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Introduction

There has been a distinct upward trend within NLP and allied areas, primarily since the recent advent
of Large Language Models (LLM). The astounding availability of large amounts of information and
data has spurred this evolution. This has made developing language technologies for Indian languages
quite amenable, with exponential monolingual and multilingual data being constantly added across the
web. Similar adoption of of LLM-based NLP solutionsNLP solutions aimed at complex use cases like
multilingual chatbots and sentiment analysis for social media discourses is in demand by businesses
across industries. Another prominent application that has predominantly captured the technology market
space is text-based search in non-Anglophonic languages. An example of increased industrial adoption
is accelerating state-of-the-art development in prominent research areas including searching, information
extraction, sentiment analysis, and question-answering capabilities for low-resource languages.
The pursuit of solutions to the current existent challenges has led various players across the industry and
academia to nurture their research ecosystem right from the funding stage, leading up to tech transfer
and adoption. This has facilitated reviewing the tractability of complex use cases that would have been
considered a distant dream until a few years ago. Various startups have started venturing into businesses
that tread NLP space for applications like multilingual conversation analysis, transcription, and conver-
sational platforms. Similarly, government agencies, institutions, and industry stakeholders have started
building consortia-like collaborations that work towards common large-scale objectives involving lingui-
stic and user studies, dataset building, investigation setup design, etc. Leveraging the scope that NLP and
allied areas project within the context of Indian research and development, more and more undergraduate
and graduate students have started to demonstrate keenness within these areas.
Higher participation, reverberating enthusiasm, and engagement amongst researchers from academia
and industry alike have resulted in greater standardization and seamless cross-technology development.
The effect can be uniformly seen gaining momentum across various NLP research initiatives, especially
across Indian languages. This is also evident in the submissions received as part of ICON-2022, whi-
ch pertained to knowledge integration, code-mixing, semantic structure, and sentiment analysis within
unsupervised and meta-learning frameworks. Recently, advancement in this field has been observed
due to the increased accessibility and development of several linguistic resources and rich corpora for
Indian languages. This also encourages contemplating language agnostic representation learning and
language modeling capabilities. Through such collaborative efforts, it is apt to envision technological
advancements that will cater not only to the Indian NLP area but the whole world.
These conference proceedings embody papers selected for presentation in technical sessions of ICON-
2022. We thank our excellent reviewers from across different parts of the world, for maintaining the
highest of standards in critically assessing the quality of . Out of 101 submissions, a total of 40 papers
were accepted. Amongst these, 28 were long papers and 12 were short papers, representing diverse, novel
and insightful research findings and encompassing a broad spectrum of topics within NLP and linguistics.
In addition, the conference featured multiple engaging presentations – 7 tutorials, 5 workshops, and 1
shared task.
We are grateful to Prof. Tim Baldwin, MBZUAI (Abu Dhabi), Prof. Maria Liakata, Queen Mary Uni-
versity of London, and Prof. Pascale Fung, Hong Kong University of Science Technology for honoring
us with their keynote lectures at ICON-2022.
We thank all the area chairs at ICON-2022, especially Pushpak Bhattacharyya, Tirthankar Dasgupta, So-
bha L, Vasudeva Varma, Dipankar Das, Monojit Chaudhary, Hema A Murthy, C V Jawahar, Kalika Bali,
Sudip Kumar Naskar, Sriparna Saha, Ashwini Vaidya, Kamal Kumar Choudhary, Asif Ekbal, Sukomal
Pal, Amitava Das, Manish Srivastava, Vinayak Abrol, N. Kishorjit Singh, Raksha Sharma, Siddhartha
Mukherjee, Mayank Singh, Thoudam Doren Singh, Debdoot Mukerjee, for the areas: Syntax and Se-
mantics, Computational Psycholinguistics, QA, Information Extraction, Information Retrieval, and Text
Mining, Sentiment Analysis and Emotion Recognition, Language Resources and Evaluation, Speech,
Multimodality, Machine Translation, NLP Applications, Machine Learning in NLP, Natural Language
Text Generation, along with Doctoral Consortium, Shared Task/Tool Contest and Workshop/Tutorials.
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We sincerely express our gratitude to the team members of the Laboratory of Computational Social
Systems (LCS2) and the Department of CSE - IIITD, especially, Shivani Kumar, Yash Kumar Atri, Sarah
Masud, Aseem Srivastava, Megha Sundriyal, Shivam Sharma, Ayan Sen Gupta, Aayushi Shisodia, and
Priti Patwal for their timely assistance in organizing the event at the Indraprastha Institute of Information
Technology (IIIT-Delhi) a memorable success. We also thank all the volunteers who assisted us in various
activities of the conference. We are grateful to all the researchers, academicians, industry liaisons, and
all the participants of ICON-2022 who responded to our call for papers, industry connect outreach,
collocated shared tasks and workshop proposals; without whose spirited engagements, the conference
would not have been a success. We wholeheartedly thank the reviewers who kindly agreed to review the
papers and enabled the quality review ecosystem. We also thank the session chairs for dedicating their
valuable time to ICON-2022. We also appreciate the financial support from our sponsors, Adobe (Gold),
Samsung Research (Gold), TCS Research (Silver), Trinka AI (Silver), Bobble AI (Silver), Infosys Center
of Artificial Intelligence - IIITD (Silver), and Department of CSE - IIITD (Silver) in organizing the in-
person conference possible after two years of hiatus. Finally, we thank everyone who participated in
ICON-2022 in any possible manner.
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Keynote Talk: (Un)fairness in Fairness Evaluation
Tim Baldwin

MBZUAI, Abu Dhabi

Abstract: Natural language processing (NLP) has made truly impressive progress in recent years, and
is being deployed in an ever-increasing range of user-facing settings. Accompanied by this progress has
been a growing realisation of inequities in the performance of naively-trained NLP models for users of
different demographics, with minority groups typically experiencing lower performance levels. In this
talk, I will discuss the complexities of the evaluation of model fairness, and how standard evaluation
practice has led to unfair/misleading claims in the literature.

Bio: Tim Baldwin is Associate Provost (Academic and Student Affairs) and Head of the Department of
Natural Language Processing, Mohamed bin Zayed University of Artificial Intelligence in addition to
being a Melbourne Laureate Professor in the School of Computing and Information Systems, The Uni-
versity of Melbourne. Tim completed a BSc(CS/Maths) and BA(Linguistics/Japanese) at The University
of Melbourne in 1995, and an MEng(CS) and PhD(CS) at the Tokyo Institute of Technology in 1998
and 2001, respectively. Prior to joining The University of Melbourne in 2004, he was a Senior Research
Engineer at the Center for the Study of Language and Information, Stanford University (2001-2004).
His research has been funded by organisations including the Australia Research Council, Google, Mi-
crosoft, Xerox, ByteDance, SEEK, NTT, and Fujitsu, and has been featured in MIT Tech Review, IEEE
Spectrum, The Times, and ABC News. He is the author of over 450 peer-reviewed publications across
diverse topics in natural language processing and AI, with around 20,000 citations and an h-index of 66
(Google Scholar), in addition to being an ARC Future Fellow, and the recipient of a number of awards at
top conferences.
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Keynote Talk: Personalised Longitudinal Natural Language
Processing
Maria Liakata

Queen Mary University of London

Abstract: In most of the tasks and models that we have made great progress with in recent years, such as
text classification and natural language inference, there isn’t a notion of time. However many of these ta-
sks are sensitive to changes and temporality in real world data, especially when pertaining to individuals,
their behaviour and their evolution over time. I will present our programme of work on personalised
longitudinal natural language processing. This consists in developing natural language processing me-
thods to: (1) represent individuals over time from their language and other heterogenous and multi-modal
content (2) capture changes in individuals’ behaviour over time (3) generate and evaluate synthetic data
from individuals’ content over time (4) summarise the progress of an individual over time, incorporating
information about changes. I will discuss progress and challenges this far as well as the implications of
this programme of work for downstream tasks such as mental health monitoring.

Bio: Maria Liakata is Professor in Natural Language Processing (NLP) at the School of Electronic
Engineering and Computer Science, Queen Mary University of London and Honorary Professor at the
Department of Computer Science, University of Warwick. She holds a UKRI/EPSRC Turing AI fellow-
ship (2020-2025) on Creating time sensitive sensors from user-generated language and heterogeneous
content. The research in this fellowship involves developing new methods for NLP and multi-modal data
to allow the creation of longitudinal personalized language monitoring. She is also the PI of projects on
language sensing for dementia monitoring & diagnosis, opinion summarisation and rumour verification
from social media. At the Alan Turing Institute she founded and co-leads the NLP and data science
for mental health special interest groups. She has published over 150 papers on topics including senti-
ment analysis, semantics, summarisation, rumour verification, resources and evaluation and biomedical
NLP. She is action editor for the ACL rolling review and regularly holds senior roles in conference and
workshop organisation.
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Keynote Talk: Mitigating Risks while Forging Ahead with AI
Progress
Pascale Fung

Hong Kong University of Science and Technology

Abstract: Natural language processing (NLP) has made truly impressive progress in recent years, and
is being deployed in an ever-increasing range of user-facing settings. Accompanied by this progress has
been a growing realisation of inequities in the performance of naively-trained NLP models for users of
different demographics, with minority groups typically experiencing lower performance levels. In this
talk, I will discuss the complexities of the evaluation of model fairness, and how standard evaluation
practice has led to unfair/misleading claims in the literature.

Bio: Pascale Fung is a Chair Professor at the Department of Electronic & Computer Engineering at
The Hong Kong University of Science & Technology (HKUST), and a visiting professor at the Central
Academy of Fine Arts in Beijing. She is an elected Fellow of the Association for the Advancement of
Artificial Intelligence (AAAI) for her significant contributions to the field of conversational AI and to the
development of ethical AI principles and algorithms, an elected Fellow of the Association for Computa-
tional Linguistics (ACL) for her “significant contributions towards statistical NLP, comparable corpora,
and building intelligent systems that can understand and empathize with humans”. She is an Fellow
of the Institute of Electrical and Electronic Engineers (IEEE) for her “contributions to human-machine
interactions” and an elected Fellow of the International Speech Communication Association for “funda-
mental contributions to the interdisciplinary area of spoken language human-machine interactions”. She
is the Director of HKUST Centre for AI Research (CAiRE), an interdisciplinary research centre on top
of all four schools at HKUST. She co-founded the Human Language Technology Center (HLTC). She is
an affiliated faculty with the Robotics Institute and the Big Data Institute at HKUST. She is the founding
chair of the Women Faculty Association at HKUST. She is an expert on the Global Future Council, a thi-
nk tank for the World Economic Forum. She represents HKUST on Partnership on AI to Benefit People
and Society. She is on the Board of Governors of the IEEE Signal Processing Society. She is a member
of the IEEE Working Group to develop an IEEE standard - Recommended Practice for Organizational
Governance of Artificial Intelligence. Her research team has won several best and outstanding paper
awards at ACL, ACL and NeurIPS workshops.
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Abstract

The NLP research community resort conven-
tional Word Co-occurrence Network (WCN)
for keyphrase extraction using random walk
sampling mechanism such as PageRank algo-
rithm to identify candidate words/ phrases. We
argue that the nature of WCN is a path-based
network and does not follow a core-periphery
structure as observed in web-page linking net-
work. Thus, the language networks leveraging
on bi-grams may represent better semantics for
keyphrase extraction using random walk. In
this work, we use bi-gram as a node and adja-
cent bi-grams are linked together to generate
an EdgeGraph. We validate our method over
four publicly available dataset to demonstrate
the effectiveness of our simple yet effective lan-
guage network and our extensive experiments
show that random walk over EdgeGraph rep-
resentation performs better than conventional
WCN. We make our codes and supplementary
materials available over Github1.

1 Introduction

The language network is a textual representation
of documents in the shape of a graph to exploit the
best features as their characteristics. With recent
developments in statistical keyphrase extraction,
language network plays a pivotal role in identify-
ing underlying patterns among words, phrases or
sentences (Garg, 2021). The research community
maps these patterns using the network properties
as the structural properties of language networks
has gained much attention in recent years (Lu et al.,
2021). Existing literature contains substantial stud-
ies over the structural properties for different lan-
guages (Vera and Palma, 2021) and different do-
mains (Garg and Kumar, 2020; Quispe et al., 2021)
resulting into development of real-time language
independent and domain-specific techniques, re-
spectively.

1https://github.com/drmuskangarg/
EdgeGraph

Figure 1: Overview of the proposed work

We further use the structural properties in mod-
eling the dynamics of evolving language networks
for downstream NLP applications, for instance, the
Dynamic Heartbeart Graph (DHG) for event detec-
tion on Twitter (Saeed et al., 2019); and tracking the
dynamics of co-word networks for emerging topics
(Huang et al., 2021; Katsurai, 2017). An essential
element for these graph-based topic detection and
tracking applications is keyphrase extraction.

The conventional WCN is established as a
benchmark representation of textual documents for
random walk based keyphrase extraction(Kazemi
et al., 2020; Campos et al., 2020). The random
walk sampling is characterized by stochastic move-
ment of several iterations over a network for re-
distributing weights to nodes. This concept of ran-
dom walk was initially introduced for web-page
linking due to the core-periphery structure (Getoor
and Diehl, 2005) of the World Wide Web (WWW)
connectivity. However, we observe that:

1. The WCN has significant bias towards the
node which represents frequently occurring
words irrespective of its context.

2. In a WCN, the edge-weight gives better in-
sights than a node degree (Garg and Kumar,
2018a) which shows the importance of bi-
gram in a language network .

1
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3. The WCN does not support the core-periphery
structure like web-page linking which is an im-
portant property for the PageRank algorithm.

In this work, we study a significance of replac-
ing WCN with EdgeGraph for random walk based
GKET. The overview of our proposed approach is
shown in the Fig. 1. The major contributions of
this research are:

1. We propose the EdgeGraph, a graph-based
textual representation to increase the informa-
tion in every node and accommodate edge-
distribution property.

2. We use four different publicly available text
collections for keyphrase extraction to vali-
date the EdgeGraph over WCN.

3. The statistical studies validates the effective-
ness of EdgeGraph over the WCN for English
dataset with medium-sized documents.

2 BACKGROUND AND RELATED
WORK

The automatic keyword extraction techniques are
classified into the structured and unstructured algo-
rithms. The supervised keyword extraction is not
reliable for ever-changing and dynamically evolv-
ing information (Florescu and Caragea, 2017). The
unsupervised algorithms are either statistical or
graph-based. A well-studied approach of super-
vised algorithms is graph-based keyphrase extrac-
tion.

2.1 Evolution of GKET
The PageRank algorithm (Page et al., 1999) is used
for random walk sampling over web-page linkings.
The TextRank uses PageRank algorithm and es-
tablishes itself as the first and one of the most
promising random walk based GKET (Mihalcea
and Tarau, 2004; Zhang et al., 2020) for textual
documents. The extended version of TextRank is
biased towards the node scores but explainable and
is known as the Biased TextRank (Kazemi et al.,
2020). The recent empirical study of TextRank
(Zhang et al., 2020) shows the effectiveness of
graph-based keyphrase extraction. PositionRank
is another keyphrase extraction technique in which
the position of a token plays a pivotal role (Florescu
and Caragea, 2017) in identifying the candidate
phrases.

The NErank (Bellaachia and Al-Dhelaan, 2012)
is proposed for short-text data using the node score

and the edge score over a WCN. Other than the
random walk, some of the path-breaking structural
GKET are degree centrality (Abilhoa and De Cas-
tro, 2014), selectivity based keyword extraction
(Beliga et al., 2016), k-core decomposition (Tixier
et al., 2016), and keyword extraction using collec-
tive node weight (Biswas et al., 2018) which are
based on network science metrics/ models and are
beyond the scope of this study. In future, the ef-
fectiveness of EdgeGraph can be studied for these
structural GKET.

2.2 Historical Perspective of WCN

Graph theory has paved the path to explore lan-
guage networks evolved from textual documents
(Choudhury et al., 2010). The structural properties
for this language network are scale-free networks,
small world property, hierarchical organization,
assortativity and spectral distribution which are
studied for the WCN evolved from Chinese and
English language (Liang et al., 2009), Microblogs
(Garg and Kumar, 2018b), and 12 other Slavic lan-
guages (Liu and Cong, 2013). The WCN follows
the small-world property and is disassortative in
nature. The eigenvalues and the spectral distribu-
tion helps in understanding the vibrations in the
linear system of language networks (Liang, 2017).

2.3 Research Gap

The semantic studies for keyword extraction tech-
niques use Wikipedia (Wan and Xiao, 2008a),
topical ranking (Awan and Beg, 2021; Bougouin
et al., 2013; Boudin, 2018), and semantic connec-
tivity (Duari and Bhatnagar, 2019). Different text-
representation for semantic GKET (Osman and
Barukub, 2020) are Large-scale Information Net-
work Embedding (LINE) (Tang et al., 2015) and
Context Aware Graph (CAG) (Duari and Bhatna-
gar, 2019). CAG incorporates the context set by
two consecutive sentences by linking co-occurring
words together. (Duari and Bhatnagar, 2019) use
CAG for keyword extraction to eliminate the need
of integer-sized sliding window parameters. Vari-
ations in weighted and unweighted adjacency ma-
trix (Papagiannopoulou et al., 2021) and revist-
ing this approach in literature (Ushio et al., 2021)
shows that there is no existing study for variation
in the text-representation with path-based network
of words.
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3 OUR APPROACH

In this manuscript, we propose a variation in the
graph-based text representation. We find candidate
phrases which seems to be capable to being iden-
tified as keyphrases using random walk. In this
section, we discuss EdgeGraph representation.

3.1 Problem Formulation

Consider a set of pre-processed documents D as
D = d1, d2, d3, . . . dk where di is the ith document.
In a document di, the sequence of tokens is ti,1, ti,2,
ti,3, . . . ti,z , where z is the number of tokens in a
document. Every token is considered as a node ti,j
where i is the position of a document di and j is
the position of the token in that document di. The
total number of nodes are m and m′ which varies
and represents the unique number of tokens for the
WCN and EdgeGraph, respectively. We use the
token (ti,j , ti,j+1) as a node (na) in the graph for
further simplification.

Definition 1: Word Co-occurrence Network
(WCN): The existing WCN is a graph G of words
where edges are added as (na, nb). The word
adjacency matrix A is created by using the co-
occurrence (na, nb) where the first word of the
tuple (na, nb) is taken as the row index and the lat-
ter word is taken as the column index in the matrix.
The adjacency matrix is used to generate a WCN
which is mapped as m ∗m matrix for m: the total
number of nodes in the WCN. Thus, the Graph G
contains m nodes and every edge is represented as
(na, nb).

Definition 2: EdgeGraph: We build EdgeGraph
EG from a set of textual documents D where we
map every document di in a graph of adjacent bi-
grams. Considering a sequence na, nb, nc, the edge
of a graph is the link which exists between the
node (na, nb) and the node (nb, nc) of the graph
EG. We use the bi-gram (na, nb) as the node. The
word adjacency matrix A′ is created by using the
co-occurrence ((na, nb), (nb, nc)) where the first
node of the tuple ((na, nb), (nb, nc)) is taken as
the row index and the latter node is taken as the
column index in the matrix. The adjacency matrix
is used to generate a WCN which is mapped as
m′ ∗m′ matrix for m′: the total number of nodes
in the EdgeGraph.

Given the above settings, our task is to study
random walk based GKET over WCN and Edge-
Graph.

Table 1: Structure of two different graph-based text
representations: WCN and EdgeGraph

Graph #Nodes #Edges Node:
Edge

Avg
Node
Degree

Avg
Edge
Weight

WCN 581 1188 0.49 4.09 1.22
EdgeGraph 1195 1291 0.93 2.16 1.06

3.2 Problem Statement

In the WCN, the PageRank (PR((nb); tq)) of any
node nb at the time tq depends upon the PageR-
ank (PR((na); tq−1)) of the predecessor neigh-
bours na of the node nb. The idea behind this
research work is to emphasise the importance of
bi-gram connectivity in language network in-place
of uni-grams. Thus, the PageRank, for any bi-gram
PR((nb, nc); tq) at the time tq depends upon the
PageRank (PR((na, nb); tq−1)) of the predecessor
neighbours (na, nb) of the node (nb, nc). Thus, the
PageRank for EG is represented as PRG as shown
in Equation 1.

PRG(nb, nc) =
1− d
m′ +d

∑

uϵM(na,nb))

PRG(na, nb)

out(na, nb)

(1)
where d is the damping factor, M(na, nb) is a

node in the set of node (bi-gram) which are directly
linked to the node (nb, nc), and m′ is total number
of nodes in the EdgeGraph EG, The EdgeGraph is
evolved fromm′∗m′ adjacency matrix. The PageR-
ank algorithm is used for random walk in the WCN
(PR) and the EdgeGraph (PRG) representation.

3.3 Working Instances

The proposed work is demonstrated over four differ-
ent publicly available dataset. We use the text col-
lection 500N-KPCrowd-v1.1 to discuss two types
of working instances in this section. The first ex-
ample differentiates the characteristics of the WCN
and the EdgeGraph over one of the documents of
500-KP-Crowd-v1.1 dataset. The second example
demonstrates the graph-based text representation
of a short-text document of the dataset 500-KP-
Crowd-v1.1 as WCN and EdgeGraph.

3.3.1 Example 1: Characteristics of the
graph-based text representations

The nature of WCN and EdgeGraph differentiates
due to uni-gram and bi-gram adjacency, respec-
tively as shown in Table 1. The number of unique
nodes (na) in the WCN is lesser than number of
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Figure 2: The working instance document (Doc) and its
preprocessed version di

Table 2: Indexing of tokens for WCN evolving from the
working instance di

Index Word Index Word
t0 david t7 year
t1 mamet t8 york
t2 debut t9 pulitzer
t3 new t10 prize
t4 play t11 winner
t5 anarchist t12 fall
t6 london

nodes (na, nb) in the EdgeGraph because the neigh-
bour of a word in every node may vary and un-
like WCN one word may appear in more than one
node in text representation of the same document.
This repetition preserves the contextual difference
among words with each other. The repetition of
bi-grams is very limited in EdgeGraph and thus,
the node to edge ratio is close to 1 and the average
node degree is reduced. There is slight increase
and decrease in the number of edges and average
edge weight, respectively. If the number of nodes
are almost doubled and there is slight increase in
the number of edges; the density of the network
reduces. As a result, fewer nodes with significant
bi-gram are emphasized.

3.3.2 Example 2: Graph-based text
representation

Consider an example of a document (Doc) which is
pre-processed to obtain the document di as shown
in Fig. 2. We index the uni-gram and bi-gram as
nodes to generate the graph-based textual represen-
tation of a document di. The indexing of tokens
are different for the WCN and the EdgeGraph as
shown in Table 2 and Table 3, respectively. The
WCN and EdgeGraph are generated using these
indexing tables as shown in Fig. 3.

On investigating the connections of a network,
we found that the important bi-gram lexical se-
quence is preserved in EdgeGraph and not in the
WCN, for instance, new york and new play are con-
textually different but the word new is connecting
both play and york in the WCN. The words play

Table 3: Indexing of tokens for EdgeGraph evolving
from the working instance di

Index Word Index Word
tG0 David Mamet tG8 New York
tG1 Mamet debut tG9 play pulitzer
tG2 debut new tG10 pulitzer prize
tG3 new play tG11 prize winner
tG4 play anarchist tG12 winner David
tG5 Anarchist London tG13 debut London
tG6 London year tG14 London fall
tG7 year new

Figure 3: The WCN (left) and EdgeGraph (right)
evolved from the document di, a working instance in
Example 2

and york have different dictionary meanings and
their connection does not make sense. However,
in EdgeGraph, two different nodes preserve these
bi-grams as the node (new york) and the node (new
play). The random walk over WCN may emphasise
frequently used but unimportant words like new
which alone does not make much sense. The Edge-
Graph gives importance to meaningful bi-gram like
David Mamet, new play, new york which make
sense together. If a tuple (a,b) and (b,c) are re-
trieved, we combine them to form (a, b, c) and thus,
n-gram keyphrases are obtained.

4 EXPERIMENTS AND EVALUATION

We perform the experiments with TextRank (Mi-
halcea and Tarau, 2004), SingleRank (Wan and
Xiao, 2008b), PositionRank (Florescu and Caragea,
2017), and NErank (Bellaachia and Al-Dhelaan,
2012) over publicly available text collections. In
this section, we discuss the characteristics of
datasets, the experimental setup, performance eval-
uation and statistical significance of the proposed
textual representation over the baseline.

4.1 Datasets

To test and validate the robustness of EdgeGraph
over WCN, experimental results are carried out
for four different datasets whose characteristics are
given in Table 4. The average number of tokens
per document varies from 20 to 500. The annotated
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Table 4: Characteristics of the dataset used for experiments and evaluation of keyphrase extraction

Dataset Language Type of Doc Domain #Docs #Tokens/ doc
110-PT-BN-KP PT News Misc. 110 304.00
500N-KP Crowd-v1.1 EN News Misc. 500 408.33
pak2018 PL Abstract Misc. 50 97.36
wiki20 EN Research Report Comp. Science 20 6177.65

Figure 4: Performance evaluation of the random walk based GKET over WCN and EdgeGraph representation of
medium-sized text for varying values of k: F-measure, Precision and Recall.
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data is one of the major reasons behind variation in
the resulting values of performance evaluation mea-
sures due to its subjectivity. This variation is not a
potential constraint in this research work as the per-
formance is comparative. We use four different text
collections for this study: 110-PT-BN-KP (Marujo
et al., 2013), 500N-KP-Crowd-v1.1 (Marujo et al.,
2013), pak2018 (Campos et al., 2018), and wiki20
(Medelyan et al., 2008). Three out four dataset
contains few lines of text (containing less than 500
words) to display news and abstract about miscel-
laneous data in three different languages. These
few lines of text are different from short-text and
long textual documents and thus, are termed as
medium-sized text. The dataset wiki2020 is in the
English language which contains the research pa-
per in which there are more than 4000 words in
each document. We use these characteristics to
categorically study the evaluation of results.

4.2 Experimental Setup

The experimental setup for this research work com-
prises the hardware requirements of CPU @ 2.90
GHz with Intel Core i7-7500 CPU over 64-bit Op-
erating System having 8.00 GB RAM. We use the
software of Python 3 with library modules of net-
workx for graphical analysis, NLTK for text pro-
cessing, pandas to handle the data, matplotlib for
graph plot, and many other relevant modules.

We implement the baselines by using existing
modules2 which are further modified to incorporate
the settings for EdgeGraph. We use the default
parameter settings of random walk based GKET
which are available in the existing implementation.
The existing random walk based GKET use varying
values of the sliding window parameter to generate
the WCN. The most widely used value of sliding
window parameter is 2 (Mihalcea and Tarau, 2004;
Florescu and Caragea, 2017). The value of the
damping factor d is set as 0.85 and the number of
iterations are 1000. The network is converged with
error rate ϵ < 0.01.

As the results are comparative, we use student’s
t-test to measure the statistical significance of the
results. The Microsoft Office package is used for
the results obtained in (.csv) format to test and
validate the robustness of the EdgeGraph for its
statistical significance.

2https://github.com/boudinfl/pke

4.3 Performance Evaluation

We evaluate the performances using Precision, Re-
call and F-measure for the varying values of k
where k is the number of top ranked keyphrases.
All the unique tokens in extracted keyphrases are
taken as the set of extracted words, and the to-
kens obtained from the ground-truth keyphrases
are taken as the set of reference words. The perfor-
mance is evaluated over these two lists: extracted
words and reference words for increasing values
of k over the WCN and the EdgeGraph on every
dataset. The results for datasets with medium-sized
text and datasets with long-text are shown in Fig.
4.

For English datasets, recall grows more steeply
than non-English datasets with increasing value of
k. Irrespective of language, recall shows clear im-
provements over EdgeGraph representation for a
higher value of k as shown in Fig. 4. Precision
decreases with increase in the value of k. Vari-
ation around average value of precision is lesser
for medium-sized text than for long-text datasets
because the probability of identifying appropriate
keyphrases decreases in long-text documents due
to reduced probability with large number of tokens.
It is interesting to note that precision for TextRank
on EdgeGraph remains constant for varying values
of k.

4.4 Time Complexity

Since there is no change in the algorithm for ran-
dom walk based GKET, the time complexity re-
mains same. However, the number of nodes and
the information in these nodes is increased. Also,
the node to edge ratio decreases which makes the
graph sparse. As the random walk is based on the
Markov decision process and transition probability
is increased due to change in node degree distribu-
tion.

4.5 Improvements with EdgeGraph

The experimental results are shown in Table 5. The
resulting values of EdgeGraph in bold digit indi-
cates the improvement. The datasets containing
medium-sized text in which the number words are
less than 500 shows better F-measure improvement
over the datasets containing long text. Further, the
dataset with English language shows improvement
over recall in more than 90% of the cases. However,
the resulting values for precision are compromised
due to extraction of huge amount of data as ev-
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Table 5: Results obtained for random walk based GKET over four different keyphrase extraction datasets using the
WCN and the EdgeGraph text representations for k = 20.

Dataset 500N-KPC

Methods Recall Precision F Measure
WCN EdgeGraph WCN EdgeGraph WCN EdgeGraph

Text Rank 0.1875 0.2354 0.4977 0.5272 0.2724 0.3255
NE Rank 0.2042 0.2253 0.5554 0.5042 0.2987 0.3152
Position Rank 0.2994 0.3464 0.5163 0.4878 0.3790 0.4051
Single Rank 0.3224 0.3573 0.4865 0.4621 0.3878 0.4030

Dataset PAK 2018

Methods Recall Precision F Measure
WCN EdgeGraph WCN EdgeGraph WCN EdgeGraph 33

Text Rank 0.0913 0.1345 0.0291 0.0388 0.0441 0.0602
NE Rank 0.1118 0.0951 0.0342 0.0294 0.0524 0.0449
Position Rank 0.1825 0.1966 0.0263 0.0244 0.0461 0.0434
Single Rank 0.2166 0.2246 0.0239 0.0239 0.0430 0.0431

Dataset PT BN KP

Methods Recall Precision F Measure
WCN EdgeGraph WCN EdgeGraph WCN EdgeGraph

Text Rank 0.2401 0.2555 0.2402 0.2555 0.2543 0.2638
NE Rank 0.2601 0.2201 0.2601 0.2201 0.1973 0.2153
Position Rank 0.2088 0.2217 0.2088 0.2217 0.2249 0.2651
Single Rank 0.1982 0.1974 0.1982 0.1974 0.2419 0.2535

Dataset WIKI 20

Methods Recall Precision F Measure
WCN EdgeGraph WCN EdgeGraph WCN EdgeGraph

Text Rank 0.1809 0.2249 0.3258 0.2159 0.2326 0.2249
NE Rank 0.1482 0.1547 0.2703 0.2599 0.1914 0.1940
Position Rank 0.1627 0.1805 0.3186 0.2981 0.2154 0.2249
Single Rank 0.1617 0.1740 0.2765 0.2276 0.2041 0.1972

Table 6: Statistical Significance for different keyphrase Extraction over WCN and EdgeGraph.

Dataset 500N-KPC

Methods Recall Precision F Measure
t_test p_value t_test p_value t_test p_value

Text Rank 8.8480 3.64E-08 -11.3725 6.38E-10 10.5934 2.06E-09
NE Rank 16.1771 1.45E-12 0.8804 0.3896 21.4380 8.98E-15
Position Rank 12.1549 2.09E-10 -14.8203 6.80E-12 20.5013 2.03E-14
Single Rank 9.2492 1.82E-08 -16.0827 1.61E-12 12.9572 7.01E-11

Dataset PAK 2018

Methods Recall Precision F Measure
t_test p_value t_test p_value t_test p_value

Text Rank 4.0972 0.00061 -0.8953 0.3817 -0.4678 0.6452
NE Rank 23.8044 1.31E-15 13.5307 3.33E-11 27.1391 1.17E-16
Position Rank -5.7231 1.62E-05 -4.0292 0.0007 -7.1178 9.08E-07
Single Rank 3.9588 0.00084 -1.3992 0.1778 -0.3888 0.7016

Dataset PT BN KP

Methods Recall Precision F Measure
t_test p_value t_test p_value t_test p_value

Text Rank 11.3315 6.78E-10 -1.1464 0.2658 16.6051 9.09E-13
NE Rank 17.2039 4.83E-13 -0.7460 0.4647 30.9321 1.02E-17
Position Rank 22.7884 2.93E-15 -12.3763 1.54E-10 19.9476 3.34E-14
Single Rank 8.3208 9.30E-08 1.4777 0.1558 9.008 2.75E-08

Dataset WIKI 20

Methods Recall Precision F Measure
t_test p_value t_test p_value t_test p_value

Text Rank -5.0775 6.69E-05 -17.7666 2.71E-13 -12.0685 2.35E-10
NE Rank 5.5577 2.32E-05 -16.2917 1.28E-12 -1.1878 0.2495
Position Rank -3.3987 0.0030 -4.0372 0.00070 -3.9784 0.0008
Single Rank 0.6545 0.5206 -5.6385 1.95E-05 -0.9103 0.3740
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ery node of the EdgeGraph represents bi-gram. In
this section, we analyse the results on WCN and
EdgeGraph text representation for different charac-
teristics of datasets.

4.5.1 Polish and Portuguese dataset
The random walk based GKET for Portuguese and
Polish language over EdgeGraph shows major im-
provements with TextRank, SingleRank and Posi-
tionRank. In future, the robustness and the scal-
ability of EdgeGraph over non-English datasets
can be tested for long textual documents, different
languages and for different domains.

4.5.2 Medium-sized textual documents
The English language medium-sized dataset out-
performs all other datasets with EdgeGraph. It is
interesting to note that though there is improve-
ment for medium-sized textual documents, the re-
sulting values for English and Portuguese dataset
are promising but not suitable for Polish dataset.

4.5.3 Long-text documents
The long-text datasets: Wiki20, show no or slight
improvement with F-measure but significant im-
provement with recall. The nodes represent bi-
grams in the EdgeGraph due to which more number
of words are obtained. Hence, recall is improved
more than the precision. The EdgeGraph repre-
sentation gives better results over medium-sized
text (containing less than 500 words) as compared
to long text (containing more than 4000 words)
irrespective of the language.

4.5.4 Varying number of documents
The number of documents in different dataset
varies from 20 to 500 which may affect the re-
sulting values. More the number of documents, the
stronger the results. We found that the datasets with
large number of documents such as 500N-KPC and
110-PT-BN-KP shows consistency over improve-
ments for all the random walk based GKET and
gives improved F-measure for all the random walk
based GKET.

4.6 Statistical Significance
The results obtained by exploiting random walk
based GKET over WCN and EdgeGraph are not
directly comparable. We further investigate the im-
provements to test and validate the robustness and
significance of the results. We use the Student’s
t-test with 5% of significance level. The statistical
significance is evaluated over the resulting values

of k varying from 1 to 20 as shown in Table 6. The
null-hypothesis in t − test is that the two series
of resulting values are significantly different if the
p− value < 0.5. We use the following symbolic
representation for four categories of statistical anal-
ysis:

1. EdgeGraph significantly outperforms WCN:
We represent Bold p − value if t − test is
positive and the p− value < 0.05.

2. EdgeGraph is better than WCN, but not statis-
tically significant: We represent bold + ital-
ics p− value if t− test are positive and the
p− value0.05.

3. WCN is better than EdgeGraph, but not sta-
tistically significant: We represent italics
p − value if t − test are negative and the
p− value0.05.

4. WCN significantly outperforms EdgeGraph:
We represent normally formatted p− value if
t−test are negative and the p−value < 0.05

We investigate the improvements with simi-
lar and comparative performance of EdgeGraph
over the WCN. In this context, we consider first
three cases to signify non-deteriorating measure.
We found that the Recall and F-measure shows
good performance with EdgeGraph in 83.33% and
66.66% of the total number of cases. On the basis
of individual performance, the SingleRank outper-
forms all other random walk based GKET.

5 Conclusion

Here in this work, we propose an EdgeGraph rep-
resentation for information retrieval tasks. The
experimental results over four publicly available
datasets shows that keyphrase extraction is signif-
icantly improved with EdgeGraph representation
leveraging on bi-grams. The recall and F- measure
improves upto 27% and 18%, respectively, for the
datasets with medium-sized English texts. Appli-
cability of EdgeGraph on more than one languages
(English and Portuguese) suggests its language-
independencex. In future, EdgeGraph can be used
for extractive text summarization, language genera-
tion and cross-lingual analysis and other informa-
tion retrieval tasks. In addition to this, the massive
online data can be handled using dynamics of Edge-
Graph evolved from dynamically streaming data
without using any pre-trained or supervised mod-
els.
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Abstract
Massive knowledge graphs like Wikidata at-
tempt to capture world knowledge about multi-
ple entities. Recent approaches concentrate on
automatically enriching these KGs from text.
However a lot of information present in the
form of natural text in low resource languages
is often missed out. Cross Lingual Information
Extraction aims at extracting factual informa-
tion in the form of English triples from low
resource Indian Language text. Despite its mas-
sive potential, progress made on this task is lag-
ging when compared to Monolingual Informa-
tion Extraction. In this paper, we propose the
task of Cross Lingual Fact Extraction(CLFE)
from text and devise an end-to-end generative
approach for the same which achieves an over-
all F1 score of 77.46.

1 Introduction
Knowledge graphs are large structured sources of
information about the world. Recently, a lot of
attention is being put in finding ways to automati-
cally build or enrich extensive knowledge graphs
(KGs) (Gupte et al., 2021), (Zou, 2020). Wiki-
data (Vrandečić and Krötzsch, 2014) is one of the
largest publicly available knowledge graphs which
has over 99 million entities. Knowledge graphs
such as Wikidata have been extensively used for
multiple applications like text generation (Koncel-
Kedziorski et al., 2019), question answering (Sri-
vastava et al., 2021), (Li et al., 2022) etc.

A knowledge graph is composed of multiple
facts linked together. A fact is often represented
as a triplet which consists of two entities and a se-
mantic relation between them. This information
can be encoded as a triple < h, r, t > where h is
the subject entity, r is the relation and t represents
the tail entity.

Fact extraction refers to the task of extracting
structured factual information from natural lan-
guage text (Charu C. Aggarwal, 2012). Previously

* Equal contribution

there has been extensive work regarding the task
of monolingual fact extraction, especially in En-
glish (Zeng et al., 2019) (Li et al., 2021), however
not much attention has been given to the task of
cross-lingual fact extraction.

In this paper we propose an important task of
multi-lingual and cross-lingual fact to text extrac-
tion(CLFE) for 7 Low Resource(LR) Indian Lan-
guages and English. The task aims at directly ex-
tracting English triples from 8 different languages.
We also propose strong baselines and approaches
for this task which produce results comparable to
existing mono-lingual state-of-the-art fact extrac-
tion pipelines and significantly better than other
previous cross lingual attempts at fact extraction
(Zhang et al., 2017a). Our work enables utilisa-
tion of factual knowledge present in Indic texts in
order to increase the coverage of existing knowl-
edge graphs. This would further help in multiple
downstream tasks like fact verification, text gen-
eration etc. To the best of our knowledge, this is
the first attempt at multilingual and cross-lingual
fact extraction from LR Indian Languages. Figure
1 shows multiple examples of the input and output
for CLFE task.

Overall, we make the following contributions.
(1) Propose the problem of cross-lingual and multi-
lingual fact extraction for LR Indian languages. (2)
An end-to-end generative approach for extracting
subject centric factual information from LR Indian
language text, which shows significant improve-
ments over classification based pipelines. (3) We
train multiple multi-lingual CLFE models which
lead to an overall F1 score of 77.46 .

2 Related work
Extracting structured information from free form
text is a problem well worked upon. T-REx
(Elsahar et al., 2018) uses entity linking, co-
reference resolution and string match based link-

code available at https://github.com/bhavyajeet/CLFE
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Figure 1: Example Inputs and outputs of CLFE task.
Text from any language along with entity of inter-
est(head entity) is provided as input to extract English
Facts(relation and tail entity pairs). The same sentence
may or may not be present in all languages.

ing pipelines to perform fact linking between DB-
Pedia (Lehmann et al., 2015) abstracts and Wiki-
data (Vrandečić and Krötzsch, 2014) triples. RE-
FCOG (Kolluru et al., 2021) works in a cross lin-
gual space to link the facts and outperforms the
existing pipeline based approaches like (Elsahar
et al., 2018). But these approaches are limited in
their application since they perform fact linking
and need a fact set as input.

OpenIE(Angeli et al., 2015) tackles this issue by
leveraging linguistic structure for open domain in-
formation extraction. While the predecessor open
domain IE systems like Ollie(Mausam et al., 2012)
use large set of patterns with broad coverage to
extract facts, OpenIE uses a small set of patterns
which works well on canonically structured sen-
tences. However, these open domain information
extractors produce facts that have long and over-
specific relations which can not be used to construct
KGs.

(Zhong and Chen, 2020); (Sui et al., 2020a)
approach the information extraction problem by
jointly extracting entities and their relation from

input text using neural models without referring to
any repository of facts. Although these works pro-
duce systems which can extract open information
from text in the WebNLG dataset (Gardent et al.,
2017), they are monolingual and are limited to
knowledge extraction in a single language. Various
existing well performing relation extraction mod-
els like (Yan et al., 2021), (Sui et al., 2020b) rely
partially on exact match of entities in the source
text, which makes it harder to adapt them for the
CLFE task.

Cross Lingual fact extraction i.e extracting facts
from source text of different languages didn’t re-
ceive as much attention as Monolingual Fact extrac-
tion did. Although (Zhang et al., 2017b) worked on
this task, with just a single language, the highest re-
ported f1 is 33.67. Moreover, Fact extraction from
low resource languages like Indic Languages hasn’t
been attempted. In this work, we attempt to reduce
these gaps in Information extraction by proposing
systems for Cross Lingual Subject Centric Fact
Extraction in low resource Indic Languages.

3 Dataset
For the task of CLFE we leverage the XAlign
dataset (Abhishek et al., 2022). The dataset con-
tains 0.45M pairs across 8 languages, of which
5402 pairs have been manually annotated. The
manually annotated part of the dataset was used
as the golden test set. The sentences in XAlign
come from the Wikipedia articles, about entities
belonging to the human class, written in Indian
languages.

The extensively cross lingual and multi lingual
nature of the XAlign dataset is ideal for the pro-
posed task. Though originally designed for the task
of cross lingual data to text generation, the XAlign
dataset can be leveraged for CFLE as well. How-
ever the dataset poses certain challenges. If we
were to consider each relation as a class (for clas-
sification based approaches), the dataset is highly
imbalanced. Out of approximately 367 unique rela-
tions(classes), the most frequent class alone has a
frequency of 27 % and top 20 classes contribute to
90% of the data. The data contains an average of
2.02 facts aligned per sentence.

Along with this, another challenging aspect of
the dataset is that it is partially aligned. While the
sentences in the test set have complete coverage
in the aligned facts, the entire information present
in the sentences from the train set is not covered
by the aligned facts. This attribute of the dataset,
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can potentially penalise the model even for the
generation of correct facts during the training time.
Thus impacting recall scores during the test time.
More details in Appendix section A.2

4 Methodology

We propose two approaches for the CLFE task. The
first approach is a classification based approach
which extracts tails first and then predicts the rela-
tion. Second approach is a generative one that does
both of these task in one shot.

4.1 Tail Extraction and Relation
Classification(TERC)

The TERC pipeline (Figure 2) consists of two steps.
The first step is to extract tails of facts from the
source language text. To do this we use IndicTrans
(Ramesh et al., 2021) translation and convert input
text to English language. After this we extract any
dates present in the text and normalize them in
to the same format. We also replace them in the
original text with a dummy token to preclude dates
from participating in other entities. Since every tail
entity can only be a noun or proper noun, we use
spaCy (Honnibal and Montani, 2018) noun chunk
extractor to extract all the noun chunks from which
tail entities are selected as follows.

• Entities that match with head are removed.
Since we are only interested about tails at this
stage of the pipeline we remove any entities
that have high lexical overlap with head.

• All noun chunks with pronoun roots are re-
moved to filter pronouns. Tails present in the
data are never pronouns so we prune out all
the recognized phrases which have pronoun
heads.

• Continuous spans of tokens with ADJ and
PROPN PoS tags are selected as individual
entities. Tails are multi word entities and may
contain adjectives within their span, so we
use PoS tags to get maximal spans for every
detected proper nouns.

• Root of the noun chunk is selected as a sepa-
rate entity if its PoS tag is NOUN.

Next step is to predict a relation for each of these
tails. To do this we use pretrained MuRIL (Khanuja
et al., 2021) to generate a joint representation of
head entity, tail entity and source language input
text. This representation is fed as input to a classi-
fier which predicts the relation between the head
and the tail entities in the input. The classifier is
trained on the training set to predict the relation,
given a sentence and a <head, tail> pair, by consid-
ering the tails from ground truth as input. In order
to tackle the class imbalance, we use inverse log
of class distribution as weights in loss-function
which performs better than standard inverse class
distribution as well as unweighted loss.

While evaluating the performance of the pipeline
architecture, tails extracted from translated input
text, are aligned with ground truth tails. The details
of this alignment are described in A.1 of the Ap-
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te bn ta gu mr en hi kn All languages
F1 F1 F1 F1 F1 F1 F1 F1 P R F1

Classification with
GT Tails 69.19 67.50 89.44 85.74 51.38 72.87 87.10 79.74 79.04 77.93 75.37

TERC 43.66 41.96 52.19 40.30 44.59 50.80 50.46 42.57 40.45 53.71 46.15
E2E Cross-lingual
Generative Model 71.82 75.56 82.82 72.36 77.79 76.28 86.62 68.04 74.09 81.15 77.46

E2E generation w
script unification 72.51 75.38 85.21 72.04 77.19 74.56 83.44 70.46 78.49 76.15 77.29

Bilingual Models 70.94 78.01 83.71 67.84 71.91 76.64 86.49 63.19 79.79 71.63 75.49

Table 1: Precision, recall and F1 scores of various methods applied on all languages in the Test set. Note that
"Classification with GT Tails" uses tails from ground truth as input for the Relation Prediction model and hence
does not represent a complete pipeline

pendix. Predictions are made for the aligned tails
and evaluation metrics are calculated on the same.

4.2 End to End Generative extraction

We also propose an end to end approach (Figure
3) to the fact extraction problem which can jointly
extract tails as well as their relations with the head
entity. Previous work in the domain of monolingual
fact extraction has shown that a model which jointly
performs the tail and relation extraction is more
likely to perform better than a disjoint approach (Li
et al., 2021). Advantage of this approach over the
pipeline approach mentioned above is that there is
a two way interaction between tail extraction and
relation prediction which improves performance of
both the tasks as they are not independent of each
other.

We pose this problem as a text-to-text task and
use the mT5 (Xue et al., 2020) auto-regressive seq-
2-seq model to generate relations and tails, when
head entity and input text are given as inputs. We
use cross entropy loss to train this model. Using a
generative model allows for a more generalizable
and open information extraction i.e set of relations
and tails are not restricted.

We experiment with 3 variations of this pipeline.
In all these variations, the facts are linearised
as the target text by concatenating the head
and tail joined by special tokens. Thus for a
given sentence S, if the corresponding i facts
are [h, r1, t1], [h, r2, t2]....[h, ri, ti], the target text
would be < R > r1 < T > t1 < R > r2 < T >
t2.... < R > ri < T > ti.

The first variation is fine-tuning the pretrained
mt5 model for the fact extraction task over all lan-
guages. For the second experiment, we use script

unification where we transliterate the input text
of all languages except English to the Devanagari
script. The idea is that the unified script input helps
the model’s training due to a high overlap in the
vocabulary accross multiple Indian languages. In
our third variation, we train multiple bi-lingual fact
extraction models, one for each language. The im-
plementation details of regarding these models and
TERC(4.1) are in the Appendix A.3.

5 Results and Discussion
Table 1 summarizes the results of the multiple fact
extraction approaches mentioned in section 4.

It can be observed that the open ended approach
performs the best in terms of F1 score while also
providing complete flexibility regarding the possi-
ble entities and relations. Another observation is
that the strategy where we train separate bilingual
models, works better than the combined model for
just two languages, English and Bengali. This is
explained by the fact that these are the two most
frequent languages for our dataset, which together
constitute 54.44 % of our training data. Thus,
multilingual training proves to be useful over all,
because of the shared learning across Indian lan-
guages. We also observe that script unification
(transliterating input scripts to Devanagari), specif-
ically benefits all the Dravidian languages (te, ta,
kn) of our dataset.

It should be noted that the actual performance
of the model might be better than what the num-
bers show. The reason for this is that currently we
adhere to strict evaluation schemes where a word
match between the predicted and the actual tail is
necessary in order to determine the prediction as
correct. However, this misses out on cases where
the predicted and the ground truth tails are com-
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pletely synonymous. An example of this is the case
where the model predicts the occupation as ’writer’,
whereas the GT label has it as ’author’.

6 Conclusion and Future work
In this work, we introduce the task of multilingual
and cross-lingual fact extraction over English and
seven other LR Indic languages. We conclude that
though script-unification helps certain languages, a
single multilingual end-to-end generative pipeline
performs better with overall F1 score of 77.46.
This work paves the path for upcoming research
in methods of extracting knowledge from LR In-
dic language text. In future, we plan to explore
approaches that make specific effort to tackle the
partially aligned nature of the dataset in order to
achieve further improvements.
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A Example Appendix

A.1 Tail Entity Alignment

Entities extracted from the translated texts are
aligned with the gold truth tail entities in order
to measure performance on test set. By alignment
we mean that we assign one ground truth tail entity
to each extracted entity without repetition. Some
extracted entities which do not have any overlap
with ground truth are ignored. Some ground truth
entities might not be assigned any of the extracted
entities leading to lower recall. Assignment is done
based on a similarity score and a threshold. Sim-
ilarity score between two entities is calculated as
the sum of cosine similarities of GloVe vectors and
intersection over union of terms. With a threshold
of 0.7 we achieved a precision of 0.54 and a recall
of 0.77.

A.2 Additional Dataset Statistics

Figure 4 shows the distribution of Top 30 most
frequent relations in the dataset. Figure 5 depicts
the share of each of the languages in the dataset.
As it can be seen, the dataset is highly imbalanced
both in terms of relations and languages.
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Figure 4: Distribution of Top 30 most frequent relations
in the dataset

A.3 Implementation Details

Both Two-Phase and E2E generative architectures
are trained on NVIDIA GeForce RTX 2080 Ti
graphic cards. For the Two-Phase approach, the

Gujrati
2.0%
Marathi
4.4%
Telegu
5.5%
Kannada
5.7%

Hindi
12.7%

Tamil
12.7%

English
29.8%

Bengali
27.2%

Training sample count

Figure 5: Distribution of the 8 languages in the training
set

only block that needed training is relation predic-
tion. MURIL encoder model from google which
has 12 encoding layers and output dimension 768
is the base of the classifier. 12th layer of MURIL
along with the layers in the feed forward network
are unfrozen during the training phase. Adam opti-
mizer is used with initial learning rate of 1e-4 and
step scheduling with step size 2 and gamma 0.3.
Batches of 16 facts are trained to optimize Cross
Entropy Loss. Inverse log frequency of classes is
used as weights for cross entropy loss to counter-
act the imbalance in the dataset. Training relation
prediction 5 hours on 1 GPU card.

For the Generative approach, we used the pre-
train mT5 model and finetune it for 5 epochs for
all experiments. The learning rate is 0.001 with a
weight decay of 0.01. The dropout rate is set to
0.1 in order to prevent over fitting on the training
data. We use the Adafactor optimizer to optimise
the Cross Entropy Loss during generation.

A.4 Analysis of OpenIE extraction
We tried openIE extractor from stanford to ex-
tract from english translated versions of texts from
other languages. Even after discounting transla-
tion losses facts extracted from openIE were not
useful because of overly specific relations and enti-
ties. Figure 6 is an example for the source sentence
"Sindhu is the second Indian after Saina Nehwal to
win in badminton after 2012"
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Figure 6: Examples of output from OpenIE
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Abstract

Transformer-based pre-trained language mod-
els (PLMs) have been used in all NLP tasks
and resulted in a great success. This has led to
the question of whether we can transfer this
knowledge to syntactic or semantic parsing
in a completely unsupervised setting. In this
study, we leverage PLMs as a source of exter-
nal knowledge to perform a fully unsupervised
parser model for semantic, constituency and
dependency parsing. We analyse the results
for English, German, French, and Turkish to
understand the impact of the PLMs on different
languages for syntactic and semantic parsing.
We visualize the attention layers and heads in
PLMs for parsing to understand the informa-
tion that can be learned throughout the layers
and the attention heads in the PLMs both for
different levels of parsing tasks. The results
obtained from dependency, constituency, and
semantic parsing are similar to each other, and
the middle layers and the ones closer to the
final layers have more syntactic and semantic
information.

1 Introduction

Transformer-based pre-trained language models
(PLMs) such as BERT (Devlin et al., 2019), GPT-
2 (Radford et al., 2019), XLNet (Yang et al., 2019),
RoBERTa (Liu et al., 2019b), DistilBERT (Sanh
et al., 2019) have shown state-of-art performance
in many down-stream NLP tasks. The performance
of such large PLMs has also begged the question
of what type of information that these models can
naturally acquire through self-supervised learning.
This has been investigated especially through prob-
ing tasks to analyse the linguistic information that
is learned during pre-training of such large mod-
els (Liu et al., 2019a; Clark et al., 2019; Kovaleva
et al., 2019; Pimentel et al., 2020; Rogers et al.,
2020). One type of linguistic information that
has been affluently analysed is syntactic informa-
tion, and most of the recent probing studies have

been based on this question: “Can transformer-
based large language models learn syntactic struc-
tures during pre-training?". Recent studies address
this question and propose unsupervised models
that use syntactic knowledge obtained from PLMs
for NLP tasks such as constituency (Kim et al.,
2020a,b; Zeng and Xiong, 2022) and dependency
parsing (de Lhoneux et al., 2022).

There are two aims in this study: 1. We aim to
analyse the linguistic information that is learned
by PLMs in different syntactic levels (dependency,
constituency and semantic parsing) which deviates
from the previous work, and provide a comparison
with different languages. 2. We aim to demonstrate
whether it is possible to use the linguistic informa-
tion learned from PLMs in a fully unsupervised
model for dependency, constituency and semantic
parsing.

Existing approaches that use pre-trained lan-
guage models are evaluated mainly on constituency
parsing (Kim et al., 2020a,b) and dependency pars-
ing (Hewitt and Manning, 2019; Clark et al., 2019).
However, there is not any study that evaluates vari-
ous parsing levels including semantic parsing using
the same parsing model and compares the parsing
results to understand the behaviour of PLMs for
different levels of parsing from syntax to semantics.

In this paper, we evaluate a fully unsupervised
model for three parsing tasks. We adopt the
chart-based zero-shot parsing model (Kim et al.,
2020b) that is based on the syntactic distance con-
cept (Shen et al., 2017, 2018). To our knowledge,
this will be the first study that combines syntactic
distance with PLMs to apply to semantic parsing
with zero-shot learning. In this study, we partic-
ularly use UCCA graph-based semantic represen-
tation for semantic parsing, which has been tack-
led as a constituency parsing problem in previous
studies (Jiang et al., 2019; Bölücü and Can, 2021).
In addition to the well-studied languages such as
English, German, and French, we also evaluate
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the models for Turkish with a comparably smaller
dataset. We obtain the best results with multilin-
gual PLMs. The results show that the zero-shot
parsing model performs better with shorter sen-
tences. It also shows that PLMs performs the best
with middle layers and the ones closer to the final
layers interestingly for all of the three parsing tasks,
which are in line with the previous studies.

2 Related Work

A recent research direction has been towards
analysing PLMs without fine-tuning on a partic-
ular down-stream task to explore the type of infor-
mation that is learned during pre-training, which
is called probing. For that purpose, PLMs have
been investigated in various tasks such as language
modeling (Shen et al., 2017), dependency pars-
ing (Hewitt and Manning, 2019; Clark et al., 2019),
constituency parsing (Shen et al., 2017; Peters et al.,
2018; Li et al., 2020; Kim et al., 2020b), discourse
parsing (Wu et al., 2020), commonsense reason-
ing (Tikhonov and Ryabinin, 2021), and grammar
induction (Shen et al., 2018; Kim et al., 2020a).
Some of the studies have also questioned if the syn-
tax is encoded in PLMs (Shi et al., 2016; Blevins
et al., 2018; Jawahar et al., 2019) and some of them
analysed how large language models encode other
types of linguistic information such as coference,
entity information, parsing, and semantic roles, and
NER (Tenney et al., 2019; Liu et al., 2019a).

In line with our work, Shen et al. (2017) use syn-
tactic distance for character-level and word-level
language modeling, and unsupervised constituency
parsing. Li et al. (2020) use PLMs for unsupervised
constituency parsing focusing on attention heads by
ranking and ensembling them. Kim et al. (2020b)
propose a model with chart-based decoder for the
same problem, which also solves the greedy search
problem of Shen et al. (2018). All of these studies
are based on the idea that the syntactic structure
of sentences are naturally learned along with lan-
guage modeling. Some of those works (Kim et al.,
2020a; Wu et al., 2020) also combine syntactic dis-
tance with PLMs to induce syntactic structure in
an unsupervised setting. A recent work by Shen
et al. (2021a) also introduces joint learning of con-
stituency parsing with dependency parsing in an
unsupervised framework.

Our work is similar to these and we also fol-
low the chart-based zero-shot parsing introduced
by Kim et al. (2020b). However, this is the first

time that several parsing tasks are tackled using the
same unsupervised model and this is the first time
UCCA-based semantic parsing is performed in an
unsupervised setting.

3 Chart-based Zero-shot Parsing

We utilise the syntactic distance concept (Shen
et al., 2017, 2018) which was particularly explored
for constituency parsing (Kim et al., 2020a,b; Li
et al., 2020) by directly using the PLMs without
fine-tuning. Here, we adopt chart-based zero-shot
parsing based on syntactic distance for three dif-
ferent parsing problems that are semantic, con-
stituency and dependency parsing to explore us-
ability of PLMs in zero-shot setting.

The method calculates scores for spans where an
input sentence s = {w1, · · · , wn} is made up of a
set of labeled spans as follows:

T = {(it, jt, lt) : t = 1, · · · , |T |}

where it and jt refer to the beginning and ending
positions of the tth span respectively with the label
set lt ∈ L. A score s(t) is assigned to each tree,
which is decomposed as follows:

s(t) =
∑

(i,j)∈t
sspan(i, j) (1)

Here, sspan(i, j) denotes per-span scores that
are calculated recursively by splitting spans into
smaller spans as defined below:

ssplit(i, k, j) = sspan(i, k) + sspan(k + 1, j)

sspan(i, j) = scomp(i, j)+

mini≤k<jssplit(i, k, j)

where scomp(·, ·, ·) measures the validity of the
compositionality of the span(i, j) itself, while
ssplit(i, k, j) indicates how plausible it is to
split span (i, j) at position k. To calculate
scomp(·, ·, ·), Kim et al. (2020b) introduced two
alternative labeled functions. The first one is the
characteristic score function sc(·, ·), and the sec-
ond is the pair score function sp(·, ·). Pair score
function computes the average pairwise distance in
a given span:

sp(i, j) =
1(

j − i+ 1
2

)
∑

(wx,wy)∈pair(i,j)

f(g(wx), g(wy))

sc(i, j) =
1

j − i+ 1

∑

i≤x≤j

f(g(wx), c)

c =
1

j − i+ 1

∑

i≤y≤j

g(wy)
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where pair(i, j) returns a set of all combinations
of bigrams (e.g. wx, wy) inside the span (i, j).
Function f(·, ·) is the distance measure and g(·)
is the representation function. Jensen-Shannon
(JSD) and Hellinger (HEL) distance functions are
used to measure the distance between two spans.
g = {gd(u,v)|u = 1, · · · , l, v = 1, · · · , a} returns
the vth attention head on the uth layer of the pre-
trained language model.

CYK (Cocke-Younger-Kasami) (Chappelier and
Rajman, 1998) is used for decoding to generate the
trees. The parser outputs tree t̂ that has the lowest
score:

t̂ = arg min
T

s(t) (2)

For each distance function with score functions
, we obtain the weights of the ith layer and jth

attention head of that layer. Then we calculate the
span scores using the distance functions. We select
the tree with the lowest score for each distance
function, which leads to 4 trees in ith layer and
jth attention head. Therefore, we finally obtain
4× l× a trees, where l is the number of layers and
a is the number of attention heads. The final F1
scores are calculated for each tree and the highest
F1 score is reported in the results.

4 Three Levels of Parsing with a Single
Model

We use the chart-based zero-shot parsing model for
three types of parsing ranging in different semantic
and syntactic levels with different granularities and
structures of a given text:

Dependency Parsing Dependency parsing is
concerned with the syntactic relations between
words in a sentence. Those syntactic relations are
discovered in terms of dependencies of words on
each other. In order to apply the zero-shot parsing
model for dependency parsing, we compute the
scores for each tree and then we apply Eisner (Eis-
ner, 1996) decoding algorithm (rather than CYK)
to produce dependency trees using the tree scores.

Constituency Parsing Constituency parsing is
concerned with extracting the syntactic structure
of a given text through phrasal constituents. There-
fore, it is more concerned with the syntactic struc-
ture of an entire sentence rather than the relations
between words as opposed to dependency parsing.
We apply zero-shot parsing without adding any ad-
ditional step for constituency parsing.

Semantic Parsing Semantic parsing is con-
cerned with extracting the semantic structure of
a given text using a formal representation. We par-
ticularly use UCCA (Abend and Rappoport, 2013)
graph-based semantic representation to extract se-
mantic relations within the text. In order to per-
form UCCA-based parsing, we first convert UCCA
graphs into constituent trees by removing disconti-
nuities and remote edges (Jiang et al., 2019; Bölücü
and Can, 2021). Then we perform zero-shot learn-
ing to tackle semantic parsing as a constituency
parsing problem. After finding the tree with the
lowest score, we convert constituency trees back
into the UCCA-based graphs, and restore discon-
tinuity units. We disregard the remote edges and
implicit edges.

5 Experiments and Results

We conducted experiments to evaluate the unsu-
pervised parser on dependency, constituency, and
semantic parsing for English, German, French, and
Turkish since UCCA-annotated datasets are only
available for these languages.

5.1 Datasets

• Dependency Parsing: We used Universal De-
pendency v2.3 (Schuster et al., 2017) datasets
in English, German, French and Turkish.

• Constituency Parsing: We used Penn Tree-
bank (PTB) (Marcinkiewicz, 1994) for En-
glish, the SPMRL dataset (Seddah et al., 2013)
for German and French, and the Turkish Anno-
tated Treebank (Yıldız et al., 2016) for Turk-
ish.

• Semantic Parsing: We used UCCA datasets
provided by SemEval 2019 (Hershcovich
et al., 2019) in English, German, and French,
and the Turkish UCCA-annotated dataset re-
leased by Bölücü and Can (2022).

Since it is a zero-shot parsing model and does
not involve a training stage, we only used the test
sets1 for all languages for the evaluation.

5.2 Experimental Setting

We use both monolingual and multilingual PLMs in
the experiments. For English, we use the following
monolingual PLMs: BERT (Devlin et al., 2019),

1The details of the datasets are given in Table 7 in Ap-
pendix A.

21



GPT-2 (Radford et al., 2019), RoBERTa (Liu et al.,
2019b), and XLNet (Yang et al., 2019). We fol-
low previous work (Kim et al., 2020a,b; Li et al.,
2020) by using two variants of each PLM, where
the X-base variant consists of 12 layers, 12 atten-
tion heads and 768 hidden dimensions, while the
X-large variant has 24 layers, 16 attention heads
and 1024 hidden dimensions. GPT2 model corre-
sponds to X-base while GPT2-medium corresponds
to X-large model.

We use bert-base-german-cased,
bert-base-french-europeana-cased,
and bert-base-turkish-cased for Ger-
man, French and Turkish monolingual PLMs
respectively.

For multilingual experiments, we use multi-
lingual version of the BERT-base model (M-
BERT) (Devlin et al., 2019), the XLM-base model
(XLM-R2) (Conneau and Lample, 2019), which
is a multilingual RoBERTa model, and the large
version of XLM (XLM-R-large) (Conneau et al.,
2020).

5.3 Results

We present the results obtained from each parsing
separately below4.

Dependency Parsing Dependency parsing re-
sults for all languages are given in Table 1. The
best results are obtained from multilingual PLMs
in all languages. Since the other unsupervised de-
pendency parsing models are either finetuned (Ma
and Xia, 2014; Shen et al., 2021b) or utilise other
external resources such as Google Universal Tree-
banks (Ma and Xia, 2014) or WSJ (Shen et al.,
2021b), we have not made a comparison with other
models since the model presented here is fully un-
supervised, does not use any annotated data, and
does not incorporate any syntactic information dur-
ing PLM pre-training.

Constituency Parsing For constituency parsing,
we either perform top-down or chart-based pars-
ing to generate trees. We further experiment with
using different layers in the PLMs. All unlabeled
F1 scores for the constituency parsing are given
in Table 2 and Table 3. We use abbreviations TD,
CP, and CC for Top-Down, Chart-Pair (pair score

2The details of the training datasets used in the experiments
are given in Table 8 in Appendix B.

3We used the pre-trained models of BERT defined in Sec-
tion A for each language.

4We give the results of supervised models in Appendix C.

function sp(·, ·)) and Chart-Characteristic (charac-
teristic score function sc(·, ·)) respectively. Ex-
cept English, we obtain the best results with the
top-down decoder and with XLM-R for German,
French, and Turkish 5.

Semantic Parsing The unlabeled F1 scores for
UCCA-based semantic parsing are given in Ta-
ble 4 and 5. The best results are obtained from
RoBERTa-base amongst the monolingual models
and from XLM-R amongst the multilingual models
in English. Interestingly, both RoBERTa and XLM-
R gives similar results. For German, French, and
Turkish, all the best results are obtained from mul-
tilingual models. Since this is the very first study
that performs UCCA-based semantic parsing in a
completely unsupervised framework, there is not
any other study that is available to compare with
ours. Therefore, we report our results only as the
baseline results for the future studies.

Dependency parsing scores are comparably
much lower than both constituency and semantic
parsing in all languages. Unsupervised dependency
parsing has been mostly performed using proba-
bilistic generative models in the literature (Klein
and Manning, 2004) and it is comparatively harder
than constituency parsing since it requires learning
finer relations between words rather than phrases in
a sentence. However, interestingly, UCCA-based
semantic parsing scores are also promising and
as good as constituency parsing performance. It
should be noted that UCCA-based semantic parsing
has not been tackled with an unsupervised learning
model before.

As for the PLM models, the GPT and GPT2-
medium perform comparatively poorly on all pars-
ing problems. Unlike other PLMs, the GPT models
are auto-regressive language models that do not
allow to incorporate the context on both sides of
a word, which might be the reason of the poor
performance of the GPT models.

5.4 Analysis of the Results

We analyse the attention layers and heads that con-
tribute the most to each parsing task, along with
the affect of the sentence length in the experiments.

5.4.1 Attention Layers
We analyse the attention layers to see which layers
provide the most information for the parsing tasks.

5The model is adopted from that of Kim et al. (2020b) and
we prefer not to repeat the comparative scores here again.
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Model Monolingual Models
English German French Turkish

BERT-base-cased3 26.48 26.59 24.78 35.56
BERT-large-cased 27.89 - - -
XLNet-base-cased 25.66 - - -
XLNet-large-cased 27.53 - - -
RoBERTa-base 27.68 - - -
RoBERTa-large 25.11 - - -
GPT2 19.66 - - -
GPT2-medium 21.44 - - -
PLM Multilingual Models
M-BERT 30.80 30.69 34.37 41.62
XLM-R 30.80 31.84 34.27 41.25
XLM-R-large 32.66 28.58 26.19 39.13

Table 1: UAS scores for dependency parsing.

English German
Model TD CP CC TD CP CC

Monolingual Models
BERT-base-cased 34.51 40.24 42.05 26.96 24.82 26.59
BERT-large-cased 38.93 43.68 44.58 - - -
XLNet-base-cased 40.12 42.14 43.47 - - -
XLNet-large-cased 38.32 42.60 43.73 - - -
RoBERTa-base 40.61 45.37 46.01 - - -
RoBERTa-large 34.30 42.19 43.26 - - -
GPT2 34.21 34.01 35.78 - - -
GPT2-medium 37.65 38.59 39.81 - - -

Multilingual Models
M-BERT 40.28 43.44 44.13 30.69 30.59 30.28
XLM-R 41.25 44.25 44.76 33.13 32.19 31.84
XLM-R-large 39.13 42.87 44.67 28.18 27.13 28.58

Table 2: Unlabeled F1 scores for constituency parsing in English and German.

French Turkish
Model TD CP CC TD CP CC

Monolingual Models
BERT-base-cased 24.78 22.83 23.86 35.36 31.47 33.50

Multilingual Models
M-BERT 32.88 30.37 30.45 41.29 40.61 39.93
XLM-R 34.19 31.29 30.93 45.18 43.49 42.30
XLM-R-large 26.68 25.70 26.46 36.21 36.72 36.72

Table 3: Unlabeled F1 scores for constituency parsing in French and Turkish.

Dependency Parsing UAS scores obtained from
multilingual models for each layer are illustrated in
Figure 1. The results show that we get the highest
UAS scores from the middle or the ones closer to
the final layers of PLMs for all languages.

Constituency Parsing F1 scores obtained from
multilingual PLMs for all layers are given in Fig-
ure 2. Although there are slight differences be-
tween languages, the general picture does not dif-
fer from the dependency parsing results and again
the highest scores are obtained from mostly middle
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English-Wiki English-20K
Model TD CP CC TD CP CC

Monolingual Models
BERT-base-cased 38.34 42.30 42.60 39.10 42.80 43.93
BERT-large-cased 38.33 42.93 43.52 39.41 43.82 44.75
XLNet-base-cased 37.00 39.62 40.18 37.57 39.56 42.70
XLNet-large-cased 38.41 41.25 42.27 39.98 41.20 41.52
RoBERTa-base 41.82 44.96 45.21 32.43 45.62 46.18
RoBERTa-large 37.65 41.37 41.62 36.44 41.78 41.92
GPT2 31.97 38.23 38.56 32.41 37.97 38.40
GPT2-medium 34.86 38.49 38.58 32.21 37.68 39.31

Multilingual Models
M-BERT 39.62 43.52 44.06 38.11 43.99 45.15
XLM-R 40.98 45.45 45.89 42.06 45.51 46.30
XLM-R-large 36.40 40.05 40.87 33.69 40.00 41.45

Table 4: Unlabeled F1 scores for semantic parsing in English (English-Wiki, English-20K).

German-20K French-20K Turkish
Model TD CP CC TD CP CC TD CP CC

Monolingual Models
BERT-base-cased3 40.30 41.93 42.96 40.32 40.55 42.71 41.49 39.50 42.15

Multilingual Models
M-BERT 39.08 44.17 44.07 41.01 43.26 46.08 42.15 44.80 44.14
XLM-R 40.90 43.15 42.98 44.13 46.08 47.38 46.79 48.77 46.79
XLM-R-large 35.59 39.63 42.37 37.56 39.17 38.94 45.46 44.14 46.13

Table 5: Unlabeled F1 scores for semantic parsing in German, French and Turkish.

(a) Bert-multilingual (b) XLM-R (c) XLM-R-large

Figure 1: UAS scores of multilingual PLMs for dependency parsing.

layers.

Semantic Parsing F1 scores obtained from
monolingual models for all layers along with differ-
ent distance functions are given in Figure 3. Only
the best scores obtained from the attentions in each
layer are illustrated. The graphs show that there is
not much difference between the distance functions
in terms of their performance in parsing. However,
we obtain the highest scores again from the middle
or towards the last layers except for GPT-2, which

achieves the best in the lower layers.

The results obtained from multilingual PLMs for
all languages are given in Figure 4. The F1 scores
of languages are very low in the first hidden layers
except for Turkish. The lower hidden layers might
be more informative in short sentences because the
Turkish UCCA dataset involves shorter sentences
compared to other languages. This might be the
reason of such a difference between the languages.
The results also support that the final layers bear
more syntactic information compared to the lower
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(a) Bert-multilingual (b) XLM-R (c) XLM-R-large

Figure 2: F1 scores of multilingual PLMs for constituency parsing.

(a) Bert-base (b) Bert-large (c) XLNet-base (d) XLNet-large

(e) RoBERTa-base (f) RoBERTa-large (g) GPT2 (h) GPT2-medium

Figure 3: F1 scores from monolingual PLMs using the English Wiki dataset for semantic parsing.

(a) Bert-multilingual (b) XLM-R (c) XLM-R-large

Figure 4: F1 scores from multilingual PLMs using the UCCA datasets.

(a) English (b) German (c) French (d) Turkish

Figure 5: Unsupervised dependency parsing performance in all languages according to different attention heads and
hidden layers with HEL distance function (Light cells refer to higher UAS scores).

layers, especially in longer sentences, which is con-
sistent with the findings of other studies (Clark

et al., 2019; Kim et al., 2020b,a).
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(a) English (b) German (c) French (d) Turkish

Figure 6: Unsupervised constituency parsing performance in all languages for different attention heads and hidden
layers with HEL distance function (Light cells correspond to higher F1 scores).

(a) English-Wiki (b) English-20K (c) German-20K (d) French-20K (e) Turkish

Figure 7: Unsupervised UCCA semantic parsing performance in all languages with different attention heads and
hidden layers with HEL distance function (Light cells refer to higher F1 scores).

5.4.2 Attention Heads
We also analyse the attention heads in the layers
to observe which attention heads contribute the
most to each parsing task. F1 scores obtained from
the attention heads in different layers are given in
Figure 5, Figure 6, and Figure 7 for dependency,
constituency, and semantic parsing (with XLM-
R) respectively. The graphs support the findings
regarding the hidden layers and further show that
top heads contain more information in all tasks
and languages apart from Turkish constituency and
semantic parsing where the lower heads contain
more information. This might be again due to the
length of the sentences in the Turkish datasets.

5.4.3 Sentence Length
To understand the effect of the sentence length, we
extract the average length of the sentences in all
datasets. The average sentence length of Turkish
datasets for all tasks is less than that of the other
languages, whereas the average sentence length of
German and French is higher in all parsing datasets.

To investigate the relationship between the sen-
tence length and the accuracy of the parsing, we
run the constituency parsing with XLM-R multilin-
gual PLM and top-down parser on 1000 samples
with a length less than the average length of the
dataset and 1000 samples with a length greater
than the average length of the datasets in English,
French and German. We only use 50 samples (25
less and 25 are greater than the average length
in Turkish since there are only 63 samples in the

dataset. Table 6 gives the average length of the sen-
tences in each dataset along with the obtained F1
scores. The results show that the model performs
better on shorter sentences. This also confirms that
the model can hardly find distant relationships in
longer sentences.

6 Conclusion

We analyse the syntactic information learned by
transformer-based PLMs for various parsing prob-
lems (namely dependency, constituency, and se-
mantic parsing) using a fully unsupervised zero-
shot parser. To the best of our knowledge, this is the
first study that compares an unsupervised model for
three different parsing problems in a fully unsuper-
vised setting and analyses the linguistic information
learned from PLMs during pre-training for three
different parsing tasks from syntax to semantics.
The results show that PLMs provide information
from mostly middle and towards the final layers
for all parsing tasks, which is also in line with
the previous work on constituency and dependency
parsing. However, interestingly, the study shows
that when it comes to structure learning, syntax and
semantics are both encoded in middle and towards
the final layers.
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A Details of the test sets

Here specify the size of the test sets used in all
parsing tasks.

English German French Turkish
DP 2077 1000 416 979
CP 2416 5000 2541 63

SP
Wiki: 515
20-K: 492

652 239 50

Table 7: Size of the test sets used in the experiments
(DP: Dependency parsing, CP: Constituency parsing,
and SP: Semantic parsing)
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B Details of the training sets for XLM-R

Here we present the size of the monolingual
datasets used for training the XLM-R.

Language Tokens (M) Size (GiB)
English 55608 300.8
German 10297 66.6
French 9780 56.8
Turkish 2736 20.9

Table 8: Size of each monolingual dataset used for
training the XLM-R.

C Supervised model results for three
levels of parsing

Here we give the results obtained from supervised
models for dependency and semantic parsing prob-
lems with the best results of the unsupervised
model in the paper6.

Model English German French Turkish
Our Model 32.66 31.84 34.37 41.62
UDPipe ♣ 89.63 85.53 90.65 74.19
UDify ♣ 90.96 87.81 93.60 74.56

Table 9: Comparative UAF scores of our unsupervised
model with supervised models for dependency parsing
(♣: Kondratyuk (2019))

6We couldn’t give the constituency parsing results since the
studies on constituency parsing present only labeled scores.

7We used the zero-shot experimental results in the paper
of (Bölücü and Can, 2022) for Turkish dataset.
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Model English-Wiki English-20K German-20K French-20K Turkish
Our Model 45.89 46.30 44.17 47.38 48.77

Tupa ♣ 85.00 82.20 90.30 74.00 -
HLT@SUDA ♡ 87.20 85.20 92.80 86.00 -
Self-Attentive ♠ 89.60 87.69 94.10 86.00 76.808

Table 10: Comparative unlabeled F-1 scores of our unsupervised model with supervised models for semantic parsing
(♣: Hershcovich et al. (2017), ♡: Jiang et al. (2019), ♠: Bölücü and Can (2021))
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Abstract
Manual radiology report generation is a time-
consuming task. First, radiologists prepare
brief notes while carefully examining the imag-
ing report. Then, radiologists or their secre-
taries create a full-text report that describes the
findings by referring to the notes. Automatic
radiology report generation is the primary ob-
jective of this research. The central part of auto-
matic radiology report generation is generating
the finding section (main body of the report)
from the radiologists’ notes. In this research,
we suggest a knowledge graph (KG) enhanced
radiology text generator that can provide ad-
ditional domain-specific information. Our ap-
proach uses a KG-BART model to generate
a description of clinical findings (referred to
as pathological description) from radiologists’
brief notes. We have constructed a parallel
dataset of radiologists’ notes and correspond-
ing pathological descriptions to train the KG-
BART model. Our findings demonstrate that,
compared to the BART-large and T5-large mod-
els, the BLEU-2 score of the pathological de-
scriptions generated by our approach is raised
by 4% and 9%, and the ROUGE-L score by 2%
and 2%, respectively. Our analysis shows that
the KG-BART model for radiology text genera-
tion outperforms the T5-large model. Further-
more, we apply our proposed radiology text
generator for whole radiology report genera-
tion.

1 Introduction

Due to the meager ratio of radiologists to patients,
radiologists are in high demand. The ratios in the
US, China and India are 1:10,000, 1:14,772, and
1:100,000 respectively (Arora, 2014). It leads to a
large influx of patients, which keeps radiologists
extremely busy and under stress. To boost the ef-
fectiveness and productivity of radiologists, several
hospitals and diagnostic facilities have established
radiology information systems (RIS) and picture

archiving and communications systems (PACS)
(Honeyman, 1999). Despite this, the current work-
flow causes a delay in the turnaround time for re-
ports, report inaccuracies, and burnout. Our conver-
sations with radiologists have revealed that many
radiologists wish to eliminate the tiresome report-
generating process and concentrate on the diagno-
sis.

The main task in automatic radiology report gen-
eration is generating pathological descriptions from
radiologists’ notes. In Natural Language Process-
ing (NLP), we can look at this as a text genera-
tion task. Various neural encoder-decoder models
have been proposed to accomplish the text gen-
eration goal by learning to map input text to out-
put text. However, the input text alone often pro-
vides limited knowledge to generate the desired out-
put. Hence, researchers have considered incorporat-
ing external knowledge from domain-specific KGs
along with internal knowledge embedded in the
input text (Yu et al., 2022). KG-BART (Liu et al.,
2021) model incorporates the domain-specific KG
in the deep learning model. In our work, we incor-
porate ultrasound radiology KGs (Kale et al., 2022)
in the KG-BART model to generate radiology text
from radiologists’ input notes. We construct a radi-
ology domain dataset to train the KG-BART model.
We obtain grounded KG for input sentences. KG
grounding finds the most relevant entities and rela-
tions from radiology KG to guide the KG-BART
model to better understand the relationships among
concepts. It considers the inter-concept relation
and significant neighbor entities to generate a more
natural and plausible output. Two high-profile radi-
ologists are associated with this research who help
us to get domain insights and to create a dataset.

Our contributions in this paper are as follows:

• Parallel dataset of radiologists’ notes and corre-
sponding pathological descriptions.
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• Our work shows that the KG-BART is strong
choice for radiology text generation than other
state-of-the-art models like T5-base/large, BART-
base/large.

• Our KG grounding approach reduces noise (ir-
relevant neighbor entities) and obtains the most
relevant neighbor entities.

2 Background Concept and Terminology

Traditionally, radiologists either dictate on a voice
recorder or write the diagnosis notes (referred to
as radiologist’s notes) on paper. Their secretaries
are then given access to the notes. Next, the sec-
retary access a normal report template, which is a
scan-specific normal template (referred to as nor-
mal report template) that corresponds to all nor-
mal findings, and creates a preliminary report by
altering it in accordance with the measurements
and findings that the radiologist reported in a more
detailed form (pathological description). The ra-
diologist receives the preliminary report once again.
The radiologist then reads the report, makes any
necessary corrections, and then signs off. Finally,
the report is provided to a doctor or patient for po-
tential follow-up care. Table 1 shows the examples
of radiologists’ notes and corresponding pathologi-
cal descriptions. The average number of words in
radiologists’ notes is 15, and the average number
of words in pathological descriptions is 26.

Radiologists’ Notes Pathological Description

Normal uterus 1 x 5 x
3.4 mm with hypoechoic
fibroid 2.3 x 5.6 mm in
fundic body region.

Uterus is anteverted and normal in
size 1 x 5 x 3.4 mm. Myometrial
reflectivity is inhomogeneous and
shows a hyperechoic fibroid in fundic
body region measuring 2.3 x 5.6 mm.

Liver shows generalized
fatty infiltration severe
hepatomegaly noted.

Liver severely enlarged and it reveals
generalized fatty infiltration.

Cirrhosis with portal hy-
pertension 6 cm.

Liver is small and shrunken and
coarse echotexture margin are nodu-
lar. portal vein is mildly dilated, it
measures 6 cm.

Table 1: Examples of radiologists’ notes and correspond-
ing pathological descriptions.

In order to create an accurate diagnostic descrip-
tion from brief notes, domain-specific knowledge
will be helpful, given that the knowledge graph can
supply relationship information to strengthen the
capacity for reasoning and provide adjunct entities

to the concept. In our work we use radiology (ul-
trasound) KGs constructed by Kale et al. (2022).
These KGs are constructed for each organ sepa-
rately. Since all KGs are hierarchical, and the root
of each KG is an organ name (e.g., liver, gallblad-
der, pancreas, etc.), we have integrated all these
KGs into a single KG (reffered as ultrasound KG)
by adding upper abdomen as root entity. First we
extract the grounded KGs for each input concept
set from ultrasound KG and then we incorporate
grounded KGs in KG-BART model to generate
pathological descriptions. The KG grounding is
the process of extracting the subgraphs (referred to
as grounded KGs) from domain-specific KG (in our
case ultrasound KG). A grounded KG is a subgraph
from the KG whose nodes are concepts in the input
plus additional nodes. While doing KG grounding
we construct two graphs, i) Input-concept graph
and ii) Concept-expansion graph. The expansion is
due to the KG, supplying related concepts closely
related to those in the input. Input-concept Graph:
It consists of (a) nodes in the KG matching with in-
put concepts and (b) nodes that are along the paths
to the root node of the KG, containing these nodes.
Concept-expansion Graph: It is the input-concept
graph plus the relevant children of the nodes in the
input-concept graph.

For input-concept graph and concept-expansion
graph, we encode the entity representations and
their dependency relations using Knowledge Graph
Embeddings (KGE) (Choudhary et al., 2021).
KGE represents the entities and relations in lower-
dimensional vectors that can be efficient for com-
putations.

3 Related Work

With prior knowledge of chest findings, Zhang et al.
(2020) created a graph model that could be used in
deep learning models. Disease findings are repre-
sented in this network as nodes, and related find-
ings are connected closely between them so that
they might impact one another during the prop-
agation and aggregation of the graph. To learn
specific attributes for each node in the graph, they
incorporate this graph into the deep neural network.
Features extracted from KG are used for multilabel
classification. To improve pre-training language
understanding, Zhang et al. (2019) integrates KG
instructive items that are contextually aligned. KE-
PLER uses a pre-trained language understanding
model to encode textual descriptions of entities be-

33



fore integrating the goals of knowledge embedding
and language modeling (Wang et al., 2021). By in-
cluding triples from the KG as supplemental words,
K-BERT infuses domain information into the mod-
els (Liu et al., 2020). In light of these studies, we
contend that additional knowledge data can signif-
icantly improve the performance of pre-training
models used for text generation tasks.

4 Dataset Construction

We fetch impressions and corresponding patholog-
ical descriptions from the radiology text report
corpus to construct a parallel dataset. The radi-
ology text report corpus contains anonymized ra-
diology ultrasound reports that are provided by a
company collaborating with us, with due consent
of the physicians. We have approximately 10 lac
radiology reports, out of which around 1 lac reports
are of ultrasound. The radiology report contains
the title, history, findings, and impression sections.
Each section’s content is well-structured despite
not being uniform. As a result, we use heuristics
like regular expressions and word overlap to iden-
tify different sections. Each section’s content is
tokenized and lower-cased. Impressions are very
close to radiologists’ notes, but it does not contain
patient-specific information like measurement of
findings, anatomical location, etc. To convert im-
pressions into radiologists’ notes, we manually edit
impressions by adding patient-specific information
like measurements and anatomical locations by re-
ferring to pathological descriptions. Examples of
impressions, their corresponding pathological de-
scriptions and radiologists’ notes prepared using
impressions are given in table 2.

4.1 Data Preprocessing

Reports contain free-text clinical narratives. There-
fore it has many spelling mistakes and writing mis-
takes as well. We perform the following prepro-
cessing tasks on a parallel dataset:

• In the corpus, there are a lot of extra spaces and
unwanted punctuation marks found. We remove
these unwanted characters from the corpus using
regular expressions.

• We apply sentence segmentation to identify sen-
tence boundaries between different sentences.

• We use SymSpell1 library to correct the spellings
by applying the unigram and bigram dictionar-

1https://symspellpy.readthedocs.io

ies. We create dictionaries from the corpus and
correct them manually.

Once the data cleaning process done. Our do-
main experts verify the dataset manually and cor-
rect it if necessary. We try to create a dataset be-
cause the radiology dataset for ultrasound is not
publicly available.

4.2 Concept Extraction

KG-BART model needs input and target dataset for
training and validation. We give text input to the
KG-BART model in the form of a concept set. Con-
cept set is the set of radiological entities extracted
from radiologist’s notes. For example radiological
concepts present in note, Lesion found in right lobe
of liver. are lesion, right lobe, and liver. To extract
the concepts from radiologists’ notes, we use an
entity extractor based on the method explained in
the paper (Kale et al., 2022). Table 2 shows the
examples of radiologists’ notes and concept sets ex-
tracted from notes along with their corresponding
pathological descriptions.

5 Method

Figure 1 shows the architecture of the text-
generation model with input/output flow. The main
components of our model are KG grounding, KG
embeddings, text embedding, encoder, and decoder.
This section explains all these components in de-
tail.

5.1 Knowledge Graph Grounding

We extract the small subgraphs, input-concept, and
concept-expansion graphs for each input sample
from our ultrasound KG.

Algorithm to construct input-concept graph and
concept-expansion graph is given below: i) For
each input concept set in our dataset, we link input
concepts with ultrasound KG entities using entity
matcher. Entity matcher implemented using The-
Fuzz2 library. ii) To find the appropriate path in the
ultrasound KG. First, we find all possible candidate
paths from matched entity to the root node. We find
the most appropriate top five paths by using ranking
based on precision and recall of entities in concept
set and entities in all possible candidate paths. We
consider all paths which include matched entity
which is absent in the already selected top-ranking
path. iii) Our algorithm constructs an input-concept

2https://github.com/seatgeek/thefuzz
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Impression Radiologists’ Notes Concept Set Pathological Description

Bulky retroverted uterus
with fundal fibroid.

Bulky retroverted uterus
with fundal fibroid 2.3 x
5.6 mm.

uterus, fibroid, bulky, fun-
dal, retroverted, 2.3 x 5.6
mm

Uterus is retroverted and bulky in size. Myometrial
reflectivity is inhomogeneous with an illdefined fun-
dal fibroid measuring 2.3 x 5.6 mm noted.

Calculus cholecystitis
with multiple large
calculi.

Calculus cholecystitis
with multiple large
calculi within lumen
of gallbladder, largest
measuring 2.4 mm.

multiple, calculi, calcu-
lus, lumen, cholecystitis,
enlarged, measuring, 2.4
mm

Gallbladder is distended reveals thick wall. Feature
of note is presence of multiple large calculi seen
within lumen of gallbladder; largest calculus mea-
sures 2.4 mm.

Acute pancreatitis. Acute pancreatitis. acute pancreatitis Pancreas is bulky, reveals reduced reflectivity with
increased reflectivity of peripancreatic fat.

Table 2: Samples from dataset constructed using radiology report corpus. The first column shows the impressions
extracted from the radiology report, and the last column shows the pathological description corresponding to the
impression fetched from the radiology report. The second column shows the radiologists’ notes prepared by adding
patient-specific information to the impression. The third column shows the concepts extracted from radiologists’
notes. The final training dataset contains only concept set (as input) and pathological description (as target) columns.

Figure 1: Our model architecture with input as radiologist’s dictation and output as pathological description.

Total Samples Train Samples Test Samples Validation
Samples

6860 6000 430 430

Table 3: Statistics of the parallel dataset. Training
dataset contains concept sets and corresponding patho-
logical descriptions.

and concept-expansion graphs containing all paths
that we have selected using a ranking algorithm
and neighbor nodes which are the default proper-
ties of node present in path. Since ultrasound KG
is hierarchical KG where if the node is finding,
then its parent is the anatomical location, and its
children are properties of findings. Hence, even if
some information is missing in the input, we can
get it from the input-concept or concept-expansion
graphs.

Algorithm 1 gives the pseudocode to con-
struct input-concept and concept-expansion graphs.
Adding one-hop, two-hop, or n-hop neighbors of
concept nodes adds irrelevant nodes in the ex-
panded graph, which leads to noise. Our approach

reduces the noise and obtains the most relevant
neighbor nodes. Instead of passing these graphs (as
it is for training), the model represents it in vector
form. KG embedding module produces the vec-
tor representation for input-concept and concept-
expansion graphs. Example of the input-concept
and concept-expansion graphs is shown in figure 2.

5.2 KG Embeddings

The ultrasound KG is represented in low dimen-
sional vector space using KGE. For simplicity and
concreteness, in this work, we primarily consider
TransE (Bordes et al., 2013) model due to their
state-of-the-art performance. To implement the
TransE model for KG embeddings, we use the open-
source OpenKE3 tool. Ultrasound KG contains
860 nodes and 1016 triples. Triples are divided
into train and validation sets. The training triple
set contains 900 triples, and the validation triple set
contains 116 triples.

3https://github.com/thunlp/OpenKE
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Algorithm 1: Construct input-concept and

concept-expansion graphs.

Input : CS: Concept Set
G(V, E) : Knowledge Graph

Output : Input-concept and concept-expansion
graph

1 Find all candidate paths in G(V, E) that includes the
node with input concept

2 path-dict -> initialize
3 for each path in possible candidate-paths do
4 Precision = CS∩All entities in path

No. of concepts in CS

5 Recall = CS∩All entities in path
No. of nodes in path

6 F-score = 2∗Precision∗Recall
Precision+Recall

7 add path-dict -> (path:F-score)
8 end
9 Sort path-dict in descending order of F-score

10 Get top 5 paths
11 for each path in top-5-paths do
12 if len(set(CS) - set(path)) > 0 then
13 Add all triplets from that path in

input-concept graph triplet set
14 Add all triplets from that path in

concept-expansion graph triplet set
15 for each node in path do
16 Find all neighbors of node with

default-property relation
17 Add all triples of form (neighbor,

DefaultPropertyOf, node) in
concept-expansion graph triplet set

18 end
19 end
20 end
21 Save input-concept graph triples set (input-concept

graph) in csv file.
22 Save concept-expansion graph triples set

(concept-expansion graph) in csv file.

5.3 Text Embedding

The input embeddings are made of two separate
embeddings, 1) Token embeddings and ii) Position
embeddings. To get the final text embedding we
add the vectors of token embeddings and position
embeddings.

5.3.1 Token Embeddings
Tokens are nothing but a word or a part of a word.
The textual encoder uses the vocabulary offered
by large-cnn BART, and the token embedding is
consistent with BART. Using a trainable lookup
table, we transform each token in the input concept-
set into an embedding vector.

In order to create these token embeddings, a
method called BART tokenizer is used to tokenize
the text. The encoder, decoder, and language mod-
eling head (Press and Wolf, 2016) all share the
embedding parameters. Due to the permutation-
invariance of the attention layers, BART learns
positional embeddings for absolute token positions

and adds them to the token embeddings (Vaswani
et al., 2017; Devlin et al., 2018).

5.3.2 Positional Embeddings
Position embeddings represents the position of the
word within that sentence that is encoded into a
vector. We must introduce some information about
the relative or absolute location of the tokens in the
sequence because our model lacks recurrence and
convolution and hence cannot use the sequence’s
order. To do this, we augment the token embed-
dings at the base of the encoder and decoder stacks
with positional embeddings. The text embeddings
are the sum of the token embeddings and the posi-
tional embeddings.

5.4 Encoder
The encoder uses two modalities- text, and KG
to condition the generation. According to Figure
1, the KG enhanced encoder layer sits above the
text embedding layer and is intended to enhance
the text representation by taking the KG structure
into account. We use a graph attention layer to
incorporate graph representations into the input en-
coding process. It uses explicit relations to help
the model learn intra-concept relations more ef-
fectively. Formally, the grounded KG embedding,
as well as the text embeddings, are combined by
the KG-augmented encoder to update the text to-
ken representation. Our self-attention layer and
fully-connected layer with residuals make up the
stack of m transformer blocks that make up our
bidirectional KG-augmented encoder.

5.5 Decoder
The decoder uses the text embedding module at
the bottom layer to encode the text. Similar to en-
coder, decoder contains KG-augmented decoder
layer. It incorporates a concept-expansion graph to
get input concepts’ missing information and con-
text. The decoder of our model is also a multi-layer
transformer. Our decoder is auto-regressive and
unidirectional. We skip over a detailed explanation
of these modules because our textual transformers
are the same as those used in BART (Lewis et al.,
2019) and (Vaswani et al., 2017).

6 Experimental Setup

The model input consists of the concept set and
KG encoding for the input-concept and concept-
expansion graphs. The output is the TARGET state-
ment, i.e., pathological description. We use above
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BLEU Score ROUGE Score
1-gram 3-gram L-gram

1-gram 2-gram 3-gram 4-gram P R F P R F P R F
T5-base 0.81 0.74 0.68 0.63 0.87 0.88 0.87 0.76 0.77 0.76 0.84 0.85 0.84
T5-large 0.85 0.80 0.75 0.72 0.93 0.88 0.90 0.84 0.8 0.81 0.92 0.87 0.89
BART-base 0.86 0.82 0.78 0.75 0.93 0.90 0.91 0.84 0.82 0.83 0.91 0.89 0.90
BART-large 0.89 0.85 0.84 0.81 0.93 0.92 0.92 0.86 0.86 0.86 0.93 0.92 0.92
KG-BART 0.93 0.89 0.86 0.83 0.96 0.96 0.95 0.89 0.89 0.88 0.94 0.94 0.93

Table 4: BLEU and ROUGE score of generated pathological descriptions by T5-base/large, BART-base/large, and
KG-BART models vs. gold standard pathological descriptions. The best results are in bold font, and the second best
is underlined.

Figure 2: Left hand side graph is the snapshot of ultrasound KG that we are using for training. Nodes highlighted in
yellow shows the concepts from the concept set that matches with the KG entities. Right hand side graph is the
concept-expansion graph constructed for input concept set.

mentioned constructed dataset to train our model.
Table 3 shows the statistics of constructed dataset.

6.1 Retraining Setup
We have implemented our own algorithm for KG-
grounding task. We use pre-trained KG-BART4

model which was trained for commonsense reason-
ing on ConceptNet KG and commonsense dataset.
We fine tune this model on radiology text dataset
that we have constructed. We use byte-pair encod-
ing for tokenization with a maximum length of 32
for the encoder and 64 for the decoder. We set
learning rate to 0.00001 and used AdamW with 1
= 0.9, 2 = 0.98 for optimization. We set the batch
size to 32. We trained the KG-BART for 15 epochs,
and the gradients are accumulated every 6 steps.

4https://github.com/yeliu918/KG-BART

We apply dropout with a probability 0.1 to avoid
over-fitting. We use beam search with beam size
5 and length penalty with factor 0.6 while infer-
encing. The training time took 7 hrs on a single
NVIDIA GeForce GTX 1080 Ti GPU with 11 GB
GDDR5X memory.

7 Baseline and Evaluation

We compare the performance of KG-BART model
with T5-base/large (Raffel et al., 2020) and BART-
base/large (Lewis et al., 2019) state-of-the-art pre-
trained conditional text generation models. Fol-
lowing other conventional generation tasks, we use
several widely-used automatic metrics to automati-
cally assess the performance, such as BLEU (Pap-
ineni et al., 2002) and ROUGE (Lin, 2004), which
mainly focus on measuring n-gram similarities. Ta-
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ble 4 shows the BLEU score and ROUGE score of
generated pathological descriptions by KG-BART
and T5-base/large and BART-base/large models vs.
gold standard pathological descriptions.

8 Qualitative Analysis

KG-BART model performs better on unseen data.
Sentence formation of the KG-BART model is bet-
ter than T5 and BART models when input is in
abstract form and random in sequence. As shown
in table 5, the output generated for input one by
the BART-large model does not consider the extra
part of notes which does not occur in the train-
ing set. Also, in most cases like example two,
the KG-BART model correctly identifies the find-
ing location since KG-BART gets the hierarchical
anatomical location information from the KG.

9 Radiology Report Generation Using
KG-BART Radiology Text Generator

Radiology report generation includes following
main tasks:

• Generate pathological description from radiolo-
gists’ notes.

• Replace appropriate normal sentences (referred
as normal description) in normal report tem-
plate with generated pathological descriptions.

For the first task we use our proposed radiol-
ogy text generator to generate pathological descrip-
tion from radiologists’ notes. This section gives
the details of second task; how to replace gener-
ated pathological description in normal report tem-
plate to generate whole report. Our domain experts
provide us normal report templates. For example,
Male Abdomen Pelvis Ultrasound Normal Report,
Female Abdomen Ultrasound Normal Report etc.
According to patient’s gender and scan procedure
we provide an appropriate normal report template
to the system. System finds the appropriate normal
sentences to replace with generated pathological
description and replace it. As we discussed with
hospitals, radiologists, physicians, etc., they are
happy to provide impression by themselves to gen-
erate whole report. We add impressions provided
by radiologists in impression section and generates
the whole report.

9.1 Replace Appropriate Normal Sentences
with Generated Pathological Descriptions

We create a parallel corpus for the radiologists’
notes and the corresponding normal descriptions.

Table 6 shows the samples from the parallel corpus
of radiologists’ notes and normal descriptions.

We consider following input radiologists’ notes:
’Chronic pancreatitis.’, ’Cholecystitis with 3 mm
gallbladder calculus in lumen.’ and ’Grade ii fatty
liver.’ and their corresponding generated patholog-
ical descriptions by our radiology text generator,

’Pancreas is slightly small, reveals thin inhomoge-
nous parenchyma. the pancreatic duct is dilated.’,

’Gallbladder is distended reveals wall thickening.
feature of note is presence of a calculus measuring
3 mm noted in lumen of gallbladder.’ and ’Liver
shows moderate increase in echogenicity.’ respec-
tively.

• Step 1: We look up similar radiologists’ notes to
the input radiologist’s notes in a parallel corpus
shown in the table 6. We utilize the BLEU score
to determine the match. Then, we retrieve the
appropriate normal description for the matching
sample. For example, for input notes, ’chronic
pancreatitis’ algorithm gives matched radiolo-
gists’ notes ’chronic pancreatitis’. Similarly, for
input notes, ’cholecystitis with 3 mm gallbladder
calculus in lumen’ algorithm gives corresponding
matched notes ’cholecystitis with gallbladder cal-
culus in lumen.’ and for input notes ’grade ii fatty
liver’ algorithm gives corresponding matched
notes ’Fatty liver’.

• Step 2: We find the normal sentences in nor-
mal report template which matches with normal
descriptions found in step 1.

• Step 3: We replace matched normal sentences
in the template with the corresponding generated
pathological descriptions.

Figure 3 shows the system interface of radiology
report generation.

10 Conclusion

We have constructed a parallel dataset of radiol-
ogists’ notes and corresponding pathological de-
scriptions. KG-BART for radiology text generation
produces high-quality sentences by capturing rela-
tionships between the concepts in the input. It also
considers default properties from the KG if they
are missing in the input concept set to generate
more logical and natural sentences. Our approach
to construct grounded KGs does not add noise since
it only considers entities in the hierarchical path
from concept to root node and only adds neighbors
with default properties. Experimental results show
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Input bulky and retroverted uterus 1 x 5 x 3.4 mm with endometrial thickness 7 mm.

T5-large uterus is retroverted and bulky in size 1 x 5 x 3.4 mm. myometrial reflectivity is inhomogeneous with an echogenic
lesion measuring 7 mm in the mid anterior wall.

BART-
large

Uterus is retroverted and bulky in size 1 x 5 & 3.4 mm. Myometrial reflectivity is inhomogeneous and shows normal
echotexture. It has uniform epigastrophic echopattern.

KG-BART uterus is retroverted and bulky in size 1 x 5 x 3.4 mm. myometrial reflectivity is inhomogeneous. Endometrial
thickness is 7 mm in size.

Target Uterus is retroverted and bulky in size measuring 1 x 5 x 3.4 mm. myometrial reflectivity is inhomogeneous and
shows bulky echotexture. Endometrial thickness is 7 mm in size.

Input gross splenomegaly, maximum span of spleen is 8.2 mm with focal calcifications noted in spleen.

T5-large e/o spleen is grossly enlarged and normal in echotexture, maximum span of stiple is 8.2 mm. multiple calcified
granulomas noted in adnexa.

BART-
large

spleen is grossly enlarged and normal in echotexture, maximum span of spleen is 8.2 mm. multiple calcified
granulomas noted in gb.

KG-BART Spleen is grossly enlarged and normal in echotexture, maximum span of spleen is 8.2 mm. multiple calcified
granulomas noted in spleen.

Target Spleen is grossly enlarged and normal in echotexture, maximum span of spleen is 8.2 mm. Multiple calcified
granulomas noted in spleen.

Table 5: Examples of input (radiologist’s notes) and output (pathological description) generated by T5-large,
BART-large and KG-BART model.

Radiologists’ Notes Normal Description

fatty liver Liver is normal in size and echotex-
ture.

acute pancreatitis Pancreas is normal in size and echo-
texture.

chronic pancreatitis Pancreas is normal in size and echo-
texture.

cholecystitis with gall-
bladder calculus in lu-
men

Gall bladder is physiologically dis-
tended reveals normal wall thickness.
No evidence of calculi/calculus or
sludge or polyp.

Table 6: Samples from the parallel corpus of radiolo-
gists’ notes and normal descriptions.

that KG-BART is more capable of producing radi-
ology text than the state-of-the-art T5-base/large
and BART-base/large models. In future, we plan to
apply the proposed method to generate radiology
reports for CT, MRI, etc.

Limitations

Available medical reports used to construct the par-
allel dataset are biased as the abnormal findings for
the liver, pancreas, kidney, gallbladder, and uterus
are more weighted than organs like ovary, prostate,
urinary bladder, etc. Hence, generated pathological
descriptions for organs with fewer data are influ-
enced by data with highly weighted organs.

Broader Impact

Automatic radiology report generation can aug-
ment radiologists’ capabilities to enhance clinical
workflows. Our work will help to avoid delays in
report turnaround time and human typographical
errors in the report. It will speed up the report
generation process resulting in faster medical treat-
ment. This will help faster treatment of patients
thereby saving many lives.
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A Appendix

A.1 Data Preprocessing

In the corpus, there are a lot of extra spaces and
unwanted punctuation marks found. We have re-
moved these unwanted characters from the corpus
using regular expressions.

For example, Liver is enlarged in size(16.
45cm)& normal in shape and shows raised echo
reflectivity. No focal or diffuse lesion is seen. The
portal and hepatic veins are normal. In the above
example, there is no space between size, (16.45cm)
and &. Also, there is no space between . and No
and therefore sentence tokenization is challenging.
Liver is enlarged in size ( 16.45 cm ) & normal in
shape and shows raised echo reflectivity. No focal
or diffuse lesion is seen. The portal and hepatic
veins are normal. The text is then further divided
into sentences.

A.1.1 Spelling Correction
In corpus, there are a lot of spelling mistakes also.
To correct the spellings we have used the SymSpell
library.

Single Word Spelling Correction We have cre-
ated unigram and bigram dictionaries for corpus
text.
Unigram Dictionary: Dictionary of unique correct
spelling words, and the frequency count for each
word.
Bigram Dictionary: Dictionary of the unique cor-
rect spelling of a pair of words, and the frequency
count for each pair.

Levenshtein algorithm is used to compute edit
distance metric between two strings. Edit distance
algorithm finds the correct suggestion for words in
input text with words in unigram dictionary.

For example, enlaregd, billiary, radicals are the
incorrect words found in the corpus. In dictionary
enlarged, biliary, radicals these correct words are
present. Edit distance algorithm suggests enlarged
word for enlaregd. Similarly biliary for billiary
and radicles for radicals.

Multi-word Spelling Correction

• We remove mistakenly inserted spaces within a
correct word
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Input: Liver is normal in size and reveals diffuse
hypo attenuation
Output: Liver is normal in size and reveals dif-
fuse hypoattenuation

• We add mistakenly omitted spaces between two
correct words
Input: Liver appears normal in size and reveals
mild generalized increasedparenchymal reflectiv-
ity.
Output: Liver appears normal in size and re-
veals mild generalized increased parenchymal
reflectivity.
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Abstract

Named Entity Recognition (NER) is a critical
task in the field of Natural Language Process-
ing (NLP) and is also a sub-task of Informa-
tion Extraction. There has been a significant
amount of work done in entity extraction and
Named Entity Recognition for resource-rich
languages. Entity extraction from code-mixed
social media data like tweets from twitter com-
plicates the problem due to its unstructured,
informal, and incomplete information available
in tweets. Here, we present work on NER in
Kannada-English code-mixed social media cor-
pus with corresponding named entity tags re-
ferring to Organisation (Org), Person (Pers),
and Location (Loc). We experimented with ma-
chine learning classification models like Con-
ditional Random Fields (CRF), Bi-LSTM, and
Bi-LSTM-CRF models on our corpus.

1 Introduction

India has twenty-three significant languages with
over seven hundred and twenty dialects. Kannada
is one of the four major Dravidian languages and
it is one of the top 30 most spoken languages of
the world, with its own independent script and over
fifty million speakers. The majority of people are
multilingual and tend to mix words from differ-
ent languages in speech and written text. This
method of interchanging languages involves com-
plex grammar and is commonly addressed by terms
‘Code-switching’ and ‘Code-mixing’ as described
by Lipski (1978).

Code-mixing refers to the use of words, phrases,
clauses or morphemes from different languages
in the same sentence. Code-switching refers to
the use of words or phrases or clauses from dif-
ferent languages within the same speech context.
We can understand the difference between code-
switching and code-mixing from the positions of
altered elements. Code-mixing refers to the intra-
sentential modification of codes, whereas code-

switching refers to the inter-sentential modification
of codes.

1.1 Characteristic of Code-Mixed
Kannada-English Data

As explained above mixing happens at word level,
phrase level, and morphological level too. Follow-
ing are few more examples :

1. Word level: A complete word from English
language is taken into Kannada language.
This is language mixing occuring at word
level. An example: ‘Ee thara branch ideya’
which means ‘Is there a branch like this?’.
Here ‘branch’ is an English word which got
assimilated into Kannada.

2. Phrase level: This is a completely code-
mixed sentence, that follows the structure of
Kannada with English words embedded in
it. One example is ‘Kelsa bittu pitch reporter
aagu olle future ide!’ which means ‘Leave
your work and become pitch reporter, you
have great future in that!’, this follows the
structure of Kannada with English words em-
bedded in it. This is a completely code-mixed
sentence.

3. Morphological level: The words that are bor-
rowed from English language inflect Kannada
suffixes that marks case or number. The word
‘cinemagalu’ in Kannada, the root word ‘cin-
ema’ is borrowed from English and ‘galu’ is a
Kannada morphene that marks plurality. Simi-
larly ‘caru’ becomes ‘car’, this is nativization.

4. Syntactic level: All the examples above are
instances of intra-sentential mixing. Here
we discuss about intra-sentential and inter-
sentential mixing. There are occurrences
in Kannada-English CM data where inter-
sentential mixing takes place. One such ex-
ample is ‘Born and brought up in bengaluru,
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Yaako nange mysoor thumba ista, mysoor alli
kelsa sikdre ready to shift.’

We observe code-switching and code-mixing
frequently on social media platforms like Facebook
and Twitter. Here, we work only on the code-
mixing aspect observed on Twitter data between
Kannada and English languages.

Understanding the code-mixed Kannada-English
complicates the problem due to its unstructured,
informal, and incomplete information available in
the data. Following are the challenges associated
when dealing with them.

• Ambiguous words: Same word can have a
different meaning in multiple languages. Like
the word ‘Bali’ in English, which is a place in
Indonesia, also used in Kannada with different
meaning here as ‘Near’.

• Variable Lexical Representations: Some
users prefer to use their own romanised form
of native word. For example ‘hogilla’ is a Kan-
nada word and it can be written as ‘hogila’,
‘hgilla’, ‘hogillla’ etc.

• Word-level Code-mixing: This is similar to
language mixing at word-level. For example
in the word ‘Kanglish’, its a fusion of two
words Kannada and English at word level.

• Reduplication: This is common in Indian lan-
guages. People tend to use a second word
which does not have a meaning on its own but
with the first word it becomes a multi word ex-
pression. For example ‘postu geestu’, ‘desha
gesha’, ‘man ban’. The first words in these
examples are English which are followed by
reduplicated words.

Here are some instances from a corpus of Kannada-
English generated from Twitter data and also
transliterated in English.

T1 : “Haha ashtu idea illade gowdru bengaluru
north bittu tumukur hogilla”
Translation: “Haha without having much idea
gowda left bengaluru north and went to tumukur "

T2: “Eshwarappa avarey neevu petrol bunk ge
hogilla ansuthe. me nimmannu karkondu hogthini"
Translation: “Eshwarappa, it looks like you did
not go to the petrol bunk. I will take you there."

2 Background and Related Work

There has been a plethora of research done on
Named Entity Recognition (NER) from the early
2000s (Finkel et al., 2005). However, most of this is
in resource-rich languages. The FIRE2 (Forum for
Information Retrieval and Extraction) tasks have
shed light on NER in Indian languages. Now, code-
mixing has found its application in various areas
after FIRE2, such as Query Labeling (Bhargava
et al., 2015), Sentiment Analysis (Bhargava et al.,
2016), Question Classification.

BR and Ramakanth Kumar (2012) has done the
work on the Kannada POS tagger with probabilistic
classifiers. Similar work has been done by Todi
et al. (2018) in the Kannada POS tagger using
machine learning models. Amarappa and Sathya-
narayana (2013) worked on NER and classification
in the Kannada language. Lakshmi and Shambhavi
(2017) presented an automatic identification system
for code-mixed Kannada-English Social media text.
Shalini et al. (2018) worked on sentiment analysis
for Code-Mixed Kannada-English Social Media
Text. To the best of our knowledge, the corpus we
created is the first Kannada-English code-mixed
corpus with named entity tags.

3 Corpus and Annotation

This corpus consists of Kannada-English code
mixed tweets gathered from twitter. The tweets
were collected using twintproject1-an opensource
twitter intelligence tool. The tweets are from the
past 6 years based on various topics such as movies,
sports, celebrities, politics, trending hashtags, so-
cial events.

We have retrieved a total of over 317,000 tweets
using the twintproject, and after extensive clean-
ing and pre-processing, we were left with 6530
Kannada-English code mix tweets.

The pre-processing consists of the following
steps.

• Removing noisy, useless tweets, i.e., tweets
containing only URLs and hashtags.

• Tweets which were written in only Kannada,
or only English were removed too.

• Tweets which contain linguistic units from
both English and Kannada and having a mini-
mum of five words are only considered, this

1https://github.com/twintproject/twint
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way, we make sure the tweets adhere to the
Kannada-English code mix standard.

• Tokenisation of tweets is done using Tweet
Tokenizer.

The corpus will be made available for public use
as soon as possible. The following explains the
mapping of the tokens with their respective tags.

3.1 Annotation: Named Entity Tagging
We used three Named Entities (NE) tags “Person,"
“Location," and “Organisation" to tag the corpus.
Two people manually did the annotations of the
data for Named Entity tags. The annotators have
a linguistic background, and are proficient in both
Kannada and English. Each of three tags (“Per-
son," “Location" and “Organisation") is divided
into Bg-tag (Beginner tag) and It-tag (Intermediate
tag) according to the BIO standard thus we have
a total of six tags and an ‘Other’ tag to indicate it
does not belong to any of the six tags. The Bg-tag is
used to tag the beginning word of a Named Entity,
whereas It-tag is used to tag a Named Entity, which
is split into multiple continuous words. It-tag is
assigned to the words which follow the words with
a Bg-tag. The explanation of six tags is below.

The ‘Pers’ tag refers to the ‘Person’ entity, which
is the name of the person, twitter handles and nick-
names of people. The ‘Bg-Pers’ tag is given to
the beginning word of a person’s name, and the
‘It-Pers’ tag follows ‘Bg-pers’ tag, if the person’s
name is split into multiple continuous words.

The ‘Loc’ tag refers to the ‘Location’ entity,
which is the name of the place like Bangalore,
Hyderabad, India and others. The ‘Bg-Loc’ tag
is assigned to the beginning word of the location
name, and the ‘It-Loc’ tag follows ‘Bg-Loc’ tag, if
the location name is split into multiple continuous
words.

The ‘Org’ tag refers to the ‘Organisation’ entity,
which is the name of the organization such as
BJP, KFI, INC, Facebook, RBI, and others. The
‘Bg-Org’ tag is assigned to the beginning word of
the organization name, and the ‘It-Org’ tag follows
‘Bg-Org’ tag, if the organization name is split
into multiple continuous words. Following is an
example that shows the application of principles
described above.

T3 : “Haha/other ashtu/other idea/other
illade/other gowdru/Bg-Per bengaluru/Bg-
Loc north/It-Loc bittu/other tumukur/Bg-Loc

Tag Token Count Cohen Kappa
Bg-Loc 1457 0.89
Bg-Org 3178 0.94
Bg-Pers 5899 0.88
It-Loc 188 0.84
It-Org 505 0.89
It-Pers 358 0.82

Total NE tokens 11585

Table 1: Tags and their Count in Corpus and IAA.

hogilla/other”
Translation: “Haha without having much idea
gowda left bengaluru north and went to tumukur."

T4 : “@vs20012000/Bg-Per illa/other
hogilla.../other Harish/Bg-Per ex/other Deputy/Bg-
Org Mayor/It-Org organised/other volleyball/other
tourney/other ge/other swalpa/other kelasa/other
madidde...now/other in/other Bombay./Bg-Loc”
Translation: “No, did not go.. i did a little bit of
work for the volleyball tournament organized by
Harish, ex-Deputy Mayor. Now i am in Bombay.."

3.2 Inter Annotator Agreement

The annotations of the data for Named Entity tags
were manually done by two people with linguis-
tic backgrounds, both proficient in Kannada and
English. The quality of the annotation is validated
using the inter-annotator agreement (IAA) between
two annotation sets of 6,530 tweets and 152,987
tokens using Cohen’s Kappa coefficient (Hallgren,
2012) (refer Table 1 for Score). The agreement is
significantly high. The agreement between the ‘Or-
ganisation’ tokens is high while that of ‘Location’
and ‘Person’ tokens is comparatively low due to
unclear context and presence of an uncommon or
confusing person and location names.

4 Corpus Statistics

We have collected more than 317,000 of tweets
from Twitter using TwintProject. After extensive
cleaning, we were left with 6,530 Kannada-English
code mixed tweets, as part of annotation using six
named entity tags along with ‘Other’ tag we tagged
152,987 tokens. We made sure that all the words in
the corpus are in Roman script. We used hashtags
related to politics, sports, social events and recent
trends etc., in collecting the corpus.
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5 Experiments

We present all experiments using a combination of
features and systems. To understand the effect of
different parameters and features of the model, we
performed several experiments. Experiments were
performed using some set of features at once and all
at a time simultaneously changing the parameters
of the model, like regularization parameters and
algorithms of optimization like ‘L2 regularization’,
‘Average Perceptron’and ‘Passive Aggressive’ for
CRF, optimization algorithms and loss functions in
LSTM. We used five-fold cross-validation for CRF
and three-fold for other experiments in order to
validate our classification models. We used ‘scikit-
learn,’ ‘Tensorflow,’ and ‘Keras’ libraries for the
implementation of the above algorithms.

5.1 Conditional Random Field (CRF)

A Conditional Random Field (CRF) is an undi-
rected probabilistic graphical model that is used for
modeling sequential data. It is a model for predict-
ing the most likely sequence of labels that corre-
spond to a sequence of inputs. It has applications in
POS tagging, NER, among others. It is a supervised
learning method and most often used for structured
prediction tasks. When it comes to NER, it has
been proven to be better than the tree-based mod-
els. Whereas a discrete classifier predicts a label
for a single sample without considering “neighbor-
ing" samples, a linear chain CRF can take context
into account and predicts sequences of labels for
sequences of input samples, which is popular in
natural language processing.

5.2 LSTM

As our corpus is in sequential text data format,
we use Bi-LSTM (combination of two LSTMs —
where one runs forward, and one runs backward),
which works best to tackle the NER problem as
the context covers both past and future labels in
a sequence because standard LSTM makes use of
only past information in a sequence of text and
not the future. Plain LSTM cells in a feedforward
network which help us in getting better results by
capturing the previous context while Bi-LSTMs
also consider the opposite direction. Bi-LSTM
considers a sequence of both tokens that are before
and after a token of interest. Bi-LSTM network
creates a context for each token in the text, which
depends on both its past and future.

Figure 1: BiLSTM-CRF model architecture

5.3 LSTM-CRF

The Bi-LSTM-CRF is a combination of bidirec-
tional LSTM and CRF (Huang et al., 2015; Lample
et al., 2016). The Bi-LSTM model can be com-
bined with CRF to enhance recognition accuracy.
This combined model of Bi-LSTM-CRF inherits
the ability to learn past and future context features
from the Bi-LSTM model and use sentence-level
tags to predict possible tags using the CRF layer.
We processed the data in batches and used seven
epochs.

5.4 Features

The features to our machine learning models con-
sist of characters, lexical and word-level features
such as char N-Grams of size 2 and 3 in order to
capture the information from suffixes, emojis, men-
tions in social media like ‘#,’ ‘@,’ punctuation,
numbers, numbers in the string. Features from
adjacent tokens are used as contextual features.

1. Character N-Grams: N-gram is a contigu-
ous sequence of n items from a given sample
of text or speech, here the items are characters.
Character N-Grams are language-independent
(Majumder et al., 2002) and have proven to
be efficient in the task of text classification.
They are helpful when the text suffers from
problems such as misspellings. (Cavnar et al.,
1994; Huffman, 1995; Lodhi et al., 2002).
Group of chars can help in capturing the se-
mantic information and especially helpful in
cases like code mixed language where there
is free use of words, which vary significantly
from the standard Kannada-English words.

2. Word N-Grams: Bag of words has been a
staple in NER tasks for languages other than
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English (Jahangir et al., 2012). Thus, we use
word N-Grams, where we use adjacent words
as a feature vector to train our model. These
are also called contextual features.

3. Capitalization: In social media, people tend
to use capital letters to refer to the names
of locations, persons, and organizations; at
times, they write the entire name in capitals
(Von Däniken and Cieliebak, 2017) to give
particular importance or to denote aggression.
This gives rise to a couple of binary features.
One feature is to indicate if the beginning let-
ter of a word is capitalized, and the other is to
indicate if the entire word is capitalized.

4. Mentions and Hashtags: In social media
organizations, like Twitter and Facebook, peo-
ple use ‘@’ mentions to refer to persons or
organizations, they use ‘#’ hashtags in order
to make something notable or to make a topic
trending. Thus the presence of these two gives
a reasonable probability for the word being a
named entity.

5. Numbers in String: In social media, we see
people using alphanumeric characters, gener-
ally to save the typing effort, shorten the mes-
sage length or to showcase their style. When
observed in our corpus, words containing al-
phanumeric are generally not named entities.
Thus the presence of alphanumeric in words
helps us in identifying negative samples.

6. Common Symbols: It is observed that cur-
rency symbols, brackets like ‘(,’ ‘[,’ etc.
And other symbols are followed by numeric
or some mention, not of much importance.
Hence, the presence of these symbols is a
good indicator of the words before or after
them for not being a named entity.

6 Results and Discussion

Table 2 shows CRF results with ‘l2-sgd’ (Stochastic
Gradient Descent with L2 regularization) algorithm
for 100 iterations. The c2 value in the CRF model
refers to the ‘L2 regression,’. Experiments using
the algorithms ‘pa’ (Passive-Aggressive) and ‘ap’
(Averaged Perceptron) resulted in similar F1-scores
of 0.95.

Results for CRF without ‘Other’ tag are shown in
Table 3 which resulted in F1-score of 0.54. We can
observe from the results that the feature functions

Tag Precision Recall F1-score
Bg-Loc 0.83 0.48 0.61
Bg-Org 0.83 0.52 0.64
Bg-Pers 0.85 0.55 0.67
It-Loc 0.68 0.27 0.38
It-Org 0.52 0.22 0.31
It-Pers 0.58 0.27 0.37

OTHER 0.96 0.99 0.98
weighted avg 0.95 0.96 0.95

Table 2: CRF Model with ‘c2=0.1’ and ‘l2sgd’ algo.

Tag Precision Recall F1-score
Bg-Loc 0.73 0.28 0.40
Bg-Org 0.77 0.32 0.45
Bg-Pers 0.76 0.61 0.67
It-Loc 0.33 0.01 0.01
It-Org 0.15 0.03 0.05
It-Pers 0.51 0.06 0.10

weighted avg 0.72 0.44 0.54

Table 3: CRF Model without ‘Other’ tag, ‘c2=0.1’ and
‘l2sgd’ algo.

specified are able to capture information related to
named entities in the CRF model. The table for
feature specific results for the CRF model where re-
sults are calculated excluding the ‘Other’ tag shown
in Table 4.

In the experiments with Bi-LSTM, we experi-
mented with the optimizer, activation functions,and
number of epochs. After several experiments, the
best result we came through was using ‘softmax’
as activation function, ‘rmsprop’ as an optimizer,

Feature Precision Recall F1-score
Char
N-Grams

0.68 0.38 0.49

Word
N-Grams

0.55 0.08 0.14

Capitali-
zation

0.85 0.44 0.58

Mentions,
Hashtags

0.72 0.26 0.38

Numbers
in String

0.01 0.01 0.01

Common
Symbols

0.02 0.02 0.02

Table 4: Feature Specific Results for CRF.
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Tag Precision Recall F1-score
Bg-Loc 0.72 0.32 0.44
Bg-Org 0.69 0.55 0.61
Bg-Pers 0.74 0.72 0.73
It-Loc 0.60 0.06 0.11
It-Org 0.39 0.09 0.15
It-Pers 0.58 0.23 0.33

OTHER 0.98 0.99 0.99

Table 5: Bi-LSTM model with optimizer = ‘rmsprop’
and has a weighted f1-score of 0.96.

Tag Precision Recall F1-score
Bg-Loc 0.76 0.41 0.54
Bg-Org 0.74 0.49 0.59
Bg-Pers 0.85 0.44 0.58
It-Loc 0.03 0.02 0.02
It-Org 0.24 0.06 0.10
It-Pers 0.26 0.03 0.05

Table 6: Bi-LSTM model without ‘Other’ tag, optimizer
= ‘rmsprop’ and has a weighted f1-score of 0.54.

and ‘categorical cross-entropy’ as our loss function.
Table 5 shows the results of BiLSTM on our corpus
using seven epochs, and random initialization of
embedding vectors. The F1-score is 0.96.
Results for same experiment without including
‘Other’ tag are shown in Table 6.

In experiments with the Bi-LSTM-CRF model,
after several trials, we got the best results with
‘softmax’ as activation function, ‘rmsprop’ as an
optimizer, and ‘crf-loss’ as our loss function. Table
7 shows the results of Bi-LSTM-CRF on our cor-
pus using seven epochs, and random initialization
of embedding vectors. The F1-score is 0.96.
Results for same experiment without including
‘Other’ tag are shown in Table 8. Figure 1 shows
the Bi-LSTM-CRF model architecture. The train-
ing, validation and testing are 70%, 10% and 20%
of the total data respectively.

7 Conclusion and Future Work

Our contributions are as follows:

1. Presented an annotated code-mixed Kannada-
English corpus for NER, which is, to the best
of our knowledge is the first corpus. The cor-
pus will be published online soon.

2. We have experimented with the machine learn-
ing models Conditional Random Fields (CRF),

Tag Precision Recall F1-score
Bg-Loc 0.65 0.40 0.49
Bg-Org 0.61 0.65 0.63
Bg-Pers 0.57 0.80 0.66
It-Loc 0.50 0.22 0.31
It-Org 0.30 0.25 0.27
It-Pers 0.54 0.41 0.47

OTHER 0.99 0.98 0.98

Table 7: Bi-LSTM-CRF model with optimizer = ‘rm-
sprop’ and has a weighted f1-score of 0.96.

Tag Precision Recall F1-score
Bg-Loc 0.75 0.41 0.53
Bg-Org 0.72 0.50 0.59
Bg-Pers 0.85 0.44 0.58
It-Loc 0.25 0.01 0.02
It-Org 0.32 0.16 0.21
It-Pers 0.28 0.04 0.08

Table 8: Bi-LSTM-CRF model without ‘Other’ tag,
optimizer = ‘rmsprop’ and has a weighted f1-score of
0.55.

Word Truth Predicted
amrita Bg-Pers Bg-Pers
went OTHER OTHER

to OTHER OTHER
bangalore Bg-Loc Bg-Loc

rama Bg-Pers Bg-Pers
na OTHER OTHER

imax Bg-Org Bg-Org
hattira OTHER OTHER

beti OTHER Bg-Pers
agalu OTHER OTHER

Table 9: An Example Prediction of our CRF Model.

LSTM, and LSTM-CRF on our data, the F1-
score for which is 0.95, 0.96, and 0.96 respec-
tively, which is looking good considering the
amount of research done in this new domain.

3. We are introducing and addressing named
entity recognition of Kannada-English code-
mixed data as a research problem.

For future work, the corpus can be enriched by
also giving the respective POS tags for each token.
The size of the corpus can be increased with more
NE tags. The problem can be adapted for NER
identification in code-mixed data containing more
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than two languages from multilingual societies.
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Abstract

To make the Human Computer Interaction
more user friendly and persona aligned, detec-
tion of user persona is of utmost significance.
Towards achieving this objective, we describe
a novel approach to select the persona of a
user from pre-determine list of personas and
utilize it to generate personalized responses.
This is achieved in two steps. Firstly, closest
matching persona is detected from a set of pre-
determined persona for the user. The second
step involves the use of a fine-tuned natural
language generation (NLG) model to generate
persona compliant responses. Through experi-
ments, we demonstrate that the proposed archi-
tecture generates better responses than current
approaches by using a detected persona. Exper-
imental evaluation on the PersonaChat dataset
has demonstrated notable performance in terms
of perplexity and F1-score.

1 Introduction

Since the dawn of deep learning era and advance-
ments in Natural Language Processing (NLP), re-
searchers have tried to make the Human-Computer
Interaction (HCI) more natural and smooth (Deng
and Ren, 2021). Several features are incorporated
in a conversation based system to induce human-
like response and give users a pleasant experience
such as - sentiment analysis of user replies (Lee
et al., 2018), emotion recognition (Lee et al., 2020)
etc. However, there is still a gap left between the
desired output and the approaches tried. A user’s
conversation with a bot highly depends on the gen-
eral nature and likings of the user, more commonly
referred to as the persona.

Many recent studies have explored persona iden-
tification from user utterances (Zhang et al., 2018;

Bahdanau et al., 2014; Song et al., 2019; Natara-
jan and Nargund, 2021). A dataset of Persona en-
hanced chat between two users based on a given
persona profile, known as PersonaChat was intro-
duced in (Zhang et al., 2018). Experiments per-
formed using several generative and ranking base-
line models established the need of including per-
sona information to enhance conversations. The
study in (Gu et al., 2021) have proposed a modi-
fied dataset PMPC on PersonaChat Dataset and ex-
plored Utterance-to-Profile Matching Network for
the task of many-to-many matching. Moreover, in
(Liu et al., 2020), a trasmitter-reciever architecture
is proposed, referred to as P2 bot which models
the mutual persona perception using a transformer
with reinforcement learning to fine tune the con-
versations during training. Also, to alleviate the
challenges associated with data in persona based
dialog generation, the study in (Cao et al., 2022)
introduced data manipulation techniques such as
distillation, diversification and curriculum. The
architecture considered were baseline GPT2 and
Transormer encoder-decoder stack.

Despite several attempts by researchers, the gen-
eration of persona complaint dialogue is very chal-
lenging. Firstly, automated metrics such as BLEU,
ROGUE etc does not consider semantic similarity
and will present poor scores if there is no over-
lap between the generated response and the gold
response. Also, the response generated can be per-
sona complaint but may not answer the query of
the user. As such, we propose a novel approach to
tackle the persona based dialog generation problem.
Firstly, we select the matched persona correspond-
ing to the user input from the set of pre-determined
personas of the user, by using similarity match-
ing of the embeddings. Then, we generate per-
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Figure 1: Proposed methodology to extract user utterance and persona embeddings and compare using cosine
similarity.

sona complaint response by incorporating this ad-
ditional persona information with state-of-the-art
Semantically Controlled Generative Pre Training
(SC-GPT)(Peng et al., 2020) model. Performance
on the validation set of the PersonaChat dataset
yeilds results comparable to other standard base-
lines.

The rest of the paper is organized as follows. Sec-
tion 2 describes the methodology for persona classi-
fication and response generation. Section 3 details
the experiments performed with dataset informa-
tion and hypermaters used. Section 4 presents the
results along with sample generated responses. Sec-
tion 5 concludes the paper.

2 Methodology

This section describes the methodology used for
persona selection, given a user utterance and pre-
determined list of persona and subsequent Natural
Language Generation (NLG) module which is re-
sponsible for the generation of persona complaint
bot response.

2.1 Persona Identification
For the task of choosing the most relevant persona
characteristics out of the n persona sentences for
the user, we employ similarity matching of sen-
tence embeddings as shown in Figure 1. Given a
user utterance X and a set of persona sentences
characterizing the user choices Z = {zi} where
i = {1, 2, · · · , n}, the first step involves encod-
ing the dialogue turn or the sentence X into sen-
tence embedding Xembed. For this, we utilized
techniques such as sentence Bert (Reimers and
Gurevych, 2019), RoBERTa (Liu et al., 2019) and

Universal Sentence Encoder(USE) (Yang et al.,
2020), out of which USE was chosen based on
better performance. In a similar fashion, embed-
dings from the persona sentences are calculated.
Mathematically,

Xembed = USE(X ) (1)

Zembed = USE(zi) (2)

where USE denotes the pre-trained Universal
Sentence Encoder, utilized to generate the latent
space embeddings.

The similarity score between X and the set of
persona embeddings Z is calculated using cosine
similarity as -

si =
X żi

∥X∥ ∥zi∥
(3)

where zi ∈ Z and ∥.∥ represents the length of the
vector. The matched persona is selected by using
argmax over the set of scores, represented by -

S = {si} (4)

Pindex = argmax(S) (5)

This matched persona is provided as a semantic
input to the Natural Language Generation (NLG)
module along with the gold response to find out the
correlation with the candidate persona and produc-
ing persona complaint dialog response.

2.2 Response Generation

For Natural Language Generation, we have exper-
imented with baseline GPT (Radford et al., 2018)
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User utterance Matched Persona Generated Response

hello what are doing today i’m a stunt double as my second job i’m taking a break from shooting to relax
i like that ! i go to preschool my favorite season is winter winter is my favorite season. i like to go to the stores during the day.

hello , how are you tonight ? do you have pink and blue hair ? i volunteer at a soup kitchen . i’m doing great. just got back from soup kitchen helping people.
oh wow . i hope i live as long as you ! i am very strong for my age . i hope so. i’m just over 50 now.

i just got done watching a horror movie i read twenty books a year scary movies are good. i read twenty books a year

Table 1: Sample responses generated on the validation set along with gold response and matched persona from user
utterance.

Partition # of Dialog # of Persona

Train 8939 955
Validation 1000 100

Table 2: Details of the dataset- partionwise mentioning
the number of complete dialog acts and possible per-
sonas.

as well as SC-GPT. To generate responses which
are persona complaint, we have utilized Seman-
tically Controlled - GPT (SC-GPT) (Peng et al.,
2020) based on better perfromance compared to
plain GPT. The choice of SC-GPT is motivated
by its ability to produce more naturalisitc and Se-
mantically controllable dialogue based on the input
semantic form. It is pre-trained on a huge collec-
tion of plain text, dialogue-act labelled utterances
as well as domain specific fine-tuning on limited
data.

During training, given a user utterance, for e.g.
hi , how are you doing ? i’m getting ready to
do some cheetah chasing to stay in shape . and
its corresponding classified persona - i like to
go hunting , the input to the SC-GPT is of the form -

request(question=hi , how are you doing ? i’m
getting ready to do some cheetah chasing to stay in
shape.) @infrom(preference=i like to go hunting)
& you must be very fast , hunting is one of my
favorite hobbies

In this example, the task of SC-GPT will be to
utilize the selected persona and the user utterance to
generate a response which is persona complaint as
well as contextually similar to the user input utter-
ance. This is achieved by using the gold response-
you must be very fast , hunting is one of my favorite
hobbies as supervision while training.

During the inference, the gold response is omit-
ted from the input form. The SC-GPT generates
multiple responses matching with the selected per-
sona, ranked according to the probability, and the

one with the highest probability is selected.

3 Experimental Evaluation

In this section, we discuss the dataset details along
with hyper-parameter tuning for the SC-GPT model
for persona-based dialog generation.

3.1 Dataset Description
For the task of generating persona complaint re-
sponses, we utilize PersonaChat dataset (Zhang
et al., 2018). It contains crowd-sourced multi-turn
dialogues based on pre-defined personas. Table 2
shows the available number of complete dialog acts
based on personas for the train and validation par-
titions. Evaluation for the fine-tuned model is per-
formed using the validation set. Also, the model is
fine-tuned using the entire PersonaChat train parti-
tion having approximately 17000 question-persona
pair. Also, to asses low-resource scenario, we ran-
domly sampled 1000 such pairs from the train par-
tition to fine-tune the base SC-GPT model.

3.2 Hyperparameter Tuning
For the persona classification module, the size of
sentence encodings generated is 768. The num-
ber of persona sentences considered per question
for classification is 4, as in PersonaChat dataset.
For the SC-GPT based fine-tuning, we first gen-
erated (question, persona, response) tuples for
the entire training partition of the PersonaChat
dataset.Training is performed in two scenarios -
utilizing the entire train partition and randomly
sampled 1000 tuples. For the random sampling
based fine-tuning, we selected 1000 tuples out of
the 17,000 generated tuples randomly. This is re-
peated five times and the result presented is the
average over the five random folds. The model is
fine-tuned for 10, 20 and 30 epochs out of which
the best results were obtained at 10 epochs. The
temperature parameter, which controls the degree
of strictness of the results generated, is set at 0.7,
empirically.
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Method F1 score

Seq2Seq + Attention (Bahdanau et al., 2014) 16.18
KV Profile Memory (Zhang et al., 2018) 11.9

TransferTransfo (Wolf et al., 2019) 19.09
P^2 Bot (Liu et al., 2020) 19.77

Proposed 27.89

Table 3: Comparison of the proposed persona complaint dialog generattion methodology with the recent state-of-
the-art baseline.

Experiment F1 score Perplexity

Full dataset + 1 persona + 10 epochs + all past context 23.12 51.2
Full dataset + 1 persona + 20 epochs + all past context 23.03 141.59
Full dataset + 4 persona + 10 epochs + all past context 14.27 58.4

Random 1000 samples + 1 persona + 1 past context 27.98 4.77

Table 4: Ablation study for SC-GPT based persona-aware response generation based on 1 persona and 4 persona
sentences.

3.3 Results

We evaluated the proposed methodology on the val-
idation set of the PersonaChat dataset. The metric
used for the evaluation of the generated response
are Perplexity and F1-score. Perplexity measures
the negative log likelihood of the correct sequence
output by the model, lower values indicating bet-
ter performance. F1 score is the harmonic mean
of word-level precision and recall. Table 1 shows
some of the responses generated given the persona
and the user utterance. As can be observed, the
generated responses are highly persona complaint.
However, the gold response may vary from the
generated response as the conversation is natural.
Moreover, our proposed methodology achieves an
F1 score of 27.89 and perplexity of 4.77 on the
response generation task.

Table 3 shows the comparison of the proposed
approach with the state-of-the-art methods on Per-
sonaChat Dataset. Our proposed approach outper-
forms the baseline P2 bot by a margin of 8.12,
thus highlighting the capability of the proposed
approach in generating persona aware responses.

3.4 Ablation Study

We performed ablation study to assess the effective-
ness of the persona selection module in improving
the persona complaint response generation. To this
end, we investigated three aspects - the use of full
training partition vs. 1000 randomly selected train-
ing tuples, increased training epochs and the use of

full persona profile(4 persona sentences) vs. one
persona sentence selected as per section-2.1. The
results of the ablation study is presented in Table-4.
From the table, it can be observed that the persona-
complaint response generation shows improvement
with the persona identification module selecting
the best matching persona from user input sentence
rather than presenting the model with all the per-
sona sentences. Moreover, training for 20 epochs
over the selected 10 epochs deteriorates the perfor-
mance in terms of perplexity, indicating an inferior
fine-tuned model. Also, as observed from the exper-
iments, the choice of 1000 random training tuples
over the usage of entire dataset also impacts per-
formance. Additionaly, the use of all past context
while generating the next persona-aware response
hampers performance. This can be attributed to the
chit-chat nature of the PersonaChat Dataset, due to
which a continuous context between past dialogue
turns may not be observable.

4 Conclusion

We have proposed a methodology which first iden-
tifies the most relevant persona corresponding to a
user utterance, from a list of given personas. Then
persona complaint response is generated based on
the selected persona. We utilized cosine similar-
ity based classification of sentence embeddings to
select the relevant persona. SC-GPT is used to fine-
tune on subsets of PersonaChat dataset for the task
of response generation. Experimental evaluation
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is performed on the validation partition of the Per-
sonaChat dataset and perplexity score as well as F1
score is reported. We have also reported sample re-
sponses generated by the model, which shows that
the proposed methodology is efficient in generating
persona complaint responses.
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Abstract

In the domain of virtual assistants or conver-
sational systems, it is important to empathise
with the user. Being empathetic involves under-
standing the emotion of the ongoing dialogue
and responding to the situation with empathy.
We propose a novel approach for empathetic
response generation, which leverages predicted
intents for future response and prompts the
encoder-decoder model to improve empathy
in generated responses. Our model exploits the
combination of dialogues and their respective
emotion/intent to generate empathetic response.
As responding intent plays an important part in
our generation, we also employ more than one
intent and show empirically that two intents
can generate text with appropriate empathy in
a given situation.

1 Introduction

Empathy is the ability to understand, feel and re-
spond to the feelings of another with empathy. It
is a fundamental human trait for smooth social
interactions and is paramount to designing conver-
sational systems (especially ones that target much
more than task-oriented). The complexity of empa-
thetic behaviour makes it challenging to design an
empathetic system with computational paradigms.

Over the last few years, with the development
of auto-regressive language models to generate
texts, most of the existing neural conversational
systems can generate syntactically and contextually
well-formed responses. Yet, fine-grained control
in terms of empathy gets less attention than the
semantics of generations.

In previous studies, encoder-decoder transformer
architectures have been used (Majumder et al.,
2020; Li et al., 2020) along with emotion under-
standing to generate empathetic dialogues so that

*Equal contribution

Speaker: Christmas was the best time of
year back in the day!
Generate listener response with intents:
acknowledging, nostalgic

Empathetic response: That’s so true! I
used to love it when I was a kid.

Speaker: I recently spoke with my ex-
girlfriend on the phone. The conversation
went pretty well, and it reminded me of my
past experiences with her.
Generate listener response with intents:
encouraging, consoling

Empathetic response: That’s good to hear.
I hope things work out for you.

Figure 1: Example generations

the model can be more perceptive towards the emo-
tion of the speaker. (Li et al., 2020) employs a
semantic discriminator and an emotion discrimi-
nator to interact with the user feedback. (Li et al.,
2022) uses an emotional context graph, an emo-
tional context encoder and an emotion-dependency
decoder. The context graph is constructed by inter-
action of dialogue data with external knowledge,
and the context encoder employs a graph-aware
transformer.

A limited number of works have employed in-
tents conditioned on emotions of the previous ut-
terances for a guided empathetic generation. In-
tents are fundamentally different from emotions,
wherein emotions are the feelings of the speaker
of the utterance, and the intent is a response strat-
egy. For example, consoling and enquiring can be
responding intents in case of a frustrating situation
in the speaker’s life.
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We propose a novel approach to leverage these
intents of responding in a conversation, which are
predicted from a classifier - built on dialogue his-
tory and respective emotion labels. Using the pre-
dicted intents, we structure the input that can guide
a pre-trained encoder-decoder language model. Ad-
ditionally, we do ablation studies on the benefits
of using one or more intents and observe a sweet
spot of 2 intents giving the best generations with
empathy; for the brevity of paper length, we will
include results only from 1 and 2 intents.

From what we observe, most existing works
require custom transformer models to be trained
from scratch or employ a strategy of using external
knowledge sources to provide emotional grounding
for generations. Our approach is easily adaptable
to new domains as it tries to probe the pre-trained
models and only needs fine-tuning that does not
take long.

We show with automatic and human evaluations
that our models achieve significant improvements
over the baselines discussed in further sections,
which along with the adaptability of this approach,
highlights the inherent potential.

2 Methodology

2.1 Architecture

The key idea behind our approach is to use transfer
learning and build a dialogue generation model,
utilising the knowledge acquired by T5 during pre-
training. The idea of transfer learning is to gain
knowledge, like vocabulary and word representa-
tion using an auxiliary data-rich task and then use
this pre-trained model on a downstream task ex-
ploiting its knowledge. The treatment of every text
processing problem as a text to text problem by
T5 motivated us to try the model for dialogue gen-
eration. Its encoder-decoder stack is very similar
to the original transformer model (Vaswani et al.,
2017) based on the attention mechanism, with some
minor changes. We also tried using decoder-only
models like DialoGPT from (Zhang et al., 2019),
but our results and findings from (Soltan et al.,
2022) show that large-scale seq2seq models are
better at in-context learning when the context is
long.

2.2 Empathetic Response

According to (Welivita and Pu, 2020), the speaker’s
utterances in the Empathetic Dialogue dataset be-

long to one of the 32 categories of emotions, and
the listener intents belong to 9 categories out of
the defined 15 intents (7 least occurring intents are
combined as a Neutral intent). As stated in (We-
livita and Pu, 2020), an example utterance - "Those
symptoms are scary! Do you think it’s Corona?"
will have different intent labels "Acknowledging"
and "Questioning" together.

To better control the generation, we would
require the speaker and listener’s emotions and
intents, respectively. To acquire those, a RoBERTa
based classifier (Liu et al., 2019), is fine-tuned to
predict the emotion/intent (out of 41 labels) for
each utterances given the context. The labelled
listener turns to facilitate the option to learn intent
prediction, and this is the intent we use to guide
the generations. Our experiments involve using
one or more intents to generate listener turns in a
conversation. The top-1 accuracy of the classifier
is 65.88%. The predicted emotion-intent labels
are concatenated with corresponding utterances to
form the input to our model for a generation.

Input format: <EMOT> Emotion <UTT>
Utterance <SEP> <EMOT> Intent <UTT>
Response <SEP> <EMOT> Emotion <UTT>
Utterance <EMOT> Intent <UTT>

The input to the T5 model is structured in a way
where we pair the emotion and intent of utterances,
with the utterances. In the input format above (also
shown in Figure 2), the part between two <SEP>
tokens indicates this pairing. <EMOT>, <UTT>
are the special tokens defined to indicate the emo-
tion or intent of the utterances and utterances them-
selves, respectively. <SEP> is a sep_token,which
distinguishes a (emotion, utterance) pair from an-
other (emotion,utterance) pair in the conversation.
The placeholders, like Emotion , Intent, are
the emotion tag and actual texts from the dataset.
The penultimate text in the input always ends with
the intent label tag, i.e. <EMOT>, followed by a
<UTT> tag, which is a prompt for the transformer
to generate a response. Out of our many experi-
ments, we present our three best-performing mod-
els.

In our base model IAEmp-L, we fine-tune a
T5-large to generate the listener’s turn with only a
single intent as the control parameter. The model
IAEmpMix-SL learns to generate speaker and lis-
tener turns with two predicted intents. IAEmpMix-
L learns to generate only the listener turn with two
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Figure 2: Representation of the input format

predicted intents. The idea of having two differ-
ent intents is to generate the listener turn’s text
with both the intents combined so that the machine-
generated text can be very similar to spoken text.
As an example, if the top-2 predicted intents are
consoling and encouraging, we expect the model
to generate a text which looks like "Everything is
fine, and I know you can do better".

3 Experiments

3.1 Dataset

We conduct our experiments on Empathetic Dia-
logues (Rashkin et al., 2019), a large-scale dataset
containing 25k multi-turn empathetic conversations
between two crowd-sourced workers. Given an
emotion label, the speaker is asked to initiate a con-
versation by describing a situation relating to the
label, and the listener has to respond with empa-
thy. The labels come from a set of 32 emotions,
and we augment the data with response intents that
come from the most commonly occurring intents (a
set of 9 intents including neutral) as per (Welivita
and Pu, 2020) paper. Our training dataset contains
64636 examples in the training dataset, 9308 for
the validation dataset and 5259 samples for the test
dataset.

The response intents come from manual la-
belling on 500 responses, then training a classifier
to extend the labelling to the entire dataset. The
task is to build a model that can play the role of a lis-
tener and respond to the speaker’s utterances with
empathy. Our goal is to generate coherent, infor-
mative and empathetic responses to the speaker’s
utterances.

3.2 Baselines

We select the following baseline models for com-
parison:

• Meed2: encoder-decoder architecture, sup-
plementing emotional understanding with a
RoBERTa-based classifier, and this informa-
tion goes into the decoder for control.(Xie and
Pu, 2021)

• KEMP: has an emotional context graph, con-
text encoder and a decoder to include exter-
nal emotional knowledge in generating empa-
thetic responses. (Li et al., 2022)

• EmpDG: encodes semantic context and the
multi-resolution emotional context, and the
decoder fuses the semantic context and emo-
tional context to generate responses. (Li et al.,
2020)

• MIME: based on the assumption that empa-
thetic responses often mimic the emotion of
the speaker, this work enforces emotion un-
derstanding in the context representation by
classifying user emotion during training, uses
transformers.(Majumder et al., 2020)

3.3 Training

We fine-tune the large T5 model as an encoder-
decoder part of the architecture to leverage its pre-
trained linguistic knowledge. We perform a hyper-
parameter search using the RayTune library and
use the best ones out of 5 trials. The model is fine-
tuned with Adafactor (Shazeer and Stern, 2018)
optimizer with learning rate of 1.3e-4, weight de-
cay of 0.144, and for 5 epochs. The remaining
hyper-parameters are similar to the T5-large fine-
tuning setup as mentioned in (Raffel et al., 2020).
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The training sample size is 64636, which is trained
on 8 P40 GPUs for quicker turnaround on exper-
iments with an average training time of around 5
hours for five epochs, with a batch size of 2 per
GPU. We also experimented with two different for-
mats of input formation, as mentioned in Section
2.2.

4 Evaluations

4.1 Automatic Evaluation
BLEU correlates weakly with human judgements
of the response quality, as evidenced by (Liu et al.,
2016). Also, there can be more than one way to
correctly respond in empathetic situations, which
is not considered with word overlap metrics. ME-
TEOR (Banerjee and Lavie, 2005) and ROUGE
(Lin, 2004) have similar problems. Therefore we
employ below automated metrics to evaluate our
models.

• Distinct-N: is a metric that measures the di-
versity of a sentence. It focuses on the number
of distinct n-grams of a sentence and thus pe-
nalizes sentences with many repeated words.
It is also free of any reference to a ground
truth sentence. (Li et al., 2016)

• Sentence similarity: we use Sentence-BERT
to calculate an encoded vector for generated
and ground truth sentences. Cosine similarity
between the two vectors is calculated, which is
also termed sentence similarity in this context.
(Reimers and Gurevych, 2019)

The results of the automatic evaluation are shown
in Table 1 and for the human assessment in Tables
2 and 3. The best performing numbers for a metric
are shown in bold.

Models D-1 D-2 SES
MIME 0.380 0.793 0.206
KEMP 0.422 0.818 0.209
EmpDG 0.420 0.797 0.233
Meed2 0.036 0.140 0.299
IAEmp-L 0.498 0.862 0.317
IAEmpMix-SL 0.500 0.871 0.335
IAEmpMix-L 0.540 0.878 0.315

Table 1: Automatic evaluation

Following the automated evaluation in Table 1,
IAEmpMix-L turns out to have the best Distinct-
1 and Distinct-2 scores across all baselines and

our experiments but has a slightly low sentence
similarity score compared to IAEmpMix-SL.

4.2 Human Evaluation

We evaluate the generated texts on empathy, rele-
vance, and fluency apart from automated metrics.
Empathy - measures if the generated response em-
pathises with the speaker’s emotions, Relevance -
measures whether the responses are on-topic with
the dialogue history, and Fluency - measures the
grammatical correctness and readability of gener-
ated responses. All three parameters are measured
on a scale of 1-5 (1 - poor and 5 - excellent). We
take help from 5 human evaluators to conduct the
above and an A/B test where we compare IAEmp’s
generations to other baselines and classify the com-
parison as a win, loss or tie from the perspective of
IAEmp’s generations.

Models Empathy Relevance Fluency
MIME 3.87 3.60 4.28
KEMP 3.49 3.92 3.65
EmpDG 3.58 3.91 3.67
IAEmp-L 3.79 3.72 4.64
IAEmpMix-SL 3.72 3.73 4.80
IAEmpMix-L 3.91 4.01 4.80

Table 2: Human evaluation - I

Models Win Tie Loss
IAEmp vs MIME 0.59 0.31 0.09
IAEmp vs KEMP 0.58 0.20 0.22
IAEmp vs EmpDG 0.72 0.13 0.14

Table 3: Human evaluation - II

5 Conclusion

We propose an easily adaptable approach to gen-
erating empathetic responses in a conversational
setting, where we leverage emotions of dialogue
history and intents to generate responses. We show
empirically that responses generated with a mixture
of emotions tend to be better in our experiments.
Our automatic and human evaluations show that
our models with single intent and models with a
mixture of intents perform significantly better com-
pared to existing works.
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Abstract

Dialogue State Tracking (DST) is core research
in dialogue systems and has received much
attention. In addition, it is necessary to
define a new problem that can deal with
dialogue between users as a step toward
the conversational AI that extracts and
recommends information from the dialogue
between users. So, we introduce a new task
– DST from dialogue between users about
scheduling an event (DST-USERS). The DST-
USERS task is much more challenging since
it requires the model to understand and track
dialogue states in the dialogue between users
and to understand who suggested the schedule
and who agreed to the proposed schedule. To
facilitate DST-USERS research, we develop
dialogue datasets between users that plan a
schedule. The annotated slot values which need
to be extracted in the dialogue are date, time,
and location. Previous approaches, such as
Machine Reading Comprehension (MRC) and
traditional DST techniques, have not achieved
good results in our extensive evaluations. By
adopting the knowledge-integrated learning
method, we achieve exceptional results.
The proposed model architecture combines
gazetteer features and speaker information
efficiently. Our evaluations of the dialogue
datasets between users that plan a schedule
show that our model outperforms the baseline
model.

1 Introduction

DST is a task to determine the final dialogue states
by continuously tracking the dialogue between the
user and the system. It is a challenging and essential
task because it can be applied to many real-world
applications, such as voice assistant systems. Many
approaches have been proposed to solve the DST
problem (Lin et al., 2020; Kim et al., 2019). MinTL
(Lin et al., 2020) framework adopts plug-and-play
architecture to the pre-trained Seq2Seq model and
can learn DST and NLU at the same time. SOM-

DST (Kim et al., 2019) updates the dialogue state in
two steps: state operation prediction such as ADD,
UPDATE and DELETE operation and dialogue
state updater. The approaches have the advantage
of improving performance; however, the error gets
propagated to the dialogue state tracking phase
of the model if an error occurs in the prediction
of state operation. Meanwhile, in the past few
years, many innovative models in the field of MRC.
Among them, the mainstream approach formalizes
reading comprehension to the extent of extracting
answers from a given text (Seo et al., 2016; Wang
and Jiang, 2016; Xiong et al., 2017; Joshi et al.,
2017; Dunn et al., 2017; Shen et al., 2017; Wang
et al., 2017a,b; Tan et al., 2017; Devlin et al., 2018;
Liu et al., 2019). There have been various attempts
to apply this promising MRC technique to the DST
field, and it has shown remarkable performance
(Gao et al., 2019, 2020).

Despite much research on DST, there are still
some challenging problems to be solved. Newly-
coined words and unseen words pose problems
(Bernier-Colborne and Langlais, 2020). Some
slots, such as specific store names and movie
names, are not general noun phrases and are more
complicated to recognize (Ashwini and Choi, 2014;
Jayarao et al., 2018). To overcome this problem,
approaches for integrating external knowledge,
such as gazetteer information or knowledge based
on neural architectures, have been highlighted
and studied again. One-hot vectors are typically
used as inputs to the gazetteer encoder and
are then concatenated with word representations.
However, for some problems, simply integrating
gazetteer information will not improve or reduce
performance for some slots (Meng et al., 2021).

In this paper, we conduct a new and challenging
task that tracks the dialogue state between two
users rather than the dialogue state tracking in
the dialogue between users and systems, like
in previous studies. Ultimately, this model can
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Figure 1: Illustration of our proposed KILDST architecture. The model consists of 3 different sub-encoders, 1)
contextual dialogue encoder for encoding dialogue, 2) contextual gazetteer encoder for encoding domain knowledge,
and 3) speaker encoder for encoding speaker information. Our proposed knowledge-integrated learning method
efficiently consolidates information from multiple encoders and extracts the schedule using span detectors.

be applied to a recommendation service on
a smartphone that extracts and recommends a
schedule for WhatsApp, WeChat, Kakaotalk, and
Telegram. Even if ambiguous slots are mentioned
in the dialogue, the system cannot request explicit
confirmation from the user, so it is more difficult
to extract accurate information. Several studies use
a gazetteer to improve performance (Song et al.,
2020) to solve this problem. Especially, GEMNET
(Meng et al., 2021) further enhances performance
with effective gated gazetteer representations. We
propose a novel architecture that effectively learns
the gazetteer and speaker information to extract
slots more accurately.
The contributions of our work are as follows:

• We propose a novel model based on the
Transformer that efficiently consolidates the
gazetteer knowledge and speaker information
to improve the extraction performance of
difficult words such as newly coined words
and abbreviations used in dialogue between
users.

• We propose a method of applying the
GEMNET that efficiently utilizes the gazetteer
knowledge in our integrated Transformer.

• We propose a method of understanding
speaker information through speaker

embeddings to know who suggested the
schedule and who agreed.

• We evaluate our model for new dialogue
datasets that contains a dialogue between
users regarding scheduling an event and show
that efficient use of gazetteer knowledge and
speaker information improves performance.

2 Proposed Model

We propose an effective Knowledge-Integrated
Learning method for Dialogue State Tracking using
Gazetteer and Speaker Information (KILDST).
As shown in Figure 1, the proposed model
consists of 3 different sub-encoders, 1) a contextual
dialogue encoder for encoding dialogue, 2) a
contextual gazetteer encoder for encoding domain
knowledge, and 3) a speaker encoder for encoding
speaker information. Our proposed knowledge-
integrated learning method efficiently consolidates
information from multiple encoders and extracts
the slots related to a schedule, such as a date, time,
and location using span detectors.

2.1 Contextual Dialogue Encoder

A contextual dialogue encoder encodes the input
dialogue based on a pre-trained BERT (Devlin
et al., 2018). We use syllable units for tokens
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because this outperforms other token units in our
experiments using Korean datasets.

hword = BERT (D) (1)

In the above formula, D refers to an index
list represented by the dialogue text tokenized
in syllable units in the form of "[CLS] user A’s
dialogue sentence [TURN ] user B’s dialogue
sentence [TURN ]". "[TURN ]" is a special token
for distinguishing the dialogue turn between users.

2.2 Contextual Gazetteer Encoder
Gazetteer information can be provided directly
as an input feature, but more is needed and
sparse. We use linear projection to obtain a dense
representation that captures interactions between
multiple matches per syllable unit. We encode
Contextual Gazetteer Representations (CGR) with
gazetteer information. BiLSTM is then applied
to contextualize this representation (Meng et al.,
2021).

hiforward = LSTM(hi−1
forward, h

i
gaz)

hibackward = LSTM(hi+1
backward, h

i
gaz)

hicgr = [hiforward, h
i
backward]

(2)

2.3 Speaker Encoder
Our task differs from general dialogue system
tasks between the user and the system. Since the
dialogue is between two users and not between
a user and a system, it is crucial to learn each
dialogue information so that user A and user B
can be distinguished. Therefore, it performs better
when the model is accompanied by additionally
providing a one-hot encoder to represent the
speaker id for a given utterance.

2.4 Knowledge-Integrated Transformer
We integrate contextual dialogue embedding,
contextual gazetteer embedding, and speaker
embedding. Especially, We integrate the Mixture
of Experts (MoE) mechanism (Pavlitskaya et al.,
2020; Meng et al., 2021) at the knowledge-
integrated Transformer to utilize both the dialogue
and gazetteer information efficiently. We add gating
networks to create a weighted linear combination of
words and gazetteer representations. Training the
gating network prevents the overuse or underuse of
features.

we = σ(θ[hword, hcgr]),
hmoe = we · hword + (1− we) · hcgr

(3)

hintegrated = Transformer([hmoe, hspk]) (4)

hword, hcgr and hspk are the output of respective
sub-modules. They are used to train the gating
network. σ is a Sigmoid activation function
and θ is a trainable parameter. [.,.] represents a
concatenation. We learn gating weights we. The
model can learn how to dynamically calculate each
syllable unit’s hidden information hintegrated. After
obtaining hintegrated, we feed it to the integrated
Transformer encoder to learn the integrated
embedding vector.

2.5 Span Detector

The span detector model, which uses a
composite embedding vector, predicts the
position information of all the slots related to the
scheduled event. For all the slots of the scheduled
events, the span detector is considered to take as
the token level representation [t1, · · · , tn], the
output of the knowledge-integrated Transformer.
Each token representation ti is projected linearly
through a common layer whose output values
correspond to start and end positions. Softmax is
then applied to the position values to produce a
probability distribution for all tokens. Finally, we
extract the span value with the highest probability
distributions for each target slot and provide that
as the output. The formula of the learning method
of this model is as follows.

Ps =Ws · hintegrated + bs
Pe =We · hintegrated + be

Pjoint = [Ps, Pe]
Ls = CCE(Ps, ys)
Le = CCE(Pe, ye)

Ljoint = JE(Pjoint, yjoint)
L = Ls + Le + Ljoint

(5)

In Equation (4) above, hintegrated means
integrated token on the knowledge-integrated
Transformer, Ws and We mean the weight matrix,
and bs and be mean the bias. Ps and Pe mean the
probability distribution of start and end positions
for each token in the dialogue input. ys and
ye denote the position labels for the correct
answer range. Along with modeling start position
and end position probabilities separately using
Categorical Cross Entropy (CCE) loss, we use
Jaccard Expectation (JE) loss to optimize start and
end positions jointly instead of CCE loss. Because
it showed better results when using JE loss.
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3K dataset 10K dataset

Model Type JGA Slot Acc. Slot F1 JGA Slot Acc. Slot F1

SOM-DST (Kim et al., 2019)* 48.00 - 83.73 62.40 - 89.33
DSTRC (baseline) (Gao et al., 2019)* 50.70 91.56 84.97 68.80 94.47 90.52
BERT-SpanDetector 60.00 94.12 90.38 73.00 95.71 92.47
BERT-SpanDetector +Gaz. 63.67 94.41 91.18 73.30 95.60 92.29
BERT-SpanDetector +Gaz. +Transformer 66.67 95.29 92.26 73.60 95.80 92.46
BERT-SpanDetector +Gaz. +Transformer +Spk 68.00 95.12 91.84 73.37 95.80 94.41
BERT-SpanDetector +Context Gaz. +Transformer 68.33 95.67 92.29 73.80 95.78 92.64
BERT-SpanDetector +Context Gaz. +Transformer +MoE 69.44 95.33 92.29 75.40 96.10 93.09
BERT-SpanDetector +Context Gaz. +Transformer +MoE 70.16 95.35 92.57 77.80 96.37 93.61

+Spk (KILDST)

Table 1: Results on the 3K and 10K datasets for all models . MoE is a mixture of experts. Spk is speaker embedding.

3 Experiments and Results

3.1 Datasets and Experimental Setup

One of the essential goals of our work is to
collect and create dialogue datasets between users
that plan specific appointments. We collected and
utilized their actual dialogue datasets in Korean
with the consent of users to use the provided
datasets for research. Also, to collect dialogue
data of various ages, gender, and relationship
combinations between users who have dialogue, we
use a crowdsourcing platform. We created a dataset
by providing chat rooms where real users can chat
under certain predefined conditions. We provided
the purpose of the dialogue, the relationship
between users, and guidance information to these
user chat rooms. If we set a specific profile of the
chat room we want to collect, only users who meet
the conditions can attend the chat room. We can
collect various combinations and types of dialogue
datasets by introducing a real-chat simulator
between users in a constrained environment. We
evaluate our models on two datasets, such as the
3K and 10K datasets. The 3K dataset has 3,000
dialogues, and 33,585 dialogue turns. 10K dataset
has 10,000 dialogues, and 109,971 dialogue turns.
The dataset was experimented with and evaluated
by the ratio of train set 9 and test set 1. All models
are implemented using Tensorflow 2.5.

3.2 Evaluation Metrics and Results

We use joint goal accuracy, slot accuracy, and
slot F1 score to evaluate our model. Joint Goal
Accuracy is an accuracy that checks whether
all slot values predicted at a dialogue exactly
match the ground truth values. The comparison
of the results of our model with the state-of-the-art
model using MRC techniques on the datasets is

presented in Table 1. Our KILDST model achieves
higher scores in all evaluation metrics in the test
dataset. It shows that the joint goal accuracy
increases in our experiments. Whenever we add
new features such as speaker encoder, contextual
gazetteer encoder, and a mixture of experts gating
modules (Meng et al., 2021), the joint goal accuracy
increases in our experiments. The composite output
vector consists of speaker embedding, contextual
gazetteer embedding, and dialogue text embedding.
Our best model extracts most slots better than the
state-of-the-art model and also all other models in
the evaluation dataset.

Slot Type JGA Slot Acc. Slot F1

Overall Slots 77.80 96.37 93.61
YEAR 99.10 99.10 99.10
MONTH 99.10 99.10 99.10
WEEK 98.60 98.60 98.60
DATE 93.40 93.40 93.40
AMPM 93.20 93.20 93.20
HOUR 95.70 95.70 95.70
MINUTE 99.40 99.40 99.40
LOCATION 92.50 92.50 92.50

Table 2: The best model overall slots result on the 10K

Hyperparameter Search Range Optimal
Value

Batch size [16,32] 32
Epochs [50,75,100] 100
Learning rate - 0.0001
Optimizer [Adam,AdamW] AdamW
Dropout rate - 0.1
BERT Max length - 512
BERT Hidden size - 256
BiLSTM Input word size - 512
BiLSTM Hidden size - 256
Integrated Transformer
#layers

[1,2] 2

Table 3: Hyperparameters for KILDST model
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4 Ablation Analysis

4.1 Effect of Gazetteer
Integrating additional gazetteer information into
the model improves the performance of all models.
In particular, models trained with 3,000 datasets
benefit from gazetteer knowledge more than
models trained with 10,000 datasets. Experiments
using a gazetteer in 3,000 datasets have improved
JGA performance by 3.67 %. In the case of fine-
turned models with insufficient training data, using
the gazetteer knowledge has a more significant
effect on improving performance. On the other
hand, when training the models with a large
number of training datasets, such as the model
trained through 10,000 datasets, it is interpreted
that it gets a relatively small benefit because much
gazetteer information is already included in the
training datasets. In addition, the results of the
model using the contextual gazetteer encoder by
the situation encoded by BiLSTM have improved
the JGA performance by 1.66 %in the experiments
tested with 3,000 data sets than the simple one-hot
gazetteer embedding. The results indicate the high
efficiency of the CGR, which clearly shows the
effect of the integration of the gazetteer.

4.2 Effect of Mixture of Experts
The KILDST model is trained and fused with the
BERT dialogue encoder and contextual gazetteer
encoder. To assess the MoE component’s impact,
we concatenate the output vector of the contextual
dialogue encoder and contextual dialogue encoder
without MoE. By applying MoE, there was a
1.11% JGA performance improvement effect in the
model experiment with 3,000 datasets and a 1.6%
JGA performance improvement effect in the model
experiment with 10,000 datasets. Table 1 shows
more improvement in JGA performance than other
accuracies when applying MoE.

4.3 Effect of Integrated Transformer
In the case of our existing BERT-SpanDetector
model, the output vectors of the contextual
gazetteer representation and the contextual
dialogue representation are concatenated and
transferred to the span detector without additional
training. However, our proposed KILDST
approach, which once again trains through the
Transformer Encoder, effectively integrates two
output vectors, generates an updated embedding
vector, and transfers it to the span detector.

Additional training using an integrated transformer
has improved JGA performance by 3% in model
experiments using 3,000 datasets.

5 Conclusions

This paper presents a novel model architecture
that effectively learns the gazetteer knowledge and
speaker information for DST. Our model consists
of 3 different sub-encoders a contextual dialogue
encoder for encoding dialogue, a contextual
gazetteer encoder for encoding domain knowledge,
and a speaker encoder for encoding speaker
information. The knowledge-integrated learning
method we proposed outperforms other models
by integrating the information of various encoders
more efficiently and accurately extracting slots.
In addition, we have collected and created new
dialogue datasets between users that plan a
schedule. Our evaluation of this dialogue dataset
shows improvement over the state-of-the-art model
by better extracting the schedule from a dialogue
containing difficult words such as newly coined
words and abbreviations. Our model can be applied
to a messenger app such as WhatsApp, WeChat,
Kakaotalk, and Telegram as a recommendation
system, extracting a schedule from dialogue and
recommending a schedule to the user. In the future,
we plan to expand our proposed model architecture
to a model that extracts another meaningful event
from a dialogue among more users.
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A Appendices

Korean conversation between 2 users Korean conversation translated into English

User1: 예슬아언제시간됨?

User2: 왜?

User1: 용진이한테 빌린 보드게임 돌려줘야하는데 그런김
에같이모이게

User2: ㅇㅋ나이번주는안되고다음주일요일에될듯?저
번처럼스타벅스?

User1: ㅇㅇ넴저녁먹게 6시에보죠

User2: 그때다른약속있거든...그래서한시간늦게보자

User1: 난괜찮음

User1: Jennie, When are you free?

User2: Why?

User1: I have to return the board game I borrowed from
Yongjin, so we might as well meet up sometime

User2: Okay, I am not free this week, but next Sunday is good.
Starbucks like last time?

User1: Let’s meet up at 6 o’clock and have dinner

User2: I have an appointment at that time, but let’s make it an
hour late

User1: Sounds good

Table 4: Korean conversation dataset between 2 users

Korean ground truth Ground truth translated into English

• schedule.week:다음주

• schedule.date:일요일

• schedule.hour: 7시

• schedule.ampm:저녁

• schedule.location:스타벅스

• schedule.week: next week

• schedule.date: Sunday

• schedule.hour: 7

• schedule.ampm: dinner

• schedule.location: Starbucks

Table 5: Ground truth of Korean conversation dataset
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Abstract 

Conversational agents on smart devices 

need to be efficient concerning latency in 

responding, for enhanced user experience 

and real-time utility. This demands on-

device processing (as on-device processing 

is quicker), which limits the availability of 

resources such as memory and processing. 

Most state-of-the-art Dialog State Tracking 

(DST) systems make use of large pre-

trained language models that require high 

resource computation, typically available 

on high-end servers. Whereas, on-device 

systems are memory efficient, have 

reduced time/latency, preserve privacy, and 

don’t rely on network. A recent approach 

tries to reduce the latency by splitting the 

task of slot prediction into two subtasks of 

State Operation Prediction (SOP) to select 

an action for each slot, and Slot Value 

Generation (SVG) responsible for 

producing values for the identified slots. 

SVG being computationally expensive, is 

performed only for a small subset of actions 

predicted in the SOP. Motivated from this 

optimization technique, we build a similar 

system and work on multi-task learning to 

achieve significant improvements in DST 

performance, while optimizing the resource 

consumption. We propose a quadruplet 

(Domain, Intent, Slot, and Slot Value) 

based DST, which significantly boosts the 

performance. We experiment with different 

techniques to fuse different layers of 

representations from intent and slot 

prediction tasks. We obtain the best joint 

accuracy of 53.3% on the publicly available 

MultiWOZ 2.2 dataset, using BERT-

medium along with a gating mechanism. 

We also compare the cost efficiency of our 

system with other large models and find 

that our system is best suited for an on-

device based production environment. 

1 Introduction 

With the rapid growth of internet and thus Internet 

of Things, smart devices including smartphones, 

TV, refrigerators, among others that can 

communicate with each other are being 

increasingly introduced in the market. Smart 

devices come with processing power, which opens 

up the capability of deploying AI solutions 

(Agarwal et al. 2020, Ghosh et al. 2021). These 

solutions also include on-device Conversational 

Agents (CA) and thus its components such as intent 

detection (Agarwal et al. 2021). These CAs such as 

Alexa, Bixby, and Google home, tend to be task-

oriented, and perform the device-specific tasks.  

A user of a smart device CA expects a quick 

action and response from the device, otherwise it’s 

no better than manually performing the task. The 

low latency demands for on-device processing to 

reduce/remove network calls to a server. Even 

though the smart devices come with processing 

capabilities, usually the processing power and 

memory are very limited. This makes it very 

difficult to deploy large and complex DNN models 

on the device. 

We are particularly interested in the task of 

Dialog State Tracking (DST), which is a crucial 

module of a CA. Many state-of-the-art (SOTA) 

DST systems, such as Zhao et al. (2021), Tian et al. 

(2021) are based on large language models, which 

need high processing power and memory during 

inference,  and thus suitable for server side 

processing. 

In this scenario, on-device systems can play a 

major role. They can operate on low resources and 

hence, can be run on mobile devices / edge 

processors. In addition to occupying lesser space 

and providing lower latency, they also require 

lesser RAM. They are better than server based 
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models with respect to privacy, security and non- 

reliability on network. 

In light of these advantages, we focus on 

building high performance on-device DST. In this 

paper, we propose an efficient DST architecture, 

which can run in resource constrained environment 

and can provide comparable accuracy to other 

SOTA models on MultiWOZ 2.2 dataset (Zang et 

al., 2020) . 

Majority of the open vocabulary based DST 

systems, predict/generate slot values at each turn. 

This is rather an inefficient approach for both 

latency and prediction accuracy. Kim et al. (2020), 

worked on solving this challenge and proposed 

Selective Overwriting Memory for efficient DST 

(abbreviated as SOM-DST), based on a two-step 

process consisting of State Operation Predictor 

(SOP) and Slot Value Generator (SVG) modules. 

SOP helps decide which slots’ values need to be 

updated/generated, thus gating the amount of SVG 

requests made. As the two-step architecture 

achieves significant improvements in latency, we 

base our experiments on SOM-DST.  In this work, 

we try to improve the SOP module, as the authors 

analyzed better possibility of improvements in SOP 

than SVG. 

The SOM-DST system was trained on 

MultiWOZ 2.1 (Eric et al., 2019), which didn’t 

have intent information. We work on MultiWOZ 

2.2 dataset and make use of the intent annotation 

provided for each utterance, which may prove to be 

helpful for the SOP in a multi-task setting of intent 

and slot prediction. Intent in an utterance depicts 

the ulterior motive of the speaker. For example, 

intents for Restaurant domain are find_restaurant 

and book_restaurant, which represent the main 

motive of the speaker of finding/booking a 

restaurant. Intent information may help selecting 

an appropriate operation (SOP) for each slot. For 

example, if the conversation is about meeting at a 

restaurant for lunch, then a dialog turn carrying 

time information related to a different intent (such 

as “We had been to the same restaurant yesterday 

at 4 PM”) needs to be eliminated for the SVG 

generation phase. We experiment with different 

strategies to fuse the information from different 

representation layers of intent and slot predictors. 

SOM-DST makes use of BERT-base model, 

which is a large model, not suitable for on-device 

processing. In this work, we not only improve the 

performance with joint learning and different 

fusion techniques, but also reduce the model size 

by replacing BERT-base with the BERT-medium 

model, making the overall size of the model      

~202 MB (binary PyTorch file), small enough to 

deploy on-device. 

Our major contributions include: 

   1. We build a lightweight two-step DST system 

that can be deployed on-device, while providing 

competitive efficiency to the SOTA models. 

   2. We improve a previous two-step model (SOM-

DST) efficiency by jointly predicting intent, 

domain, state operation and slot value generation. 

   3. We experiment with different fusion strategies 

such as self-attention and gating while 

concatenating representations at different levels, to 

achieve better multi-task performance 

2 Related Work 

SOTA: Most recent works which have achieved 

SOTA results on MultiWOZ 2.2 are based on large 

language models. Lee et al. (2021) in their work of 

using Schema-Driven Prompting for DST have 

used T5 language model (Raffel et al., 2020). Tian 

et al. (2021) have introduced a two-pass generation 

process in which the second pass amends the 

primitive dialog state which was generated from 

the first pass and alleviates unnecessary error 

propagation. They also use large language models: 

GPT-2 and PLATO-2, and the two-pass generation 

process would also increase the latency. 

Rastogi et al. (2020), proposed a scalable DST 

architecture for Schema Guided Dataset (SGD) for 

task oriented virtual assistants which predicts intent 

along with slot values. Their baseline model 

consists of two modules: Schema Embedding 

Module which embeds the schema elements 

(intents, slots and categorical slot values) and State 

Update Module which predicts the active intent, 

requested slots, slot values and performs state 

update using utterance (current user turn and 

previous system turn) embeddings and schema 

embeddings.  

Fusion: Fusion of information from intent 

prediction and previous belief state is performed 

using fusion method described in CrossViT (Chen 

et al, 2021). The major advantage of this technique 

is the patch based encoding using transformers and 

its fusion. In CrossViT (Chen et al, 2021), their 

main approach is to divide image into patches 

(preferably of different sizes) and to pass them 

through separate branches of transformer and to 

fuse these features. This approach gives better 

accuracy than many current CNN based SOTA 
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models for Image Classification Task in Computer 

Vision domain. Based on this paper, we got 

motivated to try different approaches to fuse 

information from intent prediction and previous 

belief state for efficient SOP module. 

Intent logits information fusion with previous 

belief state is performed as explained in Meng et al. 

Meng et al have proposed the following: 

i) Flexible contextual gazetteer representation 

(CGR) which is similar to gazetteer embedding but 

also has context and positional features.  

ii) Mixture of Experts (MoE) - Gating for 

CGR and CWR (Contextual Word Representation) 

to selectively pass gazetteer and context info, so as 

to pass both syntactic as well as gazetteer info 

dynamically based on use case. They have used 

Joint CGR and CWR gating network to learn to 

balance contributions. This avoids feature 

overuse/underuse problem. We use the Mixture of 

Experts logic for fusing the information from intent 

and previous belief state. 

3 Dataset 

We use MultiWOZ 2.2 dataset. Following Wu et al. 

(2019), we use only five domains (restaurant, train, 

hotel, taxi, attraction) excluding hospital and 

police. Therefore, the number of domains is five, 

the number of slots is 30 and the number of intents 

is 12. 

Table 1: Statistics of MultiWOZ 2.2 dataset.  

4 Baseline System (SOM-DST) 

As discussed in the Section 1, in this work, we base 

our experiments on improving the performance and 

optimizing the cost of the SOM-DST architecture 

(depicted in Figure 1) by Kim et al. (2020). To 

improve the latency, the DST system is divided into 

two modules: 

a. State Operation Predictor (SOP): For each 

slot (defined in the ontology), classify it 

amongst a predefined set of labels (such as 

carryover, update, delete, don’t-care). These 

label values help us identify which slot’s value 

has to be generated/updated and which has to 

be modified, deleted, skipped etc. The input to 

the SOP module is formed by concatenating 

the current dialogue context with the previous 

belief state (slots and corresponding values). 

The input is passed through a BERT encoder to 

obtain encodings for each slot, which are 

further processed for operation classification. 

b. Slot Value Generator (SVG): This module 

generates value only for the slots in which 

update operation is predicted from SOP. SVG 

generates the slot values using a simple GRU 

based model. 

 
Figure 1: SOM-DST model architecture consisting of 

two sequential modules. 

 

SOP gates the amount of SVG requests made. This 

is a very efficient way of determining the dialog 

state. In this work, we first replicate the results on 

MultiWOZ 2.2 dataset using the same architecture. 

We then experiment with different fusion 

experiments for the multitask learning of slot and 

intent predictions. 

5 Fusion Experiments 

We are mainly trying to fuse information from 

intent classification into State Operation 

Prediction. Introduction of the intent prediction 

into the SOM-DST architecture was designed in 

several ways as follows 

5.1 Intent Prediction with Joint Loss 

Optimization 

In SOM-DST, we are jointly optimizing loss from 

Domain Prediction, SOP and SVG modules. 

Domain prediction is done by adding classification 

head on BERT pooled output. 

In this design (as depicted in Figure 2, 

experiment 1), we introduce Intent prediction as is 

done for Domain labels. The BERT-medium 

pooled output (represented by the [CLS] token) is 

passed through a linear layer of 512 x 12 (12 is 

possible number of intent labels, 512 is BERT-

medium hidden dimension) to generate the intent 

 Train Test Validation 

#dialogs 8,420 999 1,000 

#turns 54,981 7,368 7,374 
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logits. The model is jointly optimized along with 

intent using the joint cross-entropy loss. With this 

base model, we see a boost in the SOP 

classification results.  

5.2 Concatenating intent logits and a layer 

from the SOP module 

In conjunction with joint optimization, the intent 

logits are fed into the SOP module (via 

concatenating intent logits with BERT encoded 

“[SLOT]” tokens). This way we try to introduce the 

intent logits so that they have an impact on SOP. 

This is depicted in Figure 2, experiment 2.  

5.3 Intent & Slot Self-Attention network 

In this model architecture (depicted in Figure 2 

experiment 3), we allow the intent logits to interact 

with the embedding inputs to SOP module (which 

are BERT encoded “[SLOT]” token from previous 

belief state input). This way the model can establish 

similarity between the previous belief state and 

intent in order to determine the SOP labels for 

current turn.  

There are two approaches to generate 

similarity. First, the cross-attention way as 

mentioned in CrossViT (Chen et al, 2021). In this 

approach, the resultant cross attention matrix is 

large sized and is sparse. Moreover, the dimension 

of intent logits being far less than the belief state, 

the effect of intent gets nullified. Hence, we move 

on to an alternative way of self-attention (Vaswani 

et al, 2017). Here we concatenate the intent logits 

along with the previous belief state hidden 

representation and feed it through a single self-

attention layer. By far this has been the best model 

to establish the similarity between the turn intent 

and previous belief state. 

The cross attention technique (equation 1) can 

be represented as follows:  

𝑄 = 𝑊𝑞 ∗ 𝑥1 

𝐾 = 𝑊𝑘 ∗ 𝑥2 

𝑉 = 𝑊𝑣 ∗ 𝑥2 

                𝑆 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾

√𝑑𝑘

𝑇
)𝑉                  (1) 

Where 𝑊𝑞 , 𝑊𝑘 , 𝑊𝑣  are learnable parameters 

(weight matrices). 𝑥1  is intent logits and 𝑥2  is 

previous belief state’s “[SLOT]” token embedding. 

5.4 Gated-Intent Quadruplet State  

5.4.1 Model Architecture 

In all the design choices discussed before 

Figure 2: The leftmost part of the diagram shows the overall architecture of the multi-task learning including prediction 

of domain, intent, slot operation prediction and slot value generation. The entire context including previous and current 

dialog turns along with the previous belief state is passed through a BERT based encoder. The pooled embeddings 

([CLS]) and SLOT embeddings are further used for prediction tasks. To improve performance of the slot prediction, we 

experiment with different strategies to infuse important information from different layers of the intent prediction network 

to that of the State Operation Prediction (SOP) module. The corresponding blocks are colored in purple. In the four 

experiments, we progressively add blocks and layers (marked with Green color). In Experiment-1 we try vanilla multi-

task learning with joint loss optimization; later in Experiment-2 we concatenate intent logits with the SLOT logits for 

better access to the intent information in SOP; for better weighing of the concatenated SLOT and intent logits, we 

introduce a self-attention layer in Experiment-3; whereas in Experiment-4, using gating mechanism, we selectively 

infuse only the relevant intent information for more improvements. 
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section 5.4, we primarily mandated the use of intent 

logits or intent classification results in conjunction 

with the SOP input (which is BERT encoded 

“[SLOT]” token embedding). In case of topic 

steering or change in task-oriented discussions, we 

still force fit the non-related intent from the task to 

propagate into the model. 

Yann et al. (2017), demonstrated a gated CNN 

network-based language model which was able to 

perform competitively against the large-scale 

recurrent models. Though gates were well known 

in recurrent networks, Yann et al. (2017), applied 

them to non-recurrent networks for the first time 

and the results were impressive. We adopted the 

same mechanism as Mixture of Experts from Meng 

et al. (2021) (depicted in Figure 2 experiment 4) 

and observed that the model was able to undo the 

adverse effect of force-fitting intent for the DST. 

5.4.2 Intent Gating Mechanism 

If ′𝑋′ represents the BERT Encoder pooled output 

of hidden state representation for the dialog turn 

and the previous belief state, ′𝑊𝑖′  represents the 

weight matrix for intent hidden layer, 

′𝑊′ represents the weight matrix for the intent 

logits layer, then the output of the gating hidden 

layer (equation 2) is given as follows: 

                      𝐼₁ =   (𝑋 ∗  𝑊𝑖  +  𝑐)                       

                       𝑇𝑐𝑜𝑛𝑐𝑎𝑡  =  𝐼1 ⊕ 𝑆1                        
                  𝑔 = 𝜎(𝑇𝑐𝑜𝑛𝑐𝑎𝑡 ∗  𝑊 +  𝑏)               (2) 

 

           ℎ1(𝑋) = (𝑔 ∗ 𝐼1) ⊕ ((1 − 𝑔) ∗ 𝑆1)        (3) 

 

Where ⊕  represents the concatenation operation, 

′𝐼₁ ′ represents Intent Logits, ′𝑆₁′ represents BERT 

encoded “[SLOT]” tokens from previous belief 

state, ′𝑔′  represents gating value (generally a 

scalar), as expressed in equation 3. 

The output from equation 3 is then passed through 

self-attention and then linear projection layer. Q is 

Query, K is Key, V is Value. 𝑊𝑞 , 𝑊𝑘 , 𝑊𝑣  are 

learnable parameters (weight matrices). 

 

𝑄 = 𝑊𝑞 ∗ ℎ1(𝑋) 

𝐾 = 𝑊𝑘 ∗ ℎ1(𝑋) 

𝑉 = 𝑊𝑣 ∗ ℎ1(𝑋) 

𝑆 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾

√𝑑𝑘

𝑇

)𝑉 

                      𝑆𝑂𝑃𝑂𝑃 = (𝑆 ∗ 𝑊) + 𝑏                 (4) 

Per slot predicted state operation is denoted by 

equation 4. 

5.4.3 Loss Function 

For the entire training, we have used the average 

cross entropy loss from each of the modules such 

as intent classification, domain classification, SOP 

and SVG module. 

6 Experimental Setup  

6.1 Evaluation Metrics 

We use joint accuracy and F1 scores for different 

SOP modules for evaluating model performance. 

SOP labels classify each turn for each slot in one of 

the following categories 

1. CarryOver - No change from the previous 

turn for that slot. 

2. Delete - The previously entered slot value is 

cancelled/removed (set to none) 

3. Update - Particular slot has to be updated with 

new value. Leads a call to SVG. 

4. Dontcare - The slot value is not relevant and is 

set to "dontcare" literal. 

6.2 Data Preparation 

We have followed same preprocessing steps as in 

the case of Kim et al. (2020), with intent as an 

additional field extracted from MultiWOZ 2.2 data.  

6.3 Training 

We employ the pre-trained BERT-medium-

uncased model for SOP and one GRU (Cho et al., 

2014b) for SVG. The hidden size of the decoder 

and encoder is the same, which is 512. We use 

BertAdam as our optimizer (Kingma and Ba, 2015) 

and greedy decoding for SVG. The encoder of SOP 

makes use of a pre-trained model, whereas the 

decoder (GRU) of SVG needs to be trained from 

scratch. Therefore, we use different learning rate 

schemes for the encoder and the decoder. We use a 

batch size of 32 and set the dropout (Srivastava et 

al., 2014) rate to 0.1. We also utilize word dropout 

(Bowman et al., 2016) by randomly replacing the 

input tokens with the special [UNK] token. 

The max sequence length for all inputs is fixed 

to 512. We train SOP and SVG jointly with early 

stopping and choose the model that reports the best 

performance (joint accuracy) on the validation set. 

We use teacher forcing 50% of the time to train the 

decoder. This is done so that the model is well 

accustomed to the test time scenario (i.e., intent 

from intent classifier output) and to intent from GT 

(so that, model doesn’t face error propagation from 

intent prediction side).  
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We fuse the gated-intent logit features and the 

gated BERT encoded “[SLOT]” tokens following a 

mechanism similar to Mixture of Experts by Meng 

et al. (2021). We add two layers of Self-Attention 

and SOP classification head on top of the fused 

output for each slot. We train this model on Tesla 

GPUs. 

7 Results 

7.1 Joint Goal Accuracy (Overall Results) 

We have achieved joint goal accuracy comparable 

to SOTA joint goal accuracy on MultiWOZ 2.2. 

Model Accuracy Size 

DS-DST (Zhang et al. 

(2019)) 

51.70 ~440MB 

SOM-DST baseline (Kim et 

al. (2020)) 

52 432MB 

Gated-Self Attention DST 

(BERT-medium) 
53.30 202MB 

Gated-Self Attention DST 

(BERT-base) 
54.09 496MB 

Pegasus (Zhao et al. (2021))  56.60 >2.2GB 

T5 (Zhao et al. (2021))  57.60 >891MB 

 

Table 2: Joint Goal Accuracy on MultiWOZ 2.2 

7.2 SOP Efficiency 

F1 Score for State Operation Prediction (SOP) 

module. 

Model 

  

Operation 

Delete Update 
Don’t- 

Care 

Carry- 

Over 

SOM-DST  

(Baseline) 
22.05 91.56 54.67 99.60 

Intent 

Prediction 

(Joint Loss 

Optimizati

on) 

14.41 91.55 55.41 99.60 

Appending 

intent 

logits- 

to SOP 

module 

22.41 91.81 55.16 99.61 

Intent and 

Slot- 

Self 

Attention 

22.05 91.66 58.82 99.61 

Gated-

Intent 

(proposed 

model) 

20.16 91.89 58.80 99.62 

Table 3: SOP scores (F1) for each operation for dialog 

state borrowed from GT 

8 Analysis 

In Table 2, we compare our system’s performance 

with other important works. Our Gated-Self 

Attention based model achieves a Joint Goal 

Accuracy (JGA) of 54.09 using BERT-base, and of 

53.30 using BERT-medium. The system 

performance is comparable with the current SOTA 

results, while also providing the benefit of lesser 

processing. We achieve a performance 

improvement of 1.3% JGA, over the SOM-DST 

baseline. 

We also compare the sizes of the different pre-

trained models used by different systems, which 

gives a hint of the comparative memory efficiency 

of the models. Compared to T5 and Pegasus, our 

model makes use of BERT-medium , which is 4 

times and 10 times smaller, respectively. Our 

model size is 202 MB which makes it feasible to 

deploy on-device. 

As presented in Table 3, we also observe 

significant improvements in SOP efficiency, 

indicating optimization of the calls made to the 

time-consuming Slot Value Generator (SVG) 

module, further decreasing the overall latency of 

the system. The improvements are consistent 

across all the state-operations (Delete, Update, 

Don’t Care, and Carry Over). 

8.1 Future scope of enhancements 

Similar improvisation can further be extended to 

dialog acts, which are more generic than intents, for 

SOP tasks. 

We also plan to explore quantization techniques 

for reducing the model size without affecting the 

prediction results. 

Another technique that has shown benefits in the 

task of named entity recognition is the use of 

external knowledge bases, for ever-expanding 

dynamic entities. We can further improve our 

system by incorporating such knowledge. 

 A limitation of our current system is the upper 

cap on the length of input (512 tokens). We would 

like to explore techniques to handle longer input 

sequences. 

9 Conclusion 

From our experiment results, we can conclude that 

using gating based self-attention on the intent logits 

for state operation prediction improves the 

accuracy. There is also a significant reduction in 

model size and latency when compared to other 
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existing SOTA models which use large pre-trained 

language models. This makes our model more 

suitable for on-device based production 

environment. 
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Abstract

Recent works on fake news detection have
shown the efficacy of using emotions as a fea-
ture or emotions-based features for improved
performance. However, the impact of these
emotion-guided features for fake news detec-
tion in cross-domain settings, where we face
the problem of domain shift, is still largely un-
explored. In this work, we evaluate the impact
of emotion-guided features for cross-domain
fake news detection, and further propose an
emotion-guided, domain-adaptive approach us-
ing adversarial learning. We prove the efficacy
of emotion-guided models in cross-domain set-
tings for various combinations of source and tar-
get datasets from FakeNewsAMT, Celeb, Poli-
tifact and Gossipcop datasets.

1 Introduction

In recent years, our reliance on social media as
a source of information has increased multi-fold,
bringing along exponential increase in the spread
of fake news. To counter this, researchers have pro-
posed various approaches for fake news detection
(Shu et al., 2019; Sheng et al., 2022). However,
models trained on one domain are often brittle and
vulnerable to incorrect predictions for the samples
of another domain (Saikh et al., 2019; Pérez-Rosas
et al., 2018). This is primarily due to the shift be-
tween the two domains, as depicted in Figure 1(1).
To handle this, some domain-adaptive frameworks
(Zhang et al., 2020; Huang et al., 2021; Li et al.,
2021) have been proposed which help align the
source and target domains in the feature space to
ameliorate domain shift across different problems.
These frameworks guide the feature extractors to
extract domain-invariant features by aligning the
source and target domains in the feature space, thus
generalizing well across domains. However, due
to the absence of labels in the target-domain data,
the adaptation is often prone to negative transfer,
∗Equal contribution

which can disturb the class-wise distribution and
affect the discriminability of the final model, as
shown in Figure 1(2).

Some recent studies have observed a correlation
between the veracity of a text and its emotions.
There exists a prominent affiliation for certain emo-
tions with fake news, and for other emotions with
real news (Vosoughi et al., 2018), as illustrated in
Figure 1(3). Further, some works have successfully
utilized emotions as features, or emotion-guided
features to aid in fake news detection (Guo et al.,
2019; Zhang et al., 2021; Choudhry et al., 2022).
However, we observe that these works only con-
sider the in-domain setting for evaluation, without
analyzing the robustness of these frameworks to do-
main shift in cross-domain settings. This is another
important direction that needs to be explored.

Domain A
Domain B

Fake Real
Emotion 1
Emotion 2

1 2

3

Emotion 3
Emotion 4

4

Figure 1: (1) Cross-domain texts not aligned. (2) Do-
main adaptation leads to some alignment. (3) Emotion-
guided classification in one domain. (4) Emotion-guided
domain adaptation leads to improved alignment of the
two domains.
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In this paper, we study the efficacy of emotion-
aided models in capturing better generalizable fea-
tures for cross-domain fake news detection. Table 1
shows the improvements observed in various cross-
domain settings when our emotion-guided models
were evaluated in cross-domain settings. We ob-
serve that emotion-guided frameworks show im-
proved performance in cross-domain settings, as
compared to their baseline models without the said
emotion-aided features, thus underscoring the gen-
eralized feature extraction in emotion-aided mod-
els. We further propose an emotion-guided unsuper-
vised domain adaptation framework, which utilizes
emotion labels in a multi-task adversarial setting
for better feature alignment across domains. The
emotion labels for emotion classification, trained
parallel to the fake news detection branch in the
multi-task learning setup, help provide additional
supervision for improved alignment during domain
adaptation, mitigating the issue of incorrect align-
ment of domains. This is illustrated in Figure 1(4)).
This leads to better discriminability. We experi-
mentally prove the efficacy of our approach across
a variety of datasets in cross-domain settings for
various combinations of single-task or multi-task,
domain-adaptive or non-adaptive, emotion-guided
or unguided settings on the accuracy of the models.

Our contributions can be summarized as follows:

• We suggest the use of emotion classification
as an auxiliary task for improved fake news
detection in cross-domain settings, indicating
the applicability of emotion-guided features
across domains.

• We compare how Ekman’s and Plutchik’s base
emotion classes individually affect the per-
formance of our multi-task domain-adaptive
framework, and if there are meaningful differ-
ences between them.

• We propose an emotion-guided domain-
adaptive framework for fake news detec-
tion across domains. We show that domain-
adaptive fake news detection models better
align the two domains with the help of super-
vised learning using emotion-aided features.

• We evaluate our approach on a variety of
source and target combinations from four
datasets. Our results prove the efficacy of our
approach.

2 Related Works

Several studies over the last few years have ex-
plored the correlation of fake news detection with
emotions. K et al. (2020) emotionized text repre-
sentations using explicit emotion intensity lexicons.
Guo et al. (2019) utilized the discrepancies be-
tween publisher’s emotion and the thread’s com-
ments’ emotions to detect fake news. However,
most of these methods relied upon some additional
inputs during evaluation. Choudhry et al. (2022)
proposed an emotion-aided multi-task learning ap-
proach, where emotion classification was the aux-
iliary task implicitly aligning fake news features
according to emotion labels.

Inspired by Ganin et al. (2015), Zhang et al.
(2020) proposed the first fake news detection work
to tackle domain shifts between different datasets.
They proposed a multi-modal framework with a
Gradient Reversal Layer (GRL) to learn domain-
invariant features across different domains and used
a joint fake news detector on the extracted features.
Huang et al. (2021) proposed a robust and general-
ized fake news detection framework adaptable to
a new target domain using adversarial training to
make the model robust to outliers and Maximum
Mean Difference (MMD)-based loss to align the
features of source and target. Li et al. (2021) ex-
tended the problem by treating it as a multi-source
domain adaptation task, using the labeled samples
from multiple source domains to improve the per-
formance on unlabeled target domains. They also
utilized weak labels for weak supervision on target
samples to improve performance.

However, no previous work has aligned features
between different domains using emotion-guided
features and domain adaptation using adversarial
training. We show that applying both of these ap-
proaches leads to improved performance due to
better alignment of inter-domain features.

3 Proposed Methodology

3.1 Datasets, Emotion Annotation &
Preprocessing

We use the FakeNewsAMT (Pérez-Rosas et al.,
2018), Celeb (Pérez-Rosas et al., 2018), Politi-
fact1, and Gossipcop2 datasets for cross-domain
fake news detection. FakeNewsAMT is a multi-
domain dataset containing samples from technol-
ogy, education, business, sports, politics, and en-

1 https://www.politifact.com 2 https://www.gossipcop.com
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tertainment domains. The Celeb dataset has been
derived from the web, and contains news about
celebrities. Politifact is a web-scrapped dataset con-
taining political news, while Gossipcop contains
news extracted from the web, manually annotated
via crowd-sourcing and by experts.

We use the Unison model (Colnerič and Demšar,
2020) to annotate all datasets with the core emo-
tions from Ekman’s (Ekman, 1992) (6 emotions:
Joy, Surprise, Anger, Sadness, Disgust, Fear) and
Plutchik’s (Plutchik, 1982) (8 emotions: Joy, Sur-
prise, Trust, Anger, Anticipation, Sadness, Disgust,
Fear) emotion theories. During preprocessing, we
convert text to lowercase, remove punctuation, and
de-contract verb forms (eg. “I’d” to “I would”).

3.2 Multi-task Learning
We use multi-task learning (MTL) to incorporate
emotion classification as an auxiliary task to our
fake news detection branch. Multi-task learning en-
ables a model to learn the shared features between
two or more correlated tasks for improved feature
extraction and performance. We use Ekman’s or
Plutchik’s emotions labels for emotion classifica-
tion branch in our MTL models to see which per-
forms better, and compare the performance with the
corresponding single-task (STL) models in domain-
adaptive and non-adaptive settings.

3.3 Emotion-guided Domain-adaptive
Framework

We propose the cumulative use of domain adap-
tation and emotion-guided feature extraction for
cross-domain fake news detection. Our approach
aims to improve the feature alignment between
different domains using adversarial domain adap-
tation, by leveraging the correlation between the
emotion and the veracity of a text (as shown in Fig-
ure 1(4)). Figure 2 shows our proposed framework.
We use an LSTM-based (Hochreiter and Schmid-
huber, 1997) feature extractor, which is trained
using the accumulated loss from fake news classi-
fier, emotion classifier and the discriminator (aids
in learning domain-invariant features). LSTM can
be replaced with better feature extractors. We used
it specifically for easier comparison to non-adapted
emotion-guided and non-adapted single-task mod-
els. The domain classifier acts as the discriminator.
In our proposed framework, we do not use the truth
labels for the target dataset for domain adaptation.
However, we utilize the target domain emotion la-
bels in our approach to better align the two domains

using the emotion labels for supervised learning.
The fake news classification loss, emotion classi-
fication loss, adversarial loss, and total loss are
defined as in Equations 1, 2, 3, and 4:

LFND = min
θl,θf

ns∑

i=1

Li
f (1)

Lemo = min
θl,θe

ns∑

i=1

Li
es +

nt∑

j=1

Lj
et)) (2)

Ladv = min
θd

(max
θl

(

ns∑

i=1

Li
ds +

nt∑

j=1

Lj
dt)) (3)

LTotal = (1−α−β)∗LFND + α ∗ (Ladv) + β ∗ (Lemo)
(4)

where ns and nt are number of samples in source
and target sets; θd, θf , θe and θl are parameters for
discriminator, fake news classifier, emotion classi-
fier and LSTM feature extractor; Lds and Ldt are
binary crossentropy loss for source and target clas-
sification; Les and Let are crossentropy loss for
emotion classification; Lf is binary crossentropy
loss for Fake News Classifier; α and β are weight
parameters in LTotal. We optimised α and β for
each setting for optimal performance.

We used 300 dimension GloVe (Pennington
et al., 2014) embeddings. All models were trained
for up to 50 epochs, stopped when the peak val-
idation accuracy for the in-domain validation set
was achieved. We used a batch size of 25 for ev-
ery experiment. Each model used the Adam opti-
mizer with learning rate 0.0025. We used an LSTM
layer with 256 units for feature extraction, while
both fake news detection and emotion classification
branches consisted of two dense layers each.

4 Experimental Analysis & Results

We evaluated our proposed approach on various
combinations of source and target datasets. Each
model was optimized on an in-domain validation
set from the source set. Table 1 illustrates our re-
sults proving the efficacy of using emotion-guided
models in non-adapted and domain-adapted cross-
domain settings. It compares non-adaptive mod-
els, domain-adaptive models, and our emotion-
guided domain-adaptive models in various set-
tings. MTL(E) and MTL(P) refer to emotion-
guided multi-task frameworks using Ekman’s and
Plutchik’s emotions respectively. STL refers to the
single-task framework. DA refers to the use of the
domain-adaptive framework, containing a discrimi-
nator. Some findings observed are:

77



Source 

Samples

Target 

Samples

Source 

Labels

Word Embeddings LSTM     
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Gradient
Reversal
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Loss

Loss

Unison's Emotion Detector

(Ekman/Plutchik)

Emotion Classifier      
Source Emotion Label

Target Emotion Label

Loss

Loss

Loss

Figure 2: Pictorial depiction of our emotion-guided domain-adaptive approach for cross-domain fake news detection.

Source Target Setting Accuracy

FakeNewsAMT Celeb

STL 0.420
MTL(E) 0.520
MTL(P) 0.530
DA STL 0.560

DA MTL(E) 0.540
DA MTL(P) 0.600

Celeb FakeNewsAMT

STL 0.432
MTL(E) 0.471
MTL(P) 0.476
DA STL 0.395

DA MTL(E) 0.501
DA MTL(P) 0.551

Politifact Gossipcop

STL 0.527
MTL(E) 0.555
MTL(P) 0.603
DA STL 0.585

DA MTL(E) 0.698
DA MTL(P) 0.671

Celeb Gossipcop

STL 0.488
MTL(E) 0.501
MTL(P) 0.490
DA STL 0.525

DA MTL(E) 0.555
DA MTL(P) 0.587

FakeNewsAMT Gossipcop

STL 0.451
MTL(E) 0.652
MTL(P) 0.620
DA STL 0.790

DA MTL(E) 0.805
DA MTL(P) 0.795

FakeNewsAMT Politifact

STL 0.363
MTL(E) 0.450
MTL(P) 0.530
DA STL 0.621

DA MTL(E) 0.704
DA MTL(P) 0.621

Table 1: Cross-domain evaluation of non-adaptive and
adaptive models on FakeNewsAMT, Celeb, Politi-
fact and Gossipcop datasets. Emotion-guided domain-
adaptive models (DA MTL(E) and DA MTL(P)) out-
perform their corresponding STL models in cross-
domain settings. Domain-adaptive MTL models con-
sistently outperform baseline STL, non-adaptive MTL
and domain-adaptive STL models.

MTL(E) and MTL(P) models outperform
their STL counterparts in cross-domain settings,
as seen in Table 1. This indicates improved ex-
traction of generalizable features by the emotion-

guided models, which aids in improved fake news
detection across datasets from different domains.

DA STL models generally outperform STL
models in cross-domain settings across multiple
combinations of datasets. However, we see the STL
model outperformed the DA STL model for Celeb
dataset as the source dataset and FakeNewsAMT
dataset as target, confirming that unguided adap-
tation can sometimes lead to negative alignment,
reducing the performance of the model.

DA MTL(E) and DA MTL(P) models im-
prove performance in cross-domain settings. Ta-
ble 1 shows improved results obtained using the
emotion-guided adversarial DA models over their
non-adaptive counterparts. This shows the scope
for improved feature extraction even after using
DA, and emotion-guided models act as a solu-
tion aiding in correct alignment of the samples
and features extracted by the adaptive framework
from different domains. Emotion-guided DA mod-
els mitigated the issue of negative alignment when
Celeb dataset was the source and FakeNewsAMT
dataset the target, where STL model outperformed
the DA STL model. The emotion-guided DA mod-
els helped correctly align the two domains, leading
to significantly improved performance.

5 Conclusion

In this work, we showed the efficacy of emotion-
guided models for improved cross-domain fake
news detection, and presented an emotion-guided
domain-adaptive fake news detection approach,
evaluating it against baseline STL, emotion-guided
MTL, DA STL and emotion-guided DA MTL mod-
els for various source and target combinations from
four datasets. Our proposed approach led to im-
proved cross-domain fake news detection accuracy,
indicating that emotions are generalizable across
domains and aid in better alignment of different
domains during domain adaptation.
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Abstract

This paper aims to provide an unsupervised
modelling approach that allows for a more flexi-
ble representation of text embeddings. It jointly
encodes the words and the paragraphs as indi-
vidual matrices of arbitrary column dimension
with unit Frobenius norm. The representation is
also linguistically motivated with the introduc-
tion of a novel similarity metric. The proposed
modelling and the novel similarity metric ex-
ploits the matrix structure of embeddings. We
then go on to show that the same matrices can
be reshaped into vectors of unit norm and trans-
form our problem into an optimization problem
over the spherical manifold. We exploit mani-
fold optimization to efficiently train the matrix
embeddings. We also quantitatively verify the
quality of our text embeddings by showing that
they demonstrate improved results in document
classification, document clustering, and seman-
tic textual similarity benchmark tests.1.

1 Introduction

Most unsupervised text embedding models are
trained by encoding the words or paragraphs ac-
quired from the training data as a feature length vec-
tor, with the assumption that they reside in the Eu-
clidean space. Such models are ubiquitous for good
reason. Aside from their efficiency, they have also
proven to be very effective providing us with state
of the art results in various intrinsic and extrinsic
embedding evaluation tasks. Word2vec(Mikolov
et al., 2013b,a), and GLoVE (Pennington et al.,
2014) are two notable examples where word em-
beddings are learned in the Euclidean space and
are trained to be oriented such that word vectors
that appear in the same context have higher cosine
similarity. Some of the most common methods of
intrinsic evaluation of word embeddings include
word similarity, word analogy, and compositional-

1https://github.com/SouvikBan/matrix_
rep

ity. Doc2vec (Le and Mikolov, 2014), an unsu-
pervised document embedding model generalises
the training method introduced in Word2vec to
documents and achieves improved results in vari-
ous downstream tasks like sentiment analysis, in-
formation retrieval and multi-class classification.
There are other document embedding models like
skip-thought (Kiros et al., 2015) and infersent (Con-
neau et al., 2017; Moghadasi and Zhuang, 2020).

The joint spherical embedding model, JoSE as
proposed in (Meng et al., 2019), shows that direc-
tional similarity is often more effective in tasks
such as word similarity and document clustering.
They show that when embeddings are trained in
the Euclidean space, there is a performance gap be-
tween the training stage and usage stage of text em-
beddings. To bridge that gap, they propose a model
which trains both words and paragraphs on a spher-
ical space with tools from Riemannian optimiza-
tion methods. The resulting embeddings are also
shown to give considerably better results in word
similarity, document clustering, and document clas-
sification tasks when compared with other standard
models. Such application of manifold geometry has
also been explored in substantial depth in works
like (Batmanghelich et al., 2016; Reisinger et al.,
2010; Gopal and Yang, 2014). There are also other
notable Riemannian optimization based embedding
training models like (Tifrea et al., 2018; Nickel and
Kiela, 2017) which train embeddings on the hyper-
bolic manifold space and uses its tree like property
for better hierarchical representation of data. Hy-
perbolic word embeddings are also intrinsically
linked with Gaussian word embeddings (Vilnis and
McCallum, 2014) which gives a lot more insight
into the geometry of word embeddings.

However, most of these text embedding models
like JoSE, Word2vec, Doc2vec, and fastText
(Bojanowski et al., 2017; Meng et al., 2020) are
trained with the goal of getting a single dense vec-
tor representation per word or document. These
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models treat both polysemous and monosemous
words in the same way resulting in the most fre-
quent meaning of the word dominating the others
or the meanings getting mixed in the case of former.
It is especially detrimental for documents where we
use a single dense vector representation to encode
information which span over several sentences, of-
ten involving multiple topics.

This paper aims to address this problem by us-
ing matrices as the mode of representation instead
of vectors. Our model is the joint word and docu-
ment training generative model proposed in JoSE
where we replace the cosine similarity metric with
a novel metric that exploits the matrix structure of
the embeddings. This robust metric takes word or
document matrices of arbitrary number of columns
and calculates the similarity between them. We
also show that a few reshape operations allow us to
reformulate the optimization problem of our model
in terms of the spherical manifold optimization
problem. Thus, we offer more flexibility in the way
of matrix dimensions while retaining efficiency.
Our choice of metric also suggests that the word,
sentence, paragraph/document embeddings do not
need to have the same number of columns, which
has linguistic validation.

2 Matrix Representation of Texts and
Optimization Problem

The text embeddings are represented as elements
of the following set

S(p, r) = {X ∈ Rp×r : ||X||F = 1},

where r ≤ p and ∥·∥F denotes the Frobenius norm.
The Frobenius norm is the matrix norm of a p× r
matrix X defined as the square root of the sum of
the absolute squares of its elements, i.e.,

||X||F =

√√√√
p∑

i=1

r∑

j=1

x2ij .

Our model design is consistent with JoSE
where it is assumed that text generation is a two-
step process: a center word is first generated ac-
cording to the semantics of the paragraph, and then
the surrounding words are generated based on the
center word’s semantics. Consider a positive tuple
(U ,V,D) where word V appears in the local con-
text window of word U in paragraphD and negative
tuple (V,U ′,D) where U ′ is a randomly sampled
word from the vocabulary serving as a negative

sample. We represent words V,U ,U ′ as matrices
V,U,N which are elements of the set S(p, r1) and
paragraphD as matrix D which is an element of the
set S(p, r2), where p, r1, r2 > 0. From a linguistic
perspective, these matrices can be considered as a
set of latent variables that govern the semantics of
a word or a document. Each column is given some
arbitrary unit of linguistic information to encode, a
latent variable which contributes to the mathemat-
ical representation of a word or a document. For
example, the columns of a matrix D that represent
the document D might encode latent variables that
contain information about some topic contained
in that document. Similarly, the columns of the
word matrix U might encode information about a
specific context in which a polysemous word U
appears. We also keep the number of columns for
word matrices less than or equal to the number
of columns for sentence/document matrices, i.e.,
r1 ≤ r2, so that the number of latent variables gov-
erning a word should not be more than the ones
that govern a sentence or paragraph.

Novel metric. To model the above mentioned
linguistic representation mathematically, we define
a novel similarity metric for the ambient space in
which we train our matrix embeddings. The pro-
posed metric function is a measure of similarity
between two sets of latent variables (matrices) - a
function analogous to the cosine similarity measure
for vectors in the Euclidean space. Given two arbi-
trary matrices A ∈ S(p, r1),B ∈ S(p, r2), we pro-
pose the similarity metric g : S(p, r1)×S(p, r2)→
R as

g(A,B) =
∑r1

i=1

∑r2
j=1 a

⊤
i bj

r1r2
, (1)

where A = [a1 a2 · · · ar1 ] , B = [b1 b2 · · · br2 ] ,
ai, bj ∈ Rp ∀i ∈ [1, 2, · · · r1] , ∀ j ∈ [1, 2, · · · r2].

Motivation for our similarity metric. The met-
ric g (1) calculates the average of all the entries in
the matrix A⊤B. The linguistic intuition behind the
choice of this metric is that we want to define a met-
ric that takes the average of dot products between
all possible pairs of latent variables (columns) from
each matrix. In the case of r1 = r2 = 1, g(A,B)
reduces to the cosine similarity metric between unit
norm vectors A and B which is the metric used in
the spherical space model of JoSE. However, in
the case of higher values of r1, r2, For example,
let two words V1 and V2 be represented by pro-
posed p × r1 matrix embeddings - V1 = [a1, a2]
and V2 = [b1, b2], where p = 1 and r1 = 2. The
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proposed similarity metric g(V1,V2) is computed
as (a1b1 + a1b2 + a2b1 + a2b2)/4. Note that this
is different from computing the cosine similarity
which gives (a1b1 + a2b2). Moreover, the regular
cosine similarity between word and paragraph em-
bedding matrices with unequal dimensions (p× r1
and p × r2 respectively) is not defined. On the
other hand, our proposed similarity metric is still
applicable.

Modelling. As our model has the same gen-
erative process as JoSE, we take the same max-
margin loss function and substitute the cosine simi-
larity metric with our new similarity metric g where
the word matrices U,V,N ∈ S(p, r1) and para-
graph matrix D ∈ S(p, r2) with r1 ≤ r2. We get
the following loss, i.e.,

L(V,U,N,D)
= max (0,m− g(V,U)− g(U,D)

+ g(V,N) + g(N,D)).
(2)

where m > 0 is the margin.
Optimization. For the purpose of optimization,

matrices of different dimensions are reshaped and
embedded into Riemannian spherical manifolds of
different dimensions. Overall, they are combined
using the Riemannian product manifold structure.
Therefore, the optimization of L (2) is done by per-
forming two reshape operations per iteration while
training. For example, the unit Frobenius norm
matrices of dimension Rp×r can be reshaped into
vectors of dimension Rpr with the unit norm. To
calculate the value of our loss function (2) at every
iteration and the Euclidean gradient (partial deriva-
tives), the vectors in question are reshaped into
matrices for calculating the g values and their gradi-
ents. Subsequently, the matrices are reshaped back
into vectors. We then apply the Riemannian gra-
dient descent update rule to update the parameters
(Meng et al., 2019; Absil et al., 2008; Smith, 2014;
Edelman et al., 1998). Note that our proposed
modelling and optimization are different from just
training on the spherical manifold with unit vectors
and using the cosine similarity metric (which is the
case in JoSE).

3 Experiments

To highlight the quality of our obtained matrix rep-
resentations, we run the same set of evaluations as
JoSE with a relatively lower number of columns,
i.e., 1 ≤ r1 ≤ r2 ≤ 6. We notice that for even
higher values, the quality of our embeddings grad-

ually decrease. Moreover, the word similarity ex-
periment results are not added as words seemingly
do not benefit from our representation directly. In-
deed, the best word similarity score are obtained
for r1 = r2 = 1. Instead, we add semantic textual
similarity benchmark tests to show that sentences
can benefit from this matrix representation model.
Unless otherwise stated, our model and JoSE are
trained for 35 iterations on the respective corpora;
the local context window size is 5; the embedding
dimension is kept at 100; the number of negative
samples are 2. Other hyperparameters in our model
are kept the same as JoSE.

3.1 Document Clustering
We perform document clustering on the 20 News-
group2 dataset using spectral clustering. Each para-
graph in the dataset is separated by a new line and
is considered a separate document while training.
JoSE uses K-Means and SK-Means as the clus-
tering algorithm that assume the ambient space to
be the Euclidean and the spherical space, respec-
tively. Our non-Euclidean space with its custom
metric requires a clustering algorithm that allows
the freedom of using custom metric, i.e., the algo-
rithm should be space agnostic. We found spectral
clustering to suit those requirements perfectly. The
four external measures used for validating the re-
sults are kept unchanged from JoSE (Banerjee
et al., 2005; Manning et al., 2008; Steinley, 2004).
These measures are Mutual Information (MI), Nor-
malized Mutual Information (NMI), Adjusted Rand
Index (ARI), and Purity. We run the clustering algo-
rithm with our custom similarity metric as written
in (1) with kernel coefficient, γ = 0.001. Table
1 shows quantitatively how matrix representations
benefit document embeddings for clustering tasks.
Keeping r1 = 1 fixed, we see a steady increase in
performance as r2 is increased from 1 (the score of
our baseline model - JoSE ) to 6.

3.2 Document Classification
Following (Meng et al., 2019), the document clas-
sification evaluations are ran on the following two
datasets: the topic classification 20 Newsgroup
dataset (which we used for document clustering as
well) and a binary sentiment classification dataset
consisting of 1 000 positive and 1 000 negative
movie reviews3. The train/test split is the origi-

2http://qwone.com/~jason/20Newsgroups/
3http://www.cs.cornell.edu/people/

pabo/movie-review-data/
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Table 1: Evaluation results for spectral clustering of
document embeddings on the 20 Newsgroup dataset
for kernel coefficient, γ = 0.001 (r1 = 1, r2 = 1
is JoSE score). Document embeddings benefit from
matrix representations as demonstrated by better scores
for higher values of r2. Here, r1 = 1.

r2 , r1 = 1 MI NMI ARI Purity
r2 = 1 1.73 0.58 0.45 0.64
r2 = 2 1.75 0.59 0.46 0.63
r2 = 3 1.75 0.59 0.46 0.62
r2 = 4 1.77 0.60 0.46 0.63
r2 = 5 1.84 0.62 0.49 0.65
r2 = 6 1.85 0.62 0.49 0.67

Table 2: F1-macro, F1-micro for 20 Newsgroup dataset
classification using K-NN with K=3 (r1 = 1, r2 = 1
is JoSE score). Increasing the value r2 benefits docu-
ments embeddings in classification tasks.

r1\r2 r2=1 r2=2 r2=3 r2=4
r1=1 0.74, 0.74 0.77, 0.77 0.78, 0.78 0.78, 0.78
r1=2 – 0.76, 0.76 0.77, 0.77 0.76, 0.77
r1=3 – – 0.76, 0.76 0.73, 0.74
r1=4 – – – 0.72, 0.72

nal split for 20 Newsgroup while for the movie
review datasets, the splitting is done by randomly
selecting 80% of the data as training and 20% as
testing. The classification algorithm we use is K-
NN with k = 3 and a custom distance metric that is
suitable for our space. The custom distance metric
for two paragraph matrices U = [u1 u2 · · · ur2 ]
and V = [v1 v2 · · · vr2 ] where U,V ∈ S(p, r2)
and ui, vi ∈ Rp ∀i ∈ [1, 2, · · · , r2] is defined as

dist2(U,V) =
∑r2

k=1

∑r2
l=1(uk−vl)⊤(uk−vl)

r22
. (3)

The intuition for the distance metric in (3) comes
from our interpretation of each individual column
as encoding a latent variable governing the seman-
tics of that specific document. A quick look at (3)
tells us that the distance metric takes the square
root of the average of the squared Euclidean dis-
tances between all pairs of columns formed from
one matrix with another. Tables 2 and 3 list the
Macro-F1 and Micro-F1 scores for 20 Newsgroup
dataset and Movie Reviews dataset respectively for
increasing values of r1 and r2. We again see an
increase in scores for higher values of both r2 and
r1 compared to JoSE (r1=1, r2=1).

3.3 Semantic Textual Similarity Task
Semantic Textual Similarity Benchmark comprises
a selection of the English datasets used in the STS

Table 3: F1-macro, F1-micro for movie review dataset
classification using K-NN with K=3 (r1 = 1, r2 = 1 is
the JoSE score).

r1\r2 r2=1 r2=2 r2=3 r2=4
r1=1 0.74, 0.74 0.75, 0.75 0.76, 0.76 0.75, 0.76
r1=2 – 0.75, 0.75 0.75, 0.75 0.74, 0.74
r1=3 – – 0.74, 0.74 0.76, 0.76
r1=4 – – – 0.74, 0.74

Table 4: Pearson Correlation for STS Benchmark on dev
and test data (r1 = 1, r2 = 1 is the JoSE score). Even
sentences can benefit from our matrix representation as
demonstrated by better scores with higher values of r2.

r1\r2 r2=1 r2=2 r2=3 r2=4
r1=1 0.51, 0.40 0.51, 0.39 0.52, 0.40 0.53, 0.40
r1=2 – 0.53, 0.40 0.53, 0.40 0.53, 0.40
r1=3 – – 0.53, 0.40 0.54, 0.40
r1=4 – – – 0.53, 0.40

tasks organized in the context of SemEval (Cer
et al., 2017) between 2012 and 20174. We per-
form semantic textual similarity tasks on the sts-
benchmark dataset to show that even sentences can
benefit from being represented as matrices. The
benchmark comprises of 8 628 sentence pairs split
into 3 partitions: train, development and test. The
results are reported on both the test and dev sets.
Each sentence in the dataset is treated as a sepa-
rate document by our model and we use all the
sentences in the train, development and test set to
train. The rationale for this is that the model is
completely unsupervised, i.e., it takes only the raw
text and uses no supervised or annotated informa-
tion, and thus there is no need to hold out the test
data as it is unlabelled. We train for 1 000 iters
with window size 15 and negative samples 5 while
the rest of the hyperparameters were kept at their
default values. To score a sentence pair representa-
tion, similarity was computed between them using
our custom metric described in 1 for our model. We
report the dev and test Pearson correlation score
for r1, r2 = 1, 2, 3, 4, r1 ≤ r2. As Table 4 reports,
higher values of r2 give better scores compared to
our baseline model JoSE (r1 = r2 = 1).

4 Conclusion

In this paper, we extend the joint modelling idea
used for training text embeddings from vectors with
unit norm to matrices with unit Frobenius norm.

4http://ixa2.si.ehu.eus/stswiki/index.
php/STSbenchmark
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Each word/sentence/document matrix is made to
encode information in a way that each column of
the matrix represents some latent topic, context,
or discourse. Since the standard vector dot prod-
uct can no longer be applied, we introduce a novel
similarity metric that allows the measurement of
similarity between matrices of arbitrary number of
columns. For optimization simplicity, we reshape
our matrices to vectors of unit norm that allows us-
ing the Riemannian gradient descent optimization
algorithm on the spherical manifold. Our theory is
validated quantitatively by the results which shows
that our text embeddings outperform or produce
similar results when compared with JoSE in docu-
ment classification, clustering, and semantic textual
similarity tasks.

This paper is meant to serve as a ground work
for more involved research topics which integrate
concepts of differential geometry and NLP. Future
directions could include qualitative analysis on the
columns of the matrices to see what tangible in-
formation they encode which will allow for better
modelling. Another direction would be to exploit
other matrix structures on the embeddings, e.g.,
treating each word embedding as a symmetric pos-
itive definite matrix and to study whether they can
be beneficial.
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Abstract
Many image captioning tasks have been car-
ried out in recent years, the majority of the
work being for the English language. A few
research works have also been carried out for
Hindi and Bengali languages in the domain.
Unfortunately, not much research emphasis
seems to be given to the Nepali language in this
direction. Furthermore, the datasets are also
not publicly available in the Nepali language.
The aim of this research is to prepare a dataset
with Nepali captions and develop a deep learn-
ing model based on the Convolutional Neural
Network (CNN) and Transformer combined
model to automatically generate image captions
in the Nepali language. The dataset for this
work is prepared by applying different data pre-
processing techniques on the Flickr8k dataset.
The preprocessed data is then passed to the
CNN-Transformer model to generate image
captions. ResNet-101 and EfficientNetB0 are
the two pre-trained CNN models employed for
this work. We have achieved some promising
results which can be further improved in the
future.

1 Introduction

Image Caption generation is one of the Computer
Vision and Natural Language Processing (NLP)
tasks which generates the description of an image.
It can be used to aid visually impaired people for
describing scenarios, for image indexing, creating
image-based search engines, annotating news im-
ages, and many more. Automatically captioning an
image is one of the main goals of scene understand-
ing in Computer Vision. The caption generation
model should handle the challenges of identifying
the objects in an image as well as capturing and
expressing their description in the natural language
(Xu et al., 2015). It is a complex process compared
to the existing object detection and classification
tasks. In this regard, Computer Vision techniques
are used to understand the contents and extract fea-
tures from the image whereas the Natural Language

Processing techniques generate words or descrip-
tions from the extracted features in the right order
(Srinivasan and Sreekanthan, 2018).

Recent advancements in NLP and Computer Vi-
sion have paved the way to perform various tasks
using the native language. Image captioning for the
Nepali language is one of the least researched top-
ics and very limited literature are available owing
to the language complexity and unavailability of
datasets. The only work carried out in this domain
was proposed by Adhikari and Ghimire (2019)
which employs a traditional CNN-RNN encoder-
decoder architecture. Hindi, Marathi, and Konkani
are some of the other languages that share similar
grammatical structures as the Nepali language as
all of these languages use the Devanagari script.
Additionally, Bengali language also belongs to the
Indic language groups along with other languages
mentioned above. Hence, this work is an attempt to
develop image captioning for the Nepali language
with reference to the existing works. Some of the
existing works in this field include Hindi image cap-
tioning techniques shown by Mishra et al. (2021)
and Bengali image captioning proposed by Palash
et al. (2021).

In this research, we propose a CNN-Transformer-
based Nepali Image Captioning model. The reason
behind opting the transformer network is its wide
applicability in today’s Natural Language Process-
ing domain as well as its performance in image
captioning tasks for other languages. It is compu-
tationally faster than RNN as it supports parallel
processing. Furthermore, transformer networks
have not been implemented for Nepali image cap-
tioning so far and hence, this work to the best of
our knowledge is the first to implement it. The
main focus of this study is to create Nepali datasets
and develop a CNN-Transformer model to gener-
ate Nepali captions. The remainder of this paper
is arranged in the following order: Section 2 dis-
cusses some of the related works, Section 3 shows
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the methodology used, and Section 4 consists of
results and discussions of the work followed by a
conclusion and future directions.

2 Related Works

Various works have been carried out in the image
captioning domain, especially in resourceful lan-
guages such as English. A significant number of
research works can also be seen in Hindi and Ben-
gali which are closely related to the Nepali lan-
guage. Adhikari and Ghimire (2019) proposed the
only work in Nepali that utilizes the two encoder-
decoder models with and without visual attention
inspired by (Xu et al., 2015). The models use
ResNet-50 as encoder and LSTM/GRU as decoder
respectively trained on MS COCO datasets after
translating and preprocessing. Mishra et al. (2021)
proposed a transformed-based encoder-decoder ar-
chitecture for image captioning for the Hindi lan-
guage where ResNet-101 is used as an encoder and
Transformer as a decoder. They have outlined the
problems with RNN architecture and proposed a
transformer model with a stacked attention mech-
anism to decode the image feature vectors into
sentences. The authors have calculated BLEU1,
BLEU2, BLEU3, and BLEU4 scores with values
of 62.9, 43.3, 29.1, and 19.0 respectively. Similarly,
Palash et al. (2021), Shah et al. (2021), and Ami
et al. (2020) have proposed image captioning in the
Bengali language using CNN and transformer net-
works. Palash et al. (2021) have used ResNet-101
for extracting image features whereas Shah et al.
(2021) and Ami et al. (2020) opted for two pre-
trained CNN models: InceptionV3 and Xception.
Palash et al. (2021) used BanglaLekha datasets for
training and testing the model. Similarly, Ami et al.
(2020) have used Flickr8k datasets after preprocess-
ing and the work is extended by Shah et al. (2021)
using BanglaLekha datasets. BLEU1, BLEU2,
BLEU3, BLEU4, and METEOR scores obtained in
Palash et al. (2021) work are 0.694, 0.580, 0.505,
2.22e-308, and 0.337 respectively which is better
compared to (Mishra et al., 2021). Moreover, Shen
et al. (2020) proposed a new model for remote
sensing image captioning tasks for the English lan-
guage. The transformer-based decoder was used
to generate captions from the image features. The
semantic and spatial features were extracted from
the image using CNN. To capture a deeper relation-
ship between image features and text descriptions,
the semantic features were added to the decoder’s

every single sub-layer. The datasets used for this
research were obtained from the Sydney Dataset,
Remote Sensing Image Caption Dataset (RSICD),
and UCM Dataset.

The above literature suggests that different
works have been carried out in the image caption-
ing domain in several languages and most of them
have concluded that transformer networks perform
better than traditional CNN-RNN architecture. In
this regard, the Nepali image captioning system
using transformers is yet to be explored and the
Nepali caption datasets are also not publicly avail-
able. Based on these facts and literature, a CNN-
Transformer model is attempted to implement in
this research.

3 Methodology

The methodology employed for this research in-
volves experimentation of data on the model archi-
tecture. The datasets for Nepali image captions are
not available publicly, hence two procedures are
followed for developing the Nepali image caption-
ing system. The first step involves dataset prepa-
ration, followed by model architecture design and
implementation.

3.1 Dataset Preparation
The dataset preparation involves two tasks: Dataset
collection and Dataset preprocessing. The dataset
thus prepared is divided into three parts - for train-
ing, validation, and testing purposes.

3.1.1 Dataset Collection
The datasets used for this research are collected
from the Flickr8k public dataset1. It consists of
more than 8000 images with 5 captions each. These
are open-source public datasets. The datasets are
originally developed for the English language there-
fore, they require preprocessing to make them us-
able for our research purpose.

3.1.2 Dataset Preprocessing
It is an integral part of this research because there
are not any publicly available datasets for the
Nepali language. Furthermore, the grammatical
structure of the Nepali language is a lot more com-
plex compared to the English language. In order to
solve these problems and make our research more
focused on the Nepali language, the following pro-
cedures are performed.

1https://forms.illinois.edu/sec/
1713398
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Caption conversion to Nepali The captions in
the Flickr8k dataset are in the English language,
therefore, to use these datasets in our context, they
should be translated into the Nepali language. Such
a translation is done using the Google translate API.
Each line of the English caption file is translated
and appended to a new text file.

Manual correction and annotation The trans-
lated texts using Google translate may contain var-
ious errors. The translations may not reflect the
context of the image, thereby, generating incorrect
captions or incurring a loss in the meaning of the de-
scriptions of the image. We handle such problems
through manual human corrections. The incorrect
or garbage captions are either corrected or removed
depending on their quality. It was not feasible to
hire an expert therefore, we performed this task
ourselves at the lab. Furthermore, the developed
captions are randomly sampled to check for any
irregularities.

Data Cleaning The translated and modified cap-
tions are further preprocessed to remove punctu-
ations and numeric values. In this phase, all the
unwanted characters and data from the captions are
removed.

Generating Vocabulary and Text Vectorization
A text vocabulary is generated from the translated
captions by extracting all the unique words from
the image description. In this work, a total of over
14,000 unique words are present in the vocabulary.
Moreover, since the machines don’t understand
the natural language it must be converted to some
numerical data to map each vocabulary word to a
unique index value. This process is done using a
built-in Text Vectorizer function available in the
Keras library.

Dataset Creation The cleaned captions data are
then split into three sets (Training set, Validation
set, and Testing set) with 6000, 1000, and 1000
images respectively. The captions data are then
mapped with the respective images and zipped to-
gether to create datasets for training and validation
using the TensorFlow ‘Dataset’ library. The dataset
created in this work can be found on Github2.

3.2 Model Design and Implementation
The proposed system for Nepali image caption-
ing comprises a CNN model for image feature ex-

2https://github.com/bipeshrajsubedi/
Flickr8k_Nepali_Dataset

Figure 1: Overall architecture of the system

traction and a Transformer network for language
modelling. Figure 1 shows the system architec-
ture for this work. The CNN model can be devel-
oped from scratch but due to its advancement in
recent years more accurate and efficient pre-trained
models are available for use. Hence, ‘EfficientNet’
and ‘ResNet101’ are used to extract image features.
These models are the pre-trained models trained
on the Imagenet dataset. The CNN encodes the
input image to a vector representation that is used
by the decoder to generate captions. Since this
work is not a classification task, the final softmax
layer is removed from the CNN. Residual networks
are deep neural networks that use the concept of
skip connections to tackle the vanishing gradient
problem (a problem where the gradient values of
weights become very low for the machine to train
efficiently) (He et al., 2015). ResNet-101 is a vari-
ant of a residual network with 101 layers, mainly
composed of two blocks: Identity Block and Con-
volution Block. ResNet is one of the most used
pre-trained CNN models in deep learning, espe-
cially in the Image Captioning domain. On the
other hand, EfficientNet is a CNN model as well as
a scaling technique that uses a set of preset scaling
coefficients to uniformly scale depth, width, and
resolution dimensions, in contrast to standard prac-
tice, which scales these variables arbitrarily (Tan
and Le, 2019). There are 8 variants of EfficientNet
(B0 - B7). EfficeintNetB0 is used for this research
because of its simplicity and relatively good perfor-
mance.

The transformer model is used to generate cap-
tions instead of the conventional Recurrent Neural
Network-based architecture because RNN doesn’t
support parallelization and transformer networks
have outperformed RNN in NLP tasks in recent
years. Our proposed system follows the trans-
former architecture proposed by (Vaswani et al.,
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Model Architecture
Model A ResNet-101 + Transformer
Model B EfficientNetB0 + Transformer

Table 1: Different model architectures

2017). The main components of the transformer
networks consist of the encoder, decoder, posi-
tional encoding, embeddings, softmax, and multi-
headed attention. Attention is utilized in the trans-
former model to find the relevant collection of val-
ues based on a few keys and queries. Attention
weights, which are derived using the encoder hid-
den state (Key) and decoder hidden state (Value),
have recently been used to give priority to distinct
encoder hidden states (values) in processing the
decoder states (query) (Mishra et al., 2021). Sin-
gle attention-weighted values have been found to
be insufficient to capture the many features of the
input. The transformer model thus employs multi-
headed attention for tackling this challenge. Simi-
larly, positional encoding is used by the transformer
networks to keep information about the order of se-
quence by adding the relative or absolute position
of the tokens in sequence (Vaswani et al., 2017).
The positional encodings are added to the bottom
of the encoder and decoder stacks.

In order to implement our model, the datasets
generated are passed to both of the CNN-
Transformer architectures mentioned in Table 1.
The input images of size (299x299) are passed to
the CNN encoder to generate image vectors. The
image vectors are then passed to the transformer en-
coder. The transformer decoder part is fed with the
respective captions to train the model. The encoder
part comprises a single multi-headed attention head
and a normalization layer whereas 2 multi-headed
attention heads and 3 normalization layers are used
in the decoder. These models are implemented us-
ing the TensorFlow Keras library. Table 2 shows
the model parameters used in this work.

The model parameters are chosen based on ex-
plicit experimentation on our Nepali dataset. These
are the optimal parameter values as per our research
which can be further improved with the introduc-
tion of larger datasets and via parameter tuning.

4 Results and Discussions

The outcome of this work comprises the Nepali
image captions dataset and experimental results
of the model performance. A dataset of over

Parameters Value
Image Size (299,299)

Max. Vocab Size 15000
Sequence Length 20
Embedding Size 512

Batch Size 128
Optimizer Adam

Loss Function Categorical-crossentropy

Table 2: Model Parameters

40,000 Nepali image-caption pairs is created which
are split into training, validation and testing sets.
BLEU metric is used for quantitative analysis of
the proposed system which is the most commonly
used metric for text evaluation that shows the com-
parison of candidate translation with one or more
reference translations (Google, 2022). Four BLEU
scores (BLEU-1, BLEU-2, BLEU-3, and BLEU-
4) are typically calculated in the context of image
captioning. These scores evaluate merely match-
ing grams of a certain order, such as single words
(1-gram) or word pairs (2-gram or bigram), and
so forth. BLEU score ranges from 0 to 1 where
a score between 0.6 to 0.7 is considered to be the
best achievable result but at the same time, a score
between 0.3 to 0.4 is considered an understandably
good translation and a score greater than 0.4 is con-
sidered high-quality translation(Google, 2022). In
this work, BLEU score is calculated on the overall
test data at once using the NLTK bleu library3. Ta-
ble 3 shows the obtained results from this work as
well as results from the existing works in Hindi and
Bengali languages proposed by Mishra et al. (2021)
and Shah et al. (2021) respectively. The obtained
results demonstrate that Model B performs slightly
better than Model A keeping the model parameters
unchanged. The obtained scores imply that the pro-
posed work has shown promising results and can
be further improved in future. On the other hand,
the first two BLEU scores are not as good com-
pared to image captioning for Hindi and Bengali
but can nevertheless serve as a reference for Nepali
image captioning. It can also be seen that the last
two BLEU scores are higher than that of Mishra
et al. (2021) but lower than Shah et al. (2021). It
is found that the predicted sentence generally de-
scribes the context of the image where its meaning
is preserved but the words do not match with the

3https://www.nltk.org/api/nltk.
translate.bleu_score.html
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Model B-1 B-2 B-3 B-4
Model A 0.49 0.40 0.37 0.34
Model B 0.52 0.42 0.37 0.34

Shah et al. (2021) 0.66 0.55 0.47 0.40
Mishra et al. (2021) 0.62 0.43 0.29 0.19

Table 3: Performance of different models

reference sentences in a specific order which leads
to a lower BLEU score. Nevertheless, this is a pi-
oneer work for Nepali image caption generation
using transformers and hence can be used as a ref-
erence model. Some of the sample outputs of this
work are shown in Figure 2.

5 Limitations

The proposed models have not acquired sufficient
accuracy and are not able to generate the de-
sired captions for all input images. Moreover, the
datasets are also limited and only two pre-trained
CNN models are considered for this work. Sim-
ilarly, the hyperparameters may not be optimally
tuned due to limited experimentations. Such limita-
tions can affect the model’s efficiency. We consider
addressing them in future.

6 Conclusion and Future works

In this research work, a CNN-Transformer-based
Nepali Image Captioning system is implemented.
At first, the Flickr8k datasets are translated and pre-
processed to create a Nepali captions dataset. The
datasets are then fed to two models: Model A and
Model B with the same model parameters. The out-
come of this experiment shows promising results.
Model B performed slightly better than Model A
on 40,455 Nepali image-caption pairs. Moreover,
these models are able to generate captions from the
given input image. On the other hand, this work has
some limitations as well which can be addressed in
the future. The experimentation on larger datasets
and fine-tuning of the hyperparameters can be per-
formed in future which are expected lead to better
results. MS COCO and Flickr30k datasets can be
used after preprocessing for this purpose. Similarly,
other CNN models such as InceptionV3, Xception,
EfficientNetB7 etc. can be explored for image cap-
tioning tasks. Furthermore, this research work can
be extended to video captioning for the Nepali lan-
guage as well.

Figure 2: Sample results obtained from our proposed
models
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Abstract

Verb Phrase Anaphora (VPA) is a universal
language phenomenon. It can occur in the
form of do so phrase, verb phrase ellipsis, etc.
Resolving VPA can improve the performance
of Dialogue processing systems, Natural Lan-
guage Generation (NLG), Question Answering
(QA) and so on. In this paper, we present a
novel computational approach to resolve the
specific verb phrase anaphora appearing as do
so construct and its lexical variations for the
English language. The approach follows a
heuristic technique using a combination of pars-
ing from classical NLP, state-of-the-art (SOTA)
Generative Pre-trained Transformer (GPT) lan-
guage model and RoBERTa grammar correc-
tion model. The result indicates that our ap-
proach can resolve these specific verb phrase
anaphora cases with 73.40 F1 score. The data
set used for testing the specific verb phrase
anaphora cases of do so and doing so is re-
leased for research purposes. This module has
been used as the last module in a coreference
resolution pipeline for a downstream QA task
for the electronic home appliances sector.

1 Introduction

Anaphora is a linguistic construct used for main-
taining coherence in the text without being repet-
itive. A solution to Anaphora Resolution (AR)
can improve the performance of downstream tasks
like Dialogue systems, Natural Language Gener-
ation (NLG), Question Answering etc. The pro-
cess of identifying the linguist element (anaphor)
that is referring to a preceding linguistic element
(antecedent) in the context is known as Anaphora
Resolution (AR).

According to Mitkov (2002), anaphoras can be
classified as pronominal anaphora, lexical noun
phrase anaphora, verb phrase anaphora, adverb
anaphora and zero anaphora. The current state-
of-the-art systems (Clark and Manning, 2016; Lee
et al., 2017; Joshi et al., 2019a) have obtained high

accuracy for the most prevalent type of anaphoras
i.e. pronominal anaphora and lexical noun phrase
anaphora cases. However, verb phrase anaphora,
adverb anaphora and zero anaphora still remain
unsolved due to the complexities involved in these
language phenomena. This paper deals with one
such case: verb phrase anaphora (VPA). The
verb phrase anaphor is resolved by a preceding
verb phrase plus any complement and adjunct as
the antecedent. The verb phrase anaphor constructs
occur as a combination of so, this, that, it and the
same thing along with do. Example 1 shows the
verb phrase anaphor doing so referring to the verb
phrase use energy saver mode as an antecedent. Be-
sides antecedent identification, the grammar also
enforces a syntactic modification to the antecedent
as "Using energy saver mode" for resolution in
reference to the anaphor.

[Use energy saver mode]1 in the air conditioner.
[Doing so]1 helps reduce the load on the pocket.

Antecedent substituted output: Using energy saver
mode helps reduce the load on the pocket.

Example 1

In this paper, we focus on the specific case of
so anaphora which is used in conjunction with the
verb form do. This construct is one of the most
frequent forms of verb phrase anaphora. The chal-
lenges posed by do so constructs are both semantic
and morphosyntactic in nature. The contributions
through this work are listed here as:

• A novel computational heuristic approach
using a combination of classical NLP,
transformer-based language model and a
grammar correction model to resolve specific
do so constructs as the anaphoric expression.

• A dataset of 350 data points of do so VPA
constructs in inter-sentence and intra-sentence
format is also released as a part of our research
contribution.

The paper is organized as follows: Section 2
discusses the syntactic and semantic challenges
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Figure 1: Proposed approach flow as the last module of a coreference resolution pipeline for a QA system.

associated with do so anaphor. Section 3 presents
the related literature with specific focus on verb
phrase anaphora. Section 4 describes our dataset
and the heuristic approach used to resolve verb
phrase anaphora. Section 5 analyses the results
obtained followed by conclusion and future work.

2 Challenges with do so construct

Anaphora and ellipsis are preferred linguistic mech-
anisms used in conversation. In general, any
anaphora resolution is a three step process: i)
Anaphor identification, ii) Antecedent candidates
identification, and iii) Choosing the most likely
antecedent candidate. The general resolution tech-
nique involves eliminative constraints based on gen-
der, number, semantic consistency and weighting
preference based on proximity, centering, syntac-
tic/semantic (role) parallelism between the anaphor
and antecedent (Sayed, 2003). But the verb phrase
anaphora is found to be resolved in a more complex
manner.

The anaphoric verb phrases such as do it, do
that, do so, ellipsis etc. are known to inherit the
properties from their referent. As in example 2, the
phrase did too not only refers to the event of eating
performed by John but also to properties such as
quietly and from the plate.

John [quietly ate the cake from the plate]1.
Jerry [did too.]1

Antecedent substituted output: Jerry quietly ate the
cake from the plate too.

Example 2

Verb phrase anaphora when resolved from a
discourse perspective departs on two aspects from
the standard approaches of entity resolution (Prüst
et al., 1994). First, it cannot be determined by
simply identifying the anaphoric verb phrase with

an antecedent verb phrase. The resolution process
must establish a syntactic/semantic parallelism
between clauses or discourse constituent units
in which the verb phrase occurs. Second, the
discourse structure significantly influences the
reference possibilities of verb phrase anaphora.

As we are working on a QA system for the home
appliances domain, we are faced with VPA con-
structs in the user manual for the devices. Thus,
our work focuses specifically on do so anaphora
construct in the QA problem which we are trying
to solve as a goal. It has been identified that do so
does not refer to only the verb alone but the entire
verb phrase consisting of the main verb, auxiliary
verb, its complements and adjuncts as constituted
in phrase structure grammar. For anaphora resolu-
tion, both terms share the load with do placing the
semantic requirement on the antecedent whereas
so is responsible for the anaphoric work.

My grandmother [knows all her grandchildren’s
names]1, and she manages to [do so]1 despite her

Alzheimer’s.
Example 3

The students, who [know French best]1, [do so]1

because they lived in France for a year.
Example 4

The do so construct also appears as the infini-
tive form as "to know..." in example 3 and in the
form where the antecedent is contained in a relative
clause "who know French ...", thus modifying the
subject of do so as in example 4. This syntactic
and semantic analysis of the construct highlights
the challenges it poses in resolving it.

3 Related Work

The research on computational anaphora and
coreference resolution has seen a paradigm shift
from heuristic approaches to machine learning ap-
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Data Points Inter-sentential Intra-sentential
350 210 (60%) 140 (40%)

(a) Distribution of inter-sentential & intra-sentential cases

Construct Type Data Points
Doing so construct 130

Do so construct 149
Others (did, does, these, this) 71

(b) Distribution of different types of verb anaphor cases

Table 1: Data distribution statistics of our dataset

proaches in both nominal-antecedent anaphora (Ng,
2010) and non nominal-antecedent anaphora (Kol-
hatkar et al., 2018) categories.

Specific to VPA, considerable work is seen in
the field of theoretical linguistics for different lan-
guages. Hankamer and Sag (1976) investigated
verb phrase anaphora as deep or surface anaphora
for the English language and Houser et al. (2006)
studied the same for the Danish language. Later,
Houser (2010) and Wei and hui Audrey Li (2016)
studied the syntactic and semantic challenges of do
so construct for the English and Mandarin language
respectively. In dialogue systems, the problem of el-
lipsis has been addressed by the use of a supervised
discriminative machine learning model (Kenyon-
Dean et al., 2016) and joint modelling with corefer-
ence and question-answering data (Aralikatte et al.,
2021). Liu et al. (2016) explored the decomposi-
tion of verb phrase ellipsis resolution into computa-
tional subtasks. Itegulov and Lebedeva (2018) ex-
perimented with identifying dependent type events
for verb phrase anaphora resolution. Marasović
et al. (2017) used an LSTM-Siamese Net mention-
ranking model to learn abstract anaphora resolution
or discourse deixis.

On the data front, datasets like OntoNotes (Prad-
han et al., 2012), WikiCoref (Ghaddar and Langlais,
2016) etc. are the common datasets used for
benchmarking the nominal-antecedent anaphora
and coreference resolution models. Other datasets
specifically addressing the verb phrase anaphora
cases are AARAU Corpus (Poesio et al., 2018),
CODI-CRAC 2021 Shared Task corpus (Khosla
et al., 2021) and VP ellipsis corpus (Bos and Spe-
nader, 2011). Though few instances of do so con-
structs are available in VPE corpus (Bos and Spe-
nader, 2011), we could not use it for our experiment
as our downstream QA system deals with a specific
pattern of do so construct.

As the VPA constructs are consistently coming
to the forefront of Dialogue systems and QA sys-
tems as a challenge, it motivated us to explore the
specific case of do so VPA construct and create a
dataset to manage our specific needs.

4 Experiment

4.1 Dataset

During the process of solving the language genera-
tion problem of a QA system, it has been noticed
that the SOTA entity resolution system (Joshi et al.,
2019b) is not able to resolve VPA cases. Since the
SOTA model is trained on the OntoNotes (Prad-
han et al., 2012) dataset, we explored its dataset
and guidelines. The coreference guidelines of
OntoNotes clearly state that verb is to be marked as
a single-word span only if it is coreferenced with
an existing noun phrase. With this guideline, it can
be inferred that the deep learning model trained on
this dataset will not be able to resolve the do so type
of verb anaphoras as the dataset is not annotated to
address these cases of VPA.

For our task, we constructed a targeted dataset
of 350 data points with surface variations of do
so VPA constructs, viz. doing so, does so, did so.
The dataset contains both kinds of cases where the
scope of the antecedent is either inter-sentential
or intra-sentential. The data points of do so VPA
constructs are collated from two sources: our QA
system which we are automating and BNC corpus1.
An equal number of data points were collated to
balance the data for generic VPA resolution and
coverage.

Two annotators helped us annotate the an-
tecedent span for each VPA in a standoff annotation
format. The antecedent span is annotated as clus-
ters with word index based on subword tokenizer
(Joshi et al., 2019b) output and stored in dictionary
format.

A kappa score of 0.89 indicates a high Inter An-
notator Agreement (IAA) for the antecedent spans.
The detailed data stats are given in table 1. The
evaluation and analysis in this paper are done on
our dataset. The dataset is released as part of the
contribution to further VPA research2.

1BNC Consortium, The British National Cor-
pus, XML Edition, 2007, Oxford Text Archive,
http://hdl.handle.net/20.500.12024/2554.

2https://github.com/Sandhya2207/VPA_
dataset
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Data MUC B-Cube CEAF-e F1-avg
R P F1 R P F1 R P F1

Baseline 37.43 77.38 50.46 35.24 77.9 48.53 32.5 79.97 46.22 48.40
Our approach 68.94 66.07 67.47 74.67 71.91 73.27 80.79 78.2 79.47 73.4

Table 2: Evaluation Result of output from our approach. (R: recall, P: precision, F1: F1 score)

Input Stage Process Input Output

SOTA model
Output

Coreference
Resolved using
SOTA

Shawn turned on the killer machine to kill mosquitoes.
Doing so, he says, narrows its prospects for survival.

Shawn turned on the killer machine to kill mosquitoes.
Doing so, Shawn says, narrows mosquitoes’ prospects
for survival.

Step-1
Identify the span of
probable VPA

Shawn turned on the killer machine to kill mosquitoes.
Doing so, Shawn says, narrows mosquitoes’ prospects
for survival.

S1: Shawn turned on the killer machine to kill mosquitoes.
S2: Doing so, Shawn says, narrows mosquitoes’ prospects
for survival.

Step-2
Get the constituency parse
string and consider only
verb phrase

S1: Shawn turned on the killer machine to kill mosquitoes.
["turned on the killer machine to kill mosquitoes",
" to kill mosquitoes",
" kill mosquitoes" ]

Step-3
Substitute verb anaphor
with verb phrases to get
candidate antecedents

[ "turned on the killer machine to kill mosquitoes",
" to kill mosquitoes",
" kill mosquitoes" ]

["turned on the killer machine to kill mosquitoes, Shawn says,
narrows mosquitoes prospects for survival. ",
"to kill mosquitoes, Shawn says, narrows mosquitoes’ prospects
for survival. ",
"kill mosquitoes, Shawn says, narrows mosquitoes’ prospects
for survival."]

Step-4

Get probability of correct
sentence using GPT LM
and pick the sentence with
lowest perplexity

["turned on the killer machine to kill mosquitoes, Shawn says,
narrows mosquitoes’ prospects for survival. ",
"to kill mosquitoes, Shawn says, narrows mosquitoes prospects
for survival. ",
"kill mosquitoes, Shawn says, narrows mosquitoes’ prospects for
survival."]

shawn turned on the killer machine to kill mosquitoes .
turned on the killer machine to kill mosquitoes, shawn says,
narrows mosquitoes’ prospects for survival .

Step-5
Correct the grammar for
subject-verb agreement

shawn turned on the killer machine to kill mosquitoes .
turned on the killer machine to kill mosquitoes, shawn says,
narrows mosquitoes’ prospects for survival.

shawn turned on the killer machine to kill mosquitoes .
turning on the killer machine to kill mosquitoes, shawn says,
narrows mosquitoes’ prospects for survival .

Table 3: Input and Output of each step of our approach as shown in figure 1

4.2 Our Approach

The coreference module of our QA system works
in stages. It begins with resolving all nominal an-
tecedent cases using the SOTA coreference model
(Joshi et al., 2019b). The nominal coreference clus-
ters identified by the SOTA model are mapped to
the input sentence to get noun coreference mapped
output text. This text forms the input to our VPA
module.

Figure 1 shows the flow of our proposed pipeline
approach. In step 1, the nominal coreference
mapped input text is checked for the presence of do
so and all its lexical forms, viz. doing so, does so,
did so. If the lexical text matches do so construct,
it is a candidate for VPA resolution and is further
checked for intra/inter sentential case based on the
location of do so construct. For inter-sentential
cases, the sentence preceding the sentence having
the do so phrase is considered as the scope of its
VPA antecedent. And, for the intra-sentential case,
part of the sentence preceding the do so phrase is
considered as the scope of its VPA antecedent.

In step 2, a constituency parse tree of the VPA
antecedent text from step 1 is generated using both
Stanford CoreNLP parser (Klein et al., 2003; Man-
ning et al., 2014) and constituency parser with
ELMo embeddings (Joshi et al., 2018) for im-
proved coverage.

From the generated parse tree, all the verb
phrases are extracted as possible antecedent candi-
dates and mapped in place of do so phrase to get
anaphora resolved candidates as in step 3. This
step leads to multiple candidates for identifying the
correct antecedent for VPA.

At step 4, we get the probability of each can-
didate sentence using the generative pre-trained
transformer (GPT) language model (Radford et al.,
2018). The intuition here is that a syntactically cor-
rect candidate sentence will have higher probability
as compared to incorrect candidate sentence. Us-
ing sentence probability we calculate the perplexity
of all the candidate sentences. The candidate sen-
tence with the lowest perplexity is considered as
the antecedent resolved VPA output sentence.

Since subject-verb agreement is required for
the correctness of the sentence in VPA, a pre-
trained RoBERTa grammar correction model
(Omelianchuk et al., 2020) is used to get subject-
verb agreement in antecedent mapped text in step
5. Table 3 shows the module output after each step.
Since the output of our system is to be consumed
by machines, the naturality of the sentence was less
of a concern.
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S. No. Input Baseline Output Our Approach Output Reference Output Remarks

1

Never put your money in a
sinking company .
In plainer terms ,

failure to do so leads to loss .

Never put your money in a
sinking company .
In plainer terms ,

failure to do so leads to loss .

Never put your money
in a sinking company.

In plainer terms ,
failure to put your
money in a sinking

company leads to loss .

Never put your money
in a sinking company.

In plainer terms, putting
your money in a sinking
company leads to loss .

Meaning changed for
negative sentence.

2

A dolphin that watches a model
place a ball in a basket might

place the ball in the basket
when asked to mimic t
he behavior, but it may

do so in a different manner.

A dolphin that watches a model
place a ball in a basket might
place a ball in a basket when
asked to mimic the behavior,
but A dolphin that watches

a model place a ball in a
basket may do so in a

different manner.

A dolphin that watches
a model place a ball

in a basket might place
a ball in a basket when

asked to mimic the behavior,
but A dolphin that watches

a model place a ball in a
basket may place a ball

in a basket when asked to
mimic the behavior ,

but A dolphin that watches a
model place a ball in a basket

may in a different manner.

A dolphin that watches
a model place a ball

in a basket might place
the ball in the basket
when asked to mimic

the behavior, but
dolphin may mimic

the behavior in a different manner.

In case of multiple verb phrases
as antecedent, not able to pick

the accurate verb phrase.
But the Verb phrase

is available in top 3 choices.

Table 4: Error analysis of the output from our approach

5 Result

The standard evaluation metrics used for anaphora
resolution is link based MUC score (Vilain et al.,
1995), mention based B3 score (Bagga and Bald-
win, 1998) and optimal mapping based CEAF-E
score (Luo, 2005). We evaluated our result using
the standard CoNLL 2012 metric (Pradhan et al.,
2012) which is calculated as an average of MUC,
B-cube and CEAF metrics. Table 2 shows the pre-
cision, recall and F1 score for each metric and their
average score. The baseline used for comparison
is the output from the state-of-the-art BERT e2e-
coreference model (Joshi et al., 2019b).

The high recall value for MUC, B-cube and
CEAF metrics indicates that our approach is able
to identify the antecedent and its span with higher
accuracy over the baseline model. And, the overall
average F1 score is showing an improvement of
25.0 value over the baseline. Table 3 shows the
input and output of each step in our module.

5.1 Qualitative Analysis

Table 4 shows the error analysis of some output
cases. It shows that our approach is not able to
manage the following sentence formats.

• Negative sentences are not semantically cor-
rect after VPA mapping as in row 1 of the
table.

• In case of multiple verb phrases in an-
tecedents, our approach is not able to identify
the boundary of prospective antecedent as in
row 2 of the table.

The innovative sentence constructs at the intra-
sentence level, the cataphor constructs and relative
clause constructs are still an open problem to be
addressed.

6 Conclusion and Future work

This paper presents a computational heuristic ap-
proach to resolve the do so verb phrase anaphora.
The approach uses a constituency parser to get all
the syntactic components of the text. From the
syntactic components, all the verb phrases from
preceding text is substituted in place of the verb
anaphor to generate the candidate sentences. A pre-
trained language model is used to select the most
probable antecedent.

The result shows that our approach can identify
the antecedent and its span with good accuracy
on the VPA dataset developed for this experiment.
The dataset used will be shared for further research.
In the future, we plan to resolve the span identi-
fication issue in the intra-sentential case of do so
construct where no conjunct is used as found in
our error analysis. we also plan to investigate if
our approach can be extended to other verb phrase
anaphora constructs in the English language.
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Abstract

Abstractive Summarization models are gener-
ally conditioned on the source article. This
would generate a summary with the central
theme of the article. However, it would not
be possible to generate a summary focusing
on specific key areas of the article. To solve
this problem, we introduce a novel method for
abstractive summarization. We aim to use a
transformer to generate summaries which are
more tailored to the events in the text by us-
ing event information. We extract events from
text, perform generalized pooling to get a rep-
resentation for these events and add an event
attention block in the decoder to aid the trans-
former model in summarization. We carried
out experiments on CNN / Daily Mail dataset
and the BBC Extreme Summarization dataset.
We achieve comparable results on both these
datasets, with less training and better inclusion
of event information in the summaries as shown
by human evaluation scores.

1 Introduction

Summarization is the process of giving an overview
of a piece of text. This is done to reduce the amount
of time required to understand a topic by eliminat-
ing information that is not as relevant to the topic.
In abstractive summarization, the model tries to
grasp the source text and produce a summary that
consists of novel words and phrases. As the sen-
tences produced are generated by the model, the
redundancy in the final summary is significantly
reduced as compared to extractive text summariza-
tion. This task of summarization is a complex one
for humans as well. The difficulty of this task is
due to the fact that summarization is fairly sub-
jective. People may assign importance to parts of
text differently. Thus, the main focus of one per-
son’s summary may be just a passing mention in
someone else’s summary. Another reason for this
difficulty is that there has to be a balance between
novel text and text taken from the source article.

For abstractive summaries we want the model to
understand the source text, and then represent it in
a concise manner. This is a tricky balance to main-
tain as we want to achieve saliency, but we also
want to avoid direct copying from the source text.
We use transformers to carry out abstractive text
summarization on the CNN / Daily Mail dataset
(Nallapati et al., 2016) and Extreme Summariza-
tion dataset (Narayan et al., 2018). The transformer
architecture we have used is BART (Lewis et al.,
2020).

In this paper, we propose a system, which mod-
ifies the existing BART (Lewis et al., 2020) ar-
chitecture by adding an additional event attention
block. Events can be described as the sub-topics
around which the news articles revolve. Identifying
these events and adding them separately, along with
source text, prompts the model to focus the sum-
maries around these events. We perform keyphrase
extraction using KeyBERT (Grootendorst, 2020)
to extract important events from the source text
and use these events for prompting our model to
generate event-oriented summaries.

We achieve comparable results for ROUGE (Lin,
2004) and BERTScore (Zhang* et al., 2020) met-
rics for CNN / Daily Mail and XSum datasets, with
the base variant of the BART model. Moreover,
with the help of human evaluation, we quantify
the extent to which our generated summaries are
influenced by the events input to the model.

2 Background

2.1 Problem Statement

Given an input document X = x1, ...,xn, we aim
to generate a summary Y

′
= y

′
1, ...,y

′
m where n

and m denote article and summary lengths respec-
tively. The summary is generated in reference to
Y = y1, ...,yp where p is the length of the ground
truth summary. We make use of auxiliary input, i.e.
event tokens E = e1, ..., eb consisting of b events,
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Ground Truth: The rapper assaulted the photographer at Los
Angeles International Airport in 2013. West apologized as part of
the settlement, the photographer’s lawyer says.
Generated summary: Kanye West has settled a lawsuit with a
paparazzi photographer he assaulted. Daniel Ramos had filed the
civil suit against West after the hip-hop star attacked him and tried
to wrestle his camera from him.
Events: west has settled lawsuit, civil suit against west, ramos had
filed the, photographer he assaulted
Ground Truth: New research finds direct link between exam
stress and performance. London headteacher Michael Ribton says
revision plans, flashcards and cram techniques can all help children
prepare for the exam season. He advises parents that extra tuition
and bribes shouldn’t be necessary.
Generated summary: Study by Lancashire’s Edge Hill University
and the University of South Australia found a direct link between
anxiety and performance. Pupils who worry about their exam
performance are more likely to do badly than those who are less
anxious.
Events: exam performance are more, worry about their exam,
between anxiety and performance, exams and grades achieved
Ground Truth: Smoke from massive fires in Siberia created fiery
sunsets in the Pacific Northwest. Atmospheric winds carried smoke
from the wildfires across the Pacific Ocean. Smoke particles altered
wavelengths from the sun, creating a more intense color.
Generated summary: A fiery sunset greeted people in Washington
Sunday. The deep reddish color caught Seattle native Tim Durkan’s
eye.
Events: fiery sunset greeted people, siberia the dramatic sunset,
reddish color caught seattle, sunset began showing up
Ground Truth: Villagers in Shangdong are seen using bags as
long as six metres. It is becoming a common behaviour in some
villages since 2011. Previous investigation suggested gas in the bag
are often stolen. Gas carriers have little understanding of dangers
claiming it to be safe.
Generated summary: Residents from Lijin village in Dongying
city carry the explosive in bags as long as six metres on rickshaws.
Worried passers-by compared this behaviour to carrying a bomb on
their backs.
Events: the explosive in bags, stealing gas from large, gas this
reckless behaviour, carrying bomb on their

Table 1: Few results for samples from CNN DailyMail
dataset.

with each event having a fixed number of tokens k.
We make use of seq2seq architecture, specifically
a transformer encoder and decoder network, along
with input prompting, generalized pooling and an
additional event attention block which focuses on
event embeddings to generate event-oriented sum-
maries.

2.2 Sequence Models

Since abstractive summarization is a sequence
based task, the initial application of deep learn-
ing models to abstractive summarization started
with an attention based encoder and a sequence
decoder making use of beam search (Rush et al.,
2015). Since the decoder was not a recurrent model,
later approaches to recurrent based summarization
systems (Nallapati et al., 2016) performed better

in generating summaries. The encoder mechanism
consisted of an attention block attending to differ-
ent encoder time steps, and a decoder RNN, which
would take into account the encoder’s attention out-
puts for the decoding step. A pointer generator
network model (See et al., 2017) was introduced,
which would dynamically decide whether to gener-
ate new tokens or to copy tokens from the article
text, thus making the summarization model more
factually correct. However, with the rise of transfer
learning, language models like BERT (Devlin et al.,
2019) and GPT (Radford et al., 2018) gave a far
better performance as compared to LSTMs for the
same task.

2.3 Transformer Models

With the introduction of transformers (Vaswani
et al., 2017), sequence to sequence tasks have be-
come much easier using pre-training. Transformers
were first used for training on machine translation
tasks on the WMT 2014 English-French dataset
(Bojar et al., 2014). Transformers outperformed
previous models on the BLEU metric (Papineni
et al., 2002). Consequently, the application of trans-
formers to summarization was done by a BERT
encoder used to feed embeddings to a transformer
decoder (Zhang et al., 2019). A two stage mecha-
nism, where masked language modelling as used
in BERT (Devlin et al., 2019) is applied for refined
word prediction in the later stage of the model. Raf-
fel et al. (2020) pre-trained a transformer model
on the C4 dataset, along with an analysis of differ-
ent pre-training objectives such as prefix language
modelling. PEGASUS (Zhang et al., 2020) follows
the same pre-training objective as BERT, however,
they introduce a summarization specific objective,
i.e. to mask and generate sentences, similar to an
extractive summary. Results indicated a significant
increase in ROUGE scores with previous SOTA
methods. Another training objective proposed was
denoising in BART (Lewis et al., 2020), i.e. cor-
rupting the input sequences with a range of opera-
tions including replacement, masking, text infilling,
and sentence permutation.

3 Related Work

3.1 Event Extraction

Örs et al. (2020) use pre-trained transformer mod-
els, namely BERT (Devlin et al., 2019) and AL-
BERT (Lan et al., 2020) for predicting if a pair of
sentences point to the same event, and later use
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the prediction scores to capture the degree of relat-
edness between different sentence pairs. Xu et al.
(2021) propose a graph-based model to capture
the relation between different sentences and entity
mentions. A tracker module is used which stores
the global information about the extracted events,
which can be used to query the stored information
for interdependency relations. Rule-based systems
(Ritter et al., 2012; Valenzuela-Escárcega et al.,
2015) follow a syntactic and a word feature-based
approach for extraction of events. A more gen-
eral approach is used by Sun et al. (2021) where a
multi-task training objective is followed over pre-
trained language model embeddings for n-grams
to capture both their informativeness and phrase-
ness. Instead of following a complex method, we
use KeyBERT (Grootendorst, 2020), which is more
simple and minimalistic as it uses BERT embed-
dings and cosine similarity. Moreover, we are able
to set the hyperparameters for keyphrase extraction
such as keyphrase n-gram length, and the number
of keyphrases, which helps in modifying the data
consistently.

3.2 Input Prompting
Prompting refers to the addition of instructions in
the model input, to generate conditional outputs.
Jiang et al. (2020) follow a mining based method
which follows a relation extraction mechanism fol-
lowed by a paraphrasing method, which generates
identical yet diverse prompts compared to the orig-
inal prompt. Manually designed rules or a complex
selection of input prompts from a discrete space as
proposed by Shin et al. (2020) and Gao et al. (2021)
can be used. However, selecting prompts from a
discrete space would require more training and op-
timization. For our scenario, where the selection
of prompts is done by a separate pipeline, we pro-
ceed with the keyphrases extracted from KeyBERT.
Our method is similar to Puri et al. (2020), where
instead of a question and passage tokens, we have
article tokens and event tokens.

3.3 Sentence Embeddings
Word embeddings such as Glove (Pennington et al.,
2014) and Word2Vec (Mikolov et al., 2013) provide
a vector space for representing words. Word2Vec
works on the principle of a context window, where
it takes into account a fixed set of previous and next
words for modelling its embedding. Glove lever-
ages local and global information for generating
word embeddings. Contextualized Embeddings,

where a word’s embedding depends on the con-
text it is used in, were proposed in BERT (Devlin
et al., 2019), which follow a masked language mod-
elling and next sentence prediction tasks, where
masked language modelling is a word level task
and next sentence prediction is a sentence level task.
Sentence-BERT (Reimers and Gurevych, 2019)
leverages these contextualized embeddings along
with a pooling layer to get a single embedding for
the sentence, and a triplet loss function for gener-
ating sentence embeddings. However, this method
requires having labelled data for positive and nega-
tive sentences. Chen et al. (2018) use a generalized
pooling method, using a vector based weight mul-
tiplication, instead of a simple operation like max,
or average. This method is trainable in an end to
end fashion, without any additional data require-
ments. We perform a similar pooling operation on
our event embeddings to get event representations
which will be used by the decoder.

4 Methodology

4.1 Event Extraction

We use input prompting to guide the summa-
rization task performed by BART (Lewis et al.,
2020). This auxiliary input has an event sequence
E = e1, ..., eb where b is the number of events
and ei is an event. Each event consists of k differ-
ent tokens. Thus, an event ei = ei1, ..., eik where
eij εRdh , where dh is the size of hidden representa-
tion. For event extraction, we use KeyBERT (Groo-
tendorst, 2020) to extract keyphrases. KeyBERT
uses BERT embeddings to create keywords and
keyphrases that have maximum similarity to the
document. This similarity is calculated using co-
sine similarity.

A word overlap threshold t is set to factor in di-
versity. Each key phrase is tokenized and padded to
reach a fixed-length k. The events are concatenated
and inserted before the source text. Thus, input to
the BART encoder is a sequence of events followed
by the source text.

4.2 Input prompting

To make use of the events extracted from the article,
we need to prompt the event data. The tokenized
events are added before the tokenized source text.
Thus the input to the encoder is E1:bX1:n, where n
is the length of the source text and b is the number
of events. Individual events and event information
and source text are separated by separator tokens.
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Figure 1: Event information prompted by adding event
tokens prior to article tokens.

Event attention masks and source text attention
masks are generated to distinguish event informa-
tion from the source text. This modification is made
to the input of the BART architecture to incorpo-
rate event information. This kind of concatenation
helps us generate event embeddings in a similar
manner to source text embeddings.

4.3 Summarization model

The summarization model follows a sequence-to-
sequence transformer architecture consisting of an
encoder and a decoder. We use BART-base as our
base model for the architecture. BART-base con-
sists of N = 6 layers of encoder and decoder, with
the encoder consisting of multihead self-attention
block, and the decoder consisting of multihead
masked self-attention and cross-attention mech-
anism. Pooling is performed on the event em-
beddings to generate event representations. These
event embeddings are sent to the decoder. In addi-
tion to these attention blocks, we propose the use of
an additional attention block, called event attention,
which applies cross attention between ground truth
summary and the events extracted from our source
text. The purpose of this block is to understand
how much importance the events hold with respect
to the ground truth summary.

4.3.1 Encoder
The encoder for BART-base consists of N = 6 lay-
ers, each with a self attention mechanism, feed for-
ward layers and residual connections between the
layers. The encoder’s input is E1:bX1:n, source
text attention mask, and event attention mask,
where n is the length of the source text and b is
the number of events. The positional embeddings
are added to these tokens and fed into the encoder.
Output of each encoder layer is fed into the next
encoder layer, for all layers from L = 1 to L = N -
1. Each layer produces embeddings of dimension
Rdh . After the layer L = N, the output of the Nth

layer is separated to get event and article embed-
dings. Generalized pooling is performed on the
event embeddings to get a representative embed-
ding for each of the events.

The attention mechanism in the encoder consists
of multiple heads. The attention block takes three

Figure 2: Model architecture consisting of a transformer
encoder and decoder. Generalized pooling is performed
on event information. Pooled event embeddings and
encoder output is sent to the decoder. Decoder con-
sists of an additional attention block, where attention is
computed between events and ground truth summaries.

inputs: queries Q εRdq , keys K εRdk and values
V εRdv where dq, dk, and dv are the dimensions
of queries, keys and values respectively. A similar-
ity (dot product) between the keys K and queries
Q is computed followed by the softmax function.
Multiplying these scores with values V gives us
the output for the attention block.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

The attention block consists of multiple heads,
with each head focusing on a different representa-
tion. Outputs of each of these heads are concate-
nated and multiplied by a weight matrix to get the
output for the attention block.

The queries, keys and values come from the en-
coder input for L = 1. For layers, L = 2 to N,
queries, keys and values come from the previous en-
coder layers. Encoder self-attention is not masked
hence, can attend to all the positions of the input.

4.3.2 Generalized Pooling
To get a representation for each event, we employ a
method to go from token embeddings to an embed-
ding for each event. We split the output of the final
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encoder layer into event embeddings and source
text embeddings. We use a weighted pooling mech-
anism to form a single vector representation of
each event. However, we use a one-dimensional
convolutional layer, instead of a feed forward layer
(Chen et al., 2018). The idea behind using a convo-
lutional layer is to get a sliding window so that
each event can be handled without recursively
passing it through the feed-forward layer. For an
input X1:n having events E = e1, . . . , eb where
ei = ei1, ..., eik, a single representation is calcu-
lated for every event. PE represents the weighted
pooled embeddings. Thus, the input to the decoder
is PE1:bX1:n where PE = pe1, ...,peb.

pei = Conv1D(ei) (2)

4.3.3 Decoder
The decoder for BART-base consists of N = 6 lay-
ers, each with a masked self-attention mechanism,
masked cross attention and a masked event atten-
tion block. The input to the decoder is Y1:p as
ground truth summary and PE1:bX1:n as encoder
output, where p is the length of the ground truth
summary. The output of each decoder layer is fed
into the next decoder layer, for all layers from L =
1 to L = N− 1. Each layer produces embeddings
of dimension dh . After the la yer L = N, the
output is passed through a feed-forward layer and
softmax activation over the vocabulary to get the
logits which are used for generating the summary.

The attention mechanism in the decoder is
masked so that the decoder does not attend to in-
puts of time steps ahead of the current time step.
These attention blocks are similar to the attention
block in the encoder. The self-attention block uses
ground truth summary as query, key, and value.
For the cross attention mechanism, X1:n is used
for keys and values, whereas queries are obtained
from the previous decoder layer. Similarly, for the
event attention block, the queries are obtained from
the previous decoder layer and the keys and values
are obtained from the pooled event embeddings
PE1:b.

5 Experimental Setup

5.1 Dataset

We have used CNN / Daily Mail (Nallapati et al.,
2016) and XSUM (Narayan et al., 2018) datasets
for our experimentation. CNN / Daily Mail consists
of news articles and their abstractive summaries.

CNN / Daily Mail XSUM
Train 287113 204045
Validation 13368 11332
Test 11490 11334

Table 2: Number of data points in training, validation
and testing sets for each of the datasets.

XSUM consists of BBC articles which cover a wide
variety of domains. Since we are using event-based
summarization, we need to first extract the events
and add them to the model input along with the
article. In our experiments, we have extracted 4
events, each of these being keyphrases consisting
of 4 words. We use BART tokenizer to tokenize the
dataset. This may result in some words being split
into multiple tokens. Thus every event is allocated
10 tokens including the start and end tokens. Since
the input size for the encoder is 512, the articles
are truncated to 472 tokens to accommodate the
40 tokens for the event sequence. Allocating more
tokens to an event or increasing the number of
events would decrease the number of tokens that
can be taken from the source article. This results
in event information vs article length trade-off. For
CNN / Daily Mail the ground truth summaries are
truncated to 128 tokens, and for XSUM the ground
truth summaries are truncated to 64 tokens. This
difference between ground truth summary lengths
is because, in CNN / Daily Mail, the summaries
are highlights from the news article, but in XSUM
the summaries are mostly a sentence long. The
different splits for the above-mentioned datasets
are specified in Table 2. The number of events
extracted from some of the articles is less than 4.
In such cases, padding is added to reach the 40
tokens allocated for event information.

5.2 Implementation Details

We chose BART-base as our base model, instead
of BART-large, due to insufficient resources for
training the larger variant of the model. The en-
coder and decoder each consist of N = 6 layers. As
BART is pre-trained, these pre-trained weights are
taken to be the initial model weights. The weights
for generalized pooling and event attention blocks
are randomly initialized. BART-base consists of
12 attention heads for encoder and decoder, with
hidden dimension size dh = 768, and a vocabulary
size V = 50,265. For the generalized pooling block,
kernel size k = 10, a stride of 10, and the number
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Model R1 R2 RL RLSum BertScore
Event prompted BART-base 41.57 19.89 29.52 38.88 63.79
BART Large-CNN 44.16 21.28 40.90 36.42 64.14
Pegasus Large-CNN 44.17 21.47 41.11 36.39 62.52

Table 3: Metric values for CNN / Daily Mail Dataset

Model R1 R2 RL RLSum BertScore
Event prompted BART-base 40.51 18.64 33.27 33.26 66.51
BART Large CNN 45.14 22.27 37.25 36.47 68.64
Pegasus Large CNN 47.21 24.56 39.25 38.63 69.99

Table 4: Metric values for XSUM Dataset

of input and output channels as 768 are used.
We use a cross-entropy loss objective for train-

ing the model. Our model has a total of 159M
parameters, 139M parameters due to BART-base
with an additional 20M parameters due to general-
ized pooling block and event attention block. We
use NVIDIA Quadro RTX 6000 16GB GPU for
running experiments on the model. We use a batch
size of 8 for training and validation. The learn-
ing rate is set to 1e-05 with a linear learning rate
scheduler for CNN / Daily Mail and a polynomial
learning rate scheduler for XSUM. Weight decay
is set to 5e-04 for CNN / Daily Mail and 1e-04 for
XSUM and the models are trained to 500k steps
for CNN / Daily Mail and 250k steps for XSUM.
While decoding, we use beam search with a beam
size of 5 for both datasets.

6 Results and Analysis

6.1 Metric Evaluation
The results of our model are quantified us-
ing Rouge1, Rouge2, RougeL, RougeLSum and
BERTscore (Zhang* et al., 2020). Rouge1 and
Rouge2 measure the uni-gram and bi-gram matches
respectively. RougeL measures the longest com-
mon subsequence. RougeLSum is a variation of
RougeL and it differs from RougeL in the treatment
of the newline character. BERTscore computes the
semantic similarity between generated and ground
truth summary. We observe in Table 3 and Table 4
that rouge scores from our model are comparable
with BART-Large and Pegasus-Large.

Since our summaries revolve around events, we
compute the rouge scores between the identified
events vs ground truth and identified events vs gen-
erated summaries. This will showcase the overlap
between the events and their respective generated
summaries. We randomly select 25 summaries
from each of the datasets and compute rouge scores
between each of the events vs the ground truth, and
each of the events vs the summaries generated by

Figure 3: Rouge Scores between events vs ground truth,
and events vs summaries generated by Event prompted
BART-base for CNN / Daily Mail.

Figure 4: Rouge Scores between events vs ground truth,
and events vs summaries generated by Event prompted
BART-base for XSUM.

our model. We average out the scores returned be-
tween a summary and each of the identified events
to get a single value. We observe in Figure 3 and
Figure 4, that the rouge scores between events and
summaries generated by our model is close to or
higher than the rouge scores between events and
ground truth summaries.

CNN / Daily Mail and XSUM are both datasets
used for abstractive summarization, however, the
expectations from the generated summaries are dif-
ferent in both cases. CNN / Daily Mail consists
of longer ground truth summaries which explain
the article in a few sentences. On the other hand,
XSUM consists of significantly shorter ground
truth summaries. As observed in Figure 5 and
Figure 6, the length of summaries generated by
our model is similar to the length of ground truth
summaries. While calculating the length of text,
we tokenize the text using BART tokenizer and
consider the number of tokens output by the BART
tokenizer as the length of the text. In Figure 7 and
Figure 8 the lengths of the generated summaries
are divided into groups of 10 and the average rouge
scores for all the summaries in a group is calculated.
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Figure 5: Distribution of summary lengths as calcu-
lated by the number of tokens generated by the BART
tokenizer for the CNN / Daily Mail dataset.

Figure 6: Distribution of summary lengths as calcu-
lated by the number of tokens generated by the BART
tokenizer for the XSUM dataset.

It can be observed in Figure 7 that Rouge scores
increase as the length of the articles increases in
the CNN / Daily Mail dataset. However, in Figure
8 we observe that for the XSUM dataset, longer
summaries seem to have lower rouge scores.

6.2 Human Evaluation

To capture the subjectiveness and diversity of lan-
guage generation tasks such as summarization, we
conduct human evaluation. Since we have added
event input prompting to our model, we aim to uti-
lize human evaluation as a method to understand to
what extent summaries generated by our model are
influenced by the events. Three evaluators, fluent
in the English language were sent summaries gen-
erated by BART-Large-CNN, PEGASUS-Large-
CNN and Event prompted BART-base, along with
their respective source text, extracted events and
ground truth summaries. The names of the models
that generated the summaries to be evaluated, were
not shared with the evaluators. The evaluators were

Figure 7: The average rouge scores for all the summaries
in a group for CNN / Daily Mail.

Figure 8: The average rouge scores for all the summaries
in a group for XSUM.

provided with 25 such data points from the test split
and a list of metrics to grade the summaries on. The
metrics were fluency, event inclusiveness, factual
correctness, coherence, and informativeness. Flu-
ency is used to verify if the text generated has the
correct grammatical structure and rules. Since our
model incorporates input prompting using events,
we use event inclusiveness as a metric to capture
how much the summaries are influenced by the
identified events. Factual correctness is included
to confirm if the facts in the summary are consis-
tent with the facts in the source text and ground
truth. For understanding to what degree the sum-
mary makes sense as a whole, coherence is added
as a metric. Informativeness is used to verify if the
most important points of the article are present in
the summary.

The average of the scores was taken across all the
data points for different models and their metrics.
The average fluency, event inclusiveness, factual
correctness, coherence, and informativeness scores
for BART-Large-CNN, BART-base prompted by
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Metrics Event prompted
BART-base BART Large-CNN Pegasus Large-CNN

Fluency P1 4.12 4.32 3.76
P2 4.88 4.92 4.72
P3 4.64 4.76 4.40

Event
inclusivness

P1 3.92 4.16 3.60

P2 3.84 2.56 2.04
P3 4.16 3.72 3.68

Factual
Correctness

P1 4.08 4.04 3.80

P2 4.96 4.88 4.56
P3 4.76 4.64 4.44

Coherence P1 3.80 3.60 3.28
P2 4.24 3.84 3.88
P3 4.44 4.40 3.64

Informativness P1 3.52 3.56 3.16
P2 3.44 3.44 2.68
P3 3.80 3.84 3.20

Table 5: Human Evaluation results for the CNN / Daily
Mail dataset.

events, and PEGASUS-Large CNN are shown in
Table 5, where P1, P2, and P3 refer to the the three
evaluators.

Figure 9: Correlation matrix between the rouge scores
and human evaluation metrics. Scores assigned by re-
viewers are averaged out.

We can observe in that our scores for fluency are
comparable to the scores for BART Large-CNN.
We can see that 2 among 3 reviewers rated our
generated summaries as being the most event in-
clusive. The first reviewer gave our summaries a
score very close to the BART-Large score. For
factual correctness and coherence the scores are
highest for our generated summaries. For informa-
tivness, we observe that our scores are very similar
to BART-Large scores, which rank the highest in
the informativeness category.

7 Conclusion and Future Work

We introduce event prompting and an additional
event attention block in the existing BART-base
architecture to enable the model to generate sum-
maries related to the events identified in the source
text. Our model achieves comparable Rouge and
BERT scores as the larger versions of BART and
PEGASUS (Zhang et al., 2020). We also carry

out human evaluation for our trained model, and
achieve higher scores for event information in-
clusiveness as compared to the other transformer
based models.
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Abstract

The recent advances in Artificial Intelligence
(AI) has made generation of questions from
natural language text possible, this approach
completely excludes human in the loop, while
generating the appropriate questions which im-
proves the students learning engagement. The
ever growing rate of educational content ren-
ders it increasingly difficult to manually gen-
erate sufficient practice or quiz questions to
accompany it. Reading comprehension can be
improved by asking the right questions. In this
work a transformer based question generation
model specifically made for autonomously pro-
ducing quiz questions from educational infor-
mation, such as ebooks is introduced. This
work proposes an contrastive training approach
for “Text-to-Text Transfer Transformer" (T5)
model where the model (T5-eQG) creates the
summarised text for the input document and
then automatically generates the questions. Our
model shows promising results over earlier
Neural Network based and rules based mod-
els for question generating task on benchmark
datasets and NCERT ebooks.

1 Introduction

Textbooks are a primary source of information for
students (Kumar and Chauhan, 2022). Besides this
students tends to study ebooks, lecture notes, and
MOOCs for further knowledge acquisition (Her-
rera et al., 2018; Kumar and Chauhan, 2020). With
these reading materials students can only partially
understand the material presented, and it does not
makes their learning effective (Ebersbach et al.,
2020). Asking questions about the reading content
and evaluate the answer is a intuitive way of pro-
moting learning (Xu et al., 2021; Ruan et al., 2019).
This motivates us to look into ways to generate
educational questions for ebook content to aid the
students learning.

It is difficult to define the specific process for
asking insightful educational questions about texts,

which entails doing more than just writing fluid,
natural-sounding texts. It is bit hard to generate rel-
evant educational questions on text (Horbach et al.,
2020). Typically, it involves gathering important
instructional facts and turning them into questions.
Few attempts have been made in the recent years
to complete this task by using statistical and Neu-
ral Network based algorithms to choose crucial
passages (Chen et al., 2019; Du et al., 2017) and
concepts and produce insightful questions (Dong
et al., 2019; Steuer et al., 2020). Education ques-
tion generation on text, however, has not received
much attention.

The proposed educational Question Genera-
tion (eQG) model presents a set of questions for
each chapter of the ebook. Teachers might use
these questions for self-study, before discussing
the subject in class, which would helps them
for deep knowledge transfer to the students (Ku-
mar and Chauhan, 2019; Xu et al., 2021). We
assess our methodology on QA dataset (HotPot
QA(Yang et al., 2018), FairytaleQA1) as well as
PRML (Bishop, 2006) and NCERT2 eBooks. Ta-
ble 1 presents sample results of our eQG model for
the input text (refer Figure 1). The learner can use
eQGs for self-assessment questions to gauge their
conceptual understanding.

The contributions of this work are two fold:

• Text summarizer: We fine-tune the Text-to-
Text transformer (T5) to extract the informa-
tive sentences that are most likely for educa-
tors to design questions for the original input.

• Contrastive training for T5-eQG: We fine-tune
the T5 transformer on positive and negative
training samples. A contrastive loss is added
between the positive and negative training fea-
ture pairs during the fine-tuning process. It

1https://github.com/uci-soe/FairytaleQAData
2https://ncert.nic.in/textbook.php
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helps in generating more complex questions
on input document.

2 Background

Natural language creation has primarily evolved
through statistical learning in recent years. To
create manuscripts that resemble human writing,
the models imitate linguistic conventions. In re-
cent years, the natural language processing com-
munities have shown a great deal of interest in the
question generation (QG) task(Wang et al., 2017;
Lyu et al., 2021), which creates a natural ques-
tion corresponding to the supplied text or answer
phase. The syntactic cues have been used in the
rule based model to create Questions (De Kuthy
et al., 2020). A back translation tool was paired
with a syntactic question generator to eliminate
grammatical errors and increase robustness(Dhole
and Manning, 2020). Declarative sentences were
transformed into natural questions by the emer-
gence of sequence-to-sequence models (Radford
et al., 2019). Applying pre-trained transformers
or various optimization objectives (Qi et al., 2020)
led to further advancements. Previous research has
explored the importance of QG model in teaching
learning process(Kurdi et al., 2020).

For QA and question generation, NarrativeQA
(Kočiský et al., 2018) aims to incorporate important
information from many places inside a paragraph.
Similar to this, the MS MARCO (Nguyen et al.,
2016) dataset combines many sources of responses
to search queries. The employment of a reinforce-
ment learning agent to align questions from vari-
ous documents is proposed as a contrastive strat-
egy, where supervised model is trained to produce
questions on a text (Cho et al., 2021). To achieve
good performance, questions with summaries and
reports were generated using a rule-based method-
ology (Lyu et al., 2021). The solutions discussed
above typically don’t take the educational com-
ponent into account and could not be effective in
the real world edu QG task. Our research focuses
on the generating question on e-book content, in
this work we use FairytaleQA dataset (Xu et al.,
2022). For each paragraph in FairytaleQA, experts
typically create a different style of question. We
propose that context is a key factor in determining
the kinds of questions that ought to be made while
reading e-books.

3 Methodology

Figure 2 depicts the overall architecture of our eQG
system, which consists of two modules: i) Text
summarizer ii) Question-generation(QG). We first
create summaries of type s with the input paragraph
d, and then generate the questions q on summarized
text. The generated questions are said to be rele-
vant if the question qi can be answered with the
paragraph di and this is formulated as maximizing
the conditional probability p(q|d):

q = argmax(p(q | d)) = argmax
L∏

i=1

p(wi | d, qi′)

(1)
where wi is the ith token of the generated ques-

tion q, and qi′ denotes the previous decoded tokens,
i.e., q1,. . ., qi-1.

T5 - Abstractive summarizer: In this work, we
examined the text summarizer and QG as a task
of text-to-text transformation. So, we first train
a T53 summarising model to produce the abstract
summary of the input text.

Edu Question Generation: Once the model
produce the abstract summary of the input text,
next step is to generate an educational question out
of it. We train a T5-QG model directly on top of
the summary using the annotated questions, since
T5-summary model already has knowledge on rich
informative text.

When the model is fine tuned with tiny dataset,
fine-tuning process with QA task loss is generally
insufficient to achieve satisfactory performance. To
address this issue, we generated the negative sam-
ples for each document di and fine-tune using both
the data samples.

Most of the existing QG model suffers from the
exposure bias problem. Therefore, we created a
negative sample and trained an end-to-end eQG
model by introducing contrastive loss function. We
trained two variants of T5_QG model. At first
we fine-tune the T5_QG model by minimizing
the cross-entropy loss. In the next step, model
is trained on augmented data (both ground truth
question and generated negative samples) with the
contrastive loss and cross-entropy loss

Tloss = Qtask +Qc_loss (2)

where T loss is the total loss, Qtask and Qc_loss are the
QG task loss and the contrastive loss, respectively,

3https://huggingface.co/docs/transformers/model_doc/t5

110



Figure 1: The sample input text from PRML ebook (Section 1.2) by C.Bishop(Bishop, 2006)

Table 1: The generated questions using our eQG model (input text-PRML ebook).

Text: Refer Figure 1
Abstract summary: The Gaussian distribution It is convenient, however, to introduce here one
of the most important probability distributions for continuous variables ....
Generated top k questions using eQG model (k=3)
Q1 What is Gaussian distribution?
Q2 What is the most important probability distribution for continuous variables?
Q3 Where we use normal distribution?

Figure 2: Overall architecture of our eQG model.
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Qc_loss = ql∗D2
w+(1−ql)∗max(m−dw, 0)2 (3)

where ql is the ground-truth labels from our
dataset, dw is the Euclidean distance and m is the
margin used for the contrastive loss function.

4 Experimental Results

In this work we trained T5 (Text-to-Text Transfer
Transformer) base model from hugging face trans-
formers3. An input sequence and a corresponding
target sequence are required for every training run
of T5. The model receives the input sequence via
input ids. The target sequence is provided to the
decoder using the decoder input ids after being
prepended by a start-sequence token and moved to
the right. The EOS token is subsequently attached
to the target sequence in teacher-forcing fashion,
which correlates to the labels. The start-sequence
token here is the PAD token.

Data set:We used FairytaleQA1 and HotpotQA
data, the FairytaleQA has 10,580 QA-pairs, which
were drawn from 278 different novels. The Hot-
potQA(Yang et al., 2018) has ≈100K QA pairings
on Wikipedia articles. For FairyQA we divide the
data into 8.5K/1K/1K, and for HotPot QA 84,512,
6K and 6K samples as train,validation and test data.

For fine tuning the T-53 model we used the
AdaFactor optimizer and a maximum sequence
length is set to 512, model is trained for 4 epochs.
We follow the grid-search approach for choos-
ing the best set of training parameters (learning-
rate:{{2,3,5}e-3,4}} and batch size: {8,16,32,64},
warm-up ratio: {0.1}). During the experiment, we
found that a mini-batch size of 32 (learning rate:
3e-3) produces acceptable results.

Table 1 and Table 2 highlight the generated
questions for text from PRML (Bishop, 2006) and
NCERT2 CCT ebook. The generated questions
makes the students learning more effective, and
assist them in improving their conceptual under-
standing ability.

We validated the quality of questions generated
on three experimental configuration. QG model
trained i)only on HotpotQA, (ii) only on Fairy-
taleQA, iii) on both FairytaleQA and HotpotQA.
The third setting shows a significant improvement
over the preceding setups, so this was chosen as our
final QG model for further comparison to the earlier
work. Results are shown in Table 3. We see that
the model optimised on FairytaleQA alone shows

significant improvement over the model trained on
both the dataset. This is due to the disparities in
domain and distribution between the two datasets.
The third settings shows a decent results during the
state-of-the-art model comparison.

Table 4 provides the comparison results of our
model with state-of-the-art models. Our model
achieves a comparable BLEU4, Rouge scores with
the cutting-edge QG model in HotpotQA without
using the answer information or any external lin-
guistic knowledge. This illustrates the effectiveness
of contrastive training of language model for the
QG task.

5 Conclusion and Future scope

The use of AI is constantly evolving in diverse
applications. This study investigates the poten-
tial advantages of a natural language processing
approach for education. This research presented
an education question generating (eQG) approach
that augments the ebook content with generated
edu-questions to provide students with an effective
learning platform. Through experiments, we as-
sessed the model’s performance on a question gen-
eration task both before and after contrastive train-
ing. We discovered that a contrastive trained model
can produce more pertinent questions on the input
text and can comprehend key concepts more effec-
tively. Experiments on QA dataset, PRML(Bishop,
2006) and NCERT 2 ebook shows that our model
succeeds to produces complex questions at scale.

The possible future direction could be

• Design a context-aware QG model, where the
generation of a new text is conditioned on
previous generations as well as the ebook con-
tents.

• Conduct a human evaluation to validate the
appropriateness of the generated questions on
ebook content.
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Table 2: The abstract summary and generated questions using our eQG model(top k questions) for the input text
NCERT2 CCT ebook.

Input Text:Use of innovative technologies like Silicon-On-Insulator (SOI),
Complementary Metal-Oxide-Semiconductor (CMOS), capacitor -less memory,
Micro-Optic-Electro-Mechanical-System (MOEMS) III-V compound
materials-on-insulator and others have improved the performance
and also reduced the size of consumer electronic devices...
Abstract summary: Innovative technologies such as Silicon-On-Insulator (SOI),
Complementary Metal-Oxide-Semiconductor (CMOS), capacitor-less memory,
Micro-Optic...
Generated Top k (k=3) questions
Q1 What are the benefits of using silicon-on-insulator (SOI)?
Q2 How is graphene expected to improve the processing speed of computers?

Q3
What is the advantage of using III-V compound materials-on-insulator in
consumer electronic devices?

Table 3: Comparison of our contrastive eQG models with various experimental settings.

QG model
Evaluation metric:Rouge-L
Validation_data Test_data

T5base_HotpotQA 0.423 0.441
T5base_FairytaleQA 0.512 0.526
T5base_HotpotQA_FairytaleQA 0.507 0.518

Table 4: The comparison results of our model with prior work for QG task on HotPot dataset.

QG model
Evaluation metrics
BLEU-1 BLEU-4 Meteor Rouge-L

RL_QG (Xie et al., 2020) 37.97 15.41 19.61 35.12
Deep_QG(Pan et al., 2020) 40.55 15.53 20.15 36.94
T5QG 40.96 17.54 19.21 42.36
Contrastive_T5QG 42.04 19.11 20.07 48.50
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Abstract

Recently, fine-tuned transformer-based models
(e.g., PubMedBERT, BioBERT) have shown
the state-of-the-art performance of several
BioNLP tasks, such as Named Entity Recogni-
tion (NER). However, transformer-based mod-
els are complex, have millions of parameters,
and are relatively slow during inference. In this
paper, we address the time complexity limita-
tions of the BioNLP transformer models. In
particular, we propose a Multi-Task Learning
based framework for jointly learning three dif-
ferent biomedical NER tasks. Our experiments
show a reduction in inference time by a fac-
tor of three without any reduction in prediction
accuracy.

1 Introduction

Transformer-based large language models (LLMs)
have made it much easier to perform various NLP
tasks with high accuracy. However, due to their
large size, they take a lot of time and money
to perform inference on large datasets. To give
some perspective, one forward pass through Pub-
MedBERT (Gu et al., 2020) takes 8-50ms on an
AWS g4dn.xlarge instance 1 (which comes with an
NVIDIA T4 GPU). Running one PubMedBERT
model on 1 million biomedical paragraphs would
take roughly 9 hours. Given the deluge of biolog-
ical information daily, using fine-tuned PubMed-
BERT models for each biomedical NER task sepa-
rately would be too time-consuming and expensive.

When it comes to deep learning models, there
are generally two variables that are optimized be-
fore deployment. These are size (the space occu-
pied by the model’s weight on disk and RAM) and
inference time (the time taken for one prediction).

Model size tends to matter more when deployed
on edge devices and mobile phones since these de-
vices have storage and RAM constraints. Several
techniques, such as knowledge distillation, have

1https://aws.amazon.com/ec2/instance-types/g4/

been proposed to address this issue, and some of
the prominent models which have achieved a sig-
nificant decrease in model size without much de-
crease in accuracy are DistilBERT (Sanh et al.,
2019), SqueezeBERT (Iandola et al., 2020), and
MobileBERT (Sun et al., 2020). However, size is
usually not an issue for models running on servers.
For example, a PubMedBERT model has a size of
only 400 MB. Instead, the main concern is infer-
ence time, which is what we focus on in this paper.
Generally, a reduction in the model size naturally
leads to a reduction in the inference time. However,
in this work, we focus on reducing the inference
time without reducing the model size.

Multi-Task Learning (MTL) primarily aims to
improve the accuracy of multiple prediction tasks
that are related to each other by leveraging com-
monly useful information. Many of the previous
works have shown the effectiveness of multi-task
learning-based models for BioNer tasks. The first
work to apply MTL for biomedical named entities
was attempted by Crichton et al. (2017). They used
pre-trained word embeddings with CNN-based neu-
ral networks to extract named entities from biomed-
ical texts. Wang et al. (2018) used a combination
of BiLSTM and CRF-based model, adapted from
Liu et al. (2018), to extract the entities and further
used character and word-based embeddings that
were shared by different datasets. A slightly dif-
ferent approach was proposed by Zuo and Zhang
(2020), where they trained a dataset-aware MTL
model and showed that their model was able to
discriminatively exploit information from all of the
related training datasets.

The recent developments of large language mod-
els, such as BERT (Devlin et al., 2018), have
demonstrated the effectiveness of better contex-
tualized representation of various NLP tasks. Lee
et al. (2019) developed BioBERT using the BERT
language model and pre-trained it on biomedical
abstracts and papers. They achieved state-of-the-art

116

mailto:author3@elucidata.io.com
mailto:mukund.chaudhry@elucidata.io
mailto:arman.kazmi@elucidata.io
mailto:akhilesh.verma@elucidata.io
mailto:vishal.samal@elucidata.io
mailto:shashank.jatav@elucidata.io 
mailto:kristopher.paul@elucidata.io 


results on several biomedical named entity recog-
nition datasets. Khan et al. (2020) and Mehmood
et al. (2019) incorporated MTL in BERT-based
models and showed promising results to extract
biomedical named entities.

Although the previous works have shown the
importance of multi-task learning when incorpo-
rated with either neural network-based models or
transformer-based models, none of them have tar-
geted optimizing these large models. While de-
ploying these models for prediction, inference time
matters; hence, it is equally important to develop
models that reduce the inference time without any
significant drop in performance. To this end, we
develop a multi-task learning model for three differ-
ent entities (cell-line, tissue, and strain) and show
that we can reduce the inference time by a factor of
3 without any drop in performance when compared
with a single-task model for each entity.

Our main contributions are as follows:

• We fine-tune a multi-task PubMedBERT
model, demonstrating a significant reduction
in inference time.

• We compare the performance of our multi-
task model with that of a single-task model
and show that there is no significant drop in F1
scores. Further, we built a multi-class token
classification model on our corpus and found
that it performs the worst which shows the
effectiveness of using a multi-task learning
model.

• We release 2 a new gold-standard corpus man-
ually tagged with cell-line, tissue and strain
type entity, on which we report our results
of the experiments performed. This dataset
is the first of its kind that contains manual
annotation of tissue and strain entities.

The rest of the paper is organized as follows. We
provide the details of the dataset in section 2. The
experiments, results and their analysis are shown in
section 3 and 4 respectively. Finally, in section 5,
we summarize all the results and provide pointers
for future research.

2 Dataset

For the BioNER task, there are several publicly
available annotated datasets but the most widely

2The dataset and the source code of our experiments can
be found here.

Figure 1: Architecture of the MTL model

Entity
type #Docs #Words #Mentions #Unique

Mentions

#Docs w/ at
least one
mention

strain 3560 234121 3476 574 2049
tissue 2607 430455 1804 338 961
cell-line 3059 532805 1541 483 677

Table 1: Summary statistics of the corpus (includes both
the training and the test set.)

used datasets for benchmarking are JNLPBA (Col-
lier and Kim, 2004; Huang et al., 2020), NCBI-
Disease (Dogan et al., 2014), BC5CDR, (Li et al.,
2016) BC2GM (Smith et al., 2008), and LIN-
NEAUS (Gerner et al., 2010). These datasets cover
mostly cell line, cell type, chemical, disease, gene,
protein, and species type entities, and most of them
rely on PubMed articles as a source. One of the
significant concerns regarding most of the BioNER
datasets is the data quality, which is not only lim-
ited to the biomedical domain. Li et al. (2022)
mentioned annotation quality as one of the major
challenges in the field of NER. An updated ver-
sion of the 2004 JNLPBA challenge was released
in 2019 to address the flaws in the original corpus
(Collier and Kim, 2004; Huang et al., 2020). An-
other issue is the source and the entity type, which
is generally targeted in these datasets. These bench-
mark datasets lack entities such as tissue and strain
that can help create meaningful cohorts across ex-
periments. This information can be used to control
the genetic variability in datasets.

To address the issues mentioned above, we cre-
ated a gold-standard corpus manually annotated
with cell-line, strain, and tissue on abstracts ex-
tracted from the Gene Expression Omnibus (GEO)
(Edgar et al., 2002) database. It is a public repos-
itory established by National Center for Biotech-
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Entity STL MTL Frozen1 Frozen2 Multi-class
Cell line 0.85 0.86 0.70 0.86 0.62
Tissue 0.71 0.71 0.52 0.01 0.46
Strain 0.88 0.87 0.63 0.61 -

Table 2: F1 scores of different models on each entity
type.

nology Information (NCBI) for high-throughput
gene expression data generated mainly through mi-
croarray technology. Several other data applica-
tions, such as those that look at genome methyla-
tion, chromatin structure, and genome-protein in-
teractions, are now supported by GEO, which has
developed along with the quickly changing techno-
logical landscape (Clough and Barrett, 2016).

The corpus was manually annotated by the do-
main experts, and the annotation guidelines fol-
lowed can be found in Appendix A. The corpus
consists of 9226 English paragraphs, and the num-
ber of mentions of strain (3476) is more than cell
line (1541) and tissue (1804). Despite the less num-
ber of total mentions of cell line, the number of
unique mentions of cell line (483) is far greater
than the number of unique mentions of tissue (338).
In the data, wherever the strain entity is tagged, the
cell line and tissue are not found, and vice-versa.
This is due to the nature of the abstracts (extracted
from GEO) where we find either the texts contained
mention of cell line, tissue, strain or both cell line
and tissue in the same text. This makes the corpus
unique and more reasonable to perform a multi-task
learning model instead of building a multi-class to-
ken classification model. Table 1 provides more
details of the corpus.

3 Experiments

In this section, we describe our experiments in
detail about the model architecture, the training
procedures, and the evaluation metrics followed.

3.1 MTL Model

Figure 1 shows the MTL architecture deployed in
our work. The shared model follows the standard
BERT architecture (Devlin et al., 2018) where the
task heads consist of two linear layers. The first
layer has a shape of 768 x 768, whose outputs are
passed through the ReLU activation function and
then fed into the second linear layer with a shape
of 768 x 3. This layer acts as the token classifier,
where each token is assigned one of three classes
following the BIO tagging scheme.

3.1.1 Training and Evaluation Metrics
The training and testing split was 70:30. The
shared model was initialized with PubMedBERT
(Gu et al., 2020) weights, and the task heads were
randomly initialized. We then fine-tuned the model
for eight epochs at a learning rate of 2e-5 and a
batch size of 20. Each batch consisted of exam-
ples from the three individual entities mentioned
in different paragraphs. Each of the examples in
the batch contributed to the loss of the task head
for that particular example and to the shared BERT
model.

To evaluate the model’s performance, we con-
sider each predicted entity as correct only if both
the entity boundary and entity types are the same
as the ground-truth annotation (i.e., exact match).
We then calculate F1 scores for each entity type
and report the results.

3.1.2 Controlling other factors
Different factors can affect BERT’s inference time,
such as batch size, sequence length, choice of deep-
learning framework, and hardware. We used a
batch size of 1 in all of our experiments, and to con-
trol the sequence length, we fixed the corpus that
was used to test different model variants, ensuring it
resembled production workloads. Regarding hard-
ware, we used an AWS g4dn.xlarge 3 instance as
our GPU machine and a laptop with Intel i5-7300U
as our CPU machine. For all the experiments, we
used Pytorch, 4.

3.2 Single Task Learning (STL) & Multi-class
Token Classification Model

To compare the results of our multi-task learning
model, we fine-tuned three different individual Pub-
MedBERT models for cell line, tissue, and strain
type entities. We refer to these models as single-
task learning models as they are fine-tuned for each
individual entity.

In general, for NER tasks, a multi-class token
classification model is preferable. While in the case
of biomedical text, all entities might not be men-
tioned in the same text; for example, in our case,
the corpus did not have strain entity wherever there
was mention of tissue and cell line entities. How-
ever, since tissue and cell line annotations were
done together, it was possible to compare the re-
sults with that of the multi-task model. So, we

3https://aws.amazon.com/ec2/instance-types/g4/
4https://pytorch.org/
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Model Inference time
(CPU)

Inference time
(GPU)

Single-task
(tissue + cell line + strain)

430± 16 ms 31± 1 ms

Multi-task 150± 6 ms 11± 1 ms

Table 3: The inference time per input (avg) of the MTL
model compared to the single-task models run sequen-
tially.

fine-tuned a multi-class token classification model
combining the tissue and cell line paragraphs for
eight epochs with a learning rate of 2e-5 and batch
size of 16.

4 Results and Analysis

The results of our experiments are displayed in Ta-
ble 2. The single-task learning model (STL) or the
PubMedBERT model fine-tuned for three individ-
ual entities achieves an F1 score of 0.85, 0.71, and
0.88 for cell line, tissue, and strain, respectively.
The third column shows the results of our MTL
model fine-tuned jointly on the three tasks, and the
F1 scores are 0.86, 0.71, and 0.87 for cell line, tis-
sue, and strain, respectively which shows that there
is no significant change in F1 score when compared
to the single task model results. The MTL model
for the cell line entity gives a better F1 score of
0.86 than the single-task learning model for the
cell line. This shows that the MTL model is able to
learn the mentions of cell line better than the other
entities.

The results of the multi-class token classification
model built over the paragraphs containing only
cell line and tissue are 0.62 and 0.46, respectively.
Since our data is unique in terms of the entities
annotated and their mentions in the paragraphs,
deploying a multi-class token classification model
to learn the properties of the entities in the text
is not a good choice in our case as it gives poor
results.

It might be possible that the underlying Pub-
MedBERT model learns the same features while
fine-tuning for different NER tasks; hence, the
MTL model is performing well. To rule out this
possibility, we fine-tune the models after freezing
the encoder layers of the PubMedBERT model.
The fourth and fifth columns of Table 2 show the
F1 scores when only the last layer with the task-
specific head is trained during the fine-tuning pro-
cess, and the underlying PubMedBERT layers are
frozen. The Frozen1 model is initiated with the pre-
trained PubMedBERT weights, and the Frozen2

model is initiated with the model’s weights fine-
tuned only on the cell line NER task. The F1 scores
for the Frozen1 and Frozen2 models are quite poor,
which clearly implies that jointly fine-tuning the
MTL model on multiple NER tasks learns new
features and performs better. The Frozen2 model
achieves a good F1 score for the cell line because
the underlying frozen model was fine-tuned for the
same field.

4.1 3x reduction in inference time
Our primary finding is that an MTL model de-
scribed above jointly trained on three different NER
tasks gives the same model performance when com-
pared to that of a PubMedBERT model fine-tuned
separately for three tasks. Table 3 shows the aver-
age inference time taken by the MTL model and the
single-task model when run sequentially. The MTL
model takes around 11 ms on GPU and 150 ms on
CPU, which is roughly three times less than the
time taken by the single-task model. This shows
the primary benefit of joint MTL training, which
leads to a considerable reduction in inference time
and cost and is crucial for practical applications.
Instead of doing a forward pass through 3 sepa-
rate BERT models to tag a paragraph of text, we
only have to do it for one BERT model. The task
heads themselves have a negligible contribution to
inference time.

4.2 Low prediction accuracy for tissue
As seen in Table 2, the F1 scores for tissue field is
much lower than that of cell line and strain. Even
the single-task learning model fine-tuned for tissue
entity gives an F1 score of 0.71 only. There might
be two possible reasons for the poor performance.
Firstly, cell line and strain names have a very dif-
ferent sub-word structure as compared to the tissue
names and thus are significantly easier to detect.
Secondly, detecting tissue names requires a deeper
understanding of the surrounding context in which
it occurs. For example, ‘blood’ can be a tissue, but
it can also occur in a different context where it is
not a tissue.

In order to see if we can improve the predic-
tion accuracy for the tissue field, we fine-tuned an
MTL model with two tasks. One was the actual
NER task, and another was an auxiliary classifica-
tion task that predicted whether an input paragraph
had any tissue tag present or not. We tried several
combinations of the learning rate, batch size, and
weightage of the two tasks in the final loss func-
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tion, but the best F1 score achieved was still 0.71,
as reported in Table 2.

5 Conclusion and Future Work

In this study, we demonstrated how multi-task
learning may be used to speed up model inference
for complementary tasks that must be performed
simultaneously on the same input. In particular,
we compared our multi-task model to a single-task
model and demonstrated that while the multi-task
learning model’s performance remained constant,
the inference time was reduced by three. Moreover,
for our experiments, we created a gold-standard
corpus, manually tagged with cell-line, tissue and
strain. This corpus is the first of its kind where
three different entities are manually curated by do-
main experts.

When compared to the other entity types, the
models’ performance in identifying tissue names
was incredibly poor, demonstrating how challeng-
ing it is to extract accurate tissue names from the
text in the right context. For tissue NER, we must
either discover a more suitable auxiliary task or de-
velop some rule-based methods that will enhance
the entity’s overall performance. To increase the
accuracy of tissue, we intend to carry out these ac-
tions in the future. Investigating the MTL model
for inference time on benchmark datasets would be
another interesting project.
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Appendix

A Manual Curation Guidelines

For annotating the corpus, two curators were recruited, and both had a biological background. The
paragraphs were extracted based on the dataset ids from the GEO database and were exported to the
Labelstudio 5 tool for annotations. Each dataset was assigned to the two curators for double-blinded
curation where the curators curate the datasets assigned to them independently. The similarities were
assessed for every dataset curated by two curators independently and in the case of dissimilarity, the
dataset was passed to an expert curator for final annotations. Apart from this, about 10% of datasets were
randomly picked for quality checks even if there was no dissimilarity.

The curation for tissue and cell line was done together and the ontology followed for tissue and cell
line were the BRENDA Tissue Ontology (BTO) 6 and Cellosaurus (CVCL)7 respectively. In the case of
annotating strain entity, the strain of mouse and rats used during the experimental process was annotated.
To find out the attribute of each mouse and rat provided in the experimental design of the dataset ids, the
curators referred to Mouse Genome Informatics (MGI) 8 for the strain information.

B Dataset creation for Multi-class sequence model

Dataset for multi-class token classification model includes paragraphs with tag for cell-line (928), tissue
(1347), cell-line & tissue (102), none (2557) which was split in 70:30 ratio for training and testing in
stratified way.

5https://labelstud.io/
6https://www.ebi.ac.uk/ols/ontologies/bto
7https://www.cellosaurus.org/
8http://www.informatics.jax.org/home/strain
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Abstract

The hearing challenged communities all over
the world face difficulties to communicate with
others. Machine translation has been one of the
prominent technologies to facilitate communi-
cation with the deaf and hard of hearing com-
munity worldwide. We have explored and for-
mulated the fundamental rules of Indian Sign
Language(ISL) and implemented them as a
translation mechanism of English Text to In-
dian Sign Language glosses. According to the
formulated rules and sub-rules, the source text
structure is identified and transferred to the tar-
get ISL gloss. This target language is such that
it can be easily converted to videos using the
Indian Sign Language dictionary. This research
work also mentions the intermediate phases of
the transfer process and innovations in the pro-
cess such as Multi-Word Expression detection
and synonym substitution to handle the limited
vocabulary size of Indian Sign Language while
producing semantically accurate translations.

1 Introduction

There are more than 300 sign languages all over
the world, depending upon the region of the world
(uni). Nearly 4 million deaf people and more than
10 million hard of hearing people in India (Zeshan
et al., 2005). Out of such a big number, approxi-
mately 1 million deaf adults and around 0.5 million
deaf children in India use Indian Sign Language.
Rest of nearly 2.5 million deaf and hard of hearing
people do not use any sign language to communi-
cate. Thus nearly 80% of hearing-impaired indi-
viduals have very limited or no access to education
and other information. Hearing-impaired people
use sign language using handshapes, fingers, facial
expressions, gestures, and other body parts. It is
a visual-spatial language as the signer often uses
the 3D space around his body to describe an event.
Sign languages, until the 1960s, were not viewed as
bona fide languages but just collections of gestures
and mime. Dr Stokoe’s research on American Sign

Language proved that it is a full-fledged language
with its own grammar, syntax, and other linguistic
attributes (Stokoe, 1960). There are some efforts to
prove the same for other sign languages, including
Indian Sign Language.

The sign language used in India is Indian Sign
Language (ISL). A study by (Vasishta et al., 1980)
specifies that the ISL used in different parts of India
is almost identical in its structure, with differenti-
ation in signs. It is a social need to encourage
the hearing impaired individuals of the Indian sub-
continent with a tool that can translate the English
text to ISL. ISL has all the properties of a natural
language and is also considered a natural language
like British Sign Language (BSL), American Sign
Language (ASL), and Australian Sign Language
(AUSLAN). The idea of automatic machine trans-
lation in the area of Sign Language translation has
been developing very fast in the last two decades
as the technology needs to be used for the hear-
ing impaired people all over the world. Most of
the researchers experimented with the rule-based
machine translation methodology to translate a spo-
ken or written language to Sign Language as this
method relies upon the dictionary and the grammar
of the source and target languages. Rule-Based
Machine Translation is mostly used these days as
Indian Sign Language is a low resource communi-
cation system and there is a lack of content pub-
lished in Indian Sign Language. The current state
of the art system is described in (Sugandhi et al.,
2020) which is also a rule based system. We have
tried to improve upon their work.

2 Goal of the Study

The objective is to take a standard English sentence
and convert it to text for sign language. The text for
sign language represents the given sentence so that
anyone can use it to perform the required gestures.
This text for sign language can be then used to
automate the process of generating sign language
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videos.
Up till now, most research has focused on the

grammar rules. (Agarwal et al., 2015) and (Mishra,
2019) contain extensive lists of grammar transfer
rules but this method for a large part has been re-
stricted to very simple sentences. We try to tackle
more complicated sentences here which are simple
in structure but some of the meanings conveyed by
them are complicated and the previously used meth-
ods fall short in some regards. We have therefore
used approaches such as Multi-Word Expression
detection and Synonym substitution to handle hid-
den meanings within the sentence structure. Not
much work has been done in these areas in this field.
(Goyal and Goyal, 2016) have used synonyms be-
fore but the methods used by them for synonym
substitutions are limited by the size of their man-
ually created dictionary of synonyms for certain
words. We have used existing English WordNet
described by (Miller et al., 1990) for finding syn-
onyms.

3 Methodology

We have broken down the steps into 3 phases:
Pre-processing, Grammar Transfer Rules and Post-
Processing. We are using Stanza by (Qi et al.,
2020), which is a collection of accurate and ef-
ficient tools for the linguistic analysis of many hu-
man languages. It is created by the Stanford NLP
Group. Apart from this, we are also using MWE
tokenizer from NLTK by (Bird and Loper, 2004)
for MWE tokenization.

3.1 Pre-Processing

In pre-processing step, we take each sentence and
pass it through two processing pipelines:

1. First pipeline is the standard Stanza Pipeline
described in (Qi et al., 2020) and includes the
steps of Tokenization, POS tagging, Depen-
dency Parsing, Named Entity Recognition and
Lemmatization.

2. The second pipeline uses the jMWE dataset
created by (Kulkarni and Finlayson, 2011)
along with the MWETokenizer available as a
part of the NLTK project by (Bird and Loper,
2004)

3.2 Grammar Transfer Rules

Here we are trying to convert dependency relations
to syntactic relations. The dependency relations in

the source language are defined as:
parent node(parent dependency) →
child node(child dependency) which are
then converted to syntax tree fragments with the
notation
phrase tree branch→ (left node)(right node)

1. Source: V ERB(root)→ NOUN(obj)
Transformation: V P →
[NOUN(obj)][V ERB(root)]
Example: He eats mangoes →
HE MANGO EAT

Explanation: Since ISL follows SOV struc-
ture, the sentence arrangement should be NP
NP VP. That is why we put all the nouns to
the left of the verb.

2. Source: V ERB(any)→ AUX(aux)
Transformation: V P →
[AUX(aux)][V ERB(any)]
Example: He was eating →
HE WAS EATING
All auxiliaries to a verb come before the verb

3. Source: V ERB(any)→ ADV (advmod)
Transformation: V P →
[V ERB(any)][ADV (advmod)]
Example: He ran quickly →
HE RUN QUICKLY
Explanation: All adverbs to a verb come after
the verb

Note: Rules 2 and 3 would not have ap-
peared in syntactic transformation rules
because they do not change the order of the
syntax tree. But since we want to extend
this to other languages, we need to specify
where each child node goes wrt to the head
node.

4. Source: V ERB(root)→ V ERB(any)
Transformation: V P →
[V ERB(root)][V ERB(any)]
This case is written to handle multiple clauses
in a sentence. In case of multiple clauses in
a sentence, the clauses will be processed in
order.

5. Source: NOUN(any)→ ADJ(amod)
Transformation: NP →
[NOUN(any)][ADJ(amod)]
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Example: He has a blue book →
HE BOOK BLUE HAV E
Explanation: Adjectives follow the noun they
describe

6. Source: NOUN(any) →
NUM(nummod)
Transformation: NP →
[NOUN(any)][NUM(nummod)]
Example: He has three sons →
HE SON THREE HAV E
Numbers are handled in two ways in ISL:

(a) Reduplication: Repeat the noun to signal
plurality

(b) Numbers follow the noun denoting the
quantity

7. Source: NOUN(any) → ANY (acl :
relcl)
Transformation: NP →
[NOUN(any)][ANY (acl : relcl)]
Example: I saw the book which you bought→
I BOOK Y OU BUY SEE
Explanation: A relative clause is similar to an
adjective and hence it comes after a noun.

3.3 Post Processing
Till this stage we have a rough ordering of the signs
we need to show. In post processing, we handle
special cases, filter out the unwanted words and
reduce the words to their root forms.

3.3.1 Interrogative Sentences
Interrogative sentences are signed by first show-
ing the signs of the sentence converted to the
imperative form followed by the question word.
These question words usually do not have a
specific dependency role assigned to them and
can occur in many relations depending on the
type of sentences. Apart from this, it also be-
comes very difficult to judge whether or not a
wh-word used in a sentence is a question or not,
e.g. I know what he is talking about →
I HE TALK_ABOUT KNOW . In this sen-
tence, the word what is a wh-word but is used
as a conjunction. Similarly, questions may some-
times be formed in English without using a wh-
word, e.g., Did you do your homework →
Y OU HOMEWORK DO WHAT . This prob-
lem has been extensively discussed by (Aboh et al.,
2005) It is difficult to handle such cases, and what
we have tried to do is just take the wh-word and
pick it and place it at the end of the sentence.

3.3.2 Negative Sentences
Negative sentences are sentences that have a not or
no in them. They convey the meaning that the oppo-
site of the event occurs. We apply a similar strategy
for negative sentences by just picking and placing
the negative word at the end of the sentence, e.g.
He is not a doctor → HE DOCTOR NOT .
Similar strategies would work well with other lan-
guages too.

As we see, negative sentences and questions
are handled similarly in ISL. But then the ques-
tion arises: If we have a negative question sen-
tence such as Who will not come with me, how
is it signed in ISL. We did not find any litera-
ture discussing this. So we contacted ISLRTC,
and their group of expert signers seemed to
sign the negative word before the question word.
So the previously mentioned example would be
translated as Who will not go with me →
I WITH GO NOT WHO

3.3.3 Synonym Substitution
As we have mentioned earlier, Indian Sign Lan-
guage is still new, and many terms are yet to be
added to the dictionary. As such, till now, there
are only 10000 words in the ISL dictionary. As
a comparison, English has around 200,000 words
(Brewer, 1993) which is 20 times the size. Hence,
there are many words in English that do not have
an equivalent sign. If such a word occurs in a
sentence, it needs to be translated somehow. For
that, we substitute those words that are not in the
video dictionary with words close to the original
word’s meaning and have a corresponding word
in the dictionary. Closest words are selected from
the synset in the WordNet based on a score denot-
ing how similar two word senses are, based on the
shortest path that connects the senses in the is-a
(hypernym/hypnoym) taxonomy.

3.3.4 Stopword Removal and Lemmatization
After all the above processing is done, we need to
clean up the sentences. ISL does not contain words
such as articles and certain functional words that
do not necessarily convey meaning. But not all
stop-words in English are removed from ISL. For
this purpose, we created our own list of stop-words
for English based on inputs from translations of
sentences in our dataset by expert ISL signers. Fol-
lowed by the removal of the stop-words, we convert
all the remaining tokens into their root forms. At
the end of this step we reach the point where we are
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ready with a textual representation of the videos
required to be shown for translating the sentence.

3.3.5 Video Translation
After the sentences have been converted into text
for sign language, the output tokens are then
searched for in the video database. Two cases can
arise here; one is that the tokens are available in
the database. If the tokens are not available in the
database, then we use WordNets to check if there
are synonyms for that given word that have the
same POS and are present in the dictionary. We
assume that if the word has the same POS and is of
similar meaning, it can be directly replaced by the
synonym word without affecting the grammar. This
is corroborated with evidence from the hearing im-
paired community. If any of the words’ synonyms
are not found in the dictionary, then that sentence
cannot be translated into ISL, unfortunately, and
there is little we can do about it. One possibility is
to fingerspell the word, but that approach does not
give accurate results always. We then concatenate
the video for each sign together to generate the
final output.

Figure 1: End-to-end System Diagram

Accuracy
Total Sentences Checked 741
Sentences with synonyms substituted 304
Sentences with MWEs detected 24 95.8333

Table 1: Summary of results

4 Results and Discussion

As there was no previously established standard
for this task, we selected the simple-wiki-dataset.
We ran our model on 741 sentences with lengths
of about 5-9 words per sentence. The results were
manually evaluated.

4.1 Synonym Substitution
1368 words were substituted by synonyms in 1011
sentences. Some of the substitutions were very
accurate. Such as raise→lift, argument→debate,
survive→last, astound→amaze, etc. However,
not all substitutions were meaning conserving eg.
sword→steel, offend→break. Sometimes the sub-
stitutions were wrong because the meaning of the
sign and the word were totally different. For exam-
ple in some sentences, say became ‘state’ but the
sign for ‘state’ is for the noun state(country) and
not the verb state which actually would have shared
the same meaning. Some examples are shown in
Table 2

4.2 MWE Processing
There were 426 words in which were identified
as Multi-Word Expressions. All of the MWEs
identified were correct. Example: look_up_to,
rolling_stock, you_know, thank_you, etc.

5 Conclusion and Future Work

In this paper we have tried to tackle semantically
complex sentences and we see that the previously
used methods fall short in some regards. There-
fore, we have used approaches such as Multi-Word
Expression detection and Synonym substitution to
handle hidden meanings within the sentence struc-
ture. We needed simple English sentences to test
out our algorithm, as the rules worked best for sim-
ple sentences. In future, we intend to use machine
learning approaches to do the translations on a large
dataset to convert the standard English sentences.
The methods mentioned in the paper could be a way
to convert a large dataset of sentences on which
Deep Learning models such as sequence2sequence
and transformers can be trained.
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Sentence After Grammar
Rules

Missing Words Replacement Word Final Output

A woman sells
newspapers

Woman newspaper
sells

newspaper paper woman paper sell

Helene let her fall Helene her let fall let allow H E L E N E mine
allow fall

This foreshadows
later events

This events later
foreshadows

foreshadow predict this event late pre-
dict

Table 2: Result of Synonym Substitution
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Abstract
Topic modeling has emerged as a dominant
method for exploring large document collec-
tions. Recent approaches to topic modeling use
large contextualized language models and vari-
ational autoencoders. In this paper, we propose
a negative sampling mechanism for a contextu-
alized topic model to improve the quality of the
generated topics. In particular, during model
training, we perturb the generated document-
topic vector and use a triplet loss to encourage
the document reconstructed from the correct
document-topic vector to be similar to the in-
put document and dissimilar to the document
reconstructed from the perturbed vector. Exper-
iments for different topic counts on three pub-
licly available benchmark datasets show that in
most cases, our approach leads to an increase in
topic coherence over that of the baselines. Our
model also achieves very high topic diversity.

1 Introduction

The modern world is witnessing tremendous
growth in digital documents. It is often necessary
to organize them into semantic categories to make
the content more easily accessible to users. The
assignment of domain tags through manual inter-
vention can be quite cumbersome and very expen-
sive to maintain, mainly due to the enormity and
diversity of the available data. The use of topic
modelling techniques can be of huge significance
in this area because of their ability to automatically
learn the overarching themes or topics from a col-
lection of documents in an unsupervised way and
tag the documents with their dominant topics (New-
man et al., 2010; Boyd-Graber et al., 2017; Adhya
and Sanyal, 2022). Informally, a topic is a group
of extremely related words. While latent Dirichlet
allocation (LDA) (Blei et al., 2003) is the classi-
cal topic modeling approach, recently neural topic
models have become popular as they decouple the
inference mechanism from the underlying mod-
eling assumptions (e.g., the topic prior), thereby

simplifying the design of new topic models. Neural
topic models are based on variational autoencoders
(VAEs) (Kingma and Welling, 2014) and allow us
to leverage the progress in deep learning in mod-
eling text (Zhao et al., 2021). The recently pro-
posed contextualized topic model (CTM) (Bianchi
et al., 2021), which is a neural topic model, rep-
resents each document in the collection both as
a bag-of-words (BoW) vector as well as a dense
vector produced by a pre-trained transformer like
sentence-BERT (SBERT) (Reimers and Gurevych,
2019), thus combining a classical representation
with a contextualized representation that captures
the semantics of the text better. CTM produces
state-of-the-art performance on many benchmark
datasets (Bianchi et al., 2021).

A neural topic model is trained to maximize the
log-likelihood of the reconstruction of the input
document and minimize the KL-divergence of the
learned distribution of the latent (topic) space from
a known prior distribution of the latent space. If
the topics in a document are perturbed, that is, say,
the top topic in a document is deleted, the docu-
ment should display a marked change in its word
distribution. Such an objective is not explicitly
modeled above. In this paper, we train CTM to in-
fer topics from a document in such a way that while
the inferred topics should aid in reconstructing the
document (as in any topic modeling algorithm),
when the top topics are perturbed it should fail to
reconstruct the original document. This is done
by treating the document reconstructed from the
correct topic vector as an anchor that is encour-
aged to be similar to the original input document
but dissimilar to the document reconstructed from
the perturbed topics. Our proposed model, CTM-
Neg, achieves higher average topic coherence, mea-
sured by NPMI score, than that of other competing
topic models, and very high topic diversity on three
datasets. We have made our code publicly avail-
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able1.
Thus, our primary contributions are:

1. We propose a simple but effective negative
sampling technique for neural topic models.
Negative samples are produced automatically
in an unsupervised way.

2. We perform extensive experiments on three
publicly available datasets. In particular, we
compare the proposed model with four other
topic models for eight different topic counts
on each dataset. We observe that the proposed
strategy leads to an increase in topic coher-
ence over the baselines in most of the cases.
Averaged over different topic counts, CTM-
Neg achieves the highest mean NPMI score
on all three datasets, and highest mean CV on
two datasets, and the second highest mean CV
on the third. CTM-Neg also attains the best or
the second best mean topic diversity scores on
the three datasets though all the topic models
except one (which underperforms) produce
similar high topic diversity.

2 Related Work

Latent Dirichlet allocation (LDA) (Blei et al., 2003)
models every document in a given corpus as a
mixture of topics, where each topic is a probabil-
ity distribution over the vocabulary. Among the
modern neural alternatives to LDA, a pioneering
approach is the ProdLDA model (Srivastava and
Sutton, 2017). It is a VAE-based topic model that
uses an approximate Dirichlet prior (more precisely,
Laplace approximation to the Dirichlet prior in the
softmax basis), instead of a standard Gaussian prior
(Miao et al., 2016). The VAE takes a bag-of-words
(BoW) representation of a document, maps it to
a latent vector using an encoder or inference net-
work, and then maps the vector back to a discrete
distribution over words using a decoder or genera-
tor network. CTM (Bianchi et al., 2021) augments
ProdLDA by allowing in its input a contextualized
representation (SBERT) of the documents. Em-
bedded topic model (ETM) (Dieng et al., 2020)
is a VAE-based topic model that uses distributed
representations of both words and topics.

Negative sampling in NLP-based tasks was pop-
ularized after its use in the word embedding model,
word2vec (Mikolov et al., 2013). The idea of
negative sampling is to ‘sample’ examples from

1https://github.com/AdhyaSuman/CTMNeg

a noise distribution and ensure that the model be-
ing trained can distinguish between the positive
and negative examples. It can be used to reduce
the computational cost of training, help identify
out-of-distribution examples, or to make the model
more robust to adversarial attacks (Xu et al., 2022).
A few works have recently applied it to topic
modeling. For example, (Wu et al., 2020) pro-
posed a negative sampling and quantization model
(NQTM) with a modified cross-entropy loss to gen-
erate sharper topic distributions from short texts.
Some researchers have applied generative adversar-
ial networks to design topic models (Wang et al.,
2019; Hu et al., 2020; Wang et al., 2020), but since
the negative examples are generated from an as-
sumed fake distribution, they bear little similarity
to real documents. In (Nguyen and Luu, 2021), a
negative document sample is created by replacing
the weights of the words having the highest tf-idf
scores in the input document with the weights of
the same words in the reconstructed document. Our
method follows a different strategy: it generates
a perturbed document-topic vector (instead of an
explicit negative document) and uses triplet loss to
push the BoW vector reconstructed from the cor-
rect topic vector closer to the input BoW vector and
farther from the BoW vector generated from the
perturbed topics. Unlike the present work, none of
the other adversarial topic models use contextual
embeddings as input.

3 Proposed Method

3.1 Baseline Architecture

Our proposed model is based on a VAE architec-
ture. In particular, we build upon CTM (Bianchi
et al., 2021). We assume that the vocabulary size is
V and a document is represented as a normalized
bag-of-words vector xBoW as well as a contextual-
ized embedding vector xc. A linear layer converts
xc to a V -dimensional vector. The encoder of the
VAE concatenates these two vectors into a single
2V -dimensional vector x and outputs the param-
eters of the posterior

(
µT×1,ΣT×1

)
where T is

the number of topics, µT×1 denotes the mean, and
ΣT×1 represents the diagonal covariance matrix.
Note that it is standard in the VAE literature to as-
sume a diagonal covariance matrix instead of a full
covariance matrix (Srivastava and Sutton, 2017).
In the decoder, using the reparameterization trick
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Figure 1: Framework for the contextualized topic model with negative sampling (CTM-Neg).

the latent representation (zT×1) is generated:

zT×1 = µT×1 +Σ
1/2
T×1 ⊙ ϵT×1 (1)

where ϵT×1 ∼ N (0, I) and ⊙ denotes Hadamard
product. This hidden representation z is then
used as a logit of a softmax function (σ(·)) to
generate the document-topic distribution θT×1 (=
σ(zT×1)). The decoder has an unnormalized topic-
word matrix βT×V , which is used to reconstruct
the word distribution in the following manner:

x̂V×1 = σ(β⊤
T×V θT×1) (2)

To formulate the loss function, note that the en-
coder learns the posterior distribution qϕ(z|x). We
assume that the prior is p(z). The decoder is the
generative model pθ(xBoW|z). The loss function
to be minimized is given by

LCTM = LRL + LKL

≡ −Ez∼qϕ(z|x)pθ(xBoW|z)
+ DKL (qϕ(z|x)||p(z)) (3)

here, the first term (LRL) is the reconstruction
loss (measured by the cross-entropy between the
predicted output distribution x̂ and the input vec-
tor xBoW) while the second term LKL is the KL-
divergence of the learned latent space distribution
qϕ(z|x) from the prior p(z) of the latent space.

3.2 Proposed Negative Sampling Mechanism
To improve the topic quality, we train the above
model with negative samples as follows. For every
input document, after a topic vector θ is sampled,
a perturbed vector θ̃neg is generated from it by
setting the entries for the top S topics (i.e., the
S positions in θ corresponding to the S largest
values in θ) to zero. θ̃neg is then normalized so
that the resulting vector θneg is a probability vector.

The normalization is done simply by dividing the
values in θ̃neg by their sum, as all values, in θ̃neg

are already non-negative (since θ is obtained by
applying softmax). Mathematically,

θneg =
θ̃neg∑T

i=1 θ̃neg[i]
(4)

where, θ̃neg[i] =

{
0 if i ∈ argmax(θ, S)

θ[i] otherwise

The function argmax(θ, S) returns the indices of
the S largest values in θ. We treat S as a hyper-
parameter. Like θ, the perturbed topic vector θneg

is passed through the decoder network. The latter
generates x̂neg = σ(β⊤θneg). We introduce a new
term, triplet loss LTL, in Eq. (3) assuming the an-
chor is x̂, the positive sample is xBoW (the original
input document), and the negative sample is x̂neg:

LTL = max(||x̂−xBoW||2−||x̂− x̂neg||2+m, 0)
(5)

where m is the margin. Therefore, the modified
loss function to be minimized is given by:

L = (LRL + LKL) + λLTL (6)

where λ is a hyperparameter. Fig. 1 depicts the pro-
posed model. The model is trained in an end-to-end
manner using Adam optimizer and backpropaga-
tion.

4 Experimental Setup

We perform all experiments in OCTIS (Terragni
et al., 2021), which is an integrated framework for
topic modeling.

4.1 Datasets

We use the following three datasets:
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Dataset #Topics
10 20 30 40 50 60 90 120

GN (2, 0.7) (2, 0.58) (2, 0.59) (2, 0.59) (3, 0.82) (3, 0.94) (1, 0.68) (3, 0.82)
20NG (3, 0.78) (3, 0.83) (3, 0.86) (1, 0.74) (1, 0.12) (3, 0.27) (1, 0.84) (1, 0.90)
M10 (3, 0.9) (3, 0.49) (1, 0.82) (1, 0.59) (3, 0.82) (3, 0.58) (3, 0.93) (3, 0.27)

Table 1: Each paired entry shows the best hyperparameters (S, λ) in CTM-Neg as discovered by OCTIS for a given
(Dataset, #Topics) combination.

1. GoogleNews (GN): It consists of 11, 109
news articles, titles, and snippets collected
from the Google News website in November
2013 (Qiang et al., 2020).

2. 20NewsGroups (20NG): It comprises 16, 309
newsgroup documents partitioned (nearly)
evenly across 20 different newsgroups (Ter-
ragni et al., 2021).

3. M10: It is a subset of CiteSeerX data com-
prising 8355 scientific publications from 10
distinct research areas (Pan et al., 2016).

The last two datasets are available in OCTIS while
we added the first one.

4.2 Evaluation Metrics
Coherence measures help to assess the relatedness
between the top words of a topic. Informally, a
topic is said to be coherent if it contains words that,
when viewed together, help humans to recognize
it as a distinct category (Hoyle et al., 2021). We
use Normalized Pointwise Mutual Information
(NPMI) and (Lau et al., 2014) and Coherence
Value (CV) (Röder et al., 2015) to measure topic
coherence. NPMI is widely adopted as a proxy
for human judgement of topic coherence though
some researchers also use CV (but CV has some
known issues). NPMI calculates topic coherence
by measuring how likely the topic words are to
co-occur. If p(wi, wj) represents the probability
of two words wi and wj co-occurring in a boolean
sliding context window, and p(wi) is the marginal
probability of word wi, then the NPMI score is
given by (Lau et al., 2014),

NPMI(wi, wj) =


 log

p(wi,wj)+ϵ
p(wi).p(wj)

− log(p(wi, wj) + ϵ)


 (7)

where ϵ is a small positive constant used to avoid
zero. NPMI(wi, wj) lies in [−1, +1] where −1
indicates the words never co-occur and +1 indi-
cates they always co-occur. CV is calculated using

an indirect cosine measure along with the NPMI
score over a boolean sliding window (Röder et al.,
2015; Krasnashchok and Jouili, 2018). OCTIS uses
the CoherenceModel of gensim where NPMI
is referred to as c_npmi and CV as c_v.

We measure the diversity of topics using In-
versed Rank-Biased Overlap (IRBO) (Bianchi
et al., 2021). It gives 0 for identical topics and 1
for completely dissimilar topics. Suppose we are
given a collection ℵ of T topics where each topic is
a list of words such that the words at the beginning
of the list have a higher probability of occurrence
(i.e., are more important or more highly ranked) in
the topic. Then, the IRBO score of the topics is
defined as

IRBO(ℵ) = 1−
∑T

i=2

∑i−1
j=1RBO(li, lj)

n
(8)

where n =
(
T
2

)
is the number of pairs of lists,

and RBO(li, lj) denotes the standard Rank-Biased
Overlap between two ranked lists li and lj (Web-
ber et al., 2010). IRBO allows the comparison of
lists that may not contain the same items, and in
particular, may not cover all items in the domain.
Two lists (topics) with overlapping words receive
a smaller IRBO score when the overlap occurs at
the highest ranks of the lists than when they occur
at lower ranks. IRBO is implemented in OCTIS.
Higher values of NPMI, CV, and IRBO are better
than lower values.

In our experiments, for evaluation using the
above metrics in OCTIS, we use the top-10 words
from every topic and the default values for all the
other parameters.

4.3 Baselines and Configuration
We denote our proposed topic model by CTM-Neg.
As baselines we use the following topic models,
which are already implemented in OCTIS:

1. CTM (Bianchi et al., 2021).

2. ProdLDA (Srivastava and Sutton, 2017).
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3. ETM (Dieng et al., 2020).

4. LDA (Blei et al., 2003).

In CTM-Neg, CTM, and Prod-LDA, the
encoder is a fully-connected feedforward
neural network (FFNN) with two hidden
layers with 100 neurons each, and the
decoder is a single-layer FFNN. We use
paraphrase-distilroberta-base-v2
(which is an SBERT model) to obtain the contextu-
alized representations of the input documents in
CTM and CTM-Neg.

In CTM-Neg, we set m = 1 in Eq. (5) as is
the default in PyTorch. We have optimized the
hyperparameters S and λ using the Bayesian opti-
mization framework of OCTIS to maximize NPMI.
Table 1 shows the optimal values discovered when
S ∈ {1, 2, 3} and λ ∈ [0, 1]. In LDA, we use 5
passes over the input corpus as the default single
pass produces too poor topics. Other hyperparam-
eters are set to their default values in OCTIS. For
all datasets, the vocabulary is set to the most com-
mon 2K words in the corpus. Experiments for each
topic model are done for all topic counts in the set
{10, 20, 30, 40, 50, 60, 90, 120}. We have trained
all models for 50 epochs.

5 Results

5.1 Quantitative Evaluation
Given a dataset and a topic model, we recorded
the median values of NPMI, CV, and IRBO over 5
independent runs for each topic count. We choose
median instead of mean as the former is more ro-
bust to outliers. Then for the same dataset and
topic model, we compute the average of these val-
ues so that we can get an idea of the performance
of the topic model without coupling it to a specific
topic count. Table 2 shows the corresponding val-
ues where we mention the median along with the
mean.

We observe that CTM-Neg achieves the highest
average NPMI on all datasets. CTM-Neg also pro-
duces the highest average CV on all datasets except
M10 where CTM performs slightly better. In the
case of IRBO, while CTM-Neg gives the highest
scores on GN and 20NG, it ranks as the second best
on M10. It is also observed that the IRBO values
for all models except ETM are very close to each
other.

In order to afford a more fine-grained view of
the performance of the topic models, Fig. 2 de-

picts how the scores vary with topic count for all
topic models and on all datasets. CTM-Neg always
achieves the highest NPMI and CV scores on GN
and 20NG datasets. On the M10 corpus, CTM
scores slightly better than CTM-Neg in NPMI and
CV for some topic counts. The IRBO plots in Fig.
2 show that on a given dataset, all topic models,
except ETM, achieve very similar IRBO scores for
every topic count. ETM is always found to produce
significantly lower IRBO values. CTM-Neg does
not always produce the highest IRBO. For example,
on the M10 corpus, the IRBO score of CTM-Neg is
the highest till T = 20 after which LDA dominates
and CTM-Neg is relegated to the second position.
A closer look at Fig. 2 reveals that this gain in topic
diversity for LDA comes at the expense of reduced
NPMI.

5.2 Extrinsic Evaluation
We also use an extrinsic task to evaluate the topic
models. We measure the predictive performance of
the generated topics on a document classification
task. Specifically, we use the M10 dataset from
OCTIS where each document is already marked
with one of 10 class labels as shown in Table 3.
The corpus is divided into train/dev/test subsets in
the ratio 70:15:15. Each topic model is trained on
the training subset to produce T = 10 topics and
the T -dimensional document-topic latent vector is
used as a representation of the document. Next, a
linear support vector machine is trained with these
representations of the training subset (for each topic
model), and the performance on the test subset is
recorded. Fig. 3 shows that CTM-Neg achieves the
highest accuracy.

5.3 Qualitative Evaluation
It is acknowledged in the NLP community that au-
tomatic metrics do not always accurately capture
the quality of topics produced by neural models
(Hoyle et al., 2021). So we perform manual evalua-
tion of the topics for a few selected cases. Table 4
shows some of the topics output by random runs of
the different topic models on 20NG for T = 20 top-
ics. Note that the table displays manually aligned
topics, that is, the first topic mentioned against
any of the topic models is very similar to the first
topic stated against every other topic model, and
similarly for all other topics. We observe that the
topics generated by CTM-Neg contain very specific
words in the top positions that distinguish the topics
more clearly compared to the case of other models.
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Dataset Model
Coherence Diversity

NPMI CV IRBO
Mean Median Mean Median Mean Median

GN

CTM-Neg 0.142 0.188 0.530 0.552 0.998 0.998
CTM 0.081 0.128 0.485 0.513 0.995 0.995

ProdLDA 0.056 0.076 0.471 0.476 0.996 0.996
ETM -0.263 -0.271 0.414 0.416 0.627 0.660
LDA -0.164 -0.176 0.403 0.405 0.997 0.998

20NG

CTM-Neg 0.121 0.127 0.648 0.653 0.991 0.991
CTM 0.093 0.098 0.627 0.632 0.990 0.990

ProdLDA 0.080 0.084 0.609 0.607 0.990 0.991
ETM 0.049 0.048 0.528 0.527 0.819 0.808
LDA 0.075 0.080 0.571 0.577 0.983 0.990

M10

CTM-Neg 0.052 0.056 0.462 0.461 0.986 0.985
CTM 0.048 0.047 0.466 0.461 0.980 0.979

ProdLDA 0.025 0.023 0.448 0.449 0.983 0.981
ETM -0.056 -0.062 0.345 0.350 0.502 0.484
LDA -0.192 -0.201 0.386 0.389 0.989 0.992

Table 2: Comparison of topic models on three datasets. For each metric and each topic model, we mention the mean
and the median of the scores for topic counts {10, 20, 30, 40, 50, 60, 90, 120}.
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Figure 2: Variation of topic coherence (NPMI and CV) and topic diversity (IRBO) with topic count for different
topic models on three datasets. The ordinate value of each data point reports the median over five independent runs.

133



Label #Documents
Agriculture 643

Archaeology 131
Biology 1059

Computer Science 1127
Financial Economics 978

Industrial Engineering 944
Material Science 873

Petroleum Chemistry 886
Physics 717

Social Science 997

Table 3: M10 labels with corresponding document
counts.
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Figure 3: Document classification for M10 corpus with
T = 10 topics.

For example, the first topic produced by CTM-Neg
contains very focused terms like ‘turkish’, ‘israeli’,
‘genocide’, ‘war’, etc., and is easily identifiable as
‘middle-east conflict’ (corresponds to newsgroup
talk.politics.mideast of 20NG corpus).
CTM outputs a very similar topic but it seems to
focus only on the ‘Armenian genocide’ yet con-
tains more generic terms like ‘neighbor’ and ‘town’.
ProdLDA also focuses primarily on ‘Armenian
genocide’ but its last word ‘jewish’ probably refers
to the Israeli conflict. While the corresponding
topic from LDA contains some generic terms like
‘man’, ‘kill’, etc., most of the words in ETM like
‘kill’, ‘gun’, and ‘fire’ are very general. Moreover,
words like ‘leave’ and ‘start’ that occur in this topic
in ETM reduce the interpretability of the topic.

Similarly, the fourth topic in CTM-Neg is sports-
related and contains specific words like ‘hockey’
and ‘baseball’. While the corresponding topic from
ProdLDA mentions ‘hockey’ (but not ‘baseball’),
none of the other models produces these terms.
The ability of CTM-Neg to extract focused words
is probably a consequence of the negative sampling
algorithm that encourages a topic to capture the
most salient words of its representative documents
so that deleting the topic pushes the reconstructed
document away from the input document.

Table 5 shows the topics that are discovered in
a random run of each topic model on the M10
dataset for T = 10 topics. We show four topics –
the first is on ‘neural and evolutionary computing’
(or ‘artificial intelligence’), the second on ‘microar-
ray gene expression’, the third on ‘stock market’,
and the fourth on ‘multi-agent decision making’.
The topics generated by CTM and CTM-Neg are
very similar. However, the presence of words like
‘processing’ in the first topic, ‘work’ in the third
topic, and ‘approach’ in the fourth topic in CTM
appear less connected to the other words in the
respective topics. Such outliers are not visible in
the topics produced by CTM-Neg. Moreover, the
second topic output by CTM-Neg contains very
domain-specific terms like ‘dna’ and ‘motif’, which
are not produced by CTM. Similar issues occur
in ProdLDA and LDA. In the case of ETM, the
first topic contains words that make it a mixture of
the first two topics produced by the other models.
For example, it contains words like ‘neural’ and
‘network’ that occur in the first topic in the other
models, and also ‘gene’ and ‘expression’ which
are present in the second topic in the other models.
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Model Topics

CTM-Neg

turkish, armenian, jewish, population, muslim, village, israeli, genocide, government, war
chip, key, encryption, government, clipper, phone, security, privacy, escrow, secure

video, monitor, vga, port, modem, apple, driver, card, resolution, board
score, playoff, period, play, fan, win, hockey, game, baseball, lose

CTM

people, armenian, soldier, village, turkish, massacre, troop, neighbor, town, genocide
chip, clipper, encryption, government, encrypt, algorithm, agency, secure, phone, key

draw, mouse, advance, convert, font, screen, button, host, code, terminal
game, win, final, goal, period, cap, score, fan, lead, play

ProdLDA

genocide, armenian, turkish, greek, muslim, village, population, russian, massacre, jewish
encryption, secret, secure, chip, privacy, government, key, agency, security, encrypt

monitor, card, apple, video, sale, price, board, audio, offer, external
game, team, division, season, hockey, playoff, score, goal, player, wing

ETM

people, kill, child, gun, armenian, fire, man, time, leave, start
key, chip, encryption, clipper, bit, government, algorithm, message, law, system

drive, card, disk, system, bit, run, window, scsi, driver, monitor
game, play, win, team, player, year, good, score, hit, season

LDA

people, jewish, armenian, child, man, kill, woman, death, turkish, israeli
key, chip, encryption, government, security, clipper, bit, public, message, system

card, work, monitor, system, driver, problem, run, machine, video, memory
game, team, play, player, win, year, good, season, hit, score

Table 4: Some related topics discovered by different topic models in the 20NG corpus when run for T = 20 topics.

Model Topics

CTM-Neg

neural, network, learn, recurrent, learning, artificial, language, evolutionary, genetic, adaptive
expression, gene, datum, sequence, cluster, protein, microarray, dna, analysis, motif

stock, return, market, price, volatility, exchange, rate, interest, option, monetary
decision, make, agent, making, group, multi, uncertainty, robot, intelligent, autonomous

CTM

network, neural, learn, learning, artificial, evolutionary, language, recurrent, knowledge, processing
gene, expression, datum, model, analysis, microarray, cluster, clustering, genetic, classification

market, stock, price, return, risk, financial, rate, option, work, volatility
decision, agent, make, making, multi, human, group, uncertainty, social, approach

ProdLDA

network, neural, learn, recurrent, artificial, learning, evolutionary, language, knowledge, adaptive
expression, gene, datum, cluster, analysis, microarray, factor, bind, classification, site

market, stock, price, risk, financial, rate, evidence, return, exchange, work
decision, make, agent, making, group, environment, autonomous, robot, human, mobile

ETM

network, neural, gene, expression, datum, cluster, classification, recurrent, learn, genetic
-

market, gas, price, stock, financial, natural, return, work, rate, estimate
model, decision, base, analysis, method, theory, application, approach, make, dynamic

LDA

network, neural, learn, learning, recurrent, dynamic, model, artificial, sensor, bayesian
gene, expression, datum, cluster, analysis, model, microarray, feature, sequence, base

price, stock, oil, option, market, term, model, asset, return, pricing
decision, theory, model, make, base, information, making, access, agent, bioinformatic

Table 5: Some related topics discovered by different topic models in the M10 corpus when run for T = 10 topics.

Model Topics

CTM-Neg
neural, network, recurrent, language, artificial, grammatical, context, learn, symbolic, natural
classification, neural, recognition, classifier, learn, pattern, coding, feature, network, sparse

network, neural, recurrent, feedforward, artificial, genetic, bayesian, learn, knowledge, evolutionary
LDA network, neural, recurrent, learn, mechanic, adaptive, inference, compute, title, extraction

Table 6: Some AI-related topics discovered by CTM-Neg and LDA in the M10 corpus when run for T = 40 topics.
Italicized words in a topic appear less connected to the other words in the topic.
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Therefore, we have kept the second line for ETM
topics in Table 5 blank. We observed that some of
the topics produced by ETM contain many com-
mon words. In particular, we found that five topics
from ETM contain the words ‘model’, ‘decision’,
‘method’, ‘analysis’, and ‘theory’ in some order in
the top slots, thus becoming repetitive, and con-
sequently, ETM fails to discover meaningful and
diverse topics like the other models. This is indica-
tive of the component collapsing problem where all
output topics are almost identical (Srivastava and
Sutton, 2017).

We have observed earlier that on the M10 cor-
pus, for large topic counts LDA beats CTM-Neg in
IRBO but not in NPMI. We revisit this issue now
and manually analyze their topics for T = 40. We
found indeed the different topics output by LDA
hardly overlap in words (leading to larger topic
diversity) but the words do not always appear logi-
cally connected and interpretable (thus, sacrificing
coherence). On the other hand, the topics gener-
ated by CTM-Neg look more coherent although
they are not always disjoint. For example, see Ta-
ble 6 which shows the topics containing the word
‘neural’ (among the top-10 words in the topic) dis-
covered by CTM-Neg and LDA. CTM-Neg pro-
duces three topics that roughly relate to ‘natural
language processing’, ‘pattern recognition’, and
‘neural and evolutionary computing’, respectively.
But only one topic from LDA contains ‘neural’ – it
is primarily about ‘neural networks’ but contains
some very weakly related words.

6 Conclusion

We have proposed a negative sampling strategy for
a neural contextualized topic model. We evaluated
its performance on three publicly available datasets.
In most of our experiments, the augmented model
achieves higher topic coherence, as measured by
NPMI and CV, and comparable topic diversity, as
captured by IRBO, with respect to those of com-
petitive topic models in the literature. A manual
evaluation of a few selected topics shows that the
topics generated by CTM-Neg are indeed coher-
ent and diverse. In the future, we would like to
compare it with other contrastive learning-based
topic models and integrate it with other neural topic
models.
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A Appendix

A.1 Detailed Results of Quantitative
Evaluation

Table 7 shows the NPMI, CV, and IRBO scores
obtained for the different topic models on the three
datasets for different topic counts. This table has
been used to construct Table 2 and Fig. 2 in this
paper.
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Model #Topics Dataset: GN Dataset: 20NG Dataset: M10
NPMI CV IRBO NPMI CV IRBO NPMI CV IRBO

CTM-Neg 10 -0.096 0.439 1 0.1 0.641 0.997 0.073 0.491 1
CTM-Neg 20 0.031 0.424 1 0.129 0.672 0.994 0.076 0.49 0.993
CTM-Neg 30 0.13 0.494 1 0.135 0.664 0.992 0.065 0.475 0.989
CTM-Neg 40 0.174 0.542 0.999 0.129 0.656 0.991 0.06 0.461 0.986
CTM-Neg 50 0.201 0.562 0.998 0.132 0.662 0.99 0.051 0.461 0.985
CTM-Neg 60 0.227 0.592 0.998 0.125 0.65 0.991 0.046 0.449 0.982
CTM-Neg 90 0.235 0.598 0.995 0.114 0.626 0.988 0.031 0.44 0.979
CTM-Neg 120 0.234 0.592 0.993 0.107 0.616 0.986 0.019 0.426 0.976

CTM 10 -0.144 0.391 1 0.048 0.585 0.988 0.055 0.507 0.999
CTM 20 -0.01 0.406 0.998 0.105 0.649 0.994 0.06 0.467 0.988
CTM 30 0.076 0.467 0.997 0.111 0.661 0.992 0.069 0.479 0.983
CTM 40 0.126 0.515 0.996 0.104 0.644 0.991 0.051 0.466 0.98
CTM 50 0.129 0.51 0.994 0.101 0.636 0.99 0.044 0.456 0.977
CTM 60 0.149 0.519 0.993 0.095 0.628 0.99 0.042 0.452 0.974
CTM 90 0.153 0.535 0.991 0.094 0.608 0.989 0.04 0.456 0.971
CTM 120 0.17 0.538 0.99 0.086 0.606 0.986 0.025 0.443 0.968

ProdLDA 10 -0.103 0.431 1 0.069 0.602 0.986 0.047 0.477 0.999
ProdLDA 20 -0.007 0.403 1 0.09 0.645 0.991 0.017 0.45 0.992
ProdLDA 30 0.029 0.463 0.999 0.088 0.637 0.99 0.026 0.456 0.987
ProdLDA 40 0.081 0.491 0.997 0.087 0.63 0.993 0.035 0.458 0.982
ProdLDA 50 0.071 0.47 0.996 0.083 0.607 0.993 0.013 0.426 0.981
ProdLDA 60 0.098 0.481 0.995 0.085 0.607 0.991 0.028 0.447 0.979
ProdLDA 90 0.136 0.508 0.992 0.068 0.573 0.991 0.017 0.437 0.975
ProdLDA 120 0.14 0.518 0.99 0.068 0.57 0.99 0.02 0.436 0.969

ETM 10 -0.235 0.411 0.549 0.05 0.531 0.883 -0.004 0.325 0.653
ETM 20 -0.233 0.416 0.473 0.054 0.534 0.812 -0.07 0.346 0.525
ETM 30 -0.269 0.438 0.578 0.05 0.533 0.788 -0.063 0.333 0.449
ETM 40 -0.289 0.422 0.652 0.048 0.527 0.782 -0.061 0.353 0.462
ETM 50 -0.245 0.393 0.669 0.048 0.526 0.803 -0.069 0.35 0.523
ETM 60 -0.285 0.417 0.676 0.044 0.518 0.797 -0.058 0.351 0.437
ETM 90 -0.274 0.402 0.699 0.048 0.527 0.834 -0.056 0.351 0.464
ETM 120 -0.277 0.415 0.722 0.047 0.525 0.851 -0.069 0.353 0.505
LDA 10 -0.18 0.391 0.996 0.065 0.554 0.942 -0.035 0.389 0.966
LDA 20 -0.167 0.368 0.998 0.099 0.613 0.977 -0.133 0.373 0.986
LDA 30 -0.173 0.393 0.999 0.097 0.609 0.985 -0.183 0.374 0.991
LDA 40 -0.171 0.404 0.998 0.095 0.605 0.989 -0.218 0.389 0.993
LDA 50 -0.198 0.406 0.999 0.085 0.584 0.99 -0.251 0.402 0.995
LDA 60 -0.21 0.411 0.999 0.075 0.571 0.993 -0.261 0.408 0.994
LDA 90 -0.206 0.407 0.999 0.054 0.54 0.995 -0.274 0.398 0.994
LDA 120 -0.013 0.44 0.989 0.028 0.494 0.996 -0.184 0.352 0.99

Table 7: Performance of the different topic models on GN, 20NG, and M10 datasets for different topic counts. Each
score is the median of 5 independent runs.
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Abstract
Nowadays, mental health is a global issue.
It is a pervasive phenomenon over online
social network platforms. It is observed
in varied categories, such as depression,
suicide, and stress on the Web. Hence,
mental health detection problem is receiving
continuous attention among computational
linguistics researchers. On the other hand,
public emotions and reactions play a significant
role in financial domain and the issue of mental
health is directly associated. In this paper, we
propose a new study to detect mental health
in financial context. It starts with two-step
data filtration steps to prepare the mental health
dataset in financial context. A new model
called IMFinE is introduced. It consists of
an input layer, followed by two relevant BERT
embedding layers, a convolutional neural
network, a bidirectional gated recurrent unit,
and finally, dense and output layers. The
empirical evaluation of the proposed model is
performed on Reddit datasets and it shows
impressive results in terms of precision, recall,
and f-score. It also outperforms relevant
state-of-the-art and baseline methods. To the
best of our knowledge, this is the first study on
mental health detection in financial context.

1 Introduction

The popularity of online social network (OSN)
platforms, such as Twitter, Facebook, and
Reddit have been growing at an unprecedented
rate (Khan et al., 2022a). They have become a
real-time and large-scale communication source
to find and connect with users across the globe
(Kamal and Abulaish, 2019a). These platforms
offer users to express their moods, emotions,
sentiments, and views. Besides that, users are
involved in several activities like exchanging
messages with friends, participating in ongoing
trends, and establishing connection with celebrities.
Hence, an enormous amount of data is generated
from these online platforms (Abulaish and Kamal,

2018). It contains rich semantic information which
can be used for several applications, such as
sentiment analysis and opinion mining, predictive
modeling, Web surveillance, recommendation
systems, information retrieval, data summarization,
and cyber-security (Khan et al., 2022b). In addition,
it is also beneficial for several interdisciplinary
studies including psychology, behavioral, and
cognitive (Kamal and Abulaish, 2022).

In the last few years, it is seen that
users consider OSNs to address mental health
problems. Especially, after the occurrence of
the coronavirus disease (COVID-19) pandemic,
which has affected us at physical-, mental-, and
psychological-level. The number of cases related
to mental health problems, such as depression,
stress, anxiety, and suicide have surged. As a
result, it is a briefly discussed topic world-wide
and rapidly increasing across OSNs in the form
of tweets, posts, comments, and blogs. In the
latest survey, the rate of increase of such mental
health problems is found larger as compared to
the physical health impacts in China (Huang and
Zhao, 2020). Also, it is seen that around 80% of
people reveal their intention of committing suicide
on social media platforms (Sawhney et al., 2021).
Depression causes frequent stress and it occurs
due to many reasons, such as stressful life events
including bereavement, divorce, prolonged illness,
or financial issues. Further, prevailing it for a long
span of time develops suicidal tendencies (Ansari
et al., 2021).

Recently, people have been taking OSN
platforms to communicate and receive advice
on mental health-related issues. It has also
motivated computational linguistic researchers in
the sense that information mining from massive
amount of user-generated contents (UGCs) can be
used in mental health identification and detection.
In this line, a wide range of natural language
processing (NLP) and data mining approaches

139



and techniques are applied along with handcrafted
features for mental health classification on UGCs.
Therefore, several traditional machine learning
(ML) techniques and advanced deep learning (DL)
models are taken into consideration for mental
health classification (Ameer et al., 2022).

1.1 Mental Health and Finance
Financial stress is considered an economic
determinant of mental health problems. It is
directly linked with depression and stress. It spans
world-wide, but mainly in those countries that have
large populations and low-income (Alanazi et al.,
2022). Existing literature has highlighted positive
links between depression and several factors which
lead to financial stress including debt, financial
hardship, financial condition, economic situation,
poverty, loan, mortgage, or low-income. Panic
related to debt via loan like burdens may lead
to sleeping disorder problem such as insomnia
(Weissberger et al., 2020). It occurs due to the
lack of sleep and affects the mental health of an
individual. Similarly, other factors like low-income,
mortgage, and poverty have affected an individuals’
mental health which further leads to depression and
suicide (Fitch et al., 2007). However, minimal
attention is received in existing state-of-the-art
(SOTA) in this direction of research as of now,
especially using DL-based models. To this end, this
study presents IMFinE, a new DL-based model to
detect mental health in financial context.

1.2 Our Contributions
The role of context is crucial in text classification
problems (Abulaish et al., 2020). In addition to
that capturing semantic and syntactic information
is also important for classification problems in
the textual portion (Kamal and Abulaish, 2019b).
Extracting mental health-related semantic and
syntactic information via social media content is
a challenging, interesting, and notable research
problem, especially, when it is mentioned in a
financial context. In this direction, this study
presents a DL model for detecting mental health
in financial context. Figure 1 presents the pipeline
of the proposed work. It starts with data collection
from Reddit, follow by data pre-processing,
two-level data filtration steps to filter candidate
mental health-based financial text, and finally a new
DL-based model IMFinE is introduced which is
responsible for binary classification task. IMFinE
consists of an input layer, two parallel relevant

BERT embeddings (MentalBERT (Ji et al., 2021)
and FinBERT (Araci, 2019)), a convolutional
neural network (CNN) (Kim, 2014), a bidirectional
gated recurrent unit (BIGRU) (Liu and Guo, 2019),
and end up with a dense and output layers.
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Figure 1: Pipeline of the proposed work

In, IMFinE, the input layer receives input
either as a filtered candidate mental health-based
financial (MHF) (refer as a positive class) text
or normal non-mental health financial (NMFH)
(refer as a negative class) text. Thereafter, it
is passed to two parallel BERT embeddings
(MentalBERT and FinBERT) to retrieve
contextual information related to mental health and
finance, respectively, and further it is concatenated
to give comprehensive context representation. The
role of the CNN is to receive that comprehensive
context representation and obtain mental health and
financial semantic and syntactic information, and
the BiGRU layer is used to obtain preceding and
succeeding mental health and financial information
latent contextual information sequences present
in the input text. Thereafter, it is forwarded to the
dense and output layer, wherein sigmoid activation
function is used to classify the input text as either
MHF or NMHF.

Overall, the main contributions of this study are
as follows:

• Exploring a novel mental health detection on
financial textual data.

• Implementation of a two-steps dataset
filtration technique to identify candidate
mental health-related financial texts.

• Development of a new DL-based IMFinE
model to detect mental health in financial
context.

• Conducting an empirical evaluation of the
proposed model and compared with SOTA
and baselines methods to examine its efficacy.

The rest of the paper is organized as follows.
Section 2 presents a brief review of the existing
works. Section 3 highlights the problem description
and provides insights about the dataset preparation.
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Section 4 presents the architectural work-flow of
the proposed model. Section 5 demonstrates the
experimental setup and evaluation results. Finally,
Section 6 concludes the paper and highlights future
directions of research.

2 Related Work

This section presents the existing SOTA related to
mental health identification and detection on OSN
platforms. Besides that, this section also highlights
the current status and limitations in the end.

Park et al. (2012) analyzed the language which
indicates depressive moods on Twitter data.
They considered depressive attitudes and actions of
users, organized and conducted interviews between
two users, and analyzed the correlation between
interviews and data available on Twitter.
Choudhury et al. (2013) highlighted “major
depressive disorders” prediction and considered
many behavioral patterns of depressed users from
this social media data. Tsugawa et al. (2015)
considered users behavior to predict depression
on Twitter in Japanese language. Ronghua
and Qingpeng (2016) explained that users reveal
their moods related to depression analysis via
social media. Shen et al. (2017) introduced six
depression-based feature groups. They proposed a
multi-modal depressive dictionary learning model
for depressed user detection on Twitter. Haque
et al. (2021) identified suicide and depression
via DL techniques. Xue et al. (2014) proposed
stress detection on Twitter. They analyzed
psychological pressures in teenagers’ tweets.
Lin et al. (2016) extracted semantic features
and combined multi-task learning using CNN
for identification of stress related topics and
events on social media data. Thelwall (2017)
introduced a rule-based approach to analyze stress
and relaxation using both direct and indirect
expressions on Twitter. Turcan and McKeown
(2019) considered Reddit and proposed a dataset
namely, Dreadit for stress classification. They
applied a manual approach to construct this dataset.
Coppersmith et al. (2016) considered posts by
users before the suicide attempt on Twitter and
analyzed the lexical markers and emotions in it.
Giannakakis et al. (2017) considered facial clues
from the recorded video for stress and anxiety
detection using ML techniques. Li and Liu (2020)
presented stress detection using DL techniques.
They applied CNN and multi-layer perceptron.

Rastogi et al. (2022) proposed a new dataset
for stress detection on Twitter and Reddit
datasets.

All aforementioned literature presents the
availability of the datasets across OSN platforms
and highlights important insights for mental health
detection in terms of depression, suicide, and
stress. However, there is no literature that addresses
mental health detection in financial context using
textual data, which is a challenging, worth, and
significant research investigation task. To the best
of our knowledge, this is the first study on mental
health detection in financial context on textual data
via DL-based models.

3 Problem Description and Dataset
Preparation

This section presents the problem description for
mental health detection in finance and covers
dataset preparation.

3.1 Problem Description
This study presents the mental health detection in
finance on textual data. The considered problem
represents a binary classification problem. A piece
of textual data is classified as either MHF or NMHF.
In this study, we consider three commonly found
mental health-related categories – depression,
suicide, and stress associated to financial textual
data over social media content. A formal definition
of each mental health categories is given below
followed by a relevant example taken from the
Reddit posts.

• Depression: It is defined as a “medical
condition in which a person feels very sad,
anxious and without hope and often has
physical symptoms such as being unable
to sleep, etc”.1 For example:“Debts and
suicidal thoughts. During the year of 2021
I’ve Lost 3 relatives and got a debt of 2000
USD due to that. I’m getting more and more
depressed and i’m not sleeping well...”.

• Suicide: It is defined as “a death that happens
when someone harms themselves because
they want to end their life. It is one of the
mental health problems and a leading cause of
death.”2 For example: “Being broke makes
me want to kill myself Bills keep coming.

1https://bit.ly/3LJ3R16
2https://medlineplus.gov/suicide.html
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I don’t have enough money for anything.
Saving change just to eat...”.

• Stress: It is defined as “any type of change that
causes physical, emotional, or psychological
strain”.3 For example: “I’m having bad
thoughts...I’m about to lose my house and
no where to go. I’m 4 months behind on my
mortgage (got laid off from my job because
of covid)...”.

3.2 Dataset Preparation
This sub-section presents the dataset collection and
pre-processing, and filtration of candidate mental
health financial text from these datasets.

3.2.1 Dataset Collection and Pre-processing
In this study, Reddit posts are taken to
prepare the dataset. We have used Reddit
API4 using PRAW5 wrapper to retrieve posts
based on mental health and non-mental health.
All posts are collected via subreddits, which
presents specific topic on Reddit and
preceded by r/. We have used subreddits
based on mental health, such as r/mentalhealth,
r/mmfb (make me feel better), r/offmychest,
r/traumatoolbox, r/anxietyhelp, r/CPTSD (complex
post traumatic stress disorder), r/depression,
and r/SuicideWatch to prepare mental health
datasets. Likewise, subreddits, such as r/happy,
r/mademesmile, r/makemesmile, r/financeadvice,
r/creditcards, r/wholesome, r/economics,
r/financialindependence, r/financialplanning,
r/investing, r/personalfinance, r/pftools, and r/tax
are considered to prepare a non-mental health
datasets. Thus, 320000 mental health instances and
270000 non-mental health instances are finalized.
Further details about the datasets are given in the
sub-section 5.1.

All collected raw datasets consist of many
noise and non-literal information. Removal of
such unwanted information is crucial to achieve
good classification accuracy. Considering this, we
have performed data cleaning steps and removed
symbols, hexa characters, mentions, hashtags,
slash, exclamation, quotation, and punctuation
marks, unwanted links, ampersands, extra dots and
spaces, digits, and non-ASCII characters. In the
end, we have converted raw text into the lower-case
form.

3https://bit.ly/2yYHnVu
4https://www.reddit.com/dev/api/
5https://bit.ly/3r7690r

3.2.2 Dataset Filtration
On analyzing all mental health datasets, it is
found that all mental health instances do not
contain financial information. Also, there is no
availability of benchmark datasets on financial
mental health. Considering this, two-steps filtering
technique is applied to filter only those mental
health instances from the datasets, which are
context- and semantic-wise related to finance.

To this end, in step-1, we have compiled a
list of keywords based on unigram and bigram
tokens from (Guan et al., 2022) work along with
our generated keywords (i.e, unigram and bigram)
tokens related to finance or financial situation,
as given in table 1. We filter candidate mental
health instances using regular expression-based
criteria, in which if at least one of the keywords
(unigram/bigram) matches with pre-processed
mental health instance from table 1.

Table 1: A List of keywords based on finance or
financial situation

List of keywords (unigram and bigram)
‘income’, ‘debt’, ‘loan’, ‘mortgage’, ‘finance’,
‘economy’, ‘job’, ‘broke’, ‘poor’, ‘poverty’,
‘homeless’, ‘salary’, ‘money’, ‘bank’,
‘savings’, ‘scam’, ‘robbery’, ‘deprivation’,
‘loss’, ‘fund’, ‘earn‘’, ‘payroll‘’, ‘earning’,
‘wage’, ‘fired’, ‘livelihood’, ‘compensation’,
‘revenue’, ‘allowance’, ‘payoff’, ‘wealth’,
‘asset’, ‘economic situation’, ‘economic
stat’, ‘economic condition’, ‘economic
position’, ‘economic hardship’, ‘economic
str’, ‘economic difficult’, ‘financial situation’,
‘financial position’, ‘financial condition’,
‘financial stat’, ‘financial hardship’, financial
difficult’

Thereafter, in step-2, we have applied zero-shot
learning (ZSL), which aims to perform predictions
without having seen labelled training instances.
It is widely used in NLP and text classification
problems, in which combination of seen and
unseen labelled via auxiliary information are
taken to encode the available discrimination
attributes of an instances (Xian et al., 2018).
Facebook/Bart-large-mnli6 is one of the
popular ZSL method which is based on Hugging

6https://huggingface.co/facebook/
bart-large-mnli
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Face-based Transformer model trained on
multi natural language interface (aka, MNLI)
dataset. It is based on two concepts – premises
(refers to the instances which is to be classified)
and hypothesis (refers to the number of class labels)
(Plaza-Del-Arco et al., 2022). A confidence score
is generated for each hypothesis of a given premise,
and based on the highest confidence score, the
premise is predicted. In this study, we set threshold
of 0.89 for the highest confidence score.

Considering this, each filtered mental health
instance in step-1 is passed as a premise and
accordingly two hypothesis are taken - financial
and non-financial for labelling purpose. As a
result, candidate financial mental health instances
are collected based on the highest confidence score.
Figure 2 presents an example based on the premise
and hypothesis concepts related to MNLI to ZSL
methods. In this example, the representation of
finance related mental health is entailed. Hence, it
is predicted as MFH instance.
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Figure 2: An example for data filtration using MNLI to
ZSL methods for mental health instance.

Figure 3 presents a better visual insights and
effectiveness of data filtration step on collected
Reddit posts via two word clouds. It can be seen
from this figure that only frequent words related to
mental health are seen before data filtration step,
whereas top-frequent words related to finance and
mental health are found after data filtration step.

(a) Before data filtration (b) After data filtration

Figure 3: Effect of data filtration step via word cloud

4 Proposed Model

This section presents a detailed description of
the proposed IMFinE model. It includes an
input layer, two embeddings (MentalBERT
and FinBERT), CNN, BiGRU, followed by a
dense and output layers. Figure 4 presents the
architecture of the proposed IMFinE model.

4.1 Input Layer

Given the candidate MHF or NMHF as input text
n consisting of wn words, the input layer tokenizes
each word available in its textual contents. Each
token is indexed in a dictionary and converted into
a numeric vector v such that it replaces according
to its index value as per the dictionary. The
length of v is different because of the varying
input length size. Hence, a fixed-length l of
input vectors is maintained for each input text.
Thus, v is transformed to a padded-vector p of
200 fixed-length, such that |p| = l ≥ |v|. The
fixed-length resulting vector p ∈ R1×l is then
forwarded to the embedding layer.

4.2 Embedding Layers

In the last few years, BERT has gained immense
popularity because it deals with contextual
information in both directions via Transformer.
MentalBERT is a pre-trained masked language
model using BERT for mental health detection
tasks, whereas FinBERT is a pre-trained NLP
model and it is built by training the BERT model
in the financial domain over huge financial data.
Considering this, we leverage these two specific
BERT models – MentalBERT and FinBERT
based on our problem statement to retrieve
contextualized language representations based on
mental health and finance from the input text.

The generated input vector from the input layer
is passed to both parallel embedding layers with a
maximum sequence length of 200. We consider
768-dimensional word vector representation for
both MentalBERT and FinBERT embeddings.
Consequently, the relevant contextual information
based on mental health and finance is retrieved
from both embeddings in parallel. The
encoded representation from two embeddings is
concatenated and that gives a rich comprehensive
contextual representation of the input text. Further,
it is passed to the CNN layer.
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Figure 4: Architecture of the proposed IMFinE model

4.3 CNN Layer
Kim (2014) proposed CNN which extracts
low-level semantic and syntactic features
automatically. It extracts contextual local and
positional invariant features, performs several
convolution operations on the received input texts,
and generates the global feature vector. In this
study, we have used 64 filters of window size 3
that moves the comprehensive embedding vectors
for extracting features related to mental health and
finance. Max pooling operation of pool size 3,
ReLU activation function, and 64 filters perform
the convolutional operation from top to bottom,
and extract the feature sequence as ft = [f1, f2, ...,
f64] based on mental health and finance for the
input text. The nth feature sequence, ft from word
window xt is generated, as given in 1. Finally,
the filter outputs are concatenated to give the
resultant mental health and finance-based feature
representation, which is forwarded to the BiGRU
layer.

ft = r(wt · xt + b) (1)

4.4 BiGRU Layer
Liu and Guo (2019) proposed GRU, which deals
with long-term temporal dependencies without
dealing the vanishing gradient descent problem.
It consists of two gates and operational in both
forward and backward directions as forward GRU
and backward GRU, respectively. In this study,
the role of the forward GRU and backward GRU
is to generate succeeding feature sequences (ft
to f64) and preceding feature sequences (f64 to
ft), respectively for mental health and finance

related latent contextual feature sequences from
the extracted features of the CNN layer. Thus,
equations 2 and 3 show forward and backward
directions of BiGRU outcomes, respectively. The
resultant combined outcome of both forward and
backward directions is passed to the dense layer.

−−→gruf =
−−−→
GRU(Lft), n ∈ [1, 64] (2)

←−−grub =
←−−−
GRU(Lft), n ∈ [64, 1] (3)

4.5 Dense and Output Layers

In this study, both datasets are divided as a training
set, a testing set, and a validation set, wherein
70% is used for training, 20% is used for testing,
and 10% is used for validation, we use 30 epochs
with early stopping and Adam as an optimization
algorithm. The fully connected dense layer gives
features set based on the outcome of previous layers
divisible into two classes. Finally, the sigmoid
activation function is used upon the dense layer,
and binary cross-entropy loss function is used
for classifier training which interprets input text
labelled as MHF or NMHF.

5 Experimental Setup and Results

This section presents the experimental details of
the proposed IMFinE model. It includes the
statistical details of the datasets, experimental
and hyper-parameter settings, evaluation metrics,
followed by evaluation results and comparative
analysis, and ablation study.
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5.1 Datasets
This section presents the datasets used in this study.
We have considered three datasets from Reddit,
out of which two are benchmark datasets. A short
description of the two benchmark datasets is given
below:

• Dreddit dataset: Turcan and McKeown
(2019) proposed this dataset, where they
collected 1857 stress and 1696 non-stress
instances to prepare training and testing
datasets.

• SDCNL dataset: Haque et al. (2021)
proposed this dataset, where they collected
915 depression and 981 suicide instances to
prepare training and testing datasets.

We have combined stress, depression, and
suicide instances of both benchmark datasets for
mental health category and non-stress instances as
non-mental health category. As a result, a total
number of 3753 and 1696 instances is finalized for
mental health and non-mental health categories,
respectively after combining both benchmark
datasets and named it as DS-1. Besides that,
we have prepared one dataset using Reddit, as
discussed in sub-section 3.2.1, and named it as
DS-2. Further, we have applied dataset filtration
techniques across all datasets as discussed in the
sub-section 3.2.2. Table 2 presents the final
statistics of the datasets after data filtration steps.

Table 2: Final statistics of the datasets after data
filtration steps

Datasets ↓ MHF NMHF Total
DS-1 509 2613 3122

DS-2 8400 8400 16800

5.2 Experimental and Hyperparameter
Settings

This section presents the details about the
experimental and hyperparameter settings used
for the implementation of the proposed IMFinE
model. Table 3 presents the summary of the
experimental settings. Likewise, table 4 presents
the summary of the hyperparameter settings.

5.3 Evaluation Metrics
The proposed model is evaluated using four
standard evaluation metrics – precision, recall,

Table 3: A summary of the experimental settings

Environment Configurations
Machine Intel Haswell
Operating system Ubuntu-20.04
Memory (RAM) 32 GB
GPU NVIDIA Tesla
Language Python 3.9

Neural network library Keras 2.10.0
Reddit API wrapper PRAW

Table 4: A summary of the hyperparameter settings

Hyperparameter Values
Batchsize 32

Padding 200

Spatial dropout 0.2

Dropout 0.2

#neurons (GRU) 100

#filters (CNN) 64

window size (CNN) 3

pool size (CNN) 3

f-score, and accuracy. Equations 4 to 7 define these
metrics formally using the terms – true positive
(TP), false positive (FP), true negative (TN),
and false negative (FN). TP represents the total
number of correctly classified MHF instances. FP
represents the total number of incorrectly classified
MHF instances. TN represents the total number of
correctly classified NMHF instances. Finally, FN
represents the total number of incorrectly classified
NMHF instances.

Precision (P) =
TP

TP + FP
(4)

Recall (R) =
TP

TP + FN
(5)

F-score (F) =
2× P× R

P + R
(6)

Accuracy (A) =
TP + TN

TP + TN + FP + FN
(7)

5.4 Evaluation Results and Comparative
Analysis

In this section, we present the evaluation
results of the proposed IMFinE model and
compared it with a recent study proposed by
Alanazi et al. (2022), wherein authors addressed
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Table 5: Performance results on both datasets

Datasets→ DS-1 DS-2
Methods ↓ P R F P R F
Proposed model (IMFinE) 0.82 0.86 0.84 0.95 0.93 0.94
Alanazi et al. (2022) 0.74 0.80 0.77 0.91 0.92 0.91
CNN 0.72 0.83 0.77 0.90 0.89 0.89
BiGRU 0.80 0.84 0.82 0.93 0.91 0.92
BiLSTM 0.76 0.83 0.79 0.91 0.91 0.91
CNN+BiGRU 0.70 0.84 0.76 0.90 0.88 0.89
CNN+BiLSTM 0.67 0.81 0.73 0.88 0.90 0.89
RoBERTa 0.81 0.85 0.83 0.94 0.85 0.89
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Figure 5: Training versus validation accuracy on DS-1 and DS-2 datasets

mental health monitoring using sentimental
analysis of financial text. We have also
compared our proposed IMFinE model with
neural network-based baseline methods. Table
5 presents the performance evaluation results
on both datasets. It can be observed that
proposed IMFinE model shows good result on
both datasets. It receives f-score of 0.84 and
0.94 for DS-1 and DS-2, respectively. This refers
to an interesting observation that the proposed
model is performing better on both unbalanced
(DS-1) and balanced (DS-2) datasets. It can also
be observed that it performs significantly better
than SOTA work and neural network baseline
methods in terms of precision, recall, and f-score.
However, BiGRU shows the best performance
across neural network baseline models, but our
proposed model is performing more better and
leveraging contextual information from both
embedding on both datasets and receiving latent
contextual information sequences. One more
interesting observation is the proposed IMFinE

model performs better with smaller dataset (i.e.,
DS-1) as well.

Figure 5 presents the visualization of the
training versus validation accuracy on both datasets.
It shows that the proposed model performs
impressive in terms of training versus validation
accuracy on DS-1 and DS-2 datasets. It can also be
seen that the proposed model shows significantly
better results in comparison to the SOTA and neural
network baseline results.

Table 6: Ablation study of the proposed model in terms
of f-score on DS-1 and DS-2 datasets. datasets.

Proposed model (IMFine) DS-1 DS-1
All layers 0.84 0.94
Without CNN 0.80 0.91

Without BiGRU 0.81 0.90

5.5 Ablation Study

This section presents the ablation study of the
proposed model to show component-wise analysis.
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Table 6 shows the proposed model with all layers
performs better. The performance of the model is
effected without considering CNN and BiGRU.

6 Conclusion

We have proposed a new problem for mental
health detection in financial context. It has
started with two-level data filtration steps to filter
candidate mental health instances in financial
domain. We have proposed a novel IMFinE
model which is consisted of input, BERT-based
relavant contextual embeddings (MentalBERT
and FinBERT), CNN, BiGRU, and, output
followed dense layers. The proposed IMFinE
model has evaluated over Reddit datasets and
experimental results have shown significantly
better results in comparison to SOTA and several
neural network baseline methods. The evaluation
of the IMFinE model in a multi-modal setting
could be an important direction of research.
IMFinE model can also be extended over
multi-lingual datasets.
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Abstract

Automatic Speech Recognition (ASR) on re-
source constrained environment is a complex
task since most of the State-Of-The-Art models
are combination of multilayered convolutional
neural network (CNN) and Transformer mod-
els which itself requires huge resources such
as GPU or TPU for training as well as infer-
ence. The accuracy as a performance metric
of an ASR system depends upon the efficiency
of phonemes to word translation of an Acous-
tic Model and context correction of the Lan-
guage model. However, inference as a perfor-
mance metric is also an important aspect, which
mostly depends upon the resources. Also, most
of the ASR models uses transformer models
at its core and one caveat of transformers is
that it usually has a finite amount of sequence
length it can handle. Either because it uses po-
sition encodings or simply because the cost of
attention in transformers is actually O(n²) in se-
quence length, meaning that using very large se-
quence length explodes in complexity/memory.
So you cannot run the system with finite hard-
ware even a very high-end GPU, because if
we inference even a one hour long audio with
Wav2Vec the system will crash. In this paper,
we used some state-of-the-art methods to opti-
mize the Wav2Vec model for better accuracy
of predictions in resource constrained systems.
In addition, we have performed tests with other
SOTA models such as Citrinet and Quartznet
for the comparative analysis.

1 Introduction

Speech is the most natural way of human communi-
cation; it gives humans a medium to understand and
communicate their feelings and emotions. Under-
standing speech or speech recognition is a critical
part of modern applications even plays a signifi-
cant role for empowering AI enabled smart devices
such as Amazon’s Echo, Google’s Nest, Apple’s
Homepod etc.
In this paper, we have proposed a method called

WSLR (Wav2Vec with Stride Chunking and Lan-
guage Model for Resource-constrained devices)
to create an offline speech recognition system us-
ing Wav2Vec model which achieved a Word Error
Rate (WER) of 0.85 in an environment of 2 core
CPU and 4 gigabytes of RAM on Librispeech test
set, which surpasses the score of original Wav2Vec
model i.e. 1.8 and other SOTA models. To rec-
ognize speech of an audio file we first start off
by converting it into a digital format since audio
data could have a lot of variations like different
channels or sample rate. We further have must
standardize the dataset by re-sampling the data to a
specific sample rate as any model requires data to
follow common standards. We have used Wav2Vec-
base model trained on librispeech data for
960 hours as our main ASR model for the speech
recognition task where it encodes sound files via
multi-layer convolutional neural network (CNN)
to produce latent speech representation and then
feed those masked representations to a transformer
network, the output of which can be decoded to
word vectors using a Connectionist Temporal Clas-
sification (CTC) algorithm. The following model
can further be optimized when the output logits are
fed to a language model (in this paper we used a
4-gram language model). (Baevski et al., 2020) 1

To deploy our model to a resource constrained envi-
ronment we use something called stride chunking,
here the chunking is sequential, and we chunk the
audios such that there is some overlapping length
at borders defined by ‘stride length’ and the main
context stay intact within the center. Then while in-
ference, overlapped segments or logits (as output)
are dropped to keep the results of the transcrip-
tions as similar as they would be while inferenced
with full audio. We also use some rule-based post-
processing steps for our transcription to generalize
even better for spoken numbers or symbols in-case.

1stride chunking reference at https://huggingface.
co/blog/asr-chunking
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Figure 1: Proposed workflow of optimized Wav2Vec

2 Proposed Method

In this section, we discuss the proposed approach
i.e. WSLR to optimize the state-of-the-art wav2vec
model introduced by Facebook and that achieves
such an optimal performance when inferenced
in constrained environments such as, constrained
docker container or embedded/micro systems like
Raspberry Pi or Nvidia’s Jetson board. Constrained
inference along with good scores is quite a big deal
for a huge deep learning model. Since, more the
size of the model the more resources it demands
and Wav2Vec is itself a combination of huge mod-
els such as CNNs and Transformers. Therefore,
it is quite a challenging task. The slight drop in
scores while chunking is comprehended with pre-
processing, language model, and post-processing
optimizations. Further, the details of the optimiza-
tion methods and proposed functionalities are dis-
cussed in the following sub-sections.

2.1 Data Processing

Data Processing of audios aims to standardize
the audios with a uniform setting, for evaluations
we have used librispeech test-clean set by
(Panayotov et al., 2015), and for explicit data
pre-processing we have used ffmpeg utility for
conversion of media to standard .wav format and
librosa package for loading and re-sampling
files. We first off defined pre-processing module
to convert files to standard wav format and then
re-sample it to 16KHz since Wav2Vec 2.0 strictly
targets audios sampled at the mentioned rate. Text

pre-processing methods such as, lower-casing, re-
moval of special case characters and unwanted
white spaces are performed on the librispeech test
transcripts.

2.2 Stride Chunking

One way to inference from a transformer-based
model for long audios in constrained environment
could be by chunking the audio in parts of equal
length (Mauranen and Vetchinnikova, 2017) and
send those chunks to the model iteratively and later
generate the whole prediction by aggregating all
the sub predictions. This is computationally effi-
cient but usually leads to subpar results. A major
caveat of this kind of chunking is poor context at
the border of chunks, i.e., since model requires pre-
vious context to generate better transcriptions this
kind of chunking would give a non-contextual part
of speech to the model which would lead to poor
transcription.

Figure 2: Reference for stride chunking from hugging-
face
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Stride Chunking is even a smarter way of chunking
audios inspired by stride concept in CNNs where
we chunk the audios by leaving some overlapping
frames from previous and next chunk, this way
model will have proper context in the center for
the inference. In stride chunking, while inference
overlapped segments or logits are dropped after in-
ference to generate aggregated output of all chunks
i.e. proper transcription as we get it from the whole
audio file. In our experiments we have tested dif-
ferent hyper-parameters and found that 30 seconds
of chunk length with 2 seconds of stride
length from right and 1 second of stride from
left are giving optimal results in terms of inference
and recognition quality.

2.3 ASR Model - Wav2Vec Base 960h

As an ASR model we used state-of-the-art model
by Facebook-AI i.e., Wav2Vec 2.0 base 960h (we
also used Wav2Vec 2.0 large in our experiments
but selected the base model since it performs bet-
ter for constrained environments). Proposed in
(Baevski et al., 2020), “Wav2Vec is composed of
a multi-layer convolutional feature encoder f : X
→ Z which takes as input raw audio X and outputs
latent speech representations z1, . . . , zT for T
time-steps. They are then fed to a Transformer g: Z
→ C to build representations c1, . . . , cT capturing
information from the entire sequence [9, 5, 4]. The
output of the feature encoder is discretized to qt
with a quantization module Z → Q to represent the
targets in the self-supervised objective (§ 3.2). It
also builds context representations over continuous
speech representations and self-attention captures
dependencies over the entire sequence of latent
representations end-to-end.” the model is further
improved with Hidden-Unit BERT (HuBERT) ap-
proach proposed by (Hsu et al., 2021) and XLS-R
for cross lingual speech representation by (Babu
et al., 2021).

Figure 3: Wav2Vec architecture by Facebook AI

2.4 Language Model

A Language Model (LM) captures how words are
typically used in a language to construct sentences
or paragraphs. It could be a general-purpose model
about a language such as English or Japanese, LM
could be used to predict the next word in a sentence,
to discern the sentiment of some text. Previously
audio classification models required an additional
LM and a dictionary to transform the sequence of
classified audio frames to a coherent transcription
based on context. Wav2Vec’s architecture is based
on transformer layers, thus having the context in
consideration it can produce coherent transcrip-
tions even without a language model. In addition,
Wav2Vec2 leverages the CTC algorithm for fine-
tuning, which solves the problem of alignment be-
tween a varying "input audio length"-to-"output
text length" ratio. In conclusion, Wav2Vec model
doesn’t require a separate language model to gen-
erate acceptable transcripts. However, the perfor-
mance of the model can be boosted by integrating a
separate LM model to optimize the predicted tran-
script results even further. The language model
should be good at modeling language that corre-
sponds to the target transcriptions of the speech
recognition system. In our experiments we have
trained three language models via kenlm library
Heafield (2011) i.e., 3-gram , 4-gram and 5-gram
Language model and have used a 4-gram LM since
it yields better scores in terms of WER. The model
is trained to generalize the occurrence of maximum
four consecutive words at a time also the model
happens to correct a lot of word sequence errors of
the Wav2Vec model transcription, as given in Table
1.

Table 1: Language Model Benchmarks

n-gram model WER
3-gram 0.85122
4-gram 0.85095
5-gram 0.85097

2.5 Post-processing and Final Transcriptions

Post-Processing steps may consist of various meth-
ods like deep learning models or rule-based ap-
proaches such as Inverse Text Normalization (ITN)
that is the task of converting the raw spoken output
of the ASR model into its written form to improve
text readability. Post-Processing is an important
step to generalize transcriptions for readability and
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understanding. for e.g., spoken text is "I was born
in nineteen eighty" or "my email is robert at the
rate transformers dot com" in both the example
transcriptions are not as generalized and would not
look appealing in terms of readability, and in appli-
cations where a real-time speech to text system is
been utilized such as Zoom meetings those kind of
transcriptions won’t be appreciated. So, once we
apply ITN to the transcriptions the quality of the
transcript readability increases significantly, let’s
take the previous examples and apply ITN to them,
the output will be like - "I was born in 1980" and
"my email is robert@transformers.com", here we
can observe that the transcriptions are more gener-
alized in terms of numbers and symbols. Similarly
other post-processing approaches are such as Auto
Punctuation , where we mostly use a deep Neural
Network (DNN) to understand the context of the
raw transcription and generate richer transcriptions
with punctuation or capitalization based on con-
text of the raw text. ASR systems typically gener-
ate texts without punctuation or capitalization, and
punctuation can add an ability to understand the
meaning of the text, where whole meaning of the
sentence can change with a slight change in punc-
tuation, that is the power this small post-processing
step holds. Applying these post-processing meth-
ods produce even richer and readable transcriptions
which makes the pipeline more robust and scalable.

3 Experiments and Comparative Analysis

This section presents the experimental evaluations
of the optimized approach, using Wav2Vec model
with optimization methods mentioned in the for-
mer sections. For the experiments, we have used
Docker Containers to reflect the constraints of mo-
bile devices and the experiments are performed
with 2 most common mobile configurations i.e., 2
cores CPU with 8 gigabytes of RAM and 2 cores
CPU with 4 gigabytes of RAM. It has additionally
been tested with a GPU configuration comprised of
Tesla P100 for a better intuition of the performance.
We have done a cross-comparative analysis of the
system proposed with general wav2vec model in-
ference as well as other state-of-the-art models like
Quartznet by (Kriman et al., 2020) and Citrinet
model by (Majumdar et al., 2021).

For the experiments, we used librispeech’s test
set and pre-processed it further to generalize it for
metric calculations. Table 3, presents the bench-
marking runs performed on different resource con-

Table 2: A summary of the experimental settings

Environment Configurations
Machine/CPU Intel Haswell
GPU Tesla P100
Operating system Ubuntu 20.04 LTS
Docker Image Python Slim 3.9
Memory Config (RAM) 8 GB/4GB
CPU Config (Cores) 2
Neural network library PyTorch

figurations and it can be observed that even though
on a RAM restricted environment such as 4GB
RAM environment with 2 core CPU our system
did not crash and gave almost similar inference to
the environment with 8GB of RAM.

Table 3: Benchmarks on different resource configura-
tions

Resource Config WER Inference (s)
2 CPU, 8GB RAM 0.85 6381
2 CPU, 4GB RAM 0.85 6456
1 GPU, 8GB RAM 0.85 356

Along with WER we have calculated Jaccard Sim-
ilarity scores of predicted transcripts which is an-
other metric for text similarity and the pipeline
tends to achieve a jaccard score of 0.92 on the same
librispeech test set. For the comparative analysis
we have compared the results of our approach with
different state of the art methods. Table 4, presents
the comparative tests based on librispeech clean
test set between different state-of-the-art models,
it can be observed that the proposed method Word
Error Rate is significantly lower when compared to
other common ASR models and with lower WER
we get more accurate predictions. A detailed com-
parison of other non auto-regressive models are
presented in (Ng et al., 2021).

Table 4: Librispeech test set benchmarks on different
models

Model WER
Proposed Work 0.85
Nvidia Quartznet 3.78
Wav2Vec Large 1.8
Nvidia Citrinet 2.7
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4 Conclusion

This paper presents, an optimized way of scaling
offline ASR system to resource constrained envi-
ronments, in our experiments we have noted a very
significant improvement such as 0.85 of WER and
pipeline inference on environment with 4 gigabytes
of RAM and 2 CPU cores without facing any sys-
tem crashes also the results on resource constrained
environment are mostly similar to a high-end re-
source environment, some related work of speech
recognition in low end systems is also presented
by (Thomas et al., 2013) and (Bansal et al., 2018).
The proposed flow showed a significant improve-
ment in terms of scalability and performance and
can be integrated and used in the advancement of
the applications such as smart devices like voice
assistant enabled speakers, offline voice typing in
mobile devices, speech summarization and speech
context moderation etc. However, there is always a
room for improvement, some future research can
still be performed on improving the inference of
the proposed method in the constrained systems
since faster inference with least resources is always
the call of state-of-the-art methods. Exploring and
researching to add novelties such as speech con-
tent moderation in ASR systems seems one of the
promising directions of future work.
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Abstract

Automation in the legal domain is promising to
be vital to help solve the backlog that currently
affects the Indian judiciary. For any system that
is developed to aid such a task, it is imperative
that it is informed by choices that legal pro-
fessionals often take in the real world in order
to achieve the same task while also ensuring
that biases are eliminated. The task of legal
case similarity is accomplished in this paper by
extracting the thematic similarity of the docu-
ments based on their rhetorical roles. The simi-
larity scores between the documents are calcu-
lated, keeping in mind the different amount of
influence each of these rhetorical roles have in
real life practices over determining the similar-
ity between two documents. Knowledge graphs
are used to capture this information in order to
facilitate the use of this method for applications
like information retrieval and recommendation
systems.

1 Introduction

The Indian legal system is currently facing the prob-
lem of legal pendency owing to the large volume
of cases that are filed each day. This is exacerbated
by the lack of trained legal professionals and ab-
sence of good resources to aid legal experts. Thus,
creating sound legal tech systems, especially ones
aided with the advancements that have been seen
by the field of artificial intelligence, is imperative
for remedying the current situation.

Identifying similarity between documents isn’t
a new task, but identifying the similarity between
legal text documents is challenging, understudied
and quite essential. A mechanism that can identify
the similarity of legal cases quite clearly would
make a great backbone for a powerful information
retrieval engine or a recommendation system that
would greatly boost any legal expert’s research and
preparations.

Presently, popular legal information retrieval sys-
tems like https://indiankanoon.org/ of-

ten use plain full-text similarity that doesn’t make
use of any kind of context, semantic or otherwise.

Through this work, the task of legal case similar-
ity is explored using knowledge graphs. To accom-
plish this, the use of semantic segments present in
case documents, identified using deep learning, and
the jurisdiction of the case itself are implemented.
This information is then used to calculate similarity
scores for case documents. A knowledge graph
is used to store the extracted information because
of its ability to capture the relationships between
the documents. The intent behind creating such
a system is to provide a sturdy and reliable back-
bone to information retrieval engines that can be
used by legal experts and laymen alike for research,
preparation, study, etc.

The paper is structured as follows: The sub-
section 2 illustrates the related work of researchers,
section 3 shows the framework. Section 4 explains
the methodology, that includes, description of the
dataset, data-preparation steps, similarity metrics
and methods used and details of how the case doc-
uments are stored in a knowledge graph. Section
5 discusses the result and application of this work
in the real world. Finally, section 6, concludes the
paper with a brief view about future scope.

2 Related Work

2.1 Rhetorical Role Identification

The work in Bhattacharya et al. (2019) aims to use
neural models or deep learning models for the “task
of rhetorical role identification.” There were some
prior attempts made that relied on hand-crafted
features which had a few disadvantages. It gave
reliable results for a few domains only and it re-
quired legal knowledge which was expensive to get.
Hence neural models were chosen as it does not
rely on any hand-crafted features. The two neu-
ral models used for the task are the Hierarchical-
BiLSTM model and Hierarchical-BiLSTM-CRF.
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The results showed that the Hierarchical-BiLSTM-
CRF model performed a little better than the other.
The performance improvement was not so signifi-
cant because CRF was unable to learn the emission
score and transition score well. This happened be-
cause the legal document consists of a large number
of sentences and only a few of them were consid-
ered for training purposes.

The paper Kalamkar et al. (2022) offers a cor-
pus of English-language court judgment papers
that are divided into relevant and cohesive sections.
Each of these elements is labeled with a selection
from a list of rhetorical roles. Based on the an-
notated corpus, they create baseline models for
automatically predicting rhetorical roles in legal
documents. There are 26,304 sentences annotated
with 12 different rhetorical roles in the produced
corpus, which comprises 265 Indian legal texts an-
notated with rhetorical roles. A transformer-based
baseline approach for automatically annotating le-
gal texts with sentence-level RR is also described
in the paper. Finally, the research demonstrates
how rhetorical roles can be used to improve legal
summarization.

Majumder and Das (2020) worked on using
models like Random Forest, Universal Sentence
Encoder, BERT, and ROBERTA for labelling the
rhetorical roles (RR). Sixty legal case documents
from the Supreme Court were considered for this
task. Fifty case documents were used for training
and 10 for testing. Among all the models tried,
ROBERTA outperformed the others. The output of
ROBERTA was sent to BiLSTM. Three different
models based on ROBERTA were tried each with
different epochs. The first model was trained for
13 epochs, the second for 15, and the third trained
for 19 epochs. Among the three models, the one
trained for 15 epochs outperformed with a better
Macro F-Score. However, the model was unable to
label some RRs accurately.

2.2 Knowledge Graphs
The data used in Dong et al. (2021) is created as a
result of extraction from semi-structured web pages
and the attributes and relationships from the text
are extracted using a Bi-GRU model. The graph
constructed is visualized for better understanding
on the China judgment Online website. However,
they do not experiment with case similarity itself
as a feature.

Incorporating features relevant to the legal do-
main, this work Dhani et al. (2021) on case simi-

larity and citation-linked prediction builds on the
use of knowledge graphs in Natural Language Pro-
cessing tasks. For unstructured text from a corpus
of court cases, laws, and rulings in Indian courts, a
legal knowledge graph is constructed to represent
the entities of a document and the relationships be-
tween them. Latent Dirichlet Allocation (LDA) is
applied to model the most relevant topics for the
derived ontology. Graph neural network models
are used to identify missing links in a case graph
constructed, with citation and similarity as rela-
tions, that has keywords/phrases specific to legal
practice as node attributes. The performance of the
relational graph convolutional networks on both
tasks is shown to be higher when trained on the
feature set containing lawpoints.

The paper Zhao et al. (2022) on legal judgment
prediction deals with determining the law article,
charge, and term of penalty given a fact description
using graph neural networks. Judicial document
text from the CAIL2018 dataset represented as 6
kinds of graphs which include co-occurrence, point-
wise mutual information, semantic (using cosine
similarity) and distance-based (Euclidean, Manhat-
tan, and Chebyshev) underwent information up-
dation between the graphs using a graph convolu-
tional network. The prediction model fed with
a fusion of information from graph nodes and
law articles surpasses the baseline models in accu-
racy, macro-precision, macro-recall, and macro-F1
scores. The proposed method has an edge owing
to the legal text differentiation extractor based on
graph attention networks.

Usage of knowledge graphs for legal tasks has
been undertaken before in Cavar et al. (2018),
Filtz (2017) and Mandal et al. (2017) but these
approaches don’t make use of semantic segments
which provide essential context for identifying sim-
ilarity. Law practitioners often use their knowledge
of the semantic segments in legal cases implicitly
to identify similar cases. This, therefore, provides
a strong motivation for identifying rhetorical roles
and using knowledge graphs to capture them.

Works like Dhani et al. (2021) also make use of
metadata like judge, court, and date. Approaches
such as these end up relying less on law and more
on context provided by such metadata which intro-
duces bias and makes for a technology that isn’t
developed with fairness and equity in mind.

Use of knowledge graphs as the preferred
method of storing information is motivated by the
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fact that it opens up the avenue to develop faster
information systems and recommendation systems
using the same strategy as the basis.

2.3 Case Similarity
Mandal et al. (2017) aims to improvise the text-
based methods that are used to compute the similar-
ities between documents and tried topic modelling,
word, and document embedding. Among the dif-
ferent approaches tried, embedding based methods
outperform the others. These approaches were tried
on different representations of the documents like
whole document, paragraphs, summaries, and text
around citations. With summaries topic modelling
(LDA) performed the best and with the whole doc-
ument as a method of representation, Doc2Vec out-
performed the other methods considered. However,
there were a few drawbacks with summaries as a
method of representation used because the results
depended on the quality of the summaries and not
all summaries were of high quality.

In the paper Bithel and Malagi (2021), unsuper-
vised algorithms are used to rank documents based
on their similarity to the query and top x docu-
ments are termed relevant documents. Approaches
used by them include TFIDF with cosine simi-
larity, Word embeddings, best match 25, TFIDF
and BM25, Rake + TF-IDF, and cosine similarity
sentence BERT. However, they do not use any of
the more complex deep learning-based approaches
and the possibility of training a BERT model from
scratch so that the semantic meaning of prior cases
and queries can be used.

The work Ostendorff et al. (2021) on legal lit-
erature recommendation aids research for a par-
ticular case by retrieving other decisions covering
the same topic or necessary background informa-
tion. Divided into (1) text-based (baseline TF-
IDF, word-vector-based and transformer-based),
(2) citation-based and (3) hybrid, 27 methods are
compared on the basis of document length, and
citation count and recommendation coverage over
two datasets containing 2964 US case law docu-
ments. The results point to fastTextLegal as the
overall best performing method. It is observed that
the performance of text-based approaches such as
Paragraph Vectors and Longformers is adversely af-
fected by increasing word count and that of citation-
based methods such as DeepWalk and Poincaré by
decreasing citation count. Hybrid methods offer
broad coverage and overcome the limitations of
single methods.

In this paper Bhattacharya et al. (2020), similar-
ity computation methods for legal documents based
on textual content as well as precedent citation net-
works are analyzed on a common dataset of 47
pairs of Indian Supreme Court case documents. It
describes text-based similarity measures like Para-
graph Links, FullText Similarity using Doc2vec
and proposes a novel method that considers aggre-
gated scores between thematic segments (facts, ar-
guments, rulings, statutes, etc) and network-based
metrics like Bibliographic Coupling, Co-citation,
Dispersion and Node2Vec, a unique algorithm for
graph embeddings. Compared on the basis of their
Pearson correlation coefficient, Node2Vec, Full-
Text, and Thematic Similarity show comparable
results. It is noted that a higher score is obtained
with a combination of the 2 methods.

Previous works present several methods and ap-
proaches for similarity between legal documents,
predominantly using full-text or citation-based
techniques. The objective of our proposed solution
is to cater to a particular user, here, law practition-
ers, by modeling their requirements while retriev-
ing similar cases. Similarity is calculated using
TF-IDF with cosine similarity and represented us-
ing the weighted average score between various
rhetorical roles by effectively capturing their rela-
tive relevance.

3 Proposed Methodology

The intent with this work was to create a frame-
work that is robust, reliable and focused on equity
without bias . Therefore, the proposed solution
introduces a framework that operates on an input
case judgment document and generates as output
the most similar case documents. The database
consists of documents from the ILDC (Indian Le-
gal Document Corpus) dataset. Rhetorical roles
are then identified from all documents, similarity
scores computed between the segments and repre-
sented as a knowledge graph as depicted in Figure
1.

4 Implementation

4.1 Dataset Used
The ILDC dataset, introduced in Malik et al. (2021),
is used for this work . The dataset was originally
created for the purpose of legal judgment predic-
tion and explanation and contains judicial summary
documents for more than 35,000 Supreme Court
cases. The dataset is annotated with legal expert
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Figure 1: Diagrammatic Workflow of the Proposed Solution

guided explanations regarding the importance of
different sentences in the judgment accompanied
with the case. The motivation for using this dataset
is the fact that it contains case documents without
metadata like presiding judge and the place the case
was filed which often introduce bias.

4.2 Identifying and labeling the relevant
rhetorical roles

Rhetorical Role is also known as semantic seg-
ments. Each sentence in a legal case document can
be assigned one of the predefined thirteen Rhetori-
cal roles. Rhetorical role identification is a sentence
classification task. The rhetorical role of a sentence
does not only depend on the words in that sentence
but also depends on the words from the sentence
preceding and succeeding it. In other words, it
depends on the context.

The impetus for identifying the rhetorical roles
is based on the fact that the similarity between two
cases is often ascertained based on the similarity
between certain rhetorical roles.

To accomplish this task, the baseline method
used by Kalamkar et al. (2022), which uses the
SciBERT-HSLN architecture proposed by Brack
et al. (2021) and is trained on the dataset con-
tributed by the aforementioned work is adopted.
Using this model, each line in the document is an-
notated with its corresponding rhetorical role as
represented in Table 1.

4.3 Case Similarity
For a case document, once the rhetorical roles
sentences are identified, all the sentences labeled
with the same rhetorical role are grouped together.
To determine how similar two case documents
are, similarity scores between each of the thirteen
rhetorical roles computed for both documents are
being considered.

Rhetorical Role Label

1 Preamble PREAMBLE
2 Facts FAC
3 Ruling by Lower Court RLC
4 Issues ISSUE
5 Argument by Petitioner ARG_PETITIONER
6 Analysis ANALYSIS
7 Argument by Respondent ARG_RESPONDENT
8 Statute STA
9 Precedent Relied PRE_RELIED
10 Precedent Not Relied PRE_NOT_RELIED
11 Ratio of the decision RATIO
12 Ruling by Present Court RPC
13 None NONE

Table 1: List of the Rhetorical Roles and their corre-
sponding Labels

Similarity metrics like Jaccard Similarity, Eu-
clidean Similarity, and Cosine Similarity were ini-
tially considered. To compute the similarity be-
tween documents, a few frequently used text em-
bedding methods/techniques and deep learning-
based textual similarity techniques were imple-
mented.

4.3.1 Text Embedding Methods

TF-IDF: Term frequency is the normalized term
count. Besides TF, another thing considered is how
common a word is among all the documents and
this is taken care of by the IDF. TF-IDF works
by assigning more weightage to rare words and
lesser weightage to commonly occurring words
and, frequency of a word in a document relative to
its frequency in the entire corpus can be found out.

Doc2Vec: Doc2vec generates numerical rep-
resentations for sentences, paragraphs and docu-
ments. It represents the document into a vector
of size 20 and hence there is no need to consider
the average of word vectors to create document
vectors.
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Method Precision Recall Micro F1

Jaccard 0.41 0.41 0.41
TF-IDF + Cosine 0.71 0.71 0.71
TF-IDF + Euclidean 0.43 0.43 0.43
Doc2Vec + Cosine 0.38 0.38 0.38
Doc2Vec + Euclidean 0.43 0.43 0.43
BERT + Cosine 0.47 0.47 0.47
BERT + Euclidean 0.43 0.43 0.43

Table 2: Scores for Similarity Computation Methods

4.3.2 Deep Learning-based Textual Similarity
BERT: BERT makes use of transformers, an “atten-
tion mechanism” to learn the contextual/semantic
relations between words in the document. Since
the transformer encoder reads the entire sequence
at once (unlike directional models), it learns the
context of the word based on the words towards its
left and right. The BERT-base model fine-tuned for
the NLI dataset was used to learn embeddings of
the word in the document.

Legal experts were asked to rank a subset of doc-
uments from the ILDC dataset on the basis of their
similarity to each other in order to understand how
relevant the implemented systems are to the real-
world requirement from the perspective of informa-
tion retrieval systems of this kind. On comparing
this with the implemented systems, TF-IDF, a text-
based embedding method and cosine similarity as
the similarity metric yielded the highest micro F1
score of 0.71, as shown in Table 2, and was chosen
to compute the similarity.

4.4 Knowledge Graph Representation

The information regarding the case documents is
stored in a knowledge graph as modelled in Figure
2. Knowledge graphs are abstract data structures
that capture both the characteristics of entities and
the relationships between them. They are formu-
lated by: G = (V,E)

Legal documents are often related to each other
thematically. Capturing this is likely to yield re-
sults that are better suited for real-world application.
This intuition drives the use of knowledge graphs
in this paper.

In the constructed knowledge graph, case docu-
ments are represented as nodes and each node has
13 attributes associated with them and they repre-
sent the 13 rhetorical roles that were identified and
tagged in the documents. The value taken up by
each attribute is the corresponding sentences in or-
der to increase the robustness of the data captured.

Figure 2: Knowledge Graph Representation

Rhetorical Role Weight

ANALYSIS
5

FAC

STA

4
RPC
RATIO
ISSUE

RLC
3

NONE

ARG_PETITIONER
2ARG_RESPONDENT

PRE_RELIED

PREAMBLE 1

Table 3: Weights assigned to each Rhetorical Role

In practice, as pointed out by legal experts,
different rhetorical roles have different amounts of
relevance. To capture this as accurately as possible,
the similarity scores of sentences in each individual
rhetorical role in a case document are calculated
using TF IDF. A weighted average of the same is
then taken to obtain the corresponding edge weight.

The weights were decided by conferring with
legal experts, as shown in Table 3. The importance
of each rhetorical role while gauging the similarity
between case descriptions as well as the accuracy
of the baseline model used to identify them were
considered in order to reduce the value of error.

The final weighted average similarity score is
calculated as:
WeightedAverageSimilarityScore =

∑
(Weights×SimilarityScoreofRhetoricalRole)∑

Weights
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The weighted average similarity computation as
per the priority order of the rhetorical roles resulted
in a micro F1 score of 0.73, showing an improve-
ment over the full-text methods.
The data structure containing the source and des-
tination cases along with the similarity scores cor-
responding to the rhetorical roles thus obtained is
stored both in a CSV and Neo4j, a graph database.
The use of Neo4j as a database is dictated by its
efficiency, ability to scale and ease of use. In order
to ensure quick search and accurate retrieval, edges
with low scores are dropped from the database. A
snippet of nodes and their properties in the Neo4j
database can be seen in Figure 3.

Figure 3: Representation of Knowledge Graph using
Neo4j

5 Results

On comparing expert-anointed rankings for case
documents based on their full-text similarity, TF-
IDF with cosine similarity metric was observed to
capture it most effectively with the highest micro
F1 score of 0.71, amongst other methods such as
BERT and Doc2Vec. Rhetorical roles were iden-
tified using the SciBERT-HSLN approach which
achieved a micro f1 of 77.7 on hidden test data.
Similarity scores were further enhanced to achieve
a micro F1 score of 0.73, by integrating the as-
pect of thematic similarity using rhetorical roles. It
was found to model expert-scores more accurately
than the full-text methods alone. This informa-
tion when represented in the form of a knowledge
graph through the Neo4j database yielded an av-
erage query response time of 223 ms, showing an
improvement nearly 10 times faster than retrieving
the documents saved in a table. In a use case such
as ours, it is of essence to note that the relationship
between different documents is important. Only

capturing course-grained details like document text
and leaving similarity calculations to application
logic leads to added computational costs incurred
at every query, which can be avoided if this infor-
mation is stored in a knowledge graph at the time
that a new document is added to the database.

5.1 Applications in the Real World

5.1.1 Information Retrieval Systems
One of the most well-known applications of case
similarity is information retrieval. Non-proprietary
legal information retrieval systems like Indian
Kanoon (https://indiankanoon.org/) have shortcom-
ings which include the upper limit on the number
of tokens that can be matched and the lack of ro-
bustness when the search is carried out.

An IR system backed by a database that stores
documents like the one proposed in this paper can
easily service multi-sentence queries by identifying
the rhetorical roles present in the input and finding
the corresponding weighted similarity scores.

This system can be further scaled over a large
database with the help of clustering to reduce the
number of similarity scores that need to be calcu-
lated.

5.1.2 Recommendation Systems
Recommendation systems can be used to suggest
similar documents to law experts who are research-
ing to make their preparation better. The usage of
knowledge graphs makes it very easy to identify
relevant similar documents faster.

The length of the feature vector for an item based
collaborative filtering based recommender system
with n users, m items, and c ratings is n; thus, the
time complexity of the similarity computation is O
(n). As a result, the overall temporal complexity is
found to be O(m2n2).

With the approach proposed by this work, the
similarity computation has a time complexity of
O(|N |2) (N being the number of nodes). The time
complexity of the resulting recommendation sys-
tem becomes O(n ∗ |N |2).

6 Conclusion

This paper introduces a new method to compute
and store similarity between judicial case docu-
ments. It identifies the rhetorical roles in case
documents and leverages it to find the thematic
similarity between the documents. The similar-
ity scores thus obtained are stored in a knowledge
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graph along with the documents. In this represen-
tation the documents and their semantic segments
are captured in the nodes and the similarity scores
are represented as the edge weights. It is shown
that this method can be used for building reliable
information retrieval systems and recommendation
systems.

For future work, using this data-structure for
other legal tasks such as judgment prediction can
be explored. It also remains to be determined if
the task of explainability can be enhanced by the
context provided by the identification of rhetorical
roles. The weights in this work are determined us-
ing expert-rule methods. As an extension, different
deep learning methods can be used to ascertain the
optimal weights associated with the edges.
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Abstract

Automatic extraction of “significant” com-
ponents of a legal contract, has the poten-
tial to simplify the end user’s comprehension.
In essence, “significant” pieces of informa-
tion have 1) information pertaining to mate-
rial/practical details about a specific contract
and 2) information that is novel or comes as
a “surprise” for a specific type of contract. It
indicates that significance of a component may
be defined at an individual contract level and at
a contract-type level. A component, sentence
or paragraph, may be considered significant
at a contract level if it contains contract spe-
cific information (CSI), like names, dates or
currency terms. At a contract-type level, com-
ponents which deviate significantly from the
norm for the type may be considered signifi-
cant (type specific information (TSI)). In this
paper, we present approaches to extract “sig-
nificant” components from a contract at both
these levels. We attempt to do this by identi-
fying patterns in a pool of documents of the
same kind. Consequently, in our approach, the
solution is formulated in two parts: identifying
CSI using a BERT based contract-specific infor-
mation extractor and identifying TSI by scoring
sentences in a contract for their likelihood. In
this paper, we even describe the annotated cor-
pus of contract documents that we created as
a first step toward the development of such a
language-processing system. We also release
a dataset of contract samples containing sen-
tences belonging to CSI and TSI.

1 Introduction

Contracts are agreements, between two or more
parties, that govern what each party can or cannot
do and are usually dense in information. Extracting
contract elements and locating novel clauses and as-
signments from a legal contract is a desired feature
by many as it will greatly simplify and accelerate
user comprehension. Traditionally, it requires a
domain expert as there are parts of a contract that

can only be noticed by a reader experienced in re-
viewing contracts. For an untrained eye, it is often
difficult and time consuming to identify rare and
unique sentences. To reduce dependency on ex-
perts and to lessen the human effort required, in
this paper we introduce approaches for automatic
identification and extraction of significant compo-
nents of the contract.

When compared with the corpora on which most
pre-trained deep models are based, the structure
and vocabulary of texts in contracts differ signifi-
cantly. Contracts frequently take constrained forms,
sometimes even “template-like” for the sake of en-
suring legal unambiguity. On carefully examining
the semantics and structure of diverse legal con-
tracts sourced from SEC EDGAR 1 (employment,
software license, purchase, severance), we observe
that

i) within contracts of same category, although
the wording and sentence structure differ between
individual contracts, the information conveyed re-
mains almost the same,

ii) within an individual contract, within an indi-
vidual contract, we have compo- ii) within an indi-
vidual contract, we have components, sentences or
paragraphs that are remarkably distinct with little
redundancy

Components in an individual contract can be
broadly classified as:

Templatised sentences are sentences that follow
a template. A phrase or only a part of the sentence
may vary and the rest of the content is semantically
same across contracts. Examples include contract
elements (Chalkidis et al., 2017) like title of the
contract, parties involved in the contract, dates,
governing law.

As observed in Table 1, the sentences for an in-
dividual contract can be generated from a template
by filling in relevant information for the "effective
date" and "governing law". The values for "effec-

1https://www.sec.gov/edgar/search-and-access
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Templatised Sentences
This Agreement shall be effective as of
November 5, 2014 (the Effective Date).
GOVERNING LAW.This Agreement shall be
construed and interpreted in accordance with
the internal laws of the State of California.

Table 1: Sentences with a Template Structure

Boilerplate Sentences
While employed by the Company hereunder,
Executive shall be eligible to participate in
the Company ’s employee benefit plans as in
effect from time to time pursuant to the terms
of those employee benefit plans.
No waiver of any breach or condition of
this Award Agreement shall be deemed
to be a waiver of any other or subsequent
breach or condition whether of like or
different nature.

Table 2: Sentences with Standardized Clauses

tive date" and "governing law" will be different for
different contracts. In templatised sentences, the
information changes rapidly for each document, as
the values are unique to each contract.

Boilerplate sentences2 sentences that are stan-
dard formulations, and uniformly found in all con-
tracts of a type. They are huge in number and
constitute a large portion of contract. In this pa-
per, we extend the definition of Boilerplate sen-
tences to include sentences which contain the same
semantic content across contracts but differ lexi-
cally and structurally. As we can see in Table 2,
these clauses are standard across contracts of a
specific type. Business and technical documents of-
ten use boilerplate sentences to improve efficiency
and standardize language and structure. The infor-
mation divergence between contracts of a type is
almost constant for boilerplate sentences.

Rare sentences in a contract include content
not commonly found in contracts of that type and
hence are conspicuous by their presence in the cur-
rent contract. In Table 3, first example refers to
hypothetical tax rate which applies to employees
who work at an onsite location. Similarly in the sec-
ond example, no additional stock units are granted
if there is a change in control of the organization.
Both these clauses are situational and do not appear
in most contracts of that category. Intuitively, these
sentences will be of interest to anyone examining

2The term boilerplate refers to standardized text, copy,
documents, methods, or procedures that may be used over
again without making major changes to the original.

Rare Sentences
To achieve balance, your current tax with-
holdings may cease and a hypothetical rate
of tax may be calculated and withheld
from your wages.
No additional Stock Units granted as part
of the Award may be earned following the
Change in Control.

Table 3: Sentences with Rare elements

the contract because they bring in novelty. Rare
sentences in a contract are identified on the basis
of contract type to which a contract belongs.

In summary, a contract has -
i) template sentences, which contain contract

specific information (CSI) and are generic across
contract types.

ii) rare sentences which deviate from other con-
tracts of the same type, they convey type specific
information (TSI) and can be recognised only if
one has an in depth understanding of the content
usually present in the contract type.

iii) common and well understood clauses that
constitute boilerplate sentences. In terms of vol-
ume, they account for majority of the sentences in
a contract.

This approach of extracting significant compo-
nents does not really qualify as a standard summa-
rization task because there is no merit in summa-
rizing boilerplate sentences which are well under-
stood. Abstractive summarization (Zhang et al.,
2020a) techniques would inadvertently change the
semantics of the contract. Even when compared
to an extractive setting (Nallapati et al., 2017), in
this study our main focus is to accentuate rare and
templatised sentences as significant components
in comparison to boilerplate sentences. Unfortu-
nately, we are not aware of any large, open corpora
of contracts for running comparable experiments.

The outcome of our approach is presented in
two formats a) highlighted input document Fig-
ure 1- where sections of interest are highlighted
within the overall contract. This helps in vizualiz-
ing the significant components of the contract. b) a
cover-page - a consolidated page containing the ex-
tracted significant components. The effectiveness
of the automated significant components identifi-
cation model was further evaluated by conducting
an experimental study that compares the perfor-
mance between human and machine for the task.
The contribution of our work in addition to iden-
tifying “significant" components is to understand
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how much fine-tuned data is required for achieving
a moderately reasonable accuracy. This becomes
important as contract types can vary considerably,
and organizations would be burdened with huge
annotation efforts for every document type.

2 Related Work

Language being the core of law and legal contracts,
an increased interest in applying natural language
processing techniques to a wide range of problems
ranging from information extraction to sentence
prediction in law (Zhong et al., 2020; Hendrycks
et al., 2021; Kalamkar et al., 2021; Zheng et al.,
2021) has been observed. Considerable amount
of work has been done in contract analysis and
information extraction from contracts (Yang et al.,
2013; Silva et al., 2020; Mittal et al., 2015).

The most obvious approach to automatic con-
tract element extraction is to model it as sequence
labeling task. Statistical methods like Condi-
tional Random Fields (Finkel et al., 2005; Xu and
Sarikaya, 2013) were popular for sequence labeling
prior to neural networks. (Chalkidis et al., 2017)
involved hand written rules along with hand crafted
features to uniquely identify and extract the con-
tract elements. Recently, neural networks (Huang
and Xu, 2015; Ma and Hovy, 2016; Chalkidis and
Androutsopoulos, 2017) and BERT (Devlin et al.,
2019) based approaches (Zhang et al., 2020b; Chen
et al., 2019) were developed for sequence label-
ing and slot with joint intent classification. Our
work for CSI extraction closely resembles (Zhang
et al., 2020b) where the contract elements are ex-
tracted from regulatory filings and property lease
agreements using the standard BIO tagging scheme
for the contract elements of interest. We include
more categories of contracts (employment, incen-
tive, purchase, severance, software-license) and the
contract elements are majorly kept consistent.

Scope identification is another popular area of re-
search in legal domain as it is tedious to read legal
documents. Contracts or legal documents contain
many key sentences. It often becomes necessary
to have domain knowledge regarding contracts to
avoid missing any important or key information.
Summarization (Andhale and Bewoor, 2016) is a
reliable approach and summarizing legal contracts
was attempted (Kubeka and Ade-Ibijola; Kore et al.,
2020) by taking the document features and ordering
the sentences according to their importance. Clas-
sification and hand crafted rules (Le et al., 2020)

was another recent approach to precisely identify
the scope and was applied to construction contracts
to identify requirements automatically. These tech-
niques do not differentiate between boilerplate sen-
tences which forms the bulk of the contract and the
other sentences of the contract. Instead of summa-
rizing well understood and accepted clauses, our
study intends to focus on contract specific informa-
tion (CSI) and contract type specific information
(TSI).

Regression (Ren et al., 2016; Zopf et al., 2018) is
another technique where the sentences are scored
on their importance and the model learns to in-
clude sentences in a summary based on the scores
it predicts. Based on our observations that legal
contracts of same category have repetitive informa-
tion, we devised an approach to calculate sentence
likelihood with respect to the contract type and use
these scores to identify TSI. The likelihood scores
calculated using LaBSE (Feng et al., 2022) while
BERT (Devlin et al., 2019) was adapted to learn
and predict these likelihood scores.

3 Approach

Significant component extraction is accomplished
in two stages:

(1) Identifying CSI by processing each sentence
of the document and identifying sentences with
contract elements (Chalkidis et al., 2017).

(2) Identifying TSI by assigning a likelihood
score to all sentences in a contract.

These stages contribute in effectively identify-
ing the scope of significant components, by au-
tomating contract processing and extracting text
relating to CSI and TSI from the contracts. We
use LEGAL-BERT-BASE (Chalkidis et al., 2020)
which is fine-tuned on BERT (Devlin et al., 2019)
for legal domain and has shown substantial im-
provement in challenging downstream tasks like
multi-label-classification. Within the wide cate-
gories of legal contracts available, we ran our ex-
periments on the contract types mentioned in Ta-
ble 9.

The overall architecture is shown in Figure 2.
The input to the model is a document D containing
a set of sentences S. The output is a set of sentences
P, that effectively highlight information unique and
specific to the document D, such that P ∈ S.
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Figure 1: Example snippet of a highlighted contract. Sentence in green is TSI while the yellow sentence is CSI. The
other two sentences are boilerplate.

4 Identifying CSI

Identifying contract elements is similar in approach
to identifying named entities but is not directly
extendable without retraining them on contracts.
NER systems typically identify persons, organiza-
tions, dates, locations, currency terms etc,. Con-
tract elements would carry more features attributed
to it along with being a named entity. For exam-
ple, a NER system can identify dates and persons
but will not be able to differentiate if the date is
an effective start date or termination date. Simi-
larly not all instances of persons, organization or
location in a contract would be contract parties or
governing law elements. The sentences that con-
tain these CSI are almost in a template like schema,
therefore training a sequence labeling model to
understand the sentence semantics and to extract
sentences which contain contract elements, yields
better results. We sampled 500 legal documents
(100 documents of each category mentioned in Ta-
ble 9). These documents are then pre-processed
into paragraphs. A paragraph as a unit might be of
a higher value than an isolated sentence. The docu-
ments are split into train, test and validation bins
in the ratio 7:2:1. Commonly applicable contract
elements are identified and selected as contract el-
ements of interest. Most of the contract elements
are phrases rather than a single token, therefore we
pose it as a sequence labeling task using a standard
BIO tagging scheme (Tjong Kim Sang, 2002). We
manually annotated the contracts to mark the se-
lected contract elements. The contract elements

are kept consistent across the contract types as it
is common for contracts to follow a fixed struc-
ture with a certain number of prescribed elements (
contract title, contract parties, effective start date,
termination|maturity date, governing law etc.). It
also reduces the training and annotation effort and
increases the generality of the model. The contract
elements we annotated are listed in Table 7.

4.1 Identifying CSI Model

In the CSI model we extend BERT (LEGAL-BERT-
BASE) for sequence labeling in order to identify
phrases of interest. All contracts are divided into
paragraphs. The input sequences are tokenized us-
ing BERT tokenizer and special tokens [CLS] and
[SEP] are added at the beginning and end of the in-
put sequence respectively. All the input sequences
are padded to a maximum length of 256 tokens. Af-
ter passing through BERT, we apply a linear layer
and CRF layer on top of the hidden states output of
the last layer. The model is trained for 25 epochs
with learning rate of 1e-05.

5 Identifying TSI

Contract type specific information (TSI) extraction
problem has not been studied extensively and is
the main focus of our study. We identify unique or
novel details concerning the contract by looking at
structural and semantic similarities among a pool
of contracts belonging to a specific type. A clause
that is rare for an employment type contract may
not be rare for a stock options awards type contract.
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Figure 2: SCoNE Architecture for CSI and TSI

Figure 3 highlights few clauses that may seem ordi-
nary but are different from their usual construction
in contracts.

Based on our observations, legal contracts of
same category have repetitive information (Boiler-
plate). This requires ranking the sentences based
on a metric for rarity. Scoring sentences (Ren et al.,
2016; Zopf et al., 2018) based on both importance
and redundancy among sentences was attempted
for summarization (Nallapati et al., 2017) tasks.
The approach however, does not guarantee inclu-
sion of rare and unique sentences as sentences
scored based on their importance are most likely to
pick boilerplate sentences since they are the core of
any contract. Redundancy is almost negligible for
business documents like contracts. TextRank (Mi-
halcea and Tarau, 2004) is a popular graph-based
unsupervised ranking model for text processing.
It identifies text units that best define the task at
hand and links them with sub units of text by iden-
tifying relations among them. The Local Outlier
Factor (LOF) algorithm (Pedregosa et al., 2011) is
an unsupervised anomaly detection method which
computes deviation of a given data point with re-
spect to its neighbors. We applied both TextRank
and LOF algorithm on our sampled data as base-
lines. Since our aim is to capture the rare sentences,
we sorted TextRank scores in ascending order and
considered the top sentences as rare. Though the
model works well in capturing rare information,

deciding on the threshold or cut-off is often diffi-
cult as it would differ from contract to contract and
contract type to contract type.

We devised an unsupervised approach to calcu-
late TSI score with respect to the contract type and
use these scores to identify TSI. TSI score of a sen-
tence here indicates the confidence with which a
given sentence is a part of a specific contract type.

Identifying rare components of a contract type
is often limited by the presence of named enti-
ties in templatised sentences. These templatised
sentences, though common across contract types,
would be counted as rare by the virtue of having
named entities in them. The information contained
in such sentences is often extracted using Contract
Element Extraction approaches (Chalkidis et al.,
2017). In order to ignore these sentences and to
make sentences more comparable across contracts
we mask all the named-entities in contracts us-
ing spaCy3 to replace named-entities by their type
(people’s names to PERSON, organization names
to ORG). Masking sentences that contain named-
entities increases its TSI score. Table 4 shows
examples of few sentences whose TSI score has
increased after masking named-entities.

5.1 Mean-Max Pooling

Though contracts of a type contain repetitive infor-
mation, the vocabulary and structure might change.

3http://spacy.io
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Figure 3: Novel sentences snippets, highlighted in pink

Original Sentence lscore Entities Masked Sentence lscore

EX-10.8 4 a17-1046_1 EX-10.8
EXHIBIT 10.8 EMPLOYMENT
AGREEMENT This EMPLOYMENT
AGREEMENT (the Agreement) is
entered into and effective
as of this 3rd day of March

0.75

EX-10.8 4 a17-1046_1 EX-10.8
EXHIBIT10.8 EMPLOYMENT
AGREEMENT This
EMPLOYMENT AGREEMENT
( the Agreement ) is entered into
and effective as of this DATE DATE
DATE ( the Effective Date )

0.86

Term of this Agreement. The Term
of this Agreement shall mean the
period commencing on the Effective
Date and ending on March 31

0.64

Term of this Agreement . The Term
of this Agreement shall mean the
period commencing on the Effective
Date and ending on DATE DATE.

0.88

Table 4: Sentence Likelihood Scores (lscore) with and without Masking Entities

Textual overlap methods, therefore, would not be
able to capture similar sentences across documents.

In order to estimate how frequently a sentence
appears in the documents of a type, we compute
semantic similarity between all sentences across all
documents using LaBSE (Feng et al., 2022). We
consider the maximum semantic overlap depicted
by LaBSE as the indicator of semantic presence
of the concept expressed by a sentence. Thus, we
are approximating the expected count of a sentence
(concept) occurring for a type using LaBSE score
as proxy.

Let, Sij be the jth sentence in document Di and
Skl be the lth sentence in document Dk. Assuming
no redundancy of concepts in legal contracts (each
concept occurs once in a contract), we want to
“count” the number of times a sentence appears in
a document of a specific type. Thus,

Countk(Sij) = max
1≤l≤p

(LaBSE(Sij, Skl)) (1)

Where, p is the length of document Dk and
LaBSE(Sij,Skl) is the semantic overlap between
the sentences. Countk(Sij) would determine the
degree of semantic overlap of Sij with Skl.

The “count” obtained for the sentence Sij is mean
pooled over the number of Documents N. This

Mean-Max pooled LaBSE similarity score is as-
signed as the likelihood of a sentence.

The Likelihood score of Sij is calculated using
Equation 2.

TSIScore(Sij) =

(
N∑
i=1

Countk(Sij)

N
(2)

Sentences that are very common across a type
would have a higher likelihood score compared to
sentences whose occurrence is semantically low.
We are looking for sentences that have low mean
similarity score i.e, low likelihood score.

5.2 Likelihood Approximation Model (TSI-A)
The process described in section 5.1 for calculating
likelihood of each sentence would be quadratic in
the total number of sentences and computationally
expensive at runtime. Therefore, we train a BERT
model on likelihood scores computed on contracts
from five categories collected from SEC EDGAR.
(Table 5) refers to contracts distribution in data
slice of 5000 randomly selected files. This model
would learn to predict the likelihood of a sentence
given the contract type.

In the TSI-A model we extend BERT (LEGAL-
BERT-BASE) for this regression. Documents are
segmented into paragraphs and tokenized using
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Contract Type Number of Contracts
Employment 2200

Incentive 650
Severance 500
Purchase 750

Software License 600

Table 5: Contract distribution

BERT tokenizer, adding special tokens [CLS] and
[SEP] at the beginning and end of the input se-
quence respectively. The input sequences are
padded to a maximum length of 256 tokens. The
final hidden states output is passed through lin-
ear layers with an activation layer in between for
non-linearity. The last layer returns a score which
serves as the sentence likelihood score. The model
is trained for 15 epochs with learning rate of 1e-05.
The loss criteria is MSE (Means Squared Error)
and the objective is to minimise the loss between
the predicted scores and the training scores. Pear-
son correlation scores are calculated between the
test scores generated by using Equation 2 and the
trained BERT regression model.

6 Human Evaluation

To assess the effectiveness of the TSI model we
conducted an experimental study that compares the
performance of the model against a human anno-
tated corpus. Two annotators were asked to read
the contract set provided to them and then label the
sentences as rare or familiar. We chose to make
this a binary classification task for the humans in
order to reduce cognitive load.

Model generated scores in the test set were con-
verted to labels based on their likelihood scores
thresholded by the knee-point value for each class
in Figure 4. If the sentence score is below the
threshold set for rare sentences, then the sentences
are labeled rare (0) . If the sentence score is above
the threshold (set for rare sentences), then it is la-
beled familiar (1) . Table 6 details the precision,
recall and f1 scores of both the annotators on se-
lected contract types.

Annotator 1 Annotator 2
Contract Type P R F1 P R F1

Employment 0.94 0.94 0.94 0.88 0.93 0.91
Incentive 0.92 0.97 0.94 0.92 0.90 0.91
Severance 0.99 0.90 0.94 0.99 0.83 0.90

Software License 0.99 0.94 0.96 0.99 0.87 0.93

Table 6: Human Evaluation Statistics

7 Evaluation

For evaluation, the masked contracts in the test set
are divided into paragraphs, tokenized using BERT
tokenizer and padded with special tokens ([CLS]
and [SEP]).

7.1 CSI Model Evaluation

F1 P R
ContractParties 0.92 0.89 0.95
ContractTitle 0.81 0.72 0.94
EffectiveDate 0.84 0.80 0.89
GoverningLaw 0.55 0.40 0.86
EmploymentRole 0.42 0.42 0.42
SalaryCompensation 0.49 0.43 0.57
TerminationDate 0.40 0.60 0.30

Table 7: Evaluation of Contract Elements

The table 7 shows micro-averaged metrics F1,
precision and recall across the selected contract
elements. By examining these results, we can infer
that common elements like ContractTitle, Contract-
Parties, EffectiveDate which occur in all documents
are well generalised by the BERT model and so
have higher precision and recall values. The preci-
sion and recall scores are low for contract elements
like TerminationDate, SalaryCompensation which
have not commonly occurred in the test contracts
sampled. The primary reason contributing to these
low values is that contracts are sometimes amend-
ments to pre existing contracts and they may not
have all the contract elements that a new contract
would mention. Table 8 shows the frequencies of
the contract elements in both train and test bins
after deduplication. The low representation of Ter-
minationDate and SalaryCompensation samples in
the train and test data explains low precision and
accuracy values. The positives from this result is
BERT is able to generalise commonly occurring
contract elements with samples as low as 100 con-
tracts. For uncommon contract elements, it requires
more data.

7.2 Pearson Correlation Evaluation

Fig 4 shows the plots for sorted likelihood scores of
sentences for each contract type. We observed that
the plot is similar across contract types mentioned
in Table 9 under contract types. From the plot we
inferred that likelihood scores of sentences follow a
trend. For all contract types, there exists sentences
that have low likelihood and sentences which are
more probable.
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Contract Element
Frequency
in Train Data

Frequency
in Test Data

ContractParties 218 62
EmploymentRole 179 52
EffectiveDate 131 32
GoverningLaw 83 22
ContractTitlle 80 15
TerminationDate 38 3
SalaryCompensation 12 2

Table 8: Frequency of Contract Elements in Train and
Test data

Contract Type
Pearson Correlation

on Kfold
Employment 0.996

Incentive 0.998
Severance 0.990

Software License 0.997
Purchase 0.987

Table 9: Averaged K-Fold Validation for Pearson Corre-
lation of test and predicted likelihood scores

i) lower likelihood score : these sentences map
to rare sentences, not normally present in all the
contracts of that category.

ii) average and above likelihood score : these
sentences map to boilerplate sentences which uni-
formly occur in all the contracts with a minor
change in wordings or expression and core sen-
tences that contain named entities. Masking the
named entities increases the likelihood scores of
the templatised sentences.

Table 4 identifies few examples and com-
pares original unmasked sentences with sentences
masked using spaCy, where ‘lscore’ refers to the
likelihood score. We observe that masking entities
has shown impact on the sentence likelihood scores.

Figure 4: Sorted Likelihood Scores of Sentences
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To measure the performance of our proposed
model in predicting the likelihood score, we com-
pute the Pearson product-moment correlation (C)
(Benesty et al., 2009) between likelihood scores
computed by mean pooling LaBSE similarity
scores (calculated using Equation ) (T ) and like-
lihood scores generated by the TSI-A model (P ),
for a sample of 10000 sentences (N) using (Equa-
tion 3). Pearson correlation estimates the degree
of statistical relationship between two independent
variables. A high positive correlation between the
actual and predicted values implies that the model
can be trusted to work reasonably well on new un-
seen contracts of that category. For calculating the
sentence Likelihood using TSI model, K-fold vali-
dation (with k=3) was performed. Table 9 has the
Pearson correlation scores averaged for K-fold data
sets on contract types considered. The high Pear-
son correlation values instill confidence that the
model can identify rare sentences with reasonable
accuracy.

7.3 TSI-A Model Evaluation
To the best of our knowledge, there are no pub-
licly available corpora for rare sentence identifi-
cation. But, rare sentence identification can be
considered as either a ranking task or as an out-
lier detection task. Therefore, TSI-A model was
evaluated against TextRank and LOF outlier de-
tector applied on the sampled data. To keep the
evaluation on similar grounds, we converted the
likelihood scores obtained using TSI model to la-
bels (0,1) based on the knee-point. On the 100
contracts sampled for test from each contract type,
the contracts were split into train, test and valida-
tion bins in the ratio 7:2:1.

The performance of TextRank model was mea-
sured by considering the first 15 , 25 and 50 sen-
tences as rare. Results were compared with human
labeled data and Table 10 shows the precision, re-
call and f1 values for all the thresholds considered.
The metrics (precision, recall and f1) were calcu-
lated for a document and then averaged for all the
contracts. From the Table 10 we can observe that
TextRank with threshold as 15 performs the best.

Although anomaly detection techniques are fa-
mous for identifying rare components, its applica-
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Text Rank
P15 R15 F115 P25 R25 F125 P50 R50 F150

Employment 0.83 0.90 0.87 0.84 0.85 0.85 0.84 0.74 0.79
Incentive 0.90 0.91 0.91 0.90 0.85 0.87 0.9 0.71 0.79
Severance 0.82 0.84 0.83 0.82 0.74 0.78 0.82 0.52 0.64
Software
License

0.83 0.88 0.86 0.83 0.82 0.82 0.82 0.64 0.72

Purchase 0.90 0.88 0.89 0.90 0.8 0.85 0.89 0.61 0.72

Table 10: Evaluation of TextRankScores

TSI TextRank Lof Outlier
P R F1 P R F1 P R F1

Employment 0.89 0.93 0.911 0.83 0.90 0.87 0.92 0.44 0.59
Incentive 0.93 0.98 0.96 0.9 0.91 0.91 0.91 0.28 0.44
Severance 0.84 0.98 0.91 0.82 0.84 0.83 0.85 0.21 0.33
Software
Licence

0.89 0.99 0.93 0.83 0.88 0.86 0.86 0.26 0.36

Purchase 0.92 0.97 0.94 0.9 0.88 0.89 0.92 0.44 0.59

Table 11: Evaluation of TSI, TextRank and LoF

tions on legal data are less prevalent. The main
idea of unsupervised anomaly detection algorithms
is to detect data instances in a dataset, which de-
viate from the norm. However, there are a variety
of cases in practice where this basic assumption
does not hold true. The anomalies could be lo-
cal, global or anomalous when compared with its
close-by neighborhood and determining a single ap-
proach that would work well for all data instances
is difficult.

Table 11 compares the metrics of TSI model,
TextRank and LoF outlier with the human labels.
From the table it can be observed that TSI model
performs better than unsupervised TextRank and
LOF approaches.

The TSI model performs better at identifying the
rare sentences than the best TextRank model as it
is designed based on the semantics and structural
features of legal contracts.

8 Conclusion and Future work

Our work is an attempt to study the structure of con-
tracts and harness the semantic “strictness” of these
contracts in order to extract “significant” pieces of
information contained therein. Here, significance
is defined by two distinct ideas: rarity in a type of
contract and commonality across types. We find
that this view of contracts removes a need to re-
view elements which are boilerplate and would,
in turn, reduce the effort required to find critical
content in a given contract. We show that our mod-
els can achieve reasonable accuracy with relatively
low training data. This work can be extended in

future to a query based model by taking input from
the users in the form of a query and highlight text
most relevant to a given query. Since the task is
novel and there exists no parallel corpora, we wish
to release sentences, that are rare and sentences
that contain contract specific elements from the
sampled contracts.

9 Limitations

Our study aims at capturing significant components
of a legal contract with an emphasis on identifying
information that is specific and unique to a con-
tract. While the approach successfully highlights
and identifies significant components, there were a
few limitations. The dataset contains contracts as
well as amendments made to the existing contracts.
These amendments contribute to low coverage of
contract elements. Increasing the data for each
contract type might yield in better coverage and
results.
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Abstract

Online platforms have dramatically changed
how people communicate with one another, re-
sulting in a 467 million increase in the number
of Indians actively exchanging and distributing
social data. This caused an unexpected rise in
harmful, racially, sexually, and religiously bi-
ased Internet content humans cannot control.
As a result, there is an urgent need to research
automated computational strategies for identi-
fying hostile content in academic forums. This
paper presents our learning pipeline and novel
model, which classifies a multilingual text with
a test f1-Score of 88.6 % on the Moj Multilin-
gual Abusive Comment Identification dataset
for hate speech detection in thirteen Indian re-
gional languages. Our model, Animojity, in-
corporates transfer learning and SOTA pre- and
post-processing techniques. We manually anno-
tate 300 samples to investigate bias and provide
insight into the hate towards creators.

1 Introduction

With the unbridled spread of Internet culture, hopes
of finding an accepting community have led many
racially, culturally, and sexually diverse groups to
take refuge in their corner of the Internet, showcas-
ing the strength of online forums. However, those
seeking to spread hateful content look for ways to
circumvent the restrictions placed on social media
and hinder their healthy development. Due to the
societal concern hate speech has garnered, there is
a strong motivation to make advancements in its
automatic detection. Online hate speech in general,
and gendered online hate speech in particular, have
become an issue of growing concern in both social
and professional discourses.

Before we delve into detecting hate speech, it
is imperative to understand its definition clearly.
(Ross et al., 2017) believes that a distinct definition
of hate speech can make the annotation process

∗Equal contribution

easier, leading to reliable detection of what catego-
rizes as offensive. Nevertheless, hate speech and
appropriate free expression walk a fine line, making
its definition not fully agreeable. We opt to build
upon existing definitions laid down by (Davidson
et al., 2017), (De Gibert et al., 2018), and (Fortuna
and Nunes, 2018) instead of proposing a specific
definition.

Another issue that is not brought to light as
often is that users with a diverse linguistic back-
grounds tend to switch between different languages
while expressing their thoughts on social media,
limiting the capabilities of a monolingual model
and necessitating the need for multilingualism in
a model. We address this challenge by building a
novel model that detects hate comments for thirteen
regional languages (Hindi, Urdu, Telegu, Marathi,
Gujarati, Malayalam, Punjabi, Assamese, Kannada,
Bengali, Tamil, Rajasthani, Haryanvi) using the
Moj Multilingual Abusive Comment Identification
dataset. While working with multilingual data,
apart from a low resource issue, there is a ten-
dency for imbalanced sample distribution. Given
that there is a relatively lower number of samples
categorized as hateful in less-used languages, it
encourages us to adopt transfer learning, data aug-
mentation, and other techniques in AniMOJity.

We base our study on detecting hateful com-
ments for Indian regional languages and analyzing
whether they have a biased perspective in the com-
ments towards a particular community. Our main
contributions are

• We propose a novel hate speech detection
model in a low-resource Indic multilingual
setting that incorporates transfer learning and
documents the effect of different algorithms
on our dataset.

• Our pipeline uses state-of-the-art post-
processing techniques to handle hateful behav-
ior by automatically flagging offensive posts.
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• By observing dominant topics (gender, cloth-
ing, age, religion, race) in the comments, we
manually annotate 300 samples for these bias
categories. This dataset broadens the scope of
analysis research for social media platforms.

• We further provide a comprehensive analysis
using LDA on our dataset to determine the
specific keywords and perspectives of these
commenters towards the content creators, who
are at the brunt of this hate culture.

The remainder of the paper is structured as fol-
lows. Section 2 looks at some of the similar works
in this domain. Section 3 describes the training
dataset, followed by an in-depth presentation of
our methodology incorporating data pre-processing
and model architecture in Section 4. Next, in Sec-
tions 5 and 6, the experimental setup and results are
explored, followed by Section 7, where we analyze
bias in comments and provide a detailed overview
of our findings. We conclude with section 8, dis-
cussing future avenues for our proposed model.

2 Related Work

This section briefly sheds light on the various
methodologies adopted to tackle hate speech de-
tection and multilingual text classification over the
past few years, serving as a benchmark for our
research.

Hate Speech Detection Hate speech detection
has been at the center of the academic community’s
attention due to its constantly evolving and pick-
ing up different forms with time. The problem
categorizes itself as binary or multi-class classifi-
cation. (Waseem and Hovy, 2016) created a three-
class Twitter dataset annotated as sexist, racist, and
neutral for offensive language detection. (Kumar
et al., 2018) showcased their findings on an ag-
gression identification task discriminating 15,000
annotated Facebook posts and comments in En-
glish and Hindi as non-aggressive, covertly aggres-
sive, and overly aggressive. (Davidson et al., 2017)
presented a 24,000 corpus for identifying English
tweets belonging to profanity, hate speech, and non-
offensive categories. (Mandl et al., 2019) gave a de-
tailed account of offensive language identification
where three datasets available for Hindi, German,
and English were created from Twitter and Face-
book. (Zampieri et al., 2019) and (Zampieri et al.,
2020) presented their results in several languages
obtained from the SemEval competition.

Multilingual Text Classification Multilingual
text classification (MTC) aims to breach the lan-
guage barrier by improving monolingual models
by scaling to different languages. (Prajapati et al.,
2009) introduced the implementation of translating
documents to a universal language for classifica-
tion, which was bolstered by (Li et al., 2018) to
extract grammatical and semantic features from
the translated dataset before classification. How-
ever, the noise accumulated by translation errors
creates a disparity in the final results. (Amini
et al., 2010) combined two semi-supervised learn-
ing techniques, co-regularization, and consensus-
based self-training, to investigate multilingual text
classification on a dataset containing five different
languages: English, German, French, Italian, and
Spanish. (Mittal and Dhyani, 2015) studied MTC
in Spanish, Italian, and English by using the N-
gram technique and Naïve Bayes to predict the lan-
guage of a document in classification. (Bentaallah
and Malki, 2012) compared two wordnet-based ap-
proaches for multilingual text categorization. One
relies on the WordNet associated with each lan-
guage while excluding the translation, and the other
focuses on a dis-ambiguation strategy to focus on
the most common meaning of the word and ac-
cess WordNet using a machine translation. Data
augmentation ((Ibrahim et al., 2018)) and trans-
fer learning (Roy et al., 2021) help combat situa-
tions where there is a lack of training data, both of
which are adopted to improve our training data. Re-
cently, promising techniques involving deep learn-
ing and contextual embeddings have spearheaded
a dynamic shift in the approach to tackling MTC
tasks. Transformers became a mainstay in cross-
lingual tasks and ushered in mBERT (Devlin et al.,
2018), a multilingual masked language model, and
XLM (Conneau and Lample, 2019). (Khanuja et al.,
2021) proposed a multilingual LM, MuRIL, specif-
ically built for Indic languages.

Impact of Biased Attack on Social Media Bi-
ases Make People Vulnerable to Misinformation
Spread by Social Media, and cognitive biases origi-
nate in how the brain processes the information ev-
ery person encounters daily. The study by (Döring
and Mohseni, 2020) analyses the comments on
YouTube and displays a gender bias in the com-
ments. Most attacks are against female content
creators and are not just hateful but offensive. Fur-
thermore, the analysis by (Aguirre and Domahidi,
2021) portrays that the comments on YouTube are
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sexual as well as racist in nature. Thus, biased
and offensive comments against them can highly
ruin their image. Our work combines pre and
post-processing techniques with a novel transfer
learning pipeline for hate speech detection in low-
resource languages, as well as analyzes the bias
in comments against content creators on the Moj
platform.

3 Dataset

The dataset utilized in this study was made avail-
able by the Moj Multilingual Abusive Comment
Identification Challenge organizers in partnership
with IIIT-D as part of that challenge 1. Given
the natural language and contextual user data, the
project aims to combat abusive comments on Moj,
one of India’s largest short-form video apps, in thir-
teen languages, as shown in Figure 1. Figure 2
shows the distribution of which language contains
the most hateful comments.

Figure 1: Distribution of languages present in the Moj
Multilingual Abusive Comment Identification dataset

3.1 Data Pre-processing

Data preprocessing aims to maintain the input text’s
original grammatical structure and linguistic infor-
mation while reducing stop-words, inhibiting the
loss of information. To retain key information, we
followed the following preprocessing steps

• We created a list of common stop-words to
remove from the dataset for each language
and converted the text to lowercase. Here
stop-words are nugatory words that do not
influence the output.

1https://www.kaggle.com/competitions/
iiitd-abuse-detection-challenge

• We substituted emojis by their linguistic mean-
ing in the tweet for each source language. To
capture the contextual meaning of an emoji,
we tried to incorporate emoji2vec. However,
due to the diverse nature of our dataset, apart
from a few languages like Hindi, there was
not any pre-existing support for languages like
Assamese, Gujrati, etc.

Figure 2: Percentage distribution of Hate vs Non-hate
in each language in the Moj Multilingual Abusive Com-
ment Identification dataset

The conventional method of using ekphrasis for
preprocessing does not work well with a multilin-
gual dataset, encouraging us to adopt Indic NLP
(Kakwani et al., 2020) and NLTK library support
for preprocessing Hindi. However, due to the to-
kenization constraints in Indic NLP, we perform
tokenization using XLM-R.

4 Methodology

This section documents the techniques used to
achieve the study’s main objective.

4.1 XLM-R Model and finetuning

We use XLM-RoBERTa (XLM-R), a universal
cross-lingual model trained on 100 different lan-
guages, using input ids to determine the language
used. One of the critical differences XLM offers
over its counterparts is the fact that it uses a stream
of an arbitrary number of sentences, truncating the
ones exceeding a limit. Unlike some XLM multi-
lingual models, XLM-R does not require language
tensors to identify the language used and can deter-
mine the correct language from the input id. We
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Figure 3: Illustration of AniMOJity: It consists of three language models merged together using α, β, γ as
weighted parameters

fine-tuned our model by adding layers to the core
model using pre-trained artificial neural networks.

4.2 Incorporating MLM with Fine Tuning
In Masked Language Modelling, a fixed percentage
of words are masked, and the model is expected
to predict the masked words based on the other
words. During fine-tuning, the parameters of the
pre-trained models are frozen while the detection
layer is updated using an optimization algorithm to
minimize the loss function.

max
θ

log pθ(x | x̂) ≈
T∑

t=1

mt log pθ (xt | x̂) (1)

In equation 1, we maximize the probability of
a masked token x−t to appear in the t ’th position
in a sequence given the tokens in that sequence,
x−hat.

4.3 Model Design
The architecture for AniMOJity (Figure 3) is de-
scribed in this section. We used a combination of
three distinct models as described below:

• In our first model, we pass Input-Id as the
vectorized input through a pre-trained XLM-
R model (Conneau and Lample, 2019). The
output (last-hidden-state) obtained from the

model is passed as an input to a Dense layer
having sigmoid as an activation function and
binary cross-entropy as the loss function.
Adam optimizer with a learning rate of 5e-
6 was used to train the model.

• For our second model, we pass Input-Id,
token-type-id, and attention mask as the vec-
torized input through a pre-trained XLM-R
model. The output (last-hidden-state) ob-
tained from the model is passed as an input to
the Dense layer having sigmoid as the activa-
tion function and binary cross-entropy as the
loss function. Adam optimizer with a learning
rate of 1e-5 is used to train the model.

• Finally, in the third model, we pass Input-
Id, token-type-id, and attention mask as the
vectorized input through a pre-trained XLM-
R model. The output (last-hidden-state) ob-
tained from the model is passed as an input to
the GRU cell (Chung et al., 2014) (having 128
units), and output from the GRU cell is flat-
tened and connected to a Dense Layer having
sigmoid as the activation function and binary
cross-entropy as the loss function. Adam op-
timizer with a learning rate of 1e-5 is used to
train the model.
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Algorithm 1: AniMOJity’s Training Algorithm
Data: Hateful comment dataset
Result: AniMOJity: A meta-model used to predict hateful comments
Create 3 XLM-R-based Models;

while I ̸= 2 do
while J ̸= 3 do

Train Model-(j) on Training Dataset and record the result for Test dataset;
J ← J + 1;

end
Predictions on test set (Y-hat) = α * (Predictions from Model-(1)) + β * (Predictions from Model-(2)) + γ *

(Predictions from Model-(3));
Y-hat (having a confidence score above 90% for hateful and below 10% for not hateful comments) are used as
features to create an augmented dataset for the (ith)-level model;
I ← I + 1;

end
the (2)-level model makes predictions on the test set

For model stacking, we combine their predic-
tions to create a model using the fusion weights
(α, β, γ) shown in Figure 3. We train multiple
base models to predict a target variable while con-
currently using the predictions of each model to
predict the value of the target variable.

4.4 Psuedo labelling

Pseudo-labeling involves using labeled data to pre-
dict unlabelled data. The trained model generates
pseudo labels for an unlabelled dataset, combined
with the original labels for a final model training.
This improves the model’s robustness by creating
a more precise decision boundary. We implement
pseudo-labeling while working on our dataset by
utilizing the labels where the predictions on the
test set have a confidence score of more than 90%
and less than 10% for hateful and inoffensive com-
ments, respectively.

4.5 Text Classification

During text classification, a transformer model
takes the final hidden state (h) of the first token
[CLS] as the representation of the whole sequence.
To classify a comment as hateful or not, we pass
the fine-tuned representation of the comment to a
sigmoid function (equation 2) and train the model
to optimize the binary cross entropy loss (equation
3).

p(c | h) = softmax(Wh) (2)

Here, W denotes the weights for the classifica-
tion layer and h is the final hidden state.

LBCE = − 1

m

m∑

i=1

(
y(i) log

(
ŷ(i)

)
+
(
1− y(i)

)
log

(
1− ŷ(i)

))

(3)

Where, y(i) and yt represent the ground truth and
predicted class of the ith sample in a dataset. Since
binary classification means a class takes either 0 or
1 as its input, if y(i) = 0 term ceases to exist, and

if y(i) = 1 then the
(
1− y(i)

)
term becomes 0.

5 Experimental Setup

This section elaborates on the baselines, modules,
and functions used to construct AniMOJity. As
discussed in related work, we used m-BERT
(Devlin et al., 2018) as our baseline model, which
has been the golden standard for multilingual
text classification tasks. Using m-BERT as
our backbone, we experimented with different
architectures, among which the instances where
we found promising results are seen in 1. However,
the primary limitation with m-BERT was the lack
of support for low-resource languages, which
led us towards MuRIL (Khanuja et al., 2021)
since it has been trained on a wide assortment of
Indian regional languages to improve downstream
NLP tasks. However, the most significant update
XLM-Roberta offers over a model confined to a
limited amount of training data, like MuRIL, is
the significantly increased amount of training data,
which in conjunction with the Masked Language
Modelling approach discussed in Section 4.2,
cements it as state of the art.

We first split our task into two pipelines: learning
and testing, where the training (learning) process
is carried out twice before making predictions on
the test set as explained in Algorithm 1 below. We
employ two models showing state-of-the-art results
on multilingual classification, mBERT, and XLM-
R (Conneau and Lample, 2019) as baselines for
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Table 1: Performance evaluation of the binary hate speech classification based on Moj Multilingual Dataset for 13
low resource languages in terms of Accuracy and F1 Score

S.No. Model Accuracy (%) Test F1 Score (%)
1 CNN - Single Input (m-Bert) 93.269 87.181
2 CNN - Multiple Input (m-Bert) 93.420 87.449
3 CNN (m-Bert) 92.898 87.232
4 Concat Pooling 94.726 87.933
5 MuRIL 93.30 87.420
6 CNN - Single Input (XLM-R) 93.823 87.619
7 CNN - Multiple Input (XLM-R) 94.333 88.369
8 GRU Cell (XLM-R) 94.628 88.377
9 CNN - Attention (XLM-R) 94.529 88.497
10 CNN - LSTM (XLM-R) 94.240 88.290
11 CNN – BiLSTM (XLM-R) 96.324 87.181

12 AniMOJity 95.604 88.602

Table 2: Hate and Bias-level breakdown of the multi-
label 300 annotated samples. Note that we can observe
more than one category of bias for a comment

Type Gender Clothing Age Racial Religion
Hate 72 148 30 82 65
No Hate 102 26 140 92 109

our binary classification task. While working on
these transformer-based models, we came across
three types of inputs: input-id, token type id, and
attention mask, of which we tested different com-
binations. The output (last-hidden-state) obtained
from these models is passed as an input to the clas-
sification head. The models implemented in this
study are created using Python 3.10.0 with Ten-
sorflow v2.6.1 as the deep learning framework to
build the architecture and train on Graphical Pro-
cessing Unit (GPU Tesla P100 16GB) servers of
Kaggle. To evaluate the performance of our sys-
tem, we conduct experiments comparing different
models. We created and trained our models using
TensorFlow and Keras after dividing the dataset
into a 90/10 ratio. Accuracy and F1 scores are used
as the evaluation criteria. We assess the outcomes
of the architecture shown in Table 1.

6 Results

In this section, we describe the evaluation results
obtained after testing each language and briefly
examine the performance of different models.

Practical Findings By comparing the proposed
model with benchmarks, we demonstrate the ef-
fectiveness of our architecture. Table 1 shows the
investigative analysis of different strategies we used

on the multilingual task. After exhaustive experi-
mentation with different architectures, we exhibit
the capability of AniMOJity to deal with offensive
language detection.

Theoretical Findings Our suggested method-
ology performed very well when applied to com-
ments where a nasty word or phrase guided the
user’s intent after using AniMOJity to categorize
remarks as offensive or inoffensive. There were,
however, a few instances where someone employ-
ing a slang phrase or colloquialism in a humorous
or referential manner was mistakenly tagged as
hateful because of a significant constraint while
working on hate speech detection: the accurate
classification of "hate."

Analytical Findings We performed an ex-
ploratory data analysis of our dataset described in
Section 7 using Latent Dirichlet Allocation (LDA)
(Jelodar et al., 2019) to understand the latent top-
ics and derive semantic relationships of different
themes and trends prevalent in our dataset. For
example, a common variety of comments in our
dataset shaming the inappropriate clothing style
adopted by an influencer on the app led to many
off-hand remarks that the model could not correctly
identify, leading to a heavy reliance on LDA. This
dependency of being familiar with specific topics
in the dataset serves as a prospect that a hate speech
tagger can incorporate will improve cases where a
lack of context may lead to misclassification.

7 Analysing Bias in Comments

Hate comments against content creators that are de-
fined as defamatory statements intended to portray
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Figure 4: Bias-level percentage distribution of the 300
annotated samples

the artists are unfavorably within the broad cate-
gory of offensive content on the Internet. A state-
ment is discriminatory if it targets a person be-
longing to a particular social group segment for
discriminatory reasons. For instance, targeting a
specific gender, color, or religion might cause bias.
To shed light on these biased attacks, we annotate
300 samples described in Table 2, and the distribu-
tion of these annotations is shown in Figure 4. For
our sample, we randomly select comments labeled
as Hate and which are in the Hindi language. While
not exhaustive, the manually annotated labels offer
a glimpse into the distribution, quality, and quantity
of hateful comments. To further our analysis on
a granular level, we perform Linear Discriminant
Analysis (LDA) on the subsections of each data
to identify the targeted sub-topics under the bias
categories.

7.1 Gender Bias

Suppose gender bias is predominant in these social
media platforms. In that case, it will perpetuate ex-
isting stereotypes, necessitating social media plat-
forms to re-examine their algorithms as, ultimately,
negatively shaping people’s notion of a significant
issue. Inferred from our annotation, we found a
ratio of 11:1 tweets geared towards female content
creators, which leads us to inspect further the sub-
ject on which the discrimination is based. For our
analysis, we pick three topics to further our study
on gender bias; solely gender, clothing, and age.

Clothing Bias Body covering or attire is an inte-
gral part of creating a persona that is available for
perception by others. Clothing is also one of the

Table 3: Clothing-level topics obtained from Latent
Discriminatory Analysis with their top words

Topic Top Words

Harassing the influencer based
on clothing choice

Kapde (clothes), Pehn (wear),
Tarika (style), N*ngi (naked)

Suggesting to change clothing
style

video, full, kapde (clothes),
pehno (wear)

Implying the influencer wants
more followers

Followers, body, like, chahiye
(want)

Implying that the content isn’t
Family friendly

Family, kapde (clothes), utaar
(remove), problem

This topic infers the support
of others against the negative
comment section

comment, gande (bad), apko
(you), karte (do)

most significant indications of gender identity, and
being subject to a toxic environment, as portrayed
by hate comments, can take a severe mental toll. It
is vital to engage in a far more considerable effort to
eradicate toxic attitudes learned consciously or un-
consciously from mass media’s modern ’schools.’
Figure 4 shows that defamation against women’s
clothing is dominant compared to slander solely
on gender or a woman’s age. While labeling for
clothing bias, we searched for clothing-specific key-
words, ranging from clothing style to the variations
in techniques used. For example, we observe cloth-
ing bias in comment; "Kabhi kapde pahan Kar Bhi
video banaa liya karo ladki ke naam per kalank Ho
Tum" (Make a video after wearing clothes, you are
a stigma in the name of the girl), by identifying
the word "kapda"(clothes). We observed five major
topics prevalent in our dataset along with their top
keywords, as shown in Table 3, obtained from topic
modeling using LDA.

Solely based on gender To differentiate com-
ments based on their target gender demographic,
we analyzed the "gender" attributed to important
words. For example, in the comment; "Saal**
dikhawa karti hai suwar" (sister-in-law pretends
to be a pig), certain words like "karta" (male) and
"Karti" (female) both mean "do" / "be" but are gen-
der specific along with certain keywords which are
used to refer to women in a derogatory manner (for
example "saal**" below means sister-in-law via
a direct translation, however, it used in a negative
connotation).

Age Bias While labeling comments based on
age, we searched for specific keywords that neg-
atively refer to someone’s age. For example, in
analysis; "Are aunty apne beti ke kpde phn liya
kya" (Hey aunty have you put on your daughter’s
clothes?), "aunty" is used to refer to elderly women.
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Still, it can be used negatively depending on the
words used alongside it. Despite the limited age
bias in our sample size, we can’t ignore the fact that
some comments target a content creator’s age. We
are further cementing the gender bias discussed
above. The top words obtained from the sam-
ple dataset after performing topic modeling were:
Aunty(aunt), Maa(mother), Chudail(witch), and
Bhuda(old), which in itself shows three out of four
words directly targeting elder female content cre-
ators.

7.2 Racial Bias

In order to determine racial bias in the comments,
we searched for keywords referring to the color of
an individual’s skin (for example, kala/kali- is used
to address someone with a darker skin tone, and
similarly, gora/gori is used to address someone with
a fair skin tone). Topic modeling was used to obtain
the following top words: kali(black), gori(white),
chipkali(lizard), kalank(tainted). Based on the key-
word search, most of the hateful comments associ-
ated with a racial bias had a close correlation with
an individual’s attire (clothing bias) or the public
reception towards their body. In an example com-
ment; "Pari nahi tu kali chudail h apne mann me
hi pari banti firti" (You are not a fairy, you’re a
black witch. You’re only a fairy in your dreams),
the word "kali (black)" is used in a negative light;
attacking someone on racial grounds.

7.3 Religion Bias

Based on the results obtained from topic model-
ing, we could see a strong correlation between
religious bias, clothing bias, and female bias,
as many comments undermined women based
on their religious affiliation and their choice
of clothing. The top words observed were:
Mulla(Muslim), Hindu(Hinduism), Sardar(Sikh),
and Islam(Muslim). An Example:"Aap musalman
hokar bhi aise kapde pahnati ho kuchh to sharm
karo adla pakshi" (Even though you are a Muslim,
you wear such clothes, you should be ashamed.)

8 Conclusion & Future Work

Any negative statement based on identification
(such as gender, caste, or religion) rather than com-
ments supporting the formation of an inclusive
community should be avoided. To achieve this
goal, we test various deep learning approaches on
the Moj Multilingual Abusive Comment Identifi-

cation dataset having thirteen distinct regional lan-
guages and constructed a model that outperforms
our baselines. To advance our research, we man-
ually annotate 300 data points with bias labels (
gender, clothing, age, religion, race ). A common
thread that ties together other hateful comments
and biases observed is the reference to clothes and
how people perceive clothes as being inappropri-
ate. Suppose we follow this through-line of hate
geared towards the choice of clothing. In that case,
the fact that most hateful comments are targeted
towards female influencers hearkens to a societal
issue of objectification and dehumanization that
makes women prone to attacks and libel.

The model architecture can be improved in the
future by testing other feature selection methods,
elevating its overall performance while working
with code-mixed languages. Second, research has
shown the importance of context for hate speech
classification. Certain cases arise where there is
a lack of contextual information, causing our best
model to misclassify specific entries where even
humans would struggle. This may be mitigated by
developing a more robust pipeline by incorporating
steps such as co-reference analysis and sarcasm
detection. Third, to comprehend where the model
fails, there is a need for a detailed investigation
of false positives and negatives. Furthermore, the
research may be further carried out to analyze bias
on other social media platforms.

9 Ethical Statement

Using datasets and algorithms for hate speech de-
tection can have beneficial and harmful effects. We
want to be clear that our intention is not to advance
any discourse (biased or otherwise). Instead, by
providing a more balanced real-world view of the
discussion against content creators in India, we
hope to educate the audience about the distorted
commentary perspectives in India. Through re-
search and analysis in this area, we hope to create
more reliable platforms for discussing creators on
social media.
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A Appendix

A.1 Dataset

Moj2 is India’s largest short-video app for multiple regional languages. We chose to use Moj as the
basis of our study primarily because it facilitates the use of numerous regional languages and, in doing
so, captures the sentiments of different communities at a granular level which cant be achieved with
other social media platforms. Another factor that we weighed heavily is that because Moj was recently
introduced, its hate flagging capabilities are not as well developed as the internationally established social
media platforms, where content moderation removes extremely hateful comments and doesn’t accurately
depict how a community can spread online hate.

The Moj Multilingual Abusive Comment dataset provided by IIIT-D had the following characteristics:

• The human-annotated dataset was split into two sections: training and testing, each with 665k and
74k samples, respectively.

• The distribution of Abusive and Not Abusive samples was 312k and 352k, respectively.

• All the comments in the dataset are annotated according to the language used. There are instances
where similar words in Hindi are code-mixed to create two variants based on the script used, namely
Devanagari and Roman-Hindi. Similarly, regional languages like Marathi, Haryanvi, and Rajasthani
are variants of the Devanagiri script, were code mixed with English, along with the other regional
languages that follow their script (Kannada, Malayalam and Odia-Brahmi, Bengali-Bangla, Bhojpuri-
Kathi, Tamil, Telugu-Abugida script a variant of Brahmi Script).

• The test dataset used in this research was not disclosed to the competitors and is not publically
available as it was a part of the Moj Multilingual Abusive Comment Identification Challenge hosted
by IIIT-D 3.

A.2 Training Strategy

• We noticed a modest difference between GPU and TPU accelerators: models trained on GPU perform
significantly better. However, because the experimental time on TPU was shorter, we decided to use
it for most of our trials which can be seen in Table 4.

Table 4: Time taken for each Epoch in hours

Info XLM-Roberta
Accelerator Tesla P100

Time Taken (hr) 11.54
EPOCH 1 3.86
EPOCH 2 3.72
EPOCH 3 3.49

• We also tried truncation sizes of 64, 128, and 256 and settled on 128 for the input text.

• We used different alpha, beta, and gamma values based on the test f1 score of each model to assign
a higher weightage to the model that performed better. On conducting an exhaustive analysis of
different combinations of alpha, beta, and gamma, we concluded that our model performed the best
for the values of 0.35,0.33,0.34.

• Post-processing: Based on our findings, raising the threshold offered us an advantage. Thus we
chose to adjust the thresholds for each language. After experimenting with various thresholds, we
discovered that the numbers in Table 5 produced the best results.

2https://apps.apple.com/in/app/moj-short-video-app/id1523457550
3https://www.kaggle.com/competitions/iiitd-abuse-detection-challenge
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Table 5: Language Wise Inference Threshold

Language threshold
Marathi 0.56

Malayalam 0.52
Hindi 0.58
Telugu 0.62
Tamil 0.51
Odia 0.4

Gujarati 0.5
Bhojpuri 0.52
Haryanvi 0.6
Assamese 0.55
Kannada 0.5

Rajasthani 0.5
Bengali 0.55

• Psuedo Labelling: We continued the process of training our model over the course of two iterations,
reintegrating examples from the test dataset that provided a prediction probability of greater than
90% to our training dataset giving us a boost of 1% in the test F1 score.

A.3 Annotation Guidelines
Due to the Hindi language’s highest density and annotator proficiency, we employed stratified sampling to
create a sample size of 300 randomly selected comments in the language. We examined the effects of
various biases on the classification of hate using this sample as our starting point. Due to the dataset’s
limited annotation for hate categorization in the competition, we had three undergraduate students annotate
each comment in accordance with the following guidelines: like a comment would be considered biased
based on religion if it contained words relating to identifying a person based on their religion like; "Islam",
"Islaam","Molla", "Mulla", "Muslim", "Musalman", "Isai", "Christ", "Singh", "Sardar", etc. Similarly, the
details for the other categories are provided while analysis in Section 7.
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Abstract
Bangla is a low-resource, highly agglu-
tinative language. Thus it is challeng-
ing to facilitate an effective search over
Bangla documents. We have created a
gold standard dataset containing query
document relevance pairs for evaluation
purposes. We utilise Named Entities to im-
prove the retrieval effectiveness of tradi-
tional Bangla search algorithms. We sug-
gest a reasonable starting model for lever-
aging implicit preference feedback based
on the user search behaviour to enhance
the results retrieved by the Explicit Seman-
tic Analysis (ESA) approach. We use con-
textual sentence embeddings obtained via
Language-agnostic BERT Sentence Embed-
ding (LaBSE) to rerank the candidate doc-
uments retrieved by the traditional search
algorithms (tf-idf) based on the top sen-
tences that are most relevant to the query.
This paper presents our empirical findings
across these directions and critically anal-
yses the results.

1 Introduction
Owing to India’s multilingual diversity, it is
important to ensure that a wide gamut of
people from diverse backgrounds are able
to access the web without any language
barrier. Bengali alternatively known as
Bangla, has 300 million speakers globally
and has witnessed the fastest growth among
the other Indic languages in terms of inter-
net usage (KPMG, 2017). Hence there is
a pressing need to develop tools that facil-
itate semantic search over Bangla text doc-
uments. Previously, efforts have been put
into creating Bangla Search engines. For ex-
ample, Anwesan1 was built to search over
Rabindra Rachanabali collection2 (Das et al.,

1http://anwesan.iitkgp.ernet.in/
2https://rabindra-rachanabali.nltr.org/

2012). Sandhan3 is a monolingual domain-
specific search engine limited to tourism and
health domains in nine Indian languages:
Bangla, Hindi, Marathi, Tamil, Telugu, Pun-
jabi, Odiya, Gujarati and Assamese. It is
based on the Bag of Words model and focuses
more on improving recall than precision (Priy-
atam et al., 2012). Hence the top results
are not always relevant for the query. Pipi-
lika4, launched on April 13, 2013, is designed
for the residents of Bangladesh. It crawls
data from Bangla News, Bangla Blogs and
Bangla Wikipedia. However, Anwesan and
Pipilika5 are not presently accessible for ex-
ploration. This paper reports follow-up work
based on (Das et al., 2022) recent work, which
introduced an exploration toward building
অেİষা (Anwesha), a prototype for a search
engine in Bangla. Anwesha demonstrated
promise in addressing the existing search
engines’ shortcomings and advanced the re-
search done in the information retrieval (IR)
space for the Bangla language. Anwesha
incorporated the use of diverse knowledge
sources like IndoWordNet6 (Bhattacharyya,
2010), statistical co-occurrences (by way
of Latent Semantic Analysis (LSA) (Deer-
wester et al., 1990)) and external knowl-
edge sources like Wikipedia (by way of Ex-
plicit Semantic Analysis (ESA) (Gabrilovich
and Markovitch, 2007)) for facilitating ef-
fective retrieval, opening gateways to fur-
ther improvements in the search quality re-
sults. The authors have released a Gold
Standard dataset7 containing 94 query doc-

3http://sandhan.tdil-dc.gov.in/Search
4https://pipilika.com/
5https://en.wikipedia.org/wiki/Pipilika
6The official website and the web interface

of IndoWordNet: https://www.cfilt.iitb.ac.in/
indowordnet/

7https://doi.org/10.5281/zenodo.6583149
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ument relevance pairs over a test collection
of 1182 documents. The collection contains
182 short stories, novels and essays written
by Rabindranath Tagore8 and 1000 newspa-
per articles published in 2013 crawled from
the daily newspaper of Bangladesh Prothom
Alo9. Every query was designed to belong to
one of the four different complexity levels, as
shown in Table 1. By designing queries of
different complexity levels, the effectiveness
of Anwesha as the queries become more diffi-
cult to resolve could be studied. An approach
like tf-idf works best on precise queries that
directly match the content of the relevant
documents (complexity level 1). For queries
which were not precise, query expansion tech-
niques using IndoWordnet helped make a lexi-
cal search like tf-idf perform effectively (com-
plexity level 2). LSA performs well when the
query and the retrieved relevant documents
do not share many words in common; instead,
they share a common theme (complexity lev-
els 3 and 4). ESA performs well when the
queries require external background knowl-
edge for their intent resolution (complexity
level 4). The queries created with different
complexity levels demonstrated that there is
no silver bullet which works the best across
all types of queries. Each of the top ten docu-
ments retrieved by their search algorithm was
assigned a score of 1 if irrelevant, 2 if par-
tially relevant, and 3 if completely relevant
by at least five Bangla users. Further, Anwe-
sha explains the search results by highlighting
words from the documents LSA or ESA reckon
to be semantically related to the query.
In its present form, Anwesha has been eval-
uated on a small set of queries. The lack
of handling of multi-word expressions has
adversely affected Anwesha’s performance in
several cases, especially in complexity level
1 query. It does not use the implicit feed-
back the user provides via click preferences to
improve the retrieval effectiveness. For best
results, users are restricted by the choice of
words that exactly match the contents of rele-
vant documents. Any change in word order in
the query can potentially lead to contrasting
results, which are not captured in Anwesha.

8https://rabindra-rachanabali.nltr.org/
9https://www.prothomalo.com/

This paper presents four directions to address
the current limitations of Anwesha. First, we
expand the Gold Standard dataset by creat-
ing an additional 100 query document rele-
vance pairs over a new test collection10 of
1000 documents for a more exhaustive eval-
uation and better analysis. Second, we iden-
tify the technical terms and named entities in
the documents and queries apart from consid-
ering only uni-gram word tokens as was done
previously. Third, we introduce a novel ap-
proach to improve the effectiveness of the IR
system by incorporating implicit preference
feedback via clickthrough data in an ESA set-
ting. Lastly, we present the usage of con-
textual vector representations of documents
and query using Language-agnostic BERT Sen-
tence Embedding (LaBSE) (Feng et al., 2020)
to rerank the documents based on the best sen-
tences from the document that are relevant to
the query. We believe that our approaches
can be adapted for other low-resource, highly
inflected and agglutinative languages similar
to Bangla, such as Assamese, Maithili, Oriya
and Manipuri (Ray et al., 1966).
The rest of this paper is organized as follows.
In Section 2, we position our approaches in
the context of background work and relevant
research. Section 3 describes the implemen-
tation details of our approaches. Section 4
presents a critical analysis of our empirical
findings and observations. Section 5 summa-
rizes our key contributions and discusses po-
tential extensions of the work.
2 Background and Literature Survey
This section discusses the concepts that will
be used in the rest of the paper.
2.1 Multiword Expressions (MWEs)
MWEs are frequently repeating idiosyncratic
phrasal units exhibiting varying degree of se-
mantic compositionality (Chakraborty et al.,
2014) (Dandapat et al., 2006). Identifying
MWEs is known to play an important role
in understanding natural language queries
which in turn helps in improving the re-
trieval effectiveness (Acosta et al., 2011). In
the present work, we focus on extracting
only the Named Entities (NEs) like names
of people (রবীĨনাথ ঠাকুর (EN: Rabindranath

10https://zenodo.org/record/7376906
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Query Type Complexity Level
The query contains exact words, phrases or sentence from the document. 1
The query is not present as it is in the document. There is a slight deviation. 2

The query is a generalised phrase capturing the overall story or the document’s theme. 3
It is a general query not related to any specific document. 4

Table 1: Definition of the complexity level of a query
Thakur)), names of locations (েপাটর্ েōয়ার (EN:
Port Blair)), names of organisations (নািসরাবাদ
পিলেটকিনক ইনিƎিটউট (EN: Nasirabad Poly-
technic Institute)) etc.
In order to detect a multiword NE token in
a document or query we used IndicNER (Ar-
nav Mhaske, 2022). IndicNER11 was trained
on the largest publicly available NE Anno-
tated dataset for Indic languages (961679
training instances in the case of Bangla) while
the one devised by Sagor Sarker (Sarker,
2021) was trained on a smaller dataset
(64155 sentences).
2.2 Explicit Semantic Analysis (ESA)
ESA exploits knowledge of Wikipedia. Terms
and documents are expressed in terms of un-
derlying interpretable concepts, where each
concept corresponds to a Wikipedia arti-
cle name. There is an overlap between
the concepts shared by similar query terms.
For example, the query terms “কয্াıার” (EN:
cancer) and “কািসর্েনামা” (EN: carcinoma)
share িলউেকািময়া (EN: Leukemia), বােয়াপিস
(EN: biopsy), সািভর্কাল (EN: cervical) and
ময্ািলগনয্াě (EN: malignant) as top concepts.
This helps in retrieving relevant documents
even when they do not contain the query
terms.
2.3 Implicit Preference Feedback
When the information needed is tacit, and the
user cannot express her intent, we often do
not expect the user to reformulate the query
from scratch on search failure. Further, di-
verse intents can give rise to the same query.
Such challenges make it difficult to arrive at
an appropriate query representation in the
concept space of ESA. However, it becomes
easy to implicitly refine the query by unobtru-
sively studying the user’s preference of docu-
ments to a query by assessing their interac-
tion with the IR system. Therefore, it is rea-
sonable to engage in implicit iterative query

11https://huggingface.co/ai4bharat/IndicNER

refinement by analyzing the documents se-
lected by the user. The implicit preference
feedback system assumes that clicking on a
document and viewing it indicates the user’s
interest in the document’s contents (White
et al., 2002). Viewing some documents may
lead users to refine their understanding of
the information they seek and help disam-
biguate their search requirements (Manning
et al., 2008). Explicit feedback can be substi-
tuted with implicit feedback in web-based IR,
and such feedback represents the user prefer-
ences reasonably accurately (Joachims et al.,
2005).
2.4 Usage of Language Models for

low-resource IR
Queries written in natural language enable
better search results when the system can
take into account the order of the words in
the sentences. Bidirectional Encoder Rep-
resentations from Transformers (BERT) (De-
vlin et al., 2018) is a state-of-the-art ap-
proach to produce contextual embeddings
that have outperformed previously existing
methods likeWord2vec (Mikolov et al., 2013),
GloVe (Pennington et al., 2014), ELMo (Pe-
ters et al., 2018) and ULMFiT (Howard and
Ruder, 2018) in tasks like question answer-
ing, sentence pairs similarity, sentence pair
completion, named entity recognition, en-
tailment classification, sentiment classifica-
tion and several others because of its unsu-
pervised and deeply bidirectional approach.
Search engines like Google (Nayak, 2019) and
Bing (Zhu, 2019) have been using BERT to
understand the context of the query intent
better and allow users to ask questions in a
way humans ask experts. However, for low-
resource languages like Bangla, where limited
data is available, traditional vector space ap-
proaches like tf-idf or BM2512 are preferred as
these algorithms are computationally less in-
tensive and do not require additional training

12https://kmwllc.com/index.php/2020/03/20/
understanding-tf-idf-and-bm-25/
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data (Lin, 2019). Therefore, to benefit from
the best of both worlds, we utilise BERT, as
illustrated in Section 2.5, as a re-ranker over
the top documents retrieved by the tf-idf vec-
tor space approach.
2.5 Ad Hoc document retrieval with

BIRCH
As per a study (Qiao et al., 2019), MS
MARCO13 passage ranking is closer to
the seq2seq task because of its question-
answering focus and so pre-trained contextual
models like BERT can perform well on them.
But for TREC-style ad-hoc document retrieval
tasks, we need to fine-tune on user clicks, and
the surrounding context is not enough. Fur-
ther, BERT was not trained with an objective
to perform inference on long documents. A
simple solution presented by the authors of
BIRCH (Akkalyoncu Yilmaz et al., 2019) is to
perform sentence-level inference on a candi-
date document and pick the best sentences
(in practice three most relevant sentences) or
paragraph in a document which will act as
an appropriate proxy for document relevance.
This approach, in one way, is a form of pas-
sage retrieval, where BERT has already been
studied to perform well. The final score of a
document to a query is as follows:

Sf = a · Sdoc + (1− a) · Σn
i=1wi · Si (1)

Sf is the final document score obtained using
the BIRCH approach, Sdoc is the original doc-
ument score as per a traditional retrieval al-
gorithm like BM25 or tf-idf, Si is the ith best
sentence identified by BERT, a and wi’s are
hyperparameters, tuned as per the parameters
that gave the highest average precision (AP)
score on the training folds.
2.6 Sentence Embeddings using LaBSE
A commonly used approach to obtain a sen-
tence embedding from a BERT Base model is
to average the BERT output layer (768 dimen-
sions) or use the output of the [CLS] token
from the last transformer block. However,
these standard approaches often produce sen-
tence embeddings, that are even worse than
those obtained by averaging GloVe embed-
dings (Reimers and Gurevych, 2019). To
obtain good sentence embeddings, we need
to fine-tune the BERT output. IndicBERT
produces multilingual word embeddings for

13https://microsoft.github.io/msmarco/

12 Indian languages (including Bangla) (Kak-
wani et al., 2020). LaBSE is a BERT multilin-
gual embedding model developed by Google
that generates cross-lingual sentence embed-
dings for 109 languages (including Bangla).
It is trained on 17 billion monolingual sen-
tences and 6 billion bilingual sentence transla-
tion pairs using Masked Language Modelling
(MLM) and Translation Language Modelling
(TLM) pre-training. The empirical benefits
in terms of its effectiveness in diverse tasks
including retrieval are analysed in (Feng
et al., 2020). The sentence embeddings are
obtained using l2 normalized [CLS] token rep-
resentations from the last transformer block.
3 Proposed Methodology
3.1 Identifying NEs in MWEs
We quantitatively analyzed the NEs detected
by (Arnav Mhaske, 2022) and (Sarker, 2021)
on two NE recognition datasets ( (Karim et al.,
2019) and (Pan et al., 2017)). We observed
that the NEs detected by the latter were a sub-
set of the NEs detected by IndicNER. Hence,
to obtain the multiword NE tokens in a docu-
ment or query, we used IndicNER.
3.2 Implicit Preference Feedback

Strategy
The algorithm for implicit preference feed-
back with ESA is as follows:
• Step 1: The user issues a query.
• Step 2: The system returns the top re-
trieved documents based on the cosine
similarity between the vector representa-
tion of the document and the query in the
concept space.
• Step 3: The user clicks and views some of
the retrieved documents.
• Step 4: The system promotes and demotes
the top concepts of the query present in
the documents visited by the user and
documents viewed by the user but not vis-
ited, respectively. The weights for the
top concepts of the query, which were
common to both the highly preferred and
less preferred documents, remain unaf-
fected.
• Step 5: The system displays a revised set
of retrieved results.
• Step 6: Repeat steps 3,4,5 until the user
views no new interesting documents.
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Implicit feedback inference can be made only
on the documents the user has observed and
assessed. A simple strategy studied in (Radlin-
ski and Joachims, 2005) is adopted to deter-
mine the documents observed by a user. As
per the study, a user generally follows the re-
sults from top to bottom and mostly observes
the results from the document at rank one
to the document below the one clicked and
viewed by the user. A user at least looks
at the top two results with equal attention.
However, the user is more likely to click on
the first result. So if a user only visits the
first document presented in the retrieved re-
sult, it was assumed that the user had assessed
only the first and second documents in the top
retrieved documents. Hence the weight up-
dates in the query’s concept vector represen-
tation were made for the top two retrieved
documents. For two documents, both visited,
the document visited later should be given a
higher preference (Joachims et al., 2005).

Figure 1: Top 10 retrieved results with implicit
preference feedback after every iteration.

In Figure 1, we present the top retrieved
results after every iteration of query re-
finement using the implicit preference
feedback from the user for the query
“বকখািল-েĿজারগেন্জর ইিতহাস ও Ŏমেণর
অিভজ্ঞতা”/bakakhāli-phrejāraganjera itihāsa
ō bhramaṇera abhijñatā (EN: History and
Travel Experience of Bakkhali-Fraserganj).
We can observe that with every iteration, the
vector representation of the query gets closer
to the relevant documents in the concept
space of ESA; as a result, the number of rel-
evant documents in the top ranks increases.

Some of the less preferred documents occupy
lower ranks in the top results, while many of
them disappear from the retrieved list.
3.3 Application of BERT (LaBSE) for

document retrieval using BIRCH
IndicBert was trained on MLM task with a
word-level objective using a cross-entropy
loss function. In contrast, LaBSE was trained
on MLM and TLM tasks with a sentence-level
objective using additive margin softmax as a
contrastive loss function. Since a dual en-
coder model is trained using a translation
ranking loss, the similarity or dissimilarity
of sentences in a shared embedding space is
more adequately captured by LaBSE than In-
dicBERT, which uses a single BERT model.
Thus, LaBSE can better discriminate amongst
the most similar sentences. This was also con-
firmed through our empirical findings. There-
fore we have used LaBSE to obtain the sen-
tence embeddings in the BIRCH approach.
We find an initial pool of top 150 candidate
documents using the tf-idf approach. We used
LaBSE to find the best three sentences that re-
solve the query in every candidate document.
We used a convex combination (as in Equa-
tion (1)) of the LaBSE inference scores with
retrieved scores from tf-idf to obtain the fi-
nal document scores. In the original work,
the optimal values for a and wi’s in Equa-
tion (1) were obtained by fine-tuning using
an exhaustive grid search approach. Since
we do not have enough data to fine-tune
the hyperparameters, we give equal impor-
tance to the keyword-based approach (query-
document cosine similarity based on tf-idf ap-
proach) and to the aggregated sentence level
evidence obtained through LaBSE. In the ab-
sence of a large amount of training data, we
use ESA scores as surrogates to guide the se-
lection of wi values since ESA scores are ex-
pected to correspond to a human assessment
of similarities based on familiar background
concepts. Interestingly, as highlighted in Sec-
tion 4.4, this has been empirically found to
consistently improve retrieval effectiveness
compared to a scheme where the top three
sentences are weighed equally. Hence wi =
cosine similarity score of the query and sen-
tence Si for a candidate document dj in the
concept space defined by ESA. All embed-
dings for sentences in documents are avail-
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able as part of pre-computation. Only query
embeddings are created at runtime. Such a
standard approach boosts time efficiency of
retrieval14.
4 Results and Analyses
4.1 Gold Standard Dataset Preparation
The Gold Standard dataset created by (Das
et al., 2022) contained documents from the
prominent dialect variations in Bangla: Sadhu
Bhasa15 and Chalit Bhasa16. In view of con-
tributing to the linguistic diversity of the exist-
ing test collection, we curated a fresh dataset
of 1000 text documents which consists of
642 documents for West Bengal Bangla news
readers of Ebela, Zee News and Anandabazar
Patrika (Kunchukuttan et al., 2020). One
hundred twenty-eight news articles belong to
the Entertainment, International and National
category, while 129 news articles belong to
the Kolkata and sports category. One hundred
forty-five articles on the health-specific do-
main were obtained from Vikaspedia17, an on-
line information guide launched by the Gov-
ernment of India. The remaining 213 articles
were based on the travel domain and were
crawled from various Bangla travel blogs. We
designed 100 queries each belonging to one
of the four complexity levels in Table 1. We
obtained graded relevance feedback from at
least five Bangla annotators on the top ten
documents retrieved by our search algorithms
for a given query. A document was rated 1
if irrelevant, 2 if partially or reasonably rel-
evant, and 3 if completely relevant to the
query. The final relevance of a document to
a query is the mean of the user’s relevance
scores. Table 2 presents the statistics of the
documents in our test collection.
4.2 MWE Evaluation with NEs
We take twenty queries each belonging to
one of the four complexity levels (Table 1)
from the dataset in (Das et al., 2022) and
our Gold Standard dataset to evaluate the ef-
fectiveness of grouping NE tokens with re-
spect to mean normalized discounted cum-

14https://github.com/huggingface/
transformers/issues/876#issuecomment-514948425

15https://en.banglapedia.org/index.php/
Sadhu_Bhasa

16https://en.banglapedia.org/index.php/
Chalita_Bhasa

17https://bn.vikaspedia.in/

mulative gain (nDCG) and mean average pre-
cision (MAP). We present our results in Ta-
ble 3. Using NE-enabled search has boosted
the retrieval performance on both datasets
i.e., (Das et al., 2022) and our dataset.
Earlier, for the queries like “বাংলােদশ
ইনিƎিটউট অব বয্াংক ময্ােনজেমě”(EN:
Bangladesh Institute of Bank Management),
the documents with a high presence of the in-
dividual tokens “বাংলােদশ” (EN: Bangladesh),
“ইনিƎিটউট” (EN: Institute), “অব” (EN: of),
“বয্াংক” (EN: Bank) and “ময্ােনজেমě” (EN:
Management) were prioritised over docu-
ments having the query words as a single
unit. A query may not precisely contain
the named entities as it is present in the
relevant documents. So we indexed both
the uni-gram tokens and the multiword NE
tokens. The revised tokens formed for the
example query are: “বাংলােদশ ইনিƎিটউট
অব বয্াংক ময্ােনজেমě” (EN: Bangladesh In-
stitute of Bank Management), “বাংলােদশ”
(EN: Bangladesh), “ইনিƎিটউট” (EN: Insti-
tute), “অব” (EN: of), “বয্াংক” (EN: Bank) and
“ময্ােনজেমě” (EN: Management).
4.3 Implicit Preference Feedback Results
To fully utilise the benefit of ESA, it is nec-
essary that the concepts chosen are repre-
sentative of the underlying text semantics.
Since Bangla is a resource-constrained lan-
guage, we could not find enough relevant con-
cepts about health and travel from Wikipedia
alone. We supplemented this gap with arti-
cles from reliable sources like Vikaspedia and
various travel blogs. We represented the com-
plete test collection using 9349 articles. Due
to the absence of articles related to the liter-
ary works of Rabindranath Tagore, we have
not used ESA on the 182 documents from Ra-
bindranath Tagore’s work.
We present the performance of Implicit pref-
erence feedback on 40 queries in Figure 2.
We observed that implicit feedback on the ini-
tial results for queries from complexity lev-
els 1 and 2 did not generate any interest-
ing document in the revised result set. We
expected this behaviour as the queries were
clear and precise in intent and did not require
any refinement in its vector representation.
On the average, queries from complexity lev-
els 3 and 4 produced improved results after
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Parameters Entire Test Collection Entertainment Health International Kolkata National Sports Travel
Tokens (words) 433553 34629 91084 29506 25182 30699 31005 191444
Types (unique words) 53831 9707 14650 9436 7671 8927 8599 22622
Sentences 34553 3644 6439 2879 2814 2730 3214 12833
Average number of sentences per document 34.553 28.468 44.715 22.492 21.813 21.328 24.914 59.967
Average number of tokens per sentence 12.547 9.503 14.145 10.248 8.948 11.245 9.648 14.918
Average number of tokens per document 433.553 270.539 632.527 230.515 195.209 239.835 240.379 894.598

Table 2: Statistics of our Gold Standard Dataset
Dataset Model Mean nDCG@10 MAP@10 Mean Precision@10

(Das et al., 2022) tf-idf 0.741 0.453 0.62
tf-idf + NE tokens 0.842 0.519 0.66

Ours tf-idf 0.76 0.57 0.37
tf-idf + NE tokens 0.92 0.8 0.49

Table 3: Performance of Anwesha across different query complexity levels containing NEs.
1 and 2.3 iterations of query refinement us-
ing implicit preference feedback. Complex-
ity level 4 queries required at most three it-
erations of query refinement. These queries
were not a precise articulation of query intent.
Hence, the query was initially not well repre-
sented in the concept space. After the user im-
plicitly provided the IR system with the click-
through information, the concept representa-
tion of the query improved.

Figure 2: Results of Implicit Preference Feedback
across different query complexity levels measured
using mean nDCG and MAP @K=10.

4.4 Evaluation of LaBSE reranker using
BIRCH approach

We present the results of applying LaBSE to
document retrieval using the BIRCH approach
in Table 4. We have studied the effect of
LaBSE reranker on candidate documents re-
trieved by the tf-idf vector space algorithm
with uniform weights (w1 = w2 = w3 = 1)
and weights set to cosine similarity score of
the best sentences with the query in the con-
cept space of ESA. Interestingly, we observe
ESA weighted sentence scores perform the
best. We present the top two documents re-
trieved using BIRCH in Figure 4 and the most
relevant sentences related to the query “যমনুা
নদীর দিক্ষেণ সĳম আųযর্য্”/ yamunā nadīra
dakṣiṇe saptama āścaryya (EN: Seventh won-
der to the south of Yamuna river). The query
contains geospatial details that LaBSE could
capture. So it picked the sentences from the
documents related to the Taj Mahal with such
information. The same query was issued in
Sandhan (as of: 1-Oct-2022) with the intent
to seek documents related to the “Taj Mahal”;
the top 10 documents retrieved by Sandhan
are not in line with the goal. Due to the Bag
of words nature of Sandhan, the documents
that contain a high presence of the individ-
ual terms “দিক্ষণ”/ dakṣiṇa(EN: south), “নদী”/
nadī(EN: river) and “যমনুা”/ yamunā(EN: Ya-
muna) are deemed to be given higher prefer-
ence. The semantic relationships among the
query words are not captured.
Figure 3 shows a snapshot of the revised
user interface of Anwesha where the user
can choose one of the six options (tf-idf, In-
doWordNet based query expansion, LSA, ESA,
LaBSE reranker on tf-idf with uniform sen-
tence weights and LaBSE reranker on tf-idf
with sentence weighted by ESA scores) for re-
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Domain Model Mean nDCG@10 MAP@10 Mean precision@10
tf-idf 0.811 0.69 0.535
ESA 0.824 0.716 0.56

LaBSE reranker on tf-idf 0.908 0.82 0.635Travel
LaBSE reranker on tf-idf
weighted by ESA scores 0.952 0.889 0.69

tf-idf 0.772 0.621 0.38
ESA 0.826 0.704 0.4

LaBSE reranker on tf-idf 0.878 0.777 0.46Health
LaBSE reranker on tf-idf
weighted by ESA scores 0.912 0.825 0.47

Table 4: Performance of LaBSE as a reranker on tf-idf retrieved candidate documents.

Figure 3: Revised user interface of Anwesha and explanation of search results by highlighting keywords
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Figure 4: Best three sentences (S1, S2, S3) consid-
ered relevant by LaBSE in the top two retrieved
documents ranked by the BIRCH approach. The
words in a sentence deemed relevant to the query
intent resolution by ESA are highlighted by the
system.
trieval. The user can disable sending implicit
feedback to the IR system, apply lemmatisa-
tion and NE based search. Anwesha receives
the query “এইচ এস িস পরীক্ষা সল”/ ēica ēsa
si parīkṣā sala(EN: HSC Exam Year) and per-
forms spelling correction on the query word
সল/ sala → সাল/ sāla. The search results
are explained by highlighting the words rele-
vant to the query in a top retrieved document.
Such explanations are useful for techniques
like LSA and ESA where the documents not
having the query words are retrieved.
5 Conclusion and Future Work
We have enabled NE-based search to obtain
single-unit NE tokens. To the best of our
knowledge, ours is the first effort that delivers
personalized results from diverse background
knowledge sources via the clickthrough infor-
mation of the user. We are also not aware of
the past work that applies BERT models and
it’s advancement on Bangla IR. We have ex-
tended the previously existing Gold standard
dataset for diverse evaluation of search results
and used this to systematically study the im-
provement of Anwesha while addressing its
current limitations. Our technique can inspire
research in IR for other low-resource, highly
inflected languages. As part of future work,
we plan to handle different forms of MWEs
like conjunct verbs (example “অনভুব করা”/

anubhaba karā (EN: to feel)), noun-verb col-
locations (example “েখেত যাওয়া”/khete yāōẏā
(EN: go eat)), reduplicated terms (example
“েছাট েছাট”/choṭa choṭa (EN: small small)),
idiomatic compound nouns (example: “ভাই
েবান”/bhāi bona (EN: brother sister)) etc
(Chakraborty et al., 2014) (Dandapat et al.,
2006). In future, we can incorporate actions
like bookmarking, saving a document, and
time of viewing a document as other contrib-
utors to determining user preferences. ESA
is a recall-centric approach while LaBSE, as a
reranker on the tf-idf vector space approach,
is precision oriented. Studying the effect of
the ESA cosine similarity scores used as sur-
rogates to weigh the LaBSE sentence scores
will be interesting. In some cases, where the
queries were not precise, tf-idf could not in-
clude the relevant candidate documents in the
initial pool of candidates. So LaBSE could not
performwell on them, suggesting that a recall-
centric algorithm could plausibly be used to
determine the initial candidate set. Estimat-
ing the sentence-level relevance of a docu-
ment to the query is a reasonable approach
because LaBSE is trained with a sentence-level
objective, making it suitable to find the rela-
tionship between a query sentence and a sen-
tence from the document. However, in this
approach, we are losing context information.
Hence a more robust language model that
could encode the “long” documents while ef-
fectively gauging their relevance to a “short”
query would be a better alternative to our ex-
isting approach using BIRCH. In future, we
plan to conduct our experiments over a wider
range of queries. The dataset and code of our
work are present here: https://github.com/
ArupDas15/Revisiting_Anwesha.
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Abstract
In order to provide personalized interactions
in a conversational system, responses must
be consistent with the user and agent persona
while still being relevant to the context of
the conversation. Existing personalized con-
versational systems increase the consistency
of the generated response by leveraging per-
sona descriptions, which sometimes tend to
generate irrelevant responses to the context.
To solve this problems, we propose to extend
the persona-agnostic meta-learning (PAML)
framework (Madotto et al., 2019) by adding
knowledge from ConceptNet knowledge graph
(Speer et al.) with multi-hop attention mech-
anism (Tran and Niedereée, 2018). Knowl-
edge is a concept in a triple form that helps
in conversational flow. The multi-hop atten-
tion mechanism helps select the most appropri-
ate triples with respect to the conversational
context and persona description, as not all
triples are beneficial for generating responses.
The Meta-Learning (PAML) framework allows
quick adaptation to different personas by utiliz-
ing only a few dialogue samples from the same
user. Our experiments on the Persona-Chat
dataset show that our method outperforms in
terms of persona-adaptability, resulting in more
persona-consistent responses, as evidenced by
the entailment (Entl) score in the automatic
evaluation and the consistency (Con) score in
human evaluation.

1 Introduction

Recent advancements in personalized dialogue gen-
eration techniques that incorporate the personality
of the speakers have enabled more human-like, nat-
ural, and persona-consistent responses. However,
most methods require persona information in the
form of style, persona profile, or persona state-
ments, such as “I love meeting new people” and
“Autumn is my favorite season” which can be very

∗Work done at IIT Patna as part of M.Tech
§equal contribution

diverse and hence require a lot of data to model any
persona type.

Figure 1: An example of developing a persona adaptable
and knowledge guided response from test data using meta-
learning and a commonsense knowledge graph. Concepts in
red nodes come from the persona statement and dialogue his-
tory, whereas concepts in blue are in the generated response.

The Persona Agnostic Meta-Learning model
(PAML) (Madotto et al., 2019) was developed to
deal with these practical problems. This model,
trained using meta-learning, would be able to adapt
rapidly to new and unseen personas using only a
few samples. The popular Model-Agnostic Meta-
Learning (MAML) (Finn et al., 2017) framework
served as the foundation for the PAML frame-
work. Customized Model Agnostic Meta-Learning
(CMAML) (Song et al., 2019) framework and Gen-
erating Personalized Dialogue via Multi-Task Meta-
Learning (Lee et al., 2021) both largely follow
the PAML framework except for an extra network
structure optimization component and persona re-
construction component respectively. The Per-
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sonaChat corpus (Zhang et al., 2018), a popular
personalized dialogue generating corpus that in-
cludes persona statements describing each speaker
in addition to persona-specific dialogues, was used
to benchmark all these frameworks. However, a
comprehensive evaluation of these frameworks re-
veals that they continue to struggle to respond to
situations and do not precisely match the persona
statements. For example, in Figure 1, speaker1 asks
a question about the nature of work that speaker2
is doing based on the persona statement: I enjoy
coding such as web design. The responses gener-
ated by the State of the art frameworks are insuf-
ficiently precise. SOTA1, which is trained using
dialogue history and persona statements and tested
as a PAML framework, fails to accurately under-
stand the persona. SOTA2, similar to SOTA1, is
only trained on dialogue history and hence fails to
generate the correct response. SOTA3 is a PAML
framework that uses a meta-learning mechanism
that wrongly understands the persona. Neither ap-
proach appears to be capable of accurately compre-
hending the persona.

Our model’s goal is to appropriately interpret the
context and persona statement while generating an
engaging response that is both context and persona
consistent. Real-life conversations, in general, be-
gin with one topic and transition to other based on
the personalities of the speakers. Basic common-
place knowledge also tends to spark conversations.
Previously, external knowledge was used as a foun-
dation for research, like “an open-domain knowl-
edge graph” (Xing et al., 2017), “a commonsense
knowledge base” (Zhou et al., 2018a), or “back-
ground documents” (Zhou et al., 2018b). Such
external knowledge is incorporated into this re-
search by enhancing the entity representations in
dialogues with it and then generating responses
based on it. This enhanced encoding of informa-
tion in the model improves the quality of the gen-
erated responses. Also, commonsense knowledge-
grounded (Majumder et al., 2020), knowledge ex-
pansion (Zhang et al., 2019), approaches were re-
searched earlier, which also demonstrates an im-
provement in response generation.

In this work, we enhance the entity representa-
tion in persona-profile by using ConceptNet (Speer
et al.) triples. We obtain triple representation us-
ing a graph encoding technique and incorporate
these into the PAML framework (Madotto et al.,

2019) using attention mechanism with the attention
mechanism (Bahdanau et al., 2014). We then per-
form experiments on the PERSONA-CHAT dataset
(Zhang et al., 2018) to test the effect of knowledge
on persona adaptability. The PAML framework
focuses on learning the different personas as inde-
pendent tasks using the meta-learning approach, as
opposed to building the model to represent all of
the personas. The model is intended to be a few-
shot learner using the PERSONA-CHAT where the
train-test split contains a non-overlapping persona-
type. The meta-learning training steps ensure that
the model can swiftly adjust to a new unseen per-
sona profile as well as the reaction style of a certain
persona by utilizing only a few dialogues for train-
ing. Incorporating commonsense knowledge helps
in a deeper understanding of the persona and dia-
logue context, therefore helping in adaptability.

The response generated by our model (c.f. Fig-
ure 1) is pretty much accurate and understands the
persona statement correctly. Here, We extracted
concepts from persona statement and dialogue con-
text. For example Figure 1, “work” which is ex-
tracted from dialogue context is related to “free-
lance”. Similarly, “web” (extracted from persona
statement), “design” and “work” all three are re-
lated to “freelance” in some way, which is utilised
to generate the response. Our experiment results
show that our approach is effective in both auto-
matic and human evaluation when compared to
baseline models.

2 Related Work

Meta Learning The approach of teaching the
model how to learn fast and effectively is known
as meta-learning. Before, meta-learning was used
in applications such as image classification. Finn
et al. (2017) introduced MAML (Model-Agnostic
Meta-Learning) technique, and it performed well
for few-shot image classification. However, fol-
lowing MAML, various methodologies for NLP
applications such as machine translation (Gu et al.,
2018) and dialogue generation (Qian and Yu, 2019;
Huang et al., 2020; Mi et al., 2019) were proposed,
indicating an improvement. And following this,
PAML (Madotto et al., 2019) was introduced, with
a focus on personalized dialogue generation and
Lee et al. (2021) proposed MTML and AMTML
two frameworks in which they merged persona re-
construction task with the PAML which improved
the persona consistency but failed in other auto-

195



matic evaluation metrics.

Personalized dialogue generation have caught the
interest of many in recent years, following Zhang
et al. (2018)’s study of the task with the Persona-
Chat dataset. Recent research focuses on advancing
the dialogue generation by grounding persona in-
formation (Mazaré et al., 2018; Bao et al., 2019;
Wolf et al., 2019) or bringing external knowledge
such as the knowledge graphs (Long et al., 2017;
Ghazvininejad et al., 2018) or supplementary texts
(Vougiouklis et al., 2016; Xu et al., 2017) into the
model. This research demonstrates that by doing
so, the model becomes more informative and con-
sistent with the personas of the speakers, hence
improving generation performance.

Furthermore, if the knowledge graph is properly
formed, or if it is domain-specific (Zhu et al., 2017;
Xu et al., 2017), or if the knowledge base is large
enough (Zhou et al., 2018a), the rich semantics
representation is included through entities and re-
lations (Hayashi et al., 2020). Based on this, Ma-
jumder et al. (2020) grounded the expanded per-
sona statements using a commonsense knowledge
graph, which aids in controlling the flow of the con-
versation. And In addition, reinforcement-learning-
based framework was also proposed by Song et al.
(2020) and Li et al. (2019) for making dialogue
generation more informal. However, all of this
work was based on either directly conditioning the
response with the persona or by incorporating some
commonsense knowledge into the model. None of
the works attempted to generate a response from
the persona except Madotto et al. (2019) and with
the adaption of the knowledge graph.

3 Methodology

Our method extends the PAML framework
(Madotto et al., 2019) by utilizing commonsense
knowledge to generate personalized dialogues. The
PAML is adapted from the MAML, which is capa-
ble of quickly adjusting to new, unknown tasks that
were not employed during training. We continue
to use the PERSONA-CHAT dataset (Zhang et al.,
2018), which was used in the PAML framework.
The dialogue in PERSONA-CHAT includes the ut-
terances u1:m and persona statements p1:n. In pre-
vious research, response R = um was conditioned
on the persona sentences P = p1:n and previous
utterances U = u1:m−1 following Equation 1:

fW (R|U,P ;W ) = p(um|u1:m−1, p1:n;W ) (1)

Algorithm 1 KnowPAML

Require: P trainm , P validm

Require: Hyperparameters ηinner, ηouter
Require: iteration, patience, count

Randomly initialize parameter W
while count < patience do

persona batch from train set P tmi
∼ P trainm

for all P tmi
do

(Tpi , Vpi) ∼ P tmi

calculate total loss
LtotalTpi

= LgTpi
(fW ) + LtTpi

(fW )

evaluate∇WLtotalTpi
(fW )

update W
′
pi =W − ηinner∇WLtotalTpi

(fW )

end for
W ←W − ηouter∇W 1

S

∑
Pmi

LVpi (fW ′
pi
)

persona batch from valid set
(T
p
′
i
, V

p
′
i
) ∼ P validm

if iteration % 10 == 0 then
do for loop as above with (T

p
′
i
)

if LVpi (W
′
) < LVpi (W

′
)best then

save weights
else

count+=1
end if

end if
end while

In PAML, they first adapt W from the set of dia-
logue created by a persona and then respond con-
ditioned only on the dialogue history rather than
conditioning on both the dialogue history and per-
sona sentences. So in this case Eq.(1) becomes:

fW (R|U ;W ) = p(um|u1:m−1;W ) (2)

3.1 Knowledgeable Persona-Agnostic Meta
Learning

We use the PERSONA-CHAT dataset with Con-
ceptNet triples associated with it at the utterance
level (Section 3.2). First, we define Pm, which
contains all of the personas and divide it into the
train P trainm , valid P validm , and test P testm sets in
the same way as PAML does. We sample persona
batch P tmi

from P trainm for every training epoch,
and then sample a set of utterances and associated
triples as training Tpi and another set as validating
Vpi from each persona in P tmi

. The utterance his-
tory in the batch is passed through a Transformer
encoder and a representation H = [h1, h2, ..., hn]
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is obtained. Two weight matrices Wconcept_emb
andWrelation_emb are trained along with the model.
The head and tail entity indexes are multiplied
with Wconcept_emb to obtain hemb and temb respec-
tively. The relation indexes of the triples are mul-
tiplied with Wrelation_emb to obtain the represen-
tation remb. The final triple representation is ob-
tained by concatenating these three representations
Trip = [hemb : remb : temb]. In this manner with
each utterance we finally get a list of triple repre-
sentations T = [Trip1, T rip2, ..., T ripn]. Not all
the triples in the list are useful for generating the
appropriate knowledge-grounded response. There-
fore we need to only select the triples appropriate
with respect to the conversational context. To make
this selection, we make use of the multi-hop atten-
tion mechanism (Tran and Niedereée, 2018). The
attention mechanism works on a query q and an in-
put sequence T = [Trip1, T rip2, ..., T ripn]. For
each k in K hop attention, the following steps are
executed:

s
(k)
t = tanh(W (k)

q Tript)⊙ tanh(W (k)
g g(k−1)) (3)

α(k) = softmax(w(k)T

s s
(k)
t ) (4)

o(k)q =
∑

t

α
(k)
t Tript (5)

Here, W (k)
q , W (k)

g and w(k)
s are the trainable pa-

rameters, and m is a separate memory vector for
guiding the next attention step. It is recursively
updated using the following equation:

g(k)q = g(k−1)
q + okq ⊙ q (6)

The initial value of vector g(0) is defined based on
the context vector o(0)q , given by the equation 7:

o(0)q =
1

l

∑

t

hq(t)⊙ q (7)

The representation o(k)q is the final attended and
summed representation of T . We experiment with
two settings for fusing this representation with
the encoder hidden representation H: (i: AKnow-
PAML). At each k the representation o(k)q is added
to each step of the encoded representation H to
obtain the modified hidden representation H ′. (ii:
KnowPAML). At each k we concatenate okq with
hk to obtain H ′′. We finally multiply this represen-
tation with Wmap (a trainable matrix) to obtain the
final modified hidden representation H ′.

The decoder works on this obtained H ′ to produce
the output. We use cross-entropy loss with de-
coder output and reference output to evaluate gen-
eration loss LgTpi for dialogue model fW , which is
expressed as:

LgTpi
(fW ) = −

∑
logp(um|u1:m−1, o

k
q ;W )

(8)

Where, um is actual response, u1:m−1 is dialogue
history, okq is attended representation of triples T
and W is weight parameter.

In addition to generation loss, we evaluate the triple
representation loss LtTpi by using Equation 9 to
train the optimal triple representation, following
Bordes et al. (2013).

hemb = temb − remb (9)

During meta-training, total loss LtotalTpi
is calculated

as the sum of generation loss and triple representa-
tion loss.

LtotalTpi
= LgTpi

(fW ) + LtTpi
(fW ) (10)

After training one batch of Tpi , the model fW , pa-
rameterized by W, is updated to W′ using SGD,

W
′
pi =W − ηinner∇WLtotalTpi

(fW ) (11)

Where, ηinner is inner optimization learning rate
and LtotalTpi

(fW ) is total training loss.

After the parameters are updated, meta-
optimization is performed on the unseen
dialogues from Vpi set using the updated model
f(W

′
pi) to enhance the model’s performance.

According Finn et al. (2017), the meta-objective is
defined as follows:

min
W

∑

Pmi

LVpi
(fW ′

pi

)

=
∑

Pmi

LVpi
(f(W−ηouter∇WLVpi

(fW )))

(12)

Where, LVpi (fW ′
pi
) is the loss calculated on Vpi

set. During this step, we are only considering the
dialogue generation loss rather than the total loss.

The initial parameters W are then adjusted using
SGD by computing the gradient of average loss,
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which is the total of LVpi (fW ′
pi
) obtained at each

sampled persona divided by the batch size S. This
is expressed as follows:

W ←W − ηouter∇W
1

S

∑

Pmi

LVpi (fW ′
pi
) (13)

Where, ηouter is the learning rate of outer optimiza-
tion and LVpi (fW ′

pi
) is the generation loss calcu-

lated on the Vpi set by the updated model parameter
fW ′

pi
. This is achieved by the use of second-order

partial differentiation.

The validation set P validm now validates this meta-
training and meta-optimization after every ten itera-
tions. We are dividing the training T

p
′
i

and val-

idating V
p
′
i

set from the P validm and performing
the same step without altering the original param-
eters. And then save the best model based on the
LVpi (W′). Also model get to know when to ter-
minate training by increasing the count if the loss
LVpi (W′) is not the best loss. Algorithm 1 gives an
overview of the model.

3.2 Triple Retrieval
We use the ConceptNet, a commonsense knowl-
edge graph, which connects words and phrases with
labelled edges and has millions of concepts and
edges associated with it. For every dialogue, we
take concepts from the dialogue history of length
one and associated persona statements to find the
ConceptNet neighbours of each concept up to two
hops. for example, zero-hop concept C0 (which
is taken from dialogue history and persona state-
ments) is associated with one-hop concept C1 (all
immediate neighbours and all relation between
them) and one-hop concept C1 is associated with
two-hop concept C2. (head concept, relation, tail
concept). The top 100 concepts-relations based on
weights are then formed into triples (head concept,
relation between them, tail concept).

4 Experiments

Our experiments are described in this section, in-
cluding the dataset, implementation details, base-
lines, and evaluation metrics.

4.1 Dataset
The PERSONA-CHAT dataset (Zhang et al., 2018),
which was also used in the PAML framework

(Madotto et al., 2019), was employed for our exper-
iments. The dataset has 1155 different personas in
the train data and 100 each in the validation and test
data. Each dialogue in this has 4 to 5 persona state-
ments associated with it, and each unique persona
has an average of 8.3 unique dialogues.

4.2 Implementation Details
We used the Transformer architecture (Vaswani
et al., 2017) which includes six encoder, six de-
coder layers and four attention heads, just like
Madotto et al. (2019), with Glove embedding (Pen-
nington et al., 2014). Here, Transformer’s hid-
den dimension and word embedding dimension are
both set at 300. We utilized two different optimiz-
ers: SGD for training (inner loop optimizer) and
ADAM (Kingma and Ba, 2014) for optimization
(outer loop optimizer) with learning rates of 0.01
and 0.0003, respectively and the batch size is set to
16 for both the inner and outer loops.

4.3 Evaluation
We are employing both automatic and human eval-
uation metrics to evaluate the quality of response
compared to baselines.

Automatic Evaluation We evaluate the perplexity
(PPL), BLEU score (Papineni et al., 2002), and
entailment score (entl), also known as the c score
in Madotto et al. (2019). The PPL of the model in-
dicates how well it understands the task on the test
set; the lower the perplexity, the better the model
understands the language. The BLEU score reflects
how close the generated response is to the actual
response; usually, a higher BLEU score suggests
that the generated response is more comparable
to the actual response; however, this cannot be as-
serted for every scenario. The entl score denotes
how much persona information was included in the
generated response from persona assertions. If the
generated response entails the persona, the score
is 1, if the response is independent of the persona,
the score is 0, and if the response contradicts the
persona information, the score is -1. The higher
the entailment score, the more consistent the model
is with the persona. This score is calculated using
Madotto et al. (2019)’s fine-tuned BERT model,
which was trained on persona-based Dialog NLI
(Welleck et al., 2018) dataset and has an accuracy
of 88.43%.

Human Evaluation We evaluate the Fluency (flcy)
to measure the generated response’s grammatical
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Persona
I go to the gym 4 days a week.

I only drink water.
I work in labor and delivery.

I am happy being single and alone.
I do not want children.

Context
Speaker 1: hello. how are you doing ?
Speaker 2: hi , i am doing great . how are you ?
Speaker 1: feeling crabby , but i am like that naturally anyway .
Speaker 2: oh ok . what do you do for a living ?
Speaker 1: i am a kennel cleaner at a local animal shelter. and you ?
Speaker 2: i am a doctor in the labor and deliver unit .
Speaker 1: sounds very important . you must be a people person .
Speaker 2: thanks i try to be . i love being along more than it looks like
Speaker 1: i much prefer to hang with animals than people .
Speaker 2: what do you do for fun ? i go work out 4 times a week
Speaker 1: play video games and watch movies . you must be in good shape .
Speaker 2: i try to be i will not drink soda or even tea , just water
Speaker 1: that sounds like a healthy lifestyle .
Speaker 2: it was hard to get use to at first . i use to love soda
Speaker 1: i still love soda , especially sprite . do you have lots of friends or family ?

Responses
Gold i have family and a handful of friends when i am off i keep to myself
Corpus + Persona + Finetuning i work at the hospital in labor and delivery
Corpus + Finetuning i do not by the water i am okay and i am okay
PAML + Persona i work at the gym at work at work
PAML no it is easy for work
KnowPAML + Persona i work at the hospital in labor and delivery
AKnowPAML yes it does . it depends on the woman
KnowPAML i do not have any , i like living alone .

Table 1: Example of responses generated by the implemented models using 10-shot.

correctness or readability, the Consistency (Con) to
measure the persona information included in the re-
sponse from persona assertions, and the Coherence
(Coh) to measure the generated response’s rele-
vance with reference to the dialogue history. Three
post-graduate-level human experts were asked to
rate 200 randomly selected responses from 20 dif-
ferent personas which is generated by the proposed
methodology. They were asked to rate consistency
on a scale of -1 to 1, with -1 reflecting a contra-
diction of persona in the generated response, 0 re-
flecting neutral, and 1 reflecting persona-consistent.
And fluency and coherence on a scale of 1 to 3.
In fluency, 1 represents poor, 2 represents mod-
erate, and 3 represents excellent in grammatical
correctness or readability. And in coherence, 1 for
inappropriate responses with context, 2 for mod-

erately coherent responses with context, and 3 for
contextually coherent responses.

4.4 Experimental Settings

In our research, we evaluated various training set-
tings in the Transformer model:

PAML: Madotto et al. (2019) proposed this frame-
work, It is a meta-trained model that is tested after
fine-tuning the model with dialogues from the same
persona.

PAML + Persona: Similar to PAML, except per-
sona statements are included with dialogue history.

Corpus + Finetuning: A model is trained tradition-
ally with dialogue history only as Eq.2 but fine-
tuned and tested as PAML.
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Experiment
10-Shot 5-Shot

PPL BLEU Entl PPL BLEU Entl
Corpus + Persona + Finetuning 73.45 0.38 0.09 284.73 0.18 -0.05

Corpus (Varshney et al., 2020) + Finetuning 59.81 0.44 0.06 65.16 0.26 0.03
PAML + Persona 70.55 0.28 0.05 59.4 0.37 0.06

PAML (Madotto et al., 2019) 41.88 0.87 0.18 40.55 0.87 0.1
KnowPAML + Persona 56.32 0.87 0.11 55.66 0.8 0.06

AKnowPAML 45.78 1.23 0.18 48.6 1.29 0.08
KnowPAML 48.59 0.76 0.24 45.36 0.83 0.15

Table 2: Automatic Evaluation Results: When comparing with PAML, KnowPAML and AKnowPAML demonstrate that
including concept into the model improves Persona Consistency and BLEU score respectively.

Experiment
10-Shot 5-Shot

flcy Con Coh flcy Con Coh
Corpus + Persona + Finetuning 2.33 0.12 1.49 2.08 0.07 1.38

Corpus (Varshney et al., 2020) + Finetuning 2.03 0.08 1.53 1.91 0.06 1.46
PAML + Persona 2.36 0.09 1.35 2.11 0.05 1.29

PAML (Madotto et al., 2019) 2.77 0.24 2.17 2.63 0.13 2.06
KnowPAML + Persona 2.71 0.16 2.06 2.56 0.09 1.97

AKnowPAML 2.89 0.25 2.33 2.74 0.14 2.23
KnowPAML 2.83 0.33 2.21 2.64 0.18 2.13

Table 3: Human Evaluation Results: When comparing with PAML, KnowPAML and AKnowPAML demonstrate that including
concept into the model improves Consistency (Con) and Coherence (Coh) respectively.

Corpus +Persona + Finetuning: Similar to the last
one, except persona statements are included with
dialogue history.

KnowPAML: We include knowledge in the form of
triples with a multi-hop attention mechanism into
the PAML using (setting (ii) section 3.1)

KnowPAML + Persona: Similar to KnowPAML,
except persona statements are included with dia-
logue history.

AKnowPAML: This is similar to KnowPAML, but
it differs in how attended triples are integrated into
encoder outputs (setting (i) section 3.1).

We created dialogue history by appending all past
utterances in the dialogue, with the length dictated
by the number of turns that occurred, so there is
no predetermined length. It will change with the
turns, and there are no limits to the number of turns.
We showed the results of 5 and 10 shots, where the
response from the dialogue context and associated
persona is generated after finetuning on 5 and 10
dialogue with the same persona, respectively.

Figure 2: Entl Score vs K-Shot results of KnowPAML,
AKnowPAML and PAML frameworks.

5 Result and Discussion

The results of the automatic and human evaluation
for the 5-shot and 10-shot settings are shown in
Table 2 and Table 3 respectively. KnowPAML was
found to be most consistent to the persona in both
automatic and human evaluation when compared
to other systems. This implies that by incorporat-
ing persona and dialogue history knowledge into
the existing framework, the system generates re-
sponses with a greater amount of persona infor-
mation. AKnowPAML, on the other hand, per-
formed better in terms of BLEU, fluency (flcy),
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and coherence (Coh). Perplexity (PPL), however,
is higher in both instances, demonstrating a nega-
tive correlation between PPL and human likeness
(Doğruöz and Skantze, 2021). KnowPAML out-
performed PAML by 33.3% in 10-shots and 50%
in 5-shots in terms of Entl score. In terms of con-
sistency score (human evaluation), KnowPAML
outperformed PAML by 37.5% in 10-shots and
38.5% in 5-shots. In the case of AKnowPAML, the
Entl score is similar to the PAML score, while the
BLEU score outperforms by 41.4% in 10-shots and
48.3% in 5-shots. Fluency and coherence are equiv-
alent in PMAL, AKnowPAML, and KnowPAML in
terms of human evaluation. The Entl score versus
K-Shot results of KnowPAML, AKnowPAML, and
PAML frameworks are shown in Figure 2, where
K is 1, 3, 5, 7, and 10. Shots refer to the number
of dialogues, such as 1-shot means one dialogue, 3-
shot means three dialogue, that is used to fine-tune.
Figure 2 shows that KnowPAML behaves more lin-
early compare to PAML and AKnowPAML. Entl
score of KnowPAML intersects with PAML’s score
at 5-shot and then it keeps improving over PAML.

5.1 Analysis

Table 1 shows an example of generated responses
from different models using 10-shot fine tuning
on held-out persona. As the PERSONA-CHAT
dataset is an open domain conversation, the flow of
the conversation can go in any direction, and the
speaker generally talks in consonance with their
persona. For new persona (not present in training
data) it is often difficult to generate meaningful per-
sona grounded responses that are also contextually
relevant.

In Table 1, speaker 1 wants to know whether
speaker 2 has a lot of friends or family; the re-
sponse given by the KnowPAML framework is cor-
rect and consistent with the persona and context. In
contrast, the response generated by the other frame-
work is consistent with the persona but not with the
context. The response from the PAML system in
this case is inconsistent with both the persona and
the context. In Table 4, The speaker asks, “How
are you this evening?”. All frameworks generate
correct response given the context, however, our
model generates a more engaging response that is
consistent with one of the persona statements.

It has also been observed that responses generated
by KnowPAML have an advantage in generating

Persona:
i have got two more years in college
i study law
i want to be successful
i am a student
i have no siblings
Context:
hello , how are you this evening ?
Responses:
Corpus + Persona + Finetuning:
i am well just studying
PAML + Persona:
i am doing good and you ?
PAML:
i am well just studying
KnowPAML + Persona:
i am well just studying for class
AKnowPAML:
fine . are you from one of my law classes ?
KnowPAML:
fine . are you from one of my law classes ?

Table 4: Comparison of response generated by the PAML
and KnowPAML using 10-shots.

more persona consistent responses compared to
AknowPAML, whereas AknowPAML attempts to
generate depending on the real response, which is
why the BLEU score is high. However, in terms
of fluency, all are comparable, demonstrating that
BLEU does not correlate with human judgment, as
underlined by Liu et al. (2016) in their research of
“How Not to Evaluate Your Dialogue System”.

6 Conclusion

In this paper, we proposed the KnowPAML frame-
work, which uses a multi-hop attention mecha-
nism to absorb concepts in the form of triples
from the ConceptNet knowledge graph in a Meta-
learning setting. Our PERSONA-CHAT experi-
ment demonstrates the advantage of using Know-
PAML over previous frameworks in terms of
persona-adaptability, resulting in more persona-
consistent responses. The analysis of the generated
responses reveals that the knowledge added model
can successfully aid in persona adaptability, con-
sistent response generation, and conversation flow.
Although fluency and coherence are comparable to
those of others, they can be improved further in the
future by using a pre-trained language model.
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Abstract

The integration of knowledge graphs with deep
learning is thriving in improving the perfor-
mance of various natural language process-
ing (NLP) tasks. In this paper, we focus on
knowledge-infused link prediction and ques-
tion answering using language models, T5,
and BLOOM across three domains: Aviation,
Movie, and Web. In this context, we infuse
knowledge in large and small language mod-
els and study their performance, and find the
performance to be similar. For the link predic-
tion task on the Aviation Knowledge Graph, we
obtain a 0.2 hits@1 score using T5-small, T5-
base, T5-large, and BLOOM. Using template-
based scripts, we create a set of 1 million syn-
thetic factoid QA pairs in the aviation domain
from National Transportation Safety Board
(NTSB) reports. On our curated QA pairs, the
three models of T5 achieve a 0.7 hits@1 score.
We validate our findings with the paired stu-
dent t-test and Cohen’s kappa scores. For link
prediction on Aviation Knowledge Graph using
T5-small and T5-large, we obtain a Cohen’s
kappa score of 0.76, showing substantial agree-
ment between the models. Thus, we infer that
small language models perform similar to large
language models with the infusion of knowl-
edge.

1 Introduction

A large number of pre-trained language models
(LMs) are used for downstream tasks, such as Ques-
tion Answering (QA). Generally, these language
models are trained on generic domain data, such
as Web data and News Forums. Recently, LMs
are used for downstream tasks in domain-specific
fields, namely, healthcare (Michalopoulos et al.,
2021), radiology (Kale et al., 2022), and aviation
(Agarwal et al., 2022). For tasks such as Informa-
tion Extraction (IE) and Question Answering (QA),
Knowledge Graphs (KGs) are used as a source of

*Equal contribution

external knowledge to boost the performance of
models. To a great extent, researchers focus on the
synergy of Knowledge Graph and Deep Learning
(Miller et al., 2016a; Saxena et al., 2020, 2022).
With the increase in data, it is observed that larger
models are preferred for different tasks across vari-
ous domains.

The Large Language Models (LLMs) are pre-
ferred to obtain better results than small or non-
pre-trained models as they have a vast number of
parameters and have been trained on a large amount
of data. But, the larger model increases the need
for computation power and training time. In this
paper, we show that small and large models per-
form likewise with the infusion of knowledge. We
can use non-pre-trained models for different tasks
across domains that require less computation power
and time and still attain the same performance as
pre-trained models.

We validate our hypothesis with the LLMs, i.e.,
T5 (Raffel et al., 2020) & BLOOM1. We perform
two tasks: a) Link Prediction, and b) Question An-
swering on different datasets: a) Aviation Knowl-
edge Graph (AviationKG) (Agarwal et al., 2022),
and Aviation QA pairs (section 4.4), b) Movie
Knowledge Base (MovieKB) & MetaQA (a set
of QA pairs), both present in the MetaQA dataset
(Zhang et al., 2018), and c) Complex Web Ques-
tions (CWQ) (Talmor and Berant, 2018), which
uses subsets of Freebase (Chah, 2017). We perform
hypothesis testing to validate our hypothesis. We
use paired Student T-test and attempt to reject our
hypothesis that models have a negligible difference
in performance. But, we were not able to repudi-
ate our hypothesis. To strengthen our findings, we
use Cohen’s kappa measure and show significant
agreement between models.

Our contributions are as follows:

1https://huggingface.co/bigscience/
bloom
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1. We create a synthetic dataset, AviationQA 2, a
set of 1 million factoid QA pairs from 12,000
National Transportation Safety Board (NTSB)
reports using templates explained in section
4.4. These QA pairs contain questions such
that answers to them are entities occurring in
the AviationKG (Agarwal et al., 2022). Avia-
tionQA will be helpful to researchers in find-
ing insights into aircraft accidents and their
prevention.

2. We show that the size of a language model
is inconsequential when knowledge is in-
fused from the knowledge graphs. With Avia-
tionKG, we obtain 0.22, 0.23, and 0.23 hits@1
scores for link prediction using T5-small, T5-
base, and T5-large, respectively. On Avia-
tionQA, we get a 0.70 hits@1 score on the
three sizes of the T5 model. We validate our
hypothesis with paired student t-test, and Co-
hen’s kappa explained in section 6. We obtain
a substantial Cohen’s kappa score of 0.76 for
link prediction on AviationKG using T5-small
and T5-large. For Question Answering us-
ing T5-small and T5-large, we get a Cohen’s
kappa score of 0.53 on the MetaQA dataset.
Hence, we provide evidence that we can sub-
stitute larger models with smaller ones and
achieve the same performance with less com-
putational cost and power.

2 Motivation

As stated earlier, in Section 1, LMs are trained
on generic datasets. So, knowledge from differ-
ent sources, i.e., KGs, are used to perform down-
stream tasks in specific domain areas. LLMs in-
fused with knowledge are required to perform such
tasks, namely, QA and link prediction, which in-
creases the need for computation power and time.
We show that computational resources can be saved
by using smaller language models for tasks.

It is rare to obtain datasets related to the aviation
domain, which is in increased demand. We scrape
NTSB reports from NTSB’s website 3 and create
QA pairs that can be used by the aviation industry
and researchers for Information Retrieval (IR) and
QA purposes. The created dataset will help find in-
sights into aircraft accidents and develop solutions

2https://github.com/ankush9812/
Aviation-Question-Answer-Pairs

3https://www.ntsb.gov/Pages/
AviationQuery.aspx

to prevent accidents.

3 Background & Related Work

A Knowledge Graph is a collection of entities and
relations represented in the form of triplets (sub-
ject, relation, object). Querying KG in Natural
Language (NL) is a long-standing work. Early
work focused on rule-based and pattern-based sys-
tems (Affolter et al., 2019). Recently, the work is
shifted to seq2seq architecture (Zhong et al., 2017)
and pre-trained models with the advent of neural
networks. Querying KGs remains a challenge be-
cause of the conversion of NL to the graph query
language, namely, SPARQL, Cypher, etc.

With the value increase of knowledge in the
world, the popularity of the KG has escalated. Re-
searchers are keenly interested in the synergy of
knowledge graphs and deep learning. Several meth-
ods are exploited considering synergy: a) Integrat-
ing triplets of KG into the neural network (Liu
et al., 2020; Saxena et al., 2022), b) Computing the
relevance of entity and relations in a KG using a
neural network (Sun et al., 2019; Yasunaga et al.,
2021).

Deep Learning models use representations of
entities and relations to integrate triplets of KG.
Knowledge Graph Embeddings are widely used
to obtain representations (Dai et al., 2020). The
KG embedding models are trained on link predic-
tion over triplets to obtain representations (Wang
et al., 2021). Recent work has focused on using
fine-tuned language models over KGE models for
link prediction to reduce the number of parameters
required to obtain the representations (Saxena et al.,
2022).

LMs and KGs are extensively used to improve
task-specific performance. Still, no study has been
done to understand the characteristics of a language
model during the synergy of KG and DL. In this
paper, we observe the behavior of language models
after knowledge infusion with different domain
datasets.

4 Methodology and Experimental Design

This section presents our approach (flow diagram
in figure 1), discusses the experiment datasets, cre-
ation of AviationQA, describes the model configu-
rations, and explains the evaluation technique.
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4.1 Approach

We observe the performance of small and large
language models with the infusion of knowledge
for link prediction and QA. Experiments are per-
formed with the following models (detailed in sec-
tion 4.6): a) T5-small non-pre-trained, b) T5-base
pre-trained, c) T5-large pre-trained, and SOTA d)
BLOOM 1b7. We make use of different domain
datasets for our approach, explained in section 4.2.
Figure 1 demonstrates link prediction and question
answering on the data after pre-processing.

We inject knowledge into the LMs. The knowl-
edge is injected by the process of fine-tuning the
pre-trained LM. Fine-tuning requires a learning
objective and training data. In our case, the train-
ing data is triplets from the KG (table 1), and the
learning objective is triple completion. Triple com-
pletion involves getting tail entity given head entity
and relation. Triple completion is also called link
prediction. Thus, the LM absorbs the knowledge.
The link prediction results with triplets are shown
in table 3.

After fine-tuning on triplets for link prediction,
the language model learns representations of en-
tities and relations. The checkpoint with the best
result on link prediction is used for the question-
answering task. We again fine-tune the selected
checkpoint with QA pairs (table 2) and obtain the
QA results shown in table 4.

4.2 Experiment Data

We are using three datasets: a) Aviation Knowledge
Graph (AviationKG) (Agarwal et al., 2022) & Avi-
ation QA pairs (section 4.4), b) MetaQA (Zhang
et al., 2018), which consists of a KB constructed
from WikiMovies dataset (Miller et al., 2016b) and
question-answer pairs, and c) Complex Web Ques-
tions (CWQ) (Talmor and Berant, 2018), which
uses subsets of Freebase (Chah, 2017). The statis-
tic of these datasets is shown in table 1 & 2. We
chose these datasets because they belong to differ-
ent domains and vary in size.

MetaQA KB & AviationKG are from the movie
and aviation domains, respectively, which is useful
to represent the diversity of datasets and validate
our hypothesis. CWQ is based on Freebase, a huge
KG, which is crowd-sourced. We require a knowl-
edge base and the corresponding QA pairs for our
experimentation, described in section 4.5. MetaQA
and CWQ are openly available datasets. But, there
is no available QA pairs dataset for the aviation

domain. We create a set of QA pairs in the aviation
domain and contribute to the research community,
detailed in section 4.4. The datasets used in the
paper are pre-processed and split before running
experiments, as explained in section 4.3 and 4.5.

Dataset Train Validation Test
AviationKG 173,372 10,000 10,000
MovieKB 249,482 10,000 10,000
CWQ 27,590,648 10,000 10,000

Table 1: Statistics of triplets (subject, relation, object)
for three knowledge bases: AviationKG (Agarwal et al.,
2022), MetaKB (Zhang et al., 2018), and Complex Web
Question (CWQ) (Talmor and Berant, 2018). Subsets
of Freebase (Chah, 2017) are used for CWQ.

Dataset Train Validation Test
AviationQA 367,304 10,000 10,000
MetaQA 184,230 10,000 10,000
CWQ 61,619 3,519 3,531

Table 2: Statistics of Question Answer pairs from three
domains: Aviation, Movie, and Web. For MetaQA, we
use 1-hop questions. For more details, refer to section
4.5.

4.3 Data Pre-processing
We make use of KG and QA pairs (section 4.2)
from 3 domains, Aviation, Movie, and General do-
main. These datasets are cleaned and structured for
our experiments. For the link prediction task, the
dataset is created similar to Saxena et al. (2022),
described below:
predict head: subject | relation | object
predict tail: object | relation | subject
The triplets {subject, relation, object} are extracted
from the AviationKG, MovieKB, and Freebase in-
dividually.

All these knowledge bases are associated with
the corresponding QA pairs. As explained in sec-
tion 4.4, we construct the AviationQA pairs and
use MetaQA 1-hop and CWQ for question answer-
ing. For QA fine-tuning, the dataset is in the given
format:
predict answer: question | answer.
E.g., predict answer: What is the capital of India?
| New Delhi.
Multiple answers exist for a question in Avia-
tionQA, MetaQA, and CWQ. These collective in-
stances are separated as individual QA pairs.

206



Figure 1: Flow diagram of the approach adopted in our paper. The model is first fine-tuned on KG triplets for Link
Prediction. Next, the fine-tuned model is again fine-tuned on question answering. Because of the link-prediction
task, the model learns KG completion and can answer multi-hop questions. E.g., If the model knows India’s capital
is New Delhi and New Delhi’s area size, then the model should predict the area of India’s capital correctly without
explicitly mentioning New Delhi in the question

E.g., What countries did Narendra Modi visit in the
year 2021? Answers: United States, Italy. Every
QA pair is segregated in the current layout: a) What
countries did Narendra Modi visit in the year 2021?
| United States. b) What countries did Narendra
Modi visit in the year 2021? | Italy.

With small KGs, i.e., AviationKG, and
MovieKB, triplet samples are added during QA
fine-tuning to avoid overfitting. The added triplets
are in the same format as mentioned for the link
prediction task. The pre-processing of triplets and
QA pairs is shown in figure 1.

4.4 Creation of AviationQA

We web scrape the National Transportation Safety
Board (NTSB) website and download 12k reports
from 2009-2022. A set of 90 question templates is
prepared using the common structure of documents
in the format:

• Where did the accident [ ] take place?

• What is the model/series of the aircraft bearing
accident number [ ]?

• Was there fire on the aircraft of the accident
number [ ]?

The template of questions is created, and answers
to those questions are extracted from every NTSB
report. Because every report is associated with an
accident number, we place [ ] in the template to
indicate which report the question pertains to, e.g.,
CHI07LA273, LAX07LA148. NTSB reports are
semi-structured, containing unstructured data in
paragraphs and structured data in tabular format.
We extract answers from each report w.r.t the tem-
plate using the regular expression method. Later,

QA pairs are scrutinized. As some reports’ struc-
ture varies, different scripts are written to fetch
answers for those reports.

We successfully created 1 million factoid QA
pairs in the aviation domain using the template-
based method. The dataset will contribute to re-
search and development in the aviation industry.

4.5 Dataset Description

After pre-processing the data (section 4.3), we split
it to train, validate, and test for link prediction and
question answering. Table 1 shows the split of
triplets from AviationKG, MovieKB, and subsets
of Freebase. CWQ uses subsets of Freebase, which
is of size 27 million. AviationKG and MovieKB are
domain-specific datasets of sizes 170k and 250k.
Valid and test splits are equal in size to 10k each.

Our motive for considering different sizes and
domain datasets is to strengthen our intuition that
the performance of varying size models remains
the same with an infusion of knowledge in lan-
guage models. Table 3 shows the correctness of
our intuition with the link prediction task.

Table 2 shows the split of QA pairs for question-
answering. We use 387,304 instances for Avia-
tionQA from 1 million QA pairs (section 4.4). The
scrutinization is based on reports used to create Avi-
ationKG (Agarwal et al., 2022) from 1962 to 2015.
We use QA pairs that have information available
in the AviationKG. Moreover, we ensured that an
answer to a question is an entity in the AviationKG.

For comparison between the movie and the avia-
tion data, the split of valid and test set is the same
in both, i.e., 10k. CWQ dataset is smaller than
AviationQA and MetaQA, so we use the same vali-
dation and test split, as mentioned in Saxena et al.
(2022).
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4.6 Model Configuration

In this paper, we are using four models: T5-small
non-pretrained (60 million parameters), T5-base
pre-trained (220 million parameters), T5-large pre-
trained (770 million parameters), and BLOOM
(1.72 billion parameters). These models are consid-
ered to validate our statement that with the injection
of knowledge, small and large model performs the
same. Both tasks, link prediction and question an-
swering, are performed using these models. The
T5 model is considered in our experiment as it
is trained to perform multiple downstream tasks,
i.e., translation, classification, and question answer-
ing. We use BLOOM as it is similar to the SOTA
model GPT-3 (Brown et al., 2020), which has out-
performed other language models on tasks such as
QA and summarization.

4.7 Evaluation Technique

We evaluate the performance of our models using
the hits@1 score for link prediction and question
answering. Table 3 and 4 show the hits@1 score
for link prediction and question answering, respec-
tively, on different datasets. We choose the hits@1
score for evaluation as it is more precise than other
hits@k scores. If the first predicted value matches
the actual answer, then the score is 1; otherwise,
0. We are using the hits@1 metric and not other
metrics such as BLEU score (Papineni et al., 2002)
and semantic similarity (Miller and Charles, 1991)
to validate the correctness of our hypothesis (in-
troduced in section 1). BLEU score is generally
used for comparing sentences, whereas, for link
prediction and QA tasks, the answer is a compound
noun, i.e., an entity in the knowledge graph. Since
the entities are ranked for tasks, the hits@1 score is
the best metric. As the answers to link prediction
and QA are entities of KG, the semantic similarity
would not be able to distinguish between 2 differ-
ent entities with semantically the same meaning.
After considering all drawbacks of other metrics,
we adapted the hits@1 score for the evaluation.

5 Results and Analysis

This section analyzes the performance of two mod-
els: T5 and BLOOM. Table 3 & 4 show the hits@1
score for link prediction and QA tasks, respec-
tively. With table 3, we can clearly observe that the
hits@1 score for three variations of the T5 model
& BLOOM is proximate for three different datasets
(section 4.5). The three T5 models score 0.22 &

Model AviationKG MetaKB CWQ
T5-small 0.2258 0.0257 0.2153
T5-base 0.2387 0.0286 0.2273
T5-large 0.2323 0.0301 0.2207
BLOOM 1b7 0.2163 0.0365 0.2155

Table 3: Link Prediction results on three knowledge
bases: Aviation Knowledge Graph (KG) (Agarwal et al.,
2022), Meta Knowledge Base (Zhang et al., 2018), and
subsets of Freebase (Chah, 2017) for Complex Web
Questions (CWQ) (Talmor and Berant, 2018).

Model AviationQA MetaQA CWQ
T5-small 0.7031 0.2144 0.2225
T5-base 0.7093 0.2158 0.2736
T5-large 0.7013 0.2371 0.2632
BLOOM 1b7 0.5507 0.2386 0.1517

Table 4: Question Answering (QA) results in three
QA datasets: AviationQA (4.4), MetaQA (Zhang et al.,
2018), and Complex Web Questions (CWQ) (Talmor
and Berant, 2018).

0.23 hits@1 for link prediction on AviationKG.
Similarly, scores with MetaKB and CWQ have very
less differences among models. LMs on MetaKB
perform poorly for link prediction compared to
other datasets; 0.02 & 0.03 are the hits@1 scores
on the T5 model & BLOOM. The reason is the
extensiveness of triplets in the MetaKB and the
presence of noise in the dataset. We chose MetaKB
to have a diversity of datasets and justify our claim
(explained in section 1).

The main observation with the link prediction
task is that the T5-small non-pre-trained model per-
forms alike to pre-trained models. The T5-base
with 220 million parameters shows results like T5-
large & BLOOM, which comprises 770 million &
1.7 billion parameters, respectively. Link predic-
tion results (in table 3) infers our claim that small
and large models perform the same with the infu-
sion of knowledge.

To support our claim, we also performed QA
with the same set of models as used for the link
prediction task. With the AviationQA dataset, we
achieved 0.7 hits@1 scores on T5-small, T5-base,
and T5-large. LLMs such as T5-large & BLOOM
are expected to perform better for QA than small
models as they are trained with a large amount of
data and vice-versa, T5-small non-pre-trained, and
T5-base are expected to perform direly. But, we
observe that the performance of all three T5 models
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Hypothesis Testing AviationKG MetaQA

T5-small
T5-large

T5-base
T5-large

T5-large
Bloom

T5-small
T5-large

T5-base
T5-large

T5-large
Bloom

Paired Student T-test Cannot
Reject

Cannot
Reject

Cannot
Reject

Cannot
Reject

Cannot
Reject

Cannot
Reject

Cohen’s kappa Score 0.76 0.75 0.68 0.49 0.53 0.33
Agreement (%) 91.77 91.36 89.16 82.50 83.62 75.73

Table 5: Hypothesis Testing on link prediction with ‘AviationKG’ and question-answering with ‘MetaQA’ datasets.
We choose two measures for the test: a) paired Student T-test (Hsu and Lachenbruch, 2014), and b) Cohen’s kappa
Score (Cohen, 1968), to prove our hypothesis- after injection of knowledge, small and large models perform the
same. Student T-test with 0.1 significance value is done on 2000 instances of the test set selected randomly, and
our hypothesis is not rejected 7 out of 10 times. We use the entire test set of 10,000 instances for the kappa score.
Cohen’s kappa scores on link prediction for AviationKG are between 0.6 and 0.8, and on question-answering for
MetaQA, between 0.4 and 0.6. With these scores, we are able to prove that our claim is correct.

is the same for QA with the AviationQA dataset.
Similarly, we observe that MetaQA achieves 0.2
hits@1 scores for non-pre-trained T5, pre-trained
T5-base, T5-large, and BLOOM.

Through our experiments, we have shown how
different model sizes perform on QA after infusion
of knowledge using link prediction. Pre-trained
and non-pre-trained models of different sizes have
shown similar results on different domain datasets
for link prediction and QA tasks. This contribu-
tion to the research community is pivotal as high
accuracy can be achieved efficiently with less com-
putation power, time, and cost.

The source code for our paper is publicly avail-
able on GitHub4.

6 Hypothesis Testing

We attempt to contradict our hypothesis (1) that
the difference in scores for the two models is neg-
ligible. We choose paired student t-test (Hsu and
Lachenbruch, 2014) to refute our hypothesis. In
our testing, the significance level (p-value) is 0.1,
and the sample size is 20% of the test set selected
randomly. In comparing the pair of models (section
4.6), we predicted T5-large to perform better than
T5-base & T5-small and Bloom to perform better
than all three models of T5 because of its large
size. But, 7 out of 10 times student t-test was un-
able to reject our hypothesis, and the significance
level among the pair of models was greater than
0.1. Table 5 clearly shows the paired student t-test
on AviationKG (table 1) and MetaQA (table 2) for
different pairs of models, and the result is the same,

4https://github.com/ankush9812/
Knowledge-Infusion-in-LM-for-QA

our hypothesis cannot be rejected.
After not being able to reject the hypothesis, our

next step was to strengthen it, so, we calculate
Cohen’s kappa (Cohen, 1968) score of the pair of
models with different datasets (table 1 & 2). We
consider a pair of models as two annotators and the
hits@1 score corresponding to each sample in the
test set as their annotations. Since our evaluation
technique (section 4.7) uses hits@1 score and the
score is binary for each sample, Cohen’s kappa
score is used to measure the reliability between the
two models. The kappa score is calculated for all
instances of the test set. Table 5 shows the Cohen’s
kappa score and % agreement for AviationKG and
MetaQA datasets between pair of models. For link
prediction on AviationKG, the kappa score is be-
tween 0.6 and 0.8, and agreement is near 90%.
These results clearly denote the substantiality of
our claim with high scores. We extend the test
for question-answering with MetaQA. The pair of
T5 models score 0.4-0.6, denoting moderate agree-
ment as more than 80% of agreement. T5-large
and Bloom pair scores 0.33 with 75.7% agreement,
which is fair.

Thus, the testing supports our hypothesis, and
we prove that the level of performance of different
models with the infusion of knowledge remains the
same.

7 Conclusion and Future Work

We have successfully created a million factoid QA
pairs from the NTSB aircraft accident reports. The
QA pairs are used in our experiments with Avia-
tionKG. We have validated our claim that with the
infusion of knowledge to language models, the per-
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formance of the small language model is similar to
the large language model. We substantiate with dif-
ferent language models and a diversity of datasets.
Our investigation will benefit researchers in select-
ing the appropriate language model when working
with knowledge and save computation power and
time.

The future line of work is to investigate the per-
formance of models with incomplete and noisy
knowledge graphs and study the extent to which
the models can outright the domain knowledge.
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A Appendix

A.1 Examples of AviationQA

Below, we mention some examples from our cre-
ated Aviation question-answering dataset (section
4.4):

• Q: Which seat was occupied by the pilot re-
sponsible for accident no. CEN18LA272?
A: Left

• Q: Are there other Aircraft Rating(s) for the
pilot of accident no. GAA18CA489?
A: None

• Q: What is the make of the aircraft bearing
accident no. CEN18LA272?
A: Cessna

• Q: What is the category of the aircraft in-
volved in accident no. GAA18CA489?
A: Gyroplane

• Q: What is the Airworthiness Certificate of
accident no. GAA18CA297?
A: Normal
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Abstract
Current approaches for clinical information
extraction are inefficient in terms of compu-
tational costs and memory consumption, hin-
dering their application to process large-scale
electronic health records (EHRs). We propose
an efficient end-to-end model, the Joint-NER-
RE-Fourier (JNRF), to jointly learn the tasks
of named entity recognition and relation ex-
traction for documents of variable length. The
architecture uses positional encoding and uni-
tary batch sizes to process variable length doc-
uments and uses a weight-shared Fourier net-
work layer for low-complexity token mixing.
Finally, we reach the theoretical computational
complexity lower bound for relation extraction
using a selective pooling strategy and distance-
aware attention weights with trainable poly-
nomial distance functions. We evaluated the
JNRF architecture using the 2018 N2C2 ADE
benchmark to jointly extract medication-related
entities and relations in variable-length EHR
summaries. JNRF outperforms rolling window
BERT with selective pooling by 0.42%, while
being twice as fast to train. Compared to state-
of-the-art BiLSTM-CRF architectures on the
N2C2 ADE benchmark, results show that the
proposed approach trains 22 times faster and re-
duces GPU memory consumption by 1.75 folds,
with a reasonable performance tradeoff of 90%,
without the use of external tools, hand-crafted
rules or post-processing. Given the significant
carbon footprint of deep learning models and
the current energy crises, these methods could
support efficient and cleaner information ex-
traction in EHRs and other types of large-scale
document databases.

1 Introduction

Adverse drug events (ADEs) are defined as any
injury resulting from medication use and comprise
the largest category of adverse events (Leape et al.,
1991; Bates et al., 1995). Serious ADEs have been
estimated to cost from $30 to $137 billion in am-
bulatory settings in the US (Johnson and Booman,

1996), and their costs have been doubling since
then (Ernst and Grizzle, 2001). Due to safety con-
cerns, between 21% to 27% of marketed drugs in
the US have received black-box warnings or have
been withdrawn by the Food and Drug Administra-
tion (FDA) within the first 16 years of marketing
(Frank et al., 2014).

Clinical notes stored in electronic health record
(EHRs) systems are a valuable source of informa-
tion for pharmacovigilance (Boland and Tatonetti,
2015). However, only 1% of ADEs recorded in
EHRs are reported to ADE registries, such as the
FDA Adverse Event Reporting System (FAERS),
while coded diagnoses have low sensitivity for
ADEs (Nadkarni, 2010; Classen et al., 2011). Rec-
ognizing medication-related entities in clinical
notes, extracting relations among them, and struc-
turing this information can help identify ADEs in
early stages of the drug marketing process, thus
improving patient safety (Luo et al., 2017).

The state-of-the-art for biomedical named entity
recognition (NER) and relation extraction (RE) is
dominated by bidirectional LSTM (Hochreiter and
Schmidhuber, 1997) or BERT (Devlin et al., 2018)
architectures, combined with a CRF (Lafferty et al.,
2001) layer and often hand-crafted rules (Xu et al.,
2017; Christopoulou et al., 2020; Wei et al., 2020;
Henry et al., 2020; Fang et al., 2021). Despite the
high performance of end-to-end (E2E) NER+RE
models, they have some important limitations im-
posed by the model complexity, e.g., quadratic in
terms of entity types in the CRF layer or in terms
of tokens in the dot-product attention mechanisms
(Sutton et al., 2012; Shen et al., 2021), which hin-
ders their effective application in the biomedical
domain due to its large number of entities and large
size of free text databases.

A particularity of NER and RE for pharmacovig-
ilance is that efficient recall of entities and rela-
tions is of utmost importance, as we would like to
avoid missing a serious ADE. Nevertheless, cur-
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rent approaches tend to automatically discard long
distance (or inter-passage) relations (Yao et al.,
2019; Christopoulou et al., 2020). Moreover, EHR
documents varies significantly in length, contain-
ing from a few hundred tokens for simpler patient
records up to several thousand tokens for more
complex patients (e.g., chronic diseases) (Henry
et al., 2020). Due to their computational complex-
ity, these methods cannot process EHRs in their
integrity without resorting to impractical and/or in-
efficient techniques such as windowing strategies
(Ding et al., 2020; Pappagari et al., 2019; Yang
et al., 2016).

Ongoing research is predominantly performance-
driven, leading to a resurgence of resource-
intensive models, neglecting the carbon footprint
of deep learning models in favor of often marginal
improvement in effectiveness (Wei et al., 2020;
Knafou et al., 2020; Copara et al., 2020; Co-
para Zea et al., 2020; Fang et al., 2021; Naderi
et al., 2021). As a consequence of the technical con-
straints induced by highly complex models, these
methods are currently being associated to a signif-
icant excess on carbon emissions (Gibney, 2022).
The most direct impact of training and deploying a
machine learning model is the emission of green-
house gases due to the increased hardware energy
consumption (Ligozat and Luccioni, 2021). There-
fore, a direct way to reduce the ecological impact
of training and deploying machine learning models
is to reduce the training and inference time, i.e.,
providing the community with low memory and
computational cost models.

To tackle these limitations and issues, we pro-
pose the Joint-NER-RE-Fourier (JNRF) model
with a reduced algorithmic complexity for informa-
tion extraction. We combine positional encoding
with unitary batch size training so that the model
processes automatically variable size EHRs with
consistent performance. We use a Fourier network
to contextualize tokens with fair time and space
complexity, allowing to process long documents
with low-resource hardware and avoid rolling win-
dow strategies. Finally, we reach the theoretical
computational complexity lower bound for rela-
tion extraction using a selective pooling strategy
and distance-aware attention weights with trainable
polynomial distance functions. The main contribu-
tions of this paper are as follows:

• We propose a general, lightweight, and ef-
ficient model to jointly detect clinical en-

tities and multiple relations, while requir-
ing low computational power and memory,
without the use of external tools or hand-
crafted rules. The code is available at
https://github.com/ds4dh/JNRF.

• We show that this model can be applied to
variable length documents, without any archi-
tectural changes. More importantly, it has
robust performance independent of the docu-
ment size.

• To the best of our knowledge, this is the first
effort to model ADE and medication extrac-
tion at the document level. Unlike existing
models in the literature, we demonstrate that
our approach is able to identify inter-passage
relations without the need of window/input
size tuning, post-processing or any further en-
gineering.

2 Related work

The main methods to produce E2E information
extraction systems are the so called pipeline
(Sorokin and Gurevych, 2017; Chapman et al.,
2018; Christopoulou et al., 2020) and joint mod-
eling (Xu et al., 2017; Wei et al., 2020; Bekoulis
et al., 2018; Nguyen and Verspoor, 2019; Luan
et al., 2019; Wadden et al., 2019). The pipeline
method consists of training two independent mod-
ules, one for NER and one for RE. These models
naturally suffer from cascading errors, as the er-
ror signal from one module is not back-propagated
to the other. Joint modeling aims to overcome
this shortcoming by learning a unique model on a
combination of NER and RE losses. Joint model-
ing tends to outperform pipeline methods, consis-
tently achieving state-of-the-art performance (Wei
et al., 2020; Fang et al., 2021; Bekoulis et al., 2018;
Nguyen and Verspoor, 2019; Luan et al., 2019;
Wadden et al., 2019). In addition, joint modeling
techniques have some major advances as they al-
low to train two models at the same time, saving
time and computation, and minimizing engineering
efforts. In both cases, the E2E approach has been
dominated by LSTM-CRF architectures (Xu et al.,
2017; Christopoulou et al., 2020; Wei et al., 2020;
Henry et al., 2020). However, they suffer from two
main limitations: i) the computational complexity
of the CRF layer (Jeong et al., 2009); and ii) the
auto-regressive nature of the LSTM model, which
prevents full parallel training (Xu et al., 2021).
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Figure 1: Computational graph for the proposed JNRF network.

2.1 Joint learning in the general domain

Bekoulis et al. (2018) proposed a joint neural model
using CRFs and a multi-headed selection module
allowing for multiple relation detection. The model
requires the computation of scores on every pair
of input tokens, which consumes O(n2) time and
space. To improve generalisation, their approach
does not rely on external NLP tools, such as part-of-
speech (POS) tagger or dependency parser. More
recently, Nguyen and Verspoor (2019) proposed
a joint BiLSTM-CRF architecture combined with
a biaffine attention mechanism (Dozat and Man-
ning, 2016), improving upon Bekoulis et al. (2018)
in terms of time complexity. Luan et al. (2019)
utilizes dynamic span graphs to learn useful infor-
mation from a broader context. The graph is built
by picking the most confident entity spans and link-
ing them with confidence-weighted relation types
and correlations. The model does not require pre-
processing syntactic tools and significantly outper-
forms the previous approaches across several entity-
related tasks. Lastly, DYGIE++ (Wadden et al.,
2019) enumerates candidate text spans and encodes
them using BERT and task-specific message up-
dates passed over a text span graph to achieve state-
of-the-art performance across entity, relation, and
event extraction tasks.

2.2 Joint learning for medication-related
entity and relation extraction

Most of the medication-related NER and RE stud-
ies are performed using the N2C2 ADE benchmark
(Henry et al., 2020). Wei et al. (2020) proposed a
system consisting of a LSTM-CRF layer for NER
joint learned with a CNN-RNN layer for RE. They

utilized CLAMP (Soysal et al., 2018) for the text
pre-processing pipeline, including sentence bound-
ary detection and POS labeling, and to extract a
set of hand-crafted features to feed the NER mod-
ule. Similarly to approaches for general corpora,
Fang et al. (2021) replaced the LSTM layer by a
BERT model for feature extraction, achieving 1.5
percentage point improvement in the strict F1-score
metric. In their approach, a CRF layer is still used
on top of a BERT model for the NER part, while a
multi-head selection module (Bekoulis et al., 2018)
combines the output of the BERT and CRF layers
to predict relation among the detected entities.

2.3 Fourier networks

To overcome algorithmic complexity limitations
in the Transformers architecture (Vaswani et al.,
2017), Fourier networks (FNet) have been pro-
posed (Lee-Thorp et al., 2021). The main inno-
vation of FNets is that the classic Transformers
attention mechanism can be mimicked using sim-
ple, non-trainable token mixing strategies. One
can obtain O(n × log(n)) complexity using the
Cooley–Tukey Fast Fourier Transform algorithm
(Cooley and Tukey, 1965) instead of the attention
mechanism, which consumes O(n2) with respect
to the input sequence length (n). FNets achieve 92
and 97% of BERT-Base and BERT-Large (Devlin
et al., 2018) accuracy on the GLUE benchmark
(Wang et al., 2018), but train 70-80% faster on
GPUs/TPUs. In addition to matching the accu-
racy of competing linear-complexity transformers
(Wang et al., 2020; Jaegle et al., 2021; Wu et al.,
2021; Lee-Thorp et al., 2021), the FNet is faster
and memory efficient due to the unparameterized
contextualization layer, i.e., it has no parameters to
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train for token mixing, thus requires virtually no
memory usage.

3 Approach

In this section, we provide a step-by-step formal
description of the proposed architecture using the
forward pass representations and operations, as
illustrated in Figure 1. First, we describe i) the
vectorial token representation strategy, then ii) the
language/contextualization layer, next iii) how the
NER and RE task is jointly modelled, and finally
iv) the cost functions used. Lastly, we conduct a
computational complexity analysis of the proposed
model.

3.1 Model formalisation

Token representation layer: We use static em-
beddings (BioClinicalBERT-base (Alsentzer et al.,
2019) in our experiments) and freeze these pa-
rameters during training for better generalization.
We also decided to use positional encoding as in
Vaswani et al. (2017) so as not to fix a predefined
input length.

Language model: We use FNets to perform token
contextualization with fair time and space complex-
ity. We integrate a FNet layer in our architecture as
follows:

E(1) = MLP(E),

E(2a) = ENLM (E(1)),

E(2b) = RELM (E(1)),

where E ∈ Rn×d is the embedding matrix, in
which each row represents a token, following their
order in the input sequence (i.e., the document), n
the input sequence length, d the token embedding
dimension, MLP is a token-wise multilayer percep-
tron, ENLM and RELM are NER and RE FNets
respectively. In fact, we fully share the weights be-
tween ENLM and RELM to further reduce the num-
ber of trainable parameters. We use superscripts
((1), (2a), ...) to denote the transformed versions of
the original embedding matrix.

NER and RE layers: We thus have E(2) =
E(2a) = E(2b), and subsequently compute:

l = ENMLP (E
(2)),

E(3) = REMLP (E
(2)),

where ENMLP and REMLP are two independent
token-wise MLPs. ENMLP maps the contextual-
ized embeddings E(2) to logits l ∈ Rn×c for clas-
sification, where c is the number of entity classes,
and REMLP maps E(2) to a third version of the
embedding matrix E(3). We then compute a priori
token classes

ai = argmax(li),

for i : 1 ... n, and apply a selective pooling strat-
egy, i.e., we pool candidate entities for relation
extraction from E(3) using ai. Some relations may
never exist for a particular relation extraction task.
We use L to denote the set of entities that can only
be linked to those of a set H . To avoid generating
impossible candidate pairs, we perform two selec-
tive pooling for these two different sets: the key
K ∈ R|L|×d, and the query Q ∈ R|H|×d. We then
produce t heads

K(j) = K(j)
MLP (K),

Q(j) = Q(j)
MLP (Q),

for j : 1 ... t, where K(j)
MLP and Q(j)

MLP are token-
wise MLPs, and t represent the number of relation
types. We then compute the scores between the
query and the key entities

A(j) = Q(j)KT (j).

As the RE module is distance agnostic, we incor-
porate a trainable polynomial distance function to
modify the logits as a function of distance between
tokens:

Ψ(j) = A(j) + αj1 ×D2 + αj2 ×D + αj3 × I,

where Dϕψ represents the number of tokens sepa-
rating the ϕth and ψth pooled entities in the origi-
nal input embedding matrix. The α’s are learned
through the minimization of the loss function and
thus requires no predefined hand-crafted rules re-
garding short/long-distance relations.

Loss function: We use a cross-entropy loss for
both NER and RE:

LNER = − 1

n

n∑

i=1

c∑

k=1

s(li,k)× ei,k,

LRE = − 1

|H||L|

|H|∑

h=1

|L|∑

p=1

t∑

j=1

s(Ψ
(j)
h,p)× rh,p,j ,
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where s(xq,z) = log(exp (xq,z) /
∑

b exp (xq,b)),
and e and r are the target entities and relations,
respectively. Finally, we use the sum of LNER and
LRE as the final loss function to minimize

L = LNER + LRE .

3.2 Computational complexity

The complexity of the RE model depends on the
number of neighbors considered for candidate pair
of entities, independently of the method. If one
wants to detect relations between two entities re-
gardless of the distance, then the lower bound is
O(t×|H|×|L|); or min(O(t×|L|) , O(t×|H|))
if one fixes the number of candidate neighbors. We
decided not to set a maximum number of neigh-
bors for candidate pair generation. Thus, the RE
model uses O(t × |H| × |L|) through selective
pooling. For a fixed RE method, the complexity
of the whole model is driven by the NER com-
ponent. We achieved fair complexity by using an
FNet (O(n×log(n))). Additionally, we used a soft-
max layer in place of CRF, which uses O(n × c)
instead of CRF’s O(n × c2). This method also
takes advantage of parallelization, making it a time
complexity optimised method.

4 Benchmark dataset

We used the 2018 N2C2 ADE dataset 1 to evalu-
ate our model. The data consists of 505 annotated
discharge summaries from MIMIC-III (Johnson
et al., 2016). The passages contains annotations for
strength, form, dosage, frequency, route, duration,
reason, and ADE entities, each associated with a
drug entity. We used the official splits to train and
evaluate our model, with 303 records for training
and 202 for testing. Data summary statistics are
presented in the Appendix A.1. Duration and ADE
entities and their respective relations are not as
well represented in the dataset (see Table 6). The
document lengths vary widely depending on the pa-
tient’s clinical history (see Table 7). There is a gap
of more than 10k tokens between the smallest and
largest documents (224 and 13990, respectively),
which is too large to use padding efficiently. More-
over, the average document size is almost 8x larger
than the typical input size of standard BERT-like
implementations (4045 vs 512, respectively).

1Dataset available at https://portal.dbmi.hms.harvard.edu/.

5 Experiments

We trained our models in three different data rep-
resentation scenarios, where we use whole doc-
uments, sentences only, and a mixed configu-
ration where we use both documents and sen-
tences as training instances. Performance was
then evaluated at both document and sentence
levels for these different training scenarios. Our
models were compared to baseline models based
on MLP with selective pooling and a sliding
window BioClinicalBERT-base model (WBERT)
(Alsentzer et al., 2019) with selective pooling, both
trained and evaluated using the whole documents.

We implemented our models using PyTorch and
a single Tesla V100 GPU. We used Adam (Kingma
and Ba, 2014), mini-batches of size 1 and 64 for
documents and sentences, respectively. Models
were trained using gradient accumulation to avoid
using padding tokens. The final model was selected
based on the best dev F1-score obtained during
training. In the following, we present the results
of our experiments using micro-lenient precision,
recall, and F1-score using the challenge’s official
evaluation tool.

5.1 Data pre-processing

We split the provided training data into train
and dev sets composed of 242 and 61 docu-
ments, respectively. We tokenize documents us-
ing BioClinicalBERT-base wordpiece tokenizer
from HuggingFace (Wu et al., 2016; Wolf et al.,
2019). For sentence-level modeling, we first tok-
enize sentences using Spacy (Honnibal and Mon-
tani, 2017) and then use aforementioned wordpiece
algorithm. We encode the gold entity boundaries
in the BIO scheme. The embedding matrix is ini-
tialized from BioClinicalBERT-base static embed-
dings. No other form a data pre-processing or ex-
ternal feature injection has been implemented.

5.2 End-to-end effectiveness

Table 1 shows the performance of the JNRF model
in multiple settings. The best performance was
obtained in the document-document setting, reach-
ing an end-to-end F1-score of 80.49%, a precision
of 91.65% and a recall of 71.76%. The JNRF
outperformed WBERT with selective pooling by
0.42% in F1-score (0.09% in precision and 0.06%
in recall), while reducing algorithmic complexity
by one order of magnitude (O(n × (log(n) + c))
vs. O(n × (n + c))). We hypothesize that using
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WBERT does not improve the performance due
to the lack of long-range token mixing and/or an
inappropriate windowing strategy. We believe that
further investigation of an optimal windowing strat-
egy could improve its performance. Moreover, we
observed a significant drop in performance (37%
in F1-score) when the Fnet is replaced by an MLP,
demonstrating the capacity of the FNet to better
attend to the correct token representations.

The JNRF model shows good performance when
it is trained and evaluated with the same docu-
ment representation (i.e., document-document or
sentence-sentence) with similar precision in both
cases and reduction in recall for the sentence-
sentence setup, due to the model’s limitation to
detect inter-sentence relations. It is unclear though
whether further data engineering could still result
in equivalent performance. For the mixed training
setup, the model shows stronger power to infer at
the sentence level. We believe this is due to the
much higher number of examples at the sentence
level, which bias the model towards such represen-
tation.

Train Language Test Precision Recall F1
model (%) (%) (%)

doc. MLP doc. 54.19 35.49 42.89
doc. WBERT doc. 90.66 71.70 80.07

doc. FNet
doc. 91.65 71.76 80.49
sent. 75.28 0.29 0.57

sent. FNet
doc. 29.55 21.42 24.84
sent. 89.50 65.80 75.84

mixed FNet
doc. 66.99 32.83 44.07
sent. 81.63 62.35 70.70

Table 1: Lenient micro-averaged E2E scores for differ-
ent language models and document representations.

5.3 End-to-end efficiency

To compare the efficiency of our approach against
architectures used in state-of-the-art approaches,
we measured the time and memory used during
training over 10 epochs (for the same training
set) for a rolling window BERT (WBERT), a
rolling window BERT-CRF (WBERT-CRF), and
a BiLSTM-CRF. All window-based models used
non-overlapping windows of size 512. We delib-
erately chose to use the minimum number of win-
dows for these models to make them as fast as
possible. Figure 2 shows the time and VRAM
used by our model and state-of-the-art models. Re-

sults show that our model substantially improves
upon the state-of-the-art in terms of time complex-
ity. Forward and backward passes over the train-
ing dataset take an average of 30 seconds with
our proposed architecture, while the average time
for the above mentioned models is 54, 168 and
685 seconds, respectively. This increases the learn-
ing speed by a factor of 2, 6 and 22, respectively
(Figure 2a). In addition, we measured an average
VRAM usage of 8 GB for the JNRF architecture
while the average memory usage for the above men-
tioned models is 4, 5 and 14 GBs, respectively.
This represents a 43% GPU memory saving com-
pared to BiLSTM-CRF (Figure 2b). WBERT and
WBERT-CRF uses around 2x less memory due to
the windowing strategy. This increase in efficiency
is due to the fact that, differently from the quadratic
complexity in terms of the number of entities c,
which is generally large in the biomedical field, our
model complexity has a linear dependency in terms
of the number of entities, and a log-linear depen-
dency in terms of the number of tokens (overall
O(n× (log(n) + c))).

5.4 Time inefficiency of windowing strategies
To demonstrate that windowing strategies are time
inefficient, we measured the average forward-
backward time of a rolling window JNRF (WJNRF)
and its average VRAM usage (Figure 2). JNRF is
20% faster than WJNRF but WJNRF uses 26%
less memory (Figure 2). While windowing strate-
gies save VRAM, they are an inefficient solution
in terms of computation time. The average doc-
ument size is 4045 (see Table 7) corresponding
to an average of 8 forward passes per document
using standard BERT-like implementations (512
tokens maximum input size) or 28 for the longest
document. So that all tokens attend to each other,
we would need overlapping windows. The worst
case scenario is to drag the window token-by-token,
leading to 3534 (n−WindowSize+ 1) windows
on average per document.

5.5 Performance across entities, relations and
document sizes

Table 2 shows the performance of our model per
entity and relation types. Our model suffers from
poor performance in extracting Reason and ADE
entities, with an F1-score of 50.26% and 16.40%,
respectively. This lower performance is also seen
in other competing solutions (Henry et al., 2020).
In turn, both the detection of their respective rela-
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Figure 2: (a) Cumulative training time of JNRF vs. WJNRF vs. WBERT vs. WBERT-CRF vs. BiLSTM-CRF. (b)
GPU memory usage of JNRF vs. WJNRF vs. WBERT vs. WBERT-CRF vs. BiLSTM-CRF. For fair comparison, all
systems use the selective pooling RE module.

tions are also negatively impacted, with a final E2E
F1-score of only 29.92% and 7.21%, respectively.
We believe this lower performance is a result of
the confusion between these entities (as they are
semantically similar) and of the small number of
instances in the training set. Nevertheless, further
investigation is needed to better understand the is-
sue.

Entity Precision Recall F1
(%) (%) (%)

Drug 93.32 86.99 90.05
Strength 96.80 95.08 95.93
Form 96.57 92.38 94.43
Dosage 94.26 87.62 90.82
Frequency 97.63 92.37 94.93
Route 92.63 93.03 92.83
Duration 84.98 61.38 71.27
Reason 65.96 40.59 50.26
ADE 36.67 10.56 16.40
Overall 92.95 84.76 88.67

Entity + Precision Recall F1
Relation (%) (%) (%)

Strength-Drug 95.60 88.60 91.97
Form-Drug 95.63 87.01 91.12
Dosage-Drug 94.13 79.07 85.94
Frequency-Drug 94.83 83.19 88.63
Route-Drug 90.50 83.25 86.72
Duration-Drug 76.09 41.08 53.35
Reason-Drug 54.72 20.59 29.92
ADE-Drug 30.30 4.09 7.21
Overall 90.97 72.08 80.43

Table 2: NER and E2E (NER+RE) performance of our
JNRF model.

Table 3 shows the performance as a function of
the number of input tokens (document length). We
followed the Freedman-Diaconis method (Freed-
man and Diaconis, 1981) to group documents into
clusters of different lengths. These results high-
lights the ability of our architecture to perform
consistently across clinical notes of varying sizes.
Without any data pre-processing (e.g., sliding win-
dow or sentence tokenization), the model can ele-
gantly generalise to document of different sizes.

Doc. Doc. Precision Recall F1
length count (%) (%) (%)

[0, 754] 5 91.67 59.46 72.13
[754, 1508] 8 97.25 67.22 79.49

[1508, 2262] 18 89.92 66.55 76.49
[2262, 3016] 28 91.65 74.69 82.30
[3016, 3770] 43 91.72 73.46 81.58
[3770, 4524] 30 90.35 71.64 79.91
[4524, 5278] 32 90.82 72.60 80.69
[5278, 6032] 18 89.58 72.16 79.93
[6032, 6786] 10 93.88 70.99 80.85
[6786, 7540] 4 89.17 70.01 78.44
[7540, 8294] 3 88.89 67.06 76.45
[8294, 9048] 1 92.08 75.61 83.04

[9802, 10556] 1 88.73 66.55 76.06
[12064, 12818] 1 92.54 80.84 86.30

Table 3: Performance of our JNRF model across differ-
ent document sizes.

5.6 Performance on long range relations

Figure 3 shows the distribution of relation types
according to their sentence distance. We define the
sentence distance between two related entities E1
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and E2 as the number of sentences separating E1
from E2. A negative distance implies that the drug
entity is mentioned before the related entity. Re-
sults show that although most related entities are in
the same sentence, there are a non-negligible num-
ber of relations with a sentence distance different
from zero. As we can see from Table 4, the JNRF
model is able to automatically detect distant rela-
tions. It has superior performance detecting intra-
sentence relations, i.e., better F1-score for sentence
distance 0, with a yet robust performance for inter-
sentence relations with negative sentence distances
(between 65% and 68% F1-score). The perfor-
mance decreases substantially for inter-sentence
relations with positive sentence distances. This is
due to the fact that Reason and ADE entities and
relations are actually harder to detect (see Table
2), and they represent the vast majority of rela-
tions with a positive sentence distance, as shown in
Figure 3. It is important to note that using a fixed-
input size models would only detect intra-sentence
relations or inter-sentence through significant engi-
neering, which may not necessarily generalise to
other corpora and domains.

Figure 3: Probability density estimation of relation types
as a function of the number of sentences separating two
related entities (Sentence distance).

Sentence distance
-2 -1 0 1 2

Precision (%) 75.14 83.06 92.69 22.99 0.36
Recall (%) 56.90 57.88 76.08 5.82 0.49
F1-score (%) 64.76 68.22 83.57 9.29 0.41

Table 4: Performance of our JNRF model as a function
of sentence distance.

6 Comparison with SOTA in the N2C2
ADE challenge

In this section, for a reference we show our re-
sults against state-of-the-art E2E NER+RE mod-
els described in the N2C2 ADE challenge (Henry
et al., 2020). Nevertheless, due to their different
modelling strategy (e.g., multiple models, external
tools, post-processing techniques and hand-crafted
rules specifically designed for this dataset), they
are not directly comparable.

UTH (Wei et al., 2020) used a joint learning
model consisting of a LSTM-CRF layer for NER
and a CNN-RNN layer for RE. CLAMP (Soysal
et al., 2018) was employed for text pre-processing,
including sentence boundary detection and POS
labeling, and to create a set of hand-crafted fea-
tures that fed the CRF layer. Entities without a
relation were associated to the closest drug in the
post-processing step.

NaCT (Christopoulou et al., 2020) used a major-
ity voting ensemble of feature-based CRF, includ-
ing ADE dictionary, and stacked BiLSTM-CRF for
NER. For RE, they used an ensemble of LSTM for
intra-sentence relations and a transformer network
for inter-sentence relations.

BCH (Miller et al., 2019) used SVM to de-
tect entities, and pair these detected entities for
a second SVM relation classifier. They used
cTAKES (Savova et al., 2010) to pre-process data
and ClearTK (Bethard et al., 2014) API to extract
features.

RA (Henry et al., 2020) used dictionary-based
features, CRFs and logistic regression for NER.
For RE, they used a tree-based boosting classifier
(Chen and Guestrin, 2016).

Table 5 shows the performance of our best model
as well as the results of the previously described
systems. As we can see, the performance of our
E2E model (80.49% F1-score) achieves 90% of the
F1-score of the best performing system (99% preci-
sion and 84% recall), while significantly reducing
algorithmic complexity. Moreover, it compares
favorably to strong baseline methods (Chen and
Guestrin, 2016) (80.49% vs. 80.37%), again with
an order of magnitude in complexity reduction.
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Name NER Precision Recall F1
complexity (%) (%) (%)

UTH nc2 92.92 85.49 89.05
NaCT nc2 92.64 83.18 87.66
BCH n3 89.63 76.40 82.49
JNRF n(log(n) + c) 91.65a 71.76b 80.49c

RA nc2 86.89 74.75 80.37

Table 5: E2E scores of the top performing systems
submitted in the N2C2 ADE track, along with our JNRF
model. Standard deviations: a=0.47, b=0.53, c=0.33.

7 Conclusion

In this paper, we proposed an end-to-end, general-
izable, lightweight, and efficient model to jointly
detect entities and multiple relations at the intra-
and inter-passage levels. We combined a Fourier
network with a pooled attention layer to signifi-
cantly reduce time and space complexity, thus pro-
viding the community with a low carbon footprint
solution for end-to-end relation extraction. We
demonstrated that our model outperformed the slid-
ing window BERT with selective pooling by 0.42%
in F1-score, while being 2 times faster to train.
Furthermore, we showed that our model trains 22
times faster and consumes 1.75 times less GPU
memory than state-of-the-art BiLSTM-CRF archi-
tectures, with a reasonable performance tradeoff of
90% on the N2C2 ADE benchmark, without using
external tools or hand-crafted rules. Furthermore,
we showed that this approach achieves consistent
performance regardless of the length of the input
sequence, eliminating the need for sliding window
techniques and easing the overall data processing
pipeline and engineering effort.
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A Appendix

A.1 N2C2 dataset summary statistics

Entity type Full (%) Training Test
Drug 26.8k (32) 16.2k 10.6k
Strength 10.9k (13) 6.7k 4.2k
Form 11.0k (13) 6.7k 4.4k
Dosage 6.9k (8) 4.2k 2.7k
Frequency 10.3k (12) 6.3k 4.0k
Route 9.0k (11) 5.5k 3.5k
Duration 1.0k (1) 0.6k 0.4k
Reason 6.4k (8) 3.9k 2.5k
ADE 16k (2) 1.0k 0.6k
Total 83.8k (100) 51.0k 32.9k
Relation type Full (%) Training Test

Strength-Drug 10.9k (18) 6.7k 4.2k
Form-Drug 11.0k (19) 6.7k 4.4k
Dosage-Drug 6.9k (11) 4.2k 2.7k
Frequency-Drug 10.3k (17) 6.3k 4.0k
Route-Drug 9.1k (15) 5.5k 3.5k
Duration-Drug 1.1k (2) 0.6k 0.4k
Reason-Drug 8.6 (15) 5.2k 3.4k
ADE-Drug 1.8 (3) 1.1k 0.7k
Total 59.8 (100) 36.4k 23.5k

Table 6: Entity and relation distributions.

Train set Validation set Test set
Count 242 61 202
Mean 4045 3829 3933
Std 1972 1870 1790
Min 224 237 252
Max 13990 7845 12518

Table 7: Statistics of document length in terms of tokens.
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Abstract
Text style transfer (TST) aims to control at-
tributes in a given text without changing the
content. The matter gets complicated when
the boundary separating two styles gets blurred.
We can notice similar difficulties in the case of
parallel datasets in spoken and written genres.
Genuine spoken features like filler words and
repetitions in the existing spoken genre parallel
datasets are often cleaned during transcription
and translation, making the texts closer to writ-
ten datasets. This poses several problems for
spoken genre-specific tasks like simultaneous
speech translation. This paper seeks to address
the challenge of improving spoken language
translations. We start by creating a genre clas-
sifier for individual sentences and then try two
approaches for data augmentation using written
examples: (1) a novel method that involves as-
sembling and disassembling spoken and written
neural machine translation (NMT) models, and
(2) a rule-based method to inject spoken fea-
tures. Though the observed results for (1) are
not promising, we get some interesting insights
into the solution. The model proposed in (1)
fine-tuned on the synthesized data from (2) pro-
duces naturally looking spoken translations for
written→spoken genre transfer in En-Hi trans-
lation systems. We use this system to produce
a second-stage En-Hi synthetic corpus, which
however lacks appropriate alignments of ex-
plicit spoken features across the languages. For
the final evaluation, we fine-tune Hi-En spoken
translation systems on the synthesized parallel
corpora. We observe that the parallel corpus
synthesized using our rule-based method pro-
duces the best results.

1 Introduction

Style transfer has been one of the well-studied tasks
in the field of Artificial Intelligence (AI). Most
of the earlier works using deep learning were in
the domain of Computer Vision (CV; Gatys et al.,
2016; Zhu et al., 2017). The task of text style
transfer (TST) saw a surge in research interests

<Hi>हम शब्द एम्बेडिंग पर चर्चा करेंगे।  
<En> We will be discussing word embeddings.

<Hi>तो अम हम शब्द एम्बेडिंग्स के  बारे  में बात करेंगे  |  
<En> So um we will be talking about word embeddings.

difference in "word formality"

Lexical filler words

Non-lexical fillers
Written

Spoken

Figure 1: Text style transfer from written to spoken
parallel sentences.

after the inception of attention-based sequence-to-
sequence text generation models. The essence of
any of the tasks under TST is bringing changes
in certain stylistic attributes while preserving the
content. One such task is creating synthetic spo-
ken parallel data using a written one (Figure 1).
The task is novel, and minimal work is publicly
available where both spoken and written genres are
addressed distinctly.

Because of its easy maintenance and availability,
written data have been extensively experimented
with. This works for most tasks; however, with the
increasing popularity of processing speech, such
as simultaneous translation of spoken language,
the need for speech-specific data grows. However,
transcribing large volumes of audio datasets is a
tedious and costly process. In addition, creating a
parallel dataset for such tasks requires the further
step of translation. Applying methods of TST can
offer a solution to this problem by utilizing the
available large amount of written parallel text.

The utilization of written parallel data for the cre-
ation of spoken ones is not straightforward. A ma-
jor issue with this task is having a clear distinction
between spoken and written genres. Spoken genre
spans a broad spectrum with spontaneous conver-
sations or speeches at one extreme and prepared
speeches at the other one. The lack of spontaneity
in the latter case can make sentences indistinguish-
able from the written genre. The existing parallel
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datasets rarely contain genuine examples of sponta-
neous speech, as most of the filler words and pauses
are cleaned while transcribing audio samples.

Most works in the field do not address the chal-
lenge of transfer between two similar linguistic
styles. Since most of them are based on data-driven
approaches, they are prone to failing in this setting
due to insufficiently distinct features of the two
genres. The common alternative, simple rule-based
approaches model only content-independent fea-
tures. We thus see a need for a combination of both
approaches.

The main objective of this paper is to improve
spoken translation systems. We address the lack
of parallel spontaneous speech corpora using TST
from written genre to spoken genre in the context
of NMT. In this work, we try different data augmen-
tation methods to construct synthetic spoken-style
parallel dataset from existing written genre parallel
datasets. We inject disfluencies in both languages
on the phrase level. Even though not all disfluen-
cies are consistent across languages in real life, we
try to preserve them in the constructed parallel data,
at least on the phrase level.

We propose a data-driven approach involving
NMT models from both genres. We combine the
encoders and decoders extracted from translation
systems trained on each of the genres separately.
We also propose a rule-based method for construct-
ing spoken-style parallel data by injecting spoken
features at the phrase-level to existing written par-
allel datasets. We check the applicability of the cre-
ated synthetic parallel datasets for Hindi-English
spoken language translation systems. To summa-
rize, the main contributions of this paper are:

• We propose and implement a genre classifier
for individual sentences.

• We propose a seq-to-seq model for translating
from written genre to spoken genre.

• We provide a rule-based method for synthe-
sizing spoken-style data from written genre
examples.

• We evaluate the effectiveness of our genre
transfer methods on a spoken language trans-
lation system for En-Hi language pair.

We discuss work related to our approach in Sec-
tion 2. We provide an overview of the used datasets

in Section 3. We describe our proposed genre clas-
sifier in Section 4 and continue with our data aug-
mentation methods in Sections 5 and 6. We provide
analysis of the results in Section 7. We discuss
some alternatives and future directions in Section 8
and finally conclude our paper in Section 9.

We publish our source code, and pre-trained
models on GitHub. 1

2 Related Works

Our work touches upon three topics: Neural Ma-
chine Translation (Section 2.1), Text Style Trans-
fer (Section 2.2), and Evaluation of Stylised Texts
(Section 2.3).

2.1 Neural Machine Translation (NMT)

Since the advent of encoder-decoder-based meth-
ods (Cho et al., 2014), NMT has seen an uninter-
rupted flow of research interests. When given a
large amount of training data, it has performed sig-
nificantly better than the traditional methods. There
has been considerable focus on techniques such as
transfer learning (Zoph et al., 2016; Lakew et al.,
2018) and data augmentation (Sennrich et al., 2016;
Nguyen et al., 2020; Shen et al., 2020) to tackle the
problem of low-resource settings. There has also
been a limited amount of work on studying stylistic
features in NMT outputs. For instance, Niu et al.
(2017) use the lexical formality model to control
the formality level of the NMT outputs. Wu et al.
(2021) propose a bidirectional knowledge transfer
framework to produce stylized translations.

2.2 Text Style Transfer (TST)

TST aims to control the stylistic attributes of a
given text without changing the content. Stylis-
tic attributes can range from politeness, formal-
ity, etc., to literary writing style. Some of the ear-
lier works include Yan (2016); Ghazvininejad et al.
(2016) for style transfer in poetry, Jhamtani et al.
(2017) for Shakespearizing modern English, dos
Santos et al. (2018) for controlling offensive lan-
guage, and many more. However, due to the lack
of parallel datasets, most of the solutions in TST
revolve around unsupervised methods. Replacing
style-specific words is one of the trivial and earlier
solutions. However, the complexity of a natural
language text can make this approach visibly sub-
optimal. One of the popular techniques is to disen-
tangle the content and style dimensions in the latent

1https://github.com/knalin55/Genre-Transfer-in-NMT
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lex_fil nlex_fil fp rep ph_abbr mean_len
en hi en hi en hi en hi en hi en hi

Online Lec 38 37 2 0 21 21 11 4 8 - 23 25
OpenSub 1 1 0 0 18 18 0 0 22 - 6 7
Wikipedia 0 0 0 0 1 1 0 0 1 - 18 21
VOICE 2.0 26 - 21 - 25 - 25 - 12 - 15 -

Table 1: Data sources and some of their spoken features (out of 50 randomly examples).

space representing the input text (John et al., 2019;
Yamshchikov et al., 2019). Although most recent
works focus on this approach, they have a rather
limited control over the model. Another interest-
ing approach, which has gained popularity recently,
is supervised training on a pseudo-parallel data.
Prabhumoye et al. (2018) use back-translation for
semantic preservation and adversarial training to
generate texts in a specific style.

2.3 Evaluation of Stylised Texts
Evaluation for TST is challenging due to the sub-
jectivity of styles. According to Mir et al. (2019),
there are broadly three aspects of evaluation: style
accuracy, content preservation, and natural and flu-
ent output. In our case, along with these three
aspects, we also need to ensure the translational
equivalence of the sentences. Stylistic features
are often independent of a set of particular lexi-
cons. Thus, building a rule-based classifier is not
so straightforward. A deep learning-based data-
driven classifier can solve the issue but it faces data
scarcity. Moreover, capturing content preservation
using automatic evaluation metrics is even more
challenging due to their reliance on similarity of
the candidate translation and the reference. With
style change, this similarity can be failing. For
Wu et al. (2021), the objective is similar to ours.
They trained a BERT-based classifier for the classi-
fication of formality. They use a language model
for checking the fluency of the translated output,
BLEU (Papineni et al., 2002) for the evaluation
of translated outputs, and human evaluation for
checking overall quality.

There are undoubtedly multiple parameters for
judging the quality of stylized texts. Thus, we need
to have multiple metrics covering all aspects. In
our work, use BLEU to check translation quality, a
genre classifier for style quality, and manual evalu-
ation to check fluency and overall quality.

3 Data

We use the Samanantar corpus for our experiments.
We split the corpus into written and spoken parts

using the data sources. We consider sources from
lectures (Coursera, NPTEL, KhanAcademy, and
Kurzgesagt), and OpenSubtitles belonging to the
spoken genre, and Wikipedia to the written genre.
There are abundant examples where sentences have
lexical filler words; however, very few contain non-
lexical fillers or repetitions.

We have a total of 171, 416 parallel sentences for
the spoken genre and 216, 183 for the written one.
We separate 5, 000 sentences as a test set, 10, 000
as validation set, and the remaining sentences as
a training set. We ensure no training sentence ap-
pears in the test or validation data.

Table 1 provides some statistics for spoken fea-
tures of randomly sampled 50 sentences from each
of our data sources. We calculate mean length of
sentences over the whole data source.

3.1 Online Lectures

Online learning platforms are a great source of
spoken genre data. Though they cannot be cat-
egorized as entirely spontaneous and are cer-
tainly well-prepared, they can contain a sub-
stantial amount of filler words. We cluster the
sources KhanAcademy, Coursera, Nptel, and
Kurzgesagt together as online lectures. Table 1
shows they have longer sentences, and a consid-
erable number of them have lexical filler words
(lex_fil). However, all these filler words are in the
form of sentence connectors (like, so, OK, well,
etc.), and almost none of the examples had non-
lexical fillers (nlex_fil) like, ermm, umm, uh, etc.
42% of the examples were in first-person (fp), 22%
of the En examples had repetitions (8% of Hi ex-
amples; we suspect repetitions were removed while
generating translations) and only 16% contained
phonological abbreviations (ph_abbr). In summary,
43 out of 50 randomly sampled En sentences con-
tained some form of listed spoken features. Though
the spoken style quality and spontaneity of the spo-
ken sources are substandard, these examples are
the best we could have for the Hi language in the
given genre.
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Feature Input text envoice enbase

None She later expressed regret for having cited an inaccurate study 0 0
Sentence conn So she later regretted for having cited an inaccurate study 1 1
First person I later regretted for having cited an inaccurate study 1 1
Filler word She later regretted er erm for having cited an inaccurate study 1 0
Filler word She later regretted umm for having cited an inaccurate study 0 0
Repetition She later regretted for for having cited an inaccurate study 0 0

Figure 2: En genre classifiers’ predictions compared against different spoken features. The first example is of
written genre (0, as predicted by both models enbase and envoice), while the rest are from spoken genre (1, which is
not always predicted).

3.2 OpenSubtitles

OpenSubtitles is a collection of multilingual par-
allel corpora compiled from an extensive database
of movies and TV subtitles. Since the dialogues
and conversations are well rehearsed and prepared,
they seem to have fewer fillers and repetitions (see
Table 1). They also have shorter sentences. The
sentences are understandably of the spoken genre;
however, the lack of fillers and other spoken fea-
tures might hurt the classifier and our MT model.

3.3 Wikipedia

Wikipedia is one of the most experimented written
genre datasets available in the field. As expected,
none of the randomly sampled examples contained
any filler words or repetition.

3.4 VOICE 2.0

We use an additional source of En spoken mono-
lingual corpus, VOICE 2.0 (Vienna-Oxford Inter-
national Corpus of English), to train our En genre
classifier. VOICE 2.0 is a collection of English spo-
ken data. We use it as our additional data source for
training our En genre classifier. Table 1 shows the
dataset has a considerable amount of repetitions
and filler words. The fillers contained a mix of
both non-lexical and lexical words. 46 of the 50
randomly sampled examples had at least one of the
spoken features mentioned in table. We take 62348
En sentences from the dataset for our classification
experiment.

4 Genre Classifier

Classifying genre plays a vital role in the evalua-
tion of genre transfer tasks. Majority of the papers
in TST use deep-learning-based classifiers to clas-
sify the specific style. Along the lines of existing
approaches, we train a BERT-based genre classifier.
We train two models: with and without VOICE 2.0
dataset for En classifier. Since we have parallel

Model Test f1 (%)
hibase 96.07
enbase 97.84
envoice 98.12

Table 2: Performance of genre classifiers

sentences, we can analyze the results for En and
draw also some conclusions for Hi language.

We use DistilBERT (Sanh et al., 2019) as our
pretrained model for En language. It is a fast, cheap
and light Transformer model trained by distilling
BERT base. It has 40% fewer parameters and
is 60% faster than bert-base-uncased. We train
the model on En sentences from Samanatar cor-
pus (enbase) and Samanantar + VOICE 2.0 corpus
(envoice). We use HuggingFace trainer for our ex-
periments. We use the same tokenizer as Distil-
Bert and set the sequence max length to 256. We
train the models for 2 epochs with a batch size of
8 while keeping the best checkpoints at each 500
steps. We do not train the model further as its per-
formance stopped improving after 2 epochs. We
use 10000 sentences as test (comprised of exam-
ples from Samanantar and VOICE 2.0), 20000 sen-
tences as validation, and the remaining sentences
in the dataset as training data.

We use IndicBERT (Kakwani et al., 2020) as
our pretrained model for Hi genre classification.
IndicBERT is a multilingual AlBERT (Lan et al.,
2019) trained on 12 Indic languages. The model
has SOTA performance when compared to other
multilingual models. We train the model on Hi sen-
tences from OpenSubtitles, Online Lectures, and
Wikipedia in Samanantar corpus (hibase). We keep
the hyperparameters similar to the En classifiers.

4.1 Results

We evaluate our En models on the Samanantar +
VOICE 2.0 dataset test set. Since the training data
has examples from diverse domains, there is less
possibility for any bias towards a specific domain.

The En classifiers, enbase and envoice, give F1
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Algorithm 1: Algorithm to create a spoken sentence pair using a written sentence pair
1 Input ewritten, fwritten

2 Procedure gen_spoken(ewritten, fwritten):
3 espoken, fspoken← list(), list()
4 alignments = get_word_alignments(ewritten, fwritten)
5 phrase_align = get_phrase(alignments)
6 phrase_align.insert((init_fillere, init_fillerf ), index = 0) with some probability pi
7 for phrase ∈ phrase_align do
8 phrase← add_spoken_features(phrase) with some probability P
9 espoken.add(phrasee∀phrasee ∈ phrase_align)

10 fspoken.add(phrasef∀phrasef ∈ phrase_align)
11 return espoken, fspoken
12 Function get_phrase(word_alignments):
13 while len(word_alignments) does not decrease do
14 for aligni, aligni+1 ∈ word_alignments do
15 if step == 1 then
16 concat(aligni, aligni+1) if set(tgt(aligni)

⋃
tgt(aligni+1)) contains consecutive indices

17 else
18 concat(aligni, aligni+1) if src(aligni), src(aligni+1) overlap

19 return word_alignments

20 Function add_spoken_features(phrase, P):
21 fillerse, fillersf = set of filler words in lang e, lang f
22 with prob Pfill, phrasee, phrasef ← phrasee.append(fillerse[i]), phrasef .append(fillersf [i]) for some i
23 with prob Prep, phrasee, phrasef ← phrasee.append(phrasee[i :]), phrasef .append(phrasef [i :]) for

some i
24 return word_alignments

scores of 97.84 and 98.12 respectively (Table 2).
We consider envoice for our further experiments, as
it has slightly better performance than the other
one. To confirm the dependency of the model on
spoken features, we check its behavior on simi-
lar spoken and written genre sentences. Figure 2
clearly shows the dependence of the model envoice
on filler words and the use of the first person for the
given example. A similar conclusion can also be
drawn from Figure 3. It shows the last layer’s mean
attention scores for envoice model corresponding to
[CLS] token. It can be observed that the tokens
corresponding to So, er, erm have slightly higher
attention scores than the others.

However, it fails to recognize repetition as a
spoken feature. We suspect the lack of a significant
amount of text with repetitions can be attributed to
this behavior. The same can be observed for enbase
as well. Unlike the former model, enbase also fails
when non-lexical filler words are used. The fourth
example in Figure 2 makes another interesting case.
When the non-lexical filler em erm is replace with
umm, the model fails to predict it correctly.

We have performance of hibase similar to enbase.
Though it has the F1 score of 96.07%, it fairly
depends ONLY on first person and lexical fillers.

0.0611, 0.0617, 0.0589, 0.0606, 0.0624, 0.0628, 0.0618, 0.0575, 0.0556

[CLS] So she later er er ##m expressed regret 

for having cited an inaccurate study . [SEP]

0.0554, 0.0588, 0.0592, 0.0563, 0.0595, 0.0624, 0.0519, 0.0539

Figure 3: Attention scores of the last self-attention layer
(for envoice)

5 Rule-Based Injection of Spoken
Language Features

The ultimate objective of our work is to improve
translation quality of spoken language translation
systems. However, spoken parallel corpora are rare,
and the existing ones clearly lack spontaneity as
evident from our previous discussion. In this work,
we try to create spontaneous synthetic parallel cor-
pus using the written corpora.

We propose a rule-based data augmentation
method to add spoken features to the existing writ-
ten examples on the phrase level (see Algorithm
1). The spoken texts tend to have informal words.
They also have lesser content words with more
grammatical words. Thus, we first back-translate
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En (written): Krishnapuram is a village in Krishna district of the Indian state of Andhra Pradesh.

Hi (written): कृ ष्णारावुपालॆं  कृ ष्णा में भारत के  आन्ध्रप्रदेश राज्य के  अन्तर्गत के  कृ ष्णा जिले का एक गाँव है।

En (spoken_bt): Actually here's a village in ehh the Indian state ofland.

Hi (spoken_bt): वास्तव में अफगानिस्तान में भारतीय राज्य में भारत के  भीतर भाग में एक गाँव है अ।

En (spoken): So Krishnapuram is a village in ehh Krishna district of the Indian state of Andhra Pradesh.

Hi (spoken): तो कृ ष्णारावुपालॆं  कृ ष्णा में भारत के  आन्ध्रप्रदेश राज्य के  अन्तर्गत के  कृ ष्णा जिले का एक गाँव है अ।


En (written): She later expressed regret for having cited an inaccurate study.

Hi (written): बाद में उसने एक गलत अध्ययन का हवाला देते हुए खेद व्यक्त किया।

En (spoken_bt): Later he err expressed regret by quoting a wrong study.

Hi (spoken_bt): बाद में उसने अ एक ग़लत अध्ययन को उद्धृ त करने के  द्वारा खेद व्यक्‍त किया ।

En (spoken): So she later expressed regret for having cited an inaccurate study.

Hi (spoken): तो बाद में उसने एक गलत अध्ययन का हवाला देते हुए खेद व्यक्त किया।

Figure 4: Two examples after applying algorithm 1. Highlighted sentences are of the written genre. spoken_bt
denotes examples after applying algorithm on back-translated sentences, while spoken is without back-translation

the written genre parallel sentences to normalize
them (Prabhumoye et al., 2018). We then create
word alignments between En and Hi sentences us-
ing multilingual BERT (Devlin et al., 2018). We
start with bigrams in the source language. Since we
are interested in phrase alignments, we keep those
bigrams with their indices of corresponding align-
ments belonging to a continuous span of numbers.
We combine two bigrams and their corresponding
alignments if they have overlapping indices. This
ensures we get valid phrases and their mapping
from En to Hi. We perform this combination pro-
cess until convergence. After identifying phrases
from the given word alignments, we add spoken
features like non-lexical filler words (erm, emm,
umm, eh, etc.), lexical filler words (so, like, etc.),
and repetitions on both source and target sides with
some probability P . We also add fillers at the be-
ginning of sentences with probability pi.

Figure 4 illustrates that back-translated outputs
don’t make enough sense. This can be attributed to
the low quality of our En→Hi and Hi→En NMT
models. Thus, we resort to using examples without
back-translation. We denote this model by Mrule.

6 NMT with Genre Transfer

The previous method fails to transfer spoken fea-
tures like informal words, and introducing more
grammatical words. To counter this, we try data
driven approaches. We stitch models trained on
written and spoken genres together. We use this
model to get translations across genres. We also try
experiments with fine-tuning the stitched model on
the augmented data created in Section 5.

We use pretrained NMT models by Tiedemann
and Thottingal (2020) to fine-tune on our task.
They train MarianMT (Junczys-Dowmunt et al.,

2018) model on OPUS corpus (Tiedemann and Ny-
gaard, 2004), and made the models publicly avail-
able. We fine-tune the models on the spoken and
written genre datasets and label them as Msp and
Mwr, respectively, for both translation directions.
We use Huggingface Trainer for our training pur-
poses. We train the spoken and written models for
10 epochs with a batch size of 8. We evaluate at ev-
ery 500 steps while using early stopping callback.
During inference, we stitch Msp and Mwr to get
Mmix. We use the models to translate from En (and
Hi) in written to Hi (and En) in spoken genre. We
evaluate the generated parallel data on the written
genre test set.

6.1 Model Stitching

During the training phase, for each translation di-
rection, we train the encoder-decoder based NMT
models on parallel data of styles wr (written)
and sp (spoken). We get four models eventually:
Mwr
en→hi, M

sp
en→hi, M

wr
hi→en, and M sp

hi→en. We
switch the encoders from sp models with wr mod-
els. We use the resulting model to translate text en
of genre wr to hi of genre sp (and wr hi to sp en).

In general, each model M j
i can be represented

with M j
i (x) = fdeci,j (fenci,j (x)), for i ∈ {en →

hi, hi → en} and j ∈ {wr, sp}. We hypothe-
size that fenci,j encodes input x in a latent space
independent of j. Thus, during inference (for x of
style wr), to get translations of style sp, we can
use fdeci,sp with fenci,wr.

6.2 Fine-tuning on Augmented Data

The previous method fails to give outputs in spon-
taneous spoken genre, as the existing training cor-
pora have very few spontaneous examples. Thus,
to get more natural-looking spontaneous spoken
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Model BLEU (%) spoken
Hi-En En-Hi En Hi

Mwr 34.31 35.11 2.33 3.19
Msp 18.00 20.51 20.55 11.31
Mmix 19.27 20.88 20.98 12.32
Mdata_aug 14.00 18.81 34.63 17.03
Mrule 46.93 76.09 21.70 15.05

Table 3: Overview of results. “% spoken” denotes pro-
portion of generated outputs labelled as spoken.

examples, we fine-tune our stitched model on the
augmented data to get better spoken translations.
We train it for 5 epochs while keeping other hyper-
parameters the same as the other experiments.

7 Results

7.1 Genre Preservation
We evaluate the performance of our spoken data
generation methods using automatic and manual
evaluation. We use BLEU to check the quality
of translations across genres and our BERT-based
genre classifiers for En and Hi to get an estimated
proportion of translated outputs in spoken genre.
For manual evaluation, we randomly sample 50
outputs and evaluate them for content preservation
(0-4; with 4: preserving all content, 2: one of con-
text or nouns is preserved, 0: nothing preserved)
and fluency (0-4; with 4 being most fluent).

Automatic and manual evaluation results can be
found in Tables 3 and 4, resp.

Mrule outperforms other data-driven models in
terms of BLEU, content preservation, and fluency
scores. This is expected, as the input sentences
stay the same apart from the injected spoken fea-
tures. Among the data-driven approaches, Mdata_aug
deviates the most from the input sentences. The
addition of explicit spoken features might be one
of the significant reasons.

Interestingly, even though the spoken and writ-
ten models are trained on a completely different
dataset, without any overlap, the outputs gener-
ated from Mmix are quite good. Msp has similar
performance to Mmix for En→Hi direction. En
verb forms, unlike Hi, are independent of the per-
son. This can be one of the reasons for having a
more generalized latent representation in the case
of genre-specific NMT. Thus, switching encoders
on the En side does not significantly affect the
score.

Even though the classifier is biased towards spe-
cific spoken features, we can still use it to evaluate
certain features. As expected, the genre score (“%
spoken” in Table 3) for Mwr is pretty low. Although

Content preservation Fluency
Hi-En En-Hi Hi-En En-Hi

Mwr 2.8 3.2 3.5 3.5
Msp 1.7 2.5 3.0 3.4
Mmix 2.2 2.5 3.3 3.5
Mdata_aug 2.0 2.2 2.9 3.2
Mrule 4.0 4.0 4.0 4.0

Table 4: Manual evaluation results

the scores for other models are relatively low, they
are better than the written model. Mdata_aug per-
forms better than others in terms of the number
of spoken sentences generated. The outputs look
more naturally spoken than Mrule with less com-
plex words and more grammatical words. How-
ever, it fails to align the filler words and repetitions
in generated parallel data. This is obvious, as the
models have not seen the positions of explicit spo-
ken features in the other language. Also, since we
are translating sentences across genres, the model
seems to hallucinate while adding repetitions.

The model stitching method fails to inject even
the lexical fillers it has seen during training. Out of
50 randomly sampled sentences, only 4 contained
lexical features, contrary to the spoken training
data, where almost 75% of the sampled examples
contained such features. This is where Mdata_aug
and Mrule gets an advantage of controlling spoken
features. Another issue with all data-driven ap-
proaches is the quality difference between Hi-En
and En-Hi translation models. This affects the qual-
ity of parallel’ness of the augmented data.

Due to the difference in domains of written and
spoken genres, the data-driven approaches strug-
gle while handling proper nouns. This, along with
unnecessary repeated addition of spoken features,
results in a dip in performance of Mdata_aug. This,
however, can again be controlled by training it on
augmented data with different frequencies of spo-
ken features. The performance of Mdata_aug im-
proves with a decrease in the probability of the ad-
dition of spoken features. However, the alignment
problem of such features still bothers the quality
of generated parallel data. This is clearly handled
during the rule-based approach, which makes it
perform better than the other approaches.

7.2 Spoken Translation Quality

We check the utility of our spoken data genera-
tion methods via Msp. We fine-tune Msp further on
50k parallel data created using Mmix, Mdata_aug, and
our rule-based method Mrule. We label the models
as SMM_Mix, SMM_data_aug, and SMdata_aug respec-
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En: er so er i mean i i think erm you can be from er another country and i mean two different countries and then
use a third language as linguafranca and then i think then it's a l- lingua franca

Hi (Msp): मेरा मतलब है कि मुझे लगता है कि आप एक और देश से हो सकते हैं और मेरा मतलब है कि दो अलग-अलग देश और फिर
एक तीसरी भाषा का उपयोग माफिया के  रूप में करें  और फिर मुझे लगता है कि यह एक ली-लिंगीका है।

Hi (SMdata_aug): तो अ मेरा मतलब है अम्म मुझे लगता है कि आप किसी दू सरे  देश से अ हो सकते हैं और मेरा मतलब है कि दो
अलग-अलग देश हैं और फिर लंगुफिया के  रूप में एक तीसरी भाषा का उपयोग करें  और फिर मुझे लगता है कि यह एक ल-हुआका है।


En: er i don't i don't know if a- a- am i right
Hi (Msp): मैं नहीं  जानता कि अगर एक-मैं सही हूँ-
Hi (SMdata_aug): अ मैं नहीं  जानता कि मैं नहीं  जानता कि क्या - मैं सही हूं


Figure 5: Two example outputs on VOICE dataset using Msp and SMdata_aug

hi-en en-hi
Msp 44.04 44.47
SMM_mix 33.98 39.65
SMM_data_aug 19.53 19.34
SMdata_aug 33.97 39.65

Table 5: BLEU scores of spoken translation systems on
spoken test set from Samanantar (non-spontaneous)

tively. We first test the models on the test set of
spoken parallel data from Samanantar using BLEU
(Table 5). We also evaluate the En→Hi spoken
translation system on VOICE 2.0 dataset manually
(Table 6). Precisely, we use content preservation
scores, fluency and spoken feature scores. We use
spoken feature scores (Ft_sc.; +2 for fillers; +2
for repetitions) to check the quality of type and
placement of filler words and repetitions.

Table 5 shows a drop in performance for models
fine-tuned on augmented data on the spoken test
set. The addition of sentences from new domain,
along with updated syntactic structure seems to
bring noise when compared with the spoken genre
dataset. SMM_data_aug has the worst dip in the per-
formance on the Samanantar test set. It tends to
add extra filler words even if they are not present
in the source sentence. This might be due to the
misalignments of fillers and repetitions in the syn-
thetic parallel sentences. The other two models
SMdata_aug and SMM_mix have comparable perfor-
mance on the test set.

We check the En-Hi spoken translation systems
quality on the VOICE dataset. SMdata_aug performs
the best, and the placement of filler words and
repetitions are also relatively accurate. The other
three models struggled with such features. Figure 5
shows some translation outputs of SMdata_aug.

8 Discussion

The En→Hi spoken translation system fine-tuned
on the synthesized data from our rule-based method

Cont. Pres. Fluency Ft_sc.
Msp 2.7 ± 1.08 2.6 ± 1.07 0.14
SMM_mix 1.9 ± 2.02 2.0 ± 2.11 0.14
SMM_data_aug 2.6 ± 1.64 2.7 ± 1.76 0.28
SMdata_aug 3.7 ± 0.42 3.8 ± 0.42 3.10

Table 6: Manual evaluation results of En→Hi Spoken
Translation System on VOICE 2.0. The results are cal-
culated for 50 randomly sampled translated outputs.

performs quite well for spontaneous En examples.
It not only applies the repetitions well, but also
introduces the filler words at correct places. On the
other hand, the baseline model failed to recognize
and add fillers and repetitions. Since we didn’t
have any spontaneous examples in Hi, we could
not empirically evaluate Hi→En. However, we
expect similar performance from that as well.

We note that our output style evaluation relies on
our genre classifier. For En, it has a varied training
set but still it fails to work with unseen non-lexical
fillers. For Hi, the classifier is even less reliable
and should be used with caution. Clearly, there is a
need for better genre classifiers.

It would be interesting to see the results for Mmix
fine-tuned on back-translated data with added spo-
ken features. Due to lower quality back-translation
outputs, we could not perform the experiments with
it. One approach can be finetuning the models on
the Samanantar dataset for the Hi-En language pair
and then using the model for back-translation. An-
other interesting experiment can also be checking
the dependency of the model on controlled spoken
features in training data and the extent to which
they can be added without disturbing the content.

9 Conclusion

This paper proposes two main methods to synthe-
size parallel spoken data using existing written-
genre parallel texts. Given the written input, the
data-driven method produces a naturally-looking
spoken output; however, it fails to ensure appro-
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priate parallelism of explicit spoken features. The
alternative rule-based approach has precise align-
ments of such features. Furthermore, we check the
usability of the created parallel texts by fine-tuning
Hi-En NMT models on merely 50k sentence pairs.
The model fine-tuned on the synthetic corpus cre-
ated using our rule-based method gives the best
results. For En→Hi translation, it produces rela-
tively decent results, and unlike the baseline model,
it introduces correct non-lexical fillers at the proper
places.
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Abstract

Code-mixing or Code-switching is the mixing
of languages in the same context, predomi-
nantly observed in multilingual societies. The
existing code-mixed datasets are small and pri-
marily contain social media text that does not
adhere to standard spelling and grammar. Com-
putational models built on such data fail to gen-
eralise on unseen code-mixed data. To address
the unavailability of quality code-mixed anno-
tated datasets, we explore the combined task
of generating annotated code-mixed data, and
building computational models from this gen-
erated data, specifically for code-mixed Part-
Of-Speech (POS) tagging. We introduce PAC-
MAN1 (PArallel CodeMixed dAta generatioN)
- a synthetically generated code-mixed POS
tagged dataset, with above 50K samples, which
is the largest annotated code-mixed dataset.
We build POS taggers using classical machine
learning and deep learning based techniques on
the generated data to report an F1-score of 98%
(8% above current State-of-the-art (SOTA)). To
determine the efficacy of our data, we com-
pare it against the existing benchmark in code-
mixed POS tagging. PACMAN outperforms
the benchmark, ratifying that our dataset and,
subsequently, our POS tagging models are gen-
eralised and capable of handling even natural
code-mixed and monolingual data.

1 Introduction

Code-Mixing or Code-Switching is primarily ob-
served and archetypal in multilingual societies
across the globe (Gumperz, 1964; Thompson, 2009;
Auer, 2020; Schwab, 2021). Although linguists dif-
ferentiate between code-mixing (Boggs, 1983) and
code-switching (Myers-Scotton, 1993), we use CM
to mean both. CM has recently garnered significant
interest for researchers because of its gradual emer-
gence as the prima lingua for social media posts,
blogs, chats, and messages.

∗denotes equal contribution
1PACMAN dataset to be released later

The first computational work on CM text was
explored by Solorio and Liu (2008) for English-
Spanish POS tagging. They used individual POS
taggers for English and Spanish and heuristics, ma-
chine learning, and word-level language informa-
tion (WLI) to find the optimal tag for each word.
Subsequent work on POS Tagging for CM text like
Jamatia et al. (2015); Vyas et al. (2014) use sim-
ilar approaches, using language information and
a combination tagger on social media CM text.
They emphasize that WLI is a mandatory ingre-
dient for CM POS tagging, necessitating the use
of a combination tagger. Recent work by Singh
et al. (2018) applies a set of hand-crafted features
(including WLI) to POS tag CM text, with higher
accuracy, and without using a combination tagger.
This establishes that CM computational models can
be independently built without using models from
constituent languages.

Code-mixing is abundantly observed in our daily
lives through personal chats, messages etc., apart
from social media. Since code-mixing is majorly
used on social media, CM datasets are built primar-
ily on social media data, which is domain-specific,
noisy, and has non-standard spellings and gram-
mar, especially for languages written in scripts
other than Roman (Vyas et al., 2014). This makes
annotation of such data a separate challenge in
itself. Additionally, extracting genuine CM data
from social media is a difficult task, accounting
for: (i) inadequate code-mixed datasets (Jose et al.,
2020), (ii) small sizes of available CM datasets and
(iii) low Code-mixing Ratio (CMR) (discussed in
Section 2) of such datasets (Jamatia et al., 2015;
Singh et al., 2018). To address these existing bottle-
necks of CM language research, through this work,
we explore the following fundamental question:

Can we generate high-quality annotated CM data
and build computational models with it,
comparable to natural CM data and its

subsequent computational models?
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To address the above question, we explore the
dual task of annotated CM data generation and
building computational models from this gener-
ated data, specifically for CM POS tagging. We
introduce PACMAN (PArallel CodeMixed dAta
generatioN) for CM POS tagging. Through PAC-
MAN, our motivation is to address the gaps in the
existing CM datasets and computational models.

First, we generate annotated CM POS tagged
data for Hinglish, through an alignment, annota-
tion and replacement strategy from parallel Hindi-
English corpus. The generated data has standard
spelling and grammar, unlike social media datasets.
Further, this alleviates the strenuous and difficult
task of annotating social media CM data. CM
datasets usually have sizes equal to or less than
a meagre 1000 samples (Jose et al., 2020). We re-
port a corpus of above 50K annotated POS tagged
CM samples, which are 100% code-mixed. Al-
though our data is generated for Hinglish, we claim
that our technique can be used to generate anno-
tated data for any CM language pair, provided a
parallel corpus and POS taggers are available for
both languages. To our knowledge, our work is
a first-of-a-kind, with respect to the generation of
CM annotated data. We discuss our data generation
pipeline in detail in Section 3.

Second, we build POS taggers using both Ma-
chine Learning (ML) and Deep Learning (DL)
based techniques on PACMAN data. Singh et al.
(2018) reports better accuracy with ML techniques
than DL models. Through this work, we illustrate
that this is predominantly due to the inadequacy of
data, typically required to build better deep learn-
ing models. Our DL model outperforms our ML
model by 1.5%. We would like to assert here that
we build our models independently on CM data
itself and not using a combination tagging strategy.
We also analyse the contribution of WLI on the
CM POS tagging task by infusing language infor-
mation into the models. The results obtained reveal
that with sizeable data, instances where language
information is useful, dwindle to a small fraction,
as we obtain similar accuracy without language in-
formation. We discuss our POS taggers in detail in
Section 4.

Third, in order to gauge the quality of our data
and models, we test them against the existing
benchmark in CM POS tagging (Aguilar et al.,
2020), which is based on social media text. Our
models outperform the SOTA benchmark by 10%,

despite having a higher CMR. Our results also
show that our models built on PACMAN data are
able to handle social media text as well as monolin-
gual text. This is largely because of the size of our
dataset, standard spelling and grammar integral to
PACMAN, and uniform distribution of words and
POS tags across Hindi and English. This makes our
models more generalized and equipped to handle
different types of CM data. We discuss qualitative
analysis of our data in Section 5, error analysis in
Section 6 and conclude in Section 7.

2 Code-mixing Terminology

In this section we define a few terms akin to code-
mixing, that we use in later sections of the paper:

• Matrix Language (MtxL) and Embedded
Language (EL): In a code-mixed sentence,
containing two (2) languages, the base lan-
guage, or the language from which the sen-
tence is ‘coming from’ is called the matrix
language and the other language is the embed-
ded language (Joshi, 1982)

• Switching Point (SP): Switching Points are
the junctions in a code-mixed text, where the
language switches (Chatterjee et al., 2020).

• Code-Mixing Index (CMI): It is the mea-
surement of the level of mixing between the
constituent languages in a code-mixed context
(Gambäck, 2014).

• Code-Mixing Ratio (CMR): CMR is the frac-
tion of samples in a code-mixed corpus that
are actually code-mixed.

3 Data Generation Pipeline

Code-mixed language research has recently re-
ceived a lot of attention in the NLP community.
Despite the recent interest, Jose et al. (2020) report
that there is a scarcity of datasets in the domain,
and existing datasets are very small ( 1000 sam-
ples per dataset on average). Besides, as CM is
prevalent on social media, the existing CM datasets
contain only social media text, which have non-
standard spelling and grammar and are difficult to
annotate. In order to bridge this gap, in the present
work, we endeavour to generate an exhaustive cor-
pus of annotated code-mixed data, that is generic
across domains and has standardised spelling and
grammar, unlike social media data.
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Figure 1: Data generation pipeline for PACMAN

We introduce PACMAN (PArallel CodeMixed
dAta generatioN a one-of-a-kind data generation
framework for CM POS tagging. It is a synthet-
ically generated data framework, curated via an
alignment, annotation and replacement based strat-
egy. Our approach is similar to the one applied by
Srivastava and Singh (2021), but with the added ob-
jective of uniform distribution of words across con-
stituent languages of the CM language pair. Cur-
rently, PACMAN is implemented for Hinglish, but
using the same strategy will work for any CM lan-
guage pair. The subsequent subsections present the
details involved in creating the PACMAN dataset.

3.1 Resources and Tools

As already discussed, we generate the PACMAN
dataset using an align, annotate, and replace strat-
egy. In order to facilitate this, we use the following
resources and tools:

• Parallel Corpus: We have used the
Hindi-English parallel corpus proposed by
Kunchukuttan et al. (2018) containing 1.6M
English-Hindi parallel sentences. The Hindi
counterpart of the corpus is available in De-
vanāgari script.

• Fast Align: It is a fast, simple and unsuper-
vised aligner introduced by Dyer et al. (2013)
that learns the word alignment between the
parallel sentences using log-linear reparame-
terisation of IBM Model 2, based on a varia-
tion of the lexical translation models proposed
by Brown et al. (1993).

• Stanza: An open-source python NLP toolkit
proposed by Qi et al. (2020), that covers a
wide range of text analytics tools, such as tok-
enization, lemmatization, POS tagging etc. in
66 languages.

• Indic-trans: It is used for transliteration
framework proposed by Bhat et al. (2014) to
convert the Devanāgari script to Roman and
vice-versa, based on a structured perceptron
model that uses letter alignments learned from
GIZA++ (Och and Ney, 2003).

3.2 Methodology

For generating annotated POS tagged Hinglish data,
we use a Hindi-English parallel corpus and com-
bine parallel sentences following the matrix lan-
guage theory introduced by Joshi (1982), using an
elegant rule-based algorithm illustrated in Figure 1.
A similar strategy was proposed by Srivastava and
Singh (2021), but they only embed English words
in Hindi sentences (Hindi as matrix language). We
additionally embed Hindi words in English sen-
tences (English as matrix language). This ensures
a uniform distribution of words and subsequently
POS tags across both the constituent languages
viz., Hindi and English. These word replacements
account for the introduction of switching points
and hence code-mixing of the generated sentences.
Analysis of code-mixed sentences reveals that the
words where the switch in languages happens, are
primarily nouns and in some cases adjectives (Sri-
vastava and Singh, 2021). We discuss each step of
our data generation pipeline in detail below:

1. Data Extraction: From the parallel corpus,
we filter out sentences of either language with
less than five (5) words and instances where
the Hindi parallel sentence contains English
words. We pre-process and clean the resulting
samples by removing unimportant tokens like
URLs etc.

2. Alignment: Next, we train fast aligner on the
pre-processed sample, which provides aligned
indices of words for Hindi to English as well
as English to Hindi, for each parallel sentence.

3. Annotation: Once the alignment is done, we
POS tag both the Hindi and English sentences
using Stanza POS tagger. We use the uni-
versal POS tagset (discussed in Section 4.1),
which is available as part of Stanza to annotate
the parallel sentences.

4. Replacement: This step is the most critical
step in our strategy. Once the Hindi and En-
glish parallel sentences are aligned and POS
tagged, we look for one-one word mappings in
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1. Data Extraction: Clean and extract sentences with at least 5 words
Hindi Sentence: उन प्लगइनों की सूची िजन्हें �डफोल्ट रूप से �नि�ष्क्रिय �कया गया है
English Sentence:  A list of plugins that are disabled by default

2. Alignment: Hi-En | En-Hi - Hindi as matrix language | English as matrix language
Hi-En: 1-0 3-1 2-2 5-3 5-4 5-5 8-6 9-7 5-8
En-Hi:  0-3 1-3 2-2 3-1 4-3 5-3 6-3 7-7 8-6 9-6 10-6 11-8

3. Annotation: POS tagging using Stanza POS tagger
Hindi: उन\DET प्लगइनों\NOUN की\ADP सूची\NOUN िजन्हें\PRON �डफोल्ट\ADJ रूप\NOUN से\ADP �नि�ष्क्रिय\ADJ �कया\VERB गया\AUX है\AUX
 English: A\DET list\NOUN of\ADP plugins\NOUN that\PRON are\AUX disabled\VERB by\ADP default\NOUN

Embedding Alignments: Hindi - English:  {सूची       list}          English - Hindi:  {plugins        प्लगइनों}

4. Replacement: Replace words with one-one mapping that are either nouns or adjectives. Add word-level language information.
Intermediate Code-mixed Text (MtxL: Hindi): उन\hi\DET प्लगइनों\hi\NOUN की\hi\ADP list\en\NOUN िजन्हें\hi\PRON �डफोल्ट\hi\ADJ 
रूप\hi\NOUN से\hi\ADP �नि�ष्क्रिय\hi\ADJ �कया\hi\VERB गया\hi\AUX है\hi\AUX
Intermediate Code-mixed Text (MtxL: English): A\en\DET list\en\NOUN of\en\ADP प्लगइनों\hi\NOUN that\en\PRON are\en\AUX 
disabled\en\VERB by\en\ADP default\en\NOUN
 
5. Transliteration: Transliterate Devanāgari script to Roman script.
Hindi as MtxL: un\hi\DET pluginon\hi\NOUN kii\hi\ADP list\en\NOUN jinhen\hi\PRON difolt\hi\ADJ rup\hi\NOUN se\hi\ADP niskriy\hi\ADJ 
kiya\hi\VERB gaya\hi\AUX he\hi\AUX
English as MtxL: A\en\DET list\en\NOUN of\en\ADP pluginon\hi\NOUN that\en\PRON are\en\AUX disabled\en\VERB by\en\ADP 
default\en\NOUN

Figure 2: A sample execution of our data generation pipeline on example parallel sentences. A sample token in
PACMAN is of the form: <word/LID/POS>. We have used the universal POS tagset. For the language identifier
(LID), each token is tagged as hi (Hindi), en (English) or rest (others). The final generated text for PACMAN data
both for Hindi and English as matrix languages can be observed.

the alignment that are either a noun or an ad-
jective. If such a mapping exists, from either
Hindi to English or English to Hindi align-
ments, we call them embedding alignments.
Essentially, we locate junctions in the paral-
lel sentences where code-mixing can happen.
For the Hindi parallel sentence, we replace the
words in Hindi with the words in English that
constitute the embedding alignments. This is
the case where Hindi is the matrix language,
and English is the embedded language. The
same is actuated for English as the MtxL and
Hindi as the EL. Using both Hindi and En-
glish as matrix languages ensures that the vo-
cabulary as well as the POS tag distribution
is uniform across both languages. We add the
word-level language information (hi for Hindi,
en for English, rest for others) in the gener-
ated sentences, as the information is known
based on the matrix and embedded language.

5. Transliteration: The Hindi words in the gen-
erated data, are in Devanāgari script, as they
occur in the same form in the parallel corpus.
We use Indic-trans to transliterate the words
in Devanāgari to Roman script in order to
generate the final PACMAN code-mixed an-
notated data, which is completely in Roman
script.

The generated PACMAN dataset is Roman in
form and each word (token) is annotated with a
language identifier (LID) (hi for Hindi, en for En-
glish, rest for others) and POS label from Stanza.
A sample token of PACMAN is of the form:
<word/LID/POS>. We have demonstrated the
execution of our data generation pipeline for a sam-
ple set of parallel sentences in Figure 2. An ex-
ample of generated PACMAN data can also be
visualized in this figure.
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Figure 3: Percentage-wise POS distribution of PAC-
MAN over 12 universal POS tags

3.3 Corpus Statistics
We generate the PACMAN dataset through an
alignment, annotation and replacement based strat-
egy discussed in Section 3.2. The generated dataset
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contains 51118 unique pure CM Hinglish POS
tagged sentences, with an average CMI of 14.61
and 100% CMR. The average sample length in
the dataset is 28 as shown in Table 2. The POS
distribution over 12 universal POS tags is shown in
Figure 3.

4 Part-Of-Speech Tagging

In this section, we discuss the tagset used for
POS annotation, details and performance of the se-
quence labeling models applied on the PACMAN
dataset for word-level POS prediction. In addition,
we also analyse the contribution of WLI for the
CM POS labeling task.

4.1 Part-Of-Speech tagset

We have already discussed earlier that during our
data generation phase, we use the Universal POS
tagset introduced by Petrov et al. (2012), who
established that a coarse-grained POS tagset of 12
tags is sufficient for POS tagging and performs
well for the task, compared to a fine-grained
tagset as in Marcus et al. (1993). The Stanza
POS tagger has provision for the universal POS
tagset (called upos), but has 17 unique POS tags.
In order to maintain the 12 POS tags proposed
by Petrov et al. (2012), we have post-processed
our data by replacing AUX to VERB, PROPN to
NOUN, SCONJ and CCONJ to CONJ. Further,
from the POS distribution statistics shared in
Figure 3, it can be seen that tag X contributes only
0.02% of total tag counts. Hence, we remove
the samples containing X tag from our dataset,
as it is statistically insignificant. The final set of
11 POS tags are: ADJ, ADP, ADV, VERB,
CONJ, DET, NOUN, NUM, PART, PRON,
PUNCT.

4.2 Sequence Labeling Models

To establish the efficacy of the generated PAC-
MAN dataset, we built sequence labeling models
on it. We experimented with an ML model and a
DL model viz., Conditional Random Field (CRF)
and Bidirectional LSTM (BiLSTM). Previous re-
search has validated the use of CRFs (Toutanova
et al., 2003; Choi et al., 2005; Peng and McCal-
lum, 2006) and LSTMs / BiLSTMs (Ghosh et al.,
2016; Wang et al., 2015) for POS tagging and other
sequence labeling NLP tasks. We experimented
with the transformer-based models as in Aguilar
et al. (2020), but do not report them, as they were

outperformed by CRF and BiLSTM.

We have used the CRF model proposed by Laf-
ferty et al. (2001), using the faster ”L-BFGS” (Liu
and Nocedal, 1989) optimization. We used the fol-
lowing set of hand-crafted linguistic features for
the CRF classifier: (i) The current token W , (ii)
index of the W , (iii) affixes of length 1 to 3, (iv) a
binary feature indicating whether all characters in
W are uppercase or lowercase, (v) a binary feature
indicating whetherW has any upper case character,
(vi) a binary feature indicating whether there is any
digit character in W , (vii) previous and next word
of W , (viii) a binary feature indicating whether W
has a hyphen (-). To prevent over-fitting, we use
L1 and L2 regularization. We used grid search to
extract the optimal hyper-parameters for the CRF
model. We call this model PACMANCRF .

We do not use any hand-crafted features for our
BiLSTM model. Instead, we train a set of word
embeddings as part of the neural network designed
for the word level POS prediction task. This en-
sures that word embeddings are tuned for the POS
tagging task. We have kept the dimension of the
word embeddings as 128. These embeddings are
passed on to the BiLSTM layer (output dimension
512), followed by a set of feed forward layers (di-
mensions 512 and 256), and finally a softmax layer
for the POS prediction. To prevent over-fitting, we
add a dropout (0.25) layer and L1, L2 regulariza-
tions. We experimented with different sets of hyper-
parameters, layer sequences, and dimensions, but
this configuration yielded the best performance.
We call this model PACMANBiLSTM .

For both the sequence labeling tasks, we take a
75:5:20 split for training, validation and testing
sets for our models. The Precision, Recall and F1-
score for PACMANCRF and PACMANBiLSTM

are reported in the first half of Table 1. It
can be observed that the PACMANCRF model
achieves an overall F1-score of 0.965, whereas
the PACMANBiLSTM model outperforms the
PACMANCRF model with an overall F1-score of
0.979. Singh et al. (2018) reports that ML-based
techniques work better than DL-based techniques
for CM POS labeling. Our results show that this is
predominantly due to the inadequacy of data, typi-
cally required to build better deep learning models.
Since, our data is almost 50 times that of Singh et al.
(2018), our DL model viz., PACMANBiLSTM with
an F1-score of 98% performs better than our ML
model PACMANCRF by 1.5%.
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Without WLI With WLI

POS PACMANCRF PACMANBiLSTM PACMANL
CRF PACMANL

BiLSTM

P R F P R F P R F P R F
ADJ 0.939 0.92 0.929 0.955 0.946 0.95 0.943 0.912 0.927 0.95 0.948 0.949
ADP 0.983 0.987 0.985 0.988 0.99 0.989 0.985 0.989 0.987 0.988 0.991 0.99
ADV 0.914 0.908 0.911 0.947 0.956 0.952 0.915 0.902 0.909 0.951 0.956 0.954

CONJ 0.959 0.968 0.963 0.978 0.976 0.977 0.959 0.97 0.964 0.979 0.975 0.977
DET 0.972 0.956 0.964 0.988 0.984 0.986 0.978 0.962 0.97 0.99 0.983 0.987

NOUN 0.974 0.975 0.974 0.983 0.981 0.982 0.97 0.977 0.974 0.981 0.983 0.982
NUM 0.963 0.978 0.97 0.974 0.984 0.979 0.993 0.988 0.991 0.99 0.987 0.988
PART 0.987 0.989 0.988 0.994 0.993 0.993 0.99 0.99 0.99 0.993 0.992 0.993
PRON 0.975 0.978 0.976 0.99 0.991 0.99 0.978 0.98 0.979 0.99 0.993 0.991
VERB 0.971 0.973 0.972 0.988 0.99 0.989 0.975 0.976 0.975 0.99 0.988 0.989

PUNCT 0.983 0.983 0.983 0.992 0.981 0.986 0.985 0.983 0.984 0.99 0.983 0.986
Avg 0.965 0.965 0.965 0.98 0.979 0.979 0.97 0.966 0.968 0.981 0.98 0.981

Table 1: Precision (P), Recall (R) and F1-score (F) for CRF and BiLSTM sequence labeling models, on PACMAN
data, with and without WLI. It can be observed that the PACMANBiLSTM performs better than the PACMANCRF .
Also, infusing WLI parameter does not boost the F1-scores for both models.

4.3 Contribution of Word-Level Language
Information

Solorio and Liu (2008); Vyas et al. (2014) empha-
size that word-level language information (WLI) is
a requisite for POS tagging CM text. Singh et al.
(2018) have shown a slight increase in the overall
F1-score (2%) when language information is con-
sidered. In Section 4.2, we observed the accuracy
of our sequence labeling models on CM POS tag-
ging without language information for each word.
To gauge the effect of language information on CM
POS tagging, we model the POS sequence labeling
task with the annotated WLI, which is captured
during data generation. We do not build a language
identifier (LID) model. The WLI tags are added to
the train, validation, and test data, split in 75:5:20,
as discussed in Section 4.2. For the PACMANCRF

model, we add a language feature for word W ,
and for PACMANBiLSTM , we model the language
information for each word, as part of the word em-
beddings. We name the models PACMANL

CRF and
PACMANL

BiLSTM respectively.
The Precision, Recall and F1-score for

PACMANL
CRF and PACMANL

BiLSTM are reported
in the second half of Table 1. It is evident from
the results that post the infusion of WLI, there
is almost no increase in performance (0.3% for
CRF and 0.2% for BiLSTM) of the CM POS label
prediction, even though ground-truth WLI labels
are provided in test data and not probabilistic la-
bels from a LID model. We also found that the
predicted POS labels for PACMANBiLSTM and
PACMANL

BiLSTM differ by only 1.13%. As our
findings are contrary to previous research in CM
POS tagging, we investigated the statistical signif-

icance of our findings. We obtained a p-value of
9.6e−9 (<< 0.05 threshold), validating that our
observations are statistically significant.

This establishes that for a significantly large
dataset, that is uniformly distributed across con-
stituent languages of a CM setting, the models learn
the sequential data better and are able to assign
classes to each word based on the context, inher-
ently capturing the language information for each
word. Thus, the requirement of WLI is nullified for
the CM POS labeling task.

It can be observed in Table 1 that despite similar
overall F1-scores, there is a dissimilarity in Preci-
sion, Recall, and F1-scores of individual POS tags.
To understand this, we did further analysis on the
impact of WLI on our sequential models. We found
that WLI aids in the correct POS category identi-
fication of words when they have the exact same
spelling in both English and transliterated Hindi.
Words like the (was), he (is), main (me) which
are also English words, are some examples of such
cases (example shown in Appendix A through Fig-
ure 5). These cases are just a handful though, and
hence do not affect the overall accuracy of the se-
quence labeling models.

5 PACMAN: Qualitative Evaluation

In this section, we gauge the quality of our dataset
and models against the existing benchmark for CM
POS tagging i.e., Linguistic Code-switching Eval-
uation (LinCE), reported by Aguilar et al. (2020).
Since PACMAN is synthetically generated, it is cru-
cial that its efficacy is tested against a benchmark
social media dataset (LinCE), which is considered
natural CM data. To this end, we devise a set of
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intricately designed experimental scenarios for this
comparative investigation.

5.1 Dataset Statistics Comparison

We first compare the statistical parameters across
the proposed PACMAN dataset and the benchmark
dataset LinCE, exhibited in Table 2. The compar-
ison of POS distributions between PACMAN and
LinCE are also shown in Appendix A through Fig-
ure 4.

Parameters PACMAN LinCE
# Code-mixed samples 51118 1077

# English samples 0 343
# Hindi samples 0 69

CMR (%) 100 72.33
Average CMI 14.12 14.16

Avg. Sample Length 28.16 15.11
Total # tags 1477765 26416

Table 2: Comparison of statistics between PACMAN
and LinCE code-mixed datasets. The key parameters to
note here are the avg CMI, CMR and avg sample length.

In terms of the number of samples and tags, PAC-
MAN is almost 50 times that of LinCE. Jamatia
et al. (2015) stated that in order to compare, two
CM datasets, it is imperative that their complexi-
ties are similar i.e., their average CMIs are close to
each other. The average CMIs of both PACMAN
and LinCE are around 14 and thus comparable. As
for the number of actual CM samples, PACMAN
and LinCE have CMR values of 100% and 72%,
respectively. The average sample length in LinCE
is 15 and that of PACMAN is 28.

5.2 Experimental Setup

Comparing code-mixed datasets is tough, due
to differences in source and level of mixing ob-
served across such datasets. The benchmark LinCE
dataset is based on tweets, extracted over a hand-
ful of topics, making it domain-specific and noisy
in nature. Whereas PACMAN is domain agnos-
tic and has standard spelling and grammar. We
pre-processed both PACMAN and LinCE, for ho-
mogeneity, and built a set of customised scenarios
to compare them.

5.2.1 Data Pre-processing
For the LinCE dataset, we observed that the authors
had followed a customised annotation scheme,
with 3 extra tags viz., PART NEG, PRON WH and
PROPN. To map LinCE to the standard universal
POS tagset, we converted PART NEG to PART,

PRON WH to PRON and PROPN to NOUN. Further,
the LinCE dataset does not contain the PUNCT
tag and PACMAN does not contain X tag. We
remove all occurrences of PUNCT from PACMAN
and X from LinCE, without affecting the context/
meaning of the samples, resulting in a total of 10
POS tags across both datasets. We name these pre-
processed datasets PACMANPCD and LinCEPCD.

5.2.2 Comparison Scenarios
We gauge the quality of the PACMAN dataset
against the LinCE benchmark, without language
information, as we have already established in
Section 4.3 that WLI does not affect the accu-
racy of the sequence labeling models. To com-
pare the pre-processed datasets (PACMANPCD

and LinCEPCD), we devised a set of experimen-
tal scenarios. For actuating the best performance
framework, we utilise the highest performing mod-
els for LinCE (CRF which is the SOTA, as reported
by Singh et al. (2018)), and PACMAN (BiLSTM)
as discussed in Section 4) on the following care-
fully devised experimental scenarios:

1. S1: Trained and tested on LinCE data.
Train: LinCEPCD | Test: LinCEPCD
Purpose: Estimate benchmark accuracy

2. S2: Trained and tested on PACMAN data.
Train: PACMANPCD | Test: PACMANPCD

Purpose: Measure PACMAN accuracy

3. S3: Trained on LinCE, tested on PACMAN.
Train: LinCEPCD | Test: PACMANPCD

Purpose: Evaluate how well LinCE gener-
alises on PACMAN data (standard spelling
and grammar)

4. S4: Trained on PACMAN, tested on LinCE.
Train: PACMANPCD | Test: LinCEPCD
Purpose: Gauge how well PACMAN gener-
alises on LinCE data (social media text)

5.3 Results and Discussion
The results of the experiments proposed in Sec-
tion 5.2.2 are shown in Table 3. For scenarios
S1 and S2, it can be seen that PACMAN outper-
forms the benchmark LinCE, by 9% and 14%
for CRF and BiLSTM, respectively. Essentially,
PACMANBiLSTM (S2: BiLSTM, with an f1-score
of 98%) surpasses the SOTA benchmark (S2: CRF,
with an f1-score of 88%) by 10%.

Comparing the scenarios S3 and S4, it can be
seen that the models that are trained on PACMAN
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data perform better than the ones trained on LinCE
data (7% and 10% for CRF and BiLSTM respec-
tively). Also, CRF outperforms BiLSTM with
LinCE data, as LinCE dataset is small and not ad-
equate for training/testing the BiLSTM model (as
discussed in Section 4.2).

POS CRF BiLSTM
S1 S2 S3 S4 S1 S2 S3 S4

ADJ 0.67 0.93 0.34 0.57 0.65 0.95 0.27 0.50
ADP 0.94 0.98 0.85 0.79 0.93 0.99 0.86 0.83
ADV 0.82 0.91 0.49 0.62 0.80 0.98 0.48 0.76

CONJ 0.91 0.96 0.79 0.58 0.92 0.99 0.79 0.75
DET 0.88 0.96 0.64 0.80 0.87 0.99 0.68 0.78

NOUN 0.88 0.97 0.72 0.79 0.81 0.98 0.41 0.72
NUM 0.96 0.97 0.76 0.86 0.92 0.94 0.70 0.59
PART 0.84 0.99 0.54 0.75 0.86 0.99 0.64 0.74
PRON 0.86 0.98 0.67 0.72 0.83 0.98 0.58 0.66
VERB 0.90 0.98 0.72 0.83 0.82 0.98 0.55 0.62

Average 0.88 0.97 0.70 0.77 0.84 0.98 0.60 0.70

Table 3: F1-scores obtained for CRF and BiLSTM on
scenarios S1−4. S1 and S2 show that PACMAN out-
performs the benchmark by 9%. S3 and S4 show that
PACMAN generalises better on LinCE data, but LinCE
is not able to generalise equally well on PACMAN data.

This essentially emphasizes that: (i) Sequence la-
beling models trained on PACMAN data are able to
generalise better than LinCE, even on social media
data, as PACMAN data follows standard spelling
and grammar. (ii) Models trained on LinCE (social
media data) do not generalise as well on standard-
ised data. (iii) LinCE has 28% monolingual data,
but PACMAN is able to handle monolingual data
as well, due to the exhaustive and uniform word
and POS tag distribution across Hindi and English.
We can conclusively establish that not only is PAC-
MAN larger and standardised, but also computa-
tionally superior, and is capable of generalising on
natural CM data as well as monolingual data.

6 PACMAN: Error Analysis

With the motivation of bridging gaps in existing
CM datasets and computational models we gener-
ate PACMAN, using an alignment, annotation and
replacement strategy from parallel Hindi-English
corpus. Although the generated data is clean, for-
malised, and yields impressive results, our analy-
sis shows that the usage of probabilistic tools and
resources adversely affects the quality of the gen-
erated dataset, although such cases are scarce. We
highlight these inaccuracies with examples, for ev-
ery stage of our data generation pipeline.

Inaccuracies in the Parallel Corpus: We ob-
served a few errors in the Hindi parallel sentences
in the corpus like:

1. Multiple Devanāgari forms of same Hindi
words
e.g., h{/ h� - hai (is); nEh/ nEh\ - nahi (no)

2. Hindi translations of English words being
merely their Devanāgari forms
e.g., EXPoSV (default) , X�VAb�s (database)

This results in incorrect non-standard words
in the dataset, from the transliterations (he (hai),
nahin (nahi), difolt (default), databes (database)).

Inaccurate Alignment: Due to inherent con-
straints in Fast Align, sometimes the alignment
results rendered are inaccurate. This leads to in-
correct word replacements and redundant words,
resulting in erroneous data. In the example below
it can be observed that the word dhvani (sound)
is redundant and incorrect, due to the inaccurate
alignment of the words @vEn(dhvani) and event.

English Sentence: Whether or not to play event sounds

Hindi Sentence: घटनाओं हेतु ध्व�न बजाएँ या नहीं

Alignment: En-Hi: 0-0  1-0  2-6  3-6  4-1  5-2

Final Generated text:

Whether\en\SCONJ or\en\CCONJ not\en\PART to\en\PART play\en\VERB 

dhvani\hi\NOUN sounds\en\NOUN

Inaccurate POS tagging: Due to a more flexi-
ble grammatical structure in Hindi, Stanza is occa-
sionally unable to correctly adjudicate the relative
positions of adjectives and adverbs w.r.t nouns and
verbs. For e.g., ADJ: b� rF / buri (bad) can come in
one of the following orders:

1. Before a NOUN: b� rF cFj / buri cheej (bad
thing)

2. After a NOUN: aAdt b� rF / aadat buri (bad
habit)

Stanza annotates the latter as: aadat\NOUN
buri\NOUN, due to the confusion infused by Hindi
grammar, resulting in an error in the dataset.

Stanza is capable of handling multi-word expres-
sions (MWE), which leads to poor tagging reso-
lutions in some cases. For e.g., for the word se-
quence ambient light is detected as a MWE, result-
ing in ambient being annotated as NOUN instead
of ADJ. This results in the incorrect entry ‘ambi-
ent\en\ADJ prakaash\hi\NOUN’ in the dataset.
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Inaccurate Transliteration: In some cases,
Indic-trans renders erroneous transliteration. For
e.g., ‘e�’ (hey) in ‘e� rAm iDr aAao’ (Hey Ram
come here), is transliterated to ’I’, which leads to
Stanza incorrectly tagging ‘e�’ as PRON, instead of
PART, resulting in inefficient data.

7 Conclusion and Future-work

In this paper, we address some of the existing lim-
itations in the datasets and computational models
for code-mixed languages, specifically for the CM
POS tagging task.

We propose a first-of-its-kind work in generating
CM annotated data. We introduce the PACMAN
dataset, generated using an alignment, annotation
and replacement strategy from Hindi-English par-
allel corpus. We claim that PACMAN is the largest
CM annotated dataset (around 50K samples). Al-
though the generated dataset is for Hinglish, the
strategy can be transferred to any CM language pair,
having available parallel corpus and POS taggers.

The PACMAN data adheres to standard spelling
and grammar, unlike social media data, primarily
used in CM research work. The use of both Hindi
and English as matrix languages, ensures uniform
distribution of words in both languages, and the
potential to understand monolingual contexts.

To establish the effectiveness of the dataset, we
build both ML (CRF) and DL (BiLSTM) based se-
quential labeling models on PACMAN data. Unlike
previous work, our DL model outperforms the ML
model by 1.5%.

We analyse the effect of word-level language
information on the CM POS tagging task, which
reveals that, with a larger dataset, cases where WLI
is crucial, are minuscule, thus elevating the need
for WLI in CM POS labeling.

We validate our dataset against the existing
benchmark dataset for CM POS tagging. Our best
model outperforms the SOTA benchmark by 10%
and in all computational scenarios, signifying that
our dataset is more generalised and capable of han-
dling a wide spectrum of CM data as well as mono-
lingual data.

Scrutiny of errors observed in our dataset mani-
fests that inaccuracies in probabilistic tools and
resources used as a part of the data generation
pipeline, adversely affect the quality of the dataset,
although such cases are scarce.

In future, we endeavour to generate more data in
order to build transformer-based models on PAC-

MAN, and use matrix language information to pre-
vent errors actuated by structural differences be-
tween Hindi and English.
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A Appendix

POS Tags
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Figure 4: Percentage-wise comparison of POS distribution between PACMAN and LinCE over 12 universal POS
tags. The high percentage of the ‘X’ POS tag indicates that the LinCE data is social media based and hence noisy.

Sample sentence: use truth bolke burden kam kar diya

Translation: I lessened his burden by telling him the truth 

PACMANBiLSTM: use\VERB truth\NOUN bolke\VERB burden\NOUN kam\ADJ

             kar\VERB diya\VERB

Sentence with WLI: usehi truthen bolkehi burdenen kamhi karhi diyahi

PACMANL
BiLSTM: usehi\PRON truthen\NOUN bolkehi\VERB burdenen\NOUN 

             kamhi\ADJ karhi\VERB diyahi\VERB

Explanation:  ‘use’ (his) is used in Hindi (hi) as a pronoun (PRON).

                            This is confused with ‘use’ is English (en), which is a verb (VERB).

Figure 5: Example showing where word-level language information (WLI) helps in correct POS identification.
It can be seen that the word ’use’ (Hindi for his) has different meanings but the same spelling in English and
transliterated Hindi. With WLI, this confusion is resolved, and the correct POS tag is predicted.
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Abstract

Error corpora are useful for many tasks, in
particular for developing spell and grammar
checking software and teaching material and
tools. We present and compare three special-
ized Icelandic error corpora; the Icelandic L2
Error Corpus, the Icelandic Dyslexia Error Cor-
pus, and the Icelandic Child Language Error
Corpus. Each corpus contains texts written by
speakers of a particular group; L2 speakers of
Icelandic, people with dyslexia, and children
aged 10 to 15. The corpora shed light on errors
made by these groups and their frequencies,
and all errors are manually labeled according
to an annotation scheme. The corpora vary in
size, consisting of errors ranging from 7,817
to 24,948, and are published under a CC BY
4.0 license. In this paper, we describe the cor-
pora and their annotation scheme, and draw
comparisons between their errors and their fre-
quencies.

1 Introduction

Error analysis is a crucial part of corpus linguis-
tics and applied linguistics as it provides an insight
into language use and the needs of speaker groups
within a language. It thereby facilitates the devel-
opment of a variety of practical tools to aid these
needs, such as more focused teaching and learn-
ing materials, and software tools like spelling and
grammar checkers. To contribute to this field, we
present three Icelandic error corpora, each focusing
on different speaker populations; second language
users of Icelandic (hereinafter: L2 Icelandic), chil-
dren at the age of 10 to 15, and people with dyslexia.
Thus, we have created three manually annotated
error corpora of different sizes, one for each respec-
tive informant group, and extracted statistical data
on the errors that occur. These corpora are an in-
valuable source for further research in Icelandic for
both academic and practical purposes. All corpora
are published under a CC BY 4.0 license. (Ingason
et al., 2022b,a, 2021)

The paper is structured as follows. Section 2
discusses the creation of error corpora in general.
Section 3 describes the specialized error corpora,
their annotation and the three respective corpora.
Section 4 draws comparisons between the errors in
the three specialized corpora and compares them to
errors in a previous general error corpus. Section
5 discusses possible future use of the corpora and
finally, we conclude with Section 6.

2 Creating Error Corpora

Error analysis has been an integrated part of ap-
plied linguistics and computational linguistics for
decades, and corpus linguistics in general has de-
veloped as a key methodology in the humanities
and social sciences (Paquot and Gries, 2020). It
provides key insight into both the errors that adult
native speakers of a language produce in writing,
as well as those of language learners, children, and
people with different learning difficulties such as
dyslexia. Gathering data on these errors has be-
come a standard practice for many languages and
is invaluable for creating different software tools
for language correction and suggestion, such as
spell checkers, grammar assistance, and lexical and
stylistic suggestions. Furthermore, an error corpus
gives way to contrastive analysis which leads to
better understanding of language use in different
groups and the creation of both digital and analogue
content that would facilitate them (e.g. improving
teaching materials for second language learners
and children).

The Icelandic Error Corpus was created for this
purpose, and was the first Icelandic error corpus
(Arnardóttir et al., 2021). It has already been used
for developing an Icelandic open-source spell and
grammar checker (Óladóttir et al., 2022), wherein
the labeled errors in the corpus are used to measure
the spell and grammar checker’s improvements.
This error corpus consists of texts written by Ice-
landic native-speaking adults with no known learn-
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ing disabilities, and provides information on errors
which this speaker group is likely to make. How-
ever, the Icelandic population consists of various
speakers who might make errors different to a gen-
eral speaker. For this purpose, error corpora for
particular speaker groups are important. Analyzing
errors made by these groups enables the develop-
ment of spell and grammar checkers and practical
tools suited for those groups, as well as facilitating
effective teaching methods and materials.

3 The Icelandic Specialized Error
Corpora

Three Icelandic error corpora were created between
the fall of 2019 and the fall of 2022, reflecting three
different user groups; The Icelandic L2 Error Cor-
pus, The Icelandic Dyslexia Error Corpus, and The
Icelandic Child Language Error Corpus. All cor-
pora are published under a CC BY 4.0 license in
the Icelandic CLARIN repository (Ingason et al.,
2022b,a, 2021). An older version of the Icelandic
L2 Error Corpus was described in Glisic and Inga-
son (2022).

3.1 Annotation

The Icelandic Specialized Error Corpora all have
the same annotation scheme and structure, which is
shared by the Icelandic Error Corpus (Arnardóttir
et al., 2021). The steps involved in creating the cor-
pora were gathering large quantities of texts within
each focus category, manually proofreading the
texts for errors, and finally creating the corpus in
the decided digital format. Each error in the texts
was then manually labeled within a pre-decided
annotation scheme. The corpora are published in
augmented TEI-format XML documents, making
them machine readable so that corpus management
platforms particular to TEI format files can be used
to obtain information from the corpus. A specific
TEI element, revision, was created to map out the
differences between the original text file and the
manually corrected file. Each XML document con-
sists of many revision spans that include the mis-
matching text and one or more error tags that are
manually classified within a previously decided
annotation scheme.

Errors in the original texts were detected by fol-
lowing Icelandic spelling and grammar rules. Many
of these rules are included in the Icelandic language
council’s spelling rules.1 Rules on language usage

1https://ritreglur.arnastofnun.is

are included in a resource called Málfarsbankinn2

(direct translation: The Language Usage Bank).
This is a collection of rules and general advice
concerning grammar, fixed phrases, spelling, and
more. In addition to these explicit errors, stylistic
errors were also corrected, i.e. errors which are
not included in the aforementioned resources, but
belong to known guidelines for writing text. These
errors for example include using numerals instead
of numbers in particular cases.

Language error classification can be done in
many different ways, but two major categories
are mostly defined as linguistic errors (morphol-
ogy, syntax, etc.) and surface structure taxonomies
(omission, addition, etc.), where most studies com-
bine the analysis of both these categories (Macdon-
ald et al., 2013). This practice was adopted for the
Icelandic error corpora and a particular annotation
scheme was created. It evolved as the error annota-
tion progressed and new types of texts came in —
particularly many new error categories were noted
with L2 texts (more on this in Subsection 3.2).

The annotation scheme is hierarchical with three
layers. Errors are classified within five main cat-
egories: orthography, grammar, vocabulary, co-
herence, and style. Each main category is further
divided into more descriptive subcategories, which
are then divided into error codes, 258 in total.3

Each error code describes a specific type of error,
although the scope and particularity can vary. For
example, the code ‘af4að’ is used when the prepo-
sition að ‘to’ is mistakenly replaced by af ‘of’,
whereas ‘wrong-prep’ is used in general with incor-
rect prepositions. ‘i4y’ is used when letters “i” and
“y” are mixed up in a word but ‘letter-rep’ is used
when a letter incorrectly replaces another one. This
difference in scope is because both initial analysis
and previous research on e.g. learner language in-
dicated that certain specific errors occurred quite
frequently, and the more detailed the annotation
system, the better insight we can have into these
errors, which will be of great value for future re-
search. ‘Wording’ is the most general error type,
and includes any type of formulating a phrase or
a clause in a wrong way. Finally, some detected
errors are connected to another error(s) within the
sentence, such as in ‘wording’ and errors connected

2http://malfar.arnastofnun.is
3The annotation scheme is accessible

at https://github.com/antonkarl/
iceErrorCorpusSpecialized/blob/master/
errorCodes.tsv.
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to syntax. These are classified within a separate
category, ‘other’, which includes only one error
code, ‘dep’, representing a dependent error.

Initial work on the Icelandic error corpus started
in the autumn of 2019, and as of January 2020, sev-
eral proofreaders were working with the texts; at
one point a total of 12 people were reading over and
correcting. Five specialists (either language tech-
nologists or Icelandic language specialists) worked
on converting the texts into corpus data, creating
the annotation system, and finally categorizing the
errors found in the texts. Texts in the specialized
error corpora needed to be collected from private
sources, since no freely accessible texts written by
these user groups were available. This proved to
be a difficult and time-consuming process, because
awareness about the project had to be raised within
the interest groups and they had to be encouraged
to participate. Interested authors signed publication
agreements, which differed between user groups,
and is discussed further in the sections pertaining
to each corpus.

3.2 The Icelandic L2 Error Corpus

Icelandic is an increasingly popular language
among language learners; there is a sizable pop-
ulation of immigrants in Iceland, who learn Ice-
landic to integrate into society. Additionally, there
are people who are interested in learning Icelandic
because they are language enthusiasts. However,
teaching materials for Icelandic as a second lan-
guage are scarce and in high demand. The creation
of an L2 error corpus is a major step towards facili-
tating better teaching materials and also language
learning tools (Glisic and Ingason, 2022). The ver-
sion of the Icelandic L2 Error Corpus which is
discussed here is an improved version of the one
discussed in Glisic and Ingason (2022). More data
has been added, and as a result, more errors have
been collected.

The Icelandic L2 Error Corpus is a collection
of 101 texts, predominantly student essays, written
by 44 non-native speakers of Icelandic with 17 dif-
ferent native languages, containing in total 24,948
error instances in 17,241 revisions. Table 1 shows
this, along with word count and frequency of errors
per 1,000 words, which is 153.93.

Figure 1 and Table 2 depict the error rate per
1,000 words based on skill level, where the width
of the bars indicates the number of words submit-
ted for each level. Skill levels are shown accord-

Revisions Errors Files Words Errors/1,000w
17,241 24,948 101 162,071 153.93

Table 1: Number of revisions, errors, files, words, and
errors per 1,000 words in the Icelandic L2 Error Corpus

ing to the Common European Framework of Ref-
erence for Languages (CEFR), which is an inter-
national standard for describing language ability.
It describes language ability on a six-point profi-
ciency scale – A1, A2, B1, B2, C1, C2. ‘A’ is
considered the beginner level, ‘B1’ intermediate,
‘B2’ advanced and ‘C’ proficient (near-native) level
(North and Piccardo, 2020). As mentioned, the cor-
pus as a whole has 153.93 errors per 1,000 words,
but the number of errors varies based on the au-
thors’ accomplished skill level and steadily drops
in accordance with the language learning progress.

Figure 1: Error rate per 1,000 words in the Icelandic L2
Error Corpus according to learner level.

Level Files Total words Total errors Errors/1,000w
A1 20 7,960 2,437 306.16
A2 22 14,695 3,196 217.49
B1 14 16,071 3,196 186.92
B2 14 21,447 3,834 178.77
C1 16 27,871 3,798 136.27
C2 15 74,027 8,679 117.24

Table 2: Number of files, words, errors, and errors per
1,000 words in the Icelandic L2 Error corpus according
to proficiency level.

In Table 3, we display the top 10 most com-
mon errors in the Icelandic L2 Error Corpus. The
most common error is ‘wording’, which makes up
10.96% of the errors. ‘Punctuation’ and ‘inflection’
follow closely behind at 9.60% and 9.04%. Bear in
mind that here we include L2 speakers of all pro-
ficiency levels. It is interesting to note that while
‘inflection’ is the third most common error in the
L2 corpus, it is not even in the top 10 most common
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errors in the Icelandic Error Corpus (Arnardóttir
et al., 2021).

Subcategory Main category n prop
wording style 2735 11.0
punctuation orthography 2396 9.6
inflection grammar 2256 9.0
miscellaneous other 1895 7.6
agreement grammar 1526 6.1
prep grammar 1452 5.8
definitiveness grammar 1186 4.8
typo orthography 1153 4.6
syntax grammar 1146 4.6
insertion vocabulary 1133 4.5

Table 3: Top 10 most frequent errors in the Icelandic L2
Error Corpus according to subcategory.

As mentioned in Subsection 3.1, the texts were
previously unpublished and obtained directly from
their authors. The text collection effort lasted from
September 2020 to May 2022. The call for texts
was first directed to the students of Icelandic as a
second language at the University of Iceland, but
was subsequently extended to a public call. As
a result of the call to students at the university,
the texts are mainly student essays submitted for
evaluation in various courses at the University of
Iceland. Authors signed publication agreements,
wherein they stated their native language, agreed
to the text being published, and could choose to be
anonymous or not. Out of 44 authors, seven chose
to not be anonymous.

3.3 The Icelandic Dyslexia Error Corpus

Dyslexia is a learning disability, causing difficulty
with reading but also with writing. In general, peo-
ple with dyslexia make more misspellings than peo-
ple who do not have it, and also different types of
errors, which can affect how useful general spell
and grammar checkers are for people with dyslexia.
This difference in error rate and error type has not
been previously studied for Icelandic informants,
and for that reason, the Icelandic Dyslexia Error
Corpus was created.

The dyslexia texts were collected through an
open call. The only criteria for the texts was that
their authors’ native language was Icelandic, and
that they had been diagnosed with dyslexia, but no
proof of a diagnosis was asked for. The texts were
written by informants born between 1961 and 2004
and some texts were written by the same author.

For ethical reasons, as dyslexia is a medically diag-
nosed disorder, no more information on the authors
was retained.

The Icelandic Dyslexia Error Corpus consists
of 35 files totaling 38,891 words, and has 5,075
revisions with 8,436 errors (see Table 4). The
error rate in the Icelandic Dyslexia Error Corpus is
216.91 errors per 1,000 words, which is the highest
error rate of all the corpora, exceeded only by the
A1- and A2-level L2 speakers.

Revisions Errors Files Words Errors/1,000w
5,075 8,436 35 38,891 216.19

Table 4: Number of revisions, errors, files, words, and
errors per 1,000 words in the General Dyslexia Error
Corpus.

Table 5 displays the 10 most frequent errors in
the Icelandic Dyslexia Error Corpus, according to
subcategory. The corpus shares similarities with
the Icelandic Error Corpus in that among the most
common errors are ‘punctuation’ and ‘wording’,
but unlike the other corpora, the dyslexia corpus
has a higher proportion of typos; a characteristic
which is expected of people with dyslexia. The
‘nonword’ error code (a non-compound that does
not appear in the dictionary) is also relatively high
compared to the other corpora.

Subcategory Main category n prop
typo orthography 905 10.7
punctuation orthography 903 10.7
wording style 812 9.6
nonword orthography 758 9.0
miscellaneous other 545 6.5
syntax grammar 524 6.2
spacing orthography 443 5.2
insertion vocabulary 411 4.9
omission vocabulary 361 4.3
spelling orthography 355 4.2

Table 5: Top 10 most frequent errors in the Icelandic
Dyslexia Error Corpus according to subcategory.

Texts included in this corpus were collected over
a two-year period, between October 2020 and Oc-
tober 2022, by different means. A collaboration
with the Icelandic Dyslexia Association and school
counselors at Icelandic colleges was established,
and an open call to people with dyslexia was sent
out. Authors who submitted their texts signed a
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publication agreement, wherein they confirmed that
they had been diagnosed with dyslexia and agreed
that their texts would be published. Additionally,
they could choose to be anonymous or not, but only
two authors chose not to be anonymous.

3.4 The Icelandic Child Language Error
Corpus

The Icelandic Child Language Error Corpus con-
sists of 119 texts written by children aged 10 to
15 (born between years 2005 and 2010). The cor-
pus excludes texts which were written by children
with dyslexia as well as any text written by a child
whose first language is not Icelandic. The inter-
est in children’s texts arose from the need to gain
plausible insight into their vocabulary and gram-
mar use, and the struggles they face in the pro-
cess of language acquisition and learning to write.
So far, we have been aware that children do not
make the same mistakes as adults in their writing,
based on tentative assumptions, teachers’ experi-
ence and some studies of child language from other
languages. Creating this corpus provides a unique
opportunity to map out the exact errors and apply
the findings directly in facilitating language and
literacy development on elementary school level.

The corpus contains 7,817 errors, with an error
rate of 208.77 per 1,000 words, as seen in Table 6.
This is the second highest overall error rate in the
four corpora, after the dyslexia corpus, although
the L2 informants at proficiency level A1 and A2
have the highest error rates.

Revisions Errors Files Words Errors/1,000w
5,079 7,817 119 37,443 208.77

Table 6: Number of revisions, errors, files, words, and
errors per 1,000 words in the Icelandic Child Language
Error Corpus.

Table 7 shows the top 10 most common errors in
The Icelandic Child Language Error Corpus. Sim-
ilar to the general corpus and the dyslexia corpus,
the most common error in the child language cor-
pus is ‘punctuation’, with 18.92% frequency, and
the second most common error is ‘wording’, which
comprises 10.63% of the errors in the corpus. Here
we also see some predictable children’s mistakes
such as regarding capitalization, which is not com-
mon in the Icelandic Error Corpus, the L2 Error
Corpus or the Dyslexia Error Corpus, which were
written by adults.

The text collection effort lasted from February

Subcategory Main category Frequency (%)
punctuation orthography 18.9
wording style 10.6
miscellaneous other 8.0
capitalization orthography 6.7
insertion vocabulary 6.1
nonword orthography 5.9
typo orthography 4.7
omission vocabulary 4.6
syntax grammar 4.3
spacing orthography 4.2

Table 7: Top 10 most frequent errors in the Icelandic
Child Language Error Corpus according to subcategory.

2021 to September the same year. In order to col-
lect the published texts, two methods were chosen;
first, an open call was made to any parents with
children of the appropriate age. This resulted in
a few texts, but most of them were collected by
means of collaborations with Icelandic elementary
schools. Written assignments were collected with
the help of teachers and the children’s guardians
signed publication agreements for publication of
the texts. All authors are anonymous, have not
been diagnosed with dyslexia and Icelandic is their
native language.

4 Error Analysis

The error corpora for Icelandic are of varying size
(see Table 8). The proportion of L2 corpus text
reflects the population of Iceland (around 15–20%
of the population are immigrants), but the data
from children does not reflect population numbers.
Comparing error frequencies between the corpora,
we can infer that people with dyslexia make the
most errors and children the second most errors.
However, as has been discussed previously, L2
speakers at proficiency levels A1 and A2 make
more errors than both speaker groups, with 306.16
and 217.49 errors per 1,000 words, respectively.

Table 9 shows the 5 most common errors, ac-
cording to subcategory, in each of the three spe-
cialized error corpora and the Icelandic Error Cor-
pus4 (titled ‘General’ here), along with each error’s
proportion. We see that the different error cor-
pora share many of the most common errors, e.g.
‘punctuation’ and ‘wording’. Note that the ‘miscel-
laneous’ subcategory only consists of dependent
errors, which are often connected to errors relating

4This information is taken from Arnardóttir et al. (2021).
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Corpus Number of words Number of errors Errors per 1,000/w
L2 162,071 24,948 153.93
Dyslexia 38,891 8,436 216.91
Children 37,443 7,817 208.77

Table 8: Number of words, errors and errors per 1,000 words in the three error corpora.

General % L2 % Dyslexia % Children %
punctuation 25.46 wording 11.00 typo 10.7 punctuation 18.9
wording 14.74 punctuation 9.6 punctuation 10.7 wording 10.6
spacing 6.98 inflection 9.0 wording 9.6 miscellaneous 8.0
nonword 6.11 miscellaneous 7.6 nonword 9.0 capitalization 6.7
typo 5.68 agreement 6.1 miscellaneous 6.5 insertion 6.1

Table 9: Frequency of the 5 most common errors in the error corpora according to subcategory.

to wording.
The L2 error corpus is the only corpus with gram-

matical errors as the most common ones, i.e. ‘in-
flection’ and ‘agreement’, which reflects the fact
that the authors’ native language is not Icelandic.
Inflectional errors include errors where a word is in
the wrong case, e.g. when a subject of a sentence
should be in the nominative case but is instead
in the dative case. Agreement errors include e.g.
when a finite verb is not in agreement with a noun
phrase, e.g. when it comes to number.

As mentioned in Section 3.3, among the most
common errors in the dyslexia corpus is ‘typo’,
which is in accordance with what is to be expected
of dyslexic writers. This error is two times more
frequent in the dyslexia corpus as compared to
the general corpus, and is not among the 5 most
common errors in children’s text. Typos are e.g.
errors where a letter within a word is incorrectly
replaced by a different letter, or a letter is missing
within a word.

As mentioned in Section 3.4, the children’s cor-
pus shows more frequent capitalization errors than
in the other corpora, but it is also the only corpus
to have an error relating to vocabulary, ‘insertion’,
among the 5 most common errors. Insertion errors
are e.g. errors where a redundant conjunction or
word appears.

Certain error codes only occur in certain corpora.
This is illustrated in Table 10. The dyslexia corpus
does not contain any unique error codes, but the L2
and children’s corpora do. It is therefore possible
to see if there is any specific type of error that only
a certain speaker is more likely to make. Most
error codes pertain to punctuation, but two errors in
the L2 corpus, ‘adj4noun’ and ‘þar4það’, are both

lexical. The former is when an adjective incorrectly
replaces a noun and the latter is when the word þar
‘there’ is written instead of það ‘it’.

L2 Children
adj4noun ex4qm
þar4það
semicolon4conjunction
wrong-symbol

Table 10: Error codes that only appear in certain cor-
pora.

The error codes in each corpus were ranked by
frequency of occurrence (starting with 1 for the
most commonly occurring error and total number
of error codes that appear in the corpus, plus 1 for
the ones that never appear in it) and then compared
between the corpora, using the general Icelandic
Error Corpus as the default. Ranking comparison
produced a delta rank, which is the difference be-
tween the frequency rank of a certain error between
corpora, and this was extracted in Tables 11, 12,
and 13, which show the 10 highest delta ranks
when compared to the general corpus. This clearly
shows that some error codes pertaining to grammar
and lexical issues are much more frequent in the
specialized corpora than in the general corpus, but
interestingly enough, the delta rank is similar for
each of the specialized corpora.

5 Future Use

The error corpora for Icelandic can be used sep-
arately for specific use cases, but they can also
be merged for a general overview of the differ-
ent types of speakers that exist in the population.
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Error code Rank General Rank L2 Delta rank
context 132 5 127
syntax-other 132 13 113
missing-hyphen 10 104 94
v3 131 41 90
extra-sub 126 45 81
extra-prep 97 18 79
genitive 102 34 68
tense4perfect 126 63 63
extra-hyphen 46 108 62
extra-dem-pro 131 69 62

Table 11: Error codes with the highest delta rank between the general Icelandic Error corpus and the L2 corpus.

Error code Rank General Rank Dyslexia Delta rank
context 132 31 101
syntax-other 132 44 88
extra-fin-verb 126 40 86
extra-sub 126 48 78
hyphen4endash 115 39 76
extra-prep 97 27 70
new-passive 124 56 68
extra-inf-part 129 63 66
v3 131 67 64
extra-dem-pro 131 69 62

Table 12: Error codes with the highest delta rank between the general Icelandic Error corpus and the Dyslexia
corpus.

With the general overview, we can see how an L2
learner is going to make different errors than a
native speaker, while a child will make different
errors than an adult, etc. The current version of the
L2 error corpus consists of texts written by adults
who are only learning Icelandic. By collecting texts
from learners who are learning more than one lan-
guage, it would be possible to determine whether
the types of errors that learners make are similar
across languages, which may help in pooling larger
data sources and transfer learning across languages.

Furthermore, combining all the specialized error
corpora can facilitate a spellchecker that takes into
account the needs of all these varieties of speakers,
and can therefore detect and correct errors which
are often produced by them. The error corpora can
be put into practical use in creating a grammar and
spelling correction software, in the same way as
the Icelandic Error Corpus has been used (Óladóttir
et al., 2022). Furthermore, experiments on using
them as fine-tuning data for a neural spell and gram-
mar checker have already begun (Ingólfsdóttir et al.,
2022).

An error corpus can also be used to create other
tools, such as language learning tools and teaching
materials. Statistics and error examples from the
Icelandic L2 Error Corpus can be used for devel-
oping computer-assisted language learning tools,
such as flashcards (Xu and Ingason, 2021). An L2
error corpus also sheds light on learner interlan-
guage, which provides insight into how grammat-
ical and lexical categories are acquired and inter-
nalized (Glisic and Ingason, 2022). This insight
can be used when developing language learning
tools for Icelandic, and it can also be helpful for
teachers who teach Icelandic as a second language,
because it helps them predict which errors the lan-
guage learners will make at what stage in their
proficiency level. This is also the case for teachers
who teach Icelandic students with dyslexia; the Ice-
landic Dyslexia Error Corpus documents the most
common errors made by the speakers – a valuable
insight into what dyslexia looks like in Icelandic.
Furthermore, the Icelandic Child Language Error
Corpus can be used when teaching children how to
write.
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Error code Rank General Rank Children Delta rank
extra-sub 126 18 108
context 132 43 89
extra-fin-verb 126 41 85
lower4upper-initial 89 8 81
extra-dem-pro 131 55 76
missing-qm 117 43 74
v3 131 59 72
syntax-other 132 61 71
extra-inf-part 129 60 69
new-passive 124 57 67

Table 13: Error codes with the highest delta rank between the general Icelandic Error corpus and the Child language
corpus.

6 Conclusion

We have described three new Icelandic error cor-
pora: the Icelandic L2 Error Corpus (Ingason et al.,
2022b), the Icelandic Dyslexia Error Corpus (Inga-
son et al., 2022a) and the Icelandic Child Language
Error Corpus (Ingason et al., 2021). All corpora are
published under a CC BY 4.0 license and reflect
errors made by the three user groups. The value
of such corpora is diverse; they can be used to de-
velop user-oriented spell and grammar checkers,
can guide the development of language learning
tools and can help in teaching Icelandic to non-
native speakers, and in teaching dyslexic students
or children in general to write.
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Abstract

Generative neural conversational systems are
typically trained by minimizing the entropy
loss between the training “hard” targets and
the predicted logits. Performance gains and
improved generalization are often achieved by
employing regularization techniques like label
smoothing, which converts the training “hard”
targets to soft targets. However, label smooth-
ing enforces a data-independent uniform distri-
bution on the incorrect training targets, leading
to a false assumption of equiprobability. In this
paper, we propose and experiment with incor-
porating data-dependent word similarity-based
weighing methods to transform the uniform dis-
tribution of the incorrect target probabilities
in label smoothing to a more realistic distri-
bution based on semantics. We introduce hy-
perparameters to control the incorrect target
distribution and report significant performance
gains over networks trained using standard la-
bel smoothing-based loss on two standard open-
domain dialogue corpora.

1 Introduction

Response generators rely heavily on language mod-
elling for response generation. Given a context
comprising multiple conversation utterances, a re-
sponse generator is formulated as a next utterance
prediction problem, where the task is to generate a
response conditioned on the context. With the ad-
vent of deep learning and availability of sufficient
training data, parametric models like recurrent neu-
ral networks and transformers are generally used
for language modelling. Trained by minimizing
the expected cross entropy between the training
targets and the prediction logits, such models often
overfit the training data and does not generalize
well on the test set. Label smoothing proposed by
Szegedy et al. (2015) to improve the performance
of Inception net image classifier on the ImageNet
dataset has gained wide acceptance in Natural Lan-
guage Processing tasks as a regularization tech-

Figure 1: Sample conversation depicting token proba-
bility distribution using label smoothing, in comparison
to desired distribution.

nique to enhance the generalization capability of
deep neural networks. Vaswani et al. (2017) in his
work “Attention is all you need”, where he pro-
posed the state-of-the-art transformer architecture,
had reported performance gains in machine transla-
tion using label smoothing during training. Unlike
other regularization techniques which constrain the
model parameters and hidden representations, label
smoothing augments the actual targets by reducing
the target probability and assigning low probabili-
ties to all classes, following a data independent uni-
form distribution. Thus, preventing the model from
predicting the correct labels overconfidently during
training. However, as pointed out by Pereyra et al.
(2017) and Hinton et al. (2015), the probabilities
assigned to both the correct and incorrect classes
constitute the knowledge of a network. In language
modelling, incorporating label smoothing and as-
signing a uniform probability to all the incorrect
classes can convey a false knowledge to the model.
For example, as depicted in Figure 1, while gener-
ating “I am doing good” in response to the query
“How are you doing ?”, having generated the partial
phrase “I am doing”, both “great” and “awesome”
conveys the same message as “good”. Although
“bad” would convey an opposite yet meaningful
message, a random word like “aeroplane” would
be inappropriate. Hence, instead of assuming a
uniform distribution for the incorrect classes while
using label smoothing, we can incorporate a weigh-
ing mechanism to present such knowledge to the
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model. Here, we introduce simple ways of im-
parting such information by modifying the data in-
dependent uniform distribution in label smoothing
with a more appropriate data dependent distribution
proportional to the pre-trained word-embedding
based similarity between the actual and incorrect
targets. Our primary contributions are follows (i)
We propose a robust mechanism for augmenting the
target labels in language modelling, which better
reflects the real-world. (ii) We experiment our pro-
posed framework with different hyper-parameter
settings and perform thorough analysis of the ob-
servations 1

2 Related Work

Although numerous techniques have been intro-
duced to enhance the generalizability of neural net-
works, as pointed out by Pereyra et al. (2017), most
work focus on regularizing model parameters, com-
pared to external regularization techniques like la-
bel smoothing or target data augmentation. Recent
approaches for generalizable conversations can be
broadly categorized as follows
Loss function augmentation: Li et al. (2016) pro-
posed using Maximum Mutual Information along
with the Cross Entropy loss, in order to penalize
generic responses like “I do not know”, which are
frequent in conversational datasets. Jiang et al.
(2019) attributed generic responses to the cross
entropy loss function, which prefers frequent to-
kens. They proposed augmenting the loss func-
tion with a frequency based weighing mechanism
dependent on the corpus for engendering diverse
responses. Wang et al. (2020) experimented with
using optimal transport to match sequences gener-
ated in the teacher and student modes, and increas-
ing performance of student forced networks on the
test dataset by reducing the gap between the two
modes. Wang et al. (2021) proposed an adaptive
label smoothing approach that can adaptively esti-
mate a target label distribution at each time step for
different contexts. Compared to their approach, our
proposed method is simpler with fewer parameters.
Data augmentation: Cai et al. (2020) demon-
strated that conversational datasets generally don’t
exhibit coherence in query response pairs, which
affect the Cross Entropy loss. They propose a train-
ing data augmentation module, which can not only
replace words in the actual target response with
similar words using BERT (Devlin et al., 2019),

1Code and dataset available here.

but also augment the style of the response, preserv-
ing the meaning. They further introduced a neural
weighting mechanism, which can assign weights
or importance to the augmented and golden train-
ing data, and report significant performance gains.
Kang and Hashimoto (2020) demonstrated that the
log loss is not robust to noise, and hence proposed
truncating the distribution of the training targets
to achieve an easy to optimize and more robust
loss function. He and Glass (2020) introduced a
network which can provide negative generated sam-
ples, and train the generation model to maximize
the log likelihood of training data while minimizing
the likelihood of negative samples. Since instead
of augmenting the training data, we adjust the prob-
ability of incorrect labels for each correct label, our
proposed method belongs to the first category.

3 Methods and Experiments

We experiment with ways to augment the data in-
dependent uniform distribution enforced by label
smoothing. Let Ui be an utterance consisting of
words {wj}Nj=1, where N is the number of words
in the utterance. For each wordwj , in label smooth-
ing a probability 1− s is assigned to the true label
wj , and a probability of s (smoothing factor) is dis-
tributed uniformly among the rest of the k words
in the vocabulary. We augment the distribution
of the incorrect class by weighting the smoothing
factor s according to the cosine similarity between
the Glove (Pennington et al., 2014) word embed-
ding of the correct word in the training data and
all the words in the vocabulary. Thus, if the cor-
rect word to be predicted is “good”, then the words
“great” and “awesome” in the vocabulary would
get a higher proportion of the smoothing factor s,
compared to an unrelated word like “aeroplane”-
presenting more accurate knowledge to the model.
Mathematically, let w⃗j be the Glove word embed-
ding of word wj , Wk be a matrix containing the
Glove word embedding for all the words in the vo-
cabulary (including wj), w⃗j_sim be the vector of
cosine similarity between the word wj and all the
words in the vocabulary. Since Glove word em-
beddings are learned representations, they can be
noisy. Hence, we introduce a binary mask maskj
using a threshold t, below which we set the co-
sine similarity value in w⃗j_sim as 0, and multiply
the similarity vector with the mask. The resulting
vector is normalised to lie between 0 and 1, and
finally multiplied by s. We treat t as a model hy-
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perparameter, and is tuned using grid search. We
further reason that although Glove embeddings are
learned from text corpora, there are possibilities
that dissimilar words can lie in close proximity in
the embedding space, resulting in a high cosine
similarity score, and presenting an incorrect knowl-
edge to the model. To circumvent this problem,
we further experiment with filtering out the cosine
similarities of dissimilar words based on WordNet
sysnets (Miller, 1995), which we achieve by imple-
menting another mask mask

′
j .

w⃗j_sim =
w⃗j ·Wk

||w⃗j || · ||Wk||
(1)

w⃗j_dist =
w⃗j_sim ∗maskj ∗mask′

j∑
(w⃗j_sim ∗maskj ∗mask′

j)
∗ s

(2)

w⃗j_dist[j
∗] = 1− s (3)

where, maskj =




0, if w⃗j_sim <= t
0, if w⃗j_sim = 1
1, otherwise

and, mask
′
j =

{
1, if wk is a synonym of wj
0, otherwise

3.1 Dataset
We experiment with (i) The DailyDialog dataset
(Li et al., 2017): A multi-turn open domain di-
alogue dataset comprising 13,118 conversations
pertaining to diverse day-to-day topics, and (ii)
The Empathetic Dialogues dataset (Rashkin et al.,
2019): An open domain multi-turn dataset consist-
ing of 25,000 conversations grounded in emotional
situations. We use the same training, validation
and testing splits as mentioned in the datasets. We
concatenate all the turns in the query in one long
text, and use two special tokens: [speaker1] and
[speaker2] to distinguish the speakers. In order
to speed up computation, we restrict the context
to the most recent 50 tokens, which is determined
analytically from the corpora. Additional training
details and code in Section A.2 (Appendix A).

3.2 Model
Since the primary scope of this paper is to ex-
periment with different loss functions, we used
a standard transformer encoder-decoder architec-
ture as proposed by Vaswani et al. (2017), where
the encoder encodes the most recent utterance in
the conversation, along with context from the pre-
vious turns. The encoder-decoder comprises of 3

layers each, with 300 dimensional hidden represen-
tation, with 6 attention heads in each multi-headed
attention layer. The embedding layer is populated
with 300 dimensional Glove embeddings, which
are trained along with the entire network. Finally, a
fully connected linear layer predicts the next word.

3.3 Experiments
We treat the Cross Entropy (CE) loss, CE loss
with label smoothing, Kullback–Leibler (KL) di-
vergence loss and KL loss with label smoothing as
baselines. We experiment with different smooth-
ing values s ∈ {NA, 0.1, 0.2}, cosine similarity
thresholds t ∈ {NA, 0.0, 0.5, 0.8}, and also per-
form ablation study to analyze the usefulness of the
WordNet similarity mask w ∈ {NA, 0, 1}. Overall
we experiment with 30 diverse settings per dataset.

Figure 2: Illustration of incorrect word probabilities(x-
axis = vocabulary, y-axis = probability). Setting t = 0.8,
or using WordNet mask filters out most words making
the target distribution equivalent to vanilla CE loss tar-
gets. Using t = 0.5 or 0.0 yields a less dramatic effect
and preserves the information of the incorrect labels.

4 Results and Analysis

We compare the (i) sacreBLEU score (Post, 2018):
a standardised version of the BLEU score (Pa-
pineni et al., 2002), (ii) ROUGE L score (Lin,
2004): which compares Longest Common Sub-
sequence (LCS), and automatically takes into ac-
count sentence level structure similarity and iden-
tifies longest co-occurring in sequence n-grams,
(iii) METEOR score (Banerjee and Lavie, 2005):
an improvement over BLEU score, which incor-
porates stemming and synonymy matching along
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s = NA s = 0.1 s = 0.2 s = 0.1 s = 0.2
t = NA t = NA t = NA t = 0 t = 0.5 t = 0 t = 0.5

Dataset Metric Loss w = NA w = NA w = NA w = 0 w = 1 w = 0 w = 1 w = 0 w = 1 w = 0 w = 1

DD

SacreBLEU
CE 1.662 1.852 1.725 1.989 1.762

2.193
(+ 12.67%) 1.857 2.115 1.802 2.053 1.930

KL 1.946 1.753 1.793 1.845 1.818 1.912 1.885 1.938 1.809 1.729 1.885

ROUGE L
CE 0.120 0.124 0.124 0.123 0.120

0.127
(+ 0.57%) 0.126 0.121 0.120 0.123 0.124

KL 0.126 0.122 0.123 0.122 0.126 0.124 0.124 0.122 0.125 0.123 0.123

METEOR
CE 0.124 0.132 0.128 0.134 0.128

0.137
(+ 4.16%) 0.131 0.134 0.127 0.134 0.131

KL 0.132 0.130 0.130 0.134 0.132 0.132 0.131 0.131 0.131 0.129 0.129

ED

SacreBLEU
CE 2.279 2.408 2.190

2.442
(+ 1.42%) 2.208 2.192 2.216 2.318 2.262 2.312 2.256

KL 2.271 2.168 2.279 2.277 2.278 2.337 2.361 2.431 2.274 2.439 2.143

ROUGE L
CE 0.138 0.143 0.137 0.144 0.140 0.142 0.138 0.141 0.139 0.141 0.138

KL 0.140 0.139 0.142 0.144 0.145 0.143 0.138
0.146

(+ 1.95%) 0.140 0.143 0.139

METEOR
CE 0.125 0.128 0.125

0.132
(+ 2.08%) 0.126 0.124 0.124 0.129 0.126 0.127 0.124

KL 0.125 0.123 0.129 0.127 0.130 0.129 0.124 0.132 0.125 0.128 0.123

Table 1: Comparison of sacreBLEU, ROUGE L and METEOR scores using variants of Cross Entropy (CE) loss and
Kullback–Leibler (KL) divergence loss on DailyDialog (DD) and EmpatheticDialogues (ED) datasets; s denotes
amount of smoothing, where s ∈ (0.1, 0.2, NA); t = cosine similarity threshold, where t ∈ (0, 0.5, NA); w = apply
synonym based filtering, where w ∈ (0, 1, NA).

with exact word matching. Table 1 summarizes our
results, where the columns containing “NA” are the
baseline results, against which improvements are
measured. Further, Section A.1 (Appendix A) con-
tains results for all configurations with additional
evaluation metrics like BERTscore (Zhang* et al.,
2020) and ROUGE 1 & 2.
Observations From the experiments we observe
that, (i) Using a data dependent cosine similarity
based distribution for label smoothing significantly
outperforms the baseline (vanilla entropy based
loss with or without label smoothing). We ob-
serve 12.67 % increase in BLEU score, 0.57 %
increase in ROUGE L score, and 4.16 % increase
in METEOR score for the DailyDialog dataset, and
1.42 % increase in BLEU score, 1.95 % increase in
ROUGE L score, and 2.08 % increase in METEOR
score for the EmpatheticDialogues dataset. (ii) Us-
ing additional WordNet synonym based filtering
(w) does not help performance. To understand why
this is happening, we plotted the distribution of the
smoothing factor s for the randomly selected word
“fun”, and observed that the word had only one
overlapping WordNet synonym in our vocabulary:
“play”. This caused the word “play” to be assigned
a probability of 0.1, while all the other words are
assigned a probability of 0, except for “fun”, which
was assigned a probability of 0.9. We reason that
the sparsity in synonyms does not help in reduc-
ing the overconfidence of the model, as the final
distribution is very similar to non-smoothing tar-

gets. Figure 2 illustrates the probabilities assigned
to the incorrect labels of the word “fun”, by each
of the methods discussed in this paper. (iii) Using
CE loss instead of KL generally improves perfor-
mance while using label smoothing. We reason that
this happens because in case of label smoothing,
the constant entropy coefficient in KL loss reduces
the overall loss, thus reducing the gradients during
back propagation, which results in slower learn-
ing. (iv) Generally, using high smoothing value (s)
does not help in learning. (v) The cosine similarity
threshold t should be treated as a hyperparameter,
and will require tuning depending on the vocabu-
lary of the dataset used. (vi) We also noticed that
a cosine similarity threshold t as high as 0.8 does
not help in learning. We reason that using a high
threshold creates a scenario similar to using Word-
Net synonyms, where the smoothing probability is
distributed among very few (or no) words. Note
that in order to enhance readability, the results with
0.8 threshold are omitted from Table 1, and are pre-
sented in the additional supplementary materials.

5 Conclusion

Label smoothing has an undesirable property of
assigning uniform probability to incorrect labels,
which present an incorrect knowledge to learn from.
In this paper we propose ways to convert the uni-
form distribution to a data dependent distribution
by weighing the smoothing probability using co-
sine similarity of word embeddings between the
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correct and incorrect labels. We further experi-
ment with WordNet synonyms as an additional fil-
tering criteria, and report our findings. Although
we achieve significant improvements over all base-
lines, we notice a drawback where the proposed
system is unable factor in context while weighing
the distribution of the incorrect labels. As future
research, we intend to address this drawback us-
ing more contextualised representations instead of
static embeddings.
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A Appendix

A.1 All Experiment Results
Table 2 shows the different variants of the baselines
that were computed for both the DailyDialog and
EmpatheticDialogues datasets. All performance
improvements are compared against these base-
lines. For a metric, the best baseline score among
all the hyperparameter settings is chosen to report
improvements. Table 3 shows the results of using
different hyperparameter settings and loss func-
tion in the DailyDialog dataset, and Table 4 shows
the results obtained on the EmpatheticDialogues
dataset. The best results with detailed comparison
against baselines are already discussed in the main
paper.

A.2 Model Training and Parameters
All the models were trained on a single Nvidia
V-100 GPU, for 15 epochs each with a learning
rate of 2e-4, batch size of 64, and using AdamW
optimizer. The gradients of the model were clipped
with a value of 1, and dropout with probability
0.1 was applied during training. The average run-
time of each experiment is 60 minutes, with each
of the trained models having 17.7 M parameters.
The code, dataset and best performing models are
publicly available through this link: download link.
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DailyDialog Dataset EmpatheticDialogue Dataset
s = NA s = 0.1 s = 0.2 s = NA s = 0.1 s = 0.2
t = NA t = NA t = NA t = NA t = NA t = NA

Metric Loss w = NA w = NA w = NA w = NA w = NA w = NA

sacreBLEU
CE 1.6625 1.8523 1.7251 2.2794 2.4084 2.1903
KL 1.9469 1.7536 1.7931 2.2715 2.1682 2.2797

BERTScore
CE 0.8522 0.8520 0.8520 0.8539 0.8544 0.8527
KL 0.8529 0.8520 0.8510 0.8540 0.8531 0.8541

ROUGE 1
CE 0.1272 0.1312 0.1319 0.1536 0.1592 0.1527
KL 0.1336 0.1298 0.1300 0.1560 0.1545 0.1587

ROUGE 2
CE 0.0282 0.0303 0.0299 0.0251 0.0292 0.0251
KL 0.0305 0.0283 0.0282 0.0267 0.0259 0.0271

ROUGE L
CE 0.1209 0.1243 0.1243 0.1382 0.1437 0.1373
KL 0.1263 0.1223 0.1233 0.1406 0.1395 0.1426

METEOR
CE 0.1244 0.1324 0.1286 0.1254 0.1287 0.1257
KL 0.1324 0.1303 0.1303 0.1250 0.1233 0.1297

Table 2: Baseline results of diverse automatic text generation metrics on the DailyDialog and EmpatheticDialogues
datasets. The hyperparameters s, t and w control the usage of Label Smoothing, Cosine similarity threshold and
WordNet filtering respectively. For the baseline, t and w were not used, which is indicated by NA. s = NA signifies
vanilla entropy based loss without Label Smoothing.

s = 0.1 s = 0.2
t = 0 t = 0.5 t = 0.8 t = 0 t = 0.5 t = 0.8

Metric Loss w = 0 w = 1 w = 0 w = 1 w = 0 w = 1 w = 0 w = 1 w = 0 w = 1 w = 0 w = 1

sacreBLEU
CE 1.9896 1.7627 2.1936 1.8575 1.6676 1.8859 2.1158 1.8020 2.0536 1.9302 1.5674 1.8502
KL 1.8459 1.8181 1.9128 1.8858 1.7957 1.7453 1.9387 1.8092 1.7292 1.8856 1.5874 1.9707

BERTScore
CE 0.8518 0.8529 0.8515 0.8527 0.8507 0.8509 0.8513 0.8525 0.8525 0.8519 0.8507 0.8512
KL 0.8520 0.8527 0.8517 0.8515 0.8520 0.8516 0.8509 0.8525 0.8522 0.8518 0.8518 0.8515

ROUGE 1
CE 0.1309 0.1279 0.1353 0.1326 0.1260 0.1280 0.1298 0.1271 0.1315 0.1317 0.1250 0.1290
KL 0.1301 0.1332 0.1318 0.1311 0.1281 0.1276 0.1301 0.1328 0.1310 0.1312 0.1263 0.1325

ROUGE 2
CE 0.0282 0.0276 0.0309 0.0300 0.0287 0.0280 0.0286 0.0286 0.0308 0.0310 0.0276 0.0305
KL 0.0283 0.0312 0.0300 0.0294 0.0297 0.0291 0.0285 0.0312 0.0292 0.0299 0.0277 0.0299

ROUGE L
CE 0.1238 0.1209 0.1270 0.1260 0.1200 0.1203 0.1217 0.1204 0.1238 0.1244 0.1183 0.1222
KL 0.1227 0.1264 0.1243 0.1242 0.1213 0.1207 0.1223 0.1253 0.1232 0.1234 0.1185 0.1252

METEOR
CE 0.1342 0.1287 0.1379 0.1314 0.1270 0.1319 0.1344 0.1279 0.1346 0.1313 0.1223 0.1280
KL 0.1346 0.1324 0.1327 0.1311 0.1262 0.1275 0.1319 0.1310 0.1298 0.1296 0.1247 0.1330

Table 3: Results of diverse automatic text generation metrics on the DailyDialog dataset, trained with variants of
Entropy based loss with different hyperparameter settings: cosine similarity threshold (t), Label Smoothing (s) and
WordNet filtering (w).

s = 0.1 s = 0.2
t = 0 t = 0.5 t = 0.8 t = 0 t = 0.5 t = 0.8

Metric Loss w = 0 w = 1 w = 0 w = 1 w = 0 w = 1 w = 0 w = 1 w = 0 w = 1 w = 0 w = 1

sacreBLEU
CE 2.4427 2.2082 2.1922 2.2164 2.3467 2.2596 2.3187 2.2622 2.3125 2.2569 2.3944 2.2767
KL 2.2774 2.2781 2.3370 2.3615 2.2347 2.2769 2.4319 2.2749 2.4393 2.1431 2.2566 2.2652

BERTScore
CE 0.8543 0.8539 0.8547 0.8528 0.8536 0.8544 0.8544 0.8536 0.8539 0.8532 0.8531 0.8544
KL 0.8541 0.8543 0.8544 0.8528 0.8536 0.8528 0.8544 0.8528 0.8544 0.8526 0.8535 0.8543

ROUGE 1
CE 0.1612 0.1564 0.1577 0.1531 0.1558 0.1551 0.1589 0.1550 0.1575 0.1531 0.1553 0.1590
KL 0.1594 0.1613 0.1596 0.1540 0.1549 0.1552 0.1619 0.1554 0.1588 0.1545 0.1564 0.1569

ROUGE 2
CE 0.0287 0.0270 0.0271 0.0250 0.0274 0.0267 0.0269 0.0265 0.0267 0.0264 0.0261 0.0262
KL 0.0270 0.0290 0.0273 0.0266 0.0256 0.0253 0.0288 0.0269 0.0274 0.0257 0.0251 0.0268

ROUGE L
CE 0.1443 0.1409 0.1425 0.1385 0.1402 0.1388 0.1416 0.1398 0.1411 0.1381 0.1396 0.1423
KL 0.1441 0.1454 0.1435 0.1387 0.1397 0.1393 0.1465 0.1401 0.1430 0.1394 0.1404 0.1416

METEOR
CE 0.1324 0.1266 0.1248 0.1245 0.1267 0.1264 0.1291 0.1266 0.1278 0.1243 0.1247 0.1292
KL 0.1272 0.1302 0.1290 0.1246 0.1235 0.1254 0.1323 0.1253 0.1283 0.1234 0.1257 0.1269

Table 4: Results of diverse automatic text generation metrics on the EmpatheticDialogues dataset, trained with
variants of Entropy based loss with different hyperparameter settings: cosine similarity threshold (t), Label
Smoothing (s) and WordNet filtering (w).
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Abstract

Sentiment analysis with deep learning in
resource-constrained languages is a chal-
lenging task. In this paper, we introduce
a novel approach for sentiment analysis in
resource-constrained scenarios using charac-
ter embedding and cross-lingual sentiment
analysis with transliteration. We use this
method to introduce the novel task of in-
ducing sentiment polarity of words and sen-
tences and aspect term sentiment analysis
in the no-resource scenario. We formulate
this task by taking a metalingual approach
whereby we transliterate data from closely
related languages and transform it into a
meta language. We also demonstrated the
efficacy of using character-level embedding
for sentence representation. We experi-
mented with 4 Indian languages – Bengali,
Hindi, Tamil, and Telugu, and obtained en-
couraging results. We also presented new
state-of-the-art results on the Hindi senti-
ment analysis dataset leveraging our met-
alingual character embeddings.

1 Introduction

Sentiment analysis is a widely explored topic
in the field of Natural Language Processing,
which focuses on classifying text into 3 senti-
ment classes: positive, negative, and neutral
(Liu, 2012). For any text classification task,
supervised approaches require an extensive and
domain specific corpus in the corresponding
language. However, sentiment annotated data,
which is the primary resource for sentiment
analysis, is limited in many languages. Trans-
fer learning can be used to learn sentence rep-
resentations by pretraining on a large corpus
and finetuning to a particular downstream task.
But transfer learning often fails in adapting
knowledge from one domain to another, and
sufficient training samples across these domains
may not be available for efficient finetuning.

Another method to deal with such situations is
to create cross lingual tools between a resource
rich and resource poor language. This method
either uses machine translation between the
language or bilingual dictionaries to overcome
the language gap. However, it is an extremely
challenging task to create an accurate machine
translation system between two languages or
create a bilingual dictionary pair in a resource
constrained scenario (Balamurali et al., 2012).
Moreover, there are some studies (Lohar et al.,
2017, 2018; Pal et al., 2014; Kumari et al., 2021)
that show that there is a significant loss of prag-
matics in the translations produced by the state-
of-the-art Machine Translation (MT) systems,
which could adversely affect the performance
of these downstream NLP applications that use
unedited raw MT output. Very little work has
been done to use cross-lingual sentiment anal-
ysis without translation involved in any step,
and even if they do, they require the presence
of large sentiment annotated data in at least
one language.

Another major problem is the unavailabil-
ity of significantly large corpus to train the
language-specific word embedding models in
resource scarce languages. As a result, training
word embeddings on those languages and re-
using the pretrained embeddings is not feasible.
Literature suggests that using character embed-
ding or subword embedding can be an efficient
alternative, as the number of unique characters
and alphabets for any language are well deter-
ministic (Chrupała, 2013; dos Santos and Gatti,
2014; Mikolov et al., 2012; Kim, 2019). The
main advantage of using character embedding
is that when we encounter a word which is not
in the domain of the available corpus (i.e., an
out-of-vocabulary word, or OOV), we can still
have a latent representation of the word for any
NLP task. Previously, dos Santos and Gatti
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(2014) used character embedding for sentiment
analysis of short texts, however, very few work
have been done on word level classification.

There exist many such languages where the
coverage of the corpus is too poor to effec-
tively train the embedding weights for each
word. Even transfer learning with pretrained
large models like m-BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), Electra (Clark
et al., 2020) might encounter many unknown
([UNK]) tokens since the vocabulary set of the
tokenizers may not have many words in the test-
set. Moreover, a dataset for the downstream
task may not exist in the language for effective
finetuning. Therefore, we need methods that
can help create sentiment lexicons effectively
and perform sentiment analysis without using
any training dataset of the target language.

In this paper, we introduce a novel method
to learn efficient latent representation by pro-
jecting data in multiple languages to a shared
metadata representation. We propose to uti-
lize the WX-notations as the transliteration
approach for the projection. This enables us to
leverage the collective training corpus to learn
a deep learning system with higher confidence.
We evaluate our approach on 7 sentiment analy-
sis datasets (4 word-level, 2 sentence-level, and
1 aspect-level) across four Indian languages –
Hindi, Telugu, Bengali, and Tamil. Moreover,
we experiment in two setups – mono-lingual and
cross-lingual. Finally, we compare our model
against various baselines and observe the per-
formance to be better for the majority of the
cases. Convolutional Neural Network (CNN)
provides the best result on aspect analysis and
sentiment classification of sentences, while dif-
ferent models prove to be useful on different
datasets for word-level sentiment analysis.
Contribution: The paper makes the following
contributions.

• We introduce the novel task of predicting
the sentiment polarity of words.

• Word-level and sentence level zero-shot sen-
timent analysis using a metalingual ap-
proach.

• Our proposed approach provides new
state-of-the-art results on the ReviewSH ,
ReviewAH and MovieH (Akhtar et al.,
2016) Hindi sentiment analysis datasets.

2 Related Work

Wan (2009) introduced the method of cross-
lingual sentiment analysis, which leveraged an
available English corpus for Chinese sentiment
classification by using the English corpus as
training data without using any Chinese re-
sources using a co-training approach. Zhou
et al. (2016) proposed a joint learning algorithm
that exploits both monolingual and bilingual
constraints, where the monolingual constraints
help to model words and documents in each
language while the bilingual constraints help
to build a consistent embedding space across
languages. Abdalla and Hirst (2017) used cross
sentiment analysis by computing a matrix to
convert from the vector space of one language to
that of another, based on the fact that that sen-
timent is highly “preserved” even if translation
accuracy is poor. Here it is worth noting that
most of these methods use a single resourceful
language and use it for a resource-scare lan-
guage, what sets us apart is that we have used
multiple source languages and combined their
resources to train hybrid embedding weights.

Rasooli and Collins (2017) combined a
method for deriving cross-lingual clusters and
a method for transfer of lexical information
from the target language into source language
treebanks with the density-driven approach to
annotation projection for cross-lingual senti-
ment analysis on different source and destina-
tion languages instead of a single source lan-
guage. Jain and Batra (2015) used Bilingually
Constrained Recursive Auto-encoder (BRAE)
(Zhang et al., 2014) to perform Cross-Lingual
sentiment analysis. However, in most of the
works cited above, we have to use translation
to obtain cross-lingual relations between lan-
guage pairs. As mentioned earlier, statistical
machine translation is computation-intensive
and demands an extensive corpus of bilingual
text.

The main difficulty is cross alignments, due
to word order/ syntactic differences in lan-
guages. Balamurali et al. (2012) presented an
alternative approach to CLSA using WordNet
senses as features for supervised sentiment clas-
sification. But for many resource-constrained
languages, WordNet does not exist. Hence in
the proposed methodology, we propose using
transliteration as alignments are monotonic, ie,
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they do not cross each other. Previously an
attempt was made to transliteration for senti-
ment analysis. In oder to automatically classify
sentiments of Arabizi messages. Guellil et al.
(2018) transliterated their corpus into Arabic
and used classification models like Support Vec-
tor Machines, Naive Bayes classifier and Deci-
sion Trees for sentiment analysis. However for
our experiments we will use a transliteration
scheme to obtain a common metalanguage that
can be used cross-lingual embedding training,
and classify words/ sentences using simple clas-
sification models without using any data of the
resource-scarce language.

3 Proposed Method

Training Deep neural network requires huge
amount of data, which is not feasible for low
resource languages. To avoid this, we follow
the principles of cross-lingual learning, where
model trained on one language is reused on
another language. This ensures that no data
from the target language is used during training,
and hence can be adapted in a low resource
scenario.

Our approach is as follows: similar sentiment-
annotated datasets from other languages are
leveraged to create a pool of data instead of
a single source language data, which is subse-
quently transliterated into a common language
(metalanguage) using a transliteration scheme.
We use this combined metadata as our training
data, which acts as a relatively bigger dataset
that can be used for efficient training of deep
learning-based text classification models. Addi-
tionally, it reduces the dependency on a single
language dataset. The target language dataset
is also transliterated using the same translit-
eration scheme and this transliterated data is
used only as the testing data and plays no part
in training.

We train our classification models on the
transliterated data from other languages, and
use the trained classification models to classify
words/sentences of the transliterated test set
of the target language. Thus we build our sen-
timent classification model for a language with-
out using any training data of that language
or involving any translation. As shown in the
later sections, this method yields in compara-
ble results given by state-of-the-art models like

BERT in text classification in scarce-resource
scenarios where very little or no training data
is available.

3.1 Transliteration - WX notation

We use WX notation (Gupta et al., 2010) – a
transliteration scheme for representing Indian
languages in ASCII. In this transliteration
scheme, every consonant and vowel has a single
mapping into Roman. Hence it is a prefix code,
advantageous from a computation point of
view. In the WX notation, typically lower case
letters are used for unaspirated consonants
and short vowels while capital case letters are
used for aspirated consonants and long vowels.
While the retroflexed voiceless and voiced
consonants are mapped to ‘t’, ‘T’, ‘d’, and ‘D’,
the dentals are mapped to ‘w’, ‘W’, ‘x’, and
‘X’. Hence the name of the scheme, WX, refers
to the idiosyncratic mapping.

3.2 Word and Sentence Representation

One question that naturally arises is how to
represent the words and sentences and what
embedding should be used. Our experiments
aim to create sentiment lexicon (word level)
and classify text (sentence level). Because of
this, combined with the fact that there is no cor-
pus in such meta language, the natural choice
is using character embedding. Character em-
bedding also provides the benefit that we can
have a numeric representation of the new words
that get coined to the language. Following
dos Santos and Gatti (2014), given a word W
composed of M characters {c1, c2, .r.., cM}, we
first transform each character cm into a char-
acter embedding rchrm . Character embeddings
are encoded by column vectors in the embed-
ding W chr ∈Rdchr×|V chr|. Given a character c,
its embedding rchr is obtained by the matrix-
vector product rchr = W chrvc, where vc is a
vector of size |V chr|, which has value 1 at in-
dex c and zero in all other positions. Thus,
W is represented by the sequence of character
embeddings {rchr1 , rchr2 , rchr3 , . . . rchrM }.

After transliteration, we label encode each
character of this metalanguage and represent
words as a vector of these labels (c.f. Figure
1). Each character is one-hot encoded, with
the length of the vector set to the number of
unique characters in this language. Each of
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Figure 1: Encoding sentence

these vectors is used as the initial embedding
weights for each character. For sentences, the
representation differs slightly. Sentences are
also represented as a vector of characters, with
the difference that an extra character is inserted
into the vector which represents space. The em-
bedding weight of this character is initialized
as 0, representing a NULL vector. We carried
out several experiments to test and compare
how the method works under different scenar-
ios, and how to simulate the various situations
where this method can be of use, the details of
which are given in Section 5.

4 DataSet

We used the SentiWordNet1 for Indian Lan-
guages (Das and Bandyopadhyay, 2010a; Das
and Gambäck, 2012; Das and Bandyopadhyay,
2011) for our experiments. This dataset con-
tains sentiment polarity of words in four Indian
languages – Bengali (BN), Hindi (HN), Tamil
(TA) and Telugu (TE). For each language, the
dataset contains four different files LC_POS2,
LC_NEG, and LC_NEU and LC_AMBI, list-
ing the set of positive, negative, neutral, and
ambiguous words, respectively. LC_AMBI
was not used in our experiments on word-level

1https://amitavadas.com/sentiwordnet.php
2LC is the language code – BN: Bengali, HN: Hindi,

TA: Tamil, TE: Telugu.

classification due to the negligible presence of
ambiguous words compared to the rest of the
classes. Each word in this dataset is marked
with POS category3. Table 1 presents the statis-
tics of the dataset.

For the actual sentiment analysis task,
we used the Aspect Sentiment dataset
(ReviewAH), Review Sentiment dataset
(ReviewSH) and Movie Review Sentiment
dataset (MovieH)4 (Akhtar et al., 2016).
These 3 Hindi datasets are annotated with 4
sentiment classes – positive (POS), negative
(NEG), neutral (NEU), and conflict (CON).
Table 2 presents the statistics of these datasets.

Language POS NEG NEU Total
Bengali 1,779 3,714 359 5,852
Hindi 2,313 2,337 371 5,801
Telugu 2,136 4,076 359 6,571
Tamil 2,225 4,447 361 7,033

Table 1: Statistics of the SentiWordNet for Indian
Languages

3a: Adjective, n: Noun, r: Adverb, v: Verb, u:
unknown

4www.iitp.ac.in/~ai-nlp-ml/resources.html
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Dataset POS NEG NEU CON Overall
ReviewSH 2,290 712 2,226 189 5,417
MovieH 823 530 598 201 2,152
ReviewAH 1,986 569 1,914 40 4,509

Table 2: Statistics of the Hindi Sentiment Analysis Datasets

5 Experimental Setup

For the classification task, we used various mod-
els – RNN, CNN, LSTM, GRU, Self Attention
Mechanism (Letarte et al., 2018) and a com-
bination thereof. Embedding length in each
model is set to the number of unique characters.
For the metalanguage experiments, since the
WX format converts characters to uppercase
and lowercase English characters, the embed-
ding size is set to 52. Each convolution layer
has embedding dimension=1, number of input
channel=embedding length, kernel size=1, and
number of output feature =3. For LSTM and
GRU, the embedding dimension is equal to the
input size which in turn is equal to the em-
bedding length, number of hidden states=512,
and a dropout rate of 0.01. Each model ended
with a dense layer with a softmax activation
layer for classification. Many of these layers
were combined one on top of the other for sen-
timent classification of an individual dataset.
It was tested with the following learning rates:
0.001,0.005,0.05,0.5 and the best results have
been reported. Since the data suffers from class
imbalance, proportionate samples were taken
from each class. For stacked layers, the hyper-
parameters were tweaked accordingly to adjust
input and output dimensions. For the met-
alanguage experiments, Adam optimizer was
used with a learning rate of 0.001 and sparse
categorical cross-entropy as the loss function.

6 Experiments and Results

We conducted experiments in 2 directions – (i)
inducing sentiment polarity of words, and (ii)
sentence-level sentiment analysis and aspect
analysis.

6.1 Sentiment Polarity Prediction of
Words

We carried out two sets of experiments for in-
ducing sentiment polarity in words – (a) using
training data from the target language, and

(b) without using training data from the target
language.

We first applied word sentiment classifica-
tion to individual datasets by using character
embedding and different deep learning-based
models, namely CNN, LSTM, GRU, Self At-
tention, and a combination of them. Table 3
presents the results of these experiments.

Different models (along with different learn-
ing rates) seem to work better for different lan-
guages. For the monolingual setup, GRU, CNN,
BiGRU and Self Attention produced the best
performance for Bengali, Hindi, Tamil, and Tel-
ugu, respectively. Hindi proves to be a challeng-
ing language for this task. The best accuracy
obtained for Hindi is 51.25 while for the rest 3
languages the accuracy varies in the range [60,
65]. If all the languages and models are consid-
ered, CNN with LSTM or GRU layer performs
consistently better than the other models.

Following our proposed methodology, for sen-
timent polarity induction of words in a new lan-
guage (e.g., TE), we converted both the target
language (i.e., TE) and other language (i.e., HN,
BN, TA) datasets to a common metalanguage
using the wx notation. Then we combined all
the other language (i.e., HN, BN, TA) datasets
to form the training set and trained our clas-
sification models on this dataset. The trained
models were then used to predict the sentiment
polarity for the target (i.e., TE) dataset. Thus
in this experiment, we simulated the scenario
where we used no training data of the target lan-
guage itself, instead used sentiment annotated
datasets from other languages for training.

For the cross-language experiments, Self-
Attention, CNN+GRU, LSTM, and CNN pro-
duced the best results on BN, HN, TA, and
TE, respectively. Interestingly, HN proves to
be a challenging language for the cross-lingual
setup as well.

Table 5 summarizes the best results for
each language for both monolingual and cross-
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Architecture Accuracy(%)
Monolingual Cross-Lingual

BN HN TA TE BN HN TA TE
LSTM 64.10 49.17 63.81 61.61 56.53 47.04 63.76 60.03
GRU 65.00 48.25 62.90 62.16 56.28 47.64 62.80 61.03
BiLSTM 63.10 48.50 62.86 62.27 54.69 49.78 63.08 61.97
BiGRU 64.70 46.75 64.09 60.83 56.45 49.60 58.14 57.80
CNN 63.70 51.25 63.86 62.38 57.11 49.95 61.80 62.31
CNN+LSTM 64.30 50.00 62.86 62.50 56.25 49.75 60.86 61.53
CNN+GRU 64.50 49.00 64.00 62.11 56.33 50.22 60.52 60.81
Self Attention 62.70 47.75 62.86 62.83 63.41 46.96 63.20 62.03

Table 3: Results of Word Sentiment Polarity Identification using Monolingual and Cross-lingual Frameworks

Architecture Accuracy(%)
Using training data Without Using training data

ReviewSH MovieH ReviewAH ReviewSH MovieH ReviewAH

Akhtar et al. (2016) 57.34 44.88 65.96 - - -
m-BERT 62.69 51.04 59.96 - - -
CNN 61.34 46.51 68.63 42.07 38.38 43.88
LSTM 55.89 42.12 63.30 42.27 37.19 42.06
RNN 52.98 42.89 60.86 41.86 33.90 41.48
CNN+LSTM 57.28 43.41 64.04 39.49 36.71 40.11
CNN+GRU 54.28 43.93 64.75 31.47 37.92 43.56
BiGRU 54.50 40.05 62.08 39.36 33.13 39.28
GRU 55.01 40.83 62.64 42.20 34.22 40.66
Self-Attention 53.90 40.13 60.31 37.65 34.72 43.15

Table 4: Results of Sentence-Level Sentiment Analysis and Aspect Analysis

lingual frameworks. It can be observed from
Table 5 that the results obtained in the cross-
lingual framework are typically lower in accu-
racy than the results obtained with the monolin-
gual framework, which is quite expected, how-
ever, the scores are not very far away. In the
absence of any training data for the target lan-
guage, the results of the cross-lingual experi-
ments can be considered significant.

Train Test Architecture Accuracy
BN BN GRU 65.00
TE+HN+TA Self Attention 63.41
HN HN CNN 51.25
BN+HN+TA CNN+GRU 50.22
TA TA BiGRU 64.09
BN+HN+TE LSTM/GRU 63.76
TE TE Self Attention 62.83
BN+HN+TA CNN 62.31

Table 5: Best results on each testset for the mono-
lingual and metalingual frameworks

6.2 Sentiment Analysis of Sentences
and Aspect Analysis

We used the ReviewSH and MovieH Hindi
datasets (Akhtar et al., 2016) for sentence level
sentiment classification and ReviewAH for as-
pect term sentiment analysis. Sentences from
all these 3 datasets were transliterated from
Hindi to the metalanguage with the wx nota-
tion. We used the Bengali, Tamil, and Telugu
datasets of SentiWordNet (Das and Bandyopad-
hyay, 2010b) to train the character embeddings
which are subsequently used in the classification
models. Like the word level sentiment polarity
prediction (cf. Section 6.1), we considered two
scenarios to classify the sentences – (a) using
the sentence-level training data, and (b) with-
out using the sentence-level training data. In
both the techniques the language in which the
dataset is originally built (Hindi in our case)
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is not directly used for training the model. In-
stead, the sentences are transliterated to the
wx notation and encoded using the technique
specified earlier.

80% of the dataset was used as training data
and 20% was treated as the testset. Evalua-
tion results are reported in Table 4 under the
column “Using training data”. We received the
best accuracy of 61.34, 46.51, and 68.63 on the
ReviewSH , MovieH and ReviewAH datasets,
respectively, which are significantly better than
the results reported in (Akhtar et al., 2016).
CNN produced the best results across all the
datasets. We also fine-tuned BERT on the
datasets using multilingual-BERT(m-BERT)
as an encoder followed by a simple classifica-
tion header. Although BERT outperforms in
most cases, our scores are still comparable to
those obtained with BERT.

For the case where sentence level training
data is not used, we did not use any por-
tion of the ReviewSH , MovieH and ReviewAH
datasets for training. Instead, we used trans-
fer learning where the model that was trained
to determine the embedding weights of each
character and classify words is used to classify
the sentences. It is to be noted that we did
not even use the Hindi dataset of SentiWord-
Net to train the character embeddings for this
experiment. The evaluation results are shown
in Table 4 under the column “Without using
training data”. As expected, the obtained re-
sults are much lower than the corresponding
results reported under column "Using training
data" in Table 4. However, the results suggest
that in a resource-constrained scenario where
there is no training data available, this method
can act as an effective way of classification.

7 Analysis of Results

Results suggest that our proposed method per-
forms reasonably well for different tasks and
languages. The traditional CNN architectures
captured structural features very well, which is
evident from the fact that sentiment embedded
vectors when incorporated in training produced
state-of-the-art results on most of the datasets.
We realize that using CNN will give us two
main advantages: (i) learn hidden semantics
from a metalanguage, and (ii) handling lim-
ited coverage of lexical resources. Even when

training data is not used, we achieved promis-
ing results which proves the effectiveness of
the method in a resource-constrained scenario.
An interesting observation was found in the
ReviewAH dataset, where the model gave dif-
ferent results based on the convolution window
size. For example, the models performed better
when the sentence comprised of the aspect term
and four words from either side of the aspect
term and used for sentiment classification than
the situation when 2 words from either side
were considered for training. This can be at-
tributed to the fact that the information from
the distant part of the sentences is sometimes
attributed to the overall sentiment polarity of
the aspect terms. However, the situation re-
versed when no training data was used, where
sentences with 2 words from either side pro-
vided better classification results in comparison
to sentences with 4 words from either side of as-
pect terms. This is because we used word-level
classification models to classify these sentences,
and hence these models captured the local fea-
tures of the aspect terms more efficiently and
gave better accuracy.

8 Conclusions

In this paper, we introduced the novel task of
inducing the sentiment polarity of words us-
ing character embedding-based deep learning
models. We extended the task to inducing the
sentiment polarity of words in a new language
having no training data. We carried out experi-
ments with 4 Indian languages and obtained en-
couraging results. The cross-lingual approach
proved to be an effective method in a resource-
constrained scenario. The same idea was fol-
lowed to perform sentiment analysis and aspect
analysis in Hindi without using any training
data in Hindi. While using training data, our
method outperformed the previous state-of-the-
art in sentiment analysis and aspect analysis
in Hindi.
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Abstract

Code-mixed text infused with low resource
language has always been a challenge for
natural language understanding models. A
significant problem while understanding such
texts is the correlation between the syntac-
tic and semantic arrangement of words. The
phonemes of each character in a word dictates
the spelling representation of a term in low
resource language. However, there is no uni-
versal protocol or alphabet mapping for code-
mixing. In this paper, we highlight the impact
of spelling variations in code-mixed data for
training natural language understanding mod-
els. We emphasize the impact of using pho-
netics to neutralize this variation in spelling
across different usage of a word with the same
semantics. The proposed approach is a compu-
tationally inexpensive technique and improves
the performances of state-of-the-art models for
three dialog system tasks viz. intent classi-
fication, slot-filling, and response generation.
We propose a data pipeline for normalizing
spelling variations irrespective of language.

1 Introduction

There are around 6,500 languages spoken in the
world today(Wikipedia contributors, 2021). En-
glish, Mandarin, Chinese tops the list with over 2
billion speakers around the globe hence are highly
resourceful languages. On the other hand, there are
resource-scarce languages such as Polish, Odia,
Hindi and, many more with few million speak-
ers only. Due to lack of resources understanding
such languages poses a great challenge for the re-
search community. Natural Language Understand-
ing (NLU) means extracting the semantic schema
of the utterance to re-act according to the intent of
the utterance. NLU is crucial for any human-to-
machine interaction-based system such as chatbots,
virtual assistants, and many more. Now the mode
of communication is restricted by the speaker’s

Figure 1: Native Speakers Count

language and innate understanding of language sys-
tems.

The Goal-Oriented Dialogue System (Young,
2000) was first introduced based on dialog state
tracking (Williams et al., 2013) and gave a new di-
rection to the NLU tasks. A number of datasets are
available in diverse domains for like-wise down-
stream goal-oriented conversational data such as
ATIS (Hemphill et al., 1990), SNIPS (Coucke
et al., 2018), DSTC (Williams et al., 2013), WOZ
(Budzianowski et al., 2018), etc. However, all of
them are monolingual, i.e., available in the English
language only. Code-mixing is the form of linguis-
tics where the conveyer uses two (or more than
two) languages together so that some words of the
low resource language replace the words from high
resource language or vice versa. The usual trend
is to mix English with any other regional language
such as Hindi (Hindi + English → Hinglish), Ben-
gali (Bengali + English → Benglish), Tamil (Tamil
+ English → Tamilish), and many more. With the
increase in multi-lingual speakers, code-mixing is
very common in online platforms, social media,
and day-to-day life (Gumperz, 1982; Gysels, 1992;
Durán, 1994; Moyer, 2002). Most common ac-
tivities such as shopping, restaurant reservations,
booking tickets, and so on all involve extensive use
of Code-mixing. For example, a Hindi speaking
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Language Utterances

English
Speaker 1: Hi, Can you help me in booking a table at this restaurant?
Speaker 2: Sure, would you like something in cheap, moderate or expensive price range?

Hinglish
Speaker 1: Hi, kya tum is restaurant mein ek table book karne mein meri help karoge?
Speaker 2: Sure, kya aap cheap, moderate ya expensive price range mein kuch like
karenge?

Table 1: Sample Code-Mixed Utterances.

user looking to book a restaurant would typically
ask, ”Kya tum is restaurant mein ek table book
karne mein meri help karoge?” (”Can you help me
in booking a table at this restaurant?”) (Banerjee
et al., 2018).

A significant proportion of the population world-
wide is using code-mixed language over online
platforms (Singh et al., 2018). The prime compli-
cation with linguistic diversity is such that there is
no convention or protocol to refer to when it comes
to code-mixing. Hence, it depends on the writer’s
perception and knowledge of the phonics of the
source language. (Kukich, 1992) grouped writing
errors into two classes. First one is typographical
that occurs when a character is substituted by the
wrong character whose key is nearby in the key-
board or interchanging of the character order, for
instance, merw paas(mere paas), kimd(kind), kys
krna ha(kya krna hai), and more variations due to
different reasons. Other class is of cognitive errors
that occur when the writer is unaware of the native
spelling and semantics of that word. In this case,
the wrongly spelled word is phonetically close to
the correct word (Toutanova and Moore, 2002). We
assume that the chances of typographical errors are
less since the writer intends to avoid making such
errors. This paper mainly focuses on cognitive er-
rors and covers a major portion of typographical
errors as well.

In the case of code-mixed data, there are no rules
that can lead towards achieving the correct spelling
because there is no correct spelling. We can as-
sume the most commonly used representation as
correct and normalized text to get some contextual
meaning. The introduction of external knowledge
can also help to improve the results of spelling cor-
rection. We propose a computationally inexpensive
novel technique to normalize spelling variations ir-
respective of the language of the bilingual speaker.

2 Related Work

Divergence from the traditional spelling and hav-
ing variation for the same word often carry some
meaning (Sebba, 2007). In computational linguis-
tics, while dealing with digital forms of regional
text forms, it becomes helpful to map all spelling
variations (semantically identical) to the same point
in embedding space. (Nguyen and Grieve, 2020)
highlighted a detailed analysis on the same. They
analyzed that the skip-gram model, which does not
consider spelling variations, encode spelling varia-
tion patterns to some extent. Also, the use of cosine
similarities helped find a link between intentional
variations and distance from the conventionally fol-
lowed standards.

Historical writings face the identical problem of
high degree variance in spellings (Reynaert et al.,
2012)—every day with new findings in historical
text and extending the corpora in digital form (lit-
erature). Various researches already explored the
normalization approaches based on string distance
measures to a reasonable extent for proposing vari-
ous tools for normalization. (Reynaert et al., 2012)
shows that, individually, the rule-based method
(Norma Tool) performed best in the presence of
a large amount of training data (Bollmann et al.,
2012). A combination of normalization methods
produces the best results and helps in further clean-
ing and processing of data. Hence, integrating
simple word-to-word mappers always increase the
overall performance. Methods like Edit Distance
or Levenshtein distance (Levenshtein, 1965; Yujian
and Bo, 2007) needs a massive corpus of univer-
sally correct data. (Bollmann and Søgaard, 2016)
further gave improvisation for this problem with
the use of bi-LSTM network (Schuster and Pali-
wal, 1997) applied on a character level. Multi-task
learning with additional normalization (integration
of mappers) improves the model’s performance.
Their model outperformed the CRF-based models
and Norma tool given in (Bollmann et al., 2012).
Extending the work keeping in mind the idea of
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integrating, (Domingo and Casacuberta, 2018) pro-
posed three approaches based on statistical, neu-
ral, and character-level machine translation to train
the model concerning modern spelling variation
standards. Their model covered a holistic view
of the word-to-word mappers. Additionally, they
proposed a simplistic approach of a statistical dic-
tionary, similar to a word-to-word mapper in which
they used the changing frequency of spelling on
the training corpora. They also stated that the sta-
tistical machine translation approach gave better
results than neural machine translation on small
corpora. (Lertpiya et al., 2020) explored another
low resource language which was (Thai). In their
work, they proposed a two-staged pipeline with
neural contextual attention. Using neural error cor-
rector and Seq2Seq error corrector alleviates the
problem of overcorrection.

The phonetically motivated approach has also
been explored a little by (Downs et al., 2020) where
they prioritized the phonetic key of the misspelled
word over supplementary ones. A survey con-
ducted for (Weld et al., 2021) reports an excellent
survey on joint intent classification and slot filling
techniques. They NLU models of over a decade
and gave a detailed comparison with the pros and
cons of various techniques. Concluding the state-
of-the-art research, they provide multiple compar-
isons that best summarise the past work done along
different dimensions, including the features, base
approaches, and dataset domain used. Hybrid pho-
netic neural models (Viana-Cámara et al., 2021)
and BERT (Devlin et al., 2018) models have also
been explored to capture character-phonetic but
they don’t capture the code-mixed data. (Hládek
et al., 2020) conducted a survey of spelling cor-
rection techniques. They studied the interactive
process of error production and correction. All the
major research assumes that the correct spelling
of the miss-spelled word is native to the written
language. In the case of code-mixed data, no such
thesaurus exists. Additionally, there is the absence
of any particular set of rules that one can use for
code-mixing, and it is complex to come up with
such a method or protocol to translate one language
into a romanized language.

Recently, (Sengupta et al., 2021) came up with a
method for sub-word level representation learning
that is supplemented by the word level lexical varia-
tions in code-mixed languages. They evaluated the
proposed architecture on a mix of European and

Indic languages (Spanish, Hindi, Bengali, Tamil,
Telugu, and Malayalam). They proposed a Hierar-
chically attentive Transformer (HIT) framework, a
novel architecture to encode text semantic and syn-
tactic features in an embedding space with efficacy.
It learns word representations at the sub-word level
using a Fused Attention MEchanism (FAME). It
incorporates two major attention components. An
outer product attention (OPA) (Le et al., 2020) to
extract higher-order character-level similarities and
multi-headed self attention (MSA) (Vaswani et al.,
2017), a standard transformer module that com-
putes a scaled query-key vector pair dot product.
FAME extends the MSA module by including OSA
and calculates their weighted sum. The proposed
model tries to embed semantically and phoneti-
cally similar words of a code-mixed language by
capturing relevant information at a more granular
level but lacks overall coverage of spelling varia-
tions. HIT is computationally expensive with over
trainable parameters 2.7M for sequence classifica-
tion and over 1.4M for POS tagging. It misses the
essence of layman language in text utterances.

3 Dataset Used

We will use a code-mixed version of the DSTC2
dataset (Williams et al., 2013; Henderson et al.,
2014a,b; Williams et al., 2014, 2016). They in-
corporated code-mixing in four regional languages
Hindi, Bengali, Gujarati, and Tamil, romanized as
English (Banerjee et al., 2018) by crowd-sourcing
the data for language translation from native speak-
ers of respective languages. The data contains 50k
utterances on the restaurant reservation domain,
including getting reservations done or asking for
information such as restaurant address, phone, etc.
Final data contains bot-to-human dialog conversa-
tions. The authors converted the raw data from
audio format to text. For this task, the authors used
Automatic Speech Recognition (ASR) modules.

Sentence cheap restaurant south west mein
Slots B-Price O B-Area I-Area O
Intent inform

Table 2: BIO-Tagging

Representation: There are 3 slots, 5 possible ar-
eas, 91 cuisines, and 3 price ranges. Workers acting
as customers were requested to deviate the conver-
sation in the middle of the dialog to various slots
and their possible values to make data robust, less
intuitive, and unconditional and avoid unnecessary
patterns in data.
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The workers transcribed the conversations and
labeled the utterances with different dialog states.
For example, each utterance was labeled with its
semantic intent representation (request[area], in-
form[area = north]) and the dialog turns were la-
beled with annotations such as constraints on the
slots (cuisine = Italian), requested slots (requested
= phone, address) and the method of search (by
constraints, by alternatives). Such annotations are
useful for domain-specific slot-filling based dialog
systems (Banerjee et al., 2018). This whole pro-
cess consists of three phases. Extracting unique
utterances from DSTC2, i.e., dialogues with only
change in the slot values rest same are filtered out.
Creating code mixed translations using Amazon
Mechanical Turk (AMT) tool for crowd-sourcing
and by in-house workers. The evaluation involved
taking random dialogues from the dataset for collo-
quialism (unforced translation), Intelligibility (eas-
ily understandable), and Coherence(irrespective of
neighboring utterances knowledge).

The quantitative measure of code-mixing : As
per the evaluation process. The authors analyzed
the obtained code-mixed data for code-mixing mea-
sures. (Gambäck and Das, 2016) gave a metric to
measure code-mixing in a sentence given as:

: ifN(x) > 0

Cu(x) = 100.

N(x)−max
Li∈L
{tLi}+ P (x)

2N(x)
(1)

Here, the measure of code-mixing for sentence
x, Cu(x) is given by N(x), number do foreign
language tokens in sentence. Maximum number of
tokens t in language Li from the set of languages
L. In addition, number of language switch points
given by P (x). In the above equation, the language
of the majority of words in the sentence serve as
Embedding however, irrespective of the majority,
we need to consider English as Embedding and
Hindi as Matrix language. To over come this the
authors proposed to replace the general max

Li∈L
{tLi}

with native(x) given as:

native(x) =

{
{tLn} : tLn > 0

N(x) : tLn = 0
(2)

Here, tLi is the number of tokens in native
language(Hindi). Also, the term δ(xi) with val-
ues 0(if switch in Matrix language) or 1(purely

Property Count
Total Utterances 49167
Unique utterances 6733
Utterances per dialogue 15
Words per utterance 8
Words per dialogue 120
KB triples per dialogue 38
Train dialogue 1168
Validation dialogue 500
Test dialogue 1117
Vocab Size 1229

Table 3: Raw Dataset Analysis.

Property Count in Hinglish
Unique Utterances 6549
Code-Mixed Utterances 5750
Hindi Only Utterances 348
English Only Utterances 451
Utterances per dialogue 12
Words per utterance 8
Hindi Vocab Size 739
English Vocab Size 551
Code-Mixed Vocab Size 386

Table 4: Code-Mixed Dataset Analysis.

English) to measure the extent of inter-utterance
code-mixing and frequency. The authors also
considered the fraction of code-mixed utterances
S:CMUtterances
U :TotalUtterances . And the final equation is given
as Cu(x) for one utterance and Cc(x) for complete
corpus:

Cu(x) =

(
1− native(x) + P (x)

N(x)
+ δ(x)

)

Cc(x) =
100

U

[
1

2

U∑

i=1

Cu(x) +
5

6
S

] (3)

4 Proposed Methodology

We propose a novel method of robust systems for
low resource similar token spelling variations. The
main reason for little spelling variations in the pro-
nunciation and ambiguous phonetics of the word.
Due lack of any formal conversion criterion, the
writer introduces variations. The aim is to map
the semantically similar romanized words such as
Kabhi, kabi, kbhi, etc together so that they can be
neutralized to a single term and have identical em-
bedding. Then give a most common and close to
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Figure 2: Spelling Variation Count Analysis

Figure 3: Utterance Count VS Hindi word count

correct representation of that word. We approach
this statement in 5 phases as follows:

1. Capture Code Mixing: The point of focus
is the tokens that belong to Matrix Language.
For this, we markdown the predefined tokens
(here, intent labels, slot labels and special to-
kens) according to the training data. For this
purpose, we use English Dictionary for iden-
tifying the embedded language words. We
leave the English words unchanged and sent
the non-English words to the second phase.

2. CM Elocution: In this phase, we try to find a
set of possible transliterations of each token in
their native script here, Devanagari. We have
an option to take the transliterated terms as to
be syntactically and semantically incorrect in
the Matrix Language since the whole idea is
to capture the different pronunciation styles

in the native language of the word. We use
indic-transliterator (Bhat et al., 2015) for this
job and stored top five closest transliterations
for each romanised token. These translitera-
tions sound similar to each other, with a minor
change in terms of vowels and consonants.

3. Candidate Selection (Devanagari
Phoneme): The set of recently formed
Devanagari tokens are the closest possible
phonetically similar terms that all sound
the same but differ in the writing style and
hence are close to each other. To reduce
variation, we need to normalize all the
possible variations with the most commonly
used term. Now that we have to query for
Hindi (Devanagari) text, there is plenty of
corpora that we can take as a benchmark. It
may or may not be semantically correct, but
it will be the most used term by the majority
of the population. We used the IIT Bombay
parallel corpus (Kunchukuttan et al., 2017) to
perform candidate selection. We use TF-IDF
on the Devanagari translation of the dataset.
The term with the max score is selected to
be the best possible normalization for all
the remaining terms. This newly elected
normalized term which syntactically correct
as per the Matrix Language. This way, we are
able to pull the spelling variations together
in multi-dimensional embedding space of the
Matrix Language.

4. Romanisation: This step is similar to the 2nd

phase. For the CM dataset, the Devanagari
terms are converted to their romanized
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Figure 4: Proposed Data Pipeline.

Figure 5: Devanagari Transliteration Generation

elocution by transliteration. Now, this is the
crucial step; we do not have any order or
protocol for elocution until now. However,
we intentionally introduce minor spelling
variations as part of code-mixing noise. Now
when we have the map of code-mixed words,
we can normalize it again based on candidate
selection, and this way, we normalize the
whole set of writer introduced code-mixing to
abide by the code-mixing methodology.

Count Language Train Test Dev

Sentences 1,492,827 2,507 520

Tokens English 20,667,259 57,803 10,656
Hindi 22,171,543 63,853 10,174

Table 5: IIT Bombay Corpus Statistics

5. Candidate Selection (Romanised
Phoneme): This step is similar to the
earlier candidate selection, the only difference
being the language to the terms. Here, we
select one most used romanized matrix
language term. TF-IDF scores catered to
this selection from a rich bi-lingual corpus
collected from various social media platforms
to capture the latest trends of code-mixing
generalized to various writers. We used
Facebook, Twitter, WhatsApp chat dataset
given by (Das, 2016) further explored in
(Ramesh and Kumar, 2016). This dataset
is enriched with a quality code-mixing
that best caters to our need to figure out
the most widely used representations of a
matrix language term. With this, we get a

single normalized term for all the syntactic
variations of semantically similar hi-English
terms. This output contains non-English
terms without spelling variations for roman
English (Hindi) words.

With this, we give novel methods and pre-
determined mapping for most commonly used
spelling variations with their preferred normaliza-
tion. This mapping can be helpful in learning mod-
els for spelling correction for natural language un-
derstanding tasks.

5 Experiments

We perform numerous trials and runs to prove the
importance of spelling normalization. We took a
downstream task of intent classification and slot
prediction. We use the BIO-Tagging format to
transform the data for performing joint learning.
We then compare the performance of state-of-the-
art algorithms on our normalized data and old data
with variations.

1. CS-ELMO (Aguilar and Solorio, 2019) used
a state-of-the-art monolingual model for find-
ing the sentence embedding for dialogue sys-
tems and used transfer learning to develop a
model for code-switched bilingual text. Their
model transfer English knowledge from a pre-
trained ELMo model to code-switched lan-
guage (Hi-English) using the task of language
identification (Matrix language and Embed-
ding Language). They used character convo-
lutions for capturing character positions of un-
known words. Their model outperformed the
multilingual BERT (Devlin et al., 2018), and
another code-switching ignorant monolingual
model like ELMO (Peters et al., 2018).

2. Stack Propagation (Qin et al., 2019) consid-
ered the strong correlation of intent classifica-
tion and slot filling (Zhang and Wang, 2016;
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Hakkani-Tür et al., 2016; Liu and Lane, 2016).
Qin’s model used the intent information di-
rectly into the slot filling stage. Once the ut-
terance’s intent is classified, we concatenate
the label to the slot representation for predict-
ing the slots for each of the tokens simulta-
neously. They performed token level intent
classification for further alleviating error prop-
agation and finally passed the representation
to the BERT layer for further performance
gain. The semantic knowledge in the form of
intents of each utterance act as a differential
link between the two tasks. They also demon-
strated the use of gated architecture proposed
in (Goo et al., 2018).

Figure 6: Multi-Task Vs Stack Propagation

3. DCA-Net Recently, (Qin et al., 2021) demon-
strated an excellent work of propagating se-
mantic knowledge from one task to another
in the form of joint learning. In (Qin et al.,
2019) there was a unidirectional flow of the
information to overcome this Qui et al. fur-
ther extended their work and proposed a co-
interactive transformer module by establish-
ing a bidirectional cross-impact between the
two tasks in a unified architecture. Both in-
tent classification and slot filling can take ad-
vantage of mutual information. Their model
achieved state-of-the-art performance. The
major drawback of their model is that it fails
to incorporate code-switching and fails on our
Hi-English data. We can further tune this
method for extending the scope for multilin-
gual data.

4. HIT A robust representation learning method
was recently proposed by (Sengupta et al.,
2021). They computed the weighted sum
of two attention modules, multi-headed self-
attention, and an outer product attention mod-
ule, to obtain the final attention weights. An
outer product attention (OPA) (Le et al., 2020)
to extract higher-order character-level similar-

ities and multi-headed self attention (MSA)
(Vaswani et al., 2017), a standard transformer
module that computes a scaled query-key vec-
tor pair dot product. HIT was able to encode
syntactic and semantic features in embedding
space by learning sub-word level represen-
tations with their fused mechanism called
FAME. FAME extends the MSA module by
including OSA and calculates their weighted
sum. This model did not perform well due
to incompetencies of efficiently reducing the
distance between semantically same but syn-
tactically varied code-switched terms.

6 Implementation

We report BLEU-4 (Papineni et al., 2002) and
ROUGE-1, ROUGE-2 and ROUGE-L scores (Lin,
2004) for natural language generation machine
translation task to compare the results with the
dataset baselines given by (Banerjee et al., 2018;
Banerjee and Khapra, 2019). Further, we compute
Precision, Recall, and F1 scores for intent classi-
fication and Slot Filling evaluation. We calculate
weighted and macro average scores and then chose
macro overweighted because this is a class imbal-
ance problem. The weighted average will give sig-
nificant weightage to the most frequent class whose
performance may lead to 100%. To encounter this
issue, we report macro averaged scores, i.e., an av-
erage of independent scores for each class, treating
all classes equally.

Further, We play with different combinations
of the state-of-the-art algorithms and compared
the performance on both syntactically normalized
(Spell) and un-normalized Inc spell versions of the
dataset. We represent the data as each line contain-
ing a token and utterances separated by an empty
line. Each token corresponds to a BIO tagging la-
bel, where B refers to the label’s beginning, I refers
to the intermediate words of the label, and O refers
to other classes (no label of interest).

7 Results and Comparison

The table 7 shows the effect of normalizing spelling
variations in code-mixed data and clearly shows
that our novel architecture helps further to improve
the quality of natural language generation tasks.
The baseline algorithms Seq2Seq and Hred (Baner-
jee et al., 2018) along with graph convolutions
network with sequential attention (Banerjee and
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Intent Macro Average Slot Macro Average Improvement
Model Data Intent Acc Pre Rec F1 Slot Acc Pre Rec F1

CS-ELMo Original 86.7 69.89 60.3 64.75 99.55 72.89 70.06 71.44 0.5464CS-ELMo Normalized 86.03 69.12 58.66 63.46 99.47 72.04 68.78 70.37
Stack Prop Original 93.56 86.51 78.89 81.98 98.85 76 76 77 0.3942Stack Prop Normalized 91.17 85.04 77.38 81.03 98.65 76 77 77
cselmo+ stackProp Original 94.17 87.22 79.71 83.29 99.23 78.77 78.38 79.81 0.4364cselmo+ stackProp Normalized 93.23 86.02 78.92 82.45 98.97 78.02 78.19 78.67
DCA-Net Original 85.73 75.3 62.7 66.86 98.92 69.21 63.64 64.08 0.2792DCA-Net Normalized 84.6 74.43 63.53 66.25 98.76 68.47 62.81 63.68
cselmo+DCA-Net Original 85.77 62.01 61.82 60.57 98.52 66.85 67.69 64.28 0.4771cselmo+DCA-Net Normalized 84.32 61.17 61.02 59.94 98.12 65.96 66.81 63.49
HIT Original 86.33 76.75 63.59 67.68 98.28 61.35 84.39 52.78 0.37217HIT Normalized 85.36 75.83 64.52 66.55 97.44 60.72 83.98 51.54

Table 6: Comparing different combinations of state-of-the-art models on Hi-English Data.

Model Data Bleu Rougue-1 Rougue-2 Rougue-L

Seq2Seq Normalized 55.1 62.9 52.5 61
Seq2Seq Original 55.9 63.55 53.1 62.09
Hred Normalized 55.3 63.4 52.7 61.15
Hred Original 55.61 63.92 53.25 61.91
GCN-SeA Normalized 57.1 66.4 56.8 64.4
GCN-SeA Original 57.4 66.78 56.4 65.98

Table 7: Effect of Spelling Normalization

Khapra, 2019) both results in higher performance
increased by 0.5 - 1.5 units, when normalised data
is used. Normalization forces the vector represen-
tations for semantically identical but syntactically
close terms to overlap each other in multidimen-
sional embedding space and forces the model to
treat all possible variations as the same only.

From table 6 we can infer, for all the state-of-
the-art approaches, the proposed modification has
lead to a significant performance gain by a factor of
0.5%-1.5%. The maximum improvement of 1.23
in slot F1 and 1.35 in intent F1 score can be seen
in CS-ELMO, considering it explicitly focuses on
the various types of character level embedding to
capture context. The combinations of CS-ELMO
with DCA-Net (0.8 for slot F1 and 0.67 in intent F1
) and CS-ELMO with Stack Propagation (1.14 in
slot F1 and 0.84 in intent F1) algorithms also shows
significant performance improvement. Hence, the
importance of tackling spelling variation in code
mixed data is evident from the above results. Inte-
grating different modules results in overcoming the
drawbacks of each module in one way or another.
This helps in improving the over performance.

8 Conclusion

With this emerging trend of code-mixing over so-
cial media platforms and daily communication in
almost every region, the necessity to develop effi-
cient natural language understanding models has

increased. We communicate in a specific language
(say, English) because the language has set stan-
dards, semantics, syntactic, and phonetics. Without
any standard for low-resource languages, it is tough
to communicate. Different people have different
ways of pronouncing and depicting the alphabet,
phonetics, and accent of a language close to their
mother tongue. This action may lead to spelling
variations while writing text as a medium for com-
munication. We introduce a novel, computationally
inexpensive, fully robust, and efficient method to
normalize these spelling variations that work as an
auto-correct to counter this problem. This mecha-
nism helps in performance gain not only machine
translation but also generic natural language tasks
and any downstream task involving code-mixing
problems. We give a universal mapping for Hi-
English code-mixing that can be used directly by
making a query in O(1) time to normalize non-
English words. It is evident from our work that
integrating several modules together helps in per-
formance improvement. We can further improve
this solution by learning a model to further normal-
ize out of the vocabulary terms.
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Abstract

Peer reviews are intended to give authors
constructive and informative feedback. It
is expected that the reviewers will make
constructive suggestions over certain aspects,
e.g., novelty, clarity, empirical and theoretical
soundness, etc., and sections, e.g., problem
definition/idea, datasets, methodology, experi-
ments, results, etc., of the paper in a detailed
manner. With this objective, we analyze the
reviewer’s attitude toward the work. Aspects
of the review are essential to determine how
much weight the editor/chair should place
on the review in making a decision. In this
paper, we used a publicly available Peer
Review Analyze dataset of peer review texts
manually annotated at the sentence level (13.22
k sentences) across two layers: Paper Section
Correspondence and Paper Aspect Category.
We transform these categorical annotations
to derive an informativeness score of the
review based on the review’s coverage across
section correspondence, aspects of the paper,
and reviewer-centric uncertainty associated
with the review. We hope that our proposed
methods, which are motivated towards auto-
matically estimating the quality of peer reviews
in the form of informativeness scores, will
give editors an additional layer of confidence
for the automatic judgment of review quality.
We make our codes available at https:

//github.com/PrabhatkrBharti/

informativeness.git.

1 Introduction

The peer review process is the central mechanism
for validating scientific research (Siler et al., 2015).
A good review typically provides feedback on one
or more sections and aspects while reviewing the
manuscript/paper 1, rather than just one section,
say the Introduction (Kühne et al., 2010). There-
fore, reviews covering more sections and aspects

1In this manuscript, manuscript/paper are used interchange-
ably.

are more likely helpful to the author. Furthermore,
the more sections and aspects the review covers,
the higher the expected coverage score. It may give
the author a confidence that the reviewer has read
through and paid attention to the different sections
and aspects in their submission. In addition, the
reviewers are expected to provide constructive com-
ments and suggestions regarding certain aspects
and sections of the manuscript. To determining
whether the reviewer was informative or construc-
tive in their review and covered significant sections
of the manuscript. It would be appropriate to men-
tion the data from Peer Review Analyze (Ghosal
et al., 2022a). They analyze and understand the
reviewers’ thrust over specific sections and aspects
of the manuscript. We use those insights in our
proposed method. This particular motivation led
us to incorporate the general sections, and aspects
of the paper defined by the Peer Review Analyze
(Ghosal et al., 2022a) into this paper to calculate
the informativeness score. We attempt here to gen-
erate an informativeness score for a given review
directly by analyzing the review’s coverage across
section correspondence, aspects of the paper, and
reviewer-centric uncertainty associated with the re-
view.
We summarize the key contributions of this
work as follows.

• We propose a seed idea for the automatic judg-
ment of review quality.

• We introduce a novel method for measuring
the informativeness score based on sections,
aspects coverage, and reviewer-centric uncer-
tainty encapsulated in the review.

• In addition, we establish statistical-driven
baselines to evaluate Mean absolute error
(MAE), Root Mean Square Error (RMSE) and
coefficient of determination (R2).

The novelty of our work lies in utilizing the Peer

280

https://github.com/PrabhatkrBharti/informativeness.git
https://github.com/PrabhatkrBharti/informativeness.git
https://github.com/PrabhatkrBharti/informativeness.git


Review Analyze dataset for measuring the infor-
mativeness score. Although we use the reviews of
a premier machine learning conference (ICLR) as
our dataset, our proposed method would represent
a generic aspect of peer review in Science, Technol-
ogy, Engineering and Mathematics (STEM). It will
assist the editors in which review they should pay
more attention to when crafting a meta-review. In
addition, it may give the author confidence that if
the review has high informativeness score, it means
the reviewer has reviewed thoroughly their submis-
sion.

2 Related Work

In the Meta Science community and Peer Review
Congress2 (Brezis and Birukou, 2020), peer review
quality has been a major research topic since 1989.
There are a few relevant ones that we discuss in
this article. The authors (Justice et al., 1998) stud-
ied a randomized control trial to see how mask-
ing author identity improves peer review quality.
The study in(Jefferson et al., 2002) presented ap-
proaches for assessing the quality of editorial peer
reviews. To assess peer reviews of manuscripts,
the authors of (Van Rooyen et al., 1999) developed
the Review Quality Instrument (RQI). In this pa-
per, the authors (Shattell et al., 2010) examined the
perspectives of authors and editors on the quality
of peer review in three scholarly nursing journals.
Peer review quality is evaluated in (Van Rooyen,
2001). A systematic review and meta-analysis on
the impact of interventions to improve the qual-
ity of peer reviews of biomedical journals were
conducted in (Bruce et al., 2016). In this paper,
authors (Enserink, 2001) explored the dubious con-
nection between the peer review and quality. Au-
thors (D’Andrea and O’Dwyer, 2017) argued if the
editors can save peer reviews from peer review-
ers. (Rennie, 2016) advocates scientific guidelines
for peer review. The purpose of this (Callaham
et al., 1998) study was to evaluate the reliability
of the editor’s opinion subjective quality ratings
of peer review of manuscripts. This paper pro-
vides an overview of how peer-review reports of
scientific articles can be assessed by the authors
(Sizo et al., 2019). For peer reviews, some rele-
vant NLP/ML works are worth exploring from an
NLP/ML perspective (Kumar et al., 2021; Ghosal
et al., 2019; Ghosal, 2019; Kumar et al., 2022;
Ghosal et al., 2022b; Bharti et al., 2022a,b, 2021;

2https://peerreviewcongress.org/

Gao et al., 2019). It should be noted, however, that
none of these works attempted to determine the
quality of peer reviews based on linguistic aspects.
Here, the goal is to derive a justifiable informative-
ness score and then use those insights to investigate
further, enabling editors to automatically identify
the quality of peer reviews.

3 Dataset

The dataset used in this study is from Peer Review
Analyze (Ghosal et al., 2022a), which is publicly
available. In Peer Review Analyze, peer review
texts are manually annotated at the sentence level
(13.22k sentences) across two layers: Paper Section
Correspondence and Paper Aspect Category. The
detailed dataset statistics are presented in Table 1,
and the reader is referred to the original paper for
further information.

3.1 Proposed Method

As we review the standard guidelines 3,4,5,6 for
peer-reviewing in machine learning (ML) and nat-
ural language processing (NLP) conferences, we
learn that the community expects a good review
that covers more sections and aspects of the re-
viewed manuscript (Gregory and Denniss, 2019;
Kühne et al., 2010). Having this motivation led us
to develop a justifiable informativeness score which
enables editors to automatically identify good re-
views and isolate those that are less thorough. In
our view, a good peer review should comment on
key sections and highlight the reviewer’s perspec-
tive while focusing on the essential aspects of the
manuscript.

Peer Review Analyze dataset is used to generate
an informativeness score based on the coverage of
section correspondence, aspects of the paper, and
the reviewer-centric uncertainty inherent in the re-
view.
Paper Section Correspondence: The paper sec-
tion correspondence identifies the section of the
paper on which the review statement is comment-
ing. E.g, Abstract (ABS), Introduction (INT),
Related Works (RWK), Problem Definition/Idea
(PDI), Data/Datasets (DAT), Methodology (MET),
Experiments (EXP), Results (RES), Tables & Fig-
ures (TNF), Analysis (ANA), Future Work (FWK),

3https://iclr.cc/Conferences/2022/MetareviewGuide
4https://acl2020.org/reviewers/
5https://neurips.cc/Conferences/2022/ReviewerGuidelines
6https://icml.cc/Conferences/2022/ReviewerTutorial
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Dataset # Purpose # Review
Avg. length of review

(terms of words)
Avg. length of review
(terms of sentences)

# Annotated
sentences

ICLR 2018 For proposed 1322 345.878 17.511 23150

Table 1: Dataset statistics

Overall (OAL), Bibliography (BIB) and External
(EXT).
Paper Aspect Category: The paper aspect cat-
egory identifies the aspect of the paper that the
review-statement addresses. E.g, Appropriateness
(APR), Originality or Novelty (NOV), Significance
or Impact (IMP), Meaningful Comparison (CMP),
Presentation & Formatting (PNF), Recommenda-
tion (REC), Empirical & Theoretical Soundness
(EMP), Substance (SUB) and Clarity (CLA).
Reviewer - Centric Uncertainty: In peer review,
reviewers sometimes make superficial, speculative
comments, which are not very helpful, and ulti-
mately affect the outcome (Ghosal et al., 2022b;
Özgür and Radev, 2009). For example, some re-
viewers use vague or hedge words (e.g., maybe,
seems, might, etc.) when uncertain about their re-
view. There could be discrepancies between how
reviewers comment on themselves and how readers
see their preview text. This intuition suggests that
a good review will have less reviewer-centric un-
certainty (low hedge score). Therefore, we incorpo-
rate reviewer-centric uncertainty into our proposed
method.

Informativeness Score: Reviews that cover the
complete work are more likely helpful to the au-
thor (Kühne et al., 2010). It can be an indication
of how detailed and significant the judgment was
with this intuition. We identify the study corre-
sponding to the paper section and aspects within
reviews. The main idea is to arrive at a justifiable
informativeness score; if a review is good, it will
cover as many sections and important aspects as
possible. With this objective, we encoded the an-
notation label into a numerical score based on the
review’s coverage across section correspondence,
aspect category and reviewer-centric uncertainty of
the review by measuring the informativeness score
towards the automatic judgment of review quality.
We have calculated the informativeness score by
considering following three parameters.

3.1.1 i) Section Score (Rsec ):
A good review should comment on the important
sections of the paper, which may help us identify
whether the reviewer’s comments are semantically

related to the submission’s main contents. With this
intuition, we calculate the section score by given
formula.

Rsec =

∑
x̄i +

∑
µiWxi∑

xi
(1)

Where Σx̄i = no. of unique sections covered by
review, µi = no. of repeating sentences containing
ith section, Wxi = weight of ith section and

∑
xi =

total no. of sections.
3.1.2 ii) Aspect Score (Rasp ):
As per the rubrics defined (Yuan et al., 2021;
Ghosal et al., 2022a) in Peer Review Analyze pa-
per, we expect the review to evaluate the work for
indicators like novelty, theoretical and empirical
soundness of the research methodology, writing,
and clarity of the work, impact of the work in a
broader academic context, etc. We call these in-
dicators review-level aspects. We calculate aspect
score using the following formula.

Rasp =

∑
x̄i +

∑
µiwxi∑

xi
(2)

Where Σx̄i = no. of unique aspects covered, µi
= no. of repeating sentences containing ith aspect,
wxi = weight of ith aspect

∑
xi = total no. of

aspects.
3.1.3 Assigning the Weights Wxi :

Figure 1 shows the label distribution for each re-
view across the datset for sections and aspects layer.
And we assign the weight to respective sections and
aspects in our informativeness formula accordingly.

Wxi =
Freq xi

100 * Total Freq
(3)

Freq xi = number of sentences talking about a spe-
cific section/aspect, Total freq: total number of
sentences talking about sections/aspects.

3.1.4 iii) Reviewer-Centric Uncertainty
(Hedge Score (H)):

In a review, uncertainty refers to speculation made
by the reviewer. The words the reviewer uses to in-
dicate speculating are called hedge words (Lakoff,
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(a) Sections distribution (b) Aspect distribution

Figure 1: Sections and aspects distribution across paper section correspondence and paper aspect category in Peer
Review Analyze annotated dataset.

1970; Tang et al., 2010; Velldal et al., 2012). Count-
ing uncertain terms in a review is normalized with
the number of words in a review to calculate hedge
scores. To calculate the hedge score, we use the
method proposed by Khandelwal A. et al. (Britto
and Khandelwal, 2020; Khandelwal and Sawant,
2019), and we use the XLNet (Yang et al., 2019)
version since it outperforms BERT (Devlin et al.,
2018) and RoBERTa (Liu et al., 2019).

Hedge Score =
Σ( hedge words )

Σ( words )
(4)

The score ranges from 0 to 1. If a reviewer is
uncertain the hedge score will be higher and vice
versa.
Based on the above discussion and using Equations
1, 2, 3 and 4, we derive an informativeness score
for a review, which is given below.

Informativeness score(Rinfo ) =
Rsec

eH ∗ e1−Rasp

(5)
Where Rinfo = Informativeness score, Rsec = Sec-
tion score, Rasp = Aspect score and H = Hedge
score.

3.1.5 Intuition about the informativeness
score:

We plot the graph between the informativeness
score (Rinfo ) and the other three parameters (
in the best and worst case). We consider this
observation in the informativeness score formula
accordingly.

Section Score (Rsec): From Figure 2, we can
see the reason to keep the section score in the nu-
merator.

• Informativeness score is directly proportional
to section score Rinfo ∝ Rsec and hence,
higher the Rsec, higher will be the Rinfo .

• The section score has the highest contribution
in determining the informativeness score; as
when section score = 0, irrespective of the
other two parameters, informativeness score
will always be = 0 (see Figure 2.)

Aspect Score (Rasp ): Figure 3 illustrates the re-
lation between informativeness score and aspect
score.

• From Figure 3, we can see that higher the as-
pect score, lower is the (1−Rasp), and hence
and value of e∧ (1−Rasp) is lower, higher
will be the informativeness score. Aspect
score has a lower contribution to the infor-
mativeness score, as even when aspect score
= 0, informativeness score still can be upto
0.3679, depending on the other two parame-
ters (section and hedge score).

• We intend that the informativeness score in-
creases exponentially with increasing aspect
score hence, Rinfo ∝ e∧Rasp . However, to
limit the max. Rinfo to 1 at Rasp = 1 (Best
condition when section score = 1, hedge score
= 0) and max. aspect score = 1, we divide
the informativeness score by a factor of e.
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(a) Best condition (when aspect score = 1 and hedge score = 0) (b) Worst condition (when aspect score = 0 and hedge score = 1)

Figure 2: Informativeness Score Vs. Section Score.

Therefore, Rinfo ∝ (e∧Rasp) /e, which im-
plies that Rinfo ∝ e∧ (Rasp − 1). Hence
Rinfo ∝ 1/e∧ (1− Rasp).

Hedge Score (H): Figure 4 illustrates the reason
to keep hedge score in the denominator, as a power
of e, such that Rinfo ∝ 1/e∧H.

• So, higher the hedge score, higher the e∧H,
and hence lower will be the informativeness
score.

• we can see from Figure 4 hedge score has
a lower contribution to the informativeness
score; as even when hedge score = 1, informa-
tiveness score can reach 0.3679, depending on
the other two parameters (section and aspect
score).

• We intend that the informativeness score de-
creases exponentially with increasing hedge
score, and at H = 0, Rinfo = 1. Hence,
Rinfo ∝ e∧(−H) which implies that Rinfo ∝
1/e∧H.

4 Benchmarking Experiments

In addition, we provide baselines for natural
language processing (NLP) on the experimental
dataset (both annotated and unannotated). More-
over, we train nine methods based on data, includ-
ing Multiple Linear Regressions (MLR), Robust
Regressions (RANSAC), Random Forest Regres-
sions (RF), Long Short-Term Memory (LSTM),
Extreme Learning Machines (ELM), Bidirectional
Long Short-Term Memory (BiLSTM), Masked and
Permuted Pre-training for Language Understanding
(MPNet) (Song et al., 2020), Bidirectional Encoder
Representations from Transformers (BERT) (De-
vlin et al., 2018), as well as Transformer variants
of SciBERT (Beltagy et al., 2019).

4.1 Features for Peer Review Analyze
(annotated dataset)

We use a set of features that includes:

• Sentence and word count : We have used
the five features sentence count, word count,
average sentence length, average word length,
and vocab length. The informativeness score
is directly proportional to the length of review
sentence count and word count, as well as the
size of vocabulary vocab length. This gives us
a feature matrix of dimension 5.

• Hedge features: For review uncertainty, we
use the hedge feature hedgescore, which is the
average hedge words per sentence, where the
hedge words are determined by the method
proposed by Khandelwal A. et al. (Britto and
Khandelwal, 2020; Khandelwal and Sawant,
2019). This gives us a feature matrix of di-
mension 1.

• PoS features: PoS (Parts of Speech) includes
nouns, adjectives, verbs, and adverbs.

• Sentiment features: We use VADER (Va-
lence Aware Dictionary for Sentiment Rea-
soning) (Hutto and Gilbert, 2014) compound
sentiment score as the sentiment feature. It
ranges from -1 to 1 and gives a feature matrix
of dimension 1.

• Keyword count: We take the 50 most ap-
pearing terms from the papers with top 20%
informativeness score as keywords, hence ob-
taining a feature matrix of 50.

• Section and aspect coverage: We use the
number of sections covered (out of 14) and
the number of aspects covered (out of 9), by
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(a) Best condition (when section score = 1 and hedge score = 0)
(b) Worst condition (when section score = 0 and hedge score =
1)

Figure 3: Informativeness Score Vs. Aspect Score

(a) Best condition (when aspect score = 1 and aspect score = 1) (b) Worst condition (when aspect score = 0 and aspect score = 0)

Figure 4: Informativeness Score Vs. Hedge Score.

the review as features, with feature matrix
dimension 2.

• Section and aspect distribution: We take
the counts of the number of sentences in the
review that talks about each section/aspect as
features. This gives us a feature of dimension
23.

4.2 Features for unannotated dataset
We use a set of features, which includes sentence
and word counts, sentiment features, PoS (Part of
Speech), i.e., nouns, adjectives, verbs, and adverbs,
hedge features, and keyword counts. Kindly refer
to our GitHub repository for the definition and im-
plementation of our full feature set.
Thus, we use feature matrices of dimension 86
for annotated reviews and dimension 61 for unan-
notated review text (for both, we use Peer Re-
view Analyze dataset) to predict informativeness
scores. In addition, word embeddings of their spe-
cific dimensions to deep learning models with the
Bidirectional Long Short-Term Memory (BiLSTM)
pipeline, we use a standard implementation of ma-
chine learning models from sci-kit python library,
(Pedregosa et al., 2011) keeping the default param-
eters fixed for a fair comparison across variations

in models and embeddings.
Implementation Details: We use Keras on top of
TensorFlow-2.4.1 to build the model. Moreover, we
train the model with batch size 32, and Adam opti-
mizer with a weight_decay = {1e−3} to avoid over-
fitting, and kept each batch balanced while training.
We use fixed set {1e− 1, 1e− 2, 1e− 3, 3e− 3} to
tune the learning rate, and find {1e−3} works best
in our experimental setup. Please see our repository
link in the abstract for further information.

4.3 Experimental Setup

In terms of our experimental setup, we use more
than one evaluation metrics to avoid any confusion.
Because different metrics with the same data can
produce different values. It is always better to have
a combination of metrics-like MAE (Mean abso-
lute error), Root mean square error (RMSE) and
coefficient of determination (R2) to use together
and apply the same metric on a different model to
see which one produces the best performance.

5 Evaluation Results & Analysis

We report the evaluation results for annotated and
unannotated datasets in Table 2 and Table 3. We
kept 80% of the data for training and 20% for eval-
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Model Types MAE RMSE (R2)
MLR 0.0205 0.0305 0.9061

RANSAC 0.0201 0.0295 0.9167
RF 0.0181 0.1924 0.9297

LSTM 0.0178 0.0286 0.9331
ELM 0.0171 0.0267 0.9435

BiLSTM 0.0191 0.0219 0.9619
MPNet 0.0162 0.0184 0.9730
BERT 0.0197 0.0229 0.9583

SciBERT 0.0152 0.0171 0.9871

Table 2: Performance comparision for qualitative analy-
sis on annotated dataset in terms of MAE, RMSE and
R-squared (R2).

Model Types MAE RMSE (R2)
MLR 0.0596 0.0787 0.3212

RANSAC 0.0666 0.0864 0.3276
RF 0.0682 0.0894 0.3656

LSTM 0.0646 0.0935 0.3051
ELM 0.0636 0.0810 0.3787

BiLSTM 0.0659 0.0878 0.3875
MPNet 0.0657 0.0954 0.2767
BERT 0.0711 0.0931 0.3115

SciBERT 0.0621 0.0735 0.4155

Table 3: Performance comparison for qualitative analy-
sis on unannotated dataset in terms of MAE, RMSE and
R-squared (R2).

uation of the models. We experiment with nine
data-driven methods: Multiple Linear Regression
(MLR), Robust Regression (RANSAC), Random
Forest Regression (RF), Long Short-Term Memory
(LSTM), Extreme Learning Machines (ELM), Bidi-
rectional Long Short-Term Memory (BiLSTM),
Masked and Permuted Pre-training for Language
Understanding (MPNet), Bidirectional Long-Short
Term Memory (BiLSTM) on Bidirectional Encoder
Representations from Transformers (BERT), and
a Bidirectional Long-Short Term Memory (BiL-
STM) on Transformer variant of SciBERT, to test
the proposed proposition. As shown in Table 2
and Table 3, the deep neural model based on SciB-
ERT representations outperforms both annotated
and unannotated datasets.
Qualitative Analysis on Baseline Models: Table
4 shows informativeness score calculate by pro-
posed method and automatically generated infor-
mativeness score by nine different techniques on
a given Neural Information Processing Systems

(NeurIPS) reviews. For qualitative analysis, we
take our trained models and predict the score on
Neural Information Processing Systems (NeurIPS)
sample reviews dataset from the open-access plat-
form OpenReview platform7. Table 4 shows some
examples of them.

5.1 Case Study:
We analyzed the two ICLR reviews qualita-
tively to support our proposed method. In the
review https : //openreview.net/forum?id =
B1EA − M − 0Z. We can see that out of 14
sections, the review has covered 8 unique sections,
out of 9 aspects, it covers 4 unique aspects, and
this review also has a reviewer-centric uncertainty
calculated by hedge score. We can see from Figure
5 (a) the following observations.

• If the review has higher coverage in sections
and aspects, the higher will be the section and
aspect score. It leads to a higher informative-
ness score.

• If the reviewer-centric uncertainty (hedge
score) is high, then informativeness should
be low.

https : //openreview.net/forum?id =
ByuP8yZRb, we can see that out of 14 sections,
the review has covered only 6 unique sections, and
out of 9 aspects, it covers 3 unique aspects, and this
review has high reviewer-centric uncertainty calcu-
lated by hedge score. The following observations
can be seen in Figure 5 (b).

• This review has low coverage in terms of sec-
tions and aspects. Due to this, it has a low
informativeness score.

• This review has a high reviewer-centric uncer-
tainty in terms of hedge score, leading to a
low informativeness score.

In summary, from this case study shown in Figure
5, we can see the efficiency and suitability of the
proposed informativeness method.

6 Conclusion and future work

In this paper, we provide an effective solution to
automatically estimate the informativeness score

7https://openreview.net/
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Review Id (Informativeness score calculate by
proposed method)

Informativeness Score Predicted by Baseline Models
MLR RANSA RF LSTM BiLSTM ELM MPNet BERT SciBERT

URL: https://proceedings.neurips.cc/paper/2018/file/9246444d94f081e3549803b928260f56-Reviews.html
NIPS_2018_1006__R1 0.1596 0.1108 0.1176 0.1292 0.1316 0.1381 0.1328 0.1398 0.1347 0.1443
NIPS_2018_1006__R2 0.2713 0.1849 0.1989 0.1998 0.2189 0.2191 0.2212 0.2351 0.2479 0.2569
NIPS_2018_1006__R3 0.5053 0.3992 0.4087 0.4097 0.4162 0.4194 0.4276 0.4459 0.4639 0.4752

URL: https://proceedings.neurips.cc/paper/2018/file/e77dbaf6759253c7c6d0efc5690369c7-Reviews.html
NIPS_2018_443__R1 0.2822 0.1818 0.1884 0.1931 0.2245 0.2279 0.2311 0.2434 0.2496 0.2765
NIPS_2018_443__R2 0.3249 0.2067 0.2107 0.2256 0.2383 0.2338 0.2430 0.2458 0.2961 0.3006
NIPS_2018_443__R3 0.3236 0.2022 0.2308 0.2355 0.2412 0.2443 0.2536 0.2563 0.3038 0.3151

Table 4: Qualitative analysis results for predicting the Informativeness score by baseline models.

(a) Informativeness score calculated by proposed method

(b) Informativeness score calculated by proposed method

Figure 5: Qualitative analysis on annotated ICLR Reviews.

of review on the shoulder of uncertainty and review
coverage (sections and aspects of the paper). For
the proposed method, we used a publicly available
Peer Review Analyze dataset of peer review texts,
manually annotated at the sentence level (13.22k
sentences) across two layers: Paper Section Cor-

respondence and Paper Aspect Category. Next,
we transform these categorical annotations to de-
rive an informativeness score of the review based
on the review’s coverage across section correspon-
dence, aspects of the paper, and reviewer-centric
uncertainty associated with the review toward the
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automatic judgment of review quality. We believe
that these interpretations can assist the editors in
making better editorial decisions.
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Abstract
A spellchecker is essential for any language
for producing error-free content. While
there exist advanced computational tools
for Sanskrit, such as word segmenter, mor-
phological analyser, sentential parser, and
machine translation, a fully functional
spellchecker is not available. This pa-
per presents a Sanskrit spellchecking dic-
tionary for Hunspell, thereby creating a
spellchecker that works across the numer-
ous platforms Hunspell supports. The
spellchecking rules are created based on the
Paninian grammar, and the dictionary de-
sign follows the word-and-paradigm model,
thus, making it easily extendible for future
improvements. The paper also presents an
online spellchecking interface for Sanskrit
developed mainly for the platforms where
Hunspell integration is not available yet.

1 Introduction
A spellchecker is a program that checks for mis-
spellings in a text and suggests correct alterna-
tives (Lawaye and Purkayastha, 2016). It is
an essential tool for word processing and doc-
ument preparation.
In the recent decade, digitization of San-

skrit manuscripts and using digital technolo-
gies for editing and publishing new content in
Sanskrit have seen a tremendous increase. On-
line Sanskrit communities and many individu-
als are actively using Sanskrit in writing blogs,
emails and chat messages, while some are de-
signing posters in Sanskrit. A spellchecker can
help them to communicate clearly and produce
error-free content.
After the digitization of a manuscript

through an OCR (optical character recogni-
tion), often there might be errors in the text
due to the visual similarity in certain letters
such as ब­व and य­थ (Schnober et al., 2016).
These can be corrected using a spellchecker

manually or through a pipeline that performs
the OCR post-correction automatically. Also,
advanced tools like morphological analyser
(Kulkarni and Shukl, 2009; Huet, 2005) and
sentential parser (Kulkarni, 2019) might pro-
duce incorrect results or no results at all, if
the input contains spelling errors (Murthy
et al., 2012). In such cases, the input can
be pipelined through a spellchecker for pre-
checking and pre-processing.
A spellchecker can also sometimes help new

learners of Sanskrit in learning the correct
spellings of words, especially, of those having
phonetically similar letters such as श­ष in “शषे”,
ए­य े in “एक”, न­ण in “बाणने”, etc.
This paper presents a Sanskrit spellcheck-

ing dictionary for Hunspell based on the word-
and-paradigm model and describes its design
and implementation. It discusses the suitabil-
ity of Hunspell for a highly inflectional lan-
guage like Sanskrit (Section 3) and the format
of a Hunspell dictionary (Section 4). It also
describes the framing of spellchecking rules
based on Paninian grammar (Section 5). The
paper also presents a web interface for San-
skrit spellchecking (Section 6). Later, it dis-
cusses the evaluation of both the spellchecking
dictionary and the web interface (Section 7).
The paper also records the challenges unique
to Sanskrit in creating a spellchecking dictio-
nary (section 8).

2 Related Works and Previous
Attempts

While there exist advanced computational
tools for Sanskrit such as word segmenter
(Hellwig and Nehrdich, 2018), morphological
analyser (Kulkarni and Shukl, 2009), senten-
tial parser (Kulkarni, 2019), machine transla-
tion (Kulkarni, 2009), automatic speech recog-
nition (Adiga et al., 2021), etc., a fully func-
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tional spellchecker is not available. Spellcheck-
ers and grammar checkers are fundamental
tools that users need and expect nowadays
with the increase in the use of digital technolo-
gies for both creating new content as well as
digitising existing texts.

Significant work has been done on
spellcheckers for other Indian languages
like Hindi (Kaur and Singh, 2015; Pathan
et al., 2019; Kanwar et al., 2017; Jain et al.,
2018), Marathi (Dixit et al., 2016), Odia
(Pradhan and Dalai, 2020), Punjabi (Lehal,
2007), Kashmiri (Lawaye and Purkayastha,
2016), Telugu (Uma Maheshwar Rao G. et al.,
2012), Tamil (Segar and Kengatharaiyer,
2015) and Kannada (Murthy et al., 2012,
2017).

Though there is not much research work
available on spellchecker for Sanskrit, there
were a few attempts in the past to develop
one. Tapaswi et al. (2012) proposed and devel-
oped a spellchecker based on the morphologi-
cal rules of Sanskrit. It was a standalone ap-
plication implemented in Java. Samsādhanī1
developed and hosted a spellchecker web appli-
cation where their morphological analyser runs
on the text provided by a user and highlights
incorrect words. The application, however, is
no longer maintained2. Patel (2016) built a
Sanskrit spellchecker that works based on dif-
ferent vowel and consonant patterns. But it
was specific to the Cologne Sanskrit dictionar-
ies, and not for general spellchecking (Patel,
2021). Gasuns (2013) and Kumar (2017) in-
dependently created Sanskrit dictionaries for
Hunspell. But, as of now, both the dictionar-
ies are not complete and are not maintained.
Quintanilha and Líbera (2018) developed a
dictionary add-on for Mozilla Firefox which
contains a Sanskrit Hunspell dictionary. How-
ever, it is also far from complete.

Other than these, to the best of our knowl-
edge, there has been no significant progress
in the development of a Sanskrit spellcheck-
ing dictionary for Hunspell or any other
spellchecker for Sanskrit.

1https://scl.samsaadhanii.in/scl/
2Dr. Amba Kulkarni, personal communication.

3 Why Hunspell?

Hunspell is a free open-source spellchecker
and morphological analyser library and also
a command-line tool3. It is the most pop-
ular spellchecker that is used in many ap-
plications like LibreOffice4, Mozilla Firefox5,
Google Chrome6 and Adobe InDesign7 and
has bindings in numerous popular program-
ming languages (Németh, 2019). In Linux
and macOS, after installing the dictionaries
the users can enjoy system-wide spellcheck-
ing. Such tight integration helps correct mis-
spellings even as the user is writing instead
of having them copy and paste the text into
an external program just for spellchecking.
Therefore, designing a dictionary for Hunspell
means we can have Sanskrit spellchecking on
almost all the platforms.
Sanskrit is a highly inflectional language

and highly productive in derivative morphol-
ogy such as Samāsa, Kṛdanta and Taddhita
(Adiga et al., 2018). A simple list of all the cor-
rect forms would be extremely huge in terms of
computer storage. Hunspell format allows us
to define the base forms and affixes separately
which hugely reduces the dictionary size. This
division also makes it easier to add new words
to the dictionary.

4 Format of Hunspell Dictionary
Files

Before going into the design and preparation
of the Hunspell dictionary, the format of the
dictionary files is briefly discussed here. Hun-
spell requires two files to define how it should
spellcheck for a language and suggest correct
alternatives8 – a dictionary file and an af-
fix file. The first line of the dictionary file
contains the (approximate) count of the num-
ber of entries in the file (Németh, 2018). From

3https://github.com/hunspell/hunspell/
4https://extensions.libreoffice.org/?q=

dictionary
5https://addons.mozilla.org/en-US/firefox/

language-tools/
6https://chromium.googlesource.com/chromium/

deps/hunspell_dictionaries/
7https://helpx.adobe.com/indesign/kb/add_cs_

dictionaries.html
8The dictionary and affix file format is discussed

here only briefly to understand the design of the cur-
rent dictionary. For more information refer (Németh,
2018) and (Shepelev, 2021).
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sa_IN.dic
37058
...
आिशस/्1001
अिचस/्1001
भिुवस/्1001
...

sa_IN.aff
SFX 1001 Y 17
SFX 1001 ि◌स ् ◌ीः .
SFX 1001 स ् षौ .
SFX 1001 स ् षः .
SFX 1001 स ् षम ् .
...

Table 1: Samples from the final dictionary
(sa_IN.dic) and affix (sa_IN.aff) files.

the second line onwards, we have the entries,
one per line. An entry can be a morpheme or
lexeme or can even be a pair of words, and it
can be optionally followed by a forward slash
(“/”) and one or more “flags” which represent
its attributes such as suffix, prefix, etc. Ta-
ble 1 (sa_IN.dic) is a sample from the final
dictionary file showing the entries’ count, some
entries and their flags.
The definitions of these flags are given in

the affix file. Table 1 (sa_IN.aff) is a sam-
ple from the affix file showing the affix class
corresponding to the flag “1001”, used in the
dictionary. An affix class definition consists
of a header (the first line) followed by a num-
ber of affix rules, each separated by a new
line. The affix header consists of four fields
describing:

• Whether the class is for a suffix or prefix.

• The paradigm type of the affix.

• Whether the words of this class can take
both suffix and prefix or only one of them.

• The number of rules in this class.

Here, `SFX 1001 Y 17` states that this is a
suffix class with paradigm type “1001” which
has 17 rules, and these rules can be used even
if the entry has prefixes.
The fields in the affix rules give the informa-

tion on the characters to strip from the word,
the affix to add to the word and the condi-
tion. For example, the first affix rule in Ta-
ble 1 says, in the words with this flag (“1001”),
strip ि◌स ् from the end and add the suffix
◌ीः to form a valid word. The condition
field is a regex-like expression that is checked
from the end of a word for a suffix rule
and from the start for a prefix rule (Németh,

2018). If there is nothing to be stripped
from the word, the stripping is written as “0”
(i.e. SFX <flag> 0 <suffix> <condition>).
And if no suffix is to be added to
the word, it is represented with “0” (i.e.
SFX <flag> <stripping> 0 <condition>).
In the dictionary file, the affix flag “1001”

is assigned to the word “आिशस”् (Table 1). So,
the first affix rule strips ि◌स ् from the end of
“आिशस”् to form “आश” (note that it does not
have a virama). Then, the rule adds ◌ीः to the
end of “आश” to form “आशीः” which is the nom-
inative singular form of “आिशस”् and therefore,
a valid word.
The affix file is not only for defining affix

rules. It is also used for containing a lot of op-
tions that help improve Hunspell’s spellcheck-
ing process for the language which would be
discussed later (Sections 5.2 and 5.3). In the
following section, we describe the preparation
of the dictionary and affix files.

5 Design and Preparation of the
Dictionary

For designing the dictionary, we follow the
word and paradigm model, which is compu-
tationally easy to work with. We prepare the
dictionary entries and affix rules for nouns and
verbs using two different methods, as we would
describe in the next section (Section 5.1). Sec-
tions 5.2 and 5.3 discuss the use of some of
Hunspell’s options for improving the sugges-
tions and handling optional characters.

5.1 Preparation of Words and Affix
Rules

5.1.1 Nouns
Sanskrit has only two morphological classes at
the inflectional level viz. noun and verb. In
almost all the nouns, only the last few letters
of the nominal base change when it combines
with a nominal suffix. For example, the base,
नदी, when it combines with the nominative
dual suffix औ its final vowel ई is replaced by य ्
and becomes नयौ. Similarly, when भगवत ्com-
bines with instrumental dual suffix याम ्, the
final त ् is replaced by द ् and becomes भगवाम ्.
For such forms, the affix rules are written with
the letters needed to be removed from the
base, in the stripping field, and the suffix to
be added, in the suffix field (Table 2). But
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Form Stripping Suffix Affix Rule
नदी ◌ी ◌ौ SFX 1 ◌ी यौ .

भगवाम ् त ् ाम ् SFX 2 त ्ाम ्.
रामय 0 य SFX 3 0 य .
हिरः 0 ◌ः SFX 4 0 ◌ः .

सीतायाः 0 याः SFX 5 0 याः .

Table 2: Affix rules for different subanta forms

in some cases, the base remains unchanged in
its declined form, such as रामय, हिरः, गरुुयाम ्,
सीतायाः, भगवतस्,ु etc. For such forms, the af-
fix rules are written with “0” in the strip-
ping field (Table 2).
The affix rules cannot be framed for some

of the noun forms that completely differ from
their bases (irregular forms). For example, दुह ्
becomes धकु ् in nominative singular9 and अमद ्
becomes मम in genitive singular. These be-
ing exceptional cases, the corresponding forms
are directly added to the dictionary. Similarly,
the indeclinables, which do not have any suf-
fixes, are also directly added to the dictionary
without any affix flags.

5.1.2 Verbs
The verb morphology is much more complex
than the noun morphology. The verbs in cer-
tain tenses or moods have both prefix as well
as suffix. Further, in a certain tense (liṭ lakāra)
there is a reduplication of the verbal stem.
We do not discuss the morphological details
at length here due to the constraints in the
page size. However, the general morphological
structure of the finite verb forms is:

UPASARGA (prefix) + A/Ā10

(prefix) + DHĀTU (root) +
VIKARAṆA (tense marker) +
TIṄ (verbal suffix)

We have here two prefixes and two suffixes.
But Hunspell supports11 only one prefix and
two suffixes for a word (Németh, 2018). Hence,

9दादधेा र्तोघ र्ः Aṣṭādhyāyi 8/2/32 and एकाचो बशो भष ्
झषतय स्वोः Aṣṭādhyāyi 8/2/37.

10Only in some tenses/moods (laṅ, luṅ and lṛṅ
lakāras).

11Hunspell also supports two prefixes and one suffix
when the COMPLEXPREFIXES option is set. But it
is mainly used by languages with a right-to-left writing
system.

we merge A/Ā-prefix with the UPASARGA-
prefix to form a single prefix. Also, we merge
the root with the tense marker to form the
stem thereby reducing the suffix to one.
Due to this limitation of the Hunspell to use

at the most a single prefix and at the most a
single suffix, we have to transfer the load of
base formation under different environments
to the dictionary, thereby resulting in more
than one stem corresponding to each verb. For
example, the root, पध ्र् has two entries in the
dictionary corresponding to it – पधर् and पपध र्.
With regard to the affix rules for the finite verb
forms, they are almost same for a given tense
or mood.

5.2 Improving Suggestions

For Hunspell to accurately suggest correct al-
ternatives for an incorrect word, it needs a list
of characters used in the script and a list of
common misspellings. We provide these lists
using the `TRY` and `REP` options, respec-
tively, in the affix file.

5.2.1 Try Characters
Using the `TRY` characters, Hunspell can sug-
gest the correct words when the misspelled
words differ from them by a single charac-
ter (Németh, 2018). Hunspell adds, deletes,
or replaces one of these characters to suggest
the closest valid dictionary word for the mis-
spelled word (Shepelev, 2021).

`TRY` characters are more effective if they
are in the order of their frequency in the litera-
ture (Németh, 2018; Shepelev, 2021). For this,
we use the Amarakośa of Amarasiṃha which
contains the frequently used words in classi-
cal Sanskrit and calculate the frequency of the
characters12. We, then, add the characters to
the `TRY` option in the descending order of
their frequency as shown below:

TRY ◌् ◌ा र त ि◌ क स न व य म प ◌ु ◌ः द ◌ो
◌े ल ◌ं ◌ी श ष ग च ण ध ह ज भ ◌ौ ◌ृ ◌ू थ ऽ
ब ट ङ ड ◌ै अ ख ञ घ ठ छआ उ फ इ ऋ ढ ए झ
ऊ ओ ई ऐ औ13

12The algorithm and the results are avail-
able at: https://github.com/vipranarayan14/
sanskrit-char-frequency

13Space-separated for readability
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5.2.2 Replacement Definitions
Replacement definitions are provided for han-
dling typical spelling mistakes (Németh, 2018).
Based on these replacement definitions, Hun-
spell makes some replacements in the mis-
spelled word to find the valid forms from the
dictionary and suggests the same. Let us see
an example. Consider the word “रामह”. It is
not a morphologically valid word. We know
that the closest valid alternative is “रामः”. But,
using only the `TRY` characters, Hunspell will
suggest many correct alternatives of which
“रामः” is not even among the first three (Fig-
ure 1). This is where the `REP` (replacement)
definitions become very helpful.

Figure 1: Correct suggestion in the 5th position.

Figure 2: Correct suggestion in the 1st position.

When the replacement definitions shown in
the Table 3 are added to the affix file we
can see in Figure 2 that “रामः” becomes the
first suggestion for the misspelled word “रामह”.
This is also because Hunspell gives `REP` sug-
gestions the highest priority in the suggestion
list (Németh, 2018; Shepelev, 2021).
First line in the replacement table (Table 3)

is the header. It tells that there are 125
`REP` (replacement) definitions in the table.
The rest of the table consists of the replace-
ment definitions. We use the replacement def-
initions for suggesting closer valid alternatives

REP 125
REP ह ◌ः
REP म ◌्ं
REP ऒओ
REP ि◌ ◌ी
REP अआ
REP आअ
REP क ख
REP श ष
...

REP व ब
REP ब व
REP य थ
REP थ य
REP ध घ
REP घ ध
...

Table 3: Some of the replacement definitions used
in the dictionary.

for words that are misspelled due to phonetic
similarity or visual similarity.
The reasons for adding replacement defini-

tions for phonetically similar characters are:

• Beginners in Sanskrit would not be famil-
iar with the spellings, especially, of words
that have some of the phonetically similar
characters, such as श­ष in शषे, क­ख in कर,
न­ण in बाणने. Sanskrit has a lot of such
words.

• People who are not trained with the IN-
SCRIPT keyboard layout would tend to
use the phonetic keyboard layouts for
writing Sanskrit. So, their typing errors,
for the most part, would also be phonetic.

• Phonetic typing errors also occur if
the writer is not familiar with the in-
put schemes such as ITRANS, Velthuis,
Harvard-Kyoto, etc. since these popu-
lar schemes are themselves based on the
Sanskrit phonemes. In Figure 2, the
user, intending to write “रामः” using an
ITRANS phonetic keyboard layout, has
typed “raamaha” which resulted in “रामह”
(since the key for visarga in ITRANS
scheme is “H”; not “ha”). Now, the
spellchecker using the replacement defini-
tions, correctly suggests the right alterna-
tive “रामः”.

The reasons for adding replacement defini-
tions for visually similar characters are:

• They can help in correcting spelling er-
rors found in post-OCR documents. For
example, an OCR incorrectly recognises
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the word “िमया” as “िमया” due to the vi-
sual similarity between “थ” and “य”. The
spellchecker using the replacement defini-
tions can help the user to correct it to
“िमया”.

• Users using Devanagari keyboards such as
the INSCRIPT keyboard make spelling er-
rors more due to the visual similarity of
characters than their phonetic similarity.

5.3 Handling Optional Characters
There are many other options in Hunspell
for improving the overall working of the
spellchecker. One such option is `IGNORE`
which can be used to make Hunspell ignore
certain characters when spellchecking. Using
this option, we ignore the character “ऽ” (ava-
graha) for allowing words such as “काऽिप” and
“इतोऽिप” to be written without it as “कािप” and
“इतोिप”. Because both forms are considered cor-
rect and both are in vogue.
In this section, we described the preparation

of the spellchecking dictionary. The following
section briefly describes the development of a
web interface for Sanskrit spellchecking.

6 Web Interface

A web interface14 is developed using the
spellchecking dictionary and Hunspell, mainly,
for supporting platforms such as Android and
iPhone where Hunspell integration is currently
not available. However, it can be used in desk-
top browsers also. Sanskrit text in Devana-
gari script can be typed in or pasted into the
editor. The editor marks the incorrect words
with a red underline. If an underlined word
is clicked, a pop-up window opens next to the
word showing a list of correct suggestions (Fig-
ure 3). When a suggestion is clicked, the incor-
rect word is replaced with the suggested word
and the pop-up closes.

7 Evaluation

After the Hunspell dictionary was prepared,
all the forms of the word paradigms were
tested against it with the help of Nodehun15,
a Node.js binding for the Hunspell library,

14It can be accessed at: https://
sanskrit-spellchecker.netlify.app

15https://www.npmjs.com/package/nodehun

and Mocha16, an automated JavaScript test-
ing framework. In the test, all the forms were
recognised as correct spellings.
To evaluate the spellchecking dictionary, a

test corpus was prepared from three random
OCR-ed pages of Śrīmad Vālmīki Rāmāyaṇa
from the Sanskrit Wikipedia17. The sandhis
and samāsas in the corpus were manually split
since the dictionary does not support such
words. The corpus consisted of 751 unique
words.

The dictionary was added to Hunspell and,
using a script written in Python, each word
in the corpus was tested with the Hun-
spell spellchecking interface. The Hunspell
dictionaries prepared by Kumar (2017) and
Líbera (2018) were also tested in a similar
manner for comparison. The results were then
manually analysed.

Dictionary Words AC AI RC RI
A 751 720 31 501 250
B 751 720 31 27 724
C 751 720 31 5 746

Table 4: Comparison of results of dictionaries A,
B and C. AC = Actual correct words, AI = Actual
incorrect words, RC = Words recognised by the
dictionary as correct, and RI = Words recognised
by the dictionary as incorrect.

Table 4, shows the comparison of results
of the three dictionaries, viz. dictionary (A)
proposed in this paper, (B) the one prepared
by Kumar and (C) which was developed by
Líbera. (A) performed very well compared to
(B) and (C). The main reason for the poor
performance of (B) and (C) was their limited
vocabulary. (B) has only 3228 words in the dic-
tionary file while (C) has only 838 Devanagari
words. Though (B) uses affix rules, not many
forms are supported by them. These affix rules
were generated by the affixcompress tool18

provided by Hunspell and are not grammar-
based19.
In the case of (A), all the words declared as

correct were also actually correct implying a
16https://mochajs.org/
17https://sa.wikisource.org/s/2idh
18The tool is used for creating a spellchecking dic-

tionary for Hunspell out of a list of words – https:
//github.com/hunspell/hunspell/.

19https://github.com/Shreeshrii/
hindi-hunspell/issues/1#issuecomment-282244359
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Figure 3: A screenshot of the web interface. All
the words marked with * are incorrect. The editor
correctly marks them with a red underline. For the
incorrect word “सीतायः”, the correct form “सीतायाः”
is suggested.

100% precision. A few real-word errors were
observed but they were not considered for this
evaluation as Hunspell cannot handle such er-
rors. Of the words reported as incorrect, a
large percentage were wrongly considered in-
correct (false negatives). The reasons were
mainly traced to incomplete vocabulary and
incorrect split of sandhi and samāsa. Since
the dictionary is still in development false neg-
atives due to out-of-vocabulary words are ex-
pected. Moreover, for better evaluation and
for increasing the accuracy of suggestions, we
are in the process of creating a larger test cor-
pus.
The web interface was also manually tested

using random words and sentences. The edi-
tor correctly marked the misspellings and also
suggested correct and proper alternatives for
them (Figure 3).

8 Observations

Some of the observations noted while prepar-
ing and evaluating the spellchecking dictionary
are discussed here.

• Use of Devanagari: Though Unicode
Devanagari is neither fully alphabetic nor
syllabic in nature, but a combination of
the two, and Pāṇini’s word formation and
euphonic rules operate at the alphabetic
level, we decided to write the rules for
Devanagari rather than other more suit-
able transliteration schemes such as WX
or SLP1, that provide a one-to-one map-
ping between the Sanskrit phonemes and

its romanised representation. The reason
for this is, by doing so, we can avoid an
intermediary step of converting the input
into roman transliteration and then, con-
verting the suggestions back into Devana-
gari which would require close interaction
with the Hunspell APIs. But this would
also mean, developing an altogether fresh
set of rules if somebody uses IAST for San-
skrit.

• Word-and-paradigm model: The
paradigm-based approach is advanta-
geous for the preparation of the Hun-
spell dictionary for Sanskrit as it reduces
the number of dictionary entries. Even
though Sanskrit is a highly inflectional
language, Pāṇini’s grammar helps to re-
duce the forms of most of its words to
a few hundred paradigms. We need to
make affix rules only for these few hun-
dred paradigms. For all other words hav-
ing similar forms we just have to add the
affix flag associated with the paradigm.
This reduces the dictionary’s size and at
the same time, makes it easy to maintain.
This approach also simplifies the process
of adding new words. For example, if a
new word, “कामदवे” is to be added, we add
it to the dictionary file along with the flag
associated with its paradigm, “दवे”. This
way, we are able to add support for not
only कामदवे but also all its declined forms
without much effort.

• Handling compounds: The
spellchecker’s performance drops when
there are compounds in the text. Though
there are options for writing compound
rules in Hunspell, it would not be possi-
ble to support all the compounds since
Sanskrit is highly productive in terms
of compound generation. Therefore, it
is better to pipeline the user input into
an existing sandhi-samāsa splitter like
that of Hellwig’s (2018) or Huet’s (2005)
before spellchecking it. This would again
require close integration with the Hun-
spell APIs. Further, there are some words
which cannot be handled even if the text
is preprocessed with a sandhi-samāsa
splitter. For example, the ending of
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some words changes in their compounded
forms – राजा becomes राज in महाराज and
आमा becomes आम in आमदुचिरतः. These
forms are valid only within the compound
and not otherwise. To overcome this
problem, such compounded words have
to be directly added to the dictionary.

• Spelling variations: Words with
anusvāra (◌ं) such as सभंमः and असबंाधम ्
optionally undergo homo-organic nasalisa-
tion and become समः and असबाधम ्, re-
spectively. Both the forms are frequently
used alternatively in the literature. So
both forms had to be added to the dic-
tionary. Also, the letter म ्at the end of
word is replaced by anusvāra if it is fol-
lowed by a consonant20. So, for suffixes
ending with म ्, extra affix rules had to be
created with anusvāra in the place of म ्.

• Context-dependent spelling errors:
Some of the spelling variations are
context-dependent. For example, as men-
tioned above, the anusvāra at the end the
word is valid only if the next word starts
with a consonant. Similarly, verb forms
which have the a/ā-prefix in the condi-
tional mood, will drop it when they are
preceded by the word मा21. For example,
मा भषैीः and मा भवान क्ाषीत i्nstead of माअभषैीः
and मा भवान ्अकाषीत ्, respectively. Such
cases cannot be handled by the Hunspell
since it only looks at one word at a time.
Further, as is true with any spellchecker,
it is impossible to detect wrong words
in a given context that are correct oth-
erwise (Deorowicz and Ciura, 2005). For
example, use of ताम ्instead of वाम ्, where
both the words are correct spelling-wise.

9 Conclusions and Future Work
The paper proposed and described the design
and preparation of a Hunspell dictionary for
Sanskrit. It also discussed the advantages of
the paradigm-based approach which was fol-
lowed for the generation of the dictionary. The
proposed dictionary is grammar-based unlike
that of Kumar (2017) and is general-purpose,

20मोऽनुवारः Aṣṭādhyāyi 8/3/23
21न मायोग े Aṣṭādhyāyī 6/4/74 and मोतरे लङ् च Aṣṭād-

hyāyī 3/3/176

that is, it can be used for correcting both typ-
ing errors and OCR errors. The paper also
presented an online spellchecking interface for
Sanskrit.
The current limitations of the dictionary

and future improvements to be made are dis-
cussed below.

• The spellchecking dictionary is a work in
progress. Currently, it supports nouns, in-
declinables, pronouns and numbers (car-
dinals and ordinals). It also supports ac-
tive and middle verb forms. Complex
verb forms (sannantas), non-finite verb
forms (kṛdantas), participles, etc. and
secondary nominal derivatives (taddhitas)
are yet to be supported.

• Hunspell’s `KEY` option improves sugges-
tions for words misspelled due to the prox-
imity of letters on the keyboard. This can
be utilized for INSCRIPT and phonetic
keyboard layouts.

• Sanskrit is also written in many roman
transliteration schemes such as IAST,
ITRANS, etc. The current spellcheck-
ing dictionary works only for Devanagari.
Special spellchecking dictionaries have to
be made at least for the popular translit-
eration schemes of Sanskrit.

• Extensions/add-ons for more plat-
forms/softwares/operating systems have
to be developed so that users can enjoy
the benefits of the dictionary in their
favourite writing tools and environments.
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Abstract

Recent state of the art models and new datasets
have advanced many Natural Language Pro-
cessing areas, especially, Machine Reading
Comprehension tasks have improved with the
help of datasets like SQuAD (Stanford Ques-
tion Answering Dataset). But, large high qual-
ity datasets are still not a reality for low re-
source languages like Telugu to record progress
in MRC. In this paper, we present a Telugu
Question Answering Dataset - TeQuAD with
the size of 82k parallel triples created by trans-
lating triples from the SQuAD. We also intro-
duce a few methods to create similar Question
Answering datasets for the low resource lan-
guages. Then, we present the performance of
our models which outperform baseline models
on Monolingual and Cross Lingual Machine
Reading Comprehension (CLMRC) setups, the
best of them resulting in an F1 score of 83 %
and Exact Match (EM) score of 61 %.

1 Introduction

MRC is one of the key tasks in NLP, where we test
the ability of machines to understand and answer
the questions using provided textual knowledge. In
common Machine Reading Comprehension tasks,
for a given query, the machine needs to extract the
answer from the context (paragraph) in the form
of span indices. A popular large-scale annotated
reading comprehension dataset - SQuAD Rajpurkar
et al. (2016), revolutionised the research interest in
this area for English. And though decent research
work has been done in MRC for a few Indian lan-
guages, for languages like Telugu, which is a Dra-
vidian language, still need similar resources for
such Natural Language Understanding task.

Creating an RC dataset of good quantity & qual-
ity is difficult, requires manpower, and is time-
consuming. For a few languages, the dataset is cre-
ated by translating SQuAD and using few match-
ing techniques to extract the span indices of an-
swers in the target language (Carrino et al. (2019),

Abadani et al. (2021), Artetxe et al. (2019)). For
others, the dataset is created by using the method-
ology followed in the creation of SQuAD (Lim
et al. (2019), Efimov et al. (2020), Cui et al. (2018),
d’Hoffschmidt et al. (2020)).

Our idea is to introduce a few heuristics based
approaches to create the datasets for a low resource
language (Telugu) using the resources from a high
resource language via translation. An obvious chal-
lenge is to extract the span of the answers in the
translated Contexts. With translation, due to lan-
guage divergences, the position and structure of the
answer in the context will vary in the translated lan-
guage, making it difficult to use straight-forward
approaches, like translation candidate matching,
to find the position of the answer in the context.
We focused on the span extraction process, which
is crucial for such a dataset creation after transla-
tion. We applied these methods to SQuAD v1.1
and created TeQuAD, a MRC dataset for Telugu
consisting of 82k parallel Telugu-English triples
(Paragraphs, Questions, and Span indices of An-
swers). The intention to create a parallel dataset is
to exploit the advantage of Cross-lingual reasoning.
We also introduce a supervised approach to extract
the span of the most probable answer from the tar-
get paragraph. This span extractor can later aid in
data augmentation for MRC in low-resource lan-
guages. In cases where the heuristics do not work,
our supervised method performs better than the
matching techniques due to its ability to consider
contextual semantic information using pre-trained
language models.

Both monolingual and cross-lingual setups of
multilingual Bidirectional Encoder Representa-
tions from Transformers (BERT) were trained on
TeQuAD and evaluated on TiDyQA (Clark et al.,
2020) and on two other test datasets, which we cre-
ated manually by correcting a few samples from
translated SQuAD and by using Wikipedia articles
respectively.
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Our dataset and code are available here1.

2 Related Work

Several datasets such as SQuAD(Rajpurkar et al.,
2016), NewsQA dataset (Trischler et al., 2016) and
CNN/Dailymail (Chen et al., 2016), etc fulfills the
necessity of resources in English for QA tasks. Al-
though these datasets helped in attaining enormous
progress for this specific language in NLP, other
languages are still unexplored in this area due to
the scarcity of high-quality annotated datasets in
corresponding languages. While the generation of
reading comprehension corpora in other languages
is costly and time-consuming, few works such as
Lim et al. (2019), Efimov et al. (2020), Cui et al.
(2018), d’Hoffschmidt et al. (2020) developed RC
datasets natively. Clark et al. (2020) presented a
question answering dataset covering 11 typologi-
cally diverse languages including Telugu.

Few others propose methods to boost the func-
tioning of the model in low-resource settings. Hsu
et al. (2019) explored zero-shot cross-lingual trans-
fer learning on reading comprehension tasks and
suggested that translation from source to target lan-
guages is not necessary.

Bornea et al. (2020) presents translation-based
data augmentation mechanism to improve multilin-
gual transfer learning.

Liu et al. (2020) and Cui et al. (2019) talks about
leveraging translated information from the high re-
source languages to perform well in low resource
languages. Cui et al. (2019) presented several back
translational approaches for cross-lingual exper-
iments. They have also discussed techniques to
align the answer phrases in the target language.
Stating the disadvantages of such approaches and
the necessity to overcome them, they introduced
a novel model called ‘Dual BERT’, which has the
ability to learn semantic information from bilin-
gual QA pairs and utilize the learned knowledge to
improve MRC in low resource languages.

Yuan et al. (2020) introduced phrase boundary
supervision tasks to improve the answer boundary
detection capability in the low resource MRC mod-
els which are trained with training data from high
resource languages to exploit cross-lingual transfer
learning.

Post correction methods to improve the span of
the extracted answer are addressed in Reddy et al.
(2020). They added additional layers on top of a

1https://github.com/rakeshvemula1157/TeQuAD

pre-trained transformer-based language model to
re-examine and modify the predicted answers.

3 Corpus Creation

A simple and cost-efficient technique to create
a dataset for an NLP task is to translate a well-
annotated existing dataset. When it comes to MRC
tasks, SQuAD is favorite for its quality and adapt-
ability to recent implementations of deep learning
models. This span extractive QA data is created
from English wikipedia articles by crowd work-
ers. More than 100000 triples were generated in
SQuAD1.1. A triple consists of a Question, an An-
swer to the question in the form of span indices,
and a Context where the answer can be found.

We translated the English SQuAD triples to the
Telugu language using online Google translator2,
obtaining translated triples consisting of translated
Telugu paragraphs, questions, and answers.

After translation, a well-known issue is difficulty
in extraction of the span indices of the translated
answers. Considering the different possibilities of
translated Telugu answer phrase’s presence in the
translated Telugu context, we followed multiple
techniques to extract the span for answer phrases.
The purpose of following different techniques is
to create as much synthetic data as possible for
Telugu MRC. We also present a supervised span
extraction technique to handle the cases where rule-
based methods fail.

3.1 Matching

We used matching algorithms like cosine similarity
and fuzzy search with a threshold value of greater
than 0.7. A window sliding through the translated
Telugu context computes the matching score be-
tween the phrase inside the window and the trans-
lated Telugu answer phrase. Samples are consid-
ered if such a matching phrase (matching score
greater than the threshold) is found in the translated
Telugu context, else ignored. There might be a pos-
sibility of the presence of multiple answer phrases
in the context. For such samples, we considered the
index of the actual English answer phrase among its
repetitions present in English context and selected
the corresponding index as the answer from repe-
titions of the Telugu answer in translated Telugu
context. For example, if the word ‘apple’ is present
3 times in the English context, and if the answer is
the second repeated instance, then we consider the

2https://translate.google.co.in/
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English Telugu (ISO 15919)

Context

China Mobile had more than
"2,300" base stations suspended
due to power disruption or
severe telecommunication
"traffic congestion". Half of the wireless
communications were lost in the
Sichuan province . China Unicom ’s
service in Wenchuan and four
nearby counties was cut off , with
more than 700 towers suspended.

Vidyuttu antarāya lēdā tı̄vramaina
t.elikamyūnikēs.an "t.rāphik raddı̄"
kāran. aṅgā cainā mobail "2,300" ki
paigā bēs’st.ēs.anlanu nilipivēsindi.
Sicuvān prānslō saga vairles
kamyūnikēs.anlu pōyāyi. Vencuvān
mariyu samı̄panlōni nālugu kaun. t.ı̄lalō
cainā yunikām sēva nilipivēyabad. indi,
700ki paigā t.avarlu nilipivēyabad. d. āyi.

Question 1 Besides power disruption , what caused
telecommunications to be suspended ?

Vidyuttu antarāyantō pāt.u,
t.elikamyūnikēs.anlanu nilipivēyad. āniki
kāran. amēmit.i?

Span 16 - 17 5 - 6
Answer traffic congestion t.rāphik raddı̄
Question 2 How many base stations are suspended? Enni bēs st.ēs.anlu saspen. d. cēyabad. d. āyi?
Span 5 - 5 10 - 10
Answer 2,300 2,300

Table 1: Representation of QA pairs in parallel corpora

second repetition of the Telugu word ( Āpil ) as
the answer in the translated Telugu context.

3.2 Explicit Position Indicator

We managed to extract the answer span for few
ignored samples by marking the English answer
phrase before translating to Telugu. English an-
swer phrase in the English context is marked by
the special symbol (‘|’) and then translated to the
Telugu language. The marked symbol (‘|’) remains
unchanged, making it easier to find the translated
Telugu answer phrase in the translated Telugu con-
text.

Using these approaches, we were able to obtain
82,605 English-Telugu parallel triples - creating a
reading comprehension dataset, TeQuAD. Table 1
shows the representation of parallel corpora of En-
glish - Telugu. For evaluation, we have created two
different test datasets to analyze the performance
of models on Telugu MRC.

• Translated & Corrected dataset:
1000 English triples from the dev set of
SQuAD1.1 are translated to Telugu and cor-
rected manually. A set of guidelines is pre-
pared and explained in 3.4 to correct the trans-
lated Telugu context, questions, and answers.

• Wiki dataset:
Similar to SQuAD, we created this data

from Wikipedia articles. Randomly selected
wikipedia articles are splitted into paragraphs.
From 125 Telugu Wikipedia paragraphs, 947
QA pairs are created manually by framing
questions with answer types such as Per-
son, Location, Date/Time, Quantities, Clauses,
Verb phrases, Adjective phrases and others.
Minimum 5 and maximum 10 questions were
created for each paragraph/context.

3.3 Span Extractor

In TeQuAD, we obtained the span indices for
the Telugu answers by using the above-mentioned
matching techniques. Such rule-based techniques
might not provide better results in cases where,

1. The translated Answer might not be present
in the translated Context (information about
the answer might have lost or different form
of the answer generated in translation). See
Figure 1 for example.

2. Multiple instances of the translated Answer
might be in the translated Context. See Figure
2 for example.

3. A partial answer phrase returns a better match-
ing score with the translated answer phrase
than the actual answer phrase. See Figure 3
for example.
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Figure 1: Example for absence of translated Answer
in the translated Context. Both ’prapanca sthāyi’ and

’glōbal’ share the similar meaning.

Figure 2: Example for multiple instances of Answer in
the Context

Figure 3: Example for partial matching answer sce-
nario.

In order to handle such cases, we introduce a super-
vised method to extract span indices for the trans-
lated answers. We use the Dual BERT approach
proposed in Cui et al. (2019), but along with par-
allel QA pairs, we also pass their parallel answers
as input to the model and the span indices of the
answers are predicted (See Figure 4). Due to its

Figure 4: Architecture of Span Extractor

ability to exploit semantic information from both
Telugu-English parallel triples, it can identify a
modified variant of answer phrase in the translated
context, even if the translated answer phrase does
not present in the translated context completely.

Unlike the above-mentioned matching tech-
niques, this model can identify the correct instance
of the answer in the translated context, even if there
are multiple instances present. In addition to the
translated Telugu answers, information from En-
glish Answers will help the model to retrieve span
indices of the complete Telugu answer phrases in
the translated contexts.

As this is a supervised method that needed train-
ing data, we considered 82k parallel triples from
TeQuAD consisting of span indices obtained by
using matching techniques, for training. For eval-
uation, we use the Translated & Corrected test
dataset where span indices of the Telugu answers
are manually corrected. We pass the translated Tel-
ugu answers as input to the model and evaluate the
predictions with corrected Telugu answers. The
experimental setup is similar to the Cross-lingual
section. Results attained show the performance of
88% F1 Score and 73% EM Score. Besides ap-
parent advantages, such supervised methods needs
sufficient resources to perform well and predicts a
span even if the answer information is not present
in the context (e.g. might have been lost in machine
translation).

3.4 Manual QA Correction

We have used Google NMT for translating triples.
Although Google NMT is efficient and the qual-
ity of the translations is good, the present trans-
lation machines are not smart enough to generate
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accurate translations for low resource languages
like Telugu. After a translation is generated by
the machine, there has to be a human correction
to ensure the piece of translation is grammatically
correct, comprehensible, and carries the exact in-
formation present in the English text ( by deduct-
ing/appending the knowledge obtained/lost from
the translation of the English text. )

3.4.1 Correction Guidelines
Data in SQuAD is in triples form. All three com-
ponents of triples ( para, question, and answer )
are translated from English to Telugu. The order
followed to correct a translated triple is:

• Correct the Telugu paragraph.

• Correct the Telugu question according to the
Telugu paragraph.

• Extract the Telugu answer according to the
Telugu question from the Telugu paragraph.

While correcting a paragraph or a question, two
essential aspects should be considered:

• Adequacy: The meaning/knowledge pro-
vided in the English para/question should be
preserved in the Telugu para/questions.

• Fluency: The structure/syntax of the Telugu
para/question should be proper/readable.

Answers obtained by translation are partial, in a
few cases incorrect. Such answers should be cor-
rected based on the corresponding Corrected Tel-
ugu Questions, Corrected Telugu Paras, and En-
glish Answers. The answer should be obtained
from its paragraph ( Corrected Telugu Para ) and
must be recorded. By using these guidelines, we
corrected 1000 samples which are used as test set.

4 MRC Experiments

We experimented on TeQuAD in monolingual and
cross-lingual setups. The pre-trained Multilingual-
BERT (mBERT) trained in 104 languages includ-
ing Telugu and English is employed for obtaining
encoded representations for both languages. We
use nltk tokenizer followed by BERT Word Piece
tokenizer to sub tokenize the tokens in all the exper-
iments. Experimented with a batch size of 64 and
sequence length of 512. As in Google’s Tensorflow
implementation of BERT, ADAM with weight de-
cay optimizer is considered with different learning

rates for different experimental setups. Our models
have been trained on Google Cloud TPU v2.

Monolingual setup: In the monolingual setup,
82k Telugu triples from TeQuAD are considered
for fine-tuning the mBERT model for MRC task.
We used Google’s Tensorflow implementation of
BERT for running SQuAD tasks and trained it for
3 epochs with the learning rate of 1e-4.

Cross-lingual setup: The dual BERT approach
proposed in Cui et al. (2018) is used for the
CLMRC setup. In this approach, deep contex-
tualized representations of the inputs from both
languages are considered and ‘Bilingual Context’
is computed, which will be used to exploit the se-
mantic relations among the English and Telugu QA
pairs. Parallel QA pairs of English and Telugu
are passed as inputs to the model and span indices
of the Telugu answer phrases are predicted. 82k
Parallel Telugu-English triples from TeQuAD are
considered for fine-tuning the pre-trained mBERT
model. We used the implementation in Cui et al.
(2019) and trained it for 3 epochs with the learning
rate of 2e-5.

Both the Cross-Lingual and Monolingual fine-
tuned models are evaluated on three test datasets.
Along with Translated & Corrected (1000) and
Wiki (947) test datasets, Telugu samples of Gold
Passage task (Span Extractive QA task) from Ty-
DiQA dev (667) dataset are considered for evalua-
tion.

F1 score and EM score are used as evaluation
metrics. Results of the evaluation for monolingual
and cross-lingual setups are shown in Table 2.

5 Results and Observations

The most important observation from the results is
that the models fine tuned on TeQuAD performed
way better than the zero-shot mBERT model. On
average, a 40% increase in F1 and EM scores were
obtained in all setups.

Our experiments also show that performance on
the Wiki test dataset is better than others. It must be
noted that Wiki test dataset is well annotated, cre-
ated from Telugu Wikipedia articles, and has better
quality than the Translated & Corrected test dataset.
In contrast, the quality of the TyDiQA Telugu sam-
ples is low and not recommended for fair Telugu
MRC evaluation. Most of the queries in TyDiQA
revolve around the area of lands, zip codes, date of
births/deaths etc. Learning on a set of similar types
of questions more often will make the model over-
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Model Test Dataset Mono-Lingual Cross-Lingual
F1 EM F1 EM

mBERT(Zero shot) Translated & Corrected 28.4 0.0 27.1 0.01
Wiki QA 27.1 0.0 27.6 0.0

TyDi dev QA 21.0 0.0 21.3 0.0
mBERT(TeQuAD) Translated & Corrected 69.4 43.7 69.4 43.5

Wiki QA 83.0 61.0 83.3 61.9
TyDi dev QA 61.0 41.6 69.1 43.3

Table 2: Experimental results of MRC on Test Datasets. Performance (in terms of %) F1 : F1 Score and EM: Exact
Match Score

Test Dataset TyDi QA TeQuAD
F1 EM F1 EM

Translated-&-Corrected 57.7 29.5 69.4 43.7
Wiki QA 77.3 48.4 83.0 61.0

Table 3: Comparison b/w TeQuAD and TyDi QA for Telugu MRC. Performance (in terms of %) F1: F1 Score and
EM: Exact Match Score

fit on these types of questions, but would lack the
ability to comprehend other types. As expected, the
model trained on TyDiQA train dataset achieved
good performance when evaluated on TyDiQA dev
dataset, but the performance fell behind compared
to TeQuAD model when evaluated on Translated-
&-Corrected and Wiki test datasets.

Why low EM scores ?

Although decent F1 scores have been registered,
the gap between the two metrics is notable. The
difference between the metrics is approximately
20% across all the setups. We tried to analyze the
reasons for error predictions. One reason for the
low Exact Match score is multiple possible answers
for a query. Different answers, all that seems to be
correct might affect the MRC model generating the
exact answer. See Figure 5 for Example.

Another obvious reason for faulty answer pre-
dictions is the low-to-moderate resources available
for the language. Pre-trained models exposed to
such fewer data resources might not be able to rea-
son the context leading to false answer predictions.
And even though such models leverage the infor-
mation from high resource language(s), due to the
linguistic divergences between the languages (here
Telugu and English), answer boundary detection
capability in the low resource language is poorer,
failing to identify the complete answer phrase in
the context.

In Yuan et al. (2020), they discussed the defi-
cient answer boundary detection capability of MRC

Figure 5: Example for multiple possible answers

Experimental
Setup

Translated
&

Corrected
Wiki QA

F1 EM F1 EM
Mono-lingual 65.9 39.1 79.3 50.5
Cross-lingual 67.4 39.7 82.2 54.0

Table 4: Results of the Experimental setups trained on
less corpora : 34k QA pairs. Performance (in terms of

%) F1: F1 Score and EM: Exact Match Score

models for low resource languages. Their work sug-
gested improving the detection capability by train-
ing the MRC model on phrases in low-resource lan-
guage, mined from the internet. We experimented
by mining approximately 32k Telugu phrases from
Wikipedia and trained the model with the phrase
masking prediction task. Results don’t show any
noticeable improvement in the EM scores.

On the other hand, several MRC works employ
character-level span indices to point the answer
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phrase specifically. This might lead to worse EM
scores in Telugu considering the rich morphology
of the language. So, instead, we followed word-
level span indices for the answer phrases.

Why Cross-lingual Experimentation?

As Discussed, Cui et al. (2019) proposed Dual
BERT approach to improve the MRC for low re-
source languages by utilizing cross-lingual knowl-
edge. With experiments, we observed that CLMRC
setup helps in boosting the performance of the
model when the size of the corpora is low (See
4). But with the creation of large synthetic data,
the effect of CLMRC setup is negligible. In table 2,
results obtained by training the model on 82k data
in mono-lingual setup are identical to the results of
CLMRC setup. Creation of such resources helps
the machine to learn from the target language itself
instead of relying on High resource languages.

Comparison with TyDiQA

Clark et al. (2020) presents the performance of
Gold-Passage MRC (Similar to SQuAD style QA)
in Telugu. They train the model on approximately
49k Multilingual QA pairs and evaluate it on the
Telugu test dataset. We also experimented by fine-
tuning mBERT on TyDIQA 49k QA pairs and eval-
uated it on the above-mentioned test datasets. See
table 3 for a comparison between models trained on
TyDiQA and TeQuAD. The TeQuAD based model
outperformed the TyDiQA trained model in Telugu
MRC.

6 Conclusion and Future work

As a move towards the creation of the QA dataset
for Indian languages, this work took a step for-
ward in the MRC corpus creation using translation.
To record decent performances in NLP tasks for
low resource languages, sufficient resources are
necessary. As we discussed, the creation of such
resources is difficult. Resources from high resource
languages like English might be considered for the
creation of datasets for low-resource languages like
Telugu to create abundant data for different NLP
tasks.

We introduce creation/correction techniques for
such datasets improving the quality along with the
quantity of the datasets along with providing mech-
anisms for further augmenting data. In the future,
we would like to improve the MRC task for Telugu,
provide a collection of pre-trained models trained

on openly available resources in the Telugu lan-
guage, as well as create additional data resources
for the Telugu language.
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Abstract

Indian epics have not been analyzed computa-001
tionally to the extent that Greek epics have.002
In this paper, we show how interesting in-003
sights can be derived from the ancient epic004
Mahabharata by applying a variety of analyti-005
cal techniques based on a combination of natu-006
ral language processing methods like semantic007
analysis, sentiment analysis and Named Entity008
Recognition (NER). The key findings include009
the analysis of events and their importance010
in shaping the story, character’s life and their011
actions leading to consequences and change012
of emotions across the eighteen parvas of the013
story.014

1 Introduction015

Semantic analysis is the study of the meaning of016

language, whereas sentiment analysis is the study017

of emotions that has been depicted. Sentimental018

analysis is prevailing in various domains such as019

social media monitoring, customer support man-020

agement, and analysing customer feedback.021

Mahabharat is a tightly interwoven story with022

intricate characters traversing various incidents re-023

sulting in many course of actions. This makes024

Mahabharat an interesting study for analysing such025

characters and incidents using the various NLP026

techniques. The Mahabharat Ganguli translation027

is used for conducting such an analysis. Entity028

Analysis involves named entity recognition which029

helped discover many unfamiliar characters present030

in Mahabharat. Semantic Analysis is used to ana-031

lyze sentence structure to highlight the events and032

their resulting actions whereas sentiment analysis033

is used to analyze the flow of emotions as the story034

progresses. Character analysis describes the char-035

acter’s life, the trails and tribulations the character036

has been through and his/her characteristics. The037

paper presents a unified technique to achieve the038

above as stated.039

2 Related Works 040

Mahabharatha is an epic with valuable lessons on 041

life and values .Epics like Mahabharata are a kind 042

of tragedy and are built around noble men within 043

the form of narratives. A tragedy typically has a 044

plot with a beginning, a middle and an end and 045

other constituents of the text are secondary to the 046

plot. The start of the plot typically is a scenario of 047

stability which gets disturbed by some events. Plots 048

of tragedy have various constituents i.e. suffering, 049

reversal, recognition of latest knowledge, surprise. 050

An epic is different from a newer literary genre 051

like a novel and will have lot of negative sentiment 052

across its breadth but in spite of that conveys a 053

noble theme in the minds of its audience. 054

Debabrati et al. (Das et al., 2016) has proposed 055

the usage of NLP techniques such as sentiment 056

analysis and characterization of important charac- 057

ters with respect to their emotion. Mabhabharatha 058

text is tokenized using standard NLP techniques. - 059

The tokens are POS (parts of speech) tagged and 060

tagged tokens are mapped to synsets in Wordnet 061

in a word sense disambiguation process. - The 062

sentiment scores are picked up from SentiWordnet 063

for each synset. - Overall sentiment of the parva 064

is derived from these values by summing the con- 065

stituent sentiment scores. Emotion analysis for the 066

full text and each of the protagonists is done with 067

the help of NRC word-emotion association lexicon. 068

After extracting the relevant part of the corpus,the 069

score is calculated for each POS (part of speech) 070

tagged token for each emotion and finally summed 071

up. However, by this approach one cannot get an 072

overall view of the character in terms of their life, 073

relations and actions but only about their emotions. 074

The usage of lexicon based approach limits the 075

ability of the model to learn new vocabulary. The 076

proposed idea in this paper aims to remove these 077

two limitations. 078

Named Entity Recognition is identifying proper- 079

1
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nouns in the text. The biggest challenge in Named080

Entity Recognition is the lack of sufficient labelled081

data. This poses a challenge for NER in Mahab-082

harat as the standard tagged datasets are different in083

comparison. Active Learning is an efficient option084

as it helps identify samples that will be the most085

informative to the model(Li et al., 2022), discuss086

active learning technique for Named Entity Recog-087

nition. Further work was done by Yanyao Shen088

et.al (Shen et al., 2017) where a CNN-CNN-LSTM089

model was built for NER, in an iterative approach.090

They used the various selection strategies for NER091

such as least confidence, Maximum Normalized092

Log-Probabilities.093

Named Entity Recognition is a sequence la-094

belling task.(Akhundov et al., 2018) discusses the095

merits of using Bidirectional Long Short Term096

(BiLSTM) models for sequence labelling tasks. For097

any sequence labelling task the model is required098

to take into consideration the context of the entire099

sentence.100

(Devlin et al., 2019) introduced a model called101

BERT. BERT was trained on two tasks - masked102

word prediction and next sentence prediction.103

These tasks can make use of data that requires no104

labelling and is widely available.105

Conditional random field is a popular probabilis-106

tic method for structured prediction.(Sutton and107

McCallum, 2010) discussed the problem of classifi-108

cation by predicting a single discrete class variable109

y given a vector of features.110

In co-referencing resolution, training recurrent111

neural networks to model long term dependencies112

is an issue faced.(Dhingra et al., 2017) had pro-113

posed to use external linguistic knowledge as an114

explicit signal to inform the model which memories115

it should utilize.116

3 Methods117

This section describes the design and implementa-118

tion of the system being proposed with the help of119

overall system architecture represented in Figure120

1. In this section the proposed methodology is dis-121

cussed. Using Natural Language Processing tech-122

niques such as co-referencing, relationship extrac-123

tion, analysis on events and many other functions124

are performed like automated question-answering,125

graphical representations and identifying relation-126

ships of different entities in the Mahabharat dataset.127

Relationship extraction is a key task done with the128

help of co-referencing. Event analysis with the129

help of BART for summarization and BERT for 130

question answering. The character sketch is drawn 131

from using adjective extraction model using BERT 132

and POS tags. The POS tags along with gener- 133

ated summary of each parva in Mahabharatha is 134

used to draw the character sketch. The emotion 135

sketch is derived from using BERT model by using 136

emotions from Go-Emotion dataset. The generated 137

summary along with emotions extracted in every 138

parva is passed through a text generation model for 139

generating an emotion sketch.

Figure 1: Overall Architecture Diagram
140

3.1 Raw Dataset 141

Kisari Mohan Ganguli’s translation of the San- 142

skrit epic Mahabharat is the raw data acquired. 143

The raw data consists of eighteen books. They 144

are Adi Parva, Sabha Parva, Vana Parva, Virata 145

Parva, Udyoga Parva, Bhishma Parva, Karna Parva, 146

Shalya Parva, Sauptika Parva, Stri Parva, Santi 147

Parva, Anusasana Parva, Aswamedha Parva, Asra- 148

mavaisika Parva, Mausala Parva, Mahaprasthanika 149

Parva and Svargarohanika Parva. The entire dataset 150

has 1,35,850 sentences. 151

Figure 2: Relationship Extraction Architecture Diagram
152

2
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TAG EXPANSION
B-PER Beginning of Person entity
I-PER Inside a Person entity
B-PLACE Beginning of Place entity
I-PLACE Inside a Place entity
B-EVE Beginning of Event entity
I-EVE Inside a Event entity
B-WEAPON & WAR STRATEGY Beginning of Weapons and

War Strategy entity
I-WEAPON & WAR STRATEGY Inside a Weapons and War

Strategy entity
B-COMMUNITY Beginning of Communities

entity
I-COMMUNITY Inside a Communities

entity
B-LIT and ART Beginning of Literature and

Art entity
I-LIT and ART Inside a Literature and

Art entity

Table 1: NER tags and their Expansions

3.2 Tool Used153

The tools, libraries and environments used in-154

clude (pandas development team, 2020), (Abadi155

et al., 2015), (Akbik et al., 2019), (Hunter, 2007),156

(Mausam et al., 2012), (Harris et al., 2020), (Pe-157

dregosa et al., 2011) and (Loper and Bird, 2002).158

3.3 Named Entity Recognition159

In this process, entities pertaining to Mahabharat160

have been identified as listed in the Table 1. To161

automatically identify these entities from the text,162

we trained a CRF model on the Mahabharat dataset.163

The Conditional Random Field model considers164

the semantics of the given text where, given a165

sequence of input words we obtain the sequence of166

output labels. Training set
{(

X(t),y(t)
)}

is a set167

of input and target sequences pairs:168

169

input words are X(t) =
[
x
(t)
1 , . . . ,x

(t)
Kt

]
170

target labels are y(t) =
[
y
(t)
1 , . . . , y

(t)
Kt

]
171

172

Kt is the length of the tth sequence.173

A set of features from the Mahabharat dataset has174

been crafted which is provided to the CRF model.175

The features of the sentence given to the model176

include the case of the word, the last few letters of177

the word. The implementation of the Conditional178

Random Field model has been motivated from179

the Sklearn-CRFSuite (Pedregosa et al., 2011).180

It has been modified based on the features for181

Mahabharatha text.182

Relation Subject, Object
Child of Person, Person
King of Person, Place
Born in Person, Place
Master of Person Literature, Artifact
Killed Person, Person/Place/Weapon
Lived in Person, Place
Happened in Event, Place
Spouse of Person, Person
Sibling of Person, Person
Friend of Person, Person
Leader of Person, Community/Place
Guardian of Person, Person/Community
Belongs to Person, Community/Place

Table 2: NER tags and their Expansions

3.4 Relationship Extraction 183

The Relationship Extraction architecture is repre- 184

sented in Figure 2. which involves co-referencing 185

and RoBERTa for relationship extraction.The pro- 186

cess of co-referencing involves replacing the pro- 187

nouns by their respective proper nouns in the sen- 188

tence. For each mention or a pair of mentions a set 189

of features are crafted. The most likely antecedent 190

is mapped to its corresponding mention.After the 191

co-referencing phase, the text has the proper noun 192

in place of the pronoun referencing it. Corefer- 193

rence Resolution has been implemented through 194

Neural Coref model. This co-referenced data is 195

sent to the OpenIE model which finds all the re- 196

lationships in the data. The output is given as a 197

triplet of entities and the relationship identified. 198

The relationship triplets identified here has to be 199

filtered according to the relationships mentioned 200

in Mahabharat. The dataset is analysed to identify 201

fourteen relationships as listed in Table 2 between 202

the entities identified in the Mahabharat text. The 203

dataset with entities, relationship labels and its to- 204

kens are given to the RoBERTa base Model. The 205

relationship extractor is thus trained on the given 206

dataset. 207

3.5 Event Analysis 208

The event analysis architecture is represented in 209

Figure 3. The important tasks involved in event 210

analysis are summary generation, question - an- 211

swering and graphical representation of the insights 212

obtained. 213

Summary Generation : 214

After the Mahabharat dataset has been tagged 215

3
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Figure 3: Event Analysis Architecture Diagram

by the NER tagger the section of the document216

describing the events are identified by the B-EVE217

and I-EVE tags. This sections of Parvas are given218

to the summary model to extract the summary of219

each event identified. The events identified include220

swayamvaras of Amba, Ambalika, Ambika, Drau-221

padi and Damayanti, Abhimanyu’s death and war222

analysis on different parvas. Different kinds of223

analysis are performed on the events and repre-224

sented in graphs. The BART model generates sum-225

mary. The embedding in a BART model is built226

on top of BERT. For every text sequence in its227

input, the BERT encoder outputs an embedding228

vector for each token in the sequence as well as an229

additional vector containing sentence-level infor-230

mation. The pre-training is done using the masked231

sequences. BART uses additional masking mecha-232

nisms as shown in Figure 4.

Figure 4: BART sentence masking
233

Question-Answering : The question-answering234

task is performed by whole word masking BERT235

model where the model gives the answer for the236

given question from the context. BERT model pre-237

dicts the probability of each word being the starting238

and ending index of the answer span.239

The BART model discussed in the previous phase240

outputs the summary of the event. The summary241

of the event is given to the question-answering242

model which identifies the answer span of data243

TAG EXPANSION
Attendees People present at the event
Chosen one The groom
Bride The one who chooses
Father of Bride King who organized the event
Place it was held The kingdom
Weapon used Weapons used in the event

Table 3: Template for the Swayamvara graph

from the context for the specific question given by 244

the user. The fine tuning of the question and answer- 245

ing model was done using the SQuAD(Stanford 246

Question Answering Dataset). 247

Visualization : The insights of events of Ma- 248

habharat obtained on characters involved, place of 249

the event etc. is represented by a tree structure as 250

shown in Figure 12 which helps in comparing the 251

event. Table 3 shows the entities of the template. 252

3.6 Character Analysis 253

Character Analysis is done so as to present a holis- 254

tic view of the character in perspective of Mahab- 255

haratha. It includes the qualities of the character, 256

their relationships, trials and tribulations they have 257

been through and consequences of their actions. 258

The Figure 5 depicts the flow of execution in per- 259

forming this task. The Qualities are extracted us- 260

ing the 11 POS tags i.e [ADJ],[PUNCT], [ADV], 261

[INTJ], [NOUN], [PROPN], [VERB], [CCONJ], 262

[NUM],[PART],[AUX]. The extracted relations 263

and the generated summary are used to create the 264

character sketch with the help of a text generation 265

model.

Figure 5: Character Sketch Diagram

266

Quality Extraction : The Qualities of a person 267

define who he/she is in the story. These are exhib- 268

ited using adjectives in the story. The adjectives 269

have to be extracted using POS tags using BERT 270

model. The BERT model is already fine-tuned on 271

the UPenn-Treebank dataset with an accuracy of 272
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about 97.25%. The top 15 adjectives are chosen by273

frequency corresponding to the character as they274

distinctly represent the character’s qualities.275

Summary Generation : The summary is gen-276

erated using the BART model built on top of the277

BERT model. The input is given parva wise to278

the summary generation model so that necessary279

information is captures which can be later used for280

any generation tasks.281

Text Generation : OpenAI’s GPT-2 model is282

used for text generation. The GPT-2 transformer283

takes in a sequence of input tokens and then tries284

to generate multiple sequences of tokens in some285

chronological order so they form a meaningful se-286

quence. The sequence of tokens generated are ap-287

pended together to form a text. The Mahabharath288

summary alongwith the set of adjectives are taken289

as input collectively with some keywords such as290

"marriage", "parents", "born" etc. The model tries291

to decipher information related to these keywords292

and incorporates into the final text. Thus a charac-293

ter sketch is generated.294

3.7 Emotion Analysis295

Mahabharatha being an epic, contains a myraid of296

emotions throughout. It is important to identify297

these emotions and present them to the user in the298

most concise way possible without losing out infor-299

mation being captured. This is done by employing300

a emotion detection mechanism initially using a301

BERT model. This paper uses 26 different emo-302

tions as per the Go-Emotions dataset by Demsky et303

al. (Demszky et al., 2020). The extracted emotions304

are then fed to the text genration model collectively305

with the summarized text of Mahabharath (Parva-306

wise).307

Emotion Detection : The Go-emotions dataset308

employs these 26 emotions as the necessary ones309

that can accurately capture different emotions while310

also not losing out on the context. BERT model is311

initially trained on an annotated parva of Mahab-312

haratha with these set of emotions. The model is313

then deployed in the other 17 Parvas. Every sen-314

tence is attributed with some dominant emotion and315

the emotion which is dominant in one section of the316

parva is chosen as the right emotion. Every Parva317

contains about 100 sections and this procedure is318

followed for every Parva.319

Text Generation : OpenAI’s GPT-2 model is320

used for this text generation phase. The GPT-2321

model takes in output from emotion detection phase322

Figure 6: Emotions used in the paper

TAG COUNT
PERSON 1689
PLACE 173
EVENT 20
WEAPON and WAR STRATEGY 22
COMMUNITY 524
LIT and ART 23

Table 4: NER tags and their Expansions

and generated summary of Mahabharatha parva- 323

wise. The keywords such as "feelings", "tension", 324

"dilemma" are given as inputs alongwith the model 325

so that the generated text is able to capture related 326

incidents pertaining to those keywords. The text is 327

presented to the user in the form of parapraghs. 328

4 Results 329

This section explains the results of semantic analy- 330

sis tasks on Mahabharat like NER, Relationship ex- 331

traction, Summary and Question Answering mod- 332

ules, Character Analysis and Emotion Analysis. 333

4.1 Entity Analysis 334

The entire text of Mahabharat has been annotated 335

using a Conditional Random field model tuned for 336

Named Entity Recognition. 337

Following this, a Relations Extraction model 338

was built and the dataset for this model consists 339

of parvas 5,6 of the Mahabharat text. The size of 340

the training data is 2164 sentences. The model is 341

capable of recognizing the relationships between 342

the entities as one of the 14 categories as shown in 343

Table 1. From the annotated data, the following 344

inferences were made. 345

346

The number of unique entities in each category 347

identified in the text are shown in Table 4. The fre- 348

quency distribution of unique occurrences of each 349

entity type is calculated and visualized as a pie 350

chart as shown in Figure 7. 351

The "person" entities are then paired with each 352

other based on their occurrences in the text. Two 353
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Figure 7: Distribution of Entities in the Text

person entities are said to be connected if they oc-354

cur together in a span of 30 words. A network355

graph is thus constructed. The weight of the edges356

are assigned based the frequency of the particular357

pair. From this graph three different centralities are358

identified as shown in Figure 8.

Figure 8: Centralities

359
Each centrality represents a different kind of in-360

formation about the entity.361

Degree centrality is a measure of the number of362

other people a person is connected to. Higher the363

degree centrality, the more the person is connected.364

Betweenness centrality is a measure of the popu-365

larity of the person. It is a measure of how many366

nodes are connected to others through this node.367

Closeness centrality is a measure of the weightage368

of each of the connections in the graph. As the369

name indicates it shows how close each entity is to370

its neighbour.371

The top fifteen entities with the highest closeness372

centralities are identified and a graph is plotted in373

the same manner as before, to show their interrela-374

tionships. Figure 9 shows that graph.375

The entities included in this graph are those that376

have closest relationships with others. Arjuna has377

some of the most highly weighted edges implying378

that he is one of the most strongly connected char-379

acter in the book. In addition this graph also shows380

the strong relationship between the five pandavas,381

Figure 9: Interrelationships graph based on closeness
centrality

with eachother and with Krishna. 382

In addition, the top fifteen entities based on their 383

individual frequencies were identified and their in- 384

terrelationships are represented in a network graph 385

as shown in Figure 10.

Figure 10: Interrelationships graph based on Frequency

386
This graph shows the most frequently occurring 387

characters in the text. On comparison with the 388

graph based on characters with highest centrality, 389

two additional characters are identified - Sanjaya 390

and Kunti. This shows that these two characters 391

occur frequently in contexts outside of interactions. 392

4.2 Event Analysis 393

The entities tagged as events are identified and ar- 394

eas of the text where they are clustered are inferred 395

to be the major events. These include Swayamvara, 396

War parvas, Abimanyu’s Death, dice game and dis- 397

robing. These events are analysed using Summary 398

generation model, Question Answering models and 399

through graphs. 400

4.2.1 Swayamvara 401

The Swayamvara event was analysed using the fol- 402

lowing tasks. 403

Summary Generation: The text pertaining to 404

the event are fed as input to the summary gener- 405

ation model as a sequence of paragraphs. This 406
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model gives a 3-4 line output for the given input407

sample. The summary model is able to retain all im-408

portant entity information and conveys the overall409

sequence of events in a succinct way.410

Question Answering model for Quiz App: The411

output of the summary model is used as the context412

for the Question Answering model. The Q and A413

model has been used to build a quiz application,414

where the user is presented with an event and a set415

of questions pertaining to the question. The model416

identifies the answer from the context summary,417

and compares the answer it to the one given by the418

user. This has been demonstrated in Figure 11.419

Figure 11: Snippet of the Quiz Application

In addition, there are provisions for the users to420

give their own questions to the model about each421

event.422

Analysis and Graphical Representation: The423

event swayamvara is analysed using semantic424

graphs and a quiz app. A semantic graph with a425

fixed set of fields is defined for the events. By using426

the relationships identified in the event context, the427

values for the fields are filled.The template for the428

semantic graph of the event Swayamvara consists429

of the entity types mentioned in Table 3.This graph430

allows a comparison between the events. Figure431

12 depicts the semantic graph for the Swayamvara432

of Amba, Ambika and Ambalika. This graph dis-433

plays that the ceremony was held for three people434

together.435

Figure 13 depicts the semantic graph for the436

Swayamvara of Panchali. The large number of437

attendess shows that a lot of important people took438

part in the competition.439

4.3 War Analysis440

The war events are distributed across four parvas441

such as Bhishma Parva, Drona Parva, Karna Parva,442

Shalya Parva. The performance of the Pandavas443

in each of these Parvas is plotted in a graph. If a444

member of the Pandava army is pierced or struck445

Figure 12: Semantic Graph depicting Amba’s Swayam-
vara

Figure 13: Semantic Graph depicting Panchali’s
Swayamvara

there is a small dip in the graph, if they are slayed 446

a slightly bigger dip is shown and an even bigger 447

dip is shown when they are slaughtered in bigger 448

numbers. Similarly peaks of sizes proportional to 449

the defeat of the Kouravas can be seen. Figure 14 450

and 15 show the graphs for the war parvas.

Figure 14: Line graph showing the performance of the
Pandavas in Bhishma Parva

451

These graphs also allow us to track the battle 452

sequence. The Kouravas saw major victories in 453

Bhishma and Drona Parva, which is demonstrated 454

by the major dips in the corresponding graphs. 455

The victory of the Pandavas is shown in the final 456

peak in the final graph. 457
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Figure 15: Line graph showing the performance of the
Pandavas in Drona Parva

4.4 Abhimanyu’s Death458

The events surrounding Abhimanyu’s death mark459

a turbulent battle between him and the kouravas.460

Abimanyu’s efforts and performance at the time of461

his death are plotted in Figure 16. The graph shown462

in Figure 16 demonstrates how well Abhimanyu463

fought before the time of his death.

Figure 16: Line graph showing the performance of the
Abhimanyu at the time of his death

464

4.5 Dice game and Disrobing465

The dice game and disrobing event is analysed466

through summary generation and the q and a model467

and a quiz app is built for the same. Further there468

is also a provision for the users to ask questions469

related to a particular event as shown in Figure 17.470

4.6 Character Analysis471

The Figure 18 depicts an example of how BERT472

identifies POS tags and extracts [ADJ] tags for ad-473

jectives. These adjectives are used alongwith sum-474

mary to generate the character sketch. The user can475

utilise the character sketch to learn about the par-476

ticular character’s life, qualities and consequences477

Figure 17: Q and A for disrobing event

Figure 18: An Example of a sentence with POS tags

of his/her actions instead of reading the entire text. 478

The Figure 19 shows the final output of character 479

sketch. 480

Figure 19: Character sketch of Arjuna

4.7 Emotion Analysis 481

The Emotion analysis analyzes the emotion 482

sentence-wise and attributes the most occurring 483

emotion to the section containing those sentences. 484

The user can enter the Parva of choice for which 485

the emotions are to be deduced. The emotions can 486

be used as a basis for deriving any other analysis 487

of the Mabhabaharatha text. The Figure 20 depicts 488

the emotion sketch of Karna Parva. 489

5 Conclusion 490

The paper has discussed the different techniques 491

used to analyze intricate events of Mahabharat and 492

present them in a lucid and interesting manner to 493

a user without prior knowledge of the text . Var- 494

ious entities present in the Mahabharat text were 495

identified using a Conditional Random Field model 496
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Figure 20: Emotion Sketch of Karna Parva

after a comparative analysis. Once the entities were497

identified, the observations and inferences based498

on their count, frequency distribution and interac-499

tions have been recorded. Various events in the500

text including Swayamvara and War have been501

analysed using summary generation models and502

question answering models. The character analysis503

provides a first hand impression of the character504

under consideration and the trails and tribulations505

which the character has gone through. Emotion506

analysis draws the flow of emotions and reactions507

of events described in Mahabharat to be presented508

in a concise manner to the user. Interested readers509

can utilize the obtained results from this paper as510

an incentive for any additional work.511
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Abstract

In this paper, we present an attention-based
deep learning framework, DeepADA, which
uses data augmentation to address the class
imbalance problem in textual datasets. The
proposed framework carries out the following
functions: (i) using MPNET-based embeddings
to extract keywords out of documents from
the minority class, (ii) making use of a CNN-
BiLSTM architecture with parallel attention to
learn the important contextual words associated
with the minority class documents’ keywords
and provide them with word-level characteris-
tics derived from their statistical and seman-
tic features, (iii) using MPNET, replacing the
key contextual terms derived from the oversam-
pled documents that match to a keyword with
the contextual term that best fits the context,
and finally (iv) oversampling the minority class
dataset to produce a balanced dataset. Using a
2-layer stacked BiLSTM classifier, we assess
the efficacy of the proposed framework using
the original and oversampled versions of three
Amazon’s reviews datasets. We contrast the
proposed data augmentation approach with two
state-of-the-art text data augmentation meth-
ods. The experimental results reveal that our
method produces an oversampled dataset that is
more useful and helps the classifier perform bet-
ter than the other two state-of-the-art methods.
Nevertheless, we discover that the oversampled
datasets outperformed their original ones by a
wide margin.

1 Introduction

Textual datasets from different domains generally
suffer from the issue of class imbalance, where
instances from the majority class outnumber the
instances from the minority class by a huge margin.
In such a case, the classifier cannot perform well on
the minority class dataset; as a result, the minority
class instances go undetected. Most research works
handle this issue by simply using a random over-
sampling algorithm without injecting additional

knowledge into the minority class dataset. As a
result, the resulting model is highly susceptible
to overfitting. Nevertheless, a data augmentation-
based minority class oversampling approach to han-
dle a class imbalance in a textual dataset has not
been well investigated.

Generally, the augmentation techniques generate
undesirable documents that do not share the similar
distribution of syntax, semantics, and pragmatics
of the original data. When it comes to text data
augmentation, class-indicating words (keywords)
play a significant role (Abulaish and Sah, 2019).
We must selectively augment the text, considering
the significance of different words. In this process
- (i) we should be able to identify the important
class-indicating words so that the newly generated
document semantically revolves around the class
of the original document, (ii) we should be able
to characterize the important words that aid the
identification class indicating words and ultimately
improves the generalization ability.

Deep learning models have emerged as effec-
tive classification models and are successful in
many domains (Krizhevsky et al., 2012; Huang
et al., 2021; Fazil et al., 2021), and have robust
pattern learning ability and are widely successful
for classification tasks. This paper presents a deep
learning-based text data augmentation approach
that exploits different deep learning techniques to
create a balanced dataset by augmenting the newly
generated documents to the minority class dataset
to improve the detection efficacy of the classifi-
cation algorithms on the minority class. The pro-
posed approach first identifies keywords from the
minority class data points utilizing a ranking-based
weighted approach. Using an attention mechanism,
it exploits the identified keywords to extract im-
portant contextual words from minority-class doc-
uments. In this process, it recognizes the word
roles using statistical correlation to measure word
occurrence frequencies respective to text categories
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and semantic similarity to measure word seman-
tics respective to text categories, which helps to
find the words semantically similar to text labels.
Finally, it utilizes important contextual words to
enrich the minority class dataset. The proposed
approach oversamples the minority class dataset by
generating new documents based on important con-
textual words and augmenting them to the minority
class dataset. The proposed approach seems inter-
pretable and improves the performance of the deep
learning classifiers over the augmented datasets.

The rest of the paper is organized as follows. Sec-
tion 2 presents a brief review of the existing litera-
ture on text data augmentation. Section 3 presents
a detailed description of the proposed attention-
based text data augmentation approach. Section 4
presents the experimental setup and evaluation re-
sults. It also presents a comparative analysis of the
proposed approach with two state-of-the-art text
data augmentation approaches. Finally, section 5
concludes the paper with future research directions.

2 Related Works

Researchers have come up with many approaches
including words substitution-based (Wei and Zou,
2019; Kobayashi, 2018; Wu et al., 2019; Abu-
laish and Sah, 2019), paraphrasing-based (Sen-
nrich et al., 2016; Edunov et al., 2018), and text
generation-based (Anaby-Tavor et al., 2020; Liu
et al., 2020) solutions.

In (Wei and Zou, 2019), authors introduced Easy
Data Augmentation (EDA), a widely used word-
replacement based data augmentation method with
four basic randomization operations – (i) replace-
ment, (ii) insertion, (iii) swap, and (iv) deletion.
They have visualized that these simple operations
can improve a classifier’s performance on text clas-
sification tasks. In (Kobayashi, 2018), authors
proposed contextual augmentation for labeled sen-
tences to predict words from a wide range of substi-
tute words, learned using a label-conditional bidi-
rectional language model. In (Abulaish and Sah,
2019), authors showed that augmenting n−grams
from a minority class document to itself that in-
cludes minority class keywords using Latent Dirich-
let Allocation (LDA), if any, in the document, can
improve the CNN’s ability to identify the minor-
ity class instances. In (Wu et al., 2019), authors
proposed to identify substitute words according to
their context, which, apart from the similar mean-
ing, also cares whether the candidates fit in the

surrounding context and labels. In (Miao et al.,
2020), authors exploited data augmentation to au-
tomatically create more labeled training data to
fine-tune a language model to derive each aspect-
opinion pair’s sentiment. In (McCoy et al., 2019),
authors insisted on creating new linguistic patterns
for text data augmentation using large pre-trained
language models.

3 Proposed Attention-Based Deep
Learning Framework

In this section, we discuss the proposed attention-
based deep learning framework, DeepADA, for
data augmentation to improve the performance of
classifiers on imbalanced text datasets. We evalu-
ate the proposed approach over 3 Amazon reviews
dataset, with statistics as shown in Table 1. Table 1
clearly shows that the Amazon reviews dataset suf-
fers from class imbalance problem, as the number
of positive reviews is significantly higher than the
number of negative reviews. With this inference,
we label the positive reviews dataset as the major-
ity class dataset (Dmaj) and the negative reviews
dataset as the minority class dataset (Dmin). The
DeepADA performs the following functions:

(i) Extracts keywords out of documents from the
minority class, using embeddings generated
by a transformer-based language model, as
discussed in section 3.1.

(ii) Makes use of a CNN-BiLSTM architecture
with parallel attention to learn the important
contextual words associated with the minority
class documents’ keywords, as discussed in
section 3.2.

(iii) Using a transformer-based language model,
replaces the key contextual terms derived from
the oversampled documents that match to a
keyword with the contextual term that best fits
the context, as discussed in section 3.3.

(iv) Finally, oversamples the minority class dataset
to produce a balanced dataset, as discussed in
section 3.4.

3.1 Similarity-Based Weighted Keywords
Extraction

This section discusses the keyword extraction
mechanism that we use in our proposed approach.
In order to extract keywords, we use MPNET
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(Song et al., 2020), a semantically and contextu-
ally robust word embedding technique. MPNET is
a transformer-based language model designed to
capture the meaning of words, phrases, and doc-
uments by encoding them to vectors by inherit-
ing the advantage of both masked language model-
ing (MLM), adopted in BERT, and permuted lan-
guage modeling (PLM), adopted in XLNet. In
order to generate the embeddings, we use SBERT
(Reimers and Gurevych, 2019), which uses siamese
and triplet network structures and has proven to be
a successful bi-encoder model for generating se-
mantically meaningful sentence embeddings that
we can utilize for textual similarity comparisons
using cosine similarity. We extract keywords from
the minority class dataset (Dmin) to employ them
for their corresponding important contextual words
extraction, which we utilize to generate new minor-
ity class documents.

In order to extract keywords from the minority
class dataset, we first encode each jth document
dj in the minority class dataset (Dmin) to its em-
bedding vector using SBERT, to extract semanti-
cally more meaningful sentence-level embeddings.
We consider MPNET as a pre-trained model for
SBERT. Then, we encode each ith word wi from
the minority class vocabulary (V bmin) to its embed-
ding vector using MPNET. Thereafter, we calculate
cosine similarity (CSV al) between each ith word,
wi ∈ V bmin and jth document dj ∈ Dmin, to give
CSV al(wi, dj) as given by equation 1; where −→wi
is the embedding vector corresponding to wi,

−→
dj

is the embedding vector corresponding to dj , and
CSV al(wi, dj) ∈ [−1, 1].

CSV al(wi, dj) =
−→wi ·
−→
dj

∥−→wi∥∥
−→
dj∥

(1)

Once we have calculated CSV al of each word
from V bmin with each document in Dmin com-
paring their embeddings, we sort them in order
such that the words in V bmin which share higher
CSV al with most of the documents in Dmin is
ranked higher. In order to achieve this, we assign
a score to each word based on its rank. The word
score (WS) of word w ∈ V bmin, WS(w) is given
by equation 2; where r(w, di) is the rank of word
w corresponding to ith document ∈ Dmin, n is the
number of documents in Dmin, and P is a variable
vital in assigning score to a word w based on its
rank values corresponding to documents ∈ Dmin,
and it basically penalizes more if the rank corre-

sponding to a document is less; here, we choose
P = 10 over other values based on experimental
fine-tuning.

WS(w) =
n∑

i=1

r(w, di)× Pr(w,di)−1 (2)

We select only the top k words from V bmin based
on their WS value as the minority class keywords
(Kmin).

3.2 Important Contextual Words Extraction
from Minority Class Documents

In order to generate additional documents in order
to augment it to the minority class Dmin, we iden-
tify the important contextual words corresponding
to each minority class document containing the
keyword(s). Towards this, we first create a labeled
dataset based on the presence of keyword(s) in
the minority class documents as discussed in sec-
tion 3.2.1. We then extract additional word-level
features of each word w ∈ V bmin based on its
semantic and statistical property as discussed in
section 3.2.2. After that, we learn the important
contextual words using a parallel attention-based
CNN-BiLSTM model corresponding to the key-
words from the keywords-based labeled dataset
enriched with the word-level features as discussed
in section 3.2. Figure 1 illustrates the important
contextual words extraction process from minority
class documents.

3.2.1 Keywords-Based Labeled Dataset
Creation

In this section, we discuss the creation of a bi-
nary labeled dataset for important contextual words
extraction Dicwe from the minority class dataset
Dmin. We aim to extract important words that aid
the classifier most in classifying the keywords. To
this end, for each keyword kw ∈ Kmin, starting
from the keywords with the highest CSV al in de-
scending order, we check if a document r ∈ Dmin,
oversample it corresponding to each word w ∈ r.
We label class K to the oversampled document if
w = kw and assign it to DK

icwe, and class NK to
the oversampled document if w ̸= kw and assign
it to DNK

icwe. We continue this process until the total
number of documents in the minority class dataset,
and important words extraction dataset combined
is equal to the number of documents in the majority
class dataset, i.e., |Dmin|+ |DK

icwe| = |Dmaj |.
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3.2.2 Word-Level Feature Extraction
In this section, we present the two effective word-
level features that depict a word’s association with
different classes of the dataset based on its statisti-
cal and semantic properties. Since we aim to iden-
tify the important contextual words corresponding
to each kw ∈ Kmin, we aim to develop a robust
classification framework that identifies accurate im-
portant contextual words.

(i) Class Correlation: This measures how fre-
quently the word co-occurs with the different
classes. If the words’ frequency is higher in
the K class, then its class correlation value
is higher for the K class than for the NK
class. The class correlation value of a word
w corresponding to the class K, CC(w,K)
is nothing but weighted log-likelihood ratio,
and is given by equation 3; where p(

w

K
) is

the probability of observing word w in class
c while p(

w

K∁ ) is the probability of observing

word w in class other than K.

CC(w,K) = p(
w

K
)× log(

p(
w

K
)

p(
w

K∁ )
) (3)

Here, for each word w, we calculate
CC(w,K) and CC(w,NK) corresponding
to the classes K and NK, respectively.

(ii) Semantic Similarity: This measures how
much semantics the word w share with the
label of a class. We take the semantic sim-
ilarity of a word w with keyword class K
as the cosine similarity value of word w
with the semantic score of class K, i.e.,
CSV al(w, SS(K)), similar to the calcula-
tion in equation 1, and SS(K) as the aver-
age of the word vectors of top 100 words
∈ Kmin in order of their WS value. We
take the top 100 keywords from respective
classes to calculate the classwise semantic
scores since they represent the better se-
mantic space being the centroid point of
top keywords extracted using a more se-
mantically sound approach. Here, for each
word w, we calcuate CSV al(w, SS(K)) and
CSV al(w, SS(NK)) corresponding to the
classes K and NK respectively.

In this context, providing word-level features
to the documents in Dicwe will help identify the
important contextual words more effectively by
exploiting their statistical and semantic property,
which depicts their alignment to a particular cate-
gory.

3.2.3 Keywords-Specific Important
Contextual Words Extraction

In this section, we discuss how we extract impor-
tant contextual words corresponding to the minority
class keywords (Kmin). As from section 3.2.1, we
already know that each document d in Dicwe is cre-
ated corresponding to a target word wt ∈ d and
labeled class K or NK based on whether wt is
in Kmin or not. After that, in section 3.2.2, we
identified two word-level features based on their
statistical and semantical properties. In this sec-
tion, we discuss how we identify the top contex-
tual words that help classify the target word wt
corresponding to which a document d ∈ Dicwe

has been created, using a parallel attention-based
CNN-BiLSTM model, to ultimately identify the
top contextual words corresponding to document
d ∈ DNK

icwe. We choose the CNN-BiLSTM model
to exploit the benefit of both the CNN’s feature
extraction ability along with the BiLSTM’s ability
to learn long-term in textual documents (Liu and
Guo, 2019; Rhanoui et al., 2019).

Let us suppose di is the ith document, and
di ∈ Dicwe such that di = {w1, . . . , wt, . . . , wn};
wt and n being the target word and the number
of words in the document respectively. DeepADA
aims to learn the importance of each contextual
word w ∈ di while training the model on di with
emphasis on wt, where wt is a target word corre-
sponding to which di ∈ Dicwe has been generated
and labeled, as discussed in section 3.2. To this
end, we have two parallel attention-based CNN, fol-
lowed by 2 layers stacked BiLSTM, one encoding
the preceding context of the document (ENCp),
and the other the following context of the target
word (ENCf ) given by equations 4 and 5 respec-
tively.

hpwt
= ENCp(wt, h

p
wt−1

) (4)

hfwt
= ENCf (wt, h

f
wt−1

) (5)

where ENCp and ENCf are two employed CNN-
BiLSTM that model the preceding and following
context of the target word independently.

With the help of the attention mechanism, vari-
able weights are assigned to all words from the
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beginning of the document to the target word
(encoded by ENCp), and from the target words
towards the end of the document (encoded by
ENCf ), depending on their contextual impor-
tance.

For encoded vector Vdi of document di ∈ Dicwe;
if hidden state representation of a target word wt ∈
Vdi given by the attention-based CNN-BiLSTM
classifier is hwt , then it is passed to a dense-layer
to learn its hidden representation h′wt

, as given by
equation 6, where W and B represent the weight
and bias, respectively. Thereafter, similarity is cal-
culated between hwt and a vertex vector vwt which
represents the importance of wt ∈ Vdi . We com-
pute the normalized importance score of wt using
equation 7. The feature-level context vector vwt

is randomly initialized and jointly learned during
the training process. Finally, the attention-aware
representation of the document di is learned and
represented asA. It is computed as a weighted sum
of the hidden representation of each word, as given
by equation 8.

h′wt
= tanh(Whwt +B) (6)

αwt =
exp(h′wt

vwt)∑
w exp(h′wt

vwt)
(7)

Adi =
∑

w

αwthwt (8)

Both ENCp and ENCf pass through the pro-
cesses in equations 6, 7, and 8 simultaneously.
The attention-based representation corresponding
to ENCp and ENCf for document di are repre-
sented as Apdi and Afdi . After we get the attention-
based representation vector of the current word in
both directions (Apdi andAfdi), then we concatenate
these two vectors to generate the final representa-
tion vector of the document di, pass it through a
dense layer with 1024 neurons and finally through
a softmax layer with 2 neurons. This is done in or-
der to make the model learn and be able to identify
the target word given the attention-based weight
distribution of the contextual words.

We train the parallel attention-based CNN-
BiLSTM model on Dicwe dataset. Once we have
trained the model, we extract the attention-based
vectors Ap and Af . These vectors are the atten-
tion scores corresponding to words on both sides
of the target word wt. We rank the top words on
both sides of wt based on their attention scores.

In this work, we have selected the top 15% words
corresponding to both the ENCp and ENCf .

3.3 Language Model-Based Documents’
Transformation

In this section, we discuss the process of lan-
guage model-based transformation of documents in
Dk
icwe. We aim to transform a document r ∈ Dk

icwe

to rt such that the transformed document rt is a non-
duplicate version of r, ensuring that words that are
replaced from r to give rt are contextually similar
and gives the semantically similar meaning as r.
To this end, we deploy Fill-Mask task supported by
MPNET, where some of the words in a sentence
are masked, and the MPNET model predicts which
words best replaces the current word, also known
as mask language modeling.

We replace the top k important words from each
document r ∈ Dk

icwe, based on attention score as
discussed in section 3.2. Now, for each ith impor-
tant word Iwi ∈ Iw where Iw is the list of impor-
tant words corresponding to r, we learn its best
substitute by masking and passing it through the
MPNET model. We mask the words in their or-
der of importance, i.e., attention score, and when
we mask a word, the rest of the words remain the
same. The MPNET model then gives the best word
replacement for Iwi in the form of Irwi

. We then
replace Iwi by Irwi

and repeat this for every impor-
tant word of the document r. In the end, we have
the transformed document rt where all the words
w ∈ Iw∩r are replaced by their best contextual and
semantically similar words given by the MPNET
model.

3.4 Balanced Dataset Creation

In this section, we discuss the oversampling pro-
cess of the minority class dataset Dmin such that
the number of instances in both classes of the
dataset is equal. We already know from section
3.2.1 that Dk

icwe has been created such that aug-
menting it to Dmin gives the balanced dataset.
First, we transform each document r ∈ Dk

icwe to
give the transformed document rt as discussed in
section 3.3. Finally, we augment Dk

icwe with Dmin

to give oversampled minority class dataset ADmin,
such that |Dmaj | = |ADmin|. So, ADmin is the
final augmented minority class dataset. We replace
Dmin with ADmin to give the oversampled bal-
anced dataset.
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Figure 1: An overview of the important words extraction process

4 Experimental Setup and Results

In this section, we present our experimental setup
and discuss the evaluation of the proposed ap-
proach. We mention that experiments were per-
formed on a machine with a 2.10 GHz Intel(R) Sil-
ver(R) processor and 192G RAM. DeepADA was
implemented in Keras1. For MPNET pre-trained
models, we used Transformers2 library.

4.1 Datasets

We use 3 publicly available Amazon reviews
datasets (He and McAuley, 2016) to evalu-
ate DeepADA The datasets musical instruments
(DS1), patio lawn and garden (DS2), and automo-
tive (DS3) have overall rating on a scale of 1 to 5, 1
being the lowest and 5 being the highest rating pro-
vided by the customer, respectively. In this work,
we modify this to binary by labeling ratings 1 or 2
as negative reviews and ratings 3, 4, or 5 as positive
reviews. The statistics of the modified datasets are
shown in Table 1.

1https://keras.io/
2https://huggingface.co/docs/transformers/index

Table 1: Statistics of the Amazon review datasets

Dataset #Reviews #Dmaj #Dmin IR

DS1 10,261 9,794 467 20.97
DS2 13,272 12,080 1,192 10.13
DS3 20,473 19,325 1,148 16.83

Review documents differ significantly from stan-
dard grammatical structures, and the character lim-
itations compel users to develop creative spellings.
Such data needs to be preprocessed more care-
fully to avoid semantic loss. The preprocessing
tasks taken by us are: stop-words, URLs, and hash-
tag symbols removal, resolving elongated words,
emoticons handling, resolving contractions, stem-
ming, and lemmatization.

4.2 Classifier Architecture and Training
Details

In this section, we present the classification
technique used to validate the effectiveness of
DeepADA. As discussed, the Amazon reviews
datasets are divided into majority class (Dmaj)
and minority class (Dmin). We used a 2−layer
stacked BiLSTM architecture with 256 cells each
followed by 2 neurons in the final softmax layer,
as we formulated this as a binary classification
problem. Other parameters include Xavier Glo-
rot initializer to assign initial weights, adam as an
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optimizer, dropout to minimize the overfitting ef-
fect, with a probability value of 0.2 at the BiLSTM
layer, ReLU as an activation function throughout
the model, except in the output layer, where we
used the softmax function, and L2 regularizer with
a value of λ as 0.01 over the softmax loss function.

Table 2 gives the statistics of the total number
of keywords extracted corresponding to different
Amazon reviews datasets to generate the keyword-
based labeled dataset, based on the discussion in
section 3.2.1. For MPNET-related tasks, we have
used the pre-trained model proposed in (Song et al.,
2020). For classification tasks throughout this
work, we have used 300−dimensional GloVe em-
beddings trained on the Common Crawl dataset
with 840B tokens.

Table 2: Number of keywords extracted corresponding
to different Amazon review datasets

Dataset #Keywords

DS1 2, 246

DS2 1, 172

DS3 2, 484

4.3 Evaluation Metrics
When it comes to the evaluation of imbalanced data,
we have very few metrics to consider (Ferri et al.,
2009). In the case of a skewed dataset, the usual
evaluation metrics, like accuracy, overshadow the
performance of the classifier on the minority class.
So, we considered reporting the performance of
the classification model used in our work only for
the minority class and the macro-averaged ones.
As evaluation metrics, we considered precision
(PR), recall (DR), F1 score (F1), macro precision
(MacPR), macro recall (MacDR), and macro F1

(MacF1). We chose these evaluation metrics to
report the classifier’s performance on the minority
class and observe whether there is any highly ad-
verse impact on the majority class of the dataset.

4.4 Comparison Approaches and Baseline
In order to establish the efficacy of the proposed
model on imbalanced data, we performed a com-
parative performance evaluation of DeepADA with
the following two standard text data augmentation
techniques:

(1) EDA – Easy Data Augmentation Tech-
niques for Boosting Performance on Text

Classification Tasks (Wei and Zou, 2019):
In this work, authors have applied 4 simple
text data augmentation operations namely – (i)
synonym replacement, (ii) random insertion,
(iii) random swap, and (iv) random deletion
either randomly or regulated by variables in a
document. They observed that the classifier’s
performance was improved on the augmented
version of the datasets using these simple data
augmentation mechanisms.

(2) Contextual Augmentation – Data Augmen-
tation by Words with Paradigmatic Rela-
tions (Kobayashi, 2018): In this work, authors
have presented a novel text data augmentation
technique using different words given by a
bi-directional language model and further in-
troduced a label-conditional architecture into
the language model. The proposed method
produced various words compatibly with the
labels of original texts and improved neural
classifiers more than synonym-based augmen-
tation. We refer to this work as CDA in the
coming sections.

In order to study the effectiveness of incorpo-
rating the word-level features in the proposed ap-
proach, we created a baseline DeepADAb by re-
moving word-level features from DeepADA.

4.5 Evaluation Results and Comparative
Analysis

In order to evaluate DeepADA, we balanced the
original datasets by oversampling their minor-
ity class with new documents generated using
DeepADA, as discussed in section 3.4. For compar-
ison, we have considered two state-of-the-art text
data augmentation techniques, namely EDA (Wei
and Zou, 2019) and CDA (Kobayashi, 2018) as
well as a baseline DeepADAb, which is similar to
ablation study that simply excludes the word-level
features from DeepADA, as discussed in section
4.4. We balanced the original datasets using all
EDA, CDA, and DeepADAb for comparison pur-
poses. We performed experimentation on the BiL-
STM model discussed in section 4.2 for evaluation
purpose. We trained the BilSTM model on 56%,
validated it on 14%, and finally tested the model
to observe its effectiveness after getting trained on
30% of the datasets. We performed this on both
the original and balanced versions of the datasets.
While training the BiLSTM, we set the maximum
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Table 3: Comparative performance evaluation results of DeepADA on minority class

Approach
DS1 DS2 DS3

PR DR F1 PR DR F1 PR DR F1

Original Dataset 45.45 10.42 16.95 37.21 13.48 19.80 35.86 15.03 21.18

EDA (Wei and Zou, 2019) 95.37 98.92 97.11 90.86 97.90 94.25 90.35 98.69 94.33

CDA (Kobayashi, 2018) 95.65 97.15 96.39 95.98 94.03 95.00 94.95 97.31 96.12

DeepADA 97.11 99.83 98.45 92.98 98.43 95.63 97.53 99.41 98.47

DeepADAb 96.63 99.66 98.12 92.59 98.79 95.59 97.34 99.57 98.44

Table 4: Macro comparative performance evaluation results of DeepADA

Approach
DS1 DS2 DS3

MacPR MacDR MacF1 MacPR MacDR MacF1 MacPR MacDR MacF1

Original Dataset 70.61 54.90 57.25 64.61 55.62 57.30 65.48 56.71 58.95

EDA (Wei and Zou, 2019) 97.12 97.03 97.04 94.17 93.56 93.71 94.72 95.87 95.16

CDA (Kobayashi, 2018) 96.44 96.46 96.45 95.13 95.09 95.10 96.15 96.15 96.16

DeepADA 98.47 98.40 98.42 95.65 95.48 95.48 98.47 98.45 98.45

DeepADAb 98.14 98.06 98.08 95.64 95.43 95.43 98.45 98.42 98.42

epochs as 100 with the “early stopping” regular-
ization technique to combat overfitting. We have
reported the results obtained on test data.

Tables 3 and 4 give the detailed experimental
results over minority class datasets and macro-
averaged results over all the classes of the datasets,
highlighting the performance of DeepADA in com-
parison to EDA and CDA as well as the baseline
approach.

4.5.1 Minority Class Performance
Table 3 shows that the classifier’s performance on
the original imbalanced datasets was the worst. On
the original imbalanced datasets, in terms of F1

score, we can state that the classifier performance
increased with the size of the original dataset. How-
ever, when we observed the PR and DR values on
the original imbalanced datasets, the same assump-
tion did not stand. It shows that the performance of
the deep learning classifier on the original imbal-
anced datasets was not just abysmal but also noisy.
The original imbalanced datasets reported highest
PR value of 45.45 on DS1, and the highest DR
and F1 values of 15.03 and 21.18, both on DS3.

We were amazed by the classifier’s performance
on the balanced datasets obtained using any text
data augmentation mechanisms. Among the result
obtained on the balanced versions of the datasets,
the lowest PR, DR and F1 values were 90.35,
94.03 and 94.25 and were reported on DS3 using
EDA,DS2 using CDA andDS3 using EDA respec-

tively; while the highest PR, DR and F1 values
were 97.53, 99.83 and 98.47 and were reported on
DS3, DS1 and DS3 all using DeepADA. Overall,
DeepADA performed the best in terms of F1 value.
We observed that the performance of DeepADAb
was at par with DeepADA on all evaluation mea-
sures over all the datasets. In some cases, like on
DS2 and DS3, it even outperformed DeepADA in
terms of DR value. Out of EDA and CDA, EDA
outperformed CDA in terms ofDR value on all the
datasets, while at the same time, CDA surpasses
EDA in terms of PR value on all the datasets. Over-
all, among EDA and CDA, CDA performed com-
paratively better than EDA in terms of F1 value
on all datasets except on DS1. After studying Ta-
ble 3 in detail, we can conclude that performance
over the balanced version of all the datasets created
using DeepADA was the best, while the baseline
DeepADAb performed second.

4.5.2 Macro-Averaged Performance

Table 4 shows that the classifier’s macro averaged
performance on both the classes of the original
imbalanced datasets was worst, similar to that ob-
served on the minority class. The original im-
balanced datasets reported highest PR value of
70.61 on DS1, and the highest DR and F1 values
of 56.71 and 58.95, both on DS3. Compared to
the performance on the minority class, the higher
value of these evaluation measures signifies that
the model can perform well on the majority class
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but fails miserably to identify the minority class
instances correctly.

Table 4 shows that similar to the performance re-
ported on the minority class, the classifier’s perfor-
mance on the balanced datasets obtained using any
text data augmentation mechanisms outperforms its
performance on the original imbalanced datasets.
The detailed study in Table 4 reveals that over all
the datasets, the performance of DeepADA and
DeepADAb over all the macro-averaged evaluation
metrics were reported to be first and second best,
respectively. Out of EDA and CDA, CDA outper-
formed EDA in terms of all the evaluation metrics
over all the datasets except DS1. It suggests that
both the DeepADA and DeepADAb generate high-
quality minority class documents, which, when
augmented to the minority class dataset, gives a
balanced dataset capable of making the classifier
perform better on the minority class dataset without
degrading its performance on the majority class.

5 Conclusion and Future Work

This paper presents a deep learning-based text
data augmentation approach, DeepADA, to address
the class imbalance issue of classifying textual
datasets. The oversampled dataset generated us-
ing DeepADA can be helpful for deep learning
models that extract patterns from the data. Exper-
iments on different datasets show that DeepADA
significantly outperforms the state-of-the-art meth-
ods. The ablation study in the form of the base-
line DeepADAb reveals that statistical correlation
and semantic similarity are essential for effective
word selection. The performance observed on the
minority class dataset, and the macro-averaged
performance over the 3 datasets indicates that the
classifier acquires stronger generalization ability
when trained on oversampled datasets generated us-
ing DeepADA. Exploring more word-level features
and extensive study on various transformer-based
language models to generate more qualitative over-
sampled datasets seems a promising future direc-
tion of research.
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Abstract
Enabling voice assistants on small embed-
ded devices requires a keyword spotter with
a smaller model size and adequate accuracy.
It becomes difficult to achieve a reasonable
trade-off between a small footprint and high
accuracy. Recent studies have demonstrated
that convolution neural networks are also effec-
tive in the audio domain. In this paper, taking
into account the nature of spectrograms, we
propose a compact ResNet architecture that
uses frequency-based non-square kernels to ex-
tract the maximum number of timbral features
for keyword spotting. The proposed architec-
ture is approximately three-and-a-half times
smaller than a comparable architecture with
conventional square kernels. On the Google’s
speech command dataset v1, it outperforms
both Google’s convolution neural networks
and the equivalent ResNet architecture with
square kernels. By implementing non-square
kernels for spectrogram-related data, we can
achieve a significant increase in accuracy with
relatively few parameters, as compared to the
conventional square kernels that are the default
choice for every problem.

1 Introduction

Keyword detection systems (KWS) are imple-
mented on embedded or mobile devices to detect
predefined keywords in an audio stream. These
words can function as wake words or trigger words
for intelligent voice assistants (e.g., Hey Siri, Alexa,
or Okay Google) or as simple speech commands
(e.g., yes, no, on, stop, etc.). Due to the nature
of deployment, these systems must have a reason-
able compromise between a small footprint and
high accuracy. However, implementing a fast, com-
pact, and highly accurate KWS model that can
be deployed on embedded or mobile devices with
limited hardware and computation is a significant
challenge.

Recent studies have demonstrated that convolu-
tion neural networks (CNNs) perform well in the

audio domain as well. CNNs are predominantly
utilized for image-related tasks. CNN’s lowest lay-
ers typically learn to detect edges. These edges
can be oriented in any way. However, one cannot
predict which kernel will acquire a given feature.
Also, since filter dimensions have a spatial mean-
ing, square kernels are widely used to preserve sym-
metry. It is common practice in the audio domain
to transform an audio stream into a spectrogram
in which the X-axis represents time and the Y-axis
represents frequency. Then, these spectrograms are
fed to two-dimensional CNNs as input.

Spectrograms are a visual representation of the
audio intensity over time at various frequencies
present in a specific waveform. On spectrograms,
the X-axis represents time and the Y-axis repre-
sents frequency. The images are then sent to CNN,
which performs the feature extractions. The com-
position of spectrograms is known in advance, i.e.,
time is represented on the X-axis and frequency
on the Y-axis. In order to capture frequency-based
and time-based characteristics, customized kernel
designs can be implemented. A number of attempts
have been made to use custom rectangular kernels
for speech emotion detection and music rhythm
classification (Pons et al., 2016; Badshah et al.,
2019).

In this paper, we propose a compact ResNet
architecture, i.e., CNNs with residual learning, that
uses frequency-based non-square kernels to cap-
ture the maximum number of timbral features for
keyword detection. Typically, the timbral features
are taller than they are wide. Also, because a
3 × 1 matrix has fewer parameters than a 3 × 3
matrix, we experimented with non-square kernels
for the KWS use-case, with the goal of reducing
the number of parameters while maintaining decent
accuracy. As a result, it is worthwhile to employ
non-square kernels. Figure 1 depicts an example
non-square frequency-based kernel. Our architec-
ture is a modification of the res8 model (Tang and
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Figure 1: Non-square frequency-based m× 1 kernels

Lin, 2018) with non-square kernels, and it is ap-
proximately 3.5 times more compact than the res8.
In terms of number of parameters, our architecture
also outperforms Google’s best CNN (Sainath and
Parada, 2015). Compared to the res8 model, the
proposed architecture achieves higher evaluation
performance and has a smaller footprint.

The remainder of the article is structured as fol-
lows. Brief summaries of recent and pertinent key-
word spotting research are presented in Section 2.
The functional details of our suggested approach
for the keyword spotting use-case are presented in
Section 3. The experimental setup and results are
presented in Section 4. It also provides a compara-
tive analysis of our proposed approach with respect
to the two SOTA models, Tang and Lin (2018) and
Sainath and Parada (2015), for keyword spotting
use-case. Finally, the paper concludes with a dis-
cussion of future research directions in Section 5.

2 Related Works

Traditionally, hidden Markov models (HMMs)
based approaches were used for KWS (Wilpon
et al., 1990; Rose and Paul, 1990). These mod-
els were challenging to train, were computationally
expensive, and had relatively long latency during
inference. Some other techniques used recurrent
neural networks (RNNs) like in (Fernández et al.,
2007), but they suffered from high latency. After
that, Chen et al. (2014) proposed deep neural net-
works (DNNs) with rectified linear unit (ReLU) ac-
tivation functions that outperformed HMM-based
models with low latency. But the drawback with
DNNs is that they ignores the audio’s local tem-
poral and spectral correlations. To capture these
correlations, variations of CNN-based KWS were

introduced . They achieved better results with re-
duced footprints. Combining the strength of CNNs
and RNNs, Arik et al. (2017) experimented with the
convolution recurrent neural network-based KWS
systems.

In August 2017, the Google’s speech command
dataset by Warden (2018) was released as a bench-
marking dataset for evaluating KWS systems. War-
den (2018) also released a baseline model based on
the convolution architecture of Sainath and Parada
(2015), achieving 85.4% accuracy in v1 version of
the dataset. The related Kaggle competition was
also organized, where the winner achieved 91%
accuracy on the v1 version at that time. Publication
of the Google’s speech command dataset led to an
acceleration in the research. Here, we will discuss
the most relevant work as per the paper’s objective.

He et al. (2016) (ResNets) significantly ad-
vance deep learning, and hence they have also
been adopted in various audio tasks like automatic
speech recognition (Xiong et al., 2018) and speaker
identification (Yun et al., 2019). Tang and Lin
(2018) further experimented with compact residual
architecture using dialated convolution to enlarge
the size of the receptive field exponentially with the
depth of the network, resulting in improved accu-
racy. They also experimented with model width by
decreasing number of filters. Szegedy et al. (2016)
proposed several enhancements to the inception
network (Szegedy et al., 2015). They replaced
several convolutions with lower dimension convo-
lutions to decrease the parameters. For example,
a 7x7 convolution was replaced with four layers
by using 1x7 and 7x1 convolutions twice. To re-
duce model footprint, a number of recent works
like time delay neural network (TDNN), attention
mechanism, and temporal convolutional network
(TCN) are done (Sun et al., 2017; Shan et al., 2018;
Choi et al., 2019).

There have been some attempts to use rectangu-
lar kernels for speech emotion detection and music
rhythm classification (Pons et al., 2016; Badshah
et al., 2019). The authors of (Hoogeboom et al.,
2018) have used hexagonal kernels that utilized
symmetry equivariance and in-variance of images.
Our paper uses 2D convolution with non-square
kernels (m × 1) convoluted in the frequency do-
main to capture the maximum amount of timbral
features, reducing the computation and number of
operations.

This study focuses on the family of CNN mod-
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els, as they continue to serve as the benchmark for
KWS systems. For KWS systems, we desire an
analysis between square and non-square kernels.
Since CNNs have a simple architecture, we have
conducted our experiments with CNN and residual
blocks. In order to perform a more accurate bench-
marking, we have referred to the results that were
published in (Tang and Lin, 2018).

3 Proposed ResNet Architecture with
non-square kernel

In this section, the functional details of our pro-
posed ResNet architecture with non-square ker-
nels are described. Figure 2 provides a visual repre-
sentation of the architectural layout of the proposed
ResNet with non-square kernel.

3.1 Feature Extraction and Preprocessing

Table 1: Parameters used for res8-3x1

Type Height (m) Width (n) Filters (N) #Parameters
conv 9 5 45 6,075
avg-pool 3 4 45 -
res x 6 3 1 45 36.4K
avg-pool 3 4 45 -
softmax - - 12 552
Total - - - 43K

Table 2: Parameters used for res8-5x1

Type Height (m) Width (n) Filters (N) #Parameters
conv 9 5 45 6,075
avg-pool 3 4 45 -
res x 6 5 1 45 60.7K
avg-pool 3 4 45 -
softmax - - 12 552
Total - - - 67.3K

Table 3: Parameters used for res8-7x1

Type Height (m) Width (n) Filters (N) #Parameters
conv 9 5 45 6,075
avg-pool 3 4 45 -
res x 6 7 1 45 85K
avg-pool 3 4 45 -
softmax - - 12 552
Total - - - 91.6K

The input audio stream is converted into mel-
scaled spectrograms with a length of FFTwindow
as 2048 and 512 samples between successive
frames. The spectrogram is then converted to deci-
bels (dB), with the highest dB being 80. We use
the Librosa Python library to perform the con-
version. Spectrogram data is then normalized, stan-
dardized, and converted to three dimensions by

Table 4: Parameters used for res8-9x1

Type Height (m) Width (n) Filters (N) #Parameters
conv 9 5 45 6,075
avg-pool 3 4 45 -
res x 6 9 1 45 109K
avg-pool 3 4 45 -
softmax - - 12 552
Total - - - 115.9K

repeating the matrix along all three axes [X,X,X].
The spectrogram images are then scaled to 128×64
pixels. Figure 3 illustrates a sample of the gener-
ated spectrogram images.

3.2 Proposed Architecture
Our network architecture contains residual blocks,
as described in (He et al., 2016), in which it is
proposed that it is simpler to learn residuals:

H(x) = F (x) + x

than the actual mapping F (x) for a model with
greater depth.

Instead of using small squared CNN kernels
(e.g., 3× 3 or 5× 5), we use non-square kernels of
m× 1 with varying values of m because such ker-
nels may be able to learn more timbral features than
standard square kernels. From an audio standpoint,
these kernels are expected to learn fundamental au-
dio features such as frequency, pitch, and timbre,
among others. Such kernels may be incapable of
learning more about the time axis, i.e., rhythmic
or tempo-related features. Taking into account the
keyword spotting use-case, however, these kernels
reduce the number of parameters and memory foot-
print, motivating us to move in this direction.

Our first layer is a bias-free m× n 2D convolu-
tion kernel, where m and n are, respectively, the
height and width (m = 9, n = 5). Here, n is greater
than 1 for the first layer to increase the receptive
field, and in subsequent layers, the time axis also
contributes. This layer has a stride of 2× 2 which
helps to reduce the size of the model. After the
first layer, we added a 3× 4 average pooling layer
to reduce the input dimensions (3× 4 kernel size
yielded better results than 4× 3 in our setup). Our
residual block is comprised of a bias-freem×1 2D
convolution kernel, an activation function, and a
batch normalization layer. Since the neuron cannot
determine its own firing pattern, an activation func-
tion is used to determine whether or not a neuron
should be activated. Before passing the input to the
subsequent layer, the non-linear transformations
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Figure 2: Architecture of the proposed ResNet with non-square kernel (m× 1)

Figure 3: Spectrogram images of different classes

Figure 4: A residual block proposed in (He et al., 2016)

are applied. We have used the ReLU activation
function, which outputs the input directly if it is
positive and 0 if it is negative. Formally, it is de-
fined as follows:

Relu(z) = max(0, z)

We added a chain of six residual blocks. In
the end, we included batch normalization and a
non-residual convolution layer. Every mini-batch’s
weights are normalized via batch normalization.
Consequently, it stabilizes the network and drasti-
cally reduces the number of training epochs neces-
sary to train deep neural networks. Following the
addition of a linear layer, the output then passes
through a softmax layer that generates a class
probability distribution (see figure 2).

σ(zi) =
ezi

∑K
j=1 e

zj
for i = 1, 2, . . . ,K

N = 45 feature maps are utilized across all con-
volution layers. We tested four ResNet variants
by varying m in the residual block: res8-3x1 with
43K parameters (Table 1), res8-5x1 with 68K pa-
rameters (Table 2), res8-7x1 with 92K parameters
(Table 3), and res8-9x1 with 115K parameters (Ta-
ble 4).
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4 Experimental Setup and Results

This section describes the experimental design and
results. It also provides a comparative analysis of
our proposed method with two SOTA models, Tang
and Lin (2018) and Sainath and Parada (2015), for
keyword spotting use-case.

4.1 Dataset

We use Google’s speech commands dataset v1 by
Warden (2018) for training and benchmarking pur-
poses for our proposed network that was released
in August 2017 under a Creative Commons license.
The dataset includes approximately 64727 one-
second long utterances of 30 short words, sampled
at 16k Hz and recorded by different individuals.
The distribution of words in the dataset is depicted
in Table 5.

In accordance with Google’s implementation,
we categorized the audios into 12 classes – yes,
no, up, down, left, right, on, off, stop, go, un-
known (remaining words), and silence (no speech
detected). The blog post announcing the dataset
mentions Google’s TensorFlow implementation
of Sainath and Parada (2015) models, which are
used for comparison alongside Residual networks
proposed by Tang and Lin (2018). Following the
publication, we compared the results of the exper-
iments to the v1 test data. Based on the Warden
(2018), the dataset is divided into 80% training set,
10% validation set, and 10% test set. This resulted
in approximately 23000 examples for training and
2700 for validation and testing.

Table 5: Word distribution in Google’s speech command
dataset v1

Word #Utterances Word #Utterances Word #Utterances
bed 1,713 house 1,750 sheila 1,734
bird 1,731 left 2,353 six 2,369
cat 1,733 marvin 1,746 stop 2,380
dog 1,746 nine 2,364 three 2,356
down 2,359 no 2,375 tree 1,733
eight 2,352 off 2,357 two 2,373
five 2,357 on 2,367 up 2,375
four 2,372 one 2,370 wow 1,745
go 2,372 right 2,367 yes 2,377
happy 1,742 seven 2,377 zero 2,376

4.2 Evaluation Metrics

The proposed method is evaluated based on its ac-
curacy, which is formally defined using True Posi-
tive (TP), False Positive (FP), True Negative (TN),
and False Negative (FN) values in the following
equation.

Accuracy =
TP + TN

TP + TN + FP + FN

TP is defined in the preceding equation as the
test result that correctly indicates the presence of a
condition. FP is defined as a test result that incor-
rectly indicates the presence of a specific condition.
The test result that correctly indicates the absence
of a condition is defined as TN. Finally, FN is de-
fined as a test result that incorrectly indicates the
presence of a specific condition.

In addition to accuracy, we have considered the
footprint size of the proposed method in terms of
the number of parameters, which is calculated us-
ing the following formula:

Parameters = (fs ∗ pf + 1) ∗N
In the above equation, fs represents the

mtimesn dimensions of the kernels used; pf rep-
resents the number of kernels used in the previous
layer; and N represents the number of kernels used
in the current layer. As the bias term, 1 is added to
the previous equation.

4.3 Model Training
Using the PyTorch framework, we trained and
evaluated various models. We used AdamW
(Loshchilov and Hutter, 2017) as our optimizer
with a learning rate of 3e-4 on a mini-batch of 64
samples with 0.001 weight decay at each layer ex-
cept LayerNorm and Bias. For the LR scheduler,
ReduceLROnPlateau is selected as the learning rate
scheduler that reads the metric quantity and reduces
the learning rate by a certain factor (0.8 in our case)
if no improvement is observed for patience num-
ber of epochs (patience is set to 2 in our config-
uration). We utilized down-sampling to address
class imbalance, if any. To prevent the occurrence
of over-fitting, we also utilized early stopping on
the validation loss with a patience of 5. As our
loss function, we employ cross entropy, which is
defined as follows, wherein K is the number of
classes, y is a binary indicator to check whether
the class label c is the correct classification for ob-
servation o, and p is the predicted probability of
observation o for class c.

CrossEntropyLoss = −
K∑

c=1

yo,c log(po,c)
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Figure 5: Visualization of accuracy of all models on Google’s speech command dataset v1

Figure 6: Visualization of footprint size of all models in terms of number of parameters

4.4 Results

For benchmarking, we employ the CNN variants
proposed by Sainath and Parada (2015), namely
trad-fpool3, tpool2, and one-stride1. In addition,
we compared our findings to the compact ResNet
models proposed in the (Tang and Lin, 2018). In
consideration of the small footprint keyword spot-
ting use-case, we employ no. of parameters and
model size (MB) in addition to an evaluation metric
for benchmarking purposes. Our proposed method
yields comparable results with few parameters. As
demonstrated in the table above, as m increases,
the model is able to capture more timbral features,
resulting in a certain degree of accuracy improve-
ment.

Table 6: Test accuracy of our proposed models in terms
of accuracy and number of parameters

Proposed Model Accuracy #Parameters
res8-3x1 77.8% 43K
res8-5x1 93.1% 68K
res8-7x1 96.4% 91.6K
res8-9x1 96.5% 115.9K

4.5 Comparative Analysis
In this section, we present the results of a com-
parative analysis between our proposed ResNet
model and the Tang and Lin (2018) and Sainath and
Parada (2015) models. These models are briefly
described in the following paragraphs.

1. Sainath and Parada (2015) models

− trad-fpool3: It is their base model. It
consists of 2 convolution, 1 linear layer,
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Figure 7: Number of parameters vs. accuracy over Google’s speech command dataset v1 (see Table 7)

Table 7: Comparative analysis of our proposed model
with other models

Models Accuracy #Parameters

Sainath and Parada (2015) models
trad-fpool3 90.5% 1.37M
tpool2 91.7% 1.09M
one-stride1 77.9% 954K

Tang and Lin (2018) models

res15 95.8% 238K
res15-narrow 94.0% 42.6K
res26 95.2% 438K
res26-narrow 93.3% 78.4K
res8 94.1% 110K
res8-narrow 90.1% 19.9K

Proposed models

res8-3x1 77.8% 43K
res8-5x1 93.1% 68K
res8-7x1 96.4% 91.6K
res8-9x1 96.5% 115.9K

hidden and softmax layer with poolng in
frequency axis.

− tpool2: The most accurate variant they
explored. It’s the variant of the base
model with pooling in time axis.

− one-stride1: Their best compact variant

is the variant of the base model with
stride in frequency axis.

2. Tang and Lin (2018) models

− res15: ResNet model with 15 layers
and 45 kernels

− res15-narrow: ResNet model with 15
layers and 19 kernels

− res26: ResNet model with 26 layers
and 45 kernels

− res26-narrow: ResNet model with 26
layers and 19 kernels

− res8: ResNet model with 8 layers and
45 kernels

− res8-narrow: ResNet model with 8 lay-
ers and 19 kernels

Except for res8-3x1, all of our proposed models
(see Table 6) outperform Sainath and Parada (2015)
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Figure 8: Model size (in terms of MB) comparison between models with square kernel (left) and non-square kernel
(right)

in terms of accuracy (Figure 5) and number of
parameters (Figure 6), as shown in Table 7. Our
res8-5x1 provides slightly less accuracy than the
compact ResNet models proposed in (Tang and
Lin, 2018), but with a much smaller number of
parameters.

With only 91.6K parameters, the res8-7x1 model
that employs a 7×1 filter size achieves the optimal
balance between accuracy and number of parame-
ters, outperforming all models proposed in (Sainath
and Parada, 2015) and (Tang and Lin, 2018). Using
non-square kernels has been shown to provide ade-
quate and, in some cases, superior accuracy with a
small number of audio domain parameters.

Figure 6 illustrates the footprint size in terms
of the number of parameters for each model con-
sidered for benchmarking. Except for the narrow
models by Tang and Lin (2018), all of our proposed
models have a smaller number of parameters and
comparable accuracy when compared to the other
models used for benchmarking. According to their
paper, when comparing narrow versus wide mod-
els, the number of kernels has a greater effect on
accuracy than model depth. Our emphasis is on
employing non-square kernels for audio domain
in order to reduce model footprint. We employ
the same number of kernels (N = 45) as the res8
model from (Tang and Lin, 2018).

Compared to models with squared kernels, mod-
els with non-squared kernels have a tendency to
have a smaller number of parameters with compa-
rable or better accuracy. In addition, we use the
same input size for models with a square (res8)
kernel and a non-square (res8-5x1) kernel. Figure
8 demonstrates that res8-5x1 is approximately 3.5
times smaller than the res8 model.

5 Conclusion and Future Work

In this paper, we have presented a fast, small foot-
print model for real-time KWS with non-square
kernels (m × 1) that may be useful for small em-
bedded devices. Depending on the characteristics

of the spectrogram, non-square kernels may be
a suitable alternative to square kernels, provided
that non-square kernels have fewer trainable pa-
rameters than square kernels. Experiments indi-
cate that non-square kernels reduce model size by
reducing the number of required parameters with-
out degrading performance. The frequency-based
kernels have few parameters, and the proposed ar-
chitecture demonstrates satisfactory performance
during the evaluation phase. Our proposed work
may inspire other researchers and developers to
experiment with network architecture based on the
dataset and use-case. After comprehending the
structure of our data, i.e., spectrogram, we have
utilized non-square kernels in the audio domain for
KWS. It might be worthwhile to consider conduct-
ing additional research on benchmarking different
architectures using non-square kernels in the fu-
ture.
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Abstract

Single document extractive text summarization
produces a condensed version of a document by
extracting salient sentences from the document.
Most significant and diverse information can
be obtained from a document by breaking it
into topical clusters of sentences. The spectral
clustering method is useful in text summariza-
tion because it does not assume any fixed shape
of the clusters, and the number of clusters can
automatically be inferred using the Eigen gap
method. In our approach, we have used word
embedding-based sentence representation and
a spectral clustering algorithm to identify vari-
ous topics covered in a Bengali document and
generate an extractive summary by selecting
salient sentences from the identified topics. We
have compared our developed Bengali summa-
rization system with several baseline extractive
summarization systems. The experimental re-
sults show that the proposed approach performs
better than some baseline Bengali summariza-
tion systems it is compared to.

1 Introduction

With the advancement of search engines, we
are flooded with information. This information
overload problem affects the proficiency of
decision-making of humans. Instead of time waste,
it also affects the capacity of humans. In today’s
world where each day technology is changing our
daily life, the human brain plays an important role
there. So it is unworthy to waste the human brain
and time in a negative way. Having a crux with
relevant information from a long document manu-
ally is a very tedious task. Text summarization is a
very useful solution to this information overload
problem. Text summarization helps to create a
condensed version of a document by selecting
sentences with pertinent information from the
document. Text summarization demands well un-
derstanding of the document to create the gist. Text
summarization can be categorized into two types:

extractive and abstractive. Extractive summariza-
tion aims to generate a summary by selecting
textual segments or sentences from the document
whereas abstractive summaries are generated
from the document by introducing new words or
phrase which may not be present in the original
document. Although abstractive summaries are
more human-like than extractive summaries,
the state-of-the art abstractive summarization
approaches are not good enough in producing an
abstract from a longer document. Many existing
abstractive summarization approaches use two step
process. in the first step, an extract is generated.
and in the next step, an abstract is generated by
reformulating the sentences in the extract(Sarkar,
2010). Thus the extractive summarization is
useful. Moreover, Bengali is a resource-scarce
language and abstractive summarization requires a
large amount of language resources which are not
available for Bengali language. This motivates us
to work on Bengali extractive summarization.
Capturing connectivity among sentences of a
document is helpful to group similar sentences and
create a condensed extract. Sentence clustering
is an unsupervised method that groups similar
sentences and produces clusters. Traditional clus-
tering algorithms though widely used earlier have
some pitfalls which are overcome using spectral
clustering. Spectral clustering emphasizes creating
more accurate clusters than traditional clustering
algorithms as it does not make assumptions about
the shape of the cluster. Spectral clustering utilizes
the connectivity of data points. If two data points
appear side by side but are not connected, spectral
clustering will not group them together. The main
benefits of using spectral clustering in document
segmentation are that the clusters produced by
this method do not follow any fixed shape. We
assume that the clusters representing topics are
non-Gaussian. We consider that the spectral
clustering algorithm is suitable for segmenting a
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document into multiple topical clusters where a
cluster represents a topical segment that consists of
semantically similar sentences appearing in close
positional proximity.
In our approach, each sentence vector is computed
by averaging the word embedding vectors obtained
using fasttext 1 open source. After obtaining the
sentence vector by averaging the word vectors,
the position of the sentence is included as an
additional dimension of the sentence vector.
Position information is considered to encourage
locally coherent sentences to fall in the same
cluster. Clusters are ranked according to the
average position number of the sentences in the
cluster and a summary is created by choosing the
most relevant sentences from the ranked clusters.
Sentence selection from the cluster is also done
in an effective way. The efficacy of our approach
lies in the effectiveness of spectral clustering in
segmenting the document into multiple topical
clusters.
The approach proposed in this paper differs from
the existing approaches (Günes and Dragomir R.,
2004)(Sarkar, 2009a)(Sarkar, 2009b)(Sarkar,
2008)(Sarkar, 2012a)(Sarkar, 2012b)(Sarkar and
Bandyopadhyay, 2005). We use the spectral
clustering algorithm to segment a document into
multiple topical clusters and create a summary by
choosing topic-wise most relevant sentences. On
the other hand, the existing approaches (Günes
and Dragomir R., 2004)(Sarkar, 2009a)(Sarkar,
2009b)(Sarkar, 2008)(Sarkar, 2012a)(Sarkar,
2012b)(Sarkar and Bandyopadhyay, 2005) de-
compose the entire document into a collection of
sentences and rank the sentences based on some
features to create a summary. So, our proposed
approach uses an effective clustering-based method
that produces a summary covering all important
topics in a document.
Our paper is set up in the following manner.
Related work is discussed in section 2. Our
proposed methodology is explained in section
3. Section 4 highlights the dataset used in the
approach results and comparison among existing
models. Section 5 concludes the paper.

2 Related Work

In the area of extractive text summarization, the
early approaches used various heuristic algorithms

1https://fasttext.cc/docs/en/
crawl-vectors.html

to identify important segments from a document.
The methods that include features like sentence
position, word frequency, and key phrases to ex-
tract salient sentences from the document have
been presented in (Baxendale, 1958)(Edmundson,
1969)(Luhn, 1958). Most early text summarization
algorithms faced the redundancy problem or the
diversity problem. So, to deal with these problems
and assuring good coverage, clustering of sentences
is used (Jain and Dubes, 1988). The idea of em-
ploying a clustering algorithm for text summariza-
tion was well described in (Sarkar, 2009a). This
approach used three steps for text summarization:
histogram-based clustering algorithm for sentence
clustering, ordering of clusters, and extraction of
summary-worthy sentences from the clusters to cre-
ate the summary.
In (Jing and McKeown, 2000), a hierarchical ag-
glomerative clustering algorithm was used to create
clusters of sentences. To create a summary, sen-
tences were chosen in order from largest to small-
est cluster. Another clustering-based approach
presented in (Wan and Yang, 2008) incorporates
cluster-level information in a graph model for rank-
ing sentences.
However, the early works (Sarkar, 2009a) suggest
that the performance of clustering-based text sum-
marization heavily depends on the quality of clus-
ters produced. Clustering algorithms perform well
when we have a clear idea regarding attributes of
data points (Jin, 2006). Clustering based on com-
pactness highlights spatial proximity among data
points. For example, agglomerative average link
clustering (Jain and Dubes, 1988), k-means (Harti-
gan and Wong, 1979), highlights compactness. The
resultant clusters using this algorithm is spherical
clusters. Modification on k-means was discussed in
(Arthur and Vassilvitskii, 2007) which is defined as
k-means++. Though it uses a better centroid initial-
ization technique for improvements over k-means,
still it suffers from some drawbacks because we
need to specify the number of clusters to be formed
in advance and it assumes a fixed shape of clusters.
After investigating different existing clustering al-
gorithms, we can find that spectral clustering is
more suitable for our task. It embeds sentences
on a low-dimensional eigen space and performs
clustering on the data points mapped to the low-
dimensional embedding space. It does not assume
any fixed shape of the cluster but rather emphasizes
graph partitioning (Hamad and Biela, 2008) based
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on connectedness among the vertices representing
the data points. So, it is very useful when the shape
of cluster is non-convex. Nowadays, the spectral
clustering algorithm has been used in a wide range
of application areas like image clustering (Tilton,
1998), shape clustering (Sidi et al., 2011), motion
clustering (Lauer and Schnörr, 2009) and many
more. Gupta et. al. (Gupta et al., 2019) presented
a spectral clustering-based text summarization ap-
proach, which uses Textual Entailment(TE) and
Spectral Clustering (ATESC) to calculate sentence
connectedness scores. It is used to measure the
saliency of a sentence in the input.
However, to the best of our knowledge, it is our
new attempt to use a spectral clustering algorithm
in the Bengali text summarization domain. For
sentence representation, we have also considered
sentence position as a new feature and combined
it with the semantic content-based sentence fea-
tures. The spectral clustering is applied to the sen-
tence vectors to produce multiple clusters where
each cluster represents a topical segment of the
input document. The final summary is generated
by choosing sentences from the ordered clusters
using a centrality-based saliency measure (Günes
and Dragomir R., 2004).

3 Our Proposed Methodology

Steps of our proposed system is illustrated in Figure
1. Each step of the proposed system is discussed in
this section.

3.1 Preprocessing

Sentences are identified using a sentence tokenizer
available with the NLTK toolkit. A sentence is
split up into words. Stop words are discarded from
the sentences. Stop words denotes unimportant fre-
quent words in the dataset. A predefined, human-
made list of Bengali words 2 was considered for
stop word removal. 363 stop words were consid-
ered in that stop word list. A sample sentence after
discarding stop words from it is represented in Fig-
ure 2.

3.2 Sentence Vectorization

After pre-processing, sentences are passed to the
vectorization step. The vector for a sentence is
obtained by taking an average of the vectors corre-
sponding to the words that appeared in the sentence.

2http://fire.irsi.res.in/fire/static/resources

Figure 1: Steps of the proposed summarization system

Figure 2: Removal of stop word for Bengali sentence

fastText word embeddings 3 were used to get word
vectors. Since the size of a word vector is 300, the
dimension of the sentence vector obtained using
the average rule is 300. The value for the feature
"sentence position" is appended at the end of the
sentence vector, which increases its dimension to
301. The value for the sentence position feature
is calculated as the division of the position of the
sentence in the document by the total sentences in
the document. Hence our final sentence vector is
of dimension 301. The rationale behind including
sentence position in the sentence vector is to en-
courage locally coherent sentences to fall in the
same cluster. This helps to segment a document in
a better way.

3https://fasttext.cc/docs/en/
crawl-vectors.html
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3.3 Sentence Clustering
In this step, sentence vectors are clustered into
clusters of different sizes. The idea is to group
similar and closer sentences into the same cluster.
To cluster the sentences, we have used the spectral
clustering algorithm. To implement spectral clus-
tering, we first calculate the affinity matrix from a
document graph in which a node corresponds to a
sentence vector, and the edge between two nodes is
weighted by the similarity between the correspond-
ing two vectors. Affinity matrix is created using
the similarity function given in Equation 1, which
is basically a Gaussian similarity function.

Aij = exp(
−d2(si, sj)

σ2
) (1)

Where σ is a control parameter that controls the
context window in our case. In equation 1, d(si, sj)
denotes distance between two sentence vectors
si and sj . Distance between two points (x1, x2)
and (y1, y2) is calculated using the formula of Eu-
clidean Distance defined in equation 2. In our ap-
proach, we varied sigma and got the best result
when it is set to 10.

dist =
√
(x1 − x2)2 + (y1 − y2)2 (2)

From the affinity matrix, the graph Laplacian
matrix is obtained using equation 3.

L = D −A (3)

where A is the affinity matrix and D is the degree
matrix such that

di =
∑

j|(i,j)∈E
Wij (4)

where E is the set of edges in the graph and Wij

refers to the similarity between two points xi and
xj corresponding to two different sentences in a
document.
After normalizing the graph Laplacian matrix, the
Eigen values and Eigen vectors of the normalized
graph Laplacian matrix are used to embed the sen-
tences into a low dimension Eigen space (Luxburg,
2007). Finally, a simple k-means clustering algo-
rithm is applied for clustering the low dimensional
dense vectors to obtain hard clusters. The main
problem in the K-means cluster algorithm is that
it needs to specify the value of K in advance. In
our case, we have used an Eigen map heuristic
method to determine the value of K. The main idea

is to choose the value K such that all eigenvalues
λ1,.......λk are very small, but λk+1 is relatively
large. The details of this method can be found in
(Luxburg, 2007). We have used this method to de-
termine the number of clusters. Thus the number
of topical segments is automatically inferred in an
unsupervised way.

3.4 Cluster Ranking
The clusters are ranked in ascending order on the
basis of the average of the position values of the
sentences, present in that cluster. The cluster rank-
ing enables us to identify the more significant clus-
ters from which sentence extraction will occur first.
The rationale behind using the position-based clus-
ter ranking method is to ensure the selection of
sentences in the summary from the topics in order
as they appear in the text (position-based topical
order). This is useful in creating an informative
extract of sentences covering various topics in a
document.

3.5 Within-cluster Sentence Ranking
A particular cluster may have multiple sentences
present in it. To identify the most salient sentence
from each cluster, the sentences within a particu-
lar cluster are ranked using the graph-based lex-
ical centrality method published in (Günes and
Dragomir R., 2004). In this method, a weighted
adjacency matrix is constructed for the graph rep-
resenting each cluster where the sentences in the
cluster are considered as the vertices and the co-
sine similarity is considered as the edge weights
between two sentence vectors. Cosine similarity is
one of the popular similarity measures between two
vectors. It is the cosine of the angle between two
vectors, which means the dot product of two vec-
tors divided by the product of their lengths. Cosine
similarity is calculated using equation 5, where A
and B are two sentence vectors belonging to a clus-
ter. The rank of the sentence in a particular cluster
is the sum of all the cosine edge weights to all other
vertices in the cluster graph. The higher the sum of
edge weights the higher the rank of the sentence is.
This score is used to identify the sentence which is
the most central to the cluster.

cosine− similarity =
A.B

||A||||B|| (5)

For example, let us assume that six sentences
are present in a cluster. Now adjacency matrix is
created for that cluster using the cosine similarity
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Figure 3: A sample similarity graph for the sentences in
a cluster

value. A sample weighted matrix for the graph
representing a cluster is as follows.




s1 s2 s3 s4 s5 s6

s1 0 0.8 0.7 0.3 0.8 0.75
s2 0.8 0 0.3 0.2 0.4 0.3
s3 0.7 0.3 0 0.6 0.3 0.7
s4 0.3 0.2 0.6 0 0.2 0.8
s5 0.8 0.4 0.3 0.2 0 0.9
s6 0.75 0.3 0.7 0.8 0.9 0




In the above sentence similarity matrix, the row
sum gives the sum of the similarities of a given
sentence to the other sentences in the cluster they
belong to. From the above sentence similarity ma-
trix, we can observe that s6 has the highest saliency
score and it should be selected first as a summary
worthy sentence from the cluster.

3.6 Summary Generation

After cluster ordering, sentences within each clus-
ter are ranked. Then the sentence extraction process
begins to create a summary for each input docu-
ment. Here we select the first-ranked sentence in
the first cluster followed by the first-ranked sen-
tence in the second cluster and so on. If the number
of clusters produced by the clustering algorithm is
less than the required number of sentences, the pro-
cess is repeated in a round-robin fashion until we
obtain the required number of sentences. Once the
required number of sentences is extracted to attain
the desired summary length, the process is stopped.
In our approach, a summary of 100 words is taken
for evaluation. The algorithm for the overall sum-
mary generation process is shown in Algorithm
1.

Algorithm 1 Summary generation using spectral
clustering based document segmentation
Input: A text document.
Output: Summary of the document.

1: Breaking the input document into sentences.
2: Removal of stop words from the sentences.
3: Calculation of the 300-dimensional sentence

vector by taking an average of word vectors
obtained using the fastText open source.

4: Calculate the positional feature value for
each sentence and append it with the 300-
dimensional sentence vector obtained in the
previous step. The positional feature value is
calculated as the position of the sentence in
the document divided by the total number of
sentences in the document.

5: Sentence affinity matrix is created using the
Gaussian similarity function.

6: Compute the normalized graph Laplacian for
the sentence affinity matrix.

7: Eigenvalue decomposition is performed on the
normalized graph Laplacian to get eigenval-
ues and eigenvectors. The eigenvectors are
arranged in the ascending order of eigenval-
ues.

8: Take the first d eigenvectors to form an N × d
matrix U. A matrix T is obtained from U by
normalizing the rows of U to norm 1.

9: Eigen gap heuristic is applied to identify the
gap which gives the optimal number of clusters,
K.

10: Treating each row of T as a spectral embedding
of a sentence, a simple K-means algorithm is
applied on T to obtain K clusters where K is
computed using the Eigen gap heuristic.

11: Clusters are ranked on the basis of the average
position values of the sentences belonging to a
cluster.

12: The sentences within each cluster are assigned
scores based on the graph centrality-based
saliency measure (Günes and Dragomir R.,
2004).

13: For creating a summary, the top-ranked cluster
contributes first its best sentence to the sum-
mary and then the second-ranked cluster con-
tributes, and so on. If the number of clusters
produced by the clustering algorithm is less
than the required number of sentences, the pro-
cess is repeated in a round-robin fashion until
we obtain the required number of sentences.
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4 Datasets and Experimental Results

Since no publicly available dataset is available for
Bengali text summarization, we have tested our
proposed approach on our own dataset consisting
of 102 Bengali document-summary pairs. The
average number of sentences in each document is
40. For evaluation, we have taken 100 words from
each summary generated by the system using the
proposed approach.
We have conducted six experiments to prove the
effectiveness of our approach. These experiments
include implementations of five state-of-the-art
unsupervised methods with which our proposed
approach is compared. A brief description of the
models implemented by us is given below in this
section.
Model 1: This is our proposed model that uses
clustering-based document segmentation for text
summarization.
Model 2: This approach was developed by Luhn
(Luhn, 1958). It generates a summary from
a document by considering that the sentence
containing more frequent words is more important
than the sentence containing less frequent words.
In this method, stop words are removed before
sentence weight calculation.
Model 3: This approach was developed by (Günes
and Dragomir R., 2004). It uses Lexrank, which is
a graph-based approach that represents sentences
as vertices of a graph and considers the cosine
similarity between any two sentences as the weight
of the edge between the corresponding vertices.
Finally, Google’s page rank algorithm is applied to
the graph to rank sentences.
Model 4: This approach was developed by
(Ani and Lucy, 2005). The approach is named
"Sumbasic" which considers term frequency as
the saliency of a term. Here probability of a
word is calculated based on its frequency and
each sentence is assigned a score equal to the
average probability of the words contained in the
sentence. The sentence with the highest score is
selected first in the summary. Before selecting the
next sentence, the words present in the already
selected sentence are penalized by multiplying
their probability values by themselves, and the
sentences are re-ranked using the newly calculated
probability values. After re-ranking the sentences,
the sentence with the highest score is selected as
the second sentence of the summary. This process
is continued until the summary of the desired

length is obtained.
Model 5: This model was developed by (Rada
and Paul, 2004). It is called as Textrank. It
is also a graph-based approach similar to that
used in LexRank(Günes and Dragomir R., 2004).
LexRank used TF*IDF-based term weight and
cosine similarity value as the edge weight whereas
TextRank used word overlap-based similarity value
as the edge weight.
Model 6: This is the lead baseline model, where a
summary is generated by considering the first 100
words of the input document. This is the baseline
defined in DUC 2001 and DUC 2002 shared tasks
on single document summarization.

4.1 Summary Evaluation Metric
To calculate the performance score of the pro-
posed model, we have used the popular summary
evaluation package called ROUGE (Lin, 2004)
which measures n-gram overlap between a system-
generated summary and the reference summaries
(Wan and Yang, 2006). In our case, we have used
one reference summary for each system-generated
summary. ROUGE counts various kinds of overlap-
ping units between the system summary and the ref-
erence summaries. We have used the latest version
of the ROUGE package - ROUGE 1.5.5 for evalu-
ating the system summaries. The ROUGE toolkit
reports various ROUGE–N scores, for example,
ROUGE-1, ROUGE-2, etc. Along with ROUGE-1
scores, many state-of-the-art summarization sys-
tems have been evaluated using ROUGE-2 (bigram-
based), and ROUGE-SU4 (skip bigrams with skip
distance up to 4 words (Lin, 2004)). So, we con-
sider ROUGE-1, ROUGE-2, and ROUGE-SU4
scores for evaluating our proposed summarization
models. We set the summary length to 100 words
by using the -l 100 option in the ROUGE toolkit,
which takes the first 100 words from each system
summary for evaluation. We use ROUGE-F score
scores to evaluate and compare our proposed neural
summarization method with other existing summa-
rization methods.

4.2 Results and Comparisons
We have implemented five existing summarization
systems for comparing them with the system pro-
posed by us. The comparison results are shown in
Table 1.

As we can see from the table 1, our proposed
model (Model 1) performs significantly better than
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MODEL Rouge 1 Rouge 2 Rouge SU4
Model 1(Proposed Model) 0.4481 0.2844 0.2848
Model 2 (Luhn, 1958) 0.3929 0.2324 0.2293
Model 3 (Günes and Dragomir R., 2004) 0.3693 0.1995 0.1980
Model 4 (Ani and Lucy, 2005) 0.3602 0.1831 0.1836
Model 5 (Rada and Paul, 2004) 0.3499 0.1846 0.1835
Model 6(Lead Baseline) 0.2733 0.1501 0.1487

Table 1: Performance of our proposed summarization model and its comparison with some existing summarization
methods

other baseline models to which it is compared. The
proposed model also performs significantly bet-
ter than Model 3 (Günes and Dragomir R., 2004)
which uses the graph-based ranking of all sentences
of the input document considering all sentences in
the document as a single cluster. Compared to
the system "LexRank " (Günes and Dragomir R.,
2004), we use spectral clustering-based document
segmentation and within-cluster sentence ranking.
It is evident from the results that, instead of taking
the input document as a single cluster of sentences,
if the document is segmented into multiple topical
clusters and the summary is generated by choosing
sentences from the clusters one by one, this pro-
duces a summary which is better in quality than
that produced by the system called "LexRank".

We have computed performance improvement
using equation 6 which computes the difference
between ROUGE scores obtained by the proposed
model and the model to which it is compared.

PI =M −N (6)

where PI denotes performance improvement, M
is the score for the proposed approach, and N is
the score for the approach to which the proposed
approach is compared. Performance Improvement
of our proposed approach over other approaches is
shown in Table 2.

MODEL Rouge 1 Rouge 2
Model 2 0.0552 0.052
Model 3 0.0788 0.0849
Model 4 0.0879 0.1013
Model 5 0.0982 0.0998
Model 6 0.1748 0.1343

Table 2: Performance improvement achieved by our
proposed model in comparison with some state-of-the
art summarization methods

As we can see from Table 2, the proposed ap-

proach shows improvement over the lead baseline
and the LexRank(Günes and Dragomir R., 2004) by
0.1748 and 0.0788 ROUGE-1 points respectively.

4.2.1 Comparison of the spectral clustering
algorithm with another conventional
clustering algorithm

To prove the effectiveness of the spectral clustering
algorithm in producing topical segments, we have
implemented a variant of the proposed by replacing
the spectral clustering algorithm with another pop-
ular clustering algorithm called DBSCAN. which
is a density-based clustering algorithm(DBSCAN).
DBSCAN algorithm is known to be robust to out-
liers. Minpts(minimum number of points for a clus-
ter) and epsilion are two parameters that are tuned
to achieve better performance. The best results
are achieved by setting minpts=5 and epsilion=0.4.
The summarization evaluation scores are shown in
Table 3. It is evident from these results that spec-
tral clustering is more effective for segmenting a
document into multiple topics.

MODEL Rouge 1 Rouge 2
Proposed Model 0.4481 0.2844
DBSCAN 0.3765 0.2253

Table 3: Comparison of the proposed model with spec-
tral clustering with its variant that uses the DBSCAN
clustering algorithm

4.3 An Example

In this subsection, We have shown the clustering
and the summarization results for an example input
Bengali input document. The clusters produced
by the spectral clustering algorithm, a reference
summary and the system generated summary are
shown in Figure 4 and 5 respectively.

The bold sentences in Figure 4 are the sentences
selected by the summarization model proposed by
us. Though we have shown in Figure 5 a system
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Figure 4: Clusters produced using spectral clustering algorithm

Figure 5: System generated summary and reference summary of the document
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generated summary consisting of 11 sentences, the
first 100 words of it is taken during evaluation using
the ROUGE package.

5 Conclusion

This paper describes a spectral clustering-based
method for segmenting a document into multiple
topical segments and a summarization method that
generates an extractive summary by choosing sen-
tences from the clusters. Our proposed summariza-
tion approach outperforms several existing baseline
summarization approaches.
The higher ROUGE score obtained by the proposed
approach proves that the spectral clustering algo-
rithm provides more accurate topical segments of a
document if the sentence position is added as an ad-
ditional dimension to the sentence vector obtained
by averaging the word vectors.
We have a future plan to use more deep semantic
methods for document segmentation and incorpo-
rate them into the text summarization process.
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