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Welcome to SemEval-2015

The Semantic Evaluation (SemEval) series of workshops focuses on the evaluation and comparison
of systems that can analyse diverse semantic phenomena in text with the aim of extending the
current state of the art in semantic analysis and creating high quality annotated datasets in a range of
increasingly challenging problems in natural language semantics. SemEval provides an exciting forum
for researchers to propose challenging research problems in semantics and to build systems/techniques
to address such research problems.

SemEval-2015 is the ninth workshop in the series of International Workshops on Semantic Evaluation
Exercises. The first three workshops, SensEval-1 (1998), SensEval-2 (2001), and SensEval-3 (2004),
focused on word sense disambiguation, each time growing in the number of languages offered, in the
number of tasks, and also in the number of participating teams. In 2007, the workshop was renamed
to SemEval, and in the following five SemEval workshops (2007-2014) the nature of the tasks evolved
to include semantic analysis tasks beyond word sense disambiguation. In 2012, SemEval turned into
a yearly event. It currently runs every year, but on a two-year cycle, i.e., the tasks for SemEval-2015
were proposed in 2014.

SemEval-2015 was co-located with the 2015 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (NAACL-HLT’2015) in
Denver, Colorado. It included the following 17 shared tasks' organized in five tracks:

o Text Similarity and Question Answering TRACK

— Task 1: Paraphrase and Semantic Similarity in Twitter
— Task 2: Semantic Textual Similarity

— Task 3: Answer Selection in Community Question Answering

o Time and Space TRACK

Task 4: TimeLine: Cross-Document Event Ordering
Task 5: QA TempEval

Task 6: Clinical TempEval

Task 7: Diachronic Text Evaluation

Task 8: SpaceEval

e Sentiment TRACK

— Task 9: CLIPEval Implicit Polarity of Events
— Task 10: Sentiment Analysis in Twitter
— Task 11: Sentiment Analysis of Figurative Language in Twitter

— Task 12: Aspect Based Sentiment Analysis

'Task 16 was cancelled after acceptance, but we kept the original numbering
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o Word Sense Disambiguation and Induction TRACK

— Task 13: Multilingual All-Words Sense Disambiguation and Entity Linking
— Task 14: Analysis of Clinical Text
— Task 15: A CPA Dictionary-Entry-Building Task

o Learning Semantic Relations TRACK

— Task 17: Taxonomy Extraction Evaluation

— Task 18: Semantic Dependency Parsing

This volume contains both Task Description papers that describe each of the above tasks and System
Description papers that describe the systems that participated in the above tasks. A total of 17 task
description papers and 145 system description papers are included in this volume.

We are grateful to all task organisers (who organised 17 tasks!) and especially to the task participants
whose massive participation (there were about 200 teams who submitted about 600 runs!) has made
SemEval once again a successful event. We are thankful to those task organisers who also served as
area chairs, and to those task organisers and task participants who helped with reviewing papers by
their peers submitted to SemEval-2015: thanks for all the efforts, and for the high-quality, elaborate
and thoughtful reviews! The papers in this proceedings have surely benefited from this feedback. We
also thank the NAACL 2015 conference organizers for the local organization and the forum. Finally,
we most gratefully acknowledge the support of our sponsor, the ACL Special Interest Group on the
Lexicon (SIGLEX).

The SemEval-2015 organizers,
Daniel Cer, David Jurgens, Preslav Nakov and Torsten Zesch
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SemEval-2015 Task 1: Paraphrase and Semantic Similarity in Twitter (PIT)

Wei Xu and Chris Callison-Burch
University of Pennsylvania
Philadelphia, PA, USA

xwe, ccb@cis.upenn.edu

Abstract

In this shared task, we present evaluations
on two related tasks Paraphrase Identification
(PI) and Semantic Textual Similarity (SS) sys-
tems for the Twitter data. Given a pair of
sentences, participants are asked to produce
a binary yes/no judgement or a graded score
to measure their semantic equivalence. The
task features a newly constructed Twitter Para-
phrase Corpus that contains 18,762 sentence
pairs. A total of 19 teams participated, sub-
mitting 36 runs to the PI task and 26 runs to
the SS task. The evaluation shows encourag-
ing results and open challenges for future re-
search. The best systems scored a F1-measure
of 0.674 for the PI task and a Pearson corre-
lation of 0.619 for the SS task respectively,
comparing to a strong baseline using logis-
tic regression model of 0.589 F1 and 0.511
Pearson; while the best SS systems can of-
ten reach >0.80 Pearson on well-formed text.
This shared task also provides insights into the
relation between the PI and SS tasks and sug-
gests the importance to bringing these two re-
search areas together. We make all the data,
baseline systems and evaluation scripts pub-
licly available.'

1 Introduction

The ability to identify paraphrases, i.e. alternative
expressions of the same (or similar) meaning, and
the degree of their semantic similarity has proven
useful for a wide variety of natural language pro-
cessing applications (Madnani and Dorr, 2010). It

"http://www.cis.upenn.edu/-xwe/
semeval2015pit/

William B. Dolan
Microsoft Research
Redmond, WA, USA
billdol@microsoft.com

is particularly useful to overcome the challenge of
high redundancy in Twitter and the sparsity inherent
in their short texts (e.g. oscar nom’d doc < Oscar-
nominated documentary; somel shot a cop < some-
one shot a police). Emerging research shows para-
phrasing techniques applied to Twitter data can im-
prove tasks like first story detection (Petrovic et al.,
2012), information retrieval (Zanzotto et al., 2011)
and text normalization (Xu et al., 2013; Wang et al.,
2013).

Previously, many researchers have investigated
ways of automatically detecting paraphrases on
more formal texts, like newswire text. The ACL
Wiki? gives an excellent summary of the state-of-
the-art paraphrase identification techniques. These
can be categorized into supervised methods (Qiu
et al., 2006; Wan et al., 2006; Das and Smith, 2009;
Socher et al., 2011; Blacoe and Lapata, 2012; Mad-
nani et al., 2012; Ji and Eisenstein, 2013) and unsu-
pervised methods (Mihalcea et al., 2006; Rus et al.,
2008; Fernando and Stevenson, 2008; Islam and
Inkpen, 2007; Hassan and Mihalcea, 2011). A few
recent studies have highlighted the potential and
importance of developing paraphrase identification
(Zanzotto et al., 2011; Xu et al., 2013) and semantic
similarity techniques (Guo and Diab, 2012) specif-
ically for tweets. They also indicated that the very
informal language, especially the high degree of lex-
ical variation, used in social media has posed serious
challenges to both tasks.

http://aclweb.org/aclwiki/index.php?
title=Paraphrase_Identification_ (State_of_
the_art)
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Paraphrase? Sentence 1 Sentence 2
yes Ezekiel Ansah wearing 3D glasses wout | Wait Ezekiel ansah is wearing 3d movie
the lens glasses with the lenses knocked out
yes Marriage equality law passed in Rhode | Congrats to Rhode Island becoming the
Island 10th state to enact marriage equality
yes Aaaaaaaaand stephen curry is on fire What a incredible performance from
Stephen Curry
no Finally saw the Ciara body party video ciara s Body Party video is on point
no Now lazy to watch Manchester united vs | Early lead for Arsenal against Manch-
arsenal ester United
debatable That s the new Ciroc flavor Need a little taste of that new Ciroc
debatable sarah Palin at the IndyMia game Sarah Palin is at the game are you
pumped
Table 1: Representative examples from PIT-2015 Twitter Paraphrase Corpus
# Unique Sent || # Sent Pair || # Paraphrase | # Non-Paraphrase | # Debatable
Train 13231 13063 3996 (30.6%) 7534 (57.7%) 1533 (11.7%)
Dev 4772 4727 1470 (31.1%) 2672 (56.5%) 585 (12.4%)
Test 1295 972 175 (18.0%) 663 (68.2%) 134 (13.8%)

Table 2: Statistics of PIT-2015 Twitter Paraphrase Corpus. Debatable cases are those received a medium-score from
annotators. The percentage of paraphrases is lower in the test set because it was constructed without topic selection.

The SemEval-2015 shared task on Paraphrase and
Semantic Similarity In Twitter (PIT) uses a training
and development set of 17,790 sentence pairs and a
test set of 972 sentence pairs with paraphrase anno-
tations (see examples in Table 1) that is the same as
the Twitter Paraphrase Corpus we developed earlier
in (Xu, 2014) and (Xu et al., 2014). This PIT-2015
paraphrase dataset is distinct from the data used in
previous studies in many aspects: (i) it contains sen-
tences that are opinionated and colloquial, represent-
ing realistic informal language usage; (ii) it con-
tains paraphrases that are lexically diverse; and (iii)
it contains sentences that are lexically similar but se-
mantically dissimilar. It raises many interesting re-
search questions and could lead to a better under-
standing of our daily used language and how seman-
tics can be captured in such language. We believe
that such a common testbed will facilitate docking
of the different approaches for purposes of compari-
son, lead to a better understanding of how semantics
are conveyed in natural language, and help advance
other NLP techniques for noisy user-generated text
in the long run.

2 Task Description and Evaluation Metrics

The task has two sentence-level sub-tasks: a para-
phrase identification task and an optional semantic
textual similarity task. The two sub-tasks share the
same data but differ in annotation and evaluation.

Task A — Paraphrase Identification (PI)
Given two sentences, determine whether they
express the same or very similar meaning. Fol-
lowing the literature on paraphrase identifica-
tion, we evaluate system performance by the F-
1 score (harmonic mean of precision and recall)
against human judgements.

Task B — Semantic Textual Similarity (SS)

Given two sentences, determine a numerical
score between O (no relation) and 1 (semantic
equivalence) to indicate their semantic similar-
ity. Following the literature, the system outputs
are compared by Pearson correlation with hu-
man scores. We also compute the maximum
F-1 score over the precision-recall curve as an
additional data point.



3 Corpus

In this shared task, we use the Twitter Paraphrase
Corpus that we first presented in (Xu, 2014) and (Xu
et al., 2014). Table 2 shows the basic statistics of the
corpus. The sentences are preprocessed with tok-
enization,> POS and named entity tags.* The train-
ing and development set consists of 17,790 sentence
pairs posted between April 24th and May 3rd, 2013
from 500+ trending topics featured on Twitter (ex-
cluding hashtags). The training and development set
is a random split. Each sentence pair is annotated by
5 different crowdsourcing workers. For the test set,
we obtain both crowdsourced and expert labels on
972 sentence pairs from 20 randomly sampled Twit-
ter trending topics between May 13th and June 10th,
2013. We use expert labels in this SemEval eval-
uation. Our dataset is more realistic and balanced,
containing about 70% non-paraphrases vs. the 34%
non-paraphrases in the benchmark Microsoft Para-
phrase Corpus derived from news articles by Dolan
et al. (2004). As noted in (Das and Smith, 2009), the
lack of natural non-paraphrases in the MSR corpus
creates bias towards certain models.

4 Annotation

In this section, we describe our data collection and
annotation methodology. Since Twitter users are
free to talk about anything regarding any topic, a
random pair of sentences about the same topic has
a low chance of expressing the same meaning (em-
pirically, this is less than 8%). This causes two prob-
lems: a) it is expensive to obtain paraphrases via
manual annotation; b) non-expert annotators tend to
loosen the criteria and are more likely to make false
positive errors. To address these challenges, we de-
sign a simple annotation task and introduce two se-
lection mechanisms to select sentences which are
more likely to be paraphrases, while preserving di-
versity and representativeness.

3The tokenizer was developed by O’Connor et al. (2010):
https://github.com/brendano/tweetmotif

“The POS tagger was developed by Derczynski et al. (2013)
and the NER tagger was developed by Ritter et al. (2011):
https://github.com/aritter/twitter_nlp
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Figure 1: A heat-map showing overlap between ex-
pert and crowdsourcing annotation. The intensity along
the diagonal indicates good reliability of crowdsourcing
workers for this particular task; and the shift above the di-
agonal reflects the difference between the two annotation
schemas. For crowdsourcing (turk), the numbers indicate
how many annotators out of 5 picked the sentence pair as
paraphrases; 0,1 are considered non-paraphrases; 3,4,5
are paraphrases. For expert annotation, all 0,1,2 are non-
paraphrases; 4,5 are paraphrases. Medium-scored cases
(2 for crowdsourcing; 3 for expert annotation) are dis-
carded in the system evaluation of the PI sub-task.

4.1 Raw Data from Twitter

We crawl Twitter’s trending topics and their associ-
ated tweets using public APIs.> According to Twit-
ter, trends are determined by an algorithm which
identifies topics that are immediately popular, rather
than those that have been popular for longer periods
of time or which trend on a daily basis. We tokenize,
remove emoticons® and split tweet into sentences.

4.2 Task Design on Mechanical Turk

We show the annotator an original sentence, then
ask them to pick sentences with the same mean-
ing from 10 candidate sentences. The original and
candidate sentences are randomly sampled from the
same topic. For each such 1 vs. 10 question, we ob-
tain binary judgements from 5 different annotators,
paying each annotator $0.02 per question. On aver-
age, each question takes one annotator about 30 ~
45 seconds to answer.

SMore information about Twitter’s APIs: https://dev.
twitter.com/docs/api/l.1/overview

®We use the toolkit developed by O’Connor et al. (2010):
https://github.com/brendano/tweetmotif
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Figure 2: The proportion of paraphrases (percentage of positive votes from annotators) vary greatly across different
topics. Automatic filtering in Section 4.4 roughly doubles the paraphrase yield.

4.3 Annotation Quality

We remove problematic annotators by checking
their Cohen’s Kappa agreement (Artstein and Poe-
sio, 2008) with other annotators. We also compute
inter-annotator agreement with an expert annotator
on the test dataset of 972 sentence pairs. In the ex-
pert annotation, we adopt a 5-point Likert scale to
measure the degree of semantic similarity between
sentences, which is defined by Agirre et al. (2012)
as follows:

5: Completely equivalent, as they mean the same
thing;

4: Mostly equivalent, but some unimportant details
differ;

3: Roughly equivalent, but some important informa-
tion differs/missing.

2: Not equivalent, but share some details;

Not equivalent, but are on the same topic;

: On different topics.

O -

Although the two scales of expert and crowd-
sourcing annotation are defined differently, their
Pearson correlation coefficient reaches 0.735 (two-
tailed significance 0.001). Figure 1 shows a heat-
map representing the detailed overlap between the
two annotations. It suggests that the graded simi-
larity annotation task could be reduced to a binary
choice in a crowdsourcing setup. As for the binary
paraphrase judgements, the integrated judgement of

five crowdsourcing workers achieve a Fl-score of
0.823, precision of 0.752 and recall of 0.908 against
expert annotations.

4.4 Automatic Summarization Inspired
Sentence Filtering

We filter the sentences within each topic to se-
lect more probable paraphrases for annotation. Our
method is inspired by a typical problem in extractive
summarization, that the salient sentences are likely
redundant (paraphrases) and need to be removed
in the output summaries. We employ the scoring
method used in SumBasic (Nenkova and Vander-
wende, 2005; Vanderwende et al., 2007), a simple
but powerful summarization system, to find salient
sentences. For each topic, we compute the probabil-
ity of each word P(wj;) by simply dividing its fre-
quency by the total number of all words in all sen-
tences. Each sentence s is scored as the average of
the probabilities of the words in it, i.e.

: P(wi)
Salience(s) = Z _—

(M

We then rank the sentences and pick the original
sentence randomly from top 10% salient sentences
and candidate sentences from top 50% to present to
the annotators.

In a trial experiment of 20 topics, the filtering
technique double the yield of paraphrases from 152



to 329 out of 2000 sentence pairs over naive ran-
dom sampling (Figure 2 and Figure 3). We also use
PINC (Chen and Dolan, 2011) to measure the qual-
ity of paraphrases collected (Figure 4). PINC was
designed to measure n-gram dissimilarity between
two sentences, and in essence it is the inverse of
BLEU. In general, the cases with high PINC scores
include more complex and interesting rephrasings.

4.5 Topic Selection using Multi-Armed Bandits
(MAB) Algorithm

Another approach to increasing paraphrase yield is
to choose more appropriate topics. This is partic-
ularly important because the number of paraphrases
varies greatly from topic to topic and thus the chance
to encounter paraphrases during annotation (Fig-
ure 2). We treat this topic selection problem as a
variation of the Multi-Armed Bandit (MAB) prob-
lem (Robbins, 1985) and adapt a greedy algorithm,
the bounded e-first algorithm, of Tran-Thanh et al.
(2012) to accelerate our corpus construction.

Our strategy consists of two phases. In the first
exploration phase, we dedicate a fraction of the to-
tal budget, €, to explore randomly chosen arms of
each slot machine (trending topic on Twitter), each
m times. In the second exploitation phase, we sort
all topics according to their estimated proportion
of paraphrases, and sequentially annotate [(11:;)1]31
arms that have the highest estimated reward until
reaching the maximum [ = 10 annotations for any
topic to insure data diversity.

We tune the parameters m to be 1 and € to be be-
tween 0.35 ~ 0.55 through simulation experiments,
by artificially duplicating a small amount of real an-
notation data. We then apply this MAB algorithm
in the real-world. We explore 500 random topics
and then exploited 100 of them. The yield of para-
phrases rises to 688 out of 2000 sentence pairs by
using MAB and sentence filtering, a 4-fold increase
compared to only using random selection (Figure 3).

5 Baselines

We provide three baselines, including a random
baseline, a strong supervised baseline and a state-
of-the-art unsupervised system:

Random:
This baseline provides a randomized real num-

ber between [0, 1] for each test sentence pair as
semantic similarity score, and uses 0.5 as cutoff
for binary paraphrase identification output.

Logistic Regression:

This is a supervised logistic regression (LR)
baseline used by Das and Smith (2009). It uses
simple n-gram (also in stemmed form) overlap-
ping features but shows very competitive per-
formance on the MSR news paraphrase corpus.
It uses 0.5 as cutoff to create binary outputs for
the paraphrase identification task.

Weighted Matrix Factorization (WTMF):’

The third baseline is a state-of-the-art unsu-
pervised method developed by Guo and Diab
(2012). It is specially developed for short sen-
tences by modeling the semantic space of both
words that are present in and absent from the
sentences (Guo and Diab, 2012). The model
was learned from WordNet (Fellbaum, 2010),
OntoNotes (Hovy et al., 2006), Wiktionary, the
Brown corpus (Francis and Kucera, 1979). It
uses 0.5 as cutoff in the binary paraphrase iden-
tification task.

6 Systems and Results

A total of 18 teams participated in the PI task (re-
quired), 13 of which also submitted to the SS task
(optional). Every team submitted 2 runs except one
(up to 2 were are allowed).

6.1 Evaluation Results

Table 3 shows the evaluation results. We use the F1-
score and Pearson correlation as the primary eval-
uation metric for the PI and SS task respectively.
The results are very exciting that most systems out-
performed the two strong baselines we chose, while
still showing room for improvement towards the hu-
man upper-bound estimated by the crowdsourcing
worker’s performance.

6.2 Discussion

Most participants choose supervised methods, ex-
cept for MathLingBp who uses semi-supervised,

"The source code and data for WTMEF is available at:
http://www.cs.columbia.edu/~weiwei/code.
html
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Figure 3: Numbers of paraphrases collected by different
methods. The annotation efficiency (3,4,5 are regarded
as paraphrases) is significantly improved by the sentence
filtering and Multi-Armed Bandits (MAB) based topic
selection.

Columbia and Yamraj who use unsupervised meth-
ods. While the best performed systems are super-
vised, the best unsupervised system still outperforms
some supervised systems and the state-of-the-art un-
supervised baseline. About half of systems use word
embeddings and many use neural networks.

To out best knowledge, this is the first time to
have a large number of systems in an evaluation that
has the two related tasks — paraphrase identification
and semantic similarity, side by side for compari-
son. One interesting observation that comes out is
the performance of the same system on the two tasks
(“F1 vs. Pearson”) are not necessarily related. For
example, ASOBEK ranked 1st (out of 35 runs) and
18th (out of 25 runs) in the PI and SS tasks respec-
tively, RTM-DCU ranked 27th and 3rd, while the
MITRE system ranked 3nd and 1st place. Neither
“F1 vs. max-F1” nor “Pearson vs. maxF1” nor “F1
vs. Pearson” show a strong correlation. It implies
that (i) high-performance PI systems can be devel-
oped focusing on the binary classification problem
without focusing on the degree of similarity; (ii) it
is crucial to select the threshold to balance precision
and recall for the PI binary classification problem;
(iii) it is important for SS system to handle the de-
batable cases proporiately.

6.3 Participants’ Systems

There are in total 19 teams participated:
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Figure 4: PINC scores of paraphrases collected. The
higher the PINC, the more significant the rewording.
Our proposed annotation strategy quadruples paraphrase
yield, while not greatly reducing diversity as measured
by PINC.

AJ: This team utilizes TERp and BLEU - auto-
matic evaluation metrics for Machine Trans-
lation. The system uses a logistic regression
model and performs threshold selection.

AMRITACEN: This team uses Recursive Auto
Encoders (RAEs). The matrix generated for
the given input sentences is of variable size,
then converted to equal sized matrix using re-
peat matrix concept.

ASOBEK (Eyecioglu and Keller, 2015): This
team uses SVM classifier with simple lexical
word overlap and character n-grams features.

CDTDS (Karampatsis, 2015): This team uses
support vector regression trained only on the
training set using the numbers of positive votes
out of the 5 crowdsourcing annotations.

Columbia: This system maps each original sen-
tence to a low dimensional vector as Orthog-
onal Matrix Factorization (Guo et al., 2014),
and then computes similarity score based on the
low dimensional vectors.

Depth: This team uses neural network that learns
representation of sentences, then compute sim-
ilarity scores based on hidden vector represen-
tations between two sentences.

EBIQUITY (Satyapanich et al., 2015): This
team trains supervised SVM and logistic re-



Rank Paraphrase Identification (PI) Semantic Similarity (SS)

PI SS Team Run F1 Precision Recall Pearson maxF1 mPrec mRecall

Human Upperbound 0.823 0.752 0.908 | 0.735 —_— —_— —_—

1 ASOBEK 01_svckernel | 0.6741 0.680 0.669 | 0.475'% 0.616  0.732 0.531

8 | ASOBEK 02_linearsvm | 0.6722 0.682 0.663 | 0.504*  0.663  0.723 0.611

2 1 | MITRE 01_ikr 0.667° 0.569 0.806 | 0.619! 0.716  0.750 0.686

3 ECNU 02_nnfeats 0.662* 0.767 0.583 | —— S S -

4 FBK-HLT 01_voted 0.659° 0.685 0.634 | 0462'°  0.607  0.551 0.674

5 TKLBLIIR 02_gs0105 0.659° 0.645 0.674 | —— - S S

MITRE 02_bieber 0.6527 0.559 0.783 | 0.6122 0.724  0.753 0.697

6 HLTC-HKUST  02_run2 0.6527 0.574 0.754 | 0.545° 0.669  0.738 0.611

3 | HLTC-HKUST 01 _runl 0.651° 0.594 0.720 | 0.563° 0.676  0.697 0.657

ECNU 01_mlfeats 0.6431° 0.754 0.560 | —— - S S

7 4 | A 01 _first 0.62211 0.523 0.766 | 0.5277 0.642  0.571 0.731

8 5 | DEPTH 02_modelx23 | 0.619'2 0.652 0.589 | 0.518% 0.636  0.602 0.674

9 9 | CDTDS 01_simple 0.61313 0.547 0.697 | 0494'°  0.626  0.675 0.583

CDTDS 02_simplews | 0.612'* 0.542 0.703 | 0.491%¢ 0.624  0.589 0.663

DEPTH 01_modelh22 | 0.610*° 0.647 0.577 | 0.505'3 0.638  0.642 0.634

10 | FBK-HLT 02_multilayer | 0.6066 0.676 0.549 | 0480'7  0.604  0.504 0.754

10 ROB 01_all 0.601'7 0.519 0.714 | 0.5131° 0612 0721 0.531

11 EBIQUITY 01_run 0.59918 0.651 0.554 | —— S S S

TKLBLIIR 01_gsc054 0.590%° 0.461 0817 | — S - S

EBIQUITY 02_run 0.590*° 0.646 0.543 | — S S S

BASELINE logistic reg. | 0.589% 0.679 0.520 | 0.511''  0.601  0.674 0.543

12 11 | COLUMBIA 02_ormf o 0.58822 0.593 0.583 | 0.425%° 0599  0.623 0.577

13 12 | HASSY 01_train 0.571%3 0.449 0.783 | 0.405%2  0.645  0.657 0.634

14 RTM-DCU 01_PLSSVR | 0.562%* 0.859 0417 | 0.564* 0.678  0.649 0.709

COLUMBIA 01_ormf o 0.561%° 0.831 0423 | 0425%° 0599  0.623 0.577

HASSY 02_traindev 0.551%° 0.423 0.789 | 0.405%2 0.629  0.648 0.611

2 | RTM-DCU 02_SVR 0.540%7 0.883 0.389 | 0.570° 0.693  0.695 0.691

BASELINE WTMF o 0.53628 0.450 0.663 | 0.350% 0.587  0.570 0.606

6 | ROB 02_all 0.532%° 0.388 0.846 | 0.515° 0.616  0.685 0.560

7 | MATHLING 02_twimash ¢ | 0.515%0 0.364 0.880 | 0.511'! 0.650  0.648 0.651

15 MATHLING 0l_twiembo | 0.515%° 0.454 0.594 | 0.229%7  0.562  0.638 0.503

16 YAMRAT 01_google o | 0.49632 0.725 0.377 | 0.360%° 0542  0.502 0.589

17 STANFORD 01_vs 0.48033 0.800 0343 | — S S S

AJ 02 _second 04773 0.618 0389 | — S S S

13 | YAMRAIJ 02_lexical © 0.470% 0.677 0.360 | 0.363%*  0.511  0.508 0.514

late late | AMRITACEN  01_RAE 0.457 0.543 0.394 | 0.303 0457  0.543 0.394

18 WHUHJP 02_whuhjp 0.4253%6 0.299 0731 | — - — —

WHUHJP 01_whuhjp 0.387%7 0.275 0.651 | —— S S -

BASELINE random ¢ 0.266°8 0.192 0.434 | 0.017%8 0350  0.215 0.949

Table 3: Evaluation results. The first column presents the rank of each team in the two tasks based on each team’s best
system. The superscripts are the ranks of systems, ordered by F1 for Paraphrase Identification (PI) task and Pearson
for Semantic Similarity (SS) task. ¢ indicates unsupervised or semi-supervised system. In total, 19 teams participated
in the PI task, of which 14 teams also participated in the SS task. Note that although the two sub-tasks share the same
test set of 972 sentence pairs, the PI task ignores 134 debatable cases (received a medium-score from expert annotator)
and uses only 838 pairs (663 paraphrases and 175 non-paraphrases) in evaluation, while SS task uses all 972 pairs.
This causes that the F1-score in the PI task can be higher than the maximum F1-score in the SS task. Also note that
the F1-scores of the baselines in the PI task are higher than reported in the Table 2 of (Xu et al., 2014), because the
later reported maximum F1-scores on the PI task, ignoring the debatable cases.



gression models using features of semantic
similarities between sentence pairs.

ECNU (Zhao and Lan, 2015): This team adopts
typical machine learning classifiers and uses a
variety of features, such as surface text, seman-
tic level, textual entailment, word distributional
representations by deep learning methods.

FBK-HLT (Ngoc Phuoc An Vo and Popescu,
2015): This team uses supervised learning
model with different features for the 2 runs,
such as n-gram overlap, word alignment and
edit distance.

Hassy: This team uses a bag-of-embeddings ap-
proach via supervised learning. Two sentences
are first embedded into a vector space, and then
the system computes the dot-product of the two
sentence embeddings.

HLTC-HKUST (Bertero and Fung, 2015): This
team uses supervised classification with a stan-
dard two-layer neural network classifier. The
features used include translation metrics, lex-
ical, syntactic and semantic similarity scores,
the latter with an emphasis on aligned semantic
roles comparison.

MathLingBp: This team implements the align-
and-penalize architecture described by Han
et al. (2013) with slight modifications and
makes use of several word similarity metrics.
One metric relies on a mapping of words to
vectors built from the Rovereto Twitter N-
Gram corpus, another on a synonym list built
from Wiktionary’s translations, while a third
approach derives word similarity from concept
graphs built using the 4lang lexicon and the
Longman Dictionary of Contemporary English
(Kornai et al., 2015).

MITRE (Zarrella et al., 2015): A recurrent neu-
ral network models semantic similarity be-
tween sentences using the sequence of sym-
metric word alignments that maximize cosine
similarity between word embeddings. We in-
clude features from local similarity of char-
acters, random projection, matching word se-
quences, pooling of word embeddings, and

alignment quality metrics. The resulting en-
semble uses both semantic and string matching
at many levels of granularity.

RTM-DCU (Bicici, 2015): This team uses ref-
erential translation machines (RTM) and ma-
chine translation performance prediction sys-
tem (MTPP) for predicting semantic similar-
ity where indicators of translatability are used
as features (Bigici and Way, 2014) and in-
stance selection for RTM is performed with
FDAS (Bicici and Yuret, 2014). RTM works
as follows: FDA5 — MTPP — ML training —
predict.

Rob (van der Goot and van Noord, 2015): This
system is inspired by a state-of-the-art semantic
relatedness prediction system by Bjerva et al.
(2014). It combines features from different
parses with lexical and compositional distribu-
tional feature using a logistic regression model.

STANFORD: This team uses a supervised sys-
tem with sentiment, phrase similarity matrix,
and alignment features. Similarity metrics are
based on vector space representation of phrases
which was trained on a large corpus.

TKLbLiiR (Glavas et al., 2015): This team uses
a supervised model with about 15 comparison-
based numeric features. The most important
features are the distributional features weighted
by the topic-specific information.

WHUHJP: This team uses the word2vec tool to
train a vector model on the training data, then
computes distributed representations of sen-
tences in the test set and their cosine similarity.

Yamraj: This team uses pre-trained word and
phrase vectors on Google News data set (about
100 billion words) and Wikipeida articles. The
system relies on the cosine distance between
vectors representing the sentences computed
using open-source toolkit Gensim.

7 Conclusions and Future Work

We have presented the task definition, data annota-
tion and evaluation results to the first Paraphrase and
Semantic Similarity In Twitter (PIT) shared task.



Our analysis provides some initial insights into the
relation and the difference between paraphrase iden-
tification and semantic similarity problems. We
make all the data, baseline systems and evaluation
scripts publicly available.’

In the future, we plan to extend the task to allow
leverage of more information from social networks,
for example, by providing the full tweets (and their
ids) that are associated with each sentence and with
each topic.
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Abstract

This paper describes MITRE’s participation
in the Paraphrase and Semantic Similar-
ity in Twitter task (SemEval-2015 Task 1).
This effort placed first in Semantic Similar-
ity and second in Paraphrase Identification
with scores of Pearson’s r of 61.9%, F1 of
66.7%, and maxF1 of 72.4%. We detail the
approaches we explored including mixtures
of string matching metrics, alignments us-
ing tweet-specific distributed word represen-
tations, recurrent neural networks for model-
ing similarity with those alignments, and dis-
tance measurements on pooled latent semantic
features. Logistic regression is used to tie the
systems together into the ensembles submitted
for evaluation.

1 Introduction

Paraphrase identification is the task of judging if two
texts express the same or very similar meaning. Au-
tomatic identification of paraphrases has practical
applications for a range of domains, including news
summarization, information retrieval, essay grading,
and evaluation of machine translation outputs. Fur-
thermore, work on paraphrase detection tends to ad-
vance the state of art in modeling semantics and se-
mantic similarity in natural language in general.
Current approaches to paraphrase detection vary
widely. The Microsoft Research Paraphrase Corpus,
with pairs of sentences from newswire text, serves as
a benchmark for the task (Dolan et al., 2004). One
top result on this dataset uses features from surface
characteristics of text (Madnani et al., 2012). An-
other system with comparable results models sen-
tences as hierarchical compositions of distributed
word embeddings (Socher et al., 2011). SemEval-
2015 Task 1 (Xu et al., 2015), with a corpus drawn
from Twitter, offers an opportunity to test paraphrase
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systems in a domain with an expanded vocabulary
and informal grammar.

Our contribution builds upon the recent success
of distributed representations of language (Mikolov
et al., 2013a; Pennington et al., 2014). We further
aim to minimize reliance on language- and domain-
dependent tools. However we do not possess enough
labeled paraphrase data to train a generalized model
of word composition. Instead we explore models
that examine low-dimensional relationships between
individual pairs of aligned words, and combine the
above with string similarity features that generalize
well to out-of-vocabulary terms.

In the remainder of this paper, we describe our
high-performing system for modeling semantic sim-
ilarity between two tweets. In Section 2 we describe
the data, task, and evaluation. In Section 3 we dis-
cuss details of systems we built to solve the semantic
similarity task. We describe our experiments on dif-
ferent parameterizations in Section 4. In Section 5
we present performance results for our ensembles
and all subsystems, and in Section 6 we summarize
our findings.

2 Task, data and evaluation

Paraphrase and Semantic Similarity in Twitter was a
shared task organized within SemEval-2015.

The task organizers released 18,762 pairs of
English-language tweets with a 70/25/5 split for
train, development, and test sets. The organizers re-
moved URLs, deleted non-alphanumeric characters,
and provided part of speech tags. Tweet pairs were
judged by five human annotators to be a paraphrase
(e.g. Amber alert gave me a damn heart attack and
That Amber alert scared the crap out of me) or not
(e.g. My phone is annoying me with these amber
alert and Am I the only one who dont get Amber
alert). Approximately 35% of provided pairs are
paraphrases. For each pair, task participants predict

Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages 12-17,
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a binary label and optionally provide a confidence
score. Systems were evaluated by F1 measure, F1 at
the best confidence threshold, and Pearson correla-
tion with expert annotation.

3 System overview

We created an ensemble of seven systems which
each independently predicted a semantic similarity
score. Some features were reused among the compo-
nents, including word embeddings and alignments.

3.1 Twitter Word Embeddings

We used word2vec to learn distributed representa-
tions of words and phrases from an unlabeled cor-
pus of 330.3 million tweets sampled in 2013 from
Twitter’s public streaming API. Retweets and non-
English messages were not included in the sam-
ple. Text was lowercased and processed to mimic
the style of the task data. We applied word2phrase
(Mikolov et al., 2013b) twice consecutively to iden-
tify phrases comprised of up to four words. We then
trained a skip-gram model of size 256 for the 1.87
million vocabulary items which appeared at least 25
times, using a context window of 10 words and 15
negative samples per positive example. These hy-
perparameters were selected based on our prior ex-
perience in training embeddings for identification of
word analogies.

3.2 Alignment

Comparing semantics in two tweets can be imagined
as a tallying process. One finds some semantic atom
on the left hand side and searches for it in the right
hand side. If found, it gets crossed off. Otherwise,
that atom contributes to a difference. Repeat on the
other side. This idealized process is reminiscent of
finding translation equivalences for training machine
translation systems (Al-Onaizan et al., 1999).

To this end, we built an alignment system on top
of word embeddings. Each tweet was converted into
a bag of words, and two different alignments were
created. The min alignment maximized the cosine
similarity of aligned pairs under the constraint that
no word could be aligned more than once. The max
alignment was constrained such that each word must
be paired with at least one other, and the total num-
ber of edges in the alignment can be no more than
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word count of the longer string. LPSOLVE was em-
ployed to find the assignment maximizing these cri-
teria (Berkelaar et al., 2004).

3.3 Seven Systems

Random Projection The random projection fam-
ily of Locality Sensitive Hashing algorithms is a
probabilistic technique for reducing high dimen-
sional inputs to a fixed-length low dimensional
sketch (Charikar, 2002), in which similar inputs
yield similar hashes. This characteristic is useful
for approximate nearest neighbor search and online
clustering (Petrovié et al., 2010), but we use it here
to obtain an unsupervised similarity metric that iden-
tifies string overlap at many levels of granularity.
Concretely, we extract the set of all word unigrams,
word bigrams, and character n-grams of lengths 2
through 5. These features are input to 2048 inde-
pendent binary classifiers with random weights, and
each classifier contributes a single bit to the resulting
hash. We assess similarity of two tweets by measur-
ing the Hamming distance between their bit vectors.

Recurrent Neural Network One common ap-
proach to paraphrase detection is to construct a
model of each sentence before learning a distance
function over these representations. We chose to
sidestep this global semantics modeling problem
and instead directly measured the relationships be-
tween embedded lexical items.

In particular, we used a Recurrent Neural Net-
work to examine the sequence of aligned word pairs
obtained from the min alignment process described
in section 3.2. For each aligned pair, we computed
descriptive statistics that were used as input to the
network: cosine similarity and Euclidean distance
of the aligned word embeddings, the magnitudes
of each word’s vector, and the relative position of
each word in the sentence. These features enabled
the network to consider the quality of the alignment
without introducing sparsity by including the word
vectors themselves. The RNN also received two
global features at each time step: the ratio of sen-
tence lengths and the normalized Hamming distance
computed via random projection as described above.

The RNN contained 8 input features, 16 hid-
den units, and a single output, composed as an
Elman network (Elman, 1990) with tied weights.



We unfolded it using backpropagation through
time (Williams and Zipser, 1990) to create a deep
network with as many hidden layers as there were
lexical units in the shorter sentence. We trained
the RNN with stochastic gradient descent and a for-
mulation of dropout (Hinton et al., 2012) that ran-
domly removed a single word pair from each train-
ing sequence. Parameters were tuned on the devel-
opment set, including a minibatch of 20, a learning
rate of 0.05 or 0.06, hyperbolic tangent activation
functions, and early stopping after about 2000 iter-
ations. Two RNNs were used in the final ensemble,
each trained with different learning rates.

Paris: String Similarity MITRE entered a sys-
tem based on string similarity metrics in the 2004
Pascal RTE competition (Bayer et al., 2005). We re-
vivified the code base (called 1ibparis) and up-
dated it for this evaluation. Eight different string
similarity and machine translation evaluation ap-
proaches are implemented in this package; mea-
sures include an implementation of the MT evalu-
ation BLEU (Papineni et al., 2002); WER, a com-
mon speech recognition word error rate based on
Levenshtein distance (Levenshtein, 1966); WER-g,
an error rate similar to WER, but with denomina-
tor based on the min edit traceback (Foster et al.,
2003); the MT evaluation ROUGE (Lin and Och,
2004); a simple position-independent error rate sim-
ilar to PER as described in Leusch et al. (2003); both
global and local similarity metrics often used for bi-
ological string comparison as described in Gusfield
(1997). Finally, there are precision and recall mea-
sures based on bags of all substrings (or n-grams in
word tokenization).

In total we computed 22 metrics for a pair of
strings. The metrics were run on both lowercased
and original versions as well as on word tokens
and characters, yielding 88 string similarity features.
Some of the metrics are not symmetric, so they were
run both forward and reversed based on presentation
in the dataset yielding 176 features. Finally, for each
feature value z, log(x) was added as a feature, pro-
ducing a final count of 352 string similarity features.
We used LIBLINEAR with these features to build a
L1-regularized logistic regression model.

Simple Alignment Measures Section 3.2 de-
scribes methods we used for aligning two strings.
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We built one component that computed similarity
between tweets using simple metrics applied only to
the aligned word pairs. Mean vectors and pooled
component-wise min and max vectors were com-
puted for both sides of the two different types of
alignments. Those six pairs of vectors were com-
pared using cosine distance, Manhattan distance,
and Euclidean distance, resulting in eighteen fea-
tures. Separately, the alignments were traversed and
pairs of word vectors were compared using the three
distance functions. The means of those comparisons
produced six more features. L2-regularized logistic
regression combined these 24 features into a single
measure of semantic similarity.

Similarity Matrices, Averaged and Min/Max
Two subsystems drew upon a similarity matrix and
dynamic pooling technique presented in Socher et
al. (2011). This method considers distance between
all syntactically meaningful subunits of two sen-
tences. First, a representation is induced for each
node of the parse tree of two sentences, starting from
word embeddings at leaf nodes. Then a similarity
matrix is created from measurements of Euclidean
distance between every pair of nodes. Finally, a dy-
namic pooling scheme reduces this to a fixed-size
representation that is used as input to a logistic re-
gression classifier. For one subsystem in MITRE’s
contribution, nodes were represented as averages of
their child nodes; for another, nodes were repre-
sented as the concatenation of the minimum and
maximum of the child nodes.

Normalized Averages This subsystem computed
an unsupervised distance metric based on semantic
features. We first replaced each word in the tweet
with its synonym from the Twitter normalization
lexicon (Han and Baldwin, 2011), for example con-
verting tv to television. The embeddings of these
words were used in experiments on weighted aver-
aging and pooling, folding of part-of-speech tags,
and various distance and similarity metrics. The best
F1 score on the development set was achieved by av-
eraging the word vectors and computing Euclidean
distance between the two tweets’ resulting vectors.

3.4 Ensembles

The predictors described above were selected for in-
clusion in a larger ensemble on the basis of their



Name Factored | Ablated
BLEU 61.5 64.6
ROUGE 60.2 63.8
PER 60.0 64.4
substring bags 58.7 63.5
WER 58.0 63.9
WER-g 57.9 63.9
global sim o7.7 64.1
local sim 55.9 63.1
none — 63.9

Table 1: Dev set F1 scores for string similarities.

performance on the development set. Each compo-
nent’s semantic similarity score contributed to the
final prediction with a weighting determined by L2-
regularized logistic regression. Binary paraphrase
labels were assigned by choosing an ensemble score
threshold that optimized development set F1.

The ensemble described in this paper was submit-
ted for scoring under the name MITRE IKR. A sec-
ond submission was identical with one exception:
its supervised subsystems were retrained on the con-
catenation of the train and development data.

4 Experiments

In all experiments, systems were trained while omit-
ting debatable examples with scores of 2 as sug-
gested by the task organizers. The development set
was used both to fit the hyperparameters (ablations,
lambdas) and the eventual ensemble.

String Similarity Ablations The MT evaluation
metrics and string similarities contributed varying
amounts to that system. In Table 1 we show the
score achieved by the logistic regression system
built using just that one measure (in the Factored
column) as well as the F1 achieved by the logistic
regression when only that one measure is left out
(Ablated column). BLEU was omitted from the sub-
system as a result of this analysis.

Ensemble Construction We focused our ensem-
bles only on the output of our individual compo-
nents, ignoring the features from the original data
they attempt to model. Table 3 shows the weights of
these components. Note that NormalizedAvg pro-
duced larger outputs than the rest; as a result its co-
efficient is about 10 times smaller than its effect.
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System Pearson F1 | maxFl1
MITRE 61.9 | 66.7 71.6
RTM-DCU 57.0 | 54.0 69.1
HLTC-UST 56.3 | 65.1 67.6
ASOBEK 504 | 67.2 66.3
MITRE components
RNN 60.8 71.8
Paris 58.7 68.2
RandProj 54.9 64.6
SimMat_avg 54.6 64.7
SimMat_minmax 53.5 62.8
Aligner 51.8 61.9
NormalizedAvg 45.8 61.1

Table 2: Test scores of Semantic Similarity Systems (%).

5 Results

The evaluation of our components on the compe-
tition test set is shown in Table 2, along with a
sample of top-scoring competitors. Our best en-
semble achieves 0.619 Pearson correlation with ex-
pert judgments, a state-of-the-art result. In contrast,
the correlation of crowdsourced annotations with ex-
pert ratings is 0.735 (Xu et al., 2015). Our sys-
tem’s F1 on the binary paraphrase judgment task was
0.667, with a maximum F1 of 0.716 using an opti-
mal threshold. Additionally several individual com-
ponents performed well in isolation. The recurrent
neural network alone achieved Pearson of 0.608 and
amax F1 of 0.718.

6 Conclusion

Seven models of semantic similarity were combined
for paraphrase detection in Twitter. This ensemble
placed first in the Semantic Similarity competition
organized within SemEval-2015 Task 1. The simi-
larity judgments showed 0.619 correlation with ex-
pert judgment, a relative improvement of 8.6% over
other published results (Xu et al., 2015).

Our best performing single system represents a
novel departure from existing paraphrase detection
approaches. The recurrent neural network makes
use of the relationships between aligned word pairs,
an approach which we feel is well-suited to informal
contexts where explicit models of syntax face addi-
tional challenges.



Component P Component P
RNNI1 —1.89 || SimMat_minmax 0.84
RNN2 —1.11 || Aligner 0.28
Paris —1.81 || NormalizedAvg —0.034
SimMat_avg | —1.28 || bias 0.91
RandProj 1.11

Table 3: Final MITRE component coefficients in the en-
semble logistic regression.
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Abstract

This paper describes our approach for the
Community Question Answering Task, which
was presented at the SemEval 2015. The sys-
tem should read a given question and identify
good, potentially relevant, and bad answers
for that question. Our approach transforms the
answers of the training set into a graph based
representation for each answer class, which
contains lexical, morphological, and syntactic
features. The answers in the test set are also
transformed into the graph based representa-
tion individually. After this, different paths are
traversed in the training and test sets in order
to find relevant features of the graphs. As a
result of this procedure, the system constructs
several vectors of features: one for each tra-
versed graph. Finally, a cosine similarity is
calculated between the vectors in order to find
the class that best matches a given answer.
Our system was developed for the English lan-
guage only, and it obtained an accuracy of
53.74 for subtask A and 44.0 for subtask B.

1 Introduction

In this paper we present the experiments carried out
as part of our participation in the SemEval-2015
Task 3 (Answer Selection in Community Question
Answering). The Answer Selection in Commu-
nity Question Answering task is proposed for the
first time this year in the International Workshop on
Semantic Evaluation (SemEval-2015). The task is
based on an application scenario, which is related to
textual entailment, semantic similarity and NL infer-
ence.
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Community question answering (CQA) websites
enable people to post questions and answers in var-
ious domains. In this way, users can obtain specific
answers to their questions, instead of searching in
the large volume of information available in the web.
However, it takes effort to go through all possible an-
swers and select which one is the most accurate one
for a specific question. The task proposes to auto-
mate this process by predicting the quality of exist-
ing answers with respect to a question.

There are few works in the literature on evaluat-
ing the quality of answers provided in CQA sites.
Most of such works employ non-textual and tem-
poral features in order to built classification models
for predicting the best answer for a given question.
In (Jeon et al., 2006), the authors extract 13 non-
textual features from the Naver data set and build
a maximum entropy classification model to predict
the quality (three classes: Bad, Medium and Good)
of a given answer. A similar approach is used in
(Shah and Pomerantz, 2010), but extracting 21 fea-
tures (mainly non-textual) from Yahoo! Answers;
the authors employ a logistic regression and classi-
fication model to predict the best answer. Besides,
a set of temporal features is proposed in (Cai and
Chakravarthy, 2011) in order to predict the best an-
swer for a given question. In this work the authors
argue that the traditional classification approaches
are not well suited for this problem because of the
highly imbalanced ratio of the best answer and the
non-best answers in their data set, so they propose
to use learning to rank approaches.

Unlike these approaches, we use only textual in-
formation for predicting the quality of the answers.

Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages 18-22,
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Our approach is based on our previous research
(Pinto et al., 2014) and (Sidorov et al., 2014), where
we propose the graph-based representation model
(Integrated Syntactic Graph) and the soft similarity
measure (soft cosine measure). Our experimental re-
sults are promising, they overcome the baseline sys-
tem for this challenge.

The rest of the paper is organized as follows. Sec-
tion 2 describes our approach. Section 3 presents the
configuration of the submitted runs and the evalua-
tion results. Finally, Section 4 presents the conclu-
sions and outlines some directions of future work.

2 Approach

For many problems in natural language processing,
graph structure is an intuitive, natural and direct way
to represent data. There exist several research works
that have employed graphs for text representation in
order to solve some particular problem (Mihalcea
and Radev, 2011). We propose an approach based on
a graph methodology, which was described in detail
in (Pinto et al., 2014), for building the correspond-
ing system of the two subtasks. These subtasks are
described as follows:

Subtask A Given a question (short title + extended
description) and a list of community answers,
classify each of the answers as: Good, Potential
or Bad (bad, dialog, non-English, other).

Subtask B Given a YES/NO question (short title +
extended description) and a list of community
answers, decide whether the global answer to
the question should be yes, no or unsure, based
on the individual good answers.

The proposed system consists of the following sub-
modules: document preprocessing, graph genera-
tion, and answer quality classification.

2.1 Document Preprocessing

An XML parser receives as input a structured cor-
pus in XML format. This XML file contains all the
questions, along with their respective answers. An
XML interpreter extracts the questions and associ-
ated answers.

Thereafter, we process the answers for both sub-
tasks separately. All the answers belonging to the
same class are grouped together, and the result is
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passed to the next module. This means that at the
end of this module, we will have all the good an-
swers in one document, the bad ones in another doc-
ument and so on for all classes. In the same way, for
the task B, the yes/no answers are grouped together
in different documents.

2.2 Graph Generation

In the graph generation module, all sentences of
each class are parsed to produce what we call their
Integrated Syntactic Graph (ISG) representation (see
(Pinto et al., 2014)). For the graph representation
we took into account various linguistic levels (lexi-
cal, syntactic, morphological, and semantic) in order
to capture the majority of the features present in the
text.

The process of the graph generation is performed
by the following submodules:

The Syntactic Parser is the base of the graph struc-
ture. We use the Stanford Dependency Parser!
for producing the parsed tree for each sentence
of the documents. In this type of parsing, we
detect grammatical relation.

The Morphological Tagger obtains PoS tags
of words. For this purpose we used the Stanford
Log linear Part-Of-Speech Tagger? for English.
The Lancaster stemmer algorithm was used in
order to obtain word stems.

As a result of this process, each class is repre-
sented as a graph rooted in a ROOT — 0 node. The
vertices to sub-trees represent all sentences in the
class document. The nodes of the trees represent
words or lemmas of the sentences along with their
part-of-speech tags. The vertices between nodes
represent the dependency tags between these con-
nected nodes along with a frequency label, for exam-
ple: nsubj-5, that shows the number of occurrences
of the pair (initial_node, final_node) in the graph plus
the frequency of the dependency tag of the same pair
of nodes. In the same way, the answers to be clas-
sified in one of the quality classes are represented in
an ISG with the same characteristics.

In order to fully understand the process of con-
struction of the ISG and the collapse of nodes in the

"http://nlp.stanford.edu/software/lex-parser.shtml
Zhttp://nlp.stanford.edu/software/tagger.shtml



(a) I'm going to share with you the story as to how I have become an HIV/AIDS campaigner

Figure 1: Dependency trees of three sentences of a target text using word POS combination for the nodes and depen-
dency labels for the edges
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Figure 2: The Integrated Syntactic Graph for the three sentences considered as example
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graph, in Figure 1, we show the dependency trees
of three sentences; each node of the graph is aug-
mented with other annotations, such as the combi-
nation of lemma (or word) and POS tags: (lemma
POS).

The collapsed graph of the three sentences is
shown in Figure 2. Each edge of this graph contains
the dependency tag together with a number that in-
dicates the frequency of the dependency tag plus the
frequency of the pair of nodes, both calculated using
the occurrences of the dependency trees associated
to each sentence.

The feature extraction process starts by fixing the
root node of the answer graph as the initial node,
whereas the selected final nodes correspond to the
remaining nodes of the answer graph. We use the
Dijkstra's Algorithm (Dijkstra, 1959) for find-
ing the shortest paths between the initial and each
final node. After this, we count the occurrences of
all the multi-level linguistic features considered in
the text representation such as POS tags and depen-
dency tags found in the path. The same procedure
is performed with the class document graph, using
the pair of nodes identified in the answer graph as
the initial and final node. As a result of this proce-
dure, we obtain two feature vectors: one for the an-
swer and another one for the class document. This
module was implemented in Python, using the Net-
workX? package for creation and manipulation of
graphs.

2.3 Classification based on Quality of Answers

This module receives several feature vectors (fTZ)
for each class document. Thus, the class docu-
ment d is now represented by m features (d* =
{m,m,...,m}), as well as the different an-
swers a, (a* = {jT,{,fT,Q), ,m}) being m the
number of different paths that can be traversed in
both graphs.

We use the cosine similarity measure from the
equation below for calculating the degree of simi-
larity among each traversed path.

Similarity(a®,d*) = ZCosine(f_&;,m)
i=1

3https://networkx.github.io/
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After obtaining all similarity scores between the
answers with each of the class documents, the class
(to which the document belongs) achieving the high-
est score is selected as the correct class for each an-
Swer.

3 Results

The acronym of our system is CICBUAPnlp. Tables
1 and 2 show the scores for the English subtasks A
and B on the test data, respectively. Although, our
results did not overcome the general average, it is
worth noting that our methodology is quite simple
and straightforward. We only used syntactic and
morphological features, thus comparing the struc-
tures of the answers against the structure of the la-
beled sets. Instead of training a classifier, we built
a Syntactic Integrated Graph for each class and then
try to match the answers in the test set against them,
calculating in this way the similarity between the
graphs.

Table 1: Results of the subtask A, English

Teamld Macro F1 Accuracy Rank
JAIS 57.19 72.52 1
HITSZ-ICRC 56.41 68.67 2
QCRI 53.74 70.50 3
ECNU 53.47 70.55 4
ICRC-HIT 49.60 67.68 5
VectorSlu 49.10 66.45 5
Shiraz 47.34 56.83 7
FBK-HLT 47.32 69.13 8
Voltron 46.07 62.35 9
CICBUAPnlp 40.40 53.74 10
Yamraj 37.65 45.50 11
CoMiC 30.63 54.20 12

4 Conclusion and Future Work

We described the approach and the system devel-
oped as a part of our participation in the Answer
Selection in Community Question Answering task.
The approach uses a graph structure for represent-
ing the classes and the answers. It extracts lin-
guistic features from both graphs—classes and an-
swers—by traversing shortest paths. The features



Table 2: Results of the subtask B, English

Teamld Macro F1 Accuracy Rank
VectorSlu 63.7 72.0 1
ECNU 55.8 68.0 2
QCRI 53.6 64.0 3=4
HITSZ-ICRC 53.6 64.0 3=4
CICBUAPnlp 38.8 44.0 5
ICRC-HIT 30.9 52.0 6
Yamraj 29.8 28.0 7
FBK-HLT 27.8 40.0 8

are further used for computing the similarity be-
tween the classes and the answers.

We sent two runs (primary and contrastive) for
each English subtask to the evaluation forum. The
best run in both cases was the primary run.

In future work, we are planning to use the soft
cosine measure to compare the similarity between
the answers and the quality classes, thus evaluating
the feasibility of this kind of structures for this task.
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Abstract

This paper describes the system developed by
our team (HLTC-HKUST) for task 1 of Se-
mEval 2015 workshop about paraphrase clas-
sification and semantic similarity in Twitter.
We trained a neural network classifier over a
range of features that includes translation met-
rics, lexical and syntactic similarity score and
semantic features based on semantic roles. The
neural network was trained taking into consid-
eration in the objective function the six dif-
ferent similarity levels provided in the corpus,
in order to give as output a more fine-grained
estimation of the similarity level of the two
sentences, as required by subtask 2. With an
F-score of 0.651 in the binary paraphrase clas-
sification subtask 1, and a Pearson coefficient
of 0.697 for the sentence similarity subtask 2,
we achieved respectively the 6th place and the
3rd place, above the average of what obtained
by the other contestants.

1 Introduction

Paraphrase identification is the problem to determine
whether two sentences have the same meaning, and is
the objective of the task 1 of SemEval 2015 workshop
(Xu et al., 2015).

Conventionally this task has been mainly evaluated
on the Microsoft Research Paraphrase corpus (Dolan
and Brockett, 2005), which consists of pairs of sen-
tences taken out from news headlines and articles.
News domain sentences are usually grammatically
correct and of average to long length. The current
state-of-the-art method to our knowledge on this cor-
pus (Ji and Eisenstein, 2013) trains an SVM over
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latent semantic vectors, lexical and syntactic simi-
larity features. Although their main objective was
to show the effectiveness of a method based on la-
tent semantic analysis, it is also evident that other
features pertinent to different aspects of sentence sim-
ilarity are able to boost the results. Previously Socher
et al. (2011) used a recursive autoencoder to simi-
larly obtain a vector representation of each sentence,
again combining other lexical similarity features to
improve the results. Other methods, such as Mad-
nani et al. (2012) or Wan et al. (2006) used instead a
more traditional supervised classification approach
over different sets of features and different classifiers,
most of which improved previous results.

Task 1 of SemEval 2015 workshop required to
evaluate paraphrases on a new corpus, consisting of
sentences taken from Twitter posts (Xu et al., 2014).
Twitter sentences notoriously differ from those taken
from news articles: the 140 characters limit makes
the sentences short, with few words, lots of different
abbreviations; they also include many misspelled and
invented words, and often lack a correct grammatical
structure. Another important difference is the six-
level classification labels provided, compared to the
binary labels of MSRP corpus, which allows a fine-
grained evaluation of the similarity level between the
sentences.

The task was divided into two subtasks. Subtask
1 was the classical binary paraphrase classification
task, where given a pair of sentences the system had
to identify if it is a paraphrase or not. Subtask 2
instead required the system to provide a score in the
range [0, 1] that measures the actual similarity level
of the two sentences.

Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages 23-28,
Denver, Colorado, June 4-5, 2015. (©)2015 Association for Computational Linguistics



2 System Description

We chose a supervised machine learning strategy
based on a multi-view set of features. Our first goal
was to select the features in order to get a complete
estimation of lexical, syntactic and semantic similar-
ity between any given pair of sentences. In particular
we were interested in what roles semantic features
can play in this task. The second goal was to make
use of a classifier which can take full advantage of the
six level labeling provided in order to have good per-
formance in both subtasks, identified in an artificial
neural network.

2.1 Lexical and Syntactic Similarity Features

The first set of lexical features includes three binary
indexes obtained from the analysis of the numerical
tokens: the first of them is 1 if they are the same in
both sentences or there are not any, the second is 1
only if they are the same, and the third is 1 if the
tokens representing numbers of one sentences are the
subset of the other (Socher et al., 2011). Two other
features include the percentage of overlapping tokens,
and the difference in sentence length. Another feature
considers the word order: starting from one sentence
we align the tokens that matches with the other sen-
tence, and for each aligned pair we take the average
of the differences of the absolute positions of the two
elements, normalized by the length of the first sen-
tence, and we do the same switching the order of the
two sentences. Another group of features involves
WordNet word synonym sets (Miller, 1995). We take
from them, separately for nouns and verbs, the av-
erage of the path similarity scores obtained, among
all word alignments, from the one which gives the
maximum score. When the two words in the pair
to be scored have multiple synonym sets we select
the two sets that again are giving the highest score.
Finally, in order to include an estimation of the level
of similarity in the syntax parse tree of the sentences,
we use the parse tree edit distance from the Zhang-
Shasha algorithm (Zhang and Shasha, 1989; Wan
et al., 2006).

2.2 Semantic Similarity Features

The way we evaluate the semantic similarity of each
pair of sentences is through the analysis of the se-
mantic roles. The first feature we choose in this
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sense is the semantic role based MEANT machine
translation score (Lo et al., 2012), effective to pro-
vide, as shown by various experiments, a translation
evaluation closer to human judges. This metric first
annotates each sentence with semantic roles (Pradhan
et al., 2004), then aligns them and computes a similar-
ity score only within the aligned frames (Fung et al.,
2007) using the Jaccard coefficient (Tumuluru et al.,
2012). Another set of features is obtained by looking
at the semantic roles themselves and their alignment
without looking at the content: these include the per-
centage of semantic roles of one sentence that are
also present in the other, the percentage of correct
pairs of semantic roles after the alignment operated
for MEANT, and a binary feature equal to 1 in case
the semantic parser fails to give any output for at
least one of the sentences. In this last case all the
other features based on semantic roles are 0 except
the MEANT score which is set to the value of the
Jaccard coefficient between the whole sentences (Lo
and Wu, 2013).

2.3 Translation Metrics

Previous work (Finch et al., 2005; Madnani et al.,
2012) have shown that machine translation evalua-
tion metrics are useful for the paraphrase recognition
task, due to their ability to capture useful similarity
information to correctly classify the sentence pairs.
The various translation metrics all take into
account different aspects of sentence similarities.
BLEU (Papineni et al., 2002) and the subsequent
evaluation metrics such as NIST (Goutte, 2006) and
SEPIA (Habash and Elkholy, 2008) look at n-gram
overlaps between the source and the target sentences.
While the most basic BLEU takes into consideration
only n-gram overlap, the other metrics also consider
synonyms, stemming, simple paraphrase patterns and
the syntactic structure of the n-grams. Yet another
set of metrics are based instead on different princi-
ples: TER (Snover et al., 2006) and TERp (Snover
et al., 2009) count the number of edits needed to
transform a sentence into the other, MAXSIM (Chan
and Ng, 2008) evaluates lexical similarity perform-
ing a word-by-word matching and finding out how
much the aligned words are similar in each mean-
ing, BADGER (Parker, 2008) the distance between
the compression of each sentence obtained from the
Burrows-Wheeler transform algorithm (Burrows and



Wheeler, 1994), and MEANT which, as discussed in
the previous section, scores the similarity of aligned
semantic frames.

For each pair of sentences the scores are calculated
first taking one of the sentences as the reference and
the other as the sample and then vice-versa. Both
scores are included as distinct features except in the
case of BADGER, as it computes a distance between
two objects without taking into account the direction.
In case of BLEU and NIST we use the scores from
unigrams up to 4-grams for BLEU (Madnani et al.,
2012) and up to the maximum order which gives at
least one result different than zero for NIST.

2.4 Classifier

To classify the sentence pairs we design a feedfor-
ward neural network. One of the main properties
of the neural network is its ability to learn complex
functions of the input values (Hornik et al., 1989). It
follows that in our task, given the combination of fea-
tures, the network would learn how to combine them
effectively and take advantage of their mutual interac-
tion. The neural network can also be trained using an
objective function that takes into consideration a la-
bel not just binary but which can take multiple values
in a given range. Therefore it has a good ability to
determine as output a precise estimation of the sim-
ilarity level of the sentence pair, particularly useful
in subtask 2. During our experiments the results we
obtained in the binary classification task over the de-
velopment set with the neural network were always at
least slightly higher than those obtained with an SVM
we used as a comparison system, further justifying
our neural network choice.

We choose a two layer standard configuration (hid-
den and output layer), where we fix the size of the
hidden layer large enough at three times the size of
the input layer; the hyperbolic tangent (tanh) and the
sigmoid are used respectively as the non-linear acti-
vation functions of the hidden layer and the output
layer. Due to this choice the output assumes values
in the interval [0, 1], which is also exactly the output
range required in subtask 2. The network weights,
with the exception of the ones associated to the bias
terms set at zero, are initialized (Glorot and Bengio,
2010) with uniform values in the range:

1 1
6 2 6 2
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Where a = 1 in case the activation function is the
hyperbolic tangent, and o = 4 with the sigmoid. We
train the model using standard backpropagation algo-
rithm, taking the cross-entropy as the cost objective
function:

E=—llog(y) = (1-Dlog(l—y)+ R (2)

where y is the network output, [ the objective value
(both in the range [0, 1]), and R is an L2 regulariza-
tion term.

3 Experiments

3.1 Corpus

We made use of the corpus provided for the contest
(Xu et al., 2014), made of a training set of 13063
sentence pairs, a development set of 4727 pairs, and
a test set of 972 pairs released a few days before the
deadline without the labels. Each pair of sentences
was labeled by five users via Amazon Mechanical
Turk, hence providing a six-level classification label
(from (5, 0) when all the five user classify the pair as
a paraphrase, to (0, 5) when none of them identifies
the pair to be a paraphrase).

3.2 Experimental Setup

The neural network was setup with a hidden layer
dimension of three times the input. The development
set was used to tune the L2 regularization coefficient,
set at v = 0.01, as well as the learning rate and the
other hyperparameters, and to have a measure of im-
provement against the official thresholding baseline
provided for the task (Das and Smith, 2009). To
implement the neural network we used THEANO
Python toolkit (Bergstra et al., 2010).

We train the network with all the sentences pro-
vided in the training set. The objective label of the
cross-entropy objective function was set to 1.0 for
pairs labeled (5, 0) and (4, 1), 0.75 for pairs labeled
(3,2), 0.5 for pairs labeled (2, 3) and 0.0 for pairs la-
beled (0, 5). This choice allowed a more fine training
for task 2, where a continuous similarity value must
be estimated, without altering too much the behavior
in the binary estimation task 1.

The training procedure was repeated several times,
each time with a different random initialization of the
weights and with a different random pair order. In
order to avoid overfitting, in each run the training was



Subtask 1 Subtask 2
Description Precision  Recall ~ F-score | Precision Recall F-score Pearson
Subtask 1 best (ASOBEK) 0.680 0.669 0.674 0.732 0.531 0.616 0.475
Subtask 2 best (MITRE) 0.569 0.806 0.667 0.750 0.686 0.716 0.619
Our method, run 2 0.574 0.754 0.652 0.738 0.611 0.669 0.545
Our method, run 1 0.594 0.720 0.651 0.697 0.657  0.676 0.563
Baseline (Das and Smith, 2009) 0.679 0.520 0.589 0.674 0.543 0.601 0.511
Contest average result 0.600 0.626 0.581 0.645 0.626 0.631 0.483

Table 1: Result comparison between our method and the winners of subtask 1 and subtask 2.

stopped when the best results on the development set
were obtained. The final results were taken from the
run that yielded the best accuracy, and in case of tie
the best F1 score, on the development set for subtask
1.

Run 2 instead was an attempt to include latent
semantic vectors obtained through the procedure de-
scribed in Ji and Eisenstein (2013) and added to the
network from an extra layer whose output was con-
catenated to the features input vector.

3.3 Results and Discussion

F-measure and Pearson coefficient were the official
evaluation metrics used to rank respectively subtask
1 and subtask 2. In subtask 1 — binary evaluation of
the sentence pairs — we achieved an F-score of 0.651
and ranked 6th over 18 methods, the best method
(ASOBEK) achieved an F-score of 0.674. In subtask
2, which was aimed at finding a similarity score in
the range [0, 1], with a Pearson coefficient of 0.563
we reached the 3rd place among 13 methods (the
other five provided only a binary output), with the
winner (MITRE) obtaining a Pearson score of 0.619.
A summary and comparison of our results with the
winners of the two subtasks, with the average results
and with the supervised official baseline (n-gram
overlapping features with logistic regression from
Das and Smith (2009)) is shown in table 1. For both
tasks our results are above the average both in term
of ranking and average results.

Semantic features were useful to identify para-
phrases, as they improved the accuracy and F-score
on the development set by 0.6%. But often the shal-
low semantic parser failed to give an output for many
sentences, limiting their potential contribution. This
is due to two main reasons. The first one is the imper-
fect accuracy of the semantic parser itself, also ob-
served in previous experiments where we employed
it, which fails to analyze sentences containing certain
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patterns and predicates. The second reason, more
specific to Twitter domain, is that some sentences
lack a valid predicate or a proper grammatical struc-
ture. This prevents the semantic parser from giving
an accurate output.

The inclusion on latent semantic features in run
2 proved to be ineffective, as it improved subtask
1 F-score by less than 0.001, and gave a worse per-
formance in subtask 2. During the evaluation phase
other experiments were tried as using the latent se-
mantic vectors of Guo and Diab (2012), or using
the vectors as described in Ji and Eisenstein (2013)
instead of the extra layer, and other modifications,
all without obtaining any perceptible improvement
when the system was tested on the development set.
The non-perfect implementation and usage of these
features, together with the fact they might not be suit-
able to be applied to Twitter domain, may explain
this lack of improvement.

4 Conclusions

We have used a neural network classifier, with a com-
bination of multiple views of lexical, syntactic and
semantic information, as the system which partici-
pated in SemEval 2015 task 1, whose goal was to
classify paraphrases in Twitter. The inaccurate se-
mantic parsing is the main reason which prevented
us from obtain higher results. A possible future di-
rections that can improve the quality of the semantic
roles annotations, apart from improving the semantic
parser, is to apply an effective lexical normalization
method (such as Han and Baldwin (2011)), and even-
tually find ways to reconstruct the predicate in case
it is missing.
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Abstract

This paper reports the description and perfor-
mance of our system, FBK-HLT, participating
in the SemEval 2015, Task #1 "Paraphrase and
Semantic Similarity in Twitter", for both sub-
tasks. We submitted two runs with different
classifiers in combining typical features (lexi-
cal similarity, string similarity, word n-grams,
etc) with machine translation metrics and edit
distance features. We outperform the baseline
system and achieve a very competitive result to
the best system on the first subtask. Eventually,
we are ranked 4™ out of 18 teams participating
in subtask "Paraphrase Identification".

1 Introduction

Paraphrase identification/recognition is an important
task that can be used as a feature to improve many
other NLP tasks as Information Retrieval, Machine
Translation Evaluation, Text Summarization, Ques-
tion and Answering, and others. Besides this, analyz-
ing social data like tweets of social network Twitter
is a field of growing interest for different purposes.
The interesting combination of these two tasks was
brought forward as Shared Task #1 in the SemEval
2015 campaign for "Paraphrase and Semantic Simi-
larity in Twitter" (Xu et al., 2015). In this task, given
a set of sentence pairs, which are not necessarily full
tweets, their topic and the same sentences with part-
of-speech and named entity tags; participating sys-
tem is required to predict for each pair of sentences
is a paraphrase (Subtask 1) and optionally compute
a graded score between O and 1 for their semantic
equivalence (Subtask 2). We participate in this shared
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task with a system combining different features us-
ing a binary classifier. We are interested in finding
out whether semantic similarity, textual entailment
and machine translation evaluation techniques could
increase the accuracy of our system. This paper is
organized as follows: Section 2 presents the System
Description, Section 3 describes the Experiment Set-
tings, Section 4 reports the Evaluations, Section 5
shows the Error Analysis, and finally Section 6 is the
Conclusions and Future Work.

2 System Description

In order to build our system, we extract and select sev-
eral different linguistic features ranging from simple
(word/string similarity, edit distance) to more com-
plex ones (machine translation evaluation metrics),
then we consolidate them by a binary classifier. More-
over, different features can be used independently or
together with others to measure the semantic similar-
ity and recognize the paraphrase of given sentence
pair as well as to evaluate the significance of each
feature to the accuracy of system’s predictions. On
top of this, the system is expandable and scalable for
adopting more useful features aiming for improving
the accuracy.

2.1 Data Preprocessing

In order to optimizing the system performance, we
carefully analyze the given data and notice that
Tweets’ topic is a sentence part that is always present
in both sentences; this redundant similarity in the
pairs does not give any information about paraphrase
as two sentences can always have a same topic, yet
they are may be paraphrase or not. Hence, we remove
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the topic from the sentences, and we did the same in
the pairs with Part-of-Speech (POS) and named entity
tags. We have not try our system with the topic inside
tweets. As being suggested by the guideline of the
task, we remove all the pairs with uncertain judgment,
such as "debatable" (2, 3). After this data process-
ing, we obtain two smaller datasets with very short
texts, sometime reduced to a single word and with
very poor syntactic structure. We split the original
dataset into two subsets, in which one is composed
by sentence pairs and the other one is composed by
pairs with POS and named entity tags. Because of the
simple structure of given datasets, after undergoing
the preprocessing, we decide to focus on exploiting
the lexical and string similarity information, rather
than syntactic information.

2.2 Lexical and String Similarity

Firstly, for computing the lexical and string similarity
between two sentences, we take advantage from the
task baseline (Das and Smith, 2009) which is a sys-
tem using a logistic regression model with eighteen
features based on n-grams. This baseline system uses
precision, recall and Fl-score of 1-gram, 2-grams
and 3-grams of tokens and stems from sentence pair
to build a binary classification model for identifying
paraphrase. We extract these eighteen features from
baseline system, without modifications, to use in our
classification model.

2.3 Machine Translation Evaluation Metrics

Other than similarity features, we also use evalua-
tion metrics for machine translation as suggested in
(Madnani et al., 2012) for paraphrase recognition
on Microsoft Research paraphrase corpus (MSRP)
(Dolan et al., 2004). In machine translation, the eval-
uation metric scores the hypotheses by aligning them
to one or more reference translations. We take into
consideration to use all the eight metrics proposed,
but we find that adding some of them without a care-
ful process of training on the dataset may decrease
the performance of the system. Thus, we use two met-
rics for word alignment in our system, the METEOR
and BLEU. We actually also take into consideration
the metric TERp (Snover et al., 2009), but it does
not make any improvement on system performance,
hence, we exclude it.
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2.3.1 METEOR (Metric for Evaluation of

Translation with Explicit ORdering)

We use the latest version of METEOR (Denkowski
and Lavie, 2014) that find alignments between sen-
tences based on exact, stem, synonym and paraphrase
matches between words and phrases. We used the
system as distributed on its website, using only the
"norm" option that tokenizes and normalizes punctu-
ation and lowercase as suggested by documentation. !
We compute the word alignment scores on sentences
and on sentences with part-of-speech and named en-
tity tags, as our idea is that if two sentences are simi-
lar, their tagged version also should be similar.

2.3.2 BLEU (Bilingual Evaluation Understudy)

We use another metric for machine translation
BLEU (Papineni et al., 2002) that is one of the most
commonly used and because of that has an high re-
liability. It is computed as the amount of n-gram
overlap, for different values of n=1,2,3, and 4, be-
tween the system output and the reference translation,
in our case between sentence pairs. The score is tem-
pered by a penalty for translations that might be too
short. BLEU relies on exact matching and has no
concept of synonymy or paraphrasing.

2.4 Edit Distance

We use the edit distance between sentences as a fea-
ture; for that we used the Excitement Open Platform
(EOP) (Magnini et al., 2014). To obtain the edit dis-
tance, we use EDITS Entailment Decision Algorithm
(EDITS EDA), this algorithm classifies the pairs on
the base of their edit distance, we take only this one
without considering the entailment or not entailment
decision. We configure the system to use lemmas and
synonyms as identical words to compute sentence
distance, the system normalizes the score on the num-
ber of token of the shortest sentence. We choose this
configuration because it returns the best performance
evaluated on training and development data.

2.5 Classification Algorithms

We build two systems for the task with different clas-
sifiers, to optimize the Accuracy and F1-score. We
use WEKA (Hall et al., 2009) to obtain robust and
efficient implementation of the classifiers. We try
several classification algorithms in WEKA, among
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Baseline

Baseline . Baseline Baseline
Classifier / Features features Baseline +METEOR +METEOR +METEOR
(n-grams) +METEOR +TERp +BLEU +BL.EU.
+EditDistance
Baseline (Das and Smith, 2009) 72.4
EOP EditDistance 73.3
VotedPerceptron 73.7 75.6 75.5 75.8 76.2
MultiLayerPerceptron 73.9 75.6 75.3 75.4 76.1

Table 1: Accuracy obtained on development dataset using different classifiers with different features.

others, we find that the VotedPerceptron (with expo-
nent 0.8) and MultilayerPerceptron (with learn rate
0.1; momentum 0.3 and N 10000) return the best
performance for the evaluation on training and devel-
opment data.

3 Experiment Settings

For Subtask 1, we train two models with different fea-
ture settings using the VotedPerceptron and Multilay-
erPerception classification algorithms on the training
dataset and we evaluate these models on the devel-
opment dataset. Finally, we use the same models for
the evaluation on the test dataset. In table 1, we re-
port the Accuracy results obtained by using different
classifiers with different features. Our chosen classi-
fication algorithms outperform the baseline and EOP
EditDistance (standalone setting). Table 2 shows
F1-score obtained with different classifiers on our
best set of features, and our classification algorithms
again perform much better the baseline and EOP Ed-
itDistance.

For Subtask 2, due to no training data is given
for computing the semantic similarity, a different ap-
proach is needed. We do not use a classifier, our
similarity score is simply the average between ME-
TEOR score and edit distance score.

Classifier F1

Baseline (Das and Smith, 2009) .502
EOP EditDistance .609
VotedPerceptron 746
MultiLayerPerceptron 741

Table 2: Fl-score obtained using different classifiers on
the best set of features (baseline + METEOR + BLEU +
EditDistance).
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Subtask1 Subtask2
Team Prec | Rec F1 Pearson
Baseline{ogistic reg) 679 | 520 | .589 511
BaselineVT™P 450 | .663 | .536 350
Baseline(random) 192 | 434 | 266 017
ASOBEK(" SubtaskD) | 68) | 669 | .674 475
MITRE(" Subtask2) | 569 | 806 | .667 619
FBK-HLToted) .685 | .634 | .659 462
FBK-HLT(Multilayer) | 676 | 549 | .606 480

Table 3: Paraphrase and Semantic Similarity Results.

4 Evaluations

We submit two runs using two models described in
the Section 3 for both subtasks. In the Table 3, we re-
port the performance of our two runs against the base-
lines and best systems in each subtask. In Subtask 1,
our runs outperform all three baselines and achieve
very competitive results to the best system ASOBEK.
In the run FBK-HLT"°**Y we even achieve a better
Precision than the best system. In Subtask 2, though
we apply a simple computation method for semantic
similarity by averaging the word alignment score and
EditDistance, we still have better results than two our
of three baselines.

5 Error Analysis

In this section, we conduct an analysis of the mis-
classifications that our best system, FBK-HLT(otd),
makes on test dataset. We extract and show some
randomly selected examples in which our system
classifies incorrectly, both false positive or false neg-
ative; and then we analyze the possible causes for
the misclassification. This inspection yields not only
the top sources of error for our approach but also



uncovers sources of unclear annotations in dataset.

True True False False
Positive | Negative | Positive | Negative
1t [ e12 | 51 | o4

Table 4: Error Analysis.

5.1 False positive

[1357] omg Family Guy is killing me right now -
OMG we were quoting family guy

[1357] family guy is trending in the US - Family guy
is so racist or maybe they just point out the racism in
America

[4135] hahaha that sounds like me - That sounds
totally reasonable to me

[5211] The world of jenks is such a real show - Jenks
from the World of Jenks is such a good person

[128] Anyone trying to see After Earth sometime
soon - Me and my son went to see After Earth last
night

Though all these sentence pairs share many word
similarity/matching and alignments, they are anno-
tated as non-paraphrase. For example, the sentence
pair [4135] has very high word matching and align-
ment after removing the common topic "sounds", but
the important words "like" and "reasonable" which
differ the meaning between two sentences, are not
really semantically captured and distinguished by our
system. As our system does not use any semantic
feature, this kind of semantic difference is difficult to
distinguish,leading to false positive case.

5.2 False negative

[4220] Hell yeah Star Wars is on - Star Wars and
lord of the rings on tv

[785] Chris Davis is putting the team on his back -
Chris Davis doing what he does

[400] Rafa Benitez deserves a hell of a thank you -
Any praise for Benitez from my Chelsea followers
[2832] Classy gesture by the Mets for Mariano - real
class shown by The Mets Mo Rivera is a legend
[4062] Shonda is a freaking genius - THAT LADY IS
AMAZING I LOVE SHONDA

This case is opposite to the previous case, even
though these sentence pairs do not share many word
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similarity and alignment, they are annotated as para-
phrase. We can possibly propose some hypothesis as
follows:

Extra information Though the pairs [4220] and
[400] may not be paraphrase according to the para-
phrase definition in the literature (Bhagat and Hovy,
2013), they are annotated as paraphrase in the gold-
standard labels. We notice that as one sentence con-
tains more extra information than the other one, it
leads to low word similarity and alignment, which
makes our system make wrong classification.
Specific knowledge-base In this case, the pairs
[785] and [2832] require a specific knowledge-base,
which is about baseball, to recognize the paraphrase;
hence, even for human without any related knowl-
edge, it might be difficult detect the paraphrase.
Common sense Though both sentences of the pair
[4062] do not share any word similarity/alignment,
they have a positive polarity that may allow iden-
tifying the paraphrase. This case may be easy for
human to identify the paraphrase, yet it is difficult
for machine to capture the same perception.

Table 4 shows that we can improve our system
performance by reducing the false positive and false
negative. In other word, we need to exploit more se-
mantic features to make correct classification. How-
ever, according to our analysis for the false negative,
it is difficult to cover these cases.

6 Conclusions and Future Work

In this paper, we describe a system participating in
the SemEval 2015, Task #1 "Paraphrase and Seman-
tic Similarity in Twitter", for both subtasks. We
present a supervised system which considers mul-
tiple features at low level, such as lexical, string
similarities, word alignment and edit distance. The
performance of our runs is much better than the base-
lines and very competitive to the best system; we are
ranked 4 of total 18 teams in Subtask 1.

A lower result was obtained in Subtask 2, as the cho-
sen features have not really acquired the semantic
similarity judgment. Hence, we expect to study more
useful features (e.g the POS information, semantic
word similarity) to improve our system performance
on both identifying paraphrase and computing seman-
tic similarity scores.
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Abstract

This paper describes our approaches to para-
phrase recognition in Twitter organized as task
1 in Semantic Evaluation 2015. Lots of ap-
proaches have been proposed to address the
paraphrasing task on conventional texts ( sur-
veyed in (Madnani and Dorr, 2010)). In this
work we examined the effectiveness of vari-
ous linguistic features proposed in tradition-
al paraphrasing task on informal texts, (i.e.,
Twitter), for example, string based, corpus
based, and syntactic features, which served as
input of a classification algorithm. Besides,
we also proposed novel features based on
distributed word representations, which were
learned using deep learning paradigms. Re-
sults on test dataset show that our proposed
features improve the performance by a mar-
gin of 1.9% in terms of F1-score and our team
ranks third among 10 teams with 38 systems.

1 Introduction

Generally, a paraphrase is an alternative surface
form in the same language expressing the same se-
mantic content as the original form and it can appear
at different levels, e.g., lexical, phrasal, sentential
(Madnani and Dorr, 2010). Identifying paraphrase
can improve the performance of several natural lan-
guage processing (NLP) applications, such as query
and pattern expansion (Metzler et al., 2007), ma-
chine translation (Mirkin et al., 2009), question an-
swering (Duboue and Chu-Carroll, 2006), see sur-
vey (Androutsopoulos and Malakasiotis, 2010) for
completion. Most of previous work of paraphrase
are on formal text. Recently with the rapidly growth
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of microblogs and social media services, the compu-
tational linguistic community is moving its attention
to informal genre of text (Java et al., 2007; Ritter et
al., 2010). For example, (Zanzotto et al., 2011) de-
fined the problem of redundancy detection in Twitter
and proposed SVM models based on bag-of-word,
syntactic content features to detect paraphrase.

To provide a benchmark so as to compare and de-
velop different paraphrasing techniques in Twitter,
the paraphrase and semantic similarity task in Se-
mEval 2015 (Xu et al., 2015) requires the partici-
pants to determine whether two tweets express the
same meaning or not and optionally a degree score
between 0 and 1, which can be regarded as a bina-
ry classification problem. Paraphrasing task is very
close to semantic textual similarity and textual en-
tailment task (Marelli et al., 2014) since substan-
tially these tasks all concentrated on modeling the
underlying similarity between two sentences. The
commonly-used features in these tasks can be cat-
egorized into several following groups: (1) string
based which measures the sequence similarities of
original strings with others, e.g., n-gram Overlap,
cosine similarity; (2) corpus based which measures
word or sentence similarities using word distribu-
tional vectors learned from large corpora using dis-
tributional models, like Latent Semantic Analysis
(LSA), etc. (3) knowledge based which estimates
similarities with the aid of external resources, such
as WordNet; (4) syntactic based which utilizes syn-
tax information to measure similarities; (5) other
features such as using Named Entity similarity.

In this work, we built a supervised binary clas-
sifier for paraphrase judgment and adopted multi-
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ple features used in conventional texts to recognize
paraphrase in Twitter, which includes string based
features, corpus based features, etc. Besides, we
also proposed a novel feature based on distribut-
ed word representations (i.e., word embeddings)
learned over a large raw corpus using neural lan-
guage models. The results on test dataset demon-
strate that linguistic features are effective for para-
phrase in Twitter task and proposed word embed-
ding features further improve the performance.

The rest of this paper is organized as follows. Sec-
tion 2 describes the features used in our systems.
System setups and experimental results on training
and test datasets are presented in Section 3. Finally,
conclusions and future work are given in Section 4.

2 Feature Engineering

In this section, we describe the our preprocessing
step and the traditional NLP linguistic features, as
well as the word embedding features used in our sys-
tems.

2.1 Preprocessing

We conducted following text preprocessing opera-
tions before we extracted features: (1) we recov-
ered the elongated words to their normal forms,
e.g., “goooooood’ to “good’; (2) about 5,000 slangs
or abbreviations collected from Internet were used
to convert these informal texts into their complete
forms, e.g., “Idering” to “wondering”, “2g2b4g”
to “to good to be forgotten”; (3) the WordNet-
based Lemmatizer implemented in Natural Lan-
guage Toolkit' was used to lemmatize all words to
their nearest base forms in WordNet, for example,
was is lemmatized to be. (4) we replaced a word
from one sentence with another word from the other
sentence if the two words share the same meaning,
where WordNet was used to look up synonyms. No
word sense disambiguation was performed and all
synsets for a particular lemma were considered.

2.2 String Based Features

We firstly recorded length information of given sen-
tences pairs using following eight measure function-
s: |Al,|B|,|A-B|,|B-Al,|AUB|, |AnB|, {AIZED (BLAD
where |A| stands for the number of non-repeated

"http://ltk.org/
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words in sentence A, |A — B| means the number of
unmatched words found in Abut notin B, |[AU B| s-
tands for the set size of non-repeated words found in
either A or B and |A N B| means the set size of shared
words found in both 4 and B .

Motivated by the hypothesis that two texts are
considered to be more similar if they share more
strings, we adopted the following five types of mea-
surements: (1) longest common sequence similar-
ity on the original and lemmatized sentences; (2)
Jaccard, Dice, Overlap coefficient on origi-
nal word sequences; (3) Jaccard similarity using
n-grams, where n-grams were obtained at three dif-
ferent levels, i.e., the original word level (n=1,2,3),
the lemmatized word level (n=1,2,3) and the char-
acter level (n=2,3,4); (4) weighted word overlap
feature (Sarié et al., 2012) that takes the impor-
tance of words into consideration, where Web 1T
5-gram Corpus® was used to estimate the impor-
tance of words. (5) sentences were represented as
vectors in #f*idf schema based on their lemmatized
forms and then these vectors were used to calcu-
late cosine, Manhattan, Euclidean distance
and Pearson, Spearmanr, Kendalltau cor-
relation coefficients based on different perspectives.
Totally, we got thirty-one string based features.

2.3 Corpus Based Features

Corpus based features aim to capture the semantic
similarities using distributional meanings of words
and Latent Semantic Analysis (LSA) (Landauer and
Dumais, 1997) is widely used to estimate the dis-
tributional vectors of words. Hence, we adopted t-
wo distributional sets released in TakeLab (éarié et
al., 2012), where LSA is performed over the New Y-
ork Times Annotated Corpus (NYT)? and Wikipedi-
a. Then two strategies were used to convert the
distributional meanings of words to sentence level:
(1) simply summing up the distributional vectors of
words in the sentence, (ii) using the information con-
tent (§arié et al., 2012) to weigh the LSA vector of
each word w and summing them up. At last we used
cosine similarity to measure the similarity of two
sentences based on these vectors. Besides, we used
the Co-occurrence Retrieval Model (CRM) (Weeds,

“https://catalog.ldc.upenn.edu/LDC2006T13
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2003) as another type of corpus based feature. The
CRM was calculated based on a notion of substi-
tutability, that is, the more appropriate it was to sub-
stitute word w; in place of word ws in a suitable
natural language task, the more semantically similar
they were.

Besides, the extraction of aforementioned fea-
tures rely on large external corpora, while (Guo
and Diab, 2012) proposed a novel latent model,
i.e., weighted textual matrix factorization (WTM-
F), to capture the contextual meanings of words
in sentences based on internal term-sentence ma-
trix. WTMEF factorizes the original term-sentence
matrix X into two matrices such that X;; =~
Pg:iQ*,j, where P,; is a latent semantics vec-
tor profile for word w; and Q. ; is the vec-
tor profile that represents the sentence s;. The
weight matrix W is introduced in the optimiza-
tion process in order to model the missing word-
s at the right level of emphasis. Then, we used
cosine, Manhattan, Euclidean functions
and Pearson, Spearmanr, Kendalltau corre-
lation coefficients to calculate the similarities based
on sentence representations. At last, we obtained
twelve corpus based features.

2.4 Syntactic Features

We estimated the similarities of sentence pairs at
syntactic level. Stanford CoreNLP toolkit (Manning
and Surdeanu, 2014) was used to obtain POS tag
sequences. Afterwards, we performed eight mea-
sure functions described in Section 2.2 over these
sequences, which resulted in eight syntactic based
features.

2.5 Other Features

We built a binary feature to indicate whether two
sentences in a pair have the same polarity (affirma-
tive or negative) by looking up a manually-collected
negation list with 29 negation words (e.g., scarcely,
no, little). Also, we checked whether one sentence
entails the other only using the named entity infor-
mation which was provided in the dataset. Finally,
we obtained nineteen other features.

2.6 Word Embedding Features

Recently, deep learning has achieved a great suc-
cess in the fields of computer vision, automatic
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speech recognition and natural language processing.
As a consequence of its application in NLP, word
embeddings have been building blocks in many
tasks, e.g., named entity recognition and chunk-
ing (Turian et al., 2010), semantic word similari-
ties (Mikolov et al., 2013a), etc. Being distribut-
ed representation of words, word embeddings usu-
ally are learned using neural networks over a large
raw corpus and has outperformed LSA for pre-
serving linear regularities among words (Mikolov
et al., 2013a). Due to its superior performance,
we adopted word embeddings to estimate the sim-
ilarities of sentence pairs. In our experiments, we
used seven different word embeddings with differ-
ent dimensions: word2vec (Mikolov et al., 2013b),
Collobert and Weston embeddings (Collobert and
Weston, 2008) and HLBL embeddings (Mnih and
Hinton, 2007). Word2vec embeddings are dis-
tributed within the word2vec toolkit* and they are
300-dimensional vectors learned from Google News
Corpus which consists of over a 100 billion word-
s. Collobert and Weston and HLBL embeddings are
learned over a part of RCV1 corpus which consist-
s of 63 millions words, with 25, 50, 100, or 200
dimensions and 50, 100 dimensions over 5-gram
windows respectively. To obtain sentence repre-
sentations, we simply summed up embedding vec-
tors corresponding to the non-stopwords tokens in
bag of words (BOW) of sentences. After that, we
used cosine, Manhattan, Euclidean func-
tions and Pearson, Spearmanr, Kendalltau
correlation coefficients to calculate the similarities
based on these synthetic sentence representations.
We got ninety word embedding features.

3 Experiments and Results

3.1 System Setups

The organizers provided 13,063 training pairs to-
gether with 4,727 development pairs in development
phase and 972 test pairs in test phase. We removed
the debatable instances (i.e., two annotators vote for
yes and the other three for no) existing in the dataset,
which resulted in 11,530 training pairs and 4,142 de-
velopment pairs. We built two supervised classifica-
tion systems over these datasets. One is m1feats
which only uses the traditional linguistic features

*https://code.google.com/p/word2vec



Algorithm mlfeats nnfeats
Precision Recall FI Precision Recall Fl1
SVC(0.1) 0.756 0.942 0.839 0.756 0.942 0.839
GB(140) 0.756 0.939 0.838 0.754 0.940 0.837
GB(150) 0.755 0.939 0.837 0.753 0.939 0.836
RF(45) 0.754 0.937 0.835 0.749 0.936 0.832

Table 1: Top results of different classification algorithms in systems m1 feat s and nnfeats on development dataset

together with parameter values in brackets.

System F1-Rank | Precision Recall FlI

ECNU_nnfeats 4 0.767 0.583  0.662
ECNU.mlfeats 10 0.754 0.560 0.643
BASELINE logistic 21 0.679 0.520 0.589
BASELINE_WTMF 28 0.450 0.663 0.536
BASELINE_random 38 0.192 0.434 0.266
ASOBEK _svckernel 1 0.680 0.669 0.674
ASOBEK_linearsvm 2 0.682 0.663 0.672
MITRE_ _ikr 3 0.569 0.806 0.667

Table 2: Performance and rankings of systems m1feats,

released by the organizers, as well as top ranking systems.

(i.e., features described in Section 2.2-2.5, 64 fea-
tures in total) and the other is nnfeat s which com-
bines the traditional linguistic features with the word
embedding features (148 features in total). Sever-
al classification algorithms were explored on devel-
opment dataset including Support Vector Classifi-
cation (SVC, linear), Random Forest (RF), Gradi-
ent Boosting (GB) implemented in the scikit-learn
toolkit (Pedregosa et al., 2011) and a large scale
of parameter values in these algorithms were tuned,
i.e., the trade-off parameter c in SVR, the number of
trees n in RF, the number of boosting stages n in G-
B. F-score was used to evaluate the performance of
systems.

3.2 Results and Discussion

Table 1 presents the best four F1 results achieved by
different algorithms together with their parameters
insystemml feats and nnfeats on developmen-
t dataset. The results show that these two system-
s consistently yield comparable performance, which
means that our proposed features based on word em-
beddings have little help to detect paraphrase on de-
velopment set. And we also find that SVC performs
slightly better than GB and RF algorithm. There-
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nnfeats and baseline systems on test dataset officially

fore, we adopted a major voting schema based on
SVC (¢=0.1) and GB (n=140,150) in test period.

Table 2 summarizes the performance and ranks of
our systems on test dataset, along with the baseline
systems provided by the organizers and the top three
systems. From this table, we observe following find-
ings. Firstly, nnfeats using word embedding fea-
tures outperforms the system m1feats only using
traditional linguistic features by 1.9%, which is in-
consistent with the findings on development set. The
possible reason may be that test data is collected
from a different time period while train and devel-
opment data is from the same time period while the
word embedding features might more or less cap-
ture this differences. Secondly, our results are sig-
nificantly better than the three baseline systems s-
ince our systems incorporate the features used in
baseline systems and other effective features. Third-
ly, the top 1 system (i.e., ASOBEK_svckernel)
yields 3.1% and 1.2% improvement over our system
mlfeats and nnfeats respectively, which indi-
cates that word embedding features and traditional
linguistic features are effective in resolving Twitter
paraphrase problem.

To explore the influence of different feature type-



s, we conducted feature ablation experiments where
we removed one feature group from all feature set
every time and then executed the same classifica-
tion procedure. Table 3 shows the results of fea-
ture ablation experiments. From this table, we can
see that the most influential features for recognizing
tweet paraphrase is corpus based features and the
second most important feature group is word em-
bedding features, which are within our expectation
since these two kinds of feature take advantage of
the semantic meaning of words.

Feature \ Precision \ Recall \ Fl

All 0.767 0.583 0.662
-string 0.717 0.594 0.650 (-0.012)
-corpus 0.772 0.543 0.638 (-0.024)
-syntactic 0.797 0.560 0.658 (-0.004)
-other 0.784 0.560 0.653 (-0.009)
-embedding 0.823 0.531 0.646 (-0.016)

Table 3: The results of feature ablation experiments.

4 Conclusion

In this paper we address paraphrase in Twitter task
by building a supervised classification model. Many
linguistic features used in traditional paraphrase task
and newly proposed features based on word embed-
dings were extracted. The results on test dataset
demonstrate that (1) our proposed word embedding
features improve the performance by a value of
1.9%; (2) the linguistic features used in paraphrase
on conventional texts task are also useful and effec-
tive in Twitter domain.

Acknowledgements

This research is supported by grants from Science
and Technology Commission of Shanghai Munici-
pality under research grant no. (14DZ2260800 and
15ZR1410700) and Shanghai Collaborative Innova-
tion Center of Trustworthy Software for Internet of
Things (ZF1213).

References

Ion Androutsopoulos and Prodromos Malakasiotis.
2010. A survey of paraphrasing and textual entailment
methods. J. Artif. Int. Res., pages 135-187.

38

Ronan Collobert and Jason Weston. 2008. A unified ar-
chitecture for natural language processing: Deep neu-
ral networks with multitask learning. In Proceedings
of the 25th international conference on Machine learn-
ing, pages 160-167.

Pablo Ariel Duboue and Jennifer Chu-Carroll. 2006. An-
swering the question you wish they had asked: The im-
pact of paraphrasing for question answering. In NAA-
CL, Companion Volume: Short Papers, pages 33-36.

Weiwei Guo and Mona Diab. 2012. Modeling sentences
in the latent space. In ACL, pages 864—872.

Akshay Java, Xiaodan Song, Tim Finin, and Belle Tseng.
2007. Why we Twitter: understanding microblogging
usage and communities. In Proceedings of the 9th We-
bKDD and 1st SNA-KDD 2007 workshop on Web min-
ing and social network analysis, pages 56—65.

Thomas K Landauer and Susan T Dumais. 1997. A so-
lution to Plato’s problem: The latent semantic analysis
theory of acquisition, induction, and representation of
knowledge. Psychological review, page 211.

Nitin Madnani and Bonnie J Dorr. 2010. Gener-
ating phrasal and sentential paraphrases: A survey
of data-driven methods. Computational Linguistics,
36(3):341-387.

Christopher D. Manning and Mihai et al. Surdeanu.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In 52nd ACL : System Demonstra-
tions.

Marco Marelli, Luisa Bentivogli, Marco Baroni, Raffael-
la Bernardi, Stefano Menini, and Roberto Zamparelli.
2014. Semeval-2014 task 1: Evaluation of composi-
tional distributional semantic models on full sentences
through semantic relatedness and textual entailment.
In SemEval, pages 1-8.

Donald Metzler, Susan Dumais, and Christopher Meek.
2007. Similarity measures for short segments of text.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corra-
do, and Jeff Dean. 2013b. Distributed representations
of words and phrases and their compositionality. In
Advances in Neural Information Processing Systems,
pages 3111-3119.

Shachar Mirkin, Lucia Specia, Nicola Cancedda, Ido
Dagan, Marc Dymetman, and Idan Szpektor. 2009.
Source-language entailment modeling for translating
unknown terms. In ACL, pages 791-799.

Andriy Mnih and Geoffrey Hinton. 2007. Three new
graphical models for statistical language modelling. In
Proceedings of the 24th international conference on
Machine learning, pages 641-648.



Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort,
etal. 2011. Scikit-learn: Machine learning in Python.
The Journal of Machine Learning Research, 12:2825—
2830.

Alan Ritter, Colin Cherry, and Bill Dolan. 2010. Un-
supervised modeling of Twitter conversations. pages
172-180.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method
for semi-supervised learning. In the 48th ACL, pages
384-394.

Frane Sarié, Goran Glavas, Mladen Karan, Jan gnajder,
and Bojana Dalbelo Basi¢. 2012. TakeLab: Systems
for measuring semantic text similarity. In *SEM 2012
and (SemEval 2012), pages 441-448, Montréal, Cana-
da.

Julie Elizabeth Weeds. 2003. Measures and applications
of lexical distributional similarity. Ph.D. thesis, Uni-
versity of Sussex.

Wei Xu, Chris Callison-Burch, and William B. Dolan.
2015. SemEval-2015 Task 1: Paraphrase and semantic
similarity in Twitter (PIT). In Proceedings of the 9th
International Workshop on Semantic Evaluation (Se-
mEval), Denver, CO.

Fabio Massimo Zanzotto, Marco Pennacchiotti, and
Kostas Tsioutsiouliklis. 2011. Linguistic redundan-
cy in Twitter. In EMNLP, pages 659-669.

39



ROB: Using Semantic Meaning to Recognize Paraphrases

Rob van der Goot
University of Groningen
r.van.der.goot@rug.nl

Abstract

Paraphrase recognition is the task of iden-
tifying whether two pieces of natural lan-
guage represent similar meanings. This pa-
per describes a system participating in the
shared task 1 of SemEval 2015, which is about
paraphrase detection and semantic similarity
in twitter. Our approach is to exploit se-
mantically meaningful features to detect para-
phrases. An existing state-of-the-art model
for predicting semantic similarity is adapted
to this task.

A wide variety of features is used, ranging
from different types of models, to lexical over-
lap and synset overlap. A maximum entropy
classifier is then trained on these features. In
addition to the detection of paraphrases, a sim-
ilarity score is also predicted, using the proba-
bilities of the classifier. To improve the results,
normalization is used as preprocessing step.

Our final system achieves a F1 score of 0.620
(10th out of 18 teams), and a Pearson correla-
tion of 0.515 (6th out of 13 teams).

1 Introduction

A good paraphrase detection system can be useful in
many natural language processing tasks, like search-
ing, translating or summarization. For clean texts,
F1 scores as high as 0.84 have been reported on para-
phrase detection (Madnani et al., 2012).

However, previous research focused almost solely
on clean text. Thanks to the Twitter Paraphrase Cor-
pus (Xu et al., 2014), this has now changed. Car-
rying out this task on noisy texts is a new chal-
lenge. The abundant availability of social media data
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and the high redundancy that naturally exists in this
data makes this task highly relevant (Zanzotto et al.,
2011).

Our approach is based on the model described
by Bjerva et al. (2014). This model has proved
to achieve state-of-the-art results at predicting se-
mantic similarity (Marelli et al., 2014). It is based
on overlaps of semantically meaningful properties
of sentences. A random forest regression model
(Breiman, 2001) combines these features to predict a
semantic similarity score. We rely heavily on the as-
sumption that semantically meaningful features can
also be used to identify paraphrases.

The features of the existing system are also used
in the new system. However, the old system used a
regression model, while the new task demands class-
based output. Hence, the machine learning model
model is changed to a maximum entropy model.

2 Data

The Twitter Paraphrase Corpus consists of two dis-
tinct parts, the training data differs significantly from
the test data.

The 17,790 tweet pairs for training are collected
between April 24th and May 3rd, 2014. These
tweets are selected based on the trending topics
of that period. Annotation of the training data is
done by human annotators from Amazon Mechan-
ical Turk. Every sentence pair is annotated by 5 dif-
ferent annotators, resulting in a score of 0-5. Based
on this score we create a binary paraphrase judge-
ment. If 0, 1 or 2 annotators judged positively, we
treat the sentence pair as not being a paraphrase, for
3, 4 or 5 positive judgements we treat the sentence

Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages 40-44,
Denver, Colorado, June 4-5, 2015. (©)2015 Association for Computational Linguistics



pair as a paraphrase.

The test data is collected between May 13th and
June 10th, and is thus based on different trending
topics. This assures the integrity of the evaluation.
In contrast to the training data, this data is anno-
tated by an expert similarity rating on a 5-point Lik-
ert scale (Likert, 1932), to mimic the training data.
Sentence pairs with a similarity score of 0, 1 and 2
are considered non-paraphrases, and sentence pairs
with scores of 4 and 5 are considered paraphrases.
The one uncertain category (similarity score of 3) is
discarded in the evaluation.

Using this data, we end up with two different
types of gold data per sentence pair. Firstly, we have
the binary gold data that indicates if a sentence pair
is a paraphrase. Secondly, we have the raw annota-
tions that can be used as a similarity score. These an-
notations are normalized by dividing them by their
maximum score (5), so we end up with (0.0, 0.2, 0.4,
0.6, 0.8, 1.0) as possible similarity scores.

The tweets in the corpus are already tokenized us-
ing TweetMotif (O’Connor et al., 2010). Addition-
ally, Part Of Speech (POS) tags are provided by a
tagger that is adapted to twitter (Derczynski et al.,
2013). Named entity tags are also obtained from an
adapted tagger (Ritter et al., 2011).

3 Method

The model is based on a state-of-the-art semantic
similarity prediction model (Bjerva et al., 2014). It
is mainly based on overlap features extracted from
different parsers, but also includes synset overlap,
and a Compositional Distributional Semantic Model
(CDSM). The parsers used in this model are a con-
stituency parser (Steedman, 2001), logical parser
Paradox (Claessen and Sorensson, 2003) and the
DRS parser Boxer (Bos, 2008).

3.1 Features

Our model uses 25 features in total. Due to space
constraints we cannot describe them all in detail
here. Instead we group the features as follows:

e Lexical features: word overlap, proportional
sentence length difference.

e POS: noun overlap, verb overlap.

e Logical model: instance overlap, relation over-
lap.
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e DRS: agent overlap, patient overlap, DRS com-
plexity.

e Entailments: binary features for: neutral, en-
tailment and contradiction predictions.

e CDSM: The cosine distance between the ele-
ment wise addition of the vectors in each sen-
tence is used.

o Synsets (WordNet): The distance of the closest
synsets of each word in both sentences, and the
distance between the noun synsets.

e Named entity: overlap between named enti-
sl
ties'.

For a complete detailed overview we refer to
the paper describing the semantic similarity system
(Bjervaetal., 2014), or for even more detail (van der
Goot, 2014).

3.2 Maximum Entropy Models

We will compare two different maximum entropy
models. The maximum entropy implementation of
Scikit-Learn (Pedregosa et al., 2011) is used.

The first maximum entropy model is a binary
model that also outputs a probability. From this
model, the normal binary output is not used, instead
we use the estimated probability that something is
a paraphrase. Using this value, we can set our own
threshold to have more control on the final output.

The second maximum entropy model is a multi-
class model. This classifier is based on the 6 dif-
ferent classes in our data, and thus outputs 6 proba-
bilities. We use the similarity score of each class as
weight to convert all probabilities to one probabil-
ity. For each class we multiply the similarity score
with the probability that our model predicts for this
class. The results of the 6 classes are then summed
to get a single probability. This classification model
uses more specific training data, thus it should have
a more precise output.

3.3 Normalization

A normalization approach very similar to that de-
scribed by Han et al. (2013) is used to try to im-
prove the parses. This normalization consists of
three steps.

!"This is the only feature not present in the original semantic
similarity system
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Figure 1: Precision and recall for the different classifiers.

The first step is to decide which tokens might need
a correction, this is decided by a dictionary lookup
in the Aspell dictionary?.

The second step is the generation of possible cor-
rections for every misspelled word. For this, the As-
pell source code is adapted to lower the costs of dele-
tion in its algorithm, because we assume words are
often typed in an abbreviated form in this domain.

The last step is the ranking of the candidates. Here
we use a different approach than the traditional ap-
proach. Instead of using a static formula to predict
the probability of each candidate, we want to use a
more flexible approach. Google N-gram probabili-
ties (Brants and Franz, 2006), Aspell scores and dic-
tionary lookups are combined using logistic regres-
sion. To adjusts the weights of the regression model,
200 sentences are normalized manually. The result-
ing model is then applied to all the other sentences.

This normalization approach does not reach a per-
fect accuracy, and normalizing a sentence might re-
move meaningful information. So instead of using
the normalization as straightforward pre processing
of the data, we use the raw and the normalized sen-
tence in the model. For each feature, scores are cal-
culated for both versions of the sentence. The high-
est of these scores be used as input for our maximum
entropy model.

4 Evaluation

This chapter is divided in the two sub tasks of para-
phrase detection and similarity prediction. A strong

Zwww. aspell.net
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Figure 2: F-Score for the different classifiers. P is the
threshold that decides if a sentence pair is a paraphrase.

baseline is used, namely a state-of-the art model for
clean text: a logistic regression model that uses sim-
ple lexical overlap features (Das and Smith, 2009).

4.1 Paraphrase Detection

The evaluation is done on expert annotations, which
are only available for the test set. The binary and
multi-class classifiers are evaluated separately. Ad-
ditionally, we also tried to improve the system by
using normalization.

The precision and recall of both classifiers is plot-
ted in Figure 1. In this graph the differences are
barely visible, therefore it looks like both models are
approximately equal.

If we look at the F-scores of Figure 2, the dif-
ferences are bigger. The highest F-scores of both
classifiers are 0.604 and 0.610 for respectively the
binary and the multi-class classifier. Both classifiers
outperform the baseline F-score of 0.583.

These graphs also show that the default output of
the binary deos not perform well, so it is really nec-
essary to use the probabilities.

4.1.1 Feature Comparisons

We use the same grouping for features as in 3.1.
The absolute weights of all features within each
group are summed. For the multi-class classifier the
weights are averaged over all 6 classes. Also an ab-
lation experiment is done. An overview this evalua-
tion is shown in Table 1.

In the ablation experiments we see that it is not
always better to use more features. Especially the



Weights Ablation ‘ Baseline HighestP Binary P Weighted
Feat. group | Binary  Multi Binary  Multi R ‘ 0.511 0.416 0.508 0.515
Lexical 2.43 1.65 0.601 0598 _ , o
POS 079 071 0.600 0.600 Table 2:. Pf:arson correlation (R) for the different similar-

ity prediction approaches.

Log. model | 0.74 1.61 0.573 0.606
DRS 3.57 1.88 0.551 0.553
Entailments | 0.51 2.79 0.584 0.589 weights, similar to section 3.2. We refer to this as
CDSM 5.29 3.63 0.538 0.523 the Weighted method.
Synsets 0.49 0.63 0.588 0.584 Besides the multi-class classifier, we also trained
NE 0.06 0.09 0.597 0.599  abinary classifier. The only way for this classifier to
All - - 0.600 0.604  output a degree score, is using the probability. This

Table 1: Absolute weights of the feature groups and fea-
ture group ablation F1-Scores.

logical model should be left out in the multi-class
entropy model. The models differ in some aspects,
whereas some features are important for both. More
specifically, we can see that the parsers outputs and
lexical features are more important for the multi-
class model, while the other features are more im-
portant for the binary model.

4.1.2 Normalization

After the normalization of the sentences, we run
the systems again. These runs are not plotted in the
graphs, because the differences are small. Despite
the small differences, there is one little performance
boost on the top-runs of the multi-class classifiers,
resulting in the highest F-score of 0.62.

4.2 Semantic Similarity Prediction

Even though we do not have real semantic similarity
training data, we simulate semantic similarity using
the amount of the positive judgements per sentence
pair. Our system is evolved from a semantic simi-
larity prediction system, so this model should work
well for this task. The Pearson correlation between
the different annotations of experts (test) and crowd-
sourcing (training) is 0.735.

For this sub task we will also try different heuris-
tics using both our classifiers. We start with the
multi-class classifier, because it is trained to give
back a similarity score. The model produces prob-
abilities for each class, the class with the high-
est probability is used as output. We call this the
Highest P method.

Another model can be built using the predicted
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is called Binary P.

Only the weighted method beats the baseline. Re-
sults of all three approaches and the baseline can be
found in Table 2.

5 Conclusion

The main conclusion to draw from these experi-
ments is that by using deep semantic features, we
can achieve a maximum F-score of 0.61 on the para-
phrase detection task. By using normalization we
can improve this F-score to 0.62.

Following from this, it is safe to conclude that a
semantic similarity prediction system can be used in
paraphrase detection reasonably well. Our system
had an average result on this shared task (10th out of
18 teams)’. The advantage of this system is that it
can be created easily from existing tools.

Unsurprisingly, the results on the semantic simi-
larity task were better (6th out of 13 teams). Even
though the gold data does not represent a real se-
mantic similarity, but a scale of positive annotations
of the paraphrase detection task.

The source code of our system has been made
publicly available®.
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Abstract

We explore using recursive autoencoders for
SemEval 2015 Task 1: Paraphrase and Seman-
tic Similarity in Twitter. Our paraphrase de-
tection system makes use of phrase-structure
parse tree embeddings that are then provided
as input to a conventional supervised classi-
fication model. We achieve an F1 score of
0.45 on paraphrase identification and a Pear-
son correlation of 0.303 on computing seman-
tic similarity.

1 Introduction

The process of rewriting text with a different choice
of words or using a different sentence structure
while preserving meaning is called paraphrasing.
Identifying paraphrases can be a difficult task owing
to the fact that evaluating surface level similarity is
often not enough, but rather systems must take into
account the underlying semantics of the content be-
ing assessed.

Paraphrasing and paraphrase detection are impor-
tant and challenging tasks, which find their applica-
tion in various subfields of Natural Language Pro-
cessing (NLP) such as information retrieval, ques-
tion answering (Erwin and Emiel, 2005), plagiarism
detection (Paul Clough et al., 2002), text summa-
rization and evaluation of machine translation (Chris
Callison Burch, 2008).

We explore using recursive autoencoders for para-
phrase detection and similarity scoring as a part of
SemEval 2015 Task 1: Paraphrase and Semantic
Similarity in Twitter. Twitter is an online social net-
working service with millions of users who casually
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converse about diverse topics in a continuous and
contemporaneous manner (Wei Xu et al., 2014; Wei
Xu et al., 2015). Table 1 gives an example of real
tweets, some of which are paraphrases of each other.
The very casual style of the Twitter corpus makes it
more challenging to work with for many NLP tools.
We use vector space embeddings, in part, since they
are relatively good at dealing with noisy data.

2 Related Work

Socher et al. (2011) explored using recursive au-
toencoders (RAEs) and dynamic pooling for para-
phrase detection. They parse each sentence within a
pair, compute embeddings for each node in the parse
trees, and then construct a similarity matrix compar-
ing the embedding vectors for all nodes within the
two parse trees. Using dynamic pooling, they con-
vert the variable size similarity matrix for each sen-
tence pair to a matrix of fixed size. The resulting
fixed size matrix is then given to a softmax classifier
to detect whether the sentences are paraphrases.

3 A Deep Learning System

The architecture of our system is depicted in Figure
1. The raw Twitter corpus is preprocessed using a
phrase-structure parser. The resulting parse trees are
then used to train an unfolding RAE model. This
model provides us with embedding vectors that are
then used to compute the similarity between every
node in the parse trees associated with a sentence
pair. A similarity matrix is populated with the node-
to-node similarity scores as measured by the Eu-
clidean distance beween the node embedding vec-
tors. The size of the similarity matrix depends on
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Sentence 1 Sentence 2 Paraphrase or Not
AAP is in the Adidas commercial AAP in that Adidas Commercial lol | Paraphrase
That amber alert was getting annoying | Why do I get amber alerts tho Not paraphrase
I am so watching Cinderella right now | Im so watching Cinderella right now | Paraphrase
That shot counted by Bayless Bayless just RAN for it Not Paraphrase
Damon EJ 1st Qb off the board if EJ is the 1st QB off the board Paraphrase

Table 1: Sample tweets from SemEval 2015 Twitter Paraphrase Corpus.

Raw Twitter SemEval 2015 SemEval 2015
Corpus Train/Dev Test

| v

Phrase Structure Parser

'

Compute Similarity Matrix

RAE
Training

—

o
-

Y

Embedding Train Predict
Vectors Softmax Test Label
Classifier

Classification
Model

Test Set

Paraphrase
Labels

Figure 1: System architecture: The unfolding recursive autoencoder computes phrase embedding vectors for each
node in a parse tree. For a pair of sentences being evaluated, the distances between all the nodes in the paired parse
trees are computed and fill a variable sized similarity matrix. Dynamic pooling is used to convert the variable size
similarity matrix to fixed size matrix. The fixed size similarity matrix is given to a softmax classifier to detect both
whether the paired sentences are paraphrases and for paraphrase similarity scoring.
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Figure 2: Dynamic pooling: The original variable sized
matrix is partitioned into an n,, X n, grid of blocks of ap-
proximately equivalent size. We use min-pooling as the
aggregation operation, whereby the values of the cells in
the fixed size n, X n, matrix are assigned to the mini-
mum value of the corresponding partition in the original
matrix.

the number of nodes in the parse trees being com-
pared. This variable size similarity matrix is con-
verted to a fixed size matrix using Dynamic Pooling
(Socher et.al, 2011). Dynamic pooling partitions the
rows and columns of similarity matrix into n, ap-
proximately equivalent segments which creates an
np X ny grid. As depicted in Figure 2, the individ-
ual cells in the fixed size n, X m, matrix are assign
to the minimum values of their corresponding par-
titions in the original matrix. The resulting fixed
size matrix is then used to train a softmax classifier
to perform the actual paraphrase detection and pair-
wise similarity scoring tasks. To classify a pair of
new sentences, the sentences are first parsed. Using
the parse trees, the embedding vectors for each sen-
tence are constructed and used to populate a node-
to-node similarity matrix. This matrix is converted
to a fixed size using dynamic pooling and passed to
the softmax classification model.

3.1 Unfolding Recursive Autoencoders (RAEs)

The architecture of our unfolding RAE:s is illustrated
in Figure 2. The main difference between standard
RAEs and unfolding RAEs is that standard RAEs
are only directly trained to have each node recon-
struct its immediate children. Unfolding RAEs dif-
fer in that the training objective assess not only how
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X3

Figure 3: Architecture of unfolding RAEs. Using unfold-
ing RAEs, the embedding vector associated with each
node in a parse tree is trained to reconstruct the whole
parse tree fragment rooted at the current node.

well the representation of each node reconstructs it’s
immediate children, but rather how well the node’s
representation reconstructs the entire parse tree frag-
ment rooted at the current node.

4 Experimental Results

We use a general domain parsing model distributed
with the Stanford Parser, englishPCFG v1.6.9 (Klein
and Manning, 2003). Prior to training the RAE vec-
tors, we pre-trained word embedding vectors for use
as the word level representations (Ronan and Jason,
2008). The hyperparameter values used for our sys-
tem are as follows: (1) the size of the pooling matrix
ny = 13; (2) the regularization for the softmax clas-
sifier ¢ = 0.05; (3) Both the RAE and word embed-
dings are 100-dimensional vectors.

4.1 Data Set Details

Our SemEval task provided the PIT-2015 Twitter
Paraphrase corpus for training and system develop-
ment (Wei Xu, 2014; Wei Xu et al., 2014; Wei Xu
et al., 2015). The corpus contains a training set with
13,063 sentence pairs, a development set with 4,727
sentence pairs, and a test set with 972 sentence pairs.
Table 2 shows the label distribution statistics for this
corpus. This data set is distinct from the data used



Category Paraphrase | Non-Paraphrase Debatable Total
Sentence pair | Sentence pair | Sentence pair
Training 3,996 7,534 1,533 13,063
Development | 1,470 2,672 585 4,727
Testing 175 663 134 972
Table 2: Statistics of PIT-2015 Twitter Paraphrase Corpus.
Twitter | Training Testing/ Precision | Recall F1
Corpus Development Measure
50,000 13,063 4,727 0.51 0.48 0.49
80,000 13,063 4,727 0.65 0.37 0.51
95,000 13,063 4,727 0.77 0.35 0.56

Table 3: PIT-2015 dev set performance using varying amounts of training data.

in other work on paraphrasing in the following ways:
(1) it contains sentences that are colloquial and opin-
ionated; (2) it contains paraphrases that are lexically
diverse; and (3) it contains many sentences that are
lexically similar but semantically dissimilar (Wei Xu
et al., 2015).

The training and development data was jointly
collected from 500+ trending topics and then ran-
domly split into the final training and development
sets. The test data was drawn from 20 randomly
sampled Twitter trending topics. Labels were col-
lected by having each sentence pair annotated by 5
different crowdsourced workers.

4.2 Evaluation and Discussion

For the unsupervised unfolding RAE training, we
experimented with using subsets of different sized
Twitter corpora of 50,000, 80,000 and 95,000 sen-
tences to evaluate the proposed system. Using PIT-
2015, we trained using tweets from the training set
and evaluated the resulting series of systems on the
dev set (Wei Xu et al., 2015). For supervised train-
ing, we used the training set from PIT-2015. For
training the unsupervised unfolding RAE vectors,
we collected additional data using the Twitter De-
veloper API. As shown in Table 3, we found that
increasing the size of the data set used to train the
RAE embeddings leads to strong gains in system
performance.! Notice that as the amount of data
used to train the RAE vectors increases, the preci-

"Due to time constraints we did not explore using more than
95,000 sentences to train our embedding model.
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Metrics Type | Accuracy
maxF1 0.457
mPrecision 0.543
mRecall 0.394
Pearson 0.303

Table 4: Results from the SemEval-2015.

sion value for paraphrase detection increases signif-
icantly while the recall value is actually falling.

The official evaluation metrics for SemEval-2015
Task 1 are Fl-score for paraphrase identification
and Pearson correlation for the semantic similarity
scores. The performance of our system on the shared
task evaluation data using these metrics is presented
in Table 4.

5 Conclusion and Future Work

We participated in SemEval 2015 Task 1: Para-
phrase and Semantic Similarity in Twitter using
a system architecture motivated by the success of
prior work on using RAE for paraphrase detection
(Socher et al. 2011). We find that the performance
of the system receives a sizable boost with the ad-
dition of a moderate amount of unsupervised RAE
training data.

In future work, we plan to try to improve perfor-
mance by first normalizing the Twitter data prior to
parsing. Given the mismatch between general do-
main English data and tweets, parse accuracy would
have likely been improved by performing a pre-
processing step that normalized the tweets prior to



giving them to the parser (Juri Ganitkevitch et al.,
2013; Brendan O Connor et al., 2010). This could
lead to improved downstream paraphrase detection
and similarity scoring. We would also like to ex-
plore using new learning algorithms for the final
paraphrase classification as well as alternative mech-
anisms of constructing the sentence level embedding
vectors.
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Abstract

We describe the system we developed to partic-
ipate in SemEval 2015 Task 1, Paraphrase and
Semantic Similarity in Twitter. We create simi-
larity vectors from two-skip trigrams of prepro-
cessed tweets and measure their semantic simi-
larity using our UMBC-STS system. We sub-
mit two runs. The best result is ranked eleventh
out of eighteen teams with F1 score of 0.599.

1. Introduction

In this task (Wei, et al., 2015), participants were
given pairs of text sequences from Twitter trends
and produced a binary judgment for each stating
whether or not they are paraphrases (e.g., semanti-
cally the same) and optionally a graded score (0.0
to 1.0) measuring their degree of semantic equiva-
lence. For example, for the trending topic “A Walk
to Remember” (a film released in 2002), the pair A
Walk to Remember is the definition of true love”
and “A Walk to Remember is on and Im in town
and Im upset” might be judged as not paraphrases
with score 0.2 whereas the pair “A Walk to Re-
member is the definition of true love” and “A Walk
to Remember is the cutest thing” could be judged
as paraphrases with a score of 0.6.

Many methods have been proposed to solve the
paraphrase detection problem. Early approaches
were often based on lexical matching techniques,
e.g., word n-gram overlap (Barzilay and Lee,
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2003) or predicate argument tuple matching (Qiu,
et al., 2006). Some other approaches that go be-
yond simple lexical matching have also been de-
veloped. For example, (Mihalcea, et al., 2006) es-
timated semantic similarity of sentence pairs with
word-to-word similarity measures and a word
specificity measure. (Zhang and Patrick, 2005)
uses text canonicalization to transfer texts of simi-
lar meaning into the same surface text with a high-
er probability than those with different meaning.

Many of these approaches adopt distributional
semantic models, but limited to a word level. To
extend distributional semantic models beyond
words, several researchers have learned phrase or
sentence representation by composing the repre-
sentation of individual words (Mitchell and Lapata,
2010; Baroni and Zamparelli, 2010). An alternative
approach by (Socher et al., 2011) represents
phrases and sentences with fixed matrices consist-
ing of pooled word and phrase pairwise similari-
ties. (Le and Mikolov, 2014) learns representation
of sentences directly by predicting context without
composition of words.

In our work, we judge that two sentences are
paraphrases if they have high degree of semantic
similarity. We use the UMBC-Semantic Textual
Similarity system (Lushan Han et al., 2013), which
provides high accurate semantic similarity meas-
urement. The remainder of this paper is organized
as follows. Section 2 describes the task and the
details of our method. Section 3 presents our re-
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sults and a brief discussion. The last section offers
conclusions.

2. Our Method

To decide whether two tweets are paraphrases or
not, we use a measurement based on semantic sim-
ilarity values. If two tweets are semantically simi-
lar, they are judged as paraphrases, otherwise they
are not. We described steps of our method as fol-
lows.

1.1. Preprocessing

Generally, tweets are informal text sequences that
include abbreviations, neologisms, emoticons and
slang terms as well genre-specific elements such as
hashtags, URLs and @mentions of other Twitter
accounts. This is due to both the informal nature
of the medium and the requirement to limit content
to at most 140 characters. Thus, before measuring
the semantic similarity, we replace abbreviation
and slang to the readable version. We collected
about 685 popular abbreviations and slang terms
from several Web resources and combined these
with the provided twitter normalization lexicon
developed by Han Bo and Timothy Baldwin
(2011).

After replacing abbreviations and slang terms,
we remove all stop words to get our final desired
processed tweets. Then we produce a set of two-
skip trigrams for each tweet and name these sets as
trigram sets. We adapted the skip-gram technique
from (Guthrie, et al., 2006).

Take the tweet “Google Now for iOS simply
beautiful” as an example, after removing stop word
s, we get ‘Google Now iOS simply beautiful ”. Then
a two-skip trigram set is produced: {‘Google Now
iOS’, ‘Now iOS simply’, ‘i0S simply beautiful’,
‘Google i0S simply’, ‘Google simply beautiful’,
‘Now simply beautiful’, ‘Google Now beautiful’,
‘Google Now simply’, ‘Now iOS beautiful '}, which
is referred as trigram set. We transform every raw
tweet into its processed version and then corre-
sponding trigram set.

! These included http://webopedia.com, http://blog.-
mltcreative.com and http://internetslang.com and others.
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1.2. LSA Word Similarity Model

Our LSA word similarity model is a revised ver-
sion of the one we used in the 2013 and 2014
SemEval semantic text similarity tasks (Han, et al.,
2013, Kashyap et al., 2014). LSA relies on the fact
that semantically similar words (e.g., cat and feline
or nurse and doctor) are more likely to occur near
one another in text. Thus evidence for word simi-
larity can be computed from a statistical analysis of
a large text corpus. We extract raw word co-
occurrence statistics from a portion of a 2007 Stan-
ford WebBase dataset (Stanford, 2001).

We performed part of speech tagging and lem-

matization on the corpus using the Stanford POS
tagger (Toutanova et al., 2000). Word/term co-
occurrences were counted with a sliding window
of fixed size over the entire corpus. We generate
two co-occurrence models using window sizes +1
and +4. The smaller window provides more precise
context which is better for comparing words of the
same part of speech while the larger one is more
suitable for computing the semantic similarity be-
tween words of different syntactic categories.
Our word co-occurrence models are based on a
predefined vocabulary of 22,000 common English
open-class words and noun phrases, extended with
about 2,000 verb phrases from WordNet. The final
dimensions of our word/phrase co-occurrence ma-
trices are 29,000%29,000 when words/phrases are
POS tagged. We apply singular value decomposi-
tion on the word/phrase co-occurrence matrices
(Burgess 1998) after transforming the raw
word/phrase co-occurrence counts into their log
frequencies, and select the 300 largest singular
values. The LSA similarity between two
words/phrases is then defined as the cosine similar-
ity of their corresponding LSA vectors generated
by the SVD transformation.

To compute the semantic similarity of two text
sequences, we use the simple align-and-penalize
algorithm described in (Han et al., 2013) with a
few improvements. These improvements include
some sets of common disjoint concepts and an en-
hanced stop word list.

1.3. Features

For two trigram sets, we compute the semantic
similarity of every possible pair of trigrams in the-
se two sets using the UMBC Semantic Textual



Similarity system. For each pair of tweet (T1 and
T2), six features are produced as:

« Featurel = semantic similarity value between
each pair of tweets (whole sentence with ab-
breviation and slangs replaced, and stop words

removed)
. Feature2 = Max(Max(sim(T'1,12)))
. Featured = Max(Max(sim(T2,T1)))
. Featured = Avg&(Max(sim(T'1,T2)))

. Features = Avg(Max(sim(T'2,T1)))

« Feature6 = the weighted average on length of
tweets of two averages above.

1.5. Training

We used the LIBSVM system (Chang and Lin,
2011) for training a logistic regression model and a
support vector regression model. We run a grid
search to find the best parameters for both models.
All training data (13,063 pairs of tweets) were used
to train the models without discarding any debata-
ble data. We tested the contribution for of each of
the features through ablation experiments on the
development data in which each feature was delet-
ed in each experimental run. Table 1 shows the
statistical results for each feature ablation run.

Feature deleted F1 Precision | Recall
Feature 1 0.7 0.709 0.728
Feature 2 0.697 0.706 0.726
Feature 3 0.697 0.706 0.726
Feature 4 0.691 0.700 0.722
Feature 5 0.696 0.706 0.726
Feature 6 0.695 0.705 0.725

Table 1. Performance of our system on runs against the
development data in which each feature was removed.

From Table 1, we can see that the feature of lowest
performance is Feature 1, the semantic similarity
computed with entire tweets without using the
skip-gram technique. But we still keep Feature 1
since performance of these six features is not sig-
nificantly different. We show the performance of
each model on development data in Table 2.

53

Model F1 Precision | Recall
Loglst!c 0.697 0.706 0.726
Regression
Support Vector
Regression 0.691 0.707 0.726

Table 2. Performance of system on development data.

Since the performance of both systems is almost
the same, we decide to submit one run of each sys-
tem.

3. Results and Discussions

We submit two runs: Run; (Logistic Regression)
obtained an F1 score of 0.599, precision score of
0.651 and recall score of 0.554, and Run, (Support
Vector Regression), which received an F1 of
0.590, precision of 0.646, and recall of 0.543.
When ranked, we are in the eighteenth (Run,) and
the nineteenth (Run,) out of the 38 runs. The first
rank has F1 score of 0.674. The full distribution of
F1 score is shown in Figure 1. The relatively low
ranking of our system might be the result of sever-
al factors.

First factor is the prevalence of neologisms,
misspellings, informal slang and abbreviations in
tweets. Better preprocessing to make the tweets
closer to normal text might improve our results.

Another factor is the UMBC STS system. Ex-
amples of input on which UMBC STS system per-
form poorly are shown in Table 3. We can group
these into two sets, each associated with problem
in performing the paraphrase task.

The first problem is that a slang word may have
different meanings when it is used in different gen-
res. As we can see in the first example in Table 3,
‘bombs’ does not mean ‘a container filled with
explosive” but is a synonym of ‘home runs’ when
mentioned in a sports or baseball context. We can
recognize this meaning by reading sport articles
but it is not included in any dictionaries or
WordNet. Thus our system predicts that the two
tweets, each containing either ‘bombs’ or ‘home
runs’, have low semantic similarity and thus are
not paraphrases.

The second problem involves out-of-vocabulary
words, such as the named entities found in the ex-
amples in Table 3. Tweet 2 of the second example



‘NOW YOU SEE ME and AFTER EARTH Cant
Outpace FAST FURIOUS 6’ is full of movie
names whose meanings our STS system cannot
recognize. We can solve this problem by adding
name entity recognition to the system. Another
potential solution would be to adopt a simple
string-matching component. With string matching,
we may handle those out-of-vocabulary words sit-
uations similar to the third and fourth example. We
can match ‘orr’and ‘chara’ between two tweets of

the third example and ‘new ciroc’ in the fourth ex-
ample.

To improve our STS performance, which is
trained on a corpus that mostly consisted of rea-
sonably well-written narrative text, we need to ex-
pand training corpus. Training a LSA model on a
collection of tweets or a mixture of tweets and nar-
rative text, and adding name entity recognition
process may lead to better results.

0.8

0.6

Figure 1. Ranked F1 score of 38 runs

4 Tweet 1 Tweet 2 System Gold

1 | chris davis is 44 with two bombs Chris Davis has 2 home runs tonight False True

2 | I wanna see the movie after earth NOW YOU SEE ME and AFTER EARTH True False
Cant Outpace FAST FURIOUS 6

3 | Orr with a big hit on Chara | keep waiting for the chara vs orr fight False True

4 | New Ciroc Amaretto | NEED THAT | Oh shit I gotta try that new ciroc flavor False True

Table 3. Examples of input pairs on which our system performed poorly

4. Conclusion

We describe our system submitted in participating
the SemEval 2015 Task 1 Paraphrase and Seman-
tic Similarity in Twitter. We preprocess tweets us-
ing two-skip trigrams to produce sets of possible
trigrams and measure their semantic similarity us-
ing the UMBC-STS system. We computed the sta-
tistical value as maximum and average of each pair
and use two regression models; logistic regression
and support vector regression. Our best performing
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run achieved an F1 score of 0.599 and was ranked
eleventh out of eighteen teams.
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Abstract

We use referential translation machines
(RTMs) for predicting the semantic similarity
of text. RTMs are a computational model
effectively judging monolingual and bilingual
similarity while identifying translation acts
between any two data sets with respect to
interpretants.  RTMs pioneer a language
independent approach to all similarity tasks
and remove the need to access any task or
domain specific information or resource.
RTMs become the 2nd system out of 13
systems participating in Paraphrase and
Semantic Similarity in Twitter, 6th out of 16
submissions in Semantic Textual Similarity
Spanish, and 50th out of 73 submissions in
Semantic Textual Similarity English.

1 Referential Translation Machine (RTM)

We present positive results from a fully automated
judge for semantic similarity based on Referential
Translation Machines (Bigici and Way, 2014b) in
two semantic similarity tasks at SemEval-2015, Se-
mantic Evaluation Exercises - International Work-
shop on Semantic Evaluation (Nakov et al., 2015).
Referential translation machine (RTM) is a compu-
tational model for identifying the acts of translation
for translating between any given two data sets with
respect to a reference corpus selected in the same
domain. An RTM model is based on the selection
of interpretants, training data close to both the train-
ing set and the test set, which allow shared seman-
tics by providing context for similarity judgments.
Each RTM model is a data translation and transla-
tion prediction model between the instances in the
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training set and the test set and translation acts are
indicators of the data transformation and translation.
RTMs present an accurate and language independent
solution for making semantic similarity judgments.

RTMs pioneer a computational model for qual-
ity and semantic similarity judgments in monolin-
gual and bilingual settings using retrieval of relevant
training data (Bigici and Yuret, 2015) as interpre-
tants for reaching shared semantics. RTMs achieve
(i) top performance when predicting the quality of
translations (Bigici, 2013; Bigici and Way, 2014a);
(ii) top performance when predicting monolingual
cross-level semantic similarity; (iii) second perfor-
mance when predicting paraphrase and semantic
similarity in Twitter (iv) good performance when
judging the semantic similarity of sentences; (iv)
good performance when evaluating the semantic re-
latedness of sentences and their entailment (Bicici
and Way, 2014b).

RTMs use Machine Translation Performance Pre-
diction (MTPP) System (Bigici et al., 2013; Bigici
and Way, 2014b), which is a state-of-the-art (SoA)
performance predictor of translation even without
using the translation. MTPP system measures the
coverage of individual test sentence features found
in the training set and derives indicators of the close-
ness of test sentences to the available training data,
the difficulty of translating the sentence, and the
presence of acts of translation for data transforma-
tion. MTPP features for translation acts are provided
in (Bicici and Way, 2014b). RTMs become the 2nd
system out of 13 systems participating in Paraphrase
and Semantic Similarity in Twitter (Task 1) (Xu et
al., 2015) and achieve good results in Semantic Tex-

Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages 56—63,
Denver, Colorado, June 4-5, 2015. (©)2015 Association for Computational Linguistics
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Figure 1: RTM depiction.

Algorithm 1: Referential Translation Machine
Input: Training set t rain, test set test,
corpus C, and learning model M.
Data: Features of train and test, Firain
and Ficst.
Output: Predictions of similarity scores on the
test q.

1 FDAS5(train, test,C) =1

2 MTPPSystem(Z, train) — Firain

3 MTPPSystem(Z, test) — Frest

4 learn(M, Fergin) — M

5 predict(M, Frese) — 9

tual Similarity (Task 2) (Agirre et al., 2015) becom-
ing 6th out of 16 submissions in Spanish.

We use the Parallel FDAS instance selection
model for selecting the interpretants (Bigici et al.,
2014; Bicici and Yuret, 2015), which allows efficient
parameterization, optimization, and implementation
of Feature Decay Algorithms (FDA), and build an
MTPP model. We view that acts of translation are
ubiquitously used during communication:

Every act of communication is an act of
translation (Bliss, 2012).

Translation need not be between different languages
and paraphrasing or communication also contain
acts of translation. When creating sentences, we use
our background knowledge and translate informa-
tion content according to the current context.

Figure 1 depicts RTM and Algorithm 1 describes
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Task Setting Train LM
Task 1, ParSS  English 313 7813
Task 2, STS English 441 6441
Task 2, STS English headlines | 531 8031
Task 2, STS English images 411 6411
Task 2, STS Spanish 409 6409

Table 1: Number of sentences in Z (in thousands) se-
lected for each task.

the RTM algorithm. Our encouraging results in the
semantic similarity tasks increase our understanding
of the acts of translation we ubiquitously use when
communicating and how they can be used to pre-
dict semantic similarity. RTMs are powerful enough
to be applicable in different domains and tasks with
good performance. We describe the tasks we partic-
ipated as follows:

ParSS Paraphrase and Semantic Similarity in
Twitter (ParSS) (Xu et al., 2015):

Given two sentences S; and S5 in the
same language, produce a similarity score
indicating whether they express a similar
meaning: a discrete real number in [0, 1].

We model as sentence MTPP between Sp to Ss.

STS Semantic Textual Similarity (STS) (Agirre
et al., 2015):

Given two sentences Sp and SS9 in the same
language, quantify the degree of similar-
ity: a real number in [0, 5].

STS is in English and Spanish (a real number in
[0, 4]). We model as sentence MTPP of S; and Ss.

2 SemkEval-15 Results

We develop individual RTM models for each task
and subtask that we participate at SemEval-2015
with the RTM-DCU team name. Interpretants are
selected from the LM corpora distributed by the
translation task of WMT14 (Bojar et al., 2014) and
LDC for English (Parker et al., 2011) and Span-
ish (Angelo Mendonga et al., 2011) '. We use the
Stanford POS tagger (Toutanova et al., 2003) to ob-
tain the lemmatized corpora for the ParSS task. The
number of instances we select for the interpretants

"English Gigaword 5th, Spanish Gigaword 3rd edition.



RTM-DCU results

Data Model Fi Precision Recall maxF; mPrecision mRecall rp MAE RAE MAER MRAER Rank
R SVR 0.54 0.883 0.389 0.693 0.695 0.691 0.5697 0.1953 0.7918 0.4278 0.8694 3
R PLS-SVR | 0.562 0.859 0.417 0.678 0.649 0.709 0.564 0.2001 0.8109 0.4442 09105 4
RTM results with further optimization
Data Model F Precision Recall maxF} mPrecision mRecall rp MAE RAE MAER MRAER
R PLS-SVR | 0.502 0.938 0.343 0.674 0.686 0.663 0.5798 0.1912 0.775 0.6901 0.838
R RR 0.521 0.94 036 0.681 0.735 0.634 0.5777 0.1866 0.7564 0.7438 0.7944
R+L SVR 0.53 0.892 0.377 0.669 0.652 0.686 0.5719 0.1944 0.7879 0.6788 0.8615
R+L PLS-SVR | 0.5 0.884 0.349 0.642 0.649 0.634 0.5245 0.2028 0.8218 0.7425 0.8864

Table 2: ParSS test results.

in each task is given in Table 1.

We use ridge regression (RR), support vector re-
gression (SVR), and extremely randomized trees
(TREE) (Geurts et al., 2006) as the learning mod-
els. These models learn a regression function using
the features to estimate a numerical target value. We
also use them after a dimensionality reduction and
mapping step with partial least squares (PLS) (Spe-
cia et al., 2009). We optimize the learning parame-
ters, the number of dimensions used for PLS, and the
parameters for parallel FDAS. More details about
the optimization processes are in (Bigici and Way,
2014b; Bigici et al., 2014). We optimize the learning
parameters by selecting € close to the standard devi-
ation of the noise in the training set (Bigici, 2013)
since the optimal value for ¢ is shown to have lin-
ear dependence to the noise level for different noise
models (Smola et al., 1998). At testing time, the
predictions are bounded to obtain scores in the cor-
responding ranges.

We use Pearson’s correlation (7 p), mean absolute

error (MAE), and relative absolute error (RAE) for
evaluation:

We define MAER and MRAER for easier replica-
tion and comparability with relative errors for each
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instance:

i Ui — il
MAER(j, ) = =1 Llyil | e

n

2)

MRAER(y,y) = =L

n

MAER is the mean absolute error relative to the
magnitude of the target and MRAER is the mean
absolute error relative to the absolute error of a pre-
dictor always predicting the target mean assuming
that target mean is known. MAER and MRAER are
capped from below? with ¢ = MAE(y,y)/2, which
is the measurement error and it is estimated as half
of the mean absolute error or deviation of the pre-
dictions from target mean. e represents half of the
score step with which a decision about a change
in measurement’s value can be made. € is simi-
lar to half of the standard deviation, o, of the data
but over absolute differences. For discrete target
scores, ¢ = 25 A method for learning deci-
sion thresholds for mimicking the human decision
process when determining whether two translations
are equivalent is described in (Bigici, 2013).

MAER and MRAER are able to capture averaged
fluctuations at the instance level and they may eval-
uate the performance of a predictor at performance
prediction tasks at the instance level (e.g. perfor-
mance of the similarity of sentences, performance
of translation of different translation instances) bet-
ter. RAE compares sums of prediction errors and
MRAER averages instance prediction error compar-
isons.

*We use | . | to cap the argument from below to .



RTM-DCU rp results

Model answers-forums answers-students

belief

headlines images Weighted rp Rank

PLS-TREE 0.5484 0.5549

0.6223

0.7281  0.7189 0.6468 50

RTM top result rp selected according to Weighted rp among top 3 results with further optimization

Model | answers-forums answers-students  belief headlines images Weighted rp
TREE 0.5517 0.6729 0.6750  0.7812  0.7830 0.7126
Rank 48 38 29 49 38

Table 4: STS English test rp results for each domain.

Data Model Fy TP MAE RAE MAER MRAER
R PLS-SVR |.4740 .6183 .2106 .6963 1.5408 .9223
R RR 4920 .6165 2174 .7188 1.8609 .9132
R PLS-TREE|.5330 .6156 .2201 .7276 1.939 .9144
R SVR 4800 .6152 .2107 .6965 1.5012 .9306
R PLSRR 5110 .6140 2170 7175 1.8443. .9240
R+L SVR 5040 .6216 .2085 .6893 1.4723 .9344
R+L PLS-SVR |.4970 .6209 .2093 .6919 1.5402 .9226
R+L PLS-TREE |.5410 .6205 .2177 .7196 1.8834 9161
R+L RR 4970 .6194 2164 7154 1.8448 .9096
R PLS-SVR |.4740 .6183 .2106 .6963 1.5408 .9223

Table 3: ParSS training results of top 5 RTM systems
with further optimization.

2.1 Task 1: Paraphrase and Semantic
Similarity in Twitter (ParSS)

ParSS contains sentences provided by Twitter * (Xu
et al., 2015). Official evaluation metric is Pearson’s
correlation score, which we use to select the top
systems on the training set. RTM-DCU results on
the ParSS test set are given in Table 2. The set-
ting R using SVR becomes 2nd out of 13 systems
and 3rd out of 25 submissions. Looking at MAE
and MAER allows us to obtain explanations to train
and test performance differences for example with-
out knowing their target distribution. Even though
MAE of PLS-SVR is about %5 smaller on the ParSS
test set, MAER is %55 smaller due to test set con-
taining fewer zero entries (%16 vs. %39 on the train
set). Lower test MAE than training MAE may be
attributed to RTMs.

We obtained results with lemmatized datasets and
further optimized the learning model parameters af-
ter the challenge. We present the performance of the
top 5 individual RTM models on the training set in
Table 3. R uses the regular truecase (Koehn et al.,

3www.twitter.com

59

RTM-DCU rp results
Wikipedia News Weighted rp Rank
0.5823 0.5251 0.5443 6

Model
TREE

RTM top result rp selected according to Weighted
rp among top 3 results with further optimization

Model | Wikipedia News Weighted rp  Rank
TREE 0.6622 0.5833  0.6096 5
Rank 4 5

Table 5: STS Spanish test results.

2007; Koehn, 2010) corpora and L uses the lemma-
tized truecased corpora. R+L correspond to using
the features from both R and L, which doubles the
number of features.

2.2 Task 2: Semantic Textual Similarity (STS)

STS contains sentence pairs from different do-
mains: answers-forums, answers-students, belief,
headlines, and images for English and wikipedia
and newswire for Spanish. Official evaluation met-
ric in STS is the Pearson’s correlation score. We
build separate RTM models for headlines and im-
ages domains for STS English. Domain specific
RTM models obtain improved performance in those
domains (Bigici and Way, 2014b). STS English test
set contains 2000, 1500, 2000, 1500, and 1500 sen-
tences respectively from the specified domains how-
ever for evaluation, STS use a subset of the test set,
375, 750, 375, 750, and 750 instances respectively
from the corresponding domains. This may lower
the performance of RTMs by causing FDAS to se-
lect more domain specific data and less task specific
since RTMs use the test set to select interpretants
and build a task specific RTM prediction model.
Table 4 and Table 5 list the results on the test set



along with their ranks out of 73 and 16 submissions
respectively for English STS and Spanish STS.

RTM top test results selected according to
Weighted rp among top 3 results on STS for each
subtask as well as top RTM-DCU results in STS
2014 (Bicici and Way, 2014b) are presented in Ta-
ble 6, where we have used the top results from do-
main specific RTM models for headlines and images
domains in the overall model results. Top 3 individ-
ual RTM model performance on the training set with
further optimized learning model parameters after
the challenge are presented in Table 7. Better rp,
RAE, and MRAER on the test set than on the train-
ing set in STS 2015 English may be attributed to
RTMs.

2.3 RTMs Across Tasks and Years

We compare the difficulty of tasks according to
MRAER where the correlation of RAE and MRAER
is 0.89. In Table 8, we list the RAE, MAER,
and MRAER obtained for different tasks and sub-
tasks, also listing RTM results from SemEval-
2013 (Bigici and van Genabith, 2013), from
SemEval-2014 (Bicici and Way, 2014b), and and
from quality estimation task (QET) (Bigici and Way,
2014a) of machine translation (Bojar et al., 2014).
RTMs at SemEval-2013 contain results from STS.
RTMs at SemEval-2014 contain results from STS,
semantic relatedness and entailment (SRE) (Marelli
et al., 2014), and cross-level semantic similarity
(CLSS) tasks (Jurgens et al., 2014). RTMs at
WMT2014 QET contain tasks involving the predic-
tion of an integer in [1, 3] representing post-editing
effort (PEE), a real number in [0,1] represent-
ing human-targeted translation edit rate (HTER), or
an integer representing post-editing time (PET) of
translations.

The best results are obtained for the CLSS para-
graph to sentence subtask, which may be due to the
larger contextual information that paragraphs can
provide for the RTM models. For the ParSS task,
we can only reduce the error with respect to know-
ing and predicting the mean by about 22.5%. Predic-
tion of bilingual similarity as in quality estimation of
translation can be expected to be harder and RTMs
achieve SoA performance in this task as well (Bicici
and Way, 2014a). Table 8 can be used to evaluate
the difficulty of various tasks and domains based on
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our SoA predictor RTM. MRAER considers both the
predictor’s error and the target scores’ fluctuations
at the instance level. We separated the results hav-
ing MRAER greater than 1 as in these tasks and sub-
tasks RTM does not perform significantly better than
mean predictor and fluctuations render these as tasks
that may require more work.

3 Conclusion

Referential translation machines pioneer a clean
and intuitive computational model for automatically
measuring semantic similarity by measuring the acts
of translation involved and achieve to become the
2nd system out of 13 systems participating in Para-
phrase and Semantic Similarity in Twitter, 6th out
of 16 submissions in Semantic Textual Similarity
Spanish, and 50th out of 73 submissions in Semantic
Textual Similarity English. RTMs make quality and
semantic similarity judgments possible based on the
retrieval of relevant training data as interpretants for
reaching shared semantics. We define MAER, mean
absolute error relative to the magnitude of the target,
and MRAER, mean absolute error relative to the ab-
solute error of a predictor always predicting the tar-
get mean assuming that target mean is known. RTM
test performance on various tasks sorted according
to MRAER can identify which tasks and subtasks
may require more work.
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Domain Model rp MAE RAE MAER MRAER
answers-forums ~ PLS-SVR | 0.6215 1.2239 1.1675 1.5369 1.3449
answers-students PLS-SVR | 0.6125 0.9635 0.7819 0.5542 0.8404
wr English belief PLS-SVR | 0.5879 1.3625 1.1825 1.5749 1.4119
= headlines RR 0.7812 0.8318 0.5894 0.4844 0.6380
8 images TREE 0.7830 0.8502 0.5885 0.5424 0.6229
& ALL PLS-SVR | 0.6739 0.9847 0.7224 0.7379 0.7883
News TREE 0.5303 0.6315 0.9426 0.4096 1.1052
Spanish  Wikipedia TREE 0.5867 0.6448 0.9499 0.4844 1.2062
ALL TREE 0.5618 0.6360 0.9459 0.4348 1.1344
deft-forum TREE 0.4341 1.1609 1.0908 0.7724 1.216
deft-news TREE 0.6974 09032 0.8716 0.6271 0.881
headlines TREE 0.6199 0.9254 0.7845 0.6711 0.7854
< English images TREE 0.6995 0.9499 0.7395 0.8338 0.7246
S OnWN TREE 0.8058 1.0028 0.5585 0.7975 0.546
2 tweet-news TREE 0.6882 0.831 0.8093 0.4601 0.875
A ALL TREE 0.6473 09534 0.7449 0.7274 0.7566
News TREE 0.7 1.351 1.4141 0.5994 1.8053
Spanish  Wikipedia TREE 04216 1.298 1.3579 0.65 1.6612
ALL TREE 0.62 1.3296 1.3823 0.6191 1.7719
- headlines 0.6552 1.2763 1.0231 1.0456 1.1444
= OnWN L+S SVR 0.6943 1.3545 0.8255 1.2875 0.8605
g English SMT 0.3005 0.6886 1.6132 0.1669 2.0718
& FNWN 0.2016 1.0604 1.2633 1.5087 1.4048
ALL L+S SVR | 0.5844 1.0818 0.7791 0.8494 0.77

Table 6: RTM top test results selected according to Weighted 7 p among top 3 results on STS as well as top RTM-DCU
results in STS 2013 and STS 2014 (Bicici and Way, 2014b). ALL presents results over all of the test set.

Lang Model Tp MAE RAE MAER MRAER
PLS-SVR | 0.7477 0.7679 0.6050 0.4444 0.6947
SVR 0.7452 0.7688 0.6058 0.4504 0.686
TREE 0.7265 0.8093 0.6377 0.504  0.6812

RR 0.7453 0.7559 0.6215 0.4389 0.6835
PLS-SVR | 0.7411 0.7619 0.6265 0.4298 0.7087
TREE 0.7386  0.7710 0.6340 0.4726 0.6686
TREE 0.7600 0.8020 0.6248 0.5308 0.7013
PLS-SVR | 0.7574 0.7839 0.6106 0.4898 0.724

RR 0.7564 0.7945 0.6189 0.5025 0.7161
TREE 0.8390 0.5154 0.5115 0.4145 0.5931
RR 0.8260 0.5473 0.5431 0.4571 0.6208
PLS-SVR | 0.8218 0.5363 0.5322 0.4171 0.635

English
headlines

images

Spanish

Table 7: RTM training results of top 3 systems on STS English, En