ful, the task of correcting it was a difficult one
due to the complexity of the tag set and the labori-
ous manual work needed to determine if the token,
lemma and POS tag are correct for each word in
the corpus. Annotation time ranges between 17 to-
kens per minute (at the beginning of the task) and
33 tokens per minute (after the annotator became
accustomed with the task and the types of errors).
The use of only one annotator for correcting the
POS tags is justified, on the one hand, by the low
error rate and, on the other, by the expense of the
task. However, we are aware of the limitation rep-
resented by the lack of inter-annotator agreement
measurements (even on a sample) on the morpho-
logical annotation.

3.6 Named Entities

The task of annotating the corpus with named en-
tities had an increased difficulty due to several fac-
tors such as:



o the need to understand specialized terminol-
ogy. Several cases can be identified here:

— completeness of NEs: given the lack
of expertise in the biomedical domain,
the expert annotator sometimes omit-
ted components of the complex entities,
thus attributing the NE a wrong class;

— ambiguity: both annotators needed to
agree upon the cases when to annotate
conjunctions present in some entities:
for example, although in the vast major-
ity of cases, the conjunction §i (“and”)
is not part of an NE, there are a few
cases when it is: one such example is the
NE ocluzia/B-DISO arterelor/I-DISO
mici/I-DISO si/I-DISO mijlocii/l-DISO
(“occlusion of small and medium sized
arteries”) in which the conjunction i is
part of the entity (see its annotation as [-
DISO) and does not get unannotated as
in an example such as ateroscleroza/B-
DISO aortei/I-DISO si vaselor/I-DISO
periferice/I-DISO (‘“‘atherosclerosis of
aorta and peripheral vessels”);

— abbreviations: this challenge was en-
countered especially by the experienced
annotator. It is known that biomedical
literature is very rich in abbreviations
(Federiuk, 1999). Unless their meaning
is clear to the annotator, a wrong type
can be assigned to it. What is more,
many abbreviations are difficult to cor-
rectly classify because of their multi-
ple meanings. For example, depending
on the context, ACE can be angiotensin
convertazd (“‘angiotensin-converting en-
zyme”) and it belongs to “Chemicals
and Drugs” semantic class or electro-
forezd capilard de afinitate (“affinity
capillary electrophoresis”) and in this
case it is correctly labeled as “Proce-
dure”; notice also that the abbreviation
is borrowed from English, thus posing
challenges to the annotator lacking med-
ical background;

o four different entities types.

Annotating all relevant entities was itself a
challenge. One reason for this is the lack of
prior knowledge of biomedical terminologies
by the experienced annotator, some of the
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terms encountered not being covered in the
terminological resources used for this task or
being present with other senses than the one
needed;

e the use of IOB2 format, which is an elabo-
rated type of annotation format.

Estimated annotation time for this task was
about 15 tokens per minute (for the experienced
annotator) and 30 tokens per minute (for the physi-
cian).

The consistency of the annotations was estab-
lished computing the (Carletta, 1996) coefficient
on a sample of 1,628 tokens annotated by the two
annotators, especially for this, after they finished
the annotation. For this set the Kappa coefficient
was 92.8%, denoting high agreement between the
two annotators and indicates that the annotation
was reliable.

4 Corpus General Statistics

Table 2 presents general corpus statistics offering
an overview of the MoNERo corpus. Currently
it contains 154,825 tokens (including the punctua-
tion) distributed in 4,989 sentences, all of them an-
notated with POS tags and NEs. It can be seen that
the average sentence length, 31 tokens/sentence, is
above 16.06 tokens/sentence, the average sentence
length in a balanced Romanian corpus, containing
legal, news, medical (i.e. pharmacological), fic-
tion and biographical texts (Ion et al., 2012).

Sentences 4,987
Tokens 154,825
Tokens/Sentence 31.04
Punctuation 20,741
Punctuation/Sentence | 4.15

Table 2: MoNEROo statistics.

Table 3 presents the distribution of sentences
across the domains addressed. As can be seen,
the distribution of sentences is not balanced, this
being the result of the fact that due to copyright
restrictions, the same number of sentences could
not be collected for each of the selected domains,
especially in the case of endocrinology.

Table 4 presents the distribution of content
words. As can be seen, nouns are the most fre-
quent ones, followed by adjectives: medical lit-
erature (especially medical literature books) has a



Domain #tokens #sentences
Cardiology 63,043 2,028
Diabetes 69,085 2,136
Endocrinology | 22,697 823

Total 154,825 4,987

Table 3: Distribution of corpus sentences correspond-
ing to each medical field.

descriptive structure, there are cases when nouns
are modified by two or more adjectives: bronsitd
cronicd obstructivd (“‘chronic obstructive bronchi-
tis”). We notice quite an important number of
abbreviations: the scientific subcomponent of the
Romanian reference corpus, CoRoLa (Barbu Mi-
titelu et al., 2018), contains 1.16% abbreviations,
whereas MoNERo contains 1.9%. In the medical
domain, as opposed to other scientific domains, it
is common practice to designate concepts by ab-
breviated forms.

Tag Percentage
Noun 27.8%
Verb 10.4%
Adjective 11.5%
Adverbs 3.5%
Abbreviations | 1.9 %

Total 55.1 %

Table 4: Percentages of content words.

Table 5 presents the distribution of entity an-
notation over each of the four semantic groups.
This table highlights the fact that the most frequent
NE categories are CHEM and DISO, PROC and
ANAT being less frequent.

NE type | No. of entities
ANAT 1,964

CHEM | 4,156

DISO 6,611

PROC 1,402

Total 14,133

Table 5: NEs distribution.

5 Corpus format

The corpus is available in a tabular format that
contains four columns, UTF-8 encoded, with LF
character as line break. Each line contains an-
notations of a token in four fields separated by
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a tab character: word form or punctuation sym-
bol (token), lemma of the word form, NER tag
and POS tag. We show below the annotation of
the sentence: Abordul arterei iliace comune se
face retroperitoneal, iar grefonul folosit este unul
sintetic din Dracon sau PTFE. (“The access to
the common iliac artery is retroperitoneal, and
the graft used is a synthetic one from Dracon or
PTFE.”)

Abordul abord B-PROC Ncmsry
arterei arter I-PROC Ncfsoy
iliace iliac I-PROC Afpfson
comune comun I-PROC Afpfson
se sine O Px3--a—-——————-— %
face face O Vmip3s
retroperitoneal retroperitoneal O
Rgp
;, 0O COMMA
iar iar O Rc
grefonul grefon O Ncmsry
folosit folosit O Afpms-—-n
este fi O Vmip3s
unul unul O Pi3msr
sintetic sintetic O Afpms-n
din din O Spsa
Dacron dacron O Ncms—-n
sau sau O Ccssp
PTFE PTFE O Yn

O PERIOD

6 Utility of the corpus

There are several reasons for which MoNERo has
an important contribution in named entity recog-
nition and information extraction:

e it is the first Romanian gold standard biomed-
ical corpus annotated with both part of speech
tags and named entities;

it was annotated with four types of named
entities, making it very useful for training
and testing NER systems based on supervised
learning;

it is pre-processed: tokenized, lemmatized
and annotated with part of speech tags;

it has a tabular format that makes it easy to
use and the annotations are compliant with
IOB2 format standards;



e it is a resource in a language other than En-
glish, which can help to train and test NER
systems to perform language and domain
adaptation;

it is freely available for download® and non-
commercial use. The archive contains three
files, one for each medical domain, and an-
other file containing all the other ones.

To prove the maturity and utility of this re-
source we used it to train and test a NER sys-
tem (Boros et al., 2018) for biomedical named
entity recognition task for Romanian language.
The architecture used is based on Bidirectional
Long-Short-Term Memory (BDLSTM) networks
(Graves, 2012). The system is trained to pro-
duce fully connected subgraphs. The feature-set
is composed of word embeddings and character-
level embeddings. In order to train the system the
corpus was split in three sets: training set 80%,
development set 10% and test set 10%. The eval-
uation of the performance of the system was done
computing the F1 score and a score of 81.4 was
obtained . This experiment represents a starting
point for the development/adaptation of NER sys-
tems for biomedical domain in Romanian.

7 Conclusions

We presented the MoNERo corpus, a gold stan-
dard biomedical corpus for Romanian language
enhanced with two types of annotations: morpho-
logical and named entities specific to the biomedi-
cal field. To our knowledge this is the first biomed-
ical corpus of this type for the Romanian language.
This resource has already proven its value and util-
ity, having been used in the development of the
NER systems for the Romanian language. The
MoNEROo corpus is freely available for download
and non-commercial use, which makes it even
more valuable for the community.
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Abstract

Domain adaptation remains one of the most
challenging aspects in the wide-spread use
of Semantic Role Labeling (SRL) systems.
Current state-of-the-art methods are typically
trained on large-scale datasets, but their per-
formances do not directly transfer to low-
resource domain-specific settings. In this
paper, we propose two approaches for do-
main adaptation in biological domain that in-
volve pre-training LSTM-CRF based on ex-
isting large-scale datasets and adapting it for
a low-resource corpus of biological processes.
Our first approach defines a mapping between
the source labels and the target labels, and the
other approach modifies the final CRF layer
in sequence-labeling neural network architec-
ture. We perform our experiments on Pro-
cessBank (Berant et al., 2014) dataset which
contains less than 200 paragraphs on biologi-
cal processes. We improve over the previous
state-of-the-art system on this dataset by 21
F1 points. We also show that, by incorporat-
ing event-event relationship in ProcessBank,
we are able to achieve an additional 2.6 F1
gain, giving us possible insights into how to
improve SRL systems for biological process
using richer annotations.

1 Introduction

Semantic Role Labeling (SRL) is shallow seman-
tic representation of a sentence, that allows us to
capture the roles of arguments that anchor around
an event. Despite significant recent progress in
Deep SRL systems (He et al., 2017; Tan et al.,
2017), there has been limited work in adapting
such systems to low resource domain-specific sce-
narios where the label space of both domains are
completely different. Additionally, existing do-
main adaptation for SRL requires an overhead of
annotating the new corpus using guidelines similar

*Both authors equally contributed to the paper.
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to the source dataset, and every domain-specific
corpora might not necessarily adhere to the same
label structure and similar annotation guidelines.

We present two different domain adaptation
strategies that rely on training the model on a large
corpora (source dataset) and fine-tuning on a low-
resource domain-specific corpus (target dataset),
more specifically biological processes domain.
The first approach uses mappings from the source
label space to the target label space. For this, we
present DeepSRL-CREF, which incorporates a CRF
layer over the DeepSRL model (He et al., 2017)
with an intermediate step of mapping labels from
source to target domain. For the second approach,
we use a CNN-LSTM-CRF model to pre-train the
neural network weights on the source domain, and
adapt the final CRF layer of the network based on
the target label space. We then fine-tune the model
on the target dataset.

For empirical evaluation, we explore the chal-
lenge of SRL in ProcessBank dataset, where the
target domain (biological processes) is drastically
different compared to the source domain (news).
Both of our approaches are effective for adapt-
ing SRL systems for biological processes. Com-
pared to the previous best system, we get an im-
provement of about 24 F1 points when we use
label-mapping approach, and about 21 F1 point
improvement when we adapt the final CRF layer.
Our contributions can be summarized as follows:

1. Two different approaches for domain adap-
tation of SRL for biological processes, with our
code and models publicly available !

2. An in-depth analysis for each of the do-
main adaptation strategies, both perform signifi-
cantly better in low-resource SRL for biological
processes

3. Analysis of the model performance when the

"https://github.com/dheerajrajagopal/SciQA
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target corpus is annotated with event-event rela-
tionships to the SRL corpus

2 Models

To label the event-argument relationships, we pro-
pose two models inspired from the current state-
of-art on the SRL and NER literature. Since our
downstream task lends itself to a low-resource set-
ting, we hypothesize that an LSTM-CRF architec-
ture would be better suited for the role-labeling
task.

DeepSRL-CRF : We introduce DeepSRL-CRF,
that is inspired from DeepSRL (He et al., 2017).
The DeepSRL-CRF model uses a stacked Bil-
STM network structure as its representation layer
with a CRF layer on top. The overall model
uses stacked BiLSTMs using an interleaved struc-
ture, as proposed in Zhou and Xu (2015). As de-
scribed in the original model, we use gated high-
way connections (Zhang et al., 2016; Srivastava
et al., 2015) to prevent over-fitting.
CNN-LSTM-CRF : We adapt the state-of-art
sequence-labeling model by Ma and Hovy (2016).
This is an end-to-end model, which uses a BiL-
STM, Convolutional Neural Network (CNN) and
CRF to capture both word- and character-level
representations. The model first uses a CNN
to capture character-level representation. These
embeddings are concatenated with the word-level
embeddings and fed into a BILSTM to capture the
contextual information at word-level. Here, we
adapt this model to additionally concatenate 100-
dimensional predicate indicators for every word
before feeding the result into a BILSTM. The out-
put vectors from the BILSTM are fed into the CRF
layer, which jointly decodes the best sequence.
The model uses dropout layers for both CNN and
BiLSTM to prevent overfitting.

3 Domain Adaptation

Label Mapping : In our first approach, we per-
form domain by mapping each label from the tar-
get label-space to the source label-space by align-
ing it to the closest label from the source dataset.
Since we used the CoNLL-2005 and CoNLL-2012
datasets for pre-training, we used the PropBank la-
bels to map each relation in ProcessBank accord-
ing to the PropBank annotation guidelines. Al-
though there is human intervention in the pipeline,
it is time-efficient since this process has to be done
only once for a target dataset. We asked three in-

81

dependent annotators to perform the mapping of
these labels, and the majority voted mapping was
used as the final mapping scheme. In case of no
majority vote, the annotators discussed to reach a
consensus. We had an inter-annotator agreement
of 0.8. The entire process for ProcessBank dataset
took approximately two hours. The mapping for
individual relationships are given in Table 1. The
network architecture did not change throughout
the training process for both source and target do-
mains. The final CRF layer of the neural network
maintains the same dimensions as the source do-
main.

PropBank ProcessBank
ARGO Agent
ARGM-LOC Location
ARG2 Theme
ARG3 Source
ARG4 Destination
ARGI1 Result

ARGM-MNR Other

Table 1: Label Mapping: PropBank to ProcessBank

Adapting the CRF Layer : In the second ap-
proach, we maintain the network weights for the
BiLSTM layers constant from the pre-training and
we learn the transition and emission probabilities
from scratch in the target domain dataset. More
specifically, we first train the entire model on
CoNLL-2005 and CoNLL-2012 SRL data. Next,
we replace the final CRF layer with the label-space
dimensions in our target domain, and keep the re-
maining weights in the model as is. Finally, we
start fine-tuning the entire model by training it on
the target data. Contrary to the previous approach,
this approach does not require any manual inter-
vention.

Event Interactions : The ProcessBank dataset
is also annotated with event-event interactions.
In our model, we also study whether event-event
structure is important in predicting the event-
argument structure. We leverage this additional
event-event interaction annotations, and add them
to the input to predict the event-argument role-
labels. From an annotation perspective, this ex-
periment helps us analyze whether the event-event
structure labels are the bottle-neck for better SRL
performance - especially in domain specific set-
tings.



4 Experiments

Experimental Setup : For evaluation, we use
the CoNLL-2005 (Carreras and Marquez, 2005)
and CoNLL-2012 (Pradhan et al., 2013) datasets
as our primary large-scale datasets with the stan-
dard splits. For the domain adaptation scenario,
we use the ProcessBank dataset (Berant et al.,
2014)%>. We used 134 annotated paragraphs for
training, 19 for development and 50 for test-
ing. Each passage in the ProcessBank dataset
describes a process, defined by a directed graph
(T, A, Ey, Ey,), where nodes T denote event
triggers and A denote their corresponding argu-
ments. FEy; represents labeled edges event-event
relations and FEy, describe event-argument rela-
tions. The edges Fy, are annotated with seman-
tic roles AGENT, THEME, SOURCE, DESTINA-
TION, LOCATION, RESULT and OTHER. Each
F);; edge between event and another event is an-
notated with the relations CAUSE, ENABLE and
PREVENT. Our experiments primarily focus on
the prediction of the event-argument structures
FE,, since the source datasets that we use for do-
main adaption do not contain any event-event re-
lationship annotation.

Baselines : In our first set of baselines, we com-
pare our models on the CoNLL-2005 and CoNLL-
2012 tasks. We use the previous state-of-the-art
SRL system from He et al. (2018) as our baseline.
3. Since our model is based on LSTM-CRF hybrid
architecture, we implement two other baselines for
our approach. We use a standard BiLSTM-CRF
model (Huang et al., 2015), and a model based
on the structured attention proposed in Liu and
Lapata (2017) which uses CRF style structure in
the intermediate layer. For a fair comparison, we
augmented this structured attention based network
with a CRF layer on top. We use 300D GLoVe em-
beddings (Pennington et al., 2014) across all mod-
els. For domain adaptation, we use the original
system from Berant et al. (2014) as the baseline.
It uses the approach in Punyakanok et al. (2008),
where for each trigger, a set of argument candi-
dates are first determined, and then a binary classi-
fier uses argument identification features to prune

’For dataset statistics, we refer readers to Berant et al.
(2014), Table 1. We use the same training and test split pro-
vided in the original dataset. We further split the training set
into training and development set.

*Due to resource limitations, we were unable to run the
same model for 500 epochs, so we report results from their
paper for CONLL-2005 and CoNLL-2012 datasets
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this set with high recall.

5 Results

Semantic Role Labeling : Table 2 shows the
SRL results* for the CONLL-2005 and CoNLL-
2012 datasets across all baseline models. From
the table, it is evident that our DeepSRL-CRF
model with ELMo embeddings performs slightly
lesser than the current state-of-the-art SRL model
DeepSRL with ELMo. We were able to per-
form significantly better than the other baselines —
BiLSTM-CRF and Strucutured Attention model.
Our DeepSRL-CRF model without ELMo per-
formed significantly lower and the improvement
was notably higher with ELMo.

Domain Adaptation : For all our domain adapta-
tion experiments, we found that the DeepSRL and
DeepSRL-CRF models reach similar F1 scores
without any pre-training. Table 3 shows the re-
sults for the set of models that were trained for do-
main adaptation using label mapping. After pre-
training it on the CoNLL 2005 and CoNLL-2012
dataset for 50 epochs, we fine-tuned the weights
on the ProcessBank dataset without making any
changes to the network. The results signify that
the models that were effective for a large dataset,
might not achieve similar gains when restricted
to specific low-resource domains. The DeepSRL-
CRF model, after incorporating event-event rela-
tionships, outperforms the previous system from
Berant et al. (2014) by about 24 F1 points.

In our second domain adaptation approach,
we test the CNN-LSTM-CRF model by learn-
ing the final CRF layer with transition and
emission probabilities for the target label space.
The CNN-LSTM-CRF model, without any pre-
training achieves 40.62 F1 which is similar to
previous performance from Berant et al. (2014).
However, after pre-training it on CoNLL 2005 and
CoNLL-2012 dataset for 50 epochs, the models
outperforms by about 21.7 F1 points. Adapting the
CRF layer, with transition and emission probabili-
ties for the target domain data in its label space,
shows impressive gains in the low-resource set-
ting, specially when there is a limitation for using
any human-intervention in the domain adaptation
process. Although empirically effective, we be-
lieve that there is immense scope to understanding
the impact of better initialization from a theoreti-
cal perspective. We also observe that pretraining

“We use span-based precision, recall and F1 measure



Model

CoNLL-2005 (WSJ)

CoNLL-2012 (OntoNotes)

P R F1 P R F1
BiLSTM-CRF 809 794 803 80.0 7738 78.9
Structured Attention 81.0 80.1 80.5 79.6 779 78.8
CNN-LSTM-CRF 82.1 827 824 817 830 82.3
DeepSRL 81.6 81.6 816 81.8 814 81.6
DeepSRL-ELMo - - 87.4 - - 85.5
DeepSRLCRF 350 463 400 51.6 78.1 62.2
DeepSRLCRF-ELMo 847 83.6 84.1 844 858 85.1

Table 2: SRL results for CoNLL-2005 and CoNLL-2012 datasets. DeepSRL-ELMo resuls from He et al. (2018)

Model Development Test
P R F1 P R F1

Berant et al. (2014) - - - 434 344 383
CoNLL-2005

DeepSRL 46.7 53.7 50.0 46.1 51.0 485

DeepSRL-ELMo 55.0 48.0 51.7 48.8 4177 445

DeepSRLCRF 514 58.1 54.5 50.8 57.0 53.7

DeepSRLCRF-ELMo 53.5 66.2 59.2 49.1 632 553

+ Event relations 63.0 63.7 63.3 61.0 622 61.6
CoNLL-2012

DeepSRL 51.1 569 53.9 439 49.0 463

DeepSRL-ELMo 52.6 50.0 51.2 48.1 432 446

DeepSRLCRF 459 63.1 53.1 403 567 472

DeepSRLCRF-ELMo 44.6 67.5 53.7 369 62.1 463

+ Event relations 65.0 65.0 65.0 62.1 63.0 62.6

Table 3: SRL results for ProcessBank dataset - Domain adaptation using label mapping.

Model Test
P R F1
Berant et al. (2014) 434 344 38.3
No pre-training 40.6 40.6 40.6
CoNLL-2005
BiLSTM-CRF 44.7 423 434
CNN-LSTM-CRF  56.8 55.5 56.1
+Event relations 55.3 534 54.4
CoNLL-2012
BiLSTM-CRF 42.8 41.0 42.3
CNN-LSTM-CRF  59.7 60.2 60.0
+ Event relations 58.8 57.7 58.3

Table 4: Results for ProcessBank - Domain adaption
by replacing the CRF layer

on CoNLL-2012 dataset was more effective com-
pared to pre-training on CoNLL-2005 dataset for
this model. The former has about 35000 more
training data instances than later.

Which domain adaptation technique works
best? Our results show that the DeepSRL-CRF
model based on label mapping approach perform
the best overall (improvement of 24 F1 points)
assuming we have event-event relationship anno-
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tations. In a setting where there are multiple
datasets of different domains, training different
network for each of the datasets might be cum-
bersome. We believe that the domain adaptation
based on label mapping would suit such situa-
tions better. However, in the cases where there
is no explicit label mapping possible or no read-
ily available event-event interaction annotations
in target domains, resorting to replacing the CRF
layer would be the most effective for domain adap-
tion gains. Our CNN-LSTM-CRF model achieves
an improvement of 21 F1 points by replacing the
CRF layer without event-event annotations. One
of the drawbacks of this system is that it cannot
be trained end-to-end. Given that there is limited
overhead in modifying the architecture, we believe
this wouldn’t be a bottleneck for NLP systems. If
end-to-end training is a hard constraint, we resort
to our DeepSRL-CRF model. In terms of gener-
alization capability and performance, pre-training
on the CoNLL-2012 dataset and fine-tuning on the
ProcessBank dataset with explicit label mapping
with additional event-event relations gives us the



best results. >

6 Related Work

Domain adaptation leverages on large-scale
datasets to help improve the performance on other
smaller and similar tasks. From the SRL perspec-
tive, one of the earliest work from Daume III and
Marcu (2006) showed simple but effective ways
for ‘transferring the learning’ from a source to
a target domain. Building on strong feature-rich
models, Dahlmeier and Ng (2010) analyzed vari-
ous features and techniques that are used for do-
main adaptation and conducted an extensive study
for biological SRL task. Later, Lim et al. (2014)
proposed a model that uses structured learning
for domain adaptation. Although effective, these
methods rely on hand-annotated features. Re-
cently, there have been neural-network based at-
tempts at Domain adaptation in SRL. Do et al.
(2015) combined the knowledge from a neural lan-
guage model and external linguistic resource for
domain adaptation for biomedical corpora. Our
work closely aligns to this work from a modeling
stand-point. Our target domain is biological pro-
cess descriptions from high-school biology with-
out restrictions of PropBank style annotations.

Our work builds on multiple existing works,
especially the dataset from Berant et al. (2014),
using the thematic roles defined in Palmer et al.
(2005). Our approach is inspired by the recent
success in including structured representations in
deep neural networks (He et al., 2017; Ma and
Hovy, 2016) for structured prediction tasks. Our
primary motivation is to improve the system per-
formance for low-resource domain-specific event-
argument labeling tasks, particularly biological
processes. Argument labeling, specifically, SRL
as been used for biomedical domain previously.
E.g. Shah and Bork (2006) applied SRL in the
LSAT system to identify sentences with gene tran-
scripts, and Bethard et al. (2008) applied SRL
to extract information about protein movement.
However, developing annotated SRL data for each
task can be expensive.

7 Conclusion

In this work, we present two new approaches
to adapt deep learning models trained on large

SPlease refer to the supplemental material 9 for a detailed
discussion on results
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scale datasets, to smaller domain-specific biolog-
ical process dataset. We present a LSTM-CRF
based architectures which perform on-par with the
state-of-the-art models for SRL but significantly
better than them in low-resource domain-specific
settings. We show significant improvement of ap-
proximately 24 F1 points over current best model
for role-labeling on the ProcessBank - notably dif-
ferent in nature compared to CoNLL dataset.
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8 Appendices

8.1 Parameter Settings

CNN-LSTM-CRF : The words that are ab-
sent in GloVe embeddings are replaced with
<UNK> and intialized randomly. The character-
embeddings are intialized with uniform samples as
proposed in He et al. (2015). Weight matrices are
initialized using Glorot initialization (Glorot and
Bengio, 2010). Bias vectors are initialized to zero
except the bias vector of Bi-LSTM (by) which is
initialized to 1. Parameter optimization is per-
formed using Adam optimizer with batch size of
32 and learning rate of 0.0001. We use a non-
variational dropout of 0.5 on CNN and BiLSTM
layers. We use a hidden size of 512, and use 5
layers for the BILSTM. For character embeddings,
we use a hidden size of 30. The CNN’s use 30 fil-
ters.

DeepSRL-CRF : We maintain most of the exper-
imental settings similar to He et al. (2017). We
convert all tokens to lower-case, initialize with the
embeddings. We use the Adadelta with ¢ = 16
and p 0.95 with mini-batch size 64. The
dropout probability was set to 0.1 and gradient
clipping at 1. The models are trained for 50 epochs
(compared to 500 epochs in the original DeepSRL
model) and use the best model from 50 epochs for
pretraining. We do not add any constraints for de-
coding and we use the viterbi decoding to get our
output tags.

9 Supplemental Material

9.1 Additional Discussion

DeepSRL-CRF: The DeepSRL-CRF model
achieves comparable but slightly lower perfor-
mance compared to the current state-of-the-art in
the CoNLL-2005 and CoNLL-2012 SRL datasets.
We observed that these performances did not
directly translate to the ProcessBank dataset. In
the limited-resource domain of ProcessBank,
the final CRF layer had a more pronounced
performance improvements. Adding CRF layer to
DeepSRL model improves performance by atleast
4 F1 points when pre-trained using CoNLL-2005
and 1 F1 point when pre-training using CoNLL-
2012 dataset. Adding ELMo embeddings to
the DeepSRL and DeepSRL-CRF models did
not result in performance gains in ProcessBank
except for one experimental setup (DeepSRL-
CRF pre-trained on CoNLL-2005). Across both



datasets, we acheived our best results when we
incorporated event-event relations in the SRL
annotation. Although a performance improvement
is expected, the best results for domain adaptation
was achieved after adding the event relations. The
tags that gain most from the event relationships
are Agent, Destination, Source and Location.
The improvements primarily come from the gain
in precision with a slight drop in recall. We
believe that the reason for this improvement is the
artifact of the dataset’s event-event relationships
tend to correlate often with these entities given
the nature of these biological processes. Across
CoNLL-2005 and CoNLL-2012, it did not make
a considerable difference as to which dataset we
used for pre-training. Although CoNLL-2012 has
slighly better performance (shown in table 3, there
could be additional hyper-parameter tuning that
could lead to slightly different results between the
two datasets.

CNN-LSTM-CRF: The CNN-LSTM-CRF
model on ProcessBank achieves 40.62 F1 without
any pre-training. This result is comparable to
the baseline, showing the importance of ini-
tialization of weights while training a neural
network based model. However, we achieve
substantial improvement of about 21.7 F1 with
pre-training on CoNLL data and later adapting
only the final CRF layer for the target label space.
In contrast to DeepSRL-CRF, we notice that
performance difference between pre-training on
CoNLL-2005 and CoNLL-2012 is considerable
(4 F1 points). We have to note that CoNLL-2012
dataset has about 35000 more training data
instances than CoNLL-2005. We hypothesize that
these additional training instances might have
contributed to the final F1 score while training
using CoNLL-2012 dataset. We also observe that
pre-training improves the performance of tags
that have less number of instances in the target
domain (ProcessBank). One of the unique cases
is shown in table 7, where Source tag prediction
shows huge improvements (57.0 F1) after the
model was pre-trained using the CoNLL data.
However, we do not see the same trend for the
Other tag. Further, as per table 5 and 6, the
model particularly confused the Other tag with
the O tag of the BIO scheme. In the original
ProcessBank dataset, the tags that do not belong
to the original proposed categories, were classified
as one single Other category and this category
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had the least number of annotated examples.
We believe that the combination of these factors
made it challenging for the model to predict this
particular category. According to table 5 and 6,
the most frequent tags — Theme and Agent have
high prediction accuracy. However, their spans
are sometimes incorrectly identified. For instance
the Theme tags are identified incorrectly as O or
vice-versa. Overall B tags have higher precision
than the [ tags, and the model is able to better
predict the start of a span than the end of a span.

From table 7, we also notice that annotating
a dataset with event-event relationships does not
consistently improve the performance which we
observed in DeepSRL-CRE. These results also
show that adding the CNN-layer of character em-
beddings to the BiLSTM-CRF model helps the
model perform better across all the labels. em-
phasizing the relevance of these character embed-
dings.



% Agt. Dest Loc Oth. Res. Src. The. O

Agt. 711 10 00 00 00 10 62 206
Dest. 00 539 77 00 77 00 154 154
Loc 00 30 455 00 30 00 91 394
Oth. 00 250 250 00 00 00 00 500
Res. 00 00 22 0.0 31.1 00 244 422
Srec. 00 158 00 00 00 684 158 0.0

The. 40 16 00 00 12 08 859 65

Table 5: Best performing CNN-LSTM-CRF model’s breakdown of true (rows) and predicted (columns) B tags with
BIO tagging scheme. (Agt.=Agent; Dest.=Destination; Loc.=Location; Oth.=Other; Res.=Result; Src.=Source;
The.=Theme; O=0 tag in BIO tagging)

% Agt. Dest Loc Oth. Res. Src. The. O

Agt. 656 11 00 00 00 00 7.1 262
Dest. 0.0 430 158 0.0 53 00 167 193
Loc 00 92 487 00 53 00 66 303
Oth. 00 167 167 00 00 00 0.0 66.7
Res. 00 00 08 00 430 00 203 359
Srec. 00 65 00 00 00 71.0 226 0.0

The. 32 27 34 00 1.7 12 1732 146

Table 6: Best performing CNN-LSTM-CRF model’s breakdown of true (rows) and predicted (columns) / tags with
BIO tagging scheme. (Agt.=Agent; Dest.=Destination; Loc.=Location; Oth.=Other; Res.=Result; Src.=Source;
The.=Theme; O=0Otag in BIO tagging)

BiLSTM-CRF CNN-LSTM-CRF
+Pretrain. Pretrain. +Verb
#nstances  PB only +Dom. adp. PB only +Dom. adp. Relations
Agent 280 25.8 37.0 35.5 62.1 63.3
Destination 153 8.0 2.7 38.5 51.3 53.1
Location 109 4.8 1.8 26.1 44.1 38.8
Other 11 0.0 0.0 0.0 0.0 0.0
Result 173 2.8 12.0 11.1 34.7 25.0
Source 50 8.7 154 0.0 57.9 59.1
Theme 838 449 57.3 52.1 67.2 66.0

Table 7: F1 scores on different tags in ProcessBank with BiLSTM-CRF and CNN-LSTM-CRF model
(PB=ProcessBank). Pre-training was done on CoNLL-2012 dataset
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Abstract

Automatic identification and expansion of
ambiguous abbreviations are essential for
biomedical natural language processing ap-
plications, such as information retrieval and
question answering systems. In this paper,
we present DEep Contextualized Biomedical
Abbreviation Expansion (DECBAE) model.
DECBAE automatically collects substantial
and relatively clean annotated contexts for 950
ambiguous abbreviations from PubMed ab-
stracts using a simple heuristic. Then it uti-
lizes BioELMo (Jin et al., 2019) to extract
the contextualized features of words, and feed
those features to abbreviation-specific bidi-
rectional LSTMs, where the hidden states of
the ambiguous abbreviations are used to as-
sign the exact definitions. Our DECBAE
model outperforms other baselines by large
margins, achieving average accuracy of 0.961
and macro-F1 of 0.917 on the dataset. It also
surpasses human performance for expanding a
sample abbreviation, and remains robust in im-
balanced, low-resources and clinical settings.

1 Introduction

Abbreviations are shortened forms of text-strings.
They are prevalent in biomedical literature such as
scientific articles, clinical notes and user queries in
information retrieval systems. Abbreviations can
be ambiguous (e.g.: ER can refer to estrogen re-
ceptor, endoplasmic reticulum, emergency room
etc.), especially when they appear in short or pro-
fessional texts where the definitions are not given.
For instance, about 15% of PubMed queries in-
clude abbreviations (Islamaj Dogan et al., 2009),
and about 14.8% of all tokens in a clinical note
dataset are abbreviations (Xu et al., 2007). In
both cases, the definitions of the abbreviations are
rarely provided. Thus, automatic expansion of am-
biguous abbreviations to their full forms is vital
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in biomedical natural language processing (NLP)
systems.

In this paper, we focus on the cases where defi-
nitions of ambiguous abbreviations are not directly
available in the contexts, so reasoning over the
contexts is required for disambiguation. Under the
conditions where definitions are provided in the
contexts, one can easily extract them using rule-
based methods.

We present DEep Contextualized Biomedi-
cal Abbreviation Expansion (DECBAE) model.
DECBAE uses a simple heuristic to automati-
cally construct large supervised disambiguation
datasets for 950 abbreviations from PubMed ab-
stracts: In scientific writing, authors define abbre-
viations the first time they are used, and the same
abbreviations in the following sentences have the
same definitions as those of the first ones. We ex-
tract all the sentences containing the same abbre-
viations in each PubMed abstract, and use the def-
inition given in the first sentence as the full form
label of abbreviations in the following sentences.
We group the definitions for each abbreviation and
formulate abbreviation expansion as a classifica-
tion task, where input is an ambiguous abbrevia-
tion with its context, and the output is one of its
possible definitions.

Recent breakthroughs of language models (LM)
pre-trained on large corpora like ELMo (Peters
et al.,, 2018) and BERT (Devlin et al., 2018)
clearly show that unsupervised LM pre-training
can vastly improve performance of downstream
models. To fully utilize the knowledge encoded
in PubMed abstracts, DECBAE uses BioELMo
(Jin et al., 2019), a domain adapation verison of
ELMo, to embed the words. After the embed-
ding layer, DECBAE applies abbreviation-specific
bidirectional LSTM (biLSTM) classifiers to do the
abbreviation expansion, where the biLSTM pa-
rameters are trained separately for each abbrevi-

Proceedings of the BioNLP 2019 workshop, pages 88-96
Florence, Italy, August 1, 2019. (©2019 Association for Computational Linguistics



ation. We train DECBAE from the automatically
collected dataset of 950 ambiguous abbreviations.

At inference time, DECBAE feeds the
BioELMo embeddings of the whole sentence
and uses the corresponding abbreviation-specific
biLSTM classifiers to perform disambiguation
of abbreviations in the sentence. We show that
DECBAE outperforms other baselines by large
margins and even performs better than single
human expert. Although training instances of
DECBAE are collected from PubMed, it covers
85% of clinically related abbreviations mentioned
in a previous work (Xu et al., 2012). Moreover,
DECBAE remains robust in low-resource and
imbalanced settings.

2 Related Work

Contextualized word embeddings: Recently,
contextualized word representations pre-trained
by large corpora like ELMo (Peters et al., 2018)
and BERT (Devlin et al., 2018) significantly im-
prove the performance of various NLP tasks.
ELMo is a pre-trained biLSTM language model.
ELMo word embeddings are calculated by a
weighted sum of the hidden states of each biLSTM
layer. The weights are task-specific learnable
parameters while biLSTM layers are fixed. In-
domain trained contextual embeddings further im-
prove the performance on domain-specific tasks.
In this paper, we use BioELMo, which is a
biomedical version of ELMo trained on 10M
PubMed abstracts (Jin et al., 2019). BioELMo
outperforms general ELMo by large margins on
several biomedical NLP tasks.

We don’t use BERT for contextualized embed-
dings due to its fine-tuning nature: users just need
to download 1 BioELMo and N abbreviation-
specifc biLSTM weights to run DECBAE locally,
which takes significantly less disk size than N
fine-tuned BERTS for each abbreviation. NN is the
number of abbreviations.

Word sense disambiguation (WSD): The goal
of WSD is to determine the correct sense of words
in different contexts. Abbreviation expansion is a
specific case of WSD where the ambiguous words
are abbreviations. In this paper, we use abbre-
viation expansion and abbreviation disambigua-
tion interchangeably. Several human-annotated
datasets are available for supervised WSD (Nav-
igli et al., 2013; Camacho-Collados et al., 2016;
Raganato et al., 2017b). However, human anno-
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tations could be expensive, especially in domain
specific settings. To address this problem, some
automatic dataset collection methods have been
proposed (Yu et al., 2007; Ciosici et al., 2019),
where abbreviations are automatically labeled if
they are defined previously in the same docu-
ments. We use a similar approach in this work.
Peters et al. (2018) report that just matching
the ELMo embedding of the target words with the
nearest sense representations, calculated by aver-
aging their ELMo embeddings, leads to compara-
ble WSD performance with state-of-the-art mod-
els using hand crafted features (Iacobacci et al.,
2016) or task-specific biLSTM trained with mul-
tiple tasks (Raganato et al., 2017a). Instead of
searching the nearest contextualized embeddings
neighbors of the abbreviation and definitions, we
model abbreviation expansion as classification.

Biomedical abbreviation expansion: Various
methods have been introduced for automatically
expanding biomedical abbreviations. Yu et al.
(2007) train naive Bayes and SVM classifiers with
bag-of-word features on an automatically col-
lected dataset from PubMed. Some works dis-
ambiguate abbreviations to their senses in con-
trolled vocabularies like Medical Subject Head-
ings! (MeSH) and Unified Medical Language Sys-
tem? (UMLS). Xu et al. (2015) use pooled neigh-
bor word embeddings of the abbreviations as fea-
tures to train SVM classifiers for clinical abbrevi-
aiton disambiguation. Jimeno-Yepes et al. (2011)
introduced MSH WSD dataset to test the perfor-
mance of supervised biomedical WSD systems
and several supervised models have been proposed
on it (Antunes and Matos; Yepes, 2017). Re-
cently Pesaranghader et al. (2019) presented deep-
BioWSD which sets new state-of-the-art perfor-
mance on it. DeepBioWSD uses a single biLSTM
encoder for disambiguation of all abbreviations by
calculating the pairwise similarity between con-
text representations and sense representations.

To the best of our knowledge, DECBAE is the
first model that uses deep contextualized word em-
beddings for biomedical abbreviation expansion.

3 Methods

Figure 1 shows the architecture of DECBAE. Dur-
ing training, we first construct abbreviation ex-

"https://www.nlm.nih.gov/mesh
https://www.nlm.nih.gov/research/
umls/
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Figure 1: Architecture of DECBAE. Training and inference phases are illustrated in the left and right boxes,
respectively. The PubMed corpus is used in training BioELMo (Jin et al., 2019) and collecting the disambiguation
dataset. We train a separate biLSTM classifier for each abbreviation, and the specific pre-trained classifier is

retrieved in inference phase.

pansion datasets from PubMed (§3.1). We use
BioELMo (§3.2) to get the contextualized rep-
resentations of words, and train a specific bilL-
STM classifier (§3.3) for each abbreviation. Dur-
ing inference (§3.5), we first detect whether there
are ambiguous abbreviations in input sentences by
the expert-curated ambiguous abbreviation vocab-
ulary. If so, we use BioELMo and the correspond-
ing abbreviation-specific biLSTM classifiers to do
the disambiguation.

3.1 Dataset Collection

Figure 2 shows our approach of automatically col-
lecting disambiguation dataset. For each abstract,
we first detect and extract the pattern of “Defini-
tion (Abbreviation)”, e.g.: “endoplasmic reticulum
(ER)”. Then we collect all the following sentences
that contain the abbreviation, and label them with
the definition.

This would generate a noisy label set due
to the variations of writing the same definition
(e.g.: emergency department and emergency de-
partments). To group the same definitions to-
gether, we use MetaMap-derived MeSH terms
(Demner-Fushman et al., 2017) as features of def-
initions and define the MeSH similarity between
definition a and definition b as:

¢ — |IMg N My

VIMal [My]
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where M, and M, are the MeSH term sets of def-
inition a and b, respectively. We group those def-
initions with high MeSH similarity and close edit
distance by heuristic thresholds.

We collected 1970 abbreviations. However, due
to the unsupervised nature of the collection pro-
cess, some abbreviations are invalid or not am-
biguous. For this, one biomedical expert® filtered
the abbreviations we found, based on 1) Validity:
abbreviations should be biomedically meaningful;
2) Ambiguity: abbreviations should have mul-
tiple possible definitions, and prevalence of the
dominant one should be < 99%. After the filter-
ing, there are 950 valid ambiguous abbreviations.
Their statistics are shown in Table 1. We split the
instances of each abbreviation into training, devel-
opment and test sets: If there is more than 10k in-
stances, we randomly select 1k for both develop-
ment and test sets. Otherwise, we randomly select
10% of all instances for both development and test
sets.

3.2 BioELMo

BioELMo is a biomedical version of ELMo pre-
trained on 10 millions of PubMed abstracts (Jin
et al., 2019). It serves as a contextualized feature
extractor in DECBAE: given an input sentence of

3 A post-doctoral fellow with a Ph.D. degree in biology.



Abstract

The endoplasmic reticulum: structure, function and response to cellular signaling.

The endoplasmic reticulum (ER) is a large, dynamic structure that serves many roles in the cell including
calcium storage, protein synthesis and lipid metabolism. The diverse functions of the ER are performed by
distinct domains; consisting of tubules, sheets and the nuclear envelope. Several proteins that contribute
to the overall architecture and dynamics of the ER have been identified, but many questions remain as to
how the ER changes shape in response to cellular cues, cell type, cell cycle state and during development
of the organism. Here we discuss what is known about the dynamics of the ER, what questions remain,
and how coordinated responses add to the layers of regulation in this dynamic organelle.

Context: ... functions of the ER are performed by ...
Context: ... dynamics of the ER have been identified ...
Context: ... as to how the ER changes shape ...
Context: ... dynamics of the ER, what questions ...

Definition:
Definition:
Definition:
Definition:

endoplasmic reticulum
endoplasmic reticulum
endoplasmic reticulum
endoplasmic reticulum

Figure 2: An example of automatically generated training instances for disambiguation from the abstract of
Schwarz and Blower (2016). In this case, we extract “endoplasmic reticulum” as the definition for all ER mentions

in the abstract, and store those instances to the dataset.

Statistic Whole Random Imbalanced Low-resources Clinical Human
# of all abbreviations 950 100 42 28 11 1
Average # of instances 8790.0 6564.3 19493.1 958.8 28642.8  8312.0
Average # of possible definitions 4.1 3.7 2.3 2.2 8.5 4.0
Average % of dominant definition 64.1 63.5 96.7 66.7 53.3 63.8

Table 1: Statistics of the automatically generated abbreviation disambiguation dataset and its subsets.

L tokens:

input = [t1;t2;...;t7)]

We use BioELMo to embed it to
E= [61;62; e eL] S RE*DP

where e € R” is the token embedding and D is

the embedding dimension®.

3.3 Abbreviation-specific biLSTM Classifiers

For each abbreviation, we train a specific biLSTM
classifier, denoted as biLSTM; for abbreviation
1. We feed the BioELMo representations of sen-
tences containing abbreviation ¢ to biLSTM;:

biLSTM;(E) = [hy; hy;...;hy] € REX2H

where h € R?# is the concatenation of forward
and backward hidden states of the biLSTM. We
take as input the concatenated hidden states of the
abbreviation ¢ (i.e. the ambiguous token) h, and
use several feed-forward neural network (FFN)

“Note that it’s after scaling and averaging the 3 BioELMo
layers using task-specific weights.
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layers with softmax output unit to predict its defi-
nition:

p(defy, | input) o< exp(wyk FEN;(hy))

where wy is the learnt weight vector correspond-
ing to definition k, and def}, is the k-th definition
of abbreviation ¢ in our dataset. Similarly, we train
FEN separately for different abbreviations.

3.4 Training

The weights of BioELMo are pre-trained and
fixed, while the averaging weights and scal-
ing factor of BioELMo embeddings are trained
separately for each abbreviation along with the
abbreviation-specific biLSTM classifiers.  We
use Adam (Kingma and Ba, 2014) to optimize
the cross-entropy loss of the predicted label and
ground-truth label.

3.5 Inference

At inference time, we denote the tokenized input
sentence as [t1;to;...;tr] and our ambiguous ab-
breviation set as A. If 3¢; € A, we run DECBAE
to expand the ¢;: First, we use BioELMo to com-
pute the representations of all the input tokens to



E = [e1;e2;...;er]. The trained biLSTM for ab-
breviation ¢;, denoted as biLSTMtj, 1s retrieved
and used to calculate the hidden states given the
BioELMo embeddings of the input sentence:

biLSTM,, (E) = [hy; hy;...;hy] € RF*2H

Then htj, which is the concatenated hidden states
of the ambiguous abbreviation ¢;, is used for
disambiguation through the trained abbreviation-
specific FFN:

= def T

argmaxj wy

Definition(t;) FFN¢, (he;)

4 Experiments

4.1 Baseline Settings

A trivial baseline is to predict the majority of def-
inition for all cases, which could still lead to high
accuracy in severely imbalanced datasets. We
denote this method as Majority. We also test
other baseline settings of different feature learn-
ing schemes. They are all followed by several FFN
layers and a softmax output unit.

Bag-of-words: Following most of the previous
works, we use bag-of-words features to represent
the context by ¢ € R!VI, where |V| is the vocabu-
lary size.

BioELMo: We take the BioELMo embeddings
of the ambiguous abbreviations as input features.

biLSTM: We use biomedical w2v (Moen and
Ananiadou) as word embeddings and train task-
specific biLSTMs and use the hidden states of the
ambiguous abbreviations as input features.

We also measure the human performance: due
to limitation of resources, we just study single-
expert performance on one sampled abbreviation.
For this, the expert is shown with the test sen-
tences, and asked to classify the ambiguous abbre-
viation to its possible definitions. An ensemble of
experts will obviously generate better results, so
our single-human results just represent the lower
bound of human performance.

4.2 Subset Settings

We report the model performance on different sub-
sets of our dataset. Statistics of those datasets are
shown in Table 1.

Random samples: It’s computationally expen-
sive® and unnecessary to test the models on all 950

5 The rate-determining step is BioELMo due to its large
size and recurrent nature.
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abbreviations. Instead, we use randomly sampled
100 abbreviations to represent the whole set.

Imbalanced samples: We define abbreviations
whose dominant definitions have over 95% fre-
quency as imbalanced samples. Multi-label clas-
sification with imbalanced classes is considered as
a hard machine learning task.

Low-resources samples: We define abbrevia-
tions that have less than 1k training instances as
low-resources samples. It’s motivated by the fact
that most biomedical datasets are typically limited
by scale, so models that can still perform well un-
der low-resources settings have the potential to be
applied in real world settings.

Clinical samples: Though our abbreviations
are collected from PubMed abstracts, we have in-
cluded 11 out of 13 of clinical ambiguous abbre-
viations mentioned in a previous work of clinical
abbreviation disambiguation (Xu et al., 2012). We
also test our models on the subset of these 11 clin-
ically related abbreviations.

Testing sample for human expert: We test hu-
man performance on one abbreviation (DAT), due
to limited resources. The statistics of DAT abbre-
viation expansion dataset are close to the averages
of the whole dataset, as shown in Table 1. Possible
definitions of DAT include: 1) Dopamine trans-
porter (63.9%); 2) Direct antiglobulin test (5.8%);
3) Direct agglutination test (5.8%); 4) Dementia
of the Alzheimer type (24.5%).

4.3 Evaluation Metrics

We model abbreviation expansion as a multi-label
classification task, and use the following metrics
to measure the performance of different models:

Accuracy: Accuracy is defined as the propor-
tion of right predictions in all predictions. Most of
the definition labels are imbalanced, so accuracy
could be misleadingly high for a trivial majority
solution in these cases, thus may not reflect the
real capability of models.

Macro-F1: In multi-label classification, macro-
F1 is calculated as an unweighted average of F1
score for each class. Class-wise F1 score is de-
fined as follows:

Fl_o. precision - recall

precision + recall

where precision and recall are calculated for each
class.

Kappa Statistic: Cohen’s kappa was origi-
nally introduced as a metric to measure inter-rater



Confusion matrix of DECBAE predictions Confusion matrix of human predictions
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Figure 3: Confusion matrix for the predictions of DECBAE (left) and the human expert (right). Def. 1: dopamine
transporter; Def. 2: direct antiglobulin test; Def. 3: direct agglutination test; Def. 4: dementia of the Alzheimer

type.

Model Random Set Imbalanced Set Low-resources Set Clinical Set Human Set
Majority

Accuracy 63.64+21.07 96.7+ 1.0 67.0415.67 53342571 63.9

Macro-F1 283+ 14.9f 454 +8.8" 37.2+8.81 12.0+10.6 19.5

Kappa Statistic 0.0+ 0.0 0.0£0.0" 0.0£0.0" 0.0+0.0f 0.0
BoW-FFN

Accuracy 84441127 975+ 1.7 89.6+7.5" 76.1+12.57 84.3

Macro-F1 73.1+17.1F 71.54+19.9 834+ 14.6' 57.9+14.2F 71.9

Kappa Statistic ~ 63.8 +25.31 50.44+33.7° 71.1+24.8" 60.6 +8.97 69.6
BioELMo

Accuracy 94.1+7.2f 96.3+15.3 98.1+£2.7 91.1+84 97.1

Macro-F1 86.0+17.41 81.3+23.5 954493 75.5+21.7 92.6

Kappa Statistic ~ 86.1 +19.81 73243421 93.2+10.8" 86.64+9.3 94.6
biLSTM

Accuracy 88.0+16.8" 98.0+ 1.97 92.7+10.5° 88.248.21 97.3

Macro-F1 77.1+26.0° 70.2 +27.0° 82.9 4245 68.8+26.1 93.2

Kappa Statistic  69.3 +37.21 49.1 +45.71 70.4 +41.5° 70.5+35.3 94.9
DECBAE

Accuracy 96.1+5.5 98.9+ 1.4 98.7 +2.2 95.1+3.3 98.4

Macro-F1 91.7 +13.2 87.2+17.8 98.3+3.5 83.0 +21.9 93.9

Kappa Statistic ~ 90.9 +15.5 79.6 4+ 30.2 96.8 + 6.8 91.7+5.5 97.0
Human Expert

Accuracy - - - - 96.3

Macro-F1 - - - - 89.0

Kappa Statistic - - - - 92.8

Table 2: Mean and standard deviation of model performance on different subsets. 'Significantly lower than the
corresponding metric of DECBAE. Significance is defined by p < 0.05 in paired t-test. All numbers are in
percentages. High deviations are expected due to the variety of abbreviations in each subset.
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agreement (Cohen, 1960). It can also be used to
evaluate predictions of multi-label classification:

Do — Pe

K =
1_pe

where p, is the observed agreement and in the case
of classification p, = accuracy, p. is the expected
agreement which can be achieved by pure chance:

Pe = chpAc
c

pe and p. refer to the proportion of class ¢ in
ground truth labels and predictions, respectively.
Empirical results in Table 2 show that Kappa
statistics are often lower than accuracy and macro-
F1, and thus serving as a more distinctive metric
for our task.

4.4 Results

In Table 2, we report means and standard devi-
ations of each model’s performance on different
subsets evaluated by the three metrics. In all sub-
sets, DECBAE performs significantly better than
most other models by large margins. A general
trend of DECBAE > BioELMo > biLSTM >
BoW-FFN > Majority conserves across subsets.

In the Random subset which represents the
whole dataset, all metrics of DECBAE exceed
0.90, setting very promising state-of-the-art per-
formance despite the potential noise of the dataset.

In the Imbalanced subset where the most fre-
quent definitions consist of over 95% of all the la-
bels, a trivial Majority solution gets over 95% ac-
curacy. However, for macro-F1 and kappa statis-
tic, performance of the baselines drop dramatically
while DECBAE can still generate decent results.

DECBAE and BioELMo alone remain robust in
Low-resources setting. This is due to the trans-
fer learning nature of BioELMo, which utilizes the
knowledge encoded in the PubMed abstracts.

Our abbreviation expansion dataset covers
roughly 85% of clinical abbreviations mentioned
in Xu et al. (2012). On this Clinical subset,
DECBAE gets pretty good results and vastly out-
perform other baselines despite its variety in pos-
sible definitions (8.5 possible definitions per ab-
breviation, as shown in Table 1).

On the testset for human performance (i.e.:
abbreviation expansion for DAT), DECBAE and
even some neural baselines outperform single hu-
man expert.
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5 Analysis

In Fig. 3, we use confusion matrices to visual-
ize the differences between DECBAE or the hu-
man expert and the ground truth labels, for disam-
biguation of abbreviation “DAT”. The high agree-
ment level between human expert predictions and
the automatically assigned labels indicates that
our pipeline of collecting the abbreviation disam-
biguation dataset is valid.

In general, both DECBAE and the human expert
perform well in the task, with only few misclassi-
fications. Specifically, DECBAE, and even other
neural baselines like biLSTM and BioELMo, out-
perform the human expert in all metrics. Com-
pared to DECBAE, the human expert is more
likely to misclassify direct agglutination test with
direct antiglobulin test (9 v.s. 1), and misclassify
dementia of the Alzheimer type with dopamine
transporter (7 v.s. 0). We show several instances
of human and DECBAE’s errors in Table 3.

One limitation of this work is that we just test
DECBAE on our automatically collected dataset.
Since the proposed model can also be used on
other biomedical abbreviation expansion datasets
as well, evaluating on other datasets like MSH
WSD is a clear future work to do.

Another potential direction for improvement
is to accelerate the inference speed. Currently
DECBAE uses BioELMo for embedding and
abbreviation-specific biLSTM for classification,
resulting in two recurrent models in total. Our re-
sults show that just BioELMo with several FFN
layers also generates decent results, so in some
cases we might use only BioELMo as a compro-
mise for faster inference.

6 Conclusion

We present DECBAE, a state-of-the-art biomedi-
cal abbreviation expansion model on the automat-
ically collected dataset from PubMed. The results
show that, with only minimum expert involve-
ment, we can still perform well in such a domain-
specific task by automatically collecting training
data from a large corpus and utilize embeddings
from pre-trained biomedical language models.
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Test sentence Label Human DECBAE
The reduction of the number of different segments in DAT compared to controls and Def 4 Def. 1 Def. 4
patients suffering from depression may be helpful for differential diagnosis. et et et
Reliance on objective brain phenotype measures, for example, those afforded by brain
. . . o . . e Def. 1  Def. 1 Def. 4
imaging, might critically improve detection of DAT genotype-phenotype association.
DAT was more commonly positive among BO incompatible (21.5% in BO vs. 14.8% Def 2 Def 3 Def. 2
in AO , P=0.001) and black (18.8% in blacks vs. 10.8% in nonblacks , P=0.003) infants. <" et el
NPY-LI showed a significant reduction in DAT but not in FTD. Def. 4  Def. 1 Def. 4
The study included 122 healthy subjects, aged 18-83 years, recruited in the multicentre Def. 1 Def. 4 Def. 1

‘ENC-DAT’ study (promoted by the European Association of Nuclear Medicine).

Table 3: Some samples of errors made by the human expert and DECBAE. Def. 1: dopamine transporter; Def. 2:
direct antiglobulin test; Def. 3: direct agglutination test; Def. 4: dementia of the Alzheimer type.

References

Rui Antunes and Sérgio Matos. Supervised learn-
ing and knowledge-based approaches applied to
biomedical word sense disambiguation. Journal of
integrative bioinformatics, 14(4).

José Camacho-Collados, Mohammad Taher Pilehvar,
and Roberto Navigli. 2016. Nasari: Integrating ex-
plicit knowledge and corpus statistics for a multilin-
gual representation of concepts and entities. Artifi-
cial Intelligence, 240:36-64.

Manuel R Ciosici, Tobias Sommer, and Ira Assent.
2019. Unsupervised abbreviation disambiguation.
arXiv preprint arXiv.:1904.00929.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and psychological
measurement, 20(1):37-46.

Dina Demner-Fushman, Willie J Rogers, and Alan R
Aronson. 2017. Metamap lite: an evaluation of
a new java implementation of metamap. Journal
of the American Medical Informatics Association,

24(4):841-844.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Ignacio Iacobacci, Mohammad Taher Pilehvar, and
Roberto Navigli. 2016. Embeddings for word sense
disambiguation: An evaluation study. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), volume 1, pages 897-907.

Rezarta Islamaj Dogan, G Craig Murray, Aurélie
Névéol, and Zhiyong Lu. 2009. Understanding
pubmed(®) user search behavior through log analy-
sis. Database, 2009.

Antonio J Jimeno-Yepes, Bridget T Mclnnes, and
Alan R Aronson. 2011. Exploiting mesh indexing
in medline to generate a data set for word sense dis-
ambiguation. BMC bioinformatics, 12(1):223.

95

Qiao Jin, Bhuwan Dhingra, William W Cohen, and
Xinghua Lu. 2019. Probing biomedical embed-
dings from language models.  arXiv preprint
arXiv:1904.02181.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

SPFGH Moen and Tapio Salakoski2 Sophia Ana-
niadou.  Distributional semantics resources for
biomedical text processing.

Roberto Navigli, David Jurgens, and Daniele Vannella.
2013. Semeval-2013 task 12: Multilingual word
sense disambiguation. In Second Joint Conference
on Lexical and Computational Semantics (* SEM),
Volume 2: Proceedings of the Seventh International
Workshop on Semantic Evaluation (SemEval 2013),
volume 2, pages 222-231.

Ahmad Pesaranghader, Stan Matwin, Marina
Sokolova, and Ali Pesaranghader. 2019. deep-
biowsd: effective deep neural word sense dis-
ambiguation of biomedical text data. Journal of
the American Medical Informatics Association,
26(5):438-446.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Alessandro Raganato, Claudio Delli Bovi, and Roberto
Navigli. 2017a. Neural sequence learning models
for word sense disambiguation. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1156—1167.

Alessandro Raganato, Jose Camacho-Collados, and
Roberto Navigli. 2017b. Word sense disambigua-
tion: A unified evaluation framework and empiri-
cal comparison. In Proceedings of the 15th Confer-
ence of the European Chapter of the Association for
Computational Linguistics: Volume 1, Long Papers,
pages 99-110.



Dianne S Schwarz and Michael D Blower. 2016. The
endoplasmic reticulum: structure, function and re-
sponse to cellular signaling. Cellular and Molecular
Life Sciences, 73(1):79-94.

Hua Xu, Peter D Stetson, and Carol Friedman. 2007.
A study of abbreviations in clinical notes. In AMIA
annual symposium proceedings, volume 2007, page
821. American Medical Informatics Association.

Hua Xu, Peter D Stetson, and Carol Friedman. 2012.
Combining corpus-derived sense profiles with esti-
mated frequency information to disambiguate clini-
cal abbreviations. In AMIA Annual Symposium Pro-
ceedings, volume 2012, page 1004. American Med-
ical Informatics Association.

Jun Xu, Yaoyun Zhang, Hua Xu, et al. 2015. Clinical
abbreviation disambiguation using neural word em-
beddings. Proceedings of BioNLP 15, pages 171—
176.

Antonio Jimeno Yepes. 2017. Word embeddings and
recurrent neural networks based on long-short term
memory nodes in supervised biomedical word sense
disambiguation. Journal of biomedical informatics,
73:137-147.

Hong Yu, Won Kim, Vasileios Hatzivassiloglou, and
W John Wilbur. 2007. Using medline as a knowl-
edge source for disambiguating abbreviations and
acronyms in full-text biomedical journal articles.
Journal of biomedical informatics, 40(2):150-159.

96



RNN Embeddings for Identifying Difficult to Understand Medical Words

Hanna Pylieva!, Artem Chernodub' 2, Natalia Grabar?, and Thierry Hamon*>

"Faculty of Applied Sciences, Ukrainian Catholic University, Lviv, Ukraine
{pylieva, chernodub}Qucu.edu.ua
2Grammarly, Kyiv, Ukraine
3CNRS, Univ. Lille, UMR 8163 - STL - Savoirs Textes Langage, F-59000, Lille, France
natalia.grabar@univ-1lille.fr
4LIMSI, CNRS, Université Paris-Saclay, F-91405, Orsay, France
hamon@limsi.fr
>Université Paris 13, Sorbonne Paris Cité, F-93430, Villetaneuse, France

Abstract

Patients and their families often require a bet-
ter understanding of medical information pro-
vided by doctors. We currently address this
issue by improving the identification of diffi-
cult to understand medical words. We intro-
duce novel embeddings received from RNN
- FrnnMUTE (French RNN Medical Under-
standability Text Embeddings) which allow to
reach up to 87.0 F1 score in identification
of difficult words. We also note that adding
pre-trained FastText word embeddings to the
feature set substantially improves the perfor-
mance of the model which classifies words ac-
cording to their difficulty. We study the gen-
eralizability of different models through three
cross-validation scenarios which allow test-
ing classifiers in real-world conditions: under-
standing of medical words by new users, and
classification of new unseen words by the au-
tomatic models. The RNN - FrnnMUTE em-
beddings and the categorization code are being
made available for the research.

1 Introduction

Specialized areas, such as medical area, convey
and use technical words, or terms, which are typi-
cally related to knowledge developed within these
areas. In the medical area, this specific knowledge
often corresponds to fundamental medical notions
related to disorders, procedures, treatments, and
human anatomy. For instance, technical terms like
blepharospasm (abnormal contraction or twitch of
the eyelid), alexithymia (inability to identify and
describe emotions in the self), appendicectomy
(surgical removal of the vermiform appendix from
intestine), or lombalgia (low back pain) are fre-
quently used by experts in the medical area texts.
As in any specialized areas, two main kinds of
users exist in the medical area: experts of the do-
main, i.e. medical doctors, both researchers or
practitioners; consumers of the healthcare process,
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i.e. patients and their relatives. The latter usually
do not have expert knowledge in the medical do-
main, while it is important that they understand the
purpose and issues of their healthcare process.

The existing literature provides several stud-
ies dedicated to the understanding of medical no-
tions and terms by non-expert users, and of how
the level of health literacy of patients impacts on
a successful healthcare process (McCray, 2005;
Eysenbach, 2007), as indeed it is quite common
that patients and their relatives must face technical
health documents and information. These obser-
vations provide the main motivation for our work.
Hence, we address the need of non-specialized
users in the medical domain to understand medi-
cal and health information.

In this paper, we propose to apply deep learning
techniques to improve identification of readability
and understandability of medical words by non-
expert users. In particular, we will tackle the word
categorization task and compare the performance
of classification model on different feature sets:
standard linguistic and non-linguistic features de-
scribed in section 4, features obtained using dif-
ferent deep learning approaches, and the combi-
nations of all of them. We also investigate how
different feature sets perform with three different
cross-validation settings, described in section 5.
The medical data used in this work are in French.
Three human annotators participated in the cre-
ation of the reference data (specifying the under-
standability of words).

2 Related Work

Related work is globally positioned in the text
simplification task which involves the detection of
complex contents in documents and their adapta-
tion for the target population. We are also inter-
ested in the first aspect with additional constraints:
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detection and diagnosis of technical contents in
texts from medical domain.

Traditional readability measures rely on two
main factors: the familiarity of semantic units
such as words or phrases, and the complexity
of syntax. To make these measures straightfor-
ward for applications, some simplifying assump-
tions were used. As a result, final formulas mostly
rely on the number of letters and/or of syllables
a word contains and on linear regression mod-
els (Flesch, 1948; Gunning, 1973). While such
readability measures are easy to compute, they
are based on shallow characteristics of text, ig-
noring deeper levels of text processing which are
important factors in readability, such as cohesion,
syntactic ambiguity, rhetorical organization, and
propositional density (Collins-Thompson, 2014).
Moreover, traditional readability measures were
demonstrated to be unreliable for non-traditional
documents (Si and P. Callan, 2001). As a result
of such limitations and due to the recent growth
of computational and data resources, the focus of
NLP researchers moved to computational read-
ability measurements, which rely on the use of ma-
chine learning algorithms on richer linguistic fea-
tures (Malmasi et al., 2016; Ronzano et al., 2016;
Bingel et al., 2016).

Not so much effort has been devoted to the ex-
ploitation of NLP potential in the measurement
of readability of medical texts. In the biomed-
ical domain, as well as in general language, the
readability assessment is currently approached as
a classification task. The difference is that in
the former a much smaller variety of features has
been tested: a combination of classical readabil-
ity formulas with medical terminologies (Kokki-
nakis and Toporowska Gronostaj, 2006); n-grams
of characters (Poprat et al., 2006); stylistic (Grabar
et al., 2007) or discursive (Goeuriot et al., 2008)
features; morphological features (Chmielik and
Grabar, 2011); combinations of different features
from those listed above (Zeng-Treiler et al., 2007).
Among the recent experiments dedicated to read-
ability study in the medical domain are, for exam-
ple, manual rating of medical words (Zheng et al.,
2002), automatic rating of medical words on the
basis of their presence in different vocabularies
(Borst et al., 2008), exploitation of machine learn-
ing approach with various features (Grabar et al.,
2014). The last experiment achieved up to 85.0
F-score on individual annotations.
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Due to the recent significant advance in read-
ability study in general language and relatively
slow progress with the task in the medical area,
there is a great potential of experimenting with
the machine learning-based approaches on medi-
cal texts. This fact motivated us for choosing this
kind of methodology.

3 Materials

For the experiments, we used the publicly avail-
able set of words with annotations'. The process
of words collection and annotation is briefly de-
scribed below.

3.1 Linguistic data description

The set of required biomedical terms was obtained
from the French part of Snomed International®
(Coté et al., 1993). Snomed Int contains 151,104
medical terms organized into eleven semantic axes
such as disorders and abnormalities, procedures,
chemical products, living organisms, anatomy, so-
cial status, etc. For the word understandability
study, five axes related to the main medical no-
tions were chosen: disorders, abnormalities, pro-
cedures, functions, and anatomy. These cate-
gories are assumed to be faced frequently by lay-
man. In contrast, chemical products and living or-
ganisms are excluded because they mainly corre-
spond to Latin borrowings and are typically non-
understandable by laypeople.

The 104,649 selected terms were then pro-
cessed. First, they were tokenized, POS-tagged
and lemmatized using TreeTagger (Schmid, 1994).
Then the Ilemmatization was checked with
FLEMM (Namer, 2000). After that we received
29,641 unique words. For instance, the term trisul-
fure d’hydrogéne provided three words (trisulfure,
de, hydrogene). The final dataset contains com-
pound words which contain several bases (ab-
dominoplastie (abdominoplasty), dermabrasion
(dermabrasion)), constructed words which contain
one base and at least one affix (lipoide (lipoid),
cardiaque (cardiac)), simple words which con-
tain one base, no affixes and possibly infections
when the lemmatization fails (acné (acne), frag-
ment (fragment)).

'"http://natalia.grabar.free.fr/
resources.phpf#rated

https://esante.gouv.fr/
terminologie-snomed-35vf



Annotators / Categories Catl Car2 Cat3 Total
Ol (%) 8,099 (28) 1,895(6) 19,647 (66) | 29,641
02 (%) 8,625 (29) 1,062 (4) 19,954 (67) | 29,641
03 (%) 7,529 (25) 1,431(5) 20,681 (70) | 29,641

Table 1: Number (and percentage) of words assigned to reference categories by seven annotators (O1, 02, O3).

3.2 Annotation process

The set of 29,641 unique words was annotated
by three French speakers, 25-40-year-old, without
medical training, without specific medical prob-
lems, but with the linguistic background. The an-
notators were expected to represent the average
knowledge of medical words among the popula-
tion as a whole. They were presented with a list
of terms and asked to assign each word to one of
the three categories: (Catl) I can understand the
word; (Cat2) I am not sure about the meaning of
the word; (Cat3) I cannot understand the word.
The annotators were asked not to use dictionaries
during the annotation process. The interannotator
agreement shows substantial agreement: Fleiss’
Kappa 0.735 and Cohen’s Kappa 0.736. This is
a very good result, especially when working with
linguistic data for which the agreement is usually
difficult to obtain. The annotation results are rep-
resented in Table 1.

4 Method

We aim to categorize medical words according
to whether they can be understood or not by
non-specialized people, using features obtained
with NLP tools and with deep learning meth-
ods. The manual annotations of these words de-
scribed in the previous section provide the refer-
ence data. The proposed method includes calcula-
tion of NLP features associated with the annotated
words, training machine learning models for word
classification, and evaluation of classification us-
ing cross-validation.

4.1 Feature sets

We distinguish and use two kinds of features: stan-
dard features provided by the NLP analysis of
words, and features issued from existing or specif-
ically trained word embeddings. These two types
of features are first opposed and then combined.

4.1.1 Standard NLP features

The standard NLP features include 24 linguistic
and extra-linguistic features related to general and
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specialized languages. The features are computed
automatically and can be grouped into ten classes:

e Syntactic categories. Syntactic categories
and lemmas are computed by TreeTag-
ger (Schmid, 1994) and then enriched by
FLEMM (Namer, 2000).

Presence of words in reference lexica. Two
reference lexica of the French language were
exploited: TLFi® and lexique.org*. TLFi is
a dictionary of the French language cover-
ing XIX and XX centuries. It contains al-
most 100,000 entries. lexique.org is a lexicon
created for psycholinguistic experiments. It
contains over 135,000 entries, among which
inflectional forms of verbs, adjectives and
nouns, and almost 35,000 lemmas.

Frequency of words through a non special-
ized search engine. Each word were queried
on Google to find out the frequency of the
word on the web.

Frequency of words in the medical terminol-
0gy. The frequency of words in the medical
terminology Snomed Int corresponds to the
number of different terms containing a given
word.

Number and types of semantic categories as-
sociated to words. The information on the
semantic categories of Snomed Int was ex-
ploited.

Length of words in number of their charac-
ters and syllables. For each word, the number
of its characters and syllables was computed.

o Number of bases and affixes. Each lemma
was analyzed by the morphological analyzer
Dérif (Namer and Zweigenbaum, 2004),
adapted to the treatment of medical words.
It performs the decomposition of lemmas
into bases and affixes known in its database

*http://www.atilf.fr/

*http://www.lexique.org/



and it provides also semantic explanation of
the analyzed lexemes. The morphological
decomposition information (number of af-
fixes and bases) was exploited. For instance,
hématometre (haemometer) is analyzed and
decomposed into two basis (hémato mean-
ing blood and métre meaning measure, while
myélite (myelitis) is decomposed into myél
meaning marrow and ite meaning inflamma-
tion.

Initial and final substrings of the words. Ini-
tial and final substrings of different length,
from three to five characters, were computed.

e Number and percentage of consonants, vow-
els and other characters. The number and the
percentage of consonants, vowels and other
characters (i.e., hyphen, apostrophe, comas)
was computed.

Classical readability scores. Two classical
readability measures were applied: Flesch
(Flesch, 1948) and its variant Flesch-Kincaid
(Kincaid et al., 1975). Such measures are
typically used for evaluating the difficulty
level of a text.

4.1.2 FastText word embeddings usage.

FastText word embeddings (Bojanowski et al.,
2017) is a good candidate feature for the detec-
tion of word difficulty because they are able to use
the morphological information of words and gen-
eralize over it. Since the word embeddings cap-
ture context and morphological information, we
assume that using them as features will improve
classification accuracy for our specific problem.

We note that FastText word embeddings trained
on Wikipedia and Common Crawl’ texts have an
important part of words from our dataset. Accord-
ing to our analysis, the currently published Fast-
Text® model for French contains 44.26% (13,118
out of 29,641) medical words from our dataset and
up to 56.00% (16,598 out of 29,641) lowercased
medical words from our dataset.

4.1.3 French RNN Medical
Understandability Text Embeddings
(FrnnMUTE).

According to the general functionality of RNNs,
the final hidden state aggregates the informa-

Shttp://commoncrawl.org/
Shttps://fasttext.cc
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tion about all input sequence. This idea is fre-
quently used to receive hidden representations of
sequences. Sequence-to-sequence model is a well-
known example of how this idea works in practice
(Sutskever et al., 2014). Such models consist of
two parts: an encoder is an RNN which encodes
the input sequence into a representation in hidden
space (which is also called thought vector), and a
decoder which generates a new sequence out of
the hidden representations.

We used this idea for representing words from
our dataset. To receive words representations from
an RNN, we first trained it to classify words based
on labels by one annotator (we chose O1), then for
each word we collect values of the last hidden state
of the RNN and use this vector as features during
the detection of words understandability for dif-
ferent users (or annotators). Train/test split was
70%/30% of randomly shuffled samples.

As a direct classifier, we trained a character-
level RNN using PyTorch framework’ and one
GPU Tesla K80. We lowercased all words, lem-
matized them and substituted all Unicode symbols
with their ASCII analogs. We tested several RNN
architectures and hyperparameter sets. The best
performance was reached with a model consist-
ing of two unidirectional long short-term mem-
ory (LSTM) units, each with 50 hidden units. The
dropout of the model is 0.7. The input size is 57 as
the number of unique characters in lowercased and
converted to ASCII input words. The output size is
3 as the number of classes in our data. This model
reached the best performance on the eighth epoch
with F'1 = 78.94 and accuracy = 81.21% on de-
velopment set. Using this model we received 50-
dimensional word representations which we called
FrnnMUTE (French RNN Medical Understand-
ability Text Embeddings).

5 Experiments and Results

We study the impact of adding words embeddings
as features for identifying difficult for understand-
ing words. First, we observe how FastText word
embeddings influence the quality of classification
in different cross-validation scenarios. Then, we
study how FrnnMUTE used as features impact
on classification quality in all the same cross-
validation scenarios. The quality of the classifi-
cations is evaluated using four standard macroav-
eraging (Sebastiani, 2002) measures: accuracy A,

"https://pytorch.org/



precision P, recall R and F1-measure F'.

5.1 Cross-validation scenarios

For a thorough study of generalization abilities of
the classification models, we propose to consider
three distinct cross-validation scenarios based on
different combinations of users and vocabulary in
train and test sets.

5.1.1 User-in vocabulary-out cross-validation

The cross-validation is performed on each dataset
(i.e., each user annotation) separately. We aim to
measure the ability of the classification model to
generalize class recognition on the known user and
to predict annotations for unknown words. From
the practical perspective, user-in means learning
the profile of a user. Hence, a model trained by
such scenario represents the word understanding
or knowledge of the annotator.

The experiments use (i) the standard features
only, (ii) the FastText word embeddings only and
(iii) their combination. The experiments with iso-
lated FastText word embeddings as features re-
sulted in poor F1 scores (Table 2), that can be
explained by the fact that contextual information,
which is dominant in these word embeddings, is
not enough to define the word understandability.
Adding the FastText word embeddings to the stan-
dard feature set resulted in up to 1.0 higher F1
score due to higher Precision (up to 1.8), meaning
that contextual information slightly impacts on the
understandability of a word by a given person.

5.1.2 User-out vocabulary-in cross-validation

We then learn from all the annotations of one user
and then test the model on annotations of another
user. Thereby, in such a setting, we measure the
ability of the classifier to generalize on all known
words, but for unknown users. This scenario is re-
alistic to a real-world situation: the reference an-
notations can be obtained only from a couple of
users, presumably representing the overall popu-
lation, but not from all the possible users. In this
scenario, the model learns the profile of a user and
we want to identify whether a new user has the
same profile as another user. Then it can be used
for identification of not understandable words for
the new users.

These experiments show a substantial improve-
ment of combined features in comparison to the
standard features (Table 3). When knowledge of
words understandability of one user is used to
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predict it for another user, adding the FastText
word embeddings provides up to 2.9 better F1
score. Used separately, standard features and em-
beddings show similar performance as in user-in
vocabulary-out cross-validation (Table 2). We as-
sume that there exists a robust nonlinear depen-
dency between some subsets of standard features
and subword-level components of FastText word
embeddings. Testing this hypothesis is the topic
of future work.

5.1.3 User-out vocabulary-out
cross-validation

Finally, we consider (k-1) folds of data from one
user for training and use k-th fold for testing from
the remaining user. We aim to measure the abil-
ity of the method to generalize both on unknown
users and unknown vocabulary. This experiment
should be helpful in identifying the number of
words needed for determining whether the profile
of one user is the same as profile of other users in
case the model achieves good performance.

In these experiments, FastText word embed-
dings provide approximately 0.5% higher F1 score
in case of learning on users O1 and O3 (Table 4).
When learning on user O2, embeddings decrease
F by 0.5, which means that annotations and health
literacy of user O2 are different from users O1 and
03. It seems that adding embeddings makes over-
fitting the machine learning model to the dataset.
As a result, tests on other “kind of word under-
standability” and combined features are less suc-
cessful compared to using standard features only
for learning. This may also be due to the lack of
systematicity in annotations of O2.

5.2 FrnnMUTE impact study

The FrnnMUTE embeddings were used separately
and in combination with standard features and
with FastText word embeddings for classifying
medical words with the decision tree algorithm.
To simplify the process of analyzing and compar-
ing the results of this and the previous part, we ag-
gregated the resulting F1 scores for combinations
of a feature set and cross-validation scenario over
all available users (Table 5). We observed that,
in all cross-validation scenarios, our FrnnMUTE
performs better when used separately by compari-
son with the FastText word embeddings used sepa-
rately. FrnnMUTE provides the maximal F1 score
(79.5) among user pairs versus the F1 score pro-
vided by the FastText word embeddings in user-in



Standard features +
FastText embeddings
A P R F A P R F A P R F
O1 O1 85 772 825 798 | 725 67 725 693|824 79 824 80.2
02 02| 8 789 82 80 | 735 699 735 713|819 795 819 80.3
O3 03 |85 812 855 832|749 704 749 723|859 83 859 84.2

Train Test | Standard features FastText embeddings
user user

Table 2: Experiments on user-in vocabulary-out cross-validation. The best score for a combination of quality
measure and experiment is in bold.

Standard features +
FastText embeddings

A P R F A P R F A P R F
ol 02 |81.7 786 817 80.1 | 74 703 74 712|842 82 842 828
Ol 03] 8 812 85 83 | 754 707 754 726 | 87.6 849 87.6 859
02 O |82 77 822 79.1|728 673 728 69.6 839 80.2 839 81.1
02 03 |84 811 84 83 |753 711 753 73 |86.8 835 868 84.7
03 O] | 828 774 828 79.7|727 671 727 694 | 849 813 849 824
03 02 (822 79 822 802|741 704 741 716|842 821 842 828

Train Test | Standard features FastText embeddings
user user

Table 3: Experiments on user-out vocabulary-in cross-validation.

Standard features +
FastText embeddings

A P R F A P R F A P R F
ol 02 |81.7 78.6 817 80.1|736 699 736 713|818 79.8 81.8 80.6
ol 03| 8 812 85 83 | 748 704 748 724|849 822 849 834
02 O |82 769 8.2 791|725 669 725 693 |81.7 775 81.7 1791
02 03 |8.3 81 8.3 83 |751 707 751 727|844 813 844 825
03 02 |87 713 8.7 797|725 669 725 69.2 826 789 82.6 80.2
03 03 (8.1 79 821 80.1|73.8 702 73.8 714|822 80 822 80.7

Train Test | Standard features FastText embeddings
user user

Table 4: Experiments on user-out vocabulary-out cross-validation.

user-in user-out user-out
vocabulary-out vocabulary-in vocabulary-out
uwto max wxto max uwto max
Standard features 77.7+52 834 |777+£49 844 |77.6L£49 843
FT emb 67957 751 ]67.6x£53 753 |673+£52 749
FrnnMUTE 75.1+£39 795 |771£39 824 |745+39 79.6

Standard features + FT emb 789 +51 852 |795+46 869 |77.1+46 846
Standard features + FrnnMUTE | 80.0 5.1 85.8 | 80.3 4.3 870 | 786 4.4 85.2

Standard features + FT emb
+ FrnnMUTE 799 +50 858 | 804+43 874 | 78.1+43 852

Table 5: Mean, standard deviation and maximum of F1 scores
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vocabulary-out cross-validation (75.1). Similarly,
the F1 score is higher on the user-out vocabulary-
in experiment (82.4 versus 75.3), and in the user-
out vocabulary-out experiment (79.6 versus 74.9).
The FrnnMUTE results have the smallest disper-
sion (3.8-3.9) among all considered “solo” fea-
ture sets types (4.8-5.3) when aggregated by all
available users. This means that FrnnMUTE are
more robust in generalizing information from user
to user and between different subsets of vocabu-
lary. For the user-in vocabulary-out and the user-
out vocabulary-out experiments the combination
of standard features and FrnnMUTE in almost all
cases shows the best performance among all fea-
ture sets. We can observe that the difference in F1
reaches 2.9 for some user pairs and that the max-
imum improvement achieved by combining stan-
dard features with FrnnMUTE over using standard
features only hits 5.2 in F-measure. This testifies
that FrnnMUTE helps standard linguistic and non-
linguistic features to capture word understandabil-
ity better than FastText embeddings. The fact that
the combination of all three feature sets performs
insignificantly better of even worse than standard
features with only FrnnMUTE can be explained
by the overfitting of the classification model in the
first case because the resulting feature vector has
the biggest dimensionality.

6 Conclusion

We tackle the prediction of understanding of
French medical words by using FastText word em-
beddings as features. Yet, the embeddings solely
as features are not enough for good word catego-
rization. Whereas adding FastText word embed-
dings to standard features results in a substantial
improvement of classification model performance
when generalizing them to unknown users. We
also proposed a novel type of embeddings trained
on reference data from one annotator, and called
them FrnnMUTE (French RNN Medical Under-
standability Text Embeddings). Compared with
the case of using only standard features with and
without FastText word embeddings, the combi-
nation of our FrnnMUTE with standard features
substantially improves the performance of clas-
sification model. This indicates that FrnnMUTE
capture better the specifics of medical words re-
quired for identifying their understandability by
users, than FastText word embeddings. The Frn-
nMUTE embeddings and the categorization code
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are being made publicly available for scientific
non-commercial purposes®

We have several directions for future work. Cur-
rently we use the existing word embeddings pre-
trained on Wikipedia and Web Crawl. We assume
that training words embeddings on medical data
may improve their impact on the results from cate-
gorization of medical terms. Another issue is that,
after analysis of results of the application of Fast-
Text word embeddings in a categorization task, we
assumed the existence of a robust nonlinear de-
pendency between some subsets of standard fea-
tures and subword-level components of FastText
word embeddings. We plan to test this hypothesis
in further research. Finally, while the annotations
go forward, the annotators usually show learning
progress in decoding the morphological structure
of terms and their understanding. This progress is
not taken into account in the current experiments,
and is also the topic of our future research.
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Abstract

Systematic reviews are important in evidence
based medicine, but are expensive to produce.
Automating or semi-automating the data ex-
traction of index test, target condition, and ref-
erence standard from articles has the potential
to decrease the cost of conducting systematic
reviews of diagnostic test accuracy, but rele-
vant training data is not available. We create a
distantly supervised dataset of approximately
90,000 sentences, and let two experts manu-
ally annotate a small subset of around 1,000
sentences for evaluation. We evaluate the per-
formance of BioBERT and logistic regression
for ranking the sentences, and compare the
performance for distant and direct supervision.
Our results suggest that distant supervision can
work as well as, or better than direct supervi-
sion on this problem, and that distantly trained
models can perform as well as, or better than
human annotators.

1 Background

Evidence based medicine is founded on system-
atic reviews, which synthesize all published evi-
dence addressing a given research question. By
examining multiple studies, a systematic review
can examine the variation between different stud-
ies, the discrepancies between them, as well as
look at the quality of evidence across studies in
a way that is difficult in a single trial. Since a sys-
tematic review needs to consider the entire body
of published literature, producing a systematic re-
view is expensive and labor-intensive process, of-
ten requiring months of manual work (O’Mara-
Eves et al., 2015).

To ensure that the results of a systematic re-
view are as comprehensive and unbiased as pos-
sible, their production follows a strict and sys-

105

tematic procedure. To catch and resolve disagree-
ments, all steps of the process are performed in
duplicate by at least two reviewers. There have re-
cently been examples of systematic reviews using
automation in a limited capacity (Bannach-Brown
et al., 2019; Przybyta et al., 2018; Lerner et al.,
2019), but the impact of automation on the relia-
bility of systematic reviews is not yet fully under-
stood. Automation is not part of accepted practice
in current guidelines (De Vet et al., 2008).

After a set of potentially included studies have
been identified, systematic reviewers complete a
so-called data extraction form for each study.
These forms comprise a semi-structured summary
of the studies, identifying and extracting a consis-
tent, pre-specified set of data items from abstracts
or full-text articles in a coherent format (see the
left part of Table 1 for sample exerpts). The coher-
ent format allows the data from the studies to be
synthesized qualitatively or quantitatively to ad-
dress the research question of the review.

In this study we will focus on systematic re-
views of diagnostic test accuracy (DTA), which ex-
amine the accuracy of tests and procedures for di-
agnosing medical conditions, and which have seen
little attention in previous literature on automated
data extraction. To compare and synthesize re-
sults across studies, reviewers extract diagnostic
accuracy from each study, but also determine the
index test (the specific diagnostic test or proce-
dure that is being tested), what target condition the
test seeks to diagnose, and the reference standard
(the diagnostic test or procedure that is being used
as the gold standard) (see Fig 1 for an example).
These data must be determined for each study to
know if the diagnostic accuracy in different stud-
ies can be compared.

Proceedings of the BioNLP 2019 workshop, pages 105-114
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Original Cleaned
Review: CD008892, study: Dutta 2006
Index tests: TUBEX Typhidot Index test: TUBEX
Index test:  Typhidot
Target condition and Target condition Salmgnella Typhi
reference standard(s): Ei:liirrince standard: peripheral blood
Target condition: ~ Salmonella Typhi
Target condition: ~ Typhoid fever

Reference standard:  Peripheral blood culture

Note: These are the data items corresponding to the example text in Fig. 1

Review: CD010502, study: Schwartz 1997b

Throat swab: not reported Commer-
cial name of the RADT: QuickVue In-

Index tests:

Line Strep A (Quidel) Type of RADT:

EIA

Target condition and

reference standard(s): See Schwartz 1997a

Index test:  QuickVue In-Line Strep A
Index test:  EIA
Index test:  ELISA Immunoassays

Target condition: ~ Group A streptococcus

Target condition:
Reference standard:
Reference standard:

Group A streptococcal infection
Microbial culture
Bacterial culture

Note: Neither the target condition nor the reference standard were mentioned
in the table for Schwartz 1997a, but assumed the same for all studies included
in this systematic review (they were presumably considered obvious by the au-

thors).

Table 1: Examples of raw data from three data extractions forms in unstructured format (left) and a structured
summary of the data intended for distant supervision by pattern matching (right).

of
diag-

typhoid fever is confirmed by Ciilfiife
Salmonella enterica serotype Typhi
nostic serologic tests
examined the performance of Widal test
compared it with Typhidot and
Tubex tests for diagnosis of typhoid fever Sensitiv-
ity, specificity, positive predictive value (PPV), and negative
predictive value (NPV) of the 3 serologic tests calcu-
lated using @Hlfiif€-confirmed typhoid fever cases as “true
positives”
The sensitivity, specificity, PPV, and NPV
of Typhidot and Tubex were not better than Widal test
diagnostic test for
typhoid fever

Gulfiite€ remains the method of choice.

Legend: Target condition Index Test Referencestandard

Figure 1: Examples of data items highlighted in text,
with supporting context underlined. Based on the man-
ual annotation by one expert (ML) on a study by Dutta
et al. (2006).

1.1 BERT

BERT (Bidirectional Encoder Representations
from Transformers) is a deep learning model
that is unsupervisedly pretrained on a large gen-
eral language corpus, then supervisedly fine-
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tuned on natural language processing tasks (De-
vlin et al., 2018). Despite being a general ap-
proach, with almost no task-specific modifica-
tions, BERT achieves state-of-the-art performance
across a number of natural language processing
tasks, including text classification, question an-
swering, inference, and named entity recognition.
Pretrained models like BERT can be used di-
rectly for screening automation or automated data
extraction. However, by default BERT is trained
on a general language corpus, which differs radi-
cally in word choice and grammar from the spe-
cial language found in biomedicine and related
fields (Sager et al., 1980). Pretraining on biomed-
ical corpora, rather than general corpora, has been
demonstrated to improve performance on several
biomedical natural language processing tasks (Lee
et al., 2019; Beltagy et al., 2019; Si et al., 2019).

1.2 Objectives
In this study we seek to:

1. Construct a dataset for training machine
learning models to identify and extract data
from full-text articles on diagnostic test accu-
racy. We focus on the target condition, index

test, and reference standard.

Train models to identify specific data items in
full-text articles on diagnostic test accuracy



One of the main aims of our study is to deter-
mine how such a dataset should be constructed to
allow for training well performing models. In par-
ticular, do we need directly supervised data, or can
we build reliable models with distantly supervised
data? If we do need directly supervised data, how
much is necessary?

2 Related Work

There have been attempts to extract several types
of data relevant to systematic reviews, most no-
tably extracting PICO' statements from article text
(Wallace et al., 2016; Kiritchenko et al., 2010;
Kim et al., 2011; Nye et al., 2018). Other data
items include background and study design (Kim
et al., 2011), as well as automatically performing
risk of bias assessments (Marshall et al., 2014).
There is also a recent TAC track for data extraction
in systematic reviews of environmental agents.’
Similarly, previous work by Kiritchenko et al.
(2010) aimed to extract 21 different kinds of data
from articles, including treatment name, sample
size, as well as the primary and secondary out-
come from article text. Furthermore, the key cri-
terion for extraction in a systematic review is not
the actual data, but the context it appears in. For
instance, both intervention studies and a diagnos-
tic studies have target conditions, but these refer
to different things: the intervention study seek
to treat the condition while the diagnostic study
seeks to diagnose it. As a consequence, in an in-
tervention study the inclusion criterion often men-
tions the disease, while in a diagnostic study inclu-
sion criteria may mention symptoms rather than
the actual disease. This means that a data extrac-
tion system trained on interventions may not work
as well (or at all) for systematic reviews of di-
agnostic test accuracy, even though it may seem
that the same data is extracted in both. Further-
more, unlike the data required in diagnostic re-
views, many previously considered data items are
mentioned once in articles, often using formulaic
expressions (e.g. sex, blinding, randomization).
Conventional methods for automated data ex-
traction split articles into sentences and clas-
sify these individually using conventional machine
learning methods (e.g. SvM, Naive Bayes) (Jon-
nalagadda et al., 2015), or label spans in the text

"Population, intervention, control group, and outcome.
https://tac.nist.gov/2018/SRIE/index.
html
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and classify these using sequence tagging (e.g.
CRF, LsT™M) (Nye et al., 2018).

Despite the body of previous work on automa-
tion, many data items relevant to systematic re-
views have been overlooked. A 2015 systematic
review of data extraction found 26 articles de-
scribing the attempted extraction of 52 different
data items, but almost all focused on interventions
(Jonnalagadda et al., 2015). No study considered
any data item specific to diagnostic studies, ex-
cept for general data items common to both inter-
ventions and diagnostic studies, such as age, sex,
blinding, or the generation of random allocation
sequences. The likely reason for this is that tra-
ditional data extraction systems require bespoke
training data for each particular data item to ex-
tract, which is generally only available through ex-
pensive, manual annotation by experts.

A cheaper way to construct datasets for data ex-
traction is to use distant supervision, where the
dataset is annotated per article or per review, rather
than per sentence or per text span. Supervised
methods are then trained on fuzzy annotations de-
rived heuristically for each sentence. For instance,
Wallace et al. (2016) used supervised distant su-
pervision to learn to identify PICO statements in
full text, and Marshall et al. (2014) used super-
vised distant learning with SVMs to identify risk
of bias assessments.

There is likely a trade-off between quality and
data size. All else being equal, direct supervision
is generally better than distant supervision (dis-
tantly supervised training data adds a source of
noise not present for direct supervision). At the
same time, it may not be feasible for experts to
annotate large amounts of data. Crowd-sourcing
is sometimes used as an alternative to a group of
known experts, but if a high degree of expertise
is necessary to annotate, crowd-sourcing may not
give sufficient guarantees about the expertise of
the annotators.

3 Material

We used data from a previous dataset, the LIMSI-
Cochrane dataset (Norman et al., 2018),3 to iden-
tify references included in previous systematic re-
views of diagnostic test accuracy. The LIMSI-
Cochrane dataset comprises 1,738 references to
DTA studies from 63 DTA systematic reviews. The
dataset includes the data extraction forms for each

*DOI: 10.5281/zenodo.1303259



Target Condition

pos neg total

Distant train | 11,336 63,204 74,540

test | 2,884 13,572 16,456

total | 14,220 77,776 90,996

Annotated by ML 92 889 981

Annotated by RS 48 983 1,031

Index Test

pos neg total

Distant train | 14,280 63,343 77,623

test | 2,675 13,992 16,667

total | 16,955 77,335 94,290

Annotated by ML 93 888 981

Annotated by RS 87 944 1,031
Reference Standard

pos neg total

Distant train | 7,006 56,638 63,644

test | 1,258 14,602 15,860

total | 8,264 71,240 79,504

Annotated by ML 26 955 981

Annotated by RS 26 1,005 1,031

Table 2: The number of sentences in our dataset, bro-
ken into distantly annotated training and test sets, as
well as a manually annotated subset. Distant anno-
tations for each data type were not available for all
studies, and the total number of labelled sentences are
therefore different for each data type.

study completed by the systematic review authors.

The dataset itself does not contain abstracts or
full-texts, but include identifiers in the form of
PubMed 1Ds and DOIs which can be used to re-
trieve abstracts or full-texts.

We used the reference identifiers (PMID and/or
DOI) taken from the LiMSI-Cochrane dataset to
construct a collection of PDF articles. We used
EndNote’s ‘find full text’ feature, which retrieves
PDF articles from a range of publishers.* The PDF
articles were then converted into XML format us-
ing Grobid (Lopez, 2009).

We randomly split the dataset into dedicated
training and evaluation sets, where we used 48 of
the systematic reviews as the training set, and we
kept the remaining 15 systematic reviews for eval-
uation. For each of the 15 systematic reviews in
the evaluation set, we randomly selected one arti-
cle to be annotated manually. The remaining arti-
cles in the evaluation set were not used for train-
ing, since training and testing on the same system-

*nttps://endnote.com/
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atic review is known to overestimate classification
performance (Cohen, 2008). The goal of this work
is to learn the semantics of the context, rather than
the semantics of particular terms, and these con-
texts should be consistent across reviews.

3.0.1 Distant annotation

The data forms from the systematic reviews were
intended to be read by and be useful to the human
systematic review authors. The contents are there-
fore usually semi-structured rather than structured,
and will include different kinds of data depending
on what is relevant to the systematic review (see
Table 1).

We create a dataset of distant annotations from
the LiMSI-Cochrane dataset by manually convert-
ing the semi-structured data into structured data
items, and by ensuring that these items can be
found in the corresponding article using pattern
matching (see Table 1).

We split each of the XML documents into sen-
tences using the nltk sentence splitter.’ The sen-
tences are then divided into positive and negative
depending on whether the relevant data items oc-
cur as a partial match in the sentence. Partial
matches were calculated using f-idf cosine sim-
ilarity between the data item and the sentence,
where we took the 20 top ranking sentences for
each pair of data item and article, with a sim-
ilarity score of 0.1 or higher. We chose 20 as
a target number of sentences since we felt this
was a reasonable upper limit on the number of
relevant sentences in a single article. We added
an absolute threshold of 0.1 to keep the system
from annotating obviously non-relevant sentences
(scores close to zero) when no matches could be
found in the article. For articles that have mul-
tiple data items we used the concatenation of all
data items. For example, in Table 1, the data items
for ‘Schwartz 1997b” would be: target condition:
‘Group A streptococcus; Group A streptococcal
infection’, index test: ‘QuickVue In-Line Strep A;
E1A; ELISA Immunoassays’, and reference stan-
dard ‘Microbial culture; Bacterial culture’.

We excluded all articles where the data items
were not provided in the data form (because the
reviewers did not extract this data), or where data
forms were missing from the systematic review.
Since we do not know which sentences were rel-
evant or not in these articles we did not use these

Shttps://www.nltk.org/



articles as either positive or negative data. As a
consequence the total amount of sentences differ
for the target condition, index test and reference
standard.

We repeated the matching precedure for the tar-
get condition, the index test and the reference stan-
dard, resulting in three distinct datasets.

3.0.2 Expert annotation

We randomly split the evaluation set into three sets
of five systematic reviews. Two experts (ML and
RS) on systematic reviews of diagnostic test accu-
racy manually annotated the 15 articles by high-
lighting all sentences in the text that 1) mentions
the target condition, index test, and reference stan-
dard 2) makes it clear that these are the target con-
dition, index test and reference standard, and 3)
do not simply mention these same items in an un-
related context. The annotation instructions were
written and adjusted twice to remove ambiguity,
and the reasons for disagreement were discussed
and resolved after two rounds of annotation. As a
compromise between getting more data and being
able to use the agreement between the experts as
baseline for the performance, one expert annotated
the first five studies, the second expert annotated
the next five studies, and both annotated the last
five studies.

4 Method

We construct three pipelines, one for each of the
target condition, index test, and reference stan-
dard, and we train and evaluate these separately.
We varied our experiments in three dimensions:
We tried A) two machine learning algorithms, B)
two levels of preprocessing, and C) distantly su-
pervised training data versus directly supervised
training data. The directly and distantly super-
vised models were evaluated on the same data.

4.0.1 Al: BioBERT

We here used a pointwise learning-to-rank ap-
proach, where we trained a sentence ranking
model by using BioBERT, a version of BERT pre-
trained on PubMed and PMC (Lee et al., 2019),
and fine-tuned the model by training it to regress
probability scores. This model was thus trained to
map sentences to relevance scores.

To train and evaluate, we used the default BERT
setup for the GLUE datasets,® modified to output

*https://github.com/google-research/
bert

a relevance score rather than a binary value. We
used default parameters.

4.0.2 A2: Logistic Regression

We here used a pairwise learning-to-rank ap-
proach, where we trained a logistic regression
model using stochastic gradient descent (sklearn).
As features we used 1) lowercased, #f-idf weighted
word n-grams, 2) lowercased, binary word n-
grams, 3) lowercased, #f-idf weighted, stemmed
word n-grams, 4) lowercased, stemmed, bi-
nary word n-grams, as well as i) lowercased,
tf-idf weighted character n-grams, and ii) non-
lowercased, tf-idf weighted character n-grams. We
used word n-grams up to length 3, and character n-
grams up to length 6. The first set of features is in-
tended to capture contextual information (’for the
diagnosis of ...”); the second set of features is in-
tended to capture medical technical terms, which
are often distinctive at the morpheme level (e.g.
‘ischemia’, ‘anemia’). We deliberately did not use
stop-words, since doing so would discard almost
all the contextual information. This results in a
sparse feature matrix consisting of approximately
1.8 million features for the distantly supervised ex-
periments, and approximately 300,000 features for
the directly supervised experiments.

We handled class imbalance by setting the
weight for the positive class to 80. This was previ-
ously determined to be a reasonable weight in ex-
periments on screening automation in diagnostic
test accuracy systematic reviews, a problem with
similar class imbalance.

4.0.3 B1: Raw Sentences

Here we used the sentences as they appear in the
articles.

4.0.4 B2: Sentences with UMLS Concepts

In this setup we used the Unified Medical Lan-
guage System, a large ontology of medical con-
cepts maintained by the National Library of
Medicine (Bodenreider, 2004; Lindberg et al.,
1993). We used MetaMap’ to locate concept
mentions in the sentences, and to replace these
with their corresponding UMLS semantic types.
For instance the sentence ‘Typhoid fever is a
febrile and often serious systemic illness caused
by Salmonella enterica serotype Typhi’ was trans-
formed into ‘DSYN is a FNDG and TMCO serious
DSYN caused by BACT enterica BACT".

"nttps://metamap.nlm.nih.gov/
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Target condition Index test Reference standard
Auto ML RS Auto ML RS Auto ML RS
Auto | 1.00 0.07 0.04 Auto | 1.00 0.09 0.07 Auto | 1.00 0.01 0.03
ML | 090 1.00 0.38 ML | 1.00  1.00 0.61 ML | 1.00 1.00 0.86
RS | 1.00 0.62 1.00 RS [ 093 0.70 1.00 RS | 1.00 0.40 1.00

Table 3: Agreement in terms of recall where columns are considered ground truth, e.g. annotator RS chose 62%

of ML’s annotations for the target condition.

4.0.5 C1: Directly Supervised Training

We here trained and evaluated on the articles man-
ually annotated by our two experts (ML and RS),
using leave-one-out cross-validation. In other
words, to evaluate on each of the ten articles an-
notated by each annotator we used the remaining
9 articles annotated by the same expert as training
data. This was done separately for each expert,
and the annotations from the other expert was not
used.

4.0.6 C2: Distantly Supervised Training

We here trained on the distant annotations from
the 48 systematic reviews in the training set, and
evaluated on the 15 manually annotated articles
in the evaluation set, where each annotator pro-
vided annotation data for 10 articles (with a 5 arti-
cle overlap). The articles used for evaluation were
the same as in C1.

4.1 Evaluation

Since our model output ranked sentences, rather
than a binary classification, we evaluated all ex-
periments in terms of average precision.

As a comparison, we also evaluated the aver-
age precision using the ranking given by the other
annotator. In plain language, we tried to evaluate
how useful it would have been for the expert to
highlight sentences for each other. The expert an-
notations were binary (Yes/No), rather than a rank-
ing score, so we calculated the average precision
by interpolating ties in the ranking.

5 Results

Out of the 1,738 references in the LIMSI-Cochrane
dataset, 1152 had either a PMID or DOI assigned.
EndNote was able to retrieve PDF articles for 666
of these references. A total of 90,996 sentences
were distantly labeled for target condition, 94,290
sentences were distantly labeled for index test, and
79,504 sentences were distantly labeled for refer-
ence standard. The first annotator (ML) annotated

110

981 sentences and the second annotator (RS) an-
notated 1,031 sentences (Table 2).

We present the results of our algorithm evalu-
ated on the annotations by ML in Table 4, and
evaluated on the annotations by RS in Table 5.

The ranking performance exhibited large vari-
ations. Neither BioBERT or logistic regression
were consistently better than the other, neither dis-
tant supervision or direct supervision were consis-
tently better than the other, and neither raw sen-
tence nor sentences augmented with UMLS con-
cepts were consistently better than the other. For
the target condition, the best performance was
achieved by logistic regression on raw sentences
using either distant or direct supervision, with a
maximum at 0.412 compared to human perfor-
mance at 0.376 and 0.386 respectively. For the
index test, the performance fell within the range
0.344-0.468 compared to human performance at
0.525 and 0.516 respectively. For the reference
standard, BioBERT exhibited substantially inferior
results on the reference standard compared to lo-
gistic regression, while logistic regression perfor-
mance fell within the range 0.345-0.467, com-
pared to human performance at 0.267 and 0.381
respectively.

The performance also varied between system-
atic reviews, with consistently close to perfect
performance on a few reviews (CD007394 and
CDO0008782), and consistently very low perfor-
mance on a few (CD009647 and CD010339).
These also correspond to the articles with the high-
est and lowest inter-annotator agreement. The
consensus of the two experts is that CD010339 is
not a diagnostic test accuracy study.

6 Discussion

Raw sentences worked consistently better for lo-
gistic regression on the target condition (8/8),
and worked better than UMLS concepts as a
general trend (20/24). While general concepts
could theoretically improve performance by help-



Target condition

BioBERT Logistic Regression As ranked
n pos Distant Supervised Distant Supervised by the other
Raw UmMLs Raw UMLS | Raw UMLS Raw UMLS | expert (RS)

CD007394 1 1.000  0.500 0.143 0.250 | 1.000 0.500 1.000  0.500 0.500
CD007427 14 0.228 0.267 0.500 0.588 | 0.423 0.573 0462 0.509 —
CD008054 10 0.197 0.353  0.060 0.182 | 0.167 0.118 0.170  0.148 —
CDO008782 2 1.000 1.000 0.283 0.567 | 0.500 0.417 0.500 0.583 0.700
CD008892 29 0.182 0.274 0.384 0.247 | 0.368 0439 0.290 0.333 0.338
CDO009372 29 0.110 0.117 0.461 0.543 | 0.328 0.250 0.378 0.276 —
CD010339 16 0.192 0.179 0.642 0.513 | 0.537 0432 0482 0.495 0.154
CDO010653 2 0.053 0.035 0.023 0.015 | 0.107 0.112 0.062 0.086 —
CDO011420 6 0.070 0.074 0.239 0.175 | 0.189 0.138 0.254 0.157 0.190

mean: 0.336  0.311  0.304 0.342 | 0402 0.331 0400 0.343 0.376

Index test

CD007394 2 1.000 1.000 0.643 0361 | 0.750 0.500 0.583 0.583 1.000
CD007427 17 0.354 0.225 0.580 0.568 | 0.551 0.526 0.534 0.484 —
CD008054 10 0.388 0.305 0.449 0.281 | 0.170 0.161 0.195 0.218 —
CDO008782 2 0.833 1.000 0.079 0.523 | 0.750 0.750 0.750 0.750 0.700
CD008892 34 0.342 0473 0458 0.391 | 0471 0484 0496 0.529 0.524
CD009372 8 0.269 0.351 0.194 0.225 | 0.261 0.270 0.303 0.390 —
CD010339 1 0.167 0.050 0.067 0.067 | 0.071 0.100 0.013 0.017 0.010
CDO011420 19 0.251 0342 0.284 0.218 | 0.288 0.266 0.280 0.256 0.391

mean: 0.450 0468 0.344 0.329 | 0414 0.382 0.394 0403 0.525

Reference standard

CD007394 0 n/a n/a n/a n/a n/a n/a n/a n/a n/a
CD007427 2 0.145 0.032 0.081 0.034 | 0.052 0.037 0.035 0.041 —
CDO008054 6 0.215 0.108 0.239 0.076 | 0.635 0.619 0.525 0.515 —
CD008892 13 0.112  0.097 0.152 0.154 | 0408 0.351 0.264 0.255 0.201
CDO009372 3 0.052 0.095 0.253 0414 | 0.681 0.692 0.679 0.729 —
CD010653 1 0.020 0.016 0.020 0.059 | 0.029 0.034 0.067 0.067 —
CDO011420 1 0.034 0.100 1.000 0.014 | 1.000 1.000 0.500 0.500 0.333

mean: 0.097 0.075 0.291 0.125 | 0467 0455 0345 0.351 0.267

Table 4: Average precision results for the 8 different machine learning models on the data annotated by the first
annotator (ML), compared to the performance of an independent human expert (annotator RS). The ‘Raw’ columns
denote results for models trained and evaluated on raw sentences. The ‘UMLS’ columns denote results for models
trained and evaluated on sentences where the concept mentions have been replaced with their corresponding UMLS
semantic types. The ‘n pos’ column denotes the number of positive sentences labeled by ML for each article. Rows
were omitted for which no sentences were labeled positive. In the baseline results, cells are marked ‘— if the

article was not annotated by the other expert (RS).

ing the models generalize, this may also remove
important semantic information from the sen-
tences, keeping the models from ranking accu-
rately. We also note that BioBERT already encodes
a language model (similar to word embeddings),
and concepts may therefore be unhelpful for the
model.

BioBERT performed consistently better than lo-
gistic regression on the index test when using dis-
tant supervision (4/4), but not when using direct
supervision (0/4). Logistic regression performed
consistently better than BioBERT on both the tar-
get condition and the reference standard (16/16).
On the reference standard the difference in per-
formance is substantial, with BioBERT scoring
very poorly, and logistic regression performing
much better than human performance. The reason
for BioBERT’s poor performance on the reference
standard may be due to the relative sparsity of the
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annotations for this subtask (see Table 2).

Distant supervision was consistently on par
with or better than direct supervision. The top
performing models also outperformed the human
annotators on the target condition and the refer-
ence standard, and came comparatively close on
the index test (0.468 versus 0.525 and 0.444 ver-
sus 0.516).

6.1 Limitations

We only manually annotated a small sample of the
dataset. The small size is further compounded by
problems with converting PDF to text, which may
also bias the training and evaluation in favor of ar-
ticles where the conversion works better (mainly
articles from big publishers).

The dataset was constructed from articles in-
cluded in previous systematic reviews of diagnos-
tic test accuracy. These include articles that con-



Target condition

BioBERT Logistic Regression As ranked
n pos Distant Supervised Distant Supervised by the other
Raw UmLs Raw UmMLs | Raw UMLS Raw  UMLS | expert (ML)

CD007394 2 0.750  0.500 0.667 0.040 | 0.833 0.500 1.000 0.833 0.667
CD008081 8 0.136  0.198 0213 0371 | 0.504 0380 0.394 0.388 —
CD008760 5 0.200 0.144 0283 0.163 | 0.252 0300 0.481 0.300 —
CD008782 1 1.000  1.000 0.500 1.000 | 0.500 0.333 1.000 0.500 0.500
CD008892 15 0.170 0270 0.088 0.342 | 0.440 0505 0.667 0.542 0.564
CD009647 2 0.036  0.021 0.021 0.047 | 0.020 0.026 0.012 0.023 —
CD010339 2 0.061 0.040 0.066 0.062 | 0.044 0.029 0.063 0.023 0.019
CD010360 2 0.089  0.080 0.093 0261 | 0.181 0.083 0244 0.064 —
CD010705 7 0.189  0.269 0.127 0.341 | 0382 0359 0.254 0.402 —
CD010420 4 0.036  0.044 0209 0.097 | 0210 0214 0302 0.132 0.178

mean: 0.267 0.257 0.227 0273 | 0.337 0273 0412 0.321 0.386

Index test

CD007394 2 1.000 1.000 0.417 0393 | 0.750 0.500 0.700  0.750 1.000
CD008081 11 0464 0229 0463 0454 | 0431 0412 0394 0447 —
CD008760 9 0357 0411 0512 0475 | 0457 0470 0481 0476 —
CD008782 1 1.000 1.000 1.000 0.500 | 1.000 1.000 1.000 1.000 0.500
CD008892 27 0499 0539 0717 0758 | 0.740 0.666 0.667 0.474 0.692
CD009647 1 0.053 0.015 0.020 0.006 | 0.006 0.009 0.012 0.040 —
CD010339 6 0.085 0.054 0.040 0.047 | 0.053 0.041 0.063 0.047 0.058
CD010360 8 0.154 0.119 0233 0278 | 0.222 0202 0.244 0242 —
CD010705 14 0599 0533 0292 0270 | 0352 0327 0254 0327 —
CD010420 8 0.234 0296 0.280 0.251 | 0.259 0.235 0302 0.257 0.328

mean: 0444 0420 0397 0343 | 0427 0386 0412 0.406 0.516

Reference standard

CD008081 3 0254 0.132  0.134 0.177 | 0.867 0.698 1.000  1.000 —
CD008760 2 0.101 0553 0529 0013 | 0.667 0.833 0.667 0.833 —
CD008892 11 0.110 0212 0.283 0.108 | 0.356 0.286 0.334 0.225 0.417
CD010339 1 0.012 0.010 0.029 0.009 | 0224 0.031 0.071 0.028 n/a
CD010360 1 0.200 0.037 0.111 0.038 | 0.810 0.023 0.167 0.143 —
CD010705 5 0.150 0.152 0.194 0.086 | 0.224 0.122 0.172  0.125 —
CD010420 3 0.167 0.347 0358 0.019 | 0.810 0.806 0.692 0.694 0.345

mean: 0.142 0206 0234 0.064 | 0428 0400 0443 0435 0.381

Table 5: Average precision results for the 8 different machine learning models on the data annotated by the second
annotator (RS), compared to the performance of an independent human expert (annotator ML). Abbreviations are
the same as in Table 4. In the baseline results, cells are marked ’— if the article was not annotated by the other

expert (ML).

tain diagnostic results, while not being diagnostic
test accuracy studies. Arguably, these should be
excluded from training or evaluation, and possibly
even from the dataset.

7 Conclusions

Our results suggest that distant supervision is suf-
ficient to train models to identify target condition,
index test, and reference standard in diagnostic ar-
ticles. Our results also suggest that such models
can perform on par with human annotators.

We constructed a dataset of full-text articles of
diagnostic test accuracy studies, with distant an-
notations for target condition, index test and ref-
erence standard, that can be used to train machine
learning models. We also provide a subset of the
data manually annotated by experts for evaluation.
Our dataset cannot be publicly distributed due to
copyright restrictions, but will be available upon
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request. We also plan to distribute the code for the
distant annotations and data preprocessing, as well
as the cleaned data extraction forms.

7.1 Future Work

The dataset is being updated, and we plan to in-
crease the amount of manually annotated data to
improve the statistical reliability of the experi-
ments. We also plan to let all experts annotate the
same articles to simplify the comparisons.
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Abstract

In this paper, we address the problem of au-
tomatically constructing a relevant corpus of
scientific articles about food-drug interactions.
There is a growing number of scientific pub-
lications that describe food-drug interactions
but currently building a high-coverage corpus
that can be used for information extraction
purposes is not trivial. We investigate sev-
eral methods for automating the query selec-
tion process using an expert-curated corpus of
food-drug interactions. Our experiments show
that index terms features along with a decision
tree classifier are the best approach for this
task and that feature selection approaches and
in particular gain ratio outperform frequency-
based methods for query selection.

1 Introduction

Unexpected Food-Drug Interactions (FDIs) occa-
sionally result in treatment failure, toxicity and an
increased risk of side-effects. While drug-drug in-
teractions can be investigated systematically, there
is a much larger number of possible FDIs. There-
fore, these interactions are generally discovered
and reported only after a drug is administered on
a wide scale during post-marketing surveillance.
A notable example is the discovery that grapefruit
contains bioactive furocoumarins and flavonoids
that activate or deactivate many drugs in ways that
can be life-threatening (Dahan and Altman, 2004).
This effect was first noticed accidentally during a
test for drug interactions with alcohol that used
grapefruit juice to hide the taste of ethanol.
Currently, information about FDIs is available
to medical practitioners from online databases
such as DrugBank' and compendia such as the
Stockley’s Drug Interactions (Baxter and Preston,
2010), but these resources have to be regularly

'nttps://www.drugbank.ca

115

updated to keep up with a growing body of evi-
dence from biomedical articles. Recent advances
in information extraction are a promising direction
to partially automate this work by extracting in-
formation about drug interactions. This approach
has already shown promising results in the context
of drug-drug interactions (Segura-Bedmar et al.,
2013) but in the case of FDIs, similar progress is
currently hindered by a lack of annotated corpora.
The work presented in (Jovanovik et al., 2015)
for inferring interactions between drugs and world
cuisine is based on a largely manual effort of ex-
tracting food-drug interactions from descriptions
provided in DrugBank.

Although a first corpus of MEDLINE abstracts
about FDIs called POMELO was recently made
available (Hamon et al., 2017), this corpus has a
low coverage of relevant documents for FDIs. The
authors made use of PubMed to retrieve all the
articles indexed with the Food-Drug Interactions
term from the MeSH thesaurus?, but the challenge
is that while articles annotated with Drug Interac-
tions are abundant, there is a much smaller num-
ber of documents indexed with Food-Drug Inter-
actions. A bibliographic analysis of the references
cited in the Stockley’s Drug Interactions in rela-
tion to foods shows that only 11% of these arti-
cles are indexed with the MeSH term Food-Drug
Interactions, while almost 70% of the articles are
available in MEDLINE (Bordea et al., 2018).

Constructing a high-coverage corpus of FDIs
using MeSH terms and PubMed is not trivial be-
cause there is a large number of articles that de-
scribe food interactions that were published be-
fore the introduction of the Food-Drug Interac-
tions MeSH term in the early nineties. At the same
time, MeSH terms are assigned to scientific arti-
cles based on their main topics of interest, miss-

https://www.nlm.nih.gov/mesh/
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Figure 1: Timeline of MEDLINE articles cited in Stockley 2008 and retrieved using relevant MeSH terms

ing a considerable amount of articles that briefly
mention interactions with food. Furthermore, the
POMELO corpus has an even more narrow focus
on articles related to adverse effects, therefore it
covers only 3% of the references provided in the
Stockley compendium.

Figure 1 shows a comparison of scientific ar-
ticles cited in a reference compendium (Stockley
2008), with the articles annotated with the Food-
Drug Interactions MeSH term and the Herb-Drug
Interactions MeSH term (FDI+HDI). It is worth
noticing the overall ascending trend of scientific
articles that address FDIs, showing an increased
interest in this type of interactions. This makes in-
creasingly more costly the effort to manually sum-
marise related information in specialised compen-
dia. The figure also shows the timeline of the
articles gathered in the official POMELO corpus
(POMELO Official) and a more recent retrieval re-
sult of the POMELO query (POMELO 2018).

We address these limitations by considering
several approaches for automatically selecting
queries that can be used to retrieve domain-
specific documents using an existing search en-
gine. The approach takes as input a sample set
of relevant documents that are cited in the Stock-
ley compendium. In this way, the problem of FDI
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discovery from biomedical literature is limited to
the task of interaction candidates search, that is the
task of finding documents that describe FDIs from
a large bibliographic database. We make use of a
large corpus of relevant publications to investigate
index terms used to annotate articles about FDIs
and we propose an automated method for query
selection that increases recall.
The main contributions of this work are:

e adiscriminative model for automatically con-
structing high-coverage and domain-specific
corpora for information extraction,

e an approach for automatically selecting
queries using index terms as candidates,

e an automated method to evaluate queries
based on a sample corpus.

The paper is structured as follows. We begin
by discussing several design decisions for the sub-
task of classifying documents based on relevance,
adopting a discriminative model for information
retrieval in Section 3. In Section 4, we introduce
the subtask of query selection discussing candi-
date term selection and several methods for scor-
ing queries. Section 5 describes the datasets used
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Figure 2: Workflow for automated corpus construction using a collection of sample documents and a search engine

to evaluate our approach for automatically con-
structing a corpus for FDIs and Section 6 presents
the results of an empirical evaluation. Then we
provide an overview of related work for this task
in Section 7 and we discuss a formal definition for
the problem at hand in Section 2. We conclude this
work in Section 8.

2 Problem definition

We address the problem of automatically con-
structing a domain-specific corpus by making use
of a discriminative model for information retrieval
that defines the problem of document search as a
problem of binary classification of relevance (Nal-
lapati, 2004). This allows us to automatically ex-
tract queries making use of a sample of relevant
documents and then to use an existing search en-
gine as a black box, as can be seen in Figure 2.
Sample documents provided as input are used as
positives examples to train a binary classifier that
can filter retrieved documents based on their rele-
vance.

The problem of query selection for corpora con-
struction is formally defined following the nota-
tion introduced in (Bordea et al., 2018) as follows.
Given a test collection C of size n where each doc-
ument c¢; is associated with a vector of index terms
v; of a variable size from a set V' of size n defined
as follows:

V; = {tl, ceey tk}

where ¢; is a term from a controlled vocabulary
that describes the contents of document ¢;, and k
is the number of index terms used to annotate the
document. We assume that a subset D of size m of
relevant documents known to report FDIs is also
given, where m < n. The subset of index vec-
tors associated with relevant documents is the set
V' of size m and each relevant document d; is an-
notated with a vector v’ of index terms. We also
assume that there is a fixed retrieving function S,
where S(q, d) gives the score for document d with
respect to query q.
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We define query selection as the problem of
finding a query scoring function R, that gives the
score R(D, q) for query ¢ with respect to the col-
lection of relevant documents D. A desired query
scoring function would rank higher the queries
that perform best when selecting relevant docu-
ments.

3 Document classification

In this section, we give an overview of the features
and algorithms used to classify scientific articles
based on their relevance for the task of FDI discov-
ery, proposing a supervised method to select rele-
vant documents. Classification models are trained
using relevant documents as positive examples and
irrelevant documents as negative examples.

Preprocessing. Documents are represented as
a bag of words that are normalised by replacing
numbers by the ’#° character. Additionally, other
special characters are removed and each word is
lowercased.

Word features. Word features are constructed
using 1-grams, 1-grams + 2-grams and 1-grams
+ 2-grams + 3-grams of words. Take for exam-
ple a document containing the following expres-
sion Food and drug interactions. The 1-gram fea-
tures are food, and, drug, interactions; 2-grams
features are food and, and drug, drug interactions,
3-grams are food and drug, and drug interactions.
In our task, features are constructed from words
contained in all documents.

Feature representation. To train classification
models, the dataset is transformed into a matrix of
size N x M where N is the number of documents
in the dataset and M is the number of features. For
each word feature, three types of feature represen-
tation approaches are investigated for representing
input data:

e One-hot encoding. Raw binary occurrence
(RBO) matrices. Each document d is repre-
sented as a binary feature-document occur-



rence vector Rbo [rbog, rbo1, ...rboy,| of
size M where rbo; = 1 if the feature 7 is in
the document d, O otherwise.

Term frequency. Count occurrence matri-
ces. FEach document d is represented by
a vector of counts of term-document occur-
rences T'f = [tfo,tf1,...tfm] of size M
where t f; is the number of occurrences of the
feature ¢ in the document d.

TF-IDF. Term frequency-inverse document
frequency. Each document d is represented
by a vector of products of term frequency
(TF) and inverse document frequency (IDF).

Index terms features. There is a large num-
ber of infrequent index terms that are used to an-
notate a small number of training documents. To
reduce the feature space, we consider as features
only index terms that are used to annotate a mini-
mum number of documents. Additionally, we take
into account the IDF of each index term in the full
collection, that is the number of documents that
are annotated with an index term.

Generalised index terms. Index terms are
provided from a vocabulary that is hierarchically
structured. We exploit this hierarchy to identify
terms related to foods and drugs and we introduce
three features called Foods, Drugs, and Foods and
Drugs that identify documents annotated with one
or both types of concepts of interest for our do-
main. Table 1 gives several examples of nodes
from the MeSH hierarchy that are useful for iden-
tifying food and drug related concepts.

Classification algorithms. We compare the
performance of five classification algorithms with
default parameters provided by Scikit-Learn?: (1)
a decision tree classifier (DTree), (2) alinear SVM
classifier (LSVC), (3) a multinomial Naive Bayes
classifier (MNB), (4) a logistic regression classi-
fier (LogReg), and (5) a RandomForest classifier
(RFO).

4 Query selection

In this section, we discuss the query selection ap-
proach presenting first several methods for select-
ing candidate terms and then proposing different
approaches for scoring candidate terms to select
the best queries for automatically constructing a
domain-specific corpus.

*http://scikit-learn.org/stable/
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Food concepts Node Drug concepts Node
Plants BO1.650 | Pharmacologic | pyy5 5
actions
Food and 702 Pharmace}ltlcal D26
beverages preparations
Diet, foqq, G07.203 Heterocyclic D03
and nutrition compounds
Fungi Bo1300 | Polyeyclic D04
compounds
Nutrition E02.642 Inorg;amc Do1
therapy chemicals
Carbohydrates D09 Orggnlc D02
chemicals
Plant Amino acids,
AlS8 peptides, D12
structures .
and proteins

Table 1: Nodes from the MeSH hierarchy used to iden-
tify food and drug related index terms

4.1 Candidate terms for query selection

A first step in automatically selecting queries for
constructing a domain-specific corpus is to iden-
tify candidate terms that are likely to describe
and retrieve relevant documents for the given do-
main. In our experiments, we consider as can-
didate queries single terms but more complex
queries that combine multiple index terms can also
be envisaged.

Index terms. Scientific articles are often an-
notated with high quality index terms from a con-
trolled vocabulary that can be used as queries to
retrieve relevant documents. The controlled vo-
cabulary typically provides in addition hierarchi-
cal relations between terms that could be further
used to identify more general or abstract concepts.
One of the limitations of this approach is that in-
dex terms summarise the main topics of an article
but might miss some of the more fine-grained in-
formation.

Document n-grams. All the sequences of
words from a document could be considered as
candidate terms for query selection but compared
to index terms, this approach is more noisy and
increases the ambiguity of terms.

Background knowledge. There are several
sources of background knowledge that can be con-
sidered to identify terms of interest to retrieve doc-
uments that describe FDIs. Queries that men-
tion drugs and a food name are likely to retrieve
relevant documents for our domain. There are
multiple vocabularies and ontologies that partially
cover the food domain from different perspec-
tives, but currently the most complete list of foods



can be found by exploiting the DBpedia* cate-
gory structure. DBpedia entities linked to the
Foods category with the properties skos:broader
and dct:subject of are considered as candidate
food terms. Further filtering is required because
categories are not necessarily used to identify the
type of a DBpedia entity but rather a more loosely
defined relatedness relation that often leads to se-
mantic drift when iteratively exploring narrower
categories.

Entities are filtered based on their RDF type,
based on words but also by excluding categories
that are related to foods but are not of interest for
FDIs, as can be seen in Table 2. This table is not
meant to give an exhaustive list of filters but just a
few illustrative examples. We use leaf categories
to refer to categories that are taken into considera-
tion as candidate terms but that are not further ex-
plored to identify more narrow terms. We identi-
fied 15,686 foods from DBpedia and we evaluated
the precision of a random sample that is 88%. The
recall of this approach was also estimated using a
list of 57 foods mentioned in the Stockley 2008
compendium and is 65%.

This is because some of the foods such as
green tea or tonic water can only be found in
broader DBpedia categories such as Food and
drink, Drinks or Diets, which are more noisy and
hence more difficult to filter by hand. The rel-
atively low recall is also due to name variations
(e.g., edible clay vs. medicinal clay in DBpe-
dia), to missing food categories in DBpedia (e.g.,
xanthine-containing beverages and tyramine-rich
foods), and to errors in the RDF types assigned
by DBpedia (e.g., Brussels sprouts® have the type
Person).

4.2 Query selection approaches

We consider two types of scoring functions, first
based on simple frequency counts of index terms
and a second type of scoring functions inspired
by existing approaches for feature selection used
in supervised classification. The most basic query
scoring function is frequency, denoted as the count
c(V',q) of query ¢ with respect to the set V' of
index vectors associated with relevant documents.
The TF-IDF scoring function ¢fidf(V',V,q) of
query g with respect to the set of index vectors
associated with relevant documents V' discrimi-
*nttps://wiki.dbpedia.org/

SBrussels sprouts: http://dbpedia.org/page/
Brussels_sprout
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RDF types Words Categories Leaf
categories
. Alcoholic
Book bakeries drink brands Beer
Building books Carnivory Ducks
Company campaigns Cherry Geese
blossom
Location disease Degoratlve Onions
fruits and
seeds
Organisation history Forages Quails
Person people Halophiles Rubus
Place pizzerias Swans
Restaurant science Whisky
Software vineyards Wine

Table 2: Filters used for selecting candidate foods un-
der the DBpedia Foods category

nated against the full set of index terms V is de-
fined as:

tfidf(V',V,q) = c(V',q)/In(c(V, q))

For the second category of scoring functions,
we consider a binary classifier that distinguishes
between relevant documents D and an equal num-
ber m of randomly selected documents from the
test collection C'. Assuming that the size of the test
collection is much larger than the number of doc-
uments known to be relevant, there is a high prob-
ability that randomly selected documents are irrel-
evant. The first scoring function is the information
gain that measures the decrease in entropy when
the feature is given vs. absent (Forman, 2003) and
is defined as follows:

InfoGain(Class,t) = H(Class)—H(Class|t)

where the entropy H of a class with two possible
values (i.e., relevant pos and irrelevant neg) is de-
fined based on their probability p as:

H(Class) = —p(pos) x log(p(pos))
— p(neg) * log(p(neg))

The gain ratio is further defined as the informa-
tion gain divided by the entropy of the term ¢:

GainR(Class,t) = InfoGain(Class,t)/H (t)

Finally, we also consider the Pearson’s correla-
tion as a query scoring function for the same bi-
nary classifier.

5 Experimental setting

The corpus used in our experiments is manually
constructed through a bibliographic analysis of the



094

093

Algo
—&— DTres
-#- L5VC
@& LogReg
=~ MNB
= RFC

0.92

F1

0.91

0.90

0.89

0.88 .

countlcountZcount3 rbol rbo2 rbo3 thdfl thdf2 thdf3
Vectorizer

(a) Results on Dataset for Experiment 1
0.94

093

0.92

F1

091 —h

.. i
— S
—=

0.90

0.89

0.88

0.94

0.93

0.92 * —e— DTree

F1

.91 . e
X

, ~ 4

A )
e X _,(.-,- \"‘q Y
— VAR

- .‘,)8-.__‘_;. '\l(' y O, !

S S S

y I

¥ %

countlcountZcount3 rbol rbo2 rbo3 thdfl thdf2 thdf3
Vectorizer

(b) Results on Dataset for Experiment 2

Algo
—8— [Tree
-#- LSVC
PR “m -m- LogReg
FAAN =4~ MNB
;

\:1"‘——- L " -+ mC
-\_\ 7 “'.“

b4 \'\_
e

~

countlcount2count3 rbel rbo2 rbe3 tfidfl thdf2 thdf3

Vectorizer
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Figure 3: Results of 10-fold cross-validation obtained on each dataset with different classifiers (i.e., decision tree
(DTree), linear SVM (LSVC), multinomial Naive Bayes (MNB), logistic regression (LogReg), and RandomForest
(RFC)) and vectorizers (i.e., term frequency (count), raw binary occurrence (rbo), and tfidf)

references provided in the Stockley compendium
on drug interactions in relation to food. These are
considered as positives examples that are used to
train a discriminative classifier. The problem of
finding negative examples is more challenging be-
cause of the problem of unbalanced data and be-
cause we aim to train a classifier that is sensitive
enough to distinguish between scientific articles
that are closely related in topic (i.e., published in
the same journals) but that do not describe FDIs.

We manually identify references from pages
listed in the index under individual foodstuffs and
Foods, for a total of 912 references and 460 ref-
erences, respectively. Using the title and the
year of each reference, we retrieve 802 unique
PubMed identifiers for references that are avail-
able in MEDLINE. In our experiments, we make
use of corpora built from MEDLINE abstracts
published before 2008 since the version of the
Stockley compendium that is available to us was
published at this date.

Starting from this collection, several subsets of
abstracts are constructed as follows:

(i) references cited in Stockley 2008 (subset
Stockley2008),

(i) results of Food-Drug Interaction and Herb-

Drug Interaction MeSH term queries (subset FDI-
HDI),

(iii) results of the queries drug and [food name]
where food name is one of the 15,686 food names
collected from DBpedia as described in Subsec-
tion 4.1 (subset DRUGFOOD),

(iv) all the MEDLINE abstracts published be-
fore 2008 (subset MEDLINE2008).

From the first and third subsets, we analyse
the list of journals where the articles have been
published and all the abstracts published in those
journals. In that respect, we have two addi-
tional abstract subsets jrnlAbstracts() from Stock-
ley2008 and jrnlAbstracts() from DRUGFOOD re-
spectively. In our experiments, the set of posi-
tive abstracts is the union of Stockley’s references
with the results of the FDI-HDI queries. Table 3
presents the size of the subsets.

The problem of constructing a domain-specific
corpus for FDIs is characterised by unbalanced
training sets with the non-relevant class represent-
ing a large portion of all the examples, while the
relevant class has only a small percent of the ex-
amples. Dealing with unbalanced class distribu-
tions is inherently challenging for discriminative
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| Abstracts | Jrnls | jrnlAbstracts()

Stockley2008 895 339 3,344,842
FDI-HDI 3593
DRUGFOOD 309,327 7421 23,383,538
MEDLINE2008 | 16,733,485

Table 3: Overview of different corpora used in our ex-
periments and their size in number of documents

algorithms resulting in trivial classifiers that com-
pletely ignore the minority class. We deal with
the problem of unbalanced data by under-sampling
the majority class such that the training exam-
ples in both classes are equal. We define three
sets of 4,500 randomly sampled abstracts as neg-
ative training examples that successively contain
an increasing number of restrictions based on doc-
ument relevance, publication venue and year of
publication:

Experiment 1: abstracts in jrnlAbstracts()
from DRUGFOOD subset that are not cited in
Stockley, FDI-HDI and DRUGFOOD abstracts;

Experiment 2: abstracts in jrulAbstracts()
from DRUGFOOD subset that are not cited
in Stockley, FDI-HDI and jrnlAbstracts() from
Stockley2008 abstracts;

Experiment 3: MEDLINE abstracts published
before 2008 in jrnlAbstracts() from DRUGFOOD
subset which are not cited in Stockley, FDI-
HDI, jrnlAbstracts() from Stockley2008 and jrn-
[Abstracts() from DRUGFOOD abstracts.

6 Results

In this section, we give an overview of the results
obtained under different settings. We begin by dis-
cussing the results obtained for document classifi-
cation and we continue with a discussion of the
results obtained for the subtask of query selection.
In both cases, the classical measures of precision,
recall and F-score are used, but in the case of query
selection, we adapt these measures to reflect our
interest in discovering unseen documents.

6.1 Document classification evaluation

For the purpose of selecting relevant documents
regarding food-drug interactions, we evaluate sev-
eral configurations to construct an efficient classi-
fication model. Three sets of experiments are de-
signed around the three training datasets described
in the previous section. For each case, we eval-
uate the models using average of Precision (P),
Recall (R) and F1-score (F1) using 10-fold cross-
validation. Figure 3 shows the cross-validation re-
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sults for different word-based features described
in Section 3. The best results in terms of F1-
score are obtained across all datasets for TF-IDF
features with an SVM classifier. TF-IDF of uni-
gram features combined with SVM classifier pro-
duce the best Fl-score on all datasets. Focusing
on these configurations, results are detailed in Ta-
ble 4 where we can notice that the recall is higher
for the third dataset. The best F1-score presents a
low standard deviation, which shows that the ob-
tained model is relatively stable. We conclude that
results are better on datasets that use a more re-
strictive filter for selecting the negative examples
(Experiment 3). This demonstrates that the ran-
dom sampling approach for the majority class can
benefit from using a more informed strategy than
selecting documents from the full collection.

Exp. | Precision ‘ Recall ‘ F1-score + Std

1 0.962 0.921 | 0.941 £0.010
2 0.965 0.922 | 0.943 £+ 0.007
3 0.964 0.928 | 0.946* + 0.004

Table 4: Results of 10-fold cross-validation on the three
datasets using an SVM classifier and 1-gram TF-IDF
features. The best result is marked with a star

The next set of experiments is focused on eval-
uating the performance of features based on index
terms as can be seen in Table 5. All the index
terms that are used to annotate at least 10 docu-
ments from our collection are considered as fea-
tures, ignoring the less frequent index terms. In
general, the results are comparable or better than
the best results using word features in terms of F1-
score. In the case of index terms features, the best
results are obtained for the decision tree classifier
that outperforms the linear SVM classifier on all
three datasets. The same conclusion can be drawn
from these experiments in relation to the random
sampling approach as the best results are obtained
again for the third experiment.

6.2 Query selection evaluation

The challenge for evaluating queries is that it is
preferable to rely on the training examples alone
for evaluation. But each selected query will re-
trieve documents that might be relevant but that
are not contained in the provided dataset. To ad-
dress this issue, we use the best performing classi-
fication approach described in the previous section
to predict the relevance of retrieved documents in-
stead of computing precision based on the docu-



Exp. | Algorithm | Precision | Recall | Fl-score

DTree 0.963 0.961 0.962
LSvC 0.947 0.942 0.944
1 LogReg 0.960 0.954 0.957
MNB 0.941 0.941 0.941
RFC 0.959 0.955 0.957
DTree 0.962 0.958 0.960
LSvC 0.954 0.950 0.952
2 LogReg 0.964 0.959 0.961
MNB 0.944 0.943 0.943
RFC 0.963 0.960 0.961

DTree 0.967* 0.965* | 0.966*
LSVC 0.959 0.956 0.957
3 LogReg 0.965 0.961 0.963
MNB 0.946 0.946 0.946
RFC 0.963 0.961 0.962

Table 5: Results of 10-fold cross-validation using dif-
ferent classifiers: decision tree (DTree), linear SVM
(LSVC), multinomial Naive Bayes (MNB), logistic re-
gression (LogReg), and RandomForest (RFC) with in-
dex terms features. The overall best results are marked
with a star

ments known to be relevant alone. Our assump-
tion is that the high performance achieved by the
classifier allows us to compute a reliable estimate
of precision. Although not perfect, this evalua-
tion strategy allows us to avoid the need for further
manual annotation or relevant documents. Recall
is calculated for a limited number of retrieved doc-
uments as some of the MeSH index terms such as
Humans and Animals are broad enough to be used
for annotating most of the documents in the test
collection.

Word-based query candidates are not further
considered at this stage because the best classifica-
tion performance is achieved for 1-gram features
which are deemed to be too ambiguous for our
purposes. Table 6 gives an overview of the top 30
1-gram features selected using the SVM classifier.
Several names of drugs such as aminophylline,
cyclosporine, and ephedrine that are known to
have interactions with foods are among the high-
est ranked features. Foods such as caffeine, cof-
fee, cola and grapefruit are also known for their
high potential of interactions with drugs. Among
these features, names of plants with drug interac-
tions are present including biloba and kava. Al-
though interesting on their own, we conclude that
these features are too generic to be used as queries
to extract articles about FDIs without further com-
bining them with other features or index terms.

On the other hand, index term candidates are
much more precise, including many terms that
refer to food-drug interaction mechanisms such

absorption cyclosporine | interaction
alcohol diet kava
aminophylline | drug lithium
anticoagulation | effects medication
biloba ephedrine milk
bioavailability | ergotism monograph
cafteine food nutrition

cheese grapefruit oral

coffee herb pharmacokinetic
cola ingestion phytotherapy

Table 6: Top 30 1-gram features selected using the
SVM classifier

as Biological Availability and Cytochrome P-450
CYP3A. Also included in this list are chemi-
cal compounds such as Flavanones and Furo-
coumarins that are contained in certain foods such
as grapefruit and that interact with many drugs.

Table 7 gives an overview of the results obtained
by each scoring function discussed in the previous
section. Performance is computed for the top 20
ranked queries for each method. All the methods
score high the Food-Drug interactions MeSH term
but we remove this term from the results because
it was used to construct the FDIs corpus. Overall,
the best performance is obtained by the Gain ratio
scoring function. Selected queries using this ap-
proach include: Biological Availability, Drug In-
teractions, and Intestinal Absorption. Gain ratio
outperforms other approaches because it penalizes
high frequency terms that are too broad, such as
Adult, Aged, and Female.

Scoring Predicted Recall Predicted
function P@100 @16k F1-score
Frequency 0.2020  0.0032  0.0584
TF-IDF 0.2590  0.0084  0.0784
Info gain 0.2755  0.0084  0.0812
Gain ratio 0.3755 0.0557 0.0970
Correlation 0.2590 0.0081 0.0770

Table 7: Scoring functions evaluated for the top 20
MeSH terms using predicted precision at top 100, re-
call at top 16k and the combined predicted F1-score

7 Related work

Hand-crafted queries based on MeSH terms are
often used for retrieving documents related to ad-
verse drug effects (Gurulingappa et al., 2012), but
there is a much smaller number of documents
available for specific types of adverse effects such
as FDIs and herb-drug interactions. The prob-
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lem of building queries for finding documents re-
lated to drug interactions has been recently tack-
led for herb-drug interactions (Lin et al., 2016).
This work addresses a less challenging usage
scenario where users have in mind a pair of
herbs and drugs and are interested in finding ev-
idences of interaction. Queries are manually con-
structed by a domain expert using MeSH syn-
onyms for herbs and drugs together with the fol-
lowing MeSH qualifiers: adverse effects, pharma-
cokinetics, and chemistry. Two additional heuris-
tics rank higher retrieved articles that are anno-
tated with the MeSH terms Drug Interactions and
Plant Extracts/pharmacology. Another limitation
of this work is the size of the evaluation dataset
that is based on a single review paper (Izzo and
Ernst, 2009) that provides about 100 references.
In contrast, we propose an automated approach for
query selection and we make use of a considerably
larger dataset of relevant publications for training
and evaluation.

The food-drug interaction discovery task pro-
posed here is similar in setting with the subtask
on prior art candidates search from the intellec-
tual property domain (Piroi et al., 2011). In the
CLEF-IP datasets, topics are constructed using a
patent application and the task is to identify pre-
viously published patents that potentially invali-
date this application. Keyphrase extraction ap-
proaches were successfully applied to generate
queries from patent applications (Lopez and Ro-
mary, 2010; Verma and Varma, 2011). The input is
much larger for our task, that is a corpus of scien-
tific articles describing FDIs manually annotated
with index terms from the MeSH thesaurus. A
main difference between our work and the CLEF-
IP task is that we mainly focus on evaluating dif-
ferent methods for query selection by relying on
the PubMed search engine. This makes our task
more similar to the term extraction task (Aubin
and Hamon, 2006), as we aim to identify relevant
terms for a broad domain rather than for a specific
document, as done in keyphrase extraction.

The dataset used in (Jovanovik et al., 2015) to
infer interactions between drugs and world cuisine
is based on textual information from DrugBank
about food-drug interactions and optimum drug
intake time with respect to food. But this informa-
tion was manually extracted and structured. The
most closely related work to ours is (Bordea et al.,
2018) where the authors propose an approach for
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query selection based on index terms. We extend
this work by considering multiple types of classifi-
cation algorithms and by analysing different query
candidates beyond index terms.

8 Conclusion and future work

In this paper, we introduced a large dataset of
articles that describe food-drug interactions an-
notated with index terms to investigate an ap-
proach for query selection that allows us to dis-
cover other food-drug interactions using an exist-
ing search engine. We investigated different strate-
gies for addressing the problem of unbalanced data
and we showed that a more informed approach
that takes into consideration publication venue and
year gives better results than a naive approach
for random sampling. We proposed an auto-
matic evaluation of retrieved results using a high-
performance classifier and we showed that feature
selection approaches outperform frequency-based
approaches for this task, with an approach based
on gain ratio achieving the best results in terms of
predicted F1-score.

In our experiments mainly focused on queries
constructed using a single index term, therefore a
first direction for future work is to investigate more
complex queries that combine multiple terms. The
number of queries that have to be evaluated would
increase considerably especially for combinations
with word-based features. Another improvement
would be to compare our results with keyphrase
extraction approaches instead of analysing all the
n-grams and to generate queries using background
knowledge about drugs and foods. Finally, the
datasets proposed here are based on an older ver-
sion of the Stockley compendium from 2008. The
results presented in this work could be more rele-
vant if a more recent version is considered as this
is a highly dynamic field of research.
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Abstract

Verbs play a fundamental role in many biomed-
ical tasks and applications such as relation and
event extraction. We hypothesize that per-
formance on many downstream tasks can be
improved by aligning the input pretrained em-
beddings according to semantic verb classes.
In this work, we show that by using semantic
clusters for verbs, a large lexicon of verb
classes derived from biomedical literature, we
are able to improve the performance of com-
mon pretrained embeddings in downstream
tasks by retrofitting them to verb classes. We
present a simple and computationally efficient
approach using a widely-available ‘“off-the-
shelf” retrofitting algorithm to align pretrained
embeddings according to semantic verb clus-
ters. We achieve state-of-the-art results on text
classification and relation extraction tasks.

1 Introduction

Core tasks in biomedical natural language process-
ing (BioNLP) such as relation and event extraction,
text classification, syntactic and semantic parsing,
natural language inference, and entailment can
all benefit from rich computational lexicons
containing information about the behaviour and
meaning of words in biomedical texts. Verbs are
especially important in many of these tasks (Cohen
et al., 2008); for example, describing protein—
protein interactions in biomedical text can often
rely on a wide range of verbs, such as “bind,”
“activate,” “carry,” “facilitate,” “interact,” efc. in
order to determine the specific type of interaction.

Lexical semantic classes for verbs can be used to
abstract away from individual words, or to build a
lexical structure (taxonomy) which predicts much
of the behaviour of a new word by associating it
with an appropriate class (Levin, 1993; Kipper
et al., 2008). For example, the verbs “assess,’
“evaluate,” “estimate,” “explore,” and ‘“‘analyze”

99

belong to the class examine, while the verbs
“utilize,” “employ,” and “exploit” belong to the
class use. In addition to simple synonyms of verbs,
semantic classes capture similarity in their use and
behaviour in text by analysing their contexts (Levin,
1993).

2

In the past, lexical verb classes have been
successfully shown to improve the performance
classifiers in a variety of tasks and down stream
applications in the biomedical domain; such
as relation extraction (Sharma et al.,, 2010),
biomedical fact extraction (Rupp et al., 2010),
text classification for cancer (Baker et al., 2015),
biomedical discourse analysis (Cox et al., 2017),
and biomedical information retrieval (Mahalak-
shmi, 2015).

Lexical classes are useful for their ability to
capture generalizations about a range of linguistic
properties (Kipper et al., 2000); our hypothesis is
therefore that by retrofitting embedded word repre-
sentations to semantic verb classes, semantically-
similar verbs (i.e. member verbs within the same
lexical class) like “suppress” and “inhibit” will be
pulled together in vector space, whereas verbs like
“collect” and “examine” will not. Consequently,
this allows NLP systems to generalize away from
individual verbs, alleviating the data sparseness
problem of representing each verb in the corpus
individually.

Retrofitting is a graph-based learning technique
for using lexical relational resources to obtain
higher quality semantic vectors (Faruqui et al.,
2015). It is applied as a post-processing step by
running belief propagation on a graph constructed
from lexicon-derived relational information to
update word vectors. It can be applied to any
pretrained word embedding vectors. The intuition
behind retrofitting is to encourage the retrofitted
vectors to be similar to the vectors of related word
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types and similar to their original distributional
representations.

Using a standard “off-the-shelf” retrofitting
algorithm, we apply the idea of retrofitting to
verb clusters to two sets of widely-used pretrained
embedding vectors in BioNLP (those by Pyysalo
et al. (2013a) and by Chiu et al. (2016)) to
obtain improved embeddings. We show that
by doing nothing more than using this simple
approach, we achieve state-of-the-art results on
two text classification tasks (both tasks evaluated
on document and sentence level classification),
and a relation extraction task. We make our
retrofitted embeddings freely available to the
BioNLP community along with our code.!

The main contribution of this work is to be the
first of its kind to apply verb-based retrofitting in
the biomedical domain. Retrofitting has thus far
only been applied for aligning vectors to Medical
Subject Headings (MeSH) (Yu et al., 2016), and
been validated only in an extrinsic setting. We
show that with very little effort, we can achieve
state-of-the art results on various downstream tasks
in a range of biomedical subdomains.

This paper will first describe relevant work on
retrofitting to lexical resources in BioNLP; we
then briefly give an overview of two verb cluster
and lexicons that we use in our methodology, and
then our task-based evaluation. We end with a
discussion of the evaluation results.

2 Related work

Lexical resources can be used to enrich represen-
tation models by providing them other sources of
linguistics information beyond the distributional
statistics obtained from corpora. In recent literature,
various methods to leverage knowledge available
in human- and automatically-constructed lexical
resources have been proposed.

One such method involves modifying the ob-
jectives in the original representation learning
procedures so that they can jointly learn both dis-
tributional and lexical information—for example,
Yu and Dredze (2014) modify the CBOW objective
function by introducing semantic constraints as ob-
tained from the paraphrase database (Ganitkevitch
et al., 2013) to train word representations which
focus on word similarity over word relatedness.

'Our retrofitted embeddings and code are
released under an open license and can be found
here: https://github.com/cambridgeltl/
retrofitted-bio-embeddings

Another class of methods incorporates lexical
information into the vector representations as a
post-processing procedure. The method fine-tunes
the pretrained word vectors to satisfy linguistic
constraints from the external resources. The
method can be applied to any off-the-shelf models
without requiring large corpora for (re-)training
as the joint-learning models do. Among these
methods, retrofitting (Faruqui et al., 2015) is widely
used.

Given any (pretrained) vector-space representa-
tions, the goal of retrofitting is to bring closer words
which are connected via a relation (e.g. synonyms)
in a given semantic network or lexical resource (i.e.
linguistic constraints). For example, Yu et al. (2016,
2017) retrofit word vector spaces of MeSH terms
by using additional linkage information from the
UMNSRS hierarchy to improve the representations
of biomedical concepts. Building on retrofitting,
Lengerich et al. (2018) generalize retrofitting meth-
ods by explicitly modelling individual linguistic
constraints that are commonly found in health
and clinical-related lexicons (e.g. causal-relations
between diseases and drugs).

In theory, the joint-learning models could be
as effective (or better) as those produced by fine-
tuning distributional vectors. However, the perfor-
mance of joint-learning models has not surpassed
that of fine-tuning methods.> Furthermore, the
joint-learning objectives are usually model-specific
and are tailored to a particular model, making it
difficult to use them with other methods. In this
work, we will use retrofitting to incorporate our
lexical features into the word representations.

3 Verb clusters

In this work, we investigate retrofitting popular
word embeddings to two publicly available?
lexicons for verb clusters. The first is composed
of 192 relatively frequent verbs from a corpus
of 2230 biomedical journal articles which have
been hierarchically classified into three levels: 16,
34, and 50 verb classes. The three levels reflect
different granularity in the semantics of the verb
classes as illustrated in Figure 1. These clusters
were annotated by 4 domain experts and 2 linguists,
were used to create the gold standard (Korhonen

2The SimLex-999 home page (www.cl.cam.ac.uk/
~fh295/simlex.html) lists state-of-the-art performance
models, none of which have learned representations jointly

3https://github.com/cambridgeltl/
bio-verbnet
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Level 2

34 classes

Level 1

16 classes

Level 3

50 classes

Figure 1: Examples of the verb classes introduced by Korhonen et al. (2006).

et al., 2006). We will refer to this lexicon for the
remainder of this paper as the annotated clusters.

Chiu et al. (2019) developed a methodology
to further extended the annotated clusters auto-
matically using text from PubMed abstracts and
full articles with the goal of facilitating the future
creation of a BioVerbNet resource, a specialized
resource similar to VerbNet (Schuler, 2005). We
will refer to this lexicon for the remainder of this
paper as the expanded clusters.

Chiu et al. (2019) use a two-step method.
In the first step, the best contexts for learning
biomedical verb representations are identified
using a model based on skip-gram with negative
sampling (SGNS). It involves first creating a
context configuration space based on dependency
relations between words, followed by applying
an adapted beam search algorithm to search
this space for the class-specific contexts, and
finally using these contexts to create class-specific
representations.

In the second step, the optimized representation
is used to provide word features for building a verb
classification. This is obtained by expanding the
verbs in the annotated clusters, where the candidate
verbs are selected from BioSimVerb (Chiu et al.,
2018) based on their frequent occurrence in
biomedical journals across 120 subdomains of
biomedicine. A Nearest Centroid classifier is
then used to connect the new candidates to an
appropriate class. The resulting classification
provides 1149 verbs assigned to the 50 classes
in the original annotated clusters. For each
verb, the expanded clusters lists the most frequent
dependency contexts that reflect their syntactic
behaviour along with example sentences.

For the rest of the work, we will investigate the
use of both the annotated and expanded clusters

4 Methodology

We apply retrofitting to our default pretrained
embeddings* The goal is to change the vector-
space of the pretrained word embeddings to better
capture the semantics represented by the verb
classes in both the annotated and expanded clusters.
These verb classes provide different levels of
generalization to support various tasks, from the
coarse-grained level of 16 classes to a fine-grained
one of 50 classes.

We base our retrofitting method on that proposed
by Faruqui et al. (2015). Given any pretrained
vector-space representation, the main idea of
retrofitting is to pull words which are connected
in relation to the provided semantic lexicon closer
together in the vector space. The main objective
function to minimize in the retrofitting model is
expressed as

(a

where |V| represents the size of the vocabulary, V;
and V; corresponds to word vectors in a pretrained

4

+(_Z Bij |V —VJH) 1)

=1 iJ)es

representation, and A;[represents the output word
vector. S is the input lexicon represented as a set of
linguistic constraints—in our case, they are pairs
of word indices, denoting the pairwise relations
between member verbs in each class. For example,

4For our default embeddings, we use the embeddings by

Chiu et al. (2016) for our text classification tasks and Pyysalo
et al. (2013a) for relation extraction.
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Number of verb pairs

Annotated clusters Expanded clusters

16-classes 1,774 96,998
34-classes 638 54,063
50-classes 376 50,104

Table 1: Linguistic constraint counts under each
class as obtained from the Korhonen’s resource and
our automatically-created lexicon.

a pair (i, ) in S implies that the ith and jth words
in the vocabulary V belong to the same verb class.
The values of «; and f;; are predefined and
control the relative strength of associations between
members. We follow the default settings for these
values as stated in the authors’ work by setting
a =1 and B = 0.05 in all of the experiments.
To minimize the objective function for a set of
starting vectors ¥ and produce retrofitted vectors 7,
we run stochastic gradient descent (SGD) for 20
epochs. An implementation of this algorithm has
been published online by the authors;> we used this
implementation in the present work.

Table 1 shows the linguistic constraint counts
under each class as derived from the two lexicons.
When retrofitted against the three top levels, the
member verbs at each subclass are merged with its
upper class, as in the work of Faruqui et al. (2015).

5 Evaluation

We apply retrofitting to incorporate the lexical
information into word representations. Then we
evaluate the quality of the retrofitted-representation
as features for two NLP tasks: text classification
and relation classification.

5.1 Task 1: Text classification

We evaluate our word representations using two
established biomedical datasets for text classifi-
cation: the Hallmarks of Cancer (HOC) (Baker
et al., 2015, 2017) and the Exposure taxonomy
(EXP) (Larsson et al., 2017). We evaluate each
based on their document-level and sentence-level
classifications.

The Hallmarks of Cancer depicts a set of
interrelated biological factors and behaviours that
enable cancer to thrive in the body. Introduced
by Weinberg and Hanahan (2000), it has been
widely used in biomedical NLP, including as part of

Shttps://github.com/mfaruqui/
retrofitting
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the BioNLP Shared Task 2013, “Cancer Genetics
task” (Pyysalo et al., 2013b). Baker et al. (2015,
2017) have released an expert-annotated dataset of
cancer hallmark classifications for both sentences
and documents in PubMed. The data consists of
multi-labelled documents and sentences using a
taxonomy of 37 classes.

The Exposure taxonomy, introduced by Larsson
et al. (2017), is an annotated dataset for the
classification of text (documents or sentences)
concerning chemical risk assessments. The
taxonomy of 32 classes is divided into two
branches: one relates to assessment of exposure
routes (ingestion, inhalation, dermal absorption,
etc.) and the second to the measurement of
exposure bio-markers (biomonitoring). Table 2
shows basic statistics for each dataset.

HOC EXP
Document Sentence Document Sentence
Train 1,303 12,279 2,555 25,307
Dev 183 1,775 384 3,770
Test 366 3,410 722 7,100
Total 1,852 17,464 3,661 36,177

Table 2: Summary statistics of the Hallmarks of
Cancer (HOC) and the Chemical Exposure Assess-
ment (EXP) datasets.

The model follows the convolutional neural
network (CNN) model proposed by Kim (2014).
An implementation of this algorithm on HOC
and EXP has been published by Baker and
Korhonen (2017); we use this implementation
in our experiment. The input to the model is
an initial word embedding layer that maps input
texts into matrices, which is then followed by
convolutions of different filter sizes, 1-max pooling,
and finally a fully-connected layer leading to an
output Softmax layer predicting labels for text.
Model hyperparameters and the training setup are
summarized in Table 3.

Parameters Values

Vector dimension 200

Filter sizes 3,4 and 5

Number of filters 300

Dropout probability 0.5

Minibatch size 50

Input size (in tokens) 500 (documents), 100 (sen-
tences)

Table 3: Hyper-parameters used in (Baker and
Korhonen, 2017).



For both tasks, we use the embeddings® by Chiu
et al. (2016). Performance is evaluated using the
standard precision, recall, and F;-score metrics of
the labels in the model using the one-vs.-rest setup:
we train and evaluate K independent binary CNN
classifiers (i.e. a single classifier per class with the
instances of that class as positive samples and all
other instances as negatives). Due to their random
initialization, we repeat each CNN experiment
20 times and report the mean of the evaluation
results to account for variances in neural networks.
To address overfitting in the CNN, we follow the
authors’ early stopping approach, testing only the
model that achieved the highest results on the
development dataset.

5.2 Task 2: Relation classification

We evaluate our retrofitted representations on the
Bio-Creative VI Chemical-Protein relation ex-
traction dataset (CHEMPROT) (Krallinger et al.,
2017). The corpus provides mention and relation
annotations for complex events related to chemical—
protein interaction in molecular biology. The goal
of this task is to predict whether a given chemical—
protein pair is related or not, and to then verify its
corresponding relation type. There are five types of
relations: Up-regulator, Down-regulator, Agonist,
Antagonist, and Substrate. The corpus is provided
in the Turku Event Extraction System (TEES) XML
format and are installed with the Turku Extraction
System (Bjorne, 2014). It is parsed with the
the BLLIP parser (Charniak and Johnson, 2005)
with the McClosky bio-model (Mcclosky, 2010),
followed by conversion of the constituency parses
into dependency parses using the Stanford Tools
(MacCartney et al., 2006). Table 4 summarizes key
statistics for the dataset.

Documents Entities Relations

Train 1,020 25,769 4,157
Dev 612 15,571 2,416
Test 800 20,829 3,458
Total 2,432 62,169 10,031
Table 4: Summary statistics of the Chemical-

Protein interaction dataset (CHEMPROT).

The model follows the CNN model proposed by
Bjorne and Salakoski (2018). We directly use their
published implementation. The model input is an

Shttps://github.com/cambridgeltl/
BioNLP-2016
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initial word embedding layer that maps input texts
into matrices, followed by convolutions of different
filter sizes and 1-max pooling, and finally a fully
connected layer, leading to an output Softmax layer
for predicting labels. Performance is evaluated
using the standard precision, recall, and F;-score
metrics of the labels in the model. Classification
is performed as multilabel classification where
each example may have O to n positive labels.
Model hyperparameters and the training setup are
summarized in Table 5.

Parameters Values

Vector dimension 200

Filter sizes 1,3,5and 7

Number of filters 400 (100 of each size)
Dropout probability 0.5

Learning rate 0.001

Minibatch size 50

Table 5: Hyperparameters used by Bjorne and
Salakoski (2018).

To account for variance in neural networks due to
their random initialization, we adopt the ensemble
settings used by Bjorne and Salakoski (2018). We
train 20 models and take the n best ones (n = 5),
ranked with their F-score on the development set,
and use their averaged predictions. The ensemble
predictions are calculated for each label as the
average predicted confidence scores from all the
models. We also incorporate the authors’ early
stopping approach where the model is trained until
the development loss no longer decreases. We train
for up to 500 epochs, stopping once validation
loss has no longer decreased for 10 consecutive
epochs. To focus on the effect of verb classes
on biomedical representations, we experiment
with word representations induced on biomedical
texts; this diverges from the authors who use the
embeddings’ by Pyysalo et al. (2013a), induced on
a combination of biomedical and general-domain
data (PubMed, PMC and Wikipedia texts).

6 Results

We compare the performance of the baseline with
the retrofitted embeddings models by measuring
their precision (P), recall (R), and Fj-scores in text
classification and relation extraction when used as
input features.

For the text classification tasks, Tables 6 and 7
show the micro-averaged scores for the HOC and

7Tobtained from: http://bioc.nlplab.org



the EXP tasks respectively. Each table shows
the performance on document- and sentence-level
classification (as columns) with different semantic
lexicons (as rows).

For the relation classification task (CHEM-
PROT), Table 8 shows the micro-averaged scores.
The best results are shown in bold and statistically
significant scores are shown with an asterisk. All
statistical tests are performed using a two-tailed
t-test with o¢ = 0.05.

We first describe experiments measuring im-
provements from the retrofitting method, followed
by comparisons against using different sets of
lexicons during retrofitting.

6.1 Retrofitting

We use Equation 1 to retrofit word representations
using linguistic constraints derived from verb
lexicons. Overall, the retrofitted models show
improvements in most tasks.

For text classification, the scores have improved
in three out of the four cases. For the HOC task
(Table 6) all retrofitted models outperform the
baseline in Fj-score, which is largely attributed
to a substantial improvement in recall (particularly
for document-level classification, where there is a
15 point increase over the baseline). In total, five
out of the twelve improved scores reported are also
statistically significant.

The results for the EXP task (Table 7) are more
mixed. At the document level, all retrofitted models
achieve a slight F;-score gain and half of the scores
are significant. There is an improvement in recall
at the cost of lower precision when compared to
the baseline.

However, we can see that sentence-level classifi-
cation is more difficult, due to the smaller amount
of context information available. On the sentence
level, the baseline seems to outperform all others,
and only two out of six cases are significant. It
indicates that the lexicons did not aid sentence-
level classification in this particular task.

In relation classification, the word representation
achieves the state-of-the-art result after incorpo-
rating our lexical information (34 classes). From
Table 8, there is approximately a 1.5 point Fi-
score increase over the baseline, and half of the
improvements reported are significant. The results
from both tasks suggest that the class-features
provided by verb lexicons improve performance
over the raw verb features.

6.2 Semantic lexicons

We compare the performance of our retro-fitted
embeddings using both expanded clusters and the
manually annotated clusters lexicon. The expanded
clusters retrofitted embeddings outperform the
original annotated clusters retrofitted embeddings
in all evaluated tasks. This is likely due to the
larger size of the expanded clusters in comparison
to annotated clusters (Table 1), thus providing
features for more verbs.

Lexical resources can be useful for NLP tasks
for their abilities to capture generalizations about a
range of linguistic properties; however, the degree
of generalization needed may vary from task to
task. When experimenting with retrofitting with
different levels of verb classes, we observe a
notable difference (1-2 points in F}-score) between
models retrofitted with the coarse-grained level of
16 classes and the fine-grained level of 50 classes.

For document-level text classification in both
datasets (Tables 6 and 7), models appear to benefit
from a finer-grained classification of 50 classes; on
the sentence level a medium level of generalization
(34 classes) seems optimal. The best result for
relation classification (Table 8) is also obtained
with 34 classes.

7 Discussion

The task-based evaluations suggest that verb
clusters and a verb-optimized representation, can
be a useful resource to support biomedical NLP
tasks. In text classification, it has been observed
that the occurrence patterns of verbs can be “topic-
related” and certain set of verbs frequently appear
within a specific topic of documents (Doan et al.,
2009; Hatzivassiloglou and Weng, 2002; Sekimizu
et al., 1998). Regarding this, expanded clusters
appears to have captured some of these topic-
related properties. On the HOC dataset, we note
that some frequent verbs (such as “proliferate”
and “grow”) appearing in documents relating
to the topic Sustaining proliferative signaling
also share the same classes in our automatically-
created lexicon. Similarly, for exposure assessment
documents describing air monitoring data in EXP,
we can frequently see member verbs such as
“inhale” and “breathe” in the proceed class.
Entities—relations described in the biomedical
literature are often expressed in a predicative form
where a trigger word (most commonly a verb)
connects two or more entities; here a range of
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Document classification

Sentence classification

Lexicon

P R F

P R R

No lexicon & SOTA

Annotated clusters
16-classes
34-classes
50-classes

Expanded clusters
16-classes
34-classes
50-classes

77.8 51.7 62.1

75.1 56.4 64.8

74.2 56.6 64.3
74.9 59.2 66.2
75.5 64.4  *69.5
74.3 63.5  *68.5
73.9 66.1 *69.8

56.8 30.7 39.9

47.1 34.6 39.9

48.4 355 41.0
48.4 352 *40.7
45.2 36.5 *404
52.7 35.6 425

50.9 34.7 41.3

Table 6: Performance results for the Hallmarks of Cancer task (HOC) when different sets of lexicons are used
for retrofitting the baseline model. Baseline denotes a skip-gram model generated with our optimized training
settings. Scores are adopted from Baker and Korhonen (2017). All figures are micro-averages expressed as
percentages (Bold: the best score, *: statistically significant).

Document classification

Sentence classification

Lexicon

P R F

P R F

No lexicon & SOTA

Annotated clusters
16-classes
34-classes
50-classes

Expanded clusters
16-classes
34-classes
50-classes

89.5 87.1 88.3

88.9 87.7  *88.3
89.4 87.8  *88.6
88.9 88.7 88.8

89.2 87.9 88.5
88.7 *88.8
88.6 89.1 88.9

66.2 62.8 64.5

67.1 58.9 62.7
*62.4
65.6 55.7 60.3

66.7 60.0 63.2
67.3 58.7 62.7
67.5 58.6  *62.7

Table 7: Performance results for the Chemical Exposure Assessment task (EXP). Baseline denotes a skip-
gram model generated with our optimized training settings. The “No lexicon” scores are from Baker and
Korhonen (2017). All figures are micro-averages expressed as percentages. (Bold: the best score, *: statistically

significant).

verbs can be used to describe similar relations.
Understanding the commonalities shared among
individual verbs helps NLP systems to identify the
particular type of relation the text is describing.
Consider as an example the suppress class in our
verb lexicons. It captures the fact that its members
are similar in terms of syntax and semantics, and
they can be used to make similar statements which
describe similar events. In CHEMPROT, member
verbs in the suppress class such as “suppress” and
“inhibit” can often be found in sentences depicting
the down-regulation relation between chemicals
and proteins.

For many NLP applications, lexical classes
are useful for their ability to capture general-
izations about a range of linguistic properties:
by retrofitting word representations to lexical
resources, semantically similar verbs (i.e. member
verbs within the same lexical class) like “suppress”
and “inhibit” will be pulled together in the vector
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space, whereas verbs like “collect” and “examine”
will not. Consequently, this allows NLP systems to
generalize away from individual verbs, alleviating
the data sparseness problem of representing each
verb in the corpus individually. The lexical classes
provide different levels of generalization to support
tasks of various needs, from the coarse-grained
level of 16 classes to a fine-grained level of 50. A
notable performance difference is observed when
we evaluate models retrofitted with different levels
of verb classes. Among all three classes, we
observe a larger improvement over models at the
finer-grained levels of 34 or 50 classes, which
reveal that finer-grained levels of verb semantic
distinction seem more contributive in our assessed
tasks.



Lexicon Fi
No lexicon 76.9 63.5 *69.5
SOTA 75.1 65.1 69.7
Annotated clusters

16-classes 76.5 64.6 70.1
34-classes 78.2 63.8 *70.3
50-classes 76.5 65.0 *70.3
Expanded clusters

16-classes 76.3 65.2 70.3
34-classes 77.5 65.6 71.0
50-classes 76.2 65.9 *70.7

Table 8: Performance results for the Chemical-
Protein Interaction (CHEMPROT) when different
sets of lexicons are used for retrofitting the baseline
model. Baseline denotes a skip-gram model gen-
erated with our optimized training settings. SOTA
denotes the state-of-the-art result reported by Bjorne
and Salakoski (2018) using the embeddings by
Pyysalo et al. (2013a). All figures are micro-
averages expressed as percentages. (Bold: the best
score for the task, *: statistically significant).

8 Conclusions

Many core NLP tasks and applications in the
biomedical domain such as relation and event
extraction, text classification, and text mining may
benefit from accurate embedded representation of
verbs.

Verb semantic classes capture generalizations
about a range of linguistic properties, by retrofitting
embedded word representations to semantic verb
classes, semantically similar verbs (i.e. verbs
that are members of the same lexical class) are
pulled together in the vector space. Consequently,
this allows NLP systems to generalize away from
individual verbs, reducing the problem of data
sparseness in representing less frequent verbs.

The key contribution of this work is to show
that by using semantic classes for verbs (such
as those provided by both the annotated and
expanded clusters) we can improve the downstream
performance on several tasks in the biomedical
domain by aligning word embeddings according to
semantic verb classes.

This is achieved by a post-processing retrofitting
procedure, using a standard “off-the-shelf”” method,
by running belief propagation on a graph con-
structed from lexicon-derived relational informa-
tion to update word vectors. It can be applied to
any pretrained word embedding vectors.

We applied two lexicons of semantic verb
clusters to two sets of widely used pretrained em-

132

bedding vectors in BioNLP on several downstream
tasks: two text classification tasks (the Hallmarks
of Cancer, and Chemical Exposure Assessment)
with both document and sentence classification, as
well as a relation extraction task (CHEMPROT).
We used a standard “off-the-shelf” retrofitting
algorithm to obtain improved embeddings, and we
feed the retrofitted representation to the current
state-of-the-art models for their respective tasks.
We controlled the experimental setup by using the
same model implementation, as well as the same
training, development and test data folds.

The results show that using verb clusters to
retrofit embeddings, we achieved new state-of-
the-art performance in the evaluated downstream
tasks (with statistically significant scores); the only
exception being sentence level classification for the
Chemical Exposure Assessment task (however we
do improve SOTA in document level classification
for the same task). We also note a performance
difference when retrofitting with different levels of
verb classes, where we see a larger improvement
when using finer-grained levels of verb semantic
classes (30 or 50 classes), which seem more
contributive.

For future work, we will further investigate the
possibility of using verb lexicons for retrofitting
new generations of word representation models
such as contextualized embeddings; we will further
evaluate on other downstream biomedical tasks, for
instance event and pathway extraction and medical
question answering.
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Abstract

Distributed representations of text can be used
as features when training a statistical classi-
fier. These representations may be created as
a composition of word vectors or as context-
based sentence vectors. We compare the two
kinds of representations (word versus context)
for three classification problems: influenza
infection classification, drug usage classifi-
cation and personal health mention classifi-
cation. For statistical classifiers trained for
each of these problems, context-based rep-
resentations based on ELMo, Universal Sen-
tence Encoder, Neural-Net Language Model
and FLAIR are better than Word2Vec, GloVe
and the two adapted using the MESH ontol-
ogy. There is an improvement of 2-4% in the
accuracy when these context-based represen-
tations are used instead of word-based repre-
sentations.

1 Introduction

Distributed representations (also known as ‘em-
beddings’) are dense, real-valued vectors that cap-
ture semantics of concepts (Mikolov et al., 2013).
When learned from a large corpus, embeddings
of related words are expected to be closer than
those of unrelated words. When a statistical clas-
sifier is trained, distributed representations of tex-
tual units (such as sentences or documents) in
the training set can be used as feature represen-
tations of the textual unit. This technique of sta-
tistical classification that uses embeddings as fea-
tures has been shown to be useful for many Natu-
ral Language Processing (NLP) problems (Zhang
et al., 2015; Joshi et al., 2016; Chou et al., 2016;
Simova and Uszkoreit, 2017; Fu et al., 2016; Bus-
caldi and Priego, 2017) and biomedical NLP prob-
lems (Yadav et al., 2017; Kholghi et al., 2016).
In this paper, we experiment with three classifica-
tion problems in health informatics: influenza in-
fection classification, drug usage classification and
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personal health mention classification. We use sta-
tistical classifiers trained on tweet vectors as fea-
tures. To compute a tweet vector, i.e., a distributed
representation for tweets, typical alternatives are:
(a) tweet vector as a function of word embeddings
of the content words' in the tweet; or, (b) a con-
textualised representation that computes sentence
vectors using language models. The former con-
siders meanings of words in isolation, while the
latter takes into account the order of these words
in addition to their meaning. We compare word-
based and context-based representations for the
three classification problems. This paper investi-
gates the question:

‘When statistical classifiers are trained
on vectors of tweets for health informat-
ics, how should the vector be computed:
using word-based representations that
consider words in isolation or context-
based representations that account for
word order using language models?’

For these classification problems, we compare
five approaches that use word-based representa-
tions with four approaches that use context-based
representations.

2 Related Work

Distributed representations as features for
statistical classification have been used for
many NLP problems: semantic relation ex-
traction (Hashimoto et al., 2015), sarcasm
detection (Joshi et al., 2016), sentiment analy-
sis (Zhang et al., 2015; Tkachenko et al., 2018),
co-reference resolution (Simova and Uszkoreit,
2017), grammatical error correction (Chou et al.,
2016), emotion intensity determination (Buscaldi

! Content words refers to all words except stop words.

Proceedings of the BioNLP 2019 workshop, pages 135-141
Florence, Italy, August 1, 2019. (©2019 Association for Computational Linguistics



Representation Details
A tweet vector is the average of the vectors of the content words in the tweet.
T | Word2Vec_PreTrain, Vectors of the content words are obtained from pre-
§ GloVe_PreTrain trained embeddings from Word2Vec & GloVe respec-
'é tively.
§ Word2Vec_SelfTrain Vectors of the content words are based on embeddings
learned from the training set, separately for each fold.
Word2Vec_WithMeSH, Vectors of the content words are pre-trained word
Glove_WithMeSH embeddings from Word2Vec & GloVe (respectively)
retrofitted using MeSH ontology.
T A tweet vector is obtained from a pre-trained language model that uses context.
2 | ELMo, USE, NNLM, FLAIR Context-based representations of tweets are obtained
;ﬁ from pre-trained models of ELMo, USE, NNLM and
5 FLAIR respectively. They account for relationship be-
tween words using language models.

Table 1: Summary of the representations used in our experiments.

and Priego, 2017) and sentence similarity detec-
tion (Fu et al., 2016). In terms of the biomedical
domain, word embedding-based features have
been used for entity extraction in biomedical
corpora (Yadav et al., 2017) or clinical informa-
tion extraction (Kholghi et al., 2016). Several
approaches for personal health mention classifi-
cation have been reported (Aramaki et al., 2011;
Lamb et al., 2013a; Yin et al., 2015). Aramaki
et al. (2011) use bag-of-words as features for
personal health mention classification. Lamb
et al. (2013a) use linguistic features including
coarse topic-based features, while Yin et al.
(2015) use features based on parts-of-speech and
dependencies for a statistical classifier. Feng
et al. (2018) compare statistical classifiers with
deep learning-based classifiers for personal
health mention detection. In terms of detecting
drug-related content in text, there has been work
on detecting adverse drug reactions (Karimi
et al., 2015). Nikfarjam et al. (2015) use word
embedding clusters as features for adverse drug
reaction detection.

3 Representations

A tweet vector is a distributed representation of a
tweet, and is computed for every tweet in the train-
ing set. The tweet vector along with the output la-
bel is then used to train the statistical classification
model. The intuition is that the tweet vector cap-
tures the semantics of the tweet and, as a result,
can be effectively used for classification. To ob-
tain tweet vectors, we experiment with two alter-
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natives that have been used for several text classi-
fication problems in NLP: word-based representa-
tions and context-based representations. They are
summarised in Table 1, and described in the fol-
lowing subsections.

3.1 Word-based Representations

A word-based representation of a tweet combines
word embeddings of the content words in the
tweet. We use the average of the word embed-
dings of content words in the tweet. Average
of word embeddings have been used for differ-
ent NLP tasks (De Boom et al., 2016; Yoon et al.,
2018; Orasan, 2018; Komatsu et al., 2015; Ettinger
etal., 2018). As in past work, words that were not
learned in the embeddings are dropped during the
computation of the tweet vector. We experiment
with three kinds of word embeddings:

1. Pre-trained Embeddings: Denoted as
Word2Vec_PreTrained and GloVe_PreTrained
in Table 1, we use pre-trained embeddings of
words learned from large text corpora: (A)
Word2Vec by Mikolov et al. (2013): This has
been pre-trained on a corpus of news articles
with 300 million tokens, resulting in 300-
dimensional vectors; (B) GloVe by Penning-
ton et al. (2014): This has been pre-trained
on a corpus of tweets with 27 billion tokens,
resulting in 200-dimensional vectors.

. Embeddings Trained on The Training
Split: It may be argued that, since the pre-
trained embeddings are learned from a cor-



Classification # tweets (# true tweets)
1IC 9,006 (2,306)
DUC 13,409 (3,167)
PHMC 2,661 (1,304)

Table 2: Dataset statistics.

pus from an unrelated domain (news and gen-
eral, in the case of Word2Vec and GloVe
respectively), they may not capture the se-
mantics of the domain of the specific clas-
sification problem. Therefore, we also use
the Word2Vec Model available in the gensim
library (Rehtifek and Sojka, 2010) to learn
word embeddings from the documents. For
each split, the corresponding training set is
used to learn the embeddings. The embed-
dings are then used to compute the tweet vec-
tors and train the classifier. We refer to these
as Word2Vec_SelfTrain.

. Pre-trained embeddings retrofitted with
medical ontologies: Another alternative to
adapt word embeddings for a classification
problem is to use structured resources (such
as ontologies) from a domain same as that
of the classification problem. Faruqui et al.
(2015) show that word embeddings can be
retrofitted to capture relationships in an on-
tology. We use the Medical Subject Head-
ings (MeSH) ontology (Nelson et al., 2001),
maintained by the U.S. National Library of
Medicine, which provides a hierarchically-
organised terminology of medical concepts.
Using the algorithm by Faruqui et al.
(2015), we retrofit pre-trained embeddings
from Word2Vec and GloVe, with the MeSH
ontology. The retrofitted embeddings for
Word2Vec and GloVe are referred to as
Word2Vec_WithMeSH, and GloVe_WithMeSH
respectively.

The three kinds of word-based representations re-
sult in five configurations: Word2Vec_PreTrained,
GloVe_PreTrained, Word2Vec SelfTrain,
Word2Vec_WithMeSH, and GloVe_WithMeSH.

3.2 Context-based Representations

Context-based representations may use language
models to generate vectors of sentences. There-
fore, instead of learning vectors for individual
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words in the sentence, they compute a vector for
sentences on the whole, by taking into account the
order of words and the set of co-occurring words.

We experiment with four deep contextualised
vectors: (A) Embeddings from Language Mod-
els (ELMo) by Peters et al. (2018): ELMo uses
character-based word representations and bidi-
rectional LSTMs. The pre-trained model com-
putes a contextualised vector of 1024 dimensions.
ELMo is available in the Tensorflow Hub?, a
repository of machine learning modules; (B) Uni-
versal Sentence Encoder (USE) by Cer et al.
(2018): The encoder uses a Transformer archi-
tecture that uses attention mechanism to incorpo-
rate information about the order and the collection
of words (Vaswani et al., 2017). The pre-trained
model of USE that returns a vector of 512 di-
mensions is also available on Tensorflow Hub; (C)
Neural-Net Language Model (NNLM) by Ben-
gio et al. (2003): The model simultaneously learns
representations of words and probability functions
for word sequences, allowing it to capture seman-
tics of a sentence. We use a pre-trained model
available on Tensorflow Hub, that is trained on
the English Google News 200B corpus, and com-
putes a vector of 128 dimensions; (D) FLAIR by
Akbik et al. (2018): This library by Zalando re-
search® uses character-level language models to
learn contextualised representations. We use the
pooling option to create sentence vectors. This is
a concatenation of GloVe embeddings and the for-
ward/backward language model. The resultant is
a vector of 4196 dimensions.

Table 1 refers to the four configurations as
ELMo, USE, NNLM and FLAIR respectively.

4 Experiment Setup

We conduct our experiments on three boolean
classification problems in health informatics: (A)
Influenza Infection Classification (IIC): The
goal is to predict if a tweet reports an influenza
infection (‘I have been coughing all day’, for ex-
ample) or describes information about influenza
(‘flu outbreaks are common in this month of the
year’, for example). We use the dataset pre-
sented in Lamb et al. (2013b); (B) Drug Usage
Classification (DUC): The objective here is to

https://www.tensorflow.org/hub/; Ac-
cessed on 3rd June, 2019.
*https://github.com/zalandoresearch/

flair; Accessed on 3rd June, 2019.



# dim. 1IC DUC PHMC
(A) Word-based Representations
Word2Vec_PreTrain 300 0.8106 (0: 0.024) 0.7417 (o: 0.153) 0.7632 (o: 0.037)
GloVe_PreTrain 200  0.7996 (o: 0.015) 0.7549 (0: 0.120) 0.7765 (o: 0.033)
Word2Vec_SelfTrain 300  0.5099 (o: 0.001) 0.7450 (o: 0.028) 0.7418 (o: 0.003)
Word2Vec_WithMeSH 300  0.6944 (o: 0.021) 0.7450 (o: 0.046) 0.7427 (o: 0.050)
GloVe_WithMeSH 200  0.7264 (0: 0.017) 0.7635 (o: 0.030) 0.7425 (o: 0.010)
(B) Context-based Representations
ELMo 1024  0.8010 (o: 0.021) 0.7724 (0: 0.090) 0.7814 (o: 0.02)
USE 512 0.8164 (o: 0.008) 0.7790 (c: 0.100) 0.8155 (o: 0.030)
NNLM 128  0.8520 (0: 0.006) 0.7610 (o: 0.070) 0.7495 (o: 0.020)
FLAIR 4196 0.8000 (o: 0.021) 0.7667 (o: 0.116) 0.7896 (o: 0.031)

Table 3: Comparison of five word-based representations with four context-based representations; Average accuracy

with standard deviation (o) indicated in brackets.

detect whether or not a tweet describes the us-
age of a medicinal drug (‘I took some painkillers
this morning’, for example). We use the dataset
provided by Jiang et al. (2016); (C) Per-
sonal Health Mention classification (PHMC):
A personal health mention is a person’s report
about their illness. We use the dataset provided
by Robinson et al. (2015). For example ‘I have
been sick for a week now’ is a personal health men-
tion while ‘Rollercoasters can make you sick’ is
not. It must be noted that IIC involves influenza
while the PHMC dataset covers a set of illnesses
as described later.

The datasets for each of the classification prob-
lems consist of tweets that have been manually an-
notated as reported in the corresponding papers.
The statistics of these datasets are shown in Ta-
ble 2. The values in brackets indicate the number
of true tweets (i.e., tweets that have been labeled as
true), since these are boolean classification prob-
lems. For details on inter-annotator agreement and
the annotation techniques, we refer the reader to
the original papers. Based on sentence vectors ob-
tained using either word-based or context-based
representations, we train logistic regression with
default parameters available as a part of the Lib-
linear package (Fan et al., 2008). We report five-
fold cross-validation results for our experiments.
Each fold is created using stratified k-fold sam-
pling available in scikit-learn®.

‘nttps://scikit-learn.org/stable/; Ac-

cessed on 3rd June, 2019.
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5 Results

We first present a quantitative evaluation to com-
pare the two types of representations. Following
that, we analyse sources of errors.

5.1 Quantitative Evaluation

We compare word-based and context-based rep-
resentations for the three classification problems
in Table 3. Accuracy is computed as the propor-
tion of correctly classified instances. The table
contains the average accuracy values with stan-
dard deviation values shown in parentheses. The
table is divided into two parts. Part (A) corre-
sponds to experiments using word-based represen-
tations, while Part (B) corresponds to those using
context-based representations. In general, context-
based representations result in an improvement
in the three classification problems as compared
to word-based representations. For IIC, the best
word-based representation is when pre-trained
Word2Vec embeddings (Word2Vec_Prelrain)
of content words are averaged to generate the
tweet vector. The accuracy in this case is 0.8106.
In contrast, the best performing context-based rep-
resentation is NNLM (0.8520). This is an im-
provement of 4% points. Similarly, tweet vec-
tors created using USE result in an accuracy of
0.7790 for DUC and 0.8155 for PHMC. This is an
improvement of 2-4% points each over the word-
based representations for these two classification
problems as well. In addition, for pre-trained em-
beddings (Word2Vec and GloVe) retrofitted with a
medical ontology (MeSH), we observe a degrada-



15t-person men- Present Partici-

tions ple

Word Context Word Context
IIC 58.2 41.0 79.6 72.5
DUC 66.4 54.75 33.0 40.75
PHMC 64.8 37.5 61.6 40.0

Table 4: Average number of instances (out of 100
randomly sampled mis-classified instances) containing
first-person mentions and present participle form for
the three classification problems and two types of rep-
resentations.

tion in the accuracy for IIC and PHMC, as com-
pared to without retrofitting. There is an improve-
ment of 1% point in the case of DUC. Similarly,
learning the embeddings on the specific training
corpus does not work well. It leads to a degrada-
tion as compared to pre-trained embeddings. This
could happen because pre-trained embeddings are
trained on much larger corpora than our training
datasets, thereby capturing semantics more effec-
tively than the Word2Vec_SelfTrain variant.

5.2 Qualitative Evaluation

For a qualitative comparison of the two representa-
tions, we analyse 100 randomly sampled instances
that are mis-classified by each classifier. While
these instances need not be the same for each clas-
sifier, the trends in the errors show where one kind
of representation scores over the other. We com-
pared linguistic properties of these mis-classified
instances, such as the person, tense and number.
Table 4 shows two linguistic properties where we
observed the most variation: first-person mentions
and the use of present participles. The two proper-
ties are important in terms of the semantics of the
three classification problems. First-person men-
tions are useful indicators to identify if the speaker
has influenza, took a drug or reported a personal
health mention. Similarly, present participle forms
of verbs appear in situations where a person has
had an infection or taken a drug. For ‘Word’, the
average is over the five representations, while for
‘Context’, the average is over the four context-
based representations. In the case of IIC, an av-
erage of 58.2 mis-classified instances from word-
based representations contained first person men-
tions. The corresponding number for context-
based representations was 41. For PHMC, the av-
erages are 64.8 (word-based) and 37.5 (context-
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based). The difference is not as high in the case of
DUC (66.4 and 54.75 respectively). Differences
are observed in the case of present participle in
mis-classified instances. However, in the case of
DUC, errors from context-based representations
contain more average number of present partici-
ples (40.75) than word-based representations (33).

6 Conclusions

In this paper, we show that context-based rep-
resentations are a better choice than word-based
representations to create tweet vectors for clas-
sification problems in health informatics. We
experiment with three such problems: influenza
infection classification, drug usage classification
and personal health mention classification, and
compare word-based representations with context-
based representations as features for a statisti-
cal classifier. For word-based representations,
we consider pre-trained embeddings of Word2Vec
and GloVe, embeddings trained on the train-
ing split, and the pre-trained embeddings of
Word2Vec and GloVe retrofitted to a medical on-
tology. For context-based representations, we con-
sider ELMo, USE, NNLM and FLAIR. For the
three problems, the highest accuracy is obtained
using context-based representations. In compar-
ison with pre-trained embeddings, the improve-
ment in classification is approximately 4% for in-
fluenza infection classification, 2% for drug usage
classification and 4% for personal health mention
classification. Embeddings trained on the train-
ing corpus or retrofitted on the ontology perform
worse than those pre-trained on a large corpus.
While these observations are based on statistical
classifiers, the corresponding benefit of context-
based representations on neural architectures can
be validated as a future work. In addition, while
we average the word vectors to obtain tweet vec-
tors, other options for tweet vector computation
can be considered for word-based representations.
In terms of the dataset, the comparison should be
validated for text forms other than tweets, such as
medical records. Medical records are expected to
have typical challenges such as the use of abbre-
viations and domain-specific phrases that may not
have been learned in pre-trained embeddings.
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Abstract

Knowledge base construction is crucial for
summarising, understanding and inferring re-
lationships between biomedical entities. How-
ever, for many practical applications such as
drug discovery, the scarcity of relevant facts
(e.g. gene X is therapeutic target for dis-
ease Y) severely limits a domain expert’s abil-
ity to create a usable knowledge base, either
directly or by training a relation extraction
model. In this paper, we present a simple and
effective method of extracting new facts with a
pre-specified binary relationship type from the
biomedical literature, without requiring any
training data or hand-crafted rules. Our sys-
tem discovers, ranks and presents the most
salient patterns to domain experts in an inter-
pretable form. By marking patterns as com-
patible with the desired relationship type, ex-
perts indirectly batch-annotate candidate pairs
whose relationship is expressed with such pat-
terns in the literature. Even with a complete
absence of seed data, experts are able to dis-
cover thousands of high-quality pairs with the
desired relationship within minutes. When a
small number of relevant pairs do exist - even
when their relationship is more general (e.g.
gene X is biologically associated with disease
Y) than the relationship of interest - our sys-
tem leverages them in order to i) learn a better
ranking of the patterns to be annotated or ii)
generate weakly labelled pairs in a fully auto-
mated manner. We evaluate our method both
intrinsically and via a downstream knowledge

*Equal contribution. Listing order is alphabetical. Theo-
dosia proposed and co-ordinated the research project, built
the early prototypes and contributed the different methods for
extracting and lexicalising patterns. Ashok provided concep-
tual work on the metrics for ranking simplifications and for
the intrinsic evaluation, developed the simplification extrac-
tion module, ran the experiments for the automated workflow
(with all the parameter variations) and performed all the ex-
trinsic evaluations. Julien was mainly responsible for the sys-
tem architecture and workflow, the intrinsic evaluation (in-
cluding interacting with the experts), handling negation and
speculation and the clustering algorithm.
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base completion task, and show that it is an ef-
fective way of constructing knowledge bases
when few or no relevant facts are already avail-
able.

1 Introduction

In many important biomedical applications, ex-
perts seek to extract facts that are often complex
and tied to particular tasks, hence data that are
truly fit for purpose are scarce or simply non-
existent. Even when only binary relations are
sought, useful facts tend to be more specific (e.g.
mutation of gene X has a causal effect on disease
Y in an animal model) than associations typically
found in widely available knowledge bases. Ex-
tracting facts with a pre-specified relationship type
from the literature in the absence of training data
often relies on handcrafted rules, which are labo-
rious, ad-hoc and hardly reusable for other types
of relations. Recent attempts to create relational
data from scratch by denoising the output of mul-
tiple hand-written rules (Ratner et al., 2016) or by
augmenting existing data through the induction of
new black-box heuristics (Varma and Ré, 2018)
are still dependent on ad-hoc human effort or pre-
existing data. Our approach involves discovering
and recommending, rather than prescribing, rules.
Importantly, our rules are presented as text-like
patterns whose meaning is transparent to human
annotators, enabling integration of an automatic
data generation (or augmentation) system with a
domain expert feedback loop.

In this work, we make the following contribu-
tions:

e We propose a number of methods for extract-
ing patterns from a sentence in which two
eligible entities co-occur; different types of
patterns have different trade-offs between ex-
pressive power and coverage.
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e We propose a simple method for presenting
patterns in a readable way, enabling faster,
more reliable human annotation

e For cases where a small number of seed pairs
are already available, we propose a method
which utilises these seed pairs to rank newly
discovered patterns in terms of their compat-
ibility with the existing data. The resulting
patterns can be used with or without a human
in the loop.

The rest of the paper is organised as follows.
Section 2 describes some related work. Section 3
explains the relationship between patterns and la-
belling rules and presents some pattern types along
with techniques for rendering them interpretable.
Section 4 provides a high-level overview of the
system and covers details of our different work-
flows (with and without seed data; with and with-
out human feedback). Section 5 explains how we
measure the system’s performance both intrinsi-
cally and via a downstream knowledge base com-
pletion task. In section 6, we report the details
of our main experiments while in sections 7 and
8 we present some analysis along with further ex-
periments. The paper ends with conclusions and
proposals for further work in section 9.

2 Related work

The idea of extracting entity pairs by discovering
textual patterns dates back to early work on boot-
strapping for relation extraction with the DIPRE
system (Brin, 1999). This system was designed to
find co-occurrences of seed entity pairs of a known
relationship type inside unlabelled text, then ex-
tract simple patterns (exact string matches) from
these occurrences and use them to discover new
entity pairs. Agichtein et al. (2000) introduced a
pattern evaluation methodology based on the pre-
cision of a pattern on the set of entity pairs which
had already been discovered; they also used the
dot product between word vectors instead of an
exact string match to allow for slight variations
in text. Later work (Greenwood and Stevenson,
2006; Xu et al., 2007; Alfonseca et al., 2012)
has proposed more sophisticated pattern extrac-
tion methods (based on dependency graphs or ker-
nel methods on word vectors) and different pat-
tern evaluation frameworks (document relevance
scores).

Two recent weak supervision techniques, Data
Programming (Ratner et al., 2016) and the method
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underlying the Snuba system (Varma and Ré,
2018) have attempted to combine the results of
handcrafted rules and weak base classifiers respec-
tively. Data Programming involves modelling the
accuracy of ideally uncorrelated rules devised by
domain experts, then combining their output into
weak labels. Although this approach does not re-
quire any seed data, it does rely on handwritten
rules, which are both time consuming and ad-hoc
due to the lack of a data-driven mechanism for ex-
ploring the space of possible rules. Snuba learns
black-box heuristics (parameters for different clas-
sifiers) given seed pairs of the desired relationship.
This method avoids the need for manually com-
posing rules, however, the rules it learns are not
interpretable, which makes the pipeline harder to
combine with an active learning step. Second, the
system requires gold standard pairs. In contrast,
while our system can leverage gold standard an-
notations, if available, in order to reduce the space
of discovered rules, as well as tune the ranking
of newly discovered patterns, it is entirely capa-
ble of starting without any gold data if ranking is
heuristics-based (e.g. prioritisation by frequency)
and a human assesses the quality of the highest
coverage rules suggested. Our method does not
preclude use within a data programming setup as
a way of discovering labelling functions or within
a system like Snuba, as a way of generating seed
pairs. Another body of work, distant supervision
(Verga et al., 2018; Lin et al., 2016) has been a
recent popular way to extract relationships from
weak labels, but does not give the user any control
on the model performance.

A well known body of work, OpenlE (Banko
et al., 2007; Fader et al., 2011; Mausam et al.,
2012; Angeli et al., 2015) aims to extract patterns
between entity mentions in sentences, thereby dis-
covering new surface forms which can be clus-
tered (Mohamed et al., 2011; Nakashole et al.,
2012) in order to reveal new meaningful relation-
ship types. In the biomedical domain, Percha and
Altman (2018) attempt something similar by ex-
tracting and clustering dependency patterns be-
tween pairs of biomedical entities (e.g. chemical-
gene, chemical-disease, gene-disease). Our work
differs from these approaches in that we extract
pairs for a pre-specified relationship type (either
from scratch or by augmenting existing data writ-
ten with specific guidelines), which is not guaran-
teed to correspond to a cluster of discovered sur-



face forms.

3 Extracting interpretable patterns

In a rule-based system, a rule, whether handwrit-
ten or discovered, can be described as a hypothet-
ical proposition “i f P then ()", where P (the an-
tecedent) is a set of conditions that may be true or
false of the system’s input and () (the consequent)
is the system’s output. For instance, a standard
rule-based relation extraction system can i) take
as input a pair of entities (e.g. TNF-GeneID:7124
and Melanoma-MESH:D008545) that are mentioned
in the same piece of text, ii) test whether cer-
tain conditions are met (e.g. presence of lex-
ical or syntactic features) and iii) output a la-
bel (e.g. 1: 0: Not
therapeutic target.)

In this work, patterns are seen as the antecedents
of rules that determine which label (consequent)
should be assigned to some input (e.g. candidate
pair + text that mentions it.) We aim to extract
patterns that are expressive enough to allow a sys-
tem or a domain expert to discriminate between
the different labels available for an input but also
generic enough to apply to a wide range of inputs.
In this work, we have made the following simpli-
fying assumptions:

Therapeutic target,

1. Relationships are binary (i.e. hold between
exactly two entities).

A pair of entities are candidates for relation
extraction if they are mentioned simultane-
ously in the same sentence.

. There is a one-to-many relationship between
patterns and inputs. An input (i.e. sentence
+ entity pair) is described by a single pattern
(although this pattern can be a boolean com-
bination of other patterns) but one pattern can
correspond to multiple inputs.

We can select patterns which are expressive
enough to represent the relationship, so it is
possible to classify the input from which a
given pattern has been extracted by exam-
ining the pattern alone. However, the omit-
ted part of the sentence may contain contex-
tual information which specifies the condi-
tion when or where the relationship holds.
Modeling such contextual information would
be useful but is beyond the scope of this
work. A consequence of this assumption is
that it is possible to batch-annotate a group
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of inputs that correspond to the same pattern
by annotating the pattern itself.

Pattern interpretability An important consid-
eration in this research is pattern interpretability,
which could assist domain experts (who are not
NLP experts) in exploring the space of labelling
rule antecedents for a given relationship type in a
given corpus. Hence, for each pattern, we con-
struct what we call a pattern lexicalisation, that
is converting a pattern to a readable text-like se-
quence.

Pattern types Simple patterns, which can po-
tentially be combined with boolean operators, can
be of different types. We illustrate some types of
patterns used in our experiments through the fol-
lowing example sentences that include mentions
of a gene-disease pair:

(1) “We investigate the hypothesis that the
knockdown of BRAF may affect melanoma
progression.”

(2) “The study did not record higher NF-kb ac-
tivity in cancer patients.”

Below are some types of patterns, as well as
their lexicalisations:

e KEYWORDS: words (e.g. ‘inhibiting’) or
lemmas (e.g. ‘inhibit’) in the entire sentence
or in the text between the entities. This pat-
tern’s lexicalisation is, trivially, the word it-
self.

PATH: shortest path between the two entity
mentions in the dependency graph of the
sentence. For instance, in example (1), the
path could be BRAF <-pobj- of <-prep-
knockdown <-nsubj- affect -dobj->
progression —-compound-> melanoma,

in example (2), the path could be nF-kb
<-compound- activity -prep-> in
-pobj-> patients -compound-> cancer)
To lexicalise patterns of this type, we extract
the nodes (i.e. words) from the path, arrange
them as per their order in the sentence and
replace the entity mentions by a symbol
denoting simply their entity types. For in-
stance, the first pattern becomes "knockdown
of GENE affect DISEASE progression".
This pattern is used extensively in our ex-
periments because it strikes a good balance
between expressive power and coverage.



We call its lexicalisation a simplification
because it is a text-like piece that simplifies
a sentence by discarding all but the most
essential information.

PATH_ROOT: the root (word with no in-
coming edges) of the shortest path between
the two entities (e.g. ‘affect’ and ‘activ-
ity’ in examples (1) and (2) respectively).
The lexicalisation could be trivial (i.e. the
root itself) or, alternatively, if this pattern is
used in an AND boolean combination with the
PATH pattern, the root can simply be high-
lighted (e.g. "knockdown of GENE affect
DISEASE progression")

SENTENCE_ROOT: the root of the depen-
dency graph of the entire sentence (e.g.
‘investigate’ and ‘record’ in the examples
above), which is often not the same as root
of the path connecting the two entities. It can
be lexicalised similarly to the pattern above.

PATH_BETWEEN_ROOTS: the path between
the root of the entire sentence and the
root of the path between the two entities
(&g. investigate —-dobj-> hypothesis
-acl-> affect and
activity for examples (1) and (2) re-
spectively). The pattern can be lexicalised
as what we have called “simplification”
(e.g.
or, if anp-ed with the PATH pattern, all the
words from both patterns can be merged and
arranged as per their original order in the
sentence, potentially with some highlighting
to differentiate the two simpler patterns (e.g.

record —-dobj->

investigate hypothesis affect,

"investigate hypothesis knockdown of

GENE affect DISEASE progression")

SENTENCE_ROOT_DESCENDANTS: the
direct descendants of the SENTENCE_ROOT,
for instance, ‘did’, ‘not’ and ‘activity’ in
the example (1), because of the edges did
not <-neg- record and
record -dobij-> activity. To lexicalise
this pattern, we can extract the words and
merge them with words of other patterns.
Alternatively, we can devise some simpler
sub-patterns, for instance, descendants with
aux, that is auxiliary, edges, such as ‘may’,
or descendants with neg edges such as ‘not’
and place them outside any simplification:

<-aux— record,

"investigate hypothesis knockdown
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of GENE affect DISEASE progression +
hedging: [may]"

PATH_ROOT_DESCENDANTS: the direct de-
scendants of the root of the path between
the entities (e.g. ‘may’ and ‘progres-
sion’ in example (1) because may <-aux-
affect and affect —-dobj-> progression;
‘higher’ and ‘in’ in the example (2) because
higher <-amod- activity and activity
-prep-> in). Its lexicalisation can be the
same as that of the previous pattern type.

Other examples of patterns could be regu-
lar expressions or rules informed by an ex-
ternal biomedical ontology (e.g. GENE is a
Rhodopsin-like receptor) or with lexical in-
formation from databases like WordNet (Miller,
1995) (e.g. for increasing pattern coverage lever-
aging synonyms or hypernyms of words in a pat-
tern.)

It should be obvious that the more expressive a
pattern becomes (for instance by anp-ing multiple
other patterns), the less capable it is of subsuming
many sentences. It is important to discover pat-
terns with this trade-off in mind.

4 System overview

In this section, we will describe each step of our
system, outlined in Figure 1.

4.1 Data preparation

Extracting named entities and patterns The
first step is performing named entity recognition
(NER) on the sentences in the corpus to enable
us to identify all the sentences which contain en-
tity pairs of interest. Our experiments are focused
on gene-therapeutic target pairs, however, the sys-
tem is designed to be agnostic to different types
of entities and relationships between them. We
then extract the desired patterns from each of these
sentences, as described in section 3. For simplic-
ity, we limited our experiments to sentences that
contain exactly one gene-disease pair, however,
extending the system to handle multiple pairs is
straightforward.

We index each sentence in a database along with
the lexicalisation for its pattern (e.g. the ‘simpli-
fication’ for PATH or PATH_.BETWEEN_ROOTS pat-
terns) and the entity pair found. This allows us to
easily query this database i) for all entity pairs that
correspond to a pattern (which is now lexicalised
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Figure 1: System overview. Diamond box is present

only in workflows with seed labels available (i.e. “no

expert but labels” and “expert with labels”), elliptical
box is only present in workflows involving an expert
(i.e. “expert - no labels” and “expert with labels™) and
rectangular boxes are always present.

and stored as a string) or ii) for all patterns that
correspond to an entity pair.

Filtering out sentences with negation and hedg-
ing. Since we are interested in inputs which un-
ambiguously encode affirmations of facts about
entities, we filter out any sentences which con-
tain negation, speculation, or other forms of
hedging. @ We adopt a conservative approach
by excluding sentences which match specific
instantiations of these pattern types: i) KEY-
WORDS (e.g. presence of terms such as “no”,
“didn’t”, “doubt”, “speculate” etc. in the sen-
tence); our list is modified from NegEx (Chap-
man et al., 2013), ii) SENTENCE_ROOT AND SEN-
TENCE_ROOT_DESCENDANTS (e.g. “study we in-
vestigated”, which makes no statement of results),
iili) PATH_ROOT AND PATH_ROOT_DESCENDANTS
(e.g. “was used”, ‘“was performed”), iv)
path_between_roots (e.g. “found associated”) This
filtering is applied at all stages in our system where
sentences are used.

4.2 Ranking patterns

Below we describe methods for ranking and se-
lecting top patterns in the presence or absence of
domain expertise or labelled training data.

Baseline workflow: “no expert - no labels” In
this workflow, we simply extract new pairs using
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simplifications (from the PATH pattern type, but
other types are also described in our experiments)
that have a high enough (>= 5) count of entity
pairs.

Manual curation in the absence of any labelled
training data: ‘“‘expert - no labels” In this
workflow, we have a domain expert (a biologist)
available for manual curation but there is no la-
belled training data. It is not possible for a domain
expert to annotate all simplifications; this would
be too time-consuming. In such cases, active
learning can be helpful in deciding which simplifi-
cations should be shown to the domain experts for
manual curation to best improve the output of our
system. The approach that we adopt here is sim-
ple but the system could be extended with more
sophisticated active learning strategies. We rank
the simplifications by their count of entity pairs;
by this we mean the number of unique pairs con-
tained in the sentences in our corpus which corre-
spond to a given simplification (similar to section
4.2). We then show the top ranked simplifications
(i.e. those with the greatest pair count) to our do-
main expert with a fixed number of random exam-
ple sentences who then decides if a given simpli-
fication is an appropriate heuristic to extract new
entity pairs from the corpus, by selecting one of
three options “Yes”, “No”, “Maybe”.

Automated workflow: ‘“no expert but labels”
For this workflow, a set of gold standard pairs ex-
ists as training data but we have no domain ex-
perts available. The sentence simplifications can
be ranked using various metrics calculated against
the gold standard training data. Each simplifica-
tion is considered as a classifier: A given pair
is ‘classified’ by the simplification as positive if
the pair can be discovered using the simplifica-
tion’s underlying rule in the corpus. Otherwise,
it is classified as negative. The metrics we use
to rank the simplifications are precision and re-
call. The gold standard pairs will form the pos-
itive pairs in our training data. To obtain nega-
tive pairs, we operate under the closed world as-
sumption: any entity pair found in our corpus of
sentences not present in our gold standard set is
taken to be negative. This results in an imbalance
in the sizes of positive and negative training data
which skews the value of precision. To address
this, we use a precision metric where the number
of true positives and false positives are normalised



by the total number of positive and negative pairs
respectively in our training data. For each simpli-
fication S we define true positives (7' Pg) and false
positives (F'Pg) as the sets of correctly and incor-
rectly positive-labelled entity pairs respectively.
Our variant of precision for a simplification S is
then, precisiong = \TPS\/|JTVI;S+||/1]WV£S\/NN where
Np and Ny are the number of positive and neg-
ative pairs respectively in the training data. With
this metric, if a simplification classifies 10% of the
positive pairs as true positives and 10% of the neg-
ative pairs as false positives then precisiong
% = 0.5. The metric utilises the percent-
age of each class instead of the absolute number
of pairs, as would be the case for the standard pre-
cision metric. The definition of recall for a given
simplification .S is with respect to just the positive
training data and is thus unaffected by an imbal-
ance in the sizes.

Manual curation with labelled data: ‘“expert
with labels” For this workflow, both domain ex-
perts and labelled training data are available to us.
We improve on our methodology in the “expert -
no labels” workflow by making use of the metrics
discussed in the “no expert but labels” workflow
which are calculated using the labelled training
data. As we want to maximise the number and pre-
cision of new pairs extracted, we keep only sim-
plifications with recall and precision above certain
respective thresholds and present them to domain
experts ranked by pair count to ensure they see the
most impactful simplifications first.

4.3 Generating new pairs

All previous stages aim at generating a list of good
simplifications. We now have a collection of rules
which can be used to extract new entity pairs from
the corpus. Any simplification selected as useful
implies that all entity pairs recovered from the cor-
pus using this rule can be added as positive ex-
amples to the dataset. With the selected simplifi-
cations, we can batch-annotate thousands of sen-
tences, and hence pairs, with minimal effort. We
simply query our database for all new pairs which
are found in a sentence expressing any of our se-
lected simplifications.

Clustering simplifications We found that many
simplifications can be very similar up to a few
characters. We create clusters of quasi-identical
simplifications, and use them i) to enforce diver-
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sity in the selection of simplifications for the user
to annotate, by picking only one simplification per
cluster and, ii) to safely extend the selection of
positive simplification to other simplification in
the cluster. We create clusters of simplifications by
detecting connected components in a graph where
the nodes are the simplifications and the edges are
between simplifications which are at a maximum
Levenshtein distance of 2. This allows us to be in-
variant to plural forms, upper/lower case, to short
words like in/of etc. Note that some (not all) of
these variations could be captured with a lemma-
tiser. Example of a distance 2 cluster:

{GENE effects on DISEASE,

GENE effect on DISEASE,

GENE effects in DISEASE}

With a distance of 2, we typically increase the
number of positive simplifications by 50%, which
significantly increases the recall on new pairs.

5 Evaluation

We implement two evaluation frameworks. The
first is an intrinsic evaluation of the quality of the
new extracted pairs. The second is extrinsic; we
consider how the inclusion of the new pairs dis-
covered by our system affects the performance of
a downstream knowledge base completion task.*

5.1 Intrinsic evaluation

Pair-level Our aim in this subsection is to con-
struct an intrinsic evaluation framework which
can directly measure the quality of the discovered
pairs. We do this by holding out a fraction of the
gold standard positive pairs and the negative pairs
(under the closed world assumption) to be used as
a test set. The remaining fraction is used as train-
ing data. We evaluate our system by measuring
its recall, specificity (true negative rate), precision,
and F-score against this test set. In more detail,
the new pairs discovered by our selected simplifi-
cations are taken to be the positive pairs predicted
by our system. The overlap between these new
pairs and the positive test set are the true positives
(T'P) while the overlap with the negative test set
are the false positives (F'P). Recall and specificity
take their standard definitions. Again, we consider
a precision score which is normalised to correct

*We consider the second type of evaluation extrinsic be-
cause knowledge base completion aims to recover latent re-
lationships, whereas knowledge base construction, which the
system is built for, is limited to extracting pairs from the lit-
erature.



for the imbalance in numbers between positive and
: : Ceiom — |TP|/Np
negative pairs, precision = [rpIN,LIFPNy

where Np and Ny are the numbers of positive and
negative pairs respectively present in the test set
(as described in section 4.2). We take the F-score
to be the harmonic mean of this precision variant
and recall.

Simplification-level For the manual workflows,
we also consider the expert annotations while as-
sessing the quality of the simplifications. We
report M SP, the manual simplification preci-
sion, based on Ny¢s, Ny, and Npqype, the num-
ber of simplifications that the expert has anno-

tated as “Yes”, “No” and “Maybe”. MSP =
Nyes 1
Ny s ¥ Mot Natause” We expect MSP to be as high

as possible.

Extrinsic evaluation via knowledge base com-
pletion The setup for our extrinsic evaluation
framework is straightforward and intuitive. The
initial gold standard set of positive pairs is split
into training and test data. A graph completion
model is then trained using the training data and
evaluated to determine whether it can predict the
existence of the pairs in the test data. To de-
termine whether our knowledge base construction
system can add value, we use the new pairs found
from our system to augment the training data for
the graph completion model, and observe whether
this improves its performance against the test
set. We use ComplEx (Trouillon et al., 2017), a
well-established tensor factorisation model, as our
knowledge base completion model. We provide
standard information retrieval metrics to quantify
the performance of the graph completion model.
These are the precision, P(k), and recall, R(k),
calculated for the top k predictions along with the
mean average precision (mAP). For gene-disease
entity pairs, for example, mAP = N% Xd: AveP,

where the sum is over the diseases d with N, be-
ing the total number of diseases, and AveP =
> P(k)(R(k) — R(k — 1)) with P(k) and R(k)
k

as defined above.

6 Main experiments and results

6.1 Datasets

For all the following experiments, our data was
drawn from the following datasets: DisGeNET
(Pinero et al., 2016) and Comparative Toxicoge-
nomics Database (CTD) (Davis et al., 2018). CTD
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contains two relation types: ‘marker/mechanism’
and ‘therapeutic’. We use both the entire CTD
dataset and the subset of therapeutic gene-disease
pairs which we refer to as CTD therapeutic.

The datasets above are first restricted to human
genes and then to the gene-disease pairs which ap-
pear in our corpus of sentences; this corpus con-
sists of sentences from PubMed articles which
have been restricted, for simplicity, to sentences
which contain just one gene-disease pair each.
With these restrictions in effect, the CTD dataset
has 8828 gene-disease pairs, CTD therapeutic has
169 pairs, and Disgenet has 33844 pairs.

6.2 Intrinsic evaluation results

In table 1, we report the pair-level metrics (see sec-
tion 5.1) for our three proposed workflows and a
baseline (see section 4). We also report the expert-
based metric M SP (see section 5.1) for the two
manual workflows. The CTD therapeutic dataset
was the most suitable dataset for this evaluation
because i) it is very relevant to crucial domains of
application such as drug discovery, and ii) its small
size makes it a good candidate for expansion. In
each session, the expert annotated 200 simplifica-
tions accompanied by 20 sentences. It took the
expert about 3 hours to annotate the first session,
which is a rapid way to generate thousands of new
pairs from scratch.

We find that our three main proposed workflows
(‘expert - with labels’, ‘expert - no labels’, and the
fully automated ‘no expert but labels’) all discover
a significant number of new gene-disease thera-
peutic pairs. As confirmed by both pair-level and
user-based metrics, incorporating the use of do-
main expert’s time and the use of labelled data re-
sults in higher precision at the expense of recall.

6.3 Extrinsic evaluation results

In table 2, we list the results of the downstream
knowledge base completion task for the fully auto-
mated workflow and the baseline. We compare the
performance of our knowledge base completion
model when trained with just the initial seed train-
ing data versus the seed training data augmented
with the new pairs discovered by our fully auto-
mated workflow (and baseline workflow).

The addition of new pairs from the fully auto-
mated workflow gives us a higher mean average
precision (mAP) than with just the seed dataset.
We obtain a higher precision (for the top 100 and
top 1000 predictions) while maintaining the same



Selection method MSP New pairs Recall Specificity Precision F-score
expert with labels 0.315 8875 0.286 0.976 0.923 0.436
expert - no labels 0.265 9560 0.250 0.975 0.908 0.392
no expert but labels - 30006 0.679 0.920 0.894 0.772
no expert - no label (baseline) - 59913 0.774 0.842 0.830 0.801

Table 1: Intrinsic evaluation results for the main experiments on the CTD therapeutic dataset. This was carried out
with a train/valid/test split of 0.4/0.1/0.5, and precision threshold of 0.6 for the ‘expert with labels’ and ‘no expert
but labels’ workflows. MSP is our “manual simplification precision” metric. The precision and F-scores reported

here are normalised as described in the section 4.2.

level of recall. For the baseline workflow, m AP
is higher but with lower precision (for the top 100
and 1000 predictions respectively).

7 Top simplifications

In table 3, we show the simplifications with the
highest count of Disease-Gene pairs in our whole
corpus (after the sentence filtering), which have
been annotated by the expert as “Yes” or “No”,
for the CTD therapeutic dataset. While “Yes” and
“No” patterns look similar, we can clearly see dif-
ferences in language. The “No” annotations look
unspecific while the “Yes” ones express the target
has a therapeutic effect on the disease.

8 Further experiments

We performed several other experiments using our
fully automated workflow to evaluate the quality
of the new pairs discovered as we varied our ex-
periment parameters.

We consider three dimensions of variation:
varying the precision threshold for selecting sim-
plifications, varying the size of the seed training
set, and varying the expressiveness of the sim-
plification (for example, by including the SEN-
TENCE_ROOT or restricting to simplifications with
at least a specified number of words).

The intrinsic evaluation results for these exper-
iments are listed in tables 4, 5, and 6. In all cases,
as we make our system more selective either by
raising the precision threshold, by starting with
fewer seeds pairs, or by restricting to more infor-
mative simplifications, we unsurprisingly obtain
higher precision at the expense of lower recall.

The extrinsic evaluation framework is less sen-
sitive to these changes but improvements were ob-
served (without any noticeable trend) for all these
parameter changes.
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9 Conclusions and further work

We have presented a simple and effective method
for knowledge base construction when the desired
relational data are scarce or absent. We have
demonstrated its effectiveness via i) classification
metrics on a held-out test set, ii) human evalua-
tion and iii) performance on a downstream knowl-
edge base completion task. We further show that
in the presence of a small set of data, it is possi-
ble to control the quality of the pairs discovered,
by introducing stricter precision thresholds when
ranking patterns. Our method could in principle
be extended in order to: 1) handle higher-order
(e.g. ternary) relations between tuples, as opposed
to pairs (for instance using dependency subgraphs
that connect more than two entities cooccurring in
a sentence), 2) discover explicit negative examples
of a binary relation instead of simply positive ex-
amples, 3) train sentence-level relation extraction
systems, 4) collect and utilise continuous, rather
than discrete annotations for each pattern (e.g. an-
notators could indicate the percentage of correct
example sentences that correspond to a pattern
displayed) as part of a more sophisticated active
learning strategy, 5) extract patterns from a seman-
tic representation (Banarescu et al., 2013) and, fi-
nally, 6) map patterns to a vector space using a
distributional representation (e.g. defined by their
neighbouring words in sentences) and cluster them
for an optimal balance between expressive power
and coverage.
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Selection method New pairs MAP Precision Recall
seed dataset only - 0.0414  0.0179/0.0179 1.0/1.0
no expert but labels 30006 0.0545 0.0192/0.0192 1.0/1.0
no expert - no label (baseline) 59913 0.1885 0.01/0.0015 0.6019 /0.9208

Table 2: Extrinsic evaluation results for the CTD therapeutic dataset. The experiment parameters are the same as
those given in table 1. Precision figures are given as ‘top 100/ top 1000’ and similarly for recall.

Pairs “Yes” simplif. |Pairs “No” simplif.
3345 role of GENE in DISEASE | 6629 GENE DISEASE
839 GENE plays in DISEASE | 4110 DISEASE GENE
648 GENE involved in DISEASE | 3350 GENE and DISEASE
321 GENE target in DISEASE | 2370 GENE in DISEASE
318 GENE target for DISEASE | 2333 DISEASE and GENE
289 GENE mice develop DISEASE 1228 GENE DISEASE cells
279 DISEASE caused by mutations 904 DISEASE of GENE
in GENE 879 DISEASE in GENE

276 GENE gene for DISEASE 638 DISEASE in GENE mice
273 role of GENE in development 572 role for GENE in
of DISEASE DISEASE

237 GENE promotes DISEASE 528 GENE in DISEASE

patients
Table 3: Top 10 simplifications for CTD Therapeutic
annotated “Yes” (left) and “No” (right) by the expert.

Dataset Thres.| New pairs R S P F
CTD 0.8 29592 0.297 0918 0.783 0.430
CTD 04 50329 0.379 0.863 0.735 0.500

DG 0.8 17441 0.180 0.947 0.773 0.292
DG 0.4 45446 0.314 0.867 0.703 0.434

Table 4: Intrinsic evaluation results (Recall, Specificity,
Precision and F-score) on CTD and DisGeNET (DG)
as we vary the precision threshold for the ‘no expert
but labels’ workflow. Experiments are done with a
train/valid/test split of 0.8/0.1/0.1 and we restrict to
simplifications with at least 5 words to ensure that they
are reasonably expressive.
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Abstract

We report the work-in-progress of collecting
MedLexSp, an unified medical lexicon for
the Spanish language, featuring terms and in-
flected word forms mapped to Unified Medical
Language System (UMLS) Concept Unique
Identifiers (CUIs), semantic types and groups.
First, we leveraged a list of term lemmas and
forms from a previous project, and mapped
them to UMLS terms and CUIs. To en-
rich the lexicon, we used both domain-corpora
(e.g. Summaries of Product Characteristics
and MedlinePlus) and natural language pro-
cessing techniques such as string distance
methods or generation of syntactic variants of
multi-word terms. We also added term vari-
ants by mapping their CUIs to missing items
available in the Spanish versions of standard
thesauri (e.g. Medical Subject Headings and
World Health Organization Adverse Drug Re-
actions terminology). We enhanced the vo-
cabulary coverage by gathering missing terms
from resources such as the Anatomical Thera-
peutical Classification, the National Cancer In-
stitute (NCI) Dictionary of Cancer Terms, Or-
phaData, or the Nomenclétor de Prescripcion
for drug names. Part-of-Speech information
is being included in the lexicon, and the cur-
rent version amounts up to 76 454 lemmas and
203 043 inflected forms (including conjugated
verbs, number and gender variants), corre-
sponding to 30 647 UMLS CUIs. MedLexSp
is distributed freely for research purposes.

1 Introduction

Current machine-learning and deep-learning-
based methods are data-intensive; however, in do-
mains such as Medicine, sufficient data are not al-
ways available—due to ethical concerns or privacy
issues, especially when dealing with Patient Pro-
tected Information. Moreover, some tasks demand
high precision outcomes, which either need super-
vised approaches with annotated data or hybrid

152

methods (e.g. rule-based and dictionary-based).
In order to overcome the data bottleneck, richly-
structured terminological thesauri enhance the an-
notation and concept normalization of domain cor-
pora to be used subsequently in supervised mod-
els. More importantly, to achieve comparable
benchmarks, domain resources should integrate
standard terminologies and coding schemes.

In this context, we aim at providing a computa-
tional lexicon to be used in the pre-processing of
text data used in more complex Natural Language
Processing (NLP) tasks. The work here presented
reports the first steps towards building the Medi-
cal Lexicon for Spanish (MedLexSp). MedLexSp
is conceived as an unified resource with linguis-
tic information (lemmas, inflected forms and part-
of-speech), concepts mapped to Unified Medical
Language System® (hereafter, UMLS) (Boden-
reider, 2004) Concept Unique Identifiers (CUIs),
and semantic information (UMLS types and
groups). Figure 1 is a sample of the lexicon.
MedLexSp is firstly aimed at named entity recog-
nition (NER), and it can be used in the pre-
annotation step of an NER pipeline. It can also
help lemmatization and feed general-purpose Part-
of-Speech taggers applied to medical texts—as
done in previous works (Oronoz et al., 2013).! Be-
cause it gathers semantic data of terms, it can ease
relation extraction tasks.

Our work makes several contributions. We
provide a resource to be distributed for research
purposes in the BioNLP community. MedLexSp
includes inflected forms (singular/plural, mascu-
line/feminine) and conjugated verb forms of term
lemmas, which are mapped to UMLS Concept
Unique Identifiers. Verb terms are also mapped
to Concept Unique Identifiers; this is the line of
current works for expanding terminologies by in-

"https://zenodo.org/record/2621286
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C0007102|céancer coldnico|cancer coldnico; canceres colénicos|N|Neoplastic Process|DISO

C0007102|céncer de colon|cancer de colon; cancer del colon; cédnceres de colon; canceres del colon|N|Neoplastic Process|DISO
C0007102|neoplasia maligna de colon|neoplasia maligna de colon; neoplasias malignas de colon|N|Neoplastic Process|DISO

C0007102|tumor maligno del colon|tumor maligno del colon; tumores malignos del colon|N|Neoplastic Process|DISO
C0018787|cardiaco|cardiaca; cardiacas; cardiaco; cardiacos; cardiaca; cardiacas; cardiaco; cardiacos|AD]|Body Part, Organ, or Organ Component|ANAT
C0018787|corazén|corazén; corazones|N|Body Part, Organ, or Organ Component|ANAT

C0018787|cardio-|card-; cardi-; cardia-; cardio-; cardid-; cardi-; cardio-; cardi-; cardio-|AFF|Body Part, Organ, or Organ Component|ANAT
C0023884 | hepatico|hepatico; hepaticos; hepatica; hepaticas|AD]|Body Part, Organ, or Organ Component|ANAT

C0023884|higado|higado; higados|N|Body Part, Organ, or Organ Component|ANAT

C0346647|cancer de pancreas|cancer de pancreas; cancer del pancreas; canceres del pancreas; canceres de pancreas|N|Neoplastic Process|DISO
C0346647|cancer pancreatico|cancer pancreatico; canceres pancreaticos|N|Neoplastic Process|DISO

Figure 1: Sample of the MedLexSp lexicon. In each entry, field 1 is the UMLS CUI of the entity; field 2, the lemma;
field 3, the variant forms; field 4, the Part-of-Speech; field 5, the semantic types(s); and field 6, the semantic group.

cluding verb terms (Thompson et al., 2011; Chiu
et al., 2019). We also added inflected terms
from MedlinePlus terms, OrphaData (INSERM,
2019), the National Cancer Institute (NCI) Dic-
tionary of Cancer Terms, or the Nomenclator de
prescripcion (AEMPS, 2019), a knowledge base
of medical drugs prescribed in Spain.

Section 2 gives an overview of medical thesauri,
and Section 3 describes the methods used to gather
terms (both corpora and NLP techniques), map
them to UMLS CUIs, and enrich the lexicon. Sec-
tion 4 reports descriptive statistics of the current
version, and Section 5, the results of an evaluation
conducted during development. We discuss some
limitations and conclude in Section 6.

2 Background and Context

2.1 Health thesauri and taxonomies

Medical thesauri and controlled vocabularies ag-
gregate listings of domain terms, and also gather
information about the type of term (e.g. syn-
onym or preferred term), a semantic descriptor
(e.g. DRUG or FINDING), an unique concept iden-
tifier, and very often a term definition or hier-
archical relations between concepts (e.g. IS_A).
Thesauri are essential for indexing and populating
databases, domain-specific information retrieval,
and standardized codification (Cimino, 1996).
Medical thesauri vary according to the applica-
tion (we only give examples related to our work).
The Systematized Nomenclature of Medicine
Clinical Terms (SNOMED-CT) (Donnelly, 2006)
aims at encoding verbatim mentions in clinical
texts, and gathers ontological relations between
concepts. To report drug reactions in pharma-
covigilance, the World Health Organization cre-
ated the Adverse Reactions Terminology (WHO
ART), although the Medical Dictionary for Regu-
latory Activities (MedDRA) (Brown et al., 1999)
is now preferred. The Medical Subject Headings
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(MeSH) are developed by the National Library of
Medicine for indexing biomedical articles. Lastly,
the World Organization of Family Doctors pro-
duced the International Classification of Primary
Care (ICPC) to classify data aimed at family and
primary care physicians (WONCA, 1998).

Medical taxonomies or classifications gather es-
sential domain knowledge.Some examples are the
International Classification of Diseases vs. 10
(ICD-10) (WHO, 2004), or the Anatomical Thera-
peutical Chemical (ATC) classification of pharma-
cological substances (WHO, 2019).

2.2 Medical Lexicons

Medical lexicons provide a structured represen-
tation of terms and their linguistic information
(lemmas, inflection, or surface variants); hence,
they are essential for NLP tasks. Unlike medi-
cal thesauri or classifications, they do not register
term hierarchies, classifications nor ontological re-
lations, but they can encode semantic information
and, occasionally, argument structure and corpus-
based frequency data (Thompson et al., 2011).

Initiatives to collect medical lexicons have been
conducted for English (McCray et al., 1994; John-
son, 1999; Davis et al., 2012), German (Weske-
Heck et al., 2002), French (Zweigenbaum et al.,
2005) or Swedish, even in multilingual initia-
tives (Marko et al., 2006). For Spanish, some ef-
forts were sparked when a team at the National
Library of Medicine (Divita et al., 2007) started
to build an equivalent of the MetaMap tool (Aron-
son, 2001). Other teams conducted experiments to
automate the creation of a Spanish MetaMap by
applying machine translation and domain ontolo-
gies (Carrero et al., 2008). These initiatives, to the
best of our knowledge, did not achieve a Spanish
lexicon available for medical NLP.

Besides medical lexicons, domain-specific vo-
cabularies were collected for Biology (Thompson



etal., 2011). With a different perspective and goal,
Consumer Health Vocabularies have been col-
lected to bridge the gap between patients’ expres-
sions and healthcare professionals’ jargon (Zeng
and Tse, 2006; Keselman et al., 2007).

2.3 The Unified Medical Language System

The Unified Medical Language System®
(UMLS) (Bodenreider, 2004) MetaThesaurus
includes thesauri. The version we used (2018AB)
gathers 210 sources and over 3.82 millions of
concepts in 23 languages. Synonym terms are
encoded with Concept Unique Identifiers (CUIs);
and concepts are assigned a semantic type and
group (McCray et al., 2001).

24

We will restrict us here to a shallow overview of
approaches and will not consider taxonomy nor
ontology building. Methods for widening medi-
cal vocabularies range from generating syntactic-
level variants of multi-word terms (Jacquemin,
1999), inferring derivation rules from string sim-
ilarity matches and morphological relations be-
tween derivational variants (Grabar and Zweigen-
baum, 2000), gathering inflected variants semi-
automatically (Cartoni and Zweigenbaum, 2010),
or deriving terms from corpora (more below).

Graeco-Latin components are very productive
for coining medical terms; thus, several BioNLP
systems integrate morphology-based lexical re-
sources. For example, for decomposing terms
morphosemantically and deriving their defini-
tions (Namer and Zweigenbaum, 2004), or map-
ping queries to concepts and indexing documents
in cross-lingual information retrieval, based on a
subword-based morpheme thesaurus (Marko et al.,
2005). In this line, generating paraphrase equiv-
alents of neoclassical compounds (e.g. thyrome-
galia — enlarged thyroid) is an approach with po-
tential for deriving new terms, and concept nor-
malization systems (Thompson and Ananiadou,
2018) already implement it. Because string simi-
larity measures and edit distance patterns are used
for normalization—e.g (Tsuruoka et al., 2007;
Kate, 2015)—and terminology mapping (Dziadek
et al., 2017), these approaches are also powerful
for expanding medical lexicons from a set of ref-
erence terms. Decomposition of multi-word terms
and synonym expansion of their components are
also alternative strategies applied in normalization
systems (Tseytlin et al., 2016).

Methods for Creating Medical Lexicons
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Corpus-derived medical terminology construc-
tion requires collecting domain texts and applying
term extraction methods, among others: comput-
ing graphs of relations between parse trees and
word dependency similarities (Nazarenko et al.,
2001), using parallel corpora to map cognates or
aligned words (Sbrissia et al., 2004; Deléger et al.,
2009), linking terms or abbreviations to their def-
initions or expanded word forms in the text where
they occur (Yu and Agichtein, 2003; McCrae and
Collier, 2008), using dictionary features to iden-
tify polysemy (Pezik et al., 2008), combining
text mining techniques with databases (Thomp-
son et al., 2011), or having experts review terms,
a method which has been used to build disease-
specific vocabularies (Wang et al., 2016).

Approaches based on the Firthian Distribu-
tional hypothesis exploit distributional similarity
metrics (Carroll et al., 2012). Among them, more
recent distributional semantics methods represent
terms in the vector space, or calculate word-
embeddings to compute similarity measures be-
tween vectors, thus allowing the unsupervised ex-
pansion of domain terms (Pyysalo et al., 2013;
Skeppstedt et al., 2013; Henriksson et al., 2014;
Wang et al., 2015; Ahltorp et al., 2016; Segura-
Bedmar and Martinez, 2017) or concept normal-
ization (Limsopatham and Collier, 2016).

Lastly, to develop Consumer Health Vocabular-
ies (CHV), a variety of techniques have been used:
analysis by experts of Medline queries (Zeng
and Tse, 2006), term recognition methods and
collaborative review of user logs in medical
sites (Zeng et al., 2007), hybrid methods com-
bining n-grams extraction, the C-value, and dic-
tionary look-up (Doing-Harris and Zeng-Treitler,
2011), co-occurrence analysis of terms and seed
words (Jiang and Yang, 2013), or approaches
based of similarity measures between CHV lexi-
cons and reference lexicons (Seedorff et al., 2013).

3 Methods

Figure 2 depicts the methods used to collect the
MedLexSp lexicon. In a first step (left part of Fig-
ure 2), we leveraged the lemmas and word forms
obtained from a Spanish medical lexicon, mostly
corpus-derived; we will refer to it as the base list.
We only used the subset of lemmas and forms that
could be mapped authomatically to UMLS CUIs
(exact string match). In a second step, we added
missing variants of terms using different methods:



{ Affixes / Roots

Lexicon (lemmas + forms)

calcemia, calcemias
endoneural, endoneurales

Terms mapped to UMLS CUIs 1

aneurisma, aneurismas (C0002940)
corazon (C0018787)
eccema, eccemas (C0013595)
tos (C0010200)

(C0018787)

mmmmgemmmmm-

| Abbreviations / acronyms

aneurisma abdominal aértico
«— AAA (C0162871)

NCI

Nomenclator

! 1
i cardio- <> corazoén i

! o tos (C0010200) !

MedLexSp

' Missing variants gathered from thesauri / corpus

eccema « dermatitis eccematosa (C0013595)

T S Y e ——
SNOMED CT

Conjugated Syntactic variants
verbs , o i
| aneurisma aortico abdominal !
toser, tose... |1« aneurisma abdominal aértico !

(C0162871)

Derivational variants

aneurisma < aneurismatico
(C0002940)

i Variants matched
. with string distance

eccema < eczema
(C0013595)

5

Domain texts
MedlinePlus

Figure 2: Methods to collect the MedLexSp lexicon.

Testing string distance metrics to match
terms in the base list to variants that re-
mained unmatched: e.g. eccema <+ eczema

(Ceczema’, C0013595).

Incorporating derivational variants to the
base list: e.g. aneurisma (‘aneurysm’) <>
aneurismdtico (‘aneurysmatic’, C0002940).

Including conjugated verbs corresponding
to the noun terms with CUIs selected in the
base list: e.g. fos (‘cough’, C0010200) —
toser, tosiendo... (‘to cough’, ‘coughing’...).

Matching affixes and roots to those terms in
the base list with CUIs: e.g. corazon (‘heart,
C0018787) — cardio- (‘cardio-").

Adding syntactic variants of the multi-word
terms in the base list: e.g. aneurisma adrtico
abdominal (‘aortic abdominal aneurysm’) <>
aneurisma abdominal adrtico (‘abdominal
aortic aneurysm’, C0162871).

Adding acronyms and abbreviations of
the terms included in the base list: e.g.
aneurisma abdominal adrtico (‘abdominal
aortic aneurysm’, C0162871) — AAA.

Extending the base list by mapping the
CUIs of the terms in the subset to gather
missing variants of synonymous terms:
e.g. eccema (‘eczema’, C0013595) <+ der-
matitis eccematosa (‘eczematous dermatitis’,
C0013595). We considered several sources
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from the UMLS—e.g. Spanish Medical Sub-
ject Headings (MeSH), SNOMED CT or
the WHO ART terminology—and external
sources such as the Anatomical Therapeu-
tical Classification, the National Cancer In-
stitute (NCI) Dictionary of Cancer Terms,’
the Nomenclator de prescripcion (AEMPS,
2019), OrphaData (INSERM, 2019), or
the Spanish Drug Effect database (SD-
Edb) (Segura-Bedmar et al., 2015).

Including subsets of missing terms from
thesauri if attested in domain texts. And
vice versa, extracting corpus-derived terms
from domain texts: synonymous terms from
MedlinePlus,? and terms from Summaries of
Product Characteristics (Segura-Bedmar and
Martinez, 2017).

The next subsections explain each method.

3.1 Leveraging an Inflected Lexicon

We started using a list of medical terms col-
lected in a previous project on Spanish med-
ical terminology;* we will refer to it as the
base list. We collected this resource by com-
bining different methods (Moreno Sandoval and
Campillos Llanos, 2015) applied on a corpus
of 4204 Spanish medical texts (around 4 mil-
lion tokens) (Moreno-Sandoval and Campillos-
Llanos, 2013). To extract candidate medical
https://www.cancer.gov/espanol/
publicaciones/diccionario

*https://medlineplus.gov/spanish/
*http://labda.inf.uc3m.es/multimedica/



terms for the base list, we combined rule-based
techniques (Part-of-Speech tagging and filtering
through medical affixes), corpus-based methods
(comparing word forms from a general corpus and
from the domain corpus), and statistical methods,
namely the Log-Likelihood ratio (Dunning, 1993).
We checked in medical sources—e.g. the dictio-
nary published by the Spanish Royal Academy of
Medicine (RANME, 2011)—the terms selected by
means of those three methods, before being in-
cluded in the list. This base list was used to build
an automatic term extractor (Campillos Llanos
et al., 2013), and amounted to 38 354 entries.

Because one of the goals of MedLexSp is
concept normalization by using standard domain
terminologies, we did not include the full base
list. We only used terms that could be assigned
UMLS Concept Unique Identifiers (CUIs) in the
UMLS MetaThesaurus version 2018AB, namely
from those terminologies of special biomedical or
clinical interest (e.g. SNOMED CT, WHO ART or
Medical Subject Headings) with available Span-
ish translations. We mapped 18 263 lemmas to
CUIs, which means 47.61% entries of the original
lexicon. CUIs were assigned according to an ex-
act match criterion. For example, donacion (‘do-
nation’) is not matched with donacion de tejido
(“Tissue Donation’, C0080231), because the latter
makes reference to a donation subtype. Note that
the current version of MedLexSp does not include
the full list of terms from MeSH or SNOMED CT,
but only those which were originally mapped from
the base list to UMLS terms with CUIs.

3.2 Enriching the Lexicon

String distance metrics We tested mapping
terms from the subset of entities with CUIs to
terms in the UMLS by applying distance met-
rics (Levenshtein, 1966) of less than 2. This al-
lowed us mapping hyphenated variants to terms
without hyphen (e.g. creatina-cinasa <> creatina
cinasa, ‘creatine kinase’, C0010287), compound
terms that are often written as single-words (dietil
éter < dietiléter, ‘diethyl ether’, C0014994), or
matching terms with minimal morphological vari-
ation (eccema <> eczema, ‘eczema’, C0013595).
A total of 1463 terms with CUIs were matched to
the original base list.

Derivational variants In line with previous
work (Grabar and Zweigenbaum, 2000), we col-
lected a list of equivalent derivational variants of
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terms. Using this list, we assigned a CUI to the
corresponding derivational variant: e.g. the CUI
of pdncreas (C0030274) was also ascribed to pan-
credtico (‘pancreatic’). The current version gath-
ers a total of 801 derivational variants with CUIs.

Conjugated verbs Most terms in the UMLS
or standard terminologies are noun or adjective
phrases. This limits the named entity recogni-
tion of medical concepts expressed with verbs in
free text; given a context such as el paciente tose
(‘the patient coughs’), the concept of ‘coughing’
would not be identified. To widen the scope of
concept normalization, verb terms were mapped
to CUIs from derived nouns: e.g. fos (‘cough-
ing’, C0010200) — toser (‘to cough’, C0010200).
We again used a list of correspondences between
verbs and deverbal nouns. We included the conju-
gated forms of verb lemmas in each verb entry of
the lexicon. We used a python script that relies
on the lexicon of a Spanish Part-of-Speech tag-
ger (Moreno Sandoval and Guirao, 2006) to gener-
ate all conjugated forms of verb terms: e.g. toser
(‘to cough’) — tose (‘he/she coughs’), tosiendo
(‘coughing’), etc. The current version includes a
total of 295 single- or multi-word verb items.

Affixes and lexical roots In a first step, we
collected affixes and roots from several sources.
Firstly, we leveraged a list used in a previous ex-
periment (Sandoval et al., 2013). This list amounts
to 1719 forms and considers morphological vari-
ants of affixes (e.g. prefix cardio- may have ac-
cented variant forms in Spanish, such as cardio-).
Secondly, we translated to Spanish several affixes
and roots from the Specialist Lexicon® (McCray
et al., 1994) and then added variant forms. In a
second step, we assigned UMLS CUIs to affixes
and roots in the list. The current list gathers a total
of 161 entries (82 prefixes and 79 suffixes) with
134 different CUIs and 386 variant forms. Note
that many affixes and roots were not included be-
cause they are too underspecified to be assigned to
a CUI, or are not restricted to the medical domain
(e.g. kilo- expresses a quantitative concept).

Abbreviations and acronyms Firstly, we gath-
ered a list of equivalences between full forms
and abbreviations and acronyms; we used three
sources: 1) the collection of Spanish abbre-
viations and acronyms used in hospitals, col-
lected by medical doctors (Yetano and Alberola,
2003); 2) abbreviations and acronyms used in



the 2nd IberEval Challenge 2018 on Biomedi-
cal Abbreviation Recognition and Resolution (In-
txaurrondo et al., 2018); and 3) Spanish abbre-
viations and acronyms from Wikipedia.> Sec-
ondly, we matched the resulting list of equivalent
terms (acronyms and full forms) to UMLS terms,
adding the corresponding CUIs to those miss-
ing acronyms. For example, the full term virus
de Epstein-Barr (‘Epstein-Barr virus’) has CUI
C0014644, and we also assigned this code to the
corresponding acronym in Spanish (VEB). With
this method, we assigned CUIs to 1225 items.

Syntactic variants of terms To widen the cov-
erage of terms mapped to CUIs, we generated
variants of multiword entities by swapping the
word order of their components. Then, we tried
to match each new variant to entities with CUISs.
For example, aneurisma adrtico abdominal (‘aor-
tic abdominal aneurysm’) has CUI C0162871, and
we assigned the same CUI to the generated variant
aneurisma abdominal adrtico (‘abdominal aortic
aneurysm’). With this method, we gathered a total
of 154 variants of terms with CUIs in the base list.

Mapping UMLS term variants through CUIs
We gathered synonymous variants referring to
each corresponding concept by using the UMLS
CUIs from the terms included in the base list. To
avoid including noisy terms adequate for biomedi-
cal natural language processing, we first cleaned
the terms from the terminologies we used. To
do so, we applied methods for cleaning term
strings (Aronson et al., 2008; Hettne et al., 2010;
Névéol et al., 2012; Hellrich et al., 2015). We
deleted paraphrastic terms that include a descrip-
tion or specification of the entity type in the
term string. These terms commonly come from
Spanish SNOMED CT. For example, we deleted
tos (hallazgo), ‘cough (finding)’ (CUI C0010200)
and kept the term (cough, ‘cough’). Likewise,
we removed most anatomic terms beginning with
estructura de (‘structure of’): e.g. regarding
term estructura del ojo (‘structure of eyeball’,
C0015392), we only kept the synonym ojo (‘eye-
ball’). Lastly, terms in the WHO ART terminol-
ogy needed to be accented and reversed regarding
word order: e.g. disociativa, reaccion — reaccion
disociativa (’dissociative reaction’, C0012746).
We also applied an exact-match mapping of

Shttps://es.wikipedia.org/wiki/Anexo:
Acrnimos_en_medicina
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Spanish terms from the base list to the English
component of the UMLS. This method allowed
us to obtain the CUIs of terms unavailable in
Spanish terminologies, which remain unchanged
in the Spanish language. Namely, Latin scien-
tific names (e.g. Campylobacter fetus, C0006814),
compound terms with Graeco-Latin roots (e.g. ab-
dominalgia, C0000737), English acronyms that
are broadly used in the medical discourse with-
out Spanish translation (e.g. GABA, ‘gamma-
aminobutyric acid’, C0016904), or international
brand drug names (e.g. abilify~). In these cases,
the same word is used in both English and Spanish.
We manually revised the list of mapped terms to
discard homonymous terms with a different mean-
ing in English (e.g. TIP® is a brand name of a
medical drug, but it also means ‘point’ or ‘sugges-
tion’ in English).

We extended the list of terms by extracting
the information related to rare diseases from
OrphaData (INSERM, 2019). We also added
terms of pharmacological substances and inter-
national non-proprietary names from the Spanish
Drug Effect database (SDEdb) (Segura-Bedmar
et al, 2015) and the Nomenclator de pre-
scripcion (AEMPS, 2019), a resource published
and updated regularly by the Spanish Agency of
Drugs and Food Products.”

For all these procedures and sources, we applied
semiautomatic methods to generate the singular
and plural inflected forms of the missing terms that
were mapped through CUIs. We used the Pattern
python library (Smedt and Daelemans, 2012) to
create plural forms of terms, which were revised
manually before being included in MedLexSp.

Corpus-derived terms When we started adding
variant terms from thesauri, the question of where
to stop adding terms came up. In the first version,
we decided not to include all terms available in
MeSH or SNOMED CT t