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Introduction

Welcome to the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021)! The workshop
was co-located with the Joint Conference of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language Processing
(ACL-IJCNLP 2021), and was held on August 6, 2021 as an online workshop. The workshop was
organised by Anna Rogers, lacer Calixto, Ivan Vuli¢, Naomi Saphra, Nora Kassner, Oana-Maria
Camburu, Trapit Bansal, and Vered Shwartz; and advised by Chris Dyer, Ed Grefenstette, Isabelle
Augenstein, Karl Moritz Hermann, Kyunghyun Cho, and Laura Rimell. The workshop is annually
organised by the ACL Special Interest Group on Representation Learning (SIGREP).

The 6th Workshop on Representation Learning for NLP aims to continue the success of the previous
editions, and remains a strong and established venue for representation learning in NLP, attracting
more than 60 submissions this year. This edition continued to invite papers of a theoretical or
experimental nature describing recent advances in vector space models of meaning, compositionality,
and the application of deep neural networks and spectral methods to NLP. A strong focus was put on
topics of developing new representations, evaluating existing representations, efficient and sustainable
learning and inference, and representation learning beyond the English language and text only (e.g.,
multi-modal, cross-lingual, knowledge-informed learning).

We take this opportunity to thank the RepL4NLP-2021 program committee for their help and thorough
reviews. We also thank the authors who presented their work at the workshop, and the workshop
participants for the valuable feedback and discussions. Finally, we are deeply honored to have four
excellent talks from our invited speakers Sameer Singh, Karen Livescu, Noah Smith, and Lena Voita.

The RepL4NLP-2021 Workshop organizers
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Improving Cross-lingual Text Classification
with Zero-shot Instance-Weighting

Irene Li'*, Prithviraj Sen?, Huaiyu Zhu?, Yunyao Li?, Dragomir Radev

1

Yale University, USA
{irene.li,dragomir.radev}@yale.edu
2IBM Research Almaden, USA
{senp, huaiyu, yunyaoli}@us.ibm.com

Abstract

Cross-lingual text classification (CLTC) is a
challenging task made even harder still due to
the lack of labeled data in low-resource lan-
guages. In this paper, we propose zero-shot
instance-weighting, a general model-agnostic
zero-shot learning framework for improving
CLTC by leveraging source instance weight-
ing. It adds a module on top of pre-trained
language models for similarity computation of
instance weights, thus aligning each source in-
stance to the target language. During training,
the framework utilizes gradient descent that is
weighted by instance weights to update param-
eters. We evaluate this framework over seven
target languages on three fundamental tasks
and show its effectiveness and extensibility, by
improving on F1 score up to 4% in single-
source transfer and 8% in multi-source trans-
fer. To the best of our knowledge, our method
is the first to apply instance weighting in zero-
shot CLTC. It is simple yet effective and easily
extensible into multi-source transfer.

1 Introduction

Natural language processing (NLP) has largely ben-
efited from recent advances in deep learning and
large-scale labeled data. Unfortunately, such la-
beled corpora are not available for all languages.
Cross-lingual transfer learning is one way to spread
the success from high-resource to low-resource lan-
guages. Cross-lingual text classification (CLTC)
(Prettenhofer and Stein, 2010; Ni et al., 2011) can
learn a classifier in a low-resource farget language
by transferring from a resource-rich source lan-
guage (Chen et al., 2018; Esuli et al., 2019).
Previous work has learned a classifier in the tar-
get language using a very small sample of labeled
target instances or external corpora of unlabeled
instances (Wang et al., 2019; Xu and Wan, 2017).

*Work done as an intern at IBM Research Almaden.
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In addition, other resources that may be utilized
to achieve the same include, but are not limited
to, parallel corpora of unlabeled instances in the
target language (Xu and Wan, 2017). In this work,
we address the most challenging setting, zero-shot
CLTC (Arnold et al., 2007; Joachims, 2003), where
no resource in the target language is given. Among
the many methods for transfer learning that have
been successfully employed in NLP (Mogadala and
Rettinger, 2016; Zhou et al., 2016; Eriguchi et al.,
2018), instance (re-) weighting is perhaps one of
the oldest and most well known (Wang et al., 2017,
2019). It is best illustrated when we are given
access to a few target labeled instances (few-shot
learning). For example, both Dai et al. (2007) and
Wang et al. (2019) learn a classifier iteratively by as-
signing weights to each instance in the source train-
ing data. While Dai et al. (2007) assigns weights to
both source and target instances, Wang et al. (2019)
pre-trains a classifier on the source training data
and then re-weights the target labeled instances.
Crucially, the weights are set to be a function of
the error between the prediction made for the in-
stance by the current classifier and the instance’s
gold label.

In a few-shot case, it is easy to see the appeal
of re-weighting target language instances, since an
instance that incurs a higher prediction loss can be
given a larger weight, so as to improve the classifier.
But in a zero-shot case, it seems impossible to
compute instance weights based on prediction loss.
In this work, we make it possible to assign such
weights on instances in zero-shot CLTC. To the
best of our knowledge, this is the first attempt to
apply such a method to NLP tasks.

Our contributions are two-fold: First, we in-
troduce zero-shot instance-weighting, a simple
but effective, and extensible framework to enable
instance weighted transfer learning for zero-shot
CLTC. Second, we evaluate on three cross-lingual

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 1-7
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics



classification tasks in seven different languages.
Results show that it improves F1 score by up to 4%
in single-source transfer and 8% in multi-source
transfer, identifying a promising direction for uti-
lizing knowledge from unlabeled data.

2 Proposed Method

We illustrate the zero-shot CLTC framework in Fig-
ure 1. The source and target language inputs are x4
and x; respectively, during training, only the source
label y; is available and the task is to predict the
target label ;. We first apply the pre-trained model
as an encoder to encode the inputs, the encoded
representations are denoted by A and h;. The fig-
ure illustrates four instances for each language in
the mini-batch. Then there is an Instance Weight-
ing module to assign weights to source language
instances by considering the hidden representations
hs and h;. Note that these layers are shared. We
train the task layer and fine-tune the pre-trained
language model layers.

2.1 Pre-trained Models
We compare two multilingual versions of pre-

trained models for the pre-trained models: multi-
lingual BERT (mBERT)! (Devlin et al., 2019) and
XLM-Roberta (XLMR)? (Conneau et al., 2020).

We evaluate on multiple tasks in Section 3, so
there are different ways to utilize the pre-trained
models. For the sentiment and document classifica-
tion task, we train a fully-connected layer on top of
the output of the [CLS] token, which is considered
to be the representation of the input sequence. For
the opinion target extraction task, we formulate it
as sequence labeling task (Agerri and Rigau, 2019;
Jebbara and Cimiano, 2019). To extract such opin-
ion target tokens is to classify each token into one
of the following: Beginning, Inside and Outside
of an aspect. We follow a typical IOB scheme
for the task (Toh and Wang, 2014; San Vicente
et al., 2015; Alvarez—Lépez et al., 2016). In this
case, each token should have a label, so we have a
fully-connected layer that is shared for each token.
We note that it may be possible to improve all the
results even further by employing more powerful
task layers and modules such as conditional ran-
dom fields (Lafferty et al., 2001), but keep things
relatively simple since our main goal is to evaluate
instance weighting with zero-shot CLTC.

'github.com/google-research/bert/blob/
master/multilingual.md
huggingface.co/XLMRoberta-base

Source input

— (h
{2} —|Priprainea —>{ 4 II II-» Task = {ys}

Instance
Weighting

—{l} zuuy e
{2} —|"caa |—> e i SEIETR

Target input

shared shared

Figure 1: Framework Illustration: we illustrate 4 in-
stances for each domain here.

2.2 Instance Weighting

The intuition behind instance weighting is the fol-
lowing: if the difference between a source instance
and the target language is small, then it shares more
common features with the target language, so it
should make a larger contribution. For each in-
stance in the source language, a large weight indi-
cates a large contribution by the instance during
training. Ideally, when deciding an instance weight,
we should compare it with all instances from the
target language. But doing so would incur pro-
hibitively excessive computational resources. We
thus approximate in small batches and calculate the
weights by comparing how similar the instances
are to the target ones within a small batch in each
training step.

Instance Weighting-based Gradient Descent
Vanilla mini-batch gradient descent is defined as:

k

0<—9—azvaf(yi’ge (%)) (1

=1

where « is the learning rate, ¢ is the parameter that
we want to update, gg(z;) is the model prediction
for z; , V is the partial derivative, and f(-) is the
loss function.

We modify Equation 1 to include instance weights:

k

0 0—ad w-Vof (yige (x:)) (2
i=1

where we assign a weight w; to each instance
within a mini-batch, and there is a weighted sum-
mation of the gradients in the mini-batch for all the
instances and then update the parameter 6. It can
be easily extended to multiple source languages, in
this case, x5 may be training samples from more

than one languages.
Unsupervised Weighting Metrics In each batch,
to obtain weight w; for each source instance i, we



follow a similarity-based approach. We define a
scoring function to calculate a score between the
current source instance representation h; and the
target instance representation /;. Then we conduct
a summation as the final score for source instance
1 to the set of target instances within this batch D;.
Fori € Dq:

w; = score(i, Dy) = Z score(i, j).
JED:

We normalize each w; in this batch to make sure
the summation is 1, and they are plugged into Eq.
2.

Multiple ways exist to define a scoring function
score(i, 7), and a Cosine-Similarity based scoring
function is defined as:

1 hyhy

(1),
2[Rl 11

score(i,j) =

We also investigate two other ways for scor-

ing function: Euclidean-Distance based and the

CORAL Function (Sun et al., 2016). While Cosine

scoring function performs the best, so we report

it in our main experiments and ignoring the other
two.

3 Evaluation

We test on three tasks: opinion target extraction,
document classification, and sentiment classifica-
tion 3. English is the source language for all the
experiments. We evaluate four settings: 1) di-
rect adaptation with mBERT-base (mBERT), 2)
mBERT with Instance Weighting (mBERT+IW),
3) direct adaption of XLLMR-base (XLMR), and 4)
XLMR with Instance Weighting (XLMR+IW).
Opinion Target Extraction We choose SemEval
2016 Workshop Task 5 (Pontiki et al., 2016) for
opinion target extraction. It includes restaurant re-
views in five languages*: English, Spanish (es),
Dutch (n1), Russian (ru) and Turkish (t r). Given
a sentence as input, one needs to classify each to-
ken into one of the three classes according to the
IOB scheme. The training and testing size varies
from 144 to 3,655. We compare against a list of
models. Pontiki et al. (2014) and Kumar et al.
(2016) are supervised and require extra corpora
or resources to train. Agerri and Rigau exploits ad-
ditional resources like unlabeled corpora. Jebbara
3We release our code
Irenezihuili/ZSIW/.

“The download script was broken and failed to obtain French
data, so we do not report results for French.

in https://github.com/

Method es nl ru tr

Pontiki et al. (2014)% 0.520 0.506 0493  0.419
Kumar et al. (2016)% 0.697  0.644 - -

Jebbara and Cimiano (2019)  0.687  0.624  0.567  0.490
Agerri and Rigau (2019)% 0.699  0.664 0.655 0.602
mBERT 0.697 0.677 0.652  0.598
mBERT+IW 0.692  0.691 0.671 0.620
XLMR 0.690 0.700 0.664 0.674
XLMR+IW 0.704 0714 0.706  0.682

Table 1: F1 scores on SemEval for Opinion Tar-
get Extraction. % indicates a supervised or semi-
supervised learning method.

and Cimiano (2019) applies multi-source (includ-
ing the target) languages to train a classifier using
cross-lingual embeddings and evaluates in a zero-
shot manner. We summarize the results in Table 1.
Cross-lingual Document Classification We con-
duct cross-lingual document classification task on
the MLDoc dataset (Schwenk and Li, 2018). It
is a set of news articles with balanced class pri-
ors in eight languages; Each language has 1,000
training documents and 4,000 test documents, and
splits into four classes. We select a strong baseline
(Schwenk and Li, 2018), which applies pre-trained
MultiCCA word embeddings (Ammar et al., 2016)
and then trained in a supervised way. Another base-
line is a zero-shot method proposed by Artetxe and
Schwenk (2019), which applies a single BILSTM
encoder with a shared vocabulary among all lan-
guages, and a decoder trained with parallel corpora.
Artetxe and Schwenk (2019) apply mBERT as a
zero-shot language transfer. Table 2 shows the re-
sults of our comparison study.

Sentiment Classification Finally, we evaluate
sentiment classification task on Amazon multilin-
gual reviews dataset (Prettenhofer and Stein, 2010).
It contains positive and negative reviews from 3
domains, including DVD, Music and Books, in
four languages: English (en), French (fr), Ger-
man (de), and Japanese (ja). For each domain,
there are 1,000 positive samples and 1,000 nega-
tive samples in each language for both training and
testing. We choose the following baselines: transla-
tion baseline, UMM (Xu and Wan, 2017), CLDFA
(Xu and Yang, 2017) and MAN-MoE (Chen et al.,
2019). For the translation baseline, we translate the
training and testing data for each target language
into English using Watson Language Translator”,
and trained on the mBERT model, which is more

Shttps://www.ibm.com/watson/services/
language-translator/, version 2018-05-01



Method en de fr it ja ru zh

Schwenk and Li (2018) % 0.9220 0.8120 0.7250 0.7238 0.6938 0.6763 0.6080 0.7473
Wu and Dredze (2019) 0.9420 0.8020 0.7260 0.7260 0.6890 0.5650 0.7370 0.7690
Artetxe and Schwenk (2019)  0.8993  0.8478 0.7733  0.7795 0.6943 0.6030 0.6778 0.7193
mBERT 0.8981 0.8680 0.7519 0.7492 0.6952 0.7222 0.6797 0.7937
mBERT+IW - 0.8766 0.7532 0.7527 0.7122 0.7264 0.6949 0.8277
XLMR 0.9295 09245 0.8462 0.8710 0.7322 0.7824 0.6892 0.8580
XLMR+IW - 0.9265 0.8612 0.8797 0.7464 0.7942 0.7024 0.8712

Table 2: F1 scores on MLDoc for Cross-lingual Document Classification. % indicates a supervised or semi-

supervised learning method.

Method Books DVD Music
Translation Baseline 0.7993 0.7789 0.7877
UMM (Xu and Wan, 2017) 0.7772 0.7803 0.7870
CLDFA % (Xu and Yang, 2017) 0.8156 0.8207 0.7960
MAN-MOE (Chenetal, 20190 0.7543  0.7738 0.7688
mBERT 0.7497 0.7378 0.7575
mBERT+IW 0.7573  0.7565 0.7553
XLMR 0.8248 0.8268 0.8425
XLMR+IW 0.8452 0.8362 0.8400

Table 3: F1 scores on Amazon Review for Sentiment
Classification group by domains: Each cell shows the
average accuracy of the three languages.* indicates a
supervised or semi-supervised learning method.

Method es nl ru tr

XLMR 0.690 0.700 0.664 0.674
Single-source  0.704  0.714 0.706  0.682
Multi-source 0.735 0.738 0.745 0.688

Table 4: Multi-source F1 scores on SemEval for Opin-
ion Target Extraction: transfer from single-source and
multi-source using XLMR-+IW model.

confident in English®. Both UMM and CLDFA
utilized more resources or tools like unlabeled cor-
pora or machine translation. MAN-MOoE is the only
zero-shot baseline method. It applies MUSE (Lam-
ple et al., 2018) and VecMap (Artetxe et al., 2017)
embeddings. We summarize the results in Table 3
for each domain.

Results Among the three tasks, both base mod-
els achieve competitive results for all languages
thanks to the choice of pre-trained models. Instance
weighting produces consistent improvements over
the base models for nearly all target languages. Es-
pecially, in Table 1, the best model XLMR+IW
beats the best baseline by 4.65% on average, im-
proving from XLMR by 4% on Russian and gain-
ing substantially on the other target languages; in

*https://github.com/google-research/bert/
blob/master/\multilingual.md explains the
pre-training.

Table 2, XLMR+IW outperforms the baselines, and
surpassing XLMR steadily, with impressive gains
on Russian, Chinese and Spanish. In Table 3, the
best model shows the same trend in most cases.
While our approach is model-agnostic, when the
base model or the embedding improves, instance
weighting will still help, as we can see the im-
proved results obtained by switching from mBERT
to XLMR. Again, the framework is simple but ef-
fective given these observations. Most importantly,
it requires no additional external data and is easily
adaptable into any deep models.

4 Discussion

Multi-source Expansion Studies show that multi-
lingual transfer outperforms bilingual transfer (Guo
et al., 2018). We run an experiment on the opinion
extraction task to illustrate how our approach can
be easily extended to enable multi-source transfer,
(see Table 5). Here, we take the SemEval dataset,
and for each target language, we train on the union
of all other available languages. We can observe
that by easily expanding into multi-source language
training, we get a significant boost across the board
in all target languages. Specifically, there is a 8.1%
improvement on Russian. With easy adaptation, we
show the extensibility and that multilingual transfer
in zero-shot learning is a promising direction.

Case Study Intuitively, we should focus on the
source instances with a smaller difference with
target language, because they contain more com-
mon features with the target language. Thus, if
we let those instances contribute more, it is pos-
sible that the model may perform better on the
target language. As an example, Table 5 shows a
positively-labeled French review containing adjec-
tives with positive emotions (e.g., “exceptionnel”,
“superbe”) and the instance weights for two English
reviews, where the weights are generated using
our best model XLMR+IW. Since English instance



Language Score Content Label
English 0.5056  ...Iliked the book. Kaplan has consistently been one of my favorite authors (Atlantic Monthly)  Pos
Instance 2 His theme is consistent: many nation states are not really nation states... Kaplan had great hope

for the future of Iran as they struggle with theocracy...
English 0.3647  One start , for some very acurate dramatic and terrorific facts about the Ebola, but very weak ~ Neg
Instance 1 regarding origin of the virus, very unconvincing about possible “’theories”. sound more like that

old music of desinformation, he almost blame another monkey for the Ebola...
French Origin: ...ce livre est exceptionnel..La construction du livre est superbe, I’écriture magique... Pos

Translation: ...this book is outstanding..The construction of book is superb, magical writing ...

Table 5: A positive scenario: score comparison within the same batch.

1 contains adjectives with positive emotions (e.g.
“favorite”, “great”), it has a higher score than En-
glish instance 2 containing adjectives with negative

emotions (e.g., “weak”, “unconvincing”).

5 Conclusion

We proposed instance weighting for CLTC and
evaluated on 3 fundamental tasks. The benefits
of our approach include simplicity and effective-
ness by ensuring wide applicability across NLP
tasks, extensibility by involving multiple source
languages and effectiveness by outperforming a va-
riety of baselines significantly. In the future, we
plan to evaluate on more tasks such as natural lan-
guage inference (Conneau et al., 2018) and abstract
meaning representation (Blloshmi et al., 2020).
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Abstract

Pre-trained multilingual language models have
become an important building block in mul-
tilingual natural language processing. In the
present paper, we investigate a range of such
models to find out how well they transfer
discourse-level knowledge across languages.
This is done with a systematic evaluation on
a broader set of discourse-level tasks than has
been previously been assembled. We find that
the XLM-RoBERTa family of models consis-
tently show the best performance, by simulta-
neously being good monolingual models and
degrading relatively little in a zero-shot set-
ting. Our results also indicate that model dis-
tillation may hurt the ability of cross-lingual
transfer of sentence representations, while lan-
guage dissimilarity at most has a modest ef-
fect. We hope that our test suite, covering 5
tasks with a total of 22 languages in 10 dis-
tinct families, will serve as a useful evaluation
platform for multilingual performance at and
beyond the sentence level.

1 Introduction

Large-scale pre-trained neural language models
have become immensely popular in the natural lan-
guage processing (NLP) community in recent years
(Devlin et al., 2019; Peters et al., 2018). When
used as contextual sentence encoders, these mod-
els have led to remarkable improvements in per-
formance for a wide range of downstream tasks
(Qiu et al., 2020). In addition, multilingual ver-
sions of these models (Devlin et al., 2019; Conneau
and Lample, 2019) have been successful in trans-
ferring knowledge across languages by providing
language-independent sentence encodings.

The general usefulness of pre-trained language
models has been convincingly demonstrated thanks
to persistent creation and application of evaluation
datasets by the NLP community. Discourse-level
analysis is particularly interesting to study, given

Robert Ostling
Linguistics Department
Stockholm University
Stockholm, Sweden
robert@ling.su.se

that many of the currently available models are
trained with relatively short contexts such as pairs
of adjacent sentences.

Wang et al. (2019) use a diverse set of natural lan-
guage understanding (NLU) tasks to investigate the
generality of the sentence representations produced
by different language models. Hu et al. (2020) use
a broader set of tasks from across the NLP field
to investigate the ability of multilingual models
to transfer various types of knowledge across lan-
guage boundaries.

Our goal in this paper is to systematically eval-
uate the multilingual performance on NLU tasks,
particularly at the discourse level. This combines
two of the most challenging aspects of representa-
tion learning: multilinguality and discourse-level
analysis. A few datasets have been used for this pur-
pose before, most prominently the XNLI evaluation
set (Conneau et al., 2018) for Natural Language In-
ference (NLI), and recently also XQuAD (Artetxe
et al., 2020) and MLQA (Lewis et al., 2020) for
Question Answering (QA). We substantially in-
crease the breadth of our evaluation by adding three
additional tasks:

1. Penn Discourse TreeBank (PDTB)-style im-
plicit discourse relation classification on an-
notated TED talk subtitles in seven languages
(Section 3.1.1)

2. Rhetorical Structure Theory (RST)-style dis-
course relation classification with a custom
set consisting of treebanks in six non-English
languages (Section 3.1.2)

3. Stance detection with a custom dataset in five
languages (Section 3.1.3)

We investigate the cross-lingual generalization
capabilities of seven multilingual sentence en-
coders with considerably varying model sizes

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 8—19
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics



through their cross-lingual zero-shot performance’

which, in this context, refers to the evaluation
scheme where sentence encoders are tested on the
languages that they are not exposed to during train-
ing. The complied test suite consists of five tasks,
covering 22 different languages in total.

We specifically focus on zero-shot transfer sce-
nario where a sufficient amount of annotated data
to fine-tune a pre-trained language model is as-
sumed to be available only for one language. We
believe that this is the most realistic scenario for
a great number of languages; therefore, zero-shot
performance is the most direct way of assessing
cross-lingual usefulness in a large scale.

Our contributions are as follows: (i) we provide
a detailed analysis of a wide range of sentence en-
coders on large number of probing tasks, several of
which have not previously been used with multilin-
gual sentence encoders despite their relevancy, (ii)
we provide suitably pre-processed versions of these
datasets to be used as a multilingual benchmark for
future work with strong baselines provided by our
evaluation, (iii) we show that the zero-shot perfor-
mance on discourse level tasks are not correlated
with any kind of language similarity and hard to
predict, (iv) we show that knowledge distillation
may selectively destroy multilingual transfer abil-
ity in a way that harms zero-shot transfer, but is
not visible during evaluations where the models are
trained and evaluated with the same language.

2 Background

The standard way of training a multilingual lan-
guage model is through a large non-parallel mul-
tilingual corpora, e.g. Wikipedia articles, where
the models are not provided with any explicit map-
ping across languages which renders cross-lingual
performance of such models puzzling. Pires et al.
(2019) and Wu and Dredze (2019) are the earliest
studies to explore that puzzle by trying to uncover
the factors that give multilingual BERT (hence-
forth, mBERT) its cross-lingual capabilities. Pires
et al. (2019) perform a number of probing tasks
and hypothesize that the shared sentence pieces
across languages gives mBERT its generalization
ability by forcing other pieces to be mapped into
the same space. Similarly, Wu and Dredze (2019)

'In the remainder of the paper, cross-lingual zero-shot
performance is simply referred as zero-shot performance for
brevity. Similarly, source language performance denotes the
performance of the respective model on the test set of the
training language.

evaluate the performance of mBERT in five tasks
and report that while mBERT shows a strong zero-
shot performance, it also retains language-specific
information in each layer.

Chen et al. (2019a) proposes a benchmark to
evaluate sentence encoders specifically on dis-
course level tasks. The proposed benchmark con-
sists of discourse relation classification and a num-
ber of custom tasks such as finding the correct posi-
tion of a randomly moved sentence in a paragraph
or determining if a given paragraph is coherent or
not. The benchmark is confined to English, hence,
only targets monolingual English models.

Two very recent studies, XTREME (Hu et al.,
2020) and XGLUE (Liang et al., 2020), consti-
tute the first studies on the cross-lingual gener-
alization abilities of pre-trained language mod-
els via their zero-shot performance. The tasks
in both studies largely overlap, where XTREME
serves as cross-lingual benchmark consisting of
well-known datasets, e.g. XNLI, XQuAD. On the
other hand, while covering the most of XTREME
tasks?, XGLUE offers new datasets which either
focus on the relation between a pair of inputs, such
as web page—query matching, or on text genera-
tion via question/news title generation. In addition
to the mBERT and certain XLM and XLM-R ver-
sions, XTREME includes MMTE (Arivazhagan
et al., 2019) whereas XGLUE evaluates Unicoder
(Huang et al., 2019) among its baselines.

3 Cross-lingual Discourse-level
Evaluation

In discourse research, sentences/clauses are not un-
derstood in isolation but in relation to one another.
The semantic interactions between these units are
usually regarded as the backbone of coherence in
various prominent discourse theories including that
underlying the Penn Discourse TreeBank (PDTB)
(Prasad et al., 2007), and Rhetorical Structure The-
ory (RST) (Mann and Thompson, 1988) used in
the RST Discourse Treebank (Carlson and Marcu,
2001). Modelling such interactions requires an un-
derstanding that is beyond sentence-level and, from
this point-of-view, determining any kind of relation
between sentences/clauses can be associated with
discourse.

Although paraphrase detection or natural lan-
guage inference may not strike as discourse-level
tasks at first glance, they both deal with semantic

2Except parallel sentence retrieval tasks.



relations between sentences. Tonelli and Cabrio
(2012) show that textual entailment is, in fact, a sub-
class of Restatement relations of the PDTB frame-
work whereas Nie et al. (2019) report an increase
in discourse relation classification accuracy when
NLI is used as the intermediate fine-tuning task. In
a similar vein, a stance against a judgement, Favor
or Against, can be seen as CONTINGENCY: Cause:
reason and COMPARISON: Contrast in PDTB; Ex-
planation and Antithesis in RST, respectively.
Therefore, these NLU tasks can be seen as spe-
cial subsets of discourse relation classification;
only a model with a good understanding beyond
individual sentences can be expected to solve these
tasks. Finally, since question answering requires
an understanding on discourse level in order to
be solved, so we also believe classifying this as a
discourse-level task should be uncontroversial.

3.1 Tasks & Datasets

In this section, we present our task suite and the
datasets used for training and zero-shot evaluation.
For the sake of clarity, we name each task after the
dataset used for training.

3.1.1 Implicit Discourse Relation
Classification (PDTB)

Implicit discourse relations hold between adjacent
sentence pairs but are not explicitly signaled with
a connective such as because, however. Implicit
discourse relation classification is the task of de-
termining the sense conveyed by these adjacent
sentences, which can be easily inferred by readers.
Classifying implicit relations constitutes the most
challenging step of shallow discourse parsing (Xue
etal., 2016).

The training is performed on PDTB3 (Webber
et al., 2016) where sections 220, 0-1 are used for
training and development respectively. The zero-
shot evaluation is performed on the TED-MDB cor-
pus (Zeyrek et al., 2019)*, which is a PDTB-style
annotated parallel corpus consisting of 6 TED talk
transcripts, and the recent Chinese annotation effort
on TED talk transcripts that however are mostly not
parallel to TED-MDB (Long et al., 2020). Due to
the small size of the test sets, we confine ourselves
to the top-level senses: Contingency, Comparison,
Expansion, Temporal which is also the most com-
mon setting for this task. Despite the limited size
of TED-MDB, zero-shot transfer is possible and

3https://github.com/MurathanKurfali/Ted-MDB-
Annotation
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yields meaningful results as shown in (Kurfali and
Ostling, 2019). In total, seven languages are eval-
uated in this task: English, German, Lithuanian®,

Portuguese, Polish, Russian and Chinese.

3.1.2 Rhetorical Relation Classification
(RST)

Rhetorical relations are just another name for dis-
course relations but this term is most commonly
associated with Rhetorical Structure Theory (RST)
(Mann and Thompson, 1988). Similar to PDTB’s
discourse relations, rhetorical relations also denote
links between discourse units, but are considerably
different from the former. The difference largely
stems from the take of the respective theories on
the structure of the discourse. RST conceives dis-
course as one connected tree-shaped structure as-
suming hierarchical relations among the discourse
relations. On the other hand, PDTB does not make
any claims regarding the structure of the discourse
and annotates discourse relations only in a local
context (i.e. adjacent clauses/sentences) without
assuming any relation on higher levels. Hence,
evaluation on RST and PDTB relations can be seen
as complementary to each other as the former fo-
cuses on both global and local discourse structure
whereas PDTB focuses only on local structure.
We use English RST-DT (Carlson and Marcu,
2001) for training where a randomly selected 35
documents are reserved for development. However,
unlike PDTB, there is not any compact parallel RST
corpus; RST annotations across languages usually
differ from each other in several ways. Therefore,
we follow Braud et al. (2017) and create a custom
multilingual corpus for the zero-shot experiments
which consists of the following languages: Basque
(Iruskieta et al., 2013), Brazilian Portuguese (Car-
doso et al., 2011; Collovini et al., 2007; Pardo and
Seno, 2005), Chinese (Cao et al., 2018), German
(Stede, 2004), Spanish (Da Cunha et al., 2011),
Russian (Pisarevskaya et al., 2017). We perform a
normalization step on each treebank which includes
binarization of non-binary trees and mapping all
relations to 18 coarse grained classes described
in (Carlson and Marcu, 2001). The normalization
step is performed via the pre-processing scripts of
(Braud et al., 2017). Due to memory constraints,
we limit the sequence lengths to 384. Hence, we
only keep those relations where the first discourse
unit is shorter than 150 words so that both units can

“Lithuanian is the latest addition to the Ted-MDB corpus,
as documented in (Oleskeviciene et al., 2018).



be equally represented which lead to omission of
only 5% of all non-English relations.

3.1.3 Stance Detection (X-Stance)

The stance detection is task of determining the at-
titude expressed in a text towards a target claim.
For experiments, we mainly use the X-stance cor-
pus which consists of 60K answers to 150 ques-
tions concerning politics in German, Italian and
French (Vamvas and Sennrich, 2020). Unlike other
tasks, we select German as the training language
for stance detection as it is the largest language in
X-Stance. Following the official split, we use the
German instances in the training and development
sets during fine-tuning and non-German instances
in the test set for evaluation. Furthermore, we en-
rich the scope of our zero-shot evaluation by two ad-
ditional dataset, one in English (Chen et al., 2019b)
and other one in Chinese (Yuan et al., 2019), which
also consist of stance annotated claim—answer pairs,
despite in different domains.

3.1.4 Natural Language Inference (XNLI)

Natural language inference (NLI) is the task of
determining whether a premise sentence entails,
contradicts or is neutral to a hypothesis sentence.
MultiNLI and the mismatched part of the develop-
ment data (Williams et al., 2018) are used for train-
ing and validation, respectively. The evaluation is
performed on the test sets of the XNLI (Conneau
et al., 2018) corpus which covers the following 14
languages in addition to English: French, Spanish,
German, Greek, Bulgarian, Russian, Turkish, Ara-
bic, Vietnamese, Thai, Chinese, Hindi, Swahili and
Urdu.

3.1.5 Question Answering (XQuAD)

Question answering is the task of identifying span
in a paragraph which answers to a question. We
use the SQuAD v1.1 (Rajpurkar et al., 2016) for
training. We evaluate the models on the popular
XQuAD dataset which contains the translation of
SQuAD v1.1 development set into ten languages
(Artetxe et al., 2020): Spanish, German, Greek,
Russian, Turkish, Arabic, Vietnamese, Thai, Chi-
nese, and Hindi.

3.2 Languages

The proposed task suite covers the following 22
languages representing 10 language families: Indo-
European (Bulgarian bg, German de, Greek e/, En-
glish en, Spanish es, French fr, Hindi hi, Italian
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it, Lithuanian /¢, Polish pl, Portuguese pt, Russian
ru, Urdu ur), Afroasiatic (Arabic ar), Basque (eu),
Japonic (Japanese ja), Koreanic (Korean ko), Niger-
Congo (Swahili sw), Tai-Kadai (Thai th), Turkic
(Turkish #r), Austroasiatic (Vietnamese vi), Sino-
Tibetan (Chinese z/h). Seven of these languages are
evaluated in at least three different tasks.

4 Experiments

We evaluate a wide range of multilingual sentence
encoders which learn contextual representations.
The evaluated models represent a broad spectrum
of model sizes, in order to allow practitioners to
estimate the trade-off between model size and ac-
curacy.

4.1 Sentence Encoders

The sentence encoders evaluated in the current pa-
per are described in detailed below, and their char-
acteristics summarized in Table 2.

Multilingual BERT (mBERT): mBERT is a
transformer-based language model trained with
masked language modelling and next sentence pre-
diction objectives similar to the original English
BERT model (Devlin et al., 2019)°. mBERT is pre-
trained on the Wikipedias of 104 languages with a
shared word piece vocabulary. As discussed in Sec-
tion 2, its input is not marked with any language-
specific signal and mBERT does not have any ob-
jective to encode different languages in the same
space.

distiimBERT: distilmBERT is a compressed ver-
sion of mBERT obtained via model distillation
(Sanh et al., 2019). Model distillation is a com-
pression technique where a smaller model, called
student, learns to mimic the behavior of the larger
model, called teacher, by matching its output dis-
tribution. distilmBERT is claimed to reach 92% of
mBERT’s performance on XNLI while being two
times faster and 25% smaller.® However, to the best
of our knowledge, there is not any comprehensive
analysis of distilmBERT’s zero-shot performance.

XLM: XILM is a transformer-based language
model aimed at extending BERT to cross-lingual
setting (Conneau and Lample, 2019). To this end,

‘https://github.com/google-research/
bert/blob/master/multilingual .md

®https://github.com/huggingface/
transformers/tree/master/examples/
distillation



Task Training data  |train)| |test| #langs metric
RST RST DT 17K 603 - 6,902 6 acc
PDTB PDTB3 17K 194 — 1,366 7 F
X-stance | X-stance-DE 33K 1,446 — 6,153 4 F,

NLI MultiNLI 433K 5,010 14 acc
Q/A Squad 1.1 100K 1,190 11 ex. match/F;

Table 1: Summary of the datasets used in experiments. ”Corpus name-(lang.code)” refers to the part of the corpus
belonging to the respective language. #langs refers to the number of zero-shot languages, excluding the training

language.

XLM increases the shared vocabulary across lan-
guages via shared byte pair encoding (BPE) vocab-
ulary. Moreover, unlike BERT, the input sentences
are accompanied by language embeddings. There
are several different XILM models which differ at
either number of training languages or training ob-
jectives. In the current study, we consider the fol-
lowing three:

o XILM-mlm: The XLM model which is trained
with BERT’s masked language model (MLM)
objective on the Wikipedias of the 15 XNLI
languages.

XLM-tlm: In addition to the MLM, this XLM
model has a novel training objective which is
called Translation Language Model (TLM). In
TLM, the model receives a pair of translation-
ally equivalent sentences and tries to predict
the masked word by attending both sentences.
Hence, the model tries to predict the masked
word by looking at its context in another lan-
guage which encourages representations of
different languages to be aligned. TLM is
shown to lead a significant increase on XNLI
(Conneau and Lample, 2019). XLM-tlm is
also trained for 15 XNLI languages but only
on parallel data.

XLM-100: This version is trained, like
mBERT, on Wikipedia data covering 100 lan-
guages using only an MLM objective. Unlike
previous XLM models, this version does not
utilize language embeddings.

XLM-RoBERTa (XLM-R): XLM-RoBERTa is
not an XLLM model, in spite of what its name sug-
gests. XLM-R does not use language embeddings,
applies sentence-piece tokenization instead of BPE
and is not trained on a parallel corpus unlike the
XLM-tlm. Instead, it is a ROBERTa model (Liu
et al., 2019), which is an optimized version of
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BERT, trained on 2.5 TB of cleaned CommonCrawl
data covering 100 languages (Conneau et al., 2020).
There are two released XLM-R models, XLM-
Rpase and XLM-R,4pg¢, named after the BERT-
architecture they are based on. Compared to orig-
inal multilingual-BERT, XLLM-RoBERTa models
have a considerably larger vocabulary size which
results in larger models.

4.2 Experimental Setup

A summary of the datasets used in the experiments
is provided in Table 1. Except PDTB, all datasets
are publicly available. As stated earlier, the train-
ing language is English for all tasks except stance
detection where German is preferred due the size
of the available data. In the spirit of real zero-
shot transfer, the validation sets only consist of
instances in the training language; hence, no cross-
lingual information whatsoever is utilized during
training/model selection. For the evaluation met-
rics, we stick to the default metrics of each task
(Table 1).

We set the sequence length to 384 for question
answering and RST relation classification; to 250
for stance detection and to 128 for the remaining
tasks. At evaluation time, we keep the same config-
uration. For all models, adam epsilon is set to 1e-8
and maximum gradient norm to 1.0. The learn-
ing rate of 2 x 107 is used for all the models
except XLM-R-large and XLM-100 where it is set
to 5 x 107%. We adopt the standard fine-tuning
approach and fine-tune all models for 4 epochs.
We do not apply any early stopping and use the
model with the best validation performance during
zero-shot experiments. All tasks are implemented
using Huggingface’s Transformers library (Wolf
et al., 2019). As fine-tuning procedure is known
to show high variance on small training datasets,
all models are run for 4 times with different seeds
and the average performance is reported. For XLM
and XLM-tlm models, we fall back to English lan-



Model Langs Parameter count Vocab. size # of layers
distiimBERT | 104 134M 30K 6
mBERT 104 177M 30K 12
XLM-mlm 15 250M 95K 12
XLM-tlm 15 250M 95K 12
XLM-100 100 570M 200K 16
XLM-Rpgse 100 270M 250K 12
XLM-R;4rge 100 550M 250K 24

Table 2: The characteristics of the sentence encoders evaluated in the experiments

100

B mMBERT

I distimBERT

90 mmm XLM-mim

XLM-tim
= XLM-100

] XLM-R-base

Em XLM-R-large

o < eet® el it

Figure 1: Overview of performance of each sentence
encoder on all Disco-X tasks. The semi-transparent
bars represent source language performance (German
for X-stance, English for the rest) while the solid bars
represent the zero-shot performance, i.e. the mean per-
formance across all languages except the training lan-
guage. All values are averages over independent train-
ing runs.

guage embeddings for non-XNLI languages. All
experiments are run on a single TITAN X (12 GB)
GPU.

5 Results and Discussion

We provide an overview of the main results in Fig-
ure 1. The detailed results with per-language break-
down are provided in the Appendix A.

Overall, there is a clear difference between the
training and zero-shot performance of all models.
When averaged over all tasks, the performance loss
in zero-shot transfer ranges from 15.58% (XLM-
R-large) to 34.96% (distilimBERT) which clearly
highlights the room for improvement, especially
with smaller model sizes. In the rest of the section,
we discuss the results in terms of the encoder type,
task and the languages.
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Model-wise analysis The ranking of the en-
coders displays relatively little variation across
tasks, with XLM-R;,,4. exhibiting the best zero-
shot performance across all tasks by outperforming
the second best model (XLM-Rpgse) by 5.98%. dis-
tillmBERT, on the other hand, fails to match the
performance of other encoders.’

The Translation Language Model (TLM) objec-
tive is proved to be a better training objective than
MLM by consistently outperforming the vanilla
XLM in all tasks. XLM-tlm outperforms XLM-
100 on XNLI languages as well which is possibly
because of the ‘curse of multilinguality’ (Conneau
et al., 2020), the degradation of the overall perfor-
mance in proportion to the number of languages in
the training. However, training setting (e.g. train-
ing data, hyperparameters) outplays the ‘curse of
multilinguality’ as XLM-Rp,se clearly outperforms
XLM-tlm even on XNLI languages. It would be in-
teresting to see how an XLM-R trained with TLM
objective on small set of languages, e.g. XNLI
languages, would perform.

DistillmBERT is the lightest model evaluated in
the current investigation. It is shown to retain 92%
of the mBERT’s performance on certain XNLI lan-
guages.® The results suggest that distillmBERT
delivers its promise, although to a lesser extent.
When averaged over all tasks, distillmBERT re-
tains 93% of the source language performance of
mBERT. However, its relative performance signifi-
cantly drops to 82% on zero-shot transfer. That is,
distillmBERT is not as successful when it comes to
copying mBERT’s cross-lingual abilities. Further-
more, its performance (relative to mBERT) is not
stable across tasks either. It only achieves 69% of

"The only exception is the XLM and XLM-tlm’s perfor-
mance on non-XNLI languages where distillmBERT manages
to outperform them but not always by a large margin.

$https://github.com/huggingface/
transformers/tree/master/examples/
distillation



mBERT’s zero-shot performance on RST whereas
89% on XNLI. The low memory requirement and
its speed (with the same batch size, it is x2 faster
than mBERT and x5 than XLM-Ry,;.4.) definitely
makes distillmBERT a favorable option; however,
the results show that its zero-shot performance is
considerably lower than its source language perfor-
mance and is highly task-dependent, hence, hard to
predict.

Task-wise Analysis Table 3 shows to what ex-
tent encoders manage to transfer their source lan-
guage performance to zero-shot languages. Over-
all, the zero-shot performances show high variance
across tasks which is quite interesting given that
all tasks are on the same linguistic level. It is also
surprising that mBERT manages a better zero-shot
transfer performance than all XLLM models while
being almost as consistent as XLM-Rpge-

Overall, the results show that even modern sen-
tence encoders struggle to capture inter-sentential
interactions in both monolingual and multilingual
settings, contrary to the what the high performances
on well-known datasets (e.g. PAWS (Hu et al.,
2020)) may suggest. We believe that this finding
supports our motivation to propose new probing
tasks to have a fuller picture of the capabilities of
these encoders.

Language-wise Analysis: In all tasks, regard-
less of the model, training-language performance
is better than even the best zero-shot performance.
The only exception is the XLM-R-large’s perfor-
mance on the X-stance where the zero-shot per-
formance is on par with its performance on the
German test set.

An important aspect of cross-lingual research
is predictability. The zero-shot performance of a
certain language do not seem to be stable across
tasks (e.g. German is the language with the worst
RST performance; yet it is one of the best in XNLI).
We further investigate this following Lauscher et al.
(2020), who report high correlation between syn-
tactic similarity and zero-shot performance for low-
level tasks, POS-tagging and dependency parsing.
We conduct the same correlation analysis using
Lang2Vec (Littell et al., 2017). However, syntactic
and geographical similarity only weakly correlates
with zero-shot performances across the tasks (Pear-
son’s 7 = .46 and Spearman’s = .53 on average
for syntactic; Pearson’s » = .30 and Spearman’s
r = .45 for geographical similarity). Such low
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correlations are important as it further supports the
claim that the tasks are beyond the sentence level
and also highlights a need for further research to
reveal the factors at play during zero-shot transfer
of discourse-level tasks.

6 Conclusion

As pre-trained multilingual sentence encoders have
become prevalent in natural language processing,
research on cross-lingual zero-shot transfer gains
increasing importance (Hu et al., 2020; Liang et al.,
2020). In this work, we evaluate a wide range of
sentence encoders on a variety of discourse-level
tasks in a zero-shot transfer setting. Firstly, we
enrich the set of available probing tasks by intro-
ducing three resources which have not been utilized
in this context before. We systematically evaluate a
broad range of widely used sentence encoders with
considerably varying sizes, an analysis which has
not been made before.

The main variable we look at is the performance
gap between training-language evaluation and zero-
shot evaluation. Unsurprisingly, nearly always
there is such a gap, but its magnitude depends on a
number of factors:

¢ Distillation: the distilled mBERT model has
a larger gap than the full mBERT model, in-
dicating loss of multilingual transfer ability
during distillation.

Language similarity: the gap correlates
only weakly with measures of language sim-
ilarity (syntactic and geographical), indicat-
ing that sentence encoders generally transfer
discourse-level information about as well be-
tween similar and dissimilar languages.

High variance: apart from the above, we
also observe a generally high variance in the
gap magnitude between different tasks in our
benchmark suite.

These observation provide several starting points
for future work: investigating why knowledge dis-
tillation seems to hurt zero-shot performance to a
much greater extent than same-language sentence
encoding ability and what can be done to solve this
problem, and explaining the large variations in the
zero-shot transfer gap between different discourse-
level NLP tasks.



Model PDTB RST X-stance XQuAD MNLI Average =+ std
mBERT 7449 64.18 84.75 74.22 80.28  75.58 £6.92
distilmBERT | 66.13  54.37 71.34 57.35 75.9 65.02 + 8.15
XLM-mlm 60.32 5293 764 69.68 83.47 68.56 £ 10.93
XLM-tlm 63.49 5036 85.57 78.76 84.26  72.49 +13.56
XLM-100 73.76  57.54 87.62 74.89 81.01 74.96 £ 10.02
XLM-Rpgse | 7896  70.75 94.29 82.44 88.1 82.91 + 8.00
XLM-Rjgpge | 7991  73.33 100.4 86.81 89 85.89 £9.11

Table 3: Relative zero-shot performance of each encoder to the source language performance (metrics differ be-
tween tasks but higher is better in all cases). The figures shows what percentage of the source language performance
is retained through zero-shot transfer in each task. Hu et al. (2020) refer to this as the cross-lingual transfer gap.
A score above 100 indicates that a better zero-shot performance than that of training.
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A Task-wise Results

Model en de es eu pt ru zh  AVG
mBERT 66.7 | 29.2 393 31.1 58.6 48.0 50.7 428
distiimBERT | 54.1 | 16.3 25.7 214 445 322 365 294
XLM-mlm 60.6 | 25.5 332 14.1* 404* 398 394 32.1
XLM-tlm 65.5 | 26.0 352 13.3* 42.0% 399 41.3 33.0
XLM-100 63.8 | 243 346 262 552 400 39.8 36.7
XLMR-b 69.8 | 37.6 447 394 619 562 56.7 494
XLMR-1 729 | 448 468 470 656 593 573 535

Table 4: RST zero-shot results (Accuracy) for each language. * denotes that the language is not one of the training
languages of the respective sentence encoder.

Model en de It pl pt ru tr zh  AVG
mBERT 53.6 | 427 392 339 4677 33.1 403 435 399
distilmBERT | 53.1 | 42.7 300 347 41.1 326 294 354 35.1
XLM-mlm 549 | 449 19.5*% 20.6* 289* 338 435 405 33.1
XLM-tlm 533 1459 20.1* 21.3* 26.8% 37.1 419 436 338
XLM-100 54.6 | 419 416 325 445 342 359 404 38.7
XLMR-b 61.8 | 495 49.6 404 535 427 544 514 488
XLMR-1 654 | 534 494 428 595 489 538 581 523

Table 5: PDTB zero-shot results (F;) for each language. * denotes that the language is not one of the training
languages of the respective sentence encoder.

Model de en fr it zh  AVG
mBERT 69.3 | 60.2 60.7 632 508 58.7
distilmBERT | 67.7 | 49.8 48.7 59.5 352 48.3
XLM-mlm 67.3 | 526 550 562* 418 514
XLM-tlm 71.2 | 604 62.5 59.6* 61.1 609
XLM-100 71.8 | 623 648 640 606 629
XLMR-b 723 | 658 704 699 667 68.2
XLMR-1 79.3 1 809 79.0 789 795 79.6

Table 6: X-stance zero-shot results (F;) for each language. * denotes that the language is not one of the training
languages of the respective sentence encoder.

Model en ar bg de el es fr hi u sw th tr ur vi zh AVG
mBERT 823 | 657 694 721 682 759 753 60.6 69.8 513 547 622 588 709 69.7 66.1
distiimBERT| 77.9 | 60.3 639 657 614 70.1 699 547 63.6 46.6 39.1 573 541 592 624 592
XLM-mlm | 819 | 685 737 730 733 753 752 644 720 649 492 673 628 703 673 0684
XLM-tlm 842 | 71.1 765 762 743 783 719 665 753 674 539 70.8 627 728 693 709
XLM-100 83.1| 679 72,6 733 724 76.6 755 647 713 584 397 682 620 727 670 673
XLMR-b 828 | 71.0 773 757 753 782 769 686 752 664 716 724 652 746 73.0 73.0
XLMR-1 88.8 | 78.6 83.0 829 81.8 845 8.7 760 793 716 770 787 715 795 793 79.0
Table 7: XNLI zero-shot results (Accuracy) for each language
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Model en ar de el es hi
mBERT 84.8/72.9 62.6/46.0 72.5/56.8 64.4/47.1 75.3/56.3 58.6/45.1
distilmBERT 78.0/65.9 44.6/28.3 57.6/41.0 37.6/21.2 60.5/40.0 34.9/20.5
XLM-mlm 77.2/64.5 59.9/43.2 66.0/50.4 57.8/39.5 67.7/49.8 47.5/33.0
XLM-tlm 82.5/70.4 68.1/51.6 73.7/57.6 69.5/51.2 77.1/59.2 65.6/50.2
XLM-100 84.6/73.4 67.6/50.3 73.6/58.3 63.9/45.1 77.3/59.1 60.2/44.5
XLMR-b 83.3/72.4 65.0/47.1 73.4/57.6 71.9/54.5 75.5/57.1 68.3/50.9
XLMR-1 86.8/75.5 74.1/55.6 79.5/62.6 79.8/61.4 82.0/62.3 75.4/58.6
Model ru th tr vi zh AVG
mBERT 71.4/54.9 43.3/344 54.8/40.8 68.1/48.9 58.3/48.2 62.9/47.8
distilmBERT 58.9/40.2 20.9/13.9 37.9/21.8 47.5/28.2 46.9/33.8 44.7/28.9
XLM 64.1/47.0 249/12.4 50.2/34.6 60.3/41.3 39.8/30.1 53.8/38.1
XLM-tlm 72.6/55.3 33.3/219 65.0/47.5 71.8/51.3 53.4/43.8 65.0/48.9
XLM-100 73.7/57.6 22.4/13.6 66.7/49.9 73.9/54.8 54.1/44.5 63.3/47.8
XLMR-b 73.3/56.9 67.1/55.5 67.5/50.4 73.0/53.4 51.6/41.7 68.7/52.5
XLMR-1 79.4/62.9 73.7/62.6 74.7/58.5 79.4/59.4 55.5/46.7 75.4/59.1

Table 8: XQuAD results (F1/Exact-match) for each language
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Abstract

Current pre-trained language models have lots
of knowledge, but a more limited ability to use
that knowledge. Bloom’s Taxonomy helps ed-
ucators teach children how to use knowledge
by categorizing comprehension skills, so we
use it to analyze and improve the comprehen-
sion skills of large pre-trained language mod-
els. Our experiments focus on zero-shot ques-
tion answering, using the taxonomy to provide
proximal context that helps the model answer
questions by being relevant to those questions.
We show targeting context in this manner im-
proves performance across 4 popular common
sense question answer datasets.

1 Introduction

Recent large language models such as GPT-
3 (Brown et al., 2020) have made a giant leap for-
ward in knowledge acquisition and even generalize
this knowledge to a new tasks. But when less nar-
row tasks are considered they fail to understand
as much as these benchmarks suggest. They turn
out to be “stochastic parrots” (Bender et al., 2021)
or “smart/super parrots.” (Dunietz et al., 2020) that
just memorize without all of the comprehension
we want from a Natural Language Understanding
system. We focus on a particular kind of failure
mode where the model knows (has memorized) the
information it needs, but is not able to apply that
information correctly, and we do so in a zero-shot
fashion to control for what the model knows.

For example, in Fig. 1 the model is asked if a
mixture of grape juice and cranberry juice is safe
to drink (Marcus and Davis, 2020). GPT-3 declares
that it is a deadly poison, even though it appears to
“know” that grape juice and cranberry juice are safe
to drink by themselves (Fig. 1, Level 1, dark pur-
ple). It even knows that cranberry juice with grape
juice is not poisonous, but it still thinks the result is
death (Fig. 1, Level 2, light blue). The model has

These two authors contributed equally.
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memorized the necessary information from large
amounts of text, but does not use its knowledge
appropriately. Following (Shwartz et al., 2020), we
extract this knowledge as explicit language then
feed it back as additional context during inference,
forcing the model to use what it already knows but
in our case targeting specifically useful knowledge.

To formalize this distinction we drew inspiration
from elementary school classrooms, where teach-
ers (Miller, 2002; Harvey and Goudvis, 2007) have
a schema based approach in which they teach chil-
dren to demonstrate multiple levels of comprehen-
sion, making complex inferences and direct recall
from memory. They use a hierarchy of comprehen-
sion skills called Bloom’s Taxonomy (Anderson
etal., 2000) (c.f. Fig. 1) with memorization is at the
bottom (requiring children to recall facts) followed
by understanding (requiring children to grasp se-
mantics) application (requiring children to solve
problems), and more complex skills. For us, these
comprehension skills describe ways our language
model might fail to use its knowledge.

In this paper we address our failure mode by
relying on commonly understood relationships be-
tween the skills of Bloom’s Taxonomy which we
term proximal context. In order to understand
whether the cranberry grape mixture is poisonous
the model needs to remember whether grape juice
is poisonous. In order to apply its knowledge to
figure out what will happen next it needs to un-
derstand whether the cranberry grape mixture is
poisonous or not. In general, the proximal context
for a particular task 7" at level L is given by those
tasks implicitly required by 7', which are mostly
at level L — 1 of the taxonomy. We guide our
language to answer questions more accurately by
providing it not just any context, but proximal con-
text |. In performing zero-shot question answering
our language model asks itself additional clarifica-

"Proximal context is not defined for level 1 questions, so
we only address questions at level 2 or above.

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 20-28
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics



Pron1pt: You poured a glass of cranberry, but then
absentmindedly, you poured about a teaspoon of grape
juice into it. It looks OK. You try sniffing it, but
you have a bad cold, so you can't smell anything. You
are very thirsty. So you drink it.

Task: what happens next?
Level 3

1
Bloom's Taxonomy Level 1

Without BLOOM
Pre-trained You are now dead.
Language Model With BLOOM

You enjoy your drink.

Level 2 Level 3

Aate

Are grapes poisonous?
5. evaluate grapes P

Stage 1: Ask

ry

What happens if you
sniff a mixture?

4. analyze

A73.apply

Grape juice is not

\

poisonous.

Stage 2: Answer

juice with gr

ape
You feel woozy.

is not poisonous

IZ. understand \

You poured yourself [..

e usually ec

Stage 3: Reconsider (New Prompt)
..

You drink it.A combination of ed

Figure 1: Our approach incorporates context into question answering guided by Bloom’s Taxonomy.

tion questions, choosing those most likely to result
in proximal context.
Our contributions in this paper are:

* We use Bloom’s Taxonomy to choose proxi-
mal clarifying context that improves question
answering performance using only what the
model already knows.

* We show proximal context is better than other
levels of context on four different common-
sense question answering tasks.

* By observing how different levels of clarifi-
cation impact our language model we also
explain how the model answers questions.

2 Related Works

Question Answering from External Supervi-
sion. Several approaches has been proposed to
improve question-answering by adding external
knowledge source. Recent large pre-trained lan-
guage models (Peters et al., 2018; Radford et al.,
2019; Devlin et al., 2018; Liu et al., 2019; Joshi
et al.,, 2020; Clark et al., 2020) learn general
purpose text encoders from a huge text corpus.
(Petroni et al., 2019) recently used a language
model as knowledge base to unmask a token given
an entity and a relation in a predefined template.
Shwartz et al. (2020); Bosselut et al. (2019a,b) used
pretrained language models to improve zero-shot
question answering performance by extracting con-
text from the language model itself, using self-talk
or a knowledge graph. We add context via self-talk,
with structure provided by Bloom’s Taxonomy.
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Bloom’s Taxonomy. The original work (Bloom,
1956) defined taxonomies for learning in the cog-
nitive (intellectual), affective (interests, attitudes,
values), and psychomotor domains, though the cog-
nitive domain is what we usually refer to today.
Almost half a century later the cognitive domain
taxonomy was revised (Anderson et al., 2000) to re-
flect more active thinking and improve usability by
adding verbs to describe levels. Teachers use this
taxonomy, for example in computer science educa-
tion (Whalley et al., 2006; Thompson et al., 2008;
Oliver et al., 2004), and our inspiration is from this
revised version of the cognitive taxonomy. Ma-
chine learning has been applied to automatically
classify questions (Mohammed and Omar, 2020;
Zhang et al., 2021; Nafa et al., 2016) into Bloom’s
Taxonomy levels, but the taxonomy has not been
applied to analyze or improve machine learning
models themselves. We use it to help our model
think about what it knows.

3 Approach

Our approach builds on the zero-shot question an-
swering approach of Shwartz et al. (2020) to an-
swer questions (Section 3.1) by adding clarifica-
tions with self-talk (Section 3.2). We describe this
approach then we use Bloom’s Taxonomy to select
better clarifications (Section 3.2).

3.1 Question Answering with Language
Models

Given a prompt p, a question ¢, and answer op-
tions a, Vo € [1, K| we use a pre-trained language
model LM to pick the correct answer a,+. This



Dataset Question Prefix Sample Clal:lﬁcatmn Sample Clarification
Question Answer
(a) The definition of an accident is the crash of
What is the definition of : 1 (a) What is the definition of an accident? collusion caused by the vehicle.
COPA : (b) What is the definition of a flat tire? (b) The definition of a flat tire is that the tire does
not hold air.
(a) What is the main purpose of this (a) The purpose of this investigation is to provide
What is the main purpose of : 2 investigation? information about how and why he was shot.
purp : (b) What is the main purpose of this (b) The purpose of this post is to share my thoughts
post? and feelings on his death.
(a) What is the main function of a (a)The main function of a teacher in this area is to
What is the main functi fa:o teacher in this area? teach them about life and love.
CommonsenseQA atis the main function ot a : (b) What is the main function of a (b) The main function of a farmer is to provide food
farmer? for his family and the community.
) (a) What might have caused this problem? (a) the cau'se (’)f this problem was that his wife’s
What might have caused : 3 . . husband didn’t have enough money.
(b) What might have caused the animal to flee? .
(b) The cause of the animal to flee was a predator.
(a) What Kendall did was make sure that
. ; (a) What did Kendall do? he wasn’t going anywhere else.
9.
Social IQA What did [NAME] do? : 1 (b) What did Kendall do? (b) What Kendall did was so horrible, that
it was hard to believe.
. . (a) Riley is a big brother, he’s an awesome dad.
. (a) How would you describe Riley? L I
9.
How would you describe [NAME]? : 3 (b) How would you describe Riley? (b) Rlle.:y is a very sensitive person and has a lot
of anxiety.
(a) What are the properties of a diet (a) The Property of a diet that is not heélthy
What are the properties of a : 1 that is not healthy? are that it has high cholesterol (a good idea).
Winogrande C ’ ) ) (b) The properties of a home are that which

‘What does it mean to : 2

(b) What are the properties of a home?

(a) What does it mean to be an explorer?
(b) What does it mean to be sophisticated?

makes it comfortable and pleasant for the occupants.
(a) Be an explorer means to explore and make

sense of things.

(b) Be sophisticated means to be classy, elegant

and smart.

Table 1: This table shows some of the question prefixes we used for different datasets in our experiments. We
assign each prefix a level in Bloom’s Taxonomy. We show generated clarifications questions and answers for both
Distil-GPT2 (a) and GPT-Neo (b) for their corresponding question prefixes.

approach simply concatenates each (prompt, ques-
tion, answer) tuple into into a single string of text
T, = [p, q, a,) and feeds this string to the language
model to assign each choice a score s, = LM (T},).
The language model’s answer is just the answer
with the highest score: 0 = argmax,, s,.

3.2 Self-talk Clarifications

Self-talk (Shwartz et al., 2020) has a language
model ask itself clarifying questions then answer
those questions to generate clarifications.

Stage 1: Ask clarification questions. To pro-
duce clarifications we start with a set of clarifica-
tion question prefixes r1, ...,y that are designed
specifically for each question answering dataset.
“What happens if” is a sample prefix for the clarifi-
cations, shown in Fig. 1, and in Tab. 1 we present
examples for all the datasets we use. In this stage
the language model completes each of these pre-
fixes, using its generator function LM to ask one
question R; = LM¢(r;) per prefix.

Stage 2: Answer the questions. Next we use
the model to answer each of these questions, possi-
bly prompted with an answer prefix b; correspond-
ing to question prefix ;. The results are the clarifi-
cations ¢; = LM¢g([R;, bj]).

22

Stage 3: Reconsider with a new prompt. To
use the clarifications we pick one from the list then
append it to the original prompt. This approach
simply considers all combinations of clarifications
questions and answers 7T}, = [p, ¢, ¢, a,) Yo, j,
first chooses the clarification which maximizes
model score per answer option, then chooses the
final answer o* = argmax, max; LM (T} ,). This
can improve question answering performance on
its own, but in the next section we more carefully
choose clarifications using our notion of proximal
context and Bloom’s Taxonomy.

3.3 Using Bloom’s Taxonomy to Choose
Clarifications with Proximal Context

To test our idea of proximal context we consider the
level L of task give by each dataset then allow only
proximal clarifications of level L — 1. We label
each question prefix with the level of Bloom’s Tax-
onomy that it falls into, and then force the model
to choose from the set Cy, of clarifications of level
L. This results in a final choice for each level
o} = argmax, max;cc, LM(T},). We also pro-
vide a Choice Baseline that allows the model to
choose any level of clarification to show the model
would have difficulty choosing proximal clarifica-



tions itself. Note that the annotation of questions
along Bloom’s taxonomy requires special skills
typically found only among educators. While a
layperson can be trained to annotate such ques-
tions, our experience was that it takes much more
time than we could afford for a preliminary study
such as this one. We therefore relied on our co-
author, Sara Rutherford-Quach, who is a researcher
at SRI’s Education Division and has also worked
as a teacher at the kindergarten-elementary level to
provide us the annotations. Two other co-authors,
Sahu and Cogswell, went through those annota-
tions and made sure that each label had a three
way consensus among Rutherford-Quach, Sahu
and Cogswell. There might be some ambiguity
about which level a particular prefix fits into, but
this is also true of other applications of the taxon-
omy (Thompson et al., 2008). In future work, we
plan to carry out a more rigorous annotation with
more than one skilled annotator so we can measure
inter-annotator agreement through measures such
as Kappa scores.

4 Experiments

4.1 Datasets

We evaluate our study on four datasets that can
each be thought of in terms of multiple choice
question answering, all measuring some kind of
common sense: COPA (Roemmele et al., 2011)
measures common sense causal reasoning, Com-
monSenseQA (Talmor et al., 2019) asks questions
that require prior knowledge, Social IQA (Sap et al.,
2019) asks about social common sense, and Wino-
Grande (Sakaguchi et al., 2020) adversarially mea-
sures semantic common sense. Perhaps surpris-
ingly, all of the datasets we used asked questions
that fell into just one level of the taxonomy (Tab. 2).
These datasets do focus on very specific problems,
but the result is still disappointing because it would
be more useful to see variations in both task and
clarification level. It may be interesting to develop
datasets that can better express the range of abilities
described by Bloom’s Taxonomy.

4.2 Language Model

We use distill-GPT2 (Sanh et al., 2019) and the
publicly released GPT-Neo2.7B(Black et al., 2021)
(based on EleutherAI’s replication of the GPT-3 ar-
chitecture) as the language models throughout our
experiments. Our clarification question prefixes
and hyperparameter settings for both models are
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Table 2: Question answering accuracy and std. dev.
using different levels ofclarification over multiple clar-
ification samples. Results on the dev sets of each
dataset.(* = level of proximal context \wrt the dataset)

Task Model Level Accuracy

i 0A: Choice Baseline  53.2 + 1.8

?21;21(5}{2‘1? d) 1A: Remember* 54.7 + 3.6

Winogrande 2A: Understand 525 £3.1
(1267 total) GPT-Neo 0A: Choice Baseline  54.62 £ 0.5
(2: Understand) (123047 valid) 1A: Remember* 54.77 +£ 0.5
2A: Understand 54.76 £ 0.3

0B: Choice Baseline  44.5 + 0.1

Distil-GPT2 1B: Remember 437+ 2.1

. (5845 valid) 2B: Understand* 48.0 + 1.1

(Sl";;jlioot’;) 3B: Apply 444+ 18
3: Apply) 0B: Choice Baseline  48.74 + 0.4
-+ APPLY GPT-Neo 1B: Remember 4731+0.1
(133449 valid)  2B: Understand* 48.44 + 0.5

3B: Apply 48.1+0.1

0C: Choice Baseline  54.9 £+ 0.9
Distil-GPT2 1C: Remember 46.0 + 14.7
COPA (1142 valid) 2CE Understand* 53.1 + 125
(100 total) 3C: Apply _ 40.8 £ 15.2
(3: Apply) 0C: Choice Baseline ~ 70.83 + 0.0
. GPT-Neo 1C: Remember 65.62 + 0.0
(9610 valid) 2C: Understand* 70.83 + 1.4
3C: Apply 70.83 + 0.0

0D: Choice Baseline  29.9 + 2.7

Distil-GPT2 1D: Remember 26.5+33

CommonsenseQA (68+1 valid) 2D: Understand* 28.1+1.2

(1221 total) 3D: App}y ) 25.6+34
(3: Apply) 0D: Choice Baseline  40.59 + 3.6
. GPT-Neo 1D: Remember 38.00 +£ 6.0
(111844 valid)  2D: Understand* 43.19 + 0.2
3D: Apply 4230+ 0.8

from (Shwartz et al., 2020). For each question pre-
fix, we generate 5 clarification questions using nu-
cleus sampling threshold probability p = 0.2 and
adding at most 6 words to the clarification ques-
tion prefix. We then generate 10 answers to each
clarification question using p = 0.5 and maximum
answer length 10. Some changes were necessary
to accurately measure the impact of clarification
level. Instead of always including no clarification
as a choice we do not allow this option as it defeats
our goal of measuring clarification level impact.
Furthermore, we do not use the clarification ques-
tions which were manually completed without in-
put from the model (as in COPA and Winogrande).

In order to compare performance across differ-
ent levels of clarifications we only consider exam-
ples where the model was able to generate at least
one clarification from each level. To increase the
number of viable examples we found it necessary
to remove some restrictions relative to the imple-
mentation of (Shwartz et al., 2020). In particular,
we kept all clarifications that had no overlapping
words with the context and did not allow the model
to chose the “no clarification” option. Even with
these constraints it was still often the case that
distil-GPT2 could not generate a short clarification



sentence that was plausible enough to use whereas
GPT-Neo was able to generate clarifications for al-
most the entire dataset. This indicates larger scale
models may be more able to take advantage of clar-
ifying questions. The number of examples with
valid clarifications for all levels is indicated for
each model in column 2 of Tab. 2. These changes
help us more accurately measure the impact of
Bloom’s Taxonomy, but mean our approach is not
directly comparable to Shwartz et al. (2020).

4.3 Results

Table 2 reports the performance of our Bloom’s
Taxonomy infused zero-shot question answering
method. Each row shows question answering ac-
curacy for a particular dataset and level of clarifi-
cation. If our hypothesis is correct then the level
of available clarifications should matter and clari-
fications that provide proximal context —one level
below the dataset level- should be most helpful.
Clarification Level Makes a Difference. All
levels of clarification questions and answers pro-
vide some amount of extra information that
changes how a language model processes the entire
string it is presented with. This is often helpful in-
formation, but it may be that all levels of Bloom’s
Taxonomy provide equally useful information. We
find that is not the case. Different levels of clarifi-
cation help more or less, as evidenced by the large
gap between minimum and maximum accuracy for
each dataaset. Furthermore, when the model can
choose any clarification (rows 0A/B/C/D) it either
does a worse job than proximal context or its per-
formance similar to proximal context, so enforcing
a particular kind of context should be helpful.
Proximal Context Helps Most. Proximal con-
text, as we’ve defined it with respect to Bloom’s
Taxonomy is context from the clarification level
directly below the dataset question level. The prox-
imal clarification level for each dataset is marked
by a * in Tab. 2. In all cases proximal clarifica-
tions are better than using clarifications of a lower
level. For the datasets that ask level 3 questions the
proximal (level 2) clarifications also outperform
level 1 clarifications (2B/C/D greater than 1B/C/D).
Proximal clarifications are also about as good as
or better than using clarifications of a higher level.
You can see this for Winogrande by noting row 1A
is greater than 2A and for the other datasets by not-
ing rows 2B/C/D usually have greater performance
than 3B/C/D. Overall, proximal context is most

24

consistent in efficacy.

4.4 Qualitative Results

In Tab. 1 we show samples of question answer pairs
generated for each model and in Tab. 5 of the ap-
pendix we show complete examples (with context
and choices) for each model and dataset. GPT-Neo
is much larger than distil-GPT2 and is expected to
generalize to slightly new tasks like the clarifica-
tion generation task better than the smaller model.
This expectation is clearly met by the observed
quality of clarifications. Distil-GPT?2 clarification
questions and answers often do not have meaning-
ful semantics, are not correct, or are not relevant.
GPT-Neo is much more likely to generate questions
and answers which are meaningful, correct, and rel-
evant. This suggests the greater number of valid
clarifications generated by GPT-Neo may be due to
an increase in clarification quality. Furthermore, it
fails in an intuitive fashion: when it fails to gener-
ate meaningful answers it often has also failed to
generate a meaningful clarification question in the
first place.

Also note that the performance differences ob-
served for distil-GPT2 occur despite its relatively
poor interpretability. This indicates that context
which is somewhat relevant to the topic even if it
does not precisely make sense can still be useful.

5 Conclusion

Large pre-trained language models sometimes have
the right information, but they just do not know
how to use it. We used Bloom’s taxonomy to pick
questions with the right amount of proximal con-
text. This helped the language models use their
knowledge to more effectively answer questions.
In the future we would like to extend our work on
tasks that present a wide range of questions that fall
under different levels of the taxonomy. Similarly,
we also would like to study and improve upon the
current limited set of prefix questions used.
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A Prefixes and Examples

In the appendix we provides more details about
the question prefixes we used in Tab. 3 and pro-
vide more examples of outputs from our models in
Tab. 5.
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Table 3: All the prefix questions with its corresponding taxonomy level used in our zero shot question answering

evaluation.

Question Prefix

Answer Prefix

CommonsenseQA & COPA

What is the definition of
What is the main purpose of
What is the main function of a
What are the properties of a
What is a

What happened as a result of
What might have caused

What will [NAME] want to do next?

What will [NAME] want to do after?

How would [NAME] feel afterwards?

How would [NAME] feel as a result?

How would [NAME] feel after?

How would you describe [NAME]?

What kind of person is [NAME]?

How would you describe [NAME] as a person?
Why did [NAME] do that?

Why did [NAME] do this?

Why did [NAME] want to do this?

What does [NAME)] need to do beforehand?
What does [NAME] need to do before?
What does [NAME] need to do before this?
What did [NAME] need to do before this?
What will happen to [NAME]?

What will happen to [NAME] next?

What will [NAME] do next?

What did [NAME] do?

What is the definition of
What is the main purpose of
What is the main function of a
What are the properties of a
What is

What does it mean to

The definition of _is
The purpose of _is to
The main function of a _is
The properties of a _ are that
_is
As aresult of _,
The cause of _ was
SociallQA
NAME] wanted
[NAME] wanted
[NAME] felt
[NAME] felt
[NAME] felt
[NAME] is a
[NAME] is a
[NAME] is a
[NAME] did this because they wanted
[NAME] did this because they wanted
[NAME] did this because they wanted
Before doing that, [NAME] first had to
Before doing that, [NAME] first had to
Before doing that, [NAME] first had to
Before doing that, [NAME] first had to
[NAME]
[NAME]
[NAME]
What [NAME)] did was

Winogrande
The definition of _is
The purpose of _is to
The main function of a _1is
The properties of a _ are that
_is
_means

Bloom’s Taxonomy Level

— L0 W L DN DN N LW WD W W W W W W W= = NN~

N = = NN =
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Table 4: Example contexts, questions, choices, clarification questions and clarification answers for each dataset.

We present results for both Distil-GPT2 and GPT-Neo.

COPA

Generated Clarifications

(Context, Question, Choice)

C:The man turned on the faucet.

Q: effect

Ch: [The toilet filled with water.,
Water flowed from the spout.]

C: The woman retired.

Q: effect

Ch: [She received her pension.,
She paid off her mortgage.]

C: I wanted to conserve energy.

Q: effect

Ch: [I swept the floor in the unoccupied room.,
I shut off the light in the unoccupied room.]

‘Winogrande

Distil-GPT2

Q: What might have caused it to be so hot?

A: The cause of it to be so hot was that he would

have a big fire in his face and then immediately

had an explosion, which killed all but one person.

Q: What happened as a result of this?

A: As aresult of this, the government has announced
that it will pay Rs 7 crore to her family for compensation
and legal expenses related thereto as part-time payments.
Q: What is the main function of a plant?

A: The main function of a plant is the growth

and maintenance of nutrients, so that we can

increase our food intake by 10% or more per year, he said.

GPT-Neo

Q: What happened as a result of that?
A: As aresult of that, he was forced to drink water.

Q: What happened as a result of her retirement?
A: As a result of her retirement, she had been receiving
a pension for life.

Q: What might have caused this?

A: The cause of this was the lack of electricity in my home.

Generated Clarifications

(Sentence, Context, Choice)

S: The home that my parents had when I was
in school was a lot nicer than my house now
because the _ was sophisticated.

C: home

Ch: [home, house]

S: He had enough time between classes to go
to a cafe or to the library. He went to the _
because his paper could wait.

C: classes

Ch: [cafe, library]

S: They had to eat a lot to gain the strength
they had lost and be able to work, the _ was too much.
C: strength

Ch: [work, strength]

SociallQA

Distil-GPT2

Q: What is the main function of a building?
A: The main function of a building is to keep
people happy and healthy.

Q: What is the definition of a book?
A: The definition of a book is an article
written in order for it be read.

Q: What is the main function of a good diet?
A: The main function of a good diet is not for
food or health but also on exercise.

GPT-Neo

Q: What are the properties of a home?
A: he properties of a home are that which
makes it comfortable and pleasant for the occupants.

Q: What is the definition of cafe?
A: cafe is defined as a place where people
gather for refreshment.

Q: What is the definition of strength?
A: strength is defined as : having power
or ability to do something.

Generated Clarifications

(Context, Question, Choice)
C: Kendall got a new sports car and could not wait
to show friends.
Q: What will Kendall want to do next?
Ch: [drive that sports car,
show off his new sports car,
clean and wax her legs]
C: Kendall was really into house plants and often
pour water in to jars so the fluoride would evaporate out.
Q: What will Kendall want to do next?
Ch: [watered a few of the plants,
gather jars,
watered a few of her pets]
C: Remy gave birth to a baby girl on a Saturday afternoon.
Q: What does Remy need to do before this?
Ch: [leave her husband,
did this to start a family,
go to the hospital]
CommonsenseQA

Distil-GPT2

Q: Why did Kendall want to do this?
A: Kendall did this because they wanted her, too.

Q: Why did Kendall do that?
A: Kendall did this because they wanted him at
home, he said.

Q: What did Remy need to do before this?
A: Before doing that, Remy first had to tell her
he was too old.

GPT-Neo

Q: What will Kendall want to do next?
A: Kendall wanted to impress them with
his new ride.”

Q: Why did Kendall do this?
A: Kendall did this because they wanted to
get a lot of water for their plants.

Q: What does Remy need to do before?
A: Before doing that, Remy first had to go to
the hospital to deliver her baby.

Generated Clarifications

(Context, Question, Choice)

C: In what Spanish speaking North American country
can you get a great cup of coffee?

Q: cup of coffee

Ch: [mildred’s coffee shop, mexico, diner,

kitchen, canteen]

C: Unlike a spider and his many sight seers, people
only have what?

Q: people

Ch: [tongues, names, brains, feelings, two eyes]

C: The artist was sitting quietly pondering, then
suddenly he began to paint when what struck him?

Q: sitting quietly

Ch: [sadness, anxiety, inspiration, discomfort, insights]

Distil-GPT2

Q: What is the definition of coffee?
A: The definition of coffee is the word
that comes from Latin for espresso.

Q: What is the main purpose of this article?
A: The purpose of this article is to explain
the basic characteristics that are characteristic of spiders.

Q: What is a man who can do that?
A: Man who can do that is a really great painter.
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GPT-Neo

Q: What is the definition of mexico?
A: mexico is defined as the country that
produces the best coffee.

Q: What is the definition of two eyes?
A: two eyes is defined as the organs
by which we see.

Q: What is the definition of inspiration?
A: inspiration is defined as a sudden flash
of inspiration that comes from within.
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Abstract

Recent work has demonstrated the effective-
ness of cross-lingual language model pretrain-
ing for cross-lingual understanding. In this
study, we present the results of two larger mul-
tilingual masked language models, with 3.5B
and 10.7B parameters. Our two new mod-
els dubbed XLM-Rx;, and XLM-Rxxr. outper-
form XLM-R by 1.8% and 2.4% average ac-
curacy on XNLI. Our model also outperforms
the RoBERTa-Large model on several English
tasks of the GLUE benchmark by 0.3% on av-
erage while handling 99 more languages. This
suggests larger capacity models for language
understanding may obtain strong performance
on both high- and low-resource languages. We
make our code and models publicly available.'

1 Introduction

The goal of this paper is to present a study of
the impact of larger capacity models on cross-
lingual language understanding (XLU). We scale
the capacity of XLM-R by almost two orders
of magnitude while training on the same CC100
dataset (Wenzek et al., 2019). Our two new multi-
lingual masked language model dubbed XLM-Rxp.
and XLM-Rxxt, with 3.5 and 10.7 billion parame-
ters respectively, significantly outperform the previ-
ous XLM-R model on cross-lingual understanding
benchmarks and obtain competitive performance
with the multilingual TS5 models (Raffel et al., 2019;
Xue et al., 2020). We show that they can even out-
perform RoBERTa-Large (Liu et al., 2019) on the
GLUE benchmark (Wang et al., 2018).

Recent multilingual masked language models
(MLM) like mBERT (Devlin et al., 2018) or
XLM (Lample and Conneau, 2019) improved cross-
lingual language understanding by pretraining large
Transformer models (Vaswani et al., 2017) on mul-

! https://github.com/anonymous
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tiple languages at once. The XLM-R model (Con-
neau et al., 2019) extended that approach by scal-
ing the amount of data by two orders of magni-
tude, from Wikipedia to Common-Crawl and train-
ing longer, similar to ROBERTa (Liu et al., 2019).
These models are particularly effective for low-
resource languages, where both labeled and un-
labeled data is scarce. They enable supervised
cross-lingual transfer, where labeled data in one
language can be used to solve the same task in other
languages, and unsupervised cross-lingual transfer,
where low-resource language self-supervised repre-
sentations are improved using additional unlabeled
data from higher-resource languages. Furthermore,
they reduce the need for training one model per
language, and allows the use of a single - poten-
tially much larger - pretrained model that is then
fine-tuned on annotated data from many languages.

The better performance of self-supervised cross-
lingual models on low-resource languages comes
however at the cost of lower performance on higher-
resource languages (Arivazhagan et al., 2019).
When the number of languages becomes large,
Conneau et al. (2019) even observed an overall
decrease of performance on all languages. It was
hypothesized that when multilingual models get
more capacity, they may showcase strong perfor-
mance on both high-resource languages and low-
resource languages. With only 550M parameters,
the XLM-R model is now relatively small com-
pared to new standards. Recent work scaled lan-
guage models to hundreds of billions (Brown et al.,
2020) or even multiple trillion parameters (Fedus
et al., 2021), showing consistent gains in doing
so. Recently, multilingual TS5 showed impressive
increase in performance by scaling the model ca-
pacity to tens of billions of parameters. Our study
complements these findings by showing the impact
of larger capacity models on the important pretrain-
ing task of multilingual masked language model-
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ing. We show promising results for cross-lingual
understanding: XLM-Rxx. can both obtain a new
state of the art on some cross-lingual understanding
benchmarks and outperform the RoOBERTa-Large
model on the English GLUE benchmark (Wang
et al., 2018). This suggests that very large-scale
multilingual models may be able to benefit from the
best of both worlds: obtaining strong performance
on high-resource languages while still allowing for
zero-shot transfer and low-resource language un-
derstanding. We make the following contributions:

* We scale XLLM capacity by two orders of mag-
nitude, and publicly release XLM-Rx and
XLM-Rxxr with 3.5B and 10.7B parameters.

* We show that those two models obtain very
strong performance on cross-lingual bench-
marks while outperforming ROBERTay yge On
the GLUE benchmark.

2 Pretraining and evaluation

In this section, we describe the model we use and
how we scale it, as well as the data and tasks we
use for pretraining and evaluation.

2.1 Multilingual masked language models

We use a Transformer model (Vaswani et al., 2017)
trained with the multilingual MLM objective (De-
vlin et al., 2018; Lample and Conneau, 2019) using
only monolingual data. We sample streams of text
from each language and train the model to predict
the masked tokens in the input. We use the same
learning procedure as XLM-R. We apply subword
tokenization directly on raw text data using Sen-
tence Piece (Kudo and Richardson, 2018) with a
unigram language model (Kudo, 2018) just like
in XLM-R. We sample batches from different lan-
guages using the same sampling distribution as
Conneau et al. (2019), with « = 0.3, and without
language embeddings. We use a large vocabulary
size of 250K with a full softmax and train two dif-
ferent models: XLM-Ryx; (L =36, H = 2560, A
= 32, 3.5B params) and XLM-Rxxr (L =48, H
= 4096, A =32, 10.7B params). We pretrain the
models on the CC100 dataset, which corresponds
to 167B tokens in 100 languages. We compare our
approach to previous results as well as the mT5
baselines, which were pretrained on the larger mC4
corpus of 6.4T tokens.
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2.2 Evaluation

We consider three evaluation benchmarks. For
cross-lingual understanding, we use cross-lingual
natural language inference and question answer-
ing, and use the GLUE benchmark to evaluate the
English performance.

Cross-lingual Natural Language Inference.
The XNLI dataset (Conneau et al., 2018) comes
with ground-truth dev and test sets in 15 languages,
and a ground-truth English training set. The train-
ing set has been machine-translated to the remain-
ing 14 languages, providing synthetic training data
for these languages as well. We evaluate our model
on cross-lingual transfer from English to other lan-
guages. We also consider two machine translation
baselines: (i) translate-test: dev and test sets are
machine-translated to English and a single English
model is used (ii) translate-train-all: the English
training set is machine-translated to each language
and we fine-tune a multilingual model on all train-
ing sets. For translations, we use the original XNLI
data for consistency.

Cross-lingual Question Answering. We use the
MLQA and XQuad benchmark from Lewis et al.
(2019) and Artetxe et al. (2019), which extends
the English SQuAD benchmark to more languages.
We report the F1 score as well as the exact match
(EM) score for cross-lingual transfer from English.

The English GLUE Benchmark. Finally, we
evaluate the English performance of our model
on the GLUE benchmark (Wang et al., 2018)
which gathers multiple classification tasks, such
as MNLI (Williams et al., 2017), SST-2 (Socher
et al., 2013), or QNLI (Rajpurkar et al., 2018).

2.3 Training details

We use model parallelism based on tensor paral-
lel (Shoeybi et al., 2019) for scaling models. XLM-
Rxr uses model parallel size of 2 and XLM-Rxxt.
used 8. Compared to previous XLM-R models, we
reduce the batch size and number of updates sig-
nificantly to keep the compute of the new models
similar (see Table 5). For both models, we use
batch size of 2048 and train for 500,000 updates.
We use pre-LayerNorm setting for both the models
which was more stable during training.

For all the tasks in finetuning, we use batch size
of 32 and train for 10 epochs. We do early stop-
ping based on the average valid metrics across all
languages and report test results.



Model ‘ Data (#tok) ‘ en fr es de el bg ru tr ar vi th zh hi sw ur Avg
Fine-tune multilingual model on English training set (Cross-lingual Transfer)

mBERT Wikipedia 80.8 643 68.0 70.0 653 735 734 589 678 497 541 609 572 693 67.8 654
XLM Hapedt 832 765 763 742 731 740 73.1 67.8 685 712 692 719 657 646 634 715
mT5-Base 847 733 786 774 77.1 803 79.1 708 77.1 694 732 728 683 742 741 754
mT5-Large mC4 89.4 79.8 84.1 834 832 842 841 776 815 754 794 80.1 735 81.0 803 8l.1
mT5-XL (6.4T) 90.6 822 854 858 854 813 853 804 837 786 809 820 77.0 81.8 82.7 829
mT5-XXL 91.6 845 877 873 873 87.8 869 832 851 803 81.7 838 79.8 846 83.6 845
XLM-Rpase 858 79.7 80.7 787 775 796 78.1 742 738 765 746 76.7 724 665 683 762
XLM-Rparge CC100 89.1 84.1 851 839 829 840 812 79.6 798 808 78.1 802 769 739 738 80.9
XLM-Rx1, (167B) 90.7 855 86.5 84.6 840 852 827 817 816 824 794 817 785 753 743 823
XLM-Rxx1L 91.6 86.2 873 87.0 851 857 825 820 825 830 795 826 798 762 749 83.1
Translate everything to English and use English-only model (TRANSLATE-TEST)

RoBERTa ‘ CC-En ‘ 91.3 829 843 812 81.7 831 783 768 766 742 741 775 709 66.7 66.8 77.8
Fine-tune multilingual model on all training sets (TRANSLATE-TRAIN-ALL)

mT5-Base 82.0 744 785 777 781 791 779 722 765 715 750 748 704 745 760 759
mT5-Large mC4 88.3 803 84.1 84.0 837 849 838 79.8 8.0 764 799 810 759 813 81.7 818
mT5-XL (6.4T) 909 842 86.8 868 864 874 86.8 83.1 849 813 823 844 794 839 84.0 84.8
mT5-XXL 927 872 894 89.8 895 90.0 89.1 86.5 87.6 843 856 87.1 838 875 865 878
XLM-Rpase 854 814 822 803 804 813 79.7 786 773 797 779 802 76.1 731 730 79.1
XLM-Ryarge CC100 89.1 85.1 86.6 857 853 859 835 832 83.1 837 815 837 8l.6 780 78.1 83.6
XLM-Rx1, (167B) 91.1 87.2 881 870 874 87.8 853 852 853 862 83.8 853 831 79.8 782 854
XLM-Rxx1 915 87.6 887 878 874 882 856 851 858 863 839 856 84.6 81.7 80.6 86.0

Table 1: Results on cross-lingual classification (XNLI). We report the accuracy on each of the 15 XNLI languages
and average accuracy, and specify the dataset and its corresponding size in number of tokens. We report results of
XLM-R models with increasing capacity, from 270M (Base), 550M (Large), 3.5B (XL) to 10.7B (XXL) parameters.

3 Analysis and Results

In this section, we present our results and compare
XLM-Rxr. and XLM-Rxx1, performance to other
methods from previous work.

Cross-lingual understanding results. On
XNLI, we observe in Table 1 that scaling the
capacity from XLM-Rpge to XLM-Rxy leads
to an average accuracy improvement of 1.4 on
zero-shot cross-lingual transfer and 1.8 on mul-
tilingual fine-tuning. When scaling even further
to XLM-Rxx1,, we observe a total improvement
of 2.2 on zero-shot and 2.4 on translate-train-all
compared to XLM-Rxy, with a new state of
the art on French, Vietnamese and Hindi. On
MLQA, in Table 4, we observe even larger
gains for cross-lingual zero-shot transfer, where
scaling from XLM-Rpyge to XLM-Rxxp leads
to improvements of 4.1 F1 and 3.9 EM scores
on average. Similarly, on XQuad we observe
improvements of 4.4 F1 and 5.5 scores, with new
state-of-the-art results on Arabic, German, Greek
and Russian (see Table 3).

Comparison to monolingual English model.
For smaller-capacity models like the Base and
Large version of XLLM-R, it was shown that the
more languages are considered the lower the perfor-
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mance (Conneau et al., 2019), in particular on high-
resource languages. For instance, XLM-Ry ;e
was outperformed by ROBERTay e by 1% ac-
curacy on average on several downstream tasks
from the GLUE benchmark, as illustrated in Ta-
ble2. With larger capacity, we now observe that
XLM-RxxL is able to outperform RoOBERTay arge
by 0.3 dev points, going from 92.9 to 93.2 aver-
age accuracy, while handling 99 more languages.
While a RoBERTaxyx;, model may outperform
XLM-Rxx1,, we believe it interesting to notice that
with more capacity, a multilingual model can get
strong high-resource performance while not losing
its cross-lingual transfer ability for lower-resource
languages. Given the compute needed for training
such large-scale models, the possibility of training
a single very large model on hundreds of languages
with state-of-the-art performance on high-resource
languages is an encouraging and positive result.

Model | #1gs | MNLI QNLI QQP SST MRPC | Avg
RoBERTaf 1 90.2 947 922 964 909 | 929
XLM-Rpage | 100 | 889 938 923 950 89.5 |919
XLM-Rx. | 100 | 904 949 925 96.6 904 |93.0
XLM-Rxx. | 100 | 909 950 926 967 90.7 | 932

Table 2: GLUE dev results



Model en ar de el es hi ru th tr vi zh avg
Cross-lingual zero-shot transfer (models fine-tune on English data only)
mT5-Large | 88.4/77.3 752/56.7 80.0/629 77.5/57.6 81.8/642 73.4/56.6 747/569 734/62.0 765/563 79.4/603 759/655 77.8/61.5
mT5-XL 88.8/78.1 774/60.8 80.4/635 804/61.2 827/645 76.1/603 762/588 742/625 77.7/584 80.5/60.8 80.5/71.0 79.5/63.6
mt5-XXL 90.9/80.1 80.3/62.6 83.1/655 83.3/655 851/68.1 81.7/659 793/63.6 77.8/66.1 80.2/609 83.1/63.6 83.1/73.4 82.5/66.8
XLM-Rparge | 86.5/75.7 68.6/49.0 80.4/634 79.8/61.7 82.0/639 76.7/59.7 80.1/643 742/62.8 759/59.3 79.1/59.0 59.3/50.0 76.6/60.8
XLM-Rx1 89.5/79.0 784/61.6 81.3/64.1 823/639 846/662 788/632 815/650 76.0/655 73.9/579 81.7/61.8 723/66.1 80.0/64.9
XLM-Rxxi, | 89.3/79.4 80.1/63.7 82.7/65.8 83.4/655 83.8/66.0 80.7/654 824/654 766/656 76.8/61.7 822/63.0 74.1/674 81.1/66.3
Table 3: XQuad results (F1/EM) for each language.

Model | en es de ar hi vi zh Avg

Cross-lingual zero-shot transfer (models fine-tune on English data only)

mT5-Large | 84.9/70.7 653/44.6 68.9/51.8 735/541 669/47.7 725/50.7 662/42.0 71.2/51.7

mT5-XL 855/71.9 68.0/474 705/544 752/563 70.5/51.0 742/528 70.5/472 735/54.4

mT5-XXL 86.7/73.5 70.7/50.4 74.0/57.8 76.8/584 75.6/57.3 76.4/56.0 71.8/48.8 76.0/57.4

XLM-Rpqge | 80.6/67.8 74.1/56.0 68.5/53.6 63.1/435 69.2/51.6 71.3/50.9 68.0/454 70.7/52.7

XLM-Rx1, 85.1/72.6 66.7/462 70.5/555 743/56.9 722/547 744/529 709/48.5 73.4/553

XLM-Rxxi, | 85.5/72.4 68.6/484 72.7/57.8 754/57.6 73.7/558 76.0/550 71.7/48.9 74.8/56.6

Table 4: MLQA results (F1/EM) for each language.

Discussion and comparison to mT5. Both mT5
and XLM-R models obtain strong performance on
cross-lingual understanding benchmarks, as well
as high performance on English benchmarks (see
the score of 91.6 of mT5xxr on English XNLI).
Many hyperparameters are however different be-
tween mT5 and XLM-R models which makes diffi-
cult an apple-to-apple comparison. First, as shown
in Table 5, the mT5 models are pretrained on the
much larger mC4 dataset which contains around
6.4T tokens, which is 38 times bigger than CC100
(167B tokens). While XLM-Ryyrge Was pretrained
with more updates (6T tokens), the XLM-Ryxy and
XLM-Rxx1, models have seen less tokens (0.5T)
during pretraining than their mT5 counterparts, al-
though it also uses a bigger batch size (2048 over
1024 for mT5). Another difference is the context
sequence length of 512 for XLM-R and 1024 for
mT5. The mT5-XXL model also has slightly more
parameters (13B over 10.7B). The larger number
of updates combined with the larger dataset size
may explain the larger improvement from the XL
model to the XXL model in the case of mT5 (+3 av-
erage accuracy on XNLI), in which the additional

Number of | Dataset | Dataset Number of Batch | Sequence
Model . L .

parameters | name size training tokens | size length
XLM-Ryparge 550M CC100 167B 6T 8192 512
XLM-Rxr. 3.5B CC100 167B 0.5T 2048 512
XLM-RxxL 10.7B CC100 167B 0.5T 2048 512
mt5-XL 3.7B mC4 6.4T 1T 1024 1024
mt5-XXL 13B mC4 6.4T 1T 1024 1024

Table 5: Comparison of datasets and pretraining details
between XLM-R and mT5. We report dataset sizes and
number of updates in terms of number of tokens.
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capacity can exploit the large quantity of unlabeled
mC4 data. We note however that the mT5x; is
outperformed by XLM-Rx on XNLI by 0.6% on
average, on XQuad by 1.3% and on MLQA by
0.9% when considering average EM score. In com-
parison, gains of XLM-R from the XL to the XXL
architecture are only of 0.6 on average. Another
explanation may be that generative models scale
better than masked language models. The differ-
ence in the nature of the pretraining dataset is par-
ticularly striking when looking at the variance of
performance across languages. For example the
mT5xxr outperforms XLM-Rxx1 by 8.4 points on
Swahili on XNLI zero-shot, while it only outper-
forms XLM-Rxx1, by 1.4 average accuracy. These
results may suggest that the CC100 dataset gets
saturated with current larger-capacity models.

4 Conclusion

In this study, we scaled the model capacity of the
XLM-R model up to 10.7B parameters and ob-
tained stronger performance than previous XLM-
R models on cross-lingual understanding bench-
marks. We also show that the additional capac-
ity allows a multilingual model to outperform a
the ROBERTa ¢ baseline on English benchmarks.
Our technical study thus suggests that larger capac-
ity multilingual model can obtain state-of-the-art
cross-lingual understanding results while maintain-
ing strong performance on high-resource languages.
Our work provides an alternative to mT5 models,
with new state-of-the-art performance on some lan-
guages. We release our code and models publicly.
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Abstract

It has been long known that sparsity is an ef-
fective inductive bias for learning efficient rep-
resentation of data in vectors with fixed dimen-
sionality, and it has been explored in many ar-
eas of representation learning. Of particular
interest to this work is the investigation of the
sparsity within the VAE framework which has
been explored a lot in the image domain, but
has been lacking even a basic level of explo-
ration in NLP. Additionally, NLP is also lag-
ging behind in terms of learning sparse rep-
resentations of large units of text e.g., sen-
tences. We use the VAEs that induce sparse
latent representations of large units of text
to address the aforementioned shortcomings.
First, we move in this direction by measur-
ing the success of unsupervised state-of-the-art
(SOTA) and other strong VAE-based sparsifi-
cation baselines for text and propose a hierar-
chical sparse VAE model to address the stabil-
ity issue of SOTA. Then, we look at the impli-
cations of sparsity on text classification across
3 datasets, and highlight a link between per-
formance of sparse latent representations on
downstream tasks and its ability to encode task-
related information. !

1 Introduction

Representation learning has been pivotal in many
success stories of modern days NLP. Observing its
success, two fundamental questions arise: How is
the information encoded in them? and What is en-
coded in them? While the latter has received a lot
of attention by designing probing tasks, the former
has been vastly neglected. In this work, we take
small steps in this non-trivial direction by building
on the knowns: One property we know about the
encoding of information is that different data points
*Work done while at Microsoft Research Cambridge.

IThe code is available on https://github.com/V
ictorProkhorov/HSVAE.
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embody different characteristics (e.g. statistically,
semantically, or syntactically) which should ideally
utilise different sub-regions of the representation
space. Therefore, the high-dimensional learned rep-
resentations should ideally be sparse (Bengio et al.,
2013; Burgess et al., 2018; Tonolini et al., 2019).
In other words it allows us to have varying number
of active dimension per sentence” (Bengio, 2009)
in a fixed dimensional vector’. But if sparsity* is
expected, could it be learned from data without
supervision?

A handful of studies in NLP that have delved
into building sparse representations of words either
during the learning phase (Faruqui and Dyer, 2015;
Yogatama et al., 2015) or as a post-processing step
on top of existing representations (e.g., word2vec
embeddings) (Faruqui et al., 2015; Sun et al., 2016;
Subramanian et al., 2018; Arora et al., 2018; Li and
Hao, 2019). These methods have not been devel-
oped for sentence embeddings, with the exception
of Trifonov et al. (2018) which makes a strong as-
sumption by forcing the latent sentence representa-
tion to be a sparse categorical distribution.

In parallel, Variational Autoen-
coders (VAEs) (Kingma and Welling, 2014)
have been effective in capturing semantic close-
ness of sentences in the learned representation
space (Bowman et al., 2016; Prokhorov et al.,
2019; Xu et al., 2019; Balasubramanian et al.,
2020). Furthermore, methods have been developed

2This, for example, may allow us to cluster sentences’ rep-
resentations not only based on similarity of their active features
(as it is the case for dense vectors) but also on active/inactive
dimensions.

3More on speculative side, sparse representations may be
a more natural way of modelling sentences of a language in
a fixed dimensional vector. Sentences vary in length and an
amount of information that they convey. As such it makes
sense to reflect this property in a vector representation of the
sentence.

4As in (Mathieu et al., 2019), we induce sparse representa-
tions for each data point.
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to encourage sparsity in VAEs via learning a
deterministic selection variable (Yeung et al., 2017)
or sparse priors (Barello et al., 2018; Mathieu et al.,
2019; Tonolini et al., 2019). However, the success
of these is yet to be examined on text domain.

To bridge this gap, we make a sober evalua-
tion of existing state-of-the-art (SOTA) VAE-based
sparsification model (Mathieu et al., 2019) against
several VAE-based baselines on two experimental
tasks: text classification accuracy, and the level
of representation sparsity achieved. Additionally,
we propose Hierarchical Sparse Variation Autoen-
coder (HSVAE), to improve the stability issue of
existing SOTA model and demonstrate its perfor-
mance on both experimental tasks.

Our experimental findings demonstrate that: (I)
neither the simpler baseline models nor the SOTA
manage to impose a satisfactory level of sparsity
on text, (II) as expected, sparsity level and task
performance have a negative correlation, while giv-
ing up task performance and having sparse codes
helps with the analysis of the representations, (III)
presence/absence of task related signal in the spar-
sity codes affects the task performance, (IV) the
success of capturing the task related signal in the
sparsity codes depends on the strength of the signal
presented in a corpus, and representation dimen-
sionality, (V) the success of SOTA in image domain
does not necessarily transfer to inducing sparse rep-
resentations for text, while HSVAE addresses this
shortcoming.

2 Background

VAE. Given an input x, VAEs, Figure 1 (left), are
stochastic autoencoders that map x to a correspond-
ing representation z using a probabilistic encoder
q4(z|x) and a probabilistic decoder py(x|z), imple-
mented as neural networks. Optimisation of VAE
is done by maximising the ELBO:

Eq,(z1 108 po(x12) = D (44(210)1Ipy(2) (D)
where the reconstruction maximises the expecta-
tion of data likelihood under the posterior distribu-
tion of z, and the Kullback-Leibler (KL) divergence

acts as a regulariser and minimises the distance be-
tween the learned posterior and prior of z.

Spike-and-Slab Distribution. This is a mixture
of two Gaussians with mixture weight y;, where the
slab component is a standard Gaussian while the
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Figure 1: Graphical Models of VAE (left) and
HSVAE (right). Solid and dashed lines represent gener-
ative and inference paths, respectively.

spike component is a Gaussian with ¢ — 0:

D
p(2) =[] = r) N(z:0.1) + 7, N(2:0,0— 0)

where i denotes the ith dimension of z and D is the
total number of dimensions of z.

3 Hierarchical Sparse VAE (HSVAE)

We propose the hierarchical sparse VAE (HSVAE),
Figure 1 (right), to learn sparse latent codes au-
tomatically. We treat the mixture weights y
(71> .- ¥p) as a random variable and assign a fac-
torised Beta prior py(y;) = Beta(e, §) on it. The la-
tent code z is then sampled from a factorised Spike-
and-Slab distribution p,(z|y) conditioned on y, and
the observation x is generated by decoding the la-
tent variable x ~ p,(x|z) using a GRU (Cho et al.,
2014) decoder. This returns a probabilistic genera-
tive model py(x, z,7) = py(x|2)py(z|y)pe(¥)-

For posterior inference, the encoder distribution
is defined as q,4(z, y|x) = q4(r|x)g,(z|y, x), where
q4(r |x) is a learnable and factorised Beta distribu-
tion, and g4(z|y, x) is a factorised Spike-and-Slab
distribution with mixture weights y; and learnable
“slab” components for each dimension. The ¢ distri-
bution is computed by first extracting features from
the sequence using a GRU, then applying MLPs to
the extracted feature (and y for q¢(z|y, X)) to pro-
duce the distributional parameters.

ELBO: We derive the ELBO, L(0, ¢; x):

E gz [108 Po(x[2)] = wEy [Pk (a4(zly. ).
P0(2|}’))] — ADgy (CI¢(}’|X)| |P9(}’)),

where v € R and 4 € R are the coefficients for
the KL terms. This ELBO is approximated with
Monte Carlo (MC) in practice, L(0, ¢; x):

[_

[DKL(q¢(ZIx, I Ipe(ZIy))] -

log pg(xlz)] -

~q¢(VIX) 2~qy(z]X,7)

v @)
r~qg(r1x)

—ﬂDKL(Q¢(V|X)| |Pe(¥))s



where M and N are scalar numbers corresponding
to a number of samples taken from q¢(z|x, y) and
q4(y |x) respectively. In this work, we set both M
and N to 1. Similar to the vanilla VAE, the first
term is the reconstruction, the second and the third
KL terms control the distance between the posteri-
ors and their corresponding priors. The parameters
of the priors are fixed to some constant values (can
be also thought as the hyperparameters) during the
training. Also, see Appendix for ELBO derivation.

Control of Sparsity. The random variable y;, in
our model, can be viewed as a “probabilistic switch”
that determines how likely is for the ith dimension
of z to be turned off. Intuitively, since for both gen-
eration and inference the latent code z is sampled
from a Spike-and-Slab distribution with the mixture
weights 7, y; — 1 means z; is drawn from a delta
mass centered at z; = 0. As the switch follows a
Beta distribution y; ~ Beta(y;; a, ), we can select
the parameters « and f to control the concentration
of the probability mass on y; € [0, 1] interval.

There are three typical configurations of the
(a, p) pair: (1) @ < p: density is shifted towards
y; = 0 hence ith unit is likely to be on and dense
representation is expected, (2) a = f: the density
is centered at y; = 0.5, and (3) @ > f: density is
shifted towards y; = 1, hence the unit is likely to
be off, leading to sparsity. The magnitude of these
parameters also plays a role as it controls the spread
and uni/bi-modal structure of the density.

4 Experiments

We conduct a set of experiments on three text clas-
sification corpora: Yelp (sentiment analysis - 5
classes) (Yang et al., 2017), DBpedia and Yahoo
(topic classification - 14 and 10 classes respec-
tively) (Zhang et al., 2015). First, we compare per-
formance of the sparse latent representations with
their dense counterpart on the text classification
tasks (§4.2). Second, the stability of sparsification
of HSVAE is compared with the state-of-the-art
MAT-VAE (§4.3). Then, to better understand per-
formance of our model on the downstream task, we
examine the sparsity patterns (§4.4).

Remark. An integral part of the experiments is
the analysis of the learned representations. In this
sense, tasks that rely on understanding of semantics
(e.g., GLUE (Wang et al., 2018)) or syntax (e.g.,
(Marvin and Linzen, 2018)) would be non-trivial
to analyse due to their inherent complexity. We
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consider classification tasks because the distribu-
tion of words alone could be a good indicator of
class labels. Given the unsupervised nature of the
models, we explore if this surface-level distribution
of words could be captured by the sparsity patterns
in the learned representation.

4.1 Experimental Setup
4.1.1 Corpora Preprocessing

We use Yelp® as it is, without any additional prepro-
cessing. As for DBpedia® and Yahoo', the prepro-
cessing is as follows: (1) removing all non-ASCII
characters, quotations marks, and hyperlinks, (2)
tokenising with spaCy®, (3) lower-case conversion
for all tokens, then (4) for each class we randomly
sample 10,000 sentences for the training corpus and
1,000 sentences for the test and validation respec-
tively. The vocabulary size of the both corpora is
reduced to the first 20,000 most frequent words.

4.1.2 Baselines and Models

To ground the performance of HSVAE we use 4
baselines: 1) VAE is a version of the vanilla VAE
used in Higgins et al. (2017), 2) the same VAE
model but the activation of x4 and o of g,(z|x) regu-
larised by either L' (VAE; 1) or L? (VAE,>) norms,
3) MAT-VAE is a VAE framework introduced by
Mathieu et al. (2019) and 4) simple classifier which
is simply a text encoder with a classifier on top of it.
For all these models we use a GRU network (Cho
et al., 2014) to encode and decode text sequences.
We set the dimesnionality of the both encoder and
the decoder GRU’s to 512D and the dimensionality
of the word embeddings is 256D. The decoder and
the encoder share the word embeddings. To train
the model we use the Adam optimiser (Kingma and
Ba, 2014) with the learning rate: 0.0008.

BERT vs GRU Encoder. Inspired by Li et al.
(2020b), we replace the GRU network used in VAE
and HSVAE encoders with a pretrained BERT?
(Devlin et al., 2019), while keeping the GRU de-
coder. We refer to these models as B-VAE and
B-HSVAE, respectively. Also, we compare the

https://github.com/jxhe/vae-lagging-
encoder/blob/master/prepare_data.py.

®https://github.com/srhrshr/torchData
sets/blob/master/dbpedia_csv.tar.gz

"https://github.com/jxhe/vae-lagging-—
encoder/blob/master/prepare_data.py.

8https://spacy.io

9 After extracting features from a sequence with BERT, we
then applying MLPs to extract features for the posterior distri-
butions, as it is the case for the encoder with GRU network.
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Figure 2: Classification Accuracy and Average Hoyer (higher means sparser z) for various VAE variants and the

two baselines: simple classifier and BERT evaluated on

Yelp, Yahoo or DBpedia test. The latent code of the VAEs

is 32 D Figure (a) and 768 D Figures (b) and (c). Hoyer metric is not applicable to the simple classifier in the panels
(a) and (b) and to the vanilla BERT model in the panel (c). The weights of the VAE encoders and BERT are frozen
during the training of the classifiers. While the encoder of the simple classifier is updated during the training.

task performance of these VAE models with the
plain pretrained base-BERT!?. To train B-VAE and
B-HSVAE, we use the Adam optimiser with the
learning rate: 0.00008.

Dimensionality of z.  We use the following two
dimensions: 32D and 768D. Since, HSVAE and
MAT-VAE induce sparse latent representations we
want to make sure that they perform robustly re-
gardless of the number of the dimensions.

KL-Collapse. None of the used VAE models is
immune to the KL-collapse (Bowman et al., 2016)
- when the KL term becomes zero and the decoder
ignores the information provided by the encoder
through z. To address this issue, in all the models,
we put a scalar value y, A < 1 on the KL terms of
the VAE’s objective function (He et al., 2019).

Yhttps://huggingface.co/transformers/
model_doc/bert.html

Coupling Encoder with Decoder. To connect
the encoder with the decoder we concatenate the
latent variable z, sampled from the posterior distri-
bution, to word embeddings of the decoder at each
time step (Prokhorov et al., 2019). Also, for GRU
encoders we take the last hidden state to parame-
terise the posterior distribution. For BERT encoder,
we take average pooling of all token’s embeddings
produced by the last layer of BERT.

4.1.3 Evaluation Metrics

Text Classification. To report the classification
performance we use accuracy as a metric.

Sparsity. We measure Hoyer (Hurley and
Rickard, 2009) on the representations of all data
points in a corpus and report its average as our
sparsity metric (Mathieu et al., 2019). Hoyer, in a
nutshell, is ratio of the L? to L! norm, normalised
by the number of dimensions. Higher indicates

37



o
I3
o

sample (A:0.01, :0.01)——
mean (A:0.01, :0.01)

sample (A:10.0, y:0.01)
mean (A:10.0, y:0.01)

0.45
—— sample (A:1.0, ¢:0.01) —— sample (A:1.0, :0.1)
0.40 ~- mean (A:1.0, ¢:0.01) -—- mean (A:1.0, y:0.1)
0.35
Tos0 /
< 0.30 4
3025
>
[}
T 020
%]
D 0.60
©
S ——
g 0.50
z°
0.40
030 =2fy, = = et e —
0.20 —— sample}&:10.0,B:3({.0) --=- mean (a:30.0, 3:10.0)
-—+- mean (a:10.0, 3:30.0) —— sample (:30.0, 3:30.0)
0.10 —— sample (@:30.0, 3:10.0) -—— mean (:30.0, 3:30.0)
2 4 6 8 10 12 14
Epoch

Figure 3: Average Hoyer (AH) on DBpedia corpus
dev set for different parameterisations of Mathieu et al.
(2019) (Top) vs. HSVAE (Bottom). Same is observed
on Yelp and Yahoo (see Appendix). Lines are an av-
erage over the 3 runs of the models, the shaded area is
the standard deviation. The dimensionality of the latent
variable of the models is 32D.

more sparsity. More specifically, to evaluate the
average Hoyer, or as we refer to it as Average Hoyer
(AH) in the experiments, either on a validation or
test corpus we employ the following procedure.
First, for each x; in the corpus {xi,...,x,} we
obtain its corresponding z; by sampling it from a
probabilistic encoder of a VAE model, such that
for each x; we sample one z;: e.g. x;— z;. Then
we normalise Z; = z;/0(z), where z = {z, ..., 2,,},
and o(.) is the standard deviation. Finally, for each
z; we compute Hoyer as follows:

Vd = 11z,11/11Z1
vai-1

where d is the dimensionality of Z;. To report the
Hoyer for the whole corpus we compute the Av-
erage Hoyer = % Z,N Hoyer(z;), where N is the
number of data points in a test or validation corpus.

Hoyer(z;) = 3)

4.2 Text Classification

Prior to use of a VAE encoder in the classifica-
tion experiment, we pretrained it using the full
VAE model with the corresponding VAE’s objec-
tive function on one of the target corpus: Yelp,
Yahoo or DBpedia. We compare performance of
the sparse latent representations with their dense
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counterparts on the three text classification tasks
(Figure 2). The classifier that we use comprises of
the two dense layer of 32D each with the Leaky
ReLLU (Maas, 2013) activation function. To estab-
lish whether the performance gain or loss on the
tasks is achieved thanks to the sparsity inductive
bias, for all the VAE models and BERT we freeze
the parameters of the encoder and only train the
classifier which we put on top of the encoder. How-
ever, for the simple classifier model its text encoder
is being trained together with the classifier. When
the classifier, p(y|x), is trained with a probabilistic
VAE encoder we marginalise the latent variable(s).
This is done for instance for HSVAE as,

p(ylx) = / p(Y12)q(z|x, 7)q4(y |x)dzdy
Y

We approximate the integral with MC by taking
K =5 samples from the probabilistic encoder both
to train and to test the classifier: For each x; in a
batch {x,, ...,xp}:

1. sample K of y; ; from 61¢(J/|Xi) i.e. a set of
sampled y’s is {y; 1, Vi k)

sample K of z;; from q¢(z|xi,yi,j) ie. a
set of sampled tuples of z;; and y,; is
{(z;1,7i1)» - (2 k> 7i.x)} In other words for
each y; ; we sample only one z; ;.

For the other VAESs the procedure is similar. With
the MC approximation : p(y|x) ~ 0.2X 215 p(y|z;).

For a systematic comparison of various VAEs,
we collate classification performance of VAEs with
comparable reconstruction loss - which indicates
how informative the latent code is for the decoder
during reconstruction. In other words the recon-
struction loss serves as an intrinsic metric. Thus,
for an example, in Figure 2a, for the Yelp corpus
all the VAE models have a similar reconstruction
loss. The same applies to Figure 2b and Figure 2c.

Comparing the accuracy of the classifiers that are
trained with the different latent representations i.e.
sparse and dense (Figure2), shows that in general
the performance of the sparse latent representations
induced by HSVAE or MAT-VAE is on par with
their dense latent counterparts inferred by the VAEs.
However, the performance of HSVAE slightly lag-
ging behind on the Yelp corpus when the dimen-
sionality of the latent representation is 32D (Figure
2a). We put forward a hypothesis that may explain
this in Section 4.4. Also, when the dimensionality
of the latent representation is 32D, the accuracy of



MAT-VAE is slightly better than of HSVAE, but
this performance is reached at lower levels of spar-
sity. Additionally, we found that regularising the
posterior parameters of the VAE model with either
L' or L? norm, in some cases, helps to increase
the classification accuracy, but does not reach AH
higher than the vanilla VAE. Notably, the classifica-
tion performance of all the VAE models becomes
almost identical when the dimensionality of the
latent space is increased from 32D to 768D, with
HSVAE slightly outperforming all other VAEs on
the DBpedia corpus (Figure 2b). We further elabo-
rate on it in Section 4.4.

Use of BERT as an encoder, in our settings, only
gives an improvement on the Yahoo corpus with
B-HSVAE performing on par with B-VAE, but does
not reach the classification accuracy of the plain
BERT. We hypothesise that to reach the full poten-
tial of the use of a pretrained encoder in a VAE
model one needs to pair it with a powerful decoder
such as GPT-2 (Radford et al., 2019) as it is the case
in the Li et al. (2020b) VAE model. Further explo-
ration of this was beyond our compute resource.

Finally, one can observe that the simple clas-
sifier model performs on a par (in Figure 2a) or
even worse (Figure 2b ) than the VAE models on
the Yelp corpus. Putting it into the context that
the VAE encoders are not being trained with a su-
pervision signal while the encoder of the simple
classifier is, we speculate that this can be explained
by the discussion put forward in Valpola (2014). A
classifier in nature tries to remove all the informa-
tion that is not relevant to the supervision signal,
while an autoencoder tries to preserve as much as
possible information in the latent code in order to
reconstruct the original input data reliably. Thus, if
the distribution of class related words in a text alone
(see §4.4.1) is not indicative enough of a class then
the classifier may perform poorly. In our case, we
hypothesise that the VAE models capture some ad-
ditional information other than class distribution of
words in text that allows it to better discriminate the
classes. For example, some class may have shorter
sentences, on average, than the sentences presented
in the other classes. This may provide an additional
bias that allows the VAE models to discriminate
sentences from this class from the sentences from
the other classes. Thus, with this additional bias
VAESs can perform better than the simple classifier.
We leave this investigation for a future work.
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Figure 4: Heat maps of y,,,, (Section §4.4). (a) ¥,14ss
of 32D - from left to right: Yahoo, Yelp, DBpedia. (b)
contiguous 32D out of 768D of v, - from left to right:
Yahoo, Yelp.

4.3 Representation Sparsity

In Figure 7 we compare HSVAE with MAT-VAE.
We report AH both on the mean and samples from
the posterior distributions. As illustrated, MAT-
VAE struggles to achieve steady and consistent AH
regardless of the configurations of its hyperparam-
eters (y, 4). However, HSVAE stably controls the
level of sparsity with a and f parameters, a positive
effect of its more flexible posterior distribution and
the learnable distribution over y.

4.4 Can Sparsity Patterns Encode Classes?

In order to identify pertinent features, the unsuper-
vised representation learning models are typically
trained/fine-tuned on corpora that are closely re-



lated to the downstream task. As such, without a
supervisory signal, the model can only rely on the
distribution of words in a text in order to identify
these relevant features for the task. Ideally, com-
pared to their dense counterparts, an unsupervised
sparsification model such as HSVAE could result
in performance improvement on downstream tasks
if they capture the task-related features and discard
the noisy features. However, if the sparsification
model fail to capture the task related signal in its
sparsity pattern; it can hurt the performance of the
model on the downstream task as the task-related
information can be removed. In what follows we
investigate this direction by analysing the sparsity
patterns and relate this analysis to the classification
performance of the model (§4.2).

Analysis of y. We hypothesise that if y captures
a class of a sentence then the sentences that be-
long to the same class should have a similar spar-
sity patterns in y. To obtain a class specific ¥,
first, for each sentence x we obtain the mean of the
posterior distribution: g4(y|x) and we denote it as
Hy(x)- Then we binarise the mean such as ub =
Binarise(ﬂy(x)), where Binarise(-) is defined as: 0 if
Hy(xy < 0.5 and 1 otherwise. Finally, for each class
we average its ,uf (x) VECtOTS to obtain a single vector

that represent this class: ¥, = ﬁ Y ceclass ﬂf(x),

where M is a number of sentences in the class. The
averaging removes the information that differentiate
these sentences, while preserving the class informa-
tion that is shared among them. A similar approach
was also used in Mathieu et al. (2019).

Figure 4 reports the magnitudes of the y,,,,, vec-
tors as heat maps for the three corpora. One would
expect that y,,,,, of different classes should differ.
For 32D y,,,,s (Figure 4a) this is the case when
HSVAE is trained on the DBpedia and Yahoo but
not on Yelp. Taking into account the unsupervised
nature of these models, this difference is echoing
the distribution of words in the classes, which is
more distinct in DBpedia and Yahoo, but not in
Yelp (see §4.4.1). We also hypothesis that this ob-
servation can explain inferior performance of the
model on the Yelp corpus (Figure 2a).

In contrast, for y,,,,, in 768D (Figure 4b) one
can observe that the different classes have different
activation patterns even when HSVAE is trained
on the Yelp corpus.!! Also, the distributedness of

"In Figure 4b we only show 32D out of 768D. This is one of
the subsets of the 768 dimensions where the distributedness is
present. It is not unique and the distributedness is also present
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the activation patterns now becomes more apparent
when HSVAE is trained on the Yahoo corpus. This
observation is also related to the distribution of
words in the text (further elaborated in §4.4.1).

Intuitively, to reconstruct a sentence a VAE
model first captures aspect of data that are the
most conducive for reconstruction error reduc-
tion (Burgess et al., 2018). Therefore, given the lim-
ited dimensionality of the latent vector, the model
will prioritised aspects of data during encoding. As
such, if the information such as sentence class is not
strongly presented in the corpus the model could
potentially ignore it during encoding. However,
when the dimensionality of the latent space is in-
creased, the model has more capacity to represent
various aspects of data that may otherwise be ig-
nored in the smaller dimensionality. We speculate
this could explain the presence of distributedness of
Yelass O Yelp for 768D as opposed to 32D, which
also translates into matching the task performance
of its dense counterpart (Figure 2b).

4.4.1 Class Kullback-Leibler Divergence

The question that has yet not been addressed is why
in some cases the HSVAE model is more success-
ful at capturing the class distribution when trained
on DBpedia compared to Yelp. We previously hy-
pothesised that the reason for this can be a word
distribution in a text. To empirically test our hypoth-
esis, we calculate the add-1 smoothed probabilities
of words in the classes and measure the pairwise
KL divergence across them. The magnitudes of
the pairwise KL divergences are shown in Figure
5. As demonstrated, the magnitude of the KL di-
vergence is the largest for DBpedia and smallest for
Yelp. This indicates that separating classes in Yelp
would rely on more subtle aspects of data, whereas
surface-level cues are more present in DBpedia and
allow for an easier discrimination.

5 Related Work

Learning sparse representations of data can be dated
back to Olshausen and Field (1996). This work
motivates encoding of images in sparse linear codes
for its biological plausibility and efficiency. It was
later argued by Bengio (2009) that compared to the
dimensionality reduction approaches, sparsity is a
more efficient method for representation learning
on vectors with fixed dimensionality.

in other dimensions of the 768D code.



Comp Uoglnl o 0 0.3 X3 0.3 0.3 0.3 0.3
Educ.Inst. 1 0 /1[4 1 0.8 Soc. & Culture ﬁ 3 [0 O- strong.negative 0 | 0.07
Artist 0.970 0 0.90.8/1 1 soi.& Math. ] o [ 03 05 0.6 m
Athlete \.09 [y 2 22 I
Health . negative. 0.06 0 004 | 0.09

Educ. & Ref. 0.3 03

Transport. 1 1 1 |21

Building 0.90.8 1 28

Nat.Place 1 1 ﬂﬂ
Village
Animal [

Classes
Classes

Finance 0.3
Entert. & Music 0.3 (053
Family & Rel. 0.3 0% 04

0.7
Kl 2|2 2]

011

1 0 0.7
220.90.7 0

Film |1 [22]0.9 003 PP

Writ.Work 0.8 1 0720 1 1 1 )
Classes

(a)

mm 0[5
0 0 4 5 .
Internet [UNSKUVAKOVARVA l)

04 02 o4m 0 0404 03

Polit. & Gov. oamosoa 0

Classes

(b)

neutral

Classes

positive

0.4 omm

strong.positive

Classes

©)

Figure 5: Experimental results for KL between classes on the three corpora: DBpedia (a), Yahoo (b) and Yelp (c).

Representation Sparsity. In NLP, learning
sparse representations has been explored for
various units of text with most of the focus placed
on sparse representation of words. As the earliest
work that moved in this direction, Murphy et al.
(2012) looked into sparse representations for ease
of analysis, performance, and being more cogni-
tively plausible. This idea was further developed
by many other researchers (Faruqui and Dyer,
2015; Yogatama et al., 2015; Faruqui et al., 2015;
Sun et al., 2016; Subramanian et al., 2018; Arora
et al.,, 2018; Li and Hao, 2019). Sparsification
of the large units of text (i.e., sentences) has not
received a lot of attention, perhaps due to inherent
complexity of sentence/phrase representations: i.e.,
encoding and analysing syntactic and semantic
information in a sentence embedding is rather a
non-trivial task. To the best of our knowledge, the
only model that sparsifies sentence emebeddings is
introduced by Trifonov et al. (2018). The authors
introduced a Seq2Seq model (Sutskever et al.,
2014) with the Sparsemax layer (Martins and
Astudillo, 2016) between the encoder and the
decoder which induces sparse latent codes of text.
This layer allows to learn codes that can be easier to
analyse compared to their dense counterparts, but it
is limited to modelling the categorical distribution.
Thus restricts a type a sentence representations that
can be learned.

VAE-based Representation Sparsity. VAE-
based sentence representation learning has shown
superior properties compared to their deterministic
counterparts on tasks such as text generation (Bow-
man et al., 2016), Semantic Textual Similarity (Li
et al., 2020a) and other wide range of language
tasks (Li et al., 2020b). While a handful of
VAE-based sparsification methods have been
proposed recently Mathieu et al. (2019) (MAT),
Tonolini et al. (2019) (TON), they have been only
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evaluated on image domain. We summarise the
similarity and key differences with HSVAE model:

PRIOR AND POSTERIOR. All three frameworks
use the Spike-and-Slab distribution to con-
struct the prior on z. While the posterior
distribution in MAT remains as a Gaussian,
both TON and HSVAE opt for Spike-and-Slab.
However, TON controls the sparsity level in
an indirect way via “pseudo data” (Tomczak
and Welling, 2018) used in prior, whereas
HSVAE’s probabilistic treatment of y enables
direct control on the target sparsity level.

OBJECTIVE. HSVAE is trained with a principled
ELBO (eq. 3), while the other two add ad-
ditional regularisers to the ELBO of VAE
(eq. 1). For instance, MAT add a maxi-
mum mean discrepancy (MMD) divergence
between z’s aggregated posterior and prior
MMD(q,(z), py(z)) and include scalar y and
A weights to the KL and MMD term, respec-
tively, see Appendix.

Model Sparsity. Concurrent to the widespread
use of large models such as Transformers (Vaswani
et al., 2017) in NLP, sparsification of these models
is also becoming popular (Zhang et al., 2020; Zhao
et al., 2019; Correia et al., 2019; Ye et al., 2019;
Child et al., 2019). The most common approach
to sparsify a Transformer is to reduce a number of
connection between the words/tokens in the self at-
tention kernel e.g. Correia et al. (2019). However,
these approaches still learn dense continuous repre-
sentations of token/word/sentence embeddings.

6 Conclusion

We provided an objective analysis of several unsu-
pervised sparsification frameworks based on VAEs,
both in terms of the impact on downstream tasks



and the level of sparsity achieved. Also, we pre-
sented a novel VAE model - Hierarchical Sparse
Variational Autoencoder (HSVAE), outperforming
existing SOTA model (Mathieu et al., 2019). Ide-
ally, sparse representations should be capable of
encoding the underlying characteristics of a cor-
pus (e.g. class), in activation patterns as shown to
be the case for HSVAE. Moreover, using the text
classification corpora as a testbed, we established
how statistical properties of a corpus such as word
distribution in a class affect the ability of learned
sparse codes to represent task-related information.
Moving forward, HSVAE model along with the
analysis provided in this paper can serve as a good
basis for the design of sparse models that induce
continuous sparse vectors of text. For example,
a potential extension of HSVAE could be an in-
corporation of explicit linguistic biases into the
learned representations with the group sparsity
(Yogatama et al., 2015). Furthermore, as we dis-
cussed in Section 5, sparsity found its application
in the Transformers, but it, mainly, has been used
to reduce the number of connection between the
words/tokens. With the HSVAE framework one
can also learn sparse continuous representations of
token/word/sentence embeddings.

Acknowledgments

The first author would like to thank Yi Zhu for
providing his feedback on the earlier vesrsion of
the paper. The authors, also, would like to thank
the three anonymous reviewers for their helpful
suggestions.

References

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma,
and Andrej Risteski. 2018. Linear algebraic struc-
ture of word senses, with applications to polysemy.
Transactions of the Association for Computational
Linguistics, 6:483-495.

Vikash Balasubramanian, Ivan Kobyzev, Hareesh
Bahuleyan, Ilya Shapiro, and Olga Vechtomova.
2020. Polarized-vae: Proximity based disentangled
representation learning for text generation. arXiv
preprint arXiv:2004.10809.

Gabriel Barello, Adam S. Charles, and Jonathan W. Pil-
low. 2018. Sparse-coding variational auto-encoders.
bioRxiv.

Yoshua Bengio. 2009. Learning deep architectures for
ai. Found. Trends Mach. Learn., 2(1):1-127.

Yoshua Bengio, Aaron C. Courville, and Pascal Vin-
cent. 2013. Representation learning: A review and
new perspectives. IEEE Trans. Pattern Anal. Mach.
Intell., 35(8):1798-1828.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, An-
drew M. Dai, Rafal J6zefowicz, and Samy Bengio.
2016. Generating sentences from a continuous space.
In CoNLL.

Christopher P. Burgess, Irina Higgins, Arka Pal, Loic
Matthey, Nick Watters, Guillaume Desjardins, and
Alexander Lerchner. 2018. Understanding disentan-
gling in f-vae. CoRR, abs/1804.03599.

Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. 2019. Generating long sequences with
sparse transformers.

Kyunghyun Cho, Bart van Merrienboer, Caglar
Giilgehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014. Learning phrase represen-
tations using RNN encoder-decoder for statistical
machine translation. CoRR, abs/1406.1078.

Gongalo M. Correia, Vlad Niculae, and André F. T.
Martins. 2019. Adaptively sparse transformers. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2174—
2184, Hong Kong, China. Association for Compu-
tational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Manaal Faruqui and Chris Dyer. 2015. Non-
distributional word vector representations. In Pro-
ceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 464—
469, Beijing, China. Association for Computational
Linguistics.

Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris
Dyer, and Noah A. Smith. 2015. Sparse overcom-
plete word vector representations. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1491-1500, Beijing,
China. Association for Computational Linguistics.

Michael Figurnov, Shakir Mohamed, and Andriy Mnih.
2018. Implicit reparameterization gradients. In Pro-
ceedings of the 32nd International Conference on



Neural Information Processing Systems, NIPS’18,
page 439-450, Red Hook, NY, USA. Curran Asso-
ciates Inc.

Junxian He, Daniel Spokoyny, Graham Neubig, and
Taylor Berg-Kirkpatrick. 2019. Lagging inference
networks and posterior collapse in variational autoen-
coders. In Proceedings of ICLR.

Irina Higgins, Loic Matthey, Arka Pal, Christopher
Burgess, Xavier Glorot, Matthew Botvinick, Shakir
Mohamed, and Alexander Lerchner. 2017. beta-vae:
Learning basic visual concepts with a constrained
variational framework. In 5th International Confer-
ence on Learning Representations, ICLR 2017, Con-
ference Track Proceedings, Toulon, France.

N. Hurley and S. Rickard. 2009. Comparing measures
of sparsity. IEEE Transactions on Information The-
ory, 55(10):4723-4741.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. International
Conference on Learning Representations.

Diederik P. Kingma and Max Welling. 2014. Auto-
encoding variational bayes. In 2nd International
Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Con-
ference Track Proceedings.

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang,
Yiming Yang, and Lei Li. 2020a. On the sentence
embeddings from pre-trained language models. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9119-9130, Online. Association for Computa-
tional Linguistics.

Chunyuan Li, Xiang Gao, Yuan Li, Baolin Peng, Xiu-
jun Li, Yizhe Zhang, and Jianfeng Gao. 2020b. Opti-
mus: Organizing sentences via pre-trained modeling
of a latent space.

Wenye Li and Senyue Hao. 2019. Sparse lifting of
dense vectors: Unifying word and sentence represen-
tations. CoRR, abs/1911.01625.

Andrew L. Maas. 2013. Rectifier nonlinearities im-
prove neural network acoustic models.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh.
2016. The concrete distribution: A continuous re-
laxation of discrete random variables. International
Conference on Learning Representations, ICLR.

Andre Martins and Ramon Astudillo. 2016. From soft-
max to sparsemax: A sparse model of attention and
multi-label classification. In Proceedings of The
33rd International Conference on Machine Learn-
ing, volume 48 of Proceedings of Machine Learning
Research, pages 1614-1623, New York, New York,
USA. PMLR.

43

Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1192—-1202,
Brussels, Belgium. Association for Computational
Linguistics.

Emile Mathieu, Tom Rainforth, N Siddharth, and
Yee Whye Teh. 2019. Disentangling disentangle-
ment in variational autoencoders. In Proceedings
of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine
Learning Research, pages 4402-4412, Long Beach,
California, USA. PMLR.

Brian Murphy, Partha Talukdar, and Tom Mitchell.
2012. Learning effective and interpretable seman-
tic models using non-negative sparse embedding. In
Proceedings of COLING 2012, pages 1933-1950,
Mumbai, India. The COLING 2012 Organizing
Committee.

Bruno Olshausen and David Field. 1996. Emergence
of simple-cell receptive field properties by learning
a sparse code for natural images. Nature, 381:607-9.

Victor Prokhorov, Ehsan Shareghi, Yingzhen Li, Mo-
hammad Taher Pilehvar, and Nigel Collier. 2019. On
the importance of the Kullback-Leibler divergence
term in variational autoencoders for text generation.
In Proceedings of the 3rd Workshop on Neural Gen-
eration and Translation, pages 118—127, Hong Kong.
Association for Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Anant Subramanian, Danish Pruthi, Harsh Jhamtani,
Taylor Berg-Kirkpatrick, and Eduard H. Hovy. 2018.
SPINE: sparse interpretable neural embeddings. In
Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), the 30th inno-
vative Applications of Artificial Intelligence (IAAI-
18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New
Orleans, Louisiana, USA, February 2-7, 2018, pages
4921-4928. AAAI Press.

Fei Sun, Jiafeng Guo, Yanyan Lan, Jun Xu, and Xueqi
Cheng. 2016. Sparse word embeddings using 11
regularized online learning. In Proceedings of the
Twenty-Fifth International Joint Conference on Arti-
ficial Intelligence, IJCAI 2016, New York, NY, USA,
9-15 July 2016, pages 2915-2921. IJCAI/AAAI
Press.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume
2,NIPS’ 14, page 3104-3112, Cambridge, MA, USA.
MIT Press.



Jakub M. Tomczak and Max Welling. 2018. Vae with a
vampprior. In Proceedings of the International Con-

ference on Artificial Intelligence and Statistics, pp.
1214-1223.

Francesco Tonolini, Bjorn Sand Jensen, and Roderick
Murray-Smith. 2019. Variational sparse coding. In
Proceedings of the Thirty-Fifth Conference on Un-
certainty in Artificial Intelligence (UAI).

Valentin Trifonov, Octavian-Eugen Ganea, Anna
Potapenko, and Thomas Hofmann. 2018. Learning
and evaluating sparse interpretable sentence embed-
dings. In Proceedings of the Workshop: Analyzing
and Interpreting Neural Networks for NLP, Black-
boxNLP@EMNLP 2018, Brussels, Belgium, Novem-
ber 1, 2018, pages 200-210. Association for Compu-
tational Linguistics.

H. Valpola. 2014. From neural pca to deep unsuper-
vised learning. ArXiv, abs/1411.7783.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353-355, Brussels, Belgium.
Association for Computational Linguistics.

Peng Xu, Jackie Chi Kit Cheung, and Yanshuai Cao.
2019. On variational learning of controllable rep-
resentations for text without supervision. arXiv
preprint arXiv:1905.11975.

Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and
Taylor Berg-Kirkpatrick. 2017.  Improved vari-
ational autoencoders for text modeling using di-
lated convolutions. In Proceedings of the 34th In-
ternational Conference on Machine Learning, vol-
ume 70 of Proceedings of Machine Learning Re-
search, pages 3881-3890, International Convention
Centre, Sydney, Australia. PMLR.

Zihao Ye, Qipeng Guo, Quan Gan, Xipeng Qiu, and
Zheng Zhang. 2019. Bp-transformer: Modelling
long-range context via binary partitioning.

Serena Yeung, Anitha Kannan, Yann Dauphin, and
Li Fei-Fei. 2017. Tackling over-pruning in varia-
tional autoencoders. International Conference on
Machine Learning: Workshop on Principled Ap-
proaches to Deep Learning.

Dani Yogatama, Manaal Faruqui, Chris Dyer, and
Noah A. Smith. 2015. Learning word representa-
tions with hierarchical sparse coding. In Proceed-
ings of the 32nd International Conference on Ma-
chine Learning, ICML 2015, Lille, France, 6-11 July
2015, volume 37, pages 87-96. JMLR.org.

44

Biao Zhang, Ivan Titov, and Rico Sennrich. 2020. On
sparsifying encoder outputs in sequence-to-sequence
models.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Proceedings of the 28th International
Conference on Neural Information Processing Sys-

tems - Volume 1, NIPS’15, page 649-657, Cam-
bridge, MA, USA. MIT Press.

Guangxiang Zhao, Junyang Lin, Zhiyuan Zhang, Xu-
ancheng Ren, Qi Su, and Xu Sun. 2019. Explicit
sparse transformer: Concentrated attention through
explicit selection.

A Derivations of ELBO

Starting from the Dy (q4(z, v |X)||py(z, v[X)), we
derive the Evidence Lower Bound (ELBO) as fol-
lows:

Dk r(qy(z, 710 |pe(z, v1X) =

qp(2,7[%)
dzdy q4(z,y|x)log ———,
po(z,71x)
Z,y

4

after rearranging terms in equation 4 we can obtain:

log py(x) — Dk (g4(z, 7 |X)|pg(z, ¥|x)) =

Py(2,7,X)
dzdy qu(z,y|x)log ———,
/ ¢ S )
z,y
ELBO

Based on the independence assumption that
we make in our graphical model (Figure 1) the
generative model factorises as: py(z,7,X)
Po(x]2)pp(z]|7)pe(y) and the inference model fac-
torises as: q4(z,7|x) = q4(z|y, x)q4(y|x). There-
fore, we can rewrite the ELBO as follows:

Po(x12)py(z|¥)Py ()
4p(zly.)q,(r1%)
(6)
We can further rewrite the ELBO as a sum of the
three separate terms. Where the first term is:

J dzdy qg(zly. x)qg(y|x)log
Z’y

/dzdyq¢(2|x, )4y (r1x) log py(x|2)

zZY

/

14

< / dz q,(z|x,y)log Pe(x|z)>
q5(r1x)

z

dy q4(v|x) / dz qy(z|x, ) log py(x|2).. (7



The second term is:

/ dzdy q4(z|x,7)q4(v |x)[log g, (z|x, v) — log pe(z]y)]
zy

< / dz qy(z|x, y)llog q4(z|x,7) — log P0(1|7’)]>

qp(r1%)

<|DKL(Q¢(Z|xs 13l |P9(Z|V))>

45(r1x)
®)
Finally, the third term is:

/ dzdy q,(z]x, ¥)q,(r1x)[log q4(r|x) — log py(y)]

zZ,y

/

dy qg(v|0)[log go(y |x) — log py(y)] / dzq,(z|x, 7).
v z

—— —
sums to 1 for each:y
/ dy q4(r1x)[log g4y [x) — log py(y)].-
14

Dk (e 1X)1pe(r))--
)
Collecting all the three terms into the single ELBO:

</d2 q¢(z|x,y)logp9(x|z)> -
’ 4p(r1x)

(10)
—<[DKL(q¢(ZIx, V)||P0(Z|V))>

q¢(yIX)_
_DKL(Q¢(7|X)| |Pe(¥))s

B Objective Functions of Mathieu et al.
(2019) and Tonolini et al. (2019)
Models

The objective function of Mathieu et al. (2019) is:
( log py(x|2)) — WK L(q(z1%)||pg(2))—
—AD(g,(2), pe(2)),

where y and A are the scalar weight on the terms
and Tonolini et al. (2019) is:

4g(z1%)

< logpe(xlz)>q¢(zlx) - KL(Qd,(le)l |q¢(zlxu)_
—J XDy (7,]1)).

where J is the dimensionality of the latent variable
z, x, 1s a learnable pseudo-input (Tomczak and
Welling, 2018) and « is prior sparsity.

C Deriving Marginal of (Univariate)
Spike-and-Slab Prior

We derive the Spike-and-Slab distribution by in-
tegrating out the index component which is dis-
tributed as a Bernoulli variable. This result is quite
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well-known in machine learning, however for the
ease of the reader we present it here as a quick ref-
erence.

The derivation: assume 1) # ~ p(x;y) is a
Bernoulli(y) and 2) p(z|z) = (1 — m) X p;(z) +
7 X py(z), where p,(z) ~ N'(z;0,1) and p,(z) ~
N(z;0,6 — 0) is a Spike-and-Slab model. The
the marginal Spike-and-Slab prior over z can be
obtained in the following way:

1
p(z;y) =) plzlx = iyp(x = isy)
i=0
p(zlr = 0)p(x = 0;7) + p(z|lx = Dp(x = 1;7)..
[(1=0)X py(2) + 0 X py(2)]p(m = 0;y)+
+[(1 = 1) X p1(2) + 1 X py(2)]p(x = 15 7).

Expanding brackets:

p1(2)p(z = 0;7) + pr(2)p(z = 1;7)..
N(z;0, Dp(x = 0;7) + N(z;0,6 = O)p(x = 1;7)..
(1 —pN(z;0,1)+yN(z;0,6 = 0)..

Therefore,

p(z;7) =1 =N (z0,1) +yN(z;0,6 > 0).

D End-to-end Differentiable

Sampling a value from the Spike-and-Slab posterior
distribution g(z|x, y) is a two step process. First a
spike or slab component is sampled which is a bi-
nary decision, we use Binary Concrete distribution
(Maddison et al., 2016) to make this sampling step
end-to-end differentiable. Then the value is sam-
pled from the corresponding component, for this
we employ the reparameterization trick (Kingma
and Welling, 2014). Also, samples from the Beta
distribution are pathwise differentiable (Figurnov
et al., 2018).

E Hoyer

This section reports Average Hoyer, for the two cor-
pora Yelp and Yahoo, both on the mean and samples
from the posterior distributions of the HSVAE and
MAT-VAE models.



E.1 MAT-VAE

sample (A:0.01, ¢:0.01) ——
mean (A:0.01, ¢:0.01)
sample (A:1.0, :0.01)
mean (A:1.0, ¢:0.01)

sample (A:10.0, :0.01)
mean (A:10.0, ¢:0.01)
sample (A:1.0, :0.1)
mean (A:1.0, ¢:0.1)

Iterations

Figure 6: Average Hoyer (Av.Hoyer) on Yelp corpus
dev set for MAT-VAE. Lines are an average over the
3 runs of the models, the shaded area is the standard
deviation. The dimensionality of the latent variable of
the models is 32D.

sample (A:0.01, ¢:0.01) —— sample (A:10.0, ¢:0.01)

0.40 -—- mean (A:0.01, ¢:0.01) --~- mean (A:10.0, :0.01)
—— sample (A:1.0, ¢:0.01) —— sample (A:1.0, y:0.1)
5035 T mean (A:1.0, ¢:0.01) --——- mean (A:1.0, ¢:0.1)
> e et |~y
T T
> 0.30
<
0.25 B
v S
0.20
2 4 6 8 10 12 14
Iterations

Figure 7: Average Hoyer (Av.Hoyer) on Yahoo corpus
dev set for MAT-VAE. Lines are an average over the
3 runs of the models, the shaded area is the standard
deviation.

E.2 HSVAE

—— sample (a:10.0, 3:30.0) -——- mean (a:30.0, 3:10.0)
--+- mean (a:10.0, 3:30.0) —— sample (:30.0, 3:30.0)
—— sample (a:30.0, 3:10.0) -——- mean (a:30.0, 3:30.0)

2 4 6 8 10 12 14
Iterations

Figure 8: Average Hoyer (Av.Hoyer) on Yelp corpus
dev set for HSVAE. Lines are an average over the 3 runs

of the models, the shaded area is the standard deviation.

The dimensionality of the latent variable of the models
is 32D.
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0.5
. N L=
CI>’,0‘4 —— sample (a:10.0, 3:30.0) -—- mean (2:30.0, 3:10.0)
:g --~- mean (a:10.0, 3:30.0) —— sample (a:30.0, 3:30.0)
> —— sample (a:30.0, 3:10.0) -—- mean (a:30.0, 3:30.0)
<0.3 d N —— I S

10

Iterations

Figure 9: Average Hoyer (Av.Hoyer) on Yahoo corpus
dev set for HSVAE. Lines are an average over the 3 runs
of the models, the shaded area is the standard deviation.
The dimensionality of the latent variable of the models
is 32D.

F Hardware

Please refer to Table 1 for the hardware that we use.

hardware specification
CPU Intel® Xeon E5-2670V3, 12-cores, 24-threads
GPU NVIDIA® TITAN RTX™ (24 GB) x 1
RAM CORSAIR® Vengeance LPX DDR4 2400 MHz (8 GB) x 4

Table 1: Computing infrastructure.

G Datasets

Yelp DBpedia Yahoo
# sent. (train corpus) 100K 140K 100K
# sent. (valid corpus) 10K 14K 10K
# sent. (test corpus) 10K 14K 10K
vocabulary size 19,997 20K 20K
min sent. length. 20 1 5
av. sent. length. 96 35 12
max. sent. length. 200 60 30
# classes 5 14 10

# sent. in each class (train/test corpus) 20K/2K 10K/1K 10K/IK

Table 2: Statistics of corpora. Vocabulary size excludes
the (pad )and (EOS )symbols.



Temporal-aware Language Representation Learning From Crowdsourced
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Abstract

Learning effective language representations
from crowdsourced labels is crucial for many
real-world machine learning tasks. A chal-
lenging aspect of this problem is that the qual-
ity of crowdsourced labels suffer high intra-
and inter-observer variability. Since the high-
capacity deep neural networks can easily mem-
orize all disagreements among crowdsourced
labels, directly applying existing supervised
language representation learning algorithms
may yield suboptimal solutions. In this pa-
per, we propose TACMA, a temporal-aware
language representation learning heuristic for
crowdsourced labels with multiple annotators.
The proposed approach (1) explicitly mod-
els the intra-observer variability with atten-
tion mechanism; (2) computes and aggregates
per-sample confidence scores from multiple
workers to address the inter-observer disagree-
ments. The proposed heuristic is extremely
easy to implement in around 5 lines of code.
The proposed heuristic is evaluated on four
synthetic and four real-world data sets. The
results show that our approach outperforms
a wide range of state-of-the-art baselines in
terms of prediction accuracy and AUC. To en-
courage the reproducible results, we make our
code publicly available at https://github.com/
CrowdsourcingMining/TACMA.

1 Introduction

Crowdsourcing offers the ability to utilize the
power of human computation to generate data an-
notations that are needed to train various Al sys-
tems. For many practical supervised learning ap-
plications, it may be infeasible (or very expen-
sive) to obtain objective and reliable labels due
to many reasons such as varying skill-levels and
biases of crowdsourced workers. Instead, to im-
prove the quality of labels, we can collect subjec-
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tive and inconsistent labels from multiple heteroge-
neous crowdsourced workers. In practice, there is
a substantial amount of disagreement between the
crowdsourced workers (Nie et al., 2020), i.e., inter-
observer variability or even between a worker and
the same worker looking at the same example some
time later (Guan et al., 2018), i.e., intra-observer
variability. Hence, it is of great practical interest to
address supervised learning problems in this sce-
nario.

Meanwhile, with the recent advances of deep
neural networks (DNNs), supervised representa-
tion learning (SRL) has led to rapid improvements
in the ability of learning intrinsic nonlinear em-
beddings using DNNs that preserves the distance
between similar examples close and dissimilar ex-
amples far on the embedding space. In spite of the
significant progress for SRL applications such as
face recognition (Schroff et al., 2015), image re-
trieval (Xia et al., 2014), directly applying existing
deep language representation learning approaches
on crowdsourced labels may yield poor generaliza-
tion performance (Han et al., 2018). Because of the
high capacity, DNNs could entirely memorize the
inconsistency within crowdsourced labels sooner or
later during the modeling training process. Besides,
this phenomenon does not change with the choice
of training optimizations or network architectures
(Han et al., 2018).

A large spectrum of approaches have been suc-
cessfully developed in either estimating true labels
from crowdsourced labels, a.k.a., truth inference or
label aggregation (Dawid and Skene, 1979; White-
hill et al., 2009), learning via adversarial data gen-
eration (Wang et al., 2020a), or learning language
representations discriminatively from large-scale
consistent labeled data with complicated neural
architectures (Rodrigues and Pereira, 2018). How-
ever, learning effective neural embeddings directly
from crowdsourced labels of real-world data poses

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 47-56
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numerous challenges. First, crowdsourced work-
ers conduct labeling tasks sequentially, i.e., they
label samples one after another. Such sequential
labeling behavior is a process of learning, and the
expertise of the workers is not stable but gradually
changing even without feedback (Elliott and Riach,
1965). According to Miller’s Law (Miller, 1956),
humans retain what they just learned in their short-
term working memory with a limited span of 7 +
2. Temporal factors such as fatigue (Zhang et al.,
2018) and intrinsic motivation (Kaufmann et al.,
2011) implicitly influence the crowdsourcing qual-
ity, which are different from existing well-studied
factors, such as the quality of crowdsourced work-
ers, the difficulty of data samples, the price of anno-
tation tasks, etc. In the following, such unconscious
temporal behaviors are referred to as “temporal la-
beling effects”. How to model such sample-level
temporal information for each individual worker
undoubtedly poses a hard modeling problem. Sec-
ond, a large number of real-world crowdsourced
data sets have a substantial amount of disagree-
ment among labels and a relatively small sample
size. The majority of existing SRL approaches are
discriminatively trained on large-scale consistent
labeled data to learn their complicated neural archi-
tectures, which may easily overfit the inconsistent
crowdsourced data.

In this paper we study and develop solutions that
are applicable and can learn effective neural lan-
guage representations from crowdsourced labels in
an end-to-end manner. Our work focuses on the
refinements of a popular deep language represen-
tation learning paradigm: the deep metric learning
(DML) (Koch et al., 2015; Xu et al., 2019; Wang
et al., 2020b). We aim to develop an algorithm
to automatically learn a nonlinear language repre-
sentation of the crowdsourced data from multiple
workers using DNNs.

Briefly, the DML is a classical and widely used
approach for language representation learning that
preserves the distance between similar examples
close and dissimilar examples far on the embedding
space. The majority of existing DML techniques
restricted to just noise-free labels appropriately.
However, learning effective representation from
highly inconsistent crowdsourced data sets from
multiple workers gives rise to numerous important
questions: (1) since in practice, annotation perfor-
mance is affected and varied over time (Boksem
et al., 2005; Zhang et al., 2018), how do we capture
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such temporal labeling effects in the DML learning
framework? (2) while in some cases the problem
may be alleviated by pre-processing methods, such
as filtering(Li et al., 2016), label correction(Li et al.,
2019a), truth inference (Dawid and Skene, 1979;
Raykar et al., 2010), etc., the number of remained
instances is often significantly reduced or such pre-
processing errors for many problems will be prop-
agated to the downstream representation learning
tasks. How to capture the label uncertainties from
multiple workers and at the same time prevent the
overfitting problem in an end-to-end framework?

In this work we address the above issues by
presenting a temporal-aware language representa-
tion learning heuristic for crowdsourced labels with
multiple annotators (TACMA), that

* utilizes the attention mechanism to capture the
temporal influence among sequential labeling
tasks according to each worker’s short-term
working memory.

estimates and aggregates the annotation con-
fidence from disagreements among multiple
workers for each sample.

supports language representation learning
with DML into an end-to-end fashion, and
is extremely easy to implement based on ex-
isting DML framework with crowdsourced
labels i.e., RLL (Xu et al., 2019), in around 5
line of codes.

2 Related Work

2.1 Truth Inference in Crowdsourcing

A large body of research has focused on infer-
ring true labels from crowdsourced labels from
multiple workers (Dawid and Skene, 1979; White-
hill et al., 2009; Li et al., 2019¢; Rodrigues and
Pereira, 2018). The majority of truth inference
approaches are inspired by the classic Expectation-
Maximization learning paradigm that iterates be-
tween estimating the expertise of annotators given
true labels inferred and inferring true labels given
the expertise of annotators (Dawid and Skene,
1979; Whitehill et al., 2009; Zhang et al., 2014;
Lietal., 2019c). Some improvements include mod-
eling the difficulty of items and the expertise of
annotators jointly (Whitehill et al., 2009), applying
spectral methods to initialize worker confusion ma-
trix (Zhang et al., 2014), and modeling correlations
of workers (Li et al., 2019c¢), etc.



In spite of the successful applications of the truth
inference techniques, the majority of aforemen-
tioned approaches do not consider the temporal
effects of labeling tasks of each individual worker
and they cannot seamlessly integrate into deep SRL
frameworks.

2.2 Learning from Noisy Labels

Learning with noisy labels has been an important
research topic since the beginning of machine learn-
ing (Frénay and Verleysen, 2013) and a large spec-
trum of models have been developed and success-
fully applied in improving the model prediction
performance in noisy settings from different per-
spectives such as effective label cleaning (Lee et al.,
2018), robust model architectures (Vahdat, 2017)
and loss functions (Ghosh et al., 2017), sample re-
weighting (Ren et al., 2018), and carefully designed
training procedures (Zhong et al., 2019).

However, in this work, different from above ap-
proaches of robust learning from noisy labels that
assume certain percentage of labels are corrupted,
our scenario focuses on noisy labels obtained from
multiple annotators where the disagreement (cor-
ruption) proportion might be surprisingly high and
sometimes even 100%, i.e., no completely agree-
ment on every single sample from all crowd work-
ers.

2.3 Deep Metric Learning

DML approaches automatically learn nonlinear
metric spaces (Schroff et al., 2015). Many ap-
proaches have achieved promising results in many
tasks such as face recognition (Schroff et al., 2015),
person re-identification (Yi et al., 2014), and collab-
orative filtering (Hsieh et al., 2017) etc. Recently
a body of works have attempted to learn effective
embeddings from crowdsourced labels by using
DML approaches (Xu et al., 2019; Wang et al.,
2020b). For example, Xu et al. estimated crowd-
sourced label confidence and adjust the DML loss
function accordingly (Xu et al., 2019). An exhaus-
tive review of previous work is beyond the scope
of this paper. We refer to the survey of (Schroff
et al., 2015) on works of DML. Although DML ap-
proaches are able to learn effective representations,
they heavily rely on comparisons within pairs or
triplets, which is very sensitive to ambiguous ex-
amples and may be easily misled by inconsistent
crowdsourced labels.

Please note that models from the above three
categories are complementary and they can be
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combined. For example, learning representation
from crowdsourced labels can be conducted in two
stages where the truth inference algorithms in Sec-
tion 2.1 is applied to get estimated labels and then
the standard DML approaches in Section 2.3 are
used to output the learned embeddings. Details are
discussed in Section 4.

3 The Proposed Approach

3.1 Notations

Without loss of generality, we consider crowdsourc-
ing scenarios that each data sample is annotated
by multiple workers. Following the crowdsourc-
ing practice and to avoid the order effect (Hogarth
and Einhorn, 1992) and cheating, each worker will
annotate the same set of samples but with shuffled
orders. Let a’ be the sample order index set for the
4" worker and ! be the index of it" sample for
worker j. Let X o and Yo be the feature vectors

and the worker’s assigned label for sample a{ . Let
F(-) represent the learned language representation.
Let (-)* and (-)~ be the indicators of positive and
negative examples.

3.2 Temporal-Aware Memory Confidence

According to Miller’s Law (Miller, 1956), humans
can only hold a very limited number of objects in
their short-term working memories. When workers
conduct labeling tasks, they tend to make relative
comparisons in their memory spans and the anno-
tation quality of one sample is largely influenced
by its preceding samples. Therefore, in this work,
we focus on studying and modeling the effects of
unconscious human behaviors during the labeling
process that may implicitly influence the overall
crowdsourcing quality. We design an approach
to explicitly capture such unconscious temporal
human behaviors, i.e., temporal labeling effects.
We aim to ensure that the newly annotated sam-
ples should obtain the consistent label with similar
samples that have already been annotated recently.
Here we first define the short-term labeling memory
as follows:

Definition 1. (SHORT-TERM LABELING MEM-
ORY) A short-term labeling memory of ith sa
ple, i.e., indexed as o), is composed of a sequence
of the current item and k most recent historical
items that have been labeled by worker j, i.e.,
M! = {< Xois Yol >3 < Xyl 3Ygl > <

X Y >t
oy g }

m-



When the new labeling task arrives, i.e., the ith
sample, we compute a weight for every element in
worker j’s short-term labeling memory M as the
dot product of their learned language representa-
tions. This weight might be viewed as an attention
over the short-term labeling memory per sample
per worker.

To form a proper probability distribution over the
elements in Mi , we normalize the weights using
the softmax function. This way we model probabil-
ity Sod_, that represents the similarity between the

ith sample and the sample appears at position [ in

M. In a functional form this is:

S O/_;l)af(xa]_') ’k

0,

o

X exp <J—" (x ), l

Then we define a memory confidence score, i.e.,
¢/, to represent the probability that how likely the
sample i is positive (y_; = 1) solely considering

J
i—1

similar samples in the short-term labeling memory.
The memory confidence score of ¢/ is computed as
follows:

k

cg = Pr(yag =1)x Z 1 [yazil = 1]5aj

i—l
=0

Please note that our attention based temporal-
aware memory confidence scores are not limited
to binary crowdsourcing tasks and it can be easily
extended to multi-class tasks.

3.3 Multi-Worker Confidence Aggregation

For each sample ¢, after collecting the mem-
ory confidence scores from all workers, we con-
duct the mean pooling as our aggregation op-
eration, and the final aggregated multi-worker
confidence is computed as follows: ¢;
MeanPooling(c}, c2,--- ,c™), where m is the
number of workers.

3.4 Representation Learning Framework

We use DML as our representation learning frame-
work. Specifically, following the suggestion of
(Xu et al., 2019), instead of using pair and triplet
comparisons, we use group, a.k.a., n-tuplet, as our
comparison unit. A group is made up of two posi-
tive and n negative examples. Similar to (Xu et al.,
2019), we choose to learn our model parameters by
maximizing the conditional likelihood of retrieving
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the positive example xj given the positive example
X;_ from a given group.

Importantly, we do not assume that we know the
ground truth label of items in the training set and
the validation set. During the training stage of the
representation learning framework, after obtaining
the aggregated multi-worker confidence ¢; of an
item with methods introduced in Section 3.3, its
label is estimated by arg max c;.

Given a collection of groups, we optimize the
DML model parameters by maximizing the sum
of log conditional likelihood of finding a positive
example x;r given the paired positive example x;r
within every group g, which will push items of the
same class close and items of different classes far
in the embedding space. Furthermore, we incorpo-
rate the aggregated temporal-aware multi-worker
confidence scores from Section 3.3 into the loss
function to capture the inconsistency of crowd-
sourced labels. The loss function is defined as
L£(Q) = - Y log p(x] |x}).

exXp (77 . Cj . Tij)
Zx* eg,x*;éer exp (n cCx * Tz‘*)

i

) —
p(Xj %) =

where () is the parameter set of the DNN. r;, rep-
resents the cosine similarity score between the rep-
resentations of x;" and x, in the embedding space.
7 is a smoothing hyper parameter in the softmax
function, which is set empirically on a held-out
data set in our experiment. Since £(f2) is differ-
entiable with respect to {2, we use gradient based
optimization approach to train the DNN.

Representation
Layer

Aggregated Temporal-aware
Confidence Layer

- . N -
Xl \‘ .F(X, \‘
XH—| @ | —@H ) —
\Softmax
X, — — F(xp) ) — — p(xfIxH)
X]: H\/—»]:(x;) rik 4.\//

Figure 1: The model structure. Groups made up of
two positive and n negative examples are fed into the
neural network to obtain their language representations.
The cosine similarity scores, i.e., 7;., are calculated
between the representations of xj and x, in the embed-
ding space. Finally, the goal of training is to maximize
the conditional likelihood p(xj-'|xj'), which incorpo-
rates temporal-aware memory confidence scores cf .



4 Experiments

Experiments are conducted on both real-world and
synthetic data sets. The internal cross validation ap-
proach is used to select hyper parameters when op-
timizing models’ predictive performances. Means
as well as standard deviations of both accuracy and
AUC scores are reported, to comprehensively eval-
uate the performance of our proposed method, i.e.
TACMA.

4.1 Real-World Data Sets

Experiments are first conducted on 4 real-world
data sets and the corresponding descriptive statis-
tics can be found in Table 1.

* Emotion: A vocal emotional speech data
set with binary labels indicating whether the
voice fragment is exciting or not.

Concluding: A linguistic data set where each
item is labeled on whether it is a conclusion
of a lesson.

Commending: A linguistic data set of ASR
transcripts from real-world classroom record-
ings. Each item is labeled on whether it’s a
commending instruction from the instructors.

Question: A vocal speech data set where each
item is labeled on whether it is an interrogative
sentence.

Acoustic features of the Emotion data set are ex-
tracted using OpenSmile! with the computational
paralinguistic challenge’s (COMPARE-2013) fea-
ture set (Schuller et al., 2013). Sentence embedding
features are extracted with a Chinese RoBERTa
pretrained model 2. Again we emphasize that the
ground truth labels of items in the training and vali-
dation set are not observed. In order to evaluate the
performance of each model objectively, the labels
of items in test sets are labeled by experts and they
have reached an agreement on the labels of items.

Inter-observer variability of each data set is mea-
sured with Fleiss-kappa score (Fleiss, 1971). Intra-
observer variability, i.e., the level of consistency of
an annotator when labeling items from the same
class, is hard to directly measure without ground
truth labels. We will explore the effect of intra-
observer variability using temporal-aware memory
confidence in Section 4.8.

"https://www.audeering.com/opensmile/
>https://github.com/ymcui/Chinese-BERT-wwm
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4.2 Synthetic Data Sets

In real-world scenarios, annotators are not guaran-
teed to be serious about their annotating work, and
one may assign random labels in order to get paid
quickly. Methods designed for crowdsourcing sce-
narios should be able to get rid of the influence of
these noisy annotations. Hence we build synthetic
data sets to evaluate the robustness to irresponsi-
ble annotators of each method. Starting from the
original Question data set, we gradually add 2, 4,
6 and 8 simulated irresponsible annotators. They
make random judgments regardless of the features
of items. Hence in the worst case, 8 out of 13 work-
ers are making random judgments, resulting in an
extreme low kappa of 0.02. Experiments conducted
on these synthetic data sets are helpful to examine
the robustness of methods.

4.3 Baselines

We carefully selected several groups of baselines
as follows:

Group 1: Truth Inference. A wide range of
label aggregation methods are chosen as our base-
lines. Some widely-used methods according to
the survey (Zheng et al., 2017) are included, i.e.,
EM (Dawid and Skene, 1979), Spectral-EM(Zhang
et al., 2014), GLAD (Whitehill et al., 2009), IBCC
(Kim and Ghahramani, 2012), VI-BP (Qiang et al.,
2012), VI-MF (Qiang et al., 2012), KOS (Karger
et al., 2011), ZenCrowd (Demartini et al., 2012),
LFC (Raykar et al., 2010), PM (Li et al., 2014), and
the implementation of these algorithms can mostly
be found in the website’. Meanwhile some more
recent works are also included: EBCC (Li et al.,
2019c), BWA (Li et al., 2019b).

Group 2: Representation Learning. Our pro-
posed method is compared with representation
learning methods via deep metric learning, in-
cluding Triplet with semi-hard example mining
(Schroff et al., 2015), i.e., Triple, and Triplet net-
works with Center Loss (He et al., 2018), i.e., Cen-
ter. Recent works of learning effective embeddings
from crowdsourced labels using DML approaches
are also important baselines: RLL-MLE (Xu et al.,
2019), RLL-Bayesian (Xu et al., 2019), RECLE
(Wang et al., 2020b).

Group 3: Learning from Noisy Data. Group
3 contains methods of learning with noisy labels:
LC (Arazo et al., 2019) use a two-component beta
mixture model to perform unsupervised noise mod-

*https://zhydhkews.github.io/crowd_truth_inference/index.html



Table 1: Data sets statistics.Data sets statistics. It should be noted that the class ratio of each training set is estimated
by majority voting since the ground truth labels are not observed. The labels of items in each test set are annotated
by experts and they have reached an agreement on the label of each item.

Data Sets Emotion Commending Question Concluding Syn-2 Syn-4 Syn-6 Syn-8

# of annotators 5 7 5 5 7 9 11 13

# of train samples 3067 1200 3140 1208 3140 3140 3140 3140

# of validation samples 766 299 785 302 785 785 785 785

# of test samples 800 1300 2000 648 2000 2000 2000 2000

kappa 0.84 0.69 0.82 0.37 0.35 0.2 0.12 0.08

train class ratio (majority voting)  0.42 0.50 0.63 0.42 0.63 0.63 0.63 0.63
eling, and DivideMix (Li et al., 2019a) leverages 4.5 Performance Comparison

semi-supervised learning techniques. CrowdLayer
(Rodrigues and Pereira, 2018) is an end-to-end ap-
proach learning a DNN from noisy labels with a
crowd layer.

Group 4: Combining Group 1 with Groups
2 & 3. Some methods of Group 2 & 3, i.e.
Triple, Center, LC, DivideMix, are not specifi-
cally designed for crowdsourcing scenarios. Al-
though majority-voting labels are served as a de-
fault choice, these models should be trained with
labels inferred by methods of Group 1 as stronger
baselines, since methods of Group 1 are likely to
provide more accurate inferred labels than majority
voting. These methods are therefore trained with
labels inferred by EBCC, which achieves the best
performances of Group 1 in all data sets.

4.4 Setup and Implementation Details

Experimental codes are implemented
in Tensorflow 1.8 available at https:
//github.com/CrowdsourcingMining/TACMA.
Experiments are conducted on a server with a
GTX 1080 Ti GPU. We set the tuplet size n to 5
for all the experiments, as suggested in (Xu et al.,
2019). The representation learning network has
a simple structure, i.e., 2 fully-connected layers
with a drop-out rate of 0.2, a learning rate of 1e-3,
and hyper-parameters including sizes of each layer
and scale of /5 regularization searched via grid
searching with cross validation. The network
weights are initialized with a normal distribution
initializer and updated with Adadelta optimizer
(Zeiler, 2012). For all the representation learning
methods, the downstream classifier is set to be
a logistic regression classifier with /5 penalty
containing the only hyper-parameter C' as penalty
strength ranging from le-2 to le4.
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We compare performance of TACMA with existing
methods on 4 real-world data sets and the results
are summarized in Table 2. TACMA outperforms
all the 4 groups of baselines, and here are some
observations:

* The advantage of TACMA over truth inference
methods gets bigger on the Concluding data
set than other data sets. The Concluding data
set has a low kappa score of 0.37, indicat-
ing that there are more disagreements among
workers, which makes it hard to inference cor-
rect labels regardless of items’ features. By
contrast, TACMA makes full use of represen-
tations of items to gain more information re-
sulting in the best performance.

Although labels inferred by EBCC boost the
performances of representation learning mod-
els, e.g., Triple+ EBCC, they still perform infe-
rior to TACMA, a possible explanation is that
these two-stage methods give equal weight
to each item and ignores temporal labeling ef-
fects. TACMA is able to discover potential con-
flicts in the short-term working memory, by
applying the attention mechanism and gives
low weights to the conflicting judgments.

TACMA shares the same representation net-
work structures with other methods of repre-
sentation learning with crowdsourced labels
i.e., RLL-MLE, RLL-bayesian and RECLE.
The learned representations are compared in
Figure 2 by feeding the raw features into rep-
resentation network and performing dimen-
sion reduction into 2-dimensional space with
t-SNE method (Van and Hinton, 2008). In the
raw feature space, items of different classes
are interleaved with each other. By contrast,
learned representations of TACMA are more



Table 2: Prediction accuracy and AUC scores on 4 real-world data sets. The experiments are repeated 5 times and

the means and standard deviations are reported.

Commending Emotion Question Concluding
ACC AUC ACC AUC ACC AUC ACC AUC
EM 0.794+0.019 0.871+0.008 0.883+0.012 0.967+0.005 0.877+0.010 0.941+0.005 0.681+0.004 0.720+0.015
Spectral-EM 0.794+0.017 0.870+0.007 0.886+0.010 0.964+0.003 0.876+0.009 0.941+0.004 0.681+0.004 0.720+0.013
GLAD 0.794+0.017 0.870+0.007 0.886+0.010 0.964+0.003 0.878+0.009 0.942+0.004 0.689+0.009 0.742+0.014
IBCC 0.794+0.017 0.870+0.007 0.889+0.004 0.964+0.004 0.876+0.009 0.941+0.004 0.681+0.004 0.720+0.013
VI-BP 0.794+0.017 0.870+0.007 0.892+0.012 0.968+0.005 0.877+0.008 0.941+0.004 0.681+0.004 0.720+0.013
VI-MF 0.799+0.013 0.874+0.003 0.786+0.000 0.898+0.000 0.876+0.009 0.941+0.004 0.685+0.003 0.725+0.009
KOS 0.799+0.013 0.874+0.003 0.786+0.000 0.898+0.000 0.878+0.009 0.942+0.004 0.694+0.005 0.747+0.010
ZenCrowd 0.794+0.019 0.871+0.008 0.895+0.011 0.971+0.004 0.877+0.010 0.941+0.005 0.689+0.010 0.742+0.016
LFC 0.794+0.019 0.871+0.008 0.883+0.009 0.967+0.004 0.877+0.010 0.941+0.005 0.681+0.004 0.720+0.015
PM 0.799+0.014 0.867+0.008 0.887+0.010 0.966+0.003 0.874+0.010 0.940+0.004 0.677+0.009 0.730+0.013
EBCC 0.812+0.006 0.874+0.003 0.895+0.012 0.970+0.005 0.878+0.007 0.941+0.008 0.694+0.003 0.748+0.006
BWA 0.794+0.020 0.867+0.008 0.888+0.005 0.965+0.004 0.875+0.009 0.939+0.004 0.689+0.007 0.741+0.013
Triple 0.793+0.012 0.871+0.006 0.804+0.005 0.876+0.002 0.888+0.002 0.941+0.001 0.725+0.014 0.821+0.008
Center 0.806+0.002 0.859+0.001 0.701+0.007 0.780+0.007 0.840+0.006 0.905+0.008 0.705+0.015 0.797+0.007
RLL-MLE 0.800+0.008 0.866+0.001 0.854+0.016 0.961+0.008 0.853+0.013 0.919+0.006 0.735+0.004 0.828+0.009
RLL-Bayesian 0.816+0.000 0.861+0.001 0.877+0.006 0.954+0.004 0.877+0.004 0.932+0.003 0.725+0.001 0.839+0.001
RECLE 0.812+0.002 0.858+0.000 0.746+0.001 0.836+0.001 0.880+0.024 0.934+0.012 0.729+0.003 0.838+0.005
LC 0.560£0.085 0.700+0.028 0.611+0.046 0.715+0.007 0.715+0.018 0.720+0.007 0.701+0.018 0.790+0.011
DivideMix 0.515+0.016 0.733+£0.014 0.535+0.000 0.730+0.000 0.734+0.009 0.720£0.014 0.654+0.025 0.710+0.007
CrowdLayer 0.802+0.008 0.878+0.007 0.757+0.008 0.798+0.009 0.852+0.003 0.920+0.002 0.676+0.014 0.722+0.011
LC+EBCC 0.581+0.070 0.687+0.029 0.825+0.024 0.845+0.019 0.758+0.010 0.830+0.012 0.705+0.018 0.784+0.004
DivideMix+EBCC 0.515+0.018 0.730+0.014 0.726+0.039 0.832+0.028 0.760£0.012 0.833+0.014 0.659+0.006 0.720+0.005
Triple+EBCC 0.814+0.004 0.872+0.000 0.893+0.003 0.968+0.004 0.890+0.001 0.938+0.003 0.737+0.003 0.825+0.007
Center+EBCC 0.814+0.004 0.866+0.003 0.826+0.016 0.884+0.018 0.844+0.005 0.909+0.005 0.742+0.006 0.848+0.003
TACMA 0.831+0.002 0.882+0.004 0.904+0.002 0.973+0.001 0.899+0.005 0.945+0.003 0.765+0.006 0.855+0.010

separated than the other methods, reducing the
difficulty of downstream classification tasks.

4.6 Robustness to Irresponsible Workers

We select some representatives from Groups 1-4
and draw the curves of accuracy on synthetic data
sets containing different number of irresponsible
workers in Figure 3. We can find that:

* Truth inference methods such as EBCC stay
stable facing different numbers of irresponsi-
ble workers. On the other hand, the accuracy
of other methods decreases when increasing
the number of irresponsible workers. This re-
sult may be explained by the fact that for meth-
ods including RLL-Bayesian, Triple, learn-
ing effective representations of items heavily
relies on correct labels, and hence becomes
harder as the labels become more noisy.

TACMA maintains the highest accuracy of all
the methods. Unlike the two-stage method i.e.,
Triplet + EBCC, which gives equal weight
to each item and ignores temporal labeling
effects, TACMA is able to discover potential
conflicts in the short-term working memory
using the attention mechanism, and give low
training weights to the conflicting judgments.
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4.7 Effect of Working Memory Sizes

We set the working memory size ranging from
3 to 11 to find the optimized length and at the
same time explore its influence on performance,
shown in Figure 4. The accuracy of our proposed
method goes up at the beginning with the increas-
ing working memory size, and the standard devia-
tions gradually become smaller at the same time. It
is reasonable because potential inconsistent judg-
ments among similar items cannot be found with-
out observing enough historical annotations. As
the working memory size continues extending, the
accuracy scores become relatively stable, indicat-
ing that there is sufficient evidence to estimate the
time-aware confidence of the current annotation.

4.8 Relations between Temporal-aware
Memory Confidence and Worker’s
Expertise

In this part we further explore the relations between
worker’s expertise and temporal-aware memory
confidence. To evaluate a worker’s expertise, a
Logistic Regression classifier is trained with labels
annotated by this same person, and the accuracy
on the corresponding test set is recorded. On the
other hand, the temporal-aware confidence of all
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Figure 2: Visualization of learned representations on the test set of Question data. The raw features of items are
fed into the representation network to obtain the semantic representations, and dimension reduction using t-SNE

method is performed for visualization.

— TACMA — CrowdLayer RLL-Bayesian
— Triple — EBCC — Triple+EBCC
0.9
0.88] ] | |
— 1
>
3 ! l |
g
50.86] ! [
Q
o T Y 1
< \\—_
0.84] ‘_‘_\
0.82

0 2 4. 6 .8
Number of labelers making random decisions

Figure 3: Accuracy curves on synthetic data sets con-
taining different number of irresponsible annotators who
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Figure 4: The effect of different working memory sizes
on prediction accuracy on real-world data sets.
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the judgments made by this worker is averaged.

We perform standardization on both accuracy
scores and the averaged temporal-aware confidence
scores within the corresponding data set, and put
the standardized values of all the 62 workers from
4 real-world data sets and 4 synthetic data sets
together in Figure 5, to reveal the universal rela-
tion between temporal-aware confidence and the
worker’s expertise. We can find a wide range of
intra-observer variability among different work-
ers, estimated by their temporal-aware confidence
scores. A strong positive correlation is found be-
tween averaged confidence and prediction accuracy
(pearson r = 0.844). Specifically, synthetic irre-
sponsible annotators, colored in blue, are automati-
cally clustered in the lower left corner, indicating
that the poor performances of the classifiers trained
with their labels derive from huge inner inconsis-
tencies in their judgments.
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Figure 5: The relations between standardized temporal-
aware memory confidence and standardized prediction
accuracy of annotators in both real and synthetic data
sets. Most of the irresponsible annotators appear in the
lower left corner, indicating that there are internal con-
flicts in their judgments (low confidence), and therefore
LR models trained with these labels perform worse than
average.



5 Conclusion

We presented TACMA, an end-to-end framework
for language representation learning from crowd-
sourced labels. Comparing with traditional SRL
approaches, the advantages of our framework are:
(1) it is able to consider temporal labeling effects
within sequences of sample-level labeling tasks for
each worker; (2) it automatically computes and ag-
gregates sample-level confidence scores from multi-
ple workers which makes the training process more
effective. Experimental results on both synthetic
and real-world data sets demonstrates that our ap-
proach outperforms other state-of-the-art baselines
in terms of accuracy and AUC scores.
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Abstract

Recently, impressive performance on vari-
ous natural language understanding tasks has
been achieved by explicitly incorporating syn-
tax and semantic information into pre-trained
models, such as BERT and RoBERTa. How-
ever, this approach depends on problem-
specific fine-tuning, and as widely noted,
BERT-like models exhibit weak performance,
and are inefficient, when applied to unsuper-
vised similarity comparison tasks. Sentence-
BERT (SBERT) has been proposed as a
general-purpose sentence embedding method,
suited to both similarity comparison and
downstream tasks. In this work, we show
that by incorporating structural information
into SBERT, the resulting model outperforms
SBERT and previous general sentence en-
coders on unsupervised semantic textual simi-
larity (STS) datasets and transfer classification
tasks.

1 Introduction

Pre-trained models like BERT (Devlin et al., 2018)
and RoBERTa (Liu et al., 2019) have demonstrated
promising results across a variety of downstream
NLP tasks. Though BERT-like models have been
shown to capture hidden syntax structures (Clark
et al., 2019; Hewitt and Manning, 2019; Jawahar
et al., 2019), recent works have achieved perfor-
mance improvements on various natural language
understanding (NLU) tasks through the use of a
graph network that captures syntax and seman-
tics information. Xu and Yang (2019) demon-
strate the value of syntax information for pronoun
resolution tasks, using Relational Graph Convo-
lutional Networks (RGCNs) (Schlichtkrull et al.,
2018) to incorporate syntactic dependency graphs.
Wu et al. (2021) argue that semantics has not been
brought to the surface of pre-trained models and
propose to introduce semantic label information
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into RoOBERTa via RGCNs. Similar ideas have
been applied to information extraction (Santosh
et al., 2020), sentence-pair classification (Liu et al.,
2020) and sentiment analysis (Wang et al., 2020;
Yin et al., 2020) tasks. Though problem-specific
fine-tuning is required, these improvements sug-
gest that structural supervision is useful, and that
RGCNss serve as an effective structure encoder.
BERT can also be used as a general sentence
encoder, either by using the CLS token (the first
token of BERT output) or applying pooling over
its outputs. However, this fails to produce sentence
embeddings that can be used effectively for similar-
ity comparison. Furthermore, this method of using
BERT for similarity comparison is extremely inef-
ficient, requiring sentence pairs to be concatenated
and passed to BERT for every possible comparison.
In response, Sentence-BERT (SBERT) has been
proposed to alleviate this by fine-tuning BERT on
natural language inference (NLI) datasets using a
siamese structure (Reimers and Gurevych, 2019).
General-purpose sentence embeddings are gener-
ated which outperform previous sentence encoders
on both similarity comparison and transfer tasks.
In this paper, we show that it is possible to im-
prove the SBERT sentence encoder through the
use of explicit syntactic or semantic structure. In-
spired by SBERT’s success in producing general
sentence representations and previous efforts on
introducing structural information into pre-trained
models, we propose a model that combines the
two by training a BERT-RGCN model in a siamese
structure. Under specific structural supervision,
the proposed model is able to produce structure-
aware, general-purpose sentence embeddings. Our
empirical results show that it outperforms SBERT
and previous sentence encoders on unsupervised
similarity comparison and transfer classification
tasks. Furthermore, we find that the produced sen-
tence representation generalises better especially

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 57-63
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics



on fine-grained classification tasks.

2 Related Work

Sentence encoders have been studied extensively
in years. Skip-Thought (Kiros et al., 2015) has
been trained to predict its surrounding sentences by
using current sentence in a self-supervised fashion.
Hill et al. (2016) proposed a sequential denoising
autoencoder (SDAE) to reconstruct given sentence
representations. InferSent (Conneau et al., 2017),
on the other hand, used labelled NLI datasets
to train a general-purpose sentence encoder in
a BiLSTM-based siamese structure. Cer et al.
(2018) proposed the Universal Sentence Encoder
(USE) model based on transformers (Vaswani et al.,
2017), and trained it with both unsupervised tasks
and supervised NLI tasks. Inspired by InferSent,
Sentence-BERT (SBERT) (Reimers and Gurevych,
2019) produces general-purpose sentence embed-
dings by fine-tuning BERT on NLI datasets in a
siamese structure, showing improved performance
on a variety of tasks.

Hidden syntax structures in pre-trained models
have been well explored. Various probing meth-
ods have been used to investigate hidden structures
(Clark et al., 2019; Hewitt and Manning, 2019;
Jawahar et al., 2019). The impact of external struc-
tures on pre-trained models has also been ques-
tioned. Glavas and Vuli¢ (2021) examined the ben-
efits of incorporating universal dependencies into
pre-trained models. Dai et al. (2021) showed that
the tree induced from pre-trained models could pro-
duce competitive results compared with external
trees. However, recent improvements have still
been observed on various NLU tasks by incorporat-
ing structural information into pre-trained models.
Yin et al. (2020) proposed SentiBERT to incorpo-
rate constituency tree into BERT for sentiment anal-
ysis. Xu and Yang (2019) modelled each sentence
as a directed dependency graph by using RGCNs,
and achieved large improvements on pronoun reso-
lution. Zhang et al. (2020) proposed a semantics-
aware BERT model by further encoding seman-
tic information with BERT using a GRU (Chung
et al., 2014). RGCNs have also been used by Wu
et al. (2021) to introduce semantic information into
RoBERTa, and achieved consistent improvements
when fine-tuned on problem-specific datasets. Sim-
ilar efforts can be seen where researchers try to
provide syntax information via self-attention mech-
anism (Bai et al., 2021; Li et al., 2020).
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3 Model

Inspired by Reimers and Gurevych (2019), we train
our model in a siamese network to update weights
so as to produce similarity-comparable sentence
representations. The model we propose consists of
two components, as shown in Figure 1.

Softmax Classifier

—0000| 0000 |

concat concat
[ R-GCN } [ R-GCN ]
pooling T '[ pooling
BERT ] [ BERT
| Sentence A | | Sentence B |

Figure 1: The proposed model in siamese structure

BERT: Each sentence is first fed into the pre-
trained BERT-base model to produce both a sen-
tence representation, by applying mean-pooling,
and an original contextualised sequence-length to-
ken representation, which is used to initialise a
RGCN.

Structure Information: We use Spacy depen-
dency parser (Honnibal et al., 2020) with its middle
model to obtain dependency parse trees for all input
sentences. We also experimented with the use of
semantic graphs', since Wu et al. (2021) has shown
that semantic information benefits pre-trained mod-
els. However, we found semantic graphs to be
less effective than syntactic dependency trees when
evaluated on our development set, and as a result,
in the experiments below, we restrict our attention
to the use of syntactic dependency graphs.

RGCN: RGCNs, proposed by (Schlichtkrull
et al., 2018), can be viewed as a weighted mes-
sage passing process. At each RGCN layer, each
node’s representation will be updated by collect-
ing information from its neighbours and applying
edge-specific weighting:

1
hitt = ReLU(Wghi + 3 > ——W;hj) (1)
reRjeNy TbT

"For semantic graphs, we use the semantic parser produced
by Che et al. (2019).



where N and W} are the neighbours of node i and
the weight of relation r € R, respectively. c; , is
the normalisation constant and normally set to be
| N]| which is the number of neighbours under rela-
tion 7. W} is the self-loop weight. In our case, each
sentence is first parsed into a dependency tree, then
modelled as a labelled directed graph by an RGCN,
where nodes are words and edges are dependency
relations. Following Schlichtkrull et al. (2018),
we allow information to flow in both directions
(from head to dependent and from dependent to
head). Following Wu et al. (2021), we pass BERT
output through an embedding projection which is
made of an affine transformation and ReLLU non-
linearity, then use the transformed representations
to initialise RGCN'’s node representations. Since
BERT and Spacy use different tokenisation strate-
gies, we align them by taking the first subtoken as
its word representation from BERT for each word
in the RGCN. A structure-aware sentence represen-
tation is derived from RGCN’s output by applying a
mean-pooling over its node representations. During
training, rather than using ¢; , = |N/|, we found
it best to apply the normalisation factor across re-
lation types, ¢;,» = ¢; = »_, |N/|, the number of
neighbours. We use a one-layer RGCN, as we find
that a deeper network lowers the performance.

Connect BERT and RGCN: The concatenation
of BERT and RGCN’s sentence representations are
then passed through a layer normalisation layer to
form the final sentence representation. Sentence
embeddings of given sentence-pair are then inter-
acted before passing to the final classifier for train-
ing. As for the interaction, we use the concatena-
tion of sentence embedding u, v and the element-
wise difference |u — v|, which has been found to
be the best concatenation mode by Reimers and
Gurevych (2019). In this siamese structure, all pa-
rameters are shared and will be updated correspond-
ingly. We use cross-entropy loss for optimisation.

4 Experiments

We compare our model with SBERT?, InferSent’,
USE*, average GloVe vectors, and also two strate-
gies using pre-trained BERT to produce sentence
representations (BERT-CLS and BERT-AVG). For

*https://github.com/UKPLab/sentence-transformers, we
use its BERT-base-nli-mean model

3https://github.com/facebookresearch/InferSent

“https://tfhub.dev/google/universal-sentence-encoder-
large/3
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all experiments on these models, we use released
pre-trained models and scripts to produce sentence
embeddings.

4.1 Training Details

In order to produce general-purpose sentence em-
beddings, we follow SBERT in training the model
on a combination of the SNLI (Bowman et al.,
2015) and the MNLI datasets (Williams et al.,
2018). They contain 570,000 and 430, 000 sen-
tence pairs, respectively, which are annotated as
contradiction, entailment, or neutral. Our model is
trained for one epoch, and we use a batch-size of
16, the Adam optimizer with learning rate 2e—S5,
and a linear learning rate warm-up over 10% of
the training data. For RGCN layer, we use dropout
of 0.2 and hidden dimension of 512. Following
SBERT, we evaluate our model on the STS bench-
mark development set in Spearman rank correlation
for every 1, 000 steps during training, and save the
best model.

4.2 Evaluation - Unsupervised STS

First, we evaluate our model on semantic textual
similarity (STS) datasets. Here we use STS12-16
tasks (Agirre et al., 2012, 2013, 2014, 2015, 2016),
SICK-Relatedness (SICK-R) (Marelli et al., 2014)
test set and STS benchmark (STSb) (Cer et al.,
2017) test set. These datasets are labelled from
0 to 5 on semantic relatedness of sentence pairs.
We obtain these datasets via SentEval (Conneau
and Kiela, 2018). In this evaluation, we test dif-
ferent encoders’ performance without using any
task-specific training data.

Model | STSI2 | STS13 | STS14 | STS15 | STS16 | STSb | SICK-R | AVG
GloVe AVG | 5224 | 4991 [4336 |5591 [47.67 [46.00 5502 |50.02
InferSent | 4842 | 6737 |6141 |72.87 |66.12 |64.33 6295 |6335
USE 6342 | 6750 |64.16 |7699 |73.23 |74.60 |76.67 |70.94
BERT-AVG | 3087 |59.89 |47.73 |6029 |63.73 |47.29|5822 |52.57
BERT-CLS | 21.54 | 32.11 21.28 |37.89 |44.24 |(20.29|4242 31.40
SBERT 7097 | 7653 |73.19 [79.09 |7430 [76.98 |7291 |74.85
Ours 7251 |77.05 |74.06 |80.90 |7620 |78.50|7358 |76.11
Table 1: Results on STS12-16, STSb and SICK-R.

Spearman rank correlation p between the cosine simi-
larity of sentence representations and the gold labels is
calculated. p x 100 is reported

The results are given in Table 1, and show that
our model outperforms SBERT on all 7 tasks,
obtaining the highest average score, and demon-
strating the benefits of including explicit syntax
structure during supervision. Both SBERT and



our model perform worse than USE on SICK-R.
However, as observed by Reimers and Gurevych
(2019), USE is trained on various datasets includ-
ing question-answering pairs, NLI, online forums
and news, which appears to be particularly suitable
to the data of SICK-R. Both BERT-AVG and BERT-
CLS perform poorly which reflects their weakness
as general-purpose sentence encoders.

4.3 Evaluation - Transfer Tasks

While the best results for BERT-like models is
achieved with problem-specific fine-tuning, an eval-
uation on transfer tasks provides a way to test
the encoder’s generalisation ability and represen-
tation quality. Following Reimers and Gurevych
(2019), we use SentEval with logistic regression
to test different encoders on 8 classification tasks:
sentiment analysis, MR (Pang and Lee, 2005);
CR (Hu and Liu, 2004); SST-5/SST-2 (Socher
et al., 2013); question-type, TREC (Li and Roth,
2002); subjectivity-objectivity, SUBJ (Pang and
Lee, 2004); phrase-level opinion polarity, MPQA
(Wiebe et al., 2005); and paraphrase detection,
MRPC (Dolan et al., 2004). These datasets are
provided by SentEval.

As shown in Table 2, the proposed model out-
performs previous encoders in general though the
difference between SBERT and our model is rel-
atively small. Our model performs significantly
worse than USE on TREC, which may be due to the
fact that USE is pre-trained on question-answering
data, which appears to be beneficial to the TREC
question-type classification task. Unlike previous
poor performance on STS datasets, BERT-CLS and
BERT-AVG produce good results on classification
tasks. This shows that the relevant information is
encoded in BERT-CLS and BERT-AVG, they just
lack the ability to produce similarity-comparable
sentence embeddings. Both SBERT and our model
perform worse than BERT-AVG and BERT-CLS
on SUBJ task, which suggests that, while gaining
on sentiment analysis tasks, fine-tuning on NLI
datasets leads to information loss on recognising
the subjectivity of a sentence.

Extraction Difficulty As we have seen, the dif-
ference between SBERT and our model in our pre-
vious transfer comparison is small. Our hypothesis
is that, since we concatenate the outputs of BERT
and RGCN, the representations produced by our
model are more complex, and that simple logistic
regression lacks the ability to extract useful infor-
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GloVe AVG | BERT-AVG | BERT-CLS | InferSent USE SBERT Ours

MPQA | 87.6420.11 | 87.84+0.08 | 88.17+0.05 { 90.32+0.12 | 86.52+0.09 | 89.81+0.06 | 89.75+0.12

SST-5 | 44.35+0.11 | 47.33+0.22 | 48.03+0.45 [ 44.93+1.14 | 47.67+0.06 | 48.57+0.53 [ 49.19+1.01

SST-2 | 80.02+0.24 | 85.69+0.09 | 87.21+0.17 [ 84.15+0.33 | 85.78+0.11| 87.8+0.28 |87.99+0.28

SUBJ | 91.26+0.11 | 95.29+0.05 | 95.48+0.1 | 92.47+0.1 193.85£0.16(94.03+0.12(93.81+0.16

TREC | 80.36+2.13 | 90.24+0.8 [91.36+0.8387.94+0.56|92.36+0.32| 86.4+0.83 | 87.8+0.68

MRPC | 72.79+0.21 | 73.43£0.77 | 71.68+0.48 | 75.33£0.37 | 71.2+0.61 |74.68+0.75 | 74.9+0.74

MR | 77.26£0.19 | 81.38+0.08 [ 82.12+0.15 [ 81.71+0.23 | 79.48+0.1 | 82.77+0.22]82.59+0.13

CR 78.9+0.1 | 87.12£0.31 [87.33+0.23 | 86.34+0.52 | 86.03+0.23 | 88.99+0.16 | 89.02+0.13

AVG 76.57 81.04 81.42 80.40 80.36 81.63 81.88

Table 2: Results on SentEval evaluation with logistic
regression. For MR, CR, MPQA and SUBJ, we use 10-
fold cross validation and report accuracy on test-fold.
For remaining tasks, results are reported on test set. We
run 5 times with random seeds and report mean with
standard deviation.

SBERT Ours
MPQA | 89.98+0.16 | 90.11+0.13
SST-5 | 49.1+0.56 50.5+0.3
SST-2 | 88.51+0.71 | 88.39+0.39
SUBJ | 94.1+0.12 | 94.05+0.17
TREC | 86.96+0.32 | 88.4+0.58
MRPC | 74.79+1.28 | 75.01+0.85
MR 82.7+0.16 | 82.56+0.14
CR 88.89+0.24 | 88.94+0.26
AVG 81.88 82.25

Table 3: Results on SentEval evaluation with MLP.
Cells marked as bold only when the mean minus std
is no worse than the mean plus std of the other model

mation from such complex embeddings. To assess
this, we replace the logistic regression with a sin-
gle hidden layer MLP (128 hidden units) which is
widely used as a probing classifier. We focus on
the comparison between our model and SBERT,
re-running these two models with 5 random seeds,
and report accuracy in the same fashion, except
we adopt a more strict bold strategy to mark the
difference (as explained in the caption).

As shown in Table 3, for some tasks, e.g. MR
and CR, both models show stable performance
cross different classifiers, and their performance re-
mains similar when this more powerful extractor is
used. However, for SST-5 (5-way sentiment classi-
fication) and TREC (6-way question-type classifica-
tion), we see that clear improvements are obtained
by our model, suggesting that the additional syn-
tax supervision that we bring in through RGCNs
is beneficial for fine-grained classification tasks.
A similar pattern of results was found when we
experimented with a 2 hidden layer MLP.



5 Conclusion

In this work, we show that SBERT can be improved
by explicitly incorporating structural information.
By using RGCNs to incorporate syntactic struc-
ture into supervision, our model is able to produce
structure-aware, general-purpose sentence embed-
dings that achieve improved results on both unsu-
pervised similarity comparison and transfer clas-
sification tasks, when compared against previous
sentence encoders. By extending probing classi-
fiers, we further show that our syntax-informed
supervision method is particularly beneficial for
fine-grained tasks such as SST-5 and TREC.
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Abstract

Recently, fine-tuning pre-trained language
models (e.g., multilingual BERT) to down-
stream cross-lingual tasks has shown promis-
ing results. However, the fine-tuning process
inevitably changes the parameters of the pre-
trained model and weakens its cross-lingual
ability, which leads to sub-optimal perfor-
mance. To alleviate this problem, we lever-
age continual learning to preserve the original
cross-lingual ability of the pre-trained model
when we fine-tune it to downstream tasks. The
experimental result shows that our fine-tuning
methods can better preserve the cross-lingual
ability of the pre-trained model in a sentence
retrieval task. Our methods also achieve better
performance than other fine-tuning baselines
on the zero-shot cross-lingual part-of-speech
tagging and named entity recognition tasks.

1 Introduction

Recently, multilingual language models (Devlin
et al., 2019; Conneau and Lample, 2019), pre-
trained on extensive monolingual or bilingual re-
sources across numerous languages, have been
shown to enjoy surprising cross-lingual adaptation
abilities, and fine-tuning them to downstream cross-
lingual tasks has achieved promising results (Pires
et al., 2019; Wu and Dredze, 2019). Taking this
further, better pre-trained language models have
been proposed to improve the cross-lingual perfor-
mance, such as using larger amounts of pre-trained
data with larger pre-trained models (Conneau et al.,
2019; Liang et al., 2020), and utilizing more tasks
in the pre-training stage (Huang et al., 2019).
However, we observe that multilingual BERT
(mBERT) (Devlin et al., 2019), a pre-trained lan-
guage model, forgets the masked language model
(MLM) task that has been learned and partially
loses the cross-lingual ability (from a cross-lingual
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Figure 1: Masked language model and cross-lingual
sentence retrieval results before and after fine-tuning
mBERT to the English part-of-speech tagging task.

sentence retrieval (XSR)' experiment) after being
fine-tuned to the downstream task in English, as
shown in Figure 1, which results in sub-optimal
cross-lingual performance to target languages.

In this paper, we consider a new direction to
improve the cross-lingual performance, which is
to preserve the cross-lingual ability of pre-trained
multilingual models in the fine-tuning stage. Mo-
tivated by the continual learning (Ring, 1994; Re-
buffi et al., 2017; Kirkpatrick et al., 2017; Lopez-
Paz and Ranzato, 2017) that aims to learn a new
task without forgetting the previous learned tasks,
we adopt a continual learning framework to con-
strain the parameter learning in the pre-trained mul-
tilingual model when we fine-tune it to downstream

IThis task is to find the correct translation sentence from
the target corpus given a source language sentence.

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 64-71
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics



tasks in the source language. Specifically, based
on the results in Figure 1, we aim to maintain the
cross-linguality of pre-trained multilingual models
by utilizing MLLM and XSR tasks to constrain the
parameter learning in the fine-tuning stage.
Experiments show that our methods help pre-
trained models better preserve the cross-lingual
ability. Additionally, our methods surpass other
fine-tuning baselines on the strong multilingual
model mBERT and XLLMR (Conneau et al., 2019)
on zero-shot cross-lingual part-of-speech tagging
(POS) and named entity recognition (NER) tasks.

2 Related Work

Cross-lingual methods, which alleviate the need for
obtaining large amounts of annotated data in tar-
get languages, have been applied to multiple NLP
tasks, such as task-oriented dialogue systems (Chen
et al., 2018; Liu et al., 2019), part-of-speech tag-
ging (Wisniewski et al., 2014; Zhang et al., 2016;
Kim et al., 2017), named entity recognition (May-
hew et al., 2017; Ni et al., 2017; Xie et al., 2018;
Liu et al., 2021), abstractive summarization (Duan
etal., 2019; Zhu et al., 2019), and dependency pars-
ing (Schuster et al., 2019; Ahmad et al., 2019). Re-
cently, multilingual language models (Devlin et al.,
2019; Conneau and Lample, 2019; Huang et al.,
2019; Conneau et al., 2019), pre-trained on a large-
scale data corpus across a great many languages,
have significantly improved the cross-lingual per-
formance. However, the corresponding fine-tuning
techniques have been less studied. Wu and Dredze
(2019) investigated the effectiveness of fine-tuning
mBERT by freezing its partial bottom layers, and
Muller et al. (2021) further analyzed the fine-tuning
of mBERT.

3 Methodology

In this section, we first describe the gradient
episodic memory (GEM) (Lopez-Paz and Ranzato,
2017), a continual learning framework, which we
adopt to constrain the fine-tuning process. Then,
we introduce how we fine-tune the pre-trained mul-
tilingual model with GEM.

3.1 Gradient Episodic Memory (GEM)

We consider a scenario where the model has already
learned n — 1 tasks and needs to learn the n-th task.
The main feature of GEM is an episodic memory
M, that stores a subset of the observed examples
from task k (k € [1,n]). The loss at the memories
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from the k-th task can be defined as

_ 1 3

L(fo, M) = ——
o " M (zi,k,yi) EMy

»C(fg(.’ﬂi, k)? yl)a

(1
where the model fy is parameterized by 6. In order
to maintain the performance of the model in the
previous n — 1 tasks while learning the n-th task,
GEM utilizes the losses for the previous n — 1 tasks
in Eq. (1) as inequality constraints, avoiding their
increase but allowing their decrease. Concretely,
when observing the training samples (z, y) from
the n-th task, GEM solves the following problem:

minimizeg L(fo(z,n),y)
subject to
L(fo, Mi) < L(fy~", My) forall k <n, (2)

where fglil is the model before learning task n.

3.2 Fine-tuning with GEM

We consider two tasks (n = 2) in total by applying
GEM to the fine-tuning of pre-trained multilingual
models, namely, mBERT and XLMR. The first task
is either what the pre-trained models have already
learned (MLM) or the ability that they already pos-
sess (XSR), and the second task is the fine-tuning
task. We follow Eq. (2) when we fine-tune the
pre-trained models:

minimizeg L(fo(z,72),y)

subjectto L(fs, T1) < L(f5,Th), (3)

where 77 and 75 denote the first and second tasks,
respectively, and f, represents the original pre-
trained model. When the MLM task is considered
as the first task, we constrain the fine-tuning pro-
cess of the pre-trained model by preventing it from
forgetting its original task after fine-tuning so as
to better preserve the original cross-lingual abil-
ity. When the XSR task is considered as the first
task, on the other hand, we prevent the pre-trained
model from losing its cross-lingual ability after
fine-tuning. We also consider incorporating both
MLM and XSR as the first task.

4 Experiments

4.1 Dataset

For the POS task, we use Universal Dependencies
2.0 (Nivre et al., 2017) and select English (en),
French (fr), Spanish (es), Greek (el) and Russian
(ru) to evaluate our methods. For the NER task,



Model MLM XSR (Spanish to English) | XSR (Italian to English)
en es fr el ru P@l P@5 P@10 P@l P@5 P@10
mBERT 10.68 3.51 8.63 2.08 2.70 | 56.26 68.80 73.92 4476 61.32 66.70
Naive Fine-tune 216.80 16.72 40.54 5.62 8.61 | 37.72 5220 58.43 26.12 3746  46.69
w/ frozen layers | 95.17 9.33 30.04 344 5.34 | 38.16 53.92 59.16 28.69 4274  48.76
Multi-Task Learning
MTF w/ MLM 9.50 5.10 8.62  2.56 347 | 3593 5041 56.20 24.79 37.18 45.46
MTF w/ XSR 121.50 100.10 96.50 773.00 180.80 | 75.40 80.88 85.76 75.94 85.44 88.29
MTF w/ Both 9.89 9.45 11.30 3.80 4.16 | 77.84 82.57 87.97 74.38 83.29 86.95
Continual Learning
GEM w/ MLM 1299 6.62 11.39 2.87 422 | 4290 57.26 63.58 31.66 44.16 50.16
GEM w/ XSR 2529 2673 5595 11.84 1646 | 63.65 7545 80.56 63.56 78.18 83.42
GEM w/ Both 12.16 640 10.62 3.40 430 | 64.34 76.23 81.42 64.12  79.35 84.59

Table 1: Experiments on MLM and XSR tasks based on mBERT. Models other than mBERT are fine-tuned to the
English POS task. The underlined numbers in the MLM task denote that the performance is close to mBERT’s. The
bold numbers in the XSR task denote the best performance after fine-tuning without using the XSR supervision.

we use CoNLL 2002 (Tjong Kim Sang, 2002) and
CoNLL 2003 (Sang and De Meulder, 2003), which
contain English (en), German (de), Spanish (es)
and Dutch (nl), to evaluate our methods. For both
tasks, we consider English as the source language
and other languages as target languages.

4.2 Baselines

We compare our methods to several baselines.
Naive Fine-tune (Wu and Dredze, 2019) is to
add one linear layer on top of the pre-trained
model while fine-tuning with L2 regularization.
Fine-tune with Partial Layers Frozen (Wu and
Dredze, 2019) is to fine-tune pre-trained multilin-
gual models by freezing the partial bottom layers.
And Multi-Task Fine-tune (MTF) is to fine-tune
pre-trained multilingual models on both the fine-
tuning task and additional tasks (MLM and XSR).

4.3 Training Details

We conduct the MLM task with two settings.
First, we only utilize the English Wikipedia cor-
pus (MLM (en)) since we observe the catastrophic
forgetting in the English MLM task as in Figure 1.
Second, we utilize both the source and target lan-
guages Wikipedia corpus (MLM (all)). The first
setting is used in our main experiments. Note that
we do not use all pre-trained languages in mBERT
for the MLM task because it would make the fine-
tuning process very time-consuming. For the XSR
task, we leverage the sentence pairs between the
source and target languages from the Europarl par-
allel corpus (Koehn, 2005).2

*More training details are in the appendix.
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5 Results & Analysis

Does GEM preserve the cross-lingual ability?
From Table 1, we can see that naive fine-tuning
mBERT significantly decreases the MLM perfor-
mance, especially in English. Since mBERT is
fine-tuned to the English task, the English subword
embeddings are fine-tuned, which makes mBERT
lose more MLLM task information in English. Naive
fine-tuning also makes the XSR performance of
mBERT drop significantly. We observe that fine-
tuning with partial layers frozen is able to some-
what prevent the MLM performance from getting
worse, while fine-tuning with GEM based on that
task almost preserves the original MLM perfor-
mance of mBERT. Although we only use English
data in the MLM task, using GEM based on the
MLM task still preserves the task-related param-
eters that are useful for other languages. Corre-
spondingly, we can see that GEM w/ MLM achieves
better XSR performance than Naive Fine-tune w/
frozen layers, which shows that GEM helps better
preserve the cross-lingual ability of mBERT.

In addition, although GEM w/ XSR aggravates
the catastrophic forgetting in the MLM task, it is
able to significantly improve the XSR performance
due to the usage of the XSR supervision. Further-
more, incorporating both the MLM and XSR tasks
can better preserve the performance in both tasks.

Does GEM improve the cross-lingual perfor-
mance? From Table 2, we can see that our meth-
ods consistently surpass the fine-tuning baselines
on all target languages in the POS and NER tasks.
In terms of the average performance, our methods
outperform the baselines by an around or more



Model POS NER
en es fr el ru ang en es de nl ang

Naive Fine-tune 96.23 8295 89.12 8421 8545|8543 |91.97 7496 69.56 77.57 | 74.03

w/ frozen layers 96.07 83.41 89.41 8554 85.17 | 8588 | 91.90 7527 7023 77.89 | 74.46
Multi-Task Learning
MTF w/ MLM 9447 83.01 88.08 84.48 80.46 | 84.01 | 91.82 7147 6790 7491 | 7143
MTF w/ XSR 96.39 8241 87.05 7251 86.09 | 82.01 | 91.85 74.02 6855 75.67 | 72.75
MTF w/ Both 95.63 83.52 89.07 8521 83.10 | 8528 | 91.74 71.87 68.12 74.86 | 71.62
Continual Learning
GEM w/ MLM 97.39 84.65 89.74 86.04 86.93 | 86.84" [ 91.93 76.45 7048 7861 | 75.18¢
GEM w/ XSR 96.97 84.53 89.83 86.53 86.36 | 86.81 | 91.89 7629 70.74 78.77 | 75.27*
GEM w/ Both 97.04 8491 90.32 86.44 86.13 | 86.95% | 91.45 76.20 70.98 79.19 | 75.46

Table 2: Zero-shot results on POS and NER tasks based on mBERT. fThe average scores excluding en. The
results are statistically significant compared to all baselines with p < 0.01 by t-test.

Task Models en es fr el ru | avg
mBERT 10.7 351 8.63 2.08 270|552
MTF w/ MLM (en) | 9.50 5.10 8.62 2.56 3.47 | 5385
MLM | MTF w/MLM (all) | 933 4.19 4.89 234 3.04 | 4.76
GEM w/MLM (en) | 13.0 6.62 11.4 287 422 7.62
GEM w/MLM (all) | 11.8 4.18 6.83 229 299 | 5.62
Naive Fine-tune 962 829 89.1 842 855|854
MTF w/MLM (en) | 945 83.0 88.1 845 80.5 | 84.0
POS | MTFw/MLM (all) | 94.7 77.5 833 819 77.0| 799
GEM w/MLM (en) | 97.4 84.7 89.7 86.0 869 | 86.8
GEM w/MLM (all) | 972 839 892 859 87.1 | 865

Table 3: Ablation study on the two settings of using the
MLM task based on mBERT.

than 1% improvement.? In addition, constraining
mBERT fine-tuning on the MLM task shows simi-
lar performance to constraining it on the XSR task.
We conjecture that the effectiveness of both meth-
ods is similar, although they come from different
angles. When the information of both tasks is uti-
lized, GEM is able to slightly improve the perfor-
mance. We find that the experimental results on
XLMR are consistent with mBERT.

GEM vs. MTF From Table 1, we notice that us-
ing the MLM task, MTF achieves lower perplexity
than GEM since it aggressively trains mBERT on
this task. However, we observe that MTF w/ MLM
makes the performance of the XSR, POS and NER
tasks worse than Naive Fine-tune, and we speculate
that MTF pushes mBERT to be overfit on the MLM
task, instead of preserving its cross-lingual ability.
Meanwhile, we can see that GEM regularizes the
loss of the training on the MLM task to avoid catas-
trophic forgetting of previously trained languages,
and conserve the cross-linguality of the pre-trained
multilingual models.

In addition, we observe that adding XSR objec-

3The results of XLMR are included in the appendix.
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tive to the training cause the MLM performance
worse. Although MTF achieves the best perfor-
mance in the XSR task since it directly fine-tunes
mBERT on that task, we can see from Table 2 that
GEM w/ XSR boosts the cross-lingual performance
of downstream tasks, while MTF w/ XSR has the
opposite effect. We speculate that brutally fine-
tuning mBERT on the XSR task (MTF w/ XSR) just
makes mBERT learn the XSR task, while using
GEM to constrain the fine-tuning on the XSR task
can preserve its cross-lingual ability of mBERT. In-
corporating both the MLM and XSR tasks further
improves the performance for GEM, while MTF
still performs worse than Naive Fine-tune.

Ablation Study From Table 3, we can see that
using GEM to constrain fine-tuning on MLM with
all languages (GEM w/ MLM (all)) achieves bet-
ter performance than it does with only English
(GEM w/ MLM (en)) on the MLLM task since more
MLM supervision signals are provided, while their
performances in the POS task are similar. Intu-
itively, since GEM w/ MLM is able to improve the
cross-lingual performance, constraining on more
languages should give better performance. We con-
jecture, however, that the constraint with all lan-
guages could be too aggressive, so mBERT might
tend to be overfit to the monolingual MLM task
in all languages instead of preserving its origi-
nal cross-lingual ability. In addition, we observe
that fine-tuning mBERT on the MLM task (MTF)
would get worse when more languages are utilized.

6 Conclusion

In this paper, we propose to preserve the cross-
linguality of pre-trained language models in the
fine-tuning stage. To do so, we adopt a continual



learning framework, GEM, to constrain the param-
eter learning in pre-trained multilingual models
based on the MLM and XSR tasks when we fine-
tune them to downstream tasks. Experiments on
the MLM and XSR tasks illustrate that our methods
can better preserve the cross-lingual ability of pre-
trained models. Furthermore, our methods achieve
better performance than fine-tuning baselines for
the strong multilingual models mBERT and XLMR
on the zero-shot cross-lingual POS and NER tasks.
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A Training Details

We utilize the Wikipedia corpus for the MLM task.
Given that using all the Wikipedia corpus will
greatly lower the training speed, we randomly sam-
ple 1M sentences for each language for the training
of MTF w/ MLM and GEM w/ MLM, and we use
another 100K sentences for each language to eval-
uate the model performance on the MLM task. We
take the English-Spanish (en-es), English-Italian
(en-it), English-French (en-fr), English-Greek (en-
el), English-German (en-de), and English-Dutch
(en-nl) parallel datasets from the Europarl paral-
lel corpus. We ramdomly select 90% of them for
the training of GEM w/ MLM and GEM W/ XSR,
and the rest 10% of them are used for evaluating
the model performance on the XSR task. We use
accuracy for evaluating the POS task, BIO-based
F1-score for evaluating the NER task, perplexity
for evaluating the MLM task, and P@Fk for evalu-
ating the XSR task. Concretely, P@k (k=1,5,10)
accounts for the fraction of pairs for which the cor-
rect translation of the source language sentence is
in the k-th nearest neighbors. We use an early stop
strategy which is based on the average performance
over the target languages to select the model. We
use the Adam optimizer with a learning of le-5.
We use batch size 16 for the all tasks, namely, POS,
NER, MLM and XSR. In each iteration, we use
GEM to constrain the fine-tuning on a batch of
data samples from the MLLM and XSR tasks. Our
models are trained on V100. The number of param-
eters for the mBERT-based model is around 178.6
million and for the XLMR-based model is around
278.9 million.

# samples en es de nl

Train 14,040 | 8,319 | 12,152 | 15,802
Validation | 3,249 | 1,914 | 2,867 | 2,895
Test 3,452 | 1,516 | 3,005 | 5,194

Table 4: Number of samples for each language in the
CoNLL 2002 and CoNLL 2003 NER datasets.

# samples en es fr el ru
Train 12,543 | 14,187 | 14,450 | 1,662 | 3,850
Validation | 2,002 | 1,400 | 1,476 | 403 579
Test 2,007 426 416 456 601

Table 5: Number of samples for each language in the
Universal Dependencies 2.0 dataset for the POS task.
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B Data Statistics

The data statistics of the NER and POS datasets are
shown in Table 4 and Table 5, respectively.

C Results

C.1 XLMR Experiments

Experiments on POS and NER tasks for XLMRy,se
are illustrated in Table 6 (in the next page). The
results on XLLMR are consistent with mBERT.

C.2 XSR Experiments

Experiments on more language pairs are illustrated
in Table 7 (in the next page). The results on French
to English, Greek to English, German to English
and Dutch to English are consistent with the XSR
results shown in the main paper (i.e., Spanish to
English and Italian to English).



POS NER
en es fr el ru ang en es de nl ang
Naive Fine-tune 96.55 84.61 9037 8723 89.32 | 87.88 | 91.95 7586 69.59 77.83 | 74.42
w/ frozen layers | 96.40 84.63 90.33 86.27 89.44 | 87.67 | 91.53 76.12 68.79 78.26 | 74.39
Multi-Task Learning
MTF w/ MLM 96.43 8237 89.70 8390 86.73 | 85.68 | 91.90 74.55 67.70 78.13 | 73.46

Model

MTF w/ XSR 96.93 8494 89.08 8693 89.27 | 87.55|91.93 7535 70.58 77.65 | 74.53
MTF w/ Both 96.31 83.55 89.90 87.01 84.94 | 86.35 |91.67 7545 67.80 7791 | 73.72
Continual Learning

GEM w/ MLM 96.87 85.90 90.57 87.25 89.43 | 88.29 | 91.93 76.43 70.98 78.77 | 75.39
GEM w/ XSR 96.86 85.01 89.87 88.14 89.90 | 88.23 | 91.94 76.61 71.19 79.28 | 75.69
GEM w/ Both 96.10 85.63 9099 89.02 91.36 | 89.25 | 91.91 76.48 70.53 79.86 | 75.62

Table 6: Zero-shot results on POS and NER tasks based on XLMR. fThe average scores excluding en.

XSR (French to English) | XSR (Greek to English) | XSR (German to English) | XSR (Dutch to English)
P@l P@5 P@10 P@l P@5 P@l0 | P@l P@5 P@10 P@l P@5 P@Il0
mBERT 5392 6544 72.12 35.68 59.40 6531 52.10 64.71 69.43 54.56  66.69  72.54
Naive Fine-tune 34.12 50.03 57.90 15.12 3335 42.69 | 33.68 49.23 56.45 3479 51.13  58.01
w/ frozen layers | 35.50 52.23 59.87 1698 35.63 4474 | 3420 50.97 58.11 3529 5324  59.77
Multi-Task Learning
MTF w/ MLM 3249 48.67 56.23 14.67 3229  40.64 | 3237 4745 55.48 32.86 5035  56.55

Model

MTF w/ XSR 7420 78.65 83.69 7394 7759 8347 | 7548 80.67 85.44 75.83 8528  88.35
MTF w/ Both 7530 79.34 84.86 7425 7839  84.63 | 7793 82.67 87.86 7442 8357  86.68
Continual Learning

GEM w/ MLM 39.79 55.62 63.34 21.33 39.60 47.36 | 37.70 53.44 60.53 38.35 54.89  63.06
GEM w/ XSR 63.11 67.81 71.92 61.79 6537 7043 | 63.14 75.52 80.85 63.90 7833  83.46
GEM w/ Both 63.84 68.50 72.05 61.54 6438 6950 | 6441 76.39 81.70 64.36 79.65 84.72

Table 7: Experiments on XSR tasks based on mBERT. Models other than mBERT are fine-tuned to the English
POS task. The bold numbers in the XSR task denote the best performance after fine-tuning without using the XSR
supervision.
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Abstract

Learning a good latent representation is es-
sential for text style transfer, which generates
a new sentence by changing the attributes of
a given sentence while preserving its content.
Most previous work adopt disentangled latent
representation learning to realize style trans-
fer. We propose a novel text style transfer algo-
rithm with entangled latent representation, and
introduce a style classifier that can regulate
the latent structure and transfer style. More-
over, our algorithm for style transfer applies to
both single-attribute and multi-attribute trans-
fer. Extensive experimental results show that
our method generally outperforms state-of-the-
art approaches.

1 Introduction

Text generation, which leverages knowledge in
computational linguistics and artificial intelligence
for automatically generating natural language texts,
is the core problem for a number of Natural
Language Processing (NLP) applications such as
speech to text, conversational/dialogue system
(Banchs and Li, 2012; Kim et al., 2007), and text
summarization (Ozsoy et al., 2011; Liu et al., 2018).
Text style transfer can be thought of as a control-
lable text generation task, which aims to restyle
a given sentence by changing specific attributes
(sentiment, tense, formality, or politeness) while
preserving the remaining attributes and the con-
tent. Successful applications of text style transfer
include paraphrasing (Han et al., 2017), formality
transfer (Rao and Tetreault, 2018), and text simpli-
fication (Cao et al., 2020).

A good latent representation is essential to the
performance of text style transfer. Regarding the
structure of the latent representation, the current
work for text style transfer can be generally catego-
rized into the disentangled representation and the
entangled representation. In particular, the former
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method aims to learn disentangled latent represen-
tations by separating the style information from
the content, while the latter method learns latent
representations that entangle the style with the con-
tent. Disentangled representations are often inter-
pretable and consequently most of the current work
adopts this method (Hu et al., 2017; Yang et al.,
2018; Zhao et al., 2018; John et al., 2019; Bao et al.,
2019). However, learning disentangled representa-
tions is often challenging; and multiple attribute-
specific decoders are commonly required for text
generation, which is undesirable especially when
transferring multiple attributes. The entangled rep-
resentations, on the other hand, has been shown
to achieve promising performance on the content
preservation and to produce fluent sentences with a
much less complicated architecture (Lample et al.,
2019; Wang et al., 2019; Liu et al., 2020).

Although existing models achieve adequate per-
formance on text style transfer, most of them are
designed specifically for style transfer (Hu et al.,
2017; Shen et al., 2017; Yang et al., 2018; Lample
et al., 2019; John et al., 2019; Bao et al., 2019;
Wang et al., 2019), and meanwhile lack of explicit
modeling of the latent space. We argue that the
quality of latent representations is crucial for text
generation. In this study, we focus on building a
generative model that supports both text style trans-
fer and text generation with regularized entangled
latent representations.

Our contributions can be summarized as follows:
(1) We extend the framework of adversarial auto-
encoder by including a classifier for both the regu-
larization of the latent space and text style transfer.
We show that the classifier can divide sentences
with different attributes into different regions in
the latent space and thus greatly improve the per-
formance of style transfer. (2) We provide algo-
rithms for both single-attribute and multi-attribute
style transfer. We empirically compare with sev-
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eral state-of-the-art baselines and show that our
proposed method achieves promising results.

2 Related Work

In this section, we first introduce several Genera-
tive Adversarial Network (GAN)-regularized au-
toencoders, which have been successfully used for
text manipulation. Then we review some recent
methods for text style transfer focusing on the la-
tent representation.

2.1 Probabilistic Generative Autoencoders

GANSs (Goodfellow et al., 2014) are popular gener-
ative models consisting of two basic components:
a generator for generating new samples and a dis-
criminator for distinguishing real samples from
generated samples. Makhzani et al. (2015) intro-
duce adversarial autoencoders (AAEs), which turn
basic autoencoders into probabilistic models. The
encoder £, maps the input « to a latent represen-
tation z, z = E4(x). The decoder Dy reconstructs
the input from z as & = Dy(z). The discrimina-
tor D,, is introduced to distinguish between z and
samples from a prior distribution P . The objective
of AAEs is formulated below:

ngien max Lyec(¢,0) — ALaan (P, w),

['rec(¢7 0) = E;twpm[—lngg(CC‘g(b(IE))],
Eadv(¢a w) = EzNPz [—IOng<Z)]
+ Egp, [~log(1 — Dy(E(x)))].

Shen et al. (2020) adopt AAEs and introduce
denoising adversarial autoencoders (DAAEs) with
a smoother structure of latent space. Based on the
Wasserstein autoencoders (WAEs) (Tolstikhin et al.,
2018; Zhao et al., 2018) propose adversarially reg-
ularized autoencoders (ARAE) by extending AAEs
for discrete sequences. Unlike AAEs which use a
fixed prior distribution, Zhao et al. (2018) adopt
a learnable prior parameterized by the generator
of a GAN . Particularly, the discriminator and the
generator are first learned by using the latent rep-
resentation from the encoder. The discriminator
is then used to adversarially train the encoder by
minimizing the discrepancy between the posterior
and the prior.

2.2 Methods for Text Style Transfer

Disentangled latent representation Most work
on text style transfer is based on learning disentan-
gled latent representations (Hu et al., 2017; Shen
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et al., 2017; Yang et al., 2018; John et al., 2019;
Bao et al., 2019), where the attributes are sepa-
rated from the content. For example, to generate
a sentence with desired attributes, the decoder in
(Hu et al., 2017) takes the style-independent latent
representation and the desired style as the input.
Shen et al. (2017) adopts adversarial training by
using a binary CNN-based discriminator to deter-
mine whether a generated sentence is successfully
transferred or not. Yang et al. (2018) use a target
domain language model instead of a conventional
binary classifier as the discriminator.

Entangled latent representation On the con-
trary, some recent work proposes to learn latent
representations that entangle the style with the con-
tent. Although the learning of disentangled latent
representations is unnecessary, other mechanisms
are needed to guide the style transfer. For exam-
ple, Lample et al. (2019) apply the back-translation
mechanism (referred to as BTDAE) and the algo-
rithm achieves the state-of-the-art performance on
the content preservation. Wang et al. (2019) trans-
fer text style by updating the latent representation
(referred to as TAE) based on the Fast Gradient
Sign Method (FGSM) (Goodfellow et al., 2015).
Liu et al. (2020) also use a gradient-based optimiza-
tion to update the latent representation.

Style classifier A classifier is commonly used
in a style discriminator to enforce the desired style
(Hu et al., 2017; Yang et al., 2018; Tian et al., 2018).
For example, ARAE (Zhao et al., 2018) imposes a
style classifier on the latent representation of a sen-
tence to ensure the transferred sentence containing
the target attribute.

The main differences between our method and
ARAE (Zhao et al., 2018) can be summarized as
follows: 1) Representation structure: the latent rep-
resentation of ARAE can be considered as disen-
tangled while ours is entangled. 2) Style classifier:
the style classifier we adopt helps the clustering
of latent representations based on attributes while
the classifier in ARAE only enforces the target
contribute on transferred sentences. 3) To realize
style transfer, ARAE uses the classifier to train
the encoder net adversarially, such that the latent
representation of the given text could contain the
information of the target attribute. However, in our
method, the style transfer is realized by directly
modifying the latent representation. 4) Due to the
adversarial training process ARAE requires mul-
tiple decoders to perform style transfer, while our



method can use only one decoder.

3 Our Method

We first briefly explain text style transfer as follows.
Generally, a source or an input sentence includes
both the content and the attribute. In Figure 1,
we use (z,y) to include both the input = and the
attribute y. As a concrete example, a sentence “this
place is a great place to live !” has two types of
attribute: the positive sentiment and the present
tense. The positive sentiment is reflected by the
word “great” and the present tense is reflected by
the word “is”. All remaining words in this sentence
are considered as the content. For single-attribute
style transfer, only one attribute (e.g. sentiment)
will be transferred, and the other attributes and the
content will be kept the same. In the above example
with the sentiment style transfer, the sentence will
be converted into a negative sentence: “this place is
a terrible place to live !” by flipping the sentiment
label y from positive to negative. In contrast, for
multi-attribute style transfer, two or more attributes
will be transferred simultaneously while the rest
will be preserved. Again, in the above example
the sentence will be converted into “this place was
a terrible place to live !”” by transferring both the
sentiment and the tense.

3.1 Network Architecture

We propose a generative model that can be used
for both text style transfer and text generation. The
network architecture of our method is illustrated
in Figure 1, where the top one is for training and
the bottom one is for style transfer. The network
for training includes three parts: an autoencoder, a
GAN, and a style classifier. Specifically, the autoen-
coder is learned to reconstruct the input sentences.
The discriminator of the GAN is to distinguish the
aggregated posterior of the encoder from the prior,
which is modeled by the generator of the GAN.
The style classifier uses the latent representation
as the input, and classifies latent representations
based on their attributes. The classifier can also be
used in style transfer, which will be explained later.

3.2 Objective Function for Training

The overall objective function for training includes
three parts: the reconstruction loss, the adversarial
loss induced by the GAN, and the classification
loss. Similar to ARAE (Zhao et al., 2018), we use
the Wasserstein distance to measure the discrep-
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Figure 1: Network architecture: training (top) and text
style transfer (bottom).

Transfer Model

ancy between two distributions. Denote the param-
eters of the encoder, the decoder, the discriminator,
the generator, and the classifier as ¢, 8, w, 1, and
¢, respectively. The overall objective function is
defined as follows.

£(¢7 97 (bc) = ﬁrec(ﬁba 9) + )\wﬁcm’t(gb)
+ )\cﬁclas((ﬁa ¢c)7
where
rec(¢> ) mNPw[ logp9($’8¢($))],

ﬁcrit(¢) = EENPZ [fw(i)] - EmNPw [fw (&b
Lelas (¢7 Cbc) = EmNPm [—Ing¢C (y!5¢(m))]

In the above expressions, the variable Z is the
output of the generator Gy (s), where the noise
s € N(0,1); y is the label of the source attribute;
and the critic function f,, of the discriminator is
obtained by a min-max optimization:

Irgn max Lerit(Y,w) = Egnp, [fuw(Es(x))]
—Ezop, [fu(2)].

We summarize the training algorithm in Algo-
rithm 1. First, the autoencoder is trained by mini-
mizing the reconstruction loss, i.e., n(r;ien Lrec(0,0).

(@))],

Next, based on the latent representation from the en-
coder, the encoder and the style classifier are jointly
trained by minimizing the classification loss, i.e.,
min Lq5(¢, o). Meanwhile, the critic function

fw and the generator of the GAN are learned via the
min-max optimization md'%n max Lepit (Y, w). Fi-
w

nally, the critic function f,, is utilized to adver-
sarially train the encoder, i.e., ming L,y (¢). We



emphasize that we do not explicitly disentangle the
attributes from the content in the latent represen-
tation. Therefore, to implement style transfer, the
style classifier is crucial, which guides the cluster-
ing of the entangled latent representations based on
their attributes.

Algorithm 1: Training Algorithm.

Inputs: P input distribution; £4 encoder; Gy
generator; f, discriminator/critic function
for each training iteration do
// Train the encoder and decoder
for reconstruction (¢,6) .
Sample {zV}7-, ~ P, and compute
20 — g¢(m<1)) :
Backprop loss:
Lrec(¢,0) = —

m

S logpe(zV]2()) 5

// Train the attribute
classifier (¢.) and optimize
the encoder using the
classifier regularisation (¢).

Sample {w(i)}{'gl ~ P, and save attribute y(¥;

Backprop loss:

ﬁclas(()bca ¢) = ) )
— o S0 logps, (y V€4 (2));

// Train the
discriminator/critic
function (w) .

Sample {17, ~ P, and

(s, ~ N (0. )
Compute 29 = £, (xV);
Backprop loss:

mlgn max Lerit(w, ) =

% Z;Zl fw(z(i)) - i 27:1 fw(gw(s(i))) 5

// Train the encoder
adversarially (¢) .
Sample {z'V}y ~ Pg ;
compute 2 = Gy (s ;
Backprop loss:
‘ccrit(qb) ) .
o S fulEo(@ ™)) = £S5 fu(29)

end

3.3 Style Transfer

After training the network, we can implement text
style transfer (as shown at the bottom of Figure 1).
We summarize the algorithm for style transfer in
Algorithm 2, which works for both single-attribute
and multi-attribute style transfer. Normally for
multi-attribute style transfer, multiple style clas-
sifiers are required: each corresponding to an at-
tribute. To make the network scalable, we instead
use a single style classifier by combining the la-
bels of attributes. In this case, each attribute la-
bel corresponds to an attribute-combination (such
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Algorithm 2: Transfer Algorithm.

Inputs: input distribution P ; encoder £4;
well-trained classifier Cy, ; the initial weights
w = {w, }; decay coefficient \; target
attribute 7/’; threshold t; maximal iterations I;
attribute vector v; the weight of attribute
vector k.

Result: A target latent representation z‘f(” or Z, ™.

Sample {zV}7; ~ P, and compute

2 — g¢(w(i>) ;
// Method 1: Dbased on Fast
Gradient Sign Method.

for each w; € w do

29 =20 —w 7. #Letas (Co,(27), 4/ D) ;

for |Cy, (V) — /@] > t do

i+ +

w; = )\wj 5

20 =
2 —w V= *Lelas (Co, (Z(Z))7 y/(l)) 5
if it > I then
| break;
end

end

end

// Method 2:

arithmetic.

based on vector

w(;) are the samples
with source attribute and :1:,57')
are the samples with target

attribute.
Sample {w@}?zl ~ Py and {acil) 1 ~Pg;
compute z{") = €¢(mgi) ) and compute
2" = Ey(2”)
Calculate the attribute vector
v=030, 2 - w2 i z";

20 =20 L ks

as present-positive, past-positive, present-negative,
and past-negative with both the tense and the senti-
ment as the attributes for transferring).

To perform style transfer, given an input sen-
tence, we first get its latent representation as the
output of the encoder. With the entangled latent
representation, the key of style transfer is how to
update the latent representation of the source sen-
tence. To achieve that, we adopt two different but
commonly used updates: the fast gradient based
and the vector arithmetic based. To obtain the tar-
get sentence with the desired attribute, we then feed
the updated latent representation to the decoder.

Fast gradient based: FGSM is employed by
Wang et al. (2019) to update the latent representa-
tion for style transfer. Concretely, the latent rep-
resentation is updated along the gradient of the
classification loss with the step size w. A set w
contains a few step sizes with an increasing order.
We sequentially test these step sizes until obtaining



the desired latent representation. This is to maxi-
mally preserve the content of the sentence and also
to prevent the modification of the latent presenta-
tion from falling into a local optimum. In each
iteration, the updated latent representation Zy is
given as follows:

27 =2z = w Vs *Laias(Co.(2),Y),

where L, represents a style classifier loss, Cyp,
is a well-trained classifier, and 1’ represents the
target label. The detailed algorithm is displayed in
Method 1 of Algorithm 2.

Vector arithmetic based: In several studies
e.g., Zhao et al. (2018); Shen et al. (2020), the la-
tent vector arithmetic based method is employed in
text style transfer or text interpolation. Specifically,
the latent representation z of the source sentence is
modified by an attribute vector “v”’. For example,
assume that the source attribute is positive. When
transferring the attribute from positive to negative
we can update z by z — v; and when transferring
from negative to positive we can update z by z + v.
The same as Shen et al. (2020), the attribute vector
“v” uses the mean of the latent representations of
100 samples with the source attribute and 100 sam-
ples with the target attribute from the validation set.
For multi-attribute transfer, the attribute vector v is
computed in the same way. The only difference is
that the label of the source attribute and the target
attribute corresponds to an attribute-combination as
explained before. The updated latent representation
Z, can be formulated as follows:

Zy=zxkxwv,

where k is a hyperparameter denoting the weight
associated with the attribute vector.

4 Experiments

In this section, we first visualize the latent rep-
resentation of our method, and then compare our
method with several baselines, namely, TAE (Wang
etal., 2019), ARAE (Zhao et al., 2018), and DAAE
(Shen et al., 2020) for single-attribute and multiple-
attribute text style transfer. We then evaluate our
model on text generation and compare it with
ARAE.

4.1 Datasets

We use Yelp and Amazon datasets for evaluation.
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Yelp: This dataset consists of Yelp restaurant
and business reviews (Li et al., 2018), which in-
cludes 444 K training samples, 4K validation sam-
ples, and 1K test samples.

Amazon: This dataset includes product reviews
from Amazon (He and McAuley, 2016), which
includes 555K training samples, 2K validation
samples, and 1K test samples.

On both Yelp and Amazon datasets, reviews with
a rating score above three are considered as posi-
tive samples, otherwise are considered as negative
samples.

4.2 Experimental setups

In our experiment, similar to ARAE (Zhao et al.,
2018), we use one layer LSTM with 200 hidden
units for both the encoder and the decoder. Both
the generator and the discriminator in the GAN use
simple MLP networks. The style classifier is built
by a shallow MLP network with two hidden layers,
as our experiment indicates that too many layers
can degrade the performance of the classifier.

The weighting parameters \,, and \. are set
to 0.1 on Yelp and 1 on Amazon. In the fast
gradient method, the set of the initial weights w
is set to {0.005, 0.006, 0.007,0.008,0.009, 0.01},
where the weights are ordered increasingly.

4.3 Evaluation

Following previous studies, for both automatic and
human evaluations, we assess the performance of
style transfer from three perspectives: transfer con-
trol, content preservation, and fluency. In auto-
matic evaluation, three commonly used metrics are
adopted: the transfer rate, the BLEU score, and the
Perplexity (PPL) score.

Transfer control: It evaluates whether the style
of the source sentences is correctly flipped. The
transfer rate is the percentage of the corrected trans-
ferred sentences, and we use a fastText classifier
(Joulin et al., 2017) to determine that.

Content preservation: It evaluates how the
content is preserved in the transferred sentences.
We use n-gram statistics (4-gram) of the BLEU
score (Papineni et al., 2002) to quantify the content
preservation against the references (Li et al., 2018).

Fluency: It evaluates the grammatical structure
and the naturalness of the generated (or transferred)
text sentences. We use a language model KenLM
(Heafield, 2011) to calculate the PPL score of text
sentences for evaluating fluency.



4.4 Evaluation on Latent Representation
4.4.1 Visualization

We show the projected latent representation of both
the source and the target sentences and compare
it with TAE (Wang et al., 2019). To better show
the structure of the latent representation, we use
the visualization tool t-SNE (van der Maaten and
Hinton, 2008) in 2-dimension. Figure 2(a) shows
the latent representations of 1000 source samples
with positive and negative labels. Figure 2(b) and
Figure 2(c) show the latent representations of six
target samples, which are updated by FGSM. w|i]
in these two figures denotes the i-th step size in
the set w, and a larger value of ¢ indicates a larger
value of wli].

In our framework, both the GAN and the style
classifier help the regularization of the latent repre-
sentation. Figure 2(a) indicates that in our method,
the latent representations tend to form two clusters.
Specifically, the positive samples tend to locate at
the bottom while the negative samples tend to lo-
cate on the top. In contrast, the positive and the
negative samples in TAE are generally mixed to-
gether. In Figure 2(c), as the value of the step size
w increases in our method, the latent representation
of the positive samples tends to move towards the
bottom, which corresponds to the position of the
positive cluster. In contrast, the latent representa-
tion of the negative samples tends to move towards
the top, which corresponds to the position of the
negative cluster. This observation clearly shows
the guidance of the style classifier on clustering
the latent representations. In comparison, in Figure
2(b), without the GAN and the style classifier in
TAE, the latent representation of each target sample
needs to be updated along different directions.

4.4.2 Evaluation of Latent Representation
via K-nearest-neighbours

It is desirable that close latent representations lead
to semantically similar sentences after feeding la-
tent representations to the decoder. Such property
indicates the smoothness of the latent space. In this
experiment, we find £ = 9 nearest neighbours of
the latent representation of a sentence “service is
terrible and won’t return.”, and then generate sen-
tences by feeding these latent representations to the
decoder. It is expected that the generated sentences
are close to the source sentence in terms of the sen-
timent attribute and the content. For comparison,
we consider four differ network architectures and
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Figure 2: Comparison between our method and TAE
on projected latent representations.

show the generated sentences in Table 1.

* TAE: The generated sentences contain both
the positive and the negative samples. More-
over, many of them have different contents
that are related to “place” or “location” instead
of the source content “service” or “return”.

TAE+GAN: We regularize the latent repre-
sentation in TAE by a GAN. Although all
sentences are related to the source content
“service” their sentiment attributes are largely
different.

TAE + classifier: We add a style classifier
in TAE. Different from TAE+GAN, the gen-
erated sentences have the same negative at-
tribute but some sentences deviate from the
source content “service” or “return”.

Our method: Our network architecture in-
cludes both the GAN and a style classifier.



All generated sentences have the same neg-
ative attribute and are related to the source
content “service” or “return’.

Table 1: Evaluation of the smoothness of the latent
space via k-nearest-neighbours. The source sentence
is “service is terrible and won’t return ”.

TAE \ TAE + GAN

service was terrible .
their service is terrible .
service is great and friendly .
this place is terrible !
service is slow and horrible .
this location is terrible .
service is always good .
service was bad .
everything was great and i will return !

service is great and friendly .
service isn’t that great either .
service is mediocre and slow .
service is slow and horrible .
service is lacking and food is mediocre .
the service is friendly and fast .
prices are good and the service is great .
service is quick and friendly .
the service is always friendly and good .

TAE + classifier guidance Our method

service was terrible .
their service is terrible .
food was terrible .
this place is terrible .
service is slow and horrible .
the waiter was terrible .

i wo n’t be back .
service is mediocre and slow .
terrible service .

service is n’t that great either .
iwon’t be back .
the service is n’t frequent enough .
will not return to this place .

needless to say we wo n’t be back !
service was n’t too bad - nice people .
the service was not that professional !

the service did n’t get any better .

service is n’t too bad , but could be better .

4.5 Evaluation of Style Transfer

4.5.1 Single-Attribute Style Transfer

We compare our method with TAE by using FGSM
to update the latent representation since TAE is
only designed with FGSM (Table 2). TAE has a
very low transfer rate in experiments. This however
leads to high BLEU scores and low PPL scores as
most target sentences are the same as the source
sentences. By contrast, our method can success-
fully transfer most sentences, and leads to decent
BLEU and PPL scores.

Table 2: Comparison between our method and TAE for
sentiment transfer on Yelp.

Methods Transfer 1 BLEU?1T PPL |
TAE

w=2 0.24 37.98 42.08
w=4 0.25 35.70 48.73
w =206 0.25 33.33 56.50
Our method:

w = 0.005 0.76 25.74 70.16
w = 0.007 0.80 25.16 72.70
w = 0.01 0.87 23.90 75.46

We also compare the performance of our meth-
ods with ARAE and DAAE using the vector arith-
metic based update on latent representations for
style transfer. As mentioned before, the vector
arithmetic based update can be used to evaluate
the smoothness of the latent space. In Table 3, we

compare with two baselines on both Yelp and Ama-
zon and display the results that achieve the best
trade-off among the three evaluation metrics. The
hyperparameter k of vector arithmetic method is
chosen based on the performance in the validation
set. Our method achieves the highest transfer rate
and a comparable BLEU score with ARAE on Yelp,
while ARAE achieves the lowest PPL score. On
Amazon, our method obtains the best performance
on the transfer rate and the BLEU score with a
slightly higher PPL score than ARAE. By contrast,
DAAE does not perform well on both datasets es-
pecially on Amazon.

Table 3: Evaluation results of style transfer based on
the vector arithmetic based update on Yelp and Ama-
zon.

| Methods | Transfert BLEU? PPL|
ARAE +1.5v 0.536 20.08 64.75
Yelp DAAE +2.0v 0.461 18.55 114.59
Our method £1.5v 0.792 19.90 78.63
ARAE +2.5v 0.513 14.71 31.37

Amazon DAAE +1.0v 0.473 3.50 -
Our method £2.0v 0.884 14.73 33.86

FGSM and vector arithmetic method for style
transfer have their pros and cons. Table 4 shows the
evaluation results of both FGSM based and vector
arithmetic based methods on Yelp data. Generally,
for both methods, as the step size w or v increases,
the transfer rate is improving, while the perfor-
mance of BLEU and PPL are decreasing. In the
case of the FGSM based method, the best trade-off
is when w 1is set as 0.007, while the vector arith-
metic based method has the best trade-off when
v is set as 1.5. With w = 0.007 and v = 1.5,
FGSM based method achieves better transfer rate
and BLEU score but the lower performance of PPL
than vector arithmetic based method. From our ex-
periment, we also observe that FGSM based style
transfer needs much longer updating time in testing
than the vector arithmetic based method.

Table 4: Comparison results between FGSM based and
vector arithmetic based style transfer on Yelp.

Methods | w/v | Transfert BLEUT PPL|
w = 0.005 0.76 25.74 70.16
FGSM based w = 0.007 0.80 25.16 72.70
w = 0.01 0.87 23.90 75.46
+1.0v 0.49 30.00 49.42
Vector arithmetic +1.5v 0.79 19.90 78.63
based +2.0v 0.94 11.38 113.52

Although the automatic evaluation metrics e.g.,
the BLEU score, are widely used, they sometimes



do not well align with the human judgement (Ma
et al., 2018). Therefore, to fully evaluate the per-
formance we also carried out the human evaluation
on sentiment transfer and compare it with ARAE
on Yelp. We use the vector arithmetic based update
of the latent representation on the first 200 positive
and 200 negative sentences in the test set. Three
annotators were recruited and provided scores in
the range of 1~5 regarding the transfer control, the
content preservation and the fluency. The Kappa
statistic of the agreement between raters in the hu-
man evaluation is 0.657. The average scores over
three annotators are shown in Table 5, and our
method generally outperforms ARAE.

Table 5: Human evaluation results of sentiment transfer
on Yelp.

Methods Transfer 1 Content T Fluency 1
Control Preservation

ARAE 3.388 2.671 3.439

Our method 3.468 3.018 3.612

4.5.2 Multi-Attribute Style Transfer

We also evaluate our model for multi-attribute trans-
fer and compare with ARAE on Yelp. The goal of
multi-attribute style transfer is to transform multi-
ple attributes in a sentence at once while preserving
the main content of the sentence. Using the same
example sentence “this place is a great place to
live !I”” with positive sentiment and present tense,
multi-attribute transfer converts it into a sentence
with the negative sentiment and the past tense “this
place was a terrible place to live !”.

In the training phase, the style classifier uses
both the latent vector of a given sentence and the
original attribute label as the inputs; while in style
transfer, the style classifier uses both the latent
vector and the desired attribute label as the inputs.
In pre-processing of single-attribute style transfer,
the attribute is labelled as either “0” or “1”. In
multi-attribute style transfer (e.g. tense and senti-
ment), each attribute combination will be defined
as an individual class (e.g. present-positive: 0",
past-positive: “1”, present-negative: “2”, and past-
negative: “37).

In particular, we use the Stanford Parser to ex-
tract the main verb of a sentence from Yelp and
then determine the tense of a sentence based on
its part-of-speech tag (POS tags) (Klein and Man-
ning, 2003). Table 6 shows the evaluation results
of style transfer for two attributes: sentiment and
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tense transfer. In our model, we test on two net-
work variants, one consisting of two style classi-
fiers each corresponding to one attribute, and the
other consists of only one style classifier that com-
bines both attributes into one label as described
before. The results show that our method is supe-
rior to ARAE even with one style classifier. When
using two classifiers to realize multiple attributes
transfer, for example, tense and sentiment transfer,
each classifier is responsible for transferring one
attribute. Specifically, after the sentiment-classifier
transferred sentiment attribute, the transferred sen-
tences will be the inputs of the tense-classifier for
transferring tense attribute. As using two classifiers,
each classifier only needs to transfer one attribute,
having less pressure of transferring two attributes
together, it achieves higher accuracy than one clas-
sifier case. However, since it requires two steps
transfer, the self BLEU score decreases slightly.

Table 6: Results of multiple attributes (sentiment and
tense) transfer on Yelp.

Methods Transfer 1 Self BLEU 1 PPL |
ARAE (£2.0v) 0.663 11.57 86.99
Our method:

2 classifiers; +=1.5v 0.750 13.86 85.47
1 classifier; +1.5v 0.733 14.34 8541

4.6 Evaluation of Text Generation

Unlike most of the current models for style transfer,
our model can also be used to generate new text
sentences owing to the introduction of the latent
prior distribution. To generate a new sentence, we
first take the noise s as the input to the generator
of the GAN and get a latent representation. Then
we feed the latent representation to the decoder and
obtain the new sentence.

In previous work, both LSTM (Zhao et al., 2018;
Lample et al., 2019; Shen et al., 2020) and trans-
former (Wang et al., 2019) have been used as the
base network in the encoder and decoder architec-
ture. Hence, we further evaluate the performance
of our method based on these two networks on
Yelp and show the results in Table 7. Experimen-
tal results indicate that both the transformer-based
networks and the LSTM-based networks in our
method achieve a similar trade-off among the three
evaluation metrics. The transformer-based method
achieves higher BLEU scores but lower transfer
rates and higher PPL scores, while the LSTM-
based method leads to a better performance on



the transfer rate and the PPL score, but a worse
performance on the BLEU score.

Table 7: Comparison of sentiment transfer between the
transformer-based autoencoder and the LSTM-based
autoencoder in our method on Yelp.

Methods Transfer 1 BLEU71 PPL |

Transformer-based:

In DAAE, we implement style transfer by the vec-
tor arithmetic based update, and in BTDAE the
back-translation algorithm is used for style transfer.
From Table 9, we observe that with the inclusion
of a style classifier in DAAE the performance on
all evaluation metrics is improved. For BTDAE,
with a style classifier the BLEU and the PPL scores
are improved. These results again demonstrate the

w=0.7 0.73 3114 7158 effectiveness of a style classifier on style transfer.
w=0.8 0.79 2742 84.13
w=0.9 0.82 24.48 9265 Table 9: Comparison between the models and the mod-
w=L0 0.85 21.40 91.21 els with a style classifier on Yelp.
LSTM-based:
w=0.005 0.76 25.74 70.16 Methods Transfer f BLEU1 PPL |
w=0.007 0.80 25.16 72.70 n
W=0.009 0.84 M50 7432 DAAE (+2.0v) 0.461 1855 11459
w=0.01 0.87 2390  75.46 DAAE + Class.(+1.5v) 0.646 2202 11250
BTDAE 0.87 3841 3642
We evaluate the quality of the text generation BTDAE + Class. 0.86 3987 3439

using the LSTM-based network in our method by
comparing 10,000 generated sentences with sen-
tences generated by ARAE on Yelp. The exper-
imental results in Table 8 show that our method
achieves a better degree of fluency. In particu-
lar, the PPL score of our method is lower than
that of ARAE by around 10% (the PPL score of
our method and ARAE is 76.83 and 86.98, respec-
tively).

Table 8: Generated sentences of our method and ARAE.

Our method

the woman who could give up the store says you are very picky .

the wait staff is great but overall i did n’t like the customer.

i will not recommend this place to any women in future .

the man was always great and the service was really helpful .

do not waste a star from the older man this place is overpriced .

the store experience is awesome the salesman it was very nice.

oh ok and the man in the service looked nice .

kind of really nice man ’s walking the restaurant that they ’re very delish .

ARAE

the gentleman i left inside the kitchen was a rather nice follow up .
this woman has gotten me .

the woman in a little job of perfect !

the man was not that amazing if i tried to order it .

this woman has a cake must me in the burgh .

all was excellent by the salesman we had to do .

there is a friendly man and the crowd of bacon in your face .

their woman was under staffed as very polite and how talented .

Text samples of ARAE are from Zhao et al. (2018).

4.7 Style Classifier in Other Models

Through the above experiments, we have illustrated
the effect of the style classifier in our method on
clustering the latent representations based on the
attributes. We also perform an ablation study re-
garding the style classifier on two other advanced
models: DAAE and BTDAE (Lample et al., 2019).
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As the official code of BTDAE is unavailable, we implemented the algorithm
based on the description in Lample et al. (2019).

5 Conclusion and Future Work

In this paper, we proposed a new approach for text
style transfer with entangled latent representations.
We added a classifier to regularize the distribution
of latent sentences in a probabilistic autoencoder.
Extensive experiments show that this regularized
latent structure significantly improves the down-
stream text manipulation tasks. Compared with
benchmarks our method achieves impressive re-
sults on both single-attribute and multi-attribute
text style transfer. Moreover, both approaches of
fast gradient and vector arithmetic style transfer
outperform baselines on style transfer tasks. In
addition, we demonstrated that the classifier regu-
larization also improves other style transfer models.
In the future, we would like to explore other
methods to regularize latent representation in con-
trollable text generation. Moreover, text generation
models have a wide range of applications in NLP
tasks. Besides style transfer, we will apply our
model to other tasks such as text simplification and
examine the latent structure in these applications.
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Abstract

Conventional Knowledge Graph Completion
(KGC) assumes that all test entities appear dur-
ing training. However, in real-world scenarios,
Knowledge Graphs (KG) evolve fast with out-
of-knowledge-graph (OOKG) entities added
frequently, and we need to efficiently repre-
sent these entities. Most existing Knowledge
Graph Embedding (KGE) methods cannot rep-
resent OOKG entities without costly retrain-
ing on the whole KG. To enhance efficiency,
we propose a simple and effective method that
inductively represents OOKG entities by their
optimal estimation under translational assump-
tions. Moreover, given pretrained embeddings
of the in-knowledge-graph (IKG) entities, our
method even needs no additional learning. Ex-
perimental results on two KGC tasks with
OOKG entities show that our method outper-
forms the previous methods by a large margin
with higher efficiency. !

1 Introduction

Knowledge Graphs (KG) play a pivotal role in var-
ious NLP tasks, but generally suffer from incom-
pleteness. To address this problem, Knowledge
Graph Completion (KGC) aims to predict missing
relations in a KG based on Knowledge Graph Em-
beddings (KGE). Transductive KGE methods, such
as TransE (Bordes et al., 2013) and RotatE (Sun
et al., 2019), achieve success in conventional KGC,
which assumes that all test entities appear during
training. However, in real-world scenarios, KGs
evolve fast with out-of-knowledge-graph (OOKG)
entities added frequently. To represent these emerg-
ing OOKG entities, transductive KGE methods
need to retrain on the whole KG frequently, which

*Equal contribution.

fCorresponding author.

'The code is available at https://github.com/
Hunter-DDM/InvTransE—and-InvRotatE.
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Figure 1: An example of KGC with OOKG entities.
When an OOKG entity “TENET” is added, we can
represent it efficiently via information of its IKG neigh-
bors to predict its missing relations with other entities.

is extremely time-consuming. Faced with this prob-
lem, we are in urgent need of an efficient method
to tackle KGC with OOKG entities.

Figure 1 shows an example of KGC with OOKG
entities. Based on an existing KG, a new movie
“TENET” is added as an OOKG entity with some
auxiliary relations that connect it with some in-
knowledge-graph (IKG) entities. To predict the
missing relations between “TENET” and other en-
tities, we need to obtain its embedding first. Being
aware that “TENET” is directed by “Christopher
Nolan”, is an “action” movie, and is starred by
“John David Washington”, we can combine these
clues to profile “TENET” and estimate its embed-
ding. This embedding can then be used to predict
whether its relation with “English” is “language”.

In recent years, some inductive methods have
been proposed for OOKG entities without retrain-
ing. Hamaguchi et al. (2017); Wang et al. (2019);
Bi et al. (2020); Zhao et al. (2020) adopt Graph
Neural Networks (GNN) to aggregate the IKG
neighbors to represent the OOKG entities. These
methods are effective but require relatively com-
plex calculations, which could be simplified for
higher efficiency. Xie et al. (2016, 2017); Shi and
Weninger (2018) utilize external resources such as
entity descriptions or images to enrich the OOKG
entity embedding, thus avoiding retraining. How-

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 83-89
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ever, high-quality external resources are expensive
to acquire, which may limit the feasibility.

In this paper, we propose an inductive method
that derives formulas from translational assump-
tions to estimate OOKG entity embeddings. Com-
pared to existing methods for KGC with OOKG en-
tities, our method has simpler calculations and does
not need external resources. For a triplet (h,r, ),
translational assumptions of translational distance
KGE models suppose that embedding h can estab-
lish a connection with t via an r-specific opera-
tion. Assuming that h is an OOKG entity and ¢
is an IKG entity, we show that if a translational
assumption can derive a specific formula to com-
pute h via pretrained t and r, then there will be
no other candidate for h that better fits this trans-
lational assumption. Therefore, the computed h
is the optimal estimation of the OOKG entity un-
der this translational assumption. Among existing
typical KGE models, we discover that translational
assumptions of TransE and RotatE can derive these
specific estimation formulas. Therefore, based on
them, we design two instances of our method called
InvTransE and InvReotatE, respectively. Note that
our estimation formulas have no trainable param-
eters, so our method needs no additional learning
when given pretrained IKG embeddings.

Our contributions are summarized as follows:
(1) We propose a simple and effective method to
inductively represent OOKG entities by their opti-
mal estimation under translational assumptions. (2)
Our method needs no external resources. Given pre-
trained IKG embeddings, our method even needs
no additional learning. (3) We evaluate our method
on two KGC tasks with OOKG entities. Experi-
mental results show that our method outperforms
the state-of-the-art methods by a large margin with
higher efficiency, and maintains a robust perfor-
mance even with higher OOKG entity ratios.

2 Methodology

2.1 Notations and problem formulation

Let £ denote the IKG entity set and R denote the
relation set. Kyin is the training set where all en-
tities are IKG. KCyyx is the auxiliary set connecting
OOKG and IKG entities during inference, where
each triplet contains an OOKG and an IKG entity.
We define the K-neighbor set of an entity e as all
its neighbor entities and relations in K: Nic(e) =
{(r,t)|(e,r,t) € L} U{(h,7)|(h,T,€) € K}

Using notations above, we formulate our prob-
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Figure 2: An illustration of our method, which consists
of an estimator and a reducer.

lem as follows: Given K,,x and IKG embeddings
pretrained on /Ci,in, we need to represent an OOKG
entity e ¢ £ as an embedding. This embedding can
then be used to tackle KGC with OOKG entities.

2.2 Proposed method

As shown in Figure 2, our proposed method is com-
posed of an estimator and a reducer. The estimator
aims to compute a set of candidate embeddings for
an OOKG entity via its IKG neighbor information.
The reducer aims to reduce these candidates to the
final embedding of the OOKG entity.

2.2.1 Estimator

For an OOKG entity e, given its IKG neighbors
N, (€) with pretrained embeddings, the estima-
tor aims to compute a set of candidate embeddings.
Except TransE and RotatE, other typical KGE mod-
els have relatively complex calculations in their
translational assumptions. These complex calcula-
tions prevent their translational assumptions from
deriving specific estimation formulas for OOKG en-
tities.> Therefore, we design two sets of estimation
formulas based on TransE and RotatE, respectively.
To be specific, if e is the head entity, we can obtain
its optimal estimation € by the following formulas:

8

where o denotes the element-wise product, r~' de-
notes the element-wise inversion.

Otherwise, if e is the tail entity, we can obtain
its optimal estimation € by the following formulas:

{

2.2.2 Reducer

After the estimator computes [N, ()| candidate
embeddings, the reducer aims to reduce them to the

for InvTransE,
for InvRotatE,

t—r,

tor_l,

h+r,
hor,

for InvTransE,
for InvRotatE.

e —

Detailed proof is included in Appendix A.



final embedding of the OOKG entity by weighted
average. We design two weighting functions.

Correlation-based weights are query-aware.
Inspired by Wang et al. (2019), we first use the
conditional probability to model the correlation
between two relations:

2665 ]]' (Tl’ T2 € NK:train (6))
ZGES Il (Tl S NIClrain (e)) .

When the query relation 7 is specified, we as-
sign more weight to the candidate that is computed
via a more relevant relation to r:

P(ra|r1) =

(P (relrq) + P (rqlrs))”
Zeorr ’

Weorr (6) =

where Z o is the normalization factor, rg is the
neighbor relation via which € is computed, s is a
hyper-parameter set to 4.0.

Degree-based weights focus more on the entity
with higher degree in the training set:

_ log (dg + 9)

cg

where Zge is the normalization factor, d; is the de-
gree of the neighbor entity via which e is computed,
d is a smoothing factor set to 0.1.

Based on these weighting functions, the final
embedding of the OOKG entity e is computed by

e = Z €- Weorr/deg (6)7

eeC

where C denotes the candidate embedding set.

3 Experiments

3.1 Tasks and datasets

We conduct experiments on two KGC tasks with
OOKG entities: link prediction and triplet classifi-
cation. For link prediction, we use two datasets
released by Wang et al. (2019) built based on
FB15k (Bordes et al., 2013): FB15k-Head-10 and
FB15k-Tail-10. For triplet classification, we use
nine datasets released by Hamaguchi et al. (2017)
built based on WN11 (Socher et al., 2013): WNI11-
Head-1000, WN11-Head-3000, WN11-Head-5000,
WN11-Tail-1000, WN11-Tail-3000, WN11-Tail-
5000, WN11-Both-1000, WN11-Both-3000, and
WN11-Both-5000. Each of the datasets mentioned
above is composed of four sets: a training set, an
auxiliary set, a validation set, and a test set. Each
triplet in the training and validation sets contains
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only IKG entities. Each triplet in the auxiliary set
contains an OOKG entity and an IKG entity. Each
triplet in the test set contains at least one OOKG
entity. The dataset statistics are shown in Table 1.

3.2 Experimental settings

We tune pretraining hyper-parameters on the valida-
tion set. We use Adam (Kingma and Ba, 2015) with
an initial learning rate of 10~3 as the optimizer and
a batch size of 1,024. For link prediction, we use
1,000-dimensional embeddings and the correlation-
based weights. For triplet classification, we use
300-dimensional embeddings and the degree-based
weights. Details are included in Appendix B.

3.3 Baselines

For link prediction, we compare our method
with three strong GNN-based baselines. GNN-
MEAN (Hamaguchi et al., 2017) uses a mean
function to aggregate neighbors. GNN-LSTM
adopts LSTM for aggregation. LAN (Wang et al.,
2019) adopts both rule- and network-based atten-
tion mechanisms for aggregation. For triplet clas-
sification, we compare with two more competi-
tive GNN-based baselines. ConvLayer (Bi et al.,
2020) uses convolutional layers as the transition
function. FCLEntity (Zhao et al., 2020) uses fully-
connected networks as the transition function with
an attention-based aggregation.

3.4 Evaluation metrics

For link prediction, we use Mean Reciprocal Rank
(MRR) and the proportion of ground truth entities
ranked in top-k (Hits@k, k£ € {1,10}). All the met-
rics are filtered versions that exclude false negative
candidates. For triplet classification, we use Accu-
racy. We determine relation-specific thresholds 9,
by maximizing the accuracy on the validation set.

3.5 Main results

Evaluation results of link prediction are shown
in Table 2. From the table, we observe that: (1)
With the optimal estimation under translational as-
sumptions, both instances of our method signifi-
cantly outperform all baselines. (2) Neighbors are
unordered, so order-insensitive methods like ours
or LAN perform better, while GNN-LSTM that
captures ordered information performs worse. For
triplet classification, we show the results in Ta-
ble 3. The table shows that our method achieves
the best performance, consistent with the link pre-



Dataset ‘ |’Ctrain ‘ |ICValid | |ICuux | |Ktest| ‘ |R| |g‘ ‘5/ |

FB15k-Head-10 108,854 11,339 249,798 2,811 1,170 10,336 2,082
FB15k-Tail-10 99,783 10,190 261,341 2,987 1,126 10,603 1,934
WN11-Head-1000 108,197 4,561 1,938 955 11 37,700 340
WN11-Head-3000 99,963 4,068 5,311 2,686 11 36,646 985
WN11-Head-5000 92,309 3,688 8,048 4,252 11 35,560 1,638
WN11-Tail-1000 96,968 3,864 6,674 852 11 36,771 811
WN11-Tail-3000 78,812 2,851 12,824 2,061 11 33,800 1,874
WN11-Tail-5000 68,040 2,258 15,414 2,968 11 31,311 2,589
WN11-Both-1000 93,683 3,625 7,875 873 11 36,277 1,136
WN11-Both-3000 71,618 2,436 14,453 2,242 11 32,254 2,805
WN11-Both-5000 58,923 1,788 16,660 3,218 11 28,979 3,934

Table 1: Statistics of datasets with OOKG entities. These datasets are built based on FB15k or WN11 and named
in the form of “Base-Pos-Num”. Base denotes the based datasets. Pos denotes the position of OOKG entities in
test triplets. Num distinguishes different numbers of OOKG entities represented by |E’|.

Method FB15k-Head-10 FB15k-Tail-10

ethod | MRR H@10 H@1|MRR H@10 H@I
GNN-LSTM |0.254 429 162 ]0219 373 143
GNN-MEAN | 0310 480 2220251 41.0 17.1

LAN  [0394 56.6 30.2|0314 482 227
InvIransE |0.462 60.4 3850357 48.7 29.0
InvRotatE |0.453 60.4 369 |0.362 49.1 293

Table 2: Evaluation results (MRR, Hits@k) of link pre-
diction. Bold is the best. Underline is the second best.

— InvTransE
—& LAN
—e— GNN-MEAN

83
81 4
79 4
77 4
754
731
714
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5000 Tail-1000

/

83
Head-1000 3000 3000 5000 Both-1000 3000 5000

Figure 3: Results with increasing OOKG entity ratios.

diction results. This again validates the effect of
our method.

3.6 Analysis

How does our method perform with increasing
OOKG entity ratios? We compare the triplet clas-
sification results of InvTransE, LAN, and GNN-
MEAN with increasing OOKG entity ratios in Fig-
ure 3. We find that, when the OOKG entity ratio
increases, the performance of our method drops
the slowest. This suggests that our method is more
robust to increasing OOKG entity ratios.

How efficient is our method? We compare LAN
and InvTransE to analyze our efficiency. Consid-
ering the time complexity, LAN needs O(md?)
to represent an entity, where m is the number of
neighbors and d is the embedding dimension. By
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contrast, InvTransE needs only O(d) and O(md)
to represent an IKG and OOKG entity, respec-
tively. Empirically, taking triplet classification as
an example, InvTransE is nearly 15 times faster
than LAN under similar configurations. Moreover,
when given IKG embeddings pretrained by TransE,
InvTransE does not even need training. This sug-
gests that our method is highly efficient.

Do our weighting functions matter? We attempt
to reduce candidates with uniform weights. As
shown in Table 4, the performance without our
weighting functions drops dramatically. This veri-
fies the effectiveness of our weighting functions.
How does the number of neighbors impact the
performance? We randomly select up to k €
{32, 8, 1} IKG neighbors to use. As shown in Ta-
ble 4, as the number of used neighbors decreases,
the performance drops. This suggests that using
more neighbors can lead to better performance.
Moreover, we find that InvTransE can outperform
previous methods using only up to 32 neighbors.

4 Related Work

Transductive KGE methods map entities and re-
lations to embeddings, and then use score func-
tions to measure the triplet salience. TransE (Bor-
des et al., 2013) pioneers translational distance
methods and is widely-used. It derives a series
of methods, such as TransH (Wang et al., 2014),
TransR (Lin et al., 2015), and RotatE (Sun et al.,
2019). Besides, semantic matching methods form
another mainstream (Nickel et al., 2011; Yang et al.,
2015; Trouillon et al., 2016; Nickel et al., 2016;
Balazevic et al., 2019). These transductive KGE
methods achieve success in conventional KGC, but



Method WN11-Head WN11-Tail WN11-Both

1000 3000 5000 | 1000 3000 5000 | 1000 3000 5000
ConvLayer - - - - - - 74.9 - 64.6

FCLEntity - 82.6 - - 72.1 - - 68.6 -
GNN-LSTM | 87.0 835 81.8 | 829 714 63.1 | 785 716 658
GNN-MEAN | 873 843 833 | 840 752 692 | 830 733 682
LAN 88.8 852 842 | 84.7 788 743 | 833 769 70.6
InvTransE 89.2 878 870 | 845 801 775 | 8.3 784 74.6
InvRotatE 88.6 869 865 | 847 801 758 | 842 750 70.6

Table 3: Evaluation results (Accuracy) of triplet classification. Bold is the best. Underline is the second best. The
results of all five baselines are taken from their original papers.

Method | MRR H@I0 He@l
InvTransE (Full) | 0.462 60.4 38.5
Uniform Weights | 0.361 52.0 28.1

Up to 32 Neighbors 0.447 59.2 37.2
Up to 8 Neighbors 0.386 52.0 31.3
Only 1 Neighbor 0.246 37.9 18.1

Table 4: Ablation experiment results for InvTransE on
the FB15k-Head-10 dataset of link prediction.

fail to directly represent OOKG entities efficiently.
To improve efficiency, some inductive methods
adopt GNN to aggregate IKG neighbors to pro-
duce embeddings for OOKG entities (Hamaguchi
et al., 2017; Wang et al., 2019; Bi et al., 2020;
Zhao et al., 2020). These methods are effective
but need relatively complex calculations. Other
inductive methods incorporate external resources
to enrich embeddings and represent OOKG entities
via only external resources (Xie et al., 2016; Shi
and Weninger, 2018; Xie et al., 2017). However,
high-quality external resources are hard and expen-
sive to acquire, which may limit the feasibility.

5 Conclusion

This paper aims to efficiently represent OOKG en-
tities. We propose a simple and effective method
that inductively represents OOKG entities by their
optimal estimation under translational assumptions.
Moreover, given pretrained IKG embeddings, our
method needs no additional learning. Evaluations
on two KGC tasks show that our method outper-
forms the state-of-the-art methods by a large mar-
gin with higher efficiency, and maintains a robust
performance with higher OOKG entity ratios.
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Appendices

A Which Translational Assumptions
Can Derive Specific Estimation
Formulas for OOKG Entities?

For a triplet (h, r, t), translational assumptions of
KGE models suppose that h can establish a con-
nection with t via an r-specific operation, which
can be formulated by the following equation:

Fr(h,t) =0, )

where F.(+) is an r-specific function that is deter-
mined by the specific KGE model. Without loss
of generality, we may assume that h is an OOKG
entity and ¢ is an IKG entity. Under a translational
assumption, we can obtain a specific estimation
formula for h if and only if (1) we regard h as
unknown, and its solution in Equation 1 exists, (2)
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the solution is unique. If the above two conditions
hold, the unique solution of h is the optimal esti-
mation under the translational assumption, since
no other candidate for h can better fit Equation 1.
In the following parts, we analyze translational as-
sumptions of four KGE models (TransE, RotatE,
TransH, TransR) as examples.

A.1 TransE

For TransE, its translational assumption is formu-
lated by
Fr(h,t) = ||h+r—t||1/2:0. 2)

In this case, we can obtain a unique solution of h
by the following steps:

Ih+r =t =0, (3)
— h+r—t=0, 4)
— h=t-r. %)

This computed h is the optimal estimation under
the translational assumption.

A.2 RotatE
For RotatE, its translational assumption is formu-
lated by

Febt) = [hor—t],,=0.  (©

In this case, we can obtain a unique solution of h
by the following steps:

[hor—t],, =0, (7
— hor—t=0, (8)
= h=tor . 9)

This computed h is the optimal estimation under
the translational assumption.

A.3 TransH

For TransH, its translational assumption is formu-
lated by

)

(10)
where w;. is the unit normal vector of the plane PP
that r lies on. From the translational assumption,
we can derive the following equations:

Fe(h,t) = H(h —w, hw,) +r— (t —w, tw,)

’1/2

H(hqunThWT)Jrrf (t —w, tw,) ,
1/2

0, dbn

12)
13)

— (h—w, hw,) +r— (t —w, tw,) =0,

— (h—w, hw,) = (t —w, tw,) —r 2 v.



Datasets | d 5 a n L2 Training Steps
FB15k-based | 1,000 240 1.0 256 N/A 100,000
WN11-based 300 0.5 1.0 128 107° 20,000

Table 5: Hyper-parameters for two categories of datasets. We use the same hyper-parameters for two FB15k-based
datasets and the same hyper-parameters for nine WN11-based datasets. On each dataset, we use the same hyper-
parameters for two pretrained models. d denotes the embedding dimension.  denotes the margin. « denotes the
sampling temperature. n denotes the negative sampling size. L2 denotes the parameter of L2 regularization, where

N/A means no regularization.

From a geometric perspective, h — w, hw, is the
projection of h on the plane P. From the trans-
lational assumption, we can only deduce that the
projection of h is equal to v. However, there exist
infinitely many possible h that can satisfy this con-
dition. Therefore, the solution of h is not unique,
and we cannot obtain a specific estimation formula
from the translational assumption of TransH.

A4 TransR
For TransR, its translational assumption is formu-
lated by

Fr(h,t) = ||M,h+r— MrtHl/2 =0, (14

where M, is an r-specific matrix. From the trans-
lational assumption, we can derive the following
equations:

IMyh+r — Mt ), =0, (15)
— M,h+r—-M,t =0, (16)
— Mh=Mt—-r2v. (17)

In this case, we derive a system of linear equations
from the translational assumption. In this system,
there exists a unique solution for h if and only if
the rank of the coefficient matrix M, is equal to the
rank of the augmented matrix [M,; v]. However,
M, is automatically learned by TransR without
this restriction. Therefore, we cannot guarantee
that there exists a unique solution for h, and we
cannot obtain a specific estimation formula from
the translational assumption of TransR.

B Details of Experimental Settings

To pretrain the TransE and RotatE models, we
adopt the self-adversarial negative sampling loss
proposed by Sun et al. (2019) in consideration of
its good performance on training TransE and Ro-
tatE. The self-adversarial negative sampling loss L
is formulated as:

inlogg(’yip(hvrat))

=3 p () logo (D (Wr, ) — ),
i=1

&9

where o is the sigmoid function, + is the margin,
n is the negative sampling size and (h}, r, t}) is the
i-th negative sample triplet. D (-) is the distance
function. D (h, r,t) is equal to [[h +r — t||; 5 for
TransE and is equal to ||h o r — [, /, for RotatE. p
is the self-adversarial weight function which gives
more weight to the high-scored negative samples:

p(hg,r, t;) X exp (a-}"(hg,r,t;)) ,  (19)
where « is a hyper-parameter called sampling tem-
perature to be tuned. F(+) is the score function that
is equal to —D(+).

We conduct each experiment on a single
Nvidia Geforce GTX-1080Ti GPU and tune hyper-
parameters on the validation set. Generally, we
set the batch size to 1,024 and use Adam (Kingma
and Ba, 2015) with an initial learning rate of 103
as the optimizer. We choose the correlation-based
weights for link prediction and choose the degree-
based weights with a smoothing factor of 0.1 for
triplet classification. Other hyper-parameters are
shown in Table 5.
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Abstract

Pretrained language models have served as the
backbone for many state-of-the-art NLP re-
sults. These models are large and expensive
to train. Recent work suggests that continued
pretraining on task-specific data is worth the
effort as pretraining leads to improved perfor-
mance on downstream tasks. We explore al-
ternatives to full-scale task-specific pretraining
of language models through the use of adapter
modules, a parameter-efficient approach to
transfer learning. We find that adapter-based
pretraining is able to achieve comparable re-
sults to task-specific pretraining while using
a fraction of the overall trainable parameters.
We further explore direct use of adapters with-
out pretraining and find that the direct fine-
tuning performs mostly on par with pretrained
adapter models, contradicting previously pro-
posed benefits of continual pretraining in full
pretraining fine-tuning strategies. Lastly, we
perform an ablation study on task-adaptive pre-
training to investigate how different hyperpa-
rameter settings can change the effectiveness
of the pretraining.

1 Introduction

Pretrained Language Models (PLM) are predom-
inant in tackling current Natural Language Pro-
cessing (NLP) tasks. Most PLMs based on the
Transformer architecture (Vaswani et al., 2017) are
first trained on massive text corpora with the self-
supervised objective to learn word representations
(Devlin et al., 2019; Liu et al., 2019), and then
are fine-tuned for a specific target task. The pre-
training and fine-tuning of PLMs achieves state-of-
the-art (SOTA) performance in many NLP tasks.
Inspired by the benefits of pretraining, there have
been studies demonstrate the effects of continued
pretraining on the domain of a target task or the
target task dataset (Mitra et al., 2020; Han and
Eisenstein, 2019; Gururangan et al., 2020). Guru-
rangan et al., 2020 adapt PLMs on the target task
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by further pretraining RoBERTa (Liu et al., 2019)
on the target text corpus before it is fine-tuned for
the corresponding task and showed that this task
adaptation consistently improves the performance
for text classification tasks.

However, this full process of pretraining and
then fine-tuning can be parameter inefficient for
recent PLMs that have millions or billions of pa-
rameters (Devlin et al., 2019; Radford et al., 2018).
This parameter inefficiency becomes even worse
when one continues pre-training all the parameters
of PLMs on the task-specific corpus. Furthermore,
recent PLMs need more than 100s of MB to store
all the weights (Liu et al., 2019; Radford et al.,
2018), making it difficult to download and share
the pre-trained models on the fly.

Recently, adapters have been proposed as an al-
ternative approach to decrease the substantial num-
ber of parameters of PLMs in the fine-tuning stage
(Houlsby et al., 2019). Finetuning with adapters
mostly matches the performance of those with the
full fine-tuning strategy on many NLP tasks in-
cluding GLUE benchmark (Wang et al., 2018) and
reduces the size of the model from 100s of MB
to the order of MB (Pfeiffer et al., 2020b). As
such, a natural question arises from the successes of
the adapter approach: can the adapter alone adapt
PLMs to the target task when it is used in the sec-
ond phase of the pretraining stage and thus lead to
the improvement of the performance on the corre-
sponding task?

In this paper, we explore task-adaptive pretrain-
ing, termed TAPT (Gururangan et al., 2020), with
adapters to address this question and overcome the
limitations of the conventional full pretraining and
fine-tuning. We only train the adapter modules
in the second phase of pretraining as well as the
fine-tuning stage to achieve both parameter effi-
ciency and the benefits of continual pretraining and
compare those with the adapter-based model with-
out pretraining. Surprisingly, we find that directly
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fine-tuning adapters performs mostly on par with
the pre-trained adapter model and outperforms the
full TAPT, contradicting the previously proposed
benefits of continual pretraining in the full pretrain-
ing fine-tuning scheme. As directly fine-tuning
adapters skips the second phase of pretraining and
the training steps of adapters are faster than those
of the full model, it substantially reduces the train-
ing time. We further investigate different hyper-
parameter settings that affect the effectiveness of
pretraining.

2 Pretraining and Adapters

Pre-trained language model We use RoOBERTa
(Liu et al., 2019), a Transformer-based language
model that is pre-trained on a massive text corpus,
following Gururangan et al., 2020. RoBERTa is an
extension of BERT (Devlin et al., 2019) with opti-
mized hyperparameters and a modification of the
pretraining objective, which excludes next sentence
prediction and only uses the randomly masked to-
kens in the input sentence. To evaluate the per-
formance of RoOBERTa on a certain task, a classi-
fication layer is appended on top of the language
model after the pretraining and all the parameters in
RoBERTa are trained in a supervised way using the
label of the dataset. In this paper, training word rep-
resentations using ROBERTa on a masked language
modeling task will be referred to as pretraining.
Further, taking this pretrained model and adding a
classification layer with additional updates to the
language model parameters will be referred to as
fine-tuning.

Task-adaptive pretraining (TAPT) Although
RoBERTa achieves strong performance by sim-
ply fine-tuning the PLMs on a target task, there
can be a distributional mismatch between the pre-
training and target corpora. To address this issue,
pretraining on the target task or the domain of the
target task can be usefully employed to adapt the
language models to the target task and it further
improves the performance of the PLMs. Such meth-
ods can be referred to as Domain-Adaptive Pretrain-
ing (DAPT) or Task Adaptive-Pretraining (TAPT)
(Gururangan et al., 2020). In this paper, we limit
the scope of our works to TAPT as domain text cor-
pus is not always available for each task, whereas
TAPT can be easily applied by directly using the
dataset of the target task while its performance of-
ten matches with DAPT (Gururangan et al., 2020).
In TAPT, the second phase of pretraining is per-
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Figure 1: The adapter achitecture in the Transformer
layer (Pfeiffer et al., 2020a)

formed with RoBERTa using the unlabeled text
corpus of the target task, and then it is fine-tuned
on the target task.

Adapter Adapter modules have been employed
as a feature extractor in computer vision (Rebuffi
et al., 2017) and have been recently adopted in
the NLP literature as an alternative approach to
fully fine-tuning PLMs. Adapters are sets of new
weights that are typically embedded in each trans-
former layer of PLMs and consist of feed-forward
layers with normalizations, residual connections,
and projection layers. The architectures of adapters
vary with respect to the different configuration set-
tings. We use the configuration proposed by Pfeif-
fer et al., 2020a in Figure 1, which turned out to be
effective on diverse NLP tasks, and add the adapter
layer to each transformer layer.

Pfeiffer et al., 2020c use two types of
adapter: language-specific adapters and task-
specific adapters for cross-lingual transfer. These
two types of adapter modules have similar architec-
ture as in Figure 1. However, the language adapters
involve invertible adapters after the embedding
layer to capture token-level language representa-
tion when those are trained via masked language
modeling in the pretraining stage, whereas the task
adapters are simply embedded in each transformer
layer and trained in the fine-tuning stage to learn the
task representation. Following Pfeiffer et al., 2020c,
we employ language adapter modules with invert-
ible adapter layers to perform pretraining adapters
on the unlabeled target dataset. However, we per-
form fine-tuning pre-trained parameters of the lan-
guage adapter modules for evaluation to align with



[ Domain [ Task [ Label type [ Number of inst (Train/Dev/Test) | Classes |
Biomedical CHEMPROT Relationship classification | 4169 /2427 / 3469 13
Biomedical RCT Abstract sentence roles 18040 /30212 /30135 5
Computer Science | ACL-ARC Citation intent 1688 /114 /139 6
Computer Science | SCIERC Relation classification 3219/455/974 7
News HYPERPARTISAN | Partisanship 515/65/65 2
News AGNEWS Topic 115000 / 5000 / 7600 4
Reviews HELPFULNESS Review helpfulness 115251 /5000 / 25000 2
Reviews IMDB Review sentiment 20000 / 5000 / 25000 2

Table 1: Datasets used for experimentation. Datasets include both high-resource (RCT (Dernoncourt and Lee,
2017), AGNEWS (Zhang et al., 2015), HELPFULNESS (McAuley et al., 2015), IMDB (Maas et al., 2011)) and
low-resource (CHEMPROT (Kringelum et al., 2016), ACL-ARC (Jurgens et al., 2018), SCIERC (Luan et al.,
2018), HYPERPARTISAN (Kiesel et al., 2019) settings.

TAPT, whereas Pfeiffer et al., 2020c employ both
the language and the task adapters by stacking task
adapters on top of the language adapters.

3 Experiments

We now propose an adapter-based approach that
is a parameter efficient variant of Task-Adaptive
Pretraining (TAPT) and measure the margin of the
performance between the pre-trained adapter model
and the adapter model without pretraining. For pre-
training adapters, we added the adapter module in
each transformer layer of RoBERTa using adapter-
transformer (Pfeiffer et al., 2020b)! and continued
pretraining all the weights in adapter layers on tar-
get text corpus while keeping the original parame-
ters in RoOBERTa fixed. After finishing the second
phase of pretraining, we performed fine-tuning of
RoBERTa by training the weights in the adapters
and the final classification layers while keeping all
of the parameters in RoBERTa frozen.

3.1 Dataset

Following Gururangan et al., 2020 2, we consider 8
classification tasks from 4 different domains. The
specification of each task is shown in Table 1. We
covered news and review texts that are similar to
the pretraining corpus of RoOBERTa as well as scien-
tific domains in which text corpora can have largely
different distributions from those of RoOBERTa. Fur-
thermore, the pretraining corpora of the target tasks
include both large and small cases to determine
whether the adapter-based approach can be appli-
cable in both low and high-resource settings.

'"https://github.com/Adapter-Hub/
adapter—-transformers

*Downloadble link for task dataset: https://github.
com/allenai/dont-stop-pretraining
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3.2 Implementation Details

Our implementation is based on HuggingFace since
we found AllenNLP (Gardner et al., 2018) used
in Gururangan et al., 2020 is incompatible with
adapter-transformer (Pfeiffer et al., 2020b). We
follow the hyperparameters setting in Gururangan
et al., 2020, and each model in the pretraining
and fine-tuning stage is trained on a single GPU
(NVIDIA RTX 3090). Details of hyperparame-
ters are described in Appendix A. Note that for
the pretraining step, we use a batch size of 8 and
accumulate the gradient for every 32 steps to be
consistent with the hyperparameter setting in Guru-
rangan et al., 2020.

We perform pretraining with the self-supervised
objectives, which are randomly masked tokens,
with a probability of 15% for each epoch and we
do not apply validation to pretraining and save the
model at the end of the training from a single seed.
For TAPT, we train the entire parameters of the
RoBERTa via masked language modeling (MLM)
on the target dataset, whereas for the adapter-based
model, we embed the language adapters in each
transformer layer and add invertible adapters after
the embedding layers to perform MLM while freez-
ing the original parameters of ROBERTa, following
Pfeiffer et al., 2020c. Fine-tuning step is straight-
forward. We perform fine-tuning parameters that
are pretrained via MLM for both TAPT and the
adapter model. Validation is performed after each
epoch and the best checkpoint is loaded at the end
of the training to evaluate the performance on the
test set.

3.3 Experimental setup

Experiments cover four different models. First, we
reproduce the performance of ROBERTa and TAPT
in Gururangan et al., 2020 as presented in Appendix
C. Then we proceed to the adapter-based approach.



[ Dataset | Baseline RoBERTa | TAPT | Adapter w/o PT [ Adapter w/ PT |
CHEMPROT 81.91.0 82.6 0.4 82.69 0.4 82.71 .4
RCT 87201 87.7 0.1 87.350.04 87.4 0.1
ACL-ARC 63.05.8 67418 69.47 5.4 69.25 2.5
SCIERC 773 1.9 79315 81.50.9 82.37 19
HYPERPARTISAN 86.6 0.9 904 5.2 93.01 4.7 84.97 .4
AGNEWS 93.90.2 94.5 1 94.00 ¢.1 93.94 .1
HELPFULNESS 65.13.4 68.51.9 70.96 o6 70.83 0.5
IMDB 95.00.2 95.50.1 95.51 0.1 95.57 0.1
Average F 81.3 83.24 84.31 83.38
Trainable params per task (PT/FT) -/124.64M 163.35M/124.64M -/1.78M 2.18M/2.08M
Ratio to total params (PT/FT) -/100% 100% /100% -11.42% 1.32%/1.65%
Relative training speed (PT/FT) -/1.0 1.0/1.0 -/1.29 1.14/1.24
Relative inference speed (PT/FT) -/1.0 1.0/1.0 -/0.98 0.88/0.98

Table 2: Average F) score with standard deviation on test set. Each score is averaged over 5 random seeds.
Evaluation metric is macro-F} scores on test set for each task except for CHMEPROT and RCT which use micro-
Fy. We report the results of baseline ROBERTa and TAPT from Gururangan et al., 2020. Following Riicklé et al.,
2020, we measure the average relative speed for the training and the inference time across all tasks except for the
the inference speed in fine-tuning stage, which excludes low-resource tasks. PT and FT indicate pretraining and

fine-tuning respectively.

To investigate the benefits of task-adaptive pretrain-
ing with adapters, we compare the performance of
the pre-trained adapter model with the model with-
out pretraining, i.e., directly fine-tuning adapters in
RoBERTa on the target task.

For the adapter-based approach, we compare
the adapter-based model with the second phase of
pretraining and the model without the pretraining.
Since the weights of the adapters are randomly ini-
tialized, we empirically found that a larger learning
rate worked well compared to the full fine-tuning
experiments. We sweep the learning rates in {2e-5,
le-4, 3e-4, 6e-4} and the number of epochs in {10,
20} on the validation set and report the test score
that performs the best on the validation set.

3.4 Results

The results are summarized in Table 2. Surpris-
ingly, for the average F score, the adapter-based
model without task-adaptive pretraining performs
best, followed by the other adapter with the pre-
training model, TAPT, and the baseline ROBERTa.
Except for Hyperpartisan news, the adapter model
without pretraining performs mostly on par with the
counterpart adapter model that involves pretraining
on target text corpus, suggesting that the benefits of
additional task-adaptive pretraining diminish when
we use the adapter-based approach. Furthermore,
directly fine-tuned adapter model only trains 1.42%
of the entire parameters which leads to the 30%
faster-training step than the full model and skips
the pretraining stage that typically expensive to
train than the fine-tuning, substantially reducing
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Figure 2: Fj score as a function of learning rate on
test set with log scale on x-axis. F} score is av-
eraged over 5 random seeds for low-resource tasks
(CHEMPROT, ACL-ARC, SCIERC, HYPER) due
to the high variance. For high-resource tasks (RCT,
AGNEWS, HELPFULNESS, IMDB), we report the
F1 score from a single random seed for each task. For
RoBERTa and TAPT, we follow the hyper-parameter
settings in Gururangan et al., 2020 except for the learn-
ing rate.

the training time while the relative speed for the
inference only decreases by 2% to the full model.

3.5 Analysis

We analyze how the adapter alone can surpass or
perform on par with both the full model and adapter
model with task-adaptive pretraining. Since we
sweep the learning rates and the number of epochs
in the range that includes larger figures compared
to those in the full model when fine-tuning adapters
and kept the other hyper-parameters the same as
in Gururangan et al., 2020, we hypothesize that



[ Dataset | Baseline RoBERTa | TAPT |
CHEMPROT 82.8 0.0 82.62 0.5
RCT 86.89 ¢.1 874 .2
ACL-ARC 69.24 56 70.08 - 3
SCIERC 80.59 0.9 81.28 1 o
HYPER 94.53 5 86.171.3
AGNEWS 93.9¢.2 94.05, 1
HELPFUL 69.63 0.6 71.28¢ s
IMDB 94.93 0.1 95.330.1
Average F 84.06 83.52

Table 3: Best performance of baseline RoOBERTa and
TAPT (Gururangan et al., 2020) on our implementa-
tion. Each score is averaged over 5 random seeds. Best
configuration settings for each task is described in Ap-
pendix Table 8.

the larger learning rate zeroes out the benefits of
pretraining. Figure 2. shows the average F score
across all tasks as a function of learning rate.

The adapter model without a second phase of
pretraining consistently outperforms or performs
on par with the adapter model with pretraining from
le-4 to 6e-4, demonstrating that the additional pre-
training turns out to be ineffective. In contrast,
TAPT outperforms baseline RoBERTa from 2e-5,
where both TAPT and baseline RoBERTa perform
best. The results show that different learning rates
used in the fine-tuning stage can affect the effective-
ness of pretraining and demonstrate that directly
fine-tuning a fraction of parameters can provide
comparable performance to the full-model as well
as the adapter model with pretraining while sub-
stantially reducing the training time.

Inspired by the results of the adapter models, we
perform the same experiments for the full model
(baseline RoOBERTa and TAPT) on our implemen-
tation by sweeping the learning rates and the num-
ber of epochs. We hypothesize that proper hyper-
parameter settings such as a larger learning rate
or increasing the number of training steps in the
fine-tuning stage can improve the performance of
baseline ROBERTa, making pretraining on the un-
labeled target task less effective. We sweep the
learning rates in {le-5, 2e-5, 3e-5} and the num-
ber of epochs in {10, 20} on the validation set and
report the test score that performs the best on the
validation set. Table 3 shows the best performance
of the full models for each task among different
hyper-parameter settings. The average F) score
of baseline RoOBERTa greatly increases and sur-
prisingly, it surpasses the performance of TAPT in
some tasks. The results ensure that although pre-
training PLMs on the target task results in better
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performance, one can achieve comparable perfor-
mance by simply using a larger learning rate or
increasing training steps in the fine-tuning stage
while skipping the pretraining step that is computa-
tionally demanding compared to the fine-tuning.

4 Conclusion

Our work demonstrates that adapters provide a
competitive alternative to large-scale task-adaptive
pretraining for NLP classification tasks. We show
that it is possible to achieve similar performance
to TAPT with pretraining training just 1.32% of
the parameters through pretraining with adapters.
However, the most computationally efficient option
is to skip pretraining and only perform fine-tuning
with adapters. We found that skipping pretraining
altogether and just fine-tuning with adapters outper-
forms or performs mostly on par with TAPT and
the adapter model with pretraining across our tasks
while substantially reducing the training time.
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A Hyperparameter Details

Details of hyperparameter setting including the
learning rates for the best performing results are
provided in Table 4, 5, and 6.

B Validation Results

We present validation performance in Table 7 and
Figure 3 and 8.

C Replication results

We provide replication results of Gururangan et al.,
2020 in Table 9.
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Hyper-parameter

Value

Optimizer

Adam epsilon

Learning rate

Batch size

Gradient accumulation step
Epochs

Adapter reduction factor
Maximum sequence length

Adam
1e-8, 0.999
le-4
8
32
40 or 100
12
512

Table 4: Details of hyperparameters used in pretraining experiments. We used 40 number of epochs for HELP-
FULNESS and 100 for the other tasks.

Hyper-parameter

Value

Optimizer

Adam epsilon

Batch size

Gradient accumulation step
Epochs

Patience

Adapter reduction factor
Dropout

Feedforward layer
Feedforward nonlinearity
Classification layer
Learning rate

Learning rate decay
Warmup proportion
Maximum sequence length

Adam
le-8,0.999
16
1
10 or 20
3or5
12
0.1
1
tanh
1
see Table 6
linear
0.06
512

Table 5: Details of hyperparameters used in fine-tuning experiments. For baseline ROBERTa and TAPT, we used
10 number of epochs with patience of 3 and the learning rate of 2e-5. For adapter experiments, see Table 6.

[ Dataset | Adapter w/o PT (LR, Epochs, Patience) [ Adapter w/ PT (LR, Epochs, Patience) |
CHEMPROT 3e-4, 20,5 6e-4, 20, 5
RCT le-4, 10, 3 le-4, 10, 3
ACL-ARC 6e-4, 10, 3 6e-4, 20, 5
SCIERC 3e-4, 20,5 6e-4, 20, 5
HYPER 3e-4, 20,5 le-4, 20, 5
AGNEWS le-4, 10, 3 le-4, 10, 3
HELPFUL 3e-4, 20,5 le-4, 20, 5
IMDB le-4, 10, 3 le-4, 10, 3

Table 6: Learning rate, the nubmer of epochs and patience for best-performing models. For adapter experiments,
we sweep the learning rates in {1e-4, 3e-4, 6e-4}, the number of epochs in {10, 20}, and patience factor in {3, 5}

on validation set.
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Dataset | Adapter w/o pretraining | Adapter w/ pretraining |

CHEMPROT 83.77 0.5 84.02 0.7
RCT 88.16 0.1 88.13 0.1
ACL-ARC 72.41 2.2 77.31 2.9
SCIERC 86.86 0.5 87.87 0.3
HYPER 86.33 1.4 86.00 3.5
AGNEWS 94.28 0.1 94.57 0.1
HELPFUL 70.83 1.2 70.8 0.7
IMDB 95.52 0.1 95.6 0.1
Average F 84.77 85.54

Table 7: Validation performance of adapter experiments. Each score is averaged over 5 random seeds. Evaluation
metric is macro-F} scores for each task except for CHMEPROT and RCT which use micro-F}.

70 / |

40 1 —%— Baseline RoBERTa
TAPT

30 *— Adapter wio PT
—&— Adapter w/ PT

&6 25 6e-5 le-4 Jed  Bed
LR

Figure 3: F} score as a function of learning rate on development setwith log scale on x-axis. Fj score is averaged
over 5 random seeds for low-resource tasks (CHEMPROT, ACL-ARC, SCIERC, HYPER) due to the high
variance. For high-resource tasks (RCT, AGNEWS, HELPFULNESS, IMDB), we report the F} score from a
single random seed for each task. Here we sweep the learning rates in {le-4, 3e-4, 6e-4}, the number of epochs in
{10, 20}, and the patience factor in {3, 5}.

[ Dataset | Baseline RoBERTa | TAPT [ Hyper-parameters (LR, Epochs, Patience) ]

CHEMPROT 828 0.9 82.62 0.5 3e-5, 20,5
RCT 86.89 0.1 874 0.2 2e-5, 10, 3
ACL-ARC 69.24 5 6 70.08 2 3 3e-5, 20,5
SCIERC 80.59 0.9 81.28 1 - 2e-5, 20, 5
HYPER 94.53 2.0 86.171,3 36—5, 10, 3
AGNEWS 9390.2 94.05¢.1 2e-5, 10, 3
HELPFUL 69.63 0.6 71.28¢.8 2e-5, 20,5
IMDB 94.93 0.1 95.33()‘1 26-5, 20, 5
Average F 84.06 83.52

Table 8: Validation performance of Baseline RoOBERTa and TAPT experiments that corresponds to Table 3. Each
score is averaged over 5 random seeds.
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Original Results Original Results | Our Results Our Results

Dataset Baseline RoBERTa | TAPT Baseline RoBERTa | TAPT
CHEMPROT 819 1.0 82.6 0.4 81.64 0.5 82.58 0.5
RCT 87.2 0.1 87.7 0.1 86.89 0.1 87.4 0.2
ACL-ARC 63.05.5 67413 64.12 5 5 66.11 4.6
SCIERC 773 1.9 79315 78.89 2.7 79.94 o.7
HYPER 86.6 0.9 90.4 5.2 85.03 6.0 91.56 25
AGNEWS 9390.2 94501 93.72 9.2 94.05 0.1
HELPFULNESS | 65.1 3.4 68.5 1.9 69.2 1.4 71.24 9.7
IMDB 95.00.2 95501 95.150.1 95.33 0.1
Average F 81.3 83.24 81.83 83.53

Table 9: Reproducing Baseline RoBERTa and TAPT Results, average F Scores with standard deviation. F score
is averaged over 5 random seeds. We use the same hyper-parameters in Gururangan et al., 2020.
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Abstract

Strategies for improving the training and predic-
tion quality of weakly supervised machine learn-
ing models vary in how much they are tailored to
a specific task or integrated with a specific model
architecture. In this work, we introduce Knodle, a
software framework that treats weak data annota-
tions, deep learning models, and methods for im-
proving weakly supervised training as separate,
modular components. This modularization gives
the training process access to fine-grained infor-
mation such as data set characteristics, matches
of heuristic rules, or elements of the deep
learning model ultimately used for prediction.
Hence, our framework can encompass a wide
range of training methods for improving weak
supervision, ranging from methods that only look
at correlations of rules and output classes (inde-
pendently of the machine learning model trained
with the resulting labels), to those that harness the
interplay of neural networks and weakly labeled
data. We illustrate the benchmarking potential of
the framework with a performance comparison of
several reference implementations on a selection
of datasets that are already available in Knodle.

1 Introduction

Most of today’s machine learning success stories
are built on top of huge labeled data sets. Creating
and maintaining such data sources manually is a
time-consuming, complicated and thus an expensive
and error-prone process. Various research directions
address the hunger for bigger and better datasets.
One of the most popular approaches that has
recently gained traction is weak supervision. The
learning algorithm is confronted with labels which
are easy to obtain but are not guaranteed to be correct,
and as such often demand denoising. Such weak
labels are created, for example, with the use of regular

Andreas Stephan
University of Vienna
Vienna, Austria
andreas.stephan@univie.ac.at

Benjamin Roth
University of Vienna
Vienna, Austria
benjamin.roth@univie.ac.at

expressions, keyword lists or external databases.
Typically, methods for improving weakly supervised
learning (and their respective implementations) are
tailored towards domain-specific tasks or integrated
with a specific model architecture. Examples include
the attention-over-instances architecture introduced
for relation extraction (Lin et al., 2016), an EM-based
algorithm used for event extraction (Keith et al., 2017)
or models of systematic label flips for named entity
recognition (Hedderich et al., 2021). Such diversity
and specificity of approaches makes it difficult
to compare or transfer them across tasks without
extensive adjustments dictated by the implementation,
the task or the data set.

We introduce Knodle: a framework for Knowledge-
supervised Deep Learning, i.e weak supervision
with neural networks. The framework provides a
simple tensor-driven abstraction based on PyTorch
allowing researchers to efficiently develop methods
for improving weakly supervised machine learning
models and try them interchangeably to find the
one that works the best for a given task. Within this
work, we refer to a denoising method as any method
that helps to improve weakly supervised learning
regardless the type of noise or bias and the exact level
of denoising (weak labels, weak rules etc).

The following points summarize Knodle’s main
design goals:

* Data abstraction. A tensor-driven data abstrac-
tion subsumes a large number of input variants
and is applicable to a diverse range of tasks.

* Method independence. A decoupled imple-
mentation of weak supervision denoising meth-
ods and prediction models enables comparability
and accounts for domain-specific inductive bi-
ases.
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* Accessibility. A high-level interface makes it
easy to test existing methods, incorporate new
ones and benchmark them against each other.

Several denoising algorithms are already included
in Knodle.  We also propose a new denois-
ing algorithm, WSCrossWeigh, which extends
CrossWeigh (Wang et al.,, 2019), a method for
detecting mistakes in crowd-sourced annotation,
to the weak supervision setting. The experiments
demonstrate that it outperforms other existing
methods on the majority of dataset s.

All implemented methods are tested on several
datasets, also included in the Knodle ecosystem, and
we discuss their performance. Each dataset exhibits
different characteristics, such as the amount or the
precision-recall balance of the used rules. Moreover,
depending on the weakly labeled data set, methods
for improving weak labels need to remove spurious
matches in some cases, or generalize from them in
others.

It is clear that such a diverse problem space should
be paired with a rich pool of methods so that the most
appropriate denoising method can be found for any
task or dataset. Knodle allows to easily explore the
spaces of weakly supervised learning settings and
label improvement algorithms, and hopefully will
facilitate a better understanding of the phenomena
that are inherent to weakly supervised learning.

The framework is published as an open-
source Python package knodle and available
at https://github.com/knodle/knodle.

2 Related work

Many strategies have been introduced to reduce the
need for large amounts of manually labeled data.
Among these are active learning (Sun and Grishman,
2012), where automatically selected instances are
manually annotated by experts, and semi-supervised
learning (Agichtein and Gravano, 2000; Kozareva
et al., 2008), where a small annotated dataset is
combined with a large unlabeled one. Fine-tuning
pretrained language models such as BERT (?)
shows good results if moderate to small amounts of
annotations are available.

2.1 'Weak supervision

In weak supervision, tedious expert work is replaced
with easy to obtain, but potentially error-prone
labels, that are usually derived from a set of heuristic
rules. One of the most popular strategies of weakly
supervised learning is distant supervision, which uses
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knowledge from existing data sources to annotate
unlabeled data. The technique is used extensively
for relation extraction (Craven and Kumlien, 1999;
Mintz et al., 2009; ?; Riedel et al., 2013; Lin et al.,
2016), where various knowledge databases, such as
WordNet (Snow et al., 2004), Wikipedia (Wu and
Weld, 2007) and Freebase (Mintz et al., 2009), are
used as annotation sources.

When using heuristic rules, it is not uncommon
that one sample turns out to be annotated by multiple
rules. The most straightforward approach to resolve
such cases is majority voting, which is used in early
weak supervision algorithms (Thomas et al., 2011)
as well as in more recent experiments (Krasakis
et al., 2019; Boland and Kriiger, 2019). However,
majority voting does not deal with the different types
of noise introduced by weak supervision, and more
noise-specific algorithms are necessary. For example,
the noise produced by incomplete labels, which
stems from the incompleteness of weak supervision
sources and often leads to an increased amount
of false negatives, is commonly reduced by data
manipulations, e.g. enhancing the knowledge base
(Xu et al., 2013), a thorough construction of negative
examples to balance the positive ones (Riedel et al.,
2013), or explicitly modelling missing knowledge
base information with latent variables (Ritter et al.,
2013). The problem of noisy features, ie. an
increased amount of false positive labels stemming
from overgeneralization, is often approached by using
a relaxed distant supervision assumption (Riedel et al.,
2010; Hoffmann et al., 2011), by active learning with
additional manual expertise (Sterckx et al., 2014),
with help of topic models (Yao et al., 2011; Roth and
Klakow, 2013), as well as by using a combination of
multiple methods (Roth, 2014).

Apart from that, methods treat the identified
potentially noisy samples differently. They are either
kept for further training with reduced weights (Jat
et al., 2018; He et al., 2020), corrected (Shang, 2019)
or eliminated (Qin et al., 2018). Thus, denoising
methods vary significantly depending on the data
and task, what makes the creation of a platform for
comparison crucial.

2.2 Structure Learning

Structure learning assumes multiple weak labels per
instance where each label is created by a so called
labeling function. The goal is to learn a dependency
structure within these labeling functions which
motivates the term structure learning. Most labeling



functions are generated by human intuitions, moti-
vating correlation and dependence between labeling
functions. The first algorithm was implemented in the
software package Snorkel (Ratner et al., 2017), which
also implemented the data programming paradigm,
allowing to programmatically create labeling func-
tions. Subsequently improvements were made (Bach
et al., 2017; Varma et al., 2019) and variations, such
as semi-supdervised learning (Chatterjee et al., 2019;
Maheshwari et al., 2020) were introduced.

2.3 Noise-aware learning

A common idea to mitigate single noisy labels is
to build an architecture which accounts for noisy
data. There are different approaches that model
noise-robustness by adapting the loss function (Patrini
et al., 2017). Examples include a generalization of
cross-entropy and the mean absolute error (Zhang
and Sabuncu, 2018) or the addition of a special noise
layer to a neural network (Sukhbaatar et al., 2015).
Many approaches are based on noise assumptions,
such as on the assumption of symmetric label
noise (van Rooyen et al., 2015). Another approach
aims at finding and removing wrongly labeled
samples from the training procedure. An example
in this domain is given by the confidence learning
framework CleanLab, which is based on the intuition
that low-confidence predictions in cross-validation
are more likely to be labeled wrongly (Northcutt
et al., 2021). Note that most of these methods were
built with the assumption that there is one label
corresponding to each instance, while Knodle makes
use of several weak signals per instance.

24 Crowdsourcing annotations

Another solution to reduce the cost of manual data
supervision by experts is crowdsourcing. In order
to increase the supervision accuracy for a task, most
crowdsourcing experiments rely on annotations by
multiple people, and the final label is defined by
majority voting (Kosinski et al., 2012) or measuring
the inter-annotator agreement (Tratz and Hovy,
2010). More sophisticated denoising strategies
include anomaly detection (Eskin, 2000), annotator’s
reliability modelling (Dawid and Skene, 1979),
Bayesian approaches (Raykar and Yu, 2012) and
generative models (Hovy et al., 2013). Some mistakes
can be identified by such methods. For example,
mistakes consistently made by careful but biased
people (Ipeirotis et al., 2010), or errors introduced by
spammers (Raykar and Yu, 2012).

As both, automatically and human labeled data,
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are subject to noise and structural errors, many
algorithms can be used for both domains. For
example, the MACE algorithm (Hovy et al., 2013),
initially proposed for improving noisy annotations
from human annotators, was adapted to the setting of
denoising automatically labeled data for named entity
recognition (Rehbein and Ruppenhofer, 2017). With
the same motivation, we introduce WSCrossWeigh
(see Section 4 for more details). We demonstrate
the usefulness of the Knodle framework to transfer
algorithms for improving crowd-sourced annotations
to weak supervision problems.

2.5 Frameworks

Knodle is based upon the ideas of several software
frameworks. On a low level, Knodle is built on
top of PyTorch (Paszke et al., 2017). As for design
decisions, we followed several other high-level
libraries that aim to ease the training and prediction
experience. Namely, we drew inspiration from
PyTorch lightning (Falcon, 2019), which in essence
tries to remove the burdens of writing your own train
loop, and Huggingface’s Transformers library (Wolf
et al., 2020), which gives easy access to various
transformer-based architectures in a fixed manner, so
that they can be effortlessly interchanged in code.

3 Weakly supervised learning with Knodle

The Knodle architecture provides a layer of abstraction
that allows integrated label improvement and model
training with weakly supervised learning signals in
PyTorch. On the one hand, since Knodle has access to
the information which rules matched for each sample,
it is not restricted to methods that denoise only weak
labels, such as Cleanlab (Northcutt et al., 2021). On
the other hand, the Knodle abstraction also provides
access to input and learned representations, and thus
does not restrict denoising methods to rely on rule
match correlations alone (as Snorkel (Ratner et al.,
2017)). Moreover, access to the deep learning model
enables the integration of denoising methods that use
or manipulate the prediction model itself.

To the best of our knowledge, Knodle is the first
framework to provide a modular architecture for
interchangable application of a wide spectrum of
denoising algorithms. For that reason we believe that
it can become a testbed where different algorithms
for improving the weakly supervised data are im-
plemented and compared with each other to find the
most fruitful task-to-denoising-method combination
or to use it as a foundation for further studies.
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Figure 1: The figure gives an overview of our system. (a) represents the preprocessed input, given as tensors.(b)
resembles the internals of Knodle. The Trainer classes introduced in Section 3.2 handle transformation, denoising
and model training. Note that these three steps could be performed subsequently or subsumed in a single training step.

Then, (c) shows the output, a trained PyTorch model.

The framework follows two main design principles,
outlined below:

1. Tensor-based representations of input data
and weak label matches

Similar to Pytorch models, where the data (input,
labels) is already expected to be in tensor format,
and the specific pre-processing that led to the tensor
representation of the data is outside the scope of the
deep learning model implementation, we choose to
exclude the process of weak label generation from
Knodle. Rather, we encode the information about
weak labels in two tensors. One tensor contains
information about which rules matched for each
data instance, while another tensor describes the
relationship between rules and output classes.

Formally, assume we have n samples, 7 rules and
k classes. Rule matches are gathered in a binary ma-
trix Z € {0,1}"*", where Z;; =1 if rule j matches
sample 7. The initial mapping from rules to the cor-
responding classes is given by another binary matrix
T €{0,1}7**, Tj,=1if rule j is indicative of class k.

This separation between one tensor that contains
rule matches and another tensor that translates them
to labels allows Knodle to access this fine-grained
information during training for certain denoising
algorithms. This is in contrast to other approaches
that treat weak supervision as learning from a noisy
heuristic label matrix Y., = Z7 without direct
access to the individual rules.

2. Separation of the prediction model from the
weak supervision aspects.

Knodle requires a standard PyTorch model for
a given prediction task. It is defined independent
of the weak supervision aspects, such as rule types
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or denoising method. Therefore the same PyTorch
model definition can be used for direct or weakly
supervised training, and the two settings can easily
be compared. However, even though the prediction
model is defined separately, the denoising methods
may have access to it during training. For example,
cross-validation schemes such as WSCrossWeigh
(see Section 4) can use the PyTorch model definition
for data reweighting or label correction. This is in
contrast to approaches that modularize denoising and
training by first adjusting label confidences by using
correlations between rules only and then training
a model with the adjusted labels (Takamatsu et al.,
2012; Ratner et al., 2017). Furthermore, Knodle’s
design is much more flexible compared to approaches
where denoising is so tightly integrated into the
underlying prediction model architecture that it could
not be changed (Sukhbaatar et al., 2015).

3.1 Handling of negative instances

Different tasks need a different logic to handle data
samples where no rule matched. These samples are
traditionally called negative instances. Whether unla-
beled instances should be used for training (as an addi-
tional OTHER class) depends on the task at hand and
should be configurable. For example, in knowledge
base population (Surdeanu, 2013) there is only a small
number of relevant target relations, and it is important
to confidently identify sentences that do not contain
any of the target relations (requiring negative instances
as examples for the OTHER class). However, in spam
classification with only two classes (spam and not
spam) there are rules covering both possible outcomes,
and there is no need for unlabeled instances and filter-
ing them out is reasonable. Current weak supervision



frameworks provide only one of the two options: nega-
tive samples are either filtered out (Ratner et al., 2017)
or included to the training dataset (Shu et al., 2020).

Knodle includes configurable functionality for han-
dling such cases (allowing comparability of denoising
methods across tasks with and without an OTHER
class). From a technical point of view, there is a
filter_non_labeled flag in a configuration
file, which could be set to False if the negative
instances should be filtered out. To make up for
missing explicit annotations for negative samples,
an additional other_class parameter is defined.
Automatically all samples without a matching rule
are set to belong to other” class. Hence, the exact
other_class_id could be either provided by
the user or determined automatically by Knodle.
These types of configurations are well encapsulated,
allowing the specific model to deal with either input.
The amount of negative instances that should included
in the training set can be defined specifically for each
denoising algorithm.

3.2 Implementation Details

Similar to the most popular deep learning frameworks,
such as TensorFlow (Abadi et al., 2015) and
PyTorch (Paszke et al., 2017), we realise learning
as a mapping from input tensor(s) to output tensor(s)
guided by a loss function that measures the quality
of the learned mapping. However, while the most
common solution is to represent the training data by a
design matrix X € R™¢ (n instances represented by
d feature dimensions) and a label matrix Y € R"**
(k classes), input of Knodle are matrices X, Z and T
described above. The heuristic labels themselves are
calculated later during the weakly supervised learning
using the information contained there. To ensure a
seamless use, the weakly supervised algorithms need
to be tightly integrated with automatic differentiation
and optimization supported by PyTorch.

The denoising and training procedures are realised
within Trainer classes. During initialization,
they receive data, a possibly pre-initialized or pre-
trained model, and a method-specific configuration,
inheriting from Config containing information
such as model training parameters, criterion, valida-
tion method, class weights, various options to handle
cases where no rule matches discussed in 3.1 and
others. The level of integration between denoising and
training is different for each Trainer. Sometimes
these procedures can be completely disentangled. For
instance, the SnorkelTrainer firstly denoises

the input rules with Snorkel and, secondly, trains the
classification model on the purified labels. Other
methods highly integrate denoising and training
with each other. An example is given by the
WSCrossWeighTrainer, where several models
are trained in oder to calculate sample weights as part
of the denoising procedure before the final classifier
is trained.

While in standard deep learning frame-
works training can be executed by calling
model.train(X,Y), in Knodle the same
functionality would be invoked with the following
command (illustrates the Trainer with k-NN search,
which we describe in Section 4):

kNNAggregationTrainer (model, X, Z,
T, config).train/()

The following code snippet shows an end-to-end
process, starting from data loading, training and
evaluation:

import torch
from knodle.trainer.knn_aggregation import \
kNNAggregationTrainer, kNNConfig

X_train, Z, T, X_test, Y_test = load_data()

1T1g (Or us S derault)

# d 1 ustom cor (
config = kNNConfig (epochs=2, k=3)

O 0NN W=

11 | # itialize trainer

12 | trainer = kNNAggregationTrainer (
13 model, X_train, %, T, config
14 1)

16 | # trais

17 | trainer.train()

19 | # evaluate
20 |eval_dict = trainer.test (X_test, Y test)

More detailed information about
kNNAggregationTrainer as well as about
other Trainers included to Knodle is provided

in the next section.

4 Trainers

Knodle currently provides several out-of-the-box base-
lines and trainers, which we outline in the following
section. All Trainer classes are compatible with
any PyTorch model. As examples for PyTorch clas-
sifiers, Knodle provides code using logistic regression
and HuggingFace’s transformers (Wolfetal,
2020).

Majority Voting Baseline. As a simple baseline,
the rules are directly applied to the test data without
any additional model training. If several rules match,
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the prediction is done based on the majority; ties
are broken randomly. As was already mentioned
in Section 2, it is one of the most basic approaches
to denoise the data labeled by two or more rules or
human annotators.

Trainer without Denoising. The simplest trained
model is the NoDenoisingTrainer.  The
majority vote is computed on the training data and
used to train the given model. This is the most direct
use of the rule matches for training a classifier. To
cover cases where several rules match, this trainer can
be configured to either use a one-hot encoding of the
winning label from the majority vote or a distribution
over labels (relative to the number of matching rules).

Trainer with kNN  Denoising.  This
kNNAggregationTrainer includes the
label denoising method with a simple geometric
interpretation. The intuition behind it is that similar
samples should be activated by the same rules which
is allowed by a smoothness assumption on the target
space. The trainer looks at the k£ most similar samples
sorted by, for example, TF-IDF features combined
with L distance, and activates the rules matching the
neighbors to create a denoised Z. Importantly, Knodle
allows separate features for the model training and the
neighborhood activation. This method also provides a
way to activate rules for initially unmatched samples.

Trainer with Snorkel Denoising. Knodle pro-
vides a wrapper of the Snorkel system (Ratner et al.,
2017) SnorkelTrainer which incorporates both
generative and discriminative Snorkel steps. The
generative step constitutes a denoising method in
Knodle’s terminology, while the discriminative step
corresponds to a prediction model. The structure
within labels and rules, in our notation P(Y,Z,T), is
learned in an unsupervised fashion by the generative
model. Afterwards, the final discriminative model,
i.e. the prediction model, is trained with weak labels
provided by the generative model, following the
general Knodle design. Both steps are conveniently
provided in a single method call.

Trainer with Weak Supervision CrossWeigh
Denoising. Finally, we implemented our own
algorithm for noise correction in weakly su-
pervised data. It is based on the CrossWeight
method (Wang et al., 2019) and included to Knodle
as WSCrossWeighTrainer. While the original
CrossWeigh method was proposed for mistakes
identification in crowdworkers annotations, we extend
it for denoising the weakly supervised data as well.
In WSCrossWeigh we adopted the same logic for
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estimating the reliability of weakly annotated data,
but made some necessarily corrections specific to
weakly supervised learning.

The main intuition behind WSCrossWeigh is the
following: if a labeling rule corresponds to a wrong
class and, therefore, annotates many samples in the
training set with a wrong label, a machine learning
model is likely to learn the incorrect pattern and to
make similar mistakes when labeling the test samples.
However, if we take a sufficiently big portion of data
with samples not labeled by this rule, train the model
on it, and then classify the samples matched by the
rule, the predictions will contradict the initial wrong
labels, and help us to trace the misclassified samples
and reduce their importance in final classifier training.

As in the original CrossWeigh, the basic idea is
similar to the k-fold cross-validation, where input
data is split into k folds, each of which becomes, in
turn, a test set, while the model is trained on the other
folds. In WSCrossWeigh, however, the splitting is per-
formed not randomly, but based on which rules match
for the samples. Firstly, the rules are randomly split
into K folds {r1,...,r;} and, iteratively, each fold; is
chosen to form a test set that is built from all samples
matched this fold’s rules. Other samples constitute
a training set that is used for training the classification
model. During the testing of the trained model on the
hold-out fold samples, the predicted label y; for each
test sample z; is compared to the label y; originally
assigned to x; by weak supervision. If y; #y;, this is
taken as an indication that the sample x; is likely to be
potentially mislabeled, and its weights w,, is reduced
by a value of an empirically estimated parameter e.
This procedure is repeated several times with different
splits to detect misclassified samples more accurately.

The final classifier is trained on the whole
reweighed training dataset. As a result, the more times
the original y; label of data sample x; was suspected to
be wrong, the smaller is its weight w,,, and, therefore,
the smaller part it will play in the classifier training.

Along with other denoising algorithms,
WSCrossWeigh was tested on the datasets described
in Section 5 and showed quite promising results: it
outperforms all other algorithms on three out of four
datasets (for more details please see Section 6).

5 Datasets

Apart from denoising methods, Knodle includes a few
datasets from previous works in the Knodle-specific
tensor format in order to demonstrate the abilities of
the framework. All datasets are rather simple, but have



dataset classes train / test samples rules avg. rule hits class ratio
Spam 2 1586 /250 10 1.63 0.47
Spouse 2 22254 /2701 9 0.34 0.08
IMDb 2 40000 / 5000 6786 33.97 0.50
TAC-based RE 41 1937211/ 18660 182292 0.51 -

Table 1: Summary of data statistics. The average rule hits are computed on the train set. Class ratio describes the amount
of positive samples in the test set for binary classification datasets, i.e. data skewedness.

their own peculiarities with respect to the respective
Z and T matrices, that are worth investigating. The
overview of dataset statistics is provided in Table 1.

Spam Dataset. The first task uses the YouTube
comments dataset (Alberto et al., 2015). Here, the
task is to classify whether a text is relevant to the
video or holds spam, such as advertisement. The
dataset has a small size of both train and test sets.
Thus, a single wrongly labeled instance might
have quite a big impact on the learning algorithm.
We use the preprocessed version by the Snorkel
team (Snorkel, 2020b). Among others, the rules were
created based on keywords and regular expressions.

Spouse Dataset. This relation extraction dataset is
based on the Signal Media One-Million News Articles
Dataset (Corney et al., 2016). The task is to decide
whether a sentence holds a spouse relation or not.
Again, the preprocessed version by the Snorkel team
is used (Snorkel, 2020a), so the results can be related
to previous studies (Ratner et al., 2017). The rules are
created via a set of known spouse relationships from
DBPedia (Lehmann et al., 2014) as well as keywords
and encoded language patterns. The difficulty of the
Spouse dataset is its skewness: over 90% of samples
in the test set hold a no-spouse relation.

IMDDb Dataset. The third dataset is based on the
well-known IMDDb dataset (?), which consists of short
movie reviews. The task is to determine whether a
review holds a positive or negative sentiment. Despite
the training set has labels, we do not use them in our
experiments, but handle this data in an unsupervised
fashion. To create the Z and T matrices, we use
positive and negative keyword lists (Hu and Liu,
2004), with a total of 6800 keywords.

TAC-based Relation Extraction Dataset. Lastly,
given the importance of distant supervision for
relation extraction, we add a larger dataset with more
relations (than just spouse). For development and
test purposes the TACRED corpus annotated via
crowdsourcing and human labeling from KBP (Zhang
et al., 2017) is used. As human labels are not allowed
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in weak training, the training is performed not on
the TACRED dataset, but on a weakly-supervised
noisy corpus built on TAC KBP corpora (Surdeanu,
2013; Roth, 2014), which was annotated with entity
pairs extracted from Freebase (Google, 2014) with
corresponding relations mapped to the 41 TAC
relations. The amount of entity pairs per relation is
limited to 10.000 and each entity pair is allowed to
be mentioned in no more than 500 sentences. An
important difference of this dataset to the other three
is the presence of negative instances added to the
dataset in equal proportion to the positive ones.

6 Experiments

The aim of Knodle is not to find the best denoising
method in general. Rather, the goal is to find the
method that improves weak labels most for a given
task or dataset and its specific properties. Thus,
Knodle supports experimentation to get a better
understanding in which settings a certain method
works well and when it does not.

6.1 Experimental Details

In all experiments, the DistilBert uncased model for
English language (Sanh et al., 2019) provided by the
HuggingFace ! (Wolf et al., 2020) library is used as
the prediction model. The optimization is performed
with the AdamW optimizer (Loshchilov and Hutter,
2019) and a learning rate of le—4. We employ a
cross-entropy loss accepting a probability distribution
over all labels as reference input whenever the
output of a denoising algorithm is a distribution over
weak labels (e.g. kNNAggregationTrainer,
SnorkelTrainer). Reducing this representation
to a single label (i.e. log-likelihood) would lead to
a loss of weak signals, whereas a label distribution
allows to exploit the information from Z and 7" to the
fullest. Each model was trained for 2 epochs (unless
stated otherwise), which was enough to receive a
stable result.

"https://huggingface.co/



Spam Spouse IMDb TAC-based RE
Mode Acc P R F1 Acc P R F1
Majority vote 0.81 0.12 079 022 0.65 0.09 0.001 0.001
Majority + DistilBert 0.87 0.09 090 0.17 0.67 020 019 0.19
k-NN + DistilBert 0.94 0.12 0.86 021 0.50 0.10" 0.117 0.10
WSCrossWeigh + DistilBert ~ 0.94 0.09 069 0.16 0.73 025 027 026
Snorkel + DistilBert 0.88 0.13 070 023 0.50 - - -

Table 2: Results of the classifier training with different denoising methods on the test sets of datasets included in Knodle.
"The neighbors were searched with Approximate Nearest Neighbors (Bernhardsson, 2015) because of computation

complexity of k-NN search.

For the k-NN algorithm, nearest neighbors were
found using the cosine similarity of TF-IDF features
based on a dictionary of 3000 words, and the number
of k neighbors is treated as a hyper-parameter. In our
experiments, we used k =2 except where otherwise
noted. Hyperparameters for the WSCrossWeigh
denoising algorithm are the number of folds the
data is be split into, the number of partitions (that is,
how many times the splitting for mistake estimation
is done) and a weight-reducing rate (the value, by
which the initial sample weights are reduced to
each time the sample is predicted wrongly). These
parameters are tuned for each dataset individually.
The following best parameter values were found
empirically: (folds=3, partitions=10 and e=0.3)
for the Spam dataset, (3, 2 and 0.3) for the Spouse
dataset and (2, 25, 0.7) for the IMDb dataset. Apart
from that, Knodle provides the opportunity to train the
cross-validated sample weights with a model different
from the final classifier. In our experiments, the
weights were calculated using a Bidirectional LSTM
with GloVe Embeddings (Pennington et al., 2014),
while the final training was performed with DistilBert
using the same settings as in the experiments with
other denoising methods. The only difference is the
number of epochs on the TAC-based dataset: the best
results were obtained with 1 DistilBert epoch.

6.2 Results

An overview of the results is given in Table 2. In the
Spam dataset, all denoising methods show an improve-
ment over the simple majority vote baseline. The data-
adaptive k-NN and WSCrossWeigh methods perform
best in this setting. Snorkel and standard majority
voting followed by DistilBert fine-tuning overfit to
the noisy majority votes. This becomes obvious with
the observation that Snorkel achieves a score of 0.93
with a simple logistic regression discriminative model.
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Interestingly, k~-NN performs well which can serve
as a proof for the reliability of neighboring labels.

Compared to the Spam dataset, the Spouse dataset
is much larger. As the task is to find sentences holding
spouse relations, we relate all metrics to the is-spouse
relation. Note that the non-spouse relation remains
in this case completely disregarded. Furthermore, the
class ratio equals 0.08 shows that is-spouse is the com-
plicated class of interest. On average, 0.34 rules hit per
instance, meaning that almost 70% of the data match
no rule. In these cases, majority vote uses a random
vote which oversamples the is-spouse relation, render-
ing a high recall but low precision. We found that the
rule matches overrepresent the is-spouse class as they
are closer to a class ratio of 0.5 than to the true class
ratio of 0.9. Thus, the additional model training mag-
nifies overfitting towards the is-spouse class which,
again, is expressed by increased recall and lower pre-
cision. The only denoising system that generalizes is
Snorkel. One possible explanation could be that it is
the only method that provides explicit rule denoising.

For IMDb, the majority vote shows that the rules
have rather low quality on their own, but an additional
trained model on top manages to generalize beyond
the given labels. In contrast, denoising with the k&-NN
algorithm only aggravates the problems inherent to
labels as the classifier’s performance drops down to a
random vote (50% accuracy). This behaviour can be
explained by the high density of rule hits: on average,
no less than 33 keywords match for each sentence,
which means that already for £ =1 many neighbors
are added and that the propagation of imprecise
labelings overrules the expected benefits of k-NN.
In general, there are cues that k-NN might useful in
cases where the weak labels are already rather reliable
but fail in cases where weak labels are too noisy. The
Snorkel based denoising does not perform well on



IMDb dataset as well, which can be explained by
the lack of dependencies between the rules that the
Snorkel system relies on. However, WSCrossWeigh
appears to be very robust to these data characteristics,
the large amount of rules seems to help tease out and
mutually reinforce the data characteristics associated
with a specific label in cross-validation.

The distantly supervised TAC-based RE dataset
turns out to be the most complicated dataset among
all because of a larger size of samples n and a larger
number of rules r. Due to its specificity, there are
almost no rule matches (entity pairs from the seed
KB) on the test set, implying that the simple majority
baseline has scores close to 0. Training with DistilBert
improves the result, however the performance remains
considerably worse than for the data sets discussed
above. On the contrary the WSCrossWeigh method
that not directly denoise the rules, but downweigh
the mislabeled data samples is still able to improve
the results. Snorkel denoising could not be performed
on this dataset on a machine with CPU frequency of
2.2GHz with 40 cores due to the immense amount of
rules without the data manipulations we want to avoid
(such as significantly reducing the number of rules).
The computation of distances between almost 2
millions instances, which are necessary to determine
the nearest neighbors, also turned out to be extremely
memory- and time-consuming, explaining why k-NN
algorithm was also not performed. Instead, we work
around this by applying an approximated k-NN
algorithm. In our experiments we used the Annoy
library (Bernhardsson, 2015) and k& = 3 parameter.
The poor performance of approximated k-NN could
be explained by a small average of rule hits in the
TAC-based RE data set; the possible approximation
losses are also not to be neglected. In contrast, the
WSCrossWeigh method performs quite well. Our
explanation is that WSCrossWeigh does not directly
denoise the rules, but down-weighs samples it is
less confident about. This makes this approach more
robust in cases where the rules are very noisy.

7 Conclusion

This work introduces the Knowledge-supervised
Deep Learning framework Knodle. Knodle provides a
unified interface to work with multiple weak labeling
sources, so that they can be seamlessly integrated with
the training of deep neural networks. This is achieved
by a tensor-based input format and a intuitive
separation of weak supervision aspects and model
training. The framework facilitates experimentation

108

that helps researchers to gain better insights into
the correspondence between characteristics of weak
supervision problems, and the effectiveness of
methods for improving weakly supervised learning.
From a practical perspective, Knodle can be used to
compare different denoising methods and select the
one that gives the best result for a specific task.
Knodle’s modular approach makes it easy to add
new data sets and denoising algorithms. Adding func-
tionality to Knodle is straightforward, and we do hope
that it will encourage researchers to create their own
algorithms to improve learning with weakly annotated
data, and incorporate them into the Knodle framework.
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Abstract

Task-oriented compositional semantic parsing
(TCSP) handles complex nested user queries
and serves as an essential component of vir-
tual assistants. Current TCSP models rely on
numerous training data to achieve decent per-
formance but fail to generalize to low-resource
target languages or domains. In this paper,
we present X2Parser, a transferable Cross-
lingual and Cross-domain Parser for TCSP.
Unlike previous models that learn to gener-
ate the hierarchical representations for nested
intents and slots, we propose to predict flat-
tened intents and slots representations sepa-
rately and cast both prediction tasks into se-
quence labeling problems. After that, we fur-
ther propose a fertility-based slot predictor that
first learns to dynamically detect the number
of labels for each token, and then predicts
the slot types. Experimental results illustrate
that our model can significantly outperform
existing strong baselines in cross-lingual and
cross-domain settings, and our model can also
achieve a good generalization ability on target
languages of target domains. Furthermore, our
model tackles the problem in an efficient non-
autoregressive way that reduces the latency by
up to 66% compared to the generative model.!

1 Introduction

Virtual assistants can perform a wide variety of
tasks for users, such as setting reminders, searching
for events, and sending messages. Task-oriented
compositional semantic parsing (TCSP) which
comprehends users’ intents and detects the key
information (slots) in the utterance is one of the
core components in virtual assistants. Existing
TCSP models highly rely on large amounts of train-
ing data that usually only exist in high-resource
domains and languages (e.g., English), and they

!The code will be released in https://github.com/
zliucr/X2Parser.
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Figure 1: Illustration of the cross-lingual task, cross-
domain task, and the combination of both (X2 task).

generally fail to generalize well in a low-resource
scenario. Given that collecting enormous training
data is expensive and time-consuming, we aim to
develop a transferable model that can quickly adapt
to low-resource target languages and domains.
The traditional semantic parsing can be treated
as a simple joint intent detection and slot filling
task (Liu and Lane, 2016; Goo et al., 2018; Zhang
et al., 2019), while compositional semantic parsing
has to cope with complex nested queries, which re-
quires more sophisticated models. Current state-of-
the-art TCSP models (Rongali et al., 2020; Li et al.,
2020a) are generation-based models that learn to
directly generate the hierarchical representations
which contain nested intent and slot labels.> We
argue that the hierarchical representations are rela-
tively complex, and the models need to learn when
to generate the starting intent or slot label, when to
copy tokens from the input, and when to generate
the end of the label. Hence, large quantities of train-

2 An example of hierarchical representations is illustrated
at the bottom of Figure 2.
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ing data are necessary for the models to learn these
complicated skills (Rongali et al., 2020), while they
cannot generalize well when large datasets are ab-
sent (Li et al., 2020a). Moreover, the inference
speed of generation-based models will be greatly
limited by the output length.

In this paper, we propose a transferable cross-
lingual and cross-domain parser (X2Parser) for
TCSP. Instead of generating hierarchical represen-
tations, we convert the nested annotations into flat-
tened intent and slot representations (as shown in
Figure 2) so that the model can learn to predict the
intents and slots separately. We cast the nested slot
prediction problem into a special sequence labeling
task where each token can have multiple slot labels.
To tackle this task, our model first learns to predict
the number of slot labels, which helps it capture
the hierarchical slot information in user queries.
Then, it copies the corresponding hidden state for
each token and uses those hidden states to predict
the slot labels. For the nested intent prediction, we
cast the problem into a normal sequence labeling
problem where each token only has one intent la-
bel since the nested cases for intents are simpler
than those for slots. Compared to generation-based
models (Li et al., 2020a), X2Parser simplifies the
problem by flattening the hierarchical representa-
tions and tackles the task in a non-autoregressive
way, which strengthen its adaptation ability in low-
resource scenarios and greatly reduce the latency.

As shown in Figure 1, we conduct experiments

0a).
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on three low-resource settings: cross-lingual, cross-
domain, and a combination of both. Results show
that our model can remarkably surpass existing
strong baselines in all the low-resource scenar-
ios by more than 10% exact match accuracy, and
can reduce the latency by up to 66% compared to
generation-based models. We summarize the main
contributions of this paper as follows:

* We provide a new perspective to tackle the
TCSP task, which is to flatten the hierarchi-
cal representations and cast the problem into
several sequence labeling tasks.

X2Parser can significantly outperform exist-
ing strong baselines in different low-resource
settings and notably reduce the latency com-
pared to the generation-based model.

We conduct extensive experiments in different
few-shot settings and explore the combination
of cross-lingual and cross-domain scenarios.

2 Related Work

2.1 Task-Oriented Semantic Parsing

The majority of works on task-oriented seman-
tic parsing focused on non-compositional user
queries (Mesnil et al., 2013; Liu and Lane, 2016;
Goo et al., 2018; Zhang et al., 2019), which turns
the parsing task into a combination of intent detec-
tion and slot filling. Recently, Gupta et al. (2018)
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Figure 3: The architecture of X2Parser. We consider the TCSP task as a combination of the coarse-grained intent
classification, fine-grained intent prediction, and slot filling tasks.

introduced a new dataset, called TOP, annotated
with complex nested intents and slots and proposed
to use the hierarchical representations to model the
task. After that, Rongali et al. (2020) showed that
leveraging a sequence-to-sequence model based on
a copy mechanism (See et al., 2017) to directly gen-
erate the hierarchical representations was effective
at parsing the nested queries. Taking this further,
Chen et al. (2020) and Li et al. (2020a) extended the
TOP dataset into multiple domains and multiple lan-
guages, and Li et al. (2020a) conducted zero-shot
cross-lingual experiments using the combination of
the multilingual pre-trained models (Conneau et al.,
2020; Tran et al., 2020) and the copy mechanism
method proposed in Rongali et al. (2020). Lately,
Babu et al. (2021) and Shrivastava et al. (2021),
which are concurrent works of X2Parser, proposed
to tackled the TCSP task in a non-autoregressive
way. Different from them, we propose to flatten the
hierarchical representations and cast the problem
into several sequence labeling tasks.

2.2 Language and Domain Adaptation

Recently, cross-lingual and cross-domain models
that aim to tackle low-resource issues have been ap-
plied to natural language understanding (Conneau
et al., 2018; Huang et al., 2019; Conneau et al.,
2020; Gururangan et al., 2020), sentiment analy-
sis (Zhou et al., 2016; Ziser and Reichart, 2017),
task-oriented semantic parsing (Chen et al., 2018;
Schuster et al., 2019; Liu et al., 2019; Wu et al.,
2019; Liu et al., 2020a; Chen et al., 2020; Liu et al.,
2020b), named entity recognition (Ni et al., 2017,
Xie et al., 2018; Jia et al., 2019; Liu et al., 2020c¢),
speech recognition (Mimura et al., 2017; Winata
et al., 2020), abstractive summarization (Zhu et al.,
2019; Ouyang et al., 2019; Yu et al., 2021), etc. De-
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spite numerous studies related to the cross-lingual
and cross-domain areas, only a few of them have ex-
plored how to effectively adapt models to the target
languages in target domains, and the investigated
tasks are limited to sentiment analysis (Fernandez
et al., 2016; Li et al., 2020b), abusive language de-
tection (Pamungkas and Patti, 2019), and machine
reading comprehension (Charlet et al., 2020). To
the best of our knowledge, we are the first to study
the combination of cross-lingual and cross-domain
adaptations in the TCSP task.

3 Task Decomposition

In this section, we first introduce the intuition of
decomposing the compositional semantic parsing
into intent predictions and slot filling. Then, we
describe how we construct intent and slot labels.

3.1 Intuition of Task Decomposition

We argue that hierarchical representations contain-
ing nested annotations for intents and slots are rel-
atively complex. We need large enough training
data to train a good model based on such repre-
sentations, and the model’s performance will be
greatly limited in low-resource scenarios. There-
fore, instead of incorporating intents and slots into
one representation, we propose to predict them sep-
arately so that we can simplify the parsing problem
and enable the model to easily learn the skills for
each decomposed task, and finally, our model can
achieve a better adaptation ability in low-resource
scenarios. As illustrated in Figure 2, we obtain the
coarse-grained intent, flattened fine-grained intents
and flattened slot labels from the hierarchical repre-
sentations, and train the model based on these three
categories in a multi-task fashion. Note that we



can always reconstruct the hierarchical representa-
tions based on the labels in these three categories,
which means that the decomposed labels and the
hierarchical labels are equivalent.

3.2 Label Constructions

Slot Labels We extract nested slot labels from
the hierarchical representations and assign the la-
bels to corresponding tokens based on the BIO
(begin-inside-outside) structure. As we can see
from Figure 2, there could exist multiple slot
labels for one token, and we consider the or-
der of the labels so as to reconstruct the hier-
archical representations. Specifically, we put
the more fine-grained slot label at the later po-
sition. For example, “message” (in Figure 2)
has B-TODO and B-METHOD-MESSAGE labels,
and B-METHOD-MESSAGE comes after B-TODO
since it is a more fine-grained slot label.

Intent Labels Each data sample has one intent
label for the whole user utterance, and we extract
it as an individual coarse-grained intent label. For
the intents expressed by partial tokens (i.e., fine-
grained intents), we use the BIO structure to label
the corresponding tokens. We notice that we only
need to assign one intent label to each token since
the nested cases for intents are relatively simple.’
Therefore, the fine-grained intent classification be-
comes a sequence labeling task.

4 X2Parser

The model architecture of our X2Parser is illus-
trated in Figure 3. To enable the cross-lingual
ability of our model, we leverage the multilin-
gual pre-trained model XLM-R (Conneau et al.,
2020) as the sequence encoder. Let us define
X = {x1,x9,...,x,} as the user utterance and
H = {hq, ha, ..., h,, } as the hidden states (denoted
as Emb in Figure 3) from XLM-R.

4.1 Slot Predictor

The slot predictor consists of a fertility classifier, a
slot encoder, and a slot classifier. Inspired by Gu
et al. (2018), the fertility classifier learns to predict
the number of slot labels for each token, and then it
copies the corresponding number of hidden states.
Finally, the slot classifier is trained to conduct the
sequence labeling based on the slot labels we con-
structed. The fertility classifier not only helps the

3We place more details about how we construct labels for
fine-grained nested intents in the Appendix A.

model identify the number of labels for each token
but also guides the model to implicitly learn the
nested slot information in user queries. It relieves
the burden of the slot classifier, which needs to
predict multiple slot entities for certain tokens.

Fertility Classifier (FC) We add a linear layer
(FC) on top of the hidden states from XLM-R to
predict the number of labels (fertility), which we
formulate as follows:

F = {fla f27 ) fn} = FC({h17 h2a cey hn})a
(1

where FC is an n-way classifier (n is the maximum

label number) and f;(i € [1,n]) is a positive inte-

ger representing the number of labels for x;.

Slot Filling After obtaining the fertility predic-
tions, we copy the corresponding number of hidden
states from XLM-R:

H' = CopyHiddens(H, F). )

Then, we add a transformer encoder (Vaswani et al.,
2017) (slot encoder (SE)) on top of H' to incor-
porate the sequential information into the hidden
states, followed by adding a linear layer (slot clas-
sifier (SC)) to predict the slots, which we formulate
as follows:

Pyor = SC(SE(H")), 3)

where Py is a sequence of slots that has the same
length as the sum of the fertility numbers.

4.2 Intent Predictor

Coarse-Grained Intent The coarse-grained in-
tent is predicted based on the hidden state of the
“ICcLS]” token from XLM-R since it can be the
representation for the whole sequence, and then we
add a linear layer (coarse-grained intent classifier
(CGIC)) on top of the hidden state to predict the
coarse-grained intent:

Pcg = CGIC(hcls)v (4)
where p, is a single intent prediction.

Fine-Grained Intent We add a linear layer (fine-
grained intent classifier (FGIC)) on top of the hid-
den states H to produce the fine-grained intents:

Pfg :FGIC({hlah27“-7hn})7 )

where P is a sequence of intent labels that has the
same length as the input sequence.
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Model en es fr de hi th Avg.
Seq2Seq w/ CRISS (Li et al., 2020a) 84.20 48.60 46.60 36.10 31.20 0.00 | 32.50
Seq2Seq w/ XLM-R (Li et al., 2020a) 83.90 50.30 43.90 42.30 30.90 26.70 | 38.82
Neural Layered Model (NLM) 8240 59.99 58.16 5491 2931 28.78 | 46.23
X2Parser 83.39 60.30 58.34 56.16 37.06 29.35 | 48.24

Table 1: Exact match accuracies for the zero-shot cross-lingual setting. “Avg.” denotes the averaged performance
over all target languages (English excluded). The results of X2Parser and NLM are averaged over five runs.

Model | Alarm Call. Event Msg. Music News People Recipe Remind Timer Weather | Avg.
Seq2Seq | 67.94 6425 6193 50.11 3220 4320 5254 3421 46.32 44.83 73.58 51.92
NLM 76.32 70.02 73.60 70.58 56.52 58.01 67.33 @ 50.01 57.28 64.37 80.15 65.83
X2Parser | 76.72 73.16 7733 7145 55.19 64.43 69.77 51.78 58.86 65.98 81.17 | 67.80

Table 2: Exact match accuracies (averaged over three runs) for the cross-domain setting in English. The scores
represent the performance for the corresponding target domains. We use 10% of training samples in the target
domain. “Seq2Seq” denotes the “Seq2Seq w/ XLM-R” baseline (same for the following tables and figures).

5 Experiments

5.1 Experimental Setup

Dataset We conduct the experiments on the
MTOP dataset proposed by Li et al. (2020a), which
contains six languages: English (en), German (de),
French (fr), Spanish (es), and Thai (th), and 11
domains: alarm, calling, event, messaging, music,
news, people, recipes, reminder, timer, and weather.
The data statistics are reported in the Appendix B.

Cross-Lingual Setting In the cross-lingual set-
ting, we use English as the source language and the
other languages as target languages. In addition,
we consider a zero-shot scenario where we only
use English data for training.

Cross-Domain Setting In the cross-domain set-
ting, we only consider training and evaluation in
English. We choose ten domains as source domains
and the other domain as the target domain. Differ-
ent from the cross-lingual setting, we consider a
few-shot scenario where we first train the model
using the data from the ten source domains, and
then we fine-tune the model using a few data sam-
ples (e.g., 10% of the data) from the target domain.
We consider the few-shot scenario because zero-
shot adapting the model to the target domain is
extremely difficult due to the unseen intent and slot
types, while zero-shot to target languages is easier
using multilingual pre-trained models.

Cross-Lingual Cross-Domain Setting This set-
ting combines the cross-lingual and cross-domain
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settings. Specifically, we first train the model on
the English data from the ten source domains, and
then fine-tune it on a few English data samples
from the other (target) domain. Finally, we conduct
the zero-shot evaluation on all the target languages
of the target domain.

5.2 Baselines

Seq2Seq w/ XLM-R Rongali et al. (2020) pro-
posed a sequence-to-sequence (Seq2Seq) model
using a pointer-generator network (See et al., 2017)
to handle nested queries, and achieved new state-of-
the-art results in English. Li et al. (2020a) adopted
this architecture for zero-shot cross-lingual adap-
tation. They replaced the encoder with the XLM-
R (Conneau et al., 2020) and used a customized
decoder to learn to generate intent and label types
and copy tokens from the inputs.*

Seq2Seq w/ CRISS It is the same architecture as
Seq2Seq w/ XLM-R, except that Li et al. (2020a)
replaced XLM-R with the multilingual pre-trained
model, CRISS (Tran et al., 2020), as the encoder
for the zero-shot cross-lingual adaptation.

Neural Layered Model (NLM) This baseline
conducts the multi-task training based on the same
task decomposition as X2Parser, but it replaces the
slot predictor module in X2Parser with a neural

“In order to compare the performance in the cross-domain
and cross-lingual cross-domain settings, we follow Li et al.
(2020a) to reimplement this baseline since the source code is
not publicly available.



Model | Alarm Call. Event Msg. Music News People Recipe Remind Timer Weather | Avg.
Seq2Seq | 34.29 47.00 41.81 2586 19.21 2539 2213 16.12 9.80 20.01 36.90 | 22.25
NLM 48.53 4330 44.62 4332 3625 28.60 4329 2854 20.50 34.16 59.57 39.15
X2Parser | 48.72 51.30 53.22 4399 3725 34.85 4597 3299 27.87 36.61 60.05 | 42.98

Table 3: Exact match accuracies (averaged over three runs) for the cross-lingual cross-domain setting. The result
for each domain is the averaged performance over all target languages. We use 10% of training samples in the
English target domain, and do not use any data in the target languages.

80

70

EM Accuracy (%)
w s w o
s & & 8

~
o

=
o ©

AIm. Call. Evt. Msg. Mus. New. Peo. Rec. Rem. Tim. Wea.
Spanish

AIm. Call. Evt. Msg. Mus. New. Peo. Rec. Rem. Tim. Wea.
French

Alm. Call. Evt. Msg. Mus. New. Peo. Rec. Rem. Tim. Wea.

Germ

X2Parser
NLM
Seq2Seq

Alm. Call. Evt. Msg. Mus. New. Peo. Rec. Rem. Tim. Wea.
Hindi

Alm. Call. Evt. Msg. Mus. New. Peo.

Thai

Rec. Rem. Tim. Wea.
an

Figure 4: Full cross-lingual cross-domain results (across all target languages of target domains) for Table 3.

layered model (Ju et al., 2018),> while keeping the
other modules the same. Unlike our fertility-based
slot predictor, NLM uses several stacked layers to
predict entities of different levels. We use this base-
line to verify the effectiveness of our fertility-based
slot predictor.

5.3 Training Details

We use XLM-R Large (Conneau et al., 2020) as
the sequence encoder. For a word (in an utterance)
with multiple subword tokens, we take the repre-
sentations from the first subword token to predict
the labels for this word. The transformer encoder
(slot encoder) has one layer with a head number of
4, a hidden dimension of 400, and a filter size of 64.
We set the fertility classifier as a 3-way classifier
since the maximum label number for each token in
the dataset is 3. We train X2Parser using the Adam
optimizer (Kingma and Ba, 2015) with a learning
rate of 2e-5 and a batch size of 32. We follow Li
et al. (2020a) and use the exact match accuracy to
evaluate the models. For our model, the prediction
is considered correct only when the predictions for
the coarse-grained intent, fine-grained intents, and
the slots are all correct. To ensure a fair compar-
ison, we use the same three random seeds to run
each model and calculate the averaged score for
each target language and domain.

>This model was originally proposed to tackle the nested
named entity recognition task
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6 Results & Discussion

6.1 Main Results

Cross-Lingual Setting As we can see from Ta-
ble 1, X2Parser achieves similar performance in
English compared to Seq2Seq-based models, while
it significantly outperforms them in the zero-shot
cross-lingual setting, with ~10% accuracy im-
provement on average. In the English training pro-
cess, the Seq2Seq-based models can well learn the
specific scope of tokens that need to be copied and
assigned to a specific label type based on numerous
training data. However, these models will easily
lose effectiveness when the input sequences are
in target languages due to the inherent variances
across languages and the difficulty of generating hi-
erarchical representations. X2Parser separates the
TCSP task into predicting intents and slots individ-
ually, which lowers the task difficulty and boosts
its zero-shot adaptation ability to target languages.
Interestingly, we find that compared to Seq2Seq w/
XLM-R, X2Parser greatly boosts the performance
on target languages that are topologically close
to English (e.g., French (fr)) with more than 10%
scores, while the improvements for languages that
are topologically distant from English (e.g., Thai
(th) and Hindi (hi)) are relatively limited. We ar-
gue that the large discrepancies between English
and Thai make the representation alignment qual-
ity between English and Thai (Hindi) in XLM-R
relatively low, and their different language patterns
lead to unstable slot and intent predictions. These
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Figure 6: Few-shot exact match results on the cross-lingual cross-domain setting for Event, News and Recipe
target domains. The results are averaged over all target languages.

factors limit the improvement for X2Parser on the
adaptation to topologically distant languages.

From Table 1, although NLM achieves
marginally lower performance in English com-
pared to Seq2Seq w/ XLM-R, it produces signifi-
cant improvements in target languages. This can
be attributed to the fact that NLM leverages the
same task decomposition as X2Parser, which fur-
ther indicates the effectiveness of decomposing the
TCSP task into intent and slot predictions for low-
resource scenarios. Additionally, X2Parser sur-
passes NLM by ~2% exact match accuracy on
average in target languages. We conjecture that the
stacked layers in NLM could make the model con-
fused about which layer needs to generate which
entity types, and this confusion is aggravated in
the zero-shot cross-lingual setting where no train-
ing data are available. However, our fertility-based
method helps the model implicitly learn the struc-
ture of hierarchical slots by predicting the number
of labels for each token, which allows the slot clas-
sifier to predict the slot types more easily in the
cross-lingual setting.

Cross-Domain Setting As shown in Table 2,
X2Parser and NLM notably surpass the Seq2Seq
model, with ~15% improvements on the averaged
scores. This can be largely attributed to the effec-
tiveness of our proposed task decomposition for
low-resource scenarios. Seq2Seq models need to
learn when to generate the label, when to copy to-

kens from the inputs, and when to produce the end
of the label to generate hierarchical representations.
This generation process requires a relatively large
number of data samples to learn, which leads to
the weak few-shot cross-domain performance for
the Seq2Seq model. Furthermore, X2Parser out-
performs NLM, with a ~2% averaged score. We
conjecture that our fertility classifier guides the
model to learn the inherent hierarchical informa-
tion from the user queries, making it easier for the
slot classifier to predict slot types for each token.
However, the NLM’s slot classifier, which consists
of multiple stacked layers, needs to capture the hi-
erarchical information and correctly assign slot la-
bels of different levels to the corresponding stacked
layer, which requires relatively larger data to learn.

Cross-Lingual Cross-Domain Setting From
Table 3 and Figure 4, we can further observe the
effectiveness of our proposed task decomposition
and X2Parser in the cross-lingual cross-domain set-
ting. X2Parser and NLM consistently outperform
the Seq2Seq model in all target languages of the
target domains and boost the averaged exact match
accuracy by ~20%. Additionally, from Table 3,
X2Parser also consistently outperforms NLM on
all 11 domains and surpasses it by 3.84% accuracy
on average. From Figure 4, X2Parser greatly im-
proves on NLM in topologically distant languages
(i.e., Hindi and Thai). It illustrates the powerful
transferability and robustness of the fertility-based
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Model Spanish French German Hindi Thai Average
NN Nested NN Nested NN Nested NN Nested NN Nested | NN  Nested
Seq2Seq | 56.21 2938 48.11 32.83 46.02 20.25 37.84 2230 3327 13.56 | 4429 23.66
NLM 65.65 4195 61.02 4291 5690 3794 3648 2436 34.15 15.70 | 50.84 32.57
X2Parser | 66.69 39.19 63.45 44.28 5843 39.71 42.64 2855 3596 16.67 | 5343 33.68

Table 4: Zero-shot cross-lingual exact match accuracies for nested and non-nested (NN) cases.

slot prediction that enables X2Parser to have a good 160 e Seq2Seq
zero-shot cross-lingual performance after it is fine- 1401 NLM
tuned to the target domain. 2 120} . x2Parser

2100
6.2 Few-shot Analysis £ 80
We conduct few-shot experiments using different 5 60 -
sample sizes from the target domain for the cross- 40! e
domain and cross-lingual cross-domain settings. 20

5 10 15 20 25 30 35 40

The few-shot results on the Event, News, and
Recipe target domains for both settings® are shown
in Figure 5 and Figure 6. We find that the per-
formance of the Seq2Seq model is generally poor
in both settings, especially when only 1% of data
samples are available. With the help of the task
decomposition, NLM and X2Parser remarkably
outperform the Seq2Seq model in various target do-
mains for both the cross-domain and cross-lingual
cross-domain settings across different few-shot sce-
narios (from 1% to 10%). Moreover, X2Parser con-
sistently surpasses NLM for both the cross-domain
and cross-lingual cross-domain settings in differ-
ent few-shot scenarios, which further verifies the
strong adaptation ability of our model.
Interestingly, we observe that the improvement
of X2Parser over Seq2Seq grows as the number
of training samples increases. For example, in the
cross-lingual cross-domain setting of the event do-
main, the improvement goes from 20% to 30% as
the training data increases from 1% to 10%. We
hypothesize that in the low-resource scenario, the
effectiveness of X2Parser will be greatly boosted
when a relatively large number of data samples are
available, while the Seq2Seq model needs much
larger training data to achieve good performance.

6.3 Analysis on Nested & Non-Nested Data

To further understand how our model improves the
performance, we split the test data in the MTOP
dataset (Li et al., 2020a) into nested and non-nested
samples. We consider the user utterances that do

%We only report three domains due to the page limit, and
place the full results for all 11 target domains in the Ap-
pendix C and Appendix D.
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Output Length (# Token)

Figure 7: Averaged latencies for our model and base-
lines on different output lengths of the MTOP dataset.

not have fine-grained intents and nested slots as the
non-nested data sample and the rest of the data as
the nested data sample. As we can see from Table 4,
X2Parser significantly outperforms the Seq2Seq
model on both nested and non-nested user queries
with an average of ~10% accuracy improvement in
both cases. In addition, X2Parser also consistently
surpasses NLM on all target languages in both the
nested and non-nested scenarios, except for the
Spanish nested case, which further illustrates the
stable and robust adaptation ability of X2Parser.

6.4 Latency Analysis

We can see from Figure 7 that, as the output length
increases, the latency discrepancy between the
Seq2Seq-based model (Seq2Seq) and sequence
labeling-based models (NLM and X2Parser) be-
comes larger, and when the output length reaches
40 tokens (around the maximum length in MTOP),
X2Parser can achieve an up to 66% reduction in
latency compared to the Seq2Seq model. This can
be attributed to the fact that the Seq2Seq model
has to generate the outputs token by token, while
X2Parser and NLM can directly generate all the out-
puts. In addition, the inference speed of X2Parser
is slightly faster than that of NLM. This is because
NLM uses several stacked layers to predict slot en-
tities of different levels, and the higher-level layer
has to wait for the predictions from the lower-level
layer, which slightly decreases the inference speed.



7 Conclusion

In this paper, we develop a transferable and non-
autoregressive model (X2Parser) for the TCSP task
that can better adapt to target languages and do-
mains with a faster inference speed. Unlike previ-
ous TCSP models that learn to generate hierarchical
representations, we propose to decompose the task
into intent and slot predictions so as to lower the
difficulty of the task, and then we cast both predic-
tion tasks into sequence labeling problems. After
that, we further propose a fertility-based method
to cope with the slot prediction task where each
token could have multiple labels. Results illus-
trate that X2Parser significantly outperforms strong
baselines in all low-resource settings. Furthermore,
our model is able to reduce the latency by up to
66% compared to the generation-based model.
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A Intent Label Construction

In this section, we further describe how we convert
the fine-grained intent prediction into a sequence
labeling task (each token has only one label). We
use a few examples to illustrate our intent label
construction method.

B-SEND
MESSAGE

I-SEND

MEssace| O O O 0
A AoA A
Message Mike at 7 pm tonight

Figure 8: A labeling example for non-nested intent.

As illustrated in Figure 8, when there are no
nested intents in the input utterance, we follow the
BIO structure to give intent labels.

B-GET

B-CREATE | |CONTACT
0 00 CALL NESTED 00O
Ao A A A AAA
Remind me to call  Grandma at 7 pm

Figure 9: A labeling example for nested intent.

We can see from Figure 9 that “call
Grandma” is a CREATE-CALL intent and
“Grandma” is a GET-CONTACT intent. Hence,

the GET-CONTACT intent is nested in the
CREATE-CALL intent. We use a special intent
label (with “NESTED”) for the “GET-CONTACT”
intent (B-GET-CONTACT-NESTED) to represent
that this intent is nested in another intent, and
hence, the scope of the CREATE-CALL intent
is automatically expanded from “call” to “call
Grandma”. ’

Note that we cannot apply this labeling method
to the slot prediction since one token in the user
utterance could be the starting token for more than
one slot entity. If that is the case, we have to use
more than one slot label for this token to denote
the starting position for each slot entity. Given
that in the MTOP dataset, one token will not be
the starting token of more than one intent, we can
apply this method for the intent label construction.
In the future, when more complex and sophisti-
cated datasets are collected for the task-oriented
compositional semantic parsing task, where there
could exist more than one intent label for each to-
ken, we can always use the fertility-based method

"We notice that if two intents have overlaps, one intent

either fully covers the other intent or is fully covered by the
other intent.
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(currently applied for the slot prediction) for the
intent prediction.

B Data Statistics

The data statistics for MTOP are shown in Table 5.

C Few-shot Cross-Domain Results

Full few-shot cross-domain results across all 11
target domains are shown in Figure 10 and Table 6.

D Few-shot Cross-Lingual
Cross-Domain Results

Full few-shot cross-lingual cross-domain results
across all 11 target domains are shown in Figure 11
and Tables 7, 8, 9, 10, and 11.



Domain Number of Utterances Intent  Slot
English German French Spanish Hindi Thai | Types Types
Alarm 1,783 1,581 1,706 1,377 1,510 1,783 6 5
Calling 2,872 2,797 2,057 2,515 2,490 2,872 19 14
Event 1,081 1,051 1,115 911 988 1,081 12 12
Messaging 1,053 1,239 1,335 1,164 1,082 1,053 7 15
Music 1,648 1,499 1,312 1,509 1,418 1,648 27 12
News 1,393 905 1,052 1,130 930 1,393 3 6
People 1,449 1,392 763 1,408 1,168 1,449 17 16
Recipes 1,586 1,002 762 1,382 929 1,586 3 18
Reminder 2,439 2,321 2,202 1,811 1,833 2,439 19 17
Timer 1,358 1,014 1,165 1,159 1,047 1,358 9 5
Weather 2,126 1,785 1,990 1,816 1,800 2,126 4 4
Total 18,788 16,585 15,459 16,182 15,195 18,788 117 78

Table 5: Data statistics of the MTOP dataset. The data are roughly divided into a 70:10:20 percent split for train,

eval and test
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Figure 10: Few-shot exact match accuracies for the cross-domain setting across all 11 target domains.
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