
RepL4NLP 2021

The 6th Workshop on Representation Learning for NLP

Proceedings of the Workshop

August 6, 2021
Bangkok, Thailand (online)

©2021 The Association for Computational Linguistics
and The Asian Federation of Natural Language Processing

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-954085-72-5

ii

Introduction

Welcome to the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021)! The workshop
was co-located with the Joint Conference of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language Processing
(ACL-IJCNLP 2021), and was held on August 6, 2021 as an online workshop. The workshop was
organised by Anna Rogers, Iacer Calixto, Ivan Vulić, Naomi Saphra, Nora Kassner, Oana-Maria
Camburu, Trapit Bansal, and Vered Shwartz; and advised by Chris Dyer, Ed Grefenstette, Isabelle
Augenstein, Karl Moritz Hermann, Kyunghyun Cho, and Laura Rimell. The workshop is annually
organised by the ACL Special Interest Group on Representation Learning (SIGREP).

The 6th Workshop on Representation Learning for NLP aims to continue the success of the previous
editions, and remains a strong and established venue for representation learning in NLP, attracting
more than 60 submissions this year. This edition continued to invite papers of a theoretical or
experimental nature describing recent advances in vector space models of meaning, compositionality,
and the application of deep neural networks and spectral methods to NLP. A strong focus was put on
topics of developing new representations, evaluating existing representations, efficient and sustainable
learning and inference, and representation learning beyond the English language and text only (e.g.,
multi-modal, cross-lingual, knowledge-informed learning).

We take this opportunity to thank the RepL4NLP-2021 program committee for their help and thorough
reviews. We also thank the authors who presented their work at the workshop, and the workshop
participants for the valuable feedback and discussions. Finally, we are deeply honored to have four
excellent talks from our invited speakers Sameer Singh, Karen Livescu, Noah Smith, and Lena Voita.

The RepL4NLP-2021 Workshop organizers

iii

Organizers:

Anna Rogers, University of Copenhagen
Iacer Calixto, New York University & University of Amsterdam
Ivan Vulić, University of Cambridge & PolyAI
Naomi Saphra, New York University
Nora Kassner, LMU Munich
Oana-Maria Camburu, University of Oxford
Trapit Bansal, UMass Amherst
Vered Shwartz, Allen Institute for AI & University of Washington

Senior Advisers:

Chris Dyer, DeepMind
Edward Grefenstette, Facebook AI Research & University College London
Isabelle Augenstein, University of Copenhagen
Karl Moritz Hermann, Saiga
Kyunghyun Cho, New York University
Laura Rimell, DeepMind

Keynote Speakers:

Sameer Singh, University of California Irvine
Karen Livescu, Toyota Technological Institute at Chicago
Noah Smith, Allen Institute for AI & University of Washington
Lena Voita, University of Edinburgh & University of Amsterdam

Program Committee:

Muhammad Abdul-Mageed
Guy Aglionby
Roee Aharoni
Nicholas Andrews
Mikel Artetxe
Federico Bianchi
Andrew Caines
Helena Caseli
Yue Chen
Mingda Chen
Alexandra Chronopoulou
Manuel Ciosici
Paula Czarnowska
Giuseppe Antonio Di Luna
Philipp Dufter
Javid Ebrahimi
Vladimir Eidelman
Yanai Elazar
Sergey Feldman
Eraldo Fernandes
Elisabetta Fersini
Orhan Firat
Thibault Févry
Rainer Gemulla

v

Eleonora Giunchiglia
Hongyu Gong
Kartik Goyal
Robin Jia
Aishwarya Kamath
Santosh Kesiraju
Ekaterina Kochmar
Vid Kocijan
Shankar Kumar
Andrey Kutuzov
Matthieu Labeau
John P. Lalor
Jey Han Lau
Carolin Lawrence
Xiang Lorraine Li
Tao Li
Yitong Li
Bill Yuchen Lin
Peng Liu
Olga Majewska
Sabrina Mielke
Victor Milewski
Jeff Mitchell
Daichi Mochihashi
Ashutosh Modi
Nicholas Monath
Lili Mou
Maximilian Mozes
Khalil Mrini
Nikita Nangia
Jason Naradowsky
Thien Huu Nguyen
Truc-Vien T. Nguyen
Jekaterina Novikova
Tsuyoshi Okita
Ankur Padia
Letitia Parcalabescu
Matthew Peters
Tiago Pimentel
Vipul Raheja
Surangika Ranathunga
Abhilasha Ravichander
Subendhu Rongali
Frank Rudzicz
Ehsan Shareghi
Hao Tang
Shuai Tang
Dung Thai
Jörg Tiedemann
Nadi Tomeh
Marcos Treviso

vi

Adam Trischler
Lifu Tu
Shikhar Vashishth
Hai Wang
Hua Wang
Rodrigo Wilkens
Adina Williams
Yuexin Wu
Yuxiang Wu
Wenpeng Yin
Yordan Yordanov
Hong Yu
Wei Zhang
Xiangyang Zhou
Dong Zhou
Yi Zhu
Imed Zitouni
Robert Östling

vii

Table of Contents

Improving Cross-lingual Text Classification with Zero-shot Instance-Weighting
Irene Li, Prithviraj Sen, Huaiyu Zhu, Yunyao Li and Dragomir Radev . 1

Probing Multilingual Language Models for Discourse
Murathan Kurfalı and Robert Östling . 8

Comprehension Based Question Answering using Bloom’s Taxonomy
Pritish Sahu, Michael Cogswell, Ajay Divakaran and Sara Rutherford-Quach 20

Larger-Scale Transformers for Multilingual Masked Language Modeling
Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman and Alexis Conneau.29

Learning Sparse Sentence Encoding without Supervision: An Exploration of Sparsity in Variational
Autoencoders

Victor Prokhorov, Yingzhen Li, Ehsan Shareghi and Nigel Collier . 34

Temporal-aware Language Representation Learning From Crowdsourced Labels
Yang Hao, Xiao Zhai, Wenbiao Ding and Zitao Liu . 47

Structure-aware Sentence Encoder in Bert-Based Siamese Network
Qiwei Peng, David Weir and Julie Weeds . 57

Preserving Cross-Linguality of Pre-trained Models via Continual Learning
Zihan Liu, Genta Indra Winata, Andrea Madotto and Pascale Fung . 64

Text Style Transfer: Leveraging a Style Classifier on Entangled Latent Representations
Xiaoyan Li, Sun Sun and Yunli Wang . 72

Inductively Representing Out-of-Knowledge-Graph Entities by Optimal Estimation Under Translational
Assumptions

Damai Dai, Hua Zheng, Fuli Luo, Pengcheng Yang, Tianyu Liu, Zhifang Sui and Baobao Chang83

Revisiting Pretraining with Adapters
Seungwon Kim, Alex Shum, Nathan Susanj and Jonathan Hilgart . 90

Knodle: Modular Weakly Supervised Learning with PyTorch
Anastasiia Sedova, Andreas Stephan, Marina Speranskaya and Benjamin Roth 100

X2Parser: Cross-Lingual and Cross-Domain Framework for Task-Oriented Compositional Semantic
Parsing

Zihan Liu, Genta Indra Winata, Peng Xu and Pascale Fung . 112

Unsupervised Representation Disentanglement of Text: An Evaluation on Synthetic Datasets
Lan Zhang, Victor Prokhorov and Ehsan Shareghi . 128

Learn The Big Picture: Representation Learning for Clustering
Sumanta Kashyapi and Laura Dietz .141

Probing Cross-Modal Representations in Multi-Step Relational Reasoning
Iuliia Parfenova, Desmond Elliott, Raquel Fernández and Sandro Pezzelle 152

In-Batch Negatives for Knowledge Distillation with Tightly-Coupled Teachers for Dense Retrieval
Sheng-Chieh Lin, Jheng-Hong Yang and Jimmy Lin . 163

ix

NPVec1: Word Embeddings for Nepali - Construction and Evaluation
Pravesh Koirala and Nobal B. Niraula . 174

Deriving Word Vectors from Contextualized Language Models using Topic-Aware Mention Selection
Yixiao Wang, Zied Bouraoui, Luis Espinosa Anke and Steven Schockaert 185

Zero-shot Sequence Labeling for Transformer-based Sentence Classifiers
Kamil Bujel, Helen Yannakoudakis and Marek Rei . 195

Predicting the Success of Domain Adaptation in Text Similarity
Nick Pogrebnyakov and Shohreh shaghaghian . 206

Syntagmatic Word Embeddings for Unsupervised Learning of Selectional Preferences
Renjith P. Ravindran, Akshay Badola and Narayana Kavi Murthy. .213

Bayesian Model-Agnostic Meta-Learning with Matrix-Valued Kernels for Quality Estimation
Abiola Obamuyide, Marina Fomicheva and Lucia Specia . 223

Knowledge Informed Semantic Parsing for Conversational Question Answering
Raghuveer Thirukovalluru, Mukund Sridhar, Dung Thai, Shruti Chanumolu, Nicholas Monath,

Sankaranarayanan Ananthakrishnan and Andrew McCallum . 231

Simultaneously Self-Attending to Text and Entities for Knowledge-Informed Text Representations
Dung Thai, Raghuveer Thirukovalluru, Trapit Bansal and Andrew McCallum. 241

Deriving Contextualised Semantic Features from BERT (and Other Transformer Model) Embeddings
Jacob Turton, Robert Elliott Smith and David Vinson. .248

Syntactic Perturbations Reveal Representational Correlates of Hierarchical Phrase Structure in Pre-
trained Language Models

Matteo Alleman, Jonathan Mamou, Miguel A Del Rio, Hanlin Tang, Yoon Kim and SueYeon Chung
263

Box-To-Box Transformations for Modeling Joint Hierarchies
Shib Sankar Dasgupta, Xiang Lorraine Li, Michael Boratko, Dongxu Zhang and Andrew McCallum

277

An Overview of Uncertainty Calibration for Text Classification and the Role of Distillation
Han Guo, Ramakanth Pasunuru and Mohit Bansal . 289

Entity and Evidence Guided Document-Level Relation Extraction
Kevin Huang, Peng Qi, Guangtao Wang, Tengyu Ma and Jing Huang . 307

Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup
Luyu Gao, Yunyi Zhang, Jiawei Han and Jamie Callan . 316

Direction is what you need: Improving Word Embedding Compression in Large Language Models
Klaudia Bałazy, Mohammadreza Banaei, Rémi Lebret, Jacek Tabor and Karl Aberer 322

x

Conference Program

Improving Cross-lingual Text Classification with Zero-shot Instance-Weighting
Irene Li, Prithviraj Sen, Huaiyu Zhu, Yunyao Li and Dragomir Radev

Probing Multilingual Language Models for Discourse
Murathan Kurfalı and Robert Östling

Comprehension Based Question Answering using Bloom’s Taxonomy
Pritish Sahu, Michael Cogswell, Ajay Divakaran and Sara Rutherford-Quach

Larger-Scale Transformers for Multilingual Masked Language Modeling
Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman and Alexis Conneau

Learning Sparse Sentence Encoding without Supervision: An Exploration of Spar-
sity in Variational Autoencoders
Victor Prokhorov, Yingzhen Li, Ehsan Shareghi and Nigel Collier

Temporal-aware Language Representation Learning From Crowdsourced Labels
Yang Hao, Xiao Zhai, Wenbiao Ding and Zitao Liu

Structure-aware Sentence Encoder in Bert-Based Siamese Network
Qiwei Peng, David Weir and Julie Weeds

Preserving Cross-Linguality of Pre-trained Models via Continual Learning
Zihan Liu, Genta Indra Winata, Andrea Madotto and Pascale Fung

Text Style Transfer: Leveraging a Style Classifier on Entangled Latent Representa-
tions
Xiaoyan Li, Sun Sun and Yunli Wang

Inductively Representing Out-of-Knowledge-Graph Entities by Optimal Estimation
Under Translational Assumptions
Damai Dai, Hua Zheng, Fuli Luo, Pengcheng Yang, Tianyu Liu, Zhifang Sui and
Baobao Chang

Revisiting Pretraining with Adapters
Seungwon Kim, Alex Shum, Nathan Susanj and Jonathan Hilgart

Knodle: Modular Weakly Supervised Learning with PyTorch
Anastasiia Sedova, Andreas Stephan, Marina Speranskaya and Benjamin Roth

xi

August 6, 2021 (continued)

X2Parser: Cross-Lingual and Cross-Domain Framework for Task-Oriented Com-
positional Semantic Parsing
Zihan Liu, Genta Indra Winata, Peng Xu and Pascale Fung

Unsupervised Representation Disentanglement of Text: An Evaluation on Synthetic
Datasets
Lan Zhang, Victor Prokhorov and Ehsan Shareghi

Learn The Big Picture: Representation Learning for Clustering
Sumanta Kashyapi and Laura Dietz

Probing Cross-Modal Representations in Multi-Step Relational Reasoning
Iuliia Parfenova, Desmond Elliott, Raquel Fernández and Sandro Pezzelle

In-Batch Negatives for Knowledge Distillation with Tightly-Coupled Teachers for
Dense Retrieval
Sheng-Chieh Lin, Jheng-Hong Yang and Jimmy Lin

NPVec1: Word Embeddings for Nepali - Construction and Evaluation
Pravesh Koirala and Nobal B. Niraula

Deriving Word Vectors from Contextualized Language Models using Topic-Aware
Mention Selection
Yixiao Wang, Zied Bouraoui, Luis Espinosa Anke and Steven Schockaert

Zero-shot Sequence Labeling for Transformer-based Sentence Classifiers
Kamil Bujel, Helen Yannakoudakis and Marek Rei

Predicting the Success of Domain Adaptation in Text Similarity
Nick Pogrebnyakov and Shohreh shaghaghian

Syntagmatic Word Embeddings for Unsupervised Learning of Selectional Prefer-
ences
Renjith P. Ravindran, Akshay Badola and Narayana Kavi Murthy

Bayesian Model-Agnostic Meta-Learning with Matrix-Valued Kernels for Quality
Estimation
Abiola Obamuyide, Marina Fomicheva and Lucia Specia

Knowledge Informed Semantic Parsing for Conversational Question Answering
Raghuveer Thirukovalluru, Mukund Sridhar, Dung Thai, Shruti Chanumolu,
Nicholas Monath, Sankaranarayanan Ananthakrishnan and Andrew McCallum

xii

August 6, 2021 (continued)

Simultaneously Self-Attending to Text and Entities for Knowledge-Informed Text
Representations
Dung Thai, Raghuveer Thirukovalluru, Trapit Bansal and Andrew McCallum

Deriving Contextualised Semantic Features from BERT (and Other Transformer
Model) Embeddings
Jacob Turton, Robert Elliott Smith and David Vinson

Syntactic Perturbations Reveal Representational Correlates of Hierarchical Phrase
Structure in Pretrained Language Models
Matteo Alleman, Jonathan Mamou, Miguel A Del Rio, Hanlin Tang, Yoon Kim and
SueYeon Chung

Box-To-Box Transformations for Modeling Joint Hierarchies
Shib Sankar Dasgupta, Xiang Lorraine Li, Michael Boratko, Dongxu Zhang and
Andrew McCallum

An Overview of Uncertainty Calibration for Text Classification and the Role of Dis-
tillation
Han Guo, Ramakanth Pasunuru and Mohit Bansal

Entity and Evidence Guided Document-Level Relation Extraction
Kevin Huang, Peng Qi, Guangtao Wang, Tengyu Ma and Jing Huang

Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup
Luyu Gao, Yunyi Zhang, Jiawei Han and Jamie Callan

Direction is what you need: Improving Word Embedding Compression in Large
Language Models
Klaudia Bałazy, Mohammadreza Banaei, Rémi Lebret, Jacek Tabor and Karl Aberer

xiii

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 1–7
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

Improving Cross-lingual Text Classification
with Zero-shot Instance-Weighting

Irene Li1∗, Prithviraj Sen2, Huaiyu Zhu2, Yunyao Li2, Dragomir Radev1

1Yale University, USA
{irene.li,dragomir.radev}@yale.edu

2IBM Research Almaden, USA
{senp,huaiyu,yunyaoli}@us.ibm.com

Abstract

Cross-lingual text classification (CLTC) is a
challenging task made even harder still due to
the lack of labeled data in low-resource lan-
guages. In this paper, we propose zero-shot
instance-weighting, a general model-agnostic
zero-shot learning framework for improving
CLTC by leveraging source instance weight-
ing. It adds a module on top of pre-trained
language models for similarity computation of
instance weights, thus aligning each source in-
stance to the target language. During training,
the framework utilizes gradient descent that is
weighted by instance weights to update param-
eters. We evaluate this framework over seven
target languages on three fundamental tasks
and show its effectiveness and extensibility, by
improving on F1 score up to 4% in single-
source transfer and 8% in multi-source trans-
fer. To the best of our knowledge, our method
is the first to apply instance weighting in zero-
shot CLTC. It is simple yet effective and easily
extensible into multi-source transfer.

1 Introduction

Natural language processing (NLP) has largely ben-
efited from recent advances in deep learning and
large-scale labeled data. Unfortunately, such la-
beled corpora are not available for all languages.
Cross-lingual transfer learning is one way to spread
the success from high-resource to low-resource lan-
guages. Cross-lingual text classification (CLTC)
(Prettenhofer and Stein, 2010; Ni et al., 2011) can
learn a classifier in a low-resource target language
by transferring from a resource-rich source lan-
guage (Chen et al., 2018; Esuli et al., 2019).

Previous work has learned a classifier in the tar-
get language using a very small sample of labeled
target instances or external corpora of unlabeled
instances (Wang et al., 2019; Xu and Wan, 2017).

∗Work done as an intern at IBM Research Almaden.

In addition, other resources that may be utilized
to achieve the same include, but are not limited
to, parallel corpora of unlabeled instances in the
target language (Xu and Wan, 2017). In this work,
we address the most challenging setting, zero-shot
CLTC (Arnold et al., 2007; Joachims, 2003), where
no resource in the target language is given. Among
the many methods for transfer learning that have
been successfully employed in NLP (Mogadala and
Rettinger, 2016; Zhou et al., 2016; Eriguchi et al.,
2018), instance (re-) weighting is perhaps one of
the oldest and most well known (Wang et al., 2017,
2019). It is best illustrated when we are given
access to a few target labeled instances (few-shot
learning). For example, both Dai et al. (2007) and
Wang et al. (2019) learn a classifier iteratively by as-
signing weights to each instance in the source train-
ing data. While Dai et al. (2007) assigns weights to
both source and target instances, Wang et al. (2019)
pre-trains a classifier on the source training data
and then re-weights the target labeled instances.
Crucially, the weights are set to be a function of
the error between the prediction made for the in-
stance by the current classifier and the instance’s
gold label.

In a few-shot case, it is easy to see the appeal
of re-weighting target language instances, since an
instance that incurs a higher prediction loss can be
given a larger weight, so as to improve the classifier.
But in a zero-shot case, it seems impossible to
compute instance weights based on prediction loss.
In this work, we make it possible to assign such
weights on instances in zero-shot CLTC. To the
best of our knowledge, this is the first attempt to
apply such a method to NLP tasks.

Our contributions are two-fold: First, we in-
troduce zero-shot instance-weighting, a simple
but effective, and extensible framework to enable
instance weighted transfer learning for zero-shot
CLTC. Second, we evaluate on three cross-lingual

1

classification tasks in seven different languages.
Results show that it improves F1 score by up to 4%
in single-source transfer and 8% in multi-source
transfer, identifying a promising direction for uti-
lizing knowledge from unlabeled data.

2 Proposed Method

We illustrate the zero-shot CLTC framework in Fig-
ure 1. The source and target language inputs are xs
and xt respectively, during training, only the source
label ys is available and the task is to predict the
target label yt. We first apply the pre-trained model
as an encoder to encode the inputs, the encoded
representations are denoted by hs and ht. The fig-
ure illustrates four instances for each language in
the mini-batch. Then there is an Instance Weight-
ing module to assign weights to source language
instances by considering the hidden representations
hs and ht. Note that these layers are shared. We
train the task layer and fine-tune the pre-trained
language model layers.

2.1 Pre-trained Models
We compare two multilingual versions of pre-
trained models for the pre-trained models: multi-
lingual BERT (mBERT)1 (Devlin et al., 2019) and
XLM-Roberta (XLMR)2 (Conneau et al., 2020).

We evaluate on multiple tasks in Section 3, so
there are different ways to utilize the pre-trained
models. For the sentiment and document classifica-
tion task, we train a fully-connected layer on top of
the output of the [CLS] token, which is considered
to be the representation of the input sequence. For
the opinion target extraction task, we formulate it
as sequence labeling task (Agerri and Rigau, 2019;
Jebbara and Cimiano, 2019). To extract such opin-
ion target tokens is to classify each token into one
of the following: Beginning, Inside and Outside
of an aspect. We follow a typical IOB scheme
for the task (Toh and Wang, 2014; San Vicente
et al., 2015; Álvarez-López et al., 2016). In this
case, each token should have a label, so we have a
fully-connected layer that is shared for each token.
We note that it may be possible to improve all the
results even further by employing more powerful
task layers and modules such as conditional ran-
dom fields (Lafferty et al., 2001), but keep things
relatively simple since our main goal is to evaluate
instance weighting with zero-shot CLTC.

1github.com/google-research/bert/blob/
master/multilingual.md

2huggingface.co/XLMRoberta-base

3UH�WUDLQHG
0RGHO

6RXUFH�LQSXW

,QVWDQFH
:HLJKWLQJ

7DUJHW�LQSXW

7DVN
/D\HU

7DVN
/D\HU

3UH�WUDLQHG
0RGHO

VKDUHG VKDUHG

Figure 1: Framework Illustration: we illustrate 4 in-
stances for each domain here.

2.2 Instance Weighting
The intuition behind instance weighting is the fol-
lowing: if the difference between a source instance
and the target language is small, then it shares more
common features with the target language, so it
should make a larger contribution. For each in-
stance in the source language, a large weight indi-
cates a large contribution by the instance during
training. Ideally, when deciding an instance weight,
we should compare it with all instances from the
target language. But doing so would incur pro-
hibitively excessive computational resources. We
thus approximate in small batches and calculate the
weights by comparing how similar the instances
are to the target ones within a small batch in each
training step.
Instance Weighting-based Gradient Descent
Vanilla mini-batch gradient descent is defined as:

θ ← θ − α
k∑

i=1

∇θf (yi, gθ (xi)) (1)

where α is the learning rate, θ is the parameter that
we want to update, gθ(xi) is the model prediction
for xi , ∇θ is the partial derivative, and f(·) is the
loss function.
We modify Equation 1 to include instance weights:

θ ← θ − α
k∑

i=1

wi · ∇θf (yi, gθ (xi)) (2)

where we assign a weight wi to each instance
within a mini-batch, and there is a weighted sum-
mation of the gradients in the mini-batch for all the
instances and then update the parameter θ. It can
be easily extended to multiple source languages, in
this case, xs may be training samples from more
than one languages.
Unsupervised Weighting Metrics In each batch,
to obtain weight wi for each source instance i, we

2

follow a similarity-based approach. We define a
scoring function to calculate a score between the
current source instance representation hi and the
target instance representation hj . Then we conduct
a summation as the final score for source instance
i to the set of target instances within this batch Dt.
For i ∈ Ds:

wi = score(i,Dt) =
∑

j∈Dt
score(i, j).

We normalize each wi in this batch to make sure
the summation is 1, and they are plugged into Eq.
2.

Multiple ways exist to define a scoring function
score(i, j), and a Cosine-Similarity based scoring
function is defined as:

score(i, j) =
1

2
(
hi · hj
‖hi‖ ‖hj‖

+ 1).

We also investigate two other ways for scor-
ing function: Euclidean-Distance based and the
CORAL Function (Sun et al., 2016). While Cosine
scoring function performs the best, so we report
it in our main experiments and ignoring the other
two.

3 Evaluation

We test on three tasks: opinion target extraction,
document classification, and sentiment classifica-
tion 3. English is the source language for all the
experiments. We evaluate four settings: 1) di-
rect adaptation with mBERT-base (mBERT), 2)
mBERT with Instance Weighting (mBERT+IW),
3) direct adaption of XLMR-base (XLMR), and 4)
XLMR with Instance Weighting (XLMR+IW).
Opinion Target Extraction We choose SemEval
2016 Workshop Task 5 (Pontiki et al., 2016) for
opinion target extraction. It includes restaurant re-
views in five languages4: English, Spanish (es),
Dutch (nl), Russian (ru) and Turkish (tr). Given
a sentence as input, one needs to classify each to-
ken into one of the three classes according to the
IOB scheme. The training and testing size varies
from 144 to 3,655. We compare against a list of
models. Pontiki et al. (2014) and Kumar et al.
(2016) are supervised and require extra corpora
or resources to train. Agerri and Rigau exploits ad-
ditional resources like unlabeled corpora. Jebbara
3We release our code in https://github.com/
IreneZihuiLi/ZSIW/.

4The download script was broken and failed to obtain French
data, so we do not report results for French.

Method es nl ru tr

Pontiki et al. (2014)H 0.520 0.506 0.493 0.419
Kumar et al. (2016)H 0.697 0.644 - -
Jebbara and Cimiano (2019) 0.687 0.624 0.567 0.490
Agerri and Rigau (2019)H 0.699 0.664 0.655 0.602

mBERT 0.697 0.677 0.652 0.598
mBERT+IW 0.692 0.691 0.671 0.620
XLMR 0.690 0.700 0.664 0.674
XLMR+IW 0.704 0.714 0.706 0.682

Table 1: F1 scores on SemEval for Opinion Tar-
get Extraction. H indicates a supervised or semi-
supervised learning method.

and Cimiano (2019) applies multi-source (includ-
ing the target) languages to train a classifier using
cross-lingual embeddings and evaluates in a zero-
shot manner. We summarize the results in Table 1.
Cross-lingual Document Classification We con-
duct cross-lingual document classification task on
the MLDoc dataset (Schwenk and Li, 2018). It
is a set of news articles with balanced class pri-
ors in eight languages; Each language has 1,000
training documents and 4,000 test documents, and
splits into four classes. We select a strong baseline
(Schwenk and Li, 2018), which applies pre-trained
MultiCCA word embeddings (Ammar et al., 2016)
and then trained in a supervised way. Another base-
line is a zero-shot method proposed by Artetxe and
Schwenk (2019), which applies a single BiLSTM
encoder with a shared vocabulary among all lan-
guages, and a decoder trained with parallel corpora.
Artetxe and Schwenk (2019) apply mBERT as a
zero-shot language transfer. Table 2 shows the re-
sults of our comparison study.

Sentiment Classification Finally, we evaluate
sentiment classification task on Amazon multilin-
gual reviews dataset (Prettenhofer and Stein, 2010).
It contains positive and negative reviews from 3
domains, including DVD, Music and Books, in
four languages: English (en), French (fr), Ger-
man (de), and Japanese (ja). For each domain,
there are 1,000 positive samples and 1,000 nega-
tive samples in each language for both training and
testing. We choose the following baselines: transla-
tion baseline, UMM (Xu and Wan, 2017), CLDFA
(Xu and Yang, 2017) and MAN-MoE (Chen et al.,
2019). For the translation baseline, we translate the
training and testing data for each target language
into English using Watson Language Translator5,
and trained on the mBERT model, which is more

5https://www.ibm.com/watson/services/
language-translator/, version 2018-05-01

3

Method en de es fr it ja ru zh

Schwenk and Li (2018) H 0.9220 0.8120 0.7250 0.7238 0.6938 0.6763 0.6080 0.7473
Wu and Dredze (2019) 0.9420 0.8020 0.7260 0.7260 0.6890 0.5650 0.7370 0.7690
Artetxe and Schwenk (2019) 0.8993 0.8478 0.7733 0.7795 0.6943 0.6030 0.6778 0.7193

mBERT 0.8981 0.8680 0.7519 0.7492 0.6952 0.7222 0.6797 0.7937
mBERT+IW - 0.8766 0.7532 0.7527 0.7122 0.7264 0.6949 0.8277
XLMR 0.9295 0.9245 0.8462 0.8710 0.7322 0.7824 0.6892 0.8580
XLMR+IW - 0.9265 0.8612 0.8797 0.7464 0.7942 0.7024 0.8712

Table 2: F1 scores on MLDoc for Cross-lingual Document Classification. H indicates a supervised or semi-
supervised learning method.

Method Books DVD Music

Translation Baseline 0.7993 0.7789 0.7877
UMMH (Xu and Wan, 2017) 0.7772 0.7803 0.7870
CLDFAH (Xu and Yang, 2017) 0.8156 0.8207 0.7960
MAN-MoE (Chen et al., 2019) 0.7543 0.7738 0.7688

mBERT 0.7497 0.7378 0.7575
mBERT+IW 0.7573 0.7565 0.7553
XLMR 0.8248 0.8268 0.8425
XLMR+IW 0.8452 0.8362 0.8400

Table 3: F1 scores on Amazon Review for Sentiment
Classification group by domains: Each cell shows the
average accuracy of the three languages.H indicates a
supervised or semi-supervised learning method.

Method es nl ru tr

XLMR 0.690 0.700 0.664 0.674
Single-source 0.704 0.714 0.706 0.682
Multi-source 0.735 0.738 0.745 0.688

Table 4: Multi-source F1 scores on SemEval for Opin-
ion Target Extraction: transfer from single-source and
multi-source using XLMR+IW model.

confident in English6. Both UMM and CLDFA
utilized more resources or tools like unlabeled cor-
pora or machine translation. MAN-MoE is the only
zero-shot baseline method. It applies MUSE (Lam-
ple et al., 2018) and VecMap (Artetxe et al., 2017)
embeddings. We summarize the results in Table 3
for each domain.
Results Among the three tasks, both base mod-
els achieve competitive results for all languages
thanks to the choice of pre-trained models. Instance
weighting produces consistent improvements over
the base models for nearly all target languages. Es-
pecially, in Table 1, the best model XLMR+IW
beats the best baseline by 4.65% on average, im-
proving from XLMR by 4% on Russian and gain-
ing substantially on the other target languages; in
6https://github.com/google-research/bert/
blob/master/\multilingual.md explains the
pre-training.

Table 2, XLMR+IW outperforms the baselines, and
surpassing XLMR steadily, with impressive gains
on Russian, Chinese and Spanish. In Table 3, the
best model shows the same trend in most cases.
While our approach is model-agnostic, when the
base model or the embedding improves, instance
weighting will still help, as we can see the im-
proved results obtained by switching from mBERT
to XLMR. Again, the framework is simple but ef-
fective given these observations. Most importantly,
it requires no additional external data and is easily
adaptable into any deep models.

4 Discussion

Multi-source Expansion Studies show that multi-
lingual transfer outperforms bilingual transfer (Guo
et al., 2018). We run an experiment on the opinion
extraction task to illustrate how our approach can
be easily extended to enable multi-source transfer,
(see Table 5). Here, we take the SemEval dataset,
and for each target language, we train on the union
of all other available languages. We can observe
that by easily expanding into multi-source language
training, we get a significant boost across the board
in all target languages. Specifically, there is a 8.1%
improvement on Russian. With easy adaptation, we
show the extensibility and that multilingual transfer
in zero-shot learning is a promising direction.
Case Study Intuitively, we should focus on the
source instances with a smaller difference with
target language, because they contain more com-
mon features with the target language. Thus, if
we let those instances contribute more, it is pos-
sible that the model may perform better on the
target language. As an example, Table 5 shows a
positively-labeled French review containing adjec-
tives with positive emotions (e.g., “exceptionnel”,
“superbe”) and the instance weights for two English
reviews, where the weights are generated using
our best model XLMR+IW. Since English instance

4

Language Score Content Label
English
Instance 2

0.5056 ...I liked the book. Kaplan has consistently been one of my favorite authors (Atlantic Monthly)
His theme is consistent: many nation states are not really nation states... Kaplan had great hope
for the future of Iran as they struggle with theocracy...

Pos

English
Instance 1

0.3647 One start , for some very acurate dramatic and terrorific facts about the Ebola, but very weak
regarding origin of the virus, very unconvincing about possible ”theories”. sound more like that
old music of desinformation, he almost blame another monkey for the Ebola...

Neg

French Origin: ...ce livre est exceptionnel..La construction du livre est superbe, l’écriture magique... Pos
Translation: ...this book is outstanding..The construction of book is superb, magical writing ...

Table 5: A positive scenario: score comparison within the same batch.

1 contains adjectives with positive emotions (e.g.
“favorite”, “great”), it has a higher score than En-
glish instance 2 containing adjectives with negative
emotions (e.g., “weak”, “unconvincing”).

5 Conclusion

We proposed instance weighting for CLTC and
evaluated on 3 fundamental tasks. The benefits
of our approach include simplicity and effective-
ness by ensuring wide applicability across NLP
tasks, extensibility by involving multiple source
languages and effectiveness by outperforming a va-
riety of baselines significantly. In the future, we
plan to evaluate on more tasks such as natural lan-
guage inference (Conneau et al., 2018) and abstract
meaning representation (Blloshmi et al., 2020).

References
Rodrigo Agerri and German Rigau. 2019. Language

independent sequence labelling for opinion target ex-
traction. Artificial Intelligence, 268:85–95.

Tamara Álvarez-López, Jonathan Juncal-Martı́nez,
Milagros Fernández-Gavilanes, Enrique Costa-
Montenegro, and Francisco Javier González-
Castaño. 2016. GTI at SemEval-2016 task 5: SVM
and CRF for aspect detection and unsupervised
aspect-based sentiment analysis. In Proceedings
of the 10th International Workshop on Semantic
Evaluation (SemEval-2016), pages 306–311, San
Diego, California. Association for Computational
Linguistics.

Waleed Ammar, George Mulcaire, Yulia Tsvetkov,
Guillaume Lample, Chris Dyer, and Noah A Smith.
2016. Massively multilingual word embeddings.
arXiv preprint arXiv:1602.01925v2.

Andrew Arnold, Ramesh Nallapati, and William W Co-
hen. 2007. A comparative study of methods for
transductive transfer learning. In Proceedings of
the Seventh IEEE International Conference on Data
Mining Workshops, pages 77–82.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2017.
Learning bilingual word embeddings with (almost)

no bilingual data. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 451–462,
Vancouver, Canada. Association for Computational
Linguistics.

Mikel Artetxe and Holger Schwenk. 2019. Mas-
sively multilingual sentence embeddings for zero-
shot cross-lingual transfer and beyond. Transac-
tions of the Association for Computational Linguis-
tics, 7:597–610.

Rexhina Blloshmi, Rocco Tripodi, and Roberto Navigli.
2020. XL-AMR: Enabling cross-lingual AMR pars-
ing with transfer learning techniques. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
2487–2500, Online. Association for Computational
Linguistics.

Xilun Chen, Ahmed Hassan Awadallah, Hany Has-
san, Wei Wang, and Claire Cardie. 2019. Multi-
source cross-lingual model transfer: Learning what
to share. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 3098–3112, Florence, Italy. Association
for Computational Linguistics.

Xilun Chen, Yu Sun, Ben Athiwaratkun, Claire Cardie,
and Kilian Weinberger. 2018. Adversarial deep av-
eraging networks for cross-lingual sentiment classi-
fication. Transactions of the Association for Compu-
tational Linguistics, 6:557–570.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. XNLI: Evaluating
cross-lingual sentence representations. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 2475–2485,
Brussels, Belgium. Association for Computational
Linguistics.

5

Wenyuan Dai, Qiang Yang, Gui-Rong Xue, and Yong
Yu. 2007. Boosting for transfer learning. In Ma-
chine Learning, Proceedings of the Twenty-Fourth
International Conference (ICML 2007), Corvallis,
Oregon, USA, June 20-24, 2007, volume 227 of
ACM International Conference Proceeding Series,
pages 193–200. ACM.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Akiko Eriguchi, Melvin Johnson, Orhan Firat, Hideto
Kazawa, and Wolfgang Macherey. 2018. Zero-
shot cross-lingual classification using multilin-
gual neural machine translation. arXiv preprint
arXiv:1809.04686v1.

Andrea Esuli, Alejandro Moreo, and Fabrizio Sebas-
tiani. 2019. Funnelling: A new ensemble method
for heterogeneous transfer learning and its applica-
tion to cross-lingual text classification. ACM Trans-
actions on Information Systems (TOIS), 37(3):37.

Jiang Guo, Darsh Shah, and Regina Barzilay. 2018.
Multi-source domain adaptation with mixture of ex-
perts. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 4694–4703, Brussels, Belgium. Association
for Computational Linguistics.

Soufian Jebbara and Philipp Cimiano. 2019. Zero-shot
cross-lingual opinion target extraction. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2486–2495, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Thorsten Joachims. 2003. Transductive learning via
spectral graph partitioning. In Machine Learning,
Proceedings of the Twentieth International Confer-
ence (ICML 2003), August 21-24, 2003, Washington,
DC, USA, pages 290–297. AAAI Press.

Ayush Kumar, Sarah Kohail, Amit Kumar, Asif Ekbal,
and Chris Biemann. 2016. IIT-TUDA at SemEval-
2016 task 5: Beyond sentiment lexicon: Combin-
ing domain dependency and distributional seman-
tics features for aspect based sentiment analysis. In
Proceedings of the 10th International Workshop on
Semantic Evaluation (SemEval-2016), pages 1129–
1135, San Diego, California. Association for Com-
putational Linguistics.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:

Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning (ICML
2001), Williams College, Williamstown, MA, USA,
June 28 - July 1, 2001, pages 282–289. Morgan
Kaufmann.

Guillaume Lample, Myle Ott, Alexis Conneau, Lu-
dovic Denoyer, and Marc’Aurelio Ranzato. 2018.
Phrase-based & neural unsupervised machine trans-
lation. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 5039–5049, Brussels, Belgium. Association
for Computational Linguistics.

Aditya Mogadala and Achim Rettinger. 2016. Bilin-
gual word embeddings from parallel and non-
parallel corpora for cross-language text classifica-
tion. In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 692–702, San Diego, California. Associ-
ation for Computational Linguistics.

Xiaochuan Ni, Jian-Tao Sun, Jian Hu, and Zheng Chen.
2011. Cross lingual text classification by mining
multilingual topics from wikipedia. In Proceedings
of the Forth International Conference on Web Search
and Web Data Mining, WSDM 2011, Hong Kong,
China, February 9-12, 2011, pages 375–384. ACM.

Maria Pontiki, Dimitris Galanis, Haris Papageorgiou,
Ion Androutsopoulos, Suresh Manandhar, Moham-
mad AL-Smadi, Mahmoud Al-Ayyoub, Yanyan
Zhao, Bing Qin, Orphée De Clercq, Véronique
Hoste, Marianna Apidianaki, Xavier Tannier, Na-
talia Loukachevitch, Evgeniy Kotelnikov, Nuria Bel,
Salud Marı́a Jiménez-Zafra, and Gülşen Eryiğit.
2016. SemEval-2016 task 5: Aspect based senti-
ment analysis. In Proceedings of the 10th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2016), pages 19–30, San Diego, California. Associa-
tion for Computational Linguistics.

Maria Pontiki, Dimitris Galanis, John Pavlopoulos,
Harris Papageorgiou, Ion Androutsopoulos, and
Suresh Manandhar. 2014. SemEval-2014 task 4: As-
pect based sentiment analysis. In Proceedings of the
8th International Workshop on Semantic Evaluation
(SemEval 2014), pages 27–35, Dublin, Ireland. As-
sociation for Computational Linguistics.

Peter Prettenhofer and Benno Stein. 2010. Cross-
language text classification using structural corre-
spondence learning. In Proceedings of the 48th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 1118–1127, Uppsala, Swe-
den. Association for Computational Linguistics.

Iñaki San Vicente, Xabier Saralegi, and Rodrigo Agerri.
2015. EliXa: A modular and flexible ABSA plat-
form. In Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015), pages
748–752, Denver, Colorado. Association for Compu-
tational Linguistics.

6

Holger Schwenk and Xian Li. 2018. A corpus for mul-
tilingual document classification in eight languages.
In Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan. European Language Re-
sources Association (ELRA).

Baochen Sun, Jiashi Feng, and Kate Saenko. 2016. Re-
turn of frustratingly easy domain adaptation. In Pro-
ceedings of the Thirtieth AAAI Conference on Arti-
ficial Intelligence, February 12-17, 2016, Phoenix,
Arizona, USA, pages 2058–2065. AAAI Press.

Zhiqiang Toh and Wenting Wang. 2014. DLIREC:
Aspect term extraction and term polarity classifica-
tion system. In Proceedings of the 8th Interna-
tional Workshop on Semantic Evaluation (SemEval
2014), pages 235–240, Dublin, Ireland. Association
for Computational Linguistics.

Rui Wang, Masao Utiyama, Lemao Liu, Kehai Chen,
and Eiichiro Sumita. 2017. Instance weighting for
neural machine translation domain adaptation. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
1482–1488, Copenhagen, Denmark. Association for
Computational Linguistics.

Zhi Wang, Wei Bi, Yan Wang, and Xiaojiang Liu.
2019. Better fine-tuning via instance weighting for
text classification. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages
7241–7248.

Shijie Wu and Mark Dredze. 2019. Beto, bentz, be-
cas: The surprising cross-lingual effectiveness of
BERT. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
833–844, Hong Kong, China. Association for Com-
putational Linguistics.

Kui Xu and Xiaojun Wan. 2017. Towards a universal
sentiment classifier in multiple languages. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 511–
520, Copenhagen, Denmark. Association for Com-
putational Linguistics.

Ruochen Xu and Yiming Yang. 2017. Cross-lingual
distillation for text classification. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1415–1425, Vancouver, Canada. Association
for Computational Linguistics.

Guangyou Zhou, Zhao Zeng, Jimmy Xiangji Huang,
and Tingting He. 2016. Transfer learning for cross-
lingual sentiment classification with weakly shared
deep neural networks. In Proceedings of the 39th In-
ternational ACM SIGIR conference on Research and
Development in Information Retrieval, pages 245–
254.

7

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 8–19
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

Probing Multilingual Language Models for Discourse

Murathan Kurfalı
Linguistics Department
Stockholm University
Stockholm, Sweden

murathan.kurfali@ling.su.se

Robert Östling
Linguistics Department
Stockholm University
Stockholm, Sweden

robert@ling.su.se

Abstract

Pre-trained multilingual language models have
become an important building block in mul-
tilingual natural language processing. In the
present paper, we investigate a range of such
models to find out how well they transfer
discourse-level knowledge across languages.
This is done with a systematic evaluation on
a broader set of discourse-level tasks than has
been previously been assembled. We find that
the XLM-RoBERTa family of models consis-
tently show the best performance, by simulta-
neously being good monolingual models and
degrading relatively little in a zero-shot set-
ting. Our results also indicate that model dis-
tillation may hurt the ability of cross-lingual
transfer of sentence representations, while lan-
guage dissimilarity at most has a modest ef-
fect. We hope that our test suite, covering 5
tasks with a total of 22 languages in 10 dis-
tinct families, will serve as a useful evaluation
platform for multilingual performance at and
beyond the sentence level.

1 Introduction

Large-scale pre-trained neural language models
have become immensely popular in the natural lan-
guage processing (NLP) community in recent years
(Devlin et al., 2019; Peters et al., 2018). When
used as contextual sentence encoders, these mod-
els have led to remarkable improvements in per-
formance for a wide range of downstream tasks
(Qiu et al., 2020). In addition, multilingual ver-
sions of these models (Devlin et al., 2019; Conneau
and Lample, 2019) have been successful in trans-
ferring knowledge across languages by providing
language-independent sentence encodings.

The general usefulness of pre-trained language
models has been convincingly demonstrated thanks
to persistent creation and application of evaluation
datasets by the NLP community. Discourse-level
analysis is particularly interesting to study, given

that many of the currently available models are
trained with relatively short contexts such as pairs
of adjacent sentences.

Wang et al. (2019) use a diverse set of natural lan-
guage understanding (NLU) tasks to investigate the
generality of the sentence representations produced
by different language models. Hu et al. (2020) use
a broader set of tasks from across the NLP field
to investigate the ability of multilingual models
to transfer various types of knowledge across lan-
guage boundaries.

Our goal in this paper is to systematically eval-
uate the multilingual performance on NLU tasks,
particularly at the discourse level. This combines
two of the most challenging aspects of representa-
tion learning: multilinguality and discourse-level
analysis. A few datasets have been used for this pur-
pose before, most prominently the XNLI evaluation
set (Conneau et al., 2018) for Natural Language In-
ference (NLI), and recently also XQuAD (Artetxe
et al., 2020) and MLQA (Lewis et al., 2020) for
Question Answering (QA). We substantially in-
crease the breadth of our evaluation by adding three
additional tasks:

1. Penn Discourse TreeBank (PDTB)-style im-
plicit discourse relation classification on an-
notated TED talk subtitles in seven languages
(Section 3.1.1)

2. Rhetorical Structure Theory (RST)-style dis-
course relation classification with a custom
set consisting of treebanks in six non-English
languages (Section 3.1.2)

3. Stance detection with a custom dataset in five
languages (Section 3.1.3)

We investigate the cross-lingual generalization
capabilities of seven multilingual sentence en-
coders with considerably varying model sizes

8

through their cross-lingual zero-shot performance1

which, in this context, refers to the evaluation
scheme where sentence encoders are tested on the
languages that they are not exposed to during train-
ing. The complied test suite consists of five tasks,
covering 22 different languages in total.

We specifically focus on zero-shot transfer sce-
nario where a sufficient amount of annotated data
to fine-tune a pre-trained language model is as-
sumed to be available only for one language. We
believe that this is the most realistic scenario for
a great number of languages; therefore, zero-shot
performance is the most direct way of assessing
cross-lingual usefulness in a large scale.

Our contributions are as follows: (i) we provide
a detailed analysis of a wide range of sentence en-
coders on large number of probing tasks, several of
which have not previously been used with multilin-
gual sentence encoders despite their relevancy, (ii)
we provide suitably pre-processed versions of these
datasets to be used as a multilingual benchmark for
future work with strong baselines provided by our
evaluation, (iii) we show that the zero-shot perfor-
mance on discourse level tasks are not correlated
with any kind of language similarity and hard to
predict, (iv) we show that knowledge distillation
may selectively destroy multilingual transfer abil-
ity in a way that harms zero-shot transfer, but is
not visible during evaluations where the models are
trained and evaluated with the same language.

2 Background

The standard way of training a multilingual lan-
guage model is through a large non-parallel mul-
tilingual corpora, e.g. Wikipedia articles, where
the models are not provided with any explicit map-
ping across languages which renders cross-lingual
performance of such models puzzling. Pires et al.
(2019) and Wu and Dredze (2019) are the earliest
studies to explore that puzzle by trying to uncover
the factors that give multilingual BERT (hence-
forth, mBERT) its cross-lingual capabilities. Pires
et al. (2019) perform a number of probing tasks
and hypothesize that the shared sentence pieces
across languages gives mBERT its generalization
ability by forcing other pieces to be mapped into
the same space. Similarly, Wu and Dredze (2019)

1In the remainder of the paper, cross-lingual zero-shot
performance is simply referred as zero-shot performance for
brevity. Similarly, source language performance denotes the
performance of the respective model on the test set of the
training language.

evaluate the performance of mBERT in five tasks
and report that while mBERT shows a strong zero-
shot performance, it also retains language-specific
information in each layer.

Chen et al. (2019a) proposes a benchmark to
evaluate sentence encoders specifically on dis-
course level tasks. The proposed benchmark con-
sists of discourse relation classification and a num-
ber of custom tasks such as finding the correct posi-
tion of a randomly moved sentence in a paragraph
or determining if a given paragraph is coherent or
not. The benchmark is confined to English, hence,
only targets monolingual English models.

Two very recent studies, XTREME (Hu et al.,
2020) and XGLUE (Liang et al., 2020), consti-
tute the first studies on the cross-lingual gener-
alization abilities of pre-trained language mod-
els via their zero-shot performance. The tasks
in both studies largely overlap, where XTREME
serves as cross-lingual benchmark consisting of
well-known datasets, e.g. XNLI, XQuAD. On the
other hand, while covering the most of XTREME
tasks2, XGLUE offers new datasets which either
focus on the relation between a pair of inputs, such
as web page–query matching, or on text genera-
tion via question/news title generation. In addition
to the mBERT and certain XLM and XLM-R ver-
sions, XTREME includes MMTE (Arivazhagan
et al., 2019) whereas XGLUE evaluates Unicoder
(Huang et al., 2019) among its baselines.

3 Cross-lingual Discourse-level
Evaluation

In discourse research, sentences/clauses are not un-
derstood in isolation but in relation to one another.
The semantic interactions between these units are
usually regarded as the backbone of coherence in
various prominent discourse theories including that
underlying the Penn Discourse TreeBank (PDTB)
(Prasad et al., 2007), and Rhetorical Structure The-
ory (RST) (Mann and Thompson, 1988) used in
the RST Discourse Treebank (Carlson and Marcu,
2001). Modelling such interactions requires an un-
derstanding that is beyond sentence-level and, from
this point-of-view, determining any kind of relation
between sentences/clauses can be associated with
discourse.

Although paraphrase detection or natural lan-
guage inference may not strike as discourse-level
tasks at first glance, they both deal with semantic

2Except parallel sentence retrieval tasks.

9

relations between sentences. Tonelli and Cabrio
(2012) show that textual entailment is, in fact, a sub-
class of Restatement relations of the PDTB frame-
work whereas Nie et al. (2019) report an increase
in discourse relation classification accuracy when
NLI is used as the intermediate fine-tuning task. In
a similar vein, a stance against a judgement, Favor
or Against, can be seen as CONTINGENCY: Cause:
reason and COMPARISON: Contrast in PDTB; Ex-
planation and Antithesis in RST, respectively.

Therefore, these NLU tasks can be seen as spe-
cial subsets of discourse relation classification;
only a model with a good understanding beyond
individual sentences can be expected to solve these
tasks. Finally, since question answering requires
an understanding on discourse level in order to
be solved, so we also believe classifying this as a
discourse-level task should be uncontroversial.

3.1 Tasks & Datasets
In this section, we present our task suite and the
datasets used for training and zero-shot evaluation.
For the sake of clarity, we name each task after the
dataset used for training.

3.1.1 Implicit Discourse Relation
Classification (PDTB)

Implicit discourse relations hold between adjacent
sentence pairs but are not explicitly signaled with
a connective such as because, however. Implicit
discourse relation classification is the task of de-
termining the sense conveyed by these adjacent
sentences, which can be easily inferred by readers.
Classifying implicit relations constitutes the most
challenging step of shallow discourse parsing (Xue
et al., 2016).

The training is performed on PDTB3 (Webber
et al., 2016) where sections 2–20, 0–1 are used for
training and development respectively. The zero-
shot evaluation is performed on the TED-MDB cor-
pus (Zeyrek et al., 2019)3, which is a PDTB-style
annotated parallel corpus consisting of 6 TED talk
transcripts, and the recent Chinese annotation effort
on TED talk transcripts that however are mostly not
parallel to TED-MDB (Long et al., 2020). Due to
the small size of the test sets, we confine ourselves
to the top-level senses: Contingency, Comparison,
Expansion, Temporal which is also the most com-
mon setting for this task. Despite the limited size
of TED-MDB, zero-shot transfer is possible and

3https://github.com/MurathanKurfali/Ted-MDB-
Annotation

yields meaningful results as shown in (Kurfalı and
Östling, 2019). In total, seven languages are eval-
uated in this task: English, German, Lithuanian4,
Portuguese, Polish, Russian and Chinese.

3.1.2 Rhetorical Relation Classification
(RST)

Rhetorical relations are just another name for dis-
course relations but this term is most commonly
associated with Rhetorical Structure Theory (RST)
(Mann and Thompson, 1988). Similar to PDTB’s
discourse relations, rhetorical relations also denote
links between discourse units, but are considerably
different from the former. The difference largely
stems from the take of the respective theories on
the structure of the discourse. RST conceives dis-
course as one connected tree-shaped structure as-
suming hierarchical relations among the discourse
relations. On the other hand, PDTB does not make
any claims regarding the structure of the discourse
and annotates discourse relations only in a local
context (i.e. adjacent clauses/sentences) without
assuming any relation on higher levels. Hence,
evaluation on RST and PDTB relations can be seen
as complementary to each other as the former fo-
cuses on both global and local discourse structure
whereas PDTB focuses only on local structure.

We use English RST-DT (Carlson and Marcu,
2001) for training where a randomly selected 35
documents are reserved for development. However,
unlike PDTB, there is not any compact parallel RST
corpus; RST annotations across languages usually
differ from each other in several ways. Therefore,
we follow Braud et al. (2017) and create a custom
multilingual corpus for the zero-shot experiments
which consists of the following languages: Basque
(Iruskieta et al., 2013), Brazilian Portuguese (Car-
doso et al., 2011; Collovini et al., 2007; Pardo and
Seno, 2005), Chinese (Cao et al., 2018), German
(Stede, 2004), Spanish (Da Cunha et al., 2011),
Russian (Pisarevskaya et al., 2017). We perform a
normalization step on each treebank which includes
binarization of non-binary trees and mapping all
relations to 18 coarse grained classes described
in (Carlson and Marcu, 2001). The normalization
step is performed via the pre-processing scripts of
(Braud et al., 2017). Due to memory constraints,
we limit the sequence lengths to 384. Hence, we
only keep those relations where the first discourse
unit is shorter than 150 words so that both units can

4Lithuanian is the latest addition to the Ted-MDB corpus,
as documented in (Oleskeviciene et al., 2018).

10

be equally represented which lead to omission of
only 5% of all non-English relations.

3.1.3 Stance Detection (X-Stance)
The stance detection is task of determining the at-
titude expressed in a text towards a target claim.
For experiments, we mainly use the X-stance cor-
pus which consists of 60K answers to 150 ques-
tions concerning politics in German, Italian and
French (Vamvas and Sennrich, 2020). Unlike other
tasks, we select German as the training language
for stance detection as it is the largest language in
X-Stance. Following the official split, we use the
German instances in the training and development
sets during fine-tuning and non-German instances
in the test set for evaluation. Furthermore, we en-
rich the scope of our zero-shot evaluation by two ad-
ditional dataset, one in English (Chen et al., 2019b)
and other one in Chinese (Yuan et al., 2019), which
also consist of stance annotated claim–answer pairs,
despite in different domains.

3.1.4 Natural Language Inference (XNLI)
Natural language inference (NLI) is the task of
determining whether a premise sentence entails,
contradicts or is neutral to a hypothesis sentence.
MultiNLI and the mismatched part of the develop-
ment data (Williams et al., 2018) are used for train-
ing and validation, respectively. The evaluation is
performed on the test sets of the XNLI (Conneau
et al., 2018) corpus which covers the following 14
languages in addition to English: French, Spanish,
German, Greek, Bulgarian, Russian, Turkish, Ara-
bic, Vietnamese, Thai, Chinese, Hindi, Swahili and
Urdu.

3.1.5 Question Answering (XQuAD)
Question answering is the task of identifying span
in a paragraph which answers to a question. We
use the SQuAD v1.1 (Rajpurkar et al., 2016) for
training. We evaluate the models on the popular
XQuAD dataset which contains the translation of
SQuAD v1.1 development set into ten languages
(Artetxe et al., 2020): Spanish, German, Greek,
Russian, Turkish, Arabic, Vietnamese, Thai, Chi-
nese, and Hindi.

3.2 Languages

The proposed task suite covers the following 22
languages representing 10 language families: Indo-
European (Bulgarian bg, German de, Greek el, En-
glish en, Spanish es, French fr, Hindi hi, Italian

it, Lithuanian lt, Polish pl, Portuguese pt, Russian
ru, Urdu ur), Afroasiatic (Arabic ar), Basque (eu),
Japonic (Japanese ja), Koreanic (Korean ko), Niger-
Congo (Swahili sw), Tai-Kadai (Thai th), Turkic
(Turkish tr), Austroasiatic (Vietnamese vi), Sino-
Tibetan (Chinese zh). Seven of these languages are
evaluated in at least three different tasks.

4 Experiments

We evaluate a wide range of multilingual sentence
encoders which learn contextual representations.
The evaluated models represent a broad spectrum
of model sizes, in order to allow practitioners to
estimate the trade-off between model size and ac-
curacy.

4.1 Sentence Encoders

The sentence encoders evaluated in the current pa-
per are described in detailed below, and their char-
acteristics summarized in Table 2.

Multilingual BERT (mBERT): mBERT is a
transformer-based language model trained with
masked language modelling and next sentence pre-
diction objectives similar to the original English
BERT model (Devlin et al., 2019)5. mBERT is pre-
trained on the Wikipedias of 104 languages with a
shared word piece vocabulary. As discussed in Sec-
tion 2, its input is not marked with any language-
specific signal and mBERT does not have any ob-
jective to encode different languages in the same
space.

distilmBERT: distilmBERT is a compressed ver-
sion of mBERT obtained via model distillation
(Sanh et al., 2019). Model distillation is a com-
pression technique where a smaller model, called
student, learns to mimic the behavior of the larger
model, called teacher, by matching its output dis-
tribution. distilmBERT is claimed to reach 92% of
mBERT’s performance on XNLI while being two
times faster and 25% smaller.6 However, to the best
of our knowledge, there is not any comprehensive
analysis of distilmBERT’s zero-shot performance.

XLM: XLM is a transformer-based language
model aimed at extending BERT to cross-lingual
setting (Conneau and Lample, 2019). To this end,

5https://github.com/google-research/
bert/blob/master/multilingual.md

6https://github.com/huggingface/
transformers/tree/master/examples/
distillation

11

Task Training data |train| |test| #langs metric
RST RST DT 17K 603 – 6,902 6 acc
PDTB PDTB3 17K 194 – 1,366 7 F1

X-stance X-stance-DE 33K 1,446 – 6,153 4 F1

NLI MultiNLI 433K 5,010 14 acc
Q/A Squad 1.1 100K 1,190 11 ex. match/F1

Table 1: Summary of the datasets used in experiments. ”Corpus name-(lang.code)” refers to the part of the corpus
belonging to the respective language. #langs refers to the number of zero-shot languages, excluding the training
language.

XLM increases the shared vocabulary across lan-
guages via shared byte pair encoding (BPE) vocab-
ulary. Moreover, unlike BERT, the input sentences
are accompanied by language embeddings. There
are several different XLM models which differ at
either number of training languages or training ob-
jectives. In the current study, we consider the fol-
lowing three:

• XLM-mlm: The XLM model which is trained
with BERT’s masked language model (MLM)
objective on the Wikipedias of the 15 XNLI
languages.

• XLM-tlm: In addition to the MLM, this XLM
model has a novel training objective which is
called Translation Language Model (TLM). In
TLM, the model receives a pair of translation-
ally equivalent sentences and tries to predict
the masked word by attending both sentences.
Hence, the model tries to predict the masked
word by looking at its context in another lan-
guage which encourages representations of
different languages to be aligned. TLM is
shown to lead a significant increase on XNLI
(Conneau and Lample, 2019). XLM-tlm is
also trained for 15 XNLI languages but only
on parallel data.

• XLM-100: This version is trained, like
mBERT, on Wikipedia data covering 100 lan-
guages using only an MLM objective. Unlike
previous XLM models, this version does not
utilize language embeddings.

XLM-RoBERTa (XLM-R): XLM-RoBERTa is
not an XLM model, in spite of what its name sug-
gests. XLM-R does not use language embeddings,
applies sentence-piece tokenization instead of BPE
and is not trained on a parallel corpus unlike the
XLM-tlm. Instead, it is a RoBERTa model (Liu
et al., 2019), which is an optimized version of

BERT, trained on 2.5 TB of cleaned CommonCrawl
data covering 100 languages (Conneau et al., 2020).
There are two released XLM-R models, XLM-
Rbase and XLM-Rlarge, named after the BERT-
architecture they are based on. Compared to orig-
inal multilingual-BERT, XLM-RoBERTa models
have a considerably larger vocabulary size which
results in larger models.

4.2 Experimental Setup
A summary of the datasets used in the experiments
is provided in Table 1. Except PDTB, all datasets
are publicly available. As stated earlier, the train-
ing language is English for all tasks except stance
detection where German is preferred due the size
of the available data. In the spirit of real zero-
shot transfer, the validation sets only consist of
instances in the training language; hence, no cross-
lingual information whatsoever is utilized during
training/model selection. For the evaluation met-
rics, we stick to the default metrics of each task
(Table 1).

We set the sequence length to 384 for question
answering and RST relation classification; to 250
for stance detection and to 128 for the remaining
tasks. At evaluation time, we keep the same config-
uration. For all models, adam epsilon is set to 1e-8
and maximum gradient norm to 1.0. The learn-
ing rate of 2 × 10−5 is used for all the models
except XLM-R-large and XLM-100 where it is set
to 5 × 10−6. We adopt the standard fine-tuning
approach and fine-tune all models for 4 epochs.
We do not apply any early stopping and use the
model with the best validation performance during
zero-shot experiments. All tasks are implemented
using Huggingface’s Transformers library (Wolf
et al., 2019). As fine-tuning procedure is known
to show high variance on small training datasets,
all models are run for 4 times with different seeds
and the average performance is reported. For XLM
and XLM-tlm models, we fall back to English lan-

12

Model Langs Parameter count Vocab. size # of layers
distilmBERT 104 134M 30K 6
mBERT 104 177M 30K 12
XLM-mlm 15 250M 95K 12
XLM-tlm 15 250M 95K 12
XLM-100 100 570M 200K 16
XLM-Rbase 100 270M 250K 12
XLM-Rlarge 100 550M 250K 24

Table 2: The characteristics of the sentence encoders evaluated in the experiments

Figure 1: Overview of performance of each sentence
encoder on all Disco-X tasks. The semi-transparent
bars represent source language performance (German
for X-stance, English for the rest) while the solid bars
represent the zero-shot performance, i.e. the mean per-
formance across all languages except the training lan-
guage. All values are averages over independent train-
ing runs.

guage embeddings for non-XNLI languages. All
experiments are run on a single TITAN X (12 GB)
GPU.

5 Results and Discussion

We provide an overview of the main results in Fig-
ure 1. The detailed results with per-language break-
down are provided in the Appendix A.

Overall, there is a clear difference between the
training and zero-shot performance of all models.
When averaged over all tasks, the performance loss
in zero-shot transfer ranges from 15.58% (XLM-
R-large) to 34.96% (distilmBERT) which clearly
highlights the room for improvement, especially
with smaller model sizes. In the rest of the section,
we discuss the results in terms of the encoder type,
task and the languages.

Model-wise analysis The ranking of the en-
coders displays relatively little variation across
tasks, with XLM-Rlarge exhibiting the best zero-
shot performance across all tasks by outperforming
the second best model (XLM-Rbase) by 5.98%. dis-
tillmBERT, on the other hand, fails to match the
performance of other encoders.7

The Translation Language Model (TLM) objec-
tive is proved to be a better training objective than
MLM by consistently outperforming the vanilla
XLM in all tasks. XLM-tlm outperforms XLM-
100 on XNLI languages as well which is possibly
because of the ‘curse of multilinguality’ (Conneau
et al., 2020), the degradation of the overall perfor-
mance in proportion to the number of languages in
the training. However, training setting (e.g. train-
ing data, hyperparameters) outplays the ‘curse of
multilinguality’ as XLM-Rbase clearly outperforms
XLM-tlm even on XNLI languages. It would be in-
teresting to see how an XLM-R trained with TLM
objective on small set of languages, e.g. XNLI
languages, would perform.

DistillmBERT is the lightest model evaluated in
the current investigation. It is shown to retain 92%
of the mBERT’s performance on certain XNLI lan-
guages.8 The results suggest that distillmBERT
delivers its promise, although to a lesser extent.
When averaged over all tasks, distillmBERT re-
tains 93% of the source language performance of
mBERT. However, its relative performance signifi-
cantly drops to 82% on zero-shot transfer. That is,
distillmBERT is not as successful when it comes to
copying mBERT’s cross-lingual abilities. Further-
more, its performance (relative to mBERT) is not
stable across tasks either. It only achieves 69% of

7The only exception is the XLM and XLM-tlm’s perfor-
mance on non-XNLI languages where distillmBERT manages
to outperform them but not always by a large margin.

8https://github.com/huggingface/
transformers/tree/master/examples/
distillation

13

mBERT’s zero-shot performance on RST whereas
89% on XNLI. The low memory requirement and
its speed (with the same batch size, it is x2 faster
than mBERT and x5 than XLM-Rlarge) definitely
makes distillmBERT a favorable option; however,
the results show that its zero-shot performance is
considerably lower than its source language perfor-
mance and is highly task-dependent, hence, hard to
predict.

Task-wise Analysis Table 3 shows to what ex-
tent encoders manage to transfer their source lan-
guage performance to zero-shot languages. Over-
all, the zero-shot performances show high variance
across tasks which is quite interesting given that
all tasks are on the same linguistic level. It is also
surprising that mBERT manages a better zero-shot
transfer performance than all XLM models while
being almost as consistent as XLM-Rbase.

Overall, the results show that even modern sen-
tence encoders struggle to capture inter-sentential
interactions in both monolingual and multilingual
settings, contrary to the what the high performances
on well-known datasets (e.g. PAWS (Hu et al.,
2020)) may suggest. We believe that this finding
supports our motivation to propose new probing
tasks to have a fuller picture of the capabilities of
these encoders.

Language-wise Analysis: In all tasks, regard-
less of the model, training-language performance
is better than even the best zero-shot performance.
The only exception is the XLM-R-large’s perfor-
mance on the X-stance where the zero-shot per-
formance is on par with its performance on the
German test set.

An important aspect of cross-lingual research
is predictability. The zero-shot performance of a
certain language do not seem to be stable across
tasks (e.g. German is the language with the worst
RST performance; yet it is one of the best in XNLI).
We further investigate this following Lauscher et al.
(2020), who report high correlation between syn-
tactic similarity and zero-shot performance for low-
level tasks, POS-tagging and dependency parsing.
We conduct the same correlation analysis using
Lang2Vec (Littell et al., 2017). However, syntactic
and geographical similarity only weakly correlates
with zero-shot performances across the tasks (Pear-
son’s r = .46 and Spearman’s r = .53 on average
for syntactic; Pearson’s r = .30 and Spearman’s
r = .45 for geographical similarity). Such low

correlations are important as it further supports the
claim that the tasks are beyond the sentence level
and also highlights a need for further research to
reveal the factors at play during zero-shot transfer
of discourse-level tasks.

6 Conclusion

As pre-trained multilingual sentence encoders have
become prevalent in natural language processing,
research on cross-lingual zero-shot transfer gains
increasing importance (Hu et al., 2020; Liang et al.,
2020). In this work, we evaluate a wide range of
sentence encoders on a variety of discourse-level
tasks in a zero-shot transfer setting. Firstly, we
enrich the set of available probing tasks by intro-
ducing three resources which have not been utilized
in this context before. We systematically evaluate a
broad range of widely used sentence encoders with
considerably varying sizes, an analysis which has
not been made before.

The main variable we look at is the performance
gap between training-language evaluation and zero-
shot evaluation. Unsurprisingly, nearly always
there is such a gap, but its magnitude depends on a
number of factors:

• Distillation: the distilled mBERT model has
a larger gap than the full mBERT model, in-
dicating loss of multilingual transfer ability
during distillation.

• Language similarity: the gap correlates
only weakly with measures of language sim-
ilarity (syntactic and geographical), indicat-
ing that sentence encoders generally transfer
discourse-level information about as well be-
tween similar and dissimilar languages.

• High variance: apart from the above, we
also observe a generally high variance in the
gap magnitude between different tasks in our
benchmark suite.

These observation provide several starting points
for future work: investigating why knowledge dis-
tillation seems to hurt zero-shot performance to a
much greater extent than same-language sentence
encoding ability and what can be done to solve this
problem, and explaining the large variations in the
zero-shot transfer gap between different discourse-
level NLP tasks.

14

Model PDTB RST X-stance XQuAD MNLI Average ± std
mBERT 74.49 64.18 84.75 74.22 80.28 75.58± 6.92
distilmBERT 66.13 54.37 71.34 57.35 75.9 65.02± 8.15
XLM-mlm 60.32 52.93 76.4 69.68 83.47 68.56± 10.93
XLM-tlm 63.49 50.36 85.57 78.76 84.26 72.49± 13.56
XLM-100 73.76 57.54 87.62 74.89 81.01 74.96± 10.02
XLM-Rbase 78.96 70.75 94.29 82.44 88.1 82.91± 8.00
XLM-Rlarge 79.91 73.33 100.4 86.81 89 85.89± 9.11

Table 3: Relative zero-shot performance of each encoder to the source language performance (metrics differ be-
tween tasks but higher is better in all cases). The figures shows what percentage of the source language performance
is retained through zero-shot transfer in each task. Hu et al. (2020) refer to this as the cross-lingual transfer gap.
A score above 100 indicates that a better zero-shot performance than that of training.

References
Naveen Arivazhagan, Ankur Bapna, Orhan Firat,

Dmitry Lepikhin, Melvin Johnson, Maxim Krikun,
Mia Xu Chen, Yuan Cao, George Foster, Colin
Cherry, et al. 2019. Massively multilingual neural
machine translation in the wild: Findings and chal-
lenges. arXiv preprint arXiv:1907.05019.

Mikel Artetxe, Sebastian Ruder, and Dani Yogatama.
2020. On the cross-lingual transferability of mono-
lingual representations. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 4623–4637, Online. Asso-
ciation for Computational Linguistics.

Chloé Braud, Maximin Coavoux, and Anders Søgaard.
2017. Cross-lingual RST discourse parsing. In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 1, Long Papers, pages 292–304,
Valencia, Spain. Association for Computational Lin-
guistics.

Shuyuan Cao, Iria da Cunha, and Mikel Iruskieta. 2018.
The rst spanish-chinese treebank. In Proceedings of
the Joint Workshop on Linguistic Annotation, Mul-
tiword Expressions and Constructions (LAW-MWE-
CxG-2018), pages 156–166.

Paula CF Cardoso, Erick G Maziero, Maria LC Jorge,
Eloize MR Seno, Ariani Di Felippo, Lucia HM Rino,
Maria das Gracas Volpe Nunes, and Thiago AS
Pardo. 2011. Cstnews-a discourse-annotated cor-
pus for single and multi-document summarization of
news texts in brazilian portuguese. In Proceedings
of the 3rd RST Brazilian Meeting, pages 88–105.

Lynn Carlson and Daniel Marcu. 2001. Discourse tag-
ging reference manual. ISI Technical Report ISI-TR-
545, 54:56.

Mingda Chen, Zewei Chu, and Kevin Gimpel. 2019a.
Evaluation benchmarks and learning criteria for
discourse-aware sentence representations. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 649–662.

Sihao Chen, Daniel Khashabi, Wenpeng Yin, Chris
Callison-Burch, and Dan Roth. 2019b. Seeing
things from a different angle: Discovering diverse
perspectives about claims. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 542–557.

Sandra Collovini, Thiago I Carbonel, Juliana Thiesen
Fuchs, Jorge César Coelho, Lúcia Rino, and Renata
Vieira. 2007. Summ-it: Um corpus anotado com
informaç oes discursivas visandoa sumarizaç ao au-
tomática. Proceedings of TIL.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Advances
in Neural Information Processing Systems, pages
7059–7069.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. XNLI: Evaluating
cross-lingual sentence representations. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 2475–2485,
Brussels, Belgium. Association for Computational
Linguistics.

Iria Da Cunha, Juan-Manuel Torres-Moreno, and Ger-
ardo Sierra. 2011. On the development of the rst
spanish treebank. In Proceedings of the 5th Linguis-
tic Annotation Workshop, pages 1–10.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of

15

the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. Xtreme: A massively multilingual multi-
task benchmark for evaluating cross-lingual gener-
alisation. In International Conference on Machine
Learning, pages 4411–4421. PMLR.

Haoyang Huang, Yaobo Liang, Nan Duan, Ming Gong,
Linjun Shou, Daxin Jiang, and Ming Zhou. 2019.
Unicoder: A universal language encoder by pre-
training with multiple cross-lingual tasks. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 2485–2494.

Mikel Iruskieta, Mara Jesus Aranzabe, Arantza Diaz
de Ilarraza, Itziar Gonzalez, Mikel Lersundi, and
Oier Lopez de la Calle. 2013. The rst basque tree-
bank: an online search interface to check rhetori-
cal relations. In 4th Workshop” RST and Discourse
Studies”, Brasil, October, pages 21–23.

Murathan Kurfalı and Robert Östling. 2019. Zero-shot
transfer for implicit discourse relation classification.
In Proceedings of the 20th Annual SIGdial Meeting
on Discourse and Dialogue, pages 226–231.

Anne Lauscher, Vinit Ravishankar, Ivan Vulić, and
Goran Glavaš. 2020. From zero to hero: On the lim-
itations of zero-shot language transfer with multilin-
gual transformers. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 4483–4499.

Patrick Lewis, Barlas Oguz, Ruty Rinott, Sebastian
Riedel, and Holger Schwenk. 2020. MLQA: Evalu-
ating cross-lingual extractive question answering. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7315–
7330, Online. Association for Computational Lin-
guistics.

Yaobo Liang, Nan Duan, Yeyun Gong, Ning Wu, Fen-
fei Guo, Weizhen Qi, Ming Gong, Linjun Shou,
Daxin Jiang, Guihong Cao, et al. 2020. Xglue: A
new benchmark datasetfor cross-lingual pre-training,
understanding and generation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6008–6018.

Patrick Littell, David R Mortensen, Ke Lin, Katherine
Kairis, Carlisle Turner, and Lori Levin. 2017. Uriel
and lang2vec: Representing languages as typologi-
cal, geographical, and phylogenetic vectors. In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, pages 8–14.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Wanqiu Long, Xinyi Cai, James Reid, Bonnie Webber,
and Deyi Xiong. 2020. Shallow discourse annota-
tion for chinese ted talks. In Proceedings of The
12th Language Resources and Evaluation Confer-
ence, pages 1025–1032.

William C. Mann and Sandra A. Thompson. 1988.
Rhetorical structure theory: Toward a functional the-
ory of text organization. Text & Talk, 8(3):243 – 281.

Allen Nie, Erin Bennett, and Noah Goodman. 2019.
Dissent: Learning sentence representations from ex-
plicit discourse relations. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4497–4510.

Giedre Valunaite Oleskeviciene, Deniz Zeyrek, Vik-
torija Mazeikiene, and Murathan Kurfalı. 2018. Ob-
servations on the annotation of discourse relational
devices in ted talk transcripts in lithuanian. In Pro-
ceedings of the workshop on annotation in digital
humanities co-located with ESSLLI, volume 2155,
pages 53–58.

Thiago Alexandre Salgueiro Pardo and Eloize
Rossi Marques Seno. 2005. Rhetalho: um corpus
de referência anotado retoricamente. Anais do V
Encontro de Corpora, pages 24–25.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual bert? In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4996–5001.

Dina Pisarevskaya, Margarita Ananyeva, Maria
Kobozeva, Alexander Nasedkin, Sofia Nikiforova,
Irina Pavlova, and Alexey Shelepov. 2017. Towards
building a discourse-annotated corpus of russian.
In Proceedings of the International Conference
on Computational Linguistics and Intellectual
Technologies” Dialogue.

Rashmi Prasad, Eleni Miltsakaki, Nikhil Dinesh, Alan
Lee, Aravind Joshi, Livio Robaldo, and Bonnie L
Webber. 2007. The penn discourse treebank 2.0 an-
notation manual.

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao,
Ning Dai, and Xuanjing Huang. 2020. Pre-trained
models for natural language processing: A survey.
Science China Technological Sciences, pages 1–26.

16

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392.

Victor Sanh, Lysandre Debut, Julien Chaumond,
Thomas Wolf, and Hugging Face. 2019. Distilbert, a
distilled version of bert: smaller, faster, cheaper and
lighter. arXiv preprint arXiv:1910.01108.

Manfred Stede. 2004. The potsdam commentary cor-
pus. In Proceedings of the Workshop on Discourse
Annotation, pages 96–102.

Sara Tonelli and Elena Cabrio. 2012. Hunting for en-
tailing pairs in the penn discourse treebank. In Pro-
ceedings of COLING 2012, pages 2653–2668.

Jannis Vamvas and Rico Sennrich. 2020. X-Stance: A
multilingual multi-target dataset for stance detection.
In Proceedings of the 5th Swiss Text Analytics Con-
ference (SwissText) & 16th Conference on Natural
Language Processing (KONVENS), Zurich, Switzer-
land.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2019.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019.

Bonnie Webber, Rashmi Prasad, Alan Lee, and Ar-
avind Joshi. 2016. A discourse-annotated corpus of
conjoined vps. In Proceedings of the 10th Linguistic
Annotation Workshop held in conjunction with ACL
2016 (LAW-X 2016), pages 22–31.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112–1122.

Thomas Wolf, L Debut, V Sanh, J Chaumond, C De-
langue, A Moi, P Cistac, T Rault, R Louf, M Fun-
towicz, et al. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. ArXiv,
abs/1910.03771.

Shijie Wu and Mark Dredze. 2019. Beto, bentz, be-
cas: The surprising cross-lingual effectiveness of
bert. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
833–844.

Nianwen Xue, Hwee Tou Ng, Sameer Pradhan, At-
tapol Rutherford, Bonnie Webber, Chuan Wang, and
Hongmin Wang. 2016. Conll 2016 shared task on
multilingual shallow discourse parsing. In Proceed-
ings of the CoNLL-16 shared task, pages 1–19.

Jianhua Yuan, Yanyan Zhao, Jingfang Xu, and Bing
Qin. 2019. Exploring answer stance detection with
recurrent conditional attention. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 7426–7433.

Deniz Zeyrek, Amália Mendes, Yulia Grishina, Mu-
rathan Kurfalı, Samuel Gibbon, and Maciej Ogrod-
niczuk. 2019. Ted multilingual discourse bank (ted-
mdb): a parallel corpus annotated in the pdtb style.
Language Resources and Evaluation, pages 1–27.

17

A Task-wise Results
Model en de es eu pt ru zh AVG
mBERT 66.7 29.2 39.3 31.1 58.6 48.0 50.7 42.8
distilmBERT 54.1 16.3 25.7 21.4 44.5 32.2 36.5 29.4
XLM-mlm 60.6 25.5 33.2 14.1* 40.4* 39.8 39.4 32.1
XLM-tlm 65.5 26.0 35.2 13.3* 42.0* 39.9 41.3 33.0
XLM-100 63.8 24.3 34.6 26.2 55.2 40.0 39.8 36.7
XLMR-b 69.8 37.6 44.7 39.4 61.9 56.2 56.7 49.4
XLMR-l 72.9 44.8 46.8 47.0 65.6 59.3 57.3 53.5

Table 4: RST zero-shot results (Accuracy) for each language. * denotes that the language is not one of the training
languages of the respective sentence encoder.

Model en de lt pl pt ru tr zh AVG
mBERT 53.6 42.7 39.2 33.9 46.7 33.1 40.3 43.5 39.9
distilmBERT 53.1 42.7 30.0 34.7 41.1 32.6 29.4 35.4 35.1
XLM-mlm 54.9 44.9 19.5* 20.6* 28.9* 33.8 43.5 40.5 33.1
XLM-tlm 53.3 45.9 20.1* 21.3* 26.8* 37.1 41.9 43.6 33.8
XLM-100 54.6 41.9 41.6 32.5 44.5 34.2 35.9 40.4 38.7
XLMR-b 61.8 49.5 49.6 40.4 53.5 42.7 54.4 51.4 48.8
XLMR-l 65.4 53.4 49.4 42.8 59.5 48.9 53.8 58.1 52.3

Table 5: PDTB zero-shot results (F1) for each language. * denotes that the language is not one of the training
languages of the respective sentence encoder.

Model de en fr it zh AVG
mBERT 69.3 60.2 60.7 63.2 50.8 58.7
distilmBERT 67.7 49.8 48.7 59.5 35.2 48.3
XLM-mlm 67.3 52.6 55.0 56.2* 41.8 51.4
XLM-tlm 71.2 60.4 62.5 59.6* 61.1 60.9
XLM-100 71.8 62.3 64.8 64.0 60.6 62.9
XLMR-b 72.3 65.8 70.4 69.9 66.7 68.2
XLMR-l 79.3 80.9 79.0 78.9 79.5 79.6

Table 6: X-stance zero-shot results (F1) for each language. * denotes that the language is not one of the training
languages of the respective sentence encoder.

Model en ar bg de el es fr hi ru sw th tr ur vi zh AVG
mBERT 82.3 65.7 69.4 72.1 68.2 75.9 75.3 60.6 69.8 51.3 54.7 62.2 58.8 70.9 69.7 66.1
distilmBERT 77.9 60.3 63.9 65.7 61.4 70.1 69.9 54.7 63.6 46.6 39.1 57.3 54.1 59.2 62.4 59.2
XLM-mlm 81.9 68.5 73.7 73.0 73.3 75.3 75.2 64.4 72.0 64.9 49.2 67.3 62.8 70.3 67.3 68.4
XLM-tlm 84.2 71.1 76.5 76.2 74.3 78.3 77.9 66.5 75.3 67.4 53.9 70.8 62.7 72.8 69.3 70.9
XLM-100 83.1 67.9 72.6 73.3 72.4 76.6 75.5 64.7 71.3 58.4 39.7 68.2 62.0 72.7 67.0 67.3
XLMR-b 82.8 71.0 77.3 75.7 75.3 78.2 76.9 68.6 75.2 66.4 71.6 72.4 65.2 74.6 73.0 73.0
XLMR-l 88.8 78.6 83.0 82.9 81.8 84.5 82.7 76.0 79.3 71.6 77.0 78.7 71.5 79.5 79.3 79.0

Table 7: XNLI zero-shot results (Accuracy) for each language

18

Model en ar de el es hi
mBERT 84.8/72.9 62.6/46.0 72.5/56.8 64.4/47.1 75.3/56.3 58.6/45.1
distilmBERT 78.0/65.9 44.6/28.3 57.6/41.0 37.6/21.2 60.5/40.0 34.9/20.5
XLM-mlm 77.2/64.5 59.9/43.2 66.0/50.4 57.8/39.5 67.7/49.8 47.5/33.0
XLM-tlm 82.5/70.4 68.1/51.6 73.7/57.6 69.5/51.2 77.1/59.2 65.6/50.2
XLM-100 84.6/73.4 67.6/50.3 73.6/58.3 63.9/45.1 77.3/59.1 60.2/44.5
XLMR-b 83.3/72.4 65.0/47.1 73.4/57.6 71.9/54.5 75.5/57.1 68.3/50.9
XLMR-l 86.8/75.5 74.1/55.6 79.5/62.6 79.8/61.4 82.0/62.3 75.4/58.6
Model ru th tr vi zh AVG
mBERT 71.4/54.9 43.3/34.4 54.8/40.8 68.1/48.9 58.3/48.2 62.9/47.8
distilmBERT 58.9/40.2 20.9/13.9 37.9/21.8 47.5/28.2 46.9/33.8 44.7/28.9
XLM 64.1/47.0 24.9/12.4 50.2/34.6 60.3/41.3 39.8/30.1 53.8/38.1
XLM-tlm 72.6/55.3 33.3/21.9 65.0/47.5 71.8/51.3 53.4/43.8 65.0/48.9
XLM-100 73.7/57.6 22.4/13.6 66.7/49.9 73.9/54.8 54.1/44.5 63.3/47.8
XLMR-b 73.3/56.9 67.1/55.5 67.5/50.4 73.0/53.4 51.6/41.7 68.7/52.5
XLMR-l 79.4/62.9 73.7/62.6 74.7/58.5 79.4/59.4 55.5/46.7 75.4/59.1

Table 8: XQuAD results (F1/Exact-match) for each language

19

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 20–28
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

Comprehension Based Question Answering using Bloom’s Taxonomy

Pritish Sahu1,2 ∗ Michael Cogswell1 ∗ Sara Rutherford-Quach1 Ajay Divakaran1

1SRI International
2Rutgers University

Abstract

Current pre-trained language models have lots
of knowledge, but a more limited ability to use
that knowledge. Bloom’s Taxonomy helps ed-
ucators teach children how to use knowledge
by categorizing comprehension skills, so we
use it to analyze and improve the comprehen-
sion skills of large pre-trained language mod-
els. Our experiments focus on zero-shot ques-
tion answering, using the taxonomy to provide
proximal context that helps the model answer
questions by being relevant to those questions.
We show targeting context in this manner im-
proves performance across 4 popular common
sense question answer datasets.

1 Introduction

Recent large language models such as GPT-
3 (Brown et al., 2020) have made a giant leap for-
ward in knowledge acquisition and even generalize
this knowledge to a new tasks. But when less nar-
row tasks are considered they fail to understand
as much as these benchmarks suggest. They turn
out to be “stochastic parrots” (Bender et al., 2021)
or “smart/super parrots.” (Dunietz et al., 2020) that
just memorize without all of the comprehension
we want from a Natural Language Understanding
system. We focus on a particular kind of failure
mode where the model knows (has memorized) the
information it needs, but is not able to apply that
information correctly, and we do so in a zero-shot
fashion to control for what the model knows.

For example, in Fig. 1 the model is asked if a
mixture of grape juice and cranberry juice is safe
to drink (Marcus and Davis, 2020). GPT-3 declares
that it is a deadly poison, even though it appears to
”know” that grape juice and cranberry juice are safe
to drink by themselves (Fig. 1, Level 1, dark pur-
ple). It even knows that cranberry juice with grape
juice is not poisonous, but it still thinks the result is
death (Fig. 1, Level 2, light blue). The model has

∗These two authors contributed equally.

memorized the necessary information from large
amounts of text, but does not use its knowledge
appropriately. Following (Shwartz et al., 2020), we
extract this knowledge as explicit language then
feed it back as additional context during inference,
forcing the model to use what it already knows but
in our case targeting specifically useful knowledge.

To formalize this distinction we drew inspiration
from elementary school classrooms, where teach-
ers (Miller, 2002; Harvey and Goudvis, 2007) have
a schema based approach in which they teach chil-
dren to demonstrate multiple levels of comprehen-
sion, making complex inferences and direct recall
from memory. They use a hierarchy of comprehen-
sion skills called Bloom’s Taxonomy (Anderson
et al., 2000) (c.f . Fig. 1) with memorization is at the
bottom (requiring children to recall facts) followed
by understanding (requiring children to grasp se-
mantics) application (requiring children to solve
problems), and more complex skills. For us, these
comprehension skills describe ways our language
model might fail to use its knowledge.

In this paper we address our failure mode by
relying on commonly understood relationships be-
tween the skills of Bloom’s Taxonomy which we
term proximal context. In order to understand
whether the cranberry grape mixture is poisonous
the model needs to remember whether grape juice
is poisonous. In order to apply its knowledge to
figure out what will happen next it needs to un-
derstand whether the cranberry grape mixture is
poisonous or not. In general, the proximal context
for a particular task T at level L is given by those
tasks implicitly required by T , which are mostly
at level L − 1 of the taxonomy. We guide our
language to answer questions more accurately by
providing it not just any context, but proximal con-
text 1. In performing zero-shot question answering
our language model asks itself additional clarifica-

1Proximal context is not defined for level 1 questions, so
we only address questions at level 2 or above.

20

Figure 1: Our approach incorporates context into question answering guided by Bloom’s Taxonomy.

tion questions, choosing those most likely to result
in proximal context.

Our contributions in this paper are:

• We use Bloom’s Taxonomy to choose proxi-
mal clarifying context that improves question
answering performance using only what the
model already knows.

• We show proximal context is better than other
levels of context on four different common-
sense question answering tasks.

• By observing how different levels of clarifi-
cation impact our language model we also
explain how the model answers questions.

2 Related Works

Question Answering from External Supervi-
sion. Several approaches has been proposed to
improve question-answering by adding external
knowledge source. Recent large pre-trained lan-
guage models (Peters et al., 2018; Radford et al.,
2019; Devlin et al., 2018; Liu et al., 2019; Joshi
et al., 2020; Clark et al., 2020) learn general
purpose text encoders from a huge text corpus.
(Petroni et al., 2019) recently used a language
model as knowledge base to unmask a token given
an entity and a relation in a predefined template.
Shwartz et al. (2020); Bosselut et al. (2019a,b) used
pretrained language models to improve zero-shot
question answering performance by extracting con-
text from the language model itself, using self-talk
or a knowledge graph. We add context via self-talk,
with structure provided by Bloom’s Taxonomy.

Bloom’s Taxonomy. The original work (Bloom,
1956) defined taxonomies for learning in the cog-
nitive (intellectual), affective (interests, attitudes,
values), and psychomotor domains, though the cog-
nitive domain is what we usually refer to today.
Almost half a century later the cognitive domain
taxonomy was revised (Anderson et al., 2000) to re-
flect more active thinking and improve usability by
adding verbs to describe levels. Teachers use this
taxonomy, for example in computer science educa-
tion (Whalley et al., 2006; Thompson et al., 2008;
Oliver et al., 2004), and our inspiration is from this
revised version of the cognitive taxonomy. Ma-
chine learning has been applied to automatically
classify questions (Mohammed and Omar, 2020;
Zhang et al., 2021; Nafa et al., 2016) into Bloom’s
Taxonomy levels, but the taxonomy has not been
applied to analyze or improve machine learning
models themselves. We use it to help our model
think about what it knows.

3 Approach

Our approach builds on the zero-shot question an-
swering approach of Shwartz et al. (2020) to an-
swer questions (Section 3.1) by adding clarifica-
tions with self-talk (Section 3.2). We describe this
approach then we use Bloom’s Taxonomy to select
better clarifications (Section 3.2).

3.1 Question Answering with Language
Models

Given a prompt p, a question q, and answer op-
tions ao ∀o ∈ [1,K] we use a pre-trained language
model LM to pick the correct answer ao∗ . This

21

Dataset Question Prefix Sample Clarification
Question

Sample Clarification
Answer

COPA What is the definition of : 1
(a) What is the definition of an accident?
(b) What is the definition of a flat tire?

(a) The definition of an accident is the crash of
collusion caused by the vehicle.
(b) The definition of a flat tire is that the tire does
not hold air.

What is the main purpose of : 2

(a) What is the main purpose of this
investigation?
(b) What is the main purpose of this
post?

(a) The purpose of this investigation is to provide
information about how and why he was shot.
(b) The purpose of this post is to share my thoughts
and feelings on his death.

CommonsenseQA What is the main function of a : 2

(a) What is the main function of a
teacher in this area?
(b) What is the main function of a
farmer?

(a)The main function of a teacher in this area is to
teach them about life and love.
(b) The main function of a farmer is to provide food
for his family and the community.

What might have caused : 3
(a) What might have caused this problem?
(b) What might have caused the animal to flee?

(a) the cause of this problem was that his wife’s
husband didn’t have enough money.
(b) The cause of the animal to flee was a predator.

Social IQA What did [NAME] do? : 1
(a) What did Kendall do?
(b) What did Kendall do?

(a) What Kendall did was make sure that
he wasn’t going anywhere else.
(b) What Kendall did was so horrible, that
it was hard to believe.

How would you describe [NAME]? : 3
(a) How would you describe Riley?
(b) How would you describe Riley?

(a) Riley is a big brother, he’s an awesome dad.
(b) Riley is a very sensitive person and has a lot
of anxiety.

Winogrande What are the properties of a : 1
(a) What are the properties of a diet
that is not healthy?
(b) What are the properties of a home?

(a) The property of a diet that is not healthy
are that it has high cholesterol (a good idea).
(b) The properties of a home are that which
makes it comfortable and pleasant for the occupants.

What does it mean to : 2
(a) What does it mean to be an explorer?
(b) What does it mean to be sophisticated?

(a) Be an explorer means to explore and make
sense of things.
(b) Be sophisticated means to be classy, elegant
and smart.

Table 1: This table shows some of the question prefixes we used for different datasets in our experiments. We
assign each prefix a level in Bloom’s Taxonomy. We show generated clarifications questions and answers for both
Distil-GPT2 (a) and GPT-Neo (b) for their corresponding question prefixes.

approach simply concatenates each (prompt, ques-
tion, answer) tuple into into a single string of text
To = [p, q, ao] and feeds this string to the language
model to assign each choice a score so = LM(To).
The language model’s answer is just the answer
with the highest score: ô = argmaxo so.

3.2 Self-talk Clarifications

Self-talk (Shwartz et al., 2020) has a language
model ask itself clarifying questions then answer
those questions to generate clarifications.

Stage 1: Ask clarification questions. To pro-
duce clarifications we start with a set of clarifica-
tion question prefixes r1, . . . , rJ that are designed
specifically for each question answering dataset.
“What happens if” is a sample prefix for the clarifi-
cations, shown in Fig. 1, and in Tab. 1 we present
examples for all the datasets we use. In this stage
the language model completes each of these pre-
fixes, using its generator function LMG to ask one
question Rj = LMG(rj) per prefix.

Stage 2: Answer the questions. Next we use
the model to answer each of these questions, possi-
bly prompted with an answer prefix bj correspond-
ing to question prefix rj . The results are the clarifi-
cations cj = LMG([Rj , bj]).

Stage 3: Reconsider with a new prompt. To
use the clarifications we pick one from the list then
append it to the original prompt. This approach
simply considers all combinations of clarifications
questions and answers Tj,o = [p, q, cj , ao] ∀o, j,
first chooses the clarification which maximizes
model score per answer option, then chooses the
final answer o∗ = argmaxomaxj LM(Tj,o). This
can improve question answering performance on
its own, but in the next section we more carefully
choose clarifications using our notion of proximal
context and Bloom’s Taxonomy.

3.3 Using Bloom’s Taxonomy to Choose
Clarifications with Proximal Context

To test our idea of proximal context we consider the
level L of task give by each dataset then allow only
proximal clarifications of level L − 1. We label
each question prefix with the level of Bloom’s Tax-
onomy that it falls into, and then force the model
to choose from the set CL of clarifications of level
L. This results in a final choice for each level
o∗L = argmaxomaxj∈CL LM(Tj,o). We also pro-
vide a Choice Baseline that allows the model to
choose any level of clarification to show the model
would have difficulty choosing proximal clarifica-

22

tions itself. Note that the annotation of questions
along Bloom’s taxonomy requires special skills
typically found only among educators. While a
layperson can be trained to annotate such ques-
tions, our experience was that it takes much more
time than we could afford for a preliminary study
such as this one. We therefore relied on our co-
author, Sara Rutherford-Quach, who is a researcher
at SRI’s Education Division and has also worked
as a teacher at the kindergarten-elementary level to
provide us the annotations. Two other co-authors,
Sahu and Cogswell, went through those annota-
tions and made sure that each label had a three
way consensus among Rutherford-Quach, Sahu
and Cogswell. There might be some ambiguity
about which level a particular prefix fits into, but
this is also true of other applications of the taxon-
omy (Thompson et al., 2008). In future work, we
plan to carry out a more rigorous annotation with
more than one skilled annotator so we can measure
inter-annotator agreement through measures such
as Kappa scores.

4 Experiments

4.1 Datasets

We evaluate our study on four datasets that can
each be thought of in terms of multiple choice
question answering, all measuring some kind of
common sense: COPA (Roemmele et al., 2011)
measures common sense causal reasoning, Com-
monSenseQA (Talmor et al., 2019) asks questions
that require prior knowledge, Social IQA (Sap et al.,
2019) asks about social common sense, and Wino-
Grande (Sakaguchi et al., 2020) adversarially mea-
sures semantic common sense. Perhaps surpris-
ingly, all of the datasets we used asked questions
that fell into just one level of the taxonomy (Tab. 2).
These datasets do focus on very specific problems,
but the result is still disappointing because it would
be more useful to see variations in both task and
clarification level. It may be interesting to develop
datasets that can better express the range of abilities
described by Bloom’s Taxonomy.

4.2 Language Model

We use distill-GPT2 (Sanh et al., 2019) and the
publicly released GPT-Neo2.7B(Black et al., 2021)
(based on EleutherAI’s replication of the GPT-3 ar-
chitecture) as the language models throughout our
experiments. Our clarification question prefixes
and hyperparameter settings for both models are

Table 2: Question answering accuracy and std. dev.
using different levels ofclarification over multiple clar-
ification samples. Results on the dev sets of each
dataset.(* = level of proximal context \wrt the dataset)

Task Model Level Accuracy

Winogrande
(1267 total)
(2: Understand)

Distil-GPT2
(235±5 valid)

0A: Choice Baseline
1A: Remember*
2A: Understand

53.2 ± 1.8
54.7 ± 3.6
52.5 ± 3.1

GPT-Neo
(1230±7 valid)

0A: Choice Baseline
1A: Remember*
2A: Understand

54.62 ± 0.5
54.77 ± 0.5
54.76 ± 0.3

SocialIQA
(1954 total)
(3: Apply)

Distil-GPT2
(58±5 valid)

0B: Choice Baseline
1B: Remember
2B: Understand*
3B: Apply

44.5 ± 0.1
43.7 ± 2.1
48.0 ± 1.1
44.4 ± 1.8

GPT-Neo
(1334±9 valid)

0B: Choice Baseline
1B: Remember
2B: Understand*
3B: Apply

48.74 ± 0.4
47.31 ± 0.1
48.44 ± 0.5
48.1 ± 0.1

COPA
(100 total)
(3: Apply)

Distil-GPT2
(11±2 valid)

0C: Choice Baseline
1C: Remember
2C: Understand*
3C: Apply

54.9 ± 0.9
46.0 ± 14.7
53.1 ± 12.5
40.8 ± 15.2

GPT-Neo
(96±0 valid)

0C: Choice Baseline
1C: Remember
2C: Understand*
3C: Apply

70.83 ± 0.0
65.62 ± 0.0
70.83 ± 1.4
70.83 ± 0.0

CommonsenseQA
(1221 total)
(3: Apply)

Distil-GPT2
(68±1 valid)

0D: Choice Baseline
1D: Remember
2D: Understand*
3D: Apply

29.9 ± 2.7
26.5 ± 3.3
28.1 ± 1.2
25.6 ± 3.4

GPT-Neo
(1118±4 valid)

0D: Choice Baseline
1D: Remember
2D: Understand*
3D: Apply

40.59 ± 3.6
38.00 ± 6.0
43.19 ± 0.2
42.30 ± 0.8

from (Shwartz et al., 2020). For each question pre-
fix, we generate 5 clarification questions using nu-
cleus sampling threshold probability p = 0.2 and
adding at most 6 words to the clarification ques-
tion prefix. We then generate 10 answers to each
clarification question using p = 0.5 and maximum
answer length 10. Some changes were necessary
to accurately measure the impact of clarification
level. Instead of always including no clarification
as a choice we do not allow this option as it defeats
our goal of measuring clarification level impact.
Furthermore, we do not use the clarification ques-
tions which were manually completed without in-
put from the model (as in COPA and Winogrande).

In order to compare performance across differ-
ent levels of clarifications we only consider exam-
ples where the model was able to generate at least
one clarification from each level. To increase the
number of viable examples we found it necessary
to remove some restrictions relative to the imple-
mentation of (Shwartz et al., 2020). In particular,
we kept all clarifications that had no overlapping
words with the context and did not allow the model
to chose the “no clarification” option. Even with
these constraints it was still often the case that
distil-GPT2 could not generate a short clarification

23

sentence that was plausible enough to use whereas
GPT-Neo was able to generate clarifications for al-
most the entire dataset. This indicates larger scale
models may be more able to take advantage of clar-
ifying questions. The number of examples with
valid clarifications for all levels is indicated for
each model in column 2 of Tab. 2. These changes
help us more accurately measure the impact of
Bloom’s Taxonomy, but mean our approach is not
directly comparable to Shwartz et al. (2020).

4.3 Results

Table 2 reports the performance of our Bloom’s
Taxonomy infused zero-shot question answering
method. Each row shows question answering ac-
curacy for a particular dataset and level of clarifi-
cation. If our hypothesis is correct then the level
of available clarifications should matter and clari-
fications that provide proximal context –one level
below the dataset level– should be most helpful.

Clarification Level Makes a Difference. All
levels of clarification questions and answers pro-
vide some amount of extra information that
changes how a language model processes the entire
string it is presented with. This is often helpful in-
formation, but it may be that all levels of Bloom’s
Taxonomy provide equally useful information. We
find that is not the case. Different levels of clarifi-
cation help more or less, as evidenced by the large
gap between minimum and maximum accuracy for
each dataaset. Furthermore, when the model can
choose any clarification (rows 0A/B/C/D) it either
does a worse job than proximal context or its per-
formance similar to proximal context, so enforcing
a particular kind of context should be helpful.

Proximal Context Helps Most. Proximal con-
text, as we’ve defined it with respect to Bloom’s
Taxonomy is context from the clarification level
directly below the dataset question level. The prox-
imal clarification level for each dataset is marked
by a * in Tab. 2. In all cases proximal clarifica-
tions are better than using clarifications of a lower
level. For the datasets that ask level 3 questions the
proximal (level 2) clarifications also outperform
level 1 clarifications (2B/C/D greater than 1B/C/D).
Proximal clarifications are also about as good as
or better than using clarifications of a higher level.
You can see this for Winogrande by noting row 1A
is greater than 2A and for the other datasets by not-
ing rows 2B/C/D usually have greater performance
than 3B/C/D. Overall, proximal context is most

consistent in efficacy.

4.4 Qualitative Results

In Tab. 1 we show samples of question answer pairs
generated for each model and in Tab. 5 of the ap-
pendix we show complete examples (with context
and choices) for each model and dataset. GPT-Neo
is much larger than distil-GPT2 and is expected to
generalize to slightly new tasks like the clarifica-
tion generation task better than the smaller model.
This expectation is clearly met by the observed
quality of clarifications. Distil-GPT2 clarification
questions and answers often do not have meaning-
ful semantics, are not correct, or are not relevant.
GPT-Neo is much more likely to generate questions
and answers which are meaningful, correct, and rel-
evant. This suggests the greater number of valid
clarifications generated by GPT-Neo may be due to
an increase in clarification quality. Furthermore, it
fails in an intuitive fashion: when it fails to gener-
ate meaningful answers it often has also failed to
generate a meaningful clarification question in the
first place.

Also note that the performance differences ob-
served for distil-GPT2 occur despite its relatively
poor interpretability. This indicates that context
which is somewhat relevant to the topic even if it
does not precisely make sense can still be useful.

5 Conclusion

Large pre-trained language models sometimes have
the right information, but they just do not know
how to use it. We used Bloom’s taxonomy to pick
questions with the right amount of proximal con-
text. This helped the language models use their
knowledge to more effectively answer questions.
In the future we would like to extend our work on
tasks that present a wide range of questions that fall
under different levels of the taxonomy. Similarly,
we also would like to study and improve upon the
current limited set of prefix questions used.

Acknowledgments

The authors thank Yunye Gong, Stephanie Nunn,
and the anonymous reviewers for the helpful dis-
cussions and comments.

References
L. Anderson, D. Krathwohl, and B. Bloom. 2000. A

taxonomy for learning, teaching, and assessing: A

24

revision of bloom’s taxonomy of educational objec-
tives.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models
be too big? . Proceedings of the 2021 ACM Confer-
ence on Fairness, Accountability, and Transparency.

Sid Black, Leo Gao, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large
scale autoregressive language modeling with mesh-
tensorflow.

B. Bloom. 1956. Taxonomy of educational objectives:
The classification of educational goals.

Antoine Bosselut, Ronan Le Bras, and Yejin Choi.
2019a. Dynamic neuro-symbolic knowledge graph
construction for zero-shot commonsense question
answering. arXiv preprint arXiv:1911.03876.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.
2019b. Comet: Commonsense transformers for
automatic knowledge graph construction. arXiv
preprint arXiv:1906.05317.

T. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, J. Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, T. Henighan, R. Child,
A. Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess,
J. Clark, Christopher Berner, Sam McCandlish,
A. Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.
ArXiv, abs/2005.14165.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than genera-
tors. arXiv preprint arXiv:2003.10555.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jesse Dunietz, Greg Burnham, Akash Bharadwaj, Jen-
nifer Chu-Carroll, Owen Rambow, and D. Ferrucci.
2020. To test machine comprehension, start by
defining comprehension. In ACL.

Stephanie Harvey and Anne Goudvis. 2007. Strategies
that work: Teaching comprehension for understand-
ing and engagement. Stenhouse Publishers.

Mandar Joshi, Kenton Lee, Yi Luan, and Kristina
Toutanova. 2020. Contextualized representations us-
ing textual encyclopedic knowledge. arXiv preprint
arXiv:2004.12006.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Gary Marcus and Ernest Davis. 2020. Gpt-3, bloviator:
Openai’s language generator has no idea what it’s
talking about. MIT Technology Review.

Debbie Miller. 2002. Reading with meaning: Teaching
comprehension in the primary grades. Stenhouse
Publishers.

Manal Mohammed and N. Omar. 2020. Question clas-
sification based on bloom’s taxonomy cognitive do-
main using modified tf-idf and word2vec. PLoS
ONE, 15.

Fatema Nafa, S. Othman, and J. Khan. 2016. Auto-
matic concepts classification based on bloom’s tax-
onomy using text analysis and the naı̈ve bayes clas-
sifier method. In CSEDU.

D. Oliver, Tony Dobele, Myles Greber, and Tim S.
Roberts. 2004. This course has a bloom rating of
3.9. In ACE.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237.

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton
Bakhtin, Yuxiang Wu, Alexander H Miller, and Se-
bastian Riedel. 2019. Language models as knowl-
edge bases? arXiv preprint arXiv:1909.01066.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S Gordon. 2011. Choice of plausible alterna-
tives: An evaluation of commonsense causal reason-
ing. In AAAI Spring Symposium: Logical Formal-
izations of Commonsense Reasoning, pages 90–95.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2020. Winogrande: An adver-
sarial winograd schema challenge at scale. In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, volume 34-05, pages 8732–8740.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108.

25

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
Le Bras, and Yejin Choi. 2019. Social iqa: Com-
monsense reasoning about social interactions. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 4453–
4463.

Vered Shwartz, Peter West, Ronan Le Bras, Chandra
Bhagavatula, and Yejin Choi. 2020. Unsupervised
commonsense question answering with self-talk. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4615–4629.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. Commonsenseqa: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4149–4158.

E. Thompson, Andrew Luxton-Reilly, J. Whalley,
M. Hu, and Phil Robbins. 2008. Bloom’s taxonomy
for cs assessment. In ACE ’08.

J. Whalley, R. Lister, E. Thompson, T. Clear, Phil Rob-
bins, P. Kumar, and C. Prasad. 2006. An australasian
study of reading and comprehension skills in novice
programmers, using the bloom and solo taxonomies.

James Zhang, Casey Wong, Nasser Giacaman, and An-
drew Luxton-Reilly. 2021. Automated classification
of computing education questions using bloom’s tax-
onomy. Australasian Computing Education Confer-
ence.

A Prefixes and Examples

In the appendix we provides more details about
the question prefixes we used in Tab. 3 and pro-
vide more examples of outputs from our models in
Tab. 5.

26

Table 3: All the prefix questions with its corresponding taxonomy level used in our zero shot question answering
evaluation.

Question Prefix Answer Prefix Bloom’s Taxonomy Level
CommonsenseQA & COPA

What is the definition of
What is the main purpose of
What is the main function of a
What are the properties of a
What is a
What happened as a result of
What might have caused

The definition of is
The purpose of is to
The main function of a is
The properties of a are that

is
As a result of ,
The cause of was

1
2
2
1
1
3
3

SocialIQA
What will [NAME] want to do next?
What will [NAME] want to do after?
How would [NAME] feel afterwards?
How would [NAME] feel as a result?
How would [NAME] feel after?
How would you describe [NAME]?
What kind of person is [NAME]?
How would you describe [NAME] as a person?
Why did [NAME] do that?
Why did [NAME] do this?
Why did [NAME] want to do this?
What does [NAME] need to do beforehand?
What does [NAME] need to do before?
What does [NAME] need to do before this?
What did [NAME] need to do before this?
What will happen to [NAME]?
What will happen to [NAME] next?
What will [NAME] do next?
What did [NAME] do?

NAME] wanted
[NAME] wanted
[NAME] felt
[NAME] felt
[NAME] felt
[NAME] is a
[NAME] is a
[NAME] is a
[NAME] did this because they wanted
[NAME] did this because they wanted
[NAME] did this because they wanted
Before doing that, [NAME] first had to
Before doing that, [NAME] first had to
Before doing that, [NAME] first had to
Before doing that, [NAME] first had to
[NAME]
[NAME]
[NAME]
What [NAME] did was

3
3
3
3
3
2
2
2
3
3
3
2
2
2
2
3
3
3
1

Winogrande
What is the definition of
What is the main purpose of
What is the main function of a
What are the properties of a
What is
What does it mean to

The definition of is
The purpose of is to
The main function of a is
The properties of a are that

is
means

1
2
2
1
1
2

27

Table 4: Example contexts, questions, choices, clarification questions and clarification answers for each dataset.
We present results for both Distil-GPT2 and GPT-Neo.

COPA Generated Clarifications

(Context, Question, Choice) Distil-GPT2 GPT-Neo
C:The man turned on the faucet.
Q: effect
Ch: [The toilet filled with water.,

Water flowed from the spout.]

Q: What might have caused it to be so hot?
A: The cause of it to be so hot was that he would
have a big fire in his face and then immediately
had an explosion, which killed all but one person.

Q: What happened as a result of that?
A: As a result of that, he was forced to drink water.

C: The woman retired.
Q: effect
Ch: [She received her pension.,

She paid off her mortgage.]

Q: What happened as a result of this?
A: As a result of this, the government has announced
that it will pay Rs 7 crore to her family for compensation
and legal expenses related thereto as part-time payments.

Q: What happened as a result of her retirement?
A: As a result of her retirement, she had been receiving
a pension for life.

C: I wanted to conserve energy.
Q: effect
Ch: [I swept the floor in the unoccupied room.,

I shut off the light in the unoccupied room.]

Q: What is the main function of a plant?
A: The main function of a plant is the growth
and maintenance of nutrients, so that we can
increase our food intake by 10% or more per year, he said.

Q: What might have caused this?
A: The cause of this was the lack of electricity in my home.

Winogrande Generated Clarifications

(Sentence, Context, Choice) Distil-GPT2 GPT-Neo
S: The home that my parents had when I was
in school was a lot nicer than my house now
because the was sophisticated.
C: home
Ch: [home, house]

Q: What is the main function of a building?
A: The main function of a building is to keep
people happy and healthy.

Q: What are the properties of a home?
A: he properties of a home are that which
makes it comfortable and pleasant for the occupants.

S: He had enough time between classes to go
to a cafe or to the library. He went to the
because his paper could wait.
C: classes
Ch: [cafe, library]

Q: What is the definition of a book?
A: The definition of a book is an article
written in order for it be read.

Q: What is the definition of cafe?
A: cafe is defined as a place where people
gather for refreshment.

S: They had to eat a lot to gain the strength
they had lost and be able to work, the was too much.
C: strength
Ch: [work, strength]

Q: What is the main function of a good diet?
A: The main function of a good diet is not for
food or health but also on exercise.

Q: What is the definition of strength?
A: strength is defined as : having power
or ability to do something.

SocialIQA Generated Clarifications

(Context, Question, Choice) Distil-GPT2 GPT-Neo
C: Kendall got a new sports car and could not wait
to show friends.
Q: What will Kendall want to do next?
Ch: [drive that sports car,
show off his new sports car,
clean and wax her legs]

Q: Why did Kendall want to do this?
A: Kendall did this because they wanted her, too.

Q: What will Kendall want to do next?
A: Kendall wanted to impress them with
his new ride.”

C: Kendall was really into house plants and often
pour water in to jars so the fluoride would evaporate out.
Q: What will Kendall want to do next?
Ch: [watered a few of the plants,
gather jars,
watered a few of her pets]

Q: Why did Kendall do that?
A: Kendall did this because they wanted him at
home, he said.

Q: Why did Kendall do this?
A: Kendall did this because they wanted to
get a lot of water for their plants.

C: Remy gave birth to a baby girl on a Saturday afternoon.
Q: What does Remy need to do before this?
Ch: [leave her husband,
did this to start a family,
go to the hospital]

Q: What did Remy need to do before this?
A: Before doing that, Remy first had to tell her
he was too old.

Q: What does Remy need to do before?
A: Before doing that, Remy first had to go to
the hospital to deliver her baby.

CommonsenseQA Generated Clarifications

(Context, Question, Choice) Distil-GPT2 GPT-Neo
C: In what Spanish speaking North American country
can you get a great cup of coffee?
Q: cup of coffee
Ch: [mildred’s coffee shop, mexico, diner,
kitchen, canteen]

Q: What is the definition of coffee?
A: The definition of coffee is the word
that comes from Latin for espresso.

Q: What is the definition of mexico?
A: mexico is defined as the country that
produces the best coffee.

C: Unlike a spider and his many sight seers, people
only have what?
Q: people
Ch: [tongues, names, brains, feelings, two eyes]

Q: What is the main purpose of this article?
A: The purpose of this article is to explain
the basic characteristics that are characteristic of spiders.

Q: What is the definition of two eyes?
A: two eyes is defined as the organs
by which we see.

C: The artist was sitting quietly pondering, then
suddenly he began to paint when what struck him?
Q: sitting quietly
Ch: [sadness, anxiety, inspiration, discomfort, insights]

Q: What is a man who can do that?
A: Man who can do that is a really great painter.

Q: What is the definition of inspiration?
A: inspiration is defined as a sudden flash
of inspiration that comes from within.

28

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 29–33
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

Larger-Scale Transformers for Multilingual Masked Language Modeling

Naman Goyal Jingfei Du Myle Ott Giri Anantharaman Alexis Conneau
{naman, jingfeidu, myleott, giriman, aconneau}@fb.com

Facebook AI

Abstract

Recent work has demonstrated the effective-
ness of cross-lingual language model pretrain-
ing for cross-lingual understanding. In this
study, we present the results of two larger mul-
tilingual masked language models, with 3.5B
and 10.7B parameters. Our two new mod-
els dubbed XLM-RXL and XLM-RXXL outper-
form XLM-R by 1.8% and 2.4% average ac-
curacy on XNLI. Our model also outperforms
the RoBERTa-Large model on several English
tasks of the GLUE benchmark by 0.3% on av-
erage while handling 99 more languages. This
suggests larger capacity models for language
understanding may obtain strong performance
on both high- and low-resource languages. We
make our code and models publicly available.1

1 Introduction

The goal of this paper is to present a study of
the impact of larger capacity models on cross-
lingual language understanding (XLU). We scale
the capacity of XLM-R by almost two orders
of magnitude while training on the same CC100
dataset (Wenzek et al., 2019). Our two new multi-
lingual masked language model dubbed XLM-RXL
and XLM-RXXL, with 3.5 and 10.7 billion parame-
ters respectively, significantly outperform the previ-
ous XLM-R model on cross-lingual understanding
benchmarks and obtain competitive performance
with the multilingual T5 models (Raffel et al., 2019;
Xue et al., 2020). We show that they can even out-
perform RoBERTa-Large (Liu et al., 2019) on the
GLUE benchmark (Wang et al., 2018).

Recent multilingual masked language models
(MLM) like mBERT (Devlin et al., 2018) or
XLM (Lample and Conneau, 2019) improved cross-
lingual language understanding by pretraining large
Transformer models (Vaswani et al., 2017) on mul-

1https://github.com/anonymous

tiple languages at once. The XLM-R model (Con-
neau et al., 2019) extended that approach by scal-
ing the amount of data by two orders of magni-
tude, from Wikipedia to Common-Crawl and train-
ing longer, similar to RoBERTa (Liu et al., 2019).
These models are particularly effective for low-
resource languages, where both labeled and un-
labeled data is scarce. They enable supervised
cross-lingual transfer, where labeled data in one
language can be used to solve the same task in other
languages, and unsupervised cross-lingual transfer,
where low-resource language self-supervised repre-
sentations are improved using additional unlabeled
data from higher-resource languages. Furthermore,
they reduce the need for training one model per
language, and allows the use of a single - poten-
tially much larger - pretrained model that is then
fine-tuned on annotated data from many languages.

The better performance of self-supervised cross-
lingual models on low-resource languages comes
however at the cost of lower performance on higher-
resource languages (Arivazhagan et al., 2019).
When the number of languages becomes large,
Conneau et al. (2019) even observed an overall
decrease of performance on all languages. It was
hypothesized that when multilingual models get
more capacity, they may showcase strong perfor-
mance on both high-resource languages and low-
resource languages. With only 550M parameters,
the XLM-R model is now relatively small com-
pared to new standards. Recent work scaled lan-
guage models to hundreds of billions (Brown et al.,
2020) or even multiple trillion parameters (Fedus
et al., 2021), showing consistent gains in doing
so. Recently, multilingual T5 showed impressive
increase in performance by scaling the model ca-
pacity to tens of billions of parameters. Our study
complements these findings by showing the impact
of larger capacity models on the important pretrain-
ing task of multilingual masked language model-

29

ing. We show promising results for cross-lingual
understanding: XLM-RXXL can both obtain a new
state of the art on some cross-lingual understanding
benchmarks and outperform the RoBERTa-Large
model on the English GLUE benchmark (Wang
et al., 2018). This suggests that very large-scale
multilingual models may be able to benefit from the
best of both worlds: obtaining strong performance
on high-resource languages while still allowing for
zero-shot transfer and low-resource language un-
derstanding. We make the following contributions:

• We scale XLM capacity by two orders of mag-
nitude, and publicly release XLM-RXL and
XLM-RXXL with 3.5B and 10.7B parameters.

• We show that those two models obtain very
strong performance on cross-lingual bench-
marks while outperforming RoBERTaLarge on
the GLUE benchmark.

2 Pretraining and evaluation

In this section, we describe the model we use and
how we scale it, as well as the data and tasks we
use for pretraining and evaluation.

2.1 Multilingual masked language models

We use a Transformer model (Vaswani et al., 2017)
trained with the multilingual MLM objective (De-
vlin et al., 2018; Lample and Conneau, 2019) using
only monolingual data. We sample streams of text
from each language and train the model to predict
the masked tokens in the input. We use the same
learning procedure as XLM-R. We apply subword
tokenization directly on raw text data using Sen-
tence Piece (Kudo and Richardson, 2018) with a
unigram language model (Kudo, 2018) just like
in XLM-R. We sample batches from different lan-
guages using the same sampling distribution as
Conneau et al. (2019), with α = 0.3, and without
language embeddings. We use a large vocabulary
size of 250K with a full softmax and train two dif-
ferent models: XLM-RXL (L = 36, H = 2560, A
= 32, 3.5B params) and XLM-RXXL (L = 48, H
= 4096, A = 32, 10.7B params). We pretrain the
models on the CC100 dataset, which corresponds
to 167B tokens in 100 languages. We compare our
approach to previous results as well as the mT5
baselines, which were pretrained on the larger mC4
corpus of 6.4T tokens.

2.2 Evaluation
We consider three evaluation benchmarks. For
cross-lingual understanding, we use cross-lingual
natural language inference and question answer-
ing, and use the GLUE benchmark to evaluate the
English performance.

Cross-lingual Natural Language Inference.
The XNLI dataset (Conneau et al., 2018) comes
with ground-truth dev and test sets in 15 languages,
and a ground-truth English training set. The train-
ing set has been machine-translated to the remain-
ing 14 languages, providing synthetic training data
for these languages as well. We evaluate our model
on cross-lingual transfer from English to other lan-
guages. We also consider two machine translation
baselines: (i) translate-test: dev and test sets are
machine-translated to English and a single English
model is used (ii) translate-train-all: the English
training set is machine-translated to each language
and we fine-tune a multilingual model on all train-
ing sets. For translations, we use the original XNLI
data for consistency.

Cross-lingual Question Answering. We use the
MLQA and XQuad benchmark from Lewis et al.
(2019) and Artetxe et al. (2019), which extends
the English SQuAD benchmark to more languages.
We report the F1 score as well as the exact match
(EM) score for cross-lingual transfer from English.

The English GLUE Benchmark. Finally, we
evaluate the English performance of our model
on the GLUE benchmark (Wang et al., 2018)
which gathers multiple classification tasks, such
as MNLI (Williams et al., 2017), SST-2 (Socher
et al., 2013), or QNLI (Rajpurkar et al., 2018).

2.3 Training details
We use model parallelism based on tensor paral-
lel (Shoeybi et al., 2019) for scaling models. XLM-
RXL uses model parallel size of 2 and XLM-RXXL
used 8. Compared to previous XLM-R models, we
reduce the batch size and number of updates sig-
nificantly to keep the compute of the new models
similar (see Table 5). For both models, we use
batch size of 2048 and train for 500,000 updates.
We use pre-LayerNorm setting for both the models
which was more stable during training.

For all the tasks in finetuning, we use batch size
of 32 and train for 10 epochs. We do early stop-
ping based on the average valid metrics across all
languages and report test results.

30

Model Data (#tok) en fr es de el bg ru tr ar vi th zh hi sw ur Avg

Fine-tune multilingual model on English training set (Cross-lingual Transfer)

mBERT
Wikipedia

80.8 64.3 68.0 70.0 65.3 73.5 73.4 58.9 67.8 49.7 54.1 60.9 57.2 69.3 67.8 65.4
XLM 83.2 76.5 76.3 74.2 73.1 74.0 73.1 67.8 68.5 71.2 69.2 71.9 65.7 64.6 63.4 71.5

mT5-Base
mC4

84.7 73.3 78.6 77.4 77.1 80.3 79.1 70.8 77.1 69.4 73.2 72.8 68.3 74.2 74.1 75.4
mT5-Large 89.4 79.8 84.1 83.4 83.2 84.2 84.1 77.6 81.5 75.4 79.4 80.1 73.5 81.0 80.3 81.1
mT5-XL (6.4T) 90.6 82.2 85.4 85.8 85.4 81.3 85.3 80.4 83.7 78.6 80.9 82.0 77.0 81.8 82.7 82.9
mT5-XXL 91.6 84.5 87.7 87.3 87.3 87.8 86.9 83.2 85.1 80.3 81.7 83.8 79.8 84.6 83.6 84.5

XLM-RBase
CC100

85.8 79.7 80.7 78.7 77.5 79.6 78.1 74.2 73.8 76.5 74.6 76.7 72.4 66.5 68.3 76.2
XLM-RLarge 89.1 84.1 85.1 83.9 82.9 84.0 81.2 79.6 79.8 80.8 78.1 80.2 76.9 73.9 73.8 80.9
XLM-RXL (167B) 90.7 85.5 86.5 84.6 84.0 85.2 82.7 81.7 81.6 82.4 79.4 81.7 78.5 75.3 74.3 82.3
XLM-RXXL 91.6 86.2 87.3 87.0 85.1 85.7 82.5 82.0 82.5 83.0 79.5 82.6 79.8 76.2 74.9 83.1

Translate everything to English and use English-only model (TRANSLATE-TEST)

RoBERTa CC-En 91.3 82.9 84.3 81.2 81.7 83.1 78.3 76.8 76.6 74.2 74.1 77.5 70.9 66.7 66.8 77.8

Fine-tune multilingual model on all training sets (TRANSLATE-TRAIN-ALL)

mT5-Base
mC4

82.0 74.4 78.5 77.7 78.1 79.1 77.9 72.2 76.5 71.5 75.0 74.8 70.4 74.5 76.0 75.9
mT5-Large 88.3 80.3 84.1 84.0 83.7 84.9 83.8 79.8 82.0 76.4 79.9 81.0 75.9 81.3 81.7 81.8
mT5-XL (6.4T) 90.9 84.2 86.8 86.8 86.4 87.4 86.8 83.1 84.9 81.3 82.3 84.4 79.4 83.9 84.0 84.8
mT5-XXL 92.7 87.2 89.4 89.8 89.5 90.0 89.1 86.5 87.6 84.3 85.6 87.1 83.8 87.5 86.5 87.8

XLM-RBase
CC100

85.4 81.4 82.2 80.3 80.4 81.3 79.7 78.6 77.3 79.7 77.9 80.2 76.1 73.1 73.0 79.1
XLM-RLarge 89.1 85.1 86.6 85.7 85.3 85.9 83.5 83.2 83.1 83.7 81.5 83.7 81.6 78.0 78.1 83.6
XLM-RXL (167B) 91.1 87.2 88.1 87.0 87.4 87.8 85.3 85.2 85.3 86.2 83.8 85.3 83.1 79.8 78.2 85.4
XLM-RXXL 91.5 87.6 88.7 87.8 87.4 88.2 85.6 85.1 85.8 86.3 83.9 85.6 84.6 81.7 80.6 86.0

Table 1: Results on cross-lingual classification (XNLI). We report the accuracy on each of the 15 XNLI languages
and average accuracy, and specify the dataset and its corresponding size in number of tokens. We report results of
XLM-R models with increasing capacity, from 270M (Base), 550M (Large), 3.5B (XL) to 10.7B (XXL) parameters.

3 Analysis and Results

In this section, we present our results and compare
XLM-RXL and XLM-RXXL performance to other
methods from previous work.

Cross-lingual understanding results. On
XNLI, we observe in Table 1 that scaling the
capacity from XLM-RLarge to XLM-RXL leads
to an average accuracy improvement of 1.4 on
zero-shot cross-lingual transfer and 1.8 on mul-
tilingual fine-tuning. When scaling even further
to XLM-RXXL, we observe a total improvement
of 2.2 on zero-shot and 2.4 on translate-train-all
compared to XLM-RXL, with a new state of
the art on French, Vietnamese and Hindi. On
MLQA, in Table 4, we observe even larger
gains for cross-lingual zero-shot transfer, where
scaling from XLM-RLarge to XLM-RXXL leads
to improvements of 4.1 F1 and 3.9 EM scores
on average. Similarly, on XQuad we observe
improvements of 4.4 F1 and 5.5 scores, with new
state-of-the-art results on Arabic, German, Greek
and Russian (see Table 3).

Comparison to monolingual English model.
For smaller-capacity models like the Base and
Large version of XLM-R, it was shown that the
more languages are considered the lower the perfor-

mance (Conneau et al., 2019), in particular on high-
resource languages. For instance, XLM-RLarge
was outperformed by RoBERTaLarge by 1% ac-
curacy on average on several downstream tasks
from the GLUE benchmark, as illustrated in Ta-
ble2. With larger capacity, we now observe that
XLM-RXXL is able to outperform RoBERTaLarge
by 0.3 dev points, going from 92.9 to 93.2 aver-
age accuracy, while handling 99 more languages.
While a RoBERTaXXL model may outperform
XLM-RXXL, we believe it interesting to notice that
with more capacity, a multilingual model can get
strong high-resource performance while not losing
its cross-lingual transfer ability for lower-resource
languages. Given the compute needed for training
such large-scale models, the possibility of training
a single very large model on hundreds of languages
with state-of-the-art performance on high-resource
languages is an encouraging and positive result.

Model #lgs MNLI QNLI QQP SST MRPC Avg

RoBERTa† 1 90.2 94.7 92.2 96.4 90.9 92.9
XLM-RLarge 100 88.9 93.8 92.3 95.0 89.5 91.9
XLM-RXL 100 90.4 94.9 92.5 96.6 90.4 93.0
XLM-RXXL 100 90.9 95.0 92.6 96.7 90.7 93.2

Table 2: GLUE dev results

31

Model en ar de el es hi ru th tr vi zh avg

Cross-lingual zero-shot transfer (models fine-tune on English data only)

mT5-Large 88.4 / 77.3 75.2 / 56.7 80.0 / 62.9 77.5 / 57.6 81.8 / 64.2 73.4 / 56.6 74.7 / 56.9 73.4 / 62.0 76.5 / 56.3 79.4 / 60.3 75.9 / 65.5 77.8 / 61.5
mT5-XL 88.8 / 78.1 77.4 / 60.8 80.4 / 63.5 80.4 / 61.2 82.7 / 64.5 76.1 / 60.3 76.2 / 58.8 74.2 / 62.5 77.7 / 58.4 80.5 / 60.8 80.5 / 71.0 79.5 / 63.6
mt5-XXL 90.9 / 80.1 80.3 / 62.6 83.1 / 65.5 83.3 / 65.5 85.1 / 68.1 81.7 / 65.9 79.3 / 63.6 77.8 / 66.1 80.2 / 60.9 83.1 / 63.6 83.1 / 73.4 82.5 / 66.8

XLM-RLarge 86.5 / 75.7 68.6 / 49.0 80.4 / 63.4 79.8 / 61.7 82.0 / 63.9 76.7 / 59.7 80.1 / 64.3 74.2 / 62.8 75.9 / 59.3 79.1 / 59.0 59.3 / 50.0 76.6 / 60.8
XLM-RXL 89.5 / 79.0 78.4 / 61.6 81.3 / 64.1 82.3 / 63.9 84.6 / 66.2 78.8 / 63.2 81.5 / 65.0 76.0 / 65.5 73.9 / 57.9 81.7 / 61.8 72.3 / 66.1 80.0 / 64.9
XLM-RXXL 89.3 / 79.4 80.1 / 63.7 82.7 / 65.8 83.4 / 65.5 83.8 / 66.0 80.7 / 65.4 82.4 / 65.4 76.6 / 65.6 76.8 / 61.7 82.2 / 63.0 74.1 / 67.4 81.1 / 66.3

Table 3: XQuad results (F1/EM) for each language.

Model en es de ar hi vi zh Avg

Cross-lingual zero-shot transfer (models fine-tune on English data only)

mT5-Large 84.9 / 70.7 65.3 / 44.6 68.9 / 51.8 73.5 / 54.1 66.9 / 47.7 72.5 / 50.7 66.2 / 42.0 71.2 / 51.7
mT5-XL 85.5 / 71.9 68.0 / 47.4 70.5 / 54.4 75.2 / 56.3 70.5 / 51.0 74.2 / 52.8 70.5 / 47.2 73.5 / 54.4
mT5-XXL 86.7 / 73.5 70.7 / 50.4 74.0 / 57.8 76.8 / 58.4 75.6 / 57.3 76.4 / 56.0 71.8 / 48.8 76.0 / 57.4

XLM-RLarge 80.6 / 67.8 74.1 / 56.0 68.5 / 53.6 63.1 / 43.5 69.2 / 51.6 71.3 / 50.9 68.0 / 45.4 70.7 / 52.7
XLM-RXL 85.1 / 72.6 66.7 / 46.2 70.5 / 55.5 74.3 / 56.9 72.2 / 54.7 74.4 / 52.9 70.9 / 48.5 73.4 / 55.3
XLM-RXXL 85.5 / 72.4 68.6 / 48.4 72.7 / 57.8 75.4 / 57.6 73.7 / 55.8 76.0 / 55.0 71.7 / 48.9 74.8 / 56.6

Table 4: MLQA results (F1/EM) for each language.

Discussion and comparison to mT5. Both mT5
and XLM-R models obtain strong performance on
cross-lingual understanding benchmarks, as well
as high performance on English benchmarks (see
the score of 91.6 of mT5XXL on English XNLI).
Many hyperparameters are however different be-
tween mT5 and XLM-R models which makes diffi-
cult an apple-to-apple comparison. First, as shown
in Table 5, the mT5 models are pretrained on the
much larger mC4 dataset which contains around
6.4T tokens, which is 38 times bigger than CC100
(167B tokens). While XLM-RLarge was pretrained
with more updates (6T tokens), the XLM-RXL and
XLM-RXXL models have seen less tokens (0.5T)
during pretraining than their mT5 counterparts, al-
though it also uses a bigger batch size (2048 over
1024 for mT5). Another difference is the context
sequence length of 512 for XLM-R and 1024 for
mT5. The mT5-XXL model also has slightly more
parameters (13B over 10.7B). The larger number
of updates combined with the larger dataset size
may explain the larger improvement from the XL
model to the XXL model in the case of mT5 (+3 av-
erage accuracy on XNLI), in which the additional

Model Number of Dataset Dataset Number of Batch Sequence
parameters name size training tokens size length

XLM-RLarge 550M CC100 167B 6T 8192 512
XLM-RXL 3.5B CC100 167B 0.5T 2048 512
XLM-RXXL 10.7B CC100 167B 0.5T 2048 512
mt5-XL 3.7B mC4 6.4T 1T 1024 1024
mt5-XXL 13B mC4 6.4T 1T 1024 1024

Table 5: Comparison of datasets and pretraining details
between XLM-R and mT5. We report dataset sizes and
number of updates in terms of number of tokens.

capacity can exploit the large quantity of unlabeled
mC4 data. We note however that the mT5XL is
outperformed by XLM-RXL on XNLI by 0.6% on
average, on XQuad by 1.3% and on MLQA by
0.9% when considering average EM score. In com-
parison, gains of XLM-R from the XL to the XXL
architecture are only of 0.6 on average. Another
explanation may be that generative models scale
better than masked language models. The differ-
ence in the nature of the pretraining dataset is par-
ticularly striking when looking at the variance of
performance across languages. For example the
mT5XXL outperforms XLM-RXXL by 8.4 points on
Swahili on XNLI zero-shot, while it only outper-
forms XLM-RXXL by 1.4 average accuracy. These
results may suggest that the CC100 dataset gets
saturated with current larger-capacity models.

4 Conclusion

In this study, we scaled the model capacity of the
XLM-R model up to 10.7B parameters and ob-
tained stronger performance than previous XLM-
R models on cross-lingual understanding bench-
marks. We also show that the additional capac-
ity allows a multilingual model to outperform a
the RoBERTaLarge baseline on English benchmarks.
Our technical study thus suggests that larger capac-
ity multilingual model can obtain state-of-the-art
cross-lingual understanding results while maintain-
ing strong performance on high-resource languages.
Our work provides an alternative to mT5 models,
with new state-of-the-art performance on some lan-
guages. We release our code and models publicly.

32

References
Naveen Arivazhagan, Ankur Bapna, Orhan Firat,

Dmitry Lepikhin, Melvin Johnson, Maxim Krikun,
Mia Xu Chen, Yuan Cao, George Foster, Colin
Cherry, et al. 2019. Massively multilingual neural
machine translation in the wild: Findings and chal-
lenges. arXiv preprint arXiv:1907.05019.

Mikel Artetxe, Sebastian Ruder, and Dani Yo-
gatama. 2019. On the cross-lingual transferabil-
ity of monolingual representations. arXiv preprint
arXiv:1910.11856.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Proc. of NeurIPS.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel R. Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. Xnli: Evaluating cross-
lingual sentence representations. In EMNLP. Asso-
ciation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. NAACL.

William Fedus, Barret Zoph, and Noam Shazeer. 2021.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. arXiv
preprint arXiv:2101.03961.

Taku Kudo. 2018. Subword regularization: Improving
neural network translation models with multiple sub-
word candidates. In ACL, pages 66–75.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
EMNLP.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. NeurIPS.

Patrick Lewis, Barlas Oğuz, Ruty Rinott, Sebastian
Riedel, and Holger Schwenk. 2019. Mlqa: Eval-
uating cross-lingual extractive question answering.
arXiv preprint arXiv:1910.07475.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. ACL.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion pa-
rameter language models using model parallelism.
arXiv preprint arXiv:1909.08053.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In EMNLP, pages 1631–1642.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 6000–6010.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Con-
neau, Vishrav Chaudhary, Francisco Guzman, Ar-
mand Joulin, and Edouard Grave. 2019. Ccnet: Ex-
tracting high quality monolingual datasets from web
crawl data. arXiv preprint arXiv:1911.00359.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus
for sentence understanding through inference. Pro-
ceedings of the 2nd Workshop on Evaluating Vector-
Space Representations for NLP.

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2020. mt5: A mas-
sively multilingual pre-trained text-to-text trans-
former. arXiv preprint arXiv:2010.11934.

33

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 34–46
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

Learning Sparse Sentence Encoding without Supervision:
An Exploration of Sparsity in Variational Autoencoders
Victor Prokhorov♣ Yingzhen Li♢∗ Ehsan Shareghi♠♣ Nigel Collier♣

♣ Language Technology Lab, University of Cambridge
♠ Department of Data Science & AI, Monash University
♢ Department of Computing, Imperial College London

vp361@cam.ac.uk, yingzhen.li@imperial.ac.uk,
ehsan.shareghi@monash.edu, nhc30@cam.ac.uk

Abstract
It has been long known that sparsity is an ef-
fective inductive bias for learning efficient rep-
resentation of data in vectors with fixed dimen-
sionality, and it has been explored in many ar-
eas of representation learning. Of particular
interest to this work is the investigation of the
sparsity within the VAE framework which has
been explored a lot in the image domain, but
has been lacking even a basic level of explo-
ration in NLP. Additionally, NLP is also lag-
ging behind in terms of learning sparse rep-
resentations of large units of text e.g., sen-
tences. We use the VAEs that induce sparse
latent representations of large units of text
to address the aforementioned shortcomings.
First, we move in this direction by measur-
ing the success of unsupervised state-of-the-art
(SOTA) and other strong VAE-based sparsifi-
cation baselines for text and propose a hierar-
chical sparse VAE model to address the stabil-
ity issue of SOTA. Then, we look at the impli-
cations of sparsity on text classification across
3 datasets, and highlight a link between per-
formance of sparse latent representations on
downstream tasks and its ability to encode task-
related information.1

1 Introduction
Representation learning has been pivotal in many
success stories of modern days NLP. Observing its
success, two fundamental questions arise: How is
the information encoded in them? andWhat is en-
coded in them? While the latter has received a lot
of attention by designing probing tasks, the former
has been vastly neglected. In this work, we take
small steps in this non-trivial direction by building
on the knowns: One property we know about the
encoding of information is that different data points

∗Work done while at Microsoft Research Cambridge.
1The code is available on https://github.com/V

ictorProkhorov/HSVAE.

embody different characteristics (e.g. statistically,
semantically, or syntactically) which should ideally
utilise different sub-regions of the representation
space. Therefore, the high-dimensional learned rep-
resentations should ideally be sparse (Bengio et al.,
2013; Burgess et al., 2018; Tonolini et al., 2019).
In other words it allows us to have varying number
of active dimension per sentence2 (Bengio, 2009)
in a fixed dimensional vector3. But if sparsity4 is
expected, could it be learned from data without
supervision?
A handful of studies in NLP that have delved

into building sparse representations of words either
during the learning phase (Faruqui and Dyer, 2015;
Yogatama et al., 2015) or as a post-processing step
on top of existing representations (e.g., word2vec
embeddings) (Faruqui et al., 2015; Sun et al., 2016;
Subramanian et al., 2018; Arora et al., 2018; Li and
Hao, 2019). These methods have not been devel-
oped for sentence embeddings, with the exception
of Trifonov et al. (2018) which makes a strong as-
sumption by forcing the latent sentence representa-
tion to be a sparse categorical distribution.
In parallel, Variational Autoen-

coders (VAEs) (Kingma and Welling, 2014)
have been effective in capturing semantic close-
ness of sentences in the learned representation
space (Bowman et al., 2016; Prokhorov et al.,
2019; Xu et al., 2019; Balasubramanian et al.,
2020). Furthermore, methods have been developed

2This, for example, may allow us to cluster sentences’ rep-
resentations not only based on similarity of their active features
(as it is the case for dense vectors) but also on active/inactive
dimensions.

3More on speculative side, sparse representations may be
a more natural way of modelling sentences of a language in
a fixed dimensional vector. Sentences vary in length and an
amount of information that they convey. As such it makes
sense to reflect this property in a vector representation of the
sentence.

4As in (Mathieu et al., 2019), we induce sparse representa-
tions for each data point.

34

to encourage sparsity in VAEs via learning a
deterministic selection variable (Yeung et al., 2017)
or sparse priors (Barello et al., 2018; Mathieu et al.,
2019; Tonolini et al., 2019). However, the success
of these is yet to be examined on text domain.
To bridge this gap, we make a sober evalua-

tion of existing state-of-the-art (SOTA) VAE-based
sparsification model (Mathieu et al., 2019) against
several VAE-based baselines on two experimental
tasks: text classification accuracy, and the level
of representation sparsity achieved. Additionally,
we propose Hierarchical Sparse Variation Autoen-
coder (HSVAE), to improve the stability issue of
existing SOTA model and demonstrate its perfor-
mance on both experimental tasks.
Our experimental findings demonstrate that: (I)

neither the simpler baseline models nor the SOTA
manage to impose a satisfactory level of sparsity
on text, (II) as expected, sparsity level and task
performance have a negative correlation, while giv-
ing up task performance and having sparse codes
helps with the analysis of the representations, (III)
presence/absence of task related signal in the spar-
sity codes affects the task performance, (IV) the
success of capturing the task related signal in the
sparsity codes depends on the strength of the signal
presented in a corpus, and representation dimen-
sionality, (V) the success of SOTA in image domain
does not necessarily transfer to inducing sparse rep-
resentations for text, while HSVAE addresses this
shortcoming.

2 Background

VAE. Given an input x, VAEs, Figure 1 (left), are
stochastic autoencoders that map x to a correspond-
ing representation z using a probabilistic encoder
q�(z|x) and a probabilistic decoder p�(x|z), imple-
mented as neural networks. Optimisation of VAE
is done by maximising the ELBO:
Eq�(z|x) log p�(x|z) − DKL

(
q�(z|x)||p�(z)

) (1)
where the reconstruction maximises the expecta-
tion of data likelihood under the posterior distribu-
tion of z, and the Kullback-Leibler (KL) divergence
acts as a regulariser and minimises the distance be-
tween the learned posterior and prior of z.

Spike-and-Slab Distribution. This is a mixture
of two Gaussians with mixture weight
i, where the
slab component is a standard Gaussian while the

𝜸𝜸𝒛𝒛x𝒛𝒛x

(a) (b)Figure 1: Graphical Models of VAE (left) and
HSVAE (right). Solid and dashed lines represent gener-
ative and inference paths, respectively.

spike component is a Gaussian with � → 0:
p(z) =

D∏
i
(1 −
i) (zi; 0, 1) +
i (zi; 0, � ←←→ 0)

where i denotes the ith dimension of z and D is the
total number of dimensions of z.
3 Hierarchical Sparse VAE (HSVAE)
We propose the hierarchical sparse VAE (HSVAE),
Figure 1 (right), to learn sparse latent codes au-
tomatically. We treat the mixture weights
 =
(
1, ...,
D) as a random variable and assign a fac-
torised Beta prior p�(
i) = Beta(�, �) on it. The la-
tent code z is then sampled from a factorised Spike-
and-Slab distribution p�(z|
) conditioned on
 , and
the observation x is generated by decoding the la-
tent variable x ∼ p�(x|z) using a GRU (Cho et al.,
2014) decoder. This returns a probabilistic genera-
tive model p�(x, z,
) = p�(x|z)p�(z|
)p�(
).

For posterior inference, the encoder distribution
is defined as q�(z,
|x) = q�(
|x)q�(z|
, x), where
q�(
|x) is a learnable and factorised Beta distribu-
tion, and q�(z|
, x) is a factorised Spike-and-Slab
distribution with mixture weights
i and learnable
“slab” components for each dimension. The q distri-
bution is computed by first extracting features from
the sequence using a GRU, then applying MLPs to
the extracted feature (and
 for q�(z|
, x)) to pro-
duce the distributional parameters.
ELBO: We derive the ELBO, (�, �; x):
Eq�(z,
|x)[log p�(x|z)] − Eq�(
|x)[DKL

(
q�(z|
, x),

p�(z|
)
)
] − �DKL

(
q�(
|x)||p�(
)

)
,

where ∈ ℝ and � ∈ ℝ are the coefficients for
the KL terms. This ELBO is approximated with
Monte Carlo (MC) in practice, (�, �; x):

1
N

N∑

∼q�(
|x)

[
1
M

M∑
z∼q�(z|x,
)

log p�(x|z)
]
−

−
N

N∑

∼q�(
|x)

[
DKL(q�(z|x,
)||p�(z|
))

]
−

−�DKL(q�(
|x)||p�(
)),

(2)

35

whereM andN are scalar numbers corresponding
to a number of samples taken from q�(z|x,
) and
q�(
|x) respectively. In this work, we set bothM
and N to 1. Similar to the vanilla VAE, the first
term is the reconstruction, the second and the third
KL terms control the distance between the posteri-
ors and their corresponding priors. The parameters
of the priors are fixed to some constant values (can
be also thought as the hyperparameters) during the
training. Also, see Appendix for ELBO derivation.
Control of Sparsity. The random variable
i, in
our model, can be viewed as a “probabilistic switch”
that determines how likely is for the ith dimension
of z to be turned off. Intuitively, since for both gen-
eration and inference the latent code z is sampled
from a Spike-and-Slab distribution with the mixture
weights
 ,
i → 1 means zi is drawn from a delta
mass centered at zi = 0. As the switch follows a
Beta distribution
i ∼ Beta(
i; �, �), we can select
the parameters � and � to control the concentration
of the probability mass on
i ∈ [0, 1] interval.
There are three typical configurations of the

(�, �) pair: (1) � < �: density is shifted towards

i = 0 hence ith unit is likely to be on and dense
representation is expected, (2) � = �: the density
is centered at
i = 0.5, and (3) � > �: density is
shifted towards
i = 1, hence the unit is likely to
be off, leading to sparsity. The magnitude of these
parameters also plays a role as it controls the spread
and uni/bi-modal structure of the density.
4 Experiments
We conduct a set of experiments on three text clas-
sification corpora: Yelp (sentiment analysis - 5
classes) (Yang et al., 2017), DBpedia and Yahoo
(topic classification - 14 and 10 classes respec-
tively) (Zhang et al., 2015). First, we compare per-
formance of the sparse latent representations with
their dense counterpart on the text classification
tasks (§4.2). Second, the stability of sparsification
of HSVAE is compared with the state-of-the-art
MAT-VAE (§4.3). Then, to better understand per-
formance of our model on the downstream task, we
examine the sparsity patterns (§4.4).
Remark. An integral part of the experiments is
the analysis of the learned representations. In this
sense, tasks that rely on understanding of semantics
(e.g., GLUE (Wang et al., 2018)) or syntax (e.g.,
(Marvin and Linzen, 2018)) would be non-trivial
to analyse due to their inherent complexity. We

consider classification tasks because the distribu-
tion of words alone could be a good indicator of
class labels. Given the unsupervised nature of the
models, we explore if this surface-level distribution
of words could be captured by the sparsity patterns
in the learned representation.
4.1 Experimental Setup
4.1.1 Corpora Preprocessing
We use Yelp5 as it is, without any additional prepro-
cessing. As for DBpedia6 and Yahoo7, the prepro-
cessing is as follows: (1) removing all non-ASCII
characters, quotations marks, and hyperlinks, (2)
tokenising with spaCy8, (3) lower-case conversion
for all tokens, then (4) for each class we randomly
sample 10,000 sentences for the training corpus and
1,000 sentences for the test and validation respec-
tively. The vocabulary size of the both corpora is
reduced to the first 20,000 most frequent words.
4.1.2 Baselines and Models
To ground the performance of HSVAE we use 4
baselines: 1) VAE is a version of the vanilla VAE
used in Higgins et al. (2017), 2) the same VAE
model but the activation of � and � of q�(z|x) regu-
larised by eitherL1 (VAEL1) orL2 (VAEL2) norms,
3) MAT-VAE is a VAE framework introduced by
Mathieu et al. (2019) and 4) simple classifier which
is simply a text encoder with a classifier on top of it.
For all these models we use a GRU network (Cho
et al., 2014) to encode and decode text sequences.
We set the dimesnionality of the both encoder and
the decoder GRU’s to 512D and the dimensionality
of the word embeddings is 256D. The decoder and
the encoder share the word embeddings. To train
the model we use the Adam optimiser (Kingma and
Ba, 2014) with the learning rate: 0.0008.
BERT vs GRU Encoder. Inspired by Li et al.
(2020b), we replace the GRU network used in VAE
and HSVAE encoders with a pretrained BERT9
(Devlin et al., 2019), while keeping the GRU de-
coder. We refer to these models as B-VAE and
B-HSVAE, respectively. Also, we compare the

5https://github.com/jxhe/vae-lagging-
encoder/blob/master/prepare_data.py.

6https://github.com/srhrshr/torchData
sets/blob/master/dbpedia_csv.tar.gz

7https://github.com/jxhe/vae-lagging-
encoder/blob/master/prepare_data.py.

8https://spacy.io
9After extracting features from a sequence with BERT, we

then applying MLPs to extract features for the posterior distri-
butions, as it is the case for the encoder with GRU network.

36

(a)

(b)

(c)
Figure 2: Classification Accuracy and Average Hoyer (higher means sparser z) for various VAE variants and the
two baselines: simple classifier and BERT evaluated on Yelp, Yahoo or DBpedia test. The latent code of the VAEs
is 32 D Figure (a) and 768 D Figures (b) and (c). Hoyer metric is not applicable to the simple classifier in the panels
(a) and (b) and to the vanilla BERT model in the panel (c). The weights of the VAE encoders and BERT are frozen
during the training of the classifiers. While the encoder of the simple classifier is updated during the training.

task performance of these VAE models with the
plain pretrained base-BERT10. To train B-VAE and
B-HSVAE, we use the Adam optimiser with the
learning rate: 0.00008.
Dimensionality of z. We use the following two
dimensions: 32D and 768D. Since, HSVAE and
MAT-VAE induce sparse latent representations we
want to make sure that they perform robustly re-
gardless of the number of the dimensions.
KL-Collapse. None of the used VAE models is
immune to the KL-collapse (Bowman et al., 2016)
- when the KL term becomes zero and the decoder
ignores the information provided by the encoder
through z. To address this issue, in all the models,
we put a scalar value , � < 1 on the KL terms of
the VAE’s objective function (He et al., 2019).

10https://huggingface.co/transformers/
model_doc/bert.html

Coupling Encoder with Decoder. To connect
the encoder with the decoder we concatenate the
latent variable z, sampled from the posterior distri-
bution, to word embeddings of the decoder at each
time step (Prokhorov et al., 2019). Also, for GRU
encoders we take the last hidden state to parame-
terise the posterior distribution. For BERT encoder,
we take average pooling of all token’s embeddings
produced by the last layer of BERT.
4.1.3 Evaluation Metrics
Text Classification. To report the classification
performance we use accuracy as a metric.
Sparsity. We measure Hoyer (Hurley and
Rickard, 2009) on the representations of all data
points in a corpus and report its average as our
sparsity metric (Mathieu et al., 2019). Hoyer, in a
nutshell, is ratio of the L2 to L1 norm, normalised
by the number of dimensions. Higher indicates

37

A
ve

ra
ge

 H
oy

er
 (A

H
)

Figure 3: Average Hoyer (AH) on DBpedia corpus
dev set for different parameterisations of Mathieu et al.
(2019) (Top) vs. HSVAE (Bottom). Same is observed
on Yelp and Yahoo (see Appendix). Lines are an av-
erage over the 3 runs of the models, the shaded area is
the standard deviation. The dimensionality of the latent
variable of the models is 32D.

more sparsity. More specifically, to evaluate the
average Hoyer, or as we refer to it as Average Hoyer
(AH) in the experiments, either on a validation or
test corpus we employ the following procedure.
First, for each xi in the corpus {x1, ..., xn} we
obtain its corresponding zi by sampling it from a
probabilistic encoder of a VAE model, such that
for each xi we sample one zi: e.g. x1 ←←→ z1. Then
we normalise z̄i = zi∕�(z), where z = {z1, ..., zn},
and �(.) is the standard deviation. Finally, for each
z̄i we compute Hoyer as follows:

Hoyer(z̄i) =
√
d − ||z̄i||1∕||z̄i||2√

d − 1
, (3)

where d is the dimensionality of z̄i. To report the
Hoyer for the whole corpus we compute the Av-
erage Hoyer = 1

N
∑N
i Hoyer(z̄i), where N is the

number of data points in a test or validation corpus.
4.2 Text Classification
Prior to use of a VAE encoder in the classifica-
tion experiment, we pretrained it using the full
VAE model with the corresponding VAE’s objec-
tive function on one of the target corpus: Yelp,
Yahoo or DBpedia. We compare performance of
the sparse latent representations with their dense

counterparts on the three text classification tasks
(Figure 2). The classifier that we use comprises of
the two dense layer of 32D each with the Leaky
ReLU (Maas, 2013) activation function. To estab-
lish whether the performance gain or loss on the
tasks is achieved thanks to the sparsity inductive
bias, for all the VAE models and BERT we freeze
the parameters of the encoder and only train the
classifier which we put on top of the encoder. How-
ever, for the simple classifier model its text encoder
is being trained together with the classifier. When
the classifier, p(y|x), is trained with a probabilistic
VAE encoder we marginalise the latent variable(s).
This is done for instance for HSVAE as,

p(y|x) = ∫z,
 p(y|z)q(z|x,
)q�(
|x)dzd

We approximate the integral with MC by taking

K = 5 samples from the probabilistic encoder both
to train and to test the classifier: For each xi in a
batch {x1, ..., xp}:
1. sample K of
i,j from q�(
|xi) i.e. a set of

sampled
’s is {
i,1, ...,
i,K}
2. sample K of zi,j from q�(z|xi,
i,j) i.e. a

set of sampled tuples of zi,j and
i,j is
{(zi,1,
i,1), ..., (zi,K ,
i,K)} in other words for
each
i,j we sample only one zi,j .

For the other VAEs the procedure is similar. With
the MC approximation : p(y|x) ≈ 0.2×

∑5
i p(y|zi).For a systematic comparison of various VAEs,

we collate classification performance of VAEs with
comparable reconstruction loss - which indicates
how informative the latent code is for the decoder
during reconstruction. In other words the recon-
struction loss serves as an intrinsic metric. Thus,
for an example, in Figure 2a, for the Yelp corpus
all the VAE models have a similar reconstruction
loss. The same applies to Figure 2b and Figure 2c.

Comparing the accuracy of the classifiers that are
trained with the different latent representations i.e.
sparse and dense (Figure2), shows that in general
the performance of the sparse latent representations
induced by HSVAE or MAT-VAE is on par with
their dense latent counterparts inferred by the VAEs.
However, the performance of HSVAE slightly lag-
ging behind on the Yelp corpus when the dimen-
sionality of the latent representation is 32D (Figure
2a). We put forward a hypothesis that may explain
this in Section 4.4. Also, when the dimensionality
of the latent representation is 32D, the accuracy of

38

MAT-VAE is slightly better than of HSVAE, but
this performance is reached at lower levels of spar-
sity. Additionally, we found that regularising the
posterior parameters of the VAE model with either
L1 or L2 norm, in some cases, helps to increase
the classification accuracy, but does not reach AH
higher than the vanilla VAE. Notably, the classifica-
tion performance of all the VAE models becomes
almost identical when the dimensionality of the
latent space is increased from 32D to 768D, with
HSVAE slightly outperforming all other VAEs on
the DBpedia corpus (Figure 2b). We further elabo-
rate on it in Section 4.4.

Use of BERT as an encoder, in our settings, only
gives an improvement on the Yahoo corpus with
B-HSVAE performing on par with B-VAE, but does
not reach the classification accuracy of the plain
BERT. We hypothesise that to reach the full poten-
tial of the use of a pretrained encoder in a VAE
model one needs to pair it with a powerful decoder
such as GPT-2 (Radford et al., 2019) as it is the case
in the Li et al. (2020b) VAE model. Further explo-
ration of this was beyond our compute resource.
Finally, one can observe that the simple clas-

sifier model performs on a par (in Figure 2a) or
even worse (Figure 2b) than the VAE models on
the Yelp corpus. Putting it into the context that
the VAE encoders are not being trained with a su-
pervision signal while the encoder of the simple
classifier is, we speculate that this can be explained
by the discussion put forward in Valpola (2014). A
classifier in nature tries to remove all the informa-
tion that is not relevant to the supervision signal,
while an autoencoder tries to preserve as much as
possible information in the latent code in order to
reconstruct the original input data reliably. Thus, if
the distribution of class related words in a text alone
(see §4.4.1) is not indicative enough of a class then
the classifier may perform poorly. In our case, we
hypothesise that the VAE models capture some ad-
ditional information other than class distribution of
words in text that allows it to better discriminate the
classes. For example, some class may have shorter
sentences, on average, than the sentences presented
in the other classes. This may provide an additional
bias that allows the VAE models to discriminate
sentences from this class from the sentences from
the other classes. Thus, with this additional bias
VAEs can perform better than the simple classifier.
We leave this investigation for a future work.

C
om

p.

E
duc.Inst.

A
rtist

A
thlete
O

ffice

Transport.
B

uilding

N
at.P

lace
V

illage
A

nim
al

P
lant

A
lbum
Film

W
rit.W

ork

strong.negative

negative
neutral

positive

strong.positive

S
oc. &

 C
ulture

S
ci.&

 M
ath.

H
ealth

E
duc. &

 R
ef.

Internet

S
ports

Finance

E
ntert. &

 M
usic

Fam
ily &

 R
el.

P
olit. &

 G
ov.

0.0

0.2

0.4

0.6

0.8

1.0

(a)

strong.negative

negative

neutral

positive

strong.positive

Soc. & Culture

Sci.& M
ath.

Health

Educ. & Ref.

Internet
Sports

Finance

Entert. & M
usic

Fam
ily & Rel.

Polit. & Gov.

0.0

0.2

0.4

0.8

1.0

(b)
Figure 4: Heat maps of
class (Section §4.4). (a)
classof 32D - from left to right: Yahoo, Yelp, DBpedia. (b)
contiguous 32D out of 768D of
class - from left to right:
Yahoo, Yelp.

4.3 Representation Sparsity
In Figure 7 we compare HSVAE with MAT-VAE.
We report AH both on the mean and samples from
the posterior distributions. As illustrated, MAT-
VAE struggles to achieve steady and consistent AH
regardless of the configurations of its hyperparam-
eters (, �). However, HSVAE stably controls the
level of sparsity with � and � parameters, a positive
effect of its more flexible posterior distribution and
the learnable distribution over
 .
4.4 Can Sparsity Patterns Encode Classes?
In order to identify pertinent features, the unsuper-
vised representation learning models are typically
trained/fine-tuned on corpora that are closely re-

39

lated to the downstream task. As such, without a
supervisory signal, the model can only rely on the
distribution of words in a text in order to identify
these relevant features for the task. Ideally, com-
pared to their dense counterparts, an unsupervised
sparsification model such as HSVAE could result
in performance improvement on downstream tasks
if they capture the task-related features and discard
the noisy features. However, if the sparsification
model fail to capture the task related signal in its
sparsity pattern; it can hurt the performance of the
model on the downstream task as the task-related
information can be removed. In what follows we
investigate this direction by analysing the sparsity
patterns and relate this analysis to the classification
performance of the model (§4.2).
Analysis of
 . We hypothesise that if
 captures
a class of a sentence then the sentences that be-
long to the same class should have a similar spar-
sity patterns in
 . To obtain a class specific
class,
first, for each sentence x we obtain the mean of the
posterior distribution: q�(
|x) and we denote it as
�
(x). Then we binarise the mean such as �b
(x) =Binarise(�
(x)), where Binarise(⋅) is defined as: 0 if
�
(x) < 0.5 and 1 otherwise. Finally, for each class
we average its �b
(x) vectors to obtain a single vector
that represent this class:
class = 1

M
∑
x∈class �

b

(x),whereM is a number of sentences in the class. The

averaging removes the information that differentiate
these sentences, while preserving the class informa-
tion that is shared among them. A similar approach
was also used in Mathieu et al. (2019).

Figure 4 reports the magnitudes of the
class vec-
tors as heat maps for the three corpora. One would
expect that
class of different classes should differ.
For 32D
class (Figure 4a) this is the case when
HSVAE is trained on the DBpedia and Yahoo but
not on Yelp. Taking into account the unsupervised
nature of these models, this difference is echoing
the distribution of words in the classes, which is
more distinct in DBpedia and Yahoo, but not in
Yelp (see §4.4.1). We also hypothesis that this ob-
servation can explain inferior performance of the
model on the Yelp corpus (Figure 2a).
In contrast, for
class in 768D (Figure 4b) one

can observe that the different classes have different
activation patterns even when HSVAE is trained
on the Yelp corpus.11 Also, the distributedness of

11In Figure 4b we only show 32D out of 768D. This is one of
the subsets of the 768 dimensions where the distributedness is
present. It is not unique and the distributedness is also present

the activation patterns now becomes more apparent
when HSVAE is trained on the Yahoo corpus. This
observation is also related to the distribution of
words in the text (further elaborated in §4.4.1).

Intuitively, to reconstruct a sentence a VAE
model first captures aspect of data that are the
most conducive for reconstruction error reduc-
tion (Burgess et al., 2018). Therefore, given the lim-
ited dimensionality of the latent vector, the model
will prioritised aspects of data during encoding. As
such, if the information such as sentence class is not
strongly presented in the corpus the model could
potentially ignore it during encoding. However,
when the dimensionality of the latent space is in-
creased, the model has more capacity to represent
various aspects of data that may otherwise be ig-
nored in the smaller dimensionality. We speculate
this could explain the presence of distributedness of

class on Yelp for 768D as opposed to 32D, which
also translates into matching the task performance
of its dense counterpart (Figure 2b).
4.4.1 Class Kullback–Leibler Divergence
The question that has yet not been addressed is why
in some cases the HSVAE model is more success-
ful at capturing the class distribution when trained
on DBpedia compared to Yelp. We previously hy-
pothesised that the reason for this can be a word
distribution in a text. To empirically test our hypoth-
esis, we calculate the add-1 smoothed probabilities
of words in the classes and measure the pairwise
KL divergence across them. The magnitudes of
the pairwise KL divergences are shown in Figure
5. As demonstrated, the magnitude of the KL di-
vergence is the largest for DBpedia and smallest for
Yelp. This indicates that separating classes in Yelp
would rely on more subtle aspects of data, whereas
surface-level cues are more present in DBpedia and
allow for an easier discrimination.
5 Related Work

Learning sparse representations of data can be dated
back to Olshausen and Field (1996). This work
motivates encoding of images in sparse linear codes
for its biological plausibility and efficiency. It was
later argued by Bengio (2009) that compared to the
dimensionality reduction approaches, sparsity is a
more efficient method for representation learning
on vectors with fixed dimensionality.
in other dimensions of the 768D code.

40

(a) (b) (c)

Figure 5: Experimental results for KL between classes on the three corpora: DBpedia (a), Yahoo (b) and Yelp (c).

Representation Sparsity. In NLP, learning
sparse representations has been explored for
various units of text with most of the focus placed
on sparse representation of words. As the earliest
work that moved in this direction, Murphy et al.
(2012) looked into sparse representations for ease
of analysis, performance, and being more cogni-
tively plausible. This idea was further developed
by many other researchers (Faruqui and Dyer,
2015; Yogatama et al., 2015; Faruqui et al., 2015;
Sun et al., 2016; Subramanian et al., 2018; Arora
et al., 2018; Li and Hao, 2019). Sparsification
of the large units of text (i.e., sentences) has not
received a lot of attention, perhaps due to inherent
complexity of sentence/phrase representations: i.e.,
encoding and analysing syntactic and semantic
information in a sentence embedding is rather a
non-trivial task. To the best of our knowledge, the
only model that sparsifies sentence emebeddings is
introduced by Trifonov et al. (2018). The authors
introduced a Seq2Seq model (Sutskever et al.,
2014) with the Sparsemax layer (Martins and
Astudillo, 2016) between the encoder and the
decoder which induces sparse latent codes of text.
This layer allows to learn codes that can be easier to
analyse compared to their dense counterparts, but it
is limited to modelling the categorical distribution.
Thus restricts a type a sentence representations that
can be learned.
VAE-based Representation Sparsity. VAE-
based sentence representation learning has shown
superior properties compared to their deterministic
counterparts on tasks such as text generation (Bow-
man et al., 2016), Semantic Textual Similarity (Li
et al., 2020a) and other wide range of language
tasks (Li et al., 2020b). While a handful of
VAE-based sparsification methods have been
proposed recently Mathieu et al. (2019) (MAT),
Tonolini et al. (2019) (TON), they have been only

evaluated on image domain. We summarise the
similarity and key differences with HSVAE model:
PRIOR AND POSTERIOR. All three frameworks

use the Spike-and-Slab distribution to con-
struct the prior on z. While the posterior
distribution in MAT remains as a Gaussian,
both TON and HSVAE opt for Spike-and-Slab.
However, TON controls the sparsity level in
an indirect way via “pseudo data” (Tomczak
and Welling, 2018) used in prior, whereas
HSVAE’s probabilistic treatment of
 enables
direct control on the target sparsity level.

OBJECTIVE. HSVAE is trained with a principled
ELBO (eq. 3), while the other two add ad-
ditional regularisers to the ELBO of VAE
(eq. 1). For instance, MAT add a maxi-
mum mean discrepancy (MMD) divergence
between z’s aggregated posterior and prior
MMD(q�(z), p�(z)) and include scalar and
� weights to the KL and MMD term, respec-
tively, see Appendix.

Model Sparsity. Concurrent to the widespread
use of large models such as Transformers (Vaswani
et al., 2017) in NLP, sparsification of these models
is also becoming popular (Zhang et al., 2020; Zhao
et al., 2019; Correia et al., 2019; Ye et al., 2019;
Child et al., 2019). The most common approach
to sparsify a Transformer is to reduce a number of
connection between the words/tokens in the self at-
tention kernel e.g. Correia et al. (2019). However,
these approaches still learn dense continuous repre-
sentations of token/word/sentence embeddings.
6 Conclusion
We provided an objective analysis of several unsu-
pervised sparsification frameworks based on VAEs,
both in terms of the impact on downstream tasks

41

and the level of sparsity achieved. Also, we pre-
sented a novel VAE model - Hierarchical Sparse
Variational Autoencoder (HSVAE), outperforming
existing SOTA model (Mathieu et al., 2019). Ide-
ally, sparse representations should be capable of
encoding the underlying characteristics of a cor-
pus (e.g. class), in activation patterns as shown to
be the case for HSVAE. Moreover, using the text
classification corpora as a testbed, we established
how statistical properties of a corpus such as word
distribution in a class affect the ability of learned
sparse codes to represent task-related information.
Moving forward, HSVAE model along with the

analysis provided in this paper can serve as a good
basis for the design of sparse models that induce
continuous sparse vectors of text. For example,
a potential extension of HSVAE could be an in-
corporation of explicit linguistic biases into the
learned representations with the group sparsity
(Yogatama et al., 2015). Furthermore, as we dis-
cussed in Section 5, sparsity found its application
in the Transformers, but it, mainly, has been used
to reduce the number of connection between the
words/tokens. With the HSVAE framework one
can also learn sparse continuous representations of
token/word/sentence embeddings.
Acknowledgments
The first author would like to thank Yi Zhu for
providing his feedback on the earlier vesrsion of
the paper. The authors, also, would like to thank
the three anonymous reviewers for their helpful
suggestions.

References
Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma,

and Andrej Risteski. 2018. Linear algebraic struc-
ture of word senses, with applications to polysemy.
Transactions of the Association for Computational
Linguistics, 6:483–495.

Vikash Balasubramanian, Ivan Kobyzev, Hareesh
Bahuleyan, Ilya Shapiro, and Olga Vechtomova.
2020. Polarized-vae: Proximity based disentangled
representation learning for text generation. arXiv
preprint arXiv:2004.10809.

Gabriel Barello, Adam S. Charles, and Jonathan W. Pil-
low. 2018. Sparse-coding variational auto-encoders.
bioRxiv.

Yoshua Bengio. 2009. Learning deep architectures for
ai. Found. Trends Mach. Learn., 2(1):1–127.

Yoshua Bengio, Aaron C. Courville, and Pascal Vin-
cent. 2013. Representation learning: A review and
new perspectives. IEEE Trans. Pattern Anal. Mach.
Intell., 35(8):1798–1828.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, An-
drew M. Dai, Rafal Józefowicz, and Samy Bengio.
2016. Generating sentences from a continuous space.
In CoNLL.

Christopher P. Burgess, Irina Higgins, Arka Pal, Loïc
Matthey, Nick Watters, Guillaume Desjardins, and
Alexander Lerchner. 2018. Understanding disentan-
gling in �-vae. CoRR, abs/1804.03599.

Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. 2019. Generating long sequences with
sparse transformers.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014. Learning phrase represen-
tations using RNN encoder-decoder for statistical
machine translation. CoRR, abs/1406.1078.

Gonçalo M. Correia, Vlad Niculae, and André F. T.
Martins. 2019. Adaptively sparse transformers. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2174–
2184, Hong Kong, China. Association for Compu-
tational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Manaal Faruqui and Chris Dyer. 2015. Non-
distributional word vector representations. In Pro-
ceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 464–
469, Beijing, China. Association for Computational
Linguistics.

Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris
Dyer, and Noah A. Smith. 2015. Sparse overcom-
plete word vector representations. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1491–1500, Beijing,
China. Association for Computational Linguistics.

Michael Figurnov, Shakir Mohamed, and Andriy Mnih.
2018. Implicit reparameterization gradients. In Pro-
ceedings of the 32nd International Conference on

42

Neural Information Processing Systems, NIPS’18,
page 439–450, Red Hook, NY, USA. Curran Asso-
ciates Inc.

Junxian He, Daniel Spokoyny, Graham Neubig, and
Taylor Berg-Kirkpatrick. 2019. Lagging inference
networks and posterior collapse in variational autoen-
coders. In Proceedings of ICLR.

Irina Higgins, Loïc Matthey, Arka Pal, Christopher
Burgess, Xavier Glorot, Matthew Botvinick, Shakir
Mohamed, and Alexander Lerchner. 2017. beta-vae:
Learning basic visual concepts with a constrained
variational framework. In 5th International Confer-
ence on Learning Representations, ICLR 2017, Con-
ference Track Proceedings, Toulon, France.

N. Hurley and S. Rickard. 2009. Comparing measures
of sparsity. IEEE Transactions on Information The-
ory, 55(10):4723–4741.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. International
Conference on Learning Representations.

Diederik P. Kingma and Max Welling. 2014. Auto-
encoding variational bayes. In 2nd International
Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Con-
ference Track Proceedings.

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang,
Yiming Yang, and Lei Li. 2020a. On the sentence
embeddings from pre-trained language models. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9119–9130, Online. Association for Computa-
tional Linguistics.

Chunyuan Li, Xiang Gao, Yuan Li, Baolin Peng, Xiu-
jun Li, Yizhe Zhang, and Jianfeng Gao. 2020b. Opti-
mus: Organizing sentences via pre-trained modeling
of a latent space.

Wenye Li and Senyue Hao. 2019. Sparse lifting of
dense vectors: Unifying word and sentence represen-
tations. CoRR, abs/1911.01625.

Andrew L. Maas. 2013. Rectifier nonlinearities im-
prove neural network acoustic models.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh.
2016. The concrete distribution: A continuous re-
laxation of discrete random variables. International
Conference on Learning Representations, ICLR.

Andre Martins and Ramon Astudillo. 2016. From soft-
max to sparsemax: A sparse model of attention and
multi-label classification. In Proceedings of The
33rd International Conference on Machine Learn-
ing, volume 48 of Proceedings of Machine Learning
Research, pages 1614–1623, New York, New York,
USA. PMLR.

Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1192–1202,
Brussels, Belgium. Association for Computational
Linguistics.

Emile Mathieu, Tom Rainforth, N Siddharth, and
Yee Whye Teh. 2019. Disentangling disentangle-
ment in variational autoencoders. In Proceedings
of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine
Learning Research, pages 4402–4412, Long Beach,
California, USA. PMLR.

Brian Murphy, Partha Talukdar, and Tom Mitchell.
2012. Learning effective and interpretable seman-
tic models using non-negative sparse embedding. In
Proceedings of COLING 2012, pages 1933–1950,
Mumbai, India. The COLING 2012 Organizing
Committee.

Bruno Olshausen and David Field. 1996. Emergence
of simple-cell receptive field properties by learning
a sparse code for natural images. Nature, 381:607–9.

Victor Prokhorov, Ehsan Shareghi, Yingzhen Li, Mo-
hammad Taher Pilehvar, and Nigel Collier. 2019. On
the importance of the Kullback-Leibler divergence
term in variational autoencoders for text generation.
In Proceedings of the 3rd Workshop on Neural Gen-
eration and Translation, pages 118–127, HongKong.
Association for Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Anant Subramanian, Danish Pruthi, Harsh Jhamtani,
Taylor Berg-Kirkpatrick, and Eduard H. Hovy. 2018.
SPINE: sparse interpretable neural embeddings. In
Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), the 30th inno-
vative Applications of Artificial Intelligence (IAAI-
18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New
Orleans, Louisiana, USA, February 2-7, 2018, pages
4921–4928. AAAI Press.

Fei Sun, Jiafeng Guo, Yanyan Lan, Jun Xu, and Xueqi
Cheng. 2016. Sparse word embeddings using l1
regularized online learning. In Proceedings of the
Twenty-Fifth International Joint Conference on Arti-
ficial Intelligence, IJCAI 2016, New York, NY, USA,
9-15 July 2016, pages 2915–2921. IJCAI/AAAI
Press.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume
2, NIPS’14, page 3104–3112, Cambridge, MA,USA.
MIT Press.

43

Jakub M. Tomczak and MaxWelling. 2018. Vae with a
vampprior. In Proceedings of the International Con-
ference on Artificial Intelligence and Statistics, pp.
1214–1223.

Francesco Tonolini, Bjorn Sand Jensen, and Roderick
Murray-Smith. 2019. Variational sparse coding. In
Proceedings of the Thirty-Fifth Conference on Un-
certainty in Artificial Intelligence (UAI).

Valentin Trifonov, Octavian-Eugen Ganea, Anna
Potapenko, and Thomas Hofmann. 2018. Learning
and evaluating sparse interpretable sentence embed-
dings. In Proceedings of the Workshop: Analyzing
and Interpreting Neural Networks for NLP, Black-
boxNLP@EMNLP 2018, Brussels, Belgium, Novem-
ber 1, 2018, pages 200–210. Association for Compu-
tational Linguistics.

H. Valpola. 2014. From neural pca to deep unsuper-
vised learning. ArXiv, abs/1411.7783.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Peng Xu, Jackie Chi Kit Cheung, and Yanshuai Cao.
2019. On variational learning of controllable rep-
resentations for text without supervision. arXiv
preprint arXiv:1905.11975.

Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and
Taylor Berg-Kirkpatrick. 2017. Improved vari-
ational autoencoders for text modeling using di-
lated convolutions. In Proceedings of the 34th In-
ternational Conference on Machine Learning, vol-
ume 70 of Proceedings of Machine Learning Re-
search, pages 3881–3890, International Convention
Centre, Sydney, Australia. PMLR.

Zihao Ye, Qipeng Guo, Quan Gan, Xipeng Qiu, and
Zheng Zhang. 2019. Bp-transformer: Modelling
long-range context via binary partitioning.

Serena Yeung, Anitha Kannan, Yann Dauphin, and
Li Fei-Fei. 2017. Tackling over-pruning in varia-
tional autoencoders. International Conference on
Machine Learning: Workshop on Principled Ap-
proaches to Deep Learning.

Dani Yogatama, Manaal Faruqui, Chris Dyer, and
Noah A. Smith. 2015. Learning word representa-
tions with hierarchical sparse coding. In Proceed-
ings of the 32nd International Conference on Ma-
chine Learning, ICML 2015, Lille, France, 6-11 July
2015, volume 37, pages 87–96. JMLR.org.

Biao Zhang, Ivan Titov, and Rico Sennrich. 2020. On
sparsifying encoder outputs in sequence-to-sequence
models.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Proceedings of the 28th International
Conference on Neural Information Processing Sys-
tems - Volume 1, NIPS’15, page 649–657, Cam-
bridge, MA, USA. MIT Press.

Guangxiang Zhao, Junyang Lin, Zhiyuan Zhang, Xu-
ancheng Ren, Qi Su, and Xu Sun. 2019. Explicit
sparse transformer: Concentrated attention through
explicit selection.

A Derivations of ELBO
Starting from the DKL(q�(z,
|x)||p�(z,
|x)), we
derive the Evidence Lower Bound (ELBO) as fol-
lows:

DKL(q�(z,
|x)||p�(z,
|x)) =

∫
z,

dzd
 q�(z,
|x) log
q�(z,
|x)
p�(z,
|x) ,

(4)

after rearranging terms in equation 4 we can obtain:

log p�(x) − DKL(q�(z,
|x)||p�(z,
|x)) =

∫
z,

dzd
 q�(z,
|x) log
p�(z,
, x)
q�(z,
|x)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
ELBO

, (5)

Based on the independence assumption that
we make in our graphical model (Figure 1) the
generative model factorises as: p�(z,
, x) =
p�(x|z)p�(z|
)p�(
) and the inference model fac-
torises as: q�(z,
|x) = q�(z|
, x)q�(
|x). There-
fore, we can rewrite the ELBO as follows:
∫
z,

dzd
 q�(z|
, x)q�(
|x) log p�(x|z)p�(z|
)p�(
)

q�(z|
,x)q�(
|x) ,

(6)
We can further rewrite the ELBO as a sum of the
three separate terms. Where the first term is:

∫
z,

dzd
 q�(z|x,
)q�(
|x) log p�(x|z)

∫

d
 q�(
|x)∫
z

dz q�(z|x,
) log p�(x|z)∴
⟨
∫
z

dz q�(z|x,
) log p�(x|z)
⟩

q�(
|x)
∴

(7)

44

The second term is:
∫
z,

dzd
 q�(z|x,
)q�(
|x)[log q�(z|x,
) − log p�(z|
)]
⟨
∫
z

dz q�(z|x,
)[log q�(z|x,
) − log p�(z|
)]
⟩

q�(
|x)
∴

⟨
DKL(q�(z|x,
)||p�(z|
))

⟩

q�(
|x)
∴

(8)
Finally, the third term is:

∫
z,

dzd
 q�(z|x,
)q�(
|x)[log q�(
|x) − log p�(
)]

∫

d
 q�(
|x)[log q�(
|x) − log p�(
)]∫
z

dz q�(z|x,
)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
sums to 1 for each∶

∴

∫

d
 q�(
|x)[log q�(
|x) − log p�(
)]∴

DKL(q�(
|x)||p�(
))∴ (9)
Collecting all the three terms into the single ELBO:

⟨
∫
z

dz q�(z|x,
) log p�(x|z)
⟩

q�(
|x)
−

−
⟨
DKL(q�(z|x,
)||p�(z|
))

⟩

q�(
|x)
−

−DKL(q�(
|x)||p�(
)),

(10)

B Objective Functions of Mathieu et al.
(2019) and Tonolini et al. (2019)
Models

The objective function of Mathieu et al. (2019) is:
⟨
log p�(x|z)

⟩
q�(z|x) − KL(q�(z|x)||p�(z))−

−�D(q�(z), p�(z)),

where and � are the scalar weight on the terms
and Tonolini et al. (2019) is:
⟨
log p�(x|z)

⟩
q�(z|x) −KL(q�(z|x)||q�(z|xu)−

−J × DKL
(

̄u||�)

)
,

where J is the dimensionality of the latent variable
z, xu is a learnable pseudo-input (Tomczak and
Welling, 2018) and � is prior sparsity.
C Deriving Marginal of (Univariate)

Spike-and-Slab Prior
We derive the Spike-and-Slab distribution by in-
tegrating out the index component which is dis-
tributed as a Bernoulli variable. This result is quite

well-known in machine learning, however for the
ease of the reader we present it here as a quick ref-
erence.
The derivation: assume 1) � ∼ p(�;
) is a

Bernoulli(
) and 2) p(z|�) = (1 − �) × p1(z) +
� × p2(z), where p1(z) ∼  (z; 0, 1) and p2(z) ∼ (z; 0, � → 0) is a Spike-and-Slab model. The
the marginal Spike-and-Slab prior over z can be
obtained in the following way:

p(z;
) =
1∑
i=0

p(z|� = i)p(� = i;
)

p(z|� = 0)p(� = 0;
) + p(z|� = 1)p(� = 1;
)∴
[(1 − 0) × p1(z) + 0 × p2(z)]p(� = 0;
)+
+ [(1 − 1) × p1(z) + 1 × p2(z)]p(� = 1;
)∴

Expanding brackets:

p1(z)p(� = 0;
) + p2(z)p(� = 1;
)∴
 (z; 0, 1)p(� = 0;
) + (z; 0, � → 0)p(� = 1;
)∴
(1 −
) (z; 0, 1) +
 (z; 0, � → 0)∴

Therefore,

p(z;
) = (1 −
) (z; 0, 1) +
 (z; 0, � → 0).

D End-to-end Differentiable

Sampling a value from the Spike-and-Slab posterior
distribution q(z|x,
) is a two step process. First a
spike or slab component is sampled which is a bi-
nary decision, we use Binary Concrete distribution
(Maddison et al., 2016) to make this sampling step
end-to-end differentiable. Then the value is sam-
pled from the corresponding component, for this
we employ the reparameterization trick (Kingma
and Welling, 2014). Also, samples from the Beta
distribution are pathwise differentiable (Figurnov
et al., 2018).

E Hoyer

This section reports Average Hoyer, for the two cor-
pora Yelp andYahoo, both on themean and samples
from the posterior distributions of the HSVAE and
MAT-VAE models.

45

E.1 MAT-VAE

2 4 6 8 10 12 14
Iterations

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
v.

H
oy

er

sample (:0.01, :0.01)
mean (:0.01, :0.01)
sample (:1.0, :0.01)
mean (:1.0, :0.01)

sample (:10.0, :0.01)
mean (:10.0, :0.01)
sample (:1.0, :0.1)
mean (:1.0, :0.1)

Figure 6: Average Hoyer (Av.Hoyer) on Yelp corpus
dev set for MAT-VAE. Lines are an average over the
3 runs of the models, the shaded area is the standard
deviation. The dimensionality of the latent variable of
the models is 32D.

2 4 6 8 10 12 14
Iterations

0.20

0.25

0.30

0.35

0.40

A
v.

H
oy

er

sample (:0.01, :0.01)
mean (:0.01, :0.01)
sample (:1.0, :0.01)
mean (:1.0, :0.01)

sample (:10.0, :0.01)
mean (:10.0, :0.01)
sample (:1.0, :0.1)
mean (:1.0, :0.1)

Figure 7: Average Hoyer (Av.Hoyer) on Yahoo corpus
dev set for MAT-VAE. Lines are an average over the
3 runs of the models, the shaded area is the standard
deviation.

E.2 HSVAE

2 4 6 8 10 12 14
Iterations

0.1

0.2

0.3

0.4

0.5

0.6

A
v.

H
oy

er

sample (:10.0, :30.0)
mean (:10.0, :30.0)
sample (:30.0, :10.0)

mean (:30.0, :10.0)
sample (:30.0, :30.0)
mean (:30.0, :30.0)

Figure 8: Average Hoyer (Av.Hoyer) on Yelp corpus
dev set for HSVAE. Lines are an average over the 3 runs
of the models, the shaded area is the standard deviation.
The dimensionality of the latent variable of the models
is 32D.

2 4 6 8 10 12 14
Iterations

0.2

0.3

0.4

0.5

0.6

A
v.

H
oy

er sample (:10.0, :30.0)
mean (:10.0, :30.0)
sample (:30.0, :10.0)

mean (:30.0, :10.0)
sample (:30.0, :30.0)
mean (:30.0, :30.0)

Figure 9: Average Hoyer (Av.Hoyer) on Yahoo corpus
dev set for HSVAE. Lines are an average over the 3 runs
of the models, the shaded area is the standard deviation.
The dimensionality of the latent variable of the models
is 32D.
F Hardware
Please refer to Table 1 for the hardware that we use.
hardware specification
CPU Intel® Xeon E5-2670V3, 12-cores, 24-threads
GPU NVIDIA® TITAN RTXTM (24 GB) x 1
RAM CORSAIR® Vengeance LPX DDR4 2400 MHz (8 GB) x 4

Table 1: Computing infrastructure.

G Datasets

Yelp DBpedia Yahoo
sent. (train corpus) 100K 140K 100K
sent. (valid corpus) 10K 14K 10K
sent. (test corpus) 10K 14K 10K
vocabulary size 19,997 20K 20K
min sent. length. 20 1 5
av. sent. length. 96 35 12
max. sent. length. 200 60 30
classes 5 14 10
sent. in each class (train/test corpus) 20K/2K 10K/1K 10K/1K

Table 2: Statistics of corpora. Vocabulary size excludes
the ⟨pad ⟩and ⟨EOS ⟩symbols.

46

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 47–56
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

Temporal-aware Language Representation Learning From Crowdsourced
Labels

Yang Hao Xiao Zhai Wenbiao Ding Zitao Liu∗
TAL Education Group, Beijing, China

{haoyang2, zhaixiao, dingwenbiao, liuzitao}@tal.com

Abstract

Learning effective language representations
from crowdsourced labels is crucial for many
real-world machine learning tasks. A chal-
lenging aspect of this problem is that the qual-
ity of crowdsourced labels suffer high intra-
and inter-observer variability. Since the high-
capacity deep neural networks can easily mem-
orize all disagreements among crowdsourced
labels, directly applying existing supervised
language representation learning algorithms
may yield suboptimal solutions. In this pa-
per, we propose TACMA, a temporal-aware
language representation learning heuristic for
crowdsourced labels with multiple annotators.
The proposed approach (1) explicitly mod-
els the intra-observer variability with atten-
tion mechanism; (2) computes and aggregates
per-sample confidence scores from multiple
workers to address the inter-observer disagree-
ments. The proposed heuristic is extremely
easy to implement in around 5 lines of code.
The proposed heuristic is evaluated on four
synthetic and four real-world data sets. The
results show that our approach outperforms
a wide range of state-of-the-art baselines in
terms of prediction accuracy and AUC. To en-
courage the reproducible results, we make our
code publicly available at https://github.com/
CrowdsourcingMining/TACMA.

1 Introduction

Crowdsourcing offers the ability to utilize the
power of human computation to generate data an-
notations that are needed to train various AI sys-
tems. For many practical supervised learning ap-
plications, it may be infeasible (or very expen-
sive) to obtain objective and reliable labels due
to many reasons such as varying skill-levels and
biases of crowdsourced workers. Instead, to im-
prove the quality of labels, we can collect subjec-

∗Corresponding author: Zitao Liu.

tive and inconsistent labels from multiple heteroge-
neous crowdsourced workers. In practice, there is
a substantial amount of disagreement between the
crowdsourced workers (Nie et al., 2020), i.e., inter-
observer variability or even between a worker and
the same worker looking at the same example some
time later (Guan et al., 2018), i.e., intra-observer
variability. Hence, it is of great practical interest to
address supervised learning problems in this sce-
nario.

Meanwhile, with the recent advances of deep
neural networks (DNNs), supervised representa-
tion learning (SRL) has led to rapid improvements
in the ability of learning intrinsic nonlinear em-
beddings using DNNs that preserves the distance
between similar examples close and dissimilar ex-
amples far on the embedding space. In spite of the
significant progress for SRL applications such as
face recognition (Schroff et al., 2015), image re-
trieval (Xia et al., 2014), directly applying existing
deep language representation learning approaches
on crowdsourced labels may yield poor generaliza-
tion performance (Han et al., 2018). Because of the
high capacity, DNNs could entirely memorize the
inconsistency within crowdsourced labels sooner or
later during the modeling training process. Besides,
this phenomenon does not change with the choice
of training optimizations or network architectures
(Han et al., 2018).

A large spectrum of approaches have been suc-
cessfully developed in either estimating true labels
from crowdsourced labels, a.k.a., truth inference or
label aggregation (Dawid and Skene, 1979; White-
hill et al., 2009), learning via adversarial data gen-
eration (Wang et al., 2020a), or learning language
representations discriminatively from large-scale
consistent labeled data with complicated neural
architectures (Rodrigues and Pereira, 2018). How-
ever, learning effective neural embeddings directly
from crowdsourced labels of real-world data poses

47

numerous challenges. First, crowdsourced work-
ers conduct labeling tasks sequentially, i.e., they
label samples one after another. Such sequential
labeling behavior is a process of learning, and the
expertise of the workers is not stable but gradually
changing even without feedback (Elliott and Riach,
1965). According to Miller’s Law (Miller, 1956),
humans retain what they just learned in their short-
term working memory with a limited span of 7 ±
2. Temporal factors such as fatigue (Zhang et al.,
2018) and intrinsic motivation (Kaufmann et al.,
2011) implicitly influence the crowdsourcing qual-
ity, which are different from existing well-studied
factors, such as the quality of crowdsourced work-
ers, the difficulty of data samples, the price of anno-
tation tasks, etc. In the following, such unconscious
temporal behaviors are referred to as “temporal la-
beling effects”. How to model such sample-level
temporal information for each individual worker
undoubtedly poses a hard modeling problem. Sec-
ond, a large number of real-world crowdsourced
data sets have a substantial amount of disagree-
ment among labels and a relatively small sample
size. The majority of existing SRL approaches are
discriminatively trained on large-scale consistent
labeled data to learn their complicated neural archi-
tectures, which may easily overfit the inconsistent
crowdsourced data.

In this paper we study and develop solutions that
are applicable and can learn effective neural lan-
guage representations from crowdsourced labels in
an end-to-end manner. Our work focuses on the
refinements of a popular deep language represen-
tation learning paradigm: the deep metric learning
(DML) (Koch et al., 2015; Xu et al., 2019; Wang
et al., 2020b). We aim to develop an algorithm
to automatically learn a nonlinear language repre-
sentation of the crowdsourced data from multiple
workers using DNNs.

Briefly, the DML is a classical and widely used
approach for language representation learning that
preserves the distance between similar examples
close and dissimilar examples far on the embedding
space. The majority of existing DML techniques
restricted to just noise-free labels appropriately.
However, learning effective representation from
highly inconsistent crowdsourced data sets from
multiple workers gives rise to numerous important
questions: (1) since in practice, annotation perfor-
mance is affected and varied over time (Boksem
et al., 2005; Zhang et al., 2018), how do we capture

such temporal labeling effects in the DML learning
framework? (2) while in some cases the problem
may be alleviated by pre-processing methods, such
as filtering(Li et al., 2016), label correction(Li et al.,
2019a), truth inference (Dawid and Skene, 1979;
Raykar et al., 2010), etc., the number of remained
instances is often significantly reduced or such pre-
processing errors for many problems will be prop-
agated to the downstream representation learning
tasks. How to capture the label uncertainties from
multiple workers and at the same time prevent the
overfitting problem in an end-to-end framework?

In this work we address the above issues by
presenting a temporal-aware language representa-
tion learning heuristic for crowdsourced labels with
multiple annotators (TACMA), that

• utilizes the attention mechanism to capture the
temporal influence among sequential labeling
tasks according to each worker’s short-term
working memory.

• estimates and aggregates the annotation con-
fidence from disagreements among multiple
workers for each sample.

• supports language representation learning
with DML into an end-to-end fashion, and
is extremely easy to implement based on ex-
isting DML framework with crowdsourced
labels i.e., RLL (Xu et al., 2019), in around 5
line of codes.

2 Related Work

2.1 Truth Inference in Crowdsourcing
A large body of research has focused on infer-
ring true labels from crowdsourced labels from
multiple workers (Dawid and Skene, 1979; White-
hill et al., 2009; Li et al., 2019c; Rodrigues and
Pereira, 2018). The majority of truth inference
approaches are inspired by the classic Expectation-
Maximization learning paradigm that iterates be-
tween estimating the expertise of annotators given
true labels inferred and inferring true labels given
the expertise of annotators (Dawid and Skene,
1979; Whitehill et al., 2009; Zhang et al., 2014;
Li et al., 2019c). Some improvements include mod-
eling the difficulty of items and the expertise of
annotators jointly (Whitehill et al., 2009), applying
spectral methods to initialize worker confusion ma-
trix (Zhang et al., 2014), and modeling correlations
of workers (Li et al., 2019c), etc.

48

In spite of the successful applications of the truth
inference techniques, the majority of aforemen-
tioned approaches do not consider the temporal
effects of labeling tasks of each individual worker
and they cannot seamlessly integrate into deep SRL
frameworks.

2.2 Learning from Noisy Labels
Learning with noisy labels has been an important
research topic since the beginning of machine learn-
ing (Frénay and Verleysen, 2013) and a large spec-
trum of models have been developed and success-
fully applied in improving the model prediction
performance in noisy settings from different per-
spectives such as effective label cleaning (Lee et al.,
2018), robust model architectures (Vahdat, 2017)
and loss functions (Ghosh et al., 2017), sample re-
weighting (Ren et al., 2018), and carefully designed
training procedures (Zhong et al., 2019).

However, in this work, different from above ap-
proaches of robust learning from noisy labels that
assume certain percentage of labels are corrupted,
our scenario focuses on noisy labels obtained from
multiple annotators where the disagreement (cor-
ruption) proportion might be surprisingly high and
sometimes even 100%, i.e., no completely agree-
ment on every single sample from all crowd work-
ers.

2.3 Deep Metric Learning
DML approaches automatically learn nonlinear
metric spaces (Schroff et al., 2015). Many ap-
proaches have achieved promising results in many
tasks such as face recognition (Schroff et al., 2015),
person re-identification (Yi et al., 2014), and collab-
orative filtering (Hsieh et al., 2017) etc. Recently
a body of works have attempted to learn effective
embeddings from crowdsourced labels by using
DML approaches (Xu et al., 2019; Wang et al.,
2020b). For example, Xu et al. estimated crowd-
sourced label confidence and adjust the DML loss
function accordingly (Xu et al., 2019). An exhaus-
tive review of previous work is beyond the scope
of this paper. We refer to the survey of (Schroff
et al., 2015) on works of DML. Although DML ap-
proaches are able to learn effective representations,
they heavily rely on comparisons within pairs or
triplets, which is very sensitive to ambiguous ex-
amples and may be easily misled by inconsistent
crowdsourced labels.

Please note that models from the above three
categories are complementary and they can be

combined. For example, learning representation
from crowdsourced labels can be conducted in two
stages where the truth inference algorithms in Sec-
tion 2.1 is applied to get estimated labels and then
the standard DML approaches in Section 2.3 are
used to output the learned embeddings. Details are
discussed in Section 4.

3 The Proposed Approach

3.1 Notations

Without loss of generality, we consider crowdsourc-
ing scenarios that each data sample is annotated
by multiple workers. Following the crowdsourc-
ing practice and to avoid the order effect (Hogarth
and Einhorn, 1992) and cheating, each worker will
annotate the same set of samples but with shuffled
orders. Let αj be the sample order index set for the
jth worker and αji be the index of ith sample for
worker j. Let x

αji
and y

αji
be the feature vectors

and the worker’s assigned label for sample αji . Let
F(·) represent the learned language representation.
Let (·)+ and (·)− be the indicators of positive and
negative examples.

3.2 Temporal-Aware Memory Confidence

According to Miller’s Law (Miller, 1956), humans
can only hold a very limited number of objects in
their short-term working memories. When workers
conduct labeling tasks, they tend to make relative
comparisons in their memory spans and the anno-
tation quality of one sample is largely influenced
by its preceding samples. Therefore, in this work,
we focus on studying and modeling the effects of
unconscious human behaviors during the labeling
process that may implicitly influence the overall
crowdsourcing quality. We design an approach
to explicitly capture such unconscious temporal
human behaviors, i.e., temporal labeling effects.
We aim to ensure that the newly annotated sam-
ples should obtain the consistent label with similar
samples that have already been annotated recently.
Here we first define the short-term labeling memory
as follows:

Definition 1. (SHORT-TERM LABELING MEM-
ORY) A short-term labeling memory of ith sam-
ple, i.e., indexed as αji , is composed of a sequence
of the current item and k most recent historical
items that have been labeled by worker j, i.e.,
Mj

i = {< x
αji
, y
αji
>,< x

αji−1
, y
αji−1

>, · · · , <
x
αji−k

, y
αji−k

>}.

49

When the new labeling task arrives, i.e., the ith

sample, we compute a weight for every element in
worker j’s short-term labeling memory Mj

i as the
dot product of their learned language representa-
tions. This weight might be viewed as an attention
over the short-term labeling memory per sample
per worker.

To form a proper probability distribution over the
elements in Mj

i , we normalize the weights using
the softmax function. This way we model probabil-
ity s

αji−l
that represents the similarity between the

ith sample and the sample appears at position l in
Mj

i . In a functional form this is:

s
αji−l
∝ exp

(
F(x

αji−l
),F(x

αji
)
)
, l = 0, · · · , k

Then we define a memory confidence score, i.e.,
cji , to represent the probability that how likely the
sample i is positive (y

αji
= 1) solely considering

similar samples in the short-term labeling memory.
The memory confidence score of cji is computed as
follows:

cji = Pr(y
αji

= 1) ∝
k∑

l=0

1
[
y
αji−l

= 1
]
s
αji−l

Please note that our attention based temporal-
aware memory confidence scores are not limited
to binary crowdsourcing tasks and it can be easily
extended to multi-class tasks.

3.3 Multi-Worker Confidence Aggregation

For each sample i, after collecting the mem-
ory confidence scores from all workers, we con-
duct the mean pooling as our aggregation op-
eration, and the final aggregated multi-worker
confidence is computed as follows: ci =
MeanPooling(c1i , c

2
i , · · · , cmi), where m is the

number of workers.

3.4 Representation Learning Framework

We use DML as our representation learning frame-
work. Specifically, following the suggestion of
(Xu et al., 2019), instead of using pair and triplet
comparisons, we use group, a.k.a., n-tuplet, as our
comparison unit. A group is made up of two posi-
tive and n negative examples. Similar to (Xu et al.,
2019), we choose to learn our model parameters by
maximizing the conditional likelihood of retrieving

the positive example x+
j given the positive example

x+
i from a given group.
Importantly, we do not assume that we know the

ground truth label of items in the training set and
the validation set. During the training stage of the
representation learning framework, after obtaining
the aggregated multi-worker confidence ci of an
item with methods introduced in Section 3.3, its
label is estimated by arg max ci.

Given a collection of groups, we optimize the
DML model parameters by maximizing the sum
of log conditional likelihood of finding a positive
example x+

j given the paired positive example x+
i

within every group g, which will push items of the
same class close and items of different classes far
in the embedding space. Furthermore, we incorpo-
rate the aggregated temporal-aware multi-worker
confidence scores from Section 3.3 into the loss
function to capture the inconsistency of crowd-
sourced labels. The loss function is defined as
L(Ω) = −∑ log p(x+

j |x+
i),

p(x+
j |x+

i) =
exp

(
η · cj · rij

)
∑

x∗∈g,x∗ 6=x+
i

exp
(
η · c∗ · ri∗

)

where Ω is the parameter set of the DNN. ri∗ rep-
resents the cosine similarity score between the rep-
resentations of x+

i and x∗ in the embedding space.
η is a smoothing hyper parameter in the softmax
function, which is set empirically on a held-out
data set in our experiment. Since L(Ω) is differ-
entiable with respect to Ω, we use gradient based
optimization approach to train the DNN.

x−
k

x+
i

… … …

rij

Aggregated Temporal-aware

Confidence Layer

x+
j

(x−
k)

x−1 (x−1)

(x+
j)

(x+
i)

ri1

rik

Representation
Layer

softmax

p(x+
j |x+

i)

Figure 1: The model structure. Groups made up of
two positive and n negative examples are fed into the
neural network to obtain their language representations.
The cosine similarity scores, i.e., ri∗, are calculated
between the representations of x+

i and x∗ in the embed-
ding space. Finally, the goal of training is to maximize
the conditional likelihood p(x+

j |x+
i), which incorpo-

rates temporal-aware memory confidence scores cji .

50

4 Experiments

Experiments are conducted on both real-world and
synthetic data sets. The internal cross validation ap-
proach is used to select hyper parameters when op-
timizing models’ predictive performances. Means
as well as standard deviations of both accuracy and
AUC scores are reported, to comprehensively eval-
uate the performance of our proposed method, i.e.
TACMA.

4.1 Real-World Data Sets
Experiments are first conducted on 4 real-world
data sets and the corresponding descriptive statis-
tics can be found in Table 1.

• Emotion: A vocal emotional speech data
set with binary labels indicating whether the
voice fragment is exciting or not.

• Concluding: A linguistic data set where each
item is labeled on whether it is a conclusion
of a lesson.

• Commending: A linguistic data set of ASR
transcripts from real-world classroom record-
ings. Each item is labeled on whether it’s a
commending instruction from the instructors.

• Question: A vocal speech data set where each
item is labeled on whether it is an interrogative
sentence.

Acoustic features of the Emotion data set are ex-
tracted using OpenSmile1 with the computational
paralinguistic challenge’s (COMPARE-2013) fea-
ture set (Schuller et al., 2013). Sentence embedding
features are extracted with a Chinese RoBERTa
pretrained model 2. Again we emphasize that the
ground truth labels of items in the training and vali-
dation set are not observed. In order to evaluate the
performance of each model objectively, the labels
of items in test sets are labeled by experts and they
have reached an agreement on the labels of items.

Inter-observer variability of each data set is mea-
sured with Fleiss-kappa score (Fleiss, 1971). Intra-
observer variability, i.e., the level of consistency of
an annotator when labeling items from the same
class, is hard to directly measure without ground
truth labels. We will explore the effect of intra-
observer variability using temporal-aware memory
confidence in Section 4.8.

1https://www.audeering.com/opensmile/
2https://github.com/ymcui/Chinese-BERT-wwm

4.2 Synthetic Data Sets

In real-world scenarios, annotators are not guaran-
teed to be serious about their annotating work, and
one may assign random labels in order to get paid
quickly. Methods designed for crowdsourcing sce-
narios should be able to get rid of the influence of
these noisy annotations. Hence we build synthetic
data sets to evaluate the robustness to irresponsi-
ble annotators of each method. Starting from the
original Question data set, we gradually add 2, 4,
6 and 8 simulated irresponsible annotators. They
make random judgments regardless of the features
of items. Hence in the worst case, 8 out of 13 work-
ers are making random judgments, resulting in an
extreme low kappa of 0.02. Experiments conducted
on these synthetic data sets are helpful to examine
the robustness of methods.

4.3 Baselines

We carefully selected several groups of baselines
as follows:

Group 1: Truth Inference. A wide range of
label aggregation methods are chosen as our base-
lines. Some widely-used methods according to
the survey (Zheng et al., 2017) are included, i.e.,
EM (Dawid and Skene, 1979), Spectral-EM(Zhang
et al., 2014), GLAD (Whitehill et al., 2009), IBCC
(Kim and Ghahramani, 2012), VI-BP (Qiang et al.,
2012), VI-MF (Qiang et al., 2012), KOS (Karger
et al., 2011), ZenCrowd (Demartini et al., 2012),
LFC (Raykar et al., 2010), PM (Li et al., 2014), and
the implementation of these algorithms can mostly
be found in the website3. Meanwhile some more
recent works are also included: EBCC (Li et al.,
2019c), BWA (Li et al., 2019b).

Group 2: Representation Learning. Our pro-
posed method is compared with representation
learning methods via deep metric learning, in-
cluding Triplet with semi-hard example mining
(Schroff et al., 2015), i.e., Triple, and Triplet net-
works with Center Loss (He et al., 2018), i.e., Cen-
ter. Recent works of learning effective embeddings
from crowdsourced labels using DML approaches
are also important baselines: RLL-MLE (Xu et al.,
2019), RLL-Bayesian (Xu et al., 2019), RECLE
(Wang et al., 2020b).

Group 3: Learning from Noisy Data. Group
3 contains methods of learning with noisy labels:
LC (Arazo et al., 2019) use a two-component beta
mixture model to perform unsupervised noise mod-

3https://zhydhkcws.github.io/crowd_truth_inference/index.html

51

Table 1: Data sets statistics.Data sets statistics. It should be noted that the class ratio of each training set is estimated
by majority voting since the ground truth labels are not observed. The labels of items in each test set are annotated
by experts and they have reached an agreement on the label of each item.

Data Sets Emotion Commending Question Concluding Syn-2 Syn-4 Syn-6 Syn-8

of annotators 5 7 5 5 7 9 11 13
of train samples 3067 1200 3140 1208 3140 3140 3140 3140
of validation samples 766 299 785 302 785 785 785 785
of test samples 800 1300 2000 648 2000 2000 2000 2000
kappa 0.84 0.69 0.82 0.37 0.35 0.2 0.12 0.08
train class ratio (majority voting) 0.42 0.50 0.63 0.42 0.63 0.63 0.63 0.63

eling, and DivideMix (Li et al., 2019a) leverages
semi-supervised learning techniques. CrowdLayer
(Rodrigues and Pereira, 2018) is an end-to-end ap-
proach learning a DNN from noisy labels with a
crowd layer.

Group 4: Combining Group 1 with Groups
2 & 3. Some methods of Group 2 & 3, i.e.
Triple, Center, LC, DivideMix, are not specifi-
cally designed for crowdsourcing scenarios. Al-
though majority-voting labels are served as a de-
fault choice, these models should be trained with
labels inferred by methods of Group 1 as stronger
baselines, since methods of Group 1 are likely to
provide more accurate inferred labels than majority
voting. These methods are therefore trained with
labels inferred by EBCC, which achieves the best
performances of Group 1 in all data sets.

4.4 Setup and Implementation Details

Experimental codes are implemented
in Tensorflow 1.8 available at https:
//github.com/CrowdsourcingMining/TACMA.
Experiments are conducted on a server with a
GTX 1080 Ti GPU. We set the tuplet size n to 5
for all the experiments, as suggested in (Xu et al.,
2019). The representation learning network has
a simple structure, i.e., 2 fully-connected layers
with a drop-out rate of 0.2, a learning rate of 1e-3,
and hyper-parameters including sizes of each layer
and scale of `2 regularization searched via grid
searching with cross validation. The network
weights are initialized with a normal distribution
initializer and updated with Adadelta optimizer
(Zeiler, 2012). For all the representation learning
methods, the downstream classifier is set to be
a logistic regression classifier with `2 penalty
containing the only hyper-parameter C as penalty
strength ranging from 1e-2 to 1e4.

4.5 Performance Comparison

We compare performance of TACMA with existing
methods on 4 real-world data sets and the results
are summarized in Table 2. TACMA outperforms
all the 4 groups of baselines, and here are some
observations:

• The advantage of TACMA over truth inference
methods gets bigger on the Concluding data
set than other data sets. The Concluding data
set has a low kappa score of 0.37, indicat-
ing that there are more disagreements among
workers, which makes it hard to inference cor-
rect labels regardless of items’ features. By
contrast, TACMA makes full use of represen-
tations of items to gain more information re-
sulting in the best performance.

• Although labels inferred by EBCC boost the
performances of representation learning mod-
els, e.g., Triple+EBCC, they still perform infe-
rior to TACMA, a possible explanation is that
these two-stage methods give equal weight
to each item and ignores temporal labeling ef-
fects. TACMA is able to discover potential con-
flicts in the short-term working memory, by
applying the attention mechanism and gives
low weights to the conflicting judgments.

• TACMA shares the same representation net-
work structures with other methods of repre-
sentation learning with crowdsourced labels
i.e., RLL-MLE, RLL-bayesian and RECLE.
The learned representations are compared in
Figure 2 by feeding the raw features into rep-
resentation network and performing dimen-
sion reduction into 2-dimensional space with
t-SNE method (Van and Hinton, 2008). In the
raw feature space, items of different classes
are interleaved with each other. By contrast,
learned representations of TACMA are more

52

Table 2: Prediction accuracy and AUC scores on 4 real-world data sets. The experiments are repeated 5 times and
the means and standard deviations are reported.

Commending Emotion Question Concluding

ACC AUC ACC AUC ACC AUC ACC AUC

EM 0.794±0.019 0.871±0.008 0.883±0.012 0.967±0.005 0.877±0.010 0.941±0.005 0.681±0.004 0.720±0.015
Spectral-EM 0.794±0.017 0.870±0.007 0.886±0.010 0.964±0.003 0.876±0.009 0.941±0.004 0.681±0.004 0.720±0.013
GLAD 0.794±0.017 0.870±0.007 0.886±0.010 0.964±0.003 0.878±0.009 0.942±0.004 0.689±0.009 0.742±0.014
IBCC 0.794±0.017 0.870±0.007 0.889±0.004 0.964±0.004 0.876±0.009 0.941±0.004 0.681±0.004 0.720±0.013
VI-BP 0.794±0.017 0.870±0.007 0.892±0.012 0.968±0.005 0.877±0.008 0.941±0.004 0.681±0.004 0.720±0.013
VI-MF 0.799±0.013 0.874±0.003 0.786±0.000 0.898±0.000 0.876±0.009 0.941±0.004 0.685±0.003 0.725±0.009
KOS 0.799±0.013 0.874±0.003 0.786±0.000 0.898±0.000 0.878±0.009 0.942±0.004 0.694±0.005 0.747±0.010
ZenCrowd 0.794±0.019 0.871±0.008 0.895±0.011 0.971±0.004 0.877±0.010 0.941±0.005 0.689±0.010 0.742±0.016
LFC 0.794±0.019 0.871±0.008 0.883±0.009 0.967±0.004 0.877±0.010 0.941±0.005 0.681±0.004 0.720±0.015
PM 0.799±0.014 0.867±0.008 0.887±0.010 0.966±0.003 0.874±0.010 0.940±0.004 0.677±0.009 0.730±0.013
EBCC 0.812±0.006 0.874±0.003 0.895±0.012 0.970±0.005 0.878±0.007 0.941±0.008 0.694±0.003 0.748±0.006
BWA 0.794±0.020 0.867±0.008 0.888±0.005 0.965±0.004 0.875±0.009 0.939±0.004 0.689±0.007 0.741±0.013

Triple 0.793±0.012 0.871±0.006 0.804±0.005 0.876±0.002 0.888±0.002 0.941±0.001 0.725±0.014 0.821±0.008
Center 0.806±0.002 0.859±0.001 0.701±0.007 0.780±0.007 0.840±0.006 0.905±0.008 0.705±0.015 0.797±0.007
RLL-MLE 0.800±0.008 0.866±0.001 0.854±0.016 0.961±0.008 0.853±0.013 0.919±0.006 0.735±0.004 0.828±0.009
RLL-Bayesian 0.816±0.000 0.861±0.001 0.877±0.006 0.954±0.004 0.877±0.004 0.932±0.003 0.725±0.001 0.839±0.001
RECLE 0.812±0.002 0.858±0.000 0.746±0.001 0.836±0.001 0.880±0.024 0.934±0.012 0.729±0.003 0.838±0.005

LC 0.560±0.085 0.700±0.028 0.611±0.046 0.715±0.007 0.715±0.018 0.720±0.007 0.701±0.018 0.790±0.011
DivideMix 0.515±0.016 0.733±0.014 0.535±0.000 0.730±0.000 0.734±0.009 0.720±0.014 0.654±0.025 0.710±0.007
CrowdLayer 0.802±0.008 0.878±0.007 0.757±0.008 0.798±0.009 0.852±0.003 0.920±0.002 0.676±0.014 0.722±0.011

LC+EBCC 0.581±0.070 0.687±0.029 0.825±0.024 0.845±0.019 0.758±0.010 0.830±0.012 0.705±0.018 0.784±0.004
DivideMix+EBCC 0.515±0.018 0.730±0.014 0.726±0.039 0.832±0.028 0.760±0.012 0.833±0.014 0.659±0.006 0.720±0.005
Triple+EBCC 0.814±0.004 0.872±0.000 0.893±0.003 0.968±0.004 0.890±0.001 0.938±0.003 0.737±0.003 0.825±0.007
Center+EBCC 0.814±0.004 0.866±0.003 0.826±0.016 0.884±0.018 0.844±0.005 0.909±0.005 0.742±0.006 0.848±0.003

TACMA 0.831±0.002 0.882±0.004 0.904±0.002 0.973±0.001 0.899±0.005 0.945±0.003 0.765±0.006 0.855±0.010

separated than the other methods, reducing the
difficulty of downstream classification tasks.

4.6 Robustness to Irresponsible Workers
We select some representatives from Groups 1-4
and draw the curves of accuracy on synthetic data
sets containing different number of irresponsible
workers in Figure 3. We can find that:

• Truth inference methods such as EBCC stay
stable facing different numbers of irresponsi-
ble workers. On the other hand, the accuracy
of other methods decreases when increasing
the number of irresponsible workers. This re-
sult may be explained by the fact that for meth-
ods including RLL-Bayesian, Triple, learn-
ing effective representations of items heavily
relies on correct labels, and hence becomes
harder as the labels become more noisy.

• TACMA maintains the highest accuracy of all
the methods. Unlike the two-stage method i.e.,
Triplet + EBCC, which gives equal weight
to each item and ignores temporal labeling
effects, TACMA is able to discover potential
conflicts in the short-term working memory
using the attention mechanism, and give low
training weights to the conflicting judgments.

4.7 Effect of Working Memory Sizes

We set the working memory size ranging from
3 to 11 to find the optimized length and at the
same time explore its influence on performance,
shown in Figure 4. The accuracy of our proposed
method goes up at the beginning with the increas-
ing working memory size, and the standard devia-
tions gradually become smaller at the same time. It
is reasonable because potential inconsistent judg-
ments among similar items cannot be found with-
out observing enough historical annotations. As
the working memory size continues extending, the
accuracy scores become relatively stable, indicat-
ing that there is sufficient evidence to estimate the
time-aware confidence of the current annotation.

4.8 Relations between Temporal-aware
Memory Confidence and Worker’s
Expertise

In this part we further explore the relations between
worker’s expertise and temporal-aware memory
confidence. To evaluate a worker’s expertise, a
Logistic Regression classifier is trained with labels
annotated by this same person, and the accuracy
on the corresponding test set is recorded. On the
other hand, the temporal-aware confidence of all

53

(a) Raw Embedding (b) RLL-MLE (c) RLL-Bayesian (d) RECLE (e) TACMA

Figure 2: Visualization of learned representations on the test set of Question data. The raw features of items are
fed into the representation network to obtain the semantic representations, and dimension reduction using t-SNE
method is performed for visualization.

Figure 3: Accuracy curves on synthetic data sets con-
taining different number of irresponsible annotators who
make random decisions.

Figure 4: The effect of different working memory sizes
on prediction accuracy on real-world data sets.

the judgments made by this worker is averaged.
We perform standardization on both accuracy

scores and the averaged temporal-aware confidence
scores within the corresponding data set, and put
the standardized values of all the 62 workers from
4 real-world data sets and 4 synthetic data sets
together in Figure 5, to reveal the universal rela-
tion between temporal-aware confidence and the
worker’s expertise. We can find a wide range of
intra-observer variability among different work-
ers, estimated by their temporal-aware confidence
scores. A strong positive correlation is found be-
tween averaged confidence and prediction accuracy
(pearson r = 0.844). Specifically, synthetic irre-
sponsible annotators, colored in blue, are automati-
cally clustered in the lower left corner, indicating
that the poor performances of the classifiers trained
with their labels derive from huge inner inconsis-
tencies in their judgments.

Figure 5: The relations between standardized temporal-
aware memory confidence and standardized prediction
accuracy of annotators in both real and synthetic data
sets. Most of the irresponsible annotators appear in the
lower left corner, indicating that there are internal con-
flicts in their judgments (low confidence), and therefore
LR models trained with these labels perform worse than
average.

54

5 Conclusion

We presented TACMA, an end-to-end framework
for language representation learning from crowd-
sourced labels. Comparing with traditional SRL
approaches, the advantages of our framework are:
(1) it is able to consider temporal labeling effects
within sequences of sample-level labeling tasks for
each worker; (2) it automatically computes and ag-
gregates sample-level confidence scores from multi-
ple workers which makes the training process more
effective. Experimental results on both synthetic
and real-world data sets demonstrates that our ap-
proach outperforms other state-of-the-art baselines
in terms of accuracy and AUC scores.

References
Eric Arazo, Diego Ortego, Paul Albert, Noel O’Connor,

and Kevin Mcguinness. 2019. Unsupervised label
noise modeling and loss correction. In ICML, pages
312–321.

Maarten AS Boksem, Theo F Meijman, and Mon-
icque M Lorist. 2005. Effects of mental fatigue on
attention: an erp study. Cognitive brain research,
25(1):107–116.

Alexander Philip Dawid and Allan M Skene. 1979.
Maximum likelihood estimation of observer error-
rates using the em algorithm. Journal of the Royal
Statistical Society: Series C (Applied Statistics),
28(1):20–28.

Gianluca Demartini, Djellel Difallah, and Philippe
Cudre-Mauroux. 2012. Zencrowd: Leveraging prob-
abilistic reasoning and crowdsourcing techniques for
large-scale entity linking. pages 469–478.

DN Elliott and WD Riach. 1965. Effect of repeated
practice with and without feedback upon discrimi-
nation performance. The Journal of the Acoustical
Society of America, 37(6):1194–1194.

Joseph L Fleiss. 1971. Measuring nominal scale agree-
ment among many raters. Psychological Bulletin,
76(5):378.

Benoît Frénay and Michel Verleysen. 2013. Classifica-
tion in the presence of label noise: a survey. IEEE
transactions on neural networks and learning sys-
tems, 25(5):845–869.

Aritra Ghosh, Himanshu Kumar, and PS Sastry. 2017.
Robust loss functions under label noise for deep neu-
ral networks. In AAAI, volume 31.

Melody Guan, Varun Gulshan, Andrew Dai, and Ge-
offrey Hinton. 2018. Who said what: Modeling in-
dividual labelers improves classification. In AAAI,
volume 32.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao
Xu, Weihua Hu, Ivor Tsang, and Masashi Sugiyama.
2018. Co-teaching: Robust training of deep neural
networks with extremely noisy labels. In NeurIPS,
pages 8527–8537.

Xinwei He, Yang Zhou, Zhichao Zhou, Song Bai, and
Xiang Bai. 2018. Triplet-center loss for multi-view
3d object retrieval. In CVPR, pages 1945–1954.

Robin M Hogarth and Hillel J Einhorn. 1992. Order ef-
fects in belief updating: The belief-adjustment model.
Cognitive psychology, 24(1):1–55.

Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-
Yi Lin, Serge Belongie, and Deborah Estrin. 2017.
Collaborative metric learning. WWW ’17, page
193–201, Republic and Canton of Geneva, CHE.
WWW Steering Committee.

David R. Karger, Sewoong Oh, and Devavrat Shah.
2011. Iterative learning for reliable crowdsourcing
systems. In NIPS, pages 1953–1961.

Nicolas Kaufmann, Thimo Schulze, and Daniel Veit.
2011. More than fun and money. worker motivation
in crowdsourcing-a study on mechanical turk. In
Amcis, volume 11, pages 1–11. Detroit, Michigan,
USA.

Hyun-Chul Kim and Zoubin Ghahramani. 2012.
Bayesian classifier combination. In Artificial Intelli-
gence and Statistics, pages 619–627.

Gregory Koch, Richard Zemel, and Ruslan Salakhut-
dinov. 2015. Siamese neural networks for one-shot
image recognition. In ICML Deep Learning Work-
shop, volume 2. Lille.

Kuang-Huei Lee, Xiaodong He, Lei Zhang, and Linjun
Yang. 2018. Cleannet: Transfer learning for scalable
image classifier training with label noise. In CVPR,
pages 5447–5456.

Chaoqun Li, Victor S Sheng, Liangxiao Jiang, and
Hongwei Li. 2016. Noise filtering to improve data
and model quality for crowdsourcing. Knowledge-
Based Systems, 107:96–103.

Junnan Li, Richard Socher, and Steven CH Hoi. 2019a.
Dividemix: Learning with noisy labels as semi-
supervised learning. In ICLR.

Qi Li, Yaliang Li, Jing Gao, Bo Zhao, Wei Fan, and
Jiawei Han. 2014. Resolving conflicts in heteroge-
neous data by truth discovery and source reliability
estimation. In SIGMOD, pages 1187–1198.

Yuan Li, Benjamin IP Rubinstein, and Trevor Cohn.
2019b. Truth inference at scale: A bayesian model
for adjudicating highly redundant crowd annotations.
In WWW, pages 1028–1038.

Yuan Li, Benjamin Rubinstein, and Trevor Cohn. 2019c.
Exploiting worker correlation for label aggregation
in crowdsourcing. In ICML, pages 3886–3895.

55

George A Miller. 1956. The magical number seven, plus
or minus two: Some limits on our capacity for pro-
cessing information. Psychological review, 63(2):81.

Yixin Nie, Xiang Zhou, and Mohit Bansal. 2020. What
can we learn from collective human opinions on nat-
ural language inference data? EMNLP.

Liu Qiang, Peng Jian, and Alexander Ihler. 2012. Varia-
tional inference for crowdsourcing. NIPS, 25.

Raykar, Vikas, C., Shipeng, Yu, Zhao, Linda, H.,
Valadez, and Gerardo. 2010. Learning from crowds.
JMLR.

Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel
Urtasun. 2018. Learning to reweight examples for ro-
bust deep learning. arXiv preprint arXiv:1803.09050.

Filipe Rodrigues and Francisco Pereira. 2018. Deep
learning from crowds. In AAAI, volume 32.

Florian Schroff, Dmitry Kalenichenko, and James
Philbin. 2015. Facenet: A unified embedding for
face recognition and clustering. In CVPR, pages 815–
823.

Björn Schuller, Stefan Steidl, Anton Batliner, Alessan-
dro Vinciarelli, Klaus Scherer, Fabien Ringeval, Mo-
hamed Chetouani, Felix Weninger, Florian Eyben,
Erik Marchi, et al. 2013. The interspeech 2013 com-
putational paralinguistics challenge: Social signals,
conflict, emotion, autism. In Proceedings INTER-
SPEECH 2013, 14th Annual Conference of the Inter-
national Speech Communication Association, Lyon,
France.

Arash Vahdat. 2017. Toward robustness against label
noise in training deep discriminative neural networks.
In NIPS, pages 5596–5605.

L Van, der Maaten and Ge Hinton. 2008. (visualiz-
ing high-dimensional data using t-sne. Journal of
Machine Learning Research, 9(2):2579–2605.

Wentao Wang, Tyler Derr, Yao Ma, Suhang Wang, Hui
Liu, Zitao Liu, and Jiliang Tang. 2020a. Learning
from incomplete labeled data via adversarial data
generation. In 2020 IEEE International Conference
on Data Mining (ICDM), pages 1316–1321. IEEE.

Wentao Wang, Guowei Xu, Wenbiao Ding, Yan Huang,
Guoliang Li, Jiliang Tang, and Zitao Liu. 2020b. Rep-
resentation learning from limited educational data
with crowdsourced labels. TKDE.

Jacob Whitehill, Ting-fan Wu, Jacob Bergsma, Javier R
Movellan, and Paul L Ruvolo. 2009. Whose vote
should count more: Optimal integration of labels
from labelers of unknown expertise. In NIPS, pages
2035–2043.

Rongkai Xia, Yan Pan, Hanjiang Lai, Cong Liu, and
Shuicheng Yan. 2014. Supervised hashing for image
retrieval via image representation learning. In AAAI.

Guowei Xu, Wenbiao Ding, Jiliang Tang, Songfan Yang,
Gale Yan Huang, and Zitao Liu. 2019. Learning
effective embeddings from crowdsourced labels: An
educational case study. In ICDE, pages 1922–1927.
IEEE.

Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z Li. 2014.
Deep metric learning for person re-identification. In
ICPR, pages 34–39. IEEE.

Matthew D Zeiler. 2012. Adadelta: an adaptive learning
rate method. arXiv preprint arXiv:1212.5701.

Ying Zhang, Xianghua Ding, and Ning Gu. 2018. Un-
derstanding fatigue and its impact in crowdsourcing.
In CSCWD, pages 57–62. IEEE.

Yuchen Zhang, Xi Chen, Dengyong Zhou, and Michael I
Jordan. 2014. Spectral methods meet em: A provably
optimal algorithm for crowdsourcing. In NIPS, pages
1260–1268.

Yudian Zheng, Guoliang Li, Yuanbing Li, Caihua Shan,
and Reynold Cheng. 2017. Truth inference in crowd-
sourcing: Is the problem solved? PVLDB, 10(5):541–
552.

Yaoyao Zhong, Weihong Deng, Mei Wang, Jiani Hu,
Jianteng Peng, Xunqiang Tao, and Yaohai Huang.
2019. Unequal-training for deep face recognition
with long-tailed noisy data. In CVPR, pages 7812–
7821.

56

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 57–63
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

Structure-aware Sentence Encoder in BERT-Based Siamese Network

Qiwei Peng David Weir Julie Weeds
University of Sussex

Brighton, UK
{qiwei.peng, d.j.weir, j.e.weeds}@sussex.ac.uk

Abstract

Recently, impressive performance on vari-
ous natural language understanding tasks has
been achieved by explicitly incorporating syn-
tax and semantic information into pre-trained
models, such as BERT and RoBERTa. How-
ever, this approach depends on problem-
specific fine-tuning, and as widely noted,
BERT-like models exhibit weak performance,
and are inefficient, when applied to unsuper-
vised similarity comparison tasks. Sentence-
BERT (SBERT) has been proposed as a
general-purpose sentence embedding method,
suited to both similarity comparison and
downstream tasks. In this work, we show
that by incorporating structural information
into SBERT, the resulting model outperforms
SBERT and previous general sentence en-
coders on unsupervised semantic textual simi-
larity (STS) datasets and transfer classification
tasks.

1 Introduction

Pre-trained models like BERT (Devlin et al., 2018)
and RoBERTa (Liu et al., 2019) have demonstrated
promising results across a variety of downstream
NLP tasks. Though BERT-like models have been
shown to capture hidden syntax structures (Clark
et al., 2019; Hewitt and Manning, 2019; Jawahar
et al., 2019), recent works have achieved perfor-
mance improvements on various natural language
understanding (NLU) tasks through the use of a
graph network that captures syntax and seman-
tics information. Xu and Yang (2019) demon-
strate the value of syntax information for pronoun
resolution tasks, using Relational Graph Convo-
lutional Networks (RGCNs) (Schlichtkrull et al.,
2018) to incorporate syntactic dependency graphs.
Wu et al. (2021) argue that semantics has not been
brought to the surface of pre-trained models and
propose to introduce semantic label information

into RoBERTa via RGCNs. Similar ideas have
been applied to information extraction (Santosh
et al., 2020), sentence-pair classification (Liu et al.,
2020) and sentiment analysis (Wang et al., 2020;
Yin et al., 2020) tasks. Though problem-specific
fine-tuning is required, these improvements sug-
gest that structural supervision is useful, and that
RGCNs serve as an effective structure encoder.

BERT can also be used as a general sentence
encoder, either by using the CLS token (the first
token of BERT output) or applying pooling over
its outputs. However, this fails to produce sentence
embeddings that can be used effectively for similar-
ity comparison. Furthermore, this method of using
BERT for similarity comparison is extremely inef-
ficient, requiring sentence pairs to be concatenated
and passed to BERT for every possible comparison.
In response, Sentence-BERT (SBERT) has been
proposed to alleviate this by fine-tuning BERT on
natural language inference (NLI) datasets using a
siamese structure (Reimers and Gurevych, 2019).
General-purpose sentence embeddings are gener-
ated which outperform previous sentence encoders
on both similarity comparison and transfer tasks.

In this paper, we show that it is possible to im-
prove the SBERT sentence encoder through the
use of explicit syntactic or semantic structure. In-
spired by SBERT’s success in producing general
sentence representations and previous efforts on
introducing structural information into pre-trained
models, we propose a model that combines the
two by training a BERT-RGCN model in a siamese
structure. Under specific structural supervision,
the proposed model is able to produce structure-
aware, general-purpose sentence embeddings. Our
empirical results show that it outperforms SBERT
and previous sentence encoders on unsupervised
similarity comparison and transfer classification
tasks. Furthermore, we find that the produced sen-
tence representation generalises better especially

57

on fine-grained classification tasks.

2 Related Work

Sentence encoders have been studied extensively
in years. Skip-Thought (Kiros et al., 2015) has
been trained to predict its surrounding sentences by
using current sentence in a self-supervised fashion.
Hill et al. (2016) proposed a sequential denoising
autoencoder (SDAE) to reconstruct given sentence
representations. InferSent (Conneau et al., 2017),
on the other hand, used labelled NLI datasets
to train a general-purpose sentence encoder in
a BiLSTM-based siamese structure. Cer et al.
(2018) proposed the Universal Sentence Encoder
(USE) model based on transformers (Vaswani et al.,
2017), and trained it with both unsupervised tasks
and supervised NLI tasks. Inspired by InferSent,
Sentence-BERT (SBERT) (Reimers and Gurevych,
2019) produces general-purpose sentence embed-
dings by fine-tuning BERT on NLI datasets in a
siamese structure, showing improved performance
on a variety of tasks.

Hidden syntax structures in pre-trained models
have been well explored. Various probing meth-
ods have been used to investigate hidden structures
(Clark et al., 2019; Hewitt and Manning, 2019;
Jawahar et al., 2019). The impact of external struc-
tures on pre-trained models has also been ques-
tioned. Glavaš and Vulić (2021) examined the ben-
efits of incorporating universal dependencies into
pre-trained models. Dai et al. (2021) showed that
the tree induced from pre-trained models could pro-
duce competitive results compared with external
trees. However, recent improvements have still
been observed on various NLU tasks by incorporat-
ing structural information into pre-trained models.
Yin et al. (2020) proposed SentiBERT to incorpo-
rate constituency tree into BERT for sentiment anal-
ysis. Xu and Yang (2019) modelled each sentence
as a directed dependency graph by using RGCNs,
and achieved large improvements on pronoun reso-
lution. Zhang et al. (2020) proposed a semantics-
aware BERT model by further encoding seman-
tic information with BERT using a GRU (Chung
et al., 2014). RGCNs have also been used by Wu
et al. (2021) to introduce semantic information into
RoBERTa, and achieved consistent improvements
when fine-tuned on problem-specific datasets. Sim-
ilar efforts can be seen where researchers try to
provide syntax information via self-attention mech-
anism (Bai et al., 2021; Li et al., 2020).

3 Model

Inspired by Reimers and Gurevych (2019), we train
our model in a siamese network to update weights
so as to produce similarity-comparable sentence
representations. The model we propose consists of
two components, as shown in Figure 1.

Figure 1: The proposed model in siamese structure

BERT: Each sentence is first fed into the pre-
trained BERT-base model to produce both a sen-
tence representation, by applying mean-pooling,
and an original contextualised sequence-length to-
ken representation, which is used to initialise a
RGCN.

Structure Information: We use Spacy depen-
dency parser (Honnibal et al., 2020) with its middle
model to obtain dependency parse trees for all input
sentences. We also experimented with the use of
semantic graphs1, since Wu et al. (2021) has shown
that semantic information benefits pre-trained mod-
els. However, we found semantic graphs to be
less effective than syntactic dependency trees when
evaluated on our development set, and as a result,
in the experiments below, we restrict our attention
to the use of syntactic dependency graphs.

RGCN: RGCNs, proposed by (Schlichtkrull
et al., 2018), can be viewed as a weighted mes-
sage passing process. At each RGCN layer, each
node’s representation will be updated by collect-
ing information from its neighbours and applying
edge-specific weighting:

hl+1
i = ReLU(W l

0h
l
i +

∑

r∈R

∑

j∈Nr
i

1

ci,r
W l
rh
l
j) (1)

1For semantic graphs, we use the semantic parser produced
by Che et al. (2019).

58

where N r
i and W l

r are the neighbours of node i and
the weight of relation r ∈ R, respectively. ci,r is
the normalisation constant and normally set to be
|N r

i | which is the number of neighbours under rela-
tion r. W l

0 is the self-loop weight. In our case, each
sentence is first parsed into a dependency tree, then
modelled as a labelled directed graph by an RGCN,
where nodes are words and edges are dependency
relations. Following Schlichtkrull et al. (2018),
we allow information to flow in both directions
(from head to dependent and from dependent to
head). Following Wu et al. (2021), we pass BERT
output through an embedding projection which is
made of an affine transformation and ReLU non-
linearity, then use the transformed representations
to initialise RGCN’s node representations. Since
BERT and Spacy use different tokenisation strate-
gies, we align them by taking the first subtoken as
its word representation from BERT for each word
in the RGCN. A structure-aware sentence represen-
tation is derived from RGCN’s output by applying a
mean-pooling over its node representations. During
training, rather than using ci,r = |N r

i |, we found
it best to apply the normalisation factor across re-
lation types, ci,r = ci =

∑
r |N r

i |, the number of
neighbours. We use a one-layer RGCN, as we find
that a deeper network lowers the performance.

Connect BERT and RGCN: The concatenation
of BERT and RGCN’s sentence representations are
then passed through a layer normalisation layer to
form the final sentence representation. Sentence
embeddings of given sentence-pair are then inter-
acted before passing to the final classifier for train-
ing. As for the interaction, we use the concatena-
tion of sentence embedding u, v and the element-
wise difference |u − v|, which has been found to
be the best concatenation mode by Reimers and
Gurevych (2019). In this siamese structure, all pa-
rameters are shared and will be updated correspond-
ingly. We use cross-entropy loss for optimisation.

4 Experiments

We compare our model with SBERT2, InferSent3,
USE4, average GloVe vectors, and also two strate-
gies using pre-trained BERT to produce sentence
representations (BERT-CLS and BERT-AVG). For

2https://github.com/UKPLab/sentence-transformers, we
use its BERT-base-nli-mean model

3https://github.com/facebookresearch/InferSent
4https://tfhub.dev/google/universal-sentence-encoder-

large/3

all experiments on these models, we use released
pre-trained models and scripts to produce sentence
embeddings.

4.1 Training Details

In order to produce general-purpose sentence em-
beddings, we follow SBERT in training the model
on a combination of the SNLI (Bowman et al.,
2015) and the MNLI datasets (Williams et al.,
2018). They contain 570, 000 and 430, 000 sen-
tence pairs, respectively, which are annotated as
contradiction, entailment, or neutral. Our model is
trained for one epoch, and we use a batch-size of
16, the Adam optimizer with learning rate 2e−5,
and a linear learning rate warm-up over 10% of
the training data. For RGCN layer, we use dropout
of 0.2 and hidden dimension of 512. Following
SBERT, we evaluate our model on the STS bench-
mark development set in Spearman rank correlation
for every 1, 000 steps during training, and save the
best model.

4.2 Evaluation - Unsupervised STS

First, we evaluate our model on semantic textual
similarity (STS) datasets. Here we use STS12-16
tasks (Agirre et al., 2012, 2013, 2014, 2015, 2016),
SICK-Relatedness (SICK-R) (Marelli et al., 2014)
test set and STS benchmark (STSb) (Cer et al.,
2017) test set. These datasets are labelled from
0 to 5 on semantic relatedness of sentence pairs.
We obtain these datasets via SentEval (Conneau
and Kiela, 2018). In this evaluation, we test dif-
ferent encoders’ performance without using any
task-specific training data.

Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R AVG

GloVe AVG 52.24 49.91 43.36 55.91 47.67 46.00 55.02 50.02

InferSent 48.42 67.37 61.41 72.87 66.12 64.33 62.95 63.35

USE 63.42 67.50 64.16 76.99 73.23 74.60 76.67 70.94

BERT-AVG 30.87 59.89 47.73 60.29 63.73 47.29 58.22 52.57

BERT-CLS 21.54 32.11 21.28 37.89 44.24 20.29 42.42 31.40

SBERT 70.97 76.53 73.19 79.09 74.30 76.98 72.91 74.85

Ours 72.51 77.05 74.06 80.90 76.20 78.50 73.58 76.11

Table 1: Results on STS12-16, STSb and SICK-R.
Spearman rank correlation ρ between the cosine simi-
larity of sentence representations and the gold labels is
calculated. ρ× 100 is reported

The results are given in Table 1, and show that
our model outperforms SBERT on all 7 tasks,
obtaining the highest average score, and demon-
strating the benefits of including explicit syntax
structure during supervision. Both SBERT and

59

our model perform worse than USE on SICK-R.
However, as observed by Reimers and Gurevych
(2019), USE is trained on various datasets includ-
ing question-answering pairs, NLI, online forums
and news, which appears to be particularly suitable
to the data of SICK-R. Both BERT-AVG and BERT-
CLS perform poorly which reflects their weakness
as general-purpose sentence encoders.

4.3 Evaluation - Transfer Tasks

While the best results for BERT-like models is
achieved with problem-specific fine-tuning, an eval-
uation on transfer tasks provides a way to test
the encoder’s generalisation ability and represen-
tation quality. Following Reimers and Gurevych
(2019), we use SentEval with logistic regression
to test different encoders on 8 classification tasks:
sentiment analysis, MR (Pang and Lee, 2005);
CR (Hu and Liu, 2004); SST-5/SST-2 (Socher
et al., 2013); question-type, TREC (Li and Roth,
2002); subjectivity-objectivity, SUBJ (Pang and
Lee, 2004); phrase-level opinion polarity, MPQA
(Wiebe et al., 2005); and paraphrase detection,
MRPC (Dolan et al., 2004). These datasets are
provided by SentEval.

As shown in Table 2, the proposed model out-
performs previous encoders in general though the
difference between SBERT and our model is rel-
atively small. Our model performs significantly
worse than USE on TREC, which may be due to the
fact that USE is pre-trained on question-answering
data, which appears to be beneficial to the TREC
question-type classification task. Unlike previous
poor performance on STS datasets, BERT-CLS and
BERT-AVG produce good results on classification
tasks. This shows that the relevant information is
encoded in BERT-CLS and BERT-AVG, they just
lack the ability to produce similarity-comparable
sentence embeddings. Both SBERT and our model
perform worse than BERT-AVG and BERT-CLS
on SUBJ task, which suggests that, while gaining
on sentiment analysis tasks, fine-tuning on NLI
datasets leads to information loss on recognising
the subjectivity of a sentence.

Extraction Difficulty As we have seen, the dif-
ference between SBERT and our model in our pre-
vious transfer comparison is small. Our hypothesis
is that, since we concatenate the outputs of BERT
and RGCN, the representations produced by our
model are more complex, and that simple logistic
regression lacks the ability to extract useful infor-

GloVe AVG BERT-AVG BERT-CLS InferSent USE SBERT Ours

MPQA 87.64±0.11 87.84±0.08 88.17±0.05 90.32±0.12 86.52±0.09 89.81±0.06 89.75±0.12

SST-5 44.35±0.11 47.33±0.22 48.03±0.45 44.93±1.14 47.67±0.06 48.57±0.53 49.19±1.01

SST-2 80.02±0.24 85.69±0.09 87.21±0.17 84.15±0.33 85.78±0.11 87.8±0.28 87.99±0.28

SUBJ 91.26±0.11 95.29±0.05 95.48±0.1 92.47±0.1 93.85±0.16 94.03±0.12 93.81±0.16

TREC 80.36±2.13 90.24±0.8 91.36±0.83 87.94±0.56 92.36±0.32 86.4±0.83 87.8±0.68

MRPC 72.79±0.21 73.43±0.77 71.68±0.48 75.33±0.37 71.2±0.61 74.68±0.75 74.9±0.74

MR 77.26±0.19 81.38±0.08 82.12±0.15 81.71±0.23 79.48±0.1 82.77±0.22 82.59±0.13

CR 78.9±0.1 87.12±0.31 87.33±0.23 86.34±0.52 86.03±0.23 88.99±0.16 89.02±0.13

AVG 76.57 81.04 81.42 80.40 80.36 81.63 81.88

Table 2: Results on SentEval evaluation with logistic
regression. For MR, CR, MPQA and SUBJ, we use 10-
fold cross validation and report accuracy on test-fold.
For remaining tasks, results are reported on test set. We
run 5 times with random seeds and report mean with
standard deviation.

SBERT Ours
MPQA 89.98±0.16 90.11±0.13
SST-5 49.1±0.56 50.5±0.3
SST-2 88.51±0.71 88.39±0.39
SUBJ 94.1±0.12 94.05±0.17
TREC 86.96±0.32 88.4±0.58
MRPC 74.79±1.28 75.01±0.85

MR 82.7±0.16 82.56±0.14
CR 88.89±0.24 88.94±0.26

AVG 81.88 82.25

Table 3: Results on SentEval evaluation with MLP.
Cells marked as bold only when the mean minus std
is no worse than the mean plus std of the other model

mation from such complex embeddings. To assess
this, we replace the logistic regression with a sin-
gle hidden layer MLP (128 hidden units) which is
widely used as a probing classifier. We focus on
the comparison between our model and SBERT,
re-running these two models with 5 random seeds,
and report accuracy in the same fashion, except
we adopt a more strict bold strategy to mark the
difference (as explained in the caption).

As shown in Table 3, for some tasks, e.g. MR
and CR, both models show stable performance
cross different classifiers, and their performance re-
mains similar when this more powerful extractor is
used. However, for SST-5 (5-way sentiment classi-
fication) and TREC (6-way question-type classifica-
tion), we see that clear improvements are obtained
by our model, suggesting that the additional syn-
tax supervision that we bring in through RGCNs
is beneficial for fine-grained classification tasks.
A similar pattern of results was found when we
experimented with a 2 hidden layer MLP.

60

5 Conclusion

In this work, we show that SBERT can be improved
by explicitly incorporating structural information.
By using RGCNs to incorporate syntactic struc-
ture into supervision, our model is able to produce
structure-aware, general-purpose sentence embed-
dings that achieve improved results on both unsu-
pervised similarity comparison and transfer clas-
sification tasks, when compared against previous
sentence encoders. By extending probing classi-
fiers, we further show that our syntax-informed
supervision method is particularly beneficial for
fine-grained tasks such as SST-5 and TREC.

6 Acknowledgement

We thank all anonymous reviewers for their helpful
comments, and NVIDIA for the donation of the
GPU that supported our work.

References
Eneko Agirre, Carmen Banea, Claire Cardie, Daniel

Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Iñigo Lopez-Gazpio, Montse Maritxalar, Rada
Mihalcea, German Rigau, Larraitz Uria, and Janyce
Wiebe. 2015. SemEval-2015 task 2: Semantic tex-
tual similarity, English, Spanish and pilot on inter-
pretability. In Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval 2015),
pages 252–263, Denver, Colorado. Association for
Computational Linguistics.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Rada Mihalcea, German Rigau, and Janyce
Wiebe. 2014. Semeval-2014 task 10: Multilingual
semantic textual similarity. In Proceedings of the
8th international workshop on semantic evaluation
(SemEval 2014), pages 81–91.

Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab,
Aitor Gonzalez-Agirre, Rada Mihalcea, German
Rigau, and Janyce Wiebe. 2016. SemEval-2016
task 1: Semantic textual similarity, monolingual
and cross-lingual evaluation. In Proceedings of the
10th International Workshop on Semantic Evalua-
tion (SemEval-2016), pages 497–511, San Diego,
California. Association for Computational Linguis-
tics.

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor
Gonzalez-Agirre. 2012. SemEval-2012 task 6: A
pilot on semantic textual similarity. In *SEM 2012:
The First Joint Conference on Lexical and Compu-
tational Semantics – Volume 1: Proceedings of the
main conference and the shared task, and Volume
2: Proceedings of the Sixth International Workshop

on Semantic Evaluation (SemEval 2012), pages 385–
393, Montréal, Canada. Association for Computa-
tional Linguistics.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-
Agirre, and Weiwei Guo. 2013. *SEM 2013 shared
task: Semantic textual similarity. In Second Joint
Conference on Lexical and Computational Seman-
tics (*SEM), Volume 1: Proceedings of the Main
Conference and the Shared Task: Semantic Textual
Similarity, pages 32–43, Atlanta, Georgia, USA. As-
sociation for Computational Linguistics.

Jiangang Bai, Yujing Wang, Yiren Chen, Yaming Yang,
Jing Bai, Jing Yu, and Yunhai Tong. 2021. Syntax-
BERT: Improving pre-trained transformers with syn-
tax trees. In Proceedings of the 16th Conference of
the European Chapter of the Association for Com-
putational Linguistics: Main Volume, pages 3011–
3020, Online. Association for Computational Lin-
guistics.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder for english.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 169–174.

Wanxiang Che, Longxu Dou, Yang Xu, Yuxuan Wang,
Yijia Liu, and Ting Liu. 2019. HIT-SCIR at MRP
2019: A unified pipeline for meaning representa-
tion parsing via efficient training and effective en-
coding. In Proceedings of the Shared Task on Cross-
Framework Meaning Representation Parsing at the
2019 Conference on Natural Language Learning,
pages 76–85, Hong Kong. Association for Compu-
tational Linguistics.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence mod-
eling. In NIPS 2014 Workshop on Deep Learning,
December 2014.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D Manning. 2019. What does bert look
at? an analysis of bert’s attention. In Proceedings of

61

the 2019 ACL Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
276–286.

Alexis Conneau and Douwe Kiela. 2018. SentEval: An
evaluation toolkit for universal sentence representa-
tions. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 670–680.

Junqi Dai, Hang Yan, Tianxiang Sun, Pengfei Liu, and
Xipeng Qiu. 2021. Does syntax matter? a strong
baseline for aspect-based sentiment analysis with
roberta. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 1816–1829.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004.
Unsupervised construction of large paraphrase cor-
pora: exploiting massively parallel news sources. In
Proceedings of the 20th international conference on
Computational Linguistics, pages 350–es.

Goran Glavaš and Ivan Vulić. 2021. Is supervised syn-
tactic parsing beneficial for language understanding
tasks? an empirical investigation. In Proceedings of
the 16th Conference of the European Chapter of the
Association for Computational Linguistics: Main
Volume, pages 3090–3104, Online. Association for
Computational Linguistics.

John Hewitt and Christopher D Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4129–4138.

Felix Hill, Kyunghyun Cho, and Anna Korhonen. 2016.
Learning distributed representations of sentences
from unlabelled data. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1367–1377.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy:
Industrial-strength Natural Language Processing in
Python.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 168–177.

Ganesh Jawahar, Benoı̂t Sagot, and Djamé Seddah.
2019. What does bert learn about the structure of
language? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3651–3657.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S Zemel, Antonio Torralba, Raquel Urta-
sun, and Sanja Fidler. 2015. Skip-thought vectors.
In Proceedings of the 28th International Conference
on Neural Information Processing Systems-Volume
2, pages 3294–3302.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics.

Zhongli Li, Qingyu Zhou, Chao Li, Ke Xu, and Yunbo
Cao. 2020. Improving bert with syntax-aware local
attention. arXiv preprint arXiv:2012.15150.

Tao Liu, Xin Wang, Chengguo Lv, Ranran Zhen, and
Guohong Fu. 2020. Sentence matching with syntax-
and semantics-aware bert. In Proceedings of the
28th International Conference on Computational
Linguistics, pages 3302–3312.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zampar-
elli. 2014. A SICK cure for the evaluation of compo-
sitional distributional semantic models. In Proceed-
ings of the Ninth International Conference on Lan-
guage Resources and Evaluation (LREC’14), pages
216–223, Reykjavik, Iceland. European Language
Resources Association (ELRA).

Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proceedings of
the 42nd Annual Meeting of the Association for Com-
putational Linguistics (ACL-04), pages 271–278.

Bo Pang and Lillian Lee. 2005. Seeing stars: Ex-
ploiting class relationships for sentiment categoriza-
tion with respect to rating scales. In Proceed-
ings of the 43rd Annual Meeting of the Association
for Computational Linguistics (ACL’05), pages 115–
124, Ann Arbor, Michigan. Association for Compu-
tational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing

62

and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for
Computational Linguistics.

T.y.s.s Santosh, Debarshi Kumar Sanyal, Plaban Kumar
Bhowmick, and Partha Pratim Das. 2020. SaSAKE:
Syntax and semantics aware keyphrase extraction
from research papers. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 5372–5383, Barcelona, Spain (Online).
International Committee on Computational Linguis-
tics.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne Van Den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In European semantic web confer-
ence, pages 593–607. Springer.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, pages 6000–6010.

Kai Wang, Weizhou Shen, Yunyi Yang, Xiaojun Quan,
and Rui Wang. 2020. Relational graph attention net-
work for aspect-based sentiment analysis. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3229–
3238.

Janyce Wiebe, Theresa Wilson, and Claire Cardie.
2005. Annotating expressions of opinions and emo-
tions in language. Language resources and evalua-
tion, 39(2):165–210.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Zhaofeng Wu, Hao Peng, and Noah A Smith. 2021.
Infusing finetuning with semantic dependencies.
Transactions of the Association for Computational
Linguistics, 9:226–242.

Yinchuan Xu and Junlin Yang. 2019. Look again at
the syntax: Relational graph convolutional network

for gendered ambiguous pronoun resolution. In Pro-
ceedings of the First Workshop on Gender Bias in
Natural Language Processing, pages 96–101.

Da Yin, Tao Meng, and Kai-Wei Chang. 2020. Sen-
tibert: A transferable transformer-based architecture
for compositional sentiment semantics. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 3695–3706.

Zhuosheng Zhang, Yuwei Wu, Hai Zhao, Zuchao Li,
Shuailiang Zhang, Xi Zhou, and Xiang Zhou. 2020.
Semantics-aware bert for language understanding.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 9628–9635.

63

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 64–71
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

Preserving Cross-Linguality of Pre-trained Models via
Continual Learning

Zihan Liu, Genta Indra Winata, Andrea Madotto, Pascale Fung
Center for Artificial Intelligence Research (CAiRE)

Department of Electronic and Computer Engineering
The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

zihan.liu@connect.ust.hk

Abstract

Recently, fine-tuning pre-trained language
models (e.g., multilingual BERT) to down-
stream cross-lingual tasks has shown promis-
ing results. However, the fine-tuning process
inevitably changes the parameters of the pre-
trained model and weakens its cross-lingual
ability, which leads to sub-optimal perfor-
mance. To alleviate this problem, we lever-
age continual learning to preserve the original
cross-lingual ability of the pre-trained model
when we fine-tune it to downstream tasks. The
experimental result shows that our fine-tuning
methods can better preserve the cross-lingual
ability of the pre-trained model in a sentence
retrieval task. Our methods also achieve better
performance than other fine-tuning baselines
on the zero-shot cross-lingual part-of-speech
tagging and named entity recognition tasks.

1 Introduction

Recently, multilingual language models (Devlin
et al., 2019; Conneau and Lample, 2019), pre-
trained on extensive monolingual or bilingual re-
sources across numerous languages, have been
shown to enjoy surprising cross-lingual adaptation
abilities, and fine-tuning them to downstream cross-
lingual tasks has achieved promising results (Pires
et al., 2019; Wu and Dredze, 2019). Taking this
further, better pre-trained language models have
been proposed to improve the cross-lingual perfor-
mance, such as using larger amounts of pre-trained
data with larger pre-trained models (Conneau et al.,
2019; Liang et al., 2020), and utilizing more tasks
in the pre-training stage (Huang et al., 2019).

However, we observe that multilingual BERT
(mBERT) (Devlin et al., 2019), a pre-trained lan-
guage model, forgets the masked language model
(MLM) task that has been learned and partially
loses the cross-lingual ability (from a cross-lingual

English (en) Spanish (es) French (fr) Greek (el)
0

50

100

150

200

250

P
P

L.

10.68 3.51 8.63 2.08

216.84

16.72

40.54

5.62

Masked Language Model (MLM) Perplexity

mBERT
fine-tuned mBERT

es→ en fr→ en it→ en el→ en
0

10

20

30

40

50

60

A
cc

.

56.26
53.92

44.76

35.68
37.72

34.12

26.12

15.12

Cross-lingual Sentence Retrieval (XSR) Accuracy

mBERT
fine-tuned mBERT

Figure 1: Masked language model and cross-lingual
sentence retrieval results before and after fine-tuning
mBERT to the English part-of-speech tagging task.

sentence retrieval (XSR)1 experiment) after being
fine-tuned to the downstream task in English, as
shown in Figure 1, which results in sub-optimal
cross-lingual performance to target languages.

In this paper, we consider a new direction to
improve the cross-lingual performance, which is
to preserve the cross-lingual ability of pre-trained
multilingual models in the fine-tuning stage. Mo-
tivated by the continual learning (Ring, 1994; Re-
buffi et al., 2017; Kirkpatrick et al., 2017; Lopez-
Paz and Ranzato, 2017) that aims to learn a new
task without forgetting the previous learned tasks,
we adopt a continual learning framework to con-
strain the parameter learning in the pre-trained mul-
tilingual model when we fine-tune it to downstream

1This task is to find the correct translation sentence from
the target corpus given a source language sentence.

64

tasks in the source language. Specifically, based
on the results in Figure 1, we aim to maintain the
cross-linguality of pre-trained multilingual models
by utilizing MLM and XSR tasks to constrain the
parameter learning in the fine-tuning stage.

Experiments show that our methods help pre-
trained models better preserve the cross-lingual
ability. Additionally, our methods surpass other
fine-tuning baselines on the strong multilingual
model mBERT and XLMR (Conneau et al., 2019)
on zero-shot cross-lingual part-of-speech tagging
(POS) and named entity recognition (NER) tasks.

2 Related Work

Cross-lingual methods, which alleviate the need for
obtaining large amounts of annotated data in tar-
get languages, have been applied to multiple NLP
tasks, such as task-oriented dialogue systems (Chen
et al., 2018; Liu et al., 2019), part-of-speech tag-
ging (Wisniewski et al., 2014; Zhang et al., 2016;
Kim et al., 2017), named entity recognition (May-
hew et al., 2017; Ni et al., 2017; Xie et al., 2018;
Liu et al., 2021), abstractive summarization (Duan
et al., 2019; Zhu et al., 2019), and dependency pars-
ing (Schuster et al., 2019; Ahmad et al., 2019). Re-
cently, multilingual language models (Devlin et al.,
2019; Conneau and Lample, 2019; Huang et al.,
2019; Conneau et al., 2019), pre-trained on a large-
scale data corpus across a great many languages,
have significantly improved the cross-lingual per-
formance. However, the corresponding fine-tuning
techniques have been less studied. Wu and Dredze
(2019) investigated the effectiveness of fine-tuning
mBERT by freezing its partial bottom layers, and
Muller et al. (2021) further analyzed the fine-tuning
of mBERT.

3 Methodology

In this section, we first describe the gradient
episodic memory (GEM) (Lopez-Paz and Ranzato,
2017), a continual learning framework, which we
adopt to constrain the fine-tuning process. Then,
we introduce how we fine-tune the pre-trained mul-
tilingual model with GEM.

3.1 Gradient Episodic Memory (GEM)

We consider a scenario where the model has already
learned n− 1 tasks and needs to learn the n-th task.
The main feature of GEM is an episodic memory
Mk that stores a subset of the observed examples
from task k (k ∈ [1, n]). The loss at the memories

from the k-th task can be defined as

L(fθ,Mk) =
1

|Mk|
∑

(xi,k,yi)∈Mk

L(fθ(xi, k), yi),

(1)
where the model fθ is parameterized by θ. In order
to maintain the performance of the model in the
previous n− 1 tasks while learning the n-th task,
GEM utilizes the losses for the previous n−1 tasks
in Eq. (1) as inequality constraints, avoiding their
increase but allowing their decrease. Concretely,
when observing the training samples (x, y) from
the n-th task, GEM solves the following problem:

minimizeθ L(fθ(x, n), y)
subject to

L(fθ,Mk) ≤ L(fn−1θ ,Mk) for all k < n, (2)

where fn−1θ is the model before learning task n.

3.2 Fine-tuning with GEM
We consider two tasks (n = 2) in total by applying
GEM to the fine-tuning of pre-trained multilingual
models, namely, mBERT and XLMR. The first task
is either what the pre-trained models have already
learned (MLM) or the ability that they already pos-
sess (XSR), and the second task is the fine-tuning
task. We follow Eq. (2) when we fine-tune the
pre-trained models:

minimizeθ L(fθ(x, T2), y)
subject to L(fθ, T1) ≤ L(f∗θ , T1), (3)

where T1 and T2 denote the first and second tasks,
respectively, and f∗θ represents the original pre-
trained model. When the MLM task is considered
as the first task, we constrain the fine-tuning pro-
cess of the pre-trained model by preventing it from
forgetting its original task after fine-tuning so as
to better preserve the original cross-lingual abil-
ity. When the XSR task is considered as the first
task, on the other hand, we prevent the pre-trained
model from losing its cross-lingual ability after
fine-tuning. We also consider incorporating both
MLM and XSR as the first task.

4 Experiments

4.1 Dataset
For the POS task, we use Universal Dependencies
2.0 (Nivre et al., 2017) and select English (en),
French (fr), Spanish (es), Greek (el) and Russian
(ru) to evaluate our methods. For the NER task,

65

Model MLM XSR (Spanish to English) XSR (Italian to English)
en es fr el ru P@1 P@5 P@10 P@1 P@5 P@10

mBERT 10.68 3.51 8.63 2.08 2.70 56.26 68.80 73.92 44.76 61.32 66.70
Naive Fine-tune 216.80 16.72 40.54 5.62 8.61 37.72 52.20 58.43 26.12 37.46 46.69

w/ frozen layers 95.17 9.33 30.04 3.44 5.34 38.16 53.92 59.16 28.69 42.74 48.76
Multi-Task Learning
MTF w/ MLM 9.50 5.10 8.62 2.56 3.47 35.93 50.41 56.20 24.79 37.18 45.46
MTF w/ XSR 121.50 100.10 96.50 773.00 180.80 75.40 80.88 85.76 75.94 85.44 88.29
MTF w/ Both 9.89 9.45 11.30 3.80 4.16 77.84 82.57 87.97 74.38 83.29 86.95
Continual Learning
GEM w/ MLM 12.99 6.62 11.39 2.87 4.22 42.90 57.26 63.58 31.66 44.16 50.16
GEM w/ XSR 252.9 26.73 55.95 11.84 16.46 63.65 75.45 80.56 63.56 78.18 83.42
GEM w/ Both 12.16 6.40 10.62 3.40 4.30 64.34 76.23 81.42 64.12 79.35 84.59

Table 1: Experiments on MLM and XSR tasks based on mBERT. Models other than mBERT are fine-tuned to the
English POS task. The underlined numbers in the MLM task denote that the performance is close to mBERT’s. The
bold numbers in the XSR task denote the best performance after fine-tuning without using the XSR supervision.

we use CoNLL 2002 (Tjong Kim Sang, 2002) and
CoNLL 2003 (Sang and De Meulder, 2003), which
contain English (en), German (de), Spanish (es)
and Dutch (nl), to evaluate our methods. For both
tasks, we consider English as the source language
and other languages as target languages.

4.2 Baselines

We compare our methods to several baselines.
Naive Fine-tune (Wu and Dredze, 2019) is to
add one linear layer on top of the pre-trained
model while fine-tuning with L2 regularization.
Fine-tune with Partial Layers Frozen (Wu and
Dredze, 2019) is to fine-tune pre-trained multilin-
gual models by freezing the partial bottom layers.
And Multi-Task Fine-tune (MTF) is to fine-tune
pre-trained multilingual models on both the fine-
tuning task and additional tasks (MLM and XSR).

4.3 Training Details

We conduct the MLM task with two settings.
First, we only utilize the English Wikipedia cor-
pus (MLM (en)) since we observe the catastrophic
forgetting in the English MLM task as in Figure 1.
Second, we utilize both the source and target lan-
guages Wikipedia corpus (MLM (all)). The first
setting is used in our main experiments. Note that
we do not use all pre-trained languages in mBERT
for the MLM task because it would make the fine-
tuning process very time-consuming. For the XSR
task, we leverage the sentence pairs between the
source and target languages from the Europarl par-
allel corpus (Koehn, 2005).2

2More training details are in the appendix.

5 Results & Analysis

Does GEM preserve the cross-lingual ability?
From Table 1, we can see that naive fine-tuning
mBERT significantly decreases the MLM perfor-
mance, especially in English. Since mBERT is
fine-tuned to the English task, the English subword
embeddings are fine-tuned, which makes mBERT
lose more MLM task information in English. Naive
fine-tuning also makes the XSR performance of
mBERT drop significantly. We observe that fine-
tuning with partial layers frozen is able to some-
what prevent the MLM performance from getting
worse, while fine-tuning with GEM based on that
task almost preserves the original MLM perfor-
mance of mBERT. Although we only use English
data in the MLM task, using GEM based on the
MLM task still preserves the task-related param-
eters that are useful for other languages. Corre-
spondingly, we can see that GEM w/ MLM achieves
better XSR performance than Naive Fine-tune w/
frozen layers, which shows that GEM helps better
preserve the cross-lingual ability of mBERT.

In addition, although GEM w/ XSR aggravates
the catastrophic forgetting in the MLM task, it is
able to significantly improve the XSR performance
due to the usage of the XSR supervision. Further-
more, incorporating both the MLM and XSR tasks
can better preserve the performance in both tasks.

Does GEM improve the cross-lingual perfor-
mance? From Table 2, we can see that our meth-
ods consistently surpass the fine-tuning baselines
on all target languages in the POS and NER tasks.
In terms of the average performance, our methods
outperform the baselines by an around or more

66

Model POS NER
en es fr el ru avg† en es de nl avg†

Naive Fine-tune 96.23 82.95 89.12 84.21 85.45 85.43 91.97 74.96 69.56 77.57 74.03
w/ frozen layers 96.07 83.41 89.41 85.54 85.17 85.88 91.90 75.27 70.23 77.89 74.46

Multi-Task Learning
MTF w/ MLM 94.47 83.01 88.08 84.48 80.46 84.01 91.82 71.47 67.90 74.91 71.43
MTF w/ XSR 96.39 82.41 87.05 72.51 86.09 82.01 91.85 74.02 68.55 75.67 72.75
MTF w/ Both 95.63 83.52 89.07 85.21 83.10 85.28 91.74 71.87 68.12 74.86 71.62
Continual Learning
GEM w/ MLM 97.39 84.65 89.74 86.04 86.93 86.84‡ 91.93 76.45 70.48 78.61 75.18‡

GEM w/ XSR 96.97 84.53 89.83 86.53 86.36 86.81‡ 91.89 76.29 70.74 78.77 75.27‡

GEM w/ Both 97.04 84.91 90.32 86.44 86.13 86.95‡ 91.45 76.20 70.98 79.19 75.46‡

Table 2: Zero-shot results on POS and NER tasks based on mBERT. †The average scores excluding en. ‡The
results are statistically significant compared to all baselines with p < 0.01 by t-test.

Task Models en es fr el ru avg

MLM

mBERT 10.7 3.51 8.63 2.08 2.70 5.52
MTF w/ MLM (en) 9.50 5.10 8.62 2.56 3.47 5.85
MTF w/ MLM (all) 9.33 4.19 4.89 2.34 3.04 4.76
GEM w/ MLM (en) 13.0 6.62 11.4 2.87 4.22 7.62
GEM w/ MLM (all) 11.8 4.18 6.83 2.29 2.99 5.62

POS

Naive Fine-tune 96.2 82.9 89.1 84.2 85.5 85.4
MTF w/ MLM (en) 94.5 83.0 88.1 84.5 80.5 84.0
MTF w/ MLM (all) 94.7 77.5 83.3 81.9 77.0 79.9
GEM w/ MLM (en) 97.4 84.7 89.7 86.0 86.9 86.8
GEM w/ MLM (all) 97.2 83.9 89.2 85.9 87.1 86.5

Table 3: Ablation study on the two settings of using the
MLM task based on mBERT.

than 1% improvement.3 In addition, constraining
mBERT fine-tuning on the MLM task shows simi-
lar performance to constraining it on the XSR task.
We conjecture that the effectiveness of both meth-
ods is similar, although they come from different
angles. When the information of both tasks is uti-
lized, GEM is able to slightly improve the perfor-
mance. We find that the experimental results on
XLMR are consistent with mBERT.

GEM vs. MTF From Table 1, we notice that us-
ing the MLM task, MTF achieves lower perplexity
than GEM since it aggressively trains mBERT on
this task. However, we observe that MTF w/ MLM
makes the performance of the XSR, POS and NER
tasks worse than Naive Fine-tune, and we speculate
that MTF pushes mBERT to be overfit on the MLM
task, instead of preserving its cross-lingual ability.
Meanwhile, we can see that GEM regularizes the
loss of the training on the MLM task to avoid catas-
trophic forgetting of previously trained languages,
and conserve the cross-linguality of the pre-trained
multilingual models.

In addition, we observe that adding XSR objec-

3The results of XLMR are included in the appendix.

tive to the training cause the MLM performance
worse. Although MTF achieves the best perfor-
mance in the XSR task since it directly fine-tunes
mBERT on that task, we can see from Table 2 that
GEM w/ XSR boosts the cross-lingual performance
of downstream tasks, while MTF w/ XSR has the
opposite effect. We speculate that brutally fine-
tuning mBERT on the XSR task (MTF w/ XSR) just
makes mBERT learn the XSR task, while using
GEM to constrain the fine-tuning on the XSR task
can preserve its cross-lingual ability of mBERT. In-
corporating both the MLM and XSR tasks further
improves the performance for GEM, while MTF
still performs worse than Naive Fine-tune.

Ablation Study From Table 3, we can see that
using GEM to constrain fine-tuning on MLM with
all languages (GEM w/ MLM (all)) achieves bet-
ter performance than it does with only English
(GEM w/ MLM (en)) on the MLM task since more
MLM supervision signals are provided, while their
performances in the POS task are similar. Intu-
itively, since GEM w/ MLM is able to improve the
cross-lingual performance, constraining on more
languages should give better performance. We con-
jecture, however, that the constraint with all lan-
guages could be too aggressive, so mBERT might
tend to be overfit to the monolingual MLM task
in all languages instead of preserving its origi-
nal cross-lingual ability. In addition, we observe
that fine-tuning mBERT on the MLM task (MTF)
would get worse when more languages are utilized.

6 Conclusion

In this paper, we propose to preserve the cross-
linguality of pre-trained language models in the
fine-tuning stage. To do so, we adopt a continual

67

learning framework, GEM, to constrain the param-
eter learning in pre-trained multilingual models
based on the MLM and XSR tasks when we fine-
tune them to downstream tasks. Experiments on
the MLM and XSR tasks illustrate that our methods
can better preserve the cross-lingual ability of pre-
trained models. Furthermore, our methods achieve
better performance than fine-tuning baselines for
the strong multilingual models mBERT and XLMR
on the zero-shot cross-lingual POS and NER tasks.

Acknowledgement

We want to say thanks to the anonymous re-
viewers for the insightful reviews and construc-
tive feedback. This work is partially funded by
ITF/319/16FP and MRP/055/18 of the Innovation
Technology Commission, the Hong Kong SAR
Government.

References

Wasi Ahmad, Zhisong Zhang, Xuezhe Ma, Eduard
Hovy, Kai-Wei Chang, and Nanyun Peng. 2019. On
difficulties of cross-lingual transfer with order differ-
ences: A case study on dependency parsing. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 2440–2452.

Wenhu Chen, Jianshu Chen, Yu Su, Xin Wang, Dong
Yu, Xifeng Yan, and William Yang Wang. 2018. Xl-
nbt: A cross-lingual neural belief tracking frame-
work. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 414–424.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Advances
in Neural Information Processing Systems 32, pages
7059–7069. Curran Associates, Inc.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Xiangyu Duan, Mingming Yin, Min Zhang, Boxing
Chen, and Weihua Luo. 2019. Zero-shot cross-
lingual abstractive sentence summarization through
teaching generation and attention. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 3162–3172.

Haoyang Huang, Yaobo Liang, Nan Duan, Ming Gong,
Linjun Shou, Daxin Jiang, and Ming Zhou. 2019.
Unicoder: A universal language encoder by pre-
training with multiple cross-lingual tasks. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 2485–2494.

Joo-Kyung Kim, Young-Bum Kim, Ruhi Sarikaya, and
Eric Fosler-Lussier. 2017. Cross-lingual transfer
learning for pos tagging without cross-lingual re-
sources. In Proceedings of the 2017 conference on
empirical methods in natural language processing,
pages 2832–2838.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences,
114(13):3521–3526.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. Citeseer.

Yaobo Liang, Nan Duan, Yeyun Gong, Ning Wu, Fen-
fei Guo, Weizhen Qi, Ming Gong, Linjun Shou,
Daxin Jiang, Guihong Cao, et al. 2020. Xglue:
A new benchmark dataset for cross-lingual pre-
training, understanding and generation. arXiv
preprint arXiv:2004.01401.

Zihan Liu, Jamin Shin, Yan Xu, Genta Indra Winata,
Peng Xu, Andrea Madotto, and Pascale Fung. 2019.
Zero-shot cross-lingual dialogue systems with trans-
ferable latent variables. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1297–1303.

Zihan Liu, Genta I Winata, Samuel Cahyawijaya, An-
drea Madotto, Zhaojiang Lin, and Pascale Fung.
2021. On the importance of word order information
in cross-lingual sequence labeling. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 35, pages 13461–13469.

David Lopez-Paz and Marc’Aurelio Ranzato. 2017.
Gradient episodic memory for continual learning. In
Advances in Neural Information Processing Systems,
pages 6467–6476.

Stephen Mayhew, Chen-Tse Tsai, and Dan Roth. 2017.
Cheap translation for cross-lingual named entity
recognition. In Proceedings of the 2017 conference

68

on empirical methods in natural language process-
ing, pages 2536–2545.

Benjamin Muller, Yanai Elazar, Benoı̂t Sagot, and
Djamé Seddah. 2021. First align, then predict: Un-
derstanding the cross-lingual ability of multilingual
bert. arXiv preprint arXiv:2101.11109.

Jian Ni, Georgiana Dinu, and Radu Florian. 2017.
Weakly supervised cross-lingual named entity recog-
nition via effective annotation and representation
projection. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1470–1480.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al. 2017.
Universal dependencies 2.0. lindat/clarin digital li-
brary at the institute of formal and applied linguis-
tics, charles university, prague.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual bert? In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4996–5001.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov,
Georg Sperl, and Christoph H Lampert. 2017. icarl:
Incremental classifier and representation learning.
In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 2001–2010.

Mark Bishop Ring. 1994. Continual learning in rein-
forcement environments. Ph.D. thesis, University of
Texas at Austin Austin, Texas 78712.

Erik Tjong Kim Sang and Fien De Meulder. 2003. In-
troduction to the conll-2003 shared task: Language-
independent named entity recognition. In Proceed-
ings of the Seventh Conference on Natural Language
Learning at HLT-NAACL 2003, pages 142–147.

Tal Schuster, Ori Ram, Regina Barzilay, and Amir
Globerson. 2019. Cross-lingual alignment of con-
textual word embeddings, with applications to zero-
shot dependency parsing. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 1599–1613.

Erik F Tjong Kim Sang. 2002. Introduction to
the conll-2002 shared task: language-independent
named entity recognition. In proceedings of the 6th
conference on Natural language learning-Volume
20, pages 1–4.

Guillaume Wisniewski, Nicolas Pécheux, Souhir
Gahbiche-Braham, and François Yvon. 2014. Cross-
lingual part-of-speech tagging through ambiguous
learning. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1779–1785.

Shijie Wu and Mark Dredze. 2019. Beto, bentz, be-
cas: The surprising cross-lingual effectiveness of
bert. In Proceedings of the 2019 Conference on

Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
833–844.

Jiateng Xie, Zhilin Yang, Graham Neubig, Noah A
Smith, and Jaime G Carbonell. 2018. Neural cross-
lingual named entity recognition with minimal re-
sources. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 369–379.

Yuan Zhang, David Gaddy, Regina Barzilay, and
Tommi Jaakkola. 2016. Ten pairs to tag–
multilingual pos tagging via coarse mapping be-
tween embeddings. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1307–1317.

Junnan Zhu, Qian Wang, Yining Wang, Yu Zhou, Jiajun
Zhang, Shaonan Wang, and Chengqing Zong. 2019.
Ncls: Neural cross-lingual summarization. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3045–3055.

69

A Training Details

We utilize the Wikipedia corpus for the MLM task.
Given that using all the Wikipedia corpus will
greatly lower the training speed, we randomly sam-
ple 1M sentences for each language for the training
of MTF w/ MLM and GEM w/ MLM, and we use
another 100K sentences for each language to eval-
uate the model performance on the MLM task. We
take the English-Spanish (en-es), English-Italian
(en-it), English-French (en-fr), English-Greek (en-
el), English-German (en-de), and English-Dutch
(en-nl) parallel datasets from the Europarl paral-
lel corpus. We ramdomly select 90% of them for
the training of GEM w/ MLM and GEM W/ XSR,
and the rest 10% of them are used for evaluating
the model performance on the XSR task. We use
accuracy for evaluating the POS task, BIO-based
F1-score for evaluating the NER task, perplexity
for evaluating the MLM task, and P@k for evalu-
ating the XSR task. Concretely, P@k (k=1,5,10)
accounts for the fraction of pairs for which the cor-
rect translation of the source language sentence is
in the k-th nearest neighbors. We use an early stop
strategy which is based on the average performance
over the target languages to select the model. We
use the Adam optimizer with a learning of 1e-5.
We use batch size 16 for the all tasks, namely, POS,
NER, MLM and XSR. In each iteration, we use
GEM to constrain the fine-tuning on a batch of
data samples from the MLM and XSR tasks. Our
models are trained on V100. The number of param-
eters for the mBERT-based model is around 178.6
million and for the XLMR-based model is around
278.9 million.

samples en es de nl
Train 14,040 8,319 12,152 15,802
Validation 3,249 1,914 2,867 2,895
Test 3,452 1,516 3,005 5,194

Table 4: Number of samples for each language in the
CoNLL 2002 and CoNLL 2003 NER datasets.

samples en es fr el ru
Train 12,543 14,187 14,450 1,662 3,850
Validation 2,002 1,400 1,476 403 579
Test 2,007 426 416 456 601

Table 5: Number of samples for each language in the
Universal Dependencies 2.0 dataset for the POS task.

B Data Statistics

The data statistics of the NER and POS datasets are
shown in Table 4 and Table 5, respectively.

C Results

C.1 XLMR Experiments
Experiments on POS and NER tasks for XLMRbase
are illustrated in Table 6 (in the next page). The
results on XLMR are consistent with mBERT.

C.2 XSR Experiments
Experiments on more language pairs are illustrated
in Table 7 (in the next page). The results on French
to English, Greek to English, German to English
and Dutch to English are consistent with the XSR
results shown in the main paper (i.e., Spanish to
English and Italian to English).

70

Model POS NER
en es fr el ru avg† en es de nl avg†

Naive Fine-tune 96.55 84.61 90.37 87.23 89.32 87.88 91.95 75.86 69.59 77.83 74.42
w/ frozen layers 96.40 84.63 90.33 86.27 89.44 87.67 91.53 76.12 68.79 78.26 74.39

Multi-Task Learning
MTF w/ MLM 96.43 82.37 89.70 83.90 86.73 85.68 91.90 74.55 67.70 78.13 73.46
MTF w/ XSR 96.93 84.94 89.08 86.93 89.27 87.55 91.93 75.35 70.58 77.65 74.53
MTF w/ Both 96.31 83.55 89.90 87.01 84.94 86.35 91.67 75.45 67.80 77.91 73.72
Continual Learning
GEM w/ MLM 96.87 85.90 90.57 87.25 89.43 88.29 91.93 76.43 70.98 78.77 75.39
GEM w/ XSR 96.86 85.01 89.87 88.14 89.90 88.23 91.94 76.61 71.19 79.28 75.69
GEM w/ Both 96.10 85.63 90.99 89.02 91.36 89.25 91.91 76.48 70.53 79.86 75.62

Table 6: Zero-shot results on POS and NER tasks based on XLMR. †The average scores excluding en.

Model XSR (French to English) XSR (Greek to English) XSR (German to English) XSR (Dutch to English)
P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10

mBERT 53.92 65.44 72.12 35.68 59.40 65.31 52.10 64.71 69.43 54.56 66.69 72.54
Naive Fine-tune 34.12 50.03 57.90 15.12 33.35 42.69 33.68 49.23 56.45 34.79 51.13 58.01

w/ frozen layers 35.50 52.23 59.87 16.98 35.63 44.74 34.20 50.97 58.11 35.29 53.24 59.77
Multi-Task Learning
MTF w/ MLM 32.49 48.67 56.23 14.67 32.29 40.64 32.37 47.45 55.48 32.86 50.35 56.55
MTF w/ XSR 74.20 78.65 83.69 73.94 77.59 83.47 75.48 80.67 85.44 75.83 85.28 88.35
MTF w/ Both 75.30 79.34 84.86 74.25 78.39 84.63 77.93 82.67 87.86 74.42 83.57 86.68
Continual Learning
GEM w/ MLM 39.79 55.62 63.34 21.33 39.60 47.36 37.70 53.44 60.53 38.35 54.89 63.06
GEM w/ XSR 63.11 67.81 71.92 61.79 65.37 70.43 63.14 75.52 80.85 63.90 78.33 83.46
GEM w/ Both 63.84 68.50 72.05 61.54 64.38 69.50 64.41 76.39 81.70 64.36 79.65 84.72

Table 7: Experiments on XSR tasks based on mBERT. Models other than mBERT are fine-tuned to the English
POS task. The bold numbers in the XSR task denote the best performance after fine-tuning without using the XSR
supervision.

71

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 72–82
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

Text Style Transfer: Leveraging a Style Classifier
on Entangled Latent Representations

Xiaoyan Li
Department of Computer Science

University of Toronto
Toronto, Canada

xiaoy.li@mail.utoronto.ca

Sun Sun Yunli Wang
Digital Technologies Research Centre

National Research Council Canada
Waterloo, Ottawa, Canada

Sun.Sun,Yunli.Wang@nrc.gc.ca

Abstract

Learning a good latent representation is es-
sential for text style transfer, which generates
a new sentence by changing the attributes of
a given sentence while preserving its content.
Most previous work adopt disentangled latent
representation learning to realize style trans-
fer. We propose a novel text style transfer algo-
rithm with entangled latent representation, and
introduce a style classifier that can regulate
the latent structure and transfer style. More-
over, our algorithm for style transfer applies to
both single-attribute and multi-attribute trans-
fer. Extensive experimental results show that
our method generally outperforms state-of-the-
art approaches.

1 Introduction

Text generation, which leverages knowledge in
computational linguistics and artificial intelligence
for automatically generating natural language texts,
is the core problem for a number of Natural
Language Processing (NLP) applications such as
speech to text, conversational/dialogue system
(Banchs and Li, 2012; Kim et al., 2007), and text
summarization (Ozsoy et al., 2011; Liu et al., 2018).
Text style transfer can be thought of as a control-
lable text generation task, which aims to restyle
a given sentence by changing specific attributes
(sentiment, tense, formality, or politeness) while
preserving the remaining attributes and the con-
tent. Successful applications of text style transfer
include paraphrasing (Han et al., 2017), formality
transfer (Rao and Tetreault, 2018), and text simpli-
fication (Cao et al., 2020).

A good latent representation is essential to the
performance of text style transfer. Regarding the
structure of the latent representation, the current
work for text style transfer can be generally catego-
rized into the disentangled representation and the
entangled representation. In particular, the former

method aims to learn disentangled latent represen-
tations by separating the style information from
the content, while the latter method learns latent
representations that entangle the style with the con-
tent. Disentangled representations are often inter-
pretable and consequently most of the current work
adopts this method (Hu et al., 2017; Yang et al.,
2018; Zhao et al., 2018; John et al., 2019; Bao et al.,
2019). However, learning disentangled representa-
tions is often challenging; and multiple attribute-
specific decoders are commonly required for text
generation, which is undesirable especially when
transferring multiple attributes. The entangled rep-
resentations, on the other hand, has been shown
to achieve promising performance on the content
preservation and to produce fluent sentences with a
much less complicated architecture (Lample et al.,
2019; Wang et al., 2019; Liu et al., 2020).

Although existing models achieve adequate per-
formance on text style transfer, most of them are
designed specifically for style transfer (Hu et al.,
2017; Shen et al., 2017; Yang et al., 2018; Lample
et al., 2019; John et al., 2019; Bao et al., 2019;
Wang et al., 2019), and meanwhile lack of explicit
modeling of the latent space. We argue that the
quality of latent representations is crucial for text
generation. In this study, we focus on building a
generative model that supports both text style trans-
fer and text generation with regularized entangled
latent representations.

Our contributions can be summarized as follows:
(1) We extend the framework of adversarial auto-
encoder by including a classifier for both the regu-
larization of the latent space and text style transfer.
We show that the classifier can divide sentences
with different attributes into different regions in
the latent space and thus greatly improve the per-
formance of style transfer. (2) We provide algo-
rithms for both single-attribute and multi-attribute
style transfer. We empirically compare with sev-

72

eral state-of-the-art baselines and show that our
proposed method achieves promising results.

2 Related Work

In this section, we first introduce several Genera-
tive Adversarial Network (GAN)-regularized au-
toencoders, which have been successfully used for
text manipulation. Then we review some recent
methods for text style transfer focusing on the la-
tent representation.

2.1 Probabilistic Generative Autoencoders
GANs (Goodfellow et al., 2014) are popular gener-
ative models consisting of two basic components:
a generator for generating new samples and a dis-
criminator for distinguishing real samples from
generated samples. Makhzani et al. (2015) intro-
duce adversarial autoencoders (AAEs), which turn
basic autoencoders into probabilistic models. The
encoder Eφ maps the input x to a latent represen-
tation z, z = Eφ(x). The decoder Dθ reconstructs
the input from z as x̂ = Dθ(z). The discrimina-
tor Dw is introduced to distinguish between z and
samples from a prior distribution Pz . The objective
of AAEs is formulated below:

min
φ,θ

max
w
Lrec(φ, θ)− λLadv(φ,w),

Lrec(φ, θ) = Ex∼Px [−logpθ(x|Eφ(x))],
Ladv(φ,w) = Ez∼Pz [−logDw(z)]

+ Ex∼Px [−log(1−Dw(Eφ(x)))].

Shen et al. (2020) adopt AAEs and introduce
denoising adversarial autoencoders (DAAEs) with
a smoother structure of latent space. Based on the
Wasserstein autoencoders (WAEs) (Tolstikhin et al.,
2018; Zhao et al., 2018) propose adversarially reg-
ularized autoencoders (ARAE) by extending AAEs
for discrete sequences. Unlike AAEs which use a
fixed prior distribution, Zhao et al. (2018) adopt
a learnable prior parameterized by the generator
of a GAN . Particularly, the discriminator and the
generator are first learned by using the latent rep-
resentation from the encoder. The discriminator
is then used to adversarially train the encoder by
minimizing the discrepancy between the posterior
and the prior.

2.2 Methods for Text Style Transfer
Disentangled latent representation Most work
on text style transfer is based on learning disentan-
gled latent representations (Hu et al., 2017; Shen

et al., 2017; Yang et al., 2018; John et al., 2019;
Bao et al., 2019), where the attributes are sepa-
rated from the content. For example, to generate
a sentence with desired attributes, the decoder in
(Hu et al., 2017) takes the style-independent latent
representation and the desired style as the input.
Shen et al. (2017) adopts adversarial training by
using a binary CNN-based discriminator to deter-
mine whether a generated sentence is successfully
transferred or not. Yang et al. (2018) use a target
domain language model instead of a conventional
binary classifier as the discriminator.

Entangled latent representation On the con-
trary, some recent work proposes to learn latent
representations that entangle the style with the con-
tent. Although the learning of disentangled latent
representations is unnecessary, other mechanisms
are needed to guide the style transfer. For exam-
ple, Lample et al. (2019) apply the back-translation
mechanism (referred to as BTDAE) and the algo-
rithm achieves the state-of-the-art performance on
the content preservation. Wang et al. (2019) trans-
fer text style by updating the latent representation
(referred to as TAE) based on the Fast Gradient
Sign Method (FGSM) (Goodfellow et al., 2015).
Liu et al. (2020) also use a gradient-based optimiza-
tion to update the latent representation.

Style classifier A classifier is commonly used
in a style discriminator to enforce the desired style
(Hu et al., 2017; Yang et al., 2018; Tian et al., 2018).
For example, ARAE (Zhao et al., 2018) imposes a
style classifier on the latent representation of a sen-
tence to ensure the transferred sentence containing
the target attribute.

The main differences between our method and
ARAE (Zhao et al., 2018) can be summarized as
follows: 1) Representation structure: the latent rep-
resentation of ARAE can be considered as disen-
tangled while ours is entangled. 2) Style classifier:
the style classifier we adopt helps the clustering
of latent representations based on attributes while
the classifier in ARAE only enforces the target
contribute on transferred sentences. 3) To realize
style transfer, ARAE uses the classifier to train
the encoder net adversarially, such that the latent
representation of the given text could contain the
information of the target attribute. However, in our
method, the style transfer is realized by directly
modifying the latent representation. 4) Due to the
adversarial training process ARAE requires mul-
tiple decoders to perform style transfer, while our

73

method can use only one decoder.

3 Our Method

We first briefly explain text style transfer as follows.
Generally, a source or an input sentence includes
both the content and the attribute. In Figure 1,
we use (x, y) to include both the input x and the
attribute y. As a concrete example, a sentence “this
place is a great place to live !” has two types of
attribute: the positive sentiment and the present
tense. The positive sentiment is reflected by the
word “great” and the present tense is reflected by
the word “is”. All remaining words in this sentence
are considered as the content. For single-attribute
style transfer, only one attribute (e.g. sentiment)
will be transferred, and the other attributes and the
content will be kept the same. In the above example
with the sentiment style transfer, the sentence will
be converted into a negative sentence: “this place is
a terrible place to live !” by flipping the sentiment
label y from positive to negative. In contrast, for
multi-attribute style transfer, two or more attributes
will be transferred simultaneously while the rest
will be preserved. Again, in the above example
the sentence will be converted into “this place was
a terrible place to live !” by transferring both the
sentiment and the tense.

3.1 Network Architecture

We propose a generative model that can be used
for both text style transfer and text generation. The
network architecture of our method is illustrated
in Figure 1, where the top one is for training and
the bottom one is for style transfer. The network
for training includes three parts: an autoencoder, a
GAN, and a style classifier. Specifically, the autoen-
coder is learned to reconstruct the input sentences.
The discriminator of the GAN is to distinguish the
aggregated posterior of the encoder from the prior,
which is modeled by the generator of the GAN.
The style classifier uses the latent representation
as the input, and classifies latent representations
based on their attributes. The classifier can also be
used in style transfer, which will be explained later.

3.2 Objective Function for Training

The overall objective function for training includes
three parts: the reconstruction loss, the adversarial
loss induced by the GAN, and the classification
loss. Similar to ARAE (Zhao et al., 2018), we use
the Wasserstein distance to measure the discrep-

Figure 1: Network architecture: training (top) and text
style transfer (bottom).

ancy between two distributions. Denote the param-
eters of the encoder, the decoder, the discriminator,
the generator, and the classifier as φ, θ, w, ψ, and
φc, respectively. The overall objective function is
defined as follows.

L(φ, θ, φc) = Lrec(φ, θ) + λwLcrit(φ)
+ λcLclas(φ, φc),

where

Lrec(φ, θ) = Ex∼Px [−logpθ(x|Eφ(x))],
Lcrit(φ) = Ez̃∼Pz [fw(z̃)]− Ex∼Px [fw(Eφ(x))],
Lclas(φ, φc) = Ex∼Px [−logpφc(y|Eφ(x))].

In the above expressions, the variable z̃ is the
output of the generator Gψ(s), where the noise
s ∈ N (0, I); y is the label of the source attribute;
and the critic function fw of the discriminator is
obtained by a min-max optimization:

min
ψ

max
w
Lcrit(ψ,w) = Ex∼Px [fw(Eφ(x))]

− Ez̃∼Pz [fw(z̃)].

We summarize the training algorithm in Algo-
rithm 1. First, the autoencoder is trained by mini-
mizing the reconstruction loss, i.e., min

φ,θ
Lrec(φ, θ).

Next, based on the latent representation from the en-
coder, the encoder and the style classifier are jointly
trained by minimizing the classification loss, i.e.,
min
φ,φc
Lclas(φ, φc). Meanwhile, the critic function

fw and the generator of the GAN are learned via the
min-max optimization min

ψ
max
w
Lcrit(ψ,w). Fi-

nally, the critic function fw is utilized to adver-
sarially train the encoder, i.e., minφ Lcrit(φ). We

74

emphasize that we do not explicitly disentangle the
attributes from the content in the latent represen-
tation. Therefore, to implement style transfer, the
style classifier is crucial, which guides the cluster-
ing of the entangled latent representations based on
their attributes.

Algorithm 1: Training Algorithm.
Inputs: Px input distribution; Eφ encoder; Gψ

generator; fw discriminator/critic function
for each training iteration do

// Train the encoder and decoder
for reconstruction(φ, θ).

Sample {x(i)}mi=1 ∼ Px and compute
z(i) = Eφ(x(i)) ;

Backprop loss:
Lrec(φ, θ) = − 1

m

∑m
i=1 logpθ(x(i)|z(i)) ;

// Train the attribute
classifier(φc) and optimize
the encoder using the
classifier regularisation(φ).

Sample {x(i)}mi=1 ∼ Px and save attribute y(i);
Backprop loss:
Lclas(φc, φ) =
− 1
m

∑m
i=1 logpφc(y

(i)|Eφ(x(i)));

// Train the
discriminator/critic
function(w).

Sample {x(i)}mi=1 ∼ Px and
{s(i)}mi=1 ∼ N (0, I) ;

Compute z(i) = Eφ(x(i));
Backprop loss:
min
ψ

max
w
Lcrit(w,ψ) =

1
m

∑m
i=1 fw(z

(i))− 1
m

∑m
i=1 fw(Gψ(s(i))) ;

// Train the encoder
adversarially(φ).

Sample {x(i)}mi=1 ∼ Px ;
compute z̃(i) = Gψ(s(i)) ;
Backprop loss:
Lcrit(φ) =
1
m

∑m
i=1 fw(Eφ(x(i)))− 1

m

∑m
i=1 fw(z̃

(i)) ;
end

3.3 Style Transfer
After training the network, we can implement text
style transfer (as shown at the bottom of Figure 1).
We summarize the algorithm for style transfer in
Algorithm 2, which works for both single-attribute
and multi-attribute style transfer. Normally for
multi-attribute style transfer, multiple style clas-
sifiers are required: each corresponding to an at-
tribute. To make the network scalable, we instead
use a single style classifier by combining the la-
bels of attributes. In this case, each attribute la-
bel corresponds to an attribute-combination (such

Algorithm 2: Transfer Algorithm.
Inputs: input distribution Px; encoder Eφ;

well-trained classifier Cφc ; the initial weights
w = {wj}; decay coefficient λ; target
attribute y′; threshold t; maximal iterations I;
attribute vector v; the weight of attribute
vector k.

Result: A target latent representation ẑf
(i) or ẑv

(i).
Sample {x(i)}mi=1 ∼ Px and compute
z(i) = Eφ(x(i)) ;

// Method 1: based on Fast
Gradient Sign Method.

for each wj ∈ w do
ẑ(i) = z(i) − w5z ∗Lclas(Cφc(z

(i)), y′(i)) ;
for |Cφc(z

(i))− y′(i)| > t do
it++ ;
wj = λwj ;
ẑf

(i) =

z(i) − w5z ∗Lclas(Cφc(z
(i)), y′(i)) ;

if it > I then
break ;

end
end

end

// Method 2: based on vector

arithmetic. x
(i)
s are the samples

with source attribute and x
(i)
t

are the samples with target
attribute.

Sample {x(i)
s }ni=1 ∼ Px and {x(i)

t }ni=1 ∼ Px ;
compute z

(i)
s = Eφ(x(i)

s) and compute
z
(i)
t = Eφ(x(i)

t) ;
Calculate the attribute vector
v = 1

n

∑n
i=1 z

(i)
s − 1

n

∑n
i=1 z

(i)
t ;

ẑ
(i)
v = z(i) ± k ∗ v

as present-positive, past-positive, present-negative,
and past-negative with both the tense and the senti-
ment as the attributes for transferring).

To perform style transfer, given an input sen-
tence, we first get its latent representation as the
output of the encoder. With the entangled latent
representation, the key of style transfer is how to
update the latent representation of the source sen-
tence. To achieve that, we adopt two different but
commonly used updates: the fast gradient based
and the vector arithmetic based. To obtain the tar-
get sentence with the desired attribute, we then feed
the updated latent representation to the decoder.

Fast gradient based: FGSM is employed by
Wang et al. (2019) to update the latent representa-
tion for style transfer. Concretely, the latent rep-
resentation is updated along the gradient of the
classification loss with the step size w. A set w
contains a few step sizes with an increasing order.
We sequentially test these step sizes until obtaining

75

the desired latent representation. This is to maxi-
mally preserve the content of the sentence and also
to prevent the modification of the latent presenta-
tion from falling into a local optimum. In each
iteration, the updated latent representation ẑf is
given as follows:

ẑf = z − w5z ∗Lclas(Cφc(z), y′),

where Lclas represents a style classifier loss, Cφc
is a well-trained classifier, and y′ represents the
target label. The detailed algorithm is displayed in
Method 1 of Algorithm 2.

Vector arithmetic based: In several studies
e.g., Zhao et al. (2018); Shen et al. (2020), the la-
tent vector arithmetic based method is employed in
text style transfer or text interpolation. Specifically,
the latent representation z of the source sentence is
modified by an attribute vector “v”. For example,
assume that the source attribute is positive. When
transferring the attribute from positive to negative
we can update z by z − v; and when transferring
from negative to positive we can update z by z+v.
The same as Shen et al. (2020), the attribute vector
“v” uses the mean of the latent representations of
100 samples with the source attribute and 100 sam-
ples with the target attribute from the validation set.
For multi-attribute transfer, the attribute vector v is
computed in the same way. The only difference is
that the label of the source attribute and the target
attribute corresponds to an attribute-combination as
explained before. The updated latent representation
ẑv can be formulated as follows:

ẑv = z ± k ∗ v,

where k is a hyperparameter denoting the weight
associated with the attribute vector.

4 Experiments

In this section, we first visualize the latent rep-
resentation of our method, and then compare our
method with several baselines, namely, TAE (Wang
et al., 2019), ARAE (Zhao et al., 2018), and DAAE
(Shen et al., 2020) for single-attribute and multiple-
attribute text style transfer. We then evaluate our
model on text generation and compare it with
ARAE.

4.1 Datasets

We use Yelp and Amazon datasets for evaluation.

Yelp: This dataset consists of Yelp restaurant
and business reviews (Li et al., 2018), which in-
cludes 444K training samples, 4K validation sam-
ples, and 1K test samples.

Amazon: This dataset includes product reviews
from Amazon (He and McAuley, 2016), which
includes 555K training samples, 2K validation
samples, and 1K test samples.

On both Yelp and Amazon datasets, reviews with
a rating score above three are considered as posi-
tive samples, otherwise are considered as negative
samples.

4.2 Experimental setups

In our experiment, similar to ARAE (Zhao et al.,
2018), we use one layer LSTM with 200 hidden
units for both the encoder and the decoder. Both
the generator and the discriminator in the GAN use
simple MLP networks. The style classifier is built
by a shallow MLP network with two hidden layers,
as our experiment indicates that too many layers
can degrade the performance of the classifier.

The weighting parameters λw and λc are set
to 0.1 on Yelp and 1 on Amazon. In the fast
gradient method, the set of the initial weights w
is set to {0.005, 0.006, 0.007, 0.008, 0.009, 0.01},
where the weights are ordered increasingly.

4.3 Evaluation

Following previous studies, for both automatic and
human evaluations, we assess the performance of
style transfer from three perspectives: transfer con-
trol, content preservation, and fluency. In auto-
matic evaluation, three commonly used metrics are
adopted: the transfer rate, the BLEU score, and the
Perplexity (PPL) score.

Transfer control: It evaluates whether the style
of the source sentences is correctly flipped. The
transfer rate is the percentage of the corrected trans-
ferred sentences, and we use a fastText classifier
(Joulin et al., 2017) to determine that.

Content preservation: It evaluates how the
content is preserved in the transferred sentences.
We use n-gram statistics (4-gram) of the BLEU
score (Papineni et al., 2002) to quantify the content
preservation against the references (Li et al., 2018).

Fluency: It evaluates the grammatical structure
and the naturalness of the generated (or transferred)
text sentences. We use a language model KenLM
(Heafield, 2011) to calculate the PPL score of text
sentences for evaluating fluency.

76

4.4 Evaluation on Latent Representation

4.4.1 Visualization
We show the projected latent representation of both
the source and the target sentences and compare
it with TAE (Wang et al., 2019). To better show
the structure of the latent representation, we use
the visualization tool t-SNE (van der Maaten and
Hinton, 2008) in 2-dimension. Figure 2(a) shows
the latent representations of 1000 source samples
with positive and negative labels. Figure 2(b) and
Figure 2(c) show the latent representations of six
target samples, which are updated by FGSM. w[i]
in these two figures denotes the i-th step size in
the set w, and a larger value of i indicates a larger
value of w[i].

In our framework, both the GAN and the style
classifier help the regularization of the latent repre-
sentation. Figure 2(a) indicates that in our method,
the latent representations tend to form two clusters.
Specifically, the positive samples tend to locate at
the bottom while the negative samples tend to lo-
cate on the top. In contrast, the positive and the
negative samples in TAE are generally mixed to-
gether. In Figure 2(c), as the value of the step size
w increases in our method, the latent representation
of the positive samples tends to move towards the
bottom, which corresponds to the position of the
positive cluster. In contrast, the latent representa-
tion of the negative samples tends to move towards
the top, which corresponds to the position of the
negative cluster. This observation clearly shows
the guidance of the style classifier on clustering
the latent representations. In comparison, in Figure
2(b), without the GAN and the style classifier in
TAE, the latent representation of each target sample
needs to be updated along different directions.

4.4.2 Evaluation of Latent Representation
via K-nearest-neighbours

It is desirable that close latent representations lead
to semantically similar sentences after feeding la-
tent representations to the decoder. Such property
indicates the smoothness of the latent space. In this
experiment, we find k = 9 nearest neighbours of
the latent representation of a sentence “service is
terrible and won’t return.”, and then generate sen-
tences by feeding these latent representations to the
decoder. It is expected that the generated sentences
are close to the source sentence in terms of the sen-
timent attribute and the content. For comparison,
we consider four differ network architectures and

(a) Projected latent representations in TAE (left) and in our
method (right).

(b) Projected target latent representations with FGSM update
in TAE.

(c) Projected target latent representations with FGSM update
in our method.

Figure 2: Comparison between our method and TAE
on projected latent representations.

show the generated sentences in Table 1.

• TAE: The generated sentences contain both
the positive and the negative samples. More-
over, many of them have different contents
that are related to “place” or “location” instead
of the source content “service” or “return”.

• TAE+GAN: We regularize the latent repre-
sentation in TAE by a GAN. Although all
sentences are related to the source content
“service” their sentiment attributes are largely
different.

• TAE + classifier: We add a style classifier
in TAE. Different from TAE+GAN, the gen-
erated sentences have the same negative at-
tribute but some sentences deviate from the
source content “service” or “return”.

• Our method: Our network architecture in-
cludes both the GAN and a style classifier.

77

All generated sentences have the same neg-
ative attribute and are related to the source
content “service” or “return”.

Table 1: Evaluation of the smoothness of the latent
space via k-nearest-neighbours. The source sentence
is “service is terrible and won’t return ”.

TAE TAE + GAN

service was terrible . service is great and friendly .
their service is terrible . service isn’t that great either .

service is great and friendly . service is mediocre and slow .
this place is terrible ! service is slow and horrible .

service is slow and horrible . service is lacking and food is mediocre .
this location is terrible . the service is friendly and fast .
service is always good . prices are good and the service is great .

service was bad . service is quick and friendly .
everything was great and i will return ! the service is always friendly and good .

TAE + classifier guidance Our method

service was terrible . service is n’t that great either .
their service is terrible . i wo n’t be back .

food was terrible . the service is n’t frequent enough .
this place is terrible . will not return to this place .

service is slow and horrible . needless to say we wo n’t be back !
the waiter was terrible . service was n’t too bad - nice people .

i wo n’t be back . the service was not that professional !
service is mediocre and slow . the service did n’t get any better .

terrible service . service is n’t too bad , but could be better .

4.5 Evaluation of Style Transfer

4.5.1 Single-Attribute Style Transfer
We compare our method with TAE by using FGSM
to update the latent representation since TAE is
only designed with FGSM (Table 2). TAE has a
very low transfer rate in experiments. This however
leads to high BLEU scores and low PPL scores as
most target sentences are the same as the source
sentences. By contrast, our method can success-
fully transfer most sentences, and leads to decent
BLEU and PPL scores.

Table 2: Comparison between our method and TAE for
sentiment transfer on Yelp.

Methods Transfer ↑ BLEU ↑ PPL ↓
TAE
w = 2 0.24 37.98 42.08
w = 4 0.25 35.70 48.73
w = 6 0.25 33.33 56.50

Our method:
w = 0.005 0.76 25.74 70.16
w = 0.007 0.80 25.16 72.70
w = 0.01 0.87 23.90 75.46

We also compare the performance of our meth-
ods with ARAE and DAAE using the vector arith-
metic based update on latent representations for
style transfer. As mentioned before, the vector
arithmetic based update can be used to evaluate
the smoothness of the latent space. In Table 3, we

compare with two baselines on both Yelp and Ama-
zon and display the results that achieve the best
trade-off among the three evaluation metrics. The
hyperparameter k of vector arithmetic method is
chosen based on the performance in the validation
set. Our method achieves the highest transfer rate
and a comparable BLEU score with ARAE on Yelp,
while ARAE achieves the lowest PPL score. On
Amazon, our method obtains the best performance
on the transfer rate and the BLEU score with a
slightly higher PPL score than ARAE. By contrast,
DAAE does not perform well on both datasets es-
pecially on Amazon.

Table 3: Evaluation results of style transfer based on
the vector arithmetic based update on Yelp and Ama-
zon.

Methods Transfer ↑ BLEU ↑ PPL ↓
ARAE±1.5v 0.536 20.08 64.75

Yelp DAAE±2.0v 0.461 18.55 114.59
Our method±1.5v 0.792 19.90 78.63

ARAE±2.5v 0.513 14.71 31.37
Amazon DAAE±1.0v 0.473 3.50 –

Our method±2.0v 0.884 14.73 33.86

FGSM and vector arithmetic method for style
transfer have their pros and cons. Table 4 shows the
evaluation results of both FGSM based and vector
arithmetic based methods on Yelp data. Generally,
for both methods, as the step size w or v increases,
the transfer rate is improving, while the perfor-
mance of BLEU and PPL are decreasing. In the
case of the FGSM based method, the best trade-off
is when w is set as 0.007, while the vector arith-
metic based method has the best trade-off when
v is set as 1.5. With w = 0.007 and v = 1.5,
FGSM based method achieves better transfer rate
and BLEU score but the lower performance of PPL
than vector arithmetic based method. From our ex-
periment, we also observe that FGSM based style
transfer needs much longer updating time in testing
than the vector arithmetic based method.

Table 4: Comparison results between FGSM based and
vector arithmetic based style transfer on Yelp.

Methods w/v Transfer ↑ BLEU ↑ PPL ↓
w = 0.005 0.76 25.74 70.16

FGSM based w = 0.007 0.80 25.16 72.70
w = 0.01 0.87 23.90 75.46

±1.0v 0.49 30.00 49.42
Vector arithmetic ±1.5v 0.79 19.90 78.63
based ±2.0v 0.94 11.38 113.52

Although the automatic evaluation metrics e.g.,
the BLEU score, are widely used, they sometimes

78

do not well align with the human judgement (Ma
et al., 2018). Therefore, to fully evaluate the per-
formance we also carried out the human evaluation
on sentiment transfer and compare it with ARAE
on Yelp. We use the vector arithmetic based update
of the latent representation on the first 200 positive
and 200 negative sentences in the test set. Three
annotators were recruited and provided scores in
the range of 1∼5 regarding the transfer control, the
content preservation and the fluency. The Kappa
statistic of the agreement between raters in the hu-
man evaluation is 0.657. The average scores over
three annotators are shown in Table 5, and our
method generally outperforms ARAE.

Table 5: Human evaluation results of sentiment transfer
on Yelp.

Methods Transfer ↑ Content ↑ Fluency ↑
Control Preservation

ARAE 3.388 2.671 3.439

Our method 3.468 3.018 3.612

4.5.2 Multi-Attribute Style Transfer
We also evaluate our model for multi-attribute trans-
fer and compare with ARAE on Yelp. The goal of
multi-attribute style transfer is to transform multi-
ple attributes in a sentence at once while preserving
the main content of the sentence. Using the same
example sentence “this place is a great place to
live !” with positive sentiment and present tense,
multi-attribute transfer converts it into a sentence
with the negative sentiment and the past tense “this
place was a terrible place to live !”.

In the training phase, the style classifier uses
both the latent vector of a given sentence and the
original attribute label as the inputs; while in style
transfer, the style classifier uses both the latent
vector and the desired attribute label as the inputs.
In pre-processing of single-attribute style transfer,
the attribute is labelled as either “0” or “1”. In
multi-attribute style transfer (e.g. tense and senti-
ment), each attribute combination will be defined
as an individual class (e.g. present-positive: ”0”,
past-positive: “1”, present-negative: “2”, and past-
negative: “3”).

In particular, we use the Stanford Parser to ex-
tract the main verb of a sentence from Yelp and
then determine the tense of a sentence based on
its part-of-speech tag (POS tags) (Klein and Man-
ning, 2003). Table 6 shows the evaluation results
of style transfer for two attributes: sentiment and

tense transfer. In our model, we test on two net-
work variants, one consisting of two style classi-
fiers each corresponding to one attribute, and the
other consists of only one style classifier that com-
bines both attributes into one label as described
before. The results show that our method is supe-
rior to ARAE even with one style classifier. When
using two classifiers to realize multiple attributes
transfer, for example, tense and sentiment transfer,
each classifier is responsible for transferring one
attribute. Specifically, after the sentiment-classifier
transferred sentiment attribute, the transferred sen-
tences will be the inputs of the tense-classifier for
transferring tense attribute. As using two classifiers,
each classifier only needs to transfer one attribute,
having less pressure of transferring two attributes
together, it achieves higher accuracy than one clas-
sifier case. However, since it requires two steps
transfer, the self BLEU score decreases slightly.

Table 6: Results of multiple attributes (sentiment and
tense) transfer on Yelp.

Methods Transfer ↑ Self BLEU ↑ PPL ↓
ARAE (±2.0v) 0.663 11.57 86.99

Our method:
2 classifiers;±1.5v 0.750 13.86 85.47
1 classifier;±1.5v 0.733 14.34 85.41

4.6 Evaluation of Text Generation

Unlike most of the current models for style transfer,
our model can also be used to generate new text
sentences owing to the introduction of the latent
prior distribution. To generate a new sentence, we
first take the noise s as the input to the generator
of the GAN and get a latent representation. Then
we feed the latent representation to the decoder and
obtain the new sentence.

In previous work, both LSTM (Zhao et al., 2018;
Lample et al., 2019; Shen et al., 2020) and trans-
former (Wang et al., 2019) have been used as the
base network in the encoder and decoder architec-
ture. Hence, we further evaluate the performance
of our method based on these two networks on
Yelp and show the results in Table 7. Experimen-
tal results indicate that both the transformer-based
networks and the LSTM-based networks in our
method achieve a similar trade-off among the three
evaluation metrics. The transformer-based method
achieves higher BLEU scores but lower transfer
rates and higher PPL scores, while the LSTM-
based method leads to a better performance on

79

the transfer rate and the PPL score, but a worse
performance on the BLEU score.

Table 7: Comparison of sentiment transfer between the
transformer-based autoencoder and the LSTM-based
autoencoder in our method on Yelp.

Methods Transfer ↑ BLEU ↑ PPL ↓
Transformer-based:
w=0.7 0.73 31.14 71.58
w=0.8 0.79 27.42 84.13
w=0.9 0.82 24.48 92.65
w=1.0 0.85 21.40 97.21

LSTM-based:
w=0.005 0.76 25.74 70.16
w=0.007 0.80 25.16 72.70
w=0.009 0.84 24.50 74.32
w=0.01 0.87 23.90 75.46

We evaluate the quality of the text generation
using the LSTM-based network in our method by
comparing 10, 000 generated sentences with sen-
tences generated by ARAE on Yelp. The exper-
imental results in Table 8 show that our method
achieves a better degree of fluency. In particu-
lar, the PPL score of our method is lower than
that of ARAE by around 10% (the PPL score of
our method and ARAE is 76.83 and 86.98, respec-
tively).

Table 8: Generated sentences of our method and ARAE.

Our method

the woman who could give up the store says you are very picky .
the wait staff is great but overall i did n’t like the customer.
i will not recommend this place to any women in future .
the man was always great and the service was really helpful .
do not waste a star from the older man this place is overpriced .
the store experience is awesome the salesman it was very nice.
oh ok and the man in the service looked nice .
kind of really nice man ’s walking the restaurant that they ’re very delish .

ARAE

the gentleman i left inside the kitchen was a rather nice follow up .
this woman has gotten me .
the woman in a little job of perfect !
the man was not that amazing if i tried to order it .
this woman has a cake must me in the burgh .
all was excellent by the salesman we had to do .
there is a friendly man and the crowd of bacon in your face .
their woman was under staffed as very polite and how talented .

Text samples of ARAE are from Zhao et al. (2018).

4.7 Style Classifier in Other Models
Through the above experiments, we have illustrated
the effect of the style classifier in our method on
clustering the latent representations based on the
attributes. We also perform an ablation study re-
garding the style classifier on two other advanced
models: DAAE and BTDAE (Lample et al., 2019).

In DAAE, we implement style transfer by the vec-
tor arithmetic based update, and in BTDAE the
back-translation algorithm is used for style transfer.
From Table 9, we observe that with the inclusion
of a style classifier in DAAE the performance on
all evaluation metrics is improved. For BTDAE,
with a style classifier the BLEU and the PPL scores
are improved. These results again demonstrate the
effectiveness of a style classifier on style transfer.

Table 9: Comparison between the models and the mod-
els with a style classifier on Yelp.

Methods Transfer ↑ BLEU ↑ PPL ↓
DAAE (±2.0v) 0.461 18.55 114.59

DAAE + Class.(±1.5v) 0.646 22.02 112.50

BTDAE 0.87 38.41 36.42

BTDAE + Class. 0.86 39.87 34.39

As the official code of BTDAE is unavailable, we implemented the algorithm
based on the description in Lample et al. (2019).

5 Conclusion and Future Work

In this paper, we proposed a new approach for text
style transfer with entangled latent representations.
We added a classifier to regularize the distribution
of latent sentences in a probabilistic autoencoder.
Extensive experiments show that this regularized
latent structure significantly improves the down-
stream text manipulation tasks. Compared with
benchmarks our method achieves impressive re-
sults on both single-attribute and multi-attribute
text style transfer. Moreover, both approaches of
fast gradient and vector arithmetic style transfer
outperform baselines on style transfer tasks. In
addition, we demonstrated that the classifier regu-
larization also improves other style transfer models.

In the future, we would like to explore other
methods to regularize latent representation in con-
trollable text generation. Moreover, text generation
models have a wide range of applications in NLP
tasks. Besides style transfer, we will apply our
model to other tasks such as text simplification and
examine the latent structure in these applications.

References
Rafael E. Banchs and Haizhou Li. 2012. IRIS: a chat-

oriented dialogue system based on the vector space
model. In Proceedings of the ACL 2012 System
Demonstrations, pages 37–42, Jeju Island, Korea.
Association for Computational Linguistics.

Yu Bao, Hao Zhou, Shujian Huang, Lei Li, Lili Mou,

80

Olga Vechtomova, Xin-yu Dai, and Jiajun Chen.
2019. Generating sentences from disentangled syn-
tactic and semantic spaces. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 6008–6019, Florence,
Italy. Association for Computational Linguistics.

Yixin Cao, Ruihao Shui, Liangming Pan, Min-Yen Kan,
Zhiyuan Liu, and Tat-Seng Chua. 2020. Expertise
style transfer: A new task towards better communi-
cation between experts and laymen. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, Online. Association for
Computational Linguistics.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-
gio. 2014. Generative adversarial networks. In Ad-
vances in Neural Information Processing Systems,
pages 2672–2680.

Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing adversar-
ial examples.

Mengqiao Han, Ou Wu, and Zhendong Niu. 2017. Un-
supervised automatic text style transfer using LSTM.
In NLPCC.

Ruining He and Julian McAuley. 2016. Ups and downs:
Modeling the visual evolution of fashion trends with
one-class collaborative filtering. WWW ’16, page
507–517, Republic and Canton of Geneva, CHE. In-
ternational World Wide Web Conferences Steering
Committee.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Proceedings of the sixth
workshop on statistical machine translation, pages
187–197.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P. Xing. 2017. Toward con-
trolled generation of text. In Proceedings of the 34th
International Conference on Machine Learning, vol-
ume 70, pages 1587–1596, International Convention
Centre, Sydney, Australia. PMLR.

Vineet John, Lili Mou, Hareesh Bahuleyan, and Olga
Vechtomova. 2019. Disentangled representation
learning for non-parallel text style transfer. In Pro-
ceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics, Florence, Italy.
Association for Computational Linguistics.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient text
classification. arXiv:1607.01759.

Seokhwan Kim, Cheongjae Lee, Sangkeun Jung, and
Gary Geunbae Lee. 2007. A spoken dialogue sys-
tem for electronic program guide information access.
In IEEE.

Dan Klein and Christopher D Manning. 2003. Fast ex-
act inference with a factored model for natural lan-
guage parsing. In Advances in neural information
processing systems, pages 3–10.

Guillaume Lample, Sandeep Subramanian, Eric Smith,
Ludovic Denoyer, Marc’Aurelio Ranzato, and Y-
Lan Boureau. 2019. Multiple-attribute text rewrit-
ing. In International Conference on Learning Rep-
resentations.

Juncen Li, Robin Jia, He He, and Percy Liang. 2018.
Delete, retrieve, generate: a simple approach to sen-
timent and style transfer. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies.

Dayiheng Liu, Jie Fu, Yidan Zhang, Chris Pal, and
Jiancheng Lv. 2020. Revision in continuous space:
Fine-grained control of text style transfer.

Linqing Liu, Yao Lu, Min Yang, Qiang Qu, Jia Zhu,
and Hongyan Li. 2018. Generative adversarial net-
work for abstractive text summarization.

Qingsong Ma, Ondřej Bojar, and Yvette Graham. 2018.
Results of the wmt18 metrics shared task: Both char-
acters and embeddings achieve good performance.
In Proceedings of the third conference on machine
translation: shared task papers, pages 671–688.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Viualizing data using t-SNE. Journal of Machine
Learning Research, 9:2579–2605.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly,
Ian Goodfellow, and Brendan Frey. 2015. Adversar-
ial autoencoders. arXiv:1511.05644.

Makbule Ozsoy, Ferda Alpaslan, and Ilyas Cicekli.
2011. Text summarization using latent semantic
analysis. J. Information Science, 37:405–417.

Kishore Papineni, S. Roukos, T. Ward, and Wei-Jing
Zhu. 2002. BLEU: a method for automatic evalua-
tion of machine translation. In ACL.

Sudha Rao and Joel Tetreault. 2018. Dear sir or
madam, may I introduce the GYAFC dataset: Cor-
pus, benchmarks and metrics for formality style
transfer. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 129–140,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi
Jaakkola. 2017. Style transfer from non-parallel text
by cross-alignment. In Advances in neural informa-
tion processing systems, pages 6830–6841.

Tianxiao Shen, Jonas Mueller, Regina Barzilay, and
Tommi S. Jaakkola. 2020. Educating text autoen-
coders: Latent representation guidance via denois-
ing.

81

Youzhi Tian, Zhiting Hu, and Zhou Yu. 2018. Struc-
tured content preservation for unsupervised text
style transfer. arXiv, arXiv:1810.06526.

Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and
Bernhard Schoelkopf. 2018. Wasserstein auto-
encoders. In ICLR 2018.

Ke Wang, Hang Hua, and Xiaojun Wan. 2019. Control-
lable unsupervised text attribute transfer via editing
entangled latent representation. In Advances in Neu-
ral Information Processing Systems, pages 11036–
11046.

Zichao Yang, Zhiting Hu, Chris Dyer, Eric P Xing, and
Taylor Berg-Kirkpatrick. 2018. Unsupervised text
style transfer using language models as discrimina-
tors. In Advances in Neural Information Processing
Systems, pages 7287–7298.

Junbo Zhao, Yoon Kim, Kelly Zhang, Alexander Rush,
and Yann LeCun. 2018. Adversarially regularized
autoencoders. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80,
pages 5902–5911. PMLR.

82

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 83–89
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

Inductively Representing Out-of-Knowledge-Graph Entities by
Optimal Estimation Under Translational Assumptions

Damai Dai1∗, Hua Zheng1∗, Fuli Luo1, Pengcheng Yang1,
Baobao Chang1,2, Zhifang Sui1,2†

1Key Lab of Computational Linguistics (MOE), Peking University
2Peng Cheng Laboratory, China

{daidamai,zhenghua,luofuli,yang pc,chbb,szf}@pku.edu.cn

Abstract

Conventional Knowledge Graph Completion
(KGC) assumes that all test entities appear dur-
ing training. However, in real-world scenarios,
Knowledge Graphs (KG) evolve fast with out-
of-knowledge-graph (OOKG) entities added
frequently, and we need to efficiently repre-
sent these entities. Most existing Knowledge
Graph Embedding (KGE) methods cannot rep-
resent OOKG entities without costly retrain-
ing on the whole KG. To enhance efficiency,
we propose a simple and effective method that
inductively represents OOKG entities by their
optimal estimation under translational assump-
tions. Moreover, given pretrained embeddings
of the in-knowledge-graph (IKG) entities, our
method even needs no additional learning. Ex-
perimental results on two KGC tasks with
OOKG entities show that our method outper-
forms the previous methods by a large margin
with higher efficiency.1

1 Introduction

Knowledge Graphs (KG) play a pivotal role in var-
ious NLP tasks, but generally suffer from incom-
pleteness. To address this problem, Knowledge
Graph Completion (KGC) aims to predict missing
relations in a KG based on Knowledge Graph Em-
beddings (KGE). Transductive KGE methods, such
as TransE (Bordes et al., 2013) and RotatE (Sun
et al., 2019), achieve success in conventional KGC,
which assumes that all test entities appear during
training. However, in real-world scenarios, KGs
evolve fast with out-of-knowledge-graph (OOKG)
entities added frequently. To represent these emerg-
ing OOKG entities, transductive KGE methods
need to retrain on the whole KG frequently, which

∗Equal contribution.
†Corresponding author.

1The code is available at https://github.com/
Hunter-DDM/InvTransE-and-InvRotatE.

Christopher
Nolan

action
John David
Washington

TENET

directed by
star in

genre

language?

English

…… …

…

…
……

… …

OOKG Entity

IKG Entity

IKG Relation

Auxiliary Relation

Query Relation

Figure 1: An example of KGC with OOKG entities.
When an OOKG entity “TENET” is added, we can
represent it efficiently via information of its IKG neigh-
bors to predict its missing relations with other entities.

is extremely time-consuming. Faced with this prob-
lem, we are in urgent need of an efficient method
to tackle KGC with OOKG entities.

Figure 1 shows an example of KGC with OOKG
entities. Based on an existing KG, a new movie
“TENET” is added as an OOKG entity with some
auxiliary relations that connect it with some in-
knowledge-graph (IKG) entities. To predict the
missing relations between “TENET” and other en-
tities, we need to obtain its embedding first. Being
aware that “TENET” is directed by “Christopher
Nolan”, is an “action” movie, and is starred by
“John David Washington”, we can combine these
clues to profile “TENET” and estimate its embed-
ding. This embedding can then be used to predict
whether its relation with “English” is “language”.

In recent years, some inductive methods have
been proposed for OOKG entities without retrain-
ing. Hamaguchi et al. (2017); Wang et al. (2019);
Bi et al. (2020); Zhao et al. (2020) adopt Graph
Neural Networks (GNN) to aggregate the IKG
neighbors to represent the OOKG entities. These
methods are effective but require relatively com-
plex calculations, which could be simplified for
higher efficiency. Xie et al. (2016, 2017); Shi and
Weninger (2018) utilize external resources such as
entity descriptions or images to enrich the OOKG
entity embedding, thus avoiding retraining. How-

83

ever, high-quality external resources are expensive
to acquire, which may limit the feasibility.

In this paper, we propose an inductive method
that derives formulas from translational assump-
tions to estimate OOKG entity embeddings. Com-
pared to existing methods for KGC with OOKG en-
tities, our method has simpler calculations and does
not need external resources. For a triplet (h, r, t),
translational assumptions of translational distance
KGE models suppose that embedding h can estab-
lish a connection with t via an r-specific opera-
tion. Assuming that h is an OOKG entity and t
is an IKG entity, we show that if a translational
assumption can derive a specific formula to com-
pute h via pretrained t and r, then there will be
no other candidate for h that better fits this trans-
lational assumption. Therefore, the computed h
is the optimal estimation of the OOKG entity un-
der this translational assumption. Among existing
typical KGE models, we discover that translational
assumptions of TransE and RotatE can derive these
specific estimation formulas. Therefore, based on
them, we design two instances of our method called
InvTransE and InvRotatE, respectively. Note that
our estimation formulas have no trainable param-
eters, so our method needs no additional learning
when given pretrained IKG embeddings.

Our contributions are summarized as follows:
(1) We propose a simple and effective method to
inductively represent OOKG entities by their opti-
mal estimation under translational assumptions. (2)
Our method needs no external resources. Given pre-
trained IKG embeddings, our method even needs
no additional learning. (3) We evaluate our method
on two KGC tasks with OOKG entities. Experi-
mental results show that our method outperforms
the state-of-the-art methods by a large margin with
higher efficiency, and maintains a robust perfor-
mance even with higher OOKG entity ratios.

2 Methodology

2.1 Notations and problem formulation

Let E denote the IKG entity set andR denote the
relation set. Ktrain is the training set where all en-
tities are IKG. Kaux is the auxiliary set connecting
OOKG and IKG entities during inference, where
each triplet contains an OOKG and an IKG entity.
We define the K-neighbor set of an entity e as all
its neighbor entities and relations in K: NK(e) =
{(r, t)|(e, r, t) ∈ K} ∪ {(h, r)|(h, r, e) ∈ K}.

Using notations above, we formulate our prob-

Christopher
Nolan action John David

Washington

TENET (OOKG entity)

directed by star ingenre

Estimator

�𝐞𝐞𝟏𝟏 �𝐞𝐞𝟐𝟐 �𝐞𝐞𝟑𝟑

Reducer

𝐞𝐞 (TENET)

Pretrained
IKG

Embeddings

Figure 2: An illustration of our method, which consists
of an estimator and a reducer.

lem as follows: Given Kaux and IKG embeddings
pretrained onKtrain, we need to represent an OOKG
entity e 6∈ E as an embedding. This embedding can
then be used to tackle KGC with OOKG entities.

2.2 Proposed method
As shown in Figure 2, our proposed method is com-
posed of an estimator and a reducer. The estimator
aims to compute a set of candidate embeddings for
an OOKG entity via its IKG neighbor information.
The reducer aims to reduce these candidates to the
final embedding of the OOKG entity.

2.2.1 Estimator
For an OOKG entity e, given its IKG neighbors
NKaux(e) with pretrained embeddings, the estima-
tor aims to compute a set of candidate embeddings.
Except TransE and RotatE, other typical KGE mod-
els have relatively complex calculations in their
translational assumptions. These complex calcula-
tions prevent their translational assumptions from
deriving specific estimation formulas for OOKG en-
tities.2 Therefore, we design two sets of estimation
formulas based on TransE and RotatE, respectively.
To be specific, if e is the head entity, we can obtain
its optimal estimation ẽ by the following formulas:

ẽ =

{
t− r, for InvTransE,
t ◦ r−1, for InvRotatE,

where ◦ denotes the element-wise product, r−1 de-
notes the element-wise inversion.

Otherwise, if e is the tail entity, we can obtain
its optimal estimation ẽ by the following formulas:

ẽ =

{
h+ r, for InvTransE,
h ◦ r, for InvRotatE.

2.2.2 Reducer
After the estimator computes |NKaux(e)| candidate
embeddings, the reducer aims to reduce them to the

2Detailed proof is included in Appendix A.

84

final embedding of the OOKG entity by weighted
average. We design two weighting functions.

Correlation-based weights are query-aware.
Inspired by Wang et al. (2019), we first use the
conditional probability to model the correlation
between two relations:

P (r2|r1) =
∑

e∈E 1 (r1, r2 ∈ NKtrain (e))∑
e∈E 1 (r1 ∈ NKtrain (e))

.

When the query relation rq is specified, we as-
sign more weight to the candidate that is computed
via a more relevant relation to rq:

wcorr(ẽ) =

(
P (rẽ|rq) + P (rq|rẽ)

)s

Zcorr
,

where Zcorr is the normalization factor, rẽ is the
neighbor relation via which ẽ is computed, s is a
hyper-parameter set to 4.0.

Degree-based weights focus more on the entity
with higher degree in the training set:

wdeg(ẽ) =
log (dẽ + δ)

Zdeg
,

where Zdeg is the normalization factor, dẽ is the de-
gree of the neighbor entity via which ẽ is computed,
δ is a smoothing factor set to 0.1.

Based on these weighting functions, the final
embedding of the OOKG entity e is computed by

e =
∑

ẽ∈C
ẽ · wcorr/deg(ẽ),

where C denotes the candidate embedding set.

3 Experiments

3.1 Tasks and datasets
We conduct experiments on two KGC tasks with
OOKG entities: link prediction and triplet classifi-
cation. For link prediction, we use two datasets
released by Wang et al. (2019) built based on
FB15k (Bordes et al., 2013): FB15k-Head-10 and
FB15k-Tail-10. For triplet classification, we use
nine datasets released by Hamaguchi et al. (2017)
built based on WN11 (Socher et al., 2013): WN11-
Head-1000, WN11-Head-3000, WN11-Head-5000,
WN11-Tail-1000, WN11-Tail-3000, WN11-Tail-
5000, WN11-Both-1000, WN11-Both-3000, and
WN11-Both-5000. Each of the datasets mentioned
above is composed of four sets: a training set, an
auxiliary set, a validation set, and a test set. Each
triplet in the training and validation sets contains

only IKG entities. Each triplet in the auxiliary set
contains an OOKG entity and an IKG entity. Each
triplet in the test set contains at least one OOKG
entity. The dataset statistics are shown in Table 1.

3.2 Experimental settings

We tune pretraining hyper-parameters on the valida-
tion set. We use Adam (Kingma and Ba, 2015) with
an initial learning rate of 10−3 as the optimizer and
a batch size of 1,024. For link prediction, we use
1,000-dimensional embeddings and the correlation-
based weights. For triplet classification, we use
300-dimensional embeddings and the degree-based
weights. Details are included in Appendix B.

3.3 Baselines

For link prediction, we compare our method
with three strong GNN-based baselines. GNN-
MEAN (Hamaguchi et al., 2017) uses a mean
function to aggregate neighbors. GNN-LSTM
adopts LSTM for aggregation. LAN (Wang et al.,
2019) adopts both rule- and network-based atten-
tion mechanisms for aggregation. For triplet clas-
sification, we compare with two more competi-
tive GNN-based baselines. ConvLayer (Bi et al.,
2020) uses convolutional layers as the transition
function. FCLEntity (Zhao et al., 2020) uses fully-
connected networks as the transition function with
an attention-based aggregation.

3.4 Evaluation metrics

For link prediction, we use Mean Reciprocal Rank
(MRR) and the proportion of ground truth entities
ranked in top-k (Hits@k, k ∈ {1, 10}). All the met-
rics are filtered versions that exclude false negative
candidates. For triplet classification, we use Accu-
racy. We determine relation-specific thresholds δr
by maximizing the accuracy on the validation set.

3.5 Main results

Evaluation results of link prediction are shown
in Table 2. From the table, we observe that: (1)
With the optimal estimation under translational as-
sumptions, both instances of our method signifi-
cantly outperform all baselines. (2) Neighbors are
unordered, so order-insensitive methods like ours
or LAN perform better, while GNN-LSTM that
captures ordered information performs worse. For
triplet classification, we show the results in Ta-
ble 3. The table shows that our method achieves
the best performance, consistent with the link pre-

85

Dataset |Ktrain| |Kvalid| |Kaux| |Ktest| |R| |E| |E ′|

FB15k-Head-10 108,854 11,339 249,798 2,811 1,170 10,336 2,082
FB15k-Tail-10 99,783 10,190 261,341 2,987 1,126 10,603 1,934

WN11-Head-1000 108,197 4,561 1,938 955 11 37,700 340
WN11-Head-3000 99,963 4,068 5,311 2,686 11 36,646 985
WN11-Head-5000 92,309 3,688 8,048 4,252 11 35,560 1,638

WN11-Tail-1000 96,968 3,864 6,674 852 11 36,771 811
WN11-Tail-3000 78,812 2,851 12,824 2,061 11 33,800 1,874
WN11-Tail-5000 68,040 2,258 15,414 2,968 11 31,311 2,589

WN11-Both-1000 93,683 3,625 7,875 873 11 36,277 1,136
WN11-Both-3000 71,618 2,436 14,453 2,242 11 32,254 2,805
WN11-Both-5000 58,923 1,788 16,660 3,218 11 28,979 3,934

Table 1: Statistics of datasets with OOKG entities. These datasets are built based on FB15k or WN11 and named
in the form of “Base-Pos-Num”. Base denotes the based datasets. Pos denotes the position of OOKG entities in
test triplets. Num distinguishes different numbers of OOKG entities represented by |E ′|.

Method FB15k-Head-10 FB15k-Tail-10
MRR H@10 H@1 MRR H@10 H@1

GNN-LSTM 0.254 42.9 16.2 0.219 37.3 14.3
GNN-MEAN 0.310 48.0 22.2 0.251 41.0 17.1

LAN 0.394 56.6 30.2 0.314 48.2 22.7

InvTransE 0.462 60.4 38.5 0.357 48.7 29.0
InvRotatE 0.453 60.4 36.9 0.362 49.1 29.3

Table 2: Evaluation results (MRR, Hits@k) of link pre-
diction. Bold is the best. Underline is the second best.

Figure 3: Results with increasing OOKG entity ratios.

diction results. This again validates the effect of
our method.

3.6 Analysis

How does our method perform with increasing
OOKG entity ratios? We compare the triplet clas-
sification results of InvTransE, LAN, and GNN-
MEAN with increasing OOKG entity ratios in Fig-
ure 3. We find that, when the OOKG entity ratio
increases, the performance of our method drops
the slowest. This suggests that our method is more
robust to increasing OOKG entity ratios.
How efficient is our method? We compare LAN
and InvTransE to analyze our efficiency. Consid-
ering the time complexity, LAN needs O(md2)
to represent an entity, where m is the number of
neighbors and d is the embedding dimension. By

contrast, InvTransE needs only O(d) and O(md)
to represent an IKG and OOKG entity, respec-
tively. Empirically, taking triplet classification as
an example, InvTransE is nearly 15 times faster
than LAN under similar configurations. Moreover,
when given IKG embeddings pretrained by TransE,
InvTransE does not even need training. This sug-
gests that our method is highly efficient.
Do our weighting functions matter? We attempt
to reduce candidates with uniform weights. As
shown in Table 4, the performance without our
weighting functions drops dramatically. This veri-
fies the effectiveness of our weighting functions.
How does the number of neighbors impact the
performance? We randomly select up to k ∈
{32, 8, 1} IKG neighbors to use. As shown in Ta-
ble 4, as the number of used neighbors decreases,
the performance drops. This suggests that using
more neighbors can lead to better performance.
Moreover, we find that InvTransE can outperform
previous methods using only up to 32 neighbors.

4 Related Work

Transductive KGE methods map entities and re-
lations to embeddings, and then use score func-
tions to measure the triplet salience. TransE (Bor-
des et al., 2013) pioneers translational distance
methods and is widely-used. It derives a series
of methods, such as TransH (Wang et al., 2014),
TransR (Lin et al., 2015), and RotatE (Sun et al.,
2019). Besides, semantic matching methods form
another mainstream (Nickel et al., 2011; Yang et al.,
2015; Trouillon et al., 2016; Nickel et al., 2016;
Balazevic et al., 2019). These transductive KGE
methods achieve success in conventional KGC, but

86

Method WN11-Head WN11-Tail WN11-Both
1000 3000 5000 1000 3000 5000 1000 3000 5000

ConvLayer - - - - - - 74.9 - 64.6
FCLEntity - 82.6 - - 72.1 - - 68.6 -

GNN-LSTM 87.0 83.5 81.8 82.9 71.4 63.1 78.5 71.6 65.8
GNN-MEAN 87.3 84.3 83.3 84.0 75.2 69.2 83.0 73.3 68.2

LAN 88.8 85.2 84.2 84.7 78.8 74.3 83.3 76.9 70.6

InvTransE 89.2 87.8 87.0 84.5 80.1 77.5 86.3 78.4 74.6
InvRotatE 88.6 86.9 86.5 84.7 80.1 75.8 84.2 75.0 70.6

Table 3: Evaluation results (Accuracy) of triplet classification. Bold is the best. Underline is the second best. The
results of all five baselines are taken from their original papers.

Method MRR H@10 H@1

InvTransE (Full) 0.462 60.4 38.5

Uniform Weights 0.361 52.0 28.1

Up to 32 Neighbors 0.447 59.2 37.2
Up to 8 Neighbors 0.386 52.0 31.3
Only 1 Neighbor 0.246 37.9 18.1

Table 4: Ablation experiment results for InvTransE on
the FB15k-Head-10 dataset of link prediction.

fail to directly represent OOKG entities efficiently.
To improve efficiency, some inductive methods

adopt GNN to aggregate IKG neighbors to pro-
duce embeddings for OOKG entities (Hamaguchi
et al., 2017; Wang et al., 2019; Bi et al., 2020;
Zhao et al., 2020). These methods are effective
but need relatively complex calculations. Other
inductive methods incorporate external resources
to enrich embeddings and represent OOKG entities
via only external resources (Xie et al., 2016; Shi
and Weninger, 2018; Xie et al., 2017). However,
high-quality external resources are hard and expen-
sive to acquire, which may limit the feasibility.

5 Conclusion

This paper aims to efficiently represent OOKG en-
tities. We propose a simple and effective method
that inductively represents OOKG entities by their
optimal estimation under translational assumptions.
Moreover, given pretrained IKG embeddings, our
method needs no additional learning. Evaluations
on two KGC tasks show that our method outper-
forms the state-of-the-art methods by a large mar-
gin with higher efficiency, and maintains a robust
performance with higher OOKG entity ratios.

Acknowledgments

This paper is supported by the National
Key Research and Development Program of

China (2020AAA0106700) and NSFC project
(U19A2065).

References
Ivana Balazevic, Carl Allen, and Timothy M.

Hospedales. 2019. TuckER: Tensor factorization for
knowledge graph completion. In EMNLP-IJCNLP
2019, pages 5184–5193.

Zhongqin Bi, Tianchen Zhang, Ping Zhou, and Yong-
bin Li. 2020. Knowledge transfer for out-of-
knowledge-base entities: Improving graph-neural-
network-based embedding using convolutional lay-
ers. IEEE Access, 8:159039–159049.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In NeurIPS 2013, pages 2787–2795.

Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo,
and Yuji Matsumoto. 2017. Knowledge transfer for
out-of-knowledge-base entities: A graph neural net-
work approach. In IJCAI 2017, pages 1802–1808.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR 2015.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015. Learning entity and relation em-
beddings for knowledge graph completion. In AAAI
2015, pages 2181–2187.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso A.
Poggio. 2016. Holographic embeddings of knowl-
edge graphs. In AAAI 2016, pages 1955–1961.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In ICML 2011,
pages 809–816.

Baoxu Shi and Tim Weninger. 2018. Open-world
knowledge graph completion. In AAAI 2018, pages
1957–1964.

Richard Socher, Danqi Chen, Christopher D Manning,
and Andrew Ng. 2013. Reasoning with neural ten-
sor networks for knowledge base completion. In
NeurIPS 2013, pages 926–934.

87

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. RotatE: Knowledge graph embedding
by relational rotation in complex space. In ICLR
2019.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. ComplEx
embeddings for simple link prediction. In ICML
2016, pages 2071–2080.

Peifeng Wang, Jialong Han, Chenliang Li, and Rong
Pan. 2019. Logic attention based neighborhood ag-
gregation for inductive knowledge graph embedding.
In AAAI 2019, pages 7152–7159.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In AAAI 2014, pages 1112–
1119.

Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, and
Maosong Sun. 2016. Representation learning of
knowledge graphs with entity descriptions. In AAAI
2016, pages 2659–2665.

Ruobing Xie, Zhiyuan Liu, Huanbo Luan, and
Maosong Sun. 2017. Image-embodied knowledge
representation learning. In IJCAI 2017, pages 3140–
3146.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2015. Embedding entities and
relations for learning and inference in knowledge
bases. In ICLR 2015.

Ming Zhao, Weijia Jia, and Yusheng Huang. 2020.
Attention-based aggregation graph networks for
knowledge graph information transfer. In PAKDD
2020, pages 542–554.

Appendices
A Which Translational Assumptions

Can Derive Specific Estimation
Formulas for OOKG Entities?

For a triplet (h, r, t), translational assumptions of
KGE models suppose that h can establish a con-
nection with t via an r-specific operation, which
can be formulated by the following equation:

Fr(h, t) = 0, (1)

where Fr(·) is an r-specific function that is deter-
mined by the specific KGE model. Without loss
of generality, we may assume that h is an OOKG
entity and t is an IKG entity. Under a translational
assumption, we can obtain a specific estimation
formula for h if and only if (1) we regard h as
unknown, and its solution in Equation 1 exists, (2)

the solution is unique. If the above two conditions
hold, the unique solution of h is the optimal esti-
mation under the translational assumption, since
no other candidate for h can better fit Equation 1.
In the following parts, we analyze translational as-
sumptions of four KGE models (TransE, RotatE,
TransH, TransR) as examples.

A.1 TransE
For TransE, its translational assumption is formu-
lated by

Fr(h, t) = ‖h+ r− t‖1/2 = 0. (2)

In this case, we can obtain a unique solution of h
by the following steps:

‖h+ r− t‖1/2 = 0, (3)

=⇒ h+ r− t = 0, (4)

=⇒ h = t− r. (5)

This computed h is the optimal estimation under
the translational assumption.

A.2 RotatE
For RotatE, its translational assumption is formu-
lated by

Fr(h, t) = ‖h ◦ r− t‖1/2 = 0. (6)

In this case, we can obtain a unique solution of h
by the following steps:

‖h ◦ r− t‖1/2 = 0, (7)

=⇒ h ◦ r− t = 0, (8)

=⇒ h = t ◦ r−1. (9)

This computed h is the optimal estimation under
the translational assumption.

A.3 TransH
For TransH, its translational assumption is formu-
lated by

Fr(h, t) =
∥∥∥(h−w>r hwr) + r− (t−w>r twr)

∥∥∥
1/2

= 0,

(10)
where wr is the unit normal vector of the plane P
that r lies on. From the translational assumption,
we can derive the following equations:

∥∥∥(h−w>r hwr) + r− (t−w>r twr)
∥∥∥
1/2

= 0, (11)

=⇒ (h−w>r hwr) + r− (t−w>r twr) = 0, (12)

=⇒ (h−w>r hwr) = (t−w>r twr)− r , v. (13)

88

Datasets d γ α n L2 Training Steps

FB15k-based 1,000 24.0 1.0 256 N/A 100,000
WN11-based 300 0.5 1.0 128 10−5 20,000

Table 5: Hyper-parameters for two categories of datasets. We use the same hyper-parameters for two FB15k-based
datasets and the same hyper-parameters for nine WN11-based datasets. On each dataset, we use the same hyper-
parameters for two pretrained models. d denotes the embedding dimension. γ denotes the margin. α denotes the
sampling temperature. n denotes the negative sampling size. L2 denotes the parameter of L2 regularization, where
N/A means no regularization.

From a geometric perspective, h−w>r hwr is the
projection of h on the plane P . From the trans-
lational assumption, we can only deduce that the
projection of h is equal to v. However, there exist
infinitely many possible h that can satisfy this con-
dition. Therefore, the solution of h is not unique,
and we cannot obtain a specific estimation formula
from the translational assumption of TransH.

A.4 TransR
For TransR, its translational assumption is formu-
lated by

Fr(h, t) = ‖Mrh+ r−Mrt‖1/2 = 0, (14)

where Mr is an r-specific matrix. From the trans-
lational assumption, we can derive the following
equations:

‖Mrh+ r−Mrt‖1/2 = 0, (15)

=⇒Mrh+ r−Mrt = 0, (16)

=⇒Mrh = Mrt− r , v. (17)

In this case, we derive a system of linear equations
from the translational assumption. In this system,
there exists a unique solution for h if and only if
the rank of the coefficient matrix Mr is equal to the
rank of the augmented matrix [Mr;v]. However,
Mr is automatically learned by TransR without
this restriction. Therefore, we cannot guarantee
that there exists a unique solution for h, and we
cannot obtain a specific estimation formula from
the translational assumption of TransR.

B Details of Experimental Settings
To pretrain the TransE and RotatE models, we
adopt the self-adversarial negative sampling loss
proposed by Sun et al. (2019) in consideration of
its good performance on training TransE and Ro-
tatE. The self-adversarial negative sampling loss L
is formulated as:

L =− log σ (γ −D (h, r, t))

−
n∑

i=1

p
(
h′i, r, t

′
i

)
log σ

(
D
(
h′i, r, t

′
i

)
− γ
)
,

(18)

where σ is the sigmoid function, γ is the margin,
n is the negative sampling size and (h′i, r, t

′
i) is the

i-th negative sample triplet. D (·) is the distance
function. D (h, r, t) is equal to ‖h+ r− t‖1/2 for
TransE and is equal to ‖h ◦ r− t‖1/2 for RotatE. p
is the self-adversarial weight function which gives
more weight to the high-scored negative samples:

p
(
h′i, r, t

′
i

)
∝ exp

(
α · F

(
h′i, r, t

′
i

))
, (19)

where α is a hyper-parameter called sampling tem-
perature to be tuned. F(·) is the score function that
is equal to −D(·).

We conduct each experiment on a single
Nvidia Geforce GTX-1080Ti GPU and tune hyper-
parameters on the validation set. Generally, we
set the batch size to 1,024 and use Adam (Kingma
and Ba, 2015) with an initial learning rate of 10−3

as the optimizer. We choose the correlation-based
weights for link prediction and choose the degree-
based weights with a smoothing factor of 0.1 for
triplet classification. Other hyper-parameters are
shown in Table 5.

89

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 90–99
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

Revisiting Pretraining with Adapters

Seungwon Kim, Alex Shum, Nathan Susanj, Jonathan Hilgart
Georgia Institute of Technology

{skim3222, ashum7, nsusanj3, jhilgart3}@gatech.edu

Abstract

Pretrained language models have served as the
backbone for many state-of-the-art NLP re-
sults. These models are large and expensive
to train. Recent work suggests that continued
pretraining on task-specific data is worth the
effort as pretraining leads to improved perfor-
mance on downstream tasks. We explore al-
ternatives to full-scale task-specific pretraining
of language models through the use of adapter
modules, a parameter-efficient approach to
transfer learning. We find that adapter-based
pretraining is able to achieve comparable re-
sults to task-specific pretraining while using
a fraction of the overall trainable parameters.
We further explore direct use of adapters with-
out pretraining and find that the direct fine-
tuning performs mostly on par with pretrained
adapter models, contradicting previously pro-
posed benefits of continual pretraining in full
pretraining fine-tuning strategies. Lastly, we
perform an ablation study on task-adaptive pre-
training to investigate how different hyperpa-
rameter settings can change the effectiveness
of the pretraining.

1 Introduction

Pretrained Language Models (PLM) are predom-
inant in tackling current Natural Language Pro-
cessing (NLP) tasks. Most PLMs based on the
Transformer architecture (Vaswani et al., 2017) are
first trained on massive text corpora with the self-
supervised objective to learn word representations
(Devlin et al., 2019; Liu et al., 2019), and then
are fine-tuned for a specific target task. The pre-
training and fine-tuning of PLMs achieves state-of-
the-art (SOTA) performance in many NLP tasks.
Inspired by the benefits of pretraining, there have
been studies demonstrate the effects of continued
pretraining on the domain of a target task or the
target task dataset (Mitra et al., 2020; Han and
Eisenstein, 2019; Gururangan et al., 2020). Guru-
rangan et al., 2020 adapt PLMs on the target task

by further pretraining RoBERTa (Liu et al., 2019)
on the target text corpus before it is fine-tuned for
the corresponding task and showed that this task
adaptation consistently improves the performance
for text classification tasks.

However, this full process of pretraining and
then fine-tuning can be parameter inefficient for
recent PLMs that have millions or billions of pa-
rameters (Devlin et al., 2019; Radford et al., 2018).
This parameter inefficiency becomes even worse
when one continues pre-training all the parameters
of PLMs on the task-specific corpus. Furthermore,
recent PLMs need more than 100s of MB to store
all the weights (Liu et al., 2019; Radford et al.,
2018), making it difficult to download and share
the pre-trained models on the fly.

Recently, adapters have been proposed as an al-
ternative approach to decrease the substantial num-
ber of parameters of PLMs in the fine-tuning stage
(Houlsby et al., 2019). Finetuning with adapters
mostly matches the performance of those with the
full fine-tuning strategy on many NLP tasks in-
cluding GLUE benchmark (Wang et al., 2018) and
reduces the size of the model from 100s of MB
to the order of MB (Pfeiffer et al., 2020b). As
such, a natural question arises from the successes of
the adapter approach: can the adapter alone adapt
PLMs to the target task when it is used in the sec-
ond phase of the pretraining stage and thus lead to
the improvement of the performance on the corre-
sponding task?

In this paper, we explore task-adaptive pretrain-
ing, termed TAPT (Gururangan et al., 2020), with
adapters to address this question and overcome the
limitations of the conventional full pretraining and
fine-tuning. We only train the adapter modules
in the second phase of pretraining as well as the
fine-tuning stage to achieve both parameter effi-
ciency and the benefits of continual pretraining and
compare those with the adapter-based model with-
out pretraining. Surprisingly, we find that directly

90

fine-tuning adapters performs mostly on par with
the pre-trained adapter model and outperforms the
full TAPT, contradicting the previously proposed
benefits of continual pretraining in the full pretrain-
ing fine-tuning scheme. As directly fine-tuning
adapters skips the second phase of pretraining and
the training steps of adapters are faster than those
of the full model, it substantially reduces the train-
ing time. We further investigate different hyper-
parameter settings that affect the effectiveness of
pretraining.

2 Pretraining and Adapters

Pre-trained language model We use RoBERTa
(Liu et al., 2019), a Transformer-based language
model that is pre-trained on a massive text corpus,
following Gururangan et al., 2020. RoBERTa is an
extension of BERT (Devlin et al., 2019) with opti-
mized hyperparameters and a modification of the
pretraining objective, which excludes next sentence
prediction and only uses the randomly masked to-
kens in the input sentence. To evaluate the per-
formance of RoBERTa on a certain task, a classi-
fication layer is appended on top of the language
model after the pretraining and all the parameters in
RoBERTa are trained in a supervised way using the
label of the dataset. In this paper, training word rep-
resentations using RoBERTa on a masked language
modeling task will be referred to as pretraining.
Further, taking this pretrained model and adding a
classification layer with additional updates to the
language model parameters will be referred to as
fine-tuning.

Task-adaptive pretraining (TAPT) Although
RoBERTa achieves strong performance by sim-
ply fine-tuning the PLMs on a target task, there
can be a distributional mismatch between the pre-
training and target corpora. To address this issue,
pretraining on the target task or the domain of the
target task can be usefully employed to adapt the
language models to the target task and it further
improves the performance of the PLMs. Such meth-
ods can be referred to as Domain-Adaptive Pretrain-
ing (DAPT) or Task Adaptive-Pretraining (TAPT)
(Gururangan et al., 2020). In this paper, we limit
the scope of our works to TAPT as domain text cor-
pus is not always available for each task, whereas
TAPT can be easily applied by directly using the
dataset of the target task while its performance of-
ten matches with DAPT (Gururangan et al., 2020).
In TAPT, the second phase of pretraining is per-

Figure 1: The adapter achitecture in the Transformer
layer (Pfeiffer et al., 2020a)

formed with RoBERTa using the unlabeled text
corpus of the target task, and then it is fine-tuned
on the target task.

Adapter Adapter modules have been employed
as a feature extractor in computer vision (Rebuffi
et al., 2017) and have been recently adopted in
the NLP literature as an alternative approach to
fully fine-tuning PLMs. Adapters are sets of new
weights that are typically embedded in each trans-
former layer of PLMs and consist of feed-forward
layers with normalizations, residual connections,
and projection layers. The architectures of adapters
vary with respect to the different configuration set-
tings. We use the configuration proposed by Pfeif-
fer et al., 2020a in Figure 1, which turned out to be
effective on diverse NLP tasks, and add the adapter
layer to each transformer layer.

Pfeiffer et al., 2020c use two types of
adapter: language-specific adapters and task-
specific adapters for cross-lingual transfer. These
two types of adapter modules have similar architec-
ture as in Figure 1. However, the language adapters
involve invertible adapters after the embedding
layer to capture token-level language representa-
tion when those are trained via masked language
modeling in the pretraining stage, whereas the task
adapters are simply embedded in each transformer
layer and trained in the fine-tuning stage to learn the
task representation. Following Pfeiffer et al., 2020c,
we employ language adapter modules with invert-
ible adapter layers to perform pretraining adapters
on the unlabeled target dataset. However, we per-
form fine-tuning pre-trained parameters of the lan-
guage adapter modules for evaluation to align with

91

Domain Task Label type Number of inst (Train/Dev/Test) Classes
Biomedical CHEMPROT Relationship classification 4169 / 2427 / 3469 13
Biomedical RCT Abstract sentence roles 18040 / 30212 / 30135 5
Computer Science ACL-ARC Citation intent 1688 / 114 / 139 6
Computer Science SCIERC Relation classification 3219 / 455 / 974 7
News HYPERPARTISAN Partisanship 515 / 65 / 65 2
News AGNEWS Topic 115000 / 5000 / 7600 4
Reviews HELPFULNESS Review helpfulness 115251 / 5000 / 25000 2
Reviews IMDB Review sentiment 20000 / 5000 / 25000 2

Table 1: Datasets used for experimentation. Datasets include both high-resource (RCT (Dernoncourt and Lee,
2017), AGNEWS (Zhang et al., 2015), HELPFULNESS (McAuley et al., 2015), IMDB (Maas et al., 2011)) and
low-resource (CHEMPROT (Kringelum et al., 2016), ACL-ARC (Jurgens et al., 2018), SCIERC (Luan et al.,
2018), HYPERPARTISAN (Kiesel et al., 2019) settings.

TAPT, whereas Pfeiffer et al., 2020c employ both
the language and the task adapters by stacking task
adapters on top of the language adapters.

3 Experiments

We now propose an adapter-based approach that
is a parameter efficient variant of Task-Adaptive
Pretraining (TAPT) and measure the margin of the
performance between the pre-trained adapter model
and the adapter model without pretraining. For pre-
training adapters, we added the adapter module in
each transformer layer of RoBERTa using adapter-
transformer (Pfeiffer et al., 2020b)1 and continued
pretraining all the weights in adapter layers on tar-
get text corpus while keeping the original parame-
ters in RoBERTa fixed. After finishing the second
phase of pretraining, we performed fine-tuning of
RoBERTa by training the weights in the adapters
and the final classification layers while keeping all
of the parameters in RoBERTa frozen.

3.1 Dataset

Following Gururangan et al., 2020 2, we consider 8
classification tasks from 4 different domains. The
specification of each task is shown in Table 1. We
covered news and review texts that are similar to
the pretraining corpus of RoBERTa as well as scien-
tific domains in which text corpora can have largely
different distributions from those of RoBERTa. Fur-
thermore, the pretraining corpora of the target tasks
include both large and small cases to determine
whether the adapter-based approach can be appli-
cable in both low and high-resource settings.

1https://github.com/Adapter-Hub/
adapter-transformers

2Downloadble link for task dataset: https://github.
com/allenai/dont-stop-pretraining

3.2 Implementation Details
Our implementation is based on HuggingFace since
we found AllenNLP (Gardner et al., 2018) used
in Gururangan et al., 2020 is incompatible with
adapter-transformer (Pfeiffer et al., 2020b). We
follow the hyperparameters setting in Gururangan
et al., 2020, and each model in the pretraining
and fine-tuning stage is trained on a single GPU
(NVIDIA RTX 3090). Details of hyperparame-
ters are described in Appendix A. Note that for
the pretraining step, we use a batch size of 8 and
accumulate the gradient for every 32 steps to be
consistent with the hyperparameter setting in Guru-
rangan et al., 2020.

We perform pretraining with the self-supervised
objectives, which are randomly masked tokens,
with a probability of 15% for each epoch and we
do not apply validation to pretraining and save the
model at the end of the training from a single seed.
For TAPT, we train the entire parameters of the
RoBERTa via masked language modeling (MLM)
on the target dataset, whereas for the adapter-based
model, we embed the language adapters in each
transformer layer and add invertible adapters after
the embedding layers to perform MLM while freez-
ing the original parameters of RoBERTa, following
Pfeiffer et al., 2020c. Fine-tuning step is straight-
forward. We perform fine-tuning parameters that
are pretrained via MLM for both TAPT and the
adapter model. Validation is performed after each
epoch and the best checkpoint is loaded at the end
of the training to evaluate the performance on the
test set.

3.3 Experimental setup
Experiments cover four different models. First, we
reproduce the performance of RoBERTa and TAPT
in Gururangan et al., 2020 as presented in Appendix
C. Then we proceed to the adapter-based approach.

92

Dataset Baseline RoBERTa TAPT Adapter w/o PT Adapter w/ PT
CHEMPROT 81.9 1.0 82.6 0.4 82.69 0.4 82.71 0.4

RCT 87.2 0.1 87.7 0.1 87.35 0.04 87.4 0.1

ACL-ARC 63.0 5.8 67.4 1.8 69.47 2.4 69.25 2.5

SCIERC 77.3 1.9 79.3 1.5 81.5 0.9 82.37 1.0

HYPERPARTISAN 86.6 0.9 90.4 5.2 93.01 4.7 84.97 6.4

AGNEWS 93.9 0.2 94.5 0.1 94.00 0.1 93.94 0.1

HELPFULNESS 65.1 3.4 68.5 1.9 70.96 0.6 70.83 0.8

IMDB 95.0 0.2 95.5 0.1 95.51 0.1 95.57 0.1

Average F1 81.3 83.24 84.31 83.38
Trainable params per task (PT/FT) -/124.64M 163.35M/124.64M -/1.78M 2.18M/2.08M
Ratio to total params (PT/FT) -/100% 100% /100% -/1.42% 1.32%/1.65%
Relative training speed (PT/FT) -/1.0 1.0/1.0 -/1.29 1.14/1.24
Relative inference speed (PT/FT) -/1.0 1.0/1.0 -/0.98 0.88/0.98

Table 2: Average F1 score with standard deviation on test set. Each score is averaged over 5 random seeds.
Evaluation metric is macro-F1 scores on test set for each task except for CHMEPROT and RCT which use micro-
F1. We report the results of baseline RoBERTa and TAPT from Gururangan et al., 2020. Following Rücklé et al.,
2020, we measure the average relative speed for the training and the inference time across all tasks except for the
the inference speed in fine-tuning stage, which excludes low-resource tasks. PT and FT indicate pretraining and
fine-tuning respectively.

To investigate the benefits of task-adaptive pretrain-
ing with adapters, we compare the performance of
the pre-trained adapter model with the model with-
out pretraining, i.e., directly fine-tuning adapters in
RoBERTa on the target task.

For the adapter-based approach, we compare
the adapter-based model with the second phase of
pretraining and the model without the pretraining.
Since the weights of the adapters are randomly ini-
tialized, we empirically found that a larger learning
rate worked well compared to the full fine-tuning
experiments. We sweep the learning rates in {2e-5,
1e-4, 3e-4, 6e-4} and the number of epochs in {10,
20} on the validation set and report the test score
that performs the best on the validation set.

3.4 Results

The results are summarized in Table 2. Surpris-
ingly, for the average F1 score, the adapter-based
model without task-adaptive pretraining performs
best, followed by the other adapter with the pre-
training model, TAPT, and the baseline RoBERTa.
Except for Hyperpartisan news, the adapter model
without pretraining performs mostly on par with the
counterpart adapter model that involves pretraining
on target text corpus, suggesting that the benefits of
additional task-adaptive pretraining diminish when
we use the adapter-based approach. Furthermore,
directly fine-tuned adapter model only trains 1.42%
of the entire parameters which leads to the 30%
faster-training step than the full model and skips
the pretraining stage that typically expensive to
train than the fine-tuning, substantially reducing

Figure 2: F1 score as a function of learning rate on
test set with log scale on x-axis. F1 score is av-
eraged over 5 random seeds for low-resource tasks
(CHEMPROT, ACL-ARC, SCIERC, HYPER) due
to the high variance. For high-resource tasks (RCT,
AGNEWS, HELPFULNESS, IMDB), we report the
F1 score from a single random seed for each task. For
RoBERTa and TAPT, we follow the hyper-parameter
settings in Gururangan et al., 2020 except for the learn-
ing rate.

the training time while the relative speed for the
inference only decreases by 2% to the full model.

3.5 Analysis

We analyze how the adapter alone can surpass or
perform on par with both the full model and adapter
model with task-adaptive pretraining. Since we
sweep the learning rates and the number of epochs
in the range that includes larger figures compared
to those in the full model when fine-tuning adapters
and kept the other hyper-parameters the same as
in Gururangan et al., 2020, we hypothesize that

93

Dataset Baseline RoBERTa TAPT
CHEMPROT 82.8 0.9 82.62 0.5

RCT 86.89 0.1 87.4 0.2

ACL-ARC 69.24 2.6 70.08 2.3

SCIERC 80.59 0.9 81.28 1.2

HYPER 94.53 2.0 86.171.3

AGNEWS 93.9 0.2 94.050.1

HELPFUL 69.63 0.6 71.280.8

IMDB 94.93 0.1 95.330.1

Average F1 84.06 83.52

Table 3: Best performance of baseline RoBERTa and
TAPT (Gururangan et al., 2020) on our implementa-
tion. Each score is averaged over 5 random seeds. Best
configuration settings for each task is described in Ap-
pendix Table 8.

the larger learning rate zeroes out the benefits of
pretraining. Figure 2. shows the average F1 score
across all tasks as a function of learning rate.

The adapter model without a second phase of
pretraining consistently outperforms or performs
on par with the adapter model with pretraining from
1e-4 to 6e-4, demonstrating that the additional pre-
training turns out to be ineffective. In contrast,
TAPT outperforms baseline RoBERTa from 2e-5,
where both TAPT and baseline RoBERTa perform
best. The results show that different learning rates
used in the fine-tuning stage can affect the effective-
ness of pretraining and demonstrate that directly
fine-tuning a fraction of parameters can provide
comparable performance to the full-model as well
as the adapter model with pretraining while sub-
stantially reducing the training time.

Inspired by the results of the adapter models, we
perform the same experiments for the full model
(baseline RoBERTa and TAPT) on our implemen-
tation by sweeping the learning rates and the num-
ber of epochs. We hypothesize that proper hyper-
parameter settings such as a larger learning rate
or increasing the number of training steps in the
fine-tuning stage can improve the performance of
baseline RoBERTa, making pretraining on the un-
labeled target task less effective. We sweep the
learning rates in {1e-5, 2e-5, 3e-5} and the num-
ber of epochs in {10, 20} on the validation set and
report the test score that performs the best on the
validation set. Table 3 shows the best performance
of the full models for each task among different
hyper-parameter settings. The average F1 score
of baseline RoBERTa greatly increases and sur-
prisingly, it surpasses the performance of TAPT in
some tasks. The results ensure that although pre-
training PLMs on the target task results in better

performance, one can achieve comparable perfor-
mance by simply using a larger learning rate or
increasing training steps in the fine-tuning stage
while skipping the pretraining step that is computa-
tionally demanding compared to the fine-tuning.

4 Conclusion

Our work demonstrates that adapters provide a
competitive alternative to large-scale task-adaptive
pretraining for NLP classification tasks. We show
that it is possible to achieve similar performance
to TAPT with pretraining training just 1.32% of
the parameters through pretraining with adapters.
However, the most computationally efficient option
is to skip pretraining and only perform fine-tuning
with adapters. We found that skipping pretraining
altogether and just fine-tuning with adapters outper-
forms or performs mostly on par with TAPT and
the adapter model with pretraining across our tasks
while substantially reducing the training time.

Acknowledgments

We would like to thank Zsolt Kira, Mandeep
Baines, Shruti Bhosale, and Siddharth Goyal for
helpful feedback and suggestions. We also would
like to thank anonymous reviewers for their insight-
ful comments on the earlier version of the paper.

References
Franck Dernoncourt and Ji Young Lee. 2017. PubMed

200k RCT: a dataset for sequential sentence clas-
sification in medical abstracts. In Proceedings of
the Eighth International Joint Conference on Natu-
ral Language Processing (Volume 2: Short Papers),
pages 308–313, Taipei, Taiwan. Asian Federation of
Natural Language Processing.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1–
6, Melbourne, Australia. Association for Computa-
tional Linguistics.

94

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Xiaochuang Han and Jacob Eisenstein. 2019. Unsuper-
vised domain adaptation of contextualized embed-
dings for sequence labeling. In EMNLP.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for NLP.
In Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799.
PMLR.

David Jurgens, Srijan Kumar, Raine Hoover, Dan Mc-
Farland, and Dan Jurafsky. 2018. Measuring the evo-
lution of a scientific field through citation frames.
Transactions of the Association for Computational
Linguistics, 6:391–406.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 task 4: Hyperpartisan news detection. In
Proceedings of the 13th International Workshop on
Semantic Evaluation, pages 829–839, Minneapo-
lis, Minnesota, USA. Association for Computational
Linguistics.

Jens Kringelum, Sonny Kim Kjaerulff, Søren Brunak,
Ole Lund, Tudor I Oprea, and Olivier Taboureau.
2016. Chemprot-3.0: a global chemical biology dis-
eases mapping. Database, 2016.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh
Hajishirzi. 2018. Multi-task identification of enti-
ties, relations, and coreference for scientific knowl-
edge graph construction. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3219–3232, Brussels, Bel-
gium. Association for Computational Linguistics.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 142–150, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Julian McAuley, Christopher Targett, Qinfeng Shi, and
Anton Van Den Hengel. 2015. Image-based recom-
mendations on styles and substitutes. In Proceed-
ings of the 38th international ACM SIGIR confer-
ence on research and development in information re-
trieval, pages 43–52.

Arindam Mitra, Pratyay Banerjee, Kuntal Kumar Pal,
Swaroop Ranjan Mishra, and Chitta Baral. 2020.
Exploring ways to incorporate additional knowledge
to improve natural language commonsense question
answering. arXiv:1909.08855v3.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2020a.
Adapterfusion: Non-destructive task composi-
tion for transfer learning. arXiv preprint
arXiv:2005.00247.

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aish-
warya Kamath, Ivan Vulić, Sebastian Ruder,
Kyunghyun Cho, and Iryna Gurevych. 2020b.
AdapterHub: A framework for adapting transform-
ers. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 46–54, Online. Asso-
ciation for Computational Linguistics.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-
bastian Ruder. 2020c. MAD-X: An Adapter-Based
Framework for Multi-Task Cross-Lingual Transfer.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7654–7673, Online. Association for Computa-
tional Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea
Vedaldi. 2017. Learning multiple visual domains
with residual adapters. In Advances in Neural Infor-
mation Processing Systems, volume 30, pages 506–
516. Curran Associates, Inc.

Andreas Rücklé, Gregor Geigle, Max Glockner,
Tilman Beck, Jonas Pfeiffer, Nils Reimers, and
Iryna Gurevych. 2020. Adapterdrop: On the effi-
ciency of adapters in transformers. arXiv preprint
arXiv:2010.11918.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30, pages 5998–6008. Cur-
ran Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

95

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems, volume 28, pages 649–657. Curran
Associates, Inc.

A Hyperparameter Details

Details of hyperparameter setting including the
learning rates for the best performing results are
provided in Table 4, 5, and 6.

B Validation Results

We present validation performance in Table 7 and
Figure 3 and 8.

C Replication results

We provide replication results of Gururangan et al.,
2020 in Table 9.

96

Hyper-parameter Value
Optimizer Adam
Adam epsilon 1e-8, 0.999
Learning rate 1e-4
Batch size 8
Gradient accumulation step 32
Epochs 40 or 100
Adapter reduction factor 12
Maximum sequence length 512

Table 4: Details of hyperparameters used in pretraining experiments. We used 40 number of epochs for HELP-
FULNESS and 100 for the other tasks.

Hyper-parameter Value
Optimizer Adam
Adam epsilon 1e-8, 0.999
Batch size 16
Gradient accumulation step 1
Epochs 10 or 20
Patience 3 or 5
Adapter reduction factor 12
Dropout 0.1
Feedforward layer 1
Feedforward nonlinearity tanh
Classification layer 1
Learning rate see Table 6
Learning rate decay linear
Warmup proportion 0.06
Maximum sequence length 512

Table 5: Details of hyperparameters used in fine-tuning experiments. For baseline RoBERTa and TAPT, we used
10 number of epochs with patience of 3 and the learning rate of 2e-5. For adapter experiments, see Table 6.

Dataset Adapter w/o PT (LR, Epochs, Patience) Adapter w/ PT (LR, Epochs, Patience)
CHEMPROT 3e-4, 20, 5 6e-4, 20, 5
RCT 1e-4, 10, 3 1e-4, 10, 3
ACL-ARC 6e-4, 10, 3 6e-4, 20, 5
SCIERC 3e-4, 20, 5 6e-4, 20, 5
HYPER 3e-4, 20, 5 1e-4, 20, 5
AGNEWS 1e-4, 10, 3 1e-4, 10, 3
HELPFUL 3e-4, 20, 5 1e-4, 20, 5
IMDB 1e-4, 10, 3 1e-4, 10, 3

Table 6: Learning rate, the nubmer of epochs and patience for best-performing models. For adapter experiments,
we sweep the learning rates in {1e-4, 3e-4, 6e-4}, the number of epochs in {10, 20}, and patience factor in {3, 5}
on validation set.

97

Dataset Adapter w/o pretraining Adapter w/ pretraining
CHEMPROT 83.77 0.5 84.02 0.7

RCT 88.16 0.1 88.13 0.1

ACL-ARC 72.41 2.2 77.31 2.9

SCIERC 86.86 0.5 87.87 0.3

HYPER 86.33 1.4 86.00 3.5

AGNEWS 94.28 0.1 94.57 0.1

HELPFUL 70.83 1.2 70.8 0.7

IMDB 95.52 0.1 95.6 0.1

Average F1 84.77 85.54

Table 7: Validation performance of adapter experiments. Each score is averaged over 5 random seeds. Evaluation
metric is macro-F1 scores for each task except for CHMEPROT and RCT which use micro-F1.

Figure 3: F1 score as a function of learning rate on development setwith log scale on x-axis. F1 score is averaged
over 5 random seeds for low-resource tasks (CHEMPROT, ACL-ARC, SCIERC, HYPER) due to the high
variance. For high-resource tasks (RCT, AGNEWS, HELPFULNESS, IMDB), we report the F1 score from a
single random seed for each task. Here we sweep the learning rates in {1e-4, 3e-4, 6e-4}, the number of epochs in
{10, 20}, and the patience factor in {3, 5}.

Dataset Baseline RoBERTa TAPT Hyper-parameters (LR, Epochs, Patience)
CHEMPROT 82.8 0.9 82.62 0.5 3e-5, 20, 5
RCT 86.89 0.1 87.4 0.2 2e-5, 10, 3
ACL-ARC 69.24 2.6 70.08 2.3 3e-5, 20, 5
SCIERC 80.59 0.9 81.28 1.2 2e-5, 20, 5
HYPER 94.53 2.0 86.171.3 3e-5, 10, 3
AGNEWS 93.9 0.2 94.050.1 2e-5, 10, 3
HELPFUL 69.63 0.6 71.280.8 2e-5, 20, 5
IMDB 94.93 0.1 95.330.1 2e-5, 20, 5
Average F1 84.06 83.52

Table 8: Validation performance of Baseline RoBERTa and TAPT experiments that corresponds to Table 3. Each
score is averaged over 5 random seeds.

98

Original Results Original Results Our Results Our Results
Dataset Baseline RoBERTa TAPT Baseline RoBERTa TAPT
CHEMPROT 81.9 1.0 82.6 0.4 81.64 0.8 82.58 0.5

RCT 87.2 0.1 87.7 0.1 86.89 0.1 87.4 0.2

ACL-ARC 63.0 5.8 67.4 1.8 64.12 5.5 66.11 4.6

SCIERC 77.3 1.9 79.3 1.5 78.89 2.7 79.94 0.7

HYPER 86.6 0.9 90.4 5.2 85.03 6.0 91.56 2.5

AGNEWS 93.9 0.2 94.5 0.1 93.72 0.2 94.05 0.1

HELPFULNESS 65.1 3.4 68.5 1.9 69.2 1.4 71.24 0.7

IMDB 95.0 0.2 95.5 0.1 95.15 0.1 95.33 0.1

Average F1 81.3 83.24 81.83 83.53

Table 9: Reproducing Baseline RoBERTa and TAPT Results, average F1 Scores with standard deviation. F1 score
is averaged over 5 random seeds. We use the same hyper-parameters in Gururangan et al., 2020.

99

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 100–111
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

Knodle: Modular Weakly Supervised Learning with PyTorch

Anastasiia Sedova
University of Vienna

Vienna, Austria
anastasiia.sedova@univie.ac.at

Andreas Stephan
University of Vienna

Vienna, Austria
andreas.stephan@univie.ac.at

Marina Speranskaya
Ludwig Maximilian University of Munich

Munich, Germany
speranskaya@cis.lmu.de

Benjamin Roth
University of Vienna

Vienna, Austria
benjamin.roth@univie.ac.at

Abstract

Strategies for improving the training and predic-
tion quality of weakly supervised machine learn-
ing models vary in how much they are tailored to
a specific task or integrated with a specific model
architecture. In this work, we introduce Knodle, a
software framework that treats weak data annota-
tions, deep learning models, and methods for im-
proving weakly supervised training as separate,
modular components. This modularization gives
the training process access to fine-grained infor-
mation such as data set characteristics, matches
of heuristic rules, or elements of the deep
learning model ultimately used for prediction.
Hence, our framework can encompass a wide
range of training methods for improving weak
supervision, ranging from methods that only look
at correlations of rules and output classes (inde-
pendently of the machine learning model trained
with the resulting labels), to those that harness the
interplay of neural networks and weakly labeled
data. We illustrate the benchmarking potential of
the framework with a performance comparison of
several reference implementations on a selection
of datasets that are already available in Knodle.

1 Introduction

Most of today’s machine learning success stories
are built on top of huge labeled data sets. Creating
and maintaining such data sources manually is a
time-consuming, complicated and thus an expensive
and error-prone process. Various research directions
address the hunger for bigger and better datasets.

One of the most popular approaches that has
recently gained traction is weak supervision. The
learning algorithm is confronted with labels which
are easy to obtain but are not guaranteed to be correct,
and as such often demand denoising. Such weak
labels are created, for example, with the use of regular

expressions, keyword lists or external databases.
Typically, methods for improving weakly supervised
learning (and their respective implementations) are
tailored towards domain-specific tasks or integrated
with a specific model architecture. Examples include
the attention-over-instances architecture introduced
for relation extraction (Lin et al., 2016), an EM-based
algorithm used for event extraction (Keith et al., 2017)
or models of systematic label flips for named entity
recognition (Hedderich et al., 2021). Such diversity
and specificity of approaches makes it difficult
to compare or transfer them across tasks without
extensive adjustments dictated by the implementation,
the task or the data set.

We introduce Knodle: a framework for Knowledge-
supervised Deep Learning, i.e weak supervision
with neural networks. The framework provides a
simple tensor-driven abstraction based on PyTorch
allowing researchers to efficiently develop methods
for improving weakly supervised machine learning
models and try them interchangeably to find the
one that works the best for a given task. Within this
work, we refer to a denoising method as any method
that helps to improve weakly supervised learning
regardless the type of noise or bias and the exact level
of denoising (weak labels, weak rules etc).

The following points summarize Knodle’s main
design goals:

• Data abstraction. A tensor-driven data abstrac-
tion subsumes a large number of input variants
and is applicable to a diverse range of tasks.

• Method independence. A decoupled imple-
mentation of weak supervision denoising meth-
ods and prediction models enables comparability
and accounts for domain-specific inductive bi-
ases.

100

• Accessibility. A high-level interface makes it
easy to test existing methods, incorporate new
ones and benchmark them against each other.

Several denoising algorithms are already included
in Knodle. We also propose a new denois-
ing algorithm, WSCrossWeigh, which extends
CrossWeigh (Wang et al., 2019), a method for
detecting mistakes in crowd-sourced annotation,
to the weak supervision setting. The experiments
demonstrate that it outperforms other existing
methods on the majority of dataset s.

All implemented methods are tested on several
datasets, also included in the Knodle ecosystem, and
we discuss their performance. Each dataset exhibits
different characteristics, such as the amount or the
precision-recall balance of the used rules. Moreover,
depending on the weakly labeled data set, methods
for improving weak labels need to remove spurious
matches in some cases, or generalize from them in
others.

It is clear that such a diverse problem space should
be paired with a rich pool of methods so that the most
appropriate denoising method can be found for any
task or dataset. Knodle allows to easily explore the
spaces of weakly supervised learning settings and
label improvement algorithms, and hopefully will
facilitate a better understanding of the phenomena
that are inherent to weakly supervised learning.

The framework is published as an open-
source Python package knodle and available
at https://github.com/knodle/knodle.

2 Related work

Many strategies have been introduced to reduce the
need for large amounts of manually labeled data.
Among these are active learning (Sun and Grishman,
2012), where automatically selected instances are
manually annotated by experts, and semi-supervised
learning (Agichtein and Gravano, 2000; Kozareva
et al., 2008), where a small annotated dataset is
combined with a large unlabeled one. Fine-tuning
pretrained language models such as BERT (?)
shows good results if moderate to small amounts of
annotations are available.

2.1 Weak supervision
In weak supervision, tedious expert work is replaced
with easy to obtain, but potentially error-prone
labels, that are usually derived from a set of heuristic
rules. One of the most popular strategies of weakly
supervised learning is distant supervision, which uses

knowledge from existing data sources to annotate
unlabeled data. The technique is used extensively
for relation extraction (Craven and Kumlien, 1999;
Mintz et al., 2009; ?; Riedel et al., 2013; Lin et al.,
2016), where various knowledge databases, such as
WordNet (Snow et al., 2004), Wikipedia (Wu and
Weld, 2007) and Freebase (Mintz et al., 2009), are
used as annotation sources.

When using heuristic rules, it is not uncommon
that one sample turns out to be annotated by multiple
rules. The most straightforward approach to resolve
such cases is majority voting, which is used in early
weak supervision algorithms (Thomas et al., 2011)
as well as in more recent experiments (Krasakis
et al., 2019; Boland and Krüger, 2019). However,
majority voting does not deal with the different types
of noise introduced by weak supervision, and more
noise-specific algorithms are necessary. For example,
the noise produced by incomplete labels, which
stems from the incompleteness of weak supervision
sources and often leads to an increased amount
of false negatives, is commonly reduced by data
manipulations, e.g. enhancing the knowledge base
(Xu et al., 2013), a thorough construction of negative
examples to balance the positive ones (Riedel et al.,
2013), or explicitly modelling missing knowledge
base information with latent variables (Ritter et al.,
2013). The problem of noisy features, i.e. an
increased amount of false positive labels stemming
from overgeneralization, is often approached by using
a relaxed distant supervision assumption (Riedel et al.,
2010; Hoffmann et al., 2011), by active learning with
additional manual expertise (Sterckx et al., 2014),
with help of topic models (Yao et al., 2011; Roth and
Klakow, 2013), as well as by using a combination of
multiple methods (Roth, 2014).

Apart from that, methods treat the identified
potentially noisy samples differently. They are either
kept for further training with reduced weights (Jat
et al., 2018; He et al., 2020), corrected (Shang, 2019)
or eliminated (Qin et al., 2018). Thus, denoising
methods vary significantly depending on the data
and task, what makes the creation of a platform for
comparison crucial.

2.2 Structure Learning

Structure learning assumes multiple weak labels per
instance where each label is created by a so called
labeling function. The goal is to learn a dependency
structure within these labeling functions which
motivates the term structure learning. Most labeling

101

functions are generated by human intuitions, moti-
vating correlation and dependence between labeling
functions. The first algorithm was implemented in the
software package Snorkel (Ratner et al., 2017), which
also implemented the data programming paradigm,
allowing to programmatically create labeling func-
tions. Subsequently improvements were made (Bach
et al., 2017; Varma et al., 2019) and variations, such
as semi-supdervised learning (Chatterjee et al., 2019;
Maheshwari et al., 2020) were introduced.

2.3 Noise-aware learning
A common idea to mitigate single noisy labels is
to build an architecture which accounts for noisy
data. There are different approaches that model
noise-robustness by adapting the loss function (Patrini
et al., 2017). Examples include a generalization of
cross-entropy and the mean absolute error (Zhang
and Sabuncu, 2018) or the addition of a special noise
layer to a neural network (Sukhbaatar et al., 2015).
Many approaches are based on noise assumptions,
such as on the assumption of symmetric label
noise (van Rooyen et al., 2015). Another approach
aims at finding and removing wrongly labeled
samples from the training procedure. An example
in this domain is given by the confidence learning
framework CleanLab, which is based on the intuition
that low-confidence predictions in cross-validation
are more likely to be labeled wrongly (Northcutt
et al., 2021). Note that most of these methods were
built with the assumption that there is one label
corresponding to each instance, while Knodle makes
use of several weak signals per instance.

2.4 Crowdsourcing annotations
Another solution to reduce the cost of manual data
supervision by experts is crowdsourcing. In order
to increase the supervision accuracy for a task, most
crowdsourcing experiments rely on annotations by
multiple people, and the final label is defined by
majority voting (Kosinski et al., 2012) or measuring
the inter-annotator agreement (Tratz and Hovy,
2010). More sophisticated denoising strategies
include anomaly detection (Eskin, 2000), annotator’s
reliability modelling (Dawid and Skene, 1979),
Bayesian approaches (Raykar and Yu, 2012) and
generative models (Hovy et al., 2013). Some mistakes
can be identified by such methods. For example,
mistakes consistently made by careful but biased
people (Ipeirotis et al., 2010), or errors introduced by
spammers (Raykar and Yu, 2012).

As both, automatically and human labeled data,

are subject to noise and structural errors, many
algorithms can be used for both domains. For
example, the MACE algorithm (Hovy et al., 2013),
initially proposed for improving noisy annotations
from human annotators, was adapted to the setting of
denoising automatically labeled data for named entity
recognition (Rehbein and Ruppenhofer, 2017). With
the same motivation, we introduce WSCrossWeigh
(see Section 4 for more details). We demonstrate
the usefulness of the Knodle framework to transfer
algorithms for improving crowd-sourced annotations
to weak supervision problems.

2.5 Frameworks

Knodle is based upon the ideas of several software
frameworks. On a low level, Knodle is built on
top of PyTorch (Paszke et al., 2017). As for design
decisions, we followed several other high-level
libraries that aim to ease the training and prediction
experience. Namely, we drew inspiration from
PyTorch lightning (Falcon, 2019), which in essence
tries to remove the burdens of writing your own train
loop, and Huggingface’s Transformers library (Wolf
et al., 2020), which gives easy access to various
transformer-based architectures in a fixed manner, so
that they can be effortlessly interchanged in code.

3 Weakly supervised learning with Knodle

The Knodle architecture provides a layer of abstraction
that allows integrated label improvement and model
training with weakly supervised learning signals in
PyTorch. On the one hand, since Knodle has access to
the information which rules matched for each sample,
it is not restricted to methods that denoise only weak
labels, such as Cleanlab (Northcutt et al., 2021). On
the other hand, the Knodle abstraction also provides
access to input and learned representations, and thus
does not restrict denoising methods to rely on rule
match correlations alone (as Snorkel (Ratner et al.,
2017)). Moreover, access to the deep learning model
enables the integration of denoising methods that use
or manipulate the prediction model itself.

To the best of our knowledge, Knodle is the first
framework to provide a modular architecture for
interchangable application of a wide spectrum of
denoising algorithms. For that reason we believe that
it can become a testbed where different algorithms
for improving the weakly supervised data are im-
plemented and compared with each other to find the
most fruitful task-to-denoising-method combination
or to use it as a foundation for further studies.

102

Figure 1: The figure gives an overview of our system. (a) represents the preprocessed input, given as tensors.(b)
resembles the internals of Knodle. The Trainer classes introduced in Section 3.2 handle transformation, denoising
and model training. Note that these three steps could be performed subsequently or subsumed in a single training step.
Then, (c) shows the output, a trained PyTorch model.

The framework follows two main design principles,
outlined below:

1. Tensor-based representations of input data
and weak label matches

Similar to Pytorch models, where the data (input,
labels) is already expected to be in tensor format,
and the specific pre-processing that led to the tensor
representation of the data is outside the scope of the
deep learning model implementation, we choose to
exclude the process of weak label generation from
Knodle. Rather, we encode the information about
weak labels in two tensors. One tensor contains
information about which rules matched for each
data instance, while another tensor describes the
relationship between rules and output classes.

Formally, assume we have n samples, r rules and
k classes. Rule matches are gathered in a binary ma-
trix Z ∈ {0,1}n×r, where Zij =1 if rule j matches
sample i. The initial mapping from rules to the cor-
responding classes is given by another binary matrix
T ∈{0,1}r×k, Tjk=1 if rule j is indicative of class k.

This separation between one tensor that contains
rule matches and another tensor that translates them
to labels allows Knodle to access this fine-grained
information during training for certain denoising
algorithms. This is in contrast to other approaches
that treat weak supervision as learning from a noisy
heuristic label matrix Yheur = ZT without direct
access to the individual rules.

2. Separation of the prediction model from the
weak supervision aspects.

Knodle requires a standard PyTorch model for
a given prediction task. It is defined independent
of the weak supervision aspects, such as rule types

or denoising method. Therefore the same PyTorch
model definition can be used for direct or weakly
supervised training, and the two settings can easily
be compared. However, even though the prediction
model is defined separately, the denoising methods
may have access to it during training. For example,
cross-validation schemes such as WSCrossWeigh
(see Section 4) can use the PyTorch model definition
for data reweighting or label correction. This is in
contrast to approaches that modularize denoising and
training by first adjusting label confidences by using
correlations between rules only and then training
a model with the adjusted labels (Takamatsu et al.,
2012; Ratner et al., 2017). Furthermore, Knodle’s
design is much more flexible compared to approaches
where denoising is so tightly integrated into the
underlying prediction model architecture that it could
not be changed (Sukhbaatar et al., 2015).

3.1 Handling of negative instances

Different tasks need a different logic to handle data
samples where no rule matched. These samples are
traditionally called negative instances. Whether unla-
beled instances should be used for training (as an addi-
tional OTHER class) depends on the task at hand and
should be configurable. For example, in knowledge
base population (Surdeanu, 2013) there is only a small
number of relevant target relations, and it is important
to confidently identify sentences that do not contain
any of the target relations (requiring negative instances
as examples for the OTHER class). However, in spam
classification with only two classes (spam and not
spam) there are rules covering both possible outcomes,
and there is no need for unlabeled instances and filter-
ing them out is reasonable. Current weak supervision

103

frameworks provide only one of the two options: nega-
tive samples are either filtered out (Ratner et al., 2017)
or included to the training dataset (Shu et al., 2020).

Knodle includes configurable functionality for han-
dling such cases (allowing comparability of denoising
methods across tasks with and without an OTHER
class). From a technical point of view, there is a
filter non labeled flag in a configuration
file, which could be set to False if the negative
instances should be filtered out. To make up for
missing explicit annotations for negative samples,
an additional other class parameter is defined.
Automatically all samples without a matching rule
are set to belong to ”other” class. Hence, the exact
other class id could be either provided by
the user or determined automatically by Knodle.
These types of configurations are well encapsulated,
allowing the specific model to deal with either input.
The amount of negative instances that should included
in the training set can be defined specifically for each
denoising algorithm.

3.2 Implementation Details

Similar to the most popular deep learning frameworks,
such as TensorFlow (Abadi et al., 2015) and
PyTorch (Paszke et al., 2017), we realise learning
as a mapping from input tensor(s) to output tensor(s)
guided by a loss function that measures the quality
of the learned mapping. However, while the most
common solution is to represent the training data by a
design matrixX∈Rn×d (n instances represented by
d feature dimensions) and a label matrix Y ∈Rn×k
(k classes), input of Knodle are matricesX, Z and T
described above. The heuristic labels themselves are
calculated later during the weakly supervised learning
using the information contained there. To ensure a
seamless use, the weakly supervised algorithms need
to be tightly integrated with automatic differentiation
and optimization supported by PyTorch.

The denoising and training procedures are realised
within Trainer classes. During initialization,
they receive data, a possibly pre-initialized or pre-
trained model, and a method-specific configuration,
inheriting from Config containing information
such as model training parameters, criterion, valida-
tion method, class weights, various options to handle
cases where no rule matches discussed in 3.1 and
others. The level of integration between denoising and
training is different for each Trainer. Sometimes
these procedures can be completely disentangled. For
instance, the SnorkelTrainer firstly denoises

the input rules with Snorkel and, secondly, trains the
classification model on the purified labels. Other
methods highly integrate denoising and training
with each other. An example is given by the
WSCrossWeighTrainer, where several models
are trained in oder to calculate sample weights as part
of the denoising procedure before the final classifier
is trained.

While in standard deep learning frame-
works training can be executed by calling
model.train(X,Y), in Knodle the same
functionality would be invoked with the following
command (illustrates the Trainer with k-NN search,
which we describe in Section 4):

kNNAggregationTrainer(model, X, Z,
T, config).train()

The following code snippet shows an end-to-end
process, starting from data loading, training and
evaluation:

1 import torch
2 from knodle.trainer.knn_aggregation import \
3 kNNAggregationTrainer, kNNConfig
4
5 # load data in Knodle format
6 X_train, Z, T, X_test, Y_test = load_data()
7
8 # define custom config (or use default)
9 config = kNNConfig(epochs=2, k=3)

10
11 # initialize trainer
12 trainer = kNNAggregationTrainer(
13 model, X_train, Z, T, config
14)
15
16 # train
17 trainer.train()
18
19 # evaluate
20 eval_dict = trainer.test(X_test, Y_test)

More detailed information about
kNNAggregationTrainer as well as about
other Trainers included to Knodle is provided
in the next section.

4 Trainers

Knodle currently provides several out-of-the-box base-
lines and trainers, which we outline in the following
section. All Trainer classes are compatible with
any PyTorch model. As examples for PyTorch clas-
sifiers, Knodle provides code using logistic regression
and HuggingFace’s transformers (Wolf et al.,
2020).

Majority Voting Baseline. As a simple baseline,
the rules are directly applied to the test data without
any additional model training. If several rules match,

104

the prediction is done based on the majority; ties
are broken randomly. As was already mentioned
in Section 2, it is one of the most basic approaches
to denoise the data labeled by two or more rules or
human annotators.

Trainer without Denoising. The simplest trained
model is the NoDenoisingTrainer. The
majority vote is computed on the training data and
used to train the given model. This is the most direct
use of the rule matches for training a classifier. To
cover cases where several rules match, this trainer can
be configured to either use a one-hot encoding of the
winning label from the majority vote or a distribution
over labels (relative to the number of matching rules).

Trainer with kNN Denoising. This
kNNAggregationTrainer includes the
label denoising method with a simple geometric
interpretation. The intuition behind it is that similar
samples should be activated by the same rules which
is allowed by a smoothness assumption on the target
space. The trainer looks at the k most similar samples
sorted by, for example, TF-IDF features combined
with L2 distance, and activates the rules matching the
neighbors to create a denoised Ẑ. Importantly, Knodle
allows separate features for the model training and the
neighborhood activation. This method also provides a
way to activate rules for initially unmatched samples.

Trainer with Snorkel Denoising. Knodle pro-
vides a wrapper of the Snorkel system (Ratner et al.,
2017) SnorkelTrainer which incorporates both
generative and discriminative Snorkel steps. The
generative step constitutes a denoising method in
Knodle’s terminology, while the discriminative step
corresponds to a prediction model. The structure
within labels and rules, in our notation P(Y,Z,T), is
learned in an unsupervised fashion by the generative
model. Afterwards, the final discriminative model,
i.e. the prediction model, is trained with weak labels
provided by the generative model, following the
general Knodle design. Both steps are conveniently
provided in a single method call.

Trainer with Weak Supervision CrossWeigh
Denoising. Finally, we implemented our own
algorithm for noise correction in weakly su-
pervised data. It is based on the CrossWeight
method (Wang et al., 2019) and included to Knodle
as WSCrossWeighTrainer. While the original
CrossWeigh method was proposed for mistakes
identification in crowdworkers annotations, we extend
it for denoising the weakly supervised data as well.
In WSCrossWeigh we adopted the same logic for

estimating the reliability of weakly annotated data,
but made some necessarily corrections specific to
weakly supervised learning.

The main intuition behind WSCrossWeigh is the
following: if a labeling rule corresponds to a wrong
class and, therefore, annotates many samples in the
training set with a wrong label, a machine learning
model is likely to learn the incorrect pattern and to
make similar mistakes when labeling the test samples.
However, if we take a sufficiently big portion of data
with samples not labeled by this rule, train the model
on it, and then classify the samples matched by the
rule, the predictions will contradict the initial wrong
labels, and help us to trace the misclassified samples
and reduce their importance in final classifier training.

As in the original CrossWeigh, the basic idea is
similar to the k-fold cross-validation, where input
data is split into k folds, each of which becomes, in
turn, a test set, while the model is trained on the other
folds. In WSCrossWeigh, however, the splitting is per-
formed not randomly, but based on which rules match
for the samples. Firstly, the rules are randomly split
into K folds {r1,...,rk} and, iteratively, each foldl is
chosen to form a test set that is built from all samples
matched this fold’s rules. Other samples constitute
a training set that is used for training the classification
model. During the testing of the trained model on the
hold-out fold samples, the predicted label ŷi for each
test sample xi is compared to the label yi originally
assigned to xi by weak supervision. If ŷi 6=yi, this is
taken as an indication that the sample xi is likely to be
potentially mislabeled, and its weights wxi is reduced
by a value of an empirically estimated parameter ε.
This procedure is repeated several times with different
splits to detect misclassified samples more accurately.

The final classifier is trained on the whole
reweighed training dataset. As a result, the more times
the original yi label of data samplexi was suspected to
be wrong, the smaller is its weightwxi, and, therefore,
the smaller part it will play in the classifier training.

Along with other denoising algorithms,
WSCrossWeigh was tested on the datasets described
in Section 5 and showed quite promising results: it
outperforms all other algorithms on three out of four
datasets (for more details please see Section 6).

5 Datasets

Apart from denoising methods, Knodle includes a few
datasets from previous works in the Knodle-specific
tensor format in order to demonstrate the abilities of
the framework. All datasets are rather simple, but have

105

dataset classes train / test samples rules avg. rule hits class ratio

Spam 2 1586 / 250 10 1.63 0.47
Spouse 2 22254 / 2701 9 0.34 0.08
IMDb 2 40000 / 5000 6786 33.97 0.50
TAC-based RE 41 1937211 / 18660 182292 0.51 -

Table 1: Summary of data statistics. The average rule hits are computed on the train set. Class ratio describes the amount
of positive samples in the test set for binary classification datasets, i.e. data skewedness.

their own peculiarities with respect to the respective
Z and T matrices, that are worth investigating. The
overview of dataset statistics is provided in Table 1.

Spam Dataset. The first task uses the YouTube
comments dataset (Alberto et al., 2015). Here, the
task is to classify whether a text is relevant to the
video or holds spam, such as advertisement. The
dataset has a small size of both train and test sets.
Thus, a single wrongly labeled instance might
have quite a big impact on the learning algorithm.
We use the preprocessed version by the Snorkel
team (Snorkel, 2020b). Among others, the rules were
created based on keywords and regular expressions.

Spouse Dataset. This relation extraction dataset is
based on the Signal Media One-Million News Articles
Dataset (Corney et al., 2016). The task is to decide
whether a sentence holds a spouse relation or not.
Again, the preprocessed version by the Snorkel team
is used (Snorkel, 2020a), so the results can be related
to previous studies (Ratner et al., 2017). The rules are
created via a set of known spouse relationships from
DBPedia (Lehmann et al., 2014) as well as keywords
and encoded language patterns. The difficulty of the
Spouse dataset is its skewness: over 90% of samples
in the test set hold a no-spouse relation.

IMDb Dataset. The third dataset is based on the
well-known IMDb dataset (?), which consists of short
movie reviews. The task is to determine whether a
review holds a positive or negative sentiment. Despite
the training set has labels, we do not use them in our
experiments, but handle this data in an unsupervised
fashion. To create the Z and T matrices, we use
positive and negative keyword lists (Hu and Liu,
2004), with a total of 6800 keywords.

TAC-based Relation Extraction Dataset. Lastly,
given the importance of distant supervision for
relation extraction, we add a larger dataset with more
relations (than just spouse). For development and
test purposes the TACRED corpus annotated via
crowdsourcing and human labeling from KBP (Zhang
et al., 2017) is used. As human labels are not allowed

in weak training, the training is performed not on
the TACRED dataset, but on a weakly-supervised
noisy corpus built on TAC KBP corpora (Surdeanu,
2013; Roth, 2014), which was annotated with entity
pairs extracted from Freebase (Google, 2014) with
corresponding relations mapped to the 41 TAC
relations. The amount of entity pairs per relation is
limited to 10.000 and each entity pair is allowed to
be mentioned in no more than 500 sentences. An
important difference of this dataset to the other three
is the presence of negative instances added to the
dataset in equal proportion to the positive ones.

6 Experiments

The aim of Knodle is not to find the best denoising
method in general. Rather, the goal is to find the
method that improves weak labels most for a given
task or dataset and its specific properties. Thus,
Knodle supports experimentation to get a better
understanding in which settings a certain method
works well and when it does not.

6.1 Experimental Details

In all experiments, the DistilBert uncased model for
English language (Sanh et al., 2019) provided by the
HuggingFace 1 (Wolf et al., 2020) library is used as
the prediction model. The optimization is performed
with the AdamW optimizer (Loshchilov and Hutter,
2019) and a learning rate of 1e−4. We employ a
cross-entropy loss accepting a probability distribution
over all labels as reference input whenever the
output of a denoising algorithm is a distribution over
weak labels (e.g. kNNAggregationTrainer,
SnorkelTrainer). Reducing this representation
to a single label (i.e. log-likelihood) would lead to
a loss of weak signals, whereas a label distribution
allows to exploit the information from Z and T to the
fullest. Each model was trained for 2 epochs (unless
stated otherwise), which was enough to receive a
stable result.

1https://huggingface.co/

106

Spam Spouse IMDb TAC-based RE

Mode Acc P R F1 Acc P R F1

Majority vote 0.81 0.12 0.79 0.22 0.65 0.09 0.001 0.001
Majority + DistilBert 0.87 0.09 0.90 0.17 0.67 0.20 0.19 0.19

k-NN + DistilBert 0.94 0.12 0.86 0.21 0.50 0.10† 0.11† 0.10†

WSCrossWeigh + DistilBert 0.94 0.09 0.69 0.16 0.73 0.25 0.27 0.26
Snorkel + DistilBert 0.88 0.13 0.70 0.23 0.50 - - -

Table 2: Results of the classifier training with different denoising methods on the test sets of datasets included in Knodle.
†The neighbors were searched with Approximate Nearest Neighbors (Bernhardsson, 2015) because of computation
complexity of k-NN search.

For the k-NN algorithm, nearest neighbors were
found using the cosine similarity of TF-IDF features
based on a dictionary of 3000 words, and the number
of k neighbors is treated as a hyper-parameter. In our
experiments, we used k=2 except where otherwise
noted. Hyperparameters for the WSCrossWeigh
denoising algorithm are the number of folds the
data is be split into, the number of partitions (that is,
how many times the splitting for mistake estimation
is done) and a weight-reducing rate (the value, by
which the initial sample weights are reduced to
each time the sample is predicted wrongly). These
parameters are tuned for each dataset individually.
The following best parameter values were found
empirically: (folds=3, partitions=10 and ε=0.3)
for the Spam dataset, (3, 2 and 0.3) for the Spouse
dataset and (2, 25, 0.7) for the IMDb dataset. Apart
from that, Knodle provides the opportunity to train the
cross-validated sample weights with a model different
from the final classifier. In our experiments, the
weights were calculated using a Bidirectional LSTM
with GloVe Embeddings (Pennington et al., 2014),
while the final training was performed with DistilBert
using the same settings as in the experiments with
other denoising methods. The only difference is the
number of epochs on the TAC-based dataset: the best
results were obtained with 1 DistilBert epoch.

6.2 Results
An overview of the results is given in Table 2. In the
Spam dataset, all denoising methods show an improve-
ment over the simple majority vote baseline. The data-
adaptive k-NN and WSCrossWeigh methods perform
best in this setting. Snorkel and standard majority
voting followed by DistilBert fine-tuning overfit to
the noisy majority votes. This becomes obvious with
the observation that Snorkel achieves a score of 0.93
with a simple logistic regression discriminative model.

Interestingly, k-NN performs well which can serve
as a proof for the reliability of neighboring labels.

Compared to the Spam dataset, the Spouse dataset
is much larger. As the task is to find sentences holding
spouse relations, we relate all metrics to the is-spouse
relation. Note that the non-spouse relation remains
in this case completely disregarded. Furthermore, the
class ratio equals 0.08 shows that is-spouse is the com-
plicated class of interest. On average, 0.34 rules hit per
instance, meaning that almost 70% of the data match
no rule. In these cases, majority vote uses a random
vote which oversamples the is-spouse relation, render-
ing a high recall but low precision. We found that the
rule matches overrepresent the is-spouse class as they
are closer to a class ratio of 0.5 than to the true class
ratio of 0.9. Thus, the additional model training mag-
nifies overfitting towards the is-spouse class which,
again, is expressed by increased recall and lower pre-
cision. The only denoising system that generalizes is
Snorkel. One possible explanation could be that it is
the only method that provides explicit rule denoising.

For IMDb, the majority vote shows that the rules
have rather low quality on their own, but an additional
trained model on top manages to generalize beyond
the given labels. In contrast, denoising with the k-NN
algorithm only aggravates the problems inherent to
labels as the classifier’s performance drops down to a
random vote (50% accuracy). This behaviour can be
explained by the high density of rule hits: on average,
no less than 33 keywords match for each sentence,
which means that already for k=1 many neighbors
are added and that the propagation of imprecise
labelings overrules the expected benefits of k-NN.
In general, there are cues that k-NN might useful in
cases where the weak labels are already rather reliable
but fail in cases where weak labels are too noisy. The
Snorkel based denoising does not perform well on

107

IMDb dataset as well, which can be explained by
the lack of dependencies between the rules that the
Snorkel system relies on. However, WSCrossWeigh
appears to be very robust to these data characteristics,
the large amount of rules seems to help tease out and
mutually reinforce the data characteristics associated
with a specific label in cross-validation.

The distantly supervised TAC-based RE dataset
turns out to be the most complicated dataset among
all because of a larger size of samples n and a larger
number of rules r. Due to its specificity, there are
almost no rule matches (entity pairs from the seed
KB) on the test set, implying that the simple majority
baseline has scores close to 0. Training with DistilBert
improves the result, however the performance remains
considerably worse than for the data sets discussed
above. On the contrary the WSCrossWeigh method
that not directly denoise the rules, but downweigh
the mislabeled data samples is still able to improve
the results. Snorkel denoising could not be performed
on this dataset on a machine with CPU frequency of
2.2GHz with 40 cores due to the immense amount of
rules without the data manipulations we want to avoid
(such as significantly reducing the number of rules).
The computation of distances between almost 2
millions instances, which are necessary to determine
the nearest neighbors, also turned out to be extremely
memory- and time-consuming, explaining why k-NN
algorithm was also not performed. Instead, we work
around this by applying an approximated k-NN
algorithm. In our experiments we used the Annoy
library (Bernhardsson, 2015) and k = 3 parameter.
The poor performance of approximated k-NN could
be explained by a small average of rule hits in the
TAC-based RE data set; the possible approximation
losses are also not to be neglected. In contrast, the
WSCrossWeigh method performs quite well. Our
explanation is that WSCrossWeigh does not directly
denoise the rules, but down-weighs samples it is
less confident about. This makes this approach more
robust in cases where the rules are very noisy.

7 Conclusion

This work introduces the Knowledge-supervised
Deep Learning framework Knodle. Knodle provides a
unified interface to work with multiple weak labeling
sources, so that they can be seamlessly integrated with
the training of deep neural networks. This is achieved
by a tensor-based input format and a intuitive
separation of weak supervision aspects and model
training. The framework facilitates experimentation

that helps researchers to gain better insights into
the correspondence between characteristics of weak
supervision problems, and the effectiveness of
methods for improving weakly supervised learning.
From a practical perspective, Knodle can be used to
compare different denoising methods and select the
one that gives the best result for a specific task.

Knodle’s modular approach makes it easy to add
new data sets and denoising algorithms. Adding func-
tionality to Knodle is straightforward, and we do hope
that it will encourage researchers to create their own
algorithms to improve learning with weakly annotated
data, and incorporate them into the Knodle framework.

Acknowledgments

This research was funded by the WWTF through the
project ”Knowledge-infused Deep Learning for Nat-
ural Language Processing” (WWTF Vienna Research
Group VRG19-008), by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) -
RO 5127/2-1, and supported by a gift from Diffbot 2.

References
Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fer-
nanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. 2015. TensorFlow: Large-scale machine
learning on heterogeneous systems. Software available
from tensorflow.org.

Eugene Agichtein and Luis Gravano. 2000. Snowball:
Extracting relations from large plain-text collections.
In Proceedings of the Fifth ACM Conference on Digital
Libraries, DL ’00, page 85–94, New York, NY, USA.
Association for Computing Machinery.

T C Alberto, J V Lochter, and T A Almeida. 2015.
TubeSpam: Comment Spam Filtering on YouTube. In
2015 IEEE 14th International Conference on Machine
Learning and Applications (ICMLA), pages 138–143.

Stephen H Bach, Bryan Dawei He, Alexander Ratner, and
Christopher Ré. 2017. Learning the Structure of Gener-
ative Models without Labeled Data. CoRR, abs/1703.0.

E. Bernhardsson. 2015. Annoy on github. Last accessed
23 April 2021.
2https://www.diffbot.com/

108

K. Boland and F. Krüger. 2019. Distant supervision for
silver label generation of software mentions in social
scientific publications. In BIRNDL@SIGIR.

Oishik Chatterjee, Ganesh Ramakrishnan, and Sunita
Sarawagi. 2019. Data Programming using Continuous
and Quality-Guided Labeling Functions. CoRR,
abs/1911.0.

D. Corney, M. Albakour, Miguel Martinez-Alvarez, and
Samir Moussa. 2016. What do a million news articles
look like? In NewsIR@ECIR.

Mark Craven and Johan Kumlien. 1999. Constructing
biological knowledge bases by extracting information
from text sources. In Proceedings of the Seventh
International Conference on Intelligent Systems for
Molecular Biology, page 77–86. AAAI Press.

A. P. Dawid and A. M. Skene. 1979. Maximum likeli-
hood estimation of observer error-rates using the em
algorithm. Journal of the Royal Statistical Society.
Series C (Applied Statistics), 28(1):20–28.

Eleazar Eskin. 2000. Detecting errors within a corpus
using anomaly detection. In 1st Meeting of the
North American Chapter of the Association for
Computational Linguistics.

WA Falcon. 2019. Pytorch lightning. GitHub. Note:
https://github.com/PyTorchLightning/pytorch-lightning
Cited by, 3.

Google. 2014. Freebase data dumps. https:
//developers.google.com/freebase/data.

Zhengqiu He, Wenliang Chen, Yuyi Wang, Wei Zhang,
Guanchun Wang, and Min Zhang. 2020. Improving
neural relation extraction with positive and unlabeled
learning. Proceedings of the AAAI Conference on
Artificial Intelligence, 34:7927–7934.

Michael A. Hedderich, Dawei Zhu, and Dietrich Klakow.
2021. Analysing the noise model error for realistic
noisy label data.

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke
Zettlemoyer, and Daniel S. Weld. 2011. Knowledge-
based weak supervision for information extraction
of overlapping relations. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
541–550, Portland, Oregon, USA. Association for
Computational Linguistics.

Dirk Hovy, Taylor Berg-Kirkpatrick, Ashish Vaswani,
and Eduard Hovy. 2013. Learning whom to trust
with MACE. In Proceedings of the 2013 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 1120–1130, Atlanta, Georgia.
Association for Computational Linguistics.

Minqing Hu and Bing Liu. 2004. Mining and Sum-
marizing Customer Reviews. In Proceedings of the
Tenth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’04,
pages 168–177, New York, NY, USA. Association for
Computing Machinery.

Panos Ipeirotis, Foster Provost, and Jing Wang. 2010.
Quality management on amazon mechanical turk.
In:Proceedings of the ACM SIGKDD Workshop on
Human Computation.

Sharmistha Jat, Siddhesh Khandelwal, and Partha Taluk-
dar. 2018. Improving distantly supervised relation
extraction using word and entity based attention.

Katherine A. Keith, Abram Handler, Michael Pinkham,
Cara Magliozzi, Joshua McDuffie, and Brendan
O’Connor. 2017. Identifying civilians killed by
police with distantly supervised entity-event extraction.
CoRR, abs/1707.07086.

Michal Kosinski, Yoram Bachrach, Gjergji Kasneci,
Jurgen Van-Gael, and Thore Graepel. 2012. Crowd iq:
Measuring the intelligence of crowdsourcing platforms.
Proceedings of the 3rd Annual ACM Web Science
Conference, WebSci’12.

Zornitsa Kozareva, Ellen Riloff, and Eduard Hovy. 2008.
Semantic class learning from the web with hyponym
pattern linkage graphs. In Proceedings of ACL-08:
HLT, pages 1048–1056, Columbus, Ohio. Association
for Computational Linguistics.

Antonios Minas Krasakis, E. Kanoulas, and G. Tsat-
saronis. 2019. Semi-supervised ensemble learning
with weak supervision for biomedical relationship
extraction. In AKBC.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick Van Kleef,
Sören Auer, and Christian Bizer. 2014. Dbpedia - a
large-scale, multilingual knowledge base extracted
from wikipedia. Semantic Web Journal, 6.

Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan,
and Maosong Sun. 2016. Neural relation extraction
with selective attention over instances. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2124–2133, Berlin, Germany. Association for
Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
Weight Decay Regularization.

Ayush Maheshwari, Oishik Chatterjee, KrishnaTeja
Killamsetty, Rishabh Iyer, and Ganesh Ramakrishnan.
2020. Data Programming using Semi-Supervision and
Subset Selection.

Mike Mintz, Steven Bills, Rion Snow, and Daniel Jurafsky.
2009. Distant supervision for relation extraction with-
out labeled data. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language
Processing of the AFNLP, pages 1003–1011, Suntec,
Singapore. Association for Computational Linguistics.

109

Curtis G Northcutt, Lu Jiang, and Isaac L Chuang. 2021.
Confident Learning: Estimating Uncertainty in Dataset
Labels.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. 2017.
Automatic differentiation in pytorch. NIPS Workshop.

Giorgio Patrini, Alessandro Rozza, Aditya Menon,
Richard Nock, and Lizhen Qu. 2017. Making Deep
Neural Networks Robust to Label Noise: a Loss
Correction Approach.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543.

Pengda Qin, Weiran Xu, and William Yang Wang.
2018. Robust distant supervision relation extraction
via deep reinforcement learning. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2137–2147, Melbourne, Australia. Association
for Computational Linguistics.

Alexander Ratner, Stephen H Bach, Henry R Ehrenberg,
Jason Alan Fries, Sen Wu, and Christopher R é. 2017.
Snorkel: Rapid Training Data Creation with Weak
Supervision. CoRR, abs/1711.1.

Vikas C. Raykar and Shipeng Yu. 2012. Eliminating
spammers and ranking annotators for crowdsourced
labeling tasks. Journal of Machine Learning Research,
13(16):491–518.

Ines Rehbein and Josef Ruppenhofer. 2017. Detecting
annotation noise in automatically labelled data. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1160–1170, Vancouver, Canada.
Association for Computational Linguistics.

Sebastian Riedel, Limin Yao, and Andrew McCallum.
2010. Modeling relations and their mentions without
labeled text. In Proceedings of the 2010 European
Conference on Machine Learning and Knowledge
Discovery in Databases: Part III, ECML PKDD’10,
page 148–163, Berlin, Heidelberg. Springer-Verlag.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M. Marlin. 2013. Relation extraction
with matrix factorization and universal schemas. In
Proceedings of the 2013 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 74–
84, Atlanta, Georgia. Association for Computational
Linguistics.

Alan Ritter, Luke Zettlemoyer, Mausam, and Oren Etzioni.
2013. Modeling missing data in distant supervision for
information extraction. Transactions of the Association
for Computational Linguistics, 1:367–378.

Brendan van Rooyen, Aditya Krishna Menon, and
Robert C Williamson. 2015. Learning with Symmetric
Label Noise: The Importance of Being Unhinged.

Benjamin Roth. 2014. Effective distant supervision for
end-to-end knowledge base population systems. Ph.D.
thesis, Saarland University.

Benjamin Roth and Dietrich Klakow. 2013. Feature-based
models for improving the quality of noisy training data
for relation extraction. In Proceedings of the 22nd
ACM International Conference on Information and
Knowledge Management, CIKM ’13, page 1181–1184,
New York, NY, USA. Association for Computing
Machinery.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108.

Yuming Shang. 2019. Are noisy sentences useless for
distant supervised relation extraction?

Kai Shu, Subhabrata Mukherjee, Guoqing Zheng, Ahmed
Hassan, Milad Shokouhi, and Susan Dumais. 2020.
Learning with weak supervision for email intent
detection. pages 1051–1060.

Snorkel. 2020a. Detecting spouse mentions in sentences.
Last accessed 25 February 2021.

Snorkel. 2020b. Snorkel intro tutorial: Data labeling.
Last accessed 25 February 2021.

Rion Snow, Daniel Jurafsky, and Andrew Ng. 2004.
Learning syntactic patterns for automatic hypernym
discovery. In NIPS, volume 17.

Lucas Sterckx, Thomas Demeester, Johannes Deleu,
and Chris Develder. 2014. Using active learning
and semantic clustering for noise reduction in distant
supervision. In NIPS 2014.

Sainbayar Sukhbaatar, Joan Bruna, Manohar Paluri,
Lubomir Bourdev, and Rob Fergus. 2015. Training
Convolutional Networks with Noisy Labels.

Ang Sun and Ralph Grishman. 2012. Active learning
for relation type extension with local and global data
views. In Proceedings of the 21st ACM International
Conference on Information and Knowledge Manage-
ment, CIKM ’12, page 1105–1112, New York, NY,
USA. Association for Computing Machinery.

M. Surdeanu. 2013. Overview of the tac2013 knowledge
base population evaluation: English slot filling and
temporal slot filling. Theory and Applications of
Categories.

Shingo Takamatsu, Issei Sato, and Hiroshi Nakagawa.
2012. Reducing wrong labels in distant supervision
for relation extraction. In Proceedings of the 50th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 721–729,
Jeju Island, Korea. Association for Computational
Linguistics.

110

Philippe Thomas, Illés Solt, Roman Klinger, and Ulf Leser.
2011. Learning protein–protein interaction extraction
using distant supervision. In Proceedings of Workshop
on Robust Unsupervised and Semisupervised Methods
in Natural Language Processing, pages 25–32, Hissar,
Bulgaria. Association for Computational Linguistics.

Stephen Tratz and Eduard Hovy. 2010. A taxonomy,
dataset, and classifier for automatic noun compound
interpretation. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics,
pages 678–687.

Paroma Varma, Frederic Sala, Ann He, Alexander Ratner,
and Christopher Ré. 2019. Learning Dependency
Structures for Weak Supervision Models.

Zihan Wang, Jingbo Shang, Liyuan Liu, Lihao Lu,
Jiacheng Liu, and Jiawei Han. 2019. CrossWeigh:
Training named entity tagger from imperfect anno-
tations. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 5154–5163, Hong Kong, China. Association for
Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao,
Sylvain Gugger, Mariama Drame, Quentin Lhoest, and
Alexander M Rush. 2020. HuggingFace’s Transform-
ers: State-of-the-art Natural Language Processing.

Fei Wu and Daniel S. Weld. 2007. Autonomously
semantifying wikipedia. In CIKM, page 41– 50. ACM.

Wei Xu, Raphael Hoffmann, Le Zhao, and Ralph Grish-
man. 2013. Filling knowledge base gaps for distant
supervision of relation extraction. In Proceedings
of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 665–670, Sofia, Bulgaria. Association for
Computational Linguistics.

Limin Yao, Aria Haghighi, Sebastian Riedel, and Andrew
McCallum. 2011. Structured relation discovery using
generative models. In Proceedings of the 2011 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1456–1466, Edinburgh, Scotland,
UK. Association for Computational Linguistics.

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli,
and Christopher D. Manning. 2017. Position-aware
attention and supervised data improve slot filling. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2017), pages 35–45.

Zhilu Zhang and Mert R Sabuncu. 2018. General-
ized Cross Entropy Loss for Training Deep Neural
Networks with Noisy Labels.

111

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 112–127
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

X2Parser: Cross-Lingual and Cross-Domain Framework for
Task-Oriented Compositional Semantic Parsing

Zihan Liu, Genta Indra Winata, Peng Xu, Pascale Fung
Center for Artificial Intelligence Research (CAiRE)

Department of Electronic and Computer Engineering
The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

zihan.liu@connect.ust.hk, pascale@ece.ust.hk

Abstract

Task-oriented compositional semantic parsing
(TCSP) handles complex nested user queries
and serves as an essential component of vir-
tual assistants. Current TCSP models rely on
numerous training data to achieve decent per-
formance but fail to generalize to low-resource
target languages or domains. In this paper,
we present X2Parser, a transferable Cross-
lingual and Cross-domain Parser for TCSP.
Unlike previous models that learn to gener-
ate the hierarchical representations for nested
intents and slots, we propose to predict flat-
tened intents and slots representations sepa-
rately and cast both prediction tasks into se-
quence labeling problems. After that, we fur-
ther propose a fertility-based slot predictor that
first learns to dynamically detect the number
of labels for each token, and then predicts
the slot types. Experimental results illustrate
that our model can significantly outperform
existing strong baselines in cross-lingual and
cross-domain settings, and our model can also
achieve a good generalization ability on target
languages of target domains. Furthermore, our
model tackles the problem in an efficient non-
autoregressive way that reduces the latency by
up to 66% compared to the generative model.1

1 Introduction

Virtual assistants can perform a wide variety of
tasks for users, such as setting reminders, searching
for events, and sending messages. Task-oriented
compositional semantic parsing (TCSP) which
comprehends users’ intents and detects the key
information (slots) in the utterance is one of the
core components in virtual assistants. Existing
TCSP models highly rely on large amounts of train-
ing data that usually only exist in high-resource
domains and languages (e.g., English), and they

1The code will be released in https://github.com/
zliucr/X2Parser.

Figure 1: Illustration of the cross-lingual task, cross-
domain task, and the combination of both (X2 task).

generally fail to generalize well in a low-resource
scenario. Given that collecting enormous training
data is expensive and time-consuming, we aim to
develop a transferable model that can quickly adapt
to low-resource target languages and domains.

The traditional semantic parsing can be treated
as a simple joint intent detection and slot filling
task (Liu and Lane, 2016; Goo et al., 2018; Zhang
et al., 2019), while compositional semantic parsing
has to cope with complex nested queries, which re-
quires more sophisticated models. Current state-of-
the-art TCSP models (Rongali et al., 2020; Li et al.,
2020a) are generation-based models that learn to
directly generate the hierarchical representations
which contain nested intent and slot labels.2 We
argue that the hierarchical representations are rela-
tively complex, and the models need to learn when
to generate the starting intent or slot label, when to
copy tokens from the input, and when to generate
the end of the label. Hence, large quantities of train-

2An example of hierarchical representations is illustrated
at the bottom of Figure 2.

112

Figure 2: One data example with the illustration of our proposed flattened intents and slots representations, as well
as the hierarchical representations used in Li et al. (2020a).

ing data are necessary for the models to learn these
complicated skills (Rongali et al., 2020), while they
cannot generalize well when large datasets are ab-
sent (Li et al., 2020a). Moreover, the inference
speed of generation-based models will be greatly
limited by the output length.

In this paper, we propose a transferable cross-
lingual and cross-domain parser (X2Parser) for
TCSP. Instead of generating hierarchical represen-
tations, we convert the nested annotations into flat-
tened intent and slot representations (as shown in
Figure 2) so that the model can learn to predict the
intents and slots separately. We cast the nested slot
prediction problem into a special sequence labeling
task where each token can have multiple slot labels.
To tackle this task, our model first learns to predict
the number of slot labels, which helps it capture
the hierarchical slot information in user queries.
Then, it copies the corresponding hidden state for
each token and uses those hidden states to predict
the slot labels. For the nested intent prediction, we
cast the problem into a normal sequence labeling
problem where each token only has one intent la-
bel since the nested cases for intents are simpler
than those for slots. Compared to generation-based
models (Li et al., 2020a), X2Parser simplifies the
problem by flattening the hierarchical representa-
tions and tackles the task in a non-autoregressive
way, which strengthen its adaptation ability in low-
resource scenarios and greatly reduce the latency.

As shown in Figure 1, we conduct experiments

on three low-resource settings: cross-lingual, cross-
domain, and a combination of both. Results show
that our model can remarkably surpass existing
strong baselines in all the low-resource scenar-
ios by more than 10% exact match accuracy, and
can reduce the latency by up to 66% compared to
generation-based models. We summarize the main
contributions of this paper as follows:

• We provide a new perspective to tackle the
TCSP task, which is to flatten the hierarchi-
cal representations and cast the problem into
several sequence labeling tasks.

• X2Parser can significantly outperform exist-
ing strong baselines in different low-resource
settings and notably reduce the latency com-
pared to the generation-based model.

• We conduct extensive experiments in different
few-shot settings and explore the combination
of cross-lingual and cross-domain scenarios.

2 Related Work

2.1 Task-Oriented Semantic Parsing

The majority of works on task-oriented seman-
tic parsing focused on non-compositional user
queries (Mesnil et al., 2013; Liu and Lane, 2016;
Goo et al., 2018; Zhang et al., 2019), which turns
the parsing task into a combination of intent detec-
tion and slot filling. Recently, Gupta et al. (2018)

113

Figure 3: The architecture of X2Parser. We consider the TCSP task as a combination of the coarse-grained intent
classification, fine-grained intent prediction, and slot filling tasks.

introduced a new dataset, called TOP, annotated
with complex nested intents and slots and proposed
to use the hierarchical representations to model the
task. After that, Rongali et al. (2020) showed that
leveraging a sequence-to-sequence model based on
a copy mechanism (See et al., 2017) to directly gen-
erate the hierarchical representations was effective
at parsing the nested queries. Taking this further,
Chen et al. (2020) and Li et al. (2020a) extended the
TOP dataset into multiple domains and multiple lan-
guages, and Li et al. (2020a) conducted zero-shot
cross-lingual experiments using the combination of
the multilingual pre-trained models (Conneau et al.,
2020; Tran et al., 2020) and the copy mechanism
method proposed in Rongali et al. (2020). Lately,
Babu et al. (2021) and Shrivastava et al. (2021),
which are concurrent works of X2Parser, proposed
to tackled the TCSP task in a non-autoregressive
way. Different from them, we propose to flatten the
hierarchical representations and cast the problem
into several sequence labeling tasks.

2.2 Language and Domain Adaptation
Recently, cross-lingual and cross-domain models
that aim to tackle low-resource issues have been ap-
plied to natural language understanding (Conneau
et al., 2018; Huang et al., 2019; Conneau et al.,
2020; Gururangan et al., 2020), sentiment analy-
sis (Zhou et al., 2016; Ziser and Reichart, 2017),
task-oriented semantic parsing (Chen et al., 2018;
Schuster et al., 2019; Liu et al., 2019; Wu et al.,
2019; Liu et al., 2020a; Chen et al., 2020; Liu et al.,
2020b), named entity recognition (Ni et al., 2017;
Xie et al., 2018; Jia et al., 2019; Liu et al., 2020c),
speech recognition (Mimura et al., 2017; Winata
et al., 2020), abstractive summarization (Zhu et al.,
2019; Ouyang et al., 2019; Yu et al., 2021), etc. De-

spite numerous studies related to the cross-lingual
and cross-domain areas, only a few of them have ex-
plored how to effectively adapt models to the target
languages in target domains, and the investigated
tasks are limited to sentiment analysis (Fernández
et al., 2016; Li et al., 2020b), abusive language de-
tection (Pamungkas and Patti, 2019), and machine
reading comprehension (Charlet et al., 2020). To
the best of our knowledge, we are the first to study
the combination of cross-lingual and cross-domain
adaptations in the TCSP task.

3 Task Decomposition

In this section, we first introduce the intuition of
decomposing the compositional semantic parsing
into intent predictions and slot filling. Then, we
describe how we construct intent and slot labels.

3.1 Intuition of Task Decomposition

We argue that hierarchical representations contain-
ing nested annotations for intents and slots are rel-
atively complex. We need large enough training
data to train a good model based on such repre-
sentations, and the model’s performance will be
greatly limited in low-resource scenarios. There-
fore, instead of incorporating intents and slots into
one representation, we propose to predict them sep-
arately so that we can simplify the parsing problem
and enable the model to easily learn the skills for
each decomposed task, and finally, our model can
achieve a better adaptation ability in low-resource
scenarios. As illustrated in Figure 2, we obtain the
coarse-grained intent, flattened fine-grained intents
and flattened slot labels from the hierarchical repre-
sentations, and train the model based on these three
categories in a multi-task fashion. Note that we

114

can always reconstruct the hierarchical representa-
tions based on the labels in these three categories,
which means that the decomposed labels and the
hierarchical labels are equivalent.

3.2 Label Constructions
Slot Labels We extract nested slot labels from
the hierarchical representations and assign the la-
bels to corresponding tokens based on the BIO
(begin-inside-outside) structure. As we can see
from Figure 2, there could exist multiple slot
labels for one token, and we consider the or-
der of the labels so as to reconstruct the hier-
archical representations. Specifically, we put
the more fine-grained slot label at the later po-
sition. For example, “message” (in Figure 2)
has B-TODO and B-METHOD-MESSAGE labels,
and B-METHOD-MESSAGE comes after B-TODO
since it is a more fine-grained slot label.

Intent Labels Each data sample has one intent
label for the whole user utterance, and we extract
it as an individual coarse-grained intent label. For
the intents expressed by partial tokens (i.e., fine-
grained intents), we use the BIO structure to label
the corresponding tokens. We notice that we only
need to assign one intent label to each token since
the nested cases for intents are relatively simple.3

Therefore, the fine-grained intent classification be-
comes a sequence labeling task.

4 X2Parser

The model architecture of our X2Parser is illus-
trated in Figure 3. To enable the cross-lingual
ability of our model, we leverage the multilin-
gual pre-trained model XLM-R (Conneau et al.,
2020) as the sequence encoder. Let us define
X = {x1, x2, ..., xn} as the user utterance and
H = {h1, h2, ..., hn} as the hidden states (denoted
as Emb in Figure 3) from XLM-R.

4.1 Slot Predictor
The slot predictor consists of a fertility classifier, a
slot encoder, and a slot classifier. Inspired by Gu
et al. (2018), the fertility classifier learns to predict
the number of slot labels for each token, and then it
copies the corresponding number of hidden states.
Finally, the slot classifier is trained to conduct the
sequence labeling based on the slot labels we con-
structed. The fertility classifier not only helps the

3We place more details about how we construct labels for
fine-grained nested intents in the Appendix A.

model identify the number of labels for each token
but also guides the model to implicitly learn the
nested slot information in user queries. It relieves
the burden of the slot classifier, which needs to
predict multiple slot entities for certain tokens.

Fertility Classifier (FC) We add a linear layer
(FC) on top of the hidden states from XLM-R to
predict the number of labels (fertility), which we
formulate as follows:

F = {f1, f2, ..., fn} = FC({h1, h2, ..., hn}),
(1)

where FC is an n-way classifier (n is the maximum
label number) and fi(i ∈ [1, n]) is a positive inte-
ger representing the number of labels for xi.

Slot Filling After obtaining the fertility predic-
tions, we copy the corresponding number of hidden
states from XLM-R:

H ′ = CopyHiddens(H,F). (2)

Then, we add a transformer encoder (Vaswani et al.,
2017) (slot encoder (SE)) on top of H ′ to incor-
porate the sequential information into the hidden
states, followed by adding a linear layer (slot clas-
sifier (SC)) to predict the slots, which we formulate
as follows:

Pslot = SC(SE(H ′)), (3)

where Pslot is a sequence of slots that has the same
length as the sum of the fertility numbers.

4.2 Intent Predictor
Coarse-Grained Intent The coarse-grained in-
tent is predicted based on the hidden state of the
“[CLS]” token from XLM-R since it can be the
representation for the whole sequence, and then we
add a linear layer (coarse-grained intent classifier
(CGIC)) on top of the hidden state to predict the
coarse-grained intent:

pcg = CGIC(hcls), (4)

where pcg is a single intent prediction.

Fine-Grained Intent We add a linear layer (fine-
grained intent classifier (FGIC)) on top of the hid-
den states H to produce the fine-grained intents:

Pfg = FGIC({h1, h2, ..., hn}), (5)

where Pfg is a sequence of intent labels that has the
same length as the input sequence.

115

Model en es fr de hi th Avg.

Seq2Seq w/ CRISS (Li et al., 2020a) 84.20 48.60 46.60 36.10 31.20 0.00 32.50

Seq2Seq w/ XLM-R (Li et al., 2020a) 83.90 50.30 43.90 42.30 30.90 26.70 38.82

Neural Layered Model (NLM) 82.40 59.99 58.16 54.91 29.31 28.78 46.23

X2Parser 83.39 60.30 58.34 56.16 37.06 29.35 48.24

Table 1: Exact match accuracies for the zero-shot cross-lingual setting. “Avg.” denotes the averaged performance
over all target languages (English excluded). The results of X2Parser and NLM are averaged over five runs.

Model Alarm Call. Event Msg. Music News People Recipe Remind Timer Weather Avg.

Seq2Seq 67.94 64.25 61.93 50.11 32.20 43.20 52.54 34.21 46.32 44.83 73.58 51.92

NLM 76.32 70.02 73.60 70.58 56.52 58.01 67.33 50.01 57.28 64.37 80.15 65.83

X2Parser 76.72 73.16 77.33 71.45 55.19 64.43 69.77 51.78 58.86 65.98 81.17 67.80

Table 2: Exact match accuracies (averaged over three runs) for the cross-domain setting in English. The scores
represent the performance for the corresponding target domains. We use 10% of training samples in the target
domain. “Seq2Seq” denotes the “Seq2Seq w/ XLM-R” baseline (same for the following tables and figures).

5 Experiments

5.1 Experimental Setup

Dataset We conduct the experiments on the
MTOP dataset proposed by Li et al. (2020a), which
contains six languages: English (en), German (de),
French (fr), Spanish (es), and Thai (th), and 11
domains: alarm, calling, event, messaging, music,
news, people, recipes, reminder, timer, and weather.
The data statistics are reported in the Appendix B.

Cross-Lingual Setting In the cross-lingual set-
ting, we use English as the source language and the
other languages as target languages. In addition,
we consider a zero-shot scenario where we only
use English data for training.

Cross-Domain Setting In the cross-domain set-
ting, we only consider training and evaluation in
English. We choose ten domains as source domains
and the other domain as the target domain. Differ-
ent from the cross-lingual setting, we consider a
few-shot scenario where we first train the model
using the data from the ten source domains, and
then we fine-tune the model using a few data sam-
ples (e.g., 10% of the data) from the target domain.
We consider the few-shot scenario because zero-
shot adapting the model to the target domain is
extremely difficult due to the unseen intent and slot
types, while zero-shot to target languages is easier
using multilingual pre-trained models.

Cross-Lingual Cross-Domain Setting This set-
ting combines the cross-lingual and cross-domain

settings. Specifically, we first train the model on
the English data from the ten source domains, and
then fine-tune it on a few English data samples
from the other (target) domain. Finally, we conduct
the zero-shot evaluation on all the target languages
of the target domain.

5.2 Baselines

Seq2Seq w/ XLM-R Rongali et al. (2020) pro-
posed a sequence-to-sequence (Seq2Seq) model
using a pointer-generator network (See et al., 2017)
to handle nested queries, and achieved new state-of-
the-art results in English. Li et al. (2020a) adopted
this architecture for zero-shot cross-lingual adap-
tation. They replaced the encoder with the XLM-
R (Conneau et al., 2020) and used a customized
decoder to learn to generate intent and label types
and copy tokens from the inputs.4

Seq2Seq w/ CRISS It is the same architecture as
Seq2Seq w/ XLM-R, except that Li et al. (2020a)
replaced XLM-R with the multilingual pre-trained
model, CRISS (Tran et al., 2020), as the encoder
for the zero-shot cross-lingual adaptation.

Neural Layered Model (NLM) This baseline
conducts the multi-task training based on the same
task decomposition as X2Parser, but it replaces the
slot predictor module in X2Parser with a neural

4In order to compare the performance in the cross-domain
and cross-lingual cross-domain settings, we follow Li et al.
(2020a) to reimplement this baseline since the source code is
not publicly available.

116

Model Alarm Call. Event Msg. Music News People Recipe Remind Timer Weather Avg.

Seq2Seq 34.29 47.00 41.81 25.86 19.21 25.39 22.13 16.12 9.80 20.01 36.90 22.25

NLM 48.53 43.30 44.62 43.32 36.25 28.60 43.29 28.54 20.50 34.16 59.57 39.15

X2Parser 48.72 51.30 53.22 43.99 37.25 34.85 45.97 32.99 27.87 36.61 60.05 42.98

Table 3: Exact match accuracies (averaged over three runs) for the cross-lingual cross-domain setting. The result
for each domain is the averaged performance over all target languages. We use 10% of training samples in the
English target domain, and do not use any data in the target languages.

Figure 4: Full cross-lingual cross-domain results (across all target languages of target domains) for Table 3.

layered model (Ju et al., 2018),5 while keeping the
other modules the same. Unlike our fertility-based
slot predictor, NLM uses several stacked layers to
predict entities of different levels. We use this base-
line to verify the effectiveness of our fertility-based
slot predictor.

5.3 Training Details

We use XLM-R Large (Conneau et al., 2020) as
the sequence encoder. For a word (in an utterance)
with multiple subword tokens, we take the repre-
sentations from the first subword token to predict
the labels for this word. The transformer encoder
(slot encoder) has one layer with a head number of
4, a hidden dimension of 400, and a filter size of 64.
We set the fertility classifier as a 3-way classifier
since the maximum label number for each token in
the dataset is 3. We train X2Parser using the Adam
optimizer (Kingma and Ba, 2015) with a learning
rate of 2e-5 and a batch size of 32. We follow Li
et al. (2020a) and use the exact match accuracy to
evaluate the models. For our model, the prediction
is considered correct only when the predictions for
the coarse-grained intent, fine-grained intents, and
the slots are all correct. To ensure a fair compar-
ison, we use the same three random seeds to run
each model and calculate the averaged score for
each target language and domain.

5This model was originally proposed to tackle the nested
named entity recognition task

6 Results & Discussion

6.1 Main Results

Cross-Lingual Setting As we can see from Ta-
ble 1, X2Parser achieves similar performance in
English compared to Seq2Seq-based models, while
it significantly outperforms them in the zero-shot
cross-lingual setting, with ∼10% accuracy im-
provement on average. In the English training pro-
cess, the Seq2Seq-based models can well learn the
specific scope of tokens that need to be copied and
assigned to a specific label type based on numerous
training data. However, these models will easily
lose effectiveness when the input sequences are
in target languages due to the inherent variances
across languages and the difficulty of generating hi-
erarchical representations. X2Parser separates the
TCSP task into predicting intents and slots individ-
ually, which lowers the task difficulty and boosts
its zero-shot adaptation ability to target languages.
Interestingly, we find that compared to Seq2Seq w/
XLM-R, X2Parser greatly boosts the performance
on target languages that are topologically close
to English (e.g., French (fr)) with more than 10%
scores, while the improvements for languages that
are topologically distant from English (e.g., Thai
(th) and Hindi (hi)) are relatively limited. We ar-
gue that the large discrepancies between English
and Thai make the representation alignment qual-
ity between English and Thai (Hindi) in XLM-R
relatively low, and their different language patterns
lead to unstable slot and intent predictions. These

117

Figure 5: Few-shot exact match results on the cross-domain setting for Event, News and Recipe target domains.

Figure 6: Few-shot exact match results on the cross-lingual cross-domain setting for Event, News and Recipe
target domains. The results are averaged over all target languages.

factors limit the improvement for X2Parser on the
adaptation to topologically distant languages.

From Table 1, although NLM achieves
marginally lower performance in English com-
pared to Seq2Seq w/ XLM-R, it produces signifi-
cant improvements in target languages. This can
be attributed to the fact that NLM leverages the
same task decomposition as X2Parser, which fur-
ther indicates the effectiveness of decomposing the
TCSP task into intent and slot predictions for low-
resource scenarios. Additionally, X2Parser sur-
passes NLM by ∼2% exact match accuracy on
average in target languages. We conjecture that the
stacked layers in NLM could make the model con-
fused about which layer needs to generate which
entity types, and this confusion is aggravated in
the zero-shot cross-lingual setting where no train-
ing data are available. However, our fertility-based
method helps the model implicitly learn the struc-
ture of hierarchical slots by predicting the number
of labels for each token, which allows the slot clas-
sifier to predict the slot types more easily in the
cross-lingual setting.

Cross-Domain Setting As shown in Table 2,
X2Parser and NLM notably surpass the Seq2Seq
model, with ∼15% improvements on the averaged
scores. This can be largely attributed to the effec-
tiveness of our proposed task decomposition for
low-resource scenarios. Seq2Seq models need to
learn when to generate the label, when to copy to-

kens from the inputs, and when to produce the end
of the label to generate hierarchical representations.
This generation process requires a relatively large
number of data samples to learn, which leads to
the weak few-shot cross-domain performance for
the Seq2Seq model. Furthermore, X2Parser out-
performs NLM, with a ∼2% averaged score. We
conjecture that our fertility classifier guides the
model to learn the inherent hierarchical informa-
tion from the user queries, making it easier for the
slot classifier to predict slot types for each token.
However, the NLM’s slot classifier, which consists
of multiple stacked layers, needs to capture the hi-
erarchical information and correctly assign slot la-
bels of different levels to the corresponding stacked
layer, which requires relatively larger data to learn.

Cross-Lingual Cross-Domain Setting From
Table 3 and Figure 4, we can further observe the
effectiveness of our proposed task decomposition
and X2Parser in the cross-lingual cross-domain set-
ting. X2Parser and NLM consistently outperform
the Seq2Seq model in all target languages of the
target domains and boost the averaged exact match
accuracy by ∼20%. Additionally, from Table 3,
X2Parser also consistently outperforms NLM on
all 11 domains and surpasses it by 3.84% accuracy
on average. From Figure 4, X2Parser greatly im-
proves on NLM in topologically distant languages
(i.e., Hindi and Thai). It illustrates the powerful
transferability and robustness of the fertility-based

118

Model
Spanish French German Hindi Thai Average

NN Nested NN Nested NN Nested NN Nested NN Nested NN Nested

Seq2Seq 56.21 29.38 48.11 32.83 46.02 20.25 37.84 22.30 33.27 13.56 44.29 23.66

NLM 65.65 41.95 61.02 42.91 56.90 37.94 36.48 24.36 34.15 15.70 50.84 32.57

X2Parser 66.69 39.19 63.45 44.28 58.43 39.71 42.64 28.55 35.96 16.67 53.43 33.68

Table 4: Zero-shot cross-lingual exact match accuracies for nested and non-nested (NN) cases.

slot prediction that enables X2Parser to have a good
zero-shot cross-lingual performance after it is fine-
tuned to the target domain.

6.2 Few-shot Analysis

We conduct few-shot experiments using different
sample sizes from the target domain for the cross-
domain and cross-lingual cross-domain settings.
The few-shot results on the Event, News, and
Recipe target domains for both settings6 are shown
in Figure 5 and Figure 6. We find that the per-
formance of the Seq2Seq model is generally poor
in both settings, especially when only 1% of data
samples are available. With the help of the task
decomposition, NLM and X2Parser remarkably
outperform the Seq2Seq model in various target do-
mains for both the cross-domain and cross-lingual
cross-domain settings across different few-shot sce-
narios (from 1% to 10%). Moreover, X2Parser con-
sistently surpasses NLM for both the cross-domain
and cross-lingual cross-domain settings in differ-
ent few-shot scenarios, which further verifies the
strong adaptation ability of our model.

Interestingly, we observe that the improvement
of X2Parser over Seq2Seq grows as the number
of training samples increases. For example, in the
cross-lingual cross-domain setting of the event do-
main, the improvement goes from 20% to 30% as
the training data increases from 1% to 10%. We
hypothesize that in the low-resource scenario, the
effectiveness of X2Parser will be greatly boosted
when a relatively large number of data samples are
available, while the Seq2Seq model needs much
larger training data to achieve good performance.

6.3 Analysis on Nested & Non-Nested Data

To further understand how our model improves the
performance, we split the test data in the MTOP
dataset (Li et al., 2020a) into nested and non-nested
samples. We consider the user utterances that do

6We only report three domains due to the page limit, and
place the full results for all 11 target domains in the Ap-
pendix C and Appendix D.

5 10 15 20 25 30 35 40
Output Length (# Token)

20
40
60
80

100
120
140
160

La
te

nc
y

(m
s)

Seq2Seq
NLM
X2Parser

Figure 7: Averaged latencies for our model and base-
lines on different output lengths of the MTOP dataset.

not have fine-grained intents and nested slots as the
non-nested data sample and the rest of the data as
the nested data sample. As we can see from Table 4,
X2Parser significantly outperforms the Seq2Seq
model on both nested and non-nested user queries
with an average of∼10% accuracy improvement in
both cases. In addition, X2Parser also consistently
surpasses NLM on all target languages in both the
nested and non-nested scenarios, except for the
Spanish nested case, which further illustrates the
stable and robust adaptation ability of X2Parser.

6.4 Latency Analysis
We can see from Figure 7 that, as the output length
increases, the latency discrepancy between the
Seq2Seq-based model (Seq2Seq) and sequence
labeling-based models (NLM and X2Parser) be-
comes larger, and when the output length reaches
40 tokens (around the maximum length in MTOP),
X2Parser can achieve an up to 66% reduction in
latency compared to the Seq2Seq model. This can
be attributed to the fact that the Seq2Seq model
has to generate the outputs token by token, while
X2Parser and NLM can directly generate all the out-
puts. In addition, the inference speed of X2Parser
is slightly faster than that of NLM. This is because
NLM uses several stacked layers to predict slot en-
tities of different levels, and the higher-level layer
has to wait for the predictions from the lower-level
layer, which slightly decreases the inference speed.

119

7 Conclusion

In this paper, we develop a transferable and non-
autoregressive model (X2Parser) for the TCSP task
that can better adapt to target languages and do-
mains with a faster inference speed. Unlike previ-
ous TCSP models that learn to generate hierarchical
representations, we propose to decompose the task
into intent and slot predictions so as to lower the
difficulty of the task, and then we cast both predic-
tion tasks into sequence labeling problems. After
that, we further propose a fertility-based method
to cope with the slot prediction task where each
token could have multiple labels. Results illus-
trate that X2Parser significantly outperforms strong
baselines in all low-resource settings. Furthermore,
our model is able to reduce the latency by up to
66% compared to the generation-based model.

Acknowledgement

We want to say thanks to the anonymous re-
viewers for the insightful reviews and construc-
tive feedback. This work is partially funded by
ITF/319/16FP and MRP/055/18 of the Innovation
Technology Commission, the Hong Kong SAR
Government.

References
Arun Babu, Akshat Shrivastava, Armen Aghajanyan,

Ahmed Aly, Angela Fan, and Marjan Ghazvinine-
jad. 2021. Non-autoregressive semantic parsing for
compositional task-oriented dialog. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 2969–2978.

Delphine Charlet, Géraldine Damnati, Frédéric Béchet,
Johannes Heinecke, et al. 2020. Cross-lingual and
cross-domain evaluation of machine reading com-
prehension with squad and calor-quest corpora. In
Proceedings of The 12th Language Resources and
Evaluation Conference, pages 5491–5497.

Wenhu Chen, Jianshu Chen, Yu Su, Xin Wang, Dong
Yu, Xifeng Yan, and William Yang Wang. 2018. Xl-
nbt: A cross-lingual neural belief tracking frame-
work. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 414–424.

Xilun Chen, Asish Ghoshal, Yashar Mehdad, Luke
Zettlemoyer, and Sonal Gupta. 2020. Low-resource
domain adaptation for compositional task-oriented
semantic parsing. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 5090–5100.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Édouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. Xnli: Evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2475–2485.

Alejandro Moreo Fernández, Andrea Esuli, and Fab-
rizio Sebastiani. 2016. Distributional correspon-
dence indexing for cross-lingual and cross-domain
sentiment classification. Journal of artificial intelli-
gence research, 55:131–163.

Chih-Wen Goo, Guang Gao, Yun-Kai Hsu, Chih-Li
Huo, Tsung-Chieh Chen, Keng-Wei Hsu, and Yun-
Nung Chen. 2018. Slot-gated modeling for joint
slot filling and intent prediction. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Pa-
pers), pages 753–757.

Jiatao Gu, James Bradbury, Caiming Xiong, Vic-
tor O.K. Li, and Richard Socher. 2018. Non-
autoregressive neural machine translation. In Inter-
national Conference on Learning Representations.

Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Ku-
mar, and Mike Lewis. 2018. Semantic parsing for
task oriented dialog using hierarchical representa-
tions. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2787–2792.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360.

Haoyang Huang, Yaobo Liang, Nan Duan, Ming Gong,
Linjun Shou, Daxin Jiang, and Ming Zhou. 2019.
Unicoder: A universal language encoder by pre-
training with multiple cross-lingual tasks. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 2485–2494.

Chen Jia, Xiaobo Liang, and Yue Zhang. 2019. Cross-
domain ner using cross-domain language modeling.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2464–2474.

120

Meizhi Ju, Makoto Miwa, and Sophia Ananiadou.
2018. A neural layered model for nested named en-
tity recognition. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
1446–1459.

Diederik P Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. In ICLR
(Poster).

Haoran Li, Abhinav Arora, Shuohui Chen, Anchit
Gupta, Sonal Gupta, and Yashar Mehdad. 2020a.
Mtop: A comprehensive multilingual task-oriented
semantic parsing benchmark. arXiv preprint
arXiv:2008.09335.

Juntao Li, Ruidan He, Hai Ye, Hwee Tou Ng, Lidong
Bing, and Rui Yan. 2020b. Unsupervised domain
adaptation of a pretrained cross-lingual language
model. In IJCAI.

Bing Liu and Ian Lane. 2016. Attention-based recur-
rent neural network models for joint intent detection
and slot filling. Interspeech 2016, pages 685–689.

Zihan Liu, Jamin Shin, Yan Xu, Genta Indra Winata,
Peng Xu, Andrea Madotto, and Pascale Fung. 2019.
Zero-shot cross-lingual dialogue systems with trans-
ferable latent variables. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1297–1303.

Zihan Liu, Genta Indra Winata, Zhaojiang Lin, Peng
Xu, and Pascale Fung. 2020a. Attention-informed
mixed-language training for zero-shot cross-lingual
task-oriented dialogue systems. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8433–8440.

Zihan Liu, Genta Indra Winata, Peng Xu, and Pascale
Fung. 2020b. Coach: A coarse-to-fine approach
for cross-domain slot filling. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 19–25.

Zihan Liu, Yan Xu, Tiezheng Yu, Wenliang Dai, Zi-
wei Ji, Samuel Cahyawijaya, Andrea Madotto, and
Pascale Fung. 2020c. Crossner: Evaluating cross-
domain named entity recognition. arXiv preprint
arXiv:2012.04373.

Grégoire Mesnil, Xiaodong He, Li Deng, and Yoshua
Bengio. 2013. Investigation of recurrent-neural-
network architectures and learning methods for spo-
ken language understanding. In Interspeech, pages
3771–3775.

Masato Mimura, Shinsuke Sakai, and Tatsuya Kawa-
hara. 2017. Cross-domain speech recognition us-
ing nonparallel corpora with cycle-consistent adver-
sarial networks. In 2017 IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU),
pages 134–140. IEEE.

Jian Ni, Georgiana Dinu, and Radu Florian. 2017.
Weakly supervised cross-lingual named entity recog-
nition via effective annotation and representation
projection. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1470–1480.

Jessica Ouyang, Boya Song, and Kathleen McKeown.
2019. A robust abstractive system for cross-lingual
summarization. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 2025–2031.

Endang Wahyu Pamungkas and Viviana Patti. 2019.
Cross-domain and cross-lingual abusive language
detection: A hybrid approach with deep learning and
a multilingual lexicon. In Proceedings of the 57th
annual meeting of the association for computational
linguistics: Student research workshop, pages 363–
370.

Subendhu Rongali, Luca Soldaini, Emilio Monti, and
Wael Hamza. 2020. Don’t parse, generate! a se-
quence to sequence architecture for task-oriented se-
mantic parsing. In Proceedings of The Web Confer-
ence 2020, pages 2962–2968.

Sebastian Schuster, Sonal Gupta, Rushin Shah, and
Mike Lewis. 2019. Cross-lingual transfer learning
for multilingual task oriented dialog. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 3795–3805.

Abigail See, Peter J Liu, and Christopher D Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083.

Akshat Shrivastava, Pierce Chuang, Arun Babu, Shrey
Desai, Abhinav Arora, Alexander Zotov, and
Ahmed Aly. 2021. Span pointer networks for
non-autoregressive task-oriented semantic parsing.
arXiv preprint arXiv:2104.07275.

Chau Tran, Yuqing Tang, Xian Li, and Jiatao Gu. 2020.
Cross-lingual retrieval for iterative self-supervised
training. In Advances in Neural Information Pro-
cessing Systems, volume 33, pages 2207–2219. Cur-
ran Associates, Inc.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS.

Genta Indra Winata, Samuel Cahyawijaya, Zihan Liu,
Zhaojiang Lin, Andrea Madotto, Peng Xu, and Pas-
cale Fung. 2020. Learning fast adaptation on cross-
accented speech recognition. Proc. Interspeech
2020, pages 1276–1280.

121

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-
Asl, Caiming Xiong, Richard Socher, and Pascale
Fung. 2019. Transferable multi-domain state gener-
ator for task-oriented dialogue systems. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 808–819.

Jiateng Xie, Zhilin Yang, Graham Neubig, Noah A
Smith, and Jaime G Carbonell. 2018. Neural cross-
lingual named entity recognition with minimal re-
sources. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 369–379.

Tiezheng Yu, Zihan Liu, and Pascale Fung. 2021.
Adaptsum: Towards low-resource domain adapta-
tion for abstractive summarization. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 5892–5904.

Chenwei Zhang, Yaliang Li, Nan Du, Wei Fan, and
S Yu Philip. 2019. Joint slot filling and intent de-
tection via capsule neural networks. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 5259–5267.

Xinjie Zhou, Xiaojun Wan, and Jianguo Xiao. 2016.
Attention-based lstm network for cross-lingual senti-
ment classification. In Proceedings of the 2016 con-
ference on empirical methods in natural language
processing, pages 247–256.

Junnan Zhu, Qian Wang, Yining Wang, Yu Zhou, Jiajun
Zhang, Shaonan Wang, and Chengqing Zong. 2019.
Ncls: Neural cross-lingual summarization. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3045–3055.

Yftah Ziser and Roi Reichart. 2017. Neural structural
correspondence learning for domain adaptation. In
Proceedings of the 21st Conference on Computa-
tional Natural Language Learning (CoNLL 2017),
pages 400–410.

122

A Intent Label Construction

In this section, we further describe how we convert
the fine-grained intent prediction into a sequence
labeling task (each token has only one label). We
use a few examples to illustrate our intent label
construction method.

25/4/2021, 11:32 PMintent

Page 1 of 2https://www.mathcha.io/editor#

Message Mike at 7 pm tonight

B-SEND
MESSAGE O O O O

Remind me to call Grandma at 7 pm

I-SEND
MESSAGE

B-CREATE
CALL

B-GET
CONTACT
NESTED O O OOOO

Figure 8: A labeling example for non-nested intent.

As illustrated in Figure 8, when there are no
nested intents in the input utterance, we follow the
BIO structure to give intent labels.

25/4/2021, 11:32 PMintent

Page 1 of 2https://www.mathcha.io/editor#

Message Mike at 7 pm tonight

B-SEND
MESSAGE O O O O

Remind me to call Grandma at 7 pm

I-SEND
MESSAGE

B-CREATE
CALL

B-GET
CONTACT
NESTED O O OOOO

Figure 9: A labeling example for nested intent.

We can see from Figure 9 that “call
Grandma” is a CREATE-CALL intent and
“Grandma” is a GET-CONTACT intent. Hence,
the GET-CONTACT intent is nested in the
CREATE-CALL intent. We use a special intent
label (with “NESTED”) for the “GET-CONTACT”
intent (B-GET-CONTACT-NESTED) to represent
that this intent is nested in another intent, and
hence, the scope of the CREATE-CALL intent
is automatically expanded from “call” to “call
Grandma”. 7

Note that we cannot apply this labeling method
to the slot prediction since one token in the user
utterance could be the starting token for more than
one slot entity. If that is the case, we have to use
more than one slot label for this token to denote
the starting position for each slot entity. Given
that in the MTOP dataset, one token will not be
the starting token of more than one intent, we can
apply this method for the intent label construction.
In the future, when more complex and sophisti-
cated datasets are collected for the task-oriented
compositional semantic parsing task, where there
could exist more than one intent label for each to-
ken, we can always use the fertility-based method

7We notice that if two intents have overlaps, one intent
either fully covers the other intent or is fully covered by the
other intent.

(currently applied for the slot prediction) for the
intent prediction.

B Data Statistics

The data statistics for MTOP are shown in Table 5.

C Few-shot Cross-Domain Results

Full few-shot cross-domain results across all 11
target domains are shown in Figure 10 and Table 6.

D Few-shot Cross-Lingual
Cross-Domain Results

Full few-shot cross-lingual cross-domain results
across all 11 target domains are shown in Figure 11
and Tables 7, 8, 9, 10, and 11.

123

Domain Number of Utterances Intent
Types

Slot
TypesEnglish German French Spanish Hindi Thai

Alarm 1,783 1,581 1,706 1,377 1,510 1,783 6 5
Calling 2,872 2,797 2,057 2,515 2,490 2,872 19 14
Event 1,081 1,051 1,115 911 988 1,081 12 12
Messaging 1,053 1,239 1,335 1,164 1,082 1,053 7 15
Music 1,648 1,499 1,312 1,509 1,418 1,648 27 12
News 1,393 905 1,052 1,130 930 1,393 3 6
People 1,449 1,392 763 1,408 1,168 1,449 17 16
Recipes 1,586 1,002 762 1,382 929 1,586 3 18
Reminder 2,439 2,321 2,202 1,811 1,833 2,439 19 17
Timer 1,358 1,014 1,165 1,159 1,047 1,358 9 5
Weather 2,126 1,785 1,990 1,816 1,800 2,126 4 4
Total 18,788 16,585 15,459 16,182 15,195 18,788 117 78

Table 5: Data statistics of the MTOP dataset. The data are roughly divided into a 70:10:20 percent split for train,
eval and test

Figure 10: Few-shot exact match accuracies for the cross-domain setting across all 11 target domains.

124

Figure 11: Few-shot Exact match accuracies for the cross-lingual cross-domain setting across all 11 target do-
mains. The results are averaged over all target languages.

Sample Model Alarm Call. Event Msg. Music News People Recipe Remind Timer Weather Avg

1%

Seq2Seq 45.22 33.07 34.52 22.58 10.38 20.14 12.43 11.39 18.33 20.34 48.36 25.16

NLM 51.75 41.00 41.46 48.97 22.49 23.84 18.65 16.52 36.84 23.67 63.11 35.30

X2Parser 54.94 45.20 41.96 51.91 26.83 31.19 18.83 20.00 42.31 30.80 66.53 39.14

3%

Seq2Seq 52.55 50.33 39.59 30.87 16.82 30.45 31.64 14.20 23.90 30.69 58.06 34.46

NLM 56.86 61.68 49.24 59.86 33.06 43.95 49.43 19.71 48.23 38.62 69.20 48.17

X2Parser 62.36 63.37 52.97 60.70 33.42 54.38 50.47 27.34 52.21 50.58 70.57 52.58

6%

Seq2Seq 63.88 58.32 46.70 45.48 25.87 36.03 42.94 21.45 37.81 34.14 63.86 43.32

NLM 68.53 66.42 63.96 70.28 45.98 56.33 59.23 28.12 52.21 58.51 75.16 58.61

X2Parser 71.61 68.97 69.54 70.09 46.70 59.87 59.70 35.65 56.57 61.70 77.00 61.58

10%

Seq2Seq 67.94 64.25 61.93 50.11 32.20 43.20 52.54 34.21 46.32 44.83 73.58 51.92

NLM 76.32 70.02 73.60 70.58 56.52 58.01 67.33 50.01 57.28 64.37 80.15 65.83

X2Parser 76.72 73.16 77.33 71.45 55.19 64.43 69.77 51.78 58.86 65.98 81.17 67.80

Table 6: Complete results of the cross-domain setting.

125

Sample Model Alarm Call. Event Msg. Music News People Recipe Remind Timer Weather Avg

1%

Seq2Seq 33.81 28.00 24.29 9.89 8.22 13.59 4.49 15.87 7.87 14.29 38.86 18.11

NLM 44.41 31.75 36.53 41.95 14.36 16.34 12.82 23.28 21.76 24.67 57.92 29.62

X2Parser 51.51 36.67 36.72 51.84 20.86 19.90 15.60 19.05 26.16 30.74 59.65 33.52

3%

Seq2Seq 48.58 41.75 30.51 14.07 12.35 10.68 17.31 19.84 6.94 28.57 42.82 24.86

NLM 53.41 50.33 43.31 54.37 26.10 29.45 34.19 24.61 25.46 38.96 64.03 40.38

X2Parser 56.06 54.75 46.14 53.23 24.25 33.82 34.61 23.54 30.79 44.73 63.61 42.32

6%

Seq2Seq 51.70 43.50 36.16 25.48 16.91 18.45 27.56 23.02 12.50 33.33 51.49 30.92

NLM 60.32 52.83 48.02 60.84 41.46 47.25 46.58 26.19 27.70 53.10 67.41 48.34

X2Parser 66.10 61.67 53.30 61.85 40.24 44.82 44.01 27.78 31.48 53.97 68.81 50.37

10%

Seq2Seq 59.94 47.00 41.81 25.86 22.85 25.39 34.21 21.25 17.59 32.90 60.69 35.41

NLM 64.57 57.08 53.11 60.08 49.86 48.84 58.12 34.13 24.61 51.95 70.30 52.06

X2Parser 65.81 59.75 54.24 61.98 51.36 46.12 59.62 36.51 32.10 56.57 71.45 54.14

Table 7: Complete results of the cross-lingual cross-domain setting in Spanish.

Sample Model Alarm Call. Event Msg. Music News People Recipe Remind Timer Weather Avg

1%

Seq2Seq 43.94 30.77 15.72 11.55 8.07 5.66 8.09 12.15 5.87 13.16 35.67 17.33

NLM 53.13 35.04 41.51 46.75 16.07 7.55 15.32 18.78 26.01 23.51 59.74 31.22

X2Parser 54.65 37.48 41.51 49.40 21.67 10.27 18.01 20.44 29.28 26.67 65.07 34.04

3%

Seq2Seq 51.21 42.91 16.98 10.76 9.07 8.81 8.09 14.92 5.22 22.11 43.54 21.24

NLM 55.66 49.58 51.57 54.98 25.32 17.82 33.34 23.94 30.73 34.91 65.73 40.33

X2Parser 59.70 52.87 54.72 52.99 24.40 18.03 38.60 27.81 31.74 40.18 65.92 42.45

6%

Seq2Seq 49.70 45.24 25.79 19.92 17.86 5.66 19.85 19.89 14.78 31.05 55.62 27.76

NLM 64.08 50.00 57.86 63.88 36.67 23.27 48.41 28.73 28.48 50.18 74.72 47.84

X2Parser 66.77 59.22 58.49 59.49 38.45 25.16 46.81 29.84 35.29 55.62 71.82 49.72

10%

Seq2Seq 50.00 46.34 27.67 29.48 24.29 10.18 25.43 25.10 16.09 28.42 57.81 30.98

NLM 59.64 52.68 61.22 62.29 48.93 22.59 57.35 31.49 32.75 52.81 76.69 50.77

X2Parser 62.32 56.84 58.70 61.89 49.17 25.58 60.54 38.49 36.31 52.28 75.37 52.50

Table 8: Complete results of the cross-lingual cross-domain setting in French.

Sample Model Alarm Call. Event Msg. Music News People Recipe Remind Timer Weather Avg

1%

Seq2Seq 35.13 21.61 7.36 8.81 7.98 11.74 3.58 6.90 0.89 17.19 24.15 13.21

NLM 46.27 37.43 44.58 27.81 18.95 24.50 14.70 11.84 16.03 22.00 57.86 29.27

X2Parser 52.03 39.32 45.40 34.72 21.68 33.97 15.17 15.29 19.98 27.09 60.52 33.20

3%

Seq2Seq 38.81 35.45 15.34 8.81 13.89 13.26 15.41 11.03 2.46 28.12 23.69 18.75

NLM 52.50 48.44 57.87 38.86 28.94 38.38 38.35 16.32 21.55 36.98 64.84 40.28

X2Parser 52.69 50.18 58.28 39.90 25.82 48.36 45.04 24.71 23.64 39.32 65.83 43.07

6%

Seq2Seq 37.68 38.10 20.25 17.62 15.80 18.18 25.81 13.10 6.49 30.47 36.67 23.65

NLM 54.77 50.00 62.78 42.14 34.75 47.35 50.54 21.72 21.92 47.27 70.31 45.78

X2Parser 59.39 55.31 69.32 48.70 35.08 51.77 53.53 28.74 25.28 50.00 73.20 50.03

10%

Seq2Seq 39.38 35.90 22.09 13.47 25.17 22.83 30.24 17.83 7.38 32.03 36.89 25.75

NLM 60.13 54.76 64.01 46.98 42.16 46.84 57.35 40.12 22.30 49.22 73.88 50.70

X2Parser 56.75 56.23 68.92 49.05 40.96 52.65 65.59 42.64 24.91 51.56 75.47 53.16

Table 9: Complete results of the cross-lingual cross-domain setting in German.

126

Sample Model Alarm Call. Event Msg. Music News People Recipe Remind Timer Weather Avg

1%

Seq2Seq 11.99 13.30 9.85 1.46 1.65 3.23 1.91 3.08 0.00 0.00 6.89 4.85

NLM 16.10 17.67 15.15 20.39 9.92 12.73 9.54 5.73 1.27 3.25 30.44 12.92

X2Parser 16.10 25.04 25.00 20.55 10.60 15.59 7.76 7.64 12.88 3.25 31.63 16.00

3%

Seq2Seq 11.61 18.00 14.39 6.80 4.83 3.76 5.73 3.96 0.38 2.56 14.07 7.83

NLM 14.23 28.62 23.49 24.27 13.54 14.87 16.29 9.25 3.28 5.47 34.33 17.06

X2Parser 25.59 34.76 40.91 21.85 14.46 34.77 19.08 17.03 15.66 16.93 32.64 24.88

6%

Seq2Seq 14.61 13.73 18.18 6.31 10.26 4.84 11.83 5.29 0.38 2.56 12.87 9.17

NLM 29.63 35.29 29.80 22.17 20.11 21.33 20.74 9.84 2.15 16.07 38.42 22.32

X2Parser 27.97 34.05 47.47 23.62 17.36 36.74 21.88 16.59 16.54 26.84 33.34 27.49

10%

Seq2Seq 11.24 22.53 18.94 8.74 13.31 7.23 13.54 6.52 0.38 5.64 19.07 11.56

NLM 22.58 25.61 32.07 21.36 24.38 20.25 24.30 15.13 2.40 14.19 38.61 21.90

X2Parser 30.71 43.92 50.25 22.33 22.73 33.33 25.06 22.02 16.54 20.17 35.53 29.33

Table 10: Complete results of the cross-lingual cross-domain setting in Hindi.

Sample Model Alarm Call. Event Msg. Music News People Recipe Remind Timer Weather Avg

1%

Seq2Seq 7.82 10.81 3.40 0.00 1.82 0.64 0.94 6.90 2.31 0.00 2.59 3.38

NLM 37.08 26.27 10.20 16.92 9.93 4.46 4.40 8.74 14.65 1.06 26.82 14.59

X2Parser 34.12 26.77 16.33 18.95 11.29 8.92 4.25 13.33 25.76 1.24 34.87 17.80

3%

Seq2Seq 12.93 12.96 4.08 1.02 5.08 0.64 3.77 7.59 3.20 0.53 4.60 5.13

NLM 30.61 31.54 16.49 24.03 12.75 3.82 8.96 16.78 22.02 2.29 27.59 17.90

X2Parser 35.03 36.09 30.16 20.14 10.07 12.32 11.32 19.08 26.55 1.77 37.36 21.81

6%

Seq2Seq 6.46 16.95 4.76 2.03 6.86 1.27 6.60 5.52 5.32 1.06 6.03 5.71

NLM 34.39 35.31 15.42 29.10 10.48 5.73 10.85 20.46 21.73 2.65 30.36 19.68

X2Parser 35.83 38.21 30.16 25.21 16.19 11.68 11.16 20.92 24.87 1.77 34.36 22.76

10%

Seq2Seq 10.88 16.53 2.04 4.57 10.45 2.91 7.25 9.90 7.56 1.06 10.02 7.56

NLM 35.75 26.34 12.70 25.89 15.92 4.46 19.34 21.84 20.45 2.65 38.39 20.34

X2Parser 28.00 39.75 34.01 24.70 22.04 16.56 19.02 25.29 29.50 2.47 42.43 25.80

Table 11: Complete results of the cross-lingual cross-domain setting in Thai.

127

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 128–140
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

Unsupervised Representation Disentanglement of Text:
An Evaluation on Synthetic Datasets

Lan Zhang♠ Victor Prokhorov♣ Ehsan Shareghi♠♣
♠ Department of Data Science & AI, Monash University
♣ Language Technology Lab, University of Cambridge
lan.zhang@monash.edu vp361@cam.ac.uk

ehsan.shareghi@monash.edu

Abstract
To highlight the challenges of achieving rep-
resentation disentanglement for text domain in
an unsupervised setting, in this paper we se-
lect a representative set of successfully applied
models from the image domain. We evaluate
these models on 6 disentanglement metrics, as
well as on downstream classification tasks and
homotopy. To facilitate the evaluation, we pro-
pose two synthetic datasets with known gener-
ative factors. Our experiments highlight the ex-
isting gap in the text domain and illustrate that
certain elements such as representation spar-
sity (as an inductive bias), or representation
coupling with the decoder could impact dis-
entanglement. To the best of our knowledge,
our work is the first attempt on the intersec-
tion of unsupervised representation disentan-
glement and text, and provides the experimen-
tal framework and datasets for examining fu-
ture developments in this direction.1

1 Introduction

Learning task-agnostic unsupervised representa-
tions of data has been the center of attention across
various areas of Machine Learning and more specif-
ically NLP. However, little is known about the
way these continuous representations organise in-
formation about data. In recent years, the NLP
community has focused on the question of design
and selection of suitable linguistic tasks to probe
the presence of syntactic or semantic phenomena
in representations as a whole (Bosc and Vincent,
2020; Voita and Titov, 2020; Torroba Hennigen
et al., 2020; Pimentel et al., 2020; Hewitt and Liang,
2019; Ettinger et al., 2018; Marvin and Linzen,
2018; Conneau et al., 2018). Nonetheless, a fine-
grain understanding of information organisation in
coordinates of a continuous representation is yet to
be achieved.

1Code and datasets are available at https://github.
com/lanzhang128/disentanglement

Arguably, a necessity to move in this direction
is agreeing on the cognitive process behind lan-
guage generation (fusing semantic, syntactic, and
lexical components), which can then be reflected in
the design of representation learning frameworks.
However, this still remains generally as an area
of debate and perhaps less pertinent in the era of
self-supervised masked language models and the
resulting surge of new state-of-the-art results.

Even in the presence of such an agreement, learn-
ing to disentangle the surface realization of the
underlying factors of data (e.g., semantics, syntac-
tic, lexical) in the representation space is a non-
trivial task. Additionally, there is no established
study for evaluating such models in NLP. A handful
of recent works have looked into disentanglement
for text by splitting the representation space into
predefined disentangled subspaces such as style
and content (Cheng et al., 2020; John et al., 2019),
or syntax and semantics (Balasubramanian et al.,
2021; Bao et al., 2019; Chen et al., 2019), and
rely on supervision during training. However, a
generalizable and realistic approach needs to be
unsupervised and capable of identifying the under-
lying factors solely via the regularities presented in
data.

In areas such as image processing, the same ques-
tion has been receiving a lot of attention and in-
spired a wave of methods for learning and eval-
uating unsupervised representation disentangle-
ment (Ross and Doshi-Velez, 2021; Mathieu et al.,
2019; Kim and Mnih, 2018; Burgess et al., 2018;
Higgins et al., 2018, 2017) and creation of large
scale datasets (Dittadi et al., 2021). It has been ar-
gued that disentanglement is the means towards rep-
resentation interpretability (Mathieu et al., 2019),
generalization (Montero et al., 2021), and robust-
ness (Bengio et al., 2013; Bengio, 2013). However,
these benefits are yet to be realized and evaluated
in text domain.

128

In this work we take a representative set of un-
supervised disentanglement learning frameworks
widely used in image domain (§2.1) and apply them
to two artificially created corpora with known un-
derlying generative factors (§3). Having known
generative factors (while being ignored during the
training phase) allows us to evaluate the perfor-
mance of these models on imposing representa-
tion disentanglement via 6 disentanglement met-
rics (§2.2; §4.1). Additionally, taking the highest
scoring models and corresponding representations,
we investigate the impact of representation disen-
tanglement on two downstream text classification
tasks (§4.3), and dimension-wise homotopy (§4.4).

We show that existing disentanglement models,
when evaluated on a wide range of metrics, are in-
consistent and highly sensitive to model initialisa-
tion. However, where disentanglement is achieved,
it shows its positive impact on improving down-
stream task performance. Our work highlights the
potential and existing challenges of disentangle-
ment on text. We hope our proposed datasets, ac-
cessible description of disentanglement metrics and
models, and experimental framework will set the
path for developments of models specific to for
text.

2 Disentanglement Models and Metrics

Let x denote data points and z denote latent vari-
ables in the latent representation space, and assume
data points are generated by the combination of two
random process: The first random process samples
a point z(i) from the latent space with prior distri-
bution of z, denoted by p(z). The second random
process generates a point x(i) from the data space,
denoted by p(x|z(i)).

We consider z as a disentangled representation
for x, if the changes in single latent dimensions of
z are sensitive to changes in single generative fac-
tors of x while being relatively invariant to changes
in other factors (Bengio et al., 2013). Several prob-
abilistic models are designed to reveal this process,
here we look at some of the most widely used ones.

2.1 Disentanglement Models

A prominent approach for learning disentangled
representations is through adjusting Variational
Auto-Encoders (VAEs) (Kingma and Welling,
2014) objective function, which decompose the
representation space into independently learned co-
ordinates. We start by introducing vanilla VAE,

and then cover some of its widely used extensions
that encourage disentanglement:

VAE uses a combination of a probabilistic en-
coder qφ(z|x) and decoder pθ(x|z), parameterised
by φ and θ, to learn this statistical relationship
between x and z. The VAEs are trained by max-
imizing the lower bound of the logarithmic data
distribution log p(x), called evidence lower bound,

Eqφ(z|x)
[
log pθ(x|z)

]
− DKL(qφ(z|x), p(z))

The first term of is the expectation of the logarithm
of data likelihood under the posterior distribution
of z. The second term is KL-divergence, measur-
ing the distance between the posterior distribution
qφ(z|x) and the prior distribution p(z) and can be
seen as a regularisation.

β-VAE (Higgins et al., 2017) adds a hyperpa-
rameter β to control the regularisation from the
KL-term via the following objective function:

Eqφ(z|x)
[
log pθ(x|z)

]
− βDKL(qφ(z|x), p(z))

Reconstructing under β-VAE (with the right value
of β) framework encourages encoding data points
on a set of representational axes on which nearby
points along those dimensions are also close in
original data space (Burgess et al., 2018).

CCI-VAE (Burgess et al., 2018) extends β-VAE
via constraint optimisation:

Eqφ(z|x)
[
log pθ(x|z)

]
− β |DKL(qφ(z|x), p(z))− C|

where C is a positive real value which repre-
sents the target KL-divergence term value. This
has an information-theoretic interpretation, where
the placed constraint C on the KL term is seen
as the amount of information transmitted from a
sender (encoder) to a receiver (decoder) via the
message (z) (Alemi et al., 2018), and impacts the
sharpness of the posterior distribution (Prokhorov
et al., 2019). This constraint allows the model to
prioritize underlying factors of data according to
the availability of channel capacity and their con-
tributions to the reconstruction loss improvement.

MAT-VAE (Mathieu et al., 2019) introduces an
additional term to β-VAE, DMMD(qφ(z), pθ(z)),

Eqφ(z|x)[log pθ(x|z)]− βDKL(qφ(z|x), p(z))
−λDMMD(qφ(z), p(z))

129

where DMMD is computed using maximum mean
discrepancy (Gretton et al. (2012), MMD) and λ
is the scalar weight. This term regularises the ag-
gregated posterior qφ(z) with a factorised spike-
and-slab prior (Mitchell and Beauchamp, 1988),
which aims for disentanglement via clustering and
sparsifying the representations of z.

2.1.1 Issue of KL-Collapse
In text modelling, the presence of powerful auto-
regressive decoders poses a common optimisa-
tion challenge for training VAEs called posterior
collapse, where the learned posterior distribution
qφ(z|x), collapses to the prior p(z). Posterior col-
lapse results in the latent variables z being ignored
by the decoder. Several strategies have been pro-
posed to alleviate this problem from different an-
gles such as choice of decoders (Yang et al., 2017;
Bowman et al., 2016), adding more dependency
between encoder and decoder (Dieng et al., 2019),
adjusting the training process (Bowman et al., 2016;
He et al., 2019), imposing direct constraints to the
KL term (Pelsmaeker and Aziz, 2020; Razavi et al.,
2019; Burgess et al., 2018; Higgins et al., 2017). In
this work, both β-VAE (with β < 1) and CCI-VAE
are effective methods to avoid KL-collpase.

2.2 Disentanglement Metrics
In this section we provide a short overview of six
widely used disentanglement metrics, highlighting
their key differences and commonalities, and refer
the readers to the corresponding papers for exact
details of computations.

Eastwood and Williams (2018) define three cri-
teria for disentangled representations: disentangle-
ment, which measures the degree of one dimension
only encoding information about no more than one
generative factor; completeness, which measures
whether a generative factor is only captured by
one latent variable; informativeness, which mea-
sures the degree by which representations capture
exact values of the generative factors.2 They de-
sign a series of classification tasks to predict the
value of a generative factor based on the latent code,
and extract the relative importance of each latent
code for each task to calculate disentanglement
and completeness scores. Informativeness score is
measured by the accuracy of the classifier directly.
Other existing metrics reflect at least one of these
three criteria, as summarised in Table 1.

2These criteria are referred to modularity, compactness
and explicitness by Ridgeway and Mozer (2018).

Metric Dis. Com. Info. Ex.1↑ Ex.2↑
Higgins et al. (2017) Yes No No 100 100
Ridgeway and Mozer (2018) Yes No No 100 100
Kim and Mnih (2018) Yes Yes No 100 100
Chen et al. (2018) No Yes No 81.05 5.73
Eastwood and Williams (2018) Yes Yes Yes 66.47 63.45
Kumar et al. (2018) No Yes Yes 4.68 3.98

Table 1: The disentanglement (Dis.), completeness
(Com.), and informativeness (Info.) criteria reflected
in six metrics. The Ex.1 and Ex.2 columns are corre-
sponding metrics’ scores (%) on two ideally disentan-
gled representations.

Higgins et al. (2017) focus on disentanglement
and propose to use the absolute difference of two
groups of representations with the same value on
one generative factor to predict this generative fac-
tor. For perfectly disentangled representations, la-
tent dimensions not encoding information about
this generative factor would have zero difference.
Hence, even simple linear classifiers could easily
identify the generative factors based on the changes
of values. Kim and Mnih (2018) consider both dis-
entanglement and completeness by first finding the
dimension which has the largest variance when fix-
ing the value on one generative factor, and then us-
ing the found dimension to predict that generative
factor. Kumar et al. (2018) propose a series of clas-
sification tasks each of which uses a single latent
variable to predict the value of a generative factor
and treat the average of the difference between the
top two accuracy scores for each generative factor
as the final disentanglement score.

Apart from designing classification tasks for dis-
entanglement evaluation, another method is based
on estimating the mutual information (MI) between
a single dimension of the latent variable and a sin-
gle generative factor. Chen et al. (2018) propose to
use the average of the gap (difference) between the
largest normalised MI (by the information entropy
of the generative factor) and the second largest nor-
malised MI over all generative factors as the disen-
tanglement score, whereas the modularity metric of
Ridgeway and Mozer (2018) measures whether a
single latent variable has the highest MI with only
one generative factor and none with others.

The algorithmic details for computing the above
metrics are provided in Appendix A.

Empirical Difference. To highlight the empir-
ical difference between these metrics, we use a
toy set built by permuting four letters: A B C D.
Each letter representing a generative factor with 20
choices of assignments (i.e, X = {X1, . . . , X20}

130

where X ∈ {A,B,C,D}). We consider two set-
tings where each generative factor is embedded in
a single dimension (denoted by Ex.1), or two di-
mensions (denoted by Ex.2). In each setting we
uniformly sample 20 values from -1 to 1 to repre-
sent 20 assignments per factor and use them to allo-
cate the assignments into distinctive bins per each
corresponding dimension. By concatenating dimen-
sions for each generative factor, we construct two
ideal disentangled representations for data points in
this toy dataset, amounting to 4 and 8 dimensional
representations, respectively. Using these repre-
sentations (skipping the encoding step), we mea-
sured the above metrics. Table 1 (Ex.1 and Ex.2
columns) summarises the results, illustrating that
out of the 6 metrics, Higgins et al. (2017); Ridge-
way and Mozer (2018); Kim and Mnih (2018) are
the only ones that reach the potential maximum
(i.e., 100), while Chen et al. (2018) exhibits its
sensitivity towards completeness when we allocate
two dimensions per factors.

Data Requirement. Measuring the mentioned
disentanglement metrics requires a dataset satisfy-
ing the following attributes:
1. A set F where each of its elements is a gen-

erative factor which should be disentangled
through representations;

2. For each element fi ∈ F, a value space Vi
which is the domain of fi;

3. For each value vij ∈ Vi, a sample space Sij
which contains observations who has value vij
on generative factor fi while everything else is
arbitrary.

We present two synthetic datasets (§3) that meet
these criteria and use them in our experiments (§4).

3 Generative Synthetic Datasets

The use of synthetic datasets is the common prac-
tice for evaluating disentanglement in image do-
main (Dittadi et al., 2021; Higgins et al., 2017; Kim
and Mnih, 2018). Generative simplistic datasets
in image domain define independent generative
factors (e.g. shape, color) behind the data genera-
tion. However, a comparable resource is missing
in text domain. We develop two synthetic genera-
tive datasets with varying degrees of difficulty to
analyse and measure disentanglement: The YNOC
dataset (§3.1) which has only three structures and
generative factors appearing in every sentence, and
the POS dataset (§3.2) which has more structures
while some generative factors are not guaranteed

Simple Sentence Structures # of Sentences

n. v. n. end-punc. 200
n. v. adj. n. end-punc. 1,000
n. adv. v. n. end-punc. 1,000
n. adv. v. adj. n. end-punc. 5,000
n. v. prep. n. end-punc. 1,000
n. v. prep. adj. n. end-punc. 5,000
n. adv. v. prep. n. end-punc. 5,000
n. adv. v. prep. adj. n. end-punc. 25,000
adj. n. v. n. end-punc. 1,000
adj. n. v. adj. n. end-punc. 4,000
adj. n. adv. v. n. end-punc. 5,000
adj. n. adv. v. adj. n. end-punc. 20,000
adj. n. v. prep. n. end-punc. 5,000
adj. n. v. prep. adj. n. end-punc. 20,000
adj. n. adv. v. prep. n. end-punc. 25,000
adj. n. adv. v. prep. adj. n. end-punc. 100,000

n. [dogs cats foxes horses tigers]
v. [want need have get require]
adv. [really recently gradually frequently eventually]
adj. [happy big small beautiful fantastic]
prep. [on in for to of]
conj1. [although because when where whereas]
conj2. [and or]
comma [,]
end-punc. [. !]

Table 2: Simple sentence structures and the vocabulary
used for each POS tag in our synthetic dataset.

to appear in every sentence. The YNOC dataset
offers a simpler setting for disentanglement.

3.1 YNOC Dataset
Sentences in YNOC are generated by 4 generative
factors: Year (Y), Name (N), Occupation (O), and
City (C), describing the occupation of a person.
Since we often use different means to express the
same message, we considered three templates to
generate YNOC sentences:

Template I. in Y, N was a/an O in C.
Template II. in Y’s C, N was a/an O.
Template III. N was a/an O in C in Y.

The templates were then converted into real sen-
tences using 10 years, 40 names, 20 occupations,
and 30 cities. This amounted to a total of 720K
sentences, split as (60%,20%,20%) into training,
validation, and test sets.

3.2 POS Dataset
We use part-of-speech (POS) tags to simulate the
structure of sentences and define a base grammar as

“n. v. n. end-punc.”, where ‘n.’ denotes noun, ‘v.’
denotes verb and ‘end-punc.’ denotes the punctua-
tion which appears at the end of sentences. Then
we define simple sentence structures as “(adj.) n.

131

(adv.) v. (prep.) (adj.) n. end-punc.”, where ‘adj.’
denotes adjective, ‘adv.’ denotes adverb, ‘prep.’
denotes preposition, and ‘()’ marks the arbitrary
inclusion/removal of the corresponding POS tag.
We populate the structures with 24 = 16 simple
structures presented in Table 2.

Next, we define complex sentence structures as
combinations of two simple sentence structures by
applying one of the following three rules:

Rule I. conj1. S1 comma S2 end-punc.
Rule II. S1 conj1. S2 end-punc.
Rule III. S1 comma conj2. S2 end-punc.

where ‘conj1.’ and ‘conj2.’ denote two different
kinds of conjunction, ‘comma’ denotes ‘,’ and ‘S1’
and ‘S2’ are two simple sentence structures with-
out ‘end-punc.’ We limit the number of POS tags
that appear in ‘S1’ and ‘S2’ to 9 to control the
complexity of generating sentences and obtain 279
complex structures in total. A maximum of 5 words
is chosen for each POS to construct our sentences.

The frequency of appearance for each word in a
sentence is limited to one. Although this construc-
tion does not focus on sentences being “realistic”,
it simulate natural text in terms of the presence of
an underlying grammar and rules over POS tags.3

We deliberately ignore semantics, since isolating
semantics in terms of generative factors potentially
involves analysis over multiple dimensions (combi-
natorial space) and quantifying grouped disentan-
glement requires suitable disentanglement metrics
to be developed. We leave further exploration of
this to our future work.

We split the dataset into training, validation and
test sets with proportion 60%, 20%, 20%. This
proportion is used for every structure to ensure they
have representative sentences in each portion of the
data splits. The final size of (training, validation,
test) sets are (1723680, 574560, 574560). All three
sets are unbiased on word selection for each POS
tag: e.g., all 5 noun POS vocabs from Table 2
have equal frequency (i.e., 20%). Exactly the same
proportions are preserved for validation and test
sets.

Through the process of the generation, we can
define each POS tag as one ground truth generative
factor for sentences.4 Because the choices of words

3For structures which can produce more than 10k sentences
(e.g. longer structures), we randomly choose 10k.

4While we consider POS tags as the generative factors in
this paper, further sub-categorisation of POS tags based on
position (e.g., first-noun and second-noun, etc) or grammatical

for different POS tags are independent, these gen-
erative factors are independent. However, for the
same POS, the choices of words are dependent and
POS tags are dependent on the structures as well. It
is noteworthy that in contrast to the image domain
where all generative factors are always present in
the data, in POS dataset this cannot be guaranteed,
making it a more challenging setting.

4 Experiments and Analysis

In this section, we examine the introduced disentan-
glement models on text. We measure the disentan-
glement scores of each model on our two synthetic
datasets and quantify how well-correlated these
metrics are with reconstruction loss, active units,
and KL (§4.1). We then look at various strategies
for coupling the latent code during decoding and
highlight their impacts on training and disentangle-
ment behaviors (§4.2). We continue our analysis
by showing how the representation learned by the
highest scoring model (on disentanglement met-
rics) performs compared to vanilla VAE in two text
classification tasks (§4.3), and finish our analysis
by looking at these models’ generative behaviors
(§4.4).

Training Configuration. We adopt the VAE ar-
chitecture from (Bowman et al., 2016), using a
LSTM encoder-decoder. Unless stated otherwise,
(word embedding, LSTM, representation embed-
ding) dimensionalities for YNOC and POS datasets
are (4D, 32D, 4D) and (4D, 64D, 8D), respectively,
and we use the latent code to initialize the hidden
state of the LSTM decoder. We use greedy decod-
ing. All models are trained from multiple random
starts using Adam (Kingma and Ba, 2015) with
learning rate 0.001 for 10 epochs. We set batch
size to 256 and 512 for YNOC and POS, respec-
tively.

4.1 Disentanglement Metrics

Taking the models (§2.1) and also an Autoencoder
(AE) as a baseline we use the YNOC and POS
datasets to report average KL-divergence (KL), re-
construction loss (Rec.), and number of active units
(AU)5 in Table 3, and illustrate disentanglement
metrics’ scores in Figure 1.

As demonstrated in Table 3, different models
pose various behaviors, noteworthy of those are:

roles (e.g., subject-noun and object-noun, etc) is a possibility
for future investigation.

5i is active if Covariancex(Ei∼q(i|x) [i]) > 0.01.

132

YNOC POS
Model KL Rec.↓ AU↑ Top-3↑ KL Rec.↓ AU↑ Top-3↑
AE - 8.87±0.66 4.0±0.0 1 - 4.91±1.83 8.0±0.0 3
Vanilla-VAE 0.02±0.02 13.48±0.02 0.4±0.5 0 0.01±0.00 19.57±0.00 0.2±0.4 3
β-VAE (β = 0.2) 4.25±0.31 9.72±0.25 1.0±0.0 3 11.19±2.88 12.03±2.04 2.8±0.7 3
β-VAE (β = 0.4) 3.44±0.23 10.32±0.23 1.2±0.4 1 7.75±0.69 13.87±0.85 2.6±0.5 3
β-VAE (β = 0.8) 1.39±0.41 12.14±0.40 1.0±0.0 1 5.61±0.78 14.26±0.72 1.8±0.4 1
CCI-VAE (C = 5) 5.00±0.00 9.51±0.30 1.8±1.0 1 5.04±0.03 15.01±0.30 2.2±0.4 0
CCI-VAE (C = 10) 10.00±0.00 9.48±0.49 3.4±0.5 2 10.01±0.01 12.76±1.18 4.0±1.3 1
MAT-VAE (β = 0.1, λ = 0.1) 6.11±0.39 9.49±0.17 1.0±0.0 2 22.14±2.92 8.47±2.28 3.0±0.0 3
MAT-VAE (β = 0.01, λ = 0.1) 15.38±1.86 7.12±0.32 3.2±0.7 7 45.48±1.65 3.47±0.99 8.0±0.0 1

Table 3: Results are calculated on the test set. We report mean value and standard deviation across 5 runs.

Higgins et al., 2017 Ridgeway and Mozer, 2018 Kim and Mnih, 2018 Chen et al., 2018 Eastwood and Williams, 2018 Kumar et al., 20180.0

0.2

0.4

0.6

0.8

1.0

Sc
or

es

Autoencoder
Vanilla-VAE
Beta-VAE (Beta=0.2)

Beta-VAE (Beta=0.4)
Beta-VAE (Beta=0.8)
CCI-VAE (C=5)

CCI-VAE (C=10)
MAT-VAE (Beta=0.1)
MAT-VAE (Beta=0.01)

Higgins et al., 2017 Ridgeway and Mozer, 2018 Kim and Mnih, 2018 Chen et al., 2018 Eastwood and Williams, 2018 Kumar et al., 20180.0

0.2

0.4

0.6

0.8

1.0

Sc
or

es

Autoencoder
Vanilla-VAE
Beta-VAE (Beta=0.2)

Beta-VAE (Beta=0.4)
Beta-VAE (Beta=0.8)
CCI-VAE (C=5)

CCI-VAE (C=10)
MAT-VAE (Beta=0.1)
MAT-VAE (Beta=0.01)

Figure 1: Disentanglement scores across six metrics on top: YNOC dataset and bottom: POS dataset. For better
illustration, we multiply the scores of Eastwood and Williams (2018) and Kumar et al. (2018) by 10.

(1) the positive correlation of C with AU which
intuitively means the increase of channel capacity
demands more dimensions of the representation to
carry information which then translates into having
a better reconstruction of data, (2) the negative
correlation between the increase of β and decrease
of reconstruction loss, (3) the best Rec. and AU are
achieved by AE and MAT-VAE whereas the worst
one is achieved by the (collapsed) vanilla-VAE, (4)
the MAT-VAE (β = 0.01, λ = 0.1) model which
induces more sparse representations 6 performs the
best on both datasets, indicating the positive impact
of representation sparsity as an inductive bias.

As illustrated in Figure 1, the difference between
means of each disentanglement score on various
models is relatively small, and due to large stan-
dard deviation on metrics, it is difficult to single
out a superior model. This verifies findings of Lo-

6Sparsity is measured using Hoyer (Hurley and Rickard,
2009). In this paper we report this as the average Hoyer
over data points’ posterior means. Hoyer for data point xi
with posterior mean µi is calculated as

√
d−||µ̄i||1/||µ̄i||2√

d−1
,

where d is the dimensionality of the representations and µ̄i =
µi/σ(µ), where µ = {µ1, ..., µn}, and σ(.) is the standard
deviation.

catello et al. (2019) on image domain. In Table 3
(Top-3 column) we report the number of appear-
ances of a model among the top 3 highest scoring
models on at least one disentanglement metric. The
ranking suggests that β-VAE with smaller β values
reach better disentangled representations, and MAT-
VAE performing superior on YNOC and poorly on
POS, highlighting its more challenging nature. For
MAT-VAE we also observe an interesting correla-
tion between sparsity and disentanglement: for in-
stance on YNOC, MAT-VAE (β = 0.01, λ = 0.1)
achieves the highest Hoyer (See Table 4) and oc-
curs 7 times among Top-3 (see Table 3). Interest-
ingly, the success of MAT-VAE does not translate
to POS dataset, where it underperforms AE. These
two observations suggest that sparsity could be a
facilitator for disentanglement, but achieving a sta-
ble level of sparsity remains as a challenge. The
more recent development in the direction of spar-
sity, HSVAE (Prokhorov et al., 2020), addresses
the stability issue of MAT-VAE but we leave its
exploration to future work.

To further analyse the inconsistency between
different metrics we calculate the Pearson product-

133

AE VAE β-VAE CCI-VAE MAT-VAE
β = 0.2 β = 0.4 β = 0.8 C = 5 C = 10 β = 0.1, λ = 0.1 β = 0.01, λ = 0.1

YNOC 0.22±0.03 0.03±0.02 0.30±0.03 0.30±0.02 0.30±0.05 0.32±0.04 0.30±0.01 0.36±0.03 0.43±0.09

POS 0.30±0.05 0.21±0.03 0.25±0.00 0.27±0.01 0.29±0.04 0.29±0.05 0.28±0.01 0.29±0.00 0.28±0.01

Table 4: Hoyer scores are calculated on the test set. We report mean value and standard deviation across 5 runs.
K

L

-R
ec

.

A
U

H
oy

er

H
ig

gi
ns

 e
t a

l.,
20

17

R
id

ge
w

ay
 a

nd
M

oz
er

, 2
01

8

K
im

 a
nd

M
ni

h,
 2

01
8

C
he

n
et

 a
l.,

20
18

Ea
st

w
oo

d
an

d
W

ill
ia

m
s,

20
18

K
um

ar
 e

t a
l.,

20
18

Kumar et al.,
2018

Eastwood and
Williams, 2018

Chen et al.,
2018

Kim and
Mnih, 2018

Ridgeway and
Mozer, 2018

Higgins et al.,
2017

Hoyer

AU

-Rec.

KL

60 50 59 40 54 -31 44 26 12 100

27 41 3 45 45 15 8 40 100 84

19 29 0 27 25 -28 26 100 5 10

55 45 44 52 41 -43 100 36 -12 -12

-11 3 -4 5 17 100 29 -33 -25 -36

74 81 59 75 100 -0 40 27 30 34

66 80 51 100 31 -21 -17 7 2 8

82 64 100 31 53 -33 7 -2 11 35

88 100 85 31 57 -22 6 6 19 39

100 94 90 21 51 -19 12 -2 14 37

YNOC/POS Dataset

100

75

50

25

0

25

50

75

100

Figure 2: Correlation coefficients between six disentan-
glement metrics, Hoyer, AU, Rec, and KL on Upper
Triangle: YNOC dataset and Lower Triangle: POS
dataset.

𝑧

Init. Concat.

… 𝑧 …

…

Init.Concat.

𝑧 …

…

Concat. w/o Emb.

𝑧 …

…
𝑤1 𝑤2 𝑤1 𝑤2 𝑤1 𝑤2

…

(a) Different coupling strategies for the latent code and de-
coder (§4.2). Gray box denotes decoder.

Higgins et al.

2017

Ridgeway and

Mozer, 2
018

-0.05

0.00

0.05

0.10

A
bs

ol
ut

e
D

iff
er

en
ce

YNOC

POS, Concat.
POS, Init.+Concat.
POS, Concat. w/o Emb.

YNOC, Concat.
YNOC, Init.+Concat.
YNOC, Concat. w/o Emb.

Kim and

Mnih, 2
018

Chen et al.

2018 Eastw
ood and

Willia
ms, 2

018
Kumar et al.

2018

-0.10

(b) Absolute differences between disentanglement metrics’
scores of Init. coupling and others (§4.2).

Figure 3: Different coupling strategies for the latent
code and decoder and their impacts on disentanglement
on POS and YNOC.

Coupling Methods
Init. Concat. Init.Concat. Concat. w/o Emb.

Y
N

O
C KL 1.51±0.01 1.52±0.01 1.52±0.01 1.62±0.04

Rec.↓ 12.04±0.04 12.06±0.03 12.01±0.02 12.29±0.16
AU↑ 1.2±0.4 2.0±0.0 1.0±0.0 1.2±0.4

PO
S KL 5.54±0.02 5.53±0.02 5.51±0.00 5.69±0.03

Rec.↓ 14.54±0.33 15.89±0.26 15.98±0.05 16.48±0.09
AU↑ 2.2±0.4 4.0±0.0 3.2±0.4 3.6±0.5

Table 5: Test set KL, Reconstruction loss, Active Units
using 4 coupling methods (§4.2).

moment correlation coefficient between them and
KL, -Rec, AU, Hoyer on POS and YNOC datasets.
See the heatmap in Figure 2. While text-specific
metrics are yet to be developed, our experiment
suggests Higgins et al. (2017) is a good candidate
to try first for text domain as it seems to be the one
with strong correlation with Hoyer, AU, -Rec, and
KL and has the highest level of agreement (overall)
with other metrics.

4.2 Coupling Latent Code and Decoder

In VAEs, we typically feed the decoder with the
latent code as well as word embeddings during
training. The method to couple the latent code
with decoder could have some effects on disentan-
glement for text. To highlight this, we train with
4 different coupling strategies: Init, Concat, Init
Concat, Concat w/o Emb. See Figure 3a for an
accessible visualisation. To analyse the impact of
coupling, we opt for CCI-VAE which allows the
comparisons to be made for the same value of KL.

We first use Concat w/o Emb to find an optimal
KL in vanilla VAEs, which is then used as the C to
train CCI-VAEs using the other coupling metrics
on YNOC and POS datasets. For YNOC, C =
1.5, and for POS, C = 5.5. This is to keep KL-
divergence and reconstruction loss at the same level
for fair comparison across different strategies. We
report results in Table 5. Among the investigated
coupling methods, the key distinguishing factor for
disentanglement is their impacts on AU which is
the highest for Concat.

Next, using Init as the baseline, we measure
the absolute difference between disentanglement
scores of different coupling methods in Figure 3b.
In general, using concatenation can bring a large
improvement in disentanglement. Using both ini-
tialization and concatenation do not lead to a better
result. Despite our expectation, not feeding word
embeddings into decoder during training does not
encourage disentanglement due to the added re-
liance on the latent code.

A confounding factor which could pollute this
analysis is the role of strong auto-regressive decod-
ing of VAEs and the type of information captured

134

Figure 4: Classification accuracy on DBpedia and Ya-
hoo Question using different VAE models. Results are
reported as mean and std across 3 randomly initialised
runs.

by the decoder in such scenario. While a prelim-
inary analysis has been provided recently (Bosc
and Vincent, 2020), this has been vastly under-
explored and requires more explicit attempts. We
leave deeper investigation of this to future work.

4.3 Disentanglement and Classification

To examine the performance of these models
on real-world downstream task setting, we con-
sider the classification task. For our classification
datasets, we use DBpedia (14 classes) and Yahoo
Question (10 classes) (Zhang et al., 2015). Each
class of these two datasets has (10k, 1k, 1k) ran-
domly chosen sentences in (train, dev, test) sets.
We train Vanilla-VAE, β-VAE (β = 0.2), CCI-
VAE (C = 10), and MAT-VAE (β = 0.01, λ =
0.1) from Table 3 on DBpedia and Yahoo (without
the labels), then freeze the trained encoders and
place a classifier on top to use the mean vector rep-
resentations from the encoder as a feature to train
a classifier.

We set the dimensionality of word embedding,
LSTM, and the latent space to 128, 512, 32, respec-
tively. The VAE models are trained using a batch
size of 64, for 6 epochs with Adam (learning rate
0.001). For the classifier, we use a single linear
layer with 1024 neurons, followed by a Softmax
and train it for 15 epochs, using Adam (learning
rate 0.001) and batch size 512. We illustrate the
mean and standard deviation across 3 runs of mod-
els in Figure 4.

We observe that the ranking of classification ac-
curacy among the models on DBpedia is consistent
with their Top-3 performance in Table 3, with MAT-
VAE outperforming the other three variants. We
see roughly the same trend for Yahoo, with MAT-
VAE being the dominating model. This indicates

START z1 [z1,1, z1,2, z1,3]
i = 1 z′1,1 z1,1 , z1,2, z1,3 → z2,1 , z1,2, z1,3
i = 2 z′1,2 z2,1 ,z1,2 ,z1,3 → z2,1 ,z2,2 , z1,3
i = 3 z′1,3 z2,1, z2,2 ,z1,3 → z2,1, z2,2 ,z2,3
END z2 [z2,1, z2,2, z2,3]

Table 6: An example of a 3D latent code transforma-
tion in the dimension-wise homotopy. In row i, →
denotes the start and end points of interpolation, solid
box denotes the two dimensions being interpolated, and
dashed box denotes the updated dimensions from i−1.

that disentangled representations are likely to be
easier to discriminate, although the role of sparsely
learned representations could contribute to MAT-
VAE’s success as well (Prokhorov et al., 2020).

4.4 Disentanglement and Generation

To observe the effect of disentanglement in homo-
topy (Bowman et al., 2016), we use the exactly
same toy dataset introduced in §2.1 and assess the
homotopy behaviour of the highest scoring VAE vs.
an ideal representation. To conduct homotopy, we
interpolate between two sampled sequences’ rep-
resentations and pass the intermediate representa-
tions to decoder to generate the output. We use 4D
word embedding, 16D LSTM, 4D latent space. We
report the results for the VAEs scoring the highest
on disentanglement (w.r.t. Higgins et al. (2017) de-
noted as VAE-Higg) and completeness (w.r.t. Chen
et al. (2018) denoted as VAE-Chen). The VAE-
Higg and VAE-Chen are β-VAE with β = 0.4 and
MAT-VAE with β = 0.01, λ = 0.1, respectively.

Additionally, to highlight the role of genera-
tive factor in generation, we conduct a dimension-
wise homotopy, transitioning from the first to the
last sentence by interpolating between the dimen-
sions one-by-one. This is implemented as fol-
lows: (i) using prior distribution7 we sample two
latent codes denoted by z1 = (z1,1, z1,2, . . . , z1,n),
z2 = (z2,1, z2,2, . . . , z2,n); (ii) for i-th dimension,
using z′1,i = (z2,1, . . . , z2,i−1, z1,i, . . . , z1,n) as the
start, we interpolate along the i-th dimension to-
wards z′2,i = (z2,1, . . . , z2,i, z1,i+1, . . . , z1,n). Ta-
ble 6 illustrates this for a 3D latent code example.

Results: Table 7 reports the outputs for standard
homotopy (top block) and dimension-wise homo-
topy. The results for standard homotopy demon-

7Instead of prior, we sample two sentences from test set
and use their representations. This is to avoid the situation
where samples are not in the well-estimated region of the
posterior.

135

Ideal VAE-Higg VAE-Chen
z1 A9 B17 C13 D3 A12 B14 C14 D12 A9 B4 C10 D15

H
om

ot
op

y A20 B17 C1 D3 A12 B14 C14 D12 A7 B4 C10 D15
A4 B17 C12 D6 A8 B14 C14 D12 A14 B4 C10 D15
A3 B1 C6 D6 A20 B14 C14 D12 A20 B19 C10 D15
A13 B1 C6 D20 A15 B14 C14 D12 A8 B19 C10 D15

z2 A15 B2 C8 D10 A4 B14 C14 D12 A12 B19 C10 D15
z1 A9 B17 C13 D3 A12 B14 C14 D12 A9 B4 C10 D15

D
im

1 A20 B17 C13 D3 A12 B14 C14 D12 A7 B4 C10 D15
A4 B17 C13 D3 A8 B14 C14 D12 A4 B19 C10 D15
A3 B17 C13 D3 A20 B14 C14 D12 A8 B19 C10 D15
A13 B17 C13 D3 A18 B14 C14 D12 A12 B19 C10 D15

z
′
1,2 A15 B17 C13 D3 A4 B14 C14 D12 A12 B19 C10 D15

D
im

2 A15 B17 C13 D3 A4 B14 C14 D12 A12 B19 C10 D15
A15 B17 C13 D3 A4 B14 C14 D12 A12 B19 C10 D15
A15 B17 C13 D3 A4 B14 C14 D12 A12 B19 C10 D15
A15 B1 C13 D3 A4 B14 C14 D12 A12 B19 C10 D15

z
′
1,3 A15 B2 C13 D3 A4 B14 C14 D12 A12 B19 C10 D15

D
im

3 A15 B2 C1 D3 A4 B14 C14 D12 A12 B19 C10 D15
A15 B2 C12 D3 A4 B14 C14 D12 A12 B19 C10 D15
A15 B2 C6 D3 A4 B14 C14 D12 A12 B19 C10 D15
A15 B2 C6 D3 A4 B14 C14 D12 A12 B19 C10 D15

z
′
1,4 A15 B2 C8 D3 A4 B14 C14 D12 A12 B19 C10 D15

D
im

4 A15 B2 C8 D3 A4 B14 C14 D12 A12 B19 C10 D15
A15 B2 C8 D6 A4 B14 C14 D12 A12 B19 C10 D15
A15 B2 C8 D6 A4 B14 C14 D12 A12 B19 C10 D15
A15 B2 C8 D20 A4 B14 C14 D12 A12 B19 C10 D15

z2 A15 B2 C8 D10 A4 B14 C14 D12 A12 B19 C10 D15

Table 7: The homotopy experiments, comparing an
ideal generator and the best disentangled VAEs accord-
ing to Higgins et al. (2017) (VAE-Higg) and Chen et al.
(2018) (VAE-Chen).

strate that the presence of ideally disentangled rep-
resentation translates into disentangled generation
in general. However, both VAE-Higg and VAE-
Chen seem to mainly be producing variations of
the letter in the first position (letter A) during the
interpolation. The same observation holds in the
dimension-wise experiments. VAE-Chen also pro-
duces variations of the letter in the second position
(letter B) along with the variation of letter A, which
suggests the lesser importance of completeness for
disentangled representations.

This indicates that despite the relative superior
performance of certain models on the metrics and
classification tasks, the amount of disentangle-
ment present in the representation is not sufficient
enough to be reflected by the generative behavior of
these models. As a future work, we would look into
the role of auto-regressive decoding and teacher-
forcing as confounding factors that can potentially
affect the disentanglement process.

5 Conclusion and Future Directions

We evaluated a set of recent unsupervised disentan-
glement learning frameworks widely used in image
domain on two artificially created corpora with
known underlying generative factors. Our experi-
ments highlight the existing gaps in text domain,

the daunting tasks state-of-the-art models from im-
age domain face on text, and the confounding ele-
ments that pose further challenges towards repre-
sentation disentanglement in text domain. Moti-
vated by our findings, in future, we will explore the
role of inductive biases such as representation spar-
sity in achieving representation disentanglement.
Additionally, we will look into alternative forms
of decoding and training which may compromise
reconstruction quality but increase the reliance of
decoding on the representation, hence allowing for
a more controlled analysis and evaluation.

Our synthetic datasets and experimental frame-
work provide a set of quantitative and qualitative
measures to facilitate and future research in devel-
oping new models, datasets, and evaluation metrics
specific for text.

References
Alexander Alemi, Ben Poole, Ian Fischer, Joshua Dil-

lon, Rif A Saurous, and Kevin Murphy. 2018. Fix-
ing a broken elbo. In International Conference on
Machine Learning, pages 159–168. PMLR.

Vikash Balasubramanian, Ivan Kobyzev, Hareesh
Bahuleyan, Ilya Shapiro, and Olga Vechtomova.
2021. Polarized-VAE: Proximity based disentan-
gled representation learning for text generation. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 416–423, Online. As-
sociation for Computational Linguistics.

Yu Bao, Hao Zhou, Shujian Huang, Lei Li, Lili Mou,
Olga Vechtomova, Xin-yu Dai, and Jiajun Chen.
2019. Generating sentences from disentangled syn-
tactic and semantic spaces. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 6008–6019, Florence,
Italy. Association for Computational Linguistics.

Y. Bengio, A. Courville, and P. Vincent. 2013. Rep-
resentation learning: A review and new perspectives.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(8):1798–1828.

Yoshua Bengio. 2013. Deep learning of representa-
tions: Looking forward. In Statistical Language
and Speech Processing - First International Con-
ference, SLSP 2013, Tarragona, Spain, July 29-31,
2013. Proceedings, volume 7978 of Lecture Notes
in Computer Science, pages 1–37. Springer.

Tom Bosc and Pascal Vincent. 2020. Do sequence-to-
sequence VAEs learn global features of sentences?
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4296–4318, Online. Association for Computa-
tional Linguistics.

136

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, An-
drew M. Dai, Rafal Józefowicz, and Samy Ben-
gio. 2016. Generating sentences from a continuous
space. In Proceedings of the 20th SIGNLL Confer-
ence on Computational Natural Language Learning,
CoNLL 2016, pages 10–21, Berlin, Germany. ACL.

Christopher P. Burgess, Irina Higgins, Arka Pal, Loı̈c
Matthey, Nick Watters, Guillaume Desjardins, and
Alexander Lerchner. 2018. Understanding disentan-
gling in β-vae. CoRR, abs/1804.03599.

Mingda Chen, Qingming Tang, Sam Wiseman, and
Kevin Gimpel. 2019. A multi-task approach for dis-
entangling syntax and semantics in sentence repre-
sentations. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 2453–2464, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Ricky T. Q. Chen, Xuechen Li, Roger B Grosse, and
David K Duvenaud. 2018. Isolating sources of dis-
entanglement in variational autoencoders. In Ad-
vances in Neural Information Processing Systems,
volume 31, pages 2610–2620. Curran Associates,
Inc.

Pengyu Cheng, Martin Renqiang Min, Dinghan Shen,
Christopher Malon, Yizhe Zhang, Yitong Li, and
Lawrence Carin. 2020. Improving disentangled text
representation learning with information-theoretic
guidance. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7530–7541, Online. Association for Computa-
tional Linguistics.

Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loı̈c Barrault, and Marco Baroni. 2018. What
you can cram into a single $&!#* vector: Probing
sentence embeddings for linguistic properties. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2126–2136, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Adji B. Dieng, Yoon Kim, Alexander M. Rush, and
David M. Blei. 2019. Avoiding latent variable col-
lapse with generative skip models. In The 22nd In-
ternational Conference on Artificial Intelligence and
Statistics, AISTATS 2019, volume 89 of Proceedings
of Machine Learning Research, pages 2397–2405,
Naha, Okinawa, Japan. PMLR.

Andrea Dittadi, Frederik Träuble, Francesco Locatello,
Manuel Wuthrich, Vaibhav Agrawal, Ole Winther,
Stefan Bauer, and Bernhard Schölkopf. 2021. On
the transfer of disentangled representations in realis-
tic settings. In International Conference on Learn-
ing Representations.

Cian Eastwood and Christopher K. I. Williams. 2018.
A framework for the quantitative evaluation of dis-
entangled representations. In International Confer-
ence on Learning Representations.

Allyson Ettinger, Ahmed Elgohary, Colin Phillips, and
Philip Resnik. 2018. Assessing composition in sen-
tence vector representations. In Proceedings of
the 27th International Conference on Computational
Linguistics, pages 1790–1801, Santa Fe, New Mex-
ico, USA. Association for Computational Linguis-
tics.

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch,
Bernhard Schölkopf, and Alexander Smola. 2012. A
kernel two-sample test. Journal of Machine Learn-
ing Research, 13(25):723–773.

Junxian He, Daniel Spokoyny, Graham Neubig, and
Taylor Berg-Kirkpatrick. 2019. Lagging inference
networks and posterior collapse in variational au-
toencoders. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans,
LA, USA.

John Hewitt and Percy Liang. 2019. Designing and
interpreting probes with control tasks. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2733–2743, Hong
Kong, China. Association for Computational Lin-
guistics.

Irina Higgins, David Amos, David Pfau, Sébastien
Racanière, Loı̈c Matthey, Danilo J. Rezende, and
Alexander Lerchner. 2018. Towards a defi-
nition of disentangled representations. CoRR,
abs/1812.02230.

Irina Higgins, Loı̈c Matthey, Arka Pal, Christopher
Burgess, Xavier Glorot, Matthew Botvinick, Shakir
Mohamed, and Alexander Lerchner. 2017. beta-vae:
Learning basic visual concepts with a constrained
variational framework. In 5th International Confer-
ence on Learning Representations, ICLR 2017, Con-
ference Track Proceedings, Toulon, France.

N. Hurley and S. Rickard. 2009. Comparing measures
of sparsity. IEEE Transactions on Information The-
ory, 55(10):4723–4741.

Vineet John, Lili Mou, Hareesh Bahuleyan, and Olga
Vechtomova. 2019. Disentangled representation
learning for non-parallel text style transfer. In Pro-
ceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 424–434,
Florence, Italy. Association for Computational Lin-
guistics.

Hyunjik Kim and Andriy Mnih. 2018. Disentangling
by factorising. In Proceedings of the 35th Inter-
national Conference on Machine Learning, ICML
2018, volume 80 of Proceedings of Machine Learn-
ing Research, pages 2649–2658, Stockholmsmässan,
Stockholm Sweden. PMLR.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,

137

ICLR 2015, Conference Track Proceedings, San
Diego, CA, USA.

Diederik P. Kingma and Max Welling. 2014. Auto-
encoding variational bayes. In 2nd International
Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Con-
ference Track Proceedings.

Abhishek Kumar, Prasanna Sattigeri, and Avinash Bal-
akrishnan. 2018. VARIATIONAL INFERENCE OF
DISENTANGLED LATENT CONCEPTS FROM
UNLABELED OBSERVATIONS. In International
Conference on Learning Representations.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gun-
nar Raetsch, Sylvain Gelly, Bernhard Schölkopf,
and Olivier Bachem. 2019. Challenging common as-
sumptions in the unsupervised learning of disentan-
gled representations. In Proceedings of the 36th In-
ternational Conference on Machine Learning, ICML
2019, volume 97 of Proceedings of Machine Learn-
ing Research, pages 4114–4124, Long Beach, Cali-
fornia, USA. PMLR.

Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1192–1202,
Brussels, Belgium. Association for Computational
Linguistics.

Emile Mathieu, Tom Rainforth, N Siddharth, and
Yee Whye Teh. 2019. Disentangling disentangle-
ment in variational autoencoders. In Proceedings
of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine
Learning Research, pages 4402–4412. PMLR.

T. J. Mitchell and J. J. Beauchamp. 1988. Bayesian
variable selection in linear regression. Journal of
the American Statistical Association, 83(404):1023–
1032.

Milton Llera Montero, Casimir JH Ludwig, Rui Ponte
Costa, Gaurav Malhotra, and Jeffrey Bowers. 2021.
The role of disentanglement in generalisation. In
International Conference on Learning Representa-
tions.

Tom Pelsmaeker and Wilker Aziz. 2020. Effective es-
timation of deep generative language models. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7220–
7236, Online. Association for Computational Lin-
guistics.

Tiago Pimentel, Josef Valvoda, Rowan Hall Maudslay,
Ran Zmigrod, Adina Williams, and Ryan Cotterell.
2020. Information-theoretic probing for linguistic
structure. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4609–4622, Online. Association for Computa-
tional Linguistics.

Victor Prokhorov, Yingzhen Li, Ehsan Shareghi, and
Nigel Collier. 2020. Hierarchical sparse varia-
tional autoencoder for text encoding. arXiv preprint
arXiv:2009.12421.

Victor Prokhorov, Ehsan Shareghi, Yingzhen Li, Mo-
hammad Taher Pilehvar, and Nigel Collier. 2019.
On the importance of the Kullback-Leibler diver-
gence term in variational autoencoders for text gen-
eration. In Proceedings of the 3rd Workshop on
Neural Generation and Translation, pages 118–127,
Hong Kong. Association for Computational Linguis-
tics.

Ali Razavi, Aäron van den Oord, Ben Poole, and
Oriol Vinyals. 2019. Preventing posterior collapse
with delta-vaes. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans,
LA, USA.

Karl Ridgeway and Michael C Mozer. 2018. Learning
deep disentangled embeddings with the f-statistic
loss. In Advances in Neural Information Processing
Systems, volume 31, pages 185–194. Curran Asso-
ciates, Inc.

Andrew Slavin Ross and Finale Doshi-Velez. 2021.
Benchmarks, algorithms, and metrics for hierarchi-
cal disentanglement. CoRR, abs/2102.05185.

Lucas Torroba Hennigen, Adina Williams, and Ryan
Cotterell. 2020. Intrinsic probing through dimen-
sion selection. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 197–216, Online. As-
sociation for Computational Linguistics.

Elena Voita and Ivan Titov. 2020. Information-
theoretic probing with minimum description length.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 183–196, Online. Association for Computa-
tional Linguistics.

Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and
Taylor Berg-Kirkpatrick. 2017. Improved varia-
tional autoencoders for text modeling using dilated
convolutions. In Proceedings of the 34th Inter-
national Conference on Machine Learning, ICML
2017, volume 70 of Proceedings of Machine Learn-
ing Research, pages 3881–3890, Sydney, NSW, Aus-
tralia. PMLR.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Proceedings of the 28th International
Conference on Neural Information Processing Sys-
tems - Volume 1, NIPS’15, page 649–657, Cam-
bridge, MA, USA. MIT Press.

A Disentanglement Metrics Algorithms

To evaluate representations learned by a model on
a dataset having the attributes of Data Require-
ment, we further require a series of representation

138

space Rij , who has a bijection mapping with Sij .
Hence, when sampling representations which have
the same value on one generative factor, we only
need to sample in one Rij .

Under these notations, we write the pseudo code
of metrics in Algorithm 1-6. For Algorithm 5 and
6, although we only use one criterion in the main
paper, we still provide the details for other criteria.
We set N = 1000 and L = 64 for Algorithm 1 and
2, and N = 10000 for Algorithm 3, 4, 5, and 6.

Algorithm 1 Metric of Higgins et al. (2017)

1: D = ∅
2: for fi ∈ F do
3: for n = 1, 2, . . . , N do
4: Sample sn from

⋃
j Sij

5: Find the value vij on fi for sn
6: Sample (z

(1)
1 , . . . , z

(1)
L) from Rij

7: Sample (z
(2)
1 , . . . , z

(2)
L) from Rij

8: zn = 1
L

∑L
l=1 |z

(1)
l − z

(2)
l |

9: D = {(zn, fi)}
⋃
D

10: Split D into training set TR and test set TE
with proportion (80%, 20%)

11: Train 10 MLPs with only input and output
layer on TR

12: Calculate the accuracy on TE for 10 models
13: Calculate the mean and variance of accuracy

Algorithm 2 Metric of Kim and Mnih (2018)
1: D = ∅
2: for d = 1, 2, . . . , dimz do
3: Calculate the standard deviation σd of di-

mension d
4: for fi ∈ F do
5: for n = 1, 2, . . . , N do
6: Sample sn from

⋃
j Sij

7: Find the value vij on fi for sn
8: Sample (z1, . . . , zL) from Rij
9: d∗n = argmaxd var(

z1,d
σd
, . . . ,

zL,d
σd

)
10: D = {(d∗n, fi)}

⋃
D

11: Split D into training set TR and test set TE
with proportion (80%, 20%)

12: Train 10 majority vote classifiers on TR
13: Calculate the accuracy on TE for 10 models
14: Calculate the mean and variance of accuracy

Algorithm 3 Metric of Kumar et al. (2018)
1: for fi ∈ F do
2: for vij ∈ Vi do
3: p(vij) =

Count(Sij)∑
j Count(Sij)

4: Sample Nj = N × p(vij) representa-
tions zj from Rij

5: for d = 1, 2, . . . , dimz do
6: Dd = ∅
7: for vij ∈ Vi do
8: for n = 1, 2, . . . , Nj do
9: Did = {(zjn,d, vij)}

⋃
Did

10: Split Dd into training set TRd and test
set TEd with proportion (80%, 20%)

11: Train a linear SVM classifier on TRd
12: Record the accuracy accd on TEid
13: d∗ = argmaxd accd
14: SAP i = accd∗ −maxd6=d∗ accd
15: score = avg(SAP i)

Algorithm 4 Metric of Chen et al. (2018)
1: for d = 1, 2, . . . , dimz do
2: Divide values on dimension d into 20 uni-

form bins Bd
3: for n = 1, 2, . . . , 20 do
4: p(zd ∈ Bnd) =

Count({zd∈Bnd})∑20
n=1 Count({zd∈Bnd})

5: H(zd) = −
∑20

n=1 p(zd ∈ Bnd) log p(zd ∈
Bnd)

6: for fi ∈ F do
7: for vij ∈ Vi do
8: p(vij) =

Count(Sij)∑
j Count(Sij)

9: Sample Nj = N × p(vij) representa-
tions rj from Rij

10: H(fi) = −
∑

j p(vij) log p(vij)
11: for d = 1, 2, . . . , dimz do
12: for vij ∈ Vi do
13: for n = 1, 2, . . . , 20 do
14: p(zd ∈ Bnd |vij) =

Count({rjd∈Bnd})∑20
n=1 Count({r

j
d∈Bnd})

15: H(zd|fi) =
−∑j p(vij)

∑20
n=1 p(zd ∈ Bnd |vij) log p(zd ∈

Bnd |vij)
16: I(zd, fi) = H(zd)−H(zd|fi)
17: d∗ = argmaxd

I(zd,fi)
H(fi)

18: MIGi =
I(zd∗ ,fi)
H(fi)

−maxd 6=d∗
I(zd,fi)
H(fi)

19: score = avg(MIGi)

139

Algorithm 5 Metric of Ridgeway and Mozer
(2018)
Modularity:

1: Same steps as Algorithm 4 without step 17, 18
and 19

2: for d = 1, 2, . . . , dimz do
3: i∗ = argmaxi I(zd, fi)
4: θd = I(zd, fi∗)
5: for fi ∈ F do
6: if i = i∗ then
7: ti = θd
8: else
9: ti = 0

10: δd =
∑
i(I(zd,fi)−ti)2

θ2
d(Count(F)−1)

11: score = avg(1− δd)
Explicitness:

1: for fi ∈ F do
2: Di = ∅
3: for vij ∈ Vi do
4: p(vij) =

Count(Sij)∑
j Count(Sij)

5: Sample Nj = N × p(vij) representa-
tions rj from Rij

6: for n = 1, 2, . . . , Nj do
7: Di = {(rjn, vij)}

⋃
D

8: Split Di into training set TRi and test set
TEi with proportion (80%, 20%)

9: Train an one-versus-rest logistic regress
classifier on TRi

10: Record the ROC area-under-the-curve
(AUC) aucij on TRi for every vij

11: score = avg(aucij)

Algorithm 6 Metric of Eastwood and Williams
(2018)

1: for fi ∈ F do
2: Di = ∅
3: for vij ∈ Vi do
4: p(vij) =

Count(Sij)∑
j Count(Sij)

5: Sample Nj = N × p(vij) representa-
tions zj from Rij

6: for n = 1, 2, . . . , Nj do
7: Di = {(zjn, vij)}

⋃
D

8: Split Di into training set TRi and test set
TEi with proportion (80%, 20%)

9: Train a random forest classifier on TRi
10: Informativeness score inf i is the accuracy

on TEi
11: rid is the relative importance of dimension

d in predicting vij , obtained from the random
forest

12: for d = 1, 2, . . . , dimz do
13: Pd =

rid∑
d rid

14: H = −∑d Pd logdimz Pd
15: disi = 1−H
16: scoredisentanglement = avg(disi)
17: scoreinformativeness = avg(inf i)
18: for d = 1, 2, . . . , dimz do
19: for fi ∈ F do
20: Qi =

rid∑
i rid

21: H = −∑iQi logCount(F)Qi
22: Completeness score comd = 1−H
23: scorecompleteness = avg(comd)

140

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 141–151
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

Learn The Big Picture: Representation Learning for Clustering

Sumanta Kashyapi
Department of Computer Science

University of New Hampshire
sk1105@wildcats.unh.edu

Laura Dietz
Department of Computer Science

University of New Hampshire
dietz@cs.unh.edu

Abstract

Existing supervised models for text clustering
find it difficult to directly optimize for clus-
tering results. This is because clustering is a
discrete process and it is difficult to estimate
meaningful gradient of any discrete function
that can drive gradient based optimization al-
gorithms. So, existing supervised clustering
algorithms indirectly optimize for some con-
tinuous function that approximates the clus-
tering process. We propose a scalable train-
ing strategy that directly optimizes for a dis-
crete clustering metric. We train a BERT-
based embedding model using our method and
evaluate it on two publicly available datasets.
We show that our method outperforms an-
other BERT-based embedding model employ-
ing Triplet loss and other unsupervised base-
lines. This suggests that optimizing directly
for the clustering outcome indeed yields better
representations suitable for clustering.

1 Introduction

Text clustering is a well-studied problem which
finds its application in a wide range of tasks: or-
ganizing documents in cluster-based information
retrieval (Cutting et al., 2017; Mei and Chen, 2014),
representation of search results (Scaiella et al.,
2012; Navigli and Crisafulli, 2010), analyzing dif-
ferent opinions about a subject (Tsirakis et al.,
2017) among many others. Each of these appli-
cations may focus on text contents of different
granularities (e.g. words, sentences, passages, arti-
cles) but all of them follow a common high-level
approach to clustering: represent the documents
in form of vectors and then cluster them based
on vector similarities. Although clustering is typ-
ically employed in an unsupervised setting, many
semi-supervised deep learning models have been
proposed recently. Many of these approaches for-
mulate this as a representation space learning prob-

lem (Yang et al., 2017) that projects initial docu-
ment vectors into a latent vector space which is
more suitable for the clustering task and gener-
ate clusters similar to some ground truth. How-
ever, most of these algorithms do not directly op-
timize for a clustering evaluation metric during
training. Instead, they optimize for a different cri-
terion that approximates the global clustering er-
ror. Semi-supervised clustering approaches (Basu
et al., 2002) cast the clustering problem into binary
classification by learning pairwise constraints ex-
tracted from the available training examples: must-
links for sample pairs sharing the same cluster
and cannot-links for different clusters. However,
clustering problems with numerous small clusters
produce only a few must-links among all possible
links, leading to highly unbalanced training data.
Consequently, the trained model is biased towards
predicitng cannot-links. Learning triplet-based con-
straints (Dor et al., 2018) that combine a positive
and a negative sample in a single triplet, mitigate
such bias towards negative samples. However, the
sample complexity (Bartlett, 1998) (number of sam-
ples required to cover all interactions in a dataset)
grows more rapidly compared to paired samples.
Also, such approximation of the original clustering
problem may lead to unsatisfactory results because
the optimization criterion does not always corre-
spond with the clustering quality. These observa-
tions motivate us to hypothesize the following:

1. Instead of learning to solve some approxima-
tion of the original clustering problem, we
need to directly optimize for a clustering eval-
uation metric in order to train a model special-
ized for clustering.

2. Instead of sample-pairs in case of pairwise
constraints or triplets in case of Triplet-loss,
we can make efficient and scalable use of the
available training data by presenting all inter-

141

actions between a set of data points as a single
clustering sample. This way the training ap-
proach neither suffers from unbalanced data
nor from sample complexity.

To test our hypotheses, we propose an alternative
training strategy that directly draws its supervision
signal from an evaluation metric that measures clus-
tering quality to train a representation model for
text documents. During training, it consumes a
complete clustering example of a set of data points
as a single training sample in form of an interaction
matrix. Due to this, we experiment with cluster-
ing datasets containing numerous small clustering
examples instead of a single instance of a large
clustering problem.

It is challenging to derive training signals di-
rectly from the clustering ground truth or a cluster-
ing evaluation metric because the clustering pro-
cess is discrete. In other words, a function that esti-
mates the clustering quality of a random partition
of the input data is not continuous and hence non-
differentiable. As most supervised algorithms rely
on gradient-based optimization algorithms, it is dif-
ficult for them to orchestrate a useful training pro-
cess without proper gradient. So far some continu-
ous approximation of the clustering problem is used
as discussed earlier to bypass the core optimiza-
tion issue. Recently a novel gradient approxima-
tion method, blackbox backpropagation (Vlastelica
et al., 2019) is proposed for combinatorial prob-
lems that finds solution in a discrete space. We
leverage their findings by molding the clustering
problem into a combinatorial problem. This allows
us to derive meaningful gradients out of the clus-
tering process and to train a representation model
by directly optimizing for a clustering evaluation
metric.

Our contribution: We make the following con-
tributions through this work.

1. We develop a new training strategy for super-
vised clustering that directly obtains its super-
vision signal from optimizing a clustering met-
ric.1 We utilize recently proposed blackbox
backpropagation technique to derive gradients
from discrete clustering results that drives the
training process.

2. We use our training strategy to train a BERT-
based (Devlin et al., 2018) representation

1The source code is available at https://github.
com/nihilistsumo/Blackbox_clustering

model suitable for topical clustering. To sup-
port the training mechanism, we design a loss
function that effectively optimizes a clustering
evaluation metric.

3. We empirically show that our method is more
efficient in terms of training time and utilizing
available training examples when compared to
existing supervised clustering methods. The
resulting representation model achieves better
clustering results than other strong baseline
models.

2 Related Work

Traditionally, text clustering is achieved by em-
ploying a distance-based clustering algorithm (e.g.
KMeans) on vector representations of documents
such as TF-IDF (Jones, 1972). Recent works focus
on learning text representaions suitable for clus-
tering (Chen, 2017; Xu et al., 2017; Hadifar et al.,
2019). Alternatively, they explore different simi-
larity metrics between the vectors that govern the
clustering algorithm through pairwise binary con-
straints (Basu et al., 2002; Kulis et al., 2009). In
this work, we focus on the former – representation
learning of documents, suitable for text clustering.

Deep clustering (Min et al., 2018) is an ac-
tive field of research that utilizes recent advance-
ments of deep learning techniques to improve su-
pervised clustering. The primary focus is to learn a
suitable representation space that optimizes some
clustering criterion (e.g. cluster assignment loss)
along with a representation criterion (e.g. recon-
struction loss) (Xie et al., 2016; Li et al., 2018;
Ghasedi Dizaji et al., 2017; Jiang et al., 2016).
It has also been shown that clustering criterions
alone are sufficient to train such representation
space (Yang et al., 2016). However, none of these
approaches attempt to receive direct supervision
from a clustering evaluation metric. Motivated by
earlier works that learn a representation model un-
der pairwise binary constraints, Chang et al. (2017)
envisions the clustering task as a binary classifi-
cation task of paired data samples and achieves
state-of-the-art results on multiple image cluster-
ing datasets. Reimers and Gurevych (2019) pro-
pose Sentence-BERT which trains a BERT-based
sentence embedding model by employing Triplet
loss (Dor et al., 2018) that uses triples of sentences
as training samples where exactly two of them are
from the same section of Wikipedia. Although both

142

of these approaches are supervised, each training
sample only consists of a fraction of the whole
clustering instance. Hence, during training, these
methods mostly ignore the overall relationships be-
tween multiple data samples and how they form
clusters.

The main hindrance of drawing a supervision
signal directly from a clustering evaluation metric
is the combinatorial nature of the clustering prob-
lem. Some research introduce differentiable build-
ing blocks for special cases of combinatorial algo-
rithms such as satisfiability (SAT) problems (Wang
et al., 2019). Wilder et al. (2019) use a differen-
tiable variant of the K-means algorithm to approx-
imate a harder combinatorial problem (e.g. graph
optimization). Such relaxations of the original com-
binatorial problem may lead to sub-optimal results.
Recently, Vlastelica et al. (2019) proposed a novel
technique of differentiating combinatorial solvers
as a blackbox without any relaxation that allows us
to use an optimal combinatorial algorithm as a com-
ponent of a deep representation learning model and
optimize it end-to-end. We give a brief background
of their approach in the following section.

Blackbox backpropagation. In their approach
to optimize for a combinatorial function Vlastel-
ica et al. (2019) formalize combinatorial
solvers as a mapping function between con-
tinuous input, w ∈W ⊆ RN and discrete
output, ŷ ∈ Y as w 7→ ŷ such that the output
ŷ = argminy∈Y c(w, y) where c is the cost that
the solver tries to minimize. Here W is the
N -dimensional continuous input space and Y is
a finite set of all possible solutions. For a linear
cost function c, a continuous interpolation of
the original cost function is constructed and the
gradient of this interpolation is used during back-
propagation. The closeness of the interpolation
to the original function is controlled by a single
hyperparameter, λ. In our work, we extend this
approach for clustering framework to draw the
supervision signals directly from the clustering
results and learn our model parameters.

3 Methodology

Our text clustering method works in two steps: 1.
Train a text representation model directly from
example clusters of text snippets, 2. Cluster the
trained embedding vectors using hierarchical ag-
glomerative clustering (HAC). Our primary con-

tribution lies in the training strategy of step 1
which we refer here as Clustering Optimization
as Blackbox (COB). We describe COB in the fol-
lowing sections.

3.1 Overall Approach
Supervised text clustering is a combinatorial prob-
lem. Let P be a set of N documents and Y be the
set of all possible k-partitions of set P . Also let Vφ
be a representation model with trainable parame-
ters φ. We obtain the set of representation vectors
Vφ(P) for each of the documents in set P using
the model, Vφ. Based on the Euclidean distances
between representation vectors in Vφ(P), a clus-
tering algorithm chooses a particular k-partition
ŷ ∈ Y that minimizes some linear cost function
c(Vφ(P), y) e.g. intra-cluster distances for HAC.
Hence the clustering process can be expressed as
the following mapping:

Vφ(P) 7→ ŷ such that ŷ = argmin
y∈Y

c(Vφ(P), y)

The clustering ground truth y∗ ∈ Y is the correct k-
partition of set P . The training process of COB is
governed by a loss function L(y∗, ŷ) that optimizes
a clustering evaluation metric.

However, we want to emphasize here that the
minimization of the cost function c(Vφ(P), y)
takes place inside the clustering algorithm and re-
mains opaque for our supervised model. As a result,
COB is not dependent on the exact clustering algo-
rithm we choose. In this work however, we choose
to use HAC as our clustering algorithm. We opti-
mize for RAND index in this work but our method
can be applied to optimize for other clustering eval-
uation metrics as well (e.g. purity).

3.2 Optimizing for RAND index
Our goal is to train the representation model, Vφ,
such that the resulting clusters maximize a cluster-
ing evaluation metric of our choice. In this work,
we focus on optimizing for RAND index, a widely
used clustering metric, which measures the simi-
larity between the generated clusters and the clus-
tering ground truth. If y∗ ∈ Y be the ground truth
partition or the ideal clustering of P , then the clus-
tering quality of a candidate cluster ŷ is expressed
in terms of RAND index (RI):

RI =

No. of unordered data pairs that agrees
between y∗ and ŷ (

n
2

)

where n = total number of data samples.

143

Figure 1: Training loop of our proposed supervised clustering approach.

Table 1: Description of variables used in Figure 1.

Variable Description
P Set of documents to be clustered
Vφ Embedding model with trainable parameters φ
Vφ(P) Representation vectors of P obtained using Vφ
D Pairwise distance matrix of vectors in Vφ(P)
A Adjacency matrix denoting clustering result
T Adjacency matrix denoting ground truth clusters

3.3 COB Training Loop
Figure 1 and Table 1 presents the overall train-
ing approach. The focus of the training loop is to
train the representation model Vφ. First, the set
of representation vectors Vφ(P) is obtained for all
documents in set P . Then we encode the input
to the clustering algorithm as a square symmetric
matrix D with pairwise Euclidean distance scores
between vectors in Vφ(P).
Dij = ||Vφ(pi)− Vφ(pj)||2 where pi, pj ∈ P
The solution to the clustering problem is expressed
in form of an adjacency matrix A such that

Aij = 1 if i, j share same cluster and 0 otherwise

We denote the adjacency matrix of the clustering
ground truth as T . Now, we can express RI using
the following form:

RI = 1−
∑

ij |Aij − Tij |
2
(
n
2

) see Appendix

It is clear from the above equation that if we want
to maximize RI, we need to minimize the differ-
ence between A and T . Intuitively, if we are able
to produce ideal clustering results, then A and T
would be identical, meaningA−T is a zero matrix.
Hence, we define our loss function L as the sum of
A− T . Formally:

L =
∑

ij

|Aij − Tij |

The backward pass of this training loop involves
estimating the gradient of the loss L with respect
to the distance matrix D, the input to the clustering
algorithm. This is achieved using blackbox back-
propagation technique and the resulting gradient
is used to drive a gradient descent algorithm for
training the representation model Vφ.

3.4 Regularization
The purpose of any clustering algorithm is to iden-
tify groups of similar data points. By optimizing
for a clustering metric such as RI, we learn a no-
tion of similarity that most likely yields the ground
truth clusters when used in HAC. However, we
want to encourage a large margin between similar
and dissimilar data points. This is achieved when
the loss function encourages inter-cluster distances
to increase and intra-cluster distances to decrease.
While this is part of the optimization process within
the clustering algorithm, it is opaque during neural
network training, due to the blackbox optimiza-
tion technique. The clustering evaluation metric
does not encourage a margin that is larger than nec-
essary. Hence we incorporate a measure of intra
versus inter-cluster distance as a regularizer in our
optimization criterion as described below.

Lr = L+ r · [mean intra-cluster distance

−mean inter-cluster distance]

= L+ r ·
[∑

ij DijTij∑
ij Tij︸ ︷︷ ︸

intra-cluster

−
∑

ij Dij(1− Tij)∑
ij(1− Tij)︸ ︷︷ ︸
inter-cluster

]

where r is the regularization constant

The regularization constant r controls how much
emphasis is placed on increasing the margin be-
tween similar and dissimilar data points versus op-
timizing the clustering evaluation metric.

144

Table 2: Dataset statistics: N = total no. of documents,
C = total no. of clustering instances, n = average num-
ber of documents per clustering instance, k = average
number of clusters per clustering instance.

Dataset N C n k
20NG train 11314 226 50 18
20NG test 7532 150 50 18

k(coarse) k(fine)
CAR train 6.8M 597K 11 3.84 5.04
CAR test 6K 126 47 7.78 17.16

4 Experimental Results

In this section, we describe the datasets used for
our experiments, discuss our evaluation paradigm
and present experimental results that demonstrate
efficacy of the representation model trained using
our proposed training strategy over our baseline
models.

4.1 Datasets
To evaluate our proposed approach, we use two pub-
licly available datasets: 20 newsgroups (20NG2)
and TREC Complex Answer Retrieval (CAR3). As
discussed earlier, for our proposed method, each
training example consists of the ideal clustering
of a set of documents. To produce enough such
training samples, we choose to train and evaluate
on multiple smaller clustering instances instead of
a single but large clustering instance. We note that
it will not make any difference in the way our base-
line model is trained because they consume the
training data in form of triples (SBERT Triplet),
as long as we ensure that all models are trained
on the same set of clustering examples. We take
the following approach to construct such clustering
benchmarks from the datasets (detailed statistics
are presented in Table 2):

20NG dataset is a widely used public collec-
tion of 18846 documents, each categorized into
any one of twenty topics. To convert this to a clus-
tering benchmark, both train and test split of 20NG
dataset is randomly grouped into sets of 50 doc-
uments along with their topic labels, resulting in
226 and 150 clustering instances respectively. Each
set of 50 documents represents a single instance of
clustering problem.

CAR dataset (version 2.0 year 1) is a large col-
lection of Wikipedia articles. Each article consists
of text passages about a topic, segmented into hier-
archical subtopics using sections. From the CAR

2Part of scikit-learn datasets Pedregosa et al. (2011)
3http://trec-car.cs.unh.edu/

Figure 2: Coarse and fine-grained clustering bench-
marks from CAR dataset.

dataset, we use train.v2.0 as train split (CAR
train) and benchmarkY1test as test split (CAR
test). This dataset is originally designed for a pas-
sage retrieval task where passages in CAR articles
are relevant for different sections under the over-
arching topic of the article. This relevance infor-
mation is part of the dataset in form of the ground
truth. We assume that all relevant passages for an
article are already retrieved and our focus is to clus-
ter these passages. So each article is a separate
clustering problem where our task is to cluster all
the passages of the article such that passages from
same sections in the original article share the same
cluster. We treat the section label under which a
passage appears as the clustering label of the pas-
sage.

Section labels in CAR dataset are hierarchical.
This provides an opportunity to evaluate our clus-
tering models under different levels of granular-
ity. As depicted in Figure 2, passages p6 and p7
in article COVID 19 belong to the sections Cause
and Cause/Transmission respectively. For a coarse-
grained view of the clustering, we consider p6, p7
under the same topic cluster Cause. However, for
fine-grained clustering we have to consider p6, p7
under separate subtopic clusters. The CAR dataset
provides both in form of top-level (coarse) and hier-
archical (fine-grained) benchmarks. We train and
evaluate our models on both flavors of the dataset.

4.2 Evaluation Paradigm

Our primary focus is to evaluate the efficacy of our
proposed training strategy for supervised clustering
and compare it with other training methods while
ensuring the fairness of our evaluation. Hence, we
train the same text embedding model with the same
training data differing only in the training strate-

145

gies. For the embedding model, we use Sentence-
BERT (Reimers and Gurevych, 2019), a recent
BERT-based embedding model. Finally, macro-
average performance on all clustering instances on
the test sets are reported with statistical significance
testing. We use three clustering evaluation metrics,
RAND index (RI), Adjusted RAND index (ARI)
and Normalized Mutual Information (NMI).

Compared methods. In this section we discuss
all the methods which are compared in our experi-
ments. All methods are trained until no significant
improvement is observed on the validation set. For
each method, models are saved on regular interval
and we use the best model found during training
in terms of validation ARI score to evaluate on the
test set.

SBERT COB. We train Sentence-BERT with
our proposed training strategy and refer the ob-
tained model as SBERT COB.

SBERT Triplet. To compare our approach with
a strong supervised baseline, we train Sentence-
BERT with Triplet loss function (Dor et al., 2018).
It is designed to generate document representations
that capture topical similarities. Here, each train-
ing example consists of two similar (d, d+) and
one dissimilar (d−) documents. Triplet loss trains
the document representation model Vtrip so that
the Euclidean distance between the similar pair
of representations ||Vtrip(d)− Vtrip(d+)||2 is less
than the negative pair ||Vtrip(d)− Vtrip(d−)||2 by
at least a margin ε.

Ltriplet = max(0, ||Vtrip(d)− Vtrip(d+)||2
− ||Vtrip(d)− Vtrip(d−)||2 + ε)

Unsupervised baselines. To compare the per-
formances of unsupervised clustering approaches
for our use cases, we also include:

1. SBERT raw, the pre-trained Sentence-BERT
model without any finetuning and

2. TFIDF with cosine similarity as a more canon-
ical approach.

4.3 Hyperparameter Optimization
The interpolation parameter λ (Section 2) and reg-
ularization constant r (Section 3.4) are two hyper-
parameters we have to tune in SBERT COB. We
use Optuna (Akiba et al., 2019), a recently pro-
posed hyperparameter optimization framework, to

Table 3: Optimum values for interpolation parameter λ
and regularization constant r found using Optuna.

Dataset λ r
NG20 90.0 1.0
CAR coarse 47.0 3.8
CAR fine-grained 103.0 0.3

Table 4: Clustering performance on NG20 dataset in
terms of mean RAND index (RI), its corrected for
chance version Adjusted RAND Index (ARI) and mean
Normalized Mutual Information (NMI). Paired t-test
(α = 0.05) is carried out with respect to SBERT Triplet
(denoted with *) and N and H denotes significantly
higher or lower performance.

Method RI ARI NMI
SBERT COB 0.925 0.233N 0.725N
SBERT Triplet* 0.924 0.223 0.721
SBERT raw 0.754H 0.041H 0.582H
TFIDF 0.624H 0.008H 0.506H

search for optimum λ, r pair in terms of valida-
tion performance for each dataset. Table 3 presents
the optimum hyperparameter values used for our
experiments.

4.4 Clustering Evaluation

Here we present details of all the experiments car-
ried out and discuss the results. All experiments
are executed on a single NVIDIA Titan XP GPU
with 12GB memory. For all the SBERT models,
we use uncased DistilBERT (Sanh et al., 2019) as
the underlying BERT embedding model.

4.4.1 Experiment 1: 20NG
We train SBERT COB and other supervised meth-
ods using 80% of the train split of 20NG dataset
and the remainder is held out for validation. Table
4 presents the performance on the test set evaluated
using mean RI, ARI and NMI.

We observe that our proposed method SBERT
COB outperforms all other baselines in terms of
RI, ARI and NMI. For ARI and NMI, the improve-
ment is statistically significant in terms of paired
t-test with α = 0.05 carried out with respect to
the best performing baseline, SBERT Triplet. Both
TFIDF and SBERT raw fail to obtain meaningful
clusters, demonstrating the efficacy of supervised
representation models in clustering context.

4.4.2 Experiment 2: CAR
Due to large size of the CAR training split
(train.v2.0), it is impractical to train SBERT
Triplet with all possible triplets in the training set.

146

Table 5: Dataset statistics: N,C, n, k denotes the same
as Table 2, t denotes the total number of available
triples to train SBERT Triplet method.

Subset N C k(coarse) k(fine) t(coarse) t(fine)
n=30 71K 2.4K 5.97 10.64 8.6M 5.8M
n=35 56K 1.6K 6.27 12.17 9.3M 5.9M
n=40 50K 1.2K 6.73 13.62 10.8M 6.5M

Figure 3: Comparison between SBERT COB and
SBERT Triplet in terms of total training time.

Instead, we compare the supervised models trained
on three smaller subsets of the training dataset.
Each subset contains articles with exactly n pas-
sages where n = 30, 35 and 40. However, they are
always evaluated on the same CAR test set. These
values of n are chosen so that we obtain reasonable
numbers of training samples while their statistics
remain close to the CAR test set on which we are
evaluating. Table 5 presents statistics about these
three training subsets.

We report the coarse and fine-grained cluster-
ing performance in Table 6 and Table 7 respec-
tively. For both coarse and fine-grained cluster-
ing, we observe that for each of the training splits
(n = 30, 35, 40), our proposed method SBERT
COB consistently performs better than the best per-
forming baseline, SBERT Triplet (n = 30) in terms
of both ARI and NMI. As expected, clustering per-
formance in terms of RI score mostly correlates
with ARI score. The only exception is SBERT

Table 6: Coarse-level clustering performance on CAR
dataset using top-level benchmarks. Supervised mod-
els are trained with set of clustering examples each con-
taining n passages. Paired t-test (α = 0.05) is car-
ried out with respect to SBERT Triplet (n = 30) and
marked with *.

Method RI ARI NMI
Trained on n=30 subset
SBERT COB 0.742 0.230 0.502
SBERT Triplet* 0.738 0.214 0.494
Trained on n=35 subset
SBERT COB 0.744 0.236 0.512N
SBERT Triplet 0.715H 0.167H 0.460H
Trained on n=40 subset
SBERT COB 0.726 0.231 0.514N
SBERT Triplet 0.704H 0.145H 0.438H
Unsupervised
SBERT raw 0.563H 0.101H 0.406H
TFIDF 0.544H 0.072H 0.375H

Table 7: Fine-grained clustering performance on CAR
dataset using hierarchical benchmarks. Notations used
are same as in Table 6.

Method RI ARI NMI
Trained on n=30 subset
SBERT COB 0.849 0.178 0.682
SBERT Triplet* 0.848 0.173 0.678
Trained on n=35 subset
SBERT COB 0.837H 0.163 0.672
SBERT Triplet 0.830H 0.152H 0.665H
Trained on n=40 subset
SBERT COB 0.832H 0.154 0.666H
SBERT Triplet 0.860N 0.138H 0.662H
Unsupervised
SBERT raw 0.796H 0.130H 0.646H
TFIDF 0.788H 0.110H 0.631H

Triplet trained on n = 40 for fine-grained cluster-
ing. However, we also observe overall decrease in
ARI scores for all methods in case of fine-grained
clustering. This is expected as fine-grained clus-
tering is a harder problem largely due to fewer
passage pairs sharing a cluster. Note that RI and
NMI measures are only comparable within table
because unlike ARI, it is not adjusted for chance.

4.4.3 Experiment 3: Training Convergence
Existing methods for learning clustering represen-
tation spaces, focus solely on classifying individual
pairs as similar or different, and hence ignore to
which extent other data points already form clus-
ters. The key difference in our work is that we learn
the representation space to directly optimize for the
clustering evaluation metric, which is based on the
clustering results of HAC when used with pairwise
Euclidean distances. This allows the model to reach
convergence much faster, leading to reduced over-
all training time, when compared to other methods

147

Figure 4: Visual comparison of clustering results between SBERT COB and SBERT Triplet (n = 35). Each
dot denotes a passage from an article projected into the representation space after applying PCA. Different color
denotes different subtopics. Clear separation of different colored blobs indicates good clustering quality.

that uses only a sub-sample of each clustering ex-
ample (e.g. Triplets). This is particularly helpful
in scenarios when we want to regularly update our
model to incorporate new training examples.

To demonstrate this we present Figure 5 that
compares the time taken to reach convergence dur-
ing training of SBERT Triplet and SBERT COB
on 20NG dataset and CAR dataset (coarse n = 35)
respectively. For both the datasets, SBERT COB
is able to converge at least five times sooner than
SBERT Triplet, leading to much faster overall train-
ing time. Moreover, for NG20 dataset each epoch
of SBERT COB is about 100 times faster than
SBERT Triplet. This leads to decrease in overall
training time even though SBERT COB takes many
more epochs to converge than SBERT Triplet. We
observe similar training behaviour for CAR dataset.

4.5 Qualitative Evaluation

Here, we demonstrate efficacy of SBERT COB
over SBERT Triplet (n = 35) through visual com-
parison of clustering results from the CAR dataset.
Principle Component Analysis (PCA) is used to
transform the representation vectors into 3D vec-
tors which are then visualized as points in 3D vec-
tor space. Figure 4 compares the results obtained
for four articles from CAR test split.

For articles Anti-slavery International and Hy-
brid Electric Vehicle, SBERT COB is able to
clearly identify clusters of different topics and
projects them in different regions of the embedding
space. On the contrary, it is difficult to find any

clear cluster boundaries in the SBERT Triplet rep-
resentation space which is also reflected in the ARI
scores obtained by the methods. For the article Cof-
fee Preparation, both the methods perform poorly
in terms of ARI scores. But in case of SBERT COB
we see a tendency to separate dissimilar passages.
SBERT Triplet projects almost all the passages in
a dense region except for a few outlier passages.
For the article Hot Chocolate, SBERT Triplet ob-
tains numerous small clusters of similar passages.
As ARI metric is based on sample-pairs, SBERT
Triplet obtains better ARI score even though it does
not achieve clear groupings of similar elements.

It is clear from the examples that SBERT
COB provides better global clustering quality than
SBERT Triplet. This is expected because unlike
SBERT Triplet, SBERT COB observes the rela-
tionships between all passages in a clustering in-
stance at once to directly optimize for RAND index.
Hence, SBERT COB is able to make better global
clustering decisions than other pair-based methods.

4.6 Quadratic Scaling of SBERT COB

As SBERT COB learns from all possible interac-
tions of data points in a clustering instance at once,
it requires all the adjacency matrices in a batch
of clustering samples to fit in memory. Thus the
space complexity increases quadratically with the
size of each clustering instance. Hence, the batch
size is kept small to allow training with a limited
GPU memory. However, even with batch size of 1,
SBERT COB is observed to obtain superior results

148

in terms of training speed and clustering perfor-
mance as reported earlier.

5 Conclusion

In this work, we propose an alternative training
strategy to train a representation model, for clus-
tering. Our training strategy, COB (Clustering
Optimization as Blackbox), directly optimizes the
RAND index, a clustering evaluation metric. Using
our method, we train SBERT COB, a BERT-based
text representation model. We empirically show
that SBERT COB significantly outperforms other
supervised and unsupervised text embedding model
on two separate datasets in terms of RI, ARI and
NMI, indicating better cluster quality. Visual rep-
resentations of the resulting vectors also confirm
that SBERT COB learns to holistically distinguish
clusters of different topics. Moreover, each epoch
in SBERT COB training loop is about 100 times
faster when compared to SBERT Triplet, our best
performing baseline method. This leads to a signif-
icant decrease in overall training time even though
SBERT COB requires more iterations to converge
than SBERT Triplet. This makes SBERT COB suit-
able for applications that require clustering models
to be updated on a regular basis as new training
samples become available. Lastly, although we
have conducted experiments with a specific clus-
tering algorithm (HAC) and a clustering metric to
optimize (RAND index), our model is independent
of the particular choice of algorithm or the metric.

References
Takuya Akiba, Shotaro Sano, Toshihiko Yanase,

Takeru Ohta, and Masanori Koyama. 2019. Op-
tuna: A next-generation hyperparameter optimiza-
tion framework. In Proceedings of the 25rd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining.

Peter L Bartlett. 1998. The sample complexity of pat-
tern classification with neural networks: the size of
the weights is more important than the size of the
network. IEEE transactions on Information Theory,
44(2):525–536.

Sugato Basu, Arindam Banerjee, and Raymond
Mooney. 2002. Semi-supervised clustering by seed-
ing. In In Proceedings of 19th International Confer-
ence on Machine Learning (ICML-2002. Citeseer.

Jianlong Chang, Lingfeng Wang, Gaofeng Meng,
Shiming Xiang, and Chunhong Pan. 2017. Deep
adaptive image clustering. In Proceedings of the

IEEE international conference on computer vision,
pages 5879–5887.

Chien-Hsing Chen. 2017. Improved tfidf in big news
retrieval: An empirical study. Pattern Recognition
Letters, 93:113–122.

Douglass R Cutting, David R Karger, Jan O Pedersen,
and John W Tukey. 2017. Scatter/gather: A cluster-
based approach to browsing large document collec-
tions. In ACM SIGIR Forum, volume 51, pages 148–
159. ACM New York, NY, USA.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Liat Ein Dor, Yosi Mass, Alon Halfon, Elad Venezian,
Ilya Shnayderman, Ranit Aharonov, and Noam
Slonim. 2018. Learning thematic similarity metric
from article sections using triplet networks. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 49–54.

Kamran Ghasedi Dizaji, Amirhossein Herandi, Cheng
Deng, Weidong Cai, and Heng Huang. 2017. Deep
clustering via joint convolutional autoencoder em-
bedding and relative entropy minimization. In Pro-
ceedings of the IEEE international conference on
computer vision, pages 5736–5745.

Amir Hadifar, Lucas Sterckx, Thomas Demeester, and
Chris Develder. 2019. A self-training approach
for short text clustering. In Proceedings of the
4th Workshop on Representation Learning for NLP
(RepL4NLP-2019), pages 194–199.

Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng
Tang, and Hanning Zhou. 2016. Variational
deep embedding: An unsupervised and gener-
ative approach to clustering. arXiv preprint
arXiv:1611.05148.

Karen Sparck Jones. 1972. A statistical interpretation
of term specificity and its application in retrieval.
Journal of documentation.

Brian Kulis, Sugato Basu, Inderjit Dhillon, and Ray-
mond Mooney. 2009. Semi-supervised graph clus-
tering: a kernel approach. Machine learning,
74(1):1–22.

Fengfu Li, Hong Qiao, and Bo Zhang. 2018. Dis-
criminatively boosted image clustering with fully
convolutional auto-encoders. Pattern Recognition,
83:161–173.

Jian-Ping Mei and Lihui Chen. 2014. Proximity-based
k-partitions clustering with ranking for document
categorization and analysis. Expert systems with ap-
plications, 41(16):7095–7105.

149

Erxue Min, Xifeng Guo, Qiang Liu, Gen Zhang, Jian-
jing Cui, and Jun Long. 2018. A survey of clustering
with deep learning: From the perspective of network
architecture. IEEE Access, 6:39501–39514.

Roberto Navigli and Giuseppe Crisafulli. 2010. Induc-
ing word senses to improve web search result clus-
tering. In Proceedings of the 2010 conference on
empirical methods in natural language processing,
pages 116–126.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Ugo Scaiella, Paolo Ferragina, Andrea Marino, and
Massimiliano Ciaramita. 2012. Topical clustering of
search results. In Proceedings of the fifth ACM inter-
national conference on Web search and data mining,
pages 223–232, New York, NY, USA.

Nikos Tsirakis, Vasilis Poulopoulos, Panagiotis Tsanti-
las, and Iraklis Varlamis. 2017. Large scale opinion
mining for social, news and blog data. Journal of
Systems and Software, 127:237–248.

Marin Vlastelica, Anselm Paulus, Vı́t Musil, Georg
Martius, and Michal Rolı́nek. 2019. Differentiation
of blackbox combinatorial solvers. arXiv preprint
arXiv:1912.02175.

Po-Wei Wang, Priya Donti, Bryan Wilder, and Zico
Kolter. 2019. Satnet: Bridging deep learning and
logical reasoning using a differentiable satisfiabil-
ity solver. In International Conference on Machine
Learning, pages 6545–6554. PMLR.

Bryan Wilder, Eric Ewing, Bistra Dilkina, and Milind
Tambe. 2019. End to end learning and optimization
on graphs. arXiv preprint arXiv:1905.13732.

Junyuan Xie, Ross Girshick, and Ali Farhadi. 2016.
Unsupervised deep embedding for clustering analy-
sis. In International conference on machine learn-
ing, pages 478–487. PMLR.

Jiaming Xu, Bo Xu, Peng Wang, Suncong Zheng,
Guanhua Tian, and Jun Zhao. 2017. Self-taught con-
volutional neural networks for short text clustering.
Neural Networks, 88:22–31.

Figure 5: Comparison between SBERT COB and
SBERT Triplet in terms of epoch time.

Bo Yang, Xiao Fu, Nicholas D Sidiropoulos, and
Mingyi Hong. 2017. Towards k-means-friendly
spaces: Simultaneous deep learning and clustering.
In international conference on machine learning,
pages 3861–3870. PMLR.

Jianwei Yang, Devi Parikh, and Dhruv Batra. 2016.
Joint unsupervised learning of deep representations
and image clusters. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 5147–5156.

A Relation between RAND index and
Adjacency matrix

Given a set of n data points P , let us compare
two clustering results of P , CT and CA, in terms
of RAND index. We know that RAND index is
expressed as:

RI =
a+ b(
n
2

)

where a = number of pairs that share the same

cluster both in CT and CA
where b = number of pairs that are from different

clusters both in CT and CA

Now we can express any clustering result CM in
form of an adjacency matrix M where Mij = 1 if
the i, j-th data points in P share the same cluster
in CM and Mij = 0 otherwise. We represent the
clustering results CT and CA with such adjacency
matrices T and A respectively. Also, the difference
matrix of A, T denoted as |A − T | indicates the
ordered pairs that do not agree between A, T . In
other words, |Aij−Tij | = 1 denotes that the i, j-th
data points do not agree between A and T . Now,
we can express RAND index in terms of A and T
as follows:

150

RI =
a+ b(
n
2

)

=
No. of agreements between CT , CA(

n
2

)

=

No. of unordered pairs in P that agrees be-
tween CT , CA (

n
2

)

=

No. of ordered pairs in P that agrees between
CT , CA

2
(
n
2

)

=
Total ordered pairs in P −∑ij |Aij − Tij |

2
(
n
2

)

=
2
(
n
2

)
−∑ij |Aij − Tij |

2
(
n
2

)

= 1−
∑

ij |Aij − Tij |
2
(
n
2

)

B Comparison of Epoch Time

Figure 5 shows the mean epoch time of SBERT
Triplet and SBERT COB on 20NG dataset and
CAR dataset (coarse n = 35) respectively.

151

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 152–162
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

Probing Cross-Modal Representations in Multi-Step Relational Reasoning

Iuliia Parfenova∗, Desmond Elliott†, Raquel Fernández‡, Sandro Pezzelle‡
∗Department of Computer Science, Vrije Universiteit Amsterdam
†Department of Computer Science, University of Copenhagen

‡Institute for Logic, Language and Computation, University of Amsterdam
research@julia.jig-san.me, de@di.ku.dk,
{raquel.fernandez|s.pezzelle}@uva.nl

Abstract

We investigate the representations learned by
vision and language models in tasks that re-
quire relational reasoning. Focusing on the
problem of assessing the relative size of ob-
jects in abstract visual contexts, we analyse
both one-step and two-step reasoning. For
the latter, we construct a new dataset of three-
image scenes and define a task that requires
reasoning at the level of the individual im-
ages and across images in a scene. We probe
the learned model representations using diag-
nostic classifiers. Our experiments show that
pretrained multimodal transformer-based ar-
chitectures can perform higher-level relational
reasoning, and are able to learn representations
for novel tasks and data that are very different
from what was seen in pretraining.

1 Introduction

Intelligence is classically described as “the ability
to see the similarities among dissimilar things and
the dissimilarities among similar things” (Thomas
Acquinas, 1225-1274, reported by Ruiz, 2011). De-
veloping systems that can reason over objects and
their relations is indeed a long-standing goal of ar-
tificial intelligence research, as argued by Johnson
et al. (2017). In recent years, huge progress toward
this goal has been made in the language and vision
community. Starting from Malinowski and Fritz
(2014) and Antol et al. (2015), a wealth of studies
have focused on language-driven visual reasoning,
namely the problem of reasoning about an image
given some linguistic input.

Generally speaking, there are two main types of
problems in visual reasoning datasets (see Santoro
et al., 2017): non-relational, requiring models to fo-
cus only on a given object (e.g., answering the ques-
tion “What material is the cube made of?”), and
relational, requiring models to pay attention to sev-
eral or even all the objects in the image (e.g., indi-

cating whether the statement “There are four cubes
that are red” is true or false). Relational problems
call for higher-level abilities, such as counting or
directly comparing objects, both of which involve
recognising the (dis)similarities among things.

In this paper, we focus on an important but under-
studied, relational reasoning task: assessing the rel-
ative size of objects in visual contexts, that is, deter-
mining whether an object counts as ‘big’ or ‘small’
in an image. We define a multi-step relational rea-
soning problem formulated as a sentence verifica-
tion task. We construct a dataset of three-image
scenes where a given target object, e.g., a blue tri-
angle, is present in each image: two images have
target objects with the same contextually-defined
size and one image stands out in this regard. The
task requires verifying whether a simple natural lan-
guage statement standing for a first-order logical
form describes a scene, e.g., “There is exactly one
blue triangle that is small in its image in this scene”
(Figure 1). Such multi-step relational reasoning is
at play in many real-life situations: e.g., the same
exact pan may count as ‘big’ in all contexts except
a restaurant kitchen.

We experiment with two types of models to solve
this task: a modular neural network (Hu et al.,
2017) and LXMERT, a pre-trained multimodal
transformer (Tan and Bansal, 2019). We probe
the learned representations of LXMERT to assess
whether, and to what extent, it has learned the un-
derlying structure of the data. By means of two
experiments with probing classifiers (Alain and
Bengio, 2017; Hupkes et al., 2018; Belinkov and
Glass, 2019), we first verify that it is able to per-
form the task at the image level (i.e., to compute the
relative size of the target object at the image level);
then, we test its ability to reason at the multi-image
level and detect the image that stands out.

The experiments show that LXMERT is able
to solve the multi-step relational reasoning task

152

there is exactly one blue triangle that is small in its image in this scene

there are exactly two blue triangles that are small in their images in this scene
there are exactly two blue triangles that are big in their images in this scene

F
F
T

T

there is exactly one blue triangle that is big in its image in this scene

Figure 1: One sample scene from our dataset and the
four statements it can be paired with, including cor-
responding truth values assigned as explained in Sec-
tion 4.1. For clarity, the odd-one-out image (holding
the odd size) is framed in red. Best viewed in color.

with an accuracy of 88.8%, and that the major-
ity of errors occur when the relative size of the
target object is difficult to determine. Our anal-
yses show that (i) in most cases, different atten-
tion heads in LXMERT specialise to localising the
smallest and biggest objects in the images, (ii) that
the cross-modal representations learned appear en-
code a threshold function that controls whether an
object is ‘big’ or ‘small’ in an image, and (iii) that
a simple diagnostic classifier successfully identi-
fies the instance that stands out in a three-image
scene. Taken together, these findings lend further
support to the advanced reasoning abilities of pre-
trained transformer-based architectures, showing
that they can perform higher-level relational rea-
soning and are able to deal with novel tasks and
novel data, including synthetic data not available
during pre-training.1

2 Problem Formulation

We investigate multi-step relational reasoning by
formulating the problem as a visually grounded
sentence verification task (see Figure 1). Given
a pair 〈scene,statement〉 consisting of a vi-
sual scene and a statement about such scene, the
task consists in classifying the statement as either
true or false. In our setup, a scene consists
of 3 images: 〈img1,img2,img3〉, each including
an instance of the target object (e.g., a blue tri-
angle) together with other geometrical shapes of
the same type (e.g., triangles of other colours). A
statement paired with a scene is of the follow-
ing form: “there is exactly one blue triangle that
is small in its image in this scene” or “there are
exactly two blue triangles that are big in their im-

1The code to generate the data, and to train and evalu-
ate the models, is available at https://github.com/
jig-san/multi-step-size-reasoning.

ages in this scene”. As we will explain in detail in
Sec. 4.1, the dataset is created such that the target
object counts as either ‘big’ or ‘small’ in only one
of the three images in a scene.

Arguably, solving the task requires the following
two steps of relational reasoning: (1) identifying
whether the target object counts as either ‘big’ or
‘small’ in each image, and (2) counting how many
images include a big/small target. However, in
our setup there is no direct supervision for any of
these steps. In other words, the training data does
not indicate which images contain an object that
counts as big/small nor explicitly how many images
contain a big/small target.

3 Related Work

3.1 Visual Reasoning

To evaluate reasoning abilities of multimodal mod-
els, several datasets of synthetic scenes and ques-
tions, such as CLEVR (Johnson et al., 2017),
ShapeWorld (Kuhnle and Copestake, 2017), and
MALeViC (Pezzelle and Fernández, 2019) have
been proposed in recent years. Our work di-
rectly builds on them, and particularly on ap-
proaches adopting a multi-image setting, such as
NLVR (Suhr et al., 2017) and NLVR2 (which, how-
ever, contains pairs of natural scenes; Suhr et al.,
2019). In NLVR, in particular, a crowdsourced
statement is coupled with a synthetic scene includ-
ing 3 independent images, and models must verify
whether the statement is true or false with respect to
the entire visual input. This involves handling phe-
nomena such as counting, negation or comparisons,
that require perform relational reasoning over the
entire scene, e.g.: There is a black item in every box,
There is a tower with yellow base, etc. However,
most 〈scene, statement〉 pairs do not challenge
models to do the same at the level of the single
image (or box), where a low-level understanding
of the object(s) of interest (shape, color, etc.) often
suffices. Our approach is novel since it requires
two steps of relational reasoning: at the level of
both the single image and the multi-image context.

3.2 Multi-Image Approaches

Our approach is also related to other work in lan-
guage and vision involving multiple images. One
is the spot-the-difference task: in Jhamtani and
Berg-Kirkpatrick (2018), models are fed with pairs
of video-surveillance images that only differ in
one detail, and asked to generate text which de-

153

scribes such difference. The same task—with dif-
ferent real-scene datasets—is explored by Forbes
et al. (2019) and Su et al. (2017); others exper-
iment with pairs of similar images drawn from
CLEVR (Johnson et al., 2017) or similar synthetic
3D datasets (Park et al., 2019; Qiu et al., 2020).
This task is akin to ours since it requires a higher-
level reasoning step: systems must reason over
the two independent representations to describe
what is different. However, in practice, it does
not always require semantic understanding (Jham-
tani and Berg-Kirkpatrick, 2018); when it does,
the changes often involve one object’s fixed at-
tribute (color, shape, material, etc.) rather than
a contextually-defined property whose applicability
depends on the other objects in the image.2

A similar, partially overlapping task is discrim-
inative captioning: systems are fed with a set of
similar images and asked to provide a description
that unequivocally refers to a target one. Many
approaches have been proposed focusing on syn-
thetic (Andreas and Klein, 2016; Achlioptas et al.,
2019) or natural scenes (Vedantam et al., 2017;
Cohn-Gordon et al., 2018; Vered et al., 2019), very
often embedding pragmatic components based on
the Rational Speech Acts framework (RSA; Good-
man and Frank, 2016). Also in this case, however,
differences among images mainly involve intrin-
sic attributes of the objects rather than relational
properties defined at the level of the image.

4 Method

4.1 3POS1 Dataset

Our dataset is based on the POS1 dataset from
MALeViC (Pezzelle and Fernández, 2019), in
which images contain 4 to 9 same-shape objects,
e.g., squares. Each object is labeled with a ground-
truth relative size, indicating whether the object
counts as either big or small in that particular con-
text. The label is determined by the following
threshold function motivated by cognitive science
studies on how humans interpret relative gradable
adjectives (Schmidt et al., 2009):

T = Max− k(Max−Min) (1)

where Max and Min represent the areas of the
biggest and smallest objects in the image, and k is

2One notable exception is position (Park et al., 2019; Qiu
et al., 2020), which can involve spatial relations of objects.

a positive value < 0.5.3 Thus, an object with a cer-
tain area can count as big in one image and as small
in another one. In total, the POS1 dataset contains
20K 〈image, statement〉 datapoints (16K train,
2K val, 2K test), where statements are about the
size of a target object based on its unique color:
e.g., “the blue triangle is a small triangle”.

The dataset for the present experiments, which
we name 3POS1, is constructed as follows: For
each image in each split of POS1, we randomly
sample two images from that split with the same
target object (e.g., a blue triangle) but the opposite
ground-truth size (e.g., big). We obtain 20K sets
of three images where one size is prevalent, i.e.,
present in two images, and one is odd, i.e., held by
only one image.4 The sizes big and small are the
prevalent ones in 10K cases each, thus the dataset
is balanced. Then, for each three-image scene,
we generate four logic-based templated statements,
two of which are true and two false for the given
scene.5 The only variation in the statements is
the target object. The four types of statement are
(alongside examples with respect to Figure 1):

(i) one 〈shape, color〉 small:
“There is exactly one blue triangle that is small
in its image in this scene”→ True

(ii) one 〈shape, color〉 big:
“There is exactly one blue triangle that is big
in its image in this scene”→ False

(iii) two 〈shapes, color〉 small:
“There are exactly two blue triangles that are
small in their images in this scene”→ False

(iv) two 〈shapes, color〉 big:
“There are exactly two blue triangles that are
big in their images in this scene”→ True

4.2 Models

To tackle the visually grounded sentence verifica-
tion task, we use two models that achieve state
of the art results on the NLVR (Suhr et al., 2017)
and NLVR2 (Suhr et al., 2019) tasks, respectively:
N2NMN (Hu et al., 2017) and LXMERT (Tan and
Bansal, 2019). The End-to-End Module Network

3To account for gradable adjectives’ vagueness, for each
image k was randomly sampled from the normal distribution
centered on 0.29, the best-predictive value in Schmidt et al.
(2009). See Pezzelle and Fernández (2019) for further details.

4On average, each target image appears 2 times as a dis-
tractor in the dataset (min: 0, max: 10). The position of the
odd-one-out image in the scene is assigned randomly.

5The odd-one-out is the same for all statements; see Fig. 1.

154

(N2NMN), belongs to the family of modular net-
works, which treat a sentence as a collection of
predefined subproblems (e.g., counting, localiza-
tion, conjunction, etc.), each handled by a dedi-
cated module. Compared to its direct predecessor
NMN (Andreas et al., 2016), in particular, N2NMN
does not require any external supervision (e.g., a
parser) to process the sentence into its components.
The latter, Learning Cross-Modality Encoder Rep-
resentations from Transformers (LXMERT), is
a transformer-based multimodal architecture pre-
trained on several language-and-vision tasks; as
such, it is claimed to be universal, that is, capable
of solving virtually any visual reasoning problem.
LXMERT uses BERT (Devlin et al., 2019) to en-
code the language input; as for the image, it con-
siders the sequence of N salient regions output by
Faster R-CNN (Ren et al., 2015).

To assess the suitability of these models for the
3POS1 task, we first evaluate them on the original
POS1 task where statements are evaluated against
a single image. For N2NMN, we use a public im-
plementation,6 specifically, the code developed for
training and an evaluating the model on the CLEVR
dataset (Johnson et al., 2017). For LXMERT, we
use a snapshot pre-trained on several multi-modal
tasks,7 that we fine-tune using the training set of
POS1. The ceiling performance for this task is
97% accuracy (using a fixed interpretation of the
threshold parameter k = 0.29). LXMERT achieves
93.4% accuracy, which outperforms both N2NMN
(78.1%) and the models tested by Pezzelle and
Fernández (2019). This shows the overall advan-
tage of transformer-based architectures over com-
peting methods, in line with previous findings (De-
vlin et al., 2019). Moreover, it indicates the capabil-
ity of LXMERT—which is pre-trained on natural
images and language—to deal with synthetic data
after fine-tuning (crucially, when not fine-tuned it
yields an accuracy of 50%, i.e., random). Based
on its performance, we focus on LXMERT in the
main experiments and analyses in this paper.

4.3 Experimental Setup
We fine-tune LXMERT on the 3POS1 dataset
by adapting the method applied by Suhr et al.
(2019) for the two-image scenes of NLVR2
to our three-image scenes. More concretely,
each datum in 3POS1 is composed of 3 images

6https://github.com/ronghanghu/n2nmn.
7Downloaded from http://nlp1.cs.unc.edu/

data/model_LXRT.pth

LXMERT

C
la
ss
ifi
er

there is exactly one green square that is big in its image in this scene

LXMERT

LXMERT

x0

x1

x2

True	/
False

Figure 2: Overview of our visually-grounded sen-
tence verification model. Given a three-image scene
and a statement, LXMERT encodes each image–
statement pair separately, from which a sin-
gle cross-modal representation is extracted from the
special [CLS] token (shown in yellow). These
[CLS] representations are concatenated and propa-
gated through a non-linear classifier to predict whether
the statement accurately describes the scene.

〈img0,img1,img2〉, a statement stat, and a
ground truth label True or False. Recall, that
the visually grounded sentence verification task is
to predict a label (True or False), given a rep-
resentation of the images and the statement. An
overview of how this is achieved with LXMERT
is shown in Figure 2. First, visual features are
extracted separately for each image with Faster
R-CNN (Ren et al., 2015). Then cross-modal rep-
resentations xi are extracted from the [CLS] from
the LXMERT encoder for each image in a scene:

x0 = lxmert encoder(img0, stat)

x1 = lxmert encoder(img1, stat)

x2 = lxmert encoder(img2, stat)

(2)

For label prediction, we train a classifier on the
concatenation of the three image–statement repre-
sentations (Eqn. 3), followed by a linear layer with
learned parameters W and a bias vector b (Eqn. 4),
followed by layer normalization (Ba et al., 2016)
and a GeLU activation (Hendrycks and Gimpel,
2016) (Eqn. 5), and finally, a sigmoid activation
function over a linear layer with learned parameters

155

test accuracy
statement type true false

one 〈shape, color〉 big 0.868 0.876
two 〈shapes, color〉 big 0.880 0.908
one 〈shape, color〉 small 0.872 0.900
two 〈shapes, color〉 small 0.876 0.924

overall 0.888

Table 1: LXMERT results on the test set of 3POS1 by
the best model’s run, split by statement type.

W1 and a bias vector b1 (Eqn. 6):8

c = [x0;x1;x2] (3)

z = Wc+ b (4)

z1 = LayerNorm(GeLU(z)) (5)

y = σ(W1z1 + b1) (6)

The LXMERT encoder and the classifier are fine-
tuned for 12 epochs to prevent overfitting with a
batch size 64. The learning rate of the Adam op-
timizer (Kingma and Ba, 2014) is 5e-5. The fine-
tuning is performed for 5 random seeds.

5 Results

Overall, LXMERT achieves a very high accuracy
on the task, averaged across 5 runs: 0.8909±0.004
in validation set, 0.8864± 0.005 in test set. More-
over, its performance turns out to be fairly sta-
ble across various statement types, with the best
model run’s accuracy (see Table 1) ranging from
0.868 (one 〈shape, color〉 big, true) to 0.924 (two
〈shapes, color〉 small, false). Interestingly, for
all four statement types, the model experiences a
slight advantage with false over true statements,
even though the dataset was carefully balanced.
Taken together, these results indicate that the model,
which is pre-trained on natural images, can deal
with the synthetic scenes in our dataset after fine-
tuning. This is in line with the claim that off-the-
shelf transformer-based models can be applied to
a wide range of different learning problems and
data. At the same time, the model yields random
accuracy when not fine-tuned, which reveals that
our new dataset is challenging and involves a type
of reasoning not captured during pre-training.

In Pezzelle and Fernández (2019), models were
shown to make more errors when the area of the
queried object is closer to the threshold (see Eq. 1).

8This is identical to the approach followed by Tan and
Bansal (2019) to finetune LXMERT for NLVR2 classification.

0.0387 0.3077 0.1961

there is exactly one green circle that is small in its image in this scene F

Figure 3: A sample from the test split of 3POS1, for
which LXMERT predicts the incorrect label (True, in-
stead of False). The numbers above the images are
the distances of the target object (green circle) from
the image-specific threshold. Here, the target object in
the leftmost image is very close to that image’s thresh-
old value, so it is challenging for the model to detect
whether it is big or small. The odd-one-out image is
framed in red. Best viewed in color.

We check if this is the case also for LXMERT on
our 3POS1 task. To do so, we consider the cases
where the model gives a wrong prediction. Among
the 3 images in a scene, we take the one with the
lowest distance from the threshold. We then check
whether the model makes more errors when such
distance is lower, i.e., when there is at least one im-
age in the scene with a borderline size. As reported
in Table 2, this is indeed the case: 75% of incorrect
predictions involve cases where (at least) in one
image the target object is close to the threshold
(< 0.1) (see Figure 3 , where the leftmost image is
borderline). In contrast, only around 3% of the er-
rors involve clear-cut cases, i.e., images where the
target object’s distance from threshold is≥ 0.2. As
observed by Pezzelle and Fernández (2019), this
may suggest that the model is genuinely learning to
compute the threshold function based on the areas
of the relevant objects in the scene. Further support
for this is given by the performance of the model on
the 15 cases in the test set where the target object
has the same area in the three-image scene. These
cases could be expected to act as a confound for
the model,9 but LXMERT succeeds in 14/15 cases.
Consistently with the error pattern reported above,
the missed case contains low-distance objects (the
lowest distance is equal to 0.1). In the next section,
we more extensively explore this issue.

6 Analysis at the Individual Image Level

Our results show that LXMERT achieves a high
level of accuracy on our visually-grounded sen-
tence verification task on the three-image 3POS1

9The target objects have exactly the same area in pixels
but each target object has its own context-defined size.

156

(a) Target object (b) Smallest object (c) Biggest object

Figure 4: Intersection over Union Precision at K=1, per attention head (in the x-axis), for the target object in an
image (a), the smallest object in an image (b), and the largest object in an image (c).

threshold distance < 0.1 < 0.15 < 0.2 ≥ 0.2 total
% of errors 75.89 13.84 7.14 3.13 100

number of cases 170 31 16 7 224

Table 2: Analysis of LXMERT’s errors with respect to
target object’s distance from the threshold. Threshold
distance refers to the lowest value in the visual scene.

dataset. In this section, we investigate how the
model may be solving the task. Specifically, we ex-
plore what visual information the model attends to
within each image and whether the representations
learned by the model encode information about the
context-dependent threshold that determines what
counts as big or small in a given image.

6.1 Visual Attention over Key Object Types

Recall that the ground truth labels in our dataset
are assigned based on the function in Eqn. 1, which
was shown to fit well with human judgements about
relative gradable adjectives (Schmidt et al., 2009).
This function computes a threshold value taking
into account the biggest and smallest objects in
the context of an image. Thus, a possible strat-
egy adopted by the model at the level of individual
images could be to identify the target object and
reason about the context by focusing on the biggest
and smallest objects. We test this hypothesis by
checking whether the model pays particular atten-
tion to these object types (target, biggest, small-
est) or whether its attention is rather uniformly
distributed over all regions detected by Faster R-
CNN (Ren et al., 2015).

To compute which objects are the most attended,
we use the Intersection over Union (IoU) metric
(Russakovsky et al., 2015). We take the attention
weights provided by the [CLS] token represen-
tation, extracted from the final layer of the best
fine-tuned model with frozen parameters. We then
use IoU Precision @ K to find the percentage of

the labels correctly predicted by the model using
the following steps:

1. Extract top-K object proposals: For each cor-
rectly predicted label, separately for each of the
three images in a scene, we take the object pro-
posals of the image regions detected by Faster
R-CNN with K-highest scores in the [CLS]
token. We perform the procedure for each atten-
tion head of the representation, extracted from
the cross-modality encoder for the correspond-
ing visual-language input. We ignore the object
proposals related to the background areas of the
image, which we identify based on the labels
provided by Faster R-CNN.10

2. Extract ground-truth bounding boxes: We
take the ground-truth bounding boxes of the
biggest/the smallest/target objects from all three
images in the input scene.11

3. Calculate Pairwise IoU: We calculate the pair-
wise IoU between the top-K object proposals
and the ground truth bounding boxes, obtained
in Steps 1 and 2. We take the highest IoU value
calculated for all these pairs.

4. Calculate IoU Precision@K: The IoU preci-
sion @ K is the percentage of all the IoU values
obtained in Step 3 that are > 0.5.

We also compute a random baseline for all three
categories with the same steps, except in Step 1 we
randomly select K objects from the 36 detected by
Faster R-CNN, instead of using the ones with the
highest attention scores.

We use the smallest possible value for K = 1, as
the most illustrative case in which the metric only

10The attributes predicted for the regions corresponding to
the black background in our scenes could be black or dark.

11We calculate the coordinates of the boxes using objects
position and radius provided in the annotation of the POS1
dataset by Pezzelle and Fernández (2019).

157

there are exactly two green circles that
are big in their images in this scene

T

Figure 5: Example of object proposals most attended to
by the 9th head of the last layer of the cross-modality
encoder. In each image, the model attends to all of
the objects except the biggest ones. Simultaneously, in
the leftmost image, it also focuses on the green circle,
which is the target object in this scene.

looks at the single object in each image to which
the model attends the most.

Figure 4 shows the results of the IoU Precision
@ K for the 12 attention heads in LXMERT. In
particular, Figure 4a shows that many of the atten-
tion heads attend to the target object that is queried
directly in the input sentence. Figures 4b and 4c
demonstrate that the model also looks at the sur-
rounding visual context, which is needed to per-
form relational reasoning. A comparison of be-
haviour across the Figures reveals that different
attention heads appear to specialise on different
object types: attention head 9 learns to attend to the
smallest objects while it pays no attention to the
biggest objects and less than random attention to
the target objects. We also highlight the observed
behaviour of attention head 11, which is the only
head that reliably attends to the biggest objects.

Figure 5 shows an example of the objects at-
tended to by attention head 9 in one sample scene.
Here, we can see that the model is primarily attend-
ing to the smallest objects in the scene.

6.2 Implicit Knowledge of the Threshold

The analysis above showed that the model, besides
the target object, also pays attention to key contex-
tual information, particularly to the smallest and
biggest objects in an image. These objects are criti-
cal to compute the threshold to determine if a target
object is big or small relative to the context of an
image. To test whether the representations learned
by the model implicitly encode information about
the context-dependent threshold, we use a diagnos-
tic classifier (Alain and Bengio, 2017; Hupkes et al.,
2018; Belinkov and Glass, 2019). Probing or diag-
nostic tests are useful tools to better understand the
inner workings of deep models. Given a hypothesis

Figure 6: Comparison of threshold values predicted by
the linear regression model (blue dots) with the actual
threshold for each of the 6000 test images (orange dots).
Here, the real target values are sorted in ascending or-
der, and the predicted values are sorted with respect
to the corresponding targets’ indices. The thresholds
are normalized by the area of the one image, with the
square root transformation. Best viewed in color.

about information that may be encoded by a trained
model, a probe checks whether such information is
accessible by a relatively simple classifier.

Concretely, in this experiment we use a linear re-
gression classifier12 to predict the threshold values
for each of the three images in a scene given the
cross-modality features learned by the LXMERT
encoder (x0, x1, x2 in Eqn. 2). The classifier uses
the same train/val/test splits of the 3POS1 dataset.
The predicted and actual values are displayed in
Figure 6, which shows that a simple linear classifier
can predict the threshold values for each image in
a scene remarkably accurately (mean squared error
on the test set is 6.64e − 05). This confirms that
the cross-modality representations learned by the
model are representing the threshold in each image.

7 Analysis at the Multi-Image Level

In the previous section, we analysed the model rep-
resentations at the level of the independent images.
Here, we probe the representations with respect to
the entire three-image scene. First, we investigate
whether the representations encode information on
the overall configuration of the scene (Sec. 7.1).
Second, we probe their effectiveness in identifying
the odd-one-out image in the scene (Sec. 7.2). In
both analyses, we use diagnostic classifiers,13 that
take as input the concatenation of the three image-
statement cross-modal representations (Eqn. 3).

12Least squares linear regression from the sklearn.
13Trained on the same splits as the main experiments.

158

sentence verification
(LXMERT full model)

3 7

scene configuration
classification

(linear diagnostic)

3 85.70 2.45
7 3.10 8.75

Table 3: Confusion matrix with % of scenes in the test
set that are (in)correctly classified by the full LXMERT
model for the original sentence verification task and by
the linear SVM for the scene configuration task.

7.1 Scene Configuration Classification

We first investigate whether the representations
learned by the model encode the configuration of
the scene, that is, whether they are effective to
distinguish between scenes where 1 target object
counts as small and 2 as big (hence, 1small2big),
and vice versa (1big2small). In principle, this
counting step is necessary to solve the sentence-
verification task (see Sec. 2), and this probe deter-
mines whether the model is reasoning at the level
of the scene or exploiting other strategies, such as
capturing random correlations in the data.

We use an SVM classifier with linear ker-
nel (Boser et al., 1992)14 to probe the represen-
tations learned by the model, and find that they
are indeed useful for predicting the configurations.
Accuracy on the test set is 88.15%, which is well
above chance level (50%). As reported in Table 3,
in the large majority of cases (85.7%) a correct pre-
diction in the sentence verification task corresponds
to a correct assessment by the diagnostic classifier.
This confirms that LXMERT learns representations
that encode the configuration of the scene.

7.2 Odd-One-Out Image Identification

Our results so far show that the model is able to
perform the multi-step sentence verification task
with high accuracy and that the representations en-
code information about different configurations of
scenes. However, there is yet no guarantee that the
model is able to identify the odd-one-out image
(i.e., the image that is not prevalent; see Sec. 4.1).
We test this by means of another diagnostic classi-
fier: given a scene representation, the task is to pre-
dict the position of the odd-one-out image (hence,
OOO), namely image 0, 1, or 2.

We initially experiment with the same type of di-
agnostic classifier used in the previous analysis: an

14Implemented in linear support vector machine classifica-
tion (LinearSVC) from the sklearn.

train valid test
OOO 0.8767 0.8771 0.8659

control 0.3385 0.3386 0.3359

Table 4: Accuracy of the MLP diagnostic classifier on
the train/val/test splits of the data on both the OOO and
the control setting. Chance level is 0.33 for all splits.

SVM with a linear kernel. However, this linear clas-
sifier was only able to accurately classify the posi-
tion of odd-one-out images associated with image–
scene instances labelled True, suggesting that
the prediction of the position of the odd-one-out
cannot be solved by a linear classifier. Therefore,
we use a non-linear MLP and also report the results
of a control task, where the labels are randomly
assigned to the instances (Hewitt and Liang, 2019).
The MLP is a two-layer neural network with 128
units in each layer followed by a ReLU activation
function, and finally a learned projection into 3
output units, followed by a softmax normalisation.
We train the MLP with a cross-entropy objective
function for four epochs using the Adam optimiser
with the default learning rate.

Table 4 reports the results of the non-linear di-
agnostic classifier in both the OOO and control
settings. As can be seen, while the MLP does not
exceed chance level in the control setting, in the
OOO it achieves a striking 87.67% accuracy, a sim-
ilar performance as the one reported in Sec. 7.1.
On the one hand, this indicates that the model can-
not fit the data when the assigned labels are not
related to the actual OOO image positions. On the
other hand, these results show that the representa-
tions learned by LXMERT do encode information
regarding the odd-one-out object in the scene.

Taken together, these analyses demonstrate that
LXMERT reasons over the multi-image scene to
perform the sentence-verification task. In particu-
lar, it is able to compute the contextually-defined
size of the objects in the scene and perform higher-
level reasoning over these representations.

8 Conclusion

We performed an in-depth analysis of the repre-
sentations learned by the pretrained multimodal
transformer LXMERT when performing relational
reasoning. We proposed a multimodal reasoning
task that requires multi-step relational reasoning
and showed that LXMERT can perform the task
with high accuracy. Our analysis reveals that the

159

majority of the errors arise from target objects with
contextually-defined sizes close to the threshold,
and that LXMERT solves the task by (i) encoding
information regarding the size of objects and by (ii)
reasoning over that size. Most of its errors concern
borderline cases for which the first, image-level rea-
soning step was shown to be challenging. Overall,
our results show that transformer-based architec-
tures pretrained on natural images can generalise to
synthetic datasets. We leave to future work an ex-
tensive exploration of the extent to which our find-
ings apply to similar tasks and models, for example
other vision and langauge transformers (Bugliarello
et al., 2021), as well as to natural multimodal data.

Acknowledgments

The authors would like to thank Elia Bruni for pro-
viding feedback on a preliminary version of this
work and Dieuwke Hupkes for her advice on prob-
ing methods. The work has received funding from
the European Research Council (ERC) under the
European Union’s Horizon 2020 research and inno-
vation programme (grant agreement No. 819455).

References
Panos Achlioptas, Judy Fan, Robert Hawkins, Noah

Goodman, and Leonidas J Guibas. 2019. Shapeglot:
Learning language for shape differentiation. In Pro-
ceedings of the IEEE International Conference on
Computer Vision, pages 8938–8947.

Guillaume Alain and Yoshua Bengio. 2017. Under-
standing intermediate layers using linear classifier
probes. In International Conference on Learning
Representations (ICLR) – Workshop Track.

Jacob Andreas and Dan Klein. 2016. Reasoning about
pragmatics with neural listeners and speakers. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages
1173–1182.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016. Neural module networks. In Pro-
ceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 39–48.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C Lawrence Zitnick,
and Devi Parikh. 2015. VQA: Visual question an-
swering. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2425–2433.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.
Transactions of the Association for Computational
Linguistics, 7:49–72.

Bernhard E Boser, Isabelle M Guyon, and Vladimir N
Vapnik. 1992. A training algorithm for optimal mar-
gin classifiers. In Proceedings of the fifth annual
workshop on Computational learning theory, pages
144–152.

Emanuele Bugliarello, Ryan Cotterell, Naoaki
Okazaki, and Desmond Elliott. 2021. Multimodal
pretraining unmasked: A meta-analysis and a
unified framework of vision-and-language BERTs.
Transactions of the Association for Computational
Linguistics.

Reuben Cohn-Gordon, Noah Goodman, and Christo-
pher Potts. 2018. Pragmatically informative image
captioning with character-level inference. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 2 (Short Papers), pages 439–443.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Maxwell Forbes, Christine Kaeser-Chen, Piyush
Sharma, and Serge Belongie. 2019. Neural natural-
ist: Generating fine-grained image comparisons. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 708–
717.

Noah D Goodman and Michael C Frank. 2016. Prag-
matic language interpretation as probabilistic infer-
ence. Trends in cognitive sciences, 20(11):818–829.

Dan Hendrycks and Kevin Gimpel. 2016. Gaus-
sian error linear units (gelus). arXiv preprint
arXiv:1606.08415.

John Hewitt and Percy Liang. 2019. Designing and
interpreting probes with control tasks. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2733–2743, Hong
Kong, China. Association for Computational Lin-
guistics.

Ronghang Hu, Jacob Andreas, Marcus Rohrbach,
Trevor Darrell, and Kate Saenko. 2017. Learning
to reason: End-to-end module networks for visual

160

question answering. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pages
804–813.

Dieuwke Hupkes, Sara Veldhoen, and Willem Zuidema.
2018. Visualisation and ’diagnostic classifiers’ re-
veal how recurrent and recursive neural networks
process hierarchical structure. Journal of Artificial
Intelligence Research, 61:907–926.

Harsh Jhamtani and Taylor Berg-Kirkpatrick. 2018.
Learning to describe differences between pairs of
similar images. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 4024–4034.

Justin Johnson, Bharath Hariharan, Laurens van der
Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross
Girshick. 2017. Clevr: A diagnostic dataset for com-
positional language and elementary visual reasoning.
In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 2901–
2910.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Alexander Kuhnle and Ann Copestake. 2017. Shape-
World: A new test methodology for multi-
modal language understanding. arXiv preprint
arXiv:1704.04517.

Mateusz Malinowski and Mario Fritz. 2014. A multi-
world approach to question answering about real-
world scenes based on uncertain input. In Advances
in neural information processing systems, pages
1682–1690.

Dong Huk Park, Trevor Darrell, and Anna Rohrbach.
2019. Robust change captioning. In Proceedings
of the IEEE International Conference on Computer
Vision, pages 4624–4633.

Sandro Pezzelle and Raquel Fernández. 2019. Is the
red square big? MALeViC: Modeling adjectives
leveraging visual contexts. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2858–2869.

Yue Qiu, Yutaka Satoh, Ryota Suzuki, Kenji Iwata, and
Hirokatsu Kataoka. 2020. 3d-aware scene change
captioning from multiview images. IEEE Robotics
and Automation Letters, 5(3):4743–4750.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. 2015. Faster r-cnn: Towards real-time ob-
ject detection with region proposal networks. In
Advances in neural information processing systems,
pages 91–99.

Philippe E Ruiz. 2011. Building and solving odd-one-
out classification problems: A systematic approach.
Intelligence, 39(5):342–350.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al.
2015. Imagenet large scale visual recognition chal-
lenge. International Journal of Computer Vision,
115(3):211–252.

Adam Santoro, David Raposo, David G Barrett, Ma-
teusz Malinowski, Razvan Pascanu, Peter Battaglia,
and Timothy Lillicrap. 2017. A simple neural net-
work module for relational reasoning. In Advances
in neural information processing systems, pages
4967–4976.

Lauren A Schmidt, Noah D Goodman, David Barner,
and Joshua B Tenenbaum. 2009. How tall is tall?
Compositionality, statistics, and gradable adjectives.
In Proceedings of the 31st annual conference of the
cognitive science society, pages 2759–2764. Cite-
seer.

Jong-Chyi Su, Chenyun Wu, Huaizu Jiang, and
Subhransu Maji. 2017. Reasoning about fine-
grained attribute phrases using reference games. In
Proceedings of the IEEE International Conference
on Computer Vision, pages 418–427.

Alane Suhr, Mike Lewis, James Yeh, and Yoav Artzi.
2017. A corpus of natural language for visual rea-
soning. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 217–223.

Alane Suhr, Stephanie Zhou, Ally Zhang, Iris Zhang,
Huajun Bai, and Yoav Artzi. 2019. A corpus for
reasoning about natural language grounded in pho-
tographs. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6418–6428.

Hao Tan and Mohit Bansal. 2019. LXMERT: Learning
cross-modality encoder representations from trans-
formers. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5103–5114.

Ramakrishna Vedantam, Samy Bengio, Kevin Murphy,
Devi Parikh, and Gal Chechik. 2017. Context-aware
captions from context-agnostic supervision. In Pro-
ceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 251–260.

Gilad Vered, Gal Oren, Yuval Atzmon, and Gal
Chechik. 2019. Joint optimization for cooperative
image captioning. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pages
8898–8907.

A Computing infrastructures

We ran all the experiments with LXMERT using
Python 3.7 on a computer with Ubuntu 18.04.5

161

LTS, single GPU Tesla V100-SXM2, and NVIDIA
driver 455.38, CUDA 10.1, and 24GB RAM.

For N2NMN, we used a computer cluster with
Debian 10, a single GPU GeForce 1080Ti, 11GB
GDDR5X, NVIDIA driver 450.80.02, CUDA 11.0,
260GB RAM, and Python 3.6.

B Hyperparameters and training for
N2NMN

We performed a parameter search to determine the
best values for training N2NMN15 on the training
split of the POS1 dataset16 for 3000 iterations of
batch size 64 for each combination. We experi-
mented with the following parameters: encoder
dropout (0, 0.5, 0.8), decoder dropout (0, 0.5, 0.8),
weight decay (5e-5, 5e-4), baseline decay (0.8,
0.99), lambda entropy (0.1, 0.01, 0.001). Their
best values (corresponding to the best validation ac-
curacy) are shown in Table 5. We trained the final
model using these parameters for 14,000 iterations
with batch size 64. The training took approximately
4 hours.

encoder
dropout

decoder
dropout

weight
decay

baseline
decay

lambda
entropy

0.8 0.8 5e-5 0.99 0.01

Table 5: Best parameters for N2NMN model, found
with a grid search.

C Hyperparameters and fine-tuning for
LXMERT

For the fine-tuning of LXMERT, the pre-trained
model with standard hyperparameters was used17,
with only the learning rate changed from 1e-5 to
5e-5, since even with these out-of-the-box param-
eters, it was able to achieve high performance on
the given task. We fine-tuned this model with the
POS1 training split using early stopping after 12
epochs, with the parameter number of epochs of
BertADAM optimizer set to 150, learning rate 1e-
5, and batch size 32 (the only difference in the
used hyperparameters during the fine-tuning with
3POS1 was in the batch size 64). We validated the
model after each epoch, then the best model was
selected, which showed the highest validation ac-

15https://github.com/ronghanghu/n2nmn
16https://github.com/sandropezzelle/

malevic
17https://github.com/airsplay/lxmert.

git

curacy during the 12 epochs, and further evaluated
on the test split.

The running time of each fine-tuning epoch for
the POS1 dataset was 3 minutes, while each epoch
of fine-tuning with 3POS1 took around 6 minutes.

162

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 163–173
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

In-Batch Negatives for Knowledge Distillation with Tightly-Coupled
Teachers for Dense Retrieval

Sheng-Chieh Lin∗, Jheng-Hong Yang∗ and Jimmy Lin

David R. Cheriton School of Computer Science
University of Waterloo

Abstract

We present an efficient training approach to
text retrieval with dense representations that
applies knowledge distillation using the Col-
BERT late-interaction ranking model. Specif-
ically, we propose to transfer the knowledge
from a bi-encoder teacher to a student by
distilling knowledge from ColBERT’s expres-
sive MaxSim operator into a simple dot prod-
uct. The advantage of the bi-encoder teacher–
student setup is that we can efficiently add in-
batch negatives during knowledge distillation,
enabling richer interactions between teacher
and student models. In addition, using Col-
BERT as the teacher reduces training cost com-
pared to a full cross-encoder. Experiments on
the MS MARCO passage and document rank-
ing tasks and data from the TREC 2019 Deep
Learning Track demonstrate that our approach
helps models learn robust representations for
dense retrieval effectively and efficiently.

1 Introduction

For well over half a century, solutions to the ad
hoc retrieval problem—where the system’s task is
return a list of top k texts from an arbitrarily large
corpus D that maximizes some metric of quality
such as average precision or NDCG—has been
dominated by sparse vector representations, for
example, bag-of-words BM25. Even in modern
multi-stage ranking architectures, which take ad-
vantage of large pretrained transformers such as
BERT (Devlin et al., 2019), the models are de-
ployed as rerankers over initial candidates retrieved
based on sparse vector representations; this is some-
times called “first-stage retrieval”. One well-known
example of this design is the BERT-based reranker
of Nogueira and Cho (2019); see Lin et al. (2020)
for a recent survey.

∗Contributed equally.

The standard reranker architecture, while effec-
tive, exhibits high query latency, on the order of
seconds per query (Hofstätter and Hanbury, 2019;
Khattab and Zaharia, 2020) because expensive neu-
ral inference must be applied at query time on
query–passage pairs. This design is known as a
cross-encoder (Humeau et al., 2020), which ex-
ploits query–passage attention interactions across
all transformer layers. As an alternative, a bi-
encoder design provides an approach to ranking
with dense representations that is far more effi-
cient than cross-encoders (Lee et al., 2019; Reimers
and Gurevych, 2019; Khattab and Zaharia, 2020;
Karpukhin et al., 2020; Luan et al., 2021; Xiong
et al., 2021; Qu et al., 2020; Hofstätter et al., 2021).
Prior to retrieval, the vector representations can
be precomputed for each of the texts in a corpus.
When retrieving texts in response to a given query,
computationally expensive transformer inference is
replaced by much faster approximate nearest neigh-
bor (ANN) search (Liu et al., 2004; Malkov and
Yashunin, 2020).

Recently, researchers have proposed bi-encoders
that produce multiple vectors to represent a query
(or a passage) (Humeau et al., 2020; Luan et al.,
2021; Khattab and Zaharia, 2020), which have
proven to be effective both theoretically and empir-
ically. However, the main disadvantage of these de-
signs is their high storage requirements. For exam-
ple, ColBERT (Khattab and Zaharia, 2020) requires
storing all the WordPiece token vectors of each text
(passage) in the corpus. On the MS MARCO pas-
sage corpus comprising 8.8M passages, for exam-
ple, this requires 154 GiB.

Of course, a common alternative is to produce
single vectors for queries and passages (Reimers
and Gurevych, 2019). Although this design is
less storage-demanding, it sacrifices ranking ef-
fectiveness since its structure breaks rich interac-
tions between queries and passages compared to

163

multi-vector bi-encoders or cross-encoders. Hence,
improving the effectiveness of single-vector bi-
encoders represents an important problem.

One approach to improving the effectiveness of
single-vector bi-encoders is hard negative mining,
by training with carefully selected negative exam-
ples that emphasize discrimination between rel-
evant and non-relevant texts. There are several
approaches to accomplish this. Karpukhin et al.
(2020) and Qu et al. (2020) leverage large in-batch
negatives to enrich training signals. Guu et al.
(2020) and Xiong et al. (2021) propose to mine hard
negatives using the trained bi-encoder itself. By
searching for global negative samples from an asyn-
chronously updated ANN index, the bi-encoder can
learn information not present in the training data
produced by sparse representations (Xiong et al.,
2021). However, both large in-batch negative sam-
pling and asynchronous ANN index updates are
computationally demanding. The later is especially
impractical for large corpora since it requires peri-
odic inference over all texts in the corpus to ensure
that the best negative examples are retrieved.

There is also work that explores knowledge dis-
tillation (KD) (Hinton et al., 2015) to enhance re-
trieval effectiveness and efficiency. Most related to
our study is Hofstätter et al. (2020), who demon-
strate that KD using a cross-encoder teacher signif-
icantly improves the effectiveness of bi-encoders
for dense retrieval. Similarly, Barkan et al. (2020)
investigate the effectiveness of distilling a trained
cross-encoder into a bi-encoder for sentence sim-
ilarity tasks. Gao et al. (2020a) explore KD com-
binations of different objectives such as language
modeling and ranking. However, the above pa-
pers use computationally expensive cross-encoder
teacher models; thus, combining them for KD with
more advanced negative sampling techniques can
be impractical.

In light of existing work on hard negative mining
and knowledge distillation, we propose to improve
the effectiveness of single-vector bi-encoders with
a more efficient KD approach: in-batch KD using
a bi-encoder teacher. The advantage of our design
is that, during distillation, it enables the efficient
exploitation of all possible query–passage pairs
within a minibatch, which we call tight coupling
(illustrated in Figure 1). This is a key difference
between our KD approach and previous methods
for dense retrieval, where only the scores of given
query–passage triplets (not all combinations) are

Bi-
Encoder

Cross-
Encoder d−

q0q0
d+

q0

q0

q1

q2

q1
d−

q1

d+
q1

q2
d−

q2

d+
q2q0 q1 q2

d+
q0 d+

q1 d+
q2

d−
q0 d−

q1 d−
q2

Batch triplets

Bi-
Encoder

Target: Pairwise KD

Target: In-batch KD

Teacher

Student
Embeddings
q0 q1 q2

d−
q0 d−

q1 d−
q2

d+
q0 d+

q1 d+
q2 d−

q2d+
q2d−

q1d+
q1d−

q0d+
q0

d−
q2d+

q2d−
q1d+

q1d−
q0d+

q0

d−
q2d+

q2d−
q1d+

q1d−
q0d+

q0

q0 q1 q2

d−
q0 d−

q1 d−
q2

d+
q0 d+

q1 d+
q2

Teacher

Figure 1: Illustration of the differences between pair-
wise knowledge distillation and our proposed in-batch
knowledge distillation.

computed due to the computational costs of cross-
encoders (Hofstätter et al., 2020; Gao et al., 2020a;
Barkan et al., 2020).

The contribution of this work is a simple tech-
nique for efficiently adding in-batch negative sam-
ples during knowledge distillation when training a
single-vector bi-encoder. For the remainder of this
paper, we refer to this technique as “in-batch KD”
for convenience. We empirically show that our
model, even trained with BM25 negatives, can be
more effective than cross-encoder teachers. With
hard negatives, our method approaches the state of
the art in dense retrieval. Our in-batch KD tech-
nique is able to incorporate hard negatives in a
computationally efficient manner, without requir-
ing large amounts of GPU memory for large batch
sizes or expensive periodic index refreshes.

2 Background

We focus on improving the training efficiency and
retrieval effectiveness of dense retrieval and begin
by formalizing it as a dense representation learning
problem. To be more specific, we propose to use
knowledge distillation to enrich training signals and
stabilize the representation learning procedure of
bi-encoder models in the context of the well-known
Noise-Contrastive Estimation (NCE) framework.

2.1 Dense Retrieval with Bi-encoders

The bi-encoder design has been widely adopted
for dense retrieval (Lee et al., 2019; Chang et al.,
2020; Guu et al., 2020; Karpukhin et al., 2020;
Luan et al., 2021; Qu et al., 2020; Xiong et al.,
2021), where queries and passages are encoded
in a low-dimensional space. It aims to learn low-
dimensional representations that pull queries and
relevant passages together and push queries and
non-relevant passages apart.

Following the work of Mnih and Kavukcuoglu

164

(2013), we formulate a common objective for dense
representation learning for passage retrieval. Given
a query q and a parameterized scoring function
φθ that computes the relevance between a query
and a candidate passage p, we define a probability
distribution over documents in a corpus D with
respect to relevance, as follows:

P qθ (p,D) =
exp(φθ(q, p))∑

p′∈D exp(φθ(q, p′))

=
exp(hq · hp)∑

p′∈D exp(hq · hp′)
, (1)

where hq (hp) ∈ Rd denotes the query (passage)
representation produced by the bi-encoder. A typ-
ical bi-encoder uses a simple scoring function for
φθ, for example, the inner product of two vectors,
as shown above.

The main challenge of evaluating and computing
gradients of Eq. (1) is the prohibitively expensive
computation cost given the number of passages in
the corpus D, typically millions (or even more).
This is already setting aside the cost of using pre-
trained transformers such as BERT as the encoder
to compute hq and hp.

Thus, previous work approximates Eq. (1) by
NCE, which samples p ∈ D+ from training data
and p′ ∈ D′ = {D+ ∪ D−}, where D− is from a
noisy distribution such as candidates retrieved by
BM25 (Nogueira and Cho, 2019), filtered by fine-
tuned transformers (Qu et al., 2020), or retrieved
by an asynchronously updated bi-encoder model
itself (Xiong et al., 2021). Another simple yet
effective approach is in-batch negative sampling,
as used by Karpukhin et al. (2020), which takes
p and p′ of other queries within a minibatch as
negative examples in NCE.

2.2 Knowledge Distillation
Other than designing sophisticated sampling meth-
ods for p′, training bi-encoder models using knowl-
edge distillation (KD) with effective teacher mod-
els is another promising approach (Hofstätter et al.,
2020). In this case, we aim to make the bi-encoder
model mimic the teacher model’s probability distri-
bution as follows:

P qθ;student(p,D′) =
exp(hq · hp)∑

p′∈D′ exp(hq · hp′)

≈ exp(φθ̂(q, p)/τ)∑
p′∈D′ exp(φθ̂(q, p

′)/τ)

= P q
θ̂;teacher

(p,D′), (2)

where φθ̂ denotes the relevance score estimated by
a pretrained model parameterized by θ̂ and τ , the
temperature hyperparameter used in the KD frame-
work. To improve retrieval effectiveness, one can
leverage pre-computed scores from pretrained mod-
els such as cross-encoders, e.g., BERT, bi-encoders,
e.g., ColBERT, or ensembled scores from multiple
models φθ̂ =

∑
j φθ̂;j .

3 Our Approach

3.1 In-batch Knowledge Distillation
Using KD in Eq. (2) provides soft labels for bi-
encoder training, and can be integrated with the pre-
viously mentioned NCE framework. In this work,
we propose to enhance teacher–student interactions
by adding in-batch negatives to our knowledge dis-
tillation. Specifically, we estimate φθ on in-batch
examples from a minibatch B guided by an aux-
iliary teacher model φθ̂ through the minimization
of Kullback–Leibler (KL) divergence of the two
distributions:

argmin
θ

∑

q∈QB

∑

p∈D′B

Lφθ,φθ̂ , (3)

where Lφθ,φθ̂ is:

P q
θ̂;teacher

(p,D′B) log
P q
θ̂;teacher

(p,D′B)
P qθ;student(p,D′B)

. (4)

Note that here we consider all pairwise relationship
between queries and passages within a minibatch
that contains a query set QB and a passage set D′B.

3.2 Teacher Model Choice
A cross-encoder has been shown to be an effective
teacher (Hofstätter et al., 2020; Gao et al., 2020a)
since it allows rich interactions between the inter-
mediate transformer representations of a query q
and a passage p. For example, a “vanilla” cross-
encoder design using BERT can be denoted as:

φθ̂;Cat ,Wf(hq⊕p), (5)

where the ranking score is first computed by the
hidden representation of the concatenation q ⊕ p
from BERT (along with the standard special tokens)
and then mapped to a scalar by a pooling operation
f and a mapping matrix W .

Although effective, due to BERT’s quadratic
complexity with respect to input sequence length,
this design makes exhaustive combinations be-
tween a query and possible candidates impractical,

165

since this requires evaluating cross-encoders |B|2
times to compute Eq. (3) using Eq. (5). Thus, an
alternative is to conduct pairwise KD by comput-
ing the KL divergence of only two probabilities of
a positive pair (q, p) and a negative pair (q, p′) for
each query q. However, this might not yield a good
approximation of Eq. (2).

A bi-encoder can also be leveraged as a teacher
model, which has the advantage that it is more
feasible to perform exhaustive comparisons be-
tween queries and passages since they are passed
through the encoder independently. Among bi-
encoder designs, ColBERT is a representative
model that uses late interactions of multiple vec-
tors ({h1

q , . . . ,h
i
q}, {h1

p, . . . ,h
j
p}) to improve the

robustness of dense retrieval, as compared to in-
ner products of pairs of single vectors (hq,hp).
Specifically, Khattab and Zaharia (2020) propose
the following fine-grained scoring function:

φθ̂;MaxSim ,
∑

i∈|hq |
max
j∈|hp|

hiq · hjp, (6)

where i and j are the indices of token repre-
sentations of a query q and a passage p of Col-
BERT (Khattab and Zaharia, 2020).

The contribution of our work is in-batch knowl-
edge distillation with a tightly-coupled teacher. The
computation of φθ̂;MaxSim enables exhaustive in-
ference over all query–passage combinations in
the minibatch B with only 2·|B| computation cost,
enabling enriched interactions between teacher
and student. We call this design Tightly-Coupled
Teacher ColBERT (TCT-ColBERT). Table 1 pro-
vides a training cost comparison between different
teachers. When training with pairwise KD, cross-
encoders exhibit the highest training cost. On the
other hand, ColBERT enables in-batch KD at a
modest training cost compared to pairwise KD.

TCT-ColBERT provides a flexible design for bi-
encoders, as long as the encoders produce query
and passage representations independently. For
simplicity, our student model adopts shared en-
coder weights for both the query and the passage,
just like the teacher model ColBERT. Following
Khattab and Zaharia (2020), for each query (pas-
sage), we prepend the [CLS] token and another
special [Q] ([D]) token in the input sequence
for both our teacher and student models. The
student encoder outputs single-vector dense repre-
sentations (hq,hp) by performing average pooling
over the token embeddings from the final layer.

Table 1: Training cost comparison. We report the
training time per batch against the baseline (without
a teacher model) on a single TPU-v2. Our backbone
model is BERT-base, with batch size 96. The in-batch
cross-encoder training time is not available because it
exceeds the memory limit.

Teacher / KD strategy Pairwise In-batch

Cross-encoder (φθ̂;Cat) +48.1% OOM
ColBERT (φθ̂;MaxSim) +32.7% +33.5%

3.3 Hard Negative Sampling

Given that in-batch negative sampling is an effi-
cient way to add more information into knowledge
distillation, we wonder whether our tightly-coupled
teacher design works well when applied to more
sophisticated sampling methods. Following the
work of Xiong et al. (2021), we use our pretrained
bi-encoder model, namely TCT-ColBERT, to en-
code the corpus and sample “hard” negatives for
each query to create new training triplets by us-
ing the negatives D− of the bi-encoder instead of
BM25. Specifically, we explore three different
training strategies:

1. HN: we train the bi-encoder using in-batch hard
negatives without the guide of ColBERT.

2. TCT HN: we train the bi-encoder with TCT-
ColBERT;

3. TCT HN+: we first fine-tune our ColBERT
teacher with augmented training data containing
hard negatives and then distill its knowledge into
the bi-encoder student through TCT-ColBERT.

We empirically explore the effectiveness of these
strategies for both passage and document retrieval.

4 Experiments

In this section, we conduct experiments on the
MS MARCO passage and document corpora. For
passage ranking, we first train models on BM25
negatives as warm-up and compare different KD
methods. We then further train models on the hard
negatives retrieved by the BM25 warmed-up check-
point. For document ranking, following previous
work (Xiong et al., 2021; Zhan et al., 2020; Lu
et al., 2021), we start with our BM25 warmed-up
checkpoint for passage ranking and conduct addi-
tional hard negative training.

166

Table 2: Passage retrieval results with BM25 negative training. For knowledge distillation (KD) methods, the
effectiveness of teacher (T) models is also reported. All our implemented models are labeled with a number and
superscripts represent significant improvements over the labeled model (paired t-test, p < 0.05).

Strategy Model
params of

Teacher
MARCO Dev TREC-DL ’19

MRR@10 (T/S) R@1K NDCG@10 (T/S) R@1K

- (1) Baseline - - / .310 .945 - / .626 .658

Pairwise KD

KD-T1 (Hofstätter et al., 2020) 110M .376 / .304 .931 .730 / .631 .702
KD-T2 (Hofstätter et al., 2020) 467M .399 / .315 .947 .743 / .668 .737
(2) KD-T2 (Ours) 467M .399 / .3411 .9641 .743 / .6591 .7081

(3) KD-ColBERT 110M .350 / .3391 .9621 .730 / .6701 .7101

In-batch KD (4) TCT-ColBERT 110M .350 / .3441,3 .9671,3 .730 / .6851 .7451,2,3

4.1 Passage Retrieval
We perform ad hoc passage retrieval on the MS
MARCO passage ranking dataset (Bajaj et al.,
2016), which consists of a collection of 8.8M pas-
sages from web pages and a set of ∼0.5M relevant
(query, passage) pairs as training data. We evaluate
model effectiveness on two test sets of queries:

1. MARCO Dev: the development set of MS
MARCO comprises 6980 queries, with an aver-
age of one relevant passage per query.

2. TREC-DL ’19 (Craswell et al., 2019): the orga-
nizers of the Deep Learning Track at the 2019
Text REtrieval Conference (TREC) released 43
queries with multi-graded (0–3) relevance labels
on 9K (query, passage) pairs.

To evaluate output quality, we report MRR@10
(NDCG@10) for MARCO Dev (TREC-DL ’19)
and Recall@1K, denoted as R@1K. To compare
with current state-of-the-art models, we evaluate
our design, TCT-ColBERT, under two approaches
for negative sampling: (1) BM25 and (2) hard neg-
atives retrieved by the bi-encoder itself.

4.1.1 Training with BM25 Negatives
In this setting, models are trained using the official
public data triples.train.small, where
negative samples are produced by BM25. We com-
pare different bi-encoder models using BERT-base
as the backbone, which uses single 768-dim vectors
to represent each query and passage:

1. Baseline: a single-vector bi-encoder trained
with in-batch negatives, as discussed in Sec-
tion 2.1, which is similar to Karpukhin et al.
(2020) but with a smaller batch size.

2. Pairwise KD: the approach of Hofstätter et al.
(2020), who improve ranking effectiveness us-
ing cross-encoders with pairwise KD.

We also compare against two models, KD-T1 and
KD-T2, which use BERT-base bi-encoders as stu-
dent models. In the former, the student is distilled
from a BERT-base cross-encoder, while the latter
is distilled from ensembled cross-encoders com-
prising BERT-base, BERT-large, and ALBERT-
large. These figures reported in Table 2 are copied
from Hofstätter et al. (2020). For a fair comparison
with our models based on KL-divergence KD, we
also implement our KD-T2 using the precomputed
pairwise softmax probabilities provided by Hof-
stätter et al. (2020) (who use MSE margin loss
for KD). In addition, we adopt pairwise softmax
probabilities from fine-tuned ColBERT to train KD-
ColBERT for comparison.

All our models are fine-tuned with batch size
96 and learning rate 7 × 10−6 for 500K steps
on a single TPU-V2. For TCT-ColBERT, there
are two steps in our training procedure: (1) fine-
tune φθ̂;MaxSim as our teacher model, (2) freeze
φθ̂;MaxSim and distill knowledge into our student
model φθ. We keep all the hyperparameter settings
the same but adjust temperature τ = 0.25 for KD
at the second step. For all our models, including
the baseline, we initialize the student model using
the fine-tuned weights of the teacher model in the
first step. We limit the input tokens to 32 (150) for
queries (passages). To evaluate effectiveness, we
encode all passages in the corpus and conduct brute
force search over the vector representations.

Our main results, including paired t-test for sig-
nificance testing, are shown in Table 2. In addition
to the effectiveness of the student models, we also
show the effectiveness of the teacher models for
the KD methods.1

First, we see that pairwise KD methods show
significant improvements over the baseline, indicat-

1We report our trained ColBERT’s accuracy by reranking the
top-1000 candidates provided officially.

167

4 5 6 7 8 9
Index Size (106)

0.335

0.340

0.345

0.350

0.355

0.360

M
RR

@
10

KD-T2
KD-ColBERT
TCT-ColBERT

(a) MARCO Dev

0 1 2 3 4 5 6 7 8 9
Index Size (106)

0.650

0.670

0.690

0.710

0.730

0.750

ND
CG

@
10

KD-T2
KD-ColBERT
TCT-ColBERT

(b) TREC-DL ’19

Figure 2: Passage retrieval effectiveness on a synthetic corpus comprising relevant passages and BM25 results as
additional “distractors” randomly sampled from the corpus are added.

ing that information from BM25 negatives cannot
be fully exploited without teacher models. Sec-
ond, although KD-T2 improves the bi-encoder’s
effectiveness over KD-T1, it is not consistently
better than KD-ColBERT in terms of students’ ef-
fectiveness. We suspect that they have comparable
capabilities to discriminate most paired passages
(BM25 negative vs. positive samples), i.e., Col-
BERT is good enough to guide bi-encoder student
models to discriminate them. On the other hand,
our TCT-ColBERT model, which uses only one
teacher model and adds only 33% more training
time over the baseline, yields the best effectiveness,
demonstrating the advantages of our proposed in-
batch KD — exhaustive exploitation of all query–
document combinations in a minibatch.

To understand why TCT-ColBERT yields better
results, we study the models’ retrieval effectiveness
against carefully selected distractors. We start with
a small synthetic corpus composed of the relevant
passages and the top-1000 BM25 candidates of the
6980 (43) queries from MARCO Dev (TREC-DL
’19). To increase the corpus size, we gradually
add passages uniformly sampled from the corpus
without replacement. From Figure 2, we see that
the three KD models exhibit nearly the same ef-
fectiveness when the corpus only contains BM25
candidates. This shows that the bi-encoders learn
to discriminate relevant passages from the BM25
negative samples well. However, as the index size
increases, TCT-ColBERT demonstrates better rank-
ing effectiveness than the other pairwise KD meth-
ods, indicating that the learned representations are
more robust. We attribute this robustness against
“distractors” to the enriched information from in-
batch KD, where we are able to exploit all in-batch
query–document combinations.

4.1.2 Training with Hard Negatives
In this subsection, we evaluate TCT-ColBERT
when training with hard negatives (HNs). We com-
pare our model to four competitive approaches:

1. ANCE (Xiong et al., 2021) is the most represen-
tative work, which proposes asynchronous index
refreshes to mine hard negatives. The model is
trained for 600K steps with index refreshes ev-
ery 10K steps. ANCE uses RoBERTa-base as
its backbone.

2. LTRe (Zhan et al., 2020) further improves from
an ANCE checkpoint by adding more training
steps with the same hard negative mining ap-
proach; thus, the computation cost of index re-
freshes from ANCE cannot be neglected. LTRe
also use RoBERTa-base as its backbone.

3. SEED-Encoder (Lu et al., 2021) leverages a
pretraining strategy to enhance the capability of
the bi-encoder, which is further fine-tuned with
HNs using asynchronous index refreshes.

4. RocketQA (Qu et al., 2020) trains a bi-encoder
model using hard negatives denoised by a cross-
encoder, ERNIE-2.0-Large (Sun et al., 2019). It
further demonstrates that training bi-encoders
with many in-batch negatives (batch size up to
4096) significantly improves ranking effective-
ness; however, this approach is computationally
expensive (the authors report using 8×V100
GPUs for training). To the best of our knowl-
edge, RocketQA represents the state of the art
in single-vector bi-encoders for dense retrieval.
For a more fair comparison, we also report the
ranking effectiveness of their model trained with
a smaller batch size of 128.

For all the approaches above, we directly copy the
reported effectiveness from the original papers.

168

Table 3: Passage retrieval results with hard negative training. All our implemented models are labeled with a
number and superscripts represent significant improvements over the labeled model (paired t-test, p < 0.05).

Model # Index
Refresh

Batch
Size

MARCO Dev TREC-DL ’19

MRR@10 R@1K NDCG@10 R@1K

ANCE (Xiong et al., 2021) 60 32 .330 .959 .648 -
LTRe (Zhan et al., 2020) 60 32 .341 .962 .675 -
SEED-Encoder (Lu et al., 2021) ≥10 (est.) - .339 .961 - -
RocketQA (Qu et al., 2020) 1 128 .310 - - -
RocketQA (Qu et al., 2020) 1 4096 .364 - - -

(1) TCT-ColBERT 0 96 .344 .967 .685 .745
(2) w/ HN 1 96 .237 .929 .543 .674
(3) w/ TCT HN 1 96 .3541,2 .9711,2 .7052 .7651,2

(4) w/ TCT HN+ 1 96 .3591,2 .9701 .7191,2 .7601

For our TCT-ColBERT model, following the set-
tings of the above approaches, we first use our
TCT-ColBERT model trained on BM25 negatives
as a warm-up starting point and index all 8.8M
MARCO passages. Using the warmed-up index,
we retrieve top-200 passages for each training
query and randomly sample (with replacement)
hard negatives from the 200 candidates to form our
training data. Note that due to resource limitations
we do not conduct experiments with asynchronous
index refreshes since multiple V100 GPUs are re-
quired for such a model training scheme.2 In this
experiment, all the hyperparameter settings are the
same as the ones in the BM25 negative training,
except for training steps, which is set to 100K for
both student and teacher training.

Table 3 reports the results of our experiments
with hard negative training. First, we observe that
our TCT-ColBERT model trained with BM25 neg-
atives marginally outperforms the other models
trained with HNs, except for RocketQA. Compar-
ing the different training strategies discussed in
Section 3.3 (second main block of the table), we
see that the ranking effectiveness of TCT-ColBERT
(HN) degrades when training on hard negatives
without the guide of a teacher. This is consistent
with the findings of Qu et al. (2020) that hard neg-
atives contain noisy information (i.e., some hard
negatives may actually be relevant). Also, Xiong
et al. (2021) show that training bi-encoders with
hard negatives can be unstable: hard negatives ben-
efit ranking effectiveness only under certain hyper-
parameter settings.

In contrast, hard negative training using Col-
BERT’s in-batch KD further boosts ranking effec-
tiveness, especially when our teacher (ColBERT)

2Re-encoding the entire corpus takes ∼10 hours on one GPU.

is trained with the same hard negative samples be-
forehand. It is also worth noting that our TCT-
ColBERT (w/ TCT HN+) with batch size 96 yields
competitive ranking effectiveness compared to
RocketQA (the current state of the art), which uses
batch size 4096. These results demonstrate the
advantages of our TCT design: our approach effec-
tively exploits hard negatives in a computationally
efficient manner (i.e., without the need for large
batch sizes or periodic index refreshes).

4.2 Document Retrieval

To validate the effectiveness and generality of our
training strategy, we conduct further experiments
on document retrieval using the MS MARCO
document ranking dataset. This dataset contains
3.2M web pages gathered from passages in the MS
MARCO passage ranking dataset. Similar to the
passage condition, we evaluate model effectiveness
on two test sets of queries:

1. MARCO Dev: the development set contains
5193 queries, each with exactly one relevant
document.

2. TREC-DL ’19: graded relevance judgments are
available from the TREC 2019 Deep Learning
Track, but on only 43 queries.

Per official guidelines, we report different metrics
for the two query sets: MRR@100 for MARCO
Dev and NDCG@10 for TREC-DL ’19.

Following the FirstP setting for document re-
trieval described in Xiong et al. (2021), we feed
the first 512 tokens of each document for encoding,
and start with the warmed-up checkpoint for our en-
coder’s parameters trained for passage retrieval (us-
ing BM25 negatives, as described in Section 4.1.1).
The settings for fine-tuning our warmed-up encoder

169

Table 4: Document retrieval results using the FirstP approach. All our implemented models are labeled with a
number and superscripts represent significant improvements over the labeled model (paired t-test, p < 0.05).

Model MARCO Dev TREC-DL ’19

MRR@100 NDCG@10

ANCE (Xiong et al., 2021) .368 .614
LTRe (Zhan et al., 2020) - .634
SEED-Encoder (Lu et al., 2021) .394 -

(1) TCT-ColBERT .339 .573
(2) w/ TCT HN+ .3921 .613
(3) w/ 2× TCT HN+ .4181,2 .6501,2

(e.g., learning rate, training steps, top-200 negative
sampling) are the same as passage retrieval except
for batch size, which is set to 64.

Ranking effectiveness is reported in Table 4.
First, we observe that TCT-ColBERT (our warmed-
up checkpoint) performs far worse than other ap-
proaches to document retrieval using the FirstP
method. This may be due to the fact that FirstP
document retrieval is very different from passage
retrieval, making zero-shot transfer ineffective. Af-
ter applying HN training on both teacher and stu-
dent models (condition 2), the ranking effective-
ness increases significantly. In addition, we find
that another iteration of training with an index re-
fresh (condition 3) further improves ranking ef-
fectiveness. To sum up, in the document ranking
task, TCT-ColBERT yields competitive effective-
ness with a one-time index refresh and outperforms
other computationally expensive methods with one
additional index refresh.

4.3 Dense–Sparse Hybrids

In our final set of experiments, we show that dense
retrieval with single-vector representations can be
integrated with results from sparse retrieval to fur-
ther increase effectiveness. We illustrate the end-
to-end tradeoffs in terms of quality, time, and space
of different dense–sparse hybrid combinations on
the passage retrieval tasks.

Many papers (Luan et al., 2021; Gao et al.,
2020b; Ma et al., 2021; Lin et al., 2021) have
demonstrated that sparse retrieval can comple-
ment dense retrieval via a simple linear combina-
tion of their scores. In our implementation, for
each query q, we use sparse and dense techniques
to retrieve the top-1000 passages, Dsp and Dds,
with their relevance scores, φsp(q, p ∈ Dsp) and
φds(q, p ∈ Dds), respectively. Then, we compute
the final relevance score for each retrieved passage

φ(q, p), where p ∈ Dsp ∪ Dds, as follows:





α · φsp(q, p) + min
p∈Dds

φds(q, p), if p /∈ Dds

α · min
p∈Dsp

φsp(q, p) + φds(q, p), if p /∈ Dsp

α · φsp(q, p) + φds(q, p), otherwise.

This technique is an approximation of a linear
combination of sparse and dense retrieval scores.
Specifically, if p /∈ Dsp(or Dds), we instead use the
minimum score of φsp(q, p ∈ Dsp), or φds(q, p ∈
Dds) as a substitute.

For the sparse and dense retrieval combina-
tions, we tune the hyperparameter α on 6000 ran-
domly sampled queries from the MS MARCO
training set. We conduct dense–sparse hybrid ex-
periments with sparse retrieval (BM25 ranking)
on the original passages (denoted BM25) and on
passages with docTTTTTquery document expan-
sion (Nogueira and Lin, 2019) (denoted doc2query-
T5). To characterize end-to-end effectiveness and
efficiency, we perform sparse retrieval with the Py-
serini toolkit (Lin et al., 2021) and dense retrieval
with Faiss (Johnson et al., 2017), but implement
the score combination in separate custom code.

Table 5 shows passage retrieval results in terms
of ranking effectiveness, query latency, and stor-
age requirements (i.e., index size) for each model
and Table 6 reports the component latencies of our
TCT-ColBERT dense–sparse hybrid.3 The cross-
encoder reranker of Nogueira and Cho (2019) pro-
vides a point of reference for multi-stage reranking
designs, which is effective but slow.

Generally, dense retrieval methods (whether
single-vector or multi-vector) are more effective
but slower than sparse retrieval methods, which
rely on bag-of-words querying using inverted in-
dexes. Single-vector dense models also require
more space than sparse retrieval methods. Moving
3Here we assume running dense and sparse retrieval in parallel.

170

Table 5: End-to-end comparisons of output quality, query latency, and storage requirements for passage retrieval.

Ranking effectiveness Latency Storage

MARCO Dev TREC-DL ’19 ms/q GiB

Sparse retrieval
BM25 with Anserini (Yang et al., 2018) .184 .506 55 4
DeepCT (Dai and Callan, 2020) .243 .551 55 4
doc2query-T5 (Nogueira and Lin, 2019) .277 .551 64 14

Dense retrieval: single-vector
TAS-B (Hofstätter et al., 2021) .343 .722 64 13
RocketQA (Qu et al., 2020) .370 - 107b 13a

TCT-ColBERT .344 .685 107 13
TCT-ColBERT (w/ TCT HN+) .359 .719 107 13
Dense retrieval: multi-vector
ME-BERT (Luan et al., 2021) .334 .687 - 96
ColBERT (Khattab and Zaharia, 2020) .360 - 458 154

Hybrid dense + sparse
CLEAR (Gao et al., 2020b) .338 .699 - 17a

ME-HYBRID-E (Luan et al., 2021) .343 .706 - 100
TAS-B + doc2query-T5 (Hofstätter et al., 2021) .360 .753 67 27a

TCT-ColBERT + BM25 .356 .720 110 17
TCT-ColBERT + doc2query-T5 .366 .734 110 27
TCT-ColBERT (w/ TCT HN+) + BM25 .369 .730 110 17
TCT-ColBERT (w/ TCT HN+) + doc2query-T5 .375 .741 110 27

Multi-stage reranking
BM25 + BERT-large (Nogueira and Cho, 2019) .365 .736 3500 4
TAS-B + doc2query-T5 + Mono-Duo-T5 (Hofstätter et al., 2021) .421 .759 12800 27a

RocketQA with reranking (Qu et al., 2020) .439 - - 13a

a We estimate dense index size using 16-bit floats; for hybrid, we add the sizes of sparse and dense indexes.
b We assume latency comparable to our settings.

Table 6: Component latencies per query of our model.

Stage latency (ms) device

BERT query encoder 7 GPU
Dot product search 100 GPU
Score combination 3 CPU

from single-vector to multi-vector dense models,
we see that ColBERT exhibits higher effectiveness
but is slower and requires much more storage.

Finally, when integrated with sparse retrieval
methods, TCT-ColBERT is able to beat a ba-
sic multi-stage reranking design (BM25 + BERT-
large), but with much lower query latency, al-
though at the cost of increased storage. Hybrid
TCT-ColBERT (w/ TCT HN+) + doc2query-T5
compares favorably with a recent advanced model,
TAS-B + doc2query-T5 (Hofstätter et al., 2021),
which introduces topic-aware sampling and dual
teachers, incorporating part of our TCT-ColBERT
work. Nevertheless, even the best hybrid variant
of TCT-ColBERT alone, without further rerank-
ing, remains quite some distance from RocketQA,
the current state of the art (with reranking using
cross-encoders). This suggests that there remain
relevance signals that require full attention interac-
tions to exploit.

5 Conclusions

Improving the effectiveness of single-vector bi-
encoders is an important research direction in dense
retrieval because of lower latency and storage re-
quirements compared to multi-vector approaches.
We propose a teacher–student knowledge distilla-
tion approach using tightly coupled bi-encoders
that enables exhaustive use of query–passage com-
binations in each minibatch. More importantly, a
bi-encoder teacher requires less computation than a
cross-encoder teacher. Finally, our approach leads
to robust learned representations.

Overall, our hard negative sampling strategy
leads to an effective and efficient dense retrieval
technique, which can be further combined with
sparse retrieval techniques in dense–sparse hybrids.
Together, these designs provide a promising so-
lution for end-to-end text retrieval that balances
quality, query latency, and storage requirements.

Acknowledgements

This research was supported in part by the Canada
First Research Excellence Fund and the Natural Sci-
ences and Engineering Research Council (NSERC)
of Canada.

171

References
Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,

Jianfeng Gao, Xiaodong Liu, Rangan Majumder,
Andrew McNamara, Bhaskar Mitra, Tri Nguyen,
et al. 2016. MS MARCO: A human gen-
erated machine reading comprehension dataset.
arXiv:1611.09268.

Oren Barkan, Noam Razin, Itzik Malkiel, Ori Katz,
Avi Caciularu, and Noam Koenigstein. 2020. Scal-
able attentive sentence-pair modeling via distilled
sentence embedding. In Proc. AAAI.

Wei-Cheng Chang, Felix X. Yu, Yin-Wen Chang, Yim-
ing Yang, and Sanjiv Kumar. 2020. Pre-training
tasks for embedding-based large-scale retrieval. In
Proc. ICLR.

Nick Craswell, Bhaskar Mitra, and Daniel Campos.
2019. Overview of the TREC 2019 deep learning
track. In Proc. TREC.

Zhuyun Dai and Jamie Callan. 2020. Context-aware
term weighting for first stage passage retrieval. In
Proc. SIGIR, page 1533–1536.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proc. NAACL, pages 4171–4186.

Luyu Gao, Zhuyun Dai, and Jamie Callan. 2020a. Un-
derstanding BERT rankers under distillation. In
Proc. ICTIR, pages 149–152.

Luyu Gao, Zhuyun Dai, Zhen Fan, and Jamie Callan.
2020b. Complementing lexical retrieval with seman-
tic residual embedding. arXiv:2004.13969.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pa-
supat, and Ming-Wei Chang. 2020. REALM:
Retrieval-augmented language model pre-training.
arXiv:2002.08909.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
In Proc. NeurIPS: Deep Learning and Representa-
tion Learning Workshop.

Sebastian Hofstätter, Sophia Althammer, Michael
Schröder, Mete Sertkan, and Allan Hanbury.
2020. Improving efficient neural ranking mod-
els with cross-architecture knowledge distillation.
arXiv:2010.02666v2.

Sebastian Hofstätter and Allan Hanbury. 2019. Let’s
measure run time! Extending the IR replicability in-
frastructure to include performance aspects. In Proc.
OSIRRC: CEUR Workshop, pages 12–16.

Sebastian Hofstätter, Sheng-Chieh Lin, Jheng-Hong
Yang, Jimmy Lin, and Allan Hanbury. 2021. Effi-
ciently teaching an effective dense retriever with bal-
anced topic aware sampling. In Proc. SIGIR.

Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux,
and Jason Weston. 2020. Poly-encoders: Architec-
tures and pre-training strategies for fast and accurate
multi-sentence scoring. In Proc. ICLR.

Jeff Johnson, Matthijs Douze, and Hervé Jégou.
2017. Billion-scale similarity search with GPUs.
arXiv:1702.08734.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Ledell
Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
2020. Dense passage retrieval for open-domain
question answering. In Proc. EMNLP, pages 6769–
6781.

Omar Khattab and Matei Zaharia. 2020. ColBERT: Ef-
ficient and effective passage search via contextual-
ized late interaction over BERT. In Proc. SIGIR,
page 39–48.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In Proc. ACL, pages
6086–6096.

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-
Hong Yang, Ronak Pradeep, and Rodrigo Nogueira.
2021. Pyserini: A Python toolkit for reproducible
information retrieval research with sparse and dense
representations. In Proc. SIGIR.

Jimmy Lin, Rodrigo Nogueira, and Andrew Yates.
2020. Pretrained transformers for text ranking:
BERT and beyond. arXiv:2010.06467.

Ting Liu, Andrew W. Moore, Alexander Gray, and
Ke Yang. 2004. An investigation of practical ap-
proximate nearest neighbor algorithms. In Proc.
NeurIPS, page 825–832.

Shuqi Lu, Chenyan Xiong, Di He, Guolin Ke, Waleed
Malik, Zhicheng Dou, Paul Bennett, Tieyan Liu,
and Arnold Overwijk. 2021. Less is more: Pre-
training a strong siamese encoder using a weak de-
coder. arXiv:2102.09206.

Yi Luan, Jacob Eisenstein, Kristina Toutanova, and
Michael Collins. 2021. Sparse, dense, and atten-
tional representations for text retrieval. Transac-
tions of the Association for Computational Linguis-
tics, 9:329–345.

Xueguang Ma, Kai Sun, Ronak Pradeep, and Jimmy
Lin. 2021. A replication study of dense passage re-
triever. arXiv:2104.05740.

Yu A. Malkov and D. A. Yashunin. 2020. Efficient and
robust approximate nearest neighbor search using hi-
erarchical navigable small world graphs. Transac-
tions on Pattern Analysis and Machine Intelligence,
42(4):824–836.

Andriy Mnih and Koray Kavukcuoglu. 2013. Learning
word embeddings efficiently with noise-contrastive
estimation. In Proc. NIPS, pages 2265–2273.

172

Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage
re-ranking with BERT. arXiv:1901.04085.

Rodrigo Nogueira and Jimmy Lin. 2019. From
doc2query to docTTTTTquery.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu,
Ruiyang Ren, Wayne Xin Zhao, Daxiang Dong,
Hua Wu, and Haifeng Wang. 2020. RocketQA:
An optimized training approach to dense pas-
sage retrieval for open-domain question answering.
arxiv:2010.08191v1.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proc. EMNLP, pages 3982–3992.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao
Tian, Hua Wu, and Haifeng Wang. 2019. ERNIE
2.0: A continual pre-training framework for lan-
guage understanding. arXiv:1907.12412.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold
Overwijk. 2021. Approximate nearest neighbor neg-
ative contrastive learning for dense text retrieval. In
Proc. ICLR.

Peilin Yang, Hui Fang, and Jimmy Lin. 2018. Anserini:
Reproducible ranking baselines using Lucene. Jour-
nal of Data and Information Quality, 10(4):Article
16.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Min Zhang, and
Shaoping Ma. 2020. Learning to retrieve: How
to train a dense retrieval model effectively and ef-
ficiently. arXiv:2010.10469.

173

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 174–184
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

NPVec1: Word Embeddings for Nepali - Construction and Evaluation

Pravesh Koirala
Institute of Engineering, Pulchowk Campus

Lalitpur, Nepal
praveshkoirala@gmail.com

Nobal B. Niraula
Nowa Lab

Madison, Alabama, USA
nobal@nowalab.com

Abstract
Word Embedding maps words to vectors of
real numbers. It is derived from a large corpus
and is known to capture semantic knowledge
from the corpus. Word Embedding is a criti-
cal component of many state-of-the-art Deep
Learning techniques. However, generating
good Word Embeddings is a special challenge
for low-resource languages such as Nepali due
to the unavailability of large text corpus. In
this paper, we present NPVec1 which consists
of 25 state-of-art Word Embeddings for Nepali
that we have derived from a large corpus using
GloVe, Word2Vec, fastText, and BERT. We
further provide intrinsic and extrinsic evalua-
tions of these Embeddings using well estab-
lished metrics and methods. These models are
trained using 279 million word tokens and are
the largest Embeddings ever trained for Nepali
language. Furthermore, we have made these
Embeddings publicly available to accelerate
the development of Natural Language Process-
ing (NLP) applications in Nepali.

1 Introduction
Recent Deep Learning (DL) techniques provide
state-of-the-art performances in almost all Natu-
ral Language Processing (NLP) tasks such as Text
Classification (Conneau et al., 2016; Yao et al.,
2019; Zhou et al., 2015), Question Answering (Pe-
ters et al., 2018; Devlin et al., 2018), Named En-
tity Recognition (Huang et al., 2015; Lample et al.,
2016) and Sentiment Analysis (Zhang et al., 2018;
Severyn and Moschitti, 2015). DL techniques are
attractive due to their capacity of learning complex
and intricate features automatically from the raw
data (Li et al., 2020). This significantly reduces the
required time and effort for feature engineering, a
costly step in traditional feature-based approaches
which further requires considerable amount of en-
gineering and domain expertise. Thus, DL tech-
niques are very useful for low-resource languages
such as Nepali.

Many Deep Learning techniques require Word
Embeddings to represent each word by a vector of
real numbers. Word Embeddings learn a meaning-
ful representation of words directly from a large un-
labeled corpus using co-occurrence statistics (Bo-
janowski et al., 2017). The closer the word rep-
resentations to actual meanings, the better the per-
formance. Consequently, Word Embeddings have
received special attention from the research com-
munity and are predominantly used in current NLP
researches.
Word Embeddings can generally be divided

into two categories: Context-Independent embed-
dings such as GloVe (Pennington et al., 2014),
Word2Vec (Mikolov et al., 2013), and fastText
(Bojanowski et al., 2017), and Context-Dependent
embeddings such as BERT (Bidirectional Encoder
Representations from Transformers) (Devlin et al.,
2018) and ELMo (Embeddings from Language
Models) (Peters et al., 2018). Context-dependent
word embedding is generated for a word as a
function of the sentence it occurs in. Thus, it
can learn multiple representations for polysemous
words (Peters et al., 2018). To learn these deep
contextualized representations, BERT uses a trans-
former based architecture pretrained on Masked
Language Modelling and Next Sentence Predic-
tion tasks, whereas, ELMo uses a Bidirectional
LSTM architecture for combining both forward
and backward language models.
In this paper, we present NPVec1, a suite of

Word Embedding resources for Nepali, a low-
resource language, which is the official language
and de-facto lingua franca of Nepal. It is spoken by
more than 20 million people mainly in Nepal and
many other places in the world including Bhutan,
India, and Myanmar (Niraula et al., 2020). Even
though Word Embeddings can be directly learned
from raw texts in an unsupervised fashion, gather-
ing a large amount of data for its training remains
a huge challenge in itself for a low-resource lan-

174

guage such as Nepali. In addition, Nepali is a mor-
phologically rich language which has multiple ag-
glutinative suffixes as well as affix inflections and
thus proves challenges during its preprocessing i.e.
tokenization, normalization and stemming.
We have collected data over many years and

combined it with multiple other publicly available
data sets to generate a suite of Word Embeddings,
i.e. NPVec1, using GloVe, Word2Vec, fastText and
BERT. It consists of 25 Word Embeddings corre-
sponding to different preprocessing schemes. In
addition, we perform the intrinsic and extrinsic
evaluations of the generated Word Embeddings us-
ing well established methods and metrics. Our pre-
trained Embedding models and resources are made
publicly available1 for the acceleration and devel-
opment of NLP research and application in Nepali
language.
The novel contributions of this study are:

• First formal analyses of different Word Em-
beddings in Nepali language using intrinsic
and extrinsic methods.

• First study of effects of preprocessing such
as normalization, tokenization and stemming
in different Word Embeddings in Nepali lan-
guage.

• First contextualized word embedding (BERT)
generation and evaluation in Nepali language.

• The largest Word2Vec, GloVe, fastText and
BERT based Word Embeddings ever trained
and made available for Nepali language to
date.

The rest of this paper is organized as follows.
We review related works in Section 2. We de-
scribe the data collection and corpus construction
in Section 3. We describe our experiments to de-
velop Word Embedding methods in Section 4. We
present model evaluations in Section 5 and conclu-
sion and future directions in Section 6.

2 Related Works
Word Embeddings provide continuous word rep-
resentations and are the building blocks of many
NLP applications. They capture distributional in-
formation of words from a large corpora. This
information helps the generalization of machine

1https://github.com/nowalab/
nepali-word-embeddings

learning models especially when the data set is lim-
ited (Mikolov et al., 2017). Word Embedding tools,
technologies and pre-trained models are widely
available for resource rich languages such as En-
glish (Mikolov et al., 2013; Pennington et al., 2014;
Bojanowski et al., 2017) and Chinese (Li et al.,
2018; Chen et al., 2015). Due to the wide use of
Word Embeddings, pre-trained models are increas-
ingly available for resource poor languages such as
Portuguese(Hartmann et al., 2017), Arabic (Elraz-
zaz et al., 2017; Soliman et al., 2017), and Bengali
(Ahmad and Amin, 2016).
Most Word Embedding algorithms are unsuper-

vised. Which means that they can be trained for
any language as long as the corpus data is avail-
able. One such effort is by Grave et al. (2018) who
generated and made available word vectors for
157 languages, including Nepali, using Wikipedia
and Common Crawl data. The pre-trained models
for Skip-gram and CBOW are available at https:
//fasttext.cc. Another useful resource is http:
//vectors.nlpl.eu/repository which is a commu-
nity repository for Word Embeddings maintained
by Language Technology Group at the University
of Oslo (Kutuzov et al., 2017). It currently hosts
209 pre-trained word Embeddings for most lan-
guages but not Nepali.
Word Embeddings for Nepali are derived in

small scale by Grave et al. (2018) using fastText
and by Lamsal (2019) using Word2Vec. Both of
these efforts have major limitations. First, they
have limited diversity in the corpus. Grave et al.
use Wikipedia and Common Crawl data while
Lamsal uses news corpus. Second, their corpus is
very small compared to ours (Section 3). Third,
they do not provide any evaluation of the gen-
erated models. Fourth, they have done limited
or no prepossessing on the data. We show later
in Section 3.3 that tokenization and text normal-
ization are critical for processing morphologically
rich Nepali text. In contrast, we have conducted
a large scale study of Word Embeddings in more
diverse and large data sets using GloVe, fastText,
and Word2Vec. Our corpus is nearly four times
bigger than the corpus used by aforementioned ap-
proaches (see Section 3). We have constructed 8 in-
puts for each combination of binary variables: Tok-
enization, Normalization and Stemming which has
resulted in 24 pre-trained Embeddings for GloVe,
Word2Vec, and fastText combined. Additionally,
we have trained BERT for one of these preprocess-

175

ing schemes and performed intrinsic and extrinsic
evaluations for each of these 25 models.

3 Corpus Preparation
In this Section, we present our data sources and
preprocessing techniques for the corpus. To help
readers understand the Nepali words used in this
paper, we have provided a gloss in Section 8 with
their transliterations and English translations.

3.1 The Corpus
Our corpus consists of a mixture of news,
Wikipedia articles, and OSCAR (Ortiz Suárez
et al., 2019) corpus. We summarize the data sets
in Table 1.

3.1.1 News Corpus
We crawled Nepali online news media over a year
and collected more than 700,000 unique news ar-
ticles (∼ 3GB). As expected, the news articles
cover diverse topics including politics, sports, tech-
nology, society, and so on. We obtained another
news data set from IEEE DataPort (Lamsal, 2020)
(1.7GB).

3.1.2 OSCAR Nepali Corpus
We obtained the shuffled data in deduplicated form
(1.2GB) for Nepali language from OSCAR (Open
Super-large Crawled ALMAnaCH coRpus) (Or-
tiz Suárez et al., 2019).2 It is a large multilingual
corpus obtained by language classification and fil-
tering of the Common Crawl corpus. Common
Crawl3 is a non-profit organization which collects
data through web crawling and makes it publicly
available.

3.1.3 Nepali Wikipedia Corpus
We obtained Nepali Wikipedia corpus from Kag-
gle (Gaurav, 2020). It consists of 39k Wikipedia
articles for Nepali (83MB).

3.2 Deduplication
We collected data from multiple sources which
might have crawled the same data. Furthermore,
there were some boilerplate text in the data. Thus,
it was important to remove duplicate texts from the
corpus. To remove these duplicates, we followed
an approach similar to Grave et al. (2018). With
this approach, we computed hash for each sentence
and collected the sentence only if the hash was not

2https://oscar-corpus.com
3https://commoncrawl.org/

known before. We were able to remove ∼ 22%
duplicated sentences from our corpus.

3.3 Preprocessing
After removing duplicates, we discarded sentences
with less than 10 characters as they provide little
context to learn Word Embeddings. We also re-
moved punctuations and replaced numbers with
a special NN token. We then applied following
Normalization, Tokenization and Stemming prepro-
cessing techniques to derive corpus for the study.
3.3.1 Normalization
Analogous to how there are different cases
(lower/upper) in English with no phonetic differ-
ences, there are different written vowels sounds
in Nepali which, when spoken, are indistinguish-
able from each other. For example: the two dif-
ferent words नԃ पालӄ (Nepali) and नԃ पाԐल are spoken
the same way even though their written represen-
tations differ. Thus, people often mistakenly use
multiple written version of the same words which
introduces noise in the data set. Normalization,
in the context of this study, is identification of all
these nuances and mapping them to a same word.
3.3.2 Tokenization
Nepali language has multiple post-positional and
agglutinative suffixes like लԃ , मा, बाट, दԃ ԓख etc.,
which can be compounded together with nouns
and pronouns to produce new words. For ex-
ample, the word नԃ पालӄ (Nepalese) can be com-
pounded as नԃ पालӄलԃ (Nepalese did), नԃ पालӄहŦ
(Nepalese+plural), नԃ पालӄको (Of Nepalese), so on
and so forth. Thus, these different words can be
tokenized as नԃ पालӄ + लԃ , नԃ पालӄ + हŦ, नԃ पालӄ + को
which serves to drastically reduce the vocabulary
size without the loss of any linguistic functionality.
Tokenization, in this context, means the same.
3.3.3 Stemming
In addition, there are also other case markers and
bound suffixes that primarily inflect verbs to pro-
duce new words. For example, from the same root
word खा (eat), words such as खायो (ate), खाԁ दԄ (eat-
ing), खाएको (had eaten), खाएर (after eating), etc
can be constructed. Stemming, in this context,
means the reduction of all such inflected words to
their base forms.
For the purpose of this study, we have im-

proved upon the preprocessing techniques devel-
oped by Koirala and Shakya (2018) for preprocess-
ing (normalizing, tokenizing and stemming) our

176

Corpus Tokens Types Genre Description
Our News Corpus 216M 3.3M News Online news

Lamsal (Lamsal, 2020) 58.8M 1.2M News Online news
OSCAR (Ortiz Suárez et al., 2019) 71.8M 2.2M Mixed Mixed Genre

Wikipedia (Gaurav, 2020) 5.1M 0.3M Mixed Mixed Genre

Table 1: Corpus Description

Preprocessing Scheme Code #Tokens #Types
Base (B) 279M 3.14M

Base+Normalized (BN) 279M 2.6M
Base+Normalized+Tokenized (BNT) 360M 1.4M
Base+Normalized+Stemmed (BNS) 279M 2.04M

Base+Normalized+Tokenized+Stemmed (BNTS) 359M 1.09M
Base+Tokenized (BT) 357M 1.8M

Base+Tokenized+Stemmed (BTS) 357M 1.4M
Base+Stemmed (BS) 279M 2.5M

Table 2: Eight Corpus of NepVec1. Base refers to the raw text.

corpus. Specifically, we generated eight corpus
corresponding to different combination of these
three preprocessing techniques. The final eight cor-
pus are listed in Table 2.

4 Embedding Methods

4.1 Context-independent Word Embeddings
We chose three state-of-the-art methods for ob-
taining context-independent Word Embeddings,
namely Word2vec, fastText and GloVe. Word em-
beddings from these methods were learned with
the same parameters for fair comparison. We
fixed vector dimension to 300 and set minimum
word frequency, window size, and the negative
sampling size to 5 respectively. Word2vec and
fastText models were trained via the Gensim (Ře-
hůřek and Sojka, 2010) implementation using skip-
gram method. Whereas, GloVe embeddings were
trained via the tool provided by StanfordNLP 4.

4.2 Context-dependent Word Embeddings
We chose BERT to learn context-dependent
embeddings. We trained a BERT model us-
ing the Huggingface’s transformers library
(Wolf et al., 2019). BERT model, unlike
the other word embedding models, was only
trained in one pre-processing scheme i.e.

4https://github.com/stanfordnlp/GloVe

base+normalized+tokenized (BNT)5 due to
resource constraints. Due to the same reason, we
reduced both the number of hidden layers and the
attention heads to 6 and the hidden dimensions
to 300 unlike the original implementation of 12
hidden layers and attention heads and 768 hidden
dimensions. The maximum sequence size was
chosen to be 512 whereas maximum vocabulary
size for the BERT’s wordpiece tokenizer was set to
30,000. Our implementation of BERT has 22.5M
parameters (in contrast to the 110M parameters of
the original implementation i.e. BERT-base) and
unlike BERT’s original implementation, where it
is pre-trained on the task of Masked Language
Modelling (MLM) and Next Sentence Prediction,
we only pre-trained it for the MLM objective
for just a single epoch due to limited computing
resources.

5 Evaluation
5.1 Intrinsic Evaluation
Intrinsic evaluation of word embedding models
is commonly performed in tasks such as analo-
gies (Grave et al., 2018). There is, however, no
such data set available for Nepali language. Thus,
we followed the clustering approach suggested in

5Our motivation for training BERT in this scheme was
the superior performance of context-independent word em-
beddings in our intrinsic evaluation task for this particular
scheme as per section 5.1

177

Relatedness Set Sentiment Set
Kitchen Nature Positive Negative

रोԌट, तरकारӆ, ԎचԎन, नԬ न,
मसला, अıवा, लसԬ न, तԃ ल,
मԋरच, दाल, थाल, कराइ,
भाडो, खोसाө Ԏन, चामल,
Ԍपठो, डाडԬ , पԬτԬ , चԬДो,
कचौरा,ͺास

Ԍहमाल, पहाड, हाइԌकă,
ęԃ Ԍकă, फोटो, जăल, गλЗ,
खोला, नाला, झरना, गोरԃ टो,
बाटो, घԬϯӄ, चौतारा, याƚा,
Ԍहउ, हԋरयालӄ, दԃ उरालӄ, ताल,
उकालӄ

राšो, सеो, जाԁ गԋरलो,
ठԭ लो, अͺो, सफा,
हलԬको, कोमल, उΑालो,
बԬ ԒŁमान, साԁ चो, लाभ,
ԎनशԬϾ, Ԏछटो, सफल,
अथө ,τाय, सƇम, धनӄ

नराšो, महगो, पातलो,
सानो, होचो,फोहोर, भारӆ,
कठोर, अँδारो, अŨछԃ ,
मԬखө , झԬठो, हाԎन, ससԬϾ,
ԍढलो, असफल, अनथө ,
अτाय, असƇम, गԋरब

Table 3: Data Set for Intrinsic Evaluation of Word Embeddings

(Soliman et al., 2017) which requires a manually
constructed data set of terms in different themes
(clusters). The goal then is to recover these themes
(clusters) using the learned word representations.
We constructed following two data sets for the eval-
uation purposes.

5.1.1 Relatedness Set
This set consisted of twenty one word examples
each from two different topics i.e. kitchen and na-
ture. The kitchen topic included words such as
ԎचԎन (sugar) नԬ न (salt) भाडो (pot) etc. whereas, the
nature topic included words such as Ԍहमाल (moun-
tain), पहाड (hill),खोला (river) etc. The Relatedness
data set is presented in Table 3.

5.1.2 Sentiment Set
This set consisted of nineteen examples each of
positive and negative sentiments. The positive sen-
timent set included words such as राšो (good), ठԭ लो
(big),τाय(justice), etc. whereas the negative sen-
timent set included their antonyms such as नराšो
(bad), सानो(small), अτाय(injustice) etc. The Sen-
timent data set is presented in Table 3.
Ideally word embeddings should capture both

word relatedness and word similarity properties of
a word. These two terms are related but are not the
same (Niraula et al., 2015; Banjade et al., 2015).
For example, chicken and egg are less similar (liv-
ing vs non-living) but are highly related as they
often appear together. Relatedness and Sentiment
sets were developed to evaluate themodels in these
these two aspects.
For each of these cases (sentiment and related-

ness), K-Means clustering was applied to the con-
stituent words to generate two clusters (i.e. K=2).
The obtained clusters were evaluated using the pu-
rity metric which is further elaborated in Section
5.1.3. Since Word2Vec and GloVe cannot handle
out-of-vocabulary (OOV) words, unlike fastText

and BERT, the average of all corresponding word
vectors were used to represent the OOV words.
While Word2Vec, fastText and GloVe models

provide a simple word to vector mapping, BERT’s
learned representations are a bit different and thus,
need to be extracted accordingly. For the sake of
simplicity, we have averaged the hidden state of
the last two hidden layers to get the embeddings
for each word token. The words were run without
any context.

5.1.3 Purity
The purity metric is an extrinsic cluster evaluation
technique (Manning et al., 2008) which requires
a gold standard data set. It measures the extent
to which a cluster contains homogeneous elements.
The purity metric ranges from 0 (bad clustering) to
1 (perfect clustering). Thus, the higher the purity
score, the better the results.

5.1.4 Results for Intrinsic Evaluation
The results for the intrinsic evaluations are listed in
Table 4. All models performed better in recovering
original clusters in the Relatedness Set compared
to that of the Sentiment Set i.e. they have higher
purity scores in the Relatedness Set than the Sen-
timent Set. This is expected as semantically oppo-
site words often appear in a very similar context
(e.g. This is a newmodel vs. This is an old model).
Relying on neighboring terms alone would provide
little context to capture the semantic meaning of a
word. Of all three models, however, GloVe per-
formed the best in the sentiment set by an average
of 10% (except in the BNTS scheme). This seem to
make it more suitable for tasks such as Sentiment
Analyses. Interestingly, BERT model did not per-
form well compared to other models in the Relat-
edness set. It, however, provided very competitive
score in the Sentiment Set.
Models in the BNT scheme scored highest in

178

Intrinsic Extrinsic
Scheme Model Purity (Sen) Purity (Rel) Precision Recall F1

B
Baseline 0.76 0.68 0.69

Word2Vec 0.54 0.98 0.80 0.79 0.79
fastText 0.51 1 0.79 0.78 0.78
GloVe 0.67 0.95 0.78 0.77 0.77

BN
Baseline 0.77 0.72 0.72

Word2Vec 0.56 1 0.79 0.78 0.78
fastText 0.51 1 0.79 0.78 0.78
GloVe 0.62 0.98 0.78 0.77 0.77

BT
Baseline 0.77 0.72 0.72

Word2Vec 0.51 0.98 0.78 0.77 0.77
fastText 0.54 0.98 0.78 0.76 0.76
GloVe 0.67 1 0.79 0.77 0.77

BS
Baseline 0.76 0.70 0.70

Word2Vec 0.51 0.93 0.79 0.77 0.77
fastText 0.54 0.93 0.79 0.78 0.78
GloVe 0.59 0.93 0.78 0.77 0.77

BNT

Baseline 0.77 0.73 0.73
Word2Vec 0.54 1 0.76 0.74 0.74
fastText 0.51 1 0.78 0.76 0.76
GloVe 0.69 1 0.77 0.76 0.75
BERT 0.59 0.83 0.77 0.76 0.76

BNS
Baseline 0.77 0.71 0.72

Word2Vec 0.51 0.95 0.79 0.77 0.77
fastText 0.51 0.95 0.79 0.78 0.78
GloVe 0.64 0.95 0.79 0.77 0.77

BTS
Baseline 0.76 0.73 0.74

Word2Vec 0.51 0.95 0.78 0.76 0.75
fastText 0.51 0.95 0.78 0.77 0.76
GloVe 0.62 0.95 0.76 0.73 0.73

BNTS
Baseline 0.76 0.73 0.74

Word2Vec 0.51 0.95 0.76 0.74 0.74
fastText 0.54 0.95 0.78 0.76 0.76
GloVe 0.51 0.95 0.78 0.77 0.77

Table 4: Intrinsic and Extrinsic Results. Sen and Rel refer to Sentiment and Relatedness respectively. Similarly,
B=Base i.e. Raw Text, N=Normalized, T=Tokenized, and S=Stemmed.

179

both of the intrinsic data sets. Purity for relat-
edness task for all of the three models in this
scheme was 1 whereas GloVe model obtained the
global best score of 0.69 in the sentiment set in this
scheme. In general, it seems that applying the Nor-
malization scheme has a positive effect on model’s
capacity to learn the representation which makes
sense because Normalization reduces differently
spelled versions of the same word to a single repre-
sentation. Purity dropped significantly for all tasks
in all schemes that included Stemming. This may
be attributed to the possible over-stemming of the
words (under-stemming doesn’t seem to be a prob-
lem because the model is performing well in the
Base scheme).

5.2 Extrinsic Evaluation
The primary objective of extrinsic evaluation for
this study was to compare how the word embed-
dings helped generalize the training of other su-
pervised models with very few data labels. For
this purpose, a feed-forward neural network archi-
tecture was used for a classification objective in a
multi-class classification setup.

5.2.1 Data
The data set for classification was derived from a
publicly available Github repository i.e. Nepali
News Dataset 6. It consists of Nepali news articles
in 10 different categories. Each category has 1000
articles. As mentioned, the goal of extrinsic eval-
uation here is to see how the learned word repre-
sentations help the generalization ofmachine learn-
ing model for text classification task when limited
training data set is available, a practical scenario
for low resource language. If we use large training
examples, virtually any classifier would learn to
perform better even if the word representations are
poor. For this reason, we extracted 3000 samples
from the dataset with uniform representation from
each categories (i.e. 300 examples each) and fur-
ther split them randomly into chunks of sizes 10%,
10%, and 80% each. This yielded us examples of
sizes 313, 326, and 2361 respectively which were
subsequently used for training, validation and test-
ing purposes. Training set had at least 21 examples
per class whereas the testing set had at least 227
examples per class. The test set was deliberately
chosen to be larger to better estimate the general-
ization of the classification model across different

6https://github.com/kamalacharya2044/
NepaliNewsDataset

embedding schemes.

5.2.2 Architecture
We implemented a very simple text classification
model using Keras7. For each example (news arti-
cle), we only used the first five hundred tokens and
obtained their embedding vectors from the word
embedding model under the study. These vectors
were then fed to a Keras model where they were
first pooled together by a one-dimensional averag-
ing layer and then passed to a hidden layer with 64
units with the ReLU activation and then to the out-
put layer of 10 units with Sigmoid activation. Bi-
nary crossentropy function was used to calculate
the loss and the model was trained using the Adam
Optimizer (Kingma and Ba, 2014) for 60 epochs
each. In case of BERT, we averaged the hidden
states from the last two hidden layers to get the
embeddings, whereas, for getting the baseline re-
sults, instead of using any pre-trained word vec-
tors, a trainable Keras embedding layer was used
in front of the architecture mentioned above which
automatically learns the word embeddings by only
using the provided training examples.

5.2.3 Results for Extrinsic Evaluation
Macro Precision, Recall and F1 metrics were used
for the evaluation of the classification model. On
average, the F1 scores for word embedding mod-
els exceeded the baseline scores by a margin of 5
percent. This suggests that the use of pre-trained
word embeddings helps to generalize classification
models better than simply using the embeddings
learned from the training set. Interestingly, the
global maximumF1 score was obtained in the Base
scheme i.e. with no preprocessing applied, and
Normalization seemed tomake no difference to the
score. This can be attributed to the fact that our
data set came from highly reputed newspapers i.e.
all word spellings were grammatically correct. We
foresee significant increase due to Normalization
in data sets such as tweets, social media posts and
blogs where grammatical errors are more frequent.
Similarly, Tokenization schemes seemed to drop

the classification scores for embedding models but
increase the scores for the baseline models in gen-
eral. This leads us to believe that the representa-
tions of the post-positions and agglunitative suf-
fixes, which are the most frequently occurring
words in Nepali language, learned by theWord Em-
bedding models may be partial to particular top-

7https://keras.io

180

ics. We suggest the omission of post-positions and
other frequently occurring words from the data set
before using these embeddings in a classification
setting.
The standard deviation in the F-scores of

Word2Vec model, fastText and GloVe model
across the different pre-processing schemes are
2.4%, 1% and 1.4% respectively, which suggests
that fastText might be more resilient to problems
like over-stemming. We thus recommend the us-
age of fastText models in applications where it is
desirable to stem words.
Interestingly, BERT model, while produced

competitive results, did not exceed our expecta-
tions on the classification task. We expect a raise
in performance of this model if trained in the archi-
tecture proposed in its original implementation i.e.
12 attention heads and 12 hidden layers unlike our
slimmed down version of 6 attention heads and 6
hidden layers trained for only one epoch. Training
on more data and with more epochs are potential
future directions to this end.

6 Conclusion and Future Work
In this paper, we trained 25Word Embedding mod-
els for Nepali language with multiple preprocess-
ing schemes and made them publicly available
for accelerating NLP research in low-resource lan-
guage Nepali8. This, to our knowledge, is the
first formal and large scale study of Word Embed-
dings in Nepali. We compared the performances
of these models using intrinsic and extrinsic evalu-
ation tasks. Our findings clearly indicate that these
word embedding models perform exceptionally
well in identifying related words compared to dis-
covering semantically similar words. We also sug-
gest that further comparisons be made with an im-
proved stemmer, which has fewer over-stemming
error rates than what we’ve used, to study the ef-
fects of over-stemming in word embeddings. Per-
formance of these Word Embeddings in clustering
of related words also suggest us that these models
will obtain good results in tasks such as Named En-
tity Recognition and POS Tagging. This is some-
thing that we would like to explore in future.
As far as our study with BERT goes, we obvi-

ously recommend training the original BERT archi-
tecture, rather than what we have used, with more
data. For comparison, the original BERT model

8https://github.com/nowalab/
nepali-word-embeddings

was trained on a total of 3.3 billion words whereas
we’ve trained our model in just 360 million words.
Unfortunately, for a resource poor language like
Nepali, this is not a trivial task. Similarly, it
would be most interesting to see performances of
other context-dependent embedding models such
as ELMo, GPT2 (Radford et al., 2019), XLNet
(Yang et al., 2019) and RoBERTa (Liu et al., 2019)
in case of Nepali language.

7 Acknowledgments
We would like acknowledge Mr. Ganesh Pandey
for his valuable contribution in providing the hard-
ware setup for our experiments. Similarly, we
thank Ms. Samiksha Bhattarai and Dr. Diwa
Koirala for their continued support and encourage-
ment.

8 Glossary
Original Transliteration Meaning
नԃ पालӄ Nepali Nepalese
रोԌट Roti Flatbread
तरकारӆ Tarkari Vegetable
ԎचԎन Cheeni Sugar
नԬ न Noon Salt
मसला Masala Spices
अıवा Aduwa Ginger
लसԬ न Lasun Garlic
तԃ ल Tel Oil
मԋरच Marich Pepper
दाल Daal Lentils
थाल Thaal Plate
कराइ Karai Cooking Pot
भाडो Bhaado Utensils
खोसाө Ԏन Khorsani Chili
चामल Chaamal Rice
Ԍपठो Peetho Wheat
डाडԬ Daadu Ladle
पԬτԬ Punyu Spatula
चԬДो Chulho Stove
कचौरा Kachaura Bowl
ͺास Glass Glass
Ԍहमाल Himal Mountain
पहाड Pahad Hill
हाइԌकă Hiking Hiking
ęԃ Ԍकă Trekking Trekking
फोटो Photo Photo
जăल Jungle Jungle
गλЗ Gantabya Destination
खोला Khola River

181

Original Transliteration Meaning
नाला Naala Rivulets
झरना Jharana Waterfall
गोरԃ टो Goreto Trail
बाटो Baato Road
घԬϯӄ Ghumti Bend
चौतारा Chautara Rest area
याƚा Yatra Travel
Ԍहउ Hiu Snow

हԋरयालӄ Hariyali Greenery
दԃ उरालӄ Deurali Hilltop
ताल Taal Lake
उकालӄ Ukali Uphill
राšो Ramro Good
सеो Sasto Inexpensive

जाԁ गԋरलो Jagarilo Energetic
ठԭ लो Thulo Big
अͺो Aglo Tall
सफा Safaa Clean
हलԬको Haluko Lightweight
कोमल Komal Soft
उΑालो Ujyalo Bright
बԬ ԒŁमान Buddhiman Wise
साԁ चो Sacho Truth
लाभ Laabh Gain
ԎनशԬϾ Nisulka Free
Ԏछटो Cheeto Fast
सफल Safal Successful
अथө Aartha Meaning
τाय Nyaya Justice
सƇम Sakchyam Capable
धनӄ Dhani Rich
नराšो Naramro Bad
महगो Mahango Expensive
पातलो Patalo Skinny
सानो Saano Small
होचो Hocho Short
फोहोर Fohor Waste
भारӆ Bhaari Heavy
कठोर Kathor Hard
अँδारो Adhyaro Dark
अŨछԃ Alche Lazy
मԬखө Murkha Fool
झԬठो Jhutho Lies
हाԎन Haani Damage
ससԬϾ Sasulka Not-Free
ԍढलो Dhilo Late
असफल Asafal Failure
अनथө Anartha Meaningless
अτाय Anyaya Injustice
असƇम Asakchyam Incompetent
गԋरब Gareeb Poor

References
Adnan Ahmad and Mohammad Ruhul Amin. 2016.
Bengali word embeddings and it’s application in
solving document classification problem. In 2016
19th International Conference on Computer and In-
formation Technology (ICCIT). IEEE, 425–430.

Rajendra Banjade, Nabin Maharjan, Nobal B Niraula,
Vasile Rus, and Dipesh Gautam. 2015. Lemon and
tea are not similar: Measuring word-to-word similar-
ity by combining different methods. In International
conference on intelligent text processing and compu-
tational linguistics. Springer, 335–346.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics 5 (2017), 135–
146.

Xinxiong Chen, Lei Xu, Zhiyuan Liu, Maosong Sun,
and Huanbo Luan. 2015. Joint learning of charac-
ter and word embeddings. In Twenty-Fourth Interna-
tional Joint Conference on Artificial Intelligence.

Alexis Conneau, Holger Schwenk, Loïc Barrault, and
Yann Lecun. 2016. Very deep convolutional
networks for text classification. arXiv preprint
arXiv:1606.01781 (2016).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805 (2018).

Mohammed Elrazzaz, Shady Elbassuoni, Khaled Sha-
ban, and Chadi Helwe. 2017. Methodical evaluation
of Arabic word embeddings. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers). 454–
458.

Gaurav. 2020. Nepali Wikipedia Cor-
pus. https://www.kaggle.com/disisbig/
nepali-wikipedia-articles

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learn-
ing Word Vectors for 157 Languages. In Proceed-
ings of the International Conference on Language
Resources and Evaluation (LREC 2018).

Nathan Hartmann, Erick Fonseca, Christopher Shulby,
Marcos Treviso, Jessica Rodrigues, and Sandra
Aluisio. 2017. Portuguese word embeddings: Eval-
uating on word analogies and natural language tasks.
arXiv preprint arXiv:1708.06025 (2017).

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tagging.
arXiv preprint arXiv:1508.01991 (2015).

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014).

182

Pravesh Koirala and Aman Shakya. 2018. A Nepali
Rule Based Stemmer and its performance on differ-
ent NLP applications. In Proceedings of the 4th In-
ternational IT Conference on ICT with Smart Com-
puting and 9th National Students’ Conference on In-
formation Technology, (NaSCoIT 2018). 16–20.

Andrei Kutuzov, Murhaf Fares, Stephan Oepen, and
Erik Velldal. 2017. Word vectors, reuse, and repli-
cability: Towards a community repository of large-
text resources. In Proceedings of the 58th Confer-
ence on Simulation and Modelling. Linköping Uni-
versity Electronic Press, 271–276.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
arXiv preprint arXiv:1603.01360 (2016).

Rabindra Lamsal. 2019. 300-Dimensional Word Em-
beddings for Nepali Language. https://doi.org/
10.21227/dz6s-my90

Rabindra Lamsal. 2020. A large scale Nepali text cor-
pus. https://doi.org/10.21227/jxrd-d245

Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li.
2020. A survey on deep learning for named entity
recognition. IEEE Transactions on Knowledge and
Data Engineering (2020).

Shen Li, Zhe Zhao, Renfen Hu, Wensi Li, Tao Liu, and
Xiaoyong Du. 2018. Analogical Reasoning on Chi-
nese Morphological and Semantic Relations. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers). Association for Computational Linguis-
tics, 138–143. http://aclweb.org/anthology/
P18-2023

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692 (2019).

Christopher D. Manning, Prabhakar Raghavan, and
Hinrich Schütze. 2008. Introduction to Information
Retrieval. Cambridge University Press. ISBN 978-
0-521-86571-5.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2017. Ad-
vances in pre-training distributed word representa-
tions. arXiv preprint arXiv:1712.09405 (2017).

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In Advances in neural information processing
systems. 3111–3119.

Nobal BNiraula, SaurabDulal, andDiwaKoirala. 2020.
Linguistic Taboos and Euphemisms in Nepali. arXiv
preprint arXiv:2007.13798 (2020).

Nobal Bikram Niraula, Dipesh Gautam, Rajendra Ban-
jade, Nabin Maharjan, and Vasile Rus. 2015. Com-
bining word representations for measuring word re-
latedness and similarity. In The twenty-eighth inter-
national flairs conference.

Pedro Javier Ortiz Suárez, Benoît Sagot, and Laurent
Romary. 2019. Asynchronous Pipeline for Process-
ing Huge Corpora on Medium to Low Resource In-
frastructures. In 7th Workshop on the Challenges in
the Management of Large Corpora (CMLC-7), Pi-
otr Bański, Adrien Barbaresi, Hanno Biber, Eve-
lyn Breiteneder, Simon Clematide, Marc Kupietz,
Harald Lüngen, and Caroline Iliadi (Eds.). Leibniz-
Institut für Deutsche Sprache, Cardiff, United King-
dom. https://doi.org/10.14618/IDS-PUB-9021

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. GloVe: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP). 1532–1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word
representations. arXiv preprint arXiv:1802.05365
(2018).

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog 1, 8 (2019), 9.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks. ELRA, Valletta,
Malta, 45–50. http://is.muni.cz/publication/
884893/en.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Twitter sentiment analysis with deep convolutional
neural networks. In Proceedings of the 38th Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval. 959–962.

Abu Bakr Soliman, Kareem Eissa, and Samhaa R El-
Beltagy. 2017. Aravec: A set of arabic word embed-
ding models for use in arabic nlp. Procedia Com-
puter Science 117 (2017), 256–265.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2019.
HuggingFace’s Transformers: State-of-the-art Nat-
ural Language Processing. ArXiv abs/1910.03771
(2019).

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.

183

Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in neural infor-
mation processing systems. 5753–5763.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
Graph convolutional networks for text classification.
In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 33. 7370–7377.

Lei Zhang, Shuai Wang, and Bing Liu. 2018. Deep
learning for sentiment analysis: A survey. Wiley
Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery 8, 4 (2018), e1253.

Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and Fran-
cis Lau. 2015. A C-LSTM neural network for
text classification. arXiv preprint arXiv:1511.08630
(2015).

184

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 185–194
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

Deriving Word Vectors from Contextualized Language Models
using Topic-Aware Mention Selection

Yixiao Wang1, Zied Bouraoui2, Luis Espinosa Anke1 and Steven Schockaert1

1School of Computer Science & Informatics, Cardiff University, UK
2 CRIL-CNRS, Université d’Artois, France

{wangy306,espinosa-ankel,schockaerts1}@cardiff.ac.uk, zied.bouraoui@cril.fr

Abstract

One of the long-standing challenges in lexical
semantics consists in learning representations
of words which reflect their semantic prop-
erties. The remarkable success of word em-
beddings for this purpose suggests that high-
quality representations can be obtained by
summarizing the sentence contexts of word
mentions. In this paper, we propose a method
for learning word representations that follows
this basic strategy, but differs from standard
word embeddings in two important ways. First,
we take advantage of contextualized language
models (CLMs) rather than bags of word vec-
tors to encode contexts. Second, rather than
learning a word vector directly, we use a topic
model to partition the contexts in which words
appear, and then learn different topic-specific
vectors for each word. Finally, we use a task-
specific supervision signal to make a soft se-
lection of the resulting vectors. We show that
this simple strategy leads to high-quality word
vectors, which are more predictive of semantic
properties than word embeddings and existing
CLM-based strategies.

1 Introduction

In the last few years, contextualized language mod-
els (CLMs) such as BERT (Devlin et al., 2019)
have largely replaced the use of static (i.e. non-
contextualized) word vectors in many Natural Lan-
guage Processing (NLP) tasks. However, static
word vectors remain important in applications
where word meaning has to be modelled in the
absence of (sentence) context. For instance, static
word vectors are needed for zero-shot image clas-
sification (Socher et al., 2013) and zero-shot en-
tity typing (Ma et al., 2016), for ontology align-
ment (Kolyvakis et al., 2018) and completion (Li
et al., 2019), taxonomy learning (Bordea et al.,
2015, 2016), or for representing query terms in in-
formation retrieval systems (Nikolaev and Kotov,

2020). Moreover, Liu et al. (2020) recently found
that static word vectors can complement CLMs, by
serving as anchors for contextualized vectors, while
Alghanmi et al. (2020) found that incorporating
static word vectors could improve the performance
of BERT for social media classification.

Given the impressive performance of CLMs
across many NLP tasks, a natural question is
whether such models can be used to learn high-
quality static word vectors, and whether the result-
ing vectors have any advantages compared to those
from standard word embedding models (Mikolov
et al., 2013; Pennington et al., 2014). A number
of recent works have begun to explore this ques-
tion (Ethayarajh, 2019; Bommasani et al., 2020;
Vulic et al., 2020). Broadly speaking, the idea is
to construct a static word vector for a word w by
randomly selecting sentences in which this word
occurs, and then averaging the contextualized rep-
resentations of w across these sentences.

Since it is not usually computationally feasible
to run the CLM on all sentences mentioning w, a
sample of such sentences has to be selected. This
begs the question: how should these sentences be
chosen? In the aforementioned works, sentences
are selected at random, but this may not be opti-
mal. If we want to use the resulting word vectors in
downstream tasks such as zero-shot learning or on-
tology completion, we need vectors that capture the
salient semantic properties of words. Intuitively,
we should thus favor sentences that best reflect
these properties. For instance, many of the men-
tions of the word banana on Wikipedia are about
the cultivation and export of bananas, and about the
specifics of particular banana cultivars. By learn-
ing a static word vector from such sentences, we
may end up with a vector that does not reflect our
commonsense understanding of bananas, e.g. the
fact that they are curved, yellow and sweet.

The main aim of this paper is to analyze to what

185

extent topic models such as Latent Dirichlet Allo-
cation (Blei et al., 2003) can be used to address
this issue. Continuing the previous example, we
may find that the word banana occurs in Wikipedia
articles on the following topics: economics, biol-
ogy, food or popular culture. While most mentions
might be in articles on economics and biology, it
is the latter two topics that are most relevant for
modelling the commonsense properties of bananas.
Note that the optimal selection of topics is task-
dependent, e.g. in an NLP system for analyzing
financial news, the economics topic would clearly
be more relevant. For this reason, we propose to
learn a word vector for each topic separately. Since
the optimal choice of topics is task-dependent, we
then rely on a task-specific supervision signal to
make a soft selection of these topic-specific vec-
tors.

Another important question is how CLMs should
be used to obtain contextualized word vectors.
Given a sentence mentioning w, a model such as
BERT-base constructs 12 vector representations of
w, i.e. one for each layer of the transformer stack.
Previous work has suggested to use the average of
particular subsets of these vectors. In particular,
Vulic et al. (2020) found that lexical semantics is
most prevalent in the representations from the early
layers, and that averaging vectors from the first few
layers seems to give good results on many bench-
marks. On the other hand, these early layers are
least affected by the sentence context (Ethayarajh,
2019), hence such strategies might not be suitable
for learning topic-specific vectors. We therefore
also explore a different strategy, which is to mask
the target word in the given sentence, i.e. to replace
the entire word by a single [MASK] token, and to
use the vector representation of this token at the
final layer. The resulting vector representations
thus specifically encode what the given sentence
reveals about the target word, making this a natural
strategy for learning topic-specific vectors.

Note that there is a clear relationship between
this latter strategy and CBOW (Mikolov et al.,
2013): where in CBOW the vector representation
of w is obtained by averaging the vector represen-
tations of the context words that co-occur with w,
we similarly represent words by averaging context
representations. The main advantage compared to
CBOW thus comes from the higher-quality context
encodings that can be obtained using CLMs. The
main challenge, as already mentioned, is that we

cannot consider all the mentions of w, whereas this
is typically feasible for CBOW (and other standard
word embedding models). Our contributions can
be summarized as follows1:

• We analyze different strategies for deriving
word vectors from CLMs, which rely on sam-
pling mentions of the target word from a text
collection.

• We propose the use of topic models to im-
prove how these mentions are sampled. In
particular, rather than learning a single vector
representation for the target word, we learn
one vector for each sufficiently relevant topic.

• We propose to construct the final representa-
tion of a word w as a weighted average of
different vectors. This allows us to combine
multiple vectors without increasing the dimen-
sionality of the final representations. We use
this approach for combining different topic-
specific vectors and for combining vectors
from different transformer layers.

2 Related Work

A few recent works have already proposed strate-
gies for computing static word vectors from CLMs.
While Ethayarajh (2019) relied on principal compo-
nents of individual transformer layers for this pur-
pose, most approaches rely on averaging the con-
textualised representations of randomly selected
mentions of the target word (Bommasani et al.,
2020; Vulic et al., 2020). Several authors have
pointed out that the representations obtained from
early layers tend to perform better in lexical se-
mantics probing tasks. However, Bommasani et al.
(2020) found that the optimal layer depends on the
number of sampled mentions, with later layers per-
forming better when a large number of mentions
is used. Rather than fixing a single layer, Vulic
et al. (2020) advocated averaging representations
from several layers. Note that none of the afore-
mentioned methods uses masking when computing
contextualized vectors. This means that the final
representations may have to be obtained by pooling
different word-piece vectors, usually by averaging
them.

1All code and data to replicate our experiments is
available at https://github.com/Activeyixiao/
topic-specific-vector/.

186

As an alternative to using topic models, Chronis
and Erk (2020) cluster the contextual word vec-
tors, obtained from mentions of the same word.
The resulting multi-prototype representation is then
used to compute word similarity in an adaptive
way. Along similar lines, Amrami and Goldberg
(2019) cluster contextual word vectors for word
sense induction. Thompson and Mimno (2020)
showed that clustering the contextual representa-
tions of a given set of words can produce clusters
of semantically related words, which were found
to be similar in spirit to LDA topics. The idea of
learning topic-specific representations of words has
been extensively studied in the context of standard
word embeddings (Liu et al., 2015; Li et al., 2016;
Shi et al., 2017; Zhu et al., 2020). To the best of
our knowledge, learning topic-specific word rep-
resentations using CLMs has not yet been studied.
More broadly, however, some recent methods have
combined CLMs with topic models. For instance,
Peinelt et al. (2020) use such a combination for pre-
dicting semantic similarity. In particular they use
the LDA or GSDMM topic distribution of two sen-
tences to supplement their BERT encoding. Finally,
Bianchi et al. (2020) suggested using sentence em-
beddings from SBERT (Reimers and Gurevych,
2019) as input to a neural topic model, with the
aim of learning more coherent topics.

3 Constructing Word Vectors

In Section 3.1, we first describe different strategies
for deriving static word vectors from CLMs. Sec-
tion 3.2 subsequently describes how we choose the
most relevant topics for each word, and how we
sample topic-specific word mentions. Finally, in
Section 3.3 we explain how the resulting topic-
specific representations are combined to obtain
task-specific word vectors.

3.1 Obtaining Contextualized Word Vectors

We first briefly recall the basics of the BERT con-
textualised language model. BERT represents a
sentence s as a sequence of word-pieces w1..., wn.
Frequent words will typically be represented as
a single word-piece, but in general, word-pieces
may correspond to sub-word tokens. Each of these
word-pieces w is represented as an input vector,
which is constructed from a static word-piece em-
bedding w0 (together with vectors that encode at
which position in the sentence the word appears,
and in which sentence). The resulting sequence of

word-piece vectors is then fed to a stack of 12 (for
BERT-base) or 24 (for BERT-large) transformer
layers. Let us write ws

i for the representation of
word-piece w in the ith transformer layer. We will
refer to the representation in the last layer, i.e. ws

12

for BERT-base and ws
24 for BERT-large, as the out-

put vector. When BERT is trained, some of the
word-pieces are replaced by a special [MASK] to-
ken. The corresponding output vector then encodes
a prediction of the masked word-piece.

Given a sentence s in which the word w is men-
tioned, there are several ways in which BERT and
related models can be used to obtain a vector repre-
sentation of w. If w consists of a single word-piece,
a natural strategy is to feed the sentence s as in-
put and use the output vector as the representation
of w. However, several authors have found that it
can be beneficial to also take into account some
or all of the earlier transformer layers, where fine-
grained word senses are mostly captured in the
later layers (Reif et al., 2019) but word-level lex-
ical semantic features are primarily found in the
earlier layers (Vulic et al., 2020). For this reason,
we will also experiment with models in which the
vectors ws

1, ...,w
s
12 (or ws

1, ...,w
s
24 in the case of

BERT-large) are all used. In particular, our model
will construct a weighted average of these vectors,
where the weights will be learned from training
data (see Section 3.3). For words that consist of
multiple word-pieces, following common practice,
we compute the representation of w as the aver-
age of its word-piece vectors. For instance, this
strategy was found to outperform other aggregation
strategies in Bommasani et al. (2020).

We will also experiment with a strategy that re-
lies on masking. In this case, the word w is re-
placed by a single [MASK] token (even if w would
normally be tokenized into more than one word-
piece). Let us write ms

w for the output vector corre-
sponding to this [MASK] token. Since this vector
corresponds to BERT’s prediction of what word
is missing, this vector should intuitively capture
the properties of w that are asserted in the given
sentence. We can thus expect that these vectors
ms
w will be more sensitive to how the sentences

mentioning w are chosen. Note that in this case,
we only use the output layer, as the earlier layers
are less likely to be informative.

To obtain a static representation of w, we first se-
lect a set of sentences s1, ..., sn in which w is men-
tioned. Then we compute vector representations

187

ws1 , ...,wsn of w from each of these sentences,
using any of the aforementioned strategies. Our fi-
nal representation w is then obtained by averaging
these sentence-specific representations, i.e.:

w =

∑n
i=1w

si

‖∑n
i=1w

si‖

3.2 Selecting Topic-Specific Mentions
To construct a vector representation of w, we need
to select some sentences s1, ..., sn mentioning w.
While these sentences are normally selected ran-
domly, our hypothesis in this paper is that purely
random strategies may not be optimal. Intuitively,
this is because the contexts in which a given word
w is most frequently mentioned might not be the
most informative ones, i.e. they may not be the
contexts which best characterize the properties of
w that matter for a given task. To test this hypothe-
sis, we experiment with a strategy based on topic
models. Our strategy relies on the following steps:

1. Identify the topics which are most relevant for
the target word w;

2. For each of the selected topics t, select sen-
tences st1, ..., s

t
n mentioning w from docu-

ments that are closely related to this topic.

For each of the selected topics t, we can then use
the sentences st1, ..., s

t
n to construct a topic-specific

vector wt, using any of the strategies from Section
3.1. The final representation of w will be com-
puted as a weighted average of these topic-specific
vectors, as will be explained in Section 3.3.

We now explain these two steps in more detail.
First, we use Latent Dirichlet Allocation (LDA)
(Blei et al., 2003) to obtain a representation of each
document d in the considered corpus as a multino-
mial distribution over m topics. Let us write τi(d)
for the weight of topic i in the representation of
document d, where

∑m
i=1 τi(d) = 1. Suppose that

the word w is mentioned Nw times in the corpus,
and let dwj be the document in which the jth men-
tion of w occurs. Then we define the importance
of topic i for word w as follows:

τi(w) =
1

Nw

Nw∑

j=1

τi(d
w
j) (1)

In other words, the importance of topic i for word
w is defined as the average importance of topic i
for the documents in which w occurs. To select

the set of topics Tw that are relevant to w, we rank
the topics from most to least important and then
select the smallest set of topics whose cumulative
importance is at least 60%, i.e. Tw is the smallest
set of topics such that

∑
ti∈Tw τi(w) ≥ 0.6.

For each of the topics ti in Tw we select the cor-
responding sentences st1, ..., s

t
n as follows. We rank

all the documents in which w is mentioned accord-
ing to τi(d). Then, starting with the document with
the highest score (i.e. the document for which topic
i is most important), we iterate over the ranked list
of documents, selecting all sentences from these
documents in which w is mentioned, until we have
obtained a total of n sentences.

3.3 Combining Word Representations

Section 3.1 highlighted a number of strategies that
could be used to construct a vector representation
of a target word w. As mentioned before, it can be
beneficial to combine vector representations from
different transformer layers. To this end, we pro-
pose to learn a weighted average of the different in-
put vectors, using a task specific supervision signal.
In particular, let w1, ...,wk be the different vec-
tor representations we have available for word w
(e.g. the vectors from different transformer layers).
To combine these vectors, we compute a weighted
average as follows:

λi =
exp(ai)∑k
j=1 exp(ai)

(2)

w =

∑
i λiwi

‖∑i λiwi‖
(3)

where the scalar parameters a1, ...ak ∈ R are
jointly learned with the model in which w is used.
Another possibility would be to concatenate the
input vectors w1, ...,wk. However, this signifi-
cantly increases the dimensionality of the word
representations, which can be challenging in down-
stream applications. In initial experiments, we also
confirmed that this concatenation strategy indeed
under-performs the use of weighted averages.

If topic-specific vectors are used, we also want
to compute a weighted average of the available
vectors. However, (2)–(3) cannot be used in this
case, because the set of topics for which topic-
specific vectors are available differs from word to
word. Let us write wi

topic for the representation of
word w that was obtained for topic ti, where we

188

assume wi
topic = 0 if ti /∈ Tw. We then define:

µwi =
exp(bi) · 1[ti ∈ Tw]∑k
j=1 exp(bi) · 1[tj ∈ Tw]

(4)

wtopic =

∑
i µ

w
i w

i
topic

‖∑i µ
w
i w

i
topic‖

(5)

where 1[ti ∈ Tw] = 1 if topic ti is considered
to be relevant for word w (i.e. ti ∈ Tw), and
1[ti ∈ Tw] = 0 otherwise. Note that the soft-
max function in (4) relies on the scalar parameters
b1, ..., bk ∈ R, which are independent of w. How-
ever, the softmax is selectively applied to those
topics that are relevant to w, which is why the
resulting weight µwi is dependent on w, or more
precisely, on the set of topics Tw.

4 Evaluation

We compare the proposed strategy with standard
word embeddings and existing CLM-based strate-
gies. In Section 4.1 we first describe our experimen-
tal setup. Section 4.2 then provides an overview of
the datasets we used for the experiments, where we
focus on lexical classification benchmarks. These
benchmarks in particular allow us to assess how
well various semantic properties can be predicted
from the word vectors. The experimental results
are discussed in Section 4.3 and a qualitative anal-
ysis is presented in Section 4.4.

4.1 Experimental Setup

We experiment with a number of different strategies
for obtaining word vectors:

Clast We take the vector representation of w from
the last transformer layer (i.e. ws

12 or ws
24).

Cinput We take the input embedding of w (i.e. w0).

Cavg We take the average of w0,w
s
1, ...,w

s
12 for

the base models and w0,w
s
1, ...,w

s
24 for the

large models.

Call We use all of w0,w
s
1, ...,w

s
12 as input for the

base models, and all of w0,w
s
1, ...,w

s
24 for

the large models. These vectors are then ag-
gregated using (2)–(3), i.e. we use a learned
soft selection of the transformer layers.

Cmask We replace the target word by [MASK] and
use the corresponding output vector.

For words consisting of more than one word-piece,
we average the corresponding vectors in all cases,
except for Cmask where we always end up with a
single vector (i.e. we replace the entire word by
a single [MASK] token). We also consider three
variants that rely on topic-specific vectors:

Tlast We learn topic-specific vectors using the last
transformer layers. These vectors are then
used as input to (4)–(5).

Tavg Similar to the previous case but using the
average of all transformer layers.

Tmask Similar to the previous cases but using the
output vector of the masked word mention.

Furthermore, we consider variants of Tlast, Tavg
and Tmask in which a standard (i.e. unweighted)
average of the available topic-specific vectors is
computed, instead of relying on (4)–(5). We will re-
fer to these averaging-based variants as Alast, Aavg
and Amask. As baselines, we also consider the two
Word2vec models (Mikolov et al., 2013):

SG 300-dimensional Skip-gram vectors trained on
a May 2016 dump of the English Wikipedia,
using a window size of 5 tokens, and mini-
mum frequency threshold of 10.

CBOW 300-dimensional Continuous Bag-of-
Words vectors trained on the same corpus and
with the same hyperparameters as SG.

We show results for four pre-trained CLMs (De-
vlin et al., 2019; Liu et al., 2019): BERT-base-
uncased, BERT-large-uncased, RoBERTa-base-
uncased, RoBERTa-large-uncased2. As the corpus
for sampling word mentions, we used the same
Wikipedia dump as for training the word embed-
dings models. For Cmask, Clast, Cavg and Call we
selected 500 mentions. For the topic-specific strate-
gies (Tlast, Tavg and Tmask) we selected 100 men-
tions per topic. To obtain the topic assignments, we
used Latent Dirichlet Allocation (Blei et al., 2003)
with 25 topics. We set α = 0.0001 to restrict the
total number of topics attributed to a document, and
use default values for the other hyper-parameters3.
To select the relevant topics for a given word w,
we find the smallest set of topics whose cumula-
tive importance score τi(w) is at least 60%, with

2We used the implementations from https://github.
com/huggingface/transformers.

3We used the implementation from https:
//radimrehurek.com/gensim/wiki.html.

189

a maximum of 6 topics. In the experiments, we
restrict the vocabulary to those words with at least
100 occurrences in Wikipedia.

4.2 Datasets
For the experiments, we focus on a number of lexi-
cal classification tasks, where categories of individ-
ual words need to be predicted. In particular, we
used two datasets which are focused on common-
sense properties (e.g. dangerous): the extension
of the McRae feature norms dataset (McRae et al.,
2005) that was introduced by Forbes et al. (2019)4

and the CSLB Concept Property Norms5. We fur-
thermore used the WordNet supersenses dataset6,
which groups nouns into broad categories (e.g. hu-
man). Finally, we also used the BabelNet domains
dataset7 (Camacho-Collados and Navigli, 2017),
which assigns lexical entities to thematic domains
(e.g. music).

In our experiments, we have only considered
properties/classes for which sufficient positive ex-
amples are available, i.e. at least 10 for McRae,
30 for CSLB, and 100 for WordNet supersenses
and BabelNet domains. For the McRae dataset, we
used the standard training-validation-test split. For
the other datasets, we used random splits of 60%
for training, 20% for tuning and 20% for testing.
An overview of the datasets is shown in Table 2.

For all datasets, we consider a separate binary
classification problem for each property and we re-
port the (unweighted) average of the F1 scores for
the different properties. To classify words, we feed
their word vector directly to a sigmoid classifica-
tion layer. We optimise the network using AdamW
with a cross-entropy loss. The batch size and learn-
ing rate were tuned, with possible values chosen
from 4,8,16 and 0.01, 0.005, 0.001, 0.0001 respec-
tively. Note that for Call and the topic-specific
variants, the classification network jointly learns
the parameters of the classification layer and the
attention weights in (2) and (4) for combining the
input vectors.

4.3 Results
The results are shown in Table 1. We consistently
see that the topic-specific variants outperform the

4https://github.com/mbforbes/
physical-commonsense

5https://cslb.psychol.cam.ac.uk/
propnorms

6https://wordnet.princeton.edu/
download

7http://lcl.uniroma1.it/babeldomains/

different C-variants, often by a substantial mar-
gin. This confirms our main hypothesis, namely
that using topic models to determine how con-
text sentences are selected has a material effect
on the quality of the resulting word representations.
Among the C-variants, the best results are obtained
by Cmask and Clast. None of the three T-variants
consistently outperforms the others. Surprisingly,
the A-variants outperform the corresponding T-
variants in several cases. This suggests that the out-
performance of the topic-specific vectors primarily
comes from the fact that the context sentences for
each word were sampled in a more balanced way
(i.e. from documents covering a broader range of
topics), rather than from the ability to adapt the
topic weights based on the task. This is a clear ben-
efit for applications, as the A-variants allow us to
simply represent each word as a static word vector.

The performance of SG and CBOW is also sur-
prisingly strong. In particular, these traditional
word embedding models outperform all of the C-
variants, as well as the T and A variants in some
cases, especially for BERT-base and RoBERTa-
base. This seems to be related, at least in part, to
the lower dimensionality of these vectors. The clas-
sification network has to be learned from a rather
small number of examples, especially for McRae
and CSLB. Having 768 or 1024 dimensional in-
put vectors can be problematic in such cases. To
analyse this effect, we used Principal Component
Analysis (PCA) to reduce the dimensionality of the
CLM-derived vectors to 300. For this experiment,
we focused in particular on Cmask and Tmask. The
results are also shown in Table 1 as Cmask-PCA
and Tmask-PCA. As can be seen, this dimension-
ality reduction step has a clearly beneficial effect,
with Tmask-PCA outperforming all baselines, ex-
cept for the BabelNet domains benchmark. The
latter benchmark is focused on thematic similarity
rather than semantic properties, which the CLM-
based representations seem to struggle with.

4.4 Qualitative analysis

Topic-specific vectors can be expected to focus on
different properties, depending on the chosen topic.
In this section, we present a qualitative analysis
in support of this view. In Table 3 we list, for a
sample of words from the WordNet supersenses
dataset, the top 5 nearest neighbours per topic in
terms of cosine similarity. For this analysis, we
used the BERT-base masked embeddings. We can

190

BERT-base BERT-large RoBERTa-base RoBERTa-large

MC CS SS BD MC CS SS BD MC CS SS BD MC CS SS BD

SG 59.6 54.5 55.6 49.1 59.6 54.5 55.6 49.1 59.6 54.5 55.6 49.1 59.6 54.5 55.6 49.1
CBOW 61.1 50.6 48.4 45.0 61.1 50.6 48.4 45.0 61.1 50.6 48.4 45.0 61.1 50.6 48.4 45.0

Cmask 54.6 44.0 48.8 38.9 52.0 43.0 48.7 38.7 56.0 43.4 47.1 42.1 55.8 42.3 47.0 38.1
Clast 52.9 45.1 46.7 38.4 54.3 46.2 48.2 39.6 56.5 42.2 46.1 37.3 56.3 43.8 46.5 37.8
Cinput 48.9 32.2 41.1 34.8 53.1 33.0 39.0 34.5 42.1 25.6 35.2 31.8 51.3 31.4 28.6 36.0
Cavg 45.9 32.8 44.1 36.4 50.0 37.1 42.7 36.7 39.4 21.6 30.8 28.7 43.7 22.9 30.1 28.2
Call 45.9 31.0 41.3 35.4 45.0 33.7 43.4 24.6 32.8 19.0 25.9 24.7 37.5 21.2 30.4 28.6

Tmask 58.6 54.1 60.1 45.8 62.8 54.6 61.4 46.2 56.4 49.4 56.7 42.1 59.6 50.4 57.2 42.1
Tlast 63.6 51.8 59.5 47.3 60.5 54.8 61.2 49.2 52.8 40.1 54.6 41.2 60.2 48.5 59.5 45.2
Tavg 61.0 52.7 59.6 42.3 65.2 52.4 60.7 48.4 54.2 39.9 55.9 41.5 59.5 46.8 60.0 45.2

Amask 61.6 53.5 59.6 41.5 63.0 56.4 60.6 41.5 61.2 55.3 59.6 40.6 63.4 57.1 61.2 42.3
Alast 60.8 49.6 57.9 44.4 61.4 55.5 60.3 46.7 50.3 36.8 56.5 39. 7 59.5 47.3 58.0 41.2
Aavg 60.7 49.7 57.9 44.4 63.9 52.0 59.4 44.0 55.6 40.6 56.4 39.8 59.4 47.3 58.0 41.2

Cmask-PCA 56.8 46.4 49.2 38.8 56.6 43.5 48.4 39.2 58.8 51.6 50.4 39.2 58.3 49.8 49.3 39.3
Tmask-PCA 63.3 56.2 62.6 46.9 64.4 57.3 60.6 48.0 61.6 55.8 62.5 46.0 65.4 56.3 64.1 46.4

Table 1: Results of lexical feature classification experiments for the extended McRae feature norms (MC), CSLB
norms (CS), WordNet Supersenses (SS) and BabelNet domains (BD). Results are reported in terms of F1 (%).

Figure 1: BERT-base topic-specific vectors when using the output vectors without using masking (left) and with
masking (right). Words have been selected from the McRae dataset.

Dataset Type Words Properties
McRae Commonsense 475 49
CSLB Commonsense 570 54
WN supersenses Taxonomic 24,324 24
BN domains Topical 43,319 34

Table 2: Overview of the considered datasets.

see that for the word ‘partner’, its topic-specific em-
beddings correspond to its usage in the context of
‘finance’, ‘stock market’ and ‘fiction’. These three
embeddings roughly correspond to three different
senses of the word8. This de-conflation or implicit

8In fact, we can directly pinpoint these vectors to the fol-
lowing WordNet (Miller, 1995) senses: partner.n.03,
collaborator.n.03 and spouse.n.01.

disambiguation is also found for words such as
‘cell’, ‘port’, ‘bulb’ or ‘mail’, which shows a strik-
ing relevance of the role of mail in the election
topic, being semantically similar in the correspond-
ing vector space to words such as ‘telemarketing’,
‘spam’ or ‘wiretap’. In the case of ‘fingerprint’, we
can also see some implicit disambiguation (distin-
guishing between fingerprinting in computer sci-
ence, as a form of hashing, and the more tradi-
tional sense). However, we also see a more topical
distinction, revealing differences between the role
played by fingerprints in fictional works and foren-
sic research. This tendency of capturing different
contexts is more evidently shown in the last four
examples. First, for ‘sky’ and ‘strength’, the topic-

191

WORD TOPIC NEAREST NEIGHBOURS

partner
{research, professor, science, education, institute} beneficiary, creditor, investor, employer, stockholder
{football, republican, coach, senate, representatives} lobbyist, bookkeeper, cashier, stockbroker, clerk
{game, book, novel, story, reception} nanny, spouse, lover, friend, secretary

cell
{protein, disease, medical, cancer, cells} lymphocyte, macrophage, axon, astrocyte, organelle
{food, plant, water, gas, power, oil} electrode, electrolyte, cathode, anode, substrate
{physics, mathematics, space, ngc, theory} surface, torus, mesh, grid, cone

port
{station, building, railway, historic, church} harbor, seaport, dock, waterfront, city
{radio, station, fm, software, data, forewings} link, gateway, router, line, socket
{game, book, novel, story, reception} version, remake, compilation, patch, modification

bulb
{station, building, railway, historic, church} lamp, transformer, dynamo, projector, lighting
{protein, disease, medical, cancer, cells} epithelium, ganglion, nucleus, gland, cortex
{species, genus, described, description, flowers} rootstock, fern, vine, tuber, clover

mail
{station, building, railway, historic, church} cargo, grain, baggage, coal, livestock
{game, book, novel, story, reception} paper, jewelry, telephone, telegraph, typewriter
{party, election, minister, elected, elections} telemarketing, spam, wiretap, internet, money

fingerprint
{radio, station, fm, software, data, forewings} signature, checksum, bitmap, texture, text
{game, book, novel, story, reception} cadaver, skull, wiretap, body, tooth
{party, election, minister, elected, elections} wiretap, forensics, postmortem, polygraph, check

sky
{greek, ancient, castle, king, roman} underworld, sun, afterlife, zodiac, moon
{river, lake, mountain, island, village} horizon, ocean, earth, sun, globe
{physics, mathematics, space, ngc, theory} ionosphere, sun, globe, earth, heliosphere

strength
{food, plant, water, gas, power} stiffness, ductility, hardness, permeability, viscosity
{game, book, novel, story, reception} intelligence, agility, charisma, power, telepathy
{army, regiment, navy, ship, air} morale, firepower, resistance, force, garrison

noon {physics, mathematics, space, ngc, theory} declination, night, equinox, perihelion, latitude
{army, regiment, navy, ship, air} dawn, sunset, night, morning, shore

galaxy {physics, mathematics, space, ngc, theory} nebula, quasar, pulsar, nova, star
{game, book, novel, story, reception} globe, future, world, planet, nation

Table 3: Nearest neighbours of topic-specific embeddings for a sample of words from the WordNet SuperSenses
dataset, using BERT-base embeddings. The top 6 selected samples illustrate clear topic distributions per word
sense, and the bottom 4 also show topical properties within the same sense. The most relevant words for each topic
are shown under the TOPIC column.

192

wise embeddings do not represent different senses
of these words, but rather indicate different types
of usage (possibly related to cultural or common-
sense properties). Specifically, we see that the same
sense of ‘sky’ is used in mythological, landscap-
ing and geological contexts. Likewise, ‘strength’
is clustered into different mentions, but while this
word also preserves the same sense, it is clearly
used in different contexts: physical, as a human
feature, and in military contexts. Finally, ‘noon’
and ‘galaxy’ (which only occur in two topics), also
show this topicality. In both cases, we have repre-
sentations that reflect their physics and everyday
usages, for the same senses of these words.

As a final analysis, In Figure 1 we plot a two-
dimensional PCA-reduced visualization of selected
words from the McRae dataset, using two versions
of the topic-specific vectors: Tmask and Tlast. In
both cases, BERT-base was used to obtain the vec-
tors. We select four pairs of concepts which are
topically related, which we plot with the same
datapoint marker (animals, plants, weapons and
musical instruments). For Tlast, we can see that
the different topic-specific representations of the
same word are clustered together, which is in ac-
cordance with the findings from Ethayarajh (2019).
For Tmask, we can see that the representations of
words with similar properties (e.g. cheetah and
hyena) become more similar, suggesting that Tmask
is more tailored towards modelling the semantic
properties of words, perhaps at the expense of a
reduced ability to differentiate between closely re-
lated words. The case of turnip and peach is partic-
ularly striking, as the vectors are clearly separated
in the Tlast plot, while being clustered together in
the Tmask plot.

5 Conclusions

We have proposed a strategy for learning static
word vectors, in which topic models are used to
help select diverse mentions of a given target word
and a contextualized language model is subse-
quently used to infer vector representations from
the selected mentions. We found that selecting an
equal number of mentions per topic substantially
outperforms purely random selection strategies.
We also considered the possibility of learning a
weighted average of topic-specific vector represen-
tations, which in principle should allow us to “tune”
word representations to different tasks, by learning
task-specific topic importance weights. However,

in practice we found that a standard average of the
topic specific vectors leads to a comparable perfor-
mance, suggesting that the outperformance of our
vectors comes from the fact that they are obtained
from a more diverse set of contexts.

Acknowledgments

This work was performed using the computational
facilities of the Advanced Research Computing @
Cardiff (ARCCA) Division, Cardiff University and
using HPC resources from GENCI-IDRIS (Grant
2021-[AD011012273]).

References
Israa Alghanmi, Luis Espinosa Anke, and Steven

Schockaert. 2020. Combining bert with static word
embeddings for categorizing social media. In Pro-
ceedings of the Sixth Workshop on Noisy User-
generated Text, pages 28–33.

Asaf Amrami and Yoav Goldberg. 2019. To-
wards better substitution-based word sense induc-
tion. arXiv:1905.12598.

Federico Bianchi, Silvia Terragni, and Dirk Hovy.
2020. Pre-training is a hot topic: Contextual-
ized document embeddings improve topic coher-
ence. CoRR, abs/2004.03974.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent dirichlet allocation. J. Mach. Learn.
Res., 3:993–1022.

Rishi Bommasani, Kelly Davis, and Claire Cardie.
2020. Interpreting pretrained contextualized repre-
sentations via reductions to static embeddings. In
Proceedings ACL, pages 4758–4781.

Georgeta Bordea, Paul Buitelaar, Stefano Faralli, and
Roberto Navigli. 2015. SemEval-2015 task 17: Tax-
onomy extraction evaluation (TExEval). In Proceed-
ings SemEval, pages 902–910.

Georgeta Bordea, Els Lefever, and Paul Buitelaar. 2016.
Semeval-2016 task 13: Taxonomy extraction evalu-
ation (texeval-2). In Proceedings SemEval, pages
1081–1091.

Jose Camacho-Collados and Roberto Navigli. 2017.
BabelDomains: Large-scale domain labeling of lex-
ical resources. In Proceedings EACL, pages 223–
228.

Gabriella Chronis and Katrin Erk. 2020. When is a
bishop not like a rook? when it’s like a rabbi! multi-
prototype BERT embeddings for estimating seman-
tic relationships. In Proceedings CoNLL, pages 227–
244.

193

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings NAACL-HLT.

Kawin Ethayarajh. 2019. How contextual are contex-
tualized word representations? comparing the geom-
etry of BERT, ELMo, and GPT-2 embeddings. In
Proceedings EMNLP, pages 55–65.

Maxwell Forbes, Ari Holtzman, and Yejin Choi. 2019.
Do neural language representations learn physical
commonsense? Proceedings CogSci.

Prodromos Kolyvakis, Alexandros Kalousis, and Dim-
itris Kiritsis. 2018. Deepalignment: Unsupervised
ontology matching with refined word vectors. In
Proceedings NAACL-HLT, pages 787–798.

Na Li, Zied Bouraoui, and Steven Schockaert. 2019.
Ontology completion using graph convolutional net-
works. In Proceedings ISWC, pages 435–452.

Shaohua Li, Tat-Seng Chua, Jun Zhu, and Chunyan
Miao. 2016. Generative topic embedding: a contin-
uous representation of documents. In Proceedings
ACL.

Qianchu Liu, Diana McCarthy, and Anna Korhonen.
2020. Towards better context-aware lexical se-
mantics: Adjusting contextualized representations
through static anchors. In Proceedings EMNLP,
pages 4066–4075.

Yang Liu, Zhiyuan Liu, Tat-Seng Chua, and Maosong
Sun. 2015. Topical word embeddings. In Proceed-
ings AAAI, pages 2418–2424.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Yukun Ma, Erik Cambria, and Sa Gao. 2016. Label
embedding for zero-shot fine-grained named entity
typing. In Proceedings COLING, pages 171–180.

Ken McRae et al. 2005. Semantic feature production
norms for a large set of living and nonliving things.
Behavior research methods, 37:547–559.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Proceedings ICLR.

George A Miller. 1995. Wordnet: a lexical database for
English. Communications of the ACM, 38(11):39–
41.

Fedor Nikolaev and Alexander Kotov. 2020. Joint
word and entity embeddings for entity retrieval from
a knowledge graph. In Proceedings ECIR, pages
141–155.

Nicole Peinelt, Dong Nguyen, and Maria Liakata. 2020.
tBERT: Topic models and BERT joining forces for
semantic similarity detection. In Proceedings ACL,
pages 7047–7055.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. GloVe: Global vectors for word rep-
resentation. In Proceedings EMNLP, pages 1532–
1543.

Emily Reif, Ann Yuan, Martin Wattenberg, Fernanda B.
Viégas, Andy Coenen, Adam Pearce, and Been Kim.
2019. Visualizing and measuring the geometry of
BERT. In Proceedings NeurIPS, pages 8592–8600.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings EMNLP, pages 3982–
3992.

Bei Shi, Wai Lam, Shoaib Jameel, Steven Schockaert,
and Kwun Ping Lai. 2017. Jointly learning word em-
beddings and latent topics. In Proceedings SIGIR,
pages 375–384.

Richard Socher, Milind Ganjoo, Christopher D Man-
ning, and Andrew Ng. 2013. Zero-shot learning
through cross-modal transfer. In Proceedings NIPS,
pages 935–943.

Laure Thompson and David Mimno. 2020. Topic mod-
eling with contextualized word representation clus-
ters. CoRR, abs/2010.12626.

Ivan Vulic, Edoardo Maria Ponti, Robert Litschko,
Goran Glavas, and Anna Korhonen. 2020. Probing
pretrained language models for lexical semantics. In
Proceedings EMNLP, pages 7222–7240.

Lixing Zhu, Deyu Zhou, and Yulan He. 2020. A neural
generative model for joint learning topics and topic-
specific word embeddings. Trans. Assoc. Comput.
Linguistics, 8:471–485.

194

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 195–205
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

Zero-shot Sequence Labeling for Transformer-based Sentence Classifiers

Kamil Bujel
Department of Computing
Imperial College London

United Kingdom
kdb19@imperial.ac.uk

Helen Yannakoudakis
Department of Informatics

King’s College London
United Kingdom

helen.yannakoudakis@kcl.ac.uk

Marek Rei
Department of Computing
Imperial College London

United Kingdom
marek.rei@imperial.ac.uk

Abstract

We investigate how sentence-level transform-
ers can be modified into effective sequence la-
belers at the token level without any direct su-
pervision. Existing approaches to zero-shot se-
quence labeling do not perform well when ap-
plied on transformer-based architectures. As
transformers contain multiple layers of multi-
head self-attention, information in the sen-
tence gets distributed between many tokens,
negatively affecting zero-shot token-level per-
formance. We find that a soft attention mod-
ule which explicitly encourages sharpness of
attention weights can significantly outperform
existing methods.

1 Introduction

Sequence labeling and sentence classification can
represent facets of the same task at different gran-
ularities; for example, detecting grammar errors
and predicting the grammaticality of sentences.
Transformer-based architectures such as BERT
(Devlin et al., 2019) and RoBERTa (Liu et al.,
2019) have been shown to achieve state-of-the-art
results on both sequence labeling (Bell et al., 2019)
and sentence classification (Sun et al., 2019) prob-
lems. However, such tasks are typically treated in
isolation rather than within a unified approach.

In this paper, we investigate methods for in-
ferring token-level predictions from transformer
models trained only on sentence-level annotations.
The ability to classify individual tokens without
direct supervision opens possibilities for training
sequence labeling models on tasks and datasets
where only sentence-level or document-level an-
notation is available. In addition, attention-based
architectures allow us to directly investigate what
the model is learning and to quantitatively measure
whether its rationales (supporting evidence) for par-
ticular input sentences match human expectations.
While evaluating the faithfulness (Herman, 2017)

of a model’s rationale is still an open research ques-
tion and up for debate (Jain and Wallace, 2019;
Wiegreffe and Pinter, 2019; DeYoung et al., 2020;
Jacovi and Goldberg, 2020; Atanasova et al., 2020),
the methods explored here allow for measuring
the plausibility (agreeability to human annotators;
DeYoung et al. (2020)) of transformer-based mod-
els using existing sequence labeling datasets.

We evaluate and compare different methods for
adapting pre-trained transformer models into zero-
shot sequence labelers, trained using only gold
sentence-level signal. Our experiments show that
applying existing approaches (Rei and Søgaard,
2018) to transformer architectures is not straight-
forward – transformers already contain several lay-
ers of multi-head attention, distributing sentence-
level information across many tokens, whereas
the existing methods rely on all the information
going through one central attention module. Ap-
proaches such as LIME (Ribeiro et al., 2016) for
scoring word importance also struggle to infer cor-
rect token-level annotations in a zero-shot manner
(e.g., it achieves only 2% F-score on one of our
datasets). We find that a modified attention func-
tion is needed to allow transformers to better focus
on individual important tokens and achieve a new
state-of-the-art on zero-shot sequence labeling.

The contributions of this paper are fourfold:

• We present the first experiments utilizing (pre-
trained) sentence-level transformers as zero-
shot sequence labelers;

• We perform a systematic comparison of alter-
native methods for zero-shot sequence label-
ing on different datasets;

• We propose a novel modification of the at-
tention function that significantly improves
zero-shot sequence-labeling performance of
transformers over the previous state of the art,

195

while achieving on-par or better results on
sentence classification;

• We make our source code and models publicly
available to facilitate further research in the
field.1

2 Methods

We evaluate four different methods for turning
sentence-level transformer models into zero-shot
sequence labelers.

2.1 LIME

LIME (Ribeiro et al., 2016) generates local word-
level importance scores through a meta-model that
is trained on perturbed data generated by randomly
masking out words in the input sentence. It was
originally investigated in the context of Support
Vector Machine (Hearst et al., 1998) text classifiers
with unigram features.

We apply LIME to a RoBERTa model supervised
as a sentence classifier and investigate whether its
scores can be used for sequence labeling. We use
RoBERTa’s MASK token to mask out individual
words and allow LIME to generate 5000 masked
samples per sentence. The resulting explanation
weights are then used as classification scores for
each word, with the decision threshold fine-tuned
based on the development set performance.

Thorne et al. (2019) found LIME to outperform
attention-based approaches on the task of explain-
ing NLI models. LIME was used to probe a LSTM-
based sentence-pair classifier (Lan and Xu, 2018)
by removing tokens from the premise and hypoth-
esis sentences separately. The generated scores
were used to perform binary classification of to-
kens, with the threshold based on F1 performance
on the development set. The token-level predic-
tions were evaluated against human explanations
of the entailment relation using the e-SNLI dataset
(Camburu et al., 2018). LIME was found to outper-
form other methods, however, it was also 1000×
slower than attention-based methods at generating
these explanations.

2.2 Attention heads

The attention heads in a trained transformer model
are designed to identify and combine useful infor-
mation for a particular task. Clark et al. (2019)

1https://github.com/bujol12/
bert-seq-interpretability

found that specific heads can specialize on differ-
ent linguistic properties such as syntax and corefer-
ence. However, transformer models contain many
layers with multiple attention heads, distributing
the text representation and making it more difficult
to identify token importance for the overall task.

Given a particular head, we can obtain an im-
portance score for each token by averaging the
attention scores from all the tokens that attend to it.
In order to investigate the best possible setting, we
report results for the attention head that achieves
the highest token-level Mean Average Precision
score on the development set.

2.3 Soft attention
Rei and Søgaard (2018) described a method for
predicting token-level labels based on a bidirec-
tional LSTM (Hochreiter and Schmidhuber, 1997)
architecture supervised at the sentence-level only.
A dedicated attention module was integrated for
building sentence representations, with its atten-
tion weights also acting as token-level importance
scores. The architecture was found to outperform a
gradient-based approach on the tasks of zero-shot
sequence labeling for error detection, uncertainty
detection, and sentiment analysis.

In order to obtain a single raw attention value ẽi
for each token, biLSTM output vectors were passed
through a feedforward layer:

ei = tanh(Wehi + be) ẽi =Wẽei + bẽ (1)

where ei is the attention vector for token ti; hi
is the biLSTM output for ti; and ẽi is the single
raw attention value. We, be, Wẽ, bẽ are trainable
parameters.

Instead of softmax or sparsemax (Martins and
Astudillo, 2016), which would restrict the distribu-
tion of the scores, a soft attention based on sigmoid
activation was used to obtain importance scores:

ãi = σ(ẽi) ai =
ãi∑N
k=1 ãk

(2)

where N is the number of tokens and σ is the logis-
tic function. ãi shows the importance of a particular
token and is in the range 0 ≤ ãi ≤ 1, independent
of any other scores in the sentence; therefore, it
can be directly used for sequence labeling with a
natural threshold of 0.5. ai contains the same in-
formation but is normalized to sum up to 1 over
the whole sentence, making it suitable for attention
weights when building the sentence representation.

196

As ai and ãi are directly tied, training the former
through the sentence classification objective will
also train the latter for the sequence labeling task.

The attention values were then used to obtain the
sentence representation c by acting as weights for
the biLSTM token outputs:

c =
N∑

i=0

aihi (3)

Finally, the sentence representation c was passed
through the final feedforward layer, followed by
a sigmoid to obtain the predicted score y for the
sentence:

d = tanh(Wdc+ bd) y = σ(Wyd+ by) (4)

where d is the sentence vector, c is the sentence
representation, and y is the sentence prediction
score. Wd, bd, Wy, by are all trainable parameters.

We adapt this approach to the transformer mod-
els by attaching a separate soft attention module on
top of the token-level output representations. This
effectively ignores the CLS token, which is com-
monly used for sentence classification, and instead
builds a new sentence representation from the to-
ken representations, which replace the previously
used biLSTM outputs:

ei = tanh(WeTi + be) c =

N∑

i=0

aiTi (5)

where Ti is the contextualized embedding for token
ti. A diagram of the model architecture is included
in Appendix F.

Commonly used tokenizers for transformer mod-
els split words into subwords, while sequence la-
beling datasets are annotated at the word level. We
find that taking the maximum attention value over
all the subwords as the word-level importance score
produces good results on the development sets.
For a word wi split into tokens [tj , ..., tm], where
j,m ∈ [1, N], the resulting final word importance
score ri is then given by:

ri = max({ãj , ãj+1, ..., ãm}) (6)

During training, we optimize sentence-level bi-
nary cross-entropy as the main objective function:

L1 =

∑
j CrossEntropy(y

(j), ỹ(j))

|y| (7)

where y(j) and ỹ(j) are the predicted sentence clas-
sification logits and the gold label for the jth sen-
tence respectively. We also adopt the additional
loss functions from Rei and Søgaard (2018), which
encourage the attention weights to behave more
like token-level classifiers:

L2 =

∑
j(minj(ãi)− 0)2

|y| (8)

L3 =

∑
j(maxj(ãi)− ỹ(j))2

|y| (9)

Eq. 8 optimizes the minimum unnormalized atten-
tion to be 0 and therefore incentivizes the model
to only focus on some, but not all words; Eq. 9
ensures that some attention weights are close to
1 if the overall sentence is classified as positive.
We then jointly optimize these three loss functions
using a hyperparameter γ: L = L1 + γ(L2 + L3).

2.4 Weighted soft attention
Our experiments show that, when combined
with transformer-based models, the soft attention
method tends to spread out the attention too widely.
Instead of focusing on specific important words,
the model broadly attends to the whole sentence.
Figures 3 and 4 in Appendix A present examples
demonstrating such behaviour. As transformers
contain several layers of attention, with multiple
heads in each layer, the information in the sentence
gets distributed across all tokens before it reaches
the soft attention module at the top.

To improve this behaviour and incentivize the
model to direct information through a smaller and
more focused set of tokens, we experiment with a
weighted soft attention:

ai =
ãβi∑N
k=1 ã

β
k

(10)

where β is a hyperparamete and where values β >
1 make the weight distribution sharper, allowing
the model to focus on a smaller number of tokens.
We experiment with values of β ∈ {1, 2, 3, 4} on
the development sets and find β = 2 to signifi-
cantly improve token labeling performance without
negatively affecting sentence classification results.

3 Datasets

We investigate the performance of these methods
as zero-shot sequence labelers using three differ-
ent datasets. Gold token-level annotation in these

197

FCE BEA 2019 CoNLL 2010
Sent F1 F1 MAP Sent F1 F1 MAP Sent F1 F1 MAP

Random baseline - 23.19 33.95 - 16.73 27.01 - 1.63 14.15
RoBERTa 84.51 - - 83.66 - - 86.66 - -

Rei and Søgaard (2018) 84.75 28.73 48.56 81.27 18.53 31.69 84.16 72.42 87.82
LIME 84.51 24.60 37.90 83.66 2.09 31.41 86.66 57.14 78.44

Attention heads 84.51 24.34 48.04 83.66 19.69 40.55 86.66 25.64 79.82
Soft attention 85.62 32.16 48.90 83.41 22.92 35.79 86.25 8.45 20.04

Weighted soft attention 85.62 33.31 53.91 83.68 24.35 41.07 87.20 67.28 91.18

Table 1: Results on FCE, BEA 2019 and CoNLL 2010. Sent F1 refers to F-measure on the sentence classification
task; F1 refers to token-level classification performance; MAP is the token-level Mean Average Precision.

datasets is used for evaluation; however, the models
are trained using sentence-level labels only.

The CoNLL 2010 shared task (Farkas et al.,
2010)2 focuses on the detection of uncertainty cues
in natural language text. The dataset contains
19, 542 examples with both sentence-level uncer-
tainty labels and annotated keywords indicating
uncertainty. We use the train/test data from the task
and randomly choose 10% of the training set for
development.

We also evaluate on the task of grammatical er-
ror detection (GED) – identifying which sentences
are grammatically incorrect (i.e., contain at least
one grammatical error). The First Certificate in
English dataset FCE (Yannakoudakis et al., 2011)
consists of essays written by non-native learners of
English, annotated for grammatical errors. We use
the train/dev/test splits released by Rei and Yan-
nakoudakis (2016) for sequence labeling, with a
total of 33, 673 sentences.

In addition, we evaluate on the Write & Im-
prove (Yannakoudakis et al., 2018) and LOCNESS
(Granger, 1998) GED dataset3 (38, 692 sentences)
released as part of the BEA 2019 shared task
(Bryant et al., 2019). It contains English essays
written in response to varied topics and by English
learners from different proficiency levels, as well
as native English speakers. As the gold test set
labels are not publicly available, we evaluate on the
released development set and use 10% of the train-
ing data for tuning4. For both GED datasets, we
train the model to detect grammatically incorrect
sentences and evaluate how well the methods can
identify individual tokens that have been annotated
as errors.

2https://rgai.sed.hu/node/118
3https://www.cl.cam.ac.uk/research/nl/

bea2019st/
4https://github.com/bujol12/

bert-seq-interpretability/blob/master/
dev_indices_train_ABC.txt

4 Experimental setup

We use the pre-trained RoBERTa-base (Liu et al.,
2019) model, made available by HuggingFace
(Wolf et al., 2020), as our transformer architec-
ture. Following Mosbach et al. (2021), transformer
models are fine-tuned for 20 epochs, and the best
performing checkpoint is then chosen based on
sentence-level performance on the development set.
Each experiment is repeated with 5 different ran-
dom seeds and the averaged results are reported.
The average duration of training on Nvidia GeForce
RTX 2080Ti was 1 hour. Significance testing is per-
formed with a two-tailed paired t-test and a = 0.05.
Hyperparameteres are tuned on the development
set and presented in Appendices B and C.

The LIME and attention head methods provide
only a score without a natural decision bound-
ary for classification. Therefore, we choose their
thresholds based on the token-level F1-score on
the development set. In contrast, the soft attention
and weighted soft attention methods do not require
such additional tuning that uses token-level labels.

5 Results

The results are presented in Table 1. Each model is
trained as a sentence classifier and then evaluated
as a token labeler. The challenge of the zero-shot
sequence-labeling setting lies in the fact that the
models are trained without utilizing any gold token-
level signal; nevertheless, some methods perform
considerably better than others. For reference, we
also include a random baseline, which samples
token-level scores from the standard uniform distri-
bution; a RoBERTa model supervised as a sentence
classifier only; and the model from Rei and Søgaard
(2018) based on BiLSTMs.

We report the F1-measure on the token level
along with Mean Average Precision (MAP) for re-
turning positive tokens. The MAP metric views the
task as a ranking problem and therefore removes

198

Figure 1: Example word-level importance scores ri
(Eq. 6) of different methods applied to an excerpt
from the CoNLL10 dataset. HEAD corresponds to
attention heads; SA to soft attention; and W-SA to
weighted soft attention. We can observe how W-SA
is the only method that correctly assigns substantially
higher weights to the ‘may’ and ‘seems’ uncertainty
cues.

the dependence on specific classification thresholds.
In addition, we report the F1-measure on the main
sentence-level task to ensure the proposed methods
do not have adverse effects on sentence classifica-
tion performance. Precision and recall values are
included in Appendix E.

LIME has relatively low performance on FCE
and BEA 2019, while it achieves somewhat higher
results on CoNLL 2010. Comparing the MAP
scores, the attention head method performs sub-
stantially better, especially considering that it is
much more lightweight and requires no additional
computation. Nevertheless, both of these methods
rely on using some annotated examples to tune
their classification threshold, which precludes their
application in a truly zero-shot setting.

Combining the soft attention mechanism with
the transformer architecture provides some im-
provements over the previous methods, while also
improving over Rei and Søgaard (2018). A notable
exception is the CoNLL 2010 dataset where this
method achieves only 8% F1 and 20% MAP. Error
analysis revealed that this is due to the transformer
representations spreading attention scores evenly
between a large number of tokens, as observed in
Figure 1. Uncertainty cues in CoNLL 2010 can
span across whole sentences (e.g., ‘Either ... or

...’), with such examples encouraging the model to
distribute information even further.

The weighted soft attention modification ad-
dresses this issue and considerably improves perfor-
mance across all metrics on all datasets. Compared
to the non-weighted version of the soft attention
method, applying the extra weights leads to a sig-
nificant improvement in terms of MAP, with a mini-
mum of 5.01% absolute gain on FCE. The improve-
ments are also statistically significant compared to
the current state of the art (Rei and Søgaard, 2018):
5.35% absolute improvement on FCE; 9.38% on
BEA 2019; and 3.36% on CoNLL 2010. While
the F1 on CoNLL 2010 is slightly lower, the MAP
score is higher, indicating that the model has dif-
ficulty finding an optimal decision boundary, but
nevertheless provides a better ranking. In future
work, the weighted soft attention method for trans-
formers could potentially be combined with token
supervision in order to train robust multi-level mod-
els (Barrett et al., 2018; Rei and Søgaard, 2019).

6 Conclusion

We investigated methods for inferring token-
level predictions from transformer models trained
only on sentence-level annotations. Experiments
showed that previous approaches designed for
LSTM architectures do not perform as well when
applied to transformers. As transformer models
already contain multiple layers of multi-head at-
tention, the input representations get distributed
between many tokens, making it more difficult to
identify the importance of each individual token.
LIME was not able to accurately identify target
tokens, while the soft attention method primarily
assigned equal attention scores across most words
in a sentence. Directly using the scores from the
existing attention heads performed better than ex-
pected, but required some annotated data for tuning
the decision threshold. Modifying the soft attention
module with an explicit sharpness constraint on
the weights was found to encourage more distinct
predictions, significantly improving token-level re-
sults.

Acknowledgments

We would like to thank James Thorne for his assis-
tance in setting up the LIME experiments. Kamil
Bujel was funded by the Undergraduate Research
Opportunities Programme Bursary from the Depart-
ment of Computing at Imperial College London.

199

References

Pepa Atanasova, Jakob Grue Simonsen, Christina Li-
oma, and Isabelle Augenstein. 2020. A diagnostic
study of explainability techniques for text classifi-
cation. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 3256–3274, Online. Associa-
tion for Computational Linguistics.

Maria Barrett, Joachim Bingel, Nora Hollenstein,
Marek Rei, and Anders Søgaard. 2018. Sequence
classification with human attention. In Proceedings
of the 22nd Conference on Computational Natural
Language Learning, pages 302–312, Brussels, Bel-
gium. Association for Computational Linguistics.

Samuel Bell, Helen Yannakoudakis, and Marek Rei.
2019. Context is key: Grammatical error detec-
tion with contextual word representations. In Pro-
ceedings of the Fourteenth Workshop on Innova-
tive Use of NLP for Building Educational Applica-
tions, pages 103–115, Florence, Italy. Association
for Computational Linguistics.

Christopher Bryant, Mariano Felice, Øistein E. An-
dersen, and Ted Briscoe. 2019. The BEA-2019
shared task on grammatical error correction. In Pro-
ceedings of the Fourteenth Workshop on Innovative
Use of NLP for Building Educational Applications,
pages 52–75, Florence, Italy. Association for Com-
putational Linguistics.

Oana-Maria Camburu, Tim Rocktäschel, Thomas
Lukasiewicz, and Phil Blunsom. 2018. e-snli: Nat-
ural language inference with natural language expla-
nations. In NeurIPS, pages 9560–9572.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for
NLP, pages 276–286, Florence, Italy. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani,
Eric Lehman, Caiming Xiong, Richard Socher, and
Byron C. Wallace. 2020. ERASER: A benchmark to
evaluate rationalized NLP models. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4443–4458, On-
line. Association for Computational Linguistics.

Richárd Farkas, Veronika Vincze, György Móra, János
Csirik, and György Szarvas. 2010. The CoNLL-
2010 shared task: Learning to detect hedges and
their scope in natural language text. In Proceed-
ings of the Fourteenth Conference on Computational
Natural Language Learning – Shared Task, pages
1–12, Uppsala, Sweden. Association for Computa-
tional Linguistics.

Sylviane Granger. 1998. The computer learner cor-
pus: A versatile new source of data for SLA research.
Longman.

Marti A. Hearst, Susan T Dumais, Edgar Osuna, John
Platt, and Bernhard Scholkopf. 1998. Support vec-
tor machines. IEEE Intelligent Systems and their ap-
plications, 13(4):18–28.

Bernease Herman. 2017. The promise and peril of
human evaluation for model interpretability. arXiv
preprint arXiv:1711.07414.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Alon Jacovi and Yoav Goldberg. 2020. Towards faith-
fully interpretable NLP systems: How should we de-
fine and evaluate faithfulness? In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4198–4205, Online. As-
sociation for Computational Linguistics.

Sarthak Jain and Byron C. Wallace. 2019. Attention is
not Explanation. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3543–3556, Minneapolis, Minnesota.
Association for Computational Linguistics.

Wuwei Lan and Wei Xu. 2018. Neural network models
for paraphrase identification, semantic textual simi-
larity, natural language inference, and question an-
swering. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
3890–3902, Santa Fe, New Mexico, USA. Associ-
ation for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Andre Martins and Ramon Astudillo. 2016. From
softmax to sparsemax: A sparse model of atten-
tion and multi-label classification. In International
Conference on Machine Learning, pages 1614–1623.
PMLR.

Marius Mosbach, Maksym Andriushchenko, and Diet-
rich Klakow. 2021. On the stability of fine-tuning
{bert}: Misconceptions, explanations, and strong
baselines. In International Conference on Learning
Representations.

200

Marek Rei and Anders Søgaard. 2018. Zero-shot se-
quence labeling: Transferring knowledge from sen-
tences to tokens. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
293–302, New Orleans, Louisiana. Association for
Computational Linguistics.

Marek Rei and Anders Søgaard. 2019. Jointly learn-
ing to label sentences and tokens. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 6916–6923.

Marek Rei and Helen Yannakoudakis. 2016. Composi-
tional sequence labeling models for error detection
in learner writing. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1181–
1191, Berlin, Germany. Association for Computa-
tional Linguistics.

Marco Ribeiro, Sameer Singh, and Carlos Guestrin.
2016. “Why Should I Trust You?”: Explaining the
Predictions of Any Classifier. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Demonstrations, pages 97–101, San Diego, Califor-
nia. Association for Computational Linguistics.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang.
2019. How to fine-tune bert for text classification?
In China National Conference on Chinese Computa-
tional Linguistics, pages 194–206. Springer.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2019.
Generating token-level explanations for natural
language inference. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 963–969, Minneapolis, Minnesota.
Association for Computational Linguistics.

Sarah Wiegreffe and Yuval Pinter. 2019. Attention is
not not explanation. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 11–20, Hong Kong, China. Associ-
ation for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Helen Yannakoudakis, Øistein E Andersen, Ardeshir
Geranpayeh, Ted Briscoe, and Diane Nicholls. 2018.
Developing an automated writing placement system
for esl learners. Applied Measurement in Education,
31(3):251–267.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading ESOL texts. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
180–189, Portland, Oregon, USA. Association for
Computational Linguistics.

201

A Example word-level predictions

We present samples of word-level predictions
(word-level importance scores ri, Eq. 6) to illus-
trate differences between methods. In the figures
that follow, HEAD refers to attention heads, SA to
soft attention, and W-SA to weighted soft attention.

Figure 2: CoNLL 2010 negative sentence (without un-
certainty cues). We can clearly see that most methods
correctly put weights close to 0 for all words, except
from HEAD, which focuses on ‘shown’ and ‘.’. We
surmise this is due to the fact that, for HEAD, weights
over the whole sentence have to sum up to 1.

Figure 3: CoNLL 2010 positive sentence (with uncer-
tainty cues). We can observe that HEAD correctly iden-
tifies both of the uncertainty cues: ‘may’ and ‘seems’;
however the weight for ‘may’ is quite low. Similarly,
LIME identifies both tokens, but the weight for ‘seems’
is particularly low (lower than for ‘to’). SA simply as-
signs high weights to all words. W-SA focuses primar-
ily on the two uncertainty cue words; however, it also
incorrectly focuses on ‘not’.

202

Figure 4: FCE positive sentence (contains grammatical
errors). We can see that both LIME and HEAD strug-
gle to assign informative and/or useful weights to the
words. All SA weights are relatively high, with small
variations in value. We can see that squaring (W-SA)
leads to more well-defined weights over the whole sen-
tence, with high weights mainly observed in the second
part of the sentence, which is the one that contains in-
correct words. However, on this dataset, even W-SA
struggles to correctly identify which words precisely
are incorrect.

B Hyperparameters

Name Value
γ 0.1
max seq length 128
per device train batch size 16
per device eval batch size 64
warmup ratio 0.1
learning rate 2e-5
weight decay 0.1
adam epsilon 1e-7
hidden layer dropout 0.1
soft attention layer size 100
soft attention hidden size 300
initializer glorot

Table 2: Model hyperparameters.

C Word-level prediction thresholds

Dataset Method Threshold
CoNLL 2010 LIME 0.200

Random baseline 0.500
Attention heads 0.320

Rei and Søgaard (2018) 0.500
Soft attention 0.500

Weighted soft attention 0.500
FCE LIME 0.001

Random baseline 0.500
Attention heads 0.080

Rei and Søgaard (2018) 0.500
Soft attention 0.500

Weighted soft attention 0.500
BEA 2019 LIME 0.010

Random baseline 0.500
Attention heads 0.080

Rei and Søgaard (2018) 0.500
Soft attention 0.500

Weighted soft attention 0.500

Table 3: Word-level thresholds above which a word is
classified as positive.

D Validation set results

Dataset Method Sent F1

CoNLL 2010 LIME 91.77
RoBERTa 91.77

Attention heads 91.77
Soft attention 92.12

Weighted soft attention 91.82
FCE LIME 84.49

RoBERTa 84.49
Attention heads 84.49
Soft attention 84.82

Weighted soft attention 85.56
BEA 2019 LIME 83.65

RoBERTa 83.65
Attention heads 83.65
Soft attention 83.47

Weighted soft attention 83.64

Table 4: Mean sentence-level F1 score on the develop-
ment set, averaged over 5 runs.

203

E Full test set results

FCE
Sent F1 Sent P Sent R

Random baseline - - -
RoBERTa 84.51 84.25 84.93

Rei and Søgaard (2018) 84.75 - -
LIME 84.51 84.25 84.93

Attention heads 84.51 84.25 84.93
Soft attention 85.62 86.92 84.42

Weighted soft attention 85.62 86.88 84.45

Table 5: Sentence-level results: P, R and F1 refer to
Precision, Recall and F-measure respectively on the
positive class.

BEA 2019
Sent F1 Sent P Sent R

Random baseline - - -
RoBERTa 83.66 82.29 85.15

Rei and Søgaard (2018) 81.27 - -
LIME 83.66 82.29 85.15

Attention heads 83.66 82.29 85.15
Soft attention 83.41 81.47 85.54

Weighted soft attention 83.68 79.95 87.91

Table 6: Sentence-level results: P, R and F1 refer to
Precision, Recall and F-measure respectively on the
positive class.

CoNLL 2010
Sent F1 Sent P Sent R

Random baseline - - -
RoBERTa 86.66 84.90 88.63

Rei and Søgaard (2018) 84.16 - -
LIME 86.66 84.90 88.63

Attention heads 86.66 84.90 88.63
Soft attention 86.25 85.75 86.89

Weighted soft attention 87.20 89.17 85.37

Table 7: Sentence-level results: P, R and F1 refer to
Precision, Recall and F-measure respectively on the
positive class.

FCE
P R F1 MAP

Random baseline 15.11 49.81 23.19 33.95
RoBERTa - - - -

Rei and Søgaard (2018) 29.16 29.04 28.73 48.56
LIME 19.06 34.70 24.60 37.90

Attention heads 26.67 22.38 24.34 48.04
Soft attention 19.84 85.38 32.16 48.90

Weighted soft attention 20.76 85.36 33.31 53.91

Table 8: Token-level results: P, R and F1 refer to Preci-
sion, Recall and F-measure respectively on the positive
class. MAP is the Mean Average Precision at the token-
level.

BEA 2019
P R F1 MAP

Random baseline 10.05 50.00 16.73 27.01
RoBERTa - - - -

Rei and Søgaard (2018) 10.93 61.63 18.53 31.69
LIME 13.49 1.13 2.09 31.41

Attention heads 18.48 21.07 19.69 40.55
Soft attention 13.20 87.19 22.92 35.79

Weighted soft attention 14.20 85.49 24.35 41.07

Table 9: Token-level results: P, R and F1 refer to Preci-
sion, Recall and F-measure respectively on the positive
class. MAP is the Mean Average Precision at the token-
level.

CoNLL 2010
P R F1 MAP

Random baseline 0.83 49.70 1.63 14.15
RoBERTa - - - -

Rei and Søgaard (2018) 78.99 67.06 72.42 87.82
LIME 63.25 52.11 57.14 78.44

Attention heads 22.33 30.11 25.64 79.82
Soft attention 4.48 86.14 8.45 20.04

Weighted soft attention 58.80 78.89 67.28 91.18

Table 10: Token-level results: P, R and F1 refer to Pre-
cision, Recall and F-measure respectively on the posi-
tive class. MAP is the Mean Average Precision at the
token-level.

204

F Weighted soft attention architecture

Figure 5: Architecture of our proposed weighted soft attention model. [t1, t2, ..., tn] represent the tokenized input
sentence, while [T1, T2, ..., Tn] are the resulting contextual embeddings. [e1, e2, ..., en] are attention vectors, and
[a1, a2, ..., an] are normalized attention weights. d represents the output vector and y the final output logits.

205

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 206–212
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

Abstract

Transfer learning methods, and in
particular domain adaptation, help exploit
labeled data in one domain to improve the
performance of a certain task in another
domain. However, it is still not clear what
factors affect the success of domain
adaptation. This paper models adaptation
success and selection of the most suitable
source domains among several candidates
in text similarity. We use descriptive
domain information and cross-domain
similarity metrics as predictive features.
While mostly positive, the results also point
to some domains where adaptation success
was difficult to predict.

1 Introduction

Since the data-hungry deep learning models have
beaten state-of-the-art performances in different
natural language processing (NLP) tasks, many
efforts have been made to deal with the scarcity of
labeled data (Wang et al., 2020; Settles, 2010;
Kouw and Loog, 2019). One of the main avenues
taken by researchers of this field is investigating
the portability of models between different data
distributions, often referred to as different
domains (Luo et al., 2019; Gururangan et al.,
2020). While multiple approaches have been
proposed to make this portability feasible and
efficient, it is still unclear how to predict the
adaptability of two domains in advance. It is
particularly important to address this gap because
almost all domain adaptation approaches adjust a
model to a new domain at the expense of more
computational resources. Therefore, in practice it
is neither desirable nor scalable to try all possible
dataset candidates.

Most relevant existing work seeks to identify
key factors that can be used to justify why transfer
learning between two domains work (Asch and

Daelemans, 2010; Dai et al., 2019; Kashyap et al.,
2021; Mou et al., 2016; Shah et al., 2018). In
practice, however, one needs to be able to
quantitatively select a set of existing datasets that
can best be adapted to a certain domain for a certain
task.

We propose a simple yet effective approach to
predict the success of transfer or adaptation, with
the hope of drawing the research community’s
attention to this gap. We use the term domain
transfer (DT) when a model trained on one domain
is simply used for inference in another domain.
Domain adaptation (DA) is used for approaches
that bridge the source and target domain
representations (e.g., by mapping or aligning
feature spaces of the two domains) so that a model
trained on labeled source data (and unlabeled target
data) performs well in the target domain. While for
the experiments in this paper we focus on the task
of text similarity and autoencoder approaches to
DA, the proposed process, shown in Figure 1, can
be easily applied to other NLP tasks and other
unsupervised DA approaches.

Domain Adaptation. The need for domain
adaptation arises when a model trained using
labeled data from one (source) domain needs to be
applied to another (target) domain with a different
data distribution (Miller, 2019). We focus
specifically on unsupervised domain adaptation,
which learns using unlabeled data in both source
and target domains. Model-based approaches to
unsupervised DA have been classified into
modifying the feature space and augmenting the

Predicting the Success of Domain Adaptation in Text Similarity

Nicolai Pogrebnyakov*† Shohreh Shaghaghian*
* Thomson Reuters Labs, Canada †Copenhagen Business School, Denmark

Emails: firstname.lastname@thomsonreuters.com

Figure 1: The process of modeling the success of
domain transfer & adaptation.

Learn autoencoder
representations on

source+domain data

Domain
transfer

Domain adaptation

Text embedding
(USE)

Train model on
source domain,

evaluate on target

Embed text with
autoencoder

representations

Normalize by in-
domain performance

(labels)

Model domain
transfer / adaptation

success

Learn domain desc-
riptives & similarity
measures (features)

Legend

Text embedding

Learning representations

Modeling

206

loss function (see Ramponi and Plank (2020) for a
comprehensive review).

Domain Similarity. Extant studies have
proposed a variety of measures to quantitatively
express similarity between a pair of domains. Dai
et al. (2019) define three main metrics to measure
different aspects of similarity between source and
target datasets and investigate how these measures
correlate with the effectiveness of named entity
recognition tasks. Target vocabulary coverage,
language model perplexity, and word vector
variance are used as these similarity measures.
Asch and Daelemans (2010) show a correlation
between six similarity metrics based on word
frequency, and the performance of some part-of-
speech tagging tasks.

Autoencoders for Domain Adaptation.
Stacked denoising autoencoders (SDA) learn latent
representations that align feature spaces of the
source and target domains (Ramponi and Plank,
2020; Vincent et al., 2010). SDA first add noise to
input, such as dropout or Gaussian noise, and then
aim to reconstruct the uncorrupted input (Gondara,
2016).

A further development of this approach is
marginalized SDA, which marginalizes the
reconstruction loss. The solution to the loss has a
closed form, which lowers computational cost and
improves scalability compared to the original SDA
(Ramponi and Plank, 2020; Chen et al., 2012).

Inspired by another approach to DA, domain
adversarial (Ganin et al., 2016), Clinchant et al.
(2016) add a regularization term based on a domain
classifier to the reconstruction loss. We refer to this
approach as marginalized SDA with domain
regularization (mSDAR). There also exists a
closed-form solution to that loss, and that approach
was shown to outperform marginalized SDA.

2 Data

We use 11 publicly available semantic text
similarity datasets. Seven of them were obtained
from StackExchange forums, with data from 2015
to November 2020: Apple, AskUbuntu, Math,
StackOverflow, Stats, SuperUser and Unix1. We
also use Quora Question Pairs, Microsoft Research
Paraphrase Corpus (MRPC) (Dolan and Brockett,
2005), Paraphrase Adversaries from Word
Scrambling (PAWS) (Zhang et al., 2019) and
Sentences Involving Compositional Knowledge—

1 Obtained from https://data.stackexchange.com

Relatedness (SICK) (SemEval, 2014). All datasets
contain binary labels indicating whether the text
pair is similar or not. The exception is SICK, where
we convert the original relevance score of 1—5
into a binary score of 0 (not semantically similar)
if the relevance score is below 4, and 1 otherwise.
Each of the 11 datasets is considered a separate
domain.

3 Modeling Domain Transfer and
Adaptation

Figure 1 shows the process we use to implement
DT and DA and train a model that can best identify
a proper source domain for a particular target
domain. We start with embedding text in each of
the 11 domains with the Universal Sentence
Encoder (USE) (Cer et al., 2018). For DT, USE
representations are used directly to train models in
a source domain S and evaluate the performance in
the target domain T. For DA, we implement both
SDA and mSDAR. A three-layer SDA is trained on
each source-target domain pair. Text from the
source and target domains is embedded with USE
and corrupted with Gaussian noise, whose
parameters are estimated from the hidden
representation of the previous layer. In mSDAR,
the hyperparameters we use are 5 layers, the target
regularization parameter λ = 1, dropout probability
0.6 and the regularization objective R = 1. These
parameters have the same meaning as in Clinchant
et al. (2016). Both SDA and mSDAR encoders are
then used to embed the USE representations of the
text in the source and target domains. Figure 2
shows the original and mSDAR representations for
StackOverflow and SuperUser domains,
demonstrating the effect of mSDAR on aligning
the feature spaces of the two domains.

The representations described above are used to
train a dense 3-layer neural network in the source
domain and evaluate its performance in the target
domain by reporting the F1-score. (We train three
such models for each domain pair and average their
performance.) We denote this cross-domain
performance by F1!". In order to make the DT and
DA results robust to the relative difficulty of
learning in different domains, we normalize F1!"
by the in-domain F1-score, F1"" , which denotes
the performance of the fully supervised model
trained and evaluated in the same domain. The
normalized F1-score, averaged over all domain

207

pairs, is 0.775 for DT, 0.799 for SDA and 0.817 for
mSDAR. This is in line with previous work
showing better performance of mSDAR over SDA
(Clinchant et al., 2016).

4 Domain Similarity Measures

Considering a source domain 𝑆 and a target
domain 𝑇 with unigram sets 𝑈!	and 𝑈" , we define
a set of features 𝐹!" = {𝑓#!" , . . . , 𝑓#$!"} as follows.

Unigram Coverage. The simplest metric to
evaluate the similarity of two domains is the
percentage of their common unigrams. We use the
ratio of common unigrams in the source 𝑓#!" =
|&!∩&"|
|(#|

 and target 𝑓)!" =
|&!∩&"|
|($|

 domains as two
features for the classifiers.

Dataset Size. The number of labeled data points
in source (𝑓*!")	and target (𝑓+!") domains as well
as the average number of tokens per example for
the source and target domains (𝑓,!" and 𝑓-!") are
additional features we use for the classifiers.

Distribution Similarity. In order to measure
the similarity of how tokens have been distributed
in the two domains, we add Rényi divergence
(𝑓.!") (Asch and Daelemans, 2010) and KL
divergence (𝑓/!") (Plank and van Noord, 2011) to
the set of features. We use α = 0.99 as the value of
the parameter in Rényi divergence.

Language Similarity. Similar to Dai et al.
(2019), we train a trigram language model in each
domain and evaluate its perplexity on other
domains (𝑓0!"). Since the target domain is expected
to have many trigrams that are not seen in the
source domain, we apply Kneser-Ney smoothing to
account for those unseen trigrams (Kneser and Ney,
1995). We also use word vector variance between
the source and target domains (𝑓#$!") (Dai et al.,
2019). This variance is calculated as

#
|&%∩("|1

Σ2∈(% ∩("Σ56#
1 0W72

5 −W82
5 0 , where𝑊!9

:

and 𝑊";
: are the jth element of the vector for word

v respectively in the source and target domains. We
use Word2vec Skipgram with vector length of 300.

5 Source Domain Selection

Success Prediction and Order Ranking. We
evaluate two different approaches to select one or
multiple source domains for a particular target
domain. In the first approach, we train a classifier
to predict if a domain can be a good candidate for
transfer or adaptation to a specific target domain.

We consider transfer or adaptation successful if the
ratio <##$

<#$$
 is greater than 80% i.e., if it can achieve

at least 80% of the performance of a fully
supervised model on the target domain. We refer to
the classifier trained in this approach as Success
Predictor. In the second approach, irrespective of
what percentage of a fully supervised model
performance can be achieved, we order the existing
source domains for each target domain. Therefore,
we model the problem as a ranking problem and
refer to the trained model as Domain Ranker. This
ranking problem can be modeled as a binary
classifier, in which a sample corresponds to the
performance of two source domains S1 and S2 for a
specific target domain T. The label is one if
F1!&" ≥ F1!'" and zero otherwise.

Performance Evaluation. While the F1-scores
and accuracies reflect how well the trained
classifiers work, the original purpose of defining
these two approaches was to find the best
candidates for source domains. Hence, we also
show the performance of the two approaches based
on ordering-based metrics. To find the orderings
for each target domain by Success Predictor, we
order the source domains based on the predicted
probability of the binary classifier. In Domain
Ranker, we sort the source pairs using the pairwise
preference predicted by the classifier. We handle
the inconsistencies caused by incorrect predictions
using the multi-sort algorithm proposed by
Maystre and Grossglauser (2017).

To train the Success Predictor and Domain Ranker
models, we use a set of features FST described in
section 4. For both approaches, we train a binary
XGBoost classifier with 5-fold cross-validation.

6 Results

Modeling Domain Adaptation

Ideally, the best way to evaluate the performance
of the two approaches is to train the model on some

(a) (b)

Figure 2. Original (a) and mSDAR (b) representations
of text in the StackOverflow (red) and SuperUser
(blue) domains (PCA projection).

208

set of domains and test it on orderings of an entirely
different set of domains. However, since we only
have 11 domains, to make the most use out of this
small data, we train the classifier on multiple train-
test splits and report the performance metrics of the
trained binary classifier each time.

We can split the data into train and test sets
randomly. However, to make sure that the target
domain for which we want to select the best source
domain has never been seen by the model as the
target domain, each time we use one of the 11
domains as the target domain in the test data. Hence,
we have 100 training and 10 test samples in each
split. For Domain Ranker, we use 𝐹!&" ∪ 𝐹!'"as
the feature set and use the same train-test split as for
Success Predictor. This leaves us with 450 training
and 45 test samples in each of the 11 splits.

Success Adaptation Prediction. Table 1
presents the performance metrics achieved for all
target domains. Note that there is a wide variation
in success prediction among the target domains.
While the Success Predictor achieves good
performance on Apple, AskUbuntu and Unix target
domains, it performs poorly on PAWS and Quora
datasets. This might be due to the difficulty of
learning in these domains (Zhang et al., 2019),
which is not captured by the descriptive and cross-
domain metrics that we use.

Order Prediction. Rank correlation
coefficients such as Kendall’s t are a common
metric to measure the degree of similarity between
two rankings. However, here we are more
interested in finding out whether we have correctly
identified the most relevant source domains.
Hence, we report the percentages of top N domains
we have identified correctly for N = 1, 3, 5. We also
report a stricter metric, Correct Rank Percentage
(CRP), which equals the percentage of the source
domains that have been predicted with the same
order as the true ordering. For example, for Stats as
the target domain, the true ordering of other
domains using SDA is [StackOverflow, AskUbuntu, Apple,

Unix, MRPC, SuperUser, SICK, Math, PAWS, Quora]. The
Success Predictor predicts the ordering of the
source domains as [StackOverflow, Math, Apple, SuperUser,

Unix, AskUbuntu, SICK, MRPC, PAWS, Quora]. In this case,
CRP=0.5 since 5 out of the 10 domains have the
same order in the predicted and true orderings.
Also, Top1=1 since the domain with highest
predicted order, StackOverflow, has also the highest
order in the true ordering. Similarly, Top3=0.67
since only 2 out of the 3 highest ordered domains in
true ordering exist in the top 3 of predicted ordering.

In-Domain and Cross-Domain Performance

Table 2 shows in-domain and cross-domain
performance with DT and DA using absolute F1

 DT SDA mSDAR
 Target F1 Acc CRP Top1 Top3 Top5 F1 Acc CRP Top1 Top3 Top5 F1 Acc CRP Top1 Top3 Top5

Su
cc

es
s P

re
di

ct
or

Apple 1 1 0.4 1 0.67 1 0.89 0.9 0.3 0 0.67 1 0.89 0.9 0.4 1 1 1
AskUbuntu 1 1 0.3 0 0.67 1 0.86 0.9 0 0 0.67 0.8 1 1 0.2 0 0.67 0.8

MRPC 0.71 0.6 0.2 0 0.67 0.6 0.93 0.9 0.2 0 0.33 0.6 0.93 0.9 0.3 0 0.67 0.8
Math 0.67 0.6 0.2 0 0.67 0.6 0.6 0.6 0 0 0.33 0.8 0.86 0.8 0.1 0 0.33 0.6

PAWS 0 0 0.3 0 0.33 0.8 0.18 0.1 0.3 0 0.33 0.6 0.18 0.1 0 0 0.33 0.6
Quora 0 0 0.3 0 0.67 1 0 0 0.3 1 0.67 0.8 0 0.1 0.3 1 0.33 0.8
SICK 0.89 0.8 0.5 0 0.67 0.8 0.88 0.8 0.2 0 0 0.4 0.93 0.9 0.3 0 0.33 0.8

StackOverflow 0.67 0.8 0.1 0 0.67 0.6 0 0.8 0.3 0 1 0.6 0.75 0.8 0.1 0 1 0.6
Stats 0.67 0.8 0.2 1 0.33 0.8 0.67 0.9 0.5 1 0.67 0.6 0.4 0.7 0.4 1 0.67 0.8

SuperUser 0.89 0.9 0.2 0 0.67 1 1 1 0.1 0 0.67 0.8 0.86 0.9 0.3 1 1 0.8
Unix 1 1 0.3 1 0.67 1 1 1 0.7 1 1 1 0.86 0.9 0.5 1 1 1

AVERAGE 0.68 0.68 0.27 0.27 0.61 0.84 0.64 0.72 0.26 0.27 0.58 0.73 0.70 0.73 0.26 0.45 0.67 0.78

D
om

ai
n

R
an

ke
r

Apple 0.86 0.89 0.8 1 1 1 0.97 0.98 0.8 1 1 1 0.89 0.91 0.5 1 0.67 1
AskUbuntu 0.85 0.89 0.7 0 0.67 1 0.86 0.91 0.4 0 0.67 1 0.77 0.84 0.5 0 0.67 0.8

MRPC 0.77 0.78 0.2 1 0.67 0.8 0.65 0.76 0.2 0 0.67 0.8 0.72 0.84 0.3 1 0.67 1
Math 0.73 0.76 0.1 0 0.67 0.6 0.67 0.71 0.1 0 0.33 0.6 0.65 0.76 0.2 0 0.33 0.8

PAWS 0.44 0.56 0.2 0 0.33 0.6 0.69 0.76 0.2 0 0.67 1 0.59 0.76 0.1 0 0.33 0.8
Quora 0.86 0.84 0.4 0 0.67 1 0.87 0.87 0.3 0 0.67 1 0.76 0.82 0.2 0 0.67 0.8
SICK 0.87 0.87 0.2 0 0.33 1 0.54 0.62 0.2 0 0.33 0.6 0.76 0.84 0.4 0 0.67 1

StackOverflow 0.88 0.89 0.5 0 0.67 1 0.78 0.8 0.5 0 0.33 0.8 0.86 0.87 0.5 1 0.67 1
Stats 0.91 0.91 0.7 1 0.67 0.8 0.86 0.87 0.4 1 0.67 0.8 0.83 0.87 0.4 1 0.67 0.8

SuperUser 0.94 0.93 0.5 0 1 1 0.94 0.93 0.5 0 1 0.8 0.9 0.91 0.6 1 1 0.8
Unix 0.92 0.91 0.4 0 0.67 1 0.89 0.89 0.3 1 0.67 0.8 0.93 0.93 0.5 0 1 0.8

AVERAGE 0.82 0.84 0.43 0.27 0.67 0.89 0.79 0.83 0.35 0.27 0.64 0.84 0.79 0.85 0.38 0.45 0.67 0.87

Table 1: Performance of Success Predictor and Domain Ranker in identifying the most suitable target domains under
domain transfer (DT) and two domain adaptation approaches (SDA and mSDAR).

209

scores. Comparing columns “Average F1” with
“In-domain average F1”, DT and DA performance
for most domains is lower than in-domain
performance. The exception is PAWS, where DA
delivers over twice the performance of in-domain
training.

Additionally, for most domains DT and DA
resulted in some successes and some failures
(mostly between 3 and 8 successes for mSDAR).
The exception was, again, PAWS, where all source
domains succeeded in DT/DA, and Quora, where
none succeeded.

7 Discussion

Adaptation Success Factors. Comparing CPR,
Top1, Top3 and Top5 between Success Predictor
and Domain Ranker for all DT and DA methods,
we see that in general, Domain Ranker does a
better job finding the orderings of candidate source
domains. For Success Predictor, the features with
highest importance are KL-divergence, 𝑓/!" ,
Target Ratio, 𝑓)!" ,and data size of the target
domain 𝑓+!" . For Domain Ranker, average
example lengths,𝑓,

!&" , 𝑓,
!'" , Rényi divergences

𝑓.
!&" , 	𝑓.

!'" and perplexities 𝑓0
!&" , 𝑓0

!'" in both
source domains are the most informative features.

Adaptation Success by Dataset. While the
Success Predictor performed reasonably well on
most domains, its performance on PAWS and
Quora datasets was miserable. We attribute this to
the lack of domain similarity features that would
reflect the complexities of these datasets, and note
this for future work. The PAWS result can be

explained by a representation and training we used
(USE and dense neural network), which is different
from bag-of-words and BERT used by PAWS
authors (Zhang et al., 2019). For Quora, in-domain
performance is in line with previous research
(Wang et al., 2017, Tomar et al., 2017), and
aggregate DT/DA results were similar to other
datasets such as Stats.

8 Conclusion and Future Work

We studied the problem of selecting the most
relevant labeled datasets from a pool of candidates
to be used as a source domain in a transfer learning
setup with a specific unlabeled target domain. The
experiments focused on the text similarity task and
autoencoder approaches to DA. Note that the
proposed process can be extended to other NLP
tasks and other unsupervised DA approaches as
well. We used descriptive domain information and
cross-domain similarity metrics as predictive
features to model the success of DT and DA, and
to rank source domains based on their relevancy.

In future work, we intend to study source
selection in multi-source domain adaptation setup,
using multiple source domains for DT/DA.
Identifying additional adaptation success factors
that could better predict the success of DT/DA for
complex domains such as PAWS and Quora, and
learning the success threshold (here, we fixed it at
80%) are other avenues to investigate. Other
possibilities include experimenting with various
text representations (such as bag-of-words) and
models (e.g., Transformer-based).

Domain

In-
domain
average

F1

Domain transfer Domain adaptation
(SDA)

Domain adaptation
(mSDAR)

Average
F1

of
transfer
successes

Average
F1

of
adaptation
successes

Average
F1

of
adaptation
successes

Apple 0.87 0.55 5 0.55 4 0.56 4
AskUbuntu 0.91 0.53 4 0.55 4 0.57 4
Math 0.60 0.53 8 0.37 4 0.51 8
MRPC 0.76 0.51 5 0.66 8 0.65 7
PAWS 0.26 0.49 10 0.56 10 0.54 10
Quora 0.78 0.50 0 0.52 0 0.46 0
SICK 0.59 0.47 8 0.44 7 0.44 7
StackOverflow 0.94 0.49 3 0.55 2 0.57 3
Stats 0.82 0.43 2 0.49 2 0.53 4
SuperUser 0.91 0.57 5 0.56 4 0.58 3
Unix 0.88 0.56 4 0.55 4 0.59 4

Table 2. Average absolute F1 scores for in-domain and cross-domain performance with domain transfer (DT) and
domain adaptation (DA). “In-domain” refers to a model trained and evaluated on the same domain, specified in

the first column. DT and DA are results for a model trained on other domains (source) and evaluated on the
domain in the first column (target). For DT and DA, “# of transfer/adaptation successes” is the number of source

domains (out of 10) where a model evaluated on target performed at least at 80% of in-domain performance.

210

References
Vincent Van Asch and Walter Daelemans. 2010.

Using Domain Similarity for Performance
Estimation. In Proceedings of the 2010
Workshop on Domain Adaptation for Natural
Language Processing, pages 31–36, Uppsala,
Sweden.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan
Hua, Nicole Limtiaco, Rhomni St John, Noah
Constant, Mario Guajardo-Cespedes, Steve
Yuan, Chris Tar, Yun-Hsuan Sung, Brian
Strope, and Ray Kurzweil. 2018. Universal
Sentence Encoder for English. In Proceedings
of the 2018 Conference on Empirical
Methods in Natural Language Processing:
System Demonstrations, pages 169-174,
Brussels, Belgium.

Minmin Chen, Zhixiang Xu, Kilian Weinberger,
and Fei Sha. 2012. Marginalized Denoising
Autoencoders for Domain Adaptation. In
Proceedings of the 29th International
Conference on Machine Learning, Edinburgh,
Scotland, UK, June. arXiv: 1206.4683.

Stephane Clinchant, Gabriela Csurka, and Boris
Chidlovskii. 2016. A Domain Adaptation
Regularization for Denoising Autoencoders.
In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics
(Volume 2: Short Papers), pages 26–31,
Berlin, Germany.

Xiang Dai, Sarvnaz Karimi, Ben Hachey, and
Cecile Paris. 2019. Using Similarity Measures
to Select Pretraining Data for NER. In
Proceedings of NAACL-HLT, pages 1460–
1470, Minneapolis, Minnesota.

William B Dolan and Chris Brockett. 2005.
Automatically Constructing a Corpus of
Sentential Paraphrases. In Proceedings of the
Third International Workshop on
Paraphrasing (IWP2005), page 8.

Yaroslav Ganin, Evgeniya Ustinova, Hana
Ajakan, Pascal Germain, Hugo Larochelle,
François Laviolette, Mario Marchand, and
Victor Lempitsky. 2016. Domain-Adversarial
Training of Neural Networks. Journal of
Machine Learning Research, 17(1), pages 1–
35.

Lovedeep Gondara. 2016. Medical image
denoising using convolutional denoising
autoencoders. 2016. In Proceedings of the
16th International Conference on Data
Mining Workshops (ICDMW). pages 241–
246, Barcelona, Spain.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug
Downey, and Noah A. Smith. 2020. Don’t
Stop Pretraining: Adapt Language Models to
Domains and Tasks. In Proceedings of the
58th Annual Meeting of the Association for
Computational Linguistics, pages 8342–8360.

Abhinav Ramesh Kashyap, Devamanyu
Hazarika, Min-Yen Kan, and Roger
Zimmermann. 2021. Domain Divergences: a
Survey and Empirical Analysis.
arXiv:2010.12198 [cs], April. arXiv:
2010.12198.

R. Kneser and H. Ney. 1995. Improved backing-
off for M-gram language modeling. In 1995
International Conference on Acoustics,
Speech, and Signal Processing, volume 1,
pages 181–184, Detroit, MI, USA.

Wouter M. Kouw and Marco Loog. 2019. An
introduction to domain adaptation and
transfer learning. Technical report, Delft
University of Technology, January. arXiv:
1812.11806.

Yawei Luo, Liang Zheng, Tao Guan, Junqing
Yu, and Yi Yang. 2019. Taking a Closer
Look at Domain Shift: Category-Level
Adversaries for Semantics Consistent Domain
Adaptation. In 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition
(CVPR), pages 2502–2511, Long Beach, CA,
USA.

Lucas Maystre and Matthias Grossglauser. 2017.
Just Sort It! A Simple and Effective Approach
to Active Preference Learning. In
Proceedings of 34th International Conference
on Machine Learning (PMLR), pages 2344-
2353, Sydney, Australia.

Timothy Miller. 2019. Simplified Neural
Unsupervised Domain Adaptation. In
Proceedings of the 2019 Conference of the
North American Chapter of the Association
for Computational Linguistics: Human

211

Language Technologies (NAACL-HLT),
pages 414–419, Minneapolis, Minnesota.

Lili Mou, Zhao Meng, Rui Yan, Ge Li, Yan Xu,
Lu Zhang, and Zhi Jin. 2016. How
Transferable are Neural Networks in NLP
Applications? In Proceedings of the 2016
Conference on Empirical Methods in Natural
Language Processing, pages 479–489,
Austin, Texas.

Barbara Plank and Gertjan van Noord. 2011.
Effective Measures of Domain Similarity for
Parsing. In Proceedings of the 49th Annual
Meeting of the Association for Computational
Linguistics: Human Language Technologies,
pages 1566–1576, Portland, Oregon, USA.

Alan Ramponi and Barbara Plank. 2020. Neural
Unsupervised Domain Adaptation in NLP-A
Survey. In Proceedings of the 28th
International Conference on Computational
Linguistics, pages 6838–6855, Barcelona,
Spain (Online).

Marco Marelli, Luisa Bentivogli, Marco
Baroni, Raffaella Bernardi, Stefano
Menini, Roberto Zamparelli, 2014. SemEval-
2014 Task 1: Evaluation of compositional
distributional semantic models on full
sentences through semantic relatedness and
textual entailment. In Proceedings of the 8th
International Workshop on Semantic
Evaluation (SemEval 2014), Dublin, Ireland.

Burr Settles. 2010. Active Learning Literature
Survey. Technical Report Computer Sciences
Technical Report 1648, University of
Wisconsin-Madison.

Darsh Shah, Tao Lei, Alessandro Moschitti,
Salvatore Romeo, and Preslav Nakov. 2018.
Adversarial Domain Adaptation for Duplicate
Question Detection. In Proceedings of the
2018 Conference on Empirical Methods in
Natural Language Processing (EMNLP),
pages 1056–1063, Brussels, Belgium.

Gaurav Singh Tomar, Thyago Duque, Oscar
Tackstrom, Jakob Uszkoreit, and Dipanjan
Das. 2017. Neural Paraphrase Identification
of Questions with Noisy Pretraining. In
Proceedings of the First Workshop on
Subword and Character Level Models in
NLP, pages 142–147, Copenhagen, Denmark.

Pascal Vincent, Hugo Larochelle, Isabelle
Lajoie, Yoshua Bengio, and Pierre-Antoine
Manzagol. 2010. Stacked Denoising
Autoencoders: Learning Useful
Representations in a Deep Network with a
Local Denoising Criterion. Journal of
Machine Learning Research, 11(12), pages
3371–3408.

Yaqing Wang, Quanming Yao, James Kwok,
and Lionel M. Ni. 2020. Generalizing from a
Few Examples: A Survey on Few-Shot
Learning. ACM Computing Surveys (CSUR),
53(3), pages 1-34.

Zhiguo Wang, Hamza Wael, and Florian Radu.
2017. Bilateral multi-perspective matching
for natural language sentences, In
Proceedings of the 26th International Joint
Conference on Artificial Intelligence (IJCAI),
pages 4144-4150.

Yuan Zhang, Jason Baldridge, and Luheng He.
2019. PAWS: Paraphrase Adversaries from
Word Scrambling. In Proceedings of the 2019
Conference of the North American Chapter of
the Association for Computational
Linguistics: Human Language Technologies
(NAACL-HLT, pages 1298–1308,
Minneapolis, Minnesota.

212

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 213–222
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

Syntagmatic Word Embeddings
for Unsupervised Learning of Selectional Preferences

Renjith P Ravindran, Akshay Badola and Kavi Narayana Murthy
School of Computer and Information Sciences

University of Hyderabad
{rpr,badola}@uohyd.ac.in

knmuh@yahoo.com

Abstract

Selectional Preference (SP) captures the ten-
dency of a word to semantically select other
words to be in direct syntactic relation with
it, and thus informs us about syntactic word
configurations that are meaningful. Therefore
SP is a valuable resource for Natural Lan-
guage Processing (NLP) systems and for se-
manticists. Learning SP has generally been
seen as a supervised task, because it requires
a parsed corpus as a source of syntactically
related word pairs. In this paper we show
that simple distributional analysis can learn a
good amount of SP without the need for an an-
notated corpus. We extend the general word
embedding technique with directional word
context windows giving word representations
that better capture syntagmatic relations. We
test on the SP-10K dataset and demonstrate
that syntagmatic embeddings outperform the
paradigmatic embeddings. We also evaluate
supervised version of these embeddings and
show that unsupervised syntagmatic embed-
dings can be as good as supervised embed-
dings. We also make available the source code
of our implementation1.

1 Introduction

Selectional Preference (SP) (Wilks, 1975) encodes
the syntagmatic relatedness between two words.
Relations between words are either syntagmatic
or paradigmatic (de Saussure, 1916). Two words
are said to be paradigmatically related if one word
can replace the other in a sentence. Words be-
longing to a narrow semantic class, such as ‘cat’,
‘dog’ can often be substituted with each other in a
sentence. Syntagmatic relations are between syn-
tactically related co-occurring words in a sentence.
Such word relations encode both syntactic and se-
mantic aspects of words. A noun may be modified

1https://github.com/renjithravindran/
spvec

by an adjective, but any particular instance of a
noun tends to go more with some adjectives than
others. For example black dog is more likely than
green dog. SP deals with such semantic preferences
between syntactically related word pairs. Com-
mon SP relations include ‘adjective-noun’, ‘subject-
verb’, ‘verb-object’. SP finds use in important NLP
tasks like sense disambiguation (Resnik, 1997), se-
mantic role classification (Zapirain et al., 2013),
co-reference resolution (Hobbs, 1978; Zhang et al.,
2019c), etc.

A computational method to induce SP from in-
stances of syntactically related word pairs in a
parsed corpus was introduced by Resnik (1996).
In order to generalize to unseen data, this method
made use of ontological classes obtained from
WordNet (Miller, 1995). Rooth et al. (1999)
showed that the dependence on external knowl-
edge resources could be removed by learning the
classes from the corpus itself using the EM algo-
rithm. Erk (2007) showed that generalization is
also possible via co-occurrence similarity between
seen and unseen words. SP models are usually eval-
uated using the Pseudo-word Disambiguation task
(Van de Cruys, 2014) which requires the identifica-
tion of the more probable dependent word, from a
less probable (random) word, given the head word
and a syntactic relation. The dataset is generally
created from the unseen part of a parsed corpus
used for learning the model. Therefore this task
measures only how well the model fits the corpus,
which may be biased, and not how well it learns
SP as perceived by humans. Recently, Zhang et al.
(2019b) introduced SP-10K, a dataset for SP eval-
uation across 5 syntactic relations with a total of
10,000 items each with a human-annotated plau-
sibility score. SP-10K measures the correlation
between a model’s SP score for a given word pair
and the average human score. Therefore it is a
better test for SP learning.

213

The current state-of-the-art on SP-10K is re-
ported by Multiplex Word Embeddings (MWE)
(Zhang et al., 2019a). It is a negative sampling
based word embedding model, trained on relation-
specific word pairs from a parsed corpus. Com-
pared to unsupervised embedding models such as
Word2vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014), MWE provides a substantial
boost in SP learning as it has access to syntactic re-
lations. It also improves over D-embeddings (Levy
and Goldberg, 2014a) which is a supervised em-
bedding model. However, a dependency-parsed
corpus is not readily available in many languages.
Therefore the need for an effective unsupervised SP
induction technique is palpable in the wider NLP
community.

In this work we show that unsupervised word
embeddings can easily be extended to get better
at learning SP. We do this by taking directional
(left/right) word context windows unlike symmet-
ric windows of Word2vec, GloVe, etc. Having
directional context windows gives two embeddings
per word, one of its left context and other of its
right context. This allows us to approximate syn-
tactic relations with directions; all relations that
happen to the left of a word are captured by the left
embedding and those that happen to the right of a
word are captured by the right embedding. Then
the cosine similarity between the right embedding
of a word and left embedding of another word indi-
cates how likely the two are to be syntagmatically
related.

In summary, our contributions are: 1) We pro-
vide a simple and effective method to capture se-
lectional preference, called syntagmatic embed-
dings 2) Demonstrate that syntagmatic embeddings
are superior to paradigmatic embeddings 3) We
also show that our unsupervised syntagmatic rep-
resentations can be as good as their supervised
counterparts, therefore showing that a good range
of SP information can be learned even without a
dependency-parsed corpus.

2 Syntagmatic Representation

Symmetric and non-directional context windows in
embedding techniques, such as GloVe, relate words
that have similar (paradigmatic) contexts. Context
words are other words that are in the immediate
vicinity of a target word. A symmetric window
considers equal number of words on the left and
right as context words. Though syntagmatically re-

lated words may have similar contexts, a symmetric
window tends to encode more of paradigmatic re-
lations. But these paradigmatic embedding spaces
do encode syntagmatic properties to a certain de-
gree. For example, we may find that the cosine
similarity between ‘coffee’ and ‘cup’ is generally
greater than ‘coffee’ and ‘car’. These embeddings
are considered unsupervised as they are learned
from a plain un-annotated corpus. Since their con-
texts are not dictated by syntactic relations they
are generally inferior, at learning SP, compared to
an embedding technique that has access to such
information (Zhang et al., 2019a). Also, there is no
direct way to extract syntagmatically related words.
The nearest neighbours of a given word will largely
be all paradigmatically related. Though it may in-
clude, given a larger context window, associated
words (‘coffee’, ‘cup’) which have a syntagmatic
nature.

2.1 Relations as Directions
Exact learning of SP requires word co-occurrence
in a sentence to be defined as a pair of syntacti-
cally related words, which is available only in a
dependency-parsed corpus. We can obtain a less
exact representation for SP by replacing syntactic
relations with directions, because in word-ordered
languages, word-order or direction plays a major
role in assigning syntactic relations. For example
in an English sentence, the adjectival modifier of a
noun is always found to its left. The nominal sub-
ject of a verb is found to its left and direct object
to its right. The technique explored here exploits
this fact to learn a substantial amount of selectional
preference without the need for a large dependency-
parsed corpus.

2.2 Unweighted Factorisation Model
Word embeddings are low-rank representations of
row/column vectors in a word co-occurrence matrix
(Levy and Goldberg, 2014b). Here, we consider
unweighted factorisation of a word co-occurrence
matrix using Truncated Singular Value Decompo-
sition (SVD) (Kalman, 1996). Let M be the co-
occurrence matrix of size v × v, where v is the
size of the vocabulary. Instead of a symmetric con-
text window, we use non-symmetric and directional
windows, directions being left and right. Let Mi,j

be the number of times word i co-occurred to the
left of word j within a distance of k throughout the
corpus, where k is the size of the co-occurrence
window. Consequently, Mj,i becomes the number

214

word associations

car
left: vintage, second-hand, oncoming, luxury, buying, toy, saloon, buy, mercedes...
right: collided, sped, exploded, maker, skidded, swerved, belonging, makers, roared...

eat
left: want, wants, going, wanting, let, tend, ought, let’s, allowed, prefer, supposed, able...
right: salad, beans, soup, cakes, pork, peas, bacon, pasta, fresh, pie, biscuits...

blue
left: wore, vivid, dull, wear, luminous, wears, dazzling, plain, dim, dressed, dyed...
right: scarf, stripe, livery, robe, beret, overalls, blazer, slacks, gloves...

aggressive
left: increasingly, extremely, equally, become, very, highly, particularly, becoming...
right: behaviour, attitude, manner, response, towards, tactics, stance, attack, actions...

Table 1: Examples of word associations from syntagmatic embeddings.

of times word i co-occurred to the right of word
j. Thus the row i of matrix M gives the represen-
tation of word i using its left context words. And
column j gives the representations of word j using
its right context words. These two representations
are different because our co-occurrence matrix is
not symmetric. However, raw co-occurrence repre-
sentation is very high-dimensional, highly sparse
and noisy. A major component of word embedding
techniques is dimensionality reduction, by approxi-
mating the original co-occurrence matrix with its
low-rank representation M̂ . Dimensionality reduc-
tion is found to reduce noise in the data matrix
by eliminating the low principle components of
the data, thus increasing generalisation. We use
Truncated SVD 2 to obtain rank d approximation.
Equation 1 gives the factorisation of the matrix M .

M ∼ M̂ = Û ŜV̂ ᵀ (1)

Where, Ûv×d, Ŝd×d, V̂v×d are the factor matrices
(singular vectors and singular values) obtained in
SVD as, M = USV ᵀ, but truncated to keep only
the top d principle components. Û and V̂ gives
the left context and right context representations of
words respectively, in terms of the leading d singu-
lar vectors. The singular values Ŝ gives the relative
weightage of corresponding singular vectors, which
may be used to scale the singular vectors appro-
priately. Our word representations are obtained by
scaling the singular vectors by an exponential factor
of their singular values. Thus, the final left embed-
ding is given as L = Û Ŝp and the right embedding
is R = ŜpV̂ ᵀ. Caron (2001) showed that the expo-
nential weighting factor p allows for a softer rank
selection such that p > 0 gives more weightage to
the leading components and p < 0 gives weightage

2randomized svd from scikit-learn

to the lower components, allowing the fine tuning
of embeddings for different tasks. The number of
components (dimension), exponential weighting
factor, and co-occurrence window size are three im-
portant parameters that influence the performance
of these embeddings. Our experiments include yet
another parameter, the term-weight. So far we have
assumed thatM contains raw co-occurrence values,
or the frequency count of two words to co-occur
in the corpus. Various term-weighting schemes
can be applied to transform the raw frequencies.
We experiment with log, PMI (Point-wise Mutual
Information) and PPMI (Positive Point-wise Mu-
tual Information) term-weights along with the raw
frequency counts.

2.3 Weighted Factorisation Model
A factorisation model like the one presented in
the previous section gives equal weightage to
all errors in the low-rank approximation process.
It has been shown that weighting errors from
each co-occurrence term, by a function of their
co-occurrence frequency yields better word em-
beddings (Levy and Goldberg, 2014b). Neu-
ral embedding techniques such as Word2vec do
such weighting implicitly (Levy and Goldberg,
2014b), whereas techniques that makes use of co-
occurrence matrix, such as GloVe, do this explic-
itly. For evaluating the performance of weighted
factorisation on selectional preference, we mini-
mally modify the GloVe model to get syntagmatic
embeddings.

L =

V,V∑

i,j=1,1

f(Mi,j)(u
ᵀ
wivwj + bi + bj − logMi,j)

2

(2)

Equation 2 gives the loss function L for approxi-
mating the log co-occurrence with the dot product

215

of the left embedding (uw) and the right embed-
ding (vw). M here is the co-occurrence matrix
and bi, bj are bias terms. With symmetric context,
the final embeddings in the GloVe model are ei-
ther just the left embeddings or the sum of left and
right embeddings. But with asymmetric context,
left and right embeddings are used distinctly. The
weighting function (f) is given by equation 3.

f(x) =

{
(x/xmax)

3
4 , if x < xmax

1, otherwise
(3)

xmax is generally taken as 100. GloVe’s weighting
function mainly reduces the influence of rarely co-
occurring words which tend to be noisy.

2.4 Syntagmatic Association

Let
←
li be the left embedding of word i , i.e. ith

row of L, and
→
rj be the right embedding of word j,

i.e the jth column of R. Since
→
rj reflects the right

context of word j and
←
li reflects the left context of

word i, similarity between
→
rj and

←
li would reflect

how often word j is found to the left of word i.

Thus cosine similarity between
→
r j and

←
li captures

the association of word j to the left of word i, and
the association of word i to the right of word j.

Table 1 gives few examples of left and right as-
sociations from syntagmatic embeddings. These
examples have been filtered to remove words that
tend to appear as both left and right associates. Let
l and r be the set of left associates and right asso-
ciates of a given word in the embedding space, then
the examples given here are l− r (left) and r− l
(right). We see that the left associates of a noun
(car) tends to have adjectives (vintage) and verbs
(buy) that take the noun as its direct object. Right
associates of the noun are found to be verbs (col-
lided) that take the noun as its subject. With a verb
(eat) we see that its left associates are other verbs
(want) to which the given verb is an open clausal
component. The right associates are its direct ob-
jects (salad). With an adjective (blue) we see that
its left associates are other adjectives (vivid) that
act as intensifiers and verbs (wore) whose direct
objects are modified by the given adjective. The
right associates are nouns (scarf) that are modified
by the adjective.

3 SP Evaluation

Examples of word association in the previous sec-
tion gives a qualitative feel about the degree to

head dependent human-score

am
od

air fresh 9.7
number medium 4.0

wind secret 0.7

do
bj

eat meal 10.0
touch food 5.5

eat mail 0.0

ns
ub

j sing singer 10.0
pray woman 5.8
eat textbook 0.0

Table 2: Samples from SP-10K dataset.

which syntagmatic embeddings can capture selec-
tional preference. In the next section we follow this
up with detailed analysis using quantitative studies.

3.1 Dataset

We use the SP-10K (Zhang et al., 2019b) dataset to
quantify the correlation of between the SP informa-
tion learned by our syntagmatic embeddings and
that of human judgements. Other datasets with hu-
man scores for SP are McRae et al. (1998); Keller
and Lapata (2003); Padó et al. (2006). But com-
pared to SP-10K these are much smaller in size.
SP-10K has 3 direct relations and 2 indirect rela-
tions. For our evaluation we only use the direct re-
lations – amod, nsubj and dobj. In SP-10K there
are 2000 evaluation instances under each relation
class. Each instance is a triplet (word1, word2,
human-score), where word1 is the head and word2
is a dependent, and human-score gives the plau-
sibility of word2 being dependent on word1, via
the given relation, as judged by humans on a 0-10
scale. For amod relation, a noun is the head and
an adjective is the dependent. For nsubj and dobj
a verb is the head and a noun is the dependent. Ta-
ble 2 gives some examples from the dataset. The
model’s capacity for SP is judged by the correlation
(Spearman’s) between the association score given
by the model and the human-score. The model-
score for a given head-dependent pair is the cosine
similarity between the head and the dependent in
the embedding space.

Since the syntagmatic embeddings relegate rela-
tions to left and right directions, the cosine similar-
ity for each of the relations are computed as: amod:
→
rd ·
←
lh, nsubj: →rd ·

←
lh, dobj: →rh ·

←
ld, where subscript

h and d denotes head and dependent words respec-
tively, and symbol ‘·’ denotes cosine similarity.

216

Figure 1: Average correlation of syntagmatic and paradigmatic models over various parameter combinations.

3.2 Baseline Models
We compare our syntagmatic model with 3 paradig-
matic models: Word2vec (Mikolov et al., 2013),
GloVe (Pennington et al., 2014) and DSG (Song
et al., 2018). Both Word2vec (w2v) and GloVe
(glove) are typical paradigmatic embeddings. DSG
(Directional Skip-Gram) is a variant of Word2vec
that claims to encode directional information by
predicting the co-occurring words and also their di-
rections. However, unlike syntagmatic embeddings
DSG gives only one embedding per word. The best
reported supervised model on SP-10K is Multiplex
Word Embeddings (MWE). However, we could not
use 3 the available implementation4 for our experi-
ments. Older supervised models for SP, that are not
based on embeddings, have been previously eval-
uated on SP-10K (Zhang et al., 2019a), therefore
we do not include those here.

3.3 Corpus
We use the British National Corpus (BNC-
Consortium, 2007) as the source for word co-
occurrences for the embeddings. Since BNC is
sentence segmented, our co-occurrence counting
never jumps across a sentence. The word casing
is normalized to small, punctuations are removed,
and the vocabulary is limited to words occurring at
least 100 times in the corpus.

4 Experiments

In the following experiments, we compare our syn-
tagmatic embeddings with its paradigmatic coun-
terpart, identify its best parameters, distinguish
weighted from unweighted factorisation, evaluate

3it runs only on a given prepackaged corpus, we found it
difficult to replicate their packaging for our corpus

4https://github.com/HKUST-KnowComp/MWE

against baseline embeddings and test how our un-
supervised SP learning method compares with a
supervised model. The parameters involved in the
factorisation of the word co-occurrence matrix are:
1) size of the co-occurrence window (ws), 2) term-
weight or the co-occurrence weighting function
(tw), 3) dimensionality of the embedding space or
the number of principle components (dim), and 4)
the exponential weight on singular values (p).

We experiment with the following parameter val-
ues: ws=[1, 2, 3, 4], dim=[20, 50, 100, 300], p=[-
0.5, 0, 0.5, 1], tw=[raw, log, pmi, ppmi]. In term-
weights raw denotes the co-occurrence frequency
of the word as it is , log is the log2 of the raw co-
occurrence frequency, pmi is the point-wise mutual
information given by equation 4 where subscript ‘*’
stands for a summation across a particular axis, and
ppmi is the positive-only variant of pmi as given by
equation 5.

PMIi,j = log
Mi,jM∗,∗
Mi,∗M∗,j

(4)

PPMIi,j = max(0, PMIi,j) (5)

4.1 Syntagmatic Vs Paradigmatic
In our first experiment we compare syntagmatic
representation to paradigmatic representation. Here
we consider only the unweighted factorisation
model. The paradigmatic model is similar to the
syntagmatic model described in section 2.2, but
has a context window that is symmetric and non-
directional. To get a more realistic picture of these
methods, we compare a cohort of syntagmatic and
paradigmatic models that have different parameter
values. Each of the 4 parameters have 4 chosen
parameter values. Since each parameter value com-
bination gives us a different model, we get a total
of 256 syntagmatic and 256 paradigmatic models.

217

Figure 2: Average correlation (with standard deviation)
in syntagmatic models that have the same parameter-
value.

For each model (parameter-value combination)
we compute the average correlation over the 3 SP
relations. We see that in 69% of the total parame-
ter instances the syntagmatic model is better than
paradigmatic model. In those instances, on average
the syntagmatic model improves the correlation by
0.14 points, which is an improvement of 54%. The
maximum correlation obtained by a syntagmatic
model is 0.71 and by the paradigmatic model is
0.58.

Figure 1 shows two line plots for the average
correlation values of syntagmatic and paradigmatic
embeddings. Each particular parameter-value com-
bination is a value on the x-axis, for which the there
are two correlation values on the y-axis; one of the
syntagmatic model and the other of the paradig-
matic model. Apart from showing that syntagmatic
models are generally better than paradigmatic mod-
els, it shows that certain parameter combinations
give syntagmatic models a much greater advantage.
On the downside we see that for a good number of
poorly performing paradigmatic models their, syn-
tagmatic counterpart performed even worse. There
are also certain pathological parameter combina-
tions that substantially pull down syntagmatic rep-
resentations compared to corresponding paradig-
matic representation. But overall, this experiment
shows that syntagmatic embeddings are substan-
tially better at capturing SP.

4.2 Parameter Impact

In our second experiment we try to understand the
relative importance of each parameter-value. For
this we look at all 256 syntagmatic models and

Figure 3: Average correlation of weighted and un-
weighted models with varying window sizes.

compute the mean and standard deviation of the
correlation score among those models that have a
particular parameter-value. For example we take
the parameter-value tw=log and look at all syntag-
matic models with that particular parameter-value,
and compute the mean and standard deviation of
their correlation score. We do the same with all 16
parameter-values.

Figure 2 gives the results of this experiment. We
see that term-weight is the most important param-
eter, and tw=log the most significant parameter-
value. No matter what the other parameters values
are, using log as the term-weight gives on average
a correlation score of 0.55 ± 0.07. Further, we
see that the dimensionality of the embedding space
is the next most significant parameter. Here we
see that higher values are better, but this is only
because we didn’t consider even higher5 values in
this experiment (>300). It is well understood that
there is an optimal dimension which is task and
corpus dependent, below which a model does not
have enough capacity, and above which the model
tends to pick up noise (Yin and Shen, 2018). A
more interesting aspect is the significance of the ex-
ponential weighting factor p. The SVD factorizes
the co-occurrence matrix as M = USV ᵀ, which
can be factored into left and right components as
M = [US

1
2][S

1
2V ᵀ]. We see that p=0.5 is indeed

the right5 value for the exponential weight factor.

4.3 Influence of Weighted Factorisation

To understand the influence of weighted factori-
sation on syntagmatic embeddings, we compare
the syntagmatic GloVe (s-glove) model, introduced
in section 2.3 to our SVD based unweighted fac-

5See figure 5 in appendix

218

torisation model. We choose our best performing
SVD based syntagmatic model (tw=log, dim=300,
p=0.5) naming it spvec. We also test the SkipGram
Word2vec (w2v) and GloVe (glove), for providing
a comparison with popular paradigmatic models,
and DSG to compare against a model with direc-
tional information. Embedding sizes in all models
are 300, and window-sizes 1 to 7 are evaluated.
Other parameters of dsg, s-glove, glove, w2v are
kept to the default values in their respective imple-
mentations.

Figure 3 shows the results of the experiment. We
find that our SVD based unweighted syntagmatic
model outperforms all other models, including
the weighted syntagmatic model based on GloVe.
The s-glove model performed slightly worse than
the paradigmatic glove (glove) model under low
window-sizes. We tried increasing the number of
iterations in the training process, from the default 5
to 10. The resulting model (s-glovei10) performed
much better than than paradigmatic GloVe model.
It is interesting to note that all weighted models
behave similarly to increasing window-sizes. They
perform better as window-sizes increase. Whereas,
our SVD based unweighted model (spvec) gives
a better performance at window-size 2 and 3 and
gradually decreases in performance as window-size
is further increased. The directional variant of
Word2vec (dsg) performs better than Word2vec,
but performs poorly compared to spvec. Compar-
ing s-glovei10 and spvec, we see that even at much
higher window-size of 15 (not shown in figure 3),
s-glovei10 barely reaches an average correlation
of 0.69. spvec on the other hand gets an average
correlation 0.71 at a much smaller window-sizes (2
and 3).

4.4 Comparison to Supervised Models

Our syntagmatic word embedding model aims to
provide an effective method to approach selectional
preference in the absence of a parsed corpus. In
this experiment we assess how deficient our unsu-
pervised model is when compared to supervised
models. Since we were not able to use the available
implementation of MWE, we simply compare our
unsupervised syntagmatic model (spvec) with su-
pervised versions of itself. The supervised version
of syntagmatic embeddings is obtained by defining
word co-occurrence as a pair of words related by a
dependency relation. For this we parse our corpus
(BNC) using the Stanford dependency parser (Qi

model amod nsubj dobj AVG

w2v 0.582 0.489 0.539 0.536
glove 0.694 0.489 0.587 0.590
dsg 0.625 0.490 0.556 0.557

s-glovei10 0.738 0.565 0.649 0.650
spvec 0.750 0.654 0.738 0.714

spvec-s 0.761 0.637 0.740 0.712
spvec-sr 0.757 0.653 0.741 0.717

Table 3: Spearman’s correlation for supervised and un-
supervised models on the SP-10K dataset.

et al., 2020). In order to remain compatible with
a syntagmatic model, we maintain word ordering
of the co-occurrences. For example, the sentence
‘big cat ate rat’ gives three co-occurrences where
the head and the dependent are ordered as they are
found in the sentence: ‘big cat’, ‘cat ate’ and ‘ate
rat’. We test two supervised models 1) spvec-s:
which uses all dependency related word pairs 2)
spvec-sr: which uses only related word pairs in a
particular dependency relation. spvec-sr thus has
3 distinct embedding pairs (left/right) per word, an
embedding pair for each of the tested dependency
relation: amod, nsubj, dobj. For comparison we
also show the results of unsupervised paradigmatic
models.

Table 3 gives the results of this experiment.
Surprisingly we see that our unsupervised model
(spvec) is as good as its supervised counterparts
(spvec-s and spvec-sr). The model trained on all
dependency related word pairs scores lower than
the fully unsupervised model. The model with re-
lation specific embeddings improves on the fully
unsupervised model only by a meager 0.4%. We
clearly see that unsupervised syntagmatic embed-
dings are not deficient but may be as good as super-
vised models.

5 Related Work

There have been previous studies that explored Syn-
tagmatic representations. Rapp (2002); Sahlgren
(2006) viewed syntagmatic representations as first-
order word co-occurrence statistics, and paradig-
matic representations as second-order statistics.
First-order models represent words using text units
in which they appear. Text units are generally doc-
uments or large regions of text, like paragraphs.
Thus, first order statistics come from a word-
document co-occurrence matrix, whereas paradig-

219

Figure 4: Window-size preferences of spvec for differ-
ent relations.

matic representations come from word-word co-
occurrence matrix and hence called second order.
While their evaluation of paradigmatic representa-
tion as second-order statistics was appropriate, their
claim of syntagmatic representation as first-order
statistics is not well justified. This is because the
evaluation datasets they used for first-order models
were a mix of (mostly) paradigmatic and syntag-
matic relations, and not purely syntagmatic. A
large-scale study by Lapesa et al. (2014) showed
that fine-tuned second-order statistics can capture
both syntagmatic and paradigmatic relations. Dif-
ferent parametrisations, mainly window size and
dimensionality reduction, were shown to adapt the
second-order statistics to either relations accord-
ingly.

The notion of syntagmatic representation ex-
plored in our work is adapted from Schütze and
Pedersen (1993), in which the syntagmatic repre-
sentation is introduced qualitatively without resort-
ing to any quantitative studies. Our study on the
other hand applies syntagmatic representation to
the task of selectional preference, exploring various
model parametrisations.

6 Discussion

Our experiments have shown that a weakly struc-
tured model can be as good as a strongly struc-
tured model. The spvec model, though unsuper-
vised, incorporates a simple linguistically moti-
vated bias/structure – directionality or word order.
Such a weakly biased model, when coupled with
low-rank embedding process, seems to pickup ap-
propriate linguistic structure by effectively getting
rid of noise. But why did the supervised mod-

els not have a bigger advantage when compared
to the unsupervised model? We can hypothesize
that words that are not directly related by a depen-
dency relation but are in the vicinity of a target
word make substantial contribution to the seman-
tics of the word which may not be captured by a
dependency-parsed model. It can also be because
the low-rank embedding process is as good at re-
moving noise as a dependency parse. A closer look
at the results reveal that amod and dobj relations
do benefit from supervision, although it is minor.
The effect of window-size on each of the depen-
dency relation, may help us to better understand
this (figure 4). In the unsupervised model, amod
relation is maximized with a window-size of 1, but
the results reported in table 3 are of window-size
3. Certainly, the excess window-size will result
in noise which may be mitigated by a dependency
parse, as seen in the results of supervised mod-
els. Similarly, dobj relation which is maximized in
the unsupervised model at window-size of 4 also
benefits from the dependency parse. However, the
case of nsubj relation does not fit this reasoning.
nsubj is maximized in the unsupervised model at
a window-size of 2, but even at window-size 3 it
improves over the supervised model. Here we may
have to consider the possibility that, words that are
not directly related may contribute to the semantics,
which is lost in a dependency-parsed model. We
would also like to point out that parsing a large
corpus can be resource intensive. Parsing the BNC
consumed about 24 GPU6 hours. However, our
experiments show that the gains derived do not sub-
stantiate the compute incurred. The unsupervised
spvec model performs the factorisation in less than
5 minutes on a 20-core CPU.

Weighted factorisation of word co-occurrences
is generally found to produce high quality word
embeddings. Previously such embeddings showed
improvements in tasks such as word similarity and
solving word analogies. But we have shown that,
when it comes to selectional preference and syntag-
matic embeddings, weighted factorisation may be
detrimental.

We also observe that appropriate co-occurrence
term-weights are crucial for the performance.
PPMI has been shown to work well for tasks that
test paradigmatic nature such as word similarity
(Bullinaria and Levy, 2007). Pennington et al.
(2014) remarked that log is better for solving word

6Nvidia RTX 2080 GPU

220

analogies than PPMI. Our experiments show that
log is also valuable for learning selectional prefer-
ence.

Here we have tested our syntagmatic embed-
dings only on English, but it should be directly
applicable to other word-ordered languages also.

7 Conclusion

In this paper, we have introduced syntagmatic word
embeddings, a simple and effective method, for
learning selectional preference (SP). Our model
is simple because it captures SP by direct factori-
sation of a word co-occurrence matrix. We have
showed that by incorporating a weak linguistic bias
of directionality as a proxy for syntactic relations,
our model can be made as effective as a model
with access to syntactic relations. This is important
because SP has always been seen as a task that
requires a dependency-parsed corpus, our work
shows that it need not be the case.

We hope that syntagmatic embeddings will be
a valuable source of selectional preference infor-
mation for resource-poor as well as resource-rich
languages. We also hope that the structural bias
of directionality will be further explored in simple
models for other NLP tasks, instead of relying on
models that are complex and opaque to interpreta-
tion.

Acknowledgement

Renjith P Ravindran is funded by Department of
Science and Technology (DST), Government of
India, under the Inspire Fellowship Programme.

References
BNC-Consortium. 2007. The british national corpus,

version 3 (bnc xml edition). Bodleian Libraries, Uni-
versity of Oxford. Http://www.natcorp.ox.ac.uk/.

John A. Bullinaria and Joseph P. Levy. 2007. Ex-
tracting semantic representations from word co-
occurrence statistics: A computational study. Behav-
ior Research Methods, pages 510–526.

John Caron. 2001. Experiments with LSA Scoring: Op-
timal Rank and Basis, page 157–169. Society for In-
dustrial and Applied Mathematics, USA.

Tim Van de Cruys. 2014. A neural network approach to
selectional preference acquisition. In Proceedings
of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 26–
35, Doha, Qatar. Association for Computational Lin-
guistics.

Katrin Erk. 2007. A simple, similarity-based model for
selectional preferences. In Proceedings of the 45th
Annual Meeting of the Association of Computational
Linguistics, pages 216–223, Prague, Czech Repub-
lic. Association for Computational Linguistics.

Jerry R. Hobbs. 1978. Resolving pronoun references.
Lingua, 44(4):311–338.

Dan Kalman. 1996. A singularly valuable decomposi-
tion: The svd of a matrix. The College Mathematics
Journal, 27(1):2–23.

Frank Keller and Mirella Lapata. 2003. Using the web
to obtain frequencies for unseen bigrams. Comput.
Linguist., 29(3):459–484.

Gabriella Lapesa, Stefan Evert, and Sabine Schulte im
Walde. 2014. Contrasting syntagmatic and paradig-
matic relations: Insights from distributional seman-
tic models. In Proceedings of the Third Joint Con-
ference on Lexical and Computational Semantics
(*SEM 2014), pages 160–170, Dublin, Ireland. As-
sociation for Computational Linguistics and Dublin
City University.

Omer Levy and Yoav Goldberg. 2014a. Dependency-
based word embeddings. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
302–308. Association for Computational Linguis-
tics.

Omer Levy and Yoav Goldberg. 2014b. Neural word
embedding as implicit matrix factorization. In Pro-
ceedings of the 27th International Conference on
Neural Information Processing Systems - Volume 2,
NIPS’14, pages 2177–2185, Cambridge, MA, USA.
MIT Press.

Ken McRae, Michael J Spivey-Knowlton, and
Michael K Tanenhaus. 1998. Modeling the influ-
ence of thematic fit (and other constraints) in on-line
sentence comprehension. Journal of Memory and
Language, 38(3):283–312.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.

George A. Miller. 1995. Wordnet: A lexical database
for english. Commun. ACM, 38(11):39–41.

Ulrike Padó, Frank Keller, and Matthew W Crocker.
2006. Combining syntax and thematic fit in a prob-
abilistic model of sentence processing. In Proceed-
ings of the 28th CogSci, pages 657–662.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

221

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020. Stanza: A
Python natural language processing toolkit for many
human languages. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations.

Reinhard Rapp. 2002. The computation of word asso-
ciations: Comparing syntagmatic and paradigmatic
approaches. In COLING 2002: The 19th Interna-
tional Conference on Computational Linguistics.

Philip Resnik. 1996. Selectional constraints: An
information-theoretic model and its computational
realization. Cognition, 61(1-2):127–159.

Philip Resnik. 1997. Selectional preference and sense
disambiguation. In Tagging Text with Lexical Se-
mantics: Why, What, and How?

Mats Rooth, Stefan Riezler, Detlef Prescher, Glenn Car-
roll, and Franz Beil. 1999. Inducing a semantically
annotated lexicon via em-based clustering. In Pro-
ceedings of the 37th Annual Meeting of the Asso-
ciation for Computational Linguistics on Computa-
tional Linguistics, ACL ’99, page 104–111, USA.
Association for Computational Linguistics.

Magnus Sahlgren. 2006. The Word-Space Model: Us-
ing distributional analysis to represent syntagmatic
and paradigmatic relations between words in high-
dimensional vector spaces. Ph.D. thesis, Institutio-
nen för lingvistik, Stockholm University.

Ferdinand de Saussure. 1916. Cours de linguistique
générale. Payot, Paris.

Hinrich Schütze and Jan Pedersen. 1993. A vector
model for syntagmatic and paradigmatic relatedness.
In Making Sense of Words - Ninth Annual Confer-
ence of the UW Centre for the New OED and Text
Re- search, pages 104–113.

Yan Song, Shuming Shi, Jing Li, and Haisong Zhang.
2018. Directional skip-gram: Explicitly distinguish-
ing left and right context for word embeddings. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 2 (Short Papers), pages 175–180, New
Orleans, Louisiana. Association for Computational
Linguistics.

Y. Wilks. 1975. A preferential, pattern-seeking, se-
mantics for natural language inference. Artif. Intell.,
6:53–74.

Zi Yin and Yuanyuan Shen. 2018. On the dimension-
ality of word embedding. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information
Processing Systems 31, pages 887–898. Curran As-
sociates, Inc.

Beñat Zapirain, Eneko Agirre, Lluı́s Màrquez, and Mi-
hai Surdeanu. 2013. Selectional preferences for se-
mantic role classification. Computational Linguis-
tics, 39(3):631–663.

Hongming Zhang, Jiaxin Bai, Yan Song, Kun Xu,
Changlong Yu, Yangqiu Song, Wilfred Ng, and
Dong Yu. 2019a. Multiplex word embeddings for se-
lectional preference acquisition. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5247–5256, Hong Kong,
China. Association for Computational Linguistics.

Hongming Zhang, Hantian Ding, and Yangqiu Song.
2019b. SP-10K: A large-scale evaluation set for se-
lectional preference acquisition. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 722–731, Florence,
Italy. Association for Computational Linguistics.

Hongming Zhang, Yan Song, and Yangqiu Song.
2019c. Incorporating context and external knowl-
edge for pronoun coreference resolution. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 872–881,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

A Detailed Parameter Study

Figure 5: Variations in SP correlation of spvec on each
relation with variations in parameter-values of term-
weight, dimensions, and exponential-weight-p. Varia-
tions in window-size are shown in figure 4.

222

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 223–230
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

Bayesian Model-Agnostic Meta-Learning with Matrix-Valued Kernels
for Quality Estimation

Abiola Obamuyide1 Marina Fomicheva1 Lucia Specia1,2

1Department of Computer Science, University of Sheffield
2Department of Computing, Imperial College London

United Kingdom
{a.obamuyide,m.fomicheva,l.specia}@sheffield.ac.uk

Abstract
Most current quality estimation (QE) models
for machine translation are trained and eval-
uated in a fully supervised setting requiring
significant quantities of labelled training data.
However, obtaining labelled data can be both
expensive and time-consuming. In addition,
the test data that a deployed QE model would
be exposed to may differ from its training data
in significant ways. In particular, training sam-
ples are often labelled by one or a small set
of annotators, whose perceptions of transla-
tion quality and needs may differ substantially
from those of end-users, who will employ pre-
dictions in practice. Thus, it is desirable to
be able to adapt QE models efficiently to new
user data with limited supervision data. To ad-
dress these challenges, we propose a Bayesian
meta-learning approach for adapting QE mod-
els to the needs and preferences of each user
with limited supervision. To enhance per-
formance, we further propose an extension
to a state-of-the-art Bayesian meta-learning
approach which utilizes a matrix-valued ker-
nel for Bayesian meta-learning of quality es-
timation. Experiments on data with varying
number of users and language characteristics
demonstrates that the proposed Bayesian meta-
learning approach delivers improved predic-
tive performance in both limited and full su-
pervision settings.

1 Introduction

Quality Estimation (QE) models aim to evaluate
the output of Machine Translation (MT) systems at
run-time, when no reference translations are avail-
able (Blatz et al., 2004; Specia et al., 2009). QE
models can be applied for instance to improve trans-
lation productivity by selecting high-quality trans-
lations amongst several candidates. A number of
approaches have been proposed for this task (Spe-
cia et al., 2009, 2015; Kim et al., 2017; Kepler et al.,
2019; Ranasinghe et al., 2020), and a shared task

yearly benchmarks proposed approaches (Fonseca
et al., 2019; Specia et al., 2020).

Different users of MT output have varying qual-
ity needs and standards, depending for instance
on the downstream task at hand, or the level of
their knowledge of the languages involved. Thus,
the perception of the quality of MT output can be
subjective, and therefore the quality estimates ob-
tained from a model trained on data from one set
of users may not serve the needs of a different set
of users. In order to be able to make the most of
these models, it is thus desirable to be able to effi-
ciently adapt them to the needs and preferences of
the end-user and with as little supervision as possi-
ble. However, most existing QE models are trained
and evaluated in a fully supervised setting which
assumes access to substantial quantities of labelled
supervision data, which may not be available and
can be expensive and time-consuming to obtain.

In order to endow QE models with the ability to
learn to adapt efficiently with limited supervision
data, this work proposes a Bayesian meta-learning
framework for the training and evaluation of QE
models that are able to adapt to the needs of end-
users with limited supervision data. We further im-
prove the performance of Bayesian meta-learning
for the task of quality estimation by extending the
state-of-the-art Bayesian Model-Agnostic Meta-
Learning (BMAML) approach of Kim et al. (2018)
to utilize Stein Variational Gradient Descent (Liu
and Wang, 2016) with matrix-valued kernels (Wang
et al., 2019), and demonstrate that this leads to en-
hanced predictive performance in both limited and
full supervision settings.

2 Background

2.1 Model-Agnostic Meta-Learning

The goal of meta-learning, also known as learn-
ing to learn (Schmidhuber, 1987; Thrun and Pratt,

223

1998), is to develop models that can learn more
efficiently over time, by generalizing from knowl-
edge of how to solve related tasks from a given
distribution of tasks. Given a learner model fw, for
instance a neural network parametrized by w ∈ Rd,
and a distribution p(T) over tasks T , gradient-
based model-agnostic meta-learning approaches
such as MAML (Finn et al., 2017) seek to learn
the parameters of the learner model which can be
quickly adapted to new tasks sampled from the
same distribution of tasks with limited supervision
data.

In formal terms, these approaches seek parame-
ters w that satisfy the meta-objective:

min
w

ET ∼p(T) [LT (Uk (w;DT))] , (1)

where LT is the loss and DT is training data from
task T , and Uk denotes k steps of a gradient descent
learning rule such as SGD.

Intuitively, the meta-objective explicitly encour-
ages the model to learn model parameters that can
be quickly adapted to achieve optimum predictive
performance across all tasks using limited supervi-
sion data and with as few gradient descent steps as
possible.

In order to account for uncertainty and improve
robustness, Bayesian approaches to meta-learning
have also been proposed (Kim et al., 2018; Finn
et al., 2018; Ravi and Beatson, 2019; Wang et al.,
2020; Nguyen et al., 2020). In contrast to their
non-Bayesian counterparts which learn point esti-
mates of the parameters, Bayesian meta-learning
approaches learn a distribution over the parameters
to further improve robustness in limited supervi-
sion settings.

2.2 Stein Variational Gradient Descent
Stein Variational Gradient Descent (SVGD)(Liu
and Wang, 2016) is a Bayesian inference method
which works by initializing a set of samples, also
known as particles, from a simple distribution and
iteratively updating the particles to match samples
from a target distribution. Because its particle up-
date rule is deterministic and differentiable, it can
be used to perform Bayesian inference in the meta-
learning inner loop, since the entire update pro-
cess can still be differentiated through for gradient-
based updates from the outer loop, for instance as
was done in Kim et al. (2018).

In order to obtain N samples from a posterior
p(w), SVGD maintains N samples of model pa-
rameters, and iteratively transports the samples to

match samples from the target distribution. Let
the samples be represented by W = {wn}Nn=1. At
each successive iteration t, SVGD updates each
sample with the following update rule:

wt+1 ← wt + αtφ (wt) , (2)

where φ (wt) =

1

N

N∑

n=1

[
k (wn

t ,wt)∇wn
t
log p (wn

t) +∇wn
t
k (wn

t ,wt)
]
,

(3)

αt is a step-size parameter and k : Rd×Rd → R is
a scalar-valued positive-definite kernel such as the
Radial Basis Function (RBF) kernel. Intuitively,
the first term in Equation 3 implies that a particle
determines its update direction through a weighted
aggregate of the gradients from the other particles,
with the kernel distance between the particles serv-
ing as the weight. Thus, closer particles have more
weight in the aggregate. The second term of the
equation can be understood as a repulsive force that
prevents the particles from collapsing to a single
point. For the case when the number of particles is
one, the SVGD update procedure reduces to stan-
dard gradient ascent on the objective p(w) for any
kernel with the property ∇wk (w,w) = 0, such
as the RBF kernel. SVGD has been applied in
a wide range of settings, including reinforcement
learning (Liu et al., 2017; Haarnoja et al., 2017),
uncertainty quantification (Zhu and Zabaras, 2018),
and online continual learning (Obamuyide et al.,
2021).

2.3 Stein Variational Gradient Descent with
Matrix-Valued Kernels

LetHk denote a reproducing kernel Hilbert space
(RKHS) H with kernel k. Wang et al. (2019) ob-
served that the original SVGD as proposed in Liu
and Wang (2016) searches for the optimal update
direction φ in RKHS Hdk = Hk × · · · × Hk, a
product of d copies of RKHS of scalar-valued func-
tions, which does not allow the encoding of any po-
tential correlations between different co-ordinates
of φ. Wang et al. (2019) proposed Matrix-SVGD,
which addressed this limitation by replacing Hdk
with a more general RKHS of vector-valued func-
tions (also known as vector-valued RKHS), which
uses matrix-valued positive-definite kernels to spec-
ify rich correlation structures between the different
co-ordinates. Concretely, Equation 3 as used in
SVGD is replaced with Equation 4:

224

φ (wt) =

1

N

N∑

n=1

[
K (wt,w

n
t)∇wn

t
log p (wn

t) +K (wt,w
n
t)∇wn

t

]
,

(4)

where K : Rd × Rd → Rd×d is now a matrix-
valued kernel, and K(·,w)∇w is formally defined
as the product of matrix K(·,w) with vector∇w.
The `-th element of K(·,w)∇w is computed as:

(K(·,w)∇w)` =

d∑

m=1

∇wmK`,m(·,w), (5)

where K`,m (w,w′) represents the (`,m)-element
of matrix K (w,w′) and wm the m-element of w.

Importantly, the advantage of Matrix-SVGD over
the original SVGD algorithm is that it allows us to
pre-condition SVGD by constructing a proper ma-
trix kernel which incorporates the pre-conditioning
information, in order to accelerate exploration and
convergence.

2.4 Bayesian Model-Agnostic Meta-Learning
Kim et al. (2018) proposed a Bayesian Model-
Agnostic Meta-Learning (BMAML) algorithm
which learns a distribution over parameters which,
when given data from a new task, can be adapted
quickly to a task-specific distribution using SVGD
updates as defined in Equation 3. Thus, BMAML
as proposed in Kim et al. (2018) makes use of
scalar-valued kernels for SVGD updates, which (as
discussed earlier) does not allow the encoding of
potential correlations between different parameter
co-ordinates for effective optimization, a limitation
which we next address.

3 Bayesian Model-Agnostic
Meta-Learning with Matrix-SVGD

In this work we propose to improve the predic-
tive performance of BMAML for quality estima-
tion with the use of the Matrix-SVGD, which uses
matrix-valued kernels for more effective parameter
updates, in place of the original SVGD algorithm
used in Kim et al. (2018). As pre-conditioning
information, we use P , the average of the Fisher
information matrix of the particles:

P =
1

N

N∑

n=1

F (wn) , (6)

where F (wn) is the Fisher information matrix
for particle wn. The matrix-valued kernel is then

computed as:

KP

(
w,w′

)
= P−1 exp

(
− 1

2h

∥∥w −w′
∥∥2
P

)
, (7)

where ‖w −w′‖2P := (w −w′)> P (w −w′) and h
is a bandwidth parameter.

The full algorithm, which we refer to as Matrix-
BMAML, is outlined in Algorithm 1. We use ma-
chine translation quality estimation as a case study
in this work, and so assume access to a distribution
of quality estimation tasks p(T) (each QE task can
be a QE user/annotator/post-editor with their corre-
sponding data), and a quality estimation model fW
parameterized by W , though the approach can also
be applied to other natural language processing or
computer vision tasks.

Algorithm 1 Bayesian Model-Agnostic Meta-
Learning with Matrix-SVGD
Require: Distribution of QE tasks p(T)
Require: QE model fW , Number of update steps K
Require: Learning rates α, β
1: Initialize W
2: while not done do
3: Sample batch of QE tasks Ti ∼ p(T)
4: for each Ti do
5: Sample Dtrain

Ti from T traini

6: Sample Dval
Ti from T vali

7: W i
0 ←W

8: for k = 1,..K do
9: W i

k =Matrix-SVGD(W i
k−1;Dtrain

Ti , α)
10: end for
11: end for
12: W ←W − β∇W

∑
Ti∼p(T) L

(
fW i

K
;Dval
Ti

)

13: end while

We first initialize the parameters of the quality
estimation model (line 1). Then in each iteration,
we sample a batch of QE tasks (line 3), and for each
QE task, we sample instances from its training and
validation sets (lines 4-6). Thereafter, task-specific
parameters are initialized from the model’s param-
eters (line 7), and then updated with K steps of
Matrix-SVGD (using Equations (2) and (4) to (7))
(lines 8-10). At the end of each iteration, a meta-
update is performed on the model’s parameters W .

4 Experiments and Results

We conduct experiments in two settings: in a lim-
ited supervision setting, where we provide all mod-
els access to only a limited number of training
instances per QE task; and in a full-supervision
setting, where we provide the models with access
to all available training instances for each QE task.

225

PE ID Train Dev Test

PE1 1440 360 200
PE2 2160 540 300
PE3 1444 361 195
PE4 1834 459 244
PE5 4866 1217 617
PE6 1677 420 203
PE7 1567 392 241

Total 14988 3749 2000

(a) QT21 en-lv (nmt)

PE ID Train Dev Test

PE1 9952 2488 559
PE2 3445 862 193
PE3 8770 2193 537
PE4 4579 1145 276
PE5 7651 1913 435

Total 34397 8601 2000

(b) QT21 en-cs (smt)

Table 1: Number of instances per QE Task/Post Editor
(PE) for the QT21 dataset.

The QT21 Dataset We evaluate our approach
with the publicly available QT21 (Specia et al.,
2017), a large-scale dataset containing translations
from both statistical (smt) and neural (nmt) ma-
chine translation systems in multiple language di-
rections 1. This is the largest dataset with annotator
information available. We make use of data from
the English-Latvian (en-lv) and English-Czech (en-
cs) language directions. The languages were cho-
sen as they contain the largest number of annotators.
Each instance in the dataset is a tuple of source sen-
tence, its machine translation, the corresponding
post-edited translation by a professional translator
(post-editor), a reference translation and other in-
formation such as (anonymized) post-editor identi-
fier. We construct a QE dataset from this corpus by
computing the HTER (Snover et al., 2006) values
between each source sentence and its post-edited
translation. We thereafter split the data into train,
dev and test splits for each post-editor, which con-
stitutes a QE task. A breakdown of the number of
train, dev and test instances per QE task/post-editor
is available in Table 1.

5 QE Model

The quality estimation model used by all meth-
ods is based on multi-lingual DistilBERT (Sanh
et al., 2019), a smaller version of multi-lingual

1http://www.qt21.eu/resources/data/

BERT (Devlin et al., 2019) trained with knowl-
edge distillation (Buciluǎ et al., 2006; Hinton et al.,
2015). It accepts as input the source and machine
translation outputs concatenated as a single text,
separated by a ‘[SEP]’ token and prepended with
a ‘[CLS]’ token. The representation of the ‘[CLS]’
token is then passed to a linear layer to predict
HTER (Snover et al., 2006) values as regression
targets.

Benchmark Approaches We compare the pro-
posed approach with the following: MTL-
PRETRAIN is a baseline trained in classic multi-
task fashion for multiple epochs using data from
all QE tasks. It is thereafter fine-tuned using
each QE task’s training data before making pre-
dictions on its test set, in a similar fashion as
the meta-learning approaches; REPTILE (Nichol
and Schulman, 2018); Model-Agnostic Meta-
Learning (MAML) (Finn et al., 2017); implicit
Model-Agnostic Meta-Learning (iMAML) (Ra-
jeswaran et al., 2019); Amortized Bayesian Meta-
Learning (ABML) (Ravi and Beatson, 2019); and
BMAML (Kim et al., 2018), a state-of-the-art
Bayesian meta-learning method.

Evaluation We report Pearson’s r correlation
scores and Mean Absolute Error (MAE) between
model output and gold labels, both standard evalu-
ation metrics in QE.

Each experiment is repeated across five (5) dif-
ferent random seeds, and we report the average.

5.1 Limited Supervision Results
Results obtained in a setting where all approaches
have access to only very limited training instances
is presented in Figure 1. As expected, train-
ing with classic multi-task learning and then fine-
tuning on the training data of each QE task (MTL-
PRETRAIN) results in very poor performance on
both datasets. This result is consistent with the
results observed in Finn et al. (2017), since clas-
sic multi-task learning does not have any explicit
objective that encourages the model to learn how
to learn with limited supervision data. In con-
trast, all meta-learning approaches obtain consis-
tent improvements over the MTL-PRETRAIN base-
line. We find that in general, our approach (Matrix-
BMAML) obtains marked performance improve-
ments over the other Bayesian and non-Bayesian
meta-learning approaches. This demonstrates the
importance of incorporating pre-conditioning infor-
mation through matrix-valued kernels for more ef-

226

(a)

(b)

Figure 1: Results obtained using limited training in-
stances for each task on the (a) en-lv and (b) en-cs qual-
ity estimation datasets.

fective SVGD updates in Bayesian model-agnostic
meta-learning.

5.2 Full Supervision Results

Method
en-lv en-cs

Pearson ↑ MAE ↓ Pearson ↑ MAE ↓
MTL-PRETRAIN 0.4505 0.1936 0.4473 0.1711

MAML 0.5239 0.1590 0.4894 0.1611
REPTILE 0.5237 0.1591 0.5037 0.1605
iMAML 0.5254 0.1588 0.5036 0.1605
ABML 0.5196 0.1600 0.4807 0.1620
BMAML 0.5295 0.1585 0.4963 0.1606

Matrix-BMAML 0.5377 0.1588 0.5202 0.1566

Table 2: Comparison with existing approaches.

Table 2 presents results obtained when the ap-
proaches are given access to all available train-
ing data for each QE task. We can observe that
Matrix-BMAML obtained the best MAE on the en-
cs dataset, and the best Pearson’s correlation on
both datasets, which again demonstrates the effec-
tiveness of our approach in this setting.

6 Conclusions

We proposed a Bayesian meta-learning framework
for adapting machine translation quality estima-
tion models to the quality needs and preferences
of each user with limited supervision data. We
further extend a state-of-the-art Bayesian meta-
learning method with the use of matrix-valued
kernels, which enables the incorporation of pre-
conditioning information for more effective SVGD
updates. Using data from two language directions,
we demonstrate improved predictive performance
in both limited and full-supervision settings over
recent state-of-the-art Bayesian and non-Bayesian
meta-learning methods.

Acknowledgements

This work was supported by funding from the Berg-
amot project (EU H2020 grant no. 825303).

References
John Blatz, Erin Fitzgerald, George Foster, Simona

Gandrabur, Cyril Goutte, Alex Kulesza, Alberto San-
chis, and Nicola Ueffing. 2004. Confidence esti-
mation for machine translation. In COLING 2004:
Proceedings of the 20th International Conference on
Computational Linguistics, pages 315–321, Geneva,
Switzerland.

Cristian Buciluǎ, Rich Caruana, and Alexandru
Niculescu-Mizil. 2006. Model compression. In Pro-
ceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data min-
ing, pages 535–541.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171–4186. Association for Computa-
tional Linguistics.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th Inter-
national Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017,
volume 70 of Proceedings of Machine Learning Re-
search, pages 1126–1135. PMLR.

Chelsea Finn, Kelvin Xu, and S. Levine. 2018. Proba-
bilistic model-agnostic meta-learning. In Advances
In Neural Information Processing Systems.

227

Erick Fonseca, Lisa Yankovskaya, André F. T. Martins,
Mark Fishel, and Christian Federmann. 2019. Find-
ings of the WMT 2019 shared tasks on quality esti-
mation. In Proceedings of the Fourth Conference on
Machine Translation (Volume 3: Shared Task Papers,
Day 2), pages 1–10, Florence, Italy. Association for
Computational Linguistics.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and
Sergey Levine. 2017. Reinforcement learning with
deep energy-based policies. In Proceedings of the
34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, volume 70 of Proceedings of Machine Learn-
ing Research, pages 1352–1361. PMLR.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531.

Fabio Kepler, Jonay Trénous, Marcos Treviso, Miguel
Vera, and André F. T. Martins. 2019. OpenKiwi:
An open source framework for quality estimation.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics: System
Demonstrations, pages 117–122, Florence, Italy. As-
sociation for Computational Linguistics.

Hyun Kim, Jong-Hyeok Lee, and Seung-Hoon Na.
2017. Predictor-estimator using multilevel task
learning with stack propagation for neural quality es-
timation. In Proceedings of the Second Conference
on Machine Translation, WMT 2017, Copenhagen,
Denmark, September 7-8, 2017, pages 562–568. As-
sociation for Computational Linguistics.

Taesup Kim, Jaesik Yoon, O. Dia, S. Kim, Yoshua
Bengio, and Sungjin Ahn. 2018. Bayesian model-
agnostic meta-learning. In Advances In Neural In-
formation Processing Systems.

Qiang Liu and Dilin Wang. 2016. Stein variational gra-
dient descent: A general purpose bayesian inference
algorithm. In Advances in Neural Information Pro-
cessing Systems 29, pages 2378–2386. Curran Asso-
ciates, Inc.

Yang Liu, Prajit Ramachandran, Qiang Liu, and Jian
Peng. 2017. Stein variational policy gradient. In
Proceedings of the Thirty-Third Conference on Un-
certainty in Artificial Intelligence, UAI 2017, Sydney,
Australia, August 11-15, 2017. AUAI Press.

Cuong Nguyen, Thanh-Toan Do, and Gustavo Carneiro.
2020. Uncertainty in model-agnostic meta-learning
using variational inference. In Proceedings of the
IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 3090–3100.

Alex Nichol and John Schulman. 2018. Reptile: a
scalable metalearning algorithm. arXiv preprint
arXiv:1803.02999, 2(2):1.

Abiola Obamuyide, Marina Fomicheva, and Lucia Spe-
cia. 2021. Continual quality estimation with online
bayesian meta-learning. In Proceedings of the Asso-
ciation for Computational Linguistics.

Aravind Rajeswaran, Chelsea Finn, Sham M. Kakade,
and Sergey Levine. 2019. Meta-learning with im-
plicit gradients. In Advances in Neural Informa-
tion Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 113–124.

Tharindu Ranasinghe, Constantin Orasan, and Ruslan
Mitkov. 2020. Transquest at wmt2020: Sentence-
level direct assessment. In Proceedings of the Fifth
Conference on Machine Translation, pages 1049–
1055, Online. Association for Computational Lin-
guistics.

Sachin Ravi and Alex Beatson. 2019. Amortized
bayesian meta-learning. In 7th International Confer-
ence on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108.

Jurgen Schmidhuber. 1987. Evolutionary principles in
self-referential learning. On learning how to learn:
The meta-meta-... hook.) Diploma thesis, Institut f.
Informatik, Tech. Univ. Munich.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings of the 7th Conference of the Associa-
tion for Machine Translation in the Americas: Tech-
nical Papers. Cambridge, MA.

Lucia Specia, Frédéric Blain, Marina Fomicheva, Er-
ick Fonseca, Vishrav Chaudhary, Francisco Guzmán,
and André F. T. Martins. 2020. Findings of the
WMT 2020 shared task on quality estimation. In
Proceedings of the Fifth Conference on Machine
Translation, pages 743–764, Online. Association for
Computational Linguistics.

Lucia Specia, Kim Harris, Aljoscha Burchardt, Marco
Turchi, Matteo Negri, and Inguna Skadina. 2017.
Translation quality and productivity: A study on
rich morphology languages. In Machine Translation
Summit XVI, pages 55–71.

Lucia Specia, Gustavo Paetzold, and Carolina Scarton.
2015. Multi-level translation quality prediction with
quest++. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing of the Asian Federation of
Natural Language Processing, ACL 2015, July 26-
31, 2015, Beijing, China, System Demonstrations,
pages 115–120. The Association for Computer Lin-
guistics.

Lucia Specia, Marco Turchi, Nicola Cancedda, Marc
Dymetman, and Nello Cristianini. 2009. Estimating

228

the sentence-level quality of machine translation sys-
tems. In 13th Conference of the European Associa-
tion for Machine Translation, pages 28–37.

Sebastian Thrun and Lorien Pratt. 1998. Learning to
Learn: Introduction and Overview. In Learning to
Learn, pages 3–17. Springer US, Boston, MA.

Dilin Wang, Ziyang Tang, C. Bajaj, and Qiang Liu.
2019. Stein variational gradient descent with matrix-
valued kernels. Advances in neural information pro-
cessing systems, 32:7834–7844.

Zhenyi Wang, Yang Zhao, Ping Yu, Ruiyi Zhang,
and Changyou Chen. 2020. Bayesian meta sam-
pling for fast uncertainty adaptation. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020.

Yinhao Zhu and Nicholas Zabaras. 2018. Bayesian
deep convolutional encoder-decoder networks for
surrogate modeling and uncertainty quantification. J.
Comput. Phys., 366:415–447.

229

A Additional Experimental Details

Hyper-parameter Value

Learning rate 3e-5
Mini-batch size 16

Max. sequence length 100

Table 3: Hyper-parameter values for all compared ap-
proaches

All compared approaches have a run time of
about two hours on average. Each model was im-
plemented as a linear layer on top of multilingual
DistilBERT (Sanh et al., 2019), which has a total
of 134M parameters. 2

For the evaluation metrics, Pearson r correlation
and MAE, we use open-source implementations
available in SciPy 3 and scikit-learn 4 libraries re-
spectively.

All models make use of the same values for
hyper-parameters such as learning rate and batch
size, selected by manual search in initial experi-
ments. These are provided in Table 3.

2https://huggingface.co/distilbert-base-multilingual-
cased

3https://www.scipy.org
4https://scikit-learn.org

230

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 231–240
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

Knowledge Informed Semantic Parsing for
Conversational Question Answering

Raghuveer Thirukovalluru1∗, Mukund Sridhar2∗,
Dung Thai1∗, Shruti Chanumolu1, Nicholas Monath1 ,

Shankar Ananthakrishnan2, Andrew McCallum1

1UMass Amherst, 2Amazon Alexa AI
{rthirukovall,dthai,schanumolu,nmonath,mccallum}@cs.umass.edu

{harakere,sanantha}@amazon.com

Abstract

Smart assistants are tasked to answer various
questions regarding world knowledge. These
questions range from retrieval of simple facts
to retrieval of complex, multi-hops question
followed by various operators (i.e., filter,
argmax). Semantic parsing has emerged as
the state-of-the-art for answering these kinds
of questions by forming queries to extract in-
formation from knowledge bases (KBs). Spe-
cially, neural semantic parsers (NSPs) effec-
tively translate natural questions to logical
forms, which execute on KB and give de-
sirable answers. Yet, NSPs suffer from non-
executable logical forms for some instances
in the generated logical forms might be miss-
ing due to the incompleteness of KBs. Intu-
itively, knowing the KB structure informs NSP
with changes of the global logical forms struc-
tures with respect to changes in KB instances.
In this work, we propose a novel knowledge-
informed decoder variant of NSP. We con-
sider the conversational question answering
settings, where a natural language query, its
context and its final answers are available at
training. Experimental results show that our
method outperformed strong baselines by 1.8
F1 points overall across 10 types of questions
of the CSQA dataset. Especially for the “Log-
ical Reasoning” category, our model improves
by 7 F1 points. Furthermore, our results are
achieved with 90.3% fewer parameters, allow-
ing faster training for large-scale datasets.

1 Introduction

Knowledge base question answering (KBQA) has
emerged as an important research topic over the
past few years (Sun et al., 2018; Chakraborty
et al., 2019; Sun et al., 2019; Shen et al.,
2019) alongside with question answering over text
corpora. In KBQA, world knowledge is given
in the form of multi-relational graph databases

∗ Equal contribution

(Vrandečić and Krötzsch, 2014; Lehmann et al.,
2015) with millions of entities and interrelations
between them. When a natural language ques-
tion arrives, KBQA systems analyse relevant
facts in the knowledge bases and derive the an-
swers. In the presence of knowledge bases, ques-
tion answering results are often time more inter-
pretable and modifiable. For example, the question

“Who started his career at Manchester United in
1992?” can be answered by fact triples such as
(“David Beckham”, member of sports team,

“Manchester United”). This fact can be updated as
the world knowledge changes while it might be
non-trivial to achieve the same effect on text cor-
pora. Likewise, KBQA systems face their own chal-
lenges (Chakraborty et al., 2019), especially in the
real-world, conversational settings.

In real-world settings, KBQA systems need to
perform multi-hop reasoning over chains of sup-
porting facts and carry out various operations
within the context of a conversation. For instance,
answering the follow up question “When did he win
his first championship?” might require identifying
the player previously mentioned, all of his sport
teams, the dates the sport teams won their cham-
pionships. Then, argmax and filter operators
are applied on the returned dates, yielding answers,
i.e., “1999” for “David Beckham”. Semantic pars-
ing provides a weak supervision framework to learn
to perform all these reasoning steps from just the
question answer pairs. Semantic parsers define a set
of rules (or grammar) for generating logical forms
from natural language questions. Candidate logi-
cal forms are executable queries on the knowledge
bases that yield the corresponding answers. Neural
semantic parsers (NSPs) (Liang et al., 2016; Guo
et al., 2018; Shen et al., 2019; Guo et al., 2019) em-
ploy a neural network to translate natural language
questions into logical forms. NSPs have shown
good performance on KBQA tasks (Liang et al.,

231

2016; Plepi et al., 2021) and further improved with
reinforcement learning (Guo et al., 2018), multi-
task learning (Shen et al., 2019), and most recently
meta-learning (Hua et al., 2020). Most previous
works place more emphasis on modeling the rea-
soning behavior given in the questions than on in-
teractions with the KB. In this work, we propose a
KB-aware NSP variant (KISP) to fill in this gap.

One of the main challenges in learning KBQA
systems is to adapt to structural changes of the
relevant sub-knowledge base. Different reasoning
behaviors might apply to similar questions with
respect to different sub-knowledge bases. For ex-
ample, a similar question “When did Tiger Woods
win his first championship?” would require a dif-
ferent reasoning chain since he didn’t participate in
a sports team. Structural changes of the sub-KB is
a common phenomenon due to the incompleteness
nature of knowledge bases. In such cases, knowing
the attributes and relations would inform NSPs with
changes in logical forms with respect to specific
relevant KB entities. To address this problem, we
propose a NSPs with a KB-informed decoder that
utilizes local knowledge base structure encoded in
pre-trained KB embeddings. Our model collects all
relevant KB artifacts and integrates their embed-
dings into each decoding step, iteratively. We also
introduce an attention layer on a set of associated
KB random walks as an k-steps look ahead that
prevents the decoder from going into KB regions
where generated logical forms are not executable.

Pre-trained KB embeddings were shown to im-
prove multi-hop KBQA where answers are enti-
ties and no operations are involved (Saxena et al.,
2020). In this paper, we demonstrate our work
on the full KBQA settings with 10 question cat-
egories with no constraints on the answers (Saha
et al., 2018). While (Saxena et al., 2020) evalu-
ates 2-hop questions (Yih et al., 2016) and 2 and
3-hop questions with limited relation types (Zhang
et al., 2018). Our model is also the first NSP variant
that utilizes pre-trained features for logical forms
generation. CARTON (Plepi et al., 2021) uses an
updated action grammar with stacked pointer net-
works. LASAGNE (Kacupaj et al., 2021) is an ex-
tension of CARTON which further includes a graph
attention network to exploit correlations between
entities, predicates. Empirical results showed that
our model improves upon the MaSP model (Shen
et al., 2019), a strong baseline for CSQA dataset,
by an absolute 1.8 F1, 1.5% accuracy two sets of
questions respectively.

Further, we find that by incorporating
knowledge-graph information we can match the
performance of much larger pre-trained encoder
models while using 90.3% fewer parameters.

2 Background

We first formally describe our task and the Neural
Semantic Parser (NSP) on which our work is based.

Knowledge Graph: Let E = {e0...eN} be a set
of given entities, and let R = {r0...rM} be a set
of relations. A knowledge graph G is a set of fact
triples in E × R × E . A triple is represented as
(h, r, t) where h, t ∈ E and r ∈ R. There is an
extensive literature on representing the knowledge
graph (Ji et al., 2020; Dai et al., 2020) that encode
its semantics and structures. In this work, we use
the pre-trained knowledge graph embeddings from
Pytorch-BigGraph (Lerer et al., 2019).

Conversational Question Answering: In con-
versational question answering (CQA), the goal
is to answer a question q within the context of the
conversation history C. The question q and the his-
tory C are usually concatenated for handling ellipsis
and coreference, forming the input X as [C; q]. At
training time, a set of answering entities A is also
given. The set A comprises entities that resolve to
the answer depending on the answer’s type. For
example, answers of “Simple Question” are a list
of entities, the answer of “Verification Question” is
Yes/No, whether the set A is empty or not.

2.1 Neural Semantic Parser

Semantic parsing approach for CQA produces the
answer set A by first generating a logical form
Y. Formally, a logical form Y is a sequence of
actions (y1, y2, ..., yn) where the arguments of
these actions can be constants (i.e., numbers, dates)
or KG instances (i.e., entities, relations, types).
The set of actions is defined by a grammar S (Shen
et al., 2019). We consider the weak-supervision
settings where the ground truth logical form Y is
not available. Instead, we generate candidates for
Y by performing BFS based on grammar S over
the knowledge graph G and keeping the candidate
logical forms that yield the answer set A (Guo
et al., 2018). Given the input X and the labeled
logical form Y, we train an encoder-decoder
neural network to generate logical forms given the
question and its conversational context.

232

Encoder: The input X is formatted with BERT
style. Then, it is fed into a Transformer-based en-
coder network ENC, producing a sequence of en-
coded states H = ENC(X) = (h[CLS], h0, ...).

Decoder: The decoder is a Transformer-based
model with attention. It takes the input represen-
tation from the encoder h[CLS] and the previous
decoding state si−1 to produce the target action yi.

PrY∼S(Y | X) =
∏

yi∈S
Pr(yi | si−1,H) (1)

Pr(yi | si−1,H) = softmax(ATTN([si−1;h[CLS]],H))

Classifiers: The decoder is accompanied by a set
of classifiers that predict the arguments for the de-
coder’s actions at each decoding step. Our base
NSP (Shen et al., 2019) employs FFNNs for rela-
tions and entity types classifiers; and pointer net-
works for entities and constants mentioned in the
question. At each decoding step, these classifiers
produce an entity ei, an entity type ti, a relation ri,
and a constant ci. The logical form action at time
step i is a tuple consists of yi and its arguments
within {ei, ti, ri, ci} defined by the grammar S .

3 Knowledge-Informed Decoder

In this section, we introduce a knowledge-informed
decoder that utilizes KG information to generate
logical forms. We propose a knowledge injection
layer that incorporates KG embeddings into the de-
coder state at each decoding step. To further inform
the decoder with information about the expected
structure of the KG, we propose an attention layer
on random, k-hops knowledge walks from entities
we encounter at each decoding step.

3.1 Knowledge Injection Layer(KIL)

NSP decoders only look at the encoded question
and the previous state of decoding to decide the
next action. Information of the KB instances (i.e.,
entities, types, or relations) being considered so
far could improve this decision making process.
Therefore, at the decoding step i where the action
involves a KB instance, we propose a Knowledge
Injection Layer (KIL) to propagate KB informa-
tion to the sub-sequence steps. KIL takes in the KB
classifiers predictions, incorporates their embed-
dings into the current encoding state and forwards
it to the next decoding step. Eq. 1 becomes

PrY∼S(Y | X) =
∏

yi∈S
Pr(yi | s∗i−1,H) (2)

s∗i−1 = KIL(si−1) = FNN([si−1; EMBB(vi−1)])

where vi−1 is the corresponding argument of yi−1
and vi−1 ∈ E ∪ R, i.e., vi ∈ {ei, ti, ri, ci}.

At step j where j > i, the decoder is informed
of preceding KB instances, and is able to adapt to
specific sub-KB structure. We find in cases where
there multiple entities in context, having the right
entity embedding at timestep j helps logical form
in the upcoming steps. The entity embedding car-
ries information about type of the entity, which our
model is able to use more appropriate predicates
for ambiguous mentions. We empirically show that
KIL improves the exact match accuracy of the logi-
cal form attributes (logical form without KB).

3.2 Attention on KG Walks (AKW)

Now that the decoder is aware of the previous KB
instances, it is also useful to peek at the possible
reasoning chains coming out of the current decod-
ing state. We do this to avoid reasoning paths that
lead to an non-executable region where the logical
form is invalid with respect to the KB. Therefore,
we propose an attention look-ahead layer to inspect
the upcoming KB structures before making the ac-
tion prediction. We first generate a set of random
walks on the KG from predicted entities and rela-
tions with the current decoding step. We then apply
the attention look-ahead layer on these KG walks
to obtain a representation of the expected KG struc-
tures. This representation is then fed back to the
decoder to predict the action.

PrY∼S(Y | X) =
∏

yi∈S
Pr(yi | s∗i−1,H,RANDWALK(v))

RANDWALK(v) = ATTN({EMBB(pj ∼ G(v))}j=0..k)

where v is one among entities in the question and
pj is a random walk path on the KB starting from
v, denoted as G(v). Here we use one hop random
walks from predicates found in the input, though
any type of random walk could be used.

With the two proposed layers, our NSP decoder
is now fully informed with the past and the
future KB structures. We demonstrate that our
decoder variant achieves better performance on
various question categories. Furthermore, we
show that the pre-trained KG embeddings do
a significant heavy lifting on representing KB
information within the decoder states, resulting
in less model parameters and required training data.

233

Figure 1: Overall Architecture and the different sources of knowledge used in KISP.

Methods MaSP CTN KISP KISP
w\BERT � 3

train param 155M 157M 160M

F1

Overall 81.20 81.35 82.56 83.01
Clarification 80.10 47.31 76.29 76.33
Comparative 68.19 62.0 68.15 67.83
Logical 76.40 80.80 87.41 87.14
Quantitative 77.31 80.62 77.76 77.52
Simple (Coref.) 78.33 87.09 78.78 79.66
Simple (Direct) 86.57 85.92 87.03 87.68
Simple (Ellipsis) 85.57 85.07 85.86 86.06

A
cc

.

Overall 44.73 61.28 46.22 46.22
Compart.(Count) 28.71 38.31 27.65 27.32
Quant.(Count) 50.07 57.04 50.82 50.92
Verification(Bool) 65.00 77.82 72.29 72.72

Table 1: CSQA w/ Large Models. CARTON is CTN,
KISP(KIL) is KISP�, KISP(KIL+AKW) is KISP3.

4 Experiments

Dataset and Evaluation We evaluate our ap-
proach on Complex Sequential Question Answer-
ing (CSQA) dataset. CSQA consists of 1.6M ques-
tion answer pairs spread across 200K dialogues.
Its has a 152K/16K/28K train, val, test split. More
details on the dataset and evaluation metrics used
are presented in Section A.1 of the Appendix.

4.1 Main Results
Our model1 outperforms the MaSP model by
1.8 absolute points in F1-score for entity answer

1Code: https://github.com/raghavlite/kisp

questions and 1.5 absolute points in accuracy
for the boolean/counting categories. KISP shows
significant improvements in Table 1 compared
to MaSP. In more complex question types such
‘Logical Reasoning’, ‘Verification’ which require
to reason over multiple tuples in the KG and
questions that requiring operations like counting,
our model outperforms the baseline by more than
10% points. Table 1 compares with MaSP (Shen
et al., 2019). Appendix has additional analysis. Our
model also beats CARTON (Plepi et al., 2021) in
the entity answer questions despite them using an
updated action grammar. For boolean, count type
questions, the additional action vocabulary helps
CARTON out perform our system. We will extend
KISP to use this additional action vocabulary in
the future.

4.2 Ablation Study
KG informed decoding with small models. A
significant performance gain is expected in the
smaller models by use of the knowledge graph in-
formation. We test this hypothesis by drastically
reducing the size of the KISP encoder. This small
version of KISP with only 9.7% of the baseline
parameter slightly outperforms the baseline BERT
model on overall F1-score. The gain comes from
the fact that our models receive significant signal
from KIL to make a more informed decision of
valid actions/types in the next step even without a
lot of knowledge from the encoder attention.
Low resource settings. A semantic parsing sys-
tem as described above typically requires annotated

234

Methods MaSP MaSP KISP3
(Small) (BERT) (Small)

of Parameters 15M 154.8M 15M

F1

Overall 78.91 81.20 81.52
Clarification 75.05 80.10 82.01
Comparative 66.85 68.19 69.64
Logical 69.55 76.40 84.54
Quantitative 74.29 77.31 73.9
Simple (Coref.) 76.27 78.33 77.99
Simple (Direct) 85.39 86.57 85.49
Simple (Ellipsis) 83.04 85.57 83.60

A
cc

.

Overall 38.56 44.73 42.55
Comparative(Count) 22.66 28.71 23.65
Quantitative(Count) 42.73 50.07 45.65
Verification 60.54 65.00 71.63

Table 2: Comparison of KISP3=KISP(KIL+AKW)-
Small with different sized baseline models.

golden logical forms for training. Logical form an-
notation is an resource intensive process (Berant
et al., 2013; Liang et al., 2013; Zhong et al., 2017).
It is also a difficult process to use brute force com-
putation to find these logical forms; also this pro-
cess often results in spurious logical forms Shen
et al. (2019).

This calls for models which can work with very
few training examples. Hence we evaluate the ef-
fectiveness of KISP in low resource settings where
only a fraction of data is used for training. Table
3 shows that KISP is able to outperform MaSP
in these data constrained cases. The gap between
MaSP and KISP widens in these low resource set-
tings further justifying our model.

Methods 10% Data 50% Data

F1 Acc. F1 Acc.

MaSP++ (S) 72.99 35.61 79.31 40.27
KISP � (S) 75.45 37.70 80.93 42.53

Table 3: Comparison of small KISP(KIL+AKW) and
MaSP models. KISP�=KISP(KIL+AKW)

Met.\Acc. Sket. Ent. Pred. Type Num
MaSP (S) 80.55 87.39 97.11 90.62 96.30
KISP3 (S) 82.32 95.30 98.83 90.73 100
KISP� (S) 83.33 95.37 98.83 90.66 100

MASP (B) 83.63 91.90 97.67 93.11 100
KISP3 (B) 84.47 96.25 99.40 92.25 100
KISP� (B) 85.92 95.85 99.25 92.25 100

Table 4: Fine grained metrics. KISP3=KISP(KIL),
KISP�=KISP(KIL+AKW). (S)-Small, (B)-Bert.

Impact of KIL and AKW To further under-
stand how each classifier on the decoder is ben-

efited from the knowledge graph, we look at the
accuracies of these classifiers on the evaluation set.
Table 4 displays accuracies of the five classifiers
from Eq. 1 around logical form generation of dif-
ferent models.

KISP does as better job at predicting the over-
all skeleton of the logical form - (all the various
non ei, ti, ri, ci) actions. We observe attending to
knowledge graph improves the logical form skele-
ton up to 2.3 points. As shown in Example 3 and 4
of the Appendix, the count, filter actions within
the logical form are better predicted by KISP. KIL
provides entity-embedding for the entity of interest
at current timestep this helps the model pick the
right predicates in the following steps in ambigu-
ous cases. Cases requiring reasoning benefit from
seeing random walks around entities in context -
provided by AKW. These lead to better overall
sketch accuracy.

KISP is also better at pointing to correct entity
accuracy. Pointing to the right entity can has cas-
cading effects on logical form prediction As shown
by numbers in Table 4. KISP does a better job
with entity pointer improving by almost 4 points.
We attribute this to the KIL sytem of KISP which
provides the KG embedding for entity of interest
at given time step this helps the decoder’s entity
pointer mechanism.

Entity Linking Errors We follow Sheang
(2019) in using a joint mention, type classifier fol-
lowed by an inverse index entity linker on the in-
put using the encoder representations. The entity
pointer classifier described earlier sections looks at
these entities in a sentence and points to one among
them. We found that a large amount of errors had
arisen from this inverse index. Recent work, (Kacu-
paj et al., 2021) also points this and uses a better
entity linker. Improving this module should signifi-
cantly add to final performance and hence is a very
interesting direction for future work.

5 Conclusion

We introduced a neural semantic parsing decoder
that uses additional knowledge graph information
for Conversational QA. Results show that KISP can
significantly boost performance in complex multi-
hop question types like logical reasoning questions.
Our method can help improve over strong baseline
methods like MaSP. Finally we presented a smaller
version of our model that is approx 10x smaller
without any performance degradation compared to
a system that doesn’t use KG informed decoding.

235

References
Jonathan Berant, Andrew Chou, Roy Frostig, and Percy

Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
conference on empirical methods in natural lan-
guage processing, pages 1533–1544.

Nilesh Chakraborty, Denis Lukovnikov, Gaurav Ma-
heshwari, Priyansh Trivedi, Jens Lehmann, and Asja
Fischer. 2019. Introduction to neural network based
approaches for question answering over knowledge
graphs. arXiv preprint arXiv:1907.09361.

Yuanfei Dai, Shiping Wang, Neal N Xiong, and Wen-
zhong Guo. 2020. A survey on knowledge graph em-
bedding: Approaches, applications and benchmarks.
Electronics, 9(5):750.

Daya Guo, Duyu Tang, Nan Duan, Ming Zhou, and Jian
Yin. 2018. Dialog-to-action: Conversational ques-
tion answering over a large-scale knowledge base.
In Advances in Neural Information Processing Sys-
tems, pages 2942–2951.

Daya Guo, Duyu Tang, Nan Duan, Ming Zhou, and Jian
Yin. 2019. Coupling retrieval and meta-learning for
context-dependent semantic parsing. ACL.

Yuncheng Hua, Yuan-Fang Li, Gholamreza Haffari,
Guilin Qi, and Wei Wu. 2020. Retrieve, program,
repeat: Complex knowledge base question answer-
ing via alternate meta-learning. arXiv preprint
arXiv:2010.15875.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Martti-
nen, and Philip S Yu. 2020. A survey on knowledge
graphs: Representation, acquisition and applications.
arXiv preprint arXiv:2002.00388.

Endri Kacupaj, Joan Plepi, Kuldeep Singh, Harsh
Thakkar, Jens Lehmann, and Maria Maleshkova.
2021. Conversational question answering over
knowledge graphs with transformer and graph atten-
tion networks. arXiv preprint arXiv:2104.01569.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick Van Kleef,
Sören Auer, et al. 2015. Dbpedia–a large-scale, mul-
tilingual knowledge base extracted from wikipedia.
Semantic web, 6(2):167–195.

Adam Lerer, Ledell Wu, Jiajun Shen, Timothee
Lacroix, Luca Wehrstedt, Abhijit Bose, and Alex
Peysakhovich. 2019. Pytorch-biggraph: A large-
scale graph embedding system. arXiv preprint
arXiv:1903.12287.

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D For-
bus, and Ni Lao. 2016. Neural symbolic machines:
Learning semantic parsers on freebase with weak su-
pervision. arXiv preprint arXiv:1611.00020.

Percy Liang, Michael I Jordan, and Dan Klein. 2013.
Learning dependency-based compositional seman-
tics. Computational Linguistics, 39(2):389–446.

Joan Plepi, Endri Kacupaj, Kuldeep Singh, Harsh
Thakkar, and Jens Lehmann. 2021. Context trans-
former with stacked pointer networks for conversa-
tional question answering over knowledge graphs.
arXiv preprint arXiv:2103.07766.

Amrita Saha, Vardaan Pahuja, Mitesh M Khapra,
Karthik Sankaranarayanan, and Sarath Chandar.
2018. Complex sequential question answering: To-
wards learning to converse over linked question an-
swer pairs with a knowledge graph. In Thirty-
Second AAAI Conference on Artificial Intelligence.

Apoorv Saxena, Aditay Tripathi, and Partha Talukdar.
2020. Improving multi-hop question answering over
knowledge graphs using knowledge base embed-
dings. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics.

Kim Cheng Sheang. 2019. Multilingual complex word
identification: Convolutional neural networks with
morphological and linguistic features. In Proceed-
ings of the Student Research Workshop Associated
with RANLP 2019, pages 83–89, Varna, Bulgaria.
INCOMA Ltd.

Tao Shen, Xiubo Geng, Tao Qin, Daya Guo, Duyu
Tang, Nan Duan, Guodong Long, and Daxin Jiang.
2019. Multi-task learning for conversational ques-
tion answering over a large-scale knowledge base.
EMNLP-IJCNLP.

Haitian Sun, Tania Bedrax-Weiss, and William W Co-
hen. 2019. Pullnet: Open domain question answer-
ing with iterative retrieval on knowledge bases and
text. arXiv preprint arXiv:1904.09537.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn
Mazaitis, Ruslan Salakhutdinov, and William W Co-
hen. 2018. Open domain question answering using
early fusion of knowledge bases and text. arXiv
preprint arXiv:1809.00782.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Communi-
cations of the ACM, 57(10):78–85.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: A free collaborative knowledgebase. Commun.
ACM, 57(10):78–85.

Wen-tau Yih, Matthew Richardson, Christopher Meek,
Ming-Wei Chang, and Jina Suh. 2016. The value of
semantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201–206.

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexan-
der Smola, and Le Song. 2018. Variational reason-
ing for question answering with knowledge graph.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32.

236

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
arXiv preprint arXiv:1709.00103.

A Appendices

A.1 Dataset and Evaluation
We evaluate our approach on Complex Sequential
Question Answering (CSQA) dataset. CSQA con-
sists of 1.6M question answer pairs spread across
200K dialogues. Its has a 152K/16K/28K train, val,
test split. The dataset’s knowledge graph is built
on wikidata (Vrandečić and Krötzsch, 2014) and
represented with triples. The KB consists of 21.2M
triplets over 12.8M entities, 3054 distinct entity
types, and 567 distinct predicates. There are 10
different question categories split into two groups.
Answers to the first group of questions are a list
of entities. Question categories of this group are
evaluated by the macro F1 score between predicted
entities and golden entities. Answers to question
categories in the second group are either counts or
boolean. This group is evaluated by accuracy. Over-
all scores for each group are the weighted averaged
metrics of all the categories in the group. We refer
the reader to Saha et al. (2018) for a more detailed
understanding of different categories of questions.
Following sections contain training/eval specifics.

A.2 Training details & Evaluation Metrics
We followed Shen et al (2019) to search for logical
forms and create the training data. Exact hyperpa-
rameters used in the experiments are mentioned
below. We followed Saha et al. (2018) for evalu-
ation metrics. Macro Precision and Macro Recall
were used when the answer was a list of entities.
For questions with answer type boolean/number,
we use accuracy.

A.3 Training time Analysis
Training times of different models are in Table.5

Model Training Time (hrs)
MaSP++ 6
KISP(SKI) 7.5
KISP(SKI+AKW) 8
MASP++ (BERT) 27.4
KISP(SKI) BERT 29.5
KISP(SKI + AKW) BERT 32
KISP(SKI + AKW) small 4.5
MASP++ small 3

Table 5: Running times of different models

There are some known in-efficiencies in the code,
some from design and others conceptual. We in-

Figure 2: Example1 logical form
KISP(SKI+AKW)BERT

tend to improve training time in future work by
incorporating more e2e methods that will reduce
GPU2CPU & CPU2GPU communication and also
through some design changes in the short term.

A.4 Logical form Analysis
We identify examples to show performance
improvement in KISP models, in predicting the
correct answer and logical form. As shown in
Table 6 below, KISP models for these examples do
a better job at sketch, entity, num, type, predicate
classification compared to MaSP. The coloured
images in Figure 2- 6 show the differences between
MaSP and KISP models. For each example we
show the golden logical form tree(also predicted
by one of the KISP models), MaSP’s logical form
and the mistakes made by the baseline in color red.

Example1

• Utterance

Q: Which works of art stars Jiřı́ Růžička as
actor and originated in Germany ?

A: Three Nuts for Cinderella
Q: Who was that work of art composed by ?
A: Karel Svoboda

• Logical form

@ Gold
find({Three Nuts for Cinderella}, Com-
poser)

Example2

• Utterance

Q: What is the job of Joe Falcon ?
A: musician
Q: What can be considered as category for

Joe Falcon ?

237

Example Curr Question type Predicted logical form = Gold logical form and Predicted answer = Gold answer
MaSP KISP(SKI) KISP(SKI+AKW) KISP(SKI+AKW): BERT

Example1 Simple Question (Coreferenced) Yes Yes Yes Yes
Example2 Simple Question (Direct) No Yes Yes Yes
Example3 Quantitative Reasoning (Count) (All) No Yes Yes Yes
Example4 Quantitative Reasoning (Count) (All) No No Yes Yes
Example5 Logical Reasoning (All) No No No Yes

Table 6: Examples are based on the predicted logical form and answers in comparison to their gold counterpart

A: Cajun music

• Logical form

@ Gold
find({Joe Falcon}, genre)

@ MaSP
find({Joe Falcon}, Occupation)

Example3

• Utterance

Q: How many administrative territories have
atleast 4 administrative territories or
french administrative divisions as their
capital?

A: 1
Q: How many cities are associated to Alba-

nia as the capital?
A: 1

• Logical form

@ Gold
count({find({Albania}, capital)})

@ MaSP
count({filter(city,{union({find({Albania
},capital)},{Albania})})})

Example4

• Utterance

Q: Is France the native country of Charles
Boyer ?

A: YES
Q: How many works of art stars Charles

Boyer as actor ?
A: 68

• Logical form

@ Gold
count(filter(work of art,{find({Charles
Boyer}, cast member)}))

@ MaSP
count({union({filter(work of
art,{find({France},country of ori-
gin)})},{find({Charles Boyer},cast
member)})})

@ KISP(SKI)
count({diff (argmax({filter(work of
art, {Charles Boyer})},cast mem-
ber),{filter(work of art,{Charles
Boyer})})})

Example5

• Utterance

Q: What is that person a member of ?
A: Tunisia national football team
Q: Which recurring events did Tunisia na-

tional football team and Alberto Garcı́a
Aspe participate in ?

A: 2002 FIFA World Cup, 1998 FIFA World
Cup

• Logical form

@ Gold
inter({find({Tunisia national football
team}, participant)},{find({Alberto
Garcı́a Aspe}, participant)})

@ MaSP
inter(find({Alberto Garcı́a Aspe},
participant), find({Alberto Garcı́a Aspe},
participant))

@ KISP(SKI)
filter(recurring
event,{union({find({Tunisia national
football team}, participant)},{Alberto
Garcı́a })

@ KISP(SKI+AKW)
inter({find({Tunisia national football
team }, participant)},{find({Tunisia
national football team }, participant)})

238

Figure 3: Example2 logical form KISP(SKI) vs MaSP

Example2 (Figure 3) and Example5 (Figure 6)
show improvement in logical form entity and
predicate instantiation compared to MaSP. We
notice improvement in logical form skeleton for
KISP(SKI+AKW)BERT model in Example4 (Fig-
ure 5). Example 3 (Figure 4) is a case where MaSP
gets the right answer despite the incorrect logical
form.

Figure 4: Example3 logical form KISP(SKI+AKW) vs MaSP

239

Figure 5: Example4 logical form KISP(SKI+AKW) vs MaSP

Figure 6: Example5 logical form KISP(SKI+AKW)BERT vs MaSP

240

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 241–247
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

Simultaneously Self-Attending to Text and Entities for
Knowledge-Informed Text Representations

Dung Thai1∗, Raghuveer Thirukovalluru1∗, Trapit Bansal1∗, Andrew McCallum1

1UMass Amherst
{dthai, rthirukovall, tbansal, mccallum}@cs.umass.edu

Abstract

Pre-trained language models have emerged as
highly successful methods for learning good
text representations. However, the amount of
structured knowledge retained in such mod-
els, and how (if at all) it can be extracted, re-
mains an open question. In this work, we aim
at directly learning text representations which
leverage structured knowledge about entities
mentioned in the text. This can be particu-
larly beneficial for downstream tasks which
are knowledge-intensive. Our approach uti-
lizes self-attention between words in the text
and knowledge graph (KG) entities mentioned
in the text. While existing methods require
entity-linked data for pre-training, we train us-
ing a mention-span masking objective and a
candidate ranking objective – which doesn’t
require any entity-links and only assumes ac-
cess to an alias table for retrieving candidates,
enabling large-scale pre-training. We show
that the proposed model learns knowledge-
informed text representations that yield im-
provements on the downstream tasks over ex-
isting methods.

1 Introduction

Self-supervised representation learning on large
text corpora using language modeling objectives
has been shown to yield generalizable representa-
tions that improve performance for many down-
stream tasks. Examples of such approaches in-
clude BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019b), XLNET (Yang et al., 2019), GPT-2
(Radford et al., 2019), T5 (Raffel et al., 2019) etc.
However, whether such models retain structured
knowledge in their representation is still an open
question (Petroni et al., 2019; Poerner et al., 2019;
Logan et al., 2019; Roberts et al., 2020) which has
led to active research on knowledge-informed rep-

∗ Equal Contribution

resentations (Zhang et al., 2019; Sun et al., 2019;
Peters et al., 2019; Soares et al., 2019).

Models that learn knowledge-informed represen-
tations can be broadly classified into two categories.
The first approach augments language model pre-
training with the aim of storing structured knowl-
edge in the model parameters. This is typically
done by augmenting the pre-training task, for exam-
ple by masking entity mentions (Sun et al., 2019) or
enforcing representational similarity in sentences
containing the same entities (Soares et al., 2019).
While this makes minimal assumptions, it requires
memorizing all facts encountered during training in
the model parameters, necessitating larger models.
The second approach directly conditions the rep-
resentation on structured knowledge, for example
fusing mention token representations with the men-
tioned entity’s representation (Peters et al., 2019).

In this paper we consider the latter approach
to learning knowledge-informed representations.
Conditioning on relevant knowledge removes the
burden on the model parameters to memorize all
facts, and allows the model to encode novel facts
not seen during training. However, existing meth-
ods typically assume access to entity-linked data
for training (Zhang et al., 2019; Peters et al., 2019),
which is scarce and expensive to annotate, prevent-
ing large scale pre-training. Moreover, these meth-
ods don’t allow for bi-directional attention between
both the text and the KG when representing text.

We propose a simple approach to incorporate
structured knowledge into text representations.
This is done using self-attention (Vaswani et al.,
2017) to simultaneously attend to tokens in text
and candidate KG entities mentioned in the text, in
order to learn knowledge-informed representations
after multiple layers of self-attention. The model is
trained using a combination of a mention-masking
objective and a weakly-supervised entity selection
objective, which only requires access to an alias

241

table to generate candidate entities and doesn’t as-
sume any entity-linked data for training. We show
that this objective allows the model to appropriately
attend to relevant entities without explicit supervi-
sion for the linked entity and learn representations
that perform competitively to models trained with
entity-linked data.

We make the following contributions: (1) we pro-
pose KNowledge-Informed Transformers (KNIT),
an approach to learn knowledge-informed text rep-
resentations which does not require entity-linked
data for training, (2) we train KNIT on a large cor-
pora curated from the web with Wikidata as the
knowledge graph, (3) we evaluate the approach on
multiple tasks of entity typing and entity linking
and show that it performs competitively or bet-
ter than existing methods, yielding large improve-
ments even while using < 1% of task-specific data
for fine-tuning.

2 Related Works

BERT (Devlin et al., 2019) proposed a pre-
training approach, called masked language mod-
eling (MLM), which requires randomly replacing
words in a sentence with a special [MASK] to-
ken and predicting the original masked tokens.
RoBERTa (Liu et al., 2019b) trained a more robust
BERT model on larger data. While MLM has been
shown to learn general purpose representations, the
amount of factual knowledge stored in such models
is limited (Petroni et al., 2019; Poerner et al., 2019).
Sun et al. (2019) propose a mention-masking objec-
tive which masks mentions of entities in a sentence,
as opposed to random words, as a way of incorpo-
rating entity information into such models. Zhang
et al. (2019) use entity-linked data and infuse rep-
resentations of the linked entity in the final layer
of the model to the representations of the corre-
sponding entity mention. KnowBERT (Peters et al.,
2019) learn an integrated entity linker that infuses
entity representations into the word embedding in-
put for the model and also relies on entity-linked
data for training. K-Bert (Liu et al., 2019a) uses
linked triples about entities in a sentence to inject
knowledge. KGLM (Logan et al., 2019) proposed
a fact-aware language model that selects and copies
facts from KG for generation. Recently, Févry et al.
(2020) introduced Entity-as-Experts (EAE), which
is a masked language model coupled with an entity
memory network. EAE learns to predict the entity
spans, retrieves relevant entity memories and inte-

grate them back to the Transformer layers. They
also assume entity-linked data for training.

3 Knowledge-Informed Transformers
(KNIT)

In this section, we describe the KNIT model as well
as its training procedure. KNIT makes use of the
mention-masking objective for training and condi-
tions the encoder on both text as well as mentioned
entities but does not assume any entity-linked data
for training. Figure 1 shows the overall model.

3.1 Text and Entity Encoder
The input consists of a sentence along with candi-
date entities for the sentence. We first run a named
entity extraction model on the sentence to extract
mentions and then generate candidate entities based
on cross-wikis (Ganea and Hofmann, 2017). We
use a Wikipedia alias table for generating candi-
dates, taken from Raiman and Raiman (2018). The
start and end of mentions are demarcated using spe-
cial tokens 〈m〉 and 〈/m〉. Given the text sequence
{x1, . . . , xn} and the set of associated candidate
entities for the sequence {e1, . . . , em}, we first em-
bed the words and entities as vector embeddings.
For entities, we use KG pre-trained embeddings
(Lerer et al., 2019) and add a projection layer to
upscale the entity embedding to the word embed-
ding size. We will use Transformer self-attention
(Vaswani et al., 2017) to encode both the text and
the entities. Since self-attention has no notion of
position in the sequence, it is common to concate-
nate a position embedding (Devlin et al., 2019) to
the word embeddings. We follow this approach
for the word embeddings. However, since the en-
tities in the candidate set need to be encoded in
a position-independent manner, we don’t add any
position embeddings to them. This entire sequence,
position-dependent word embeddings and position-
independent candidates, is passed through multiple
layers of self-attention. The end result is contextual-
ized token embeddings conditioned on the entities,
{x̃1, . . . , x̃n}, as well as candidate entity embed-
dings conditioned on the text {ẽ1, . . . , ẽm}.

3.2 Training
Mention-masking While the approach de-
scribed above has the potential to learn knowledge-
conditioned text representations, it needs a
correct pre-training objective to learn to use the
extra information from the entities. Since large

242

Figure 1: KNIT model with masked mention prediction and candidate ranking

Random Tokens Mention Tokens

RoBERTa 58.8 23.1
+ MM 61.6 25.7

KNIT 65.1 81.3

Table 1: Accuracy on predicting random tokens and
entity mention tokens. While RoBERTa is highly accu-
rate at predicting random words, it suffers when pre-
dicting mention tokens even when it is trained on a
mention-masking (MM) objective.

Transformer models (Devlin et al., 2019) have a
lot of parameters, they can be highly accurate at
predicting random word tokens and thus directly
using a MLM objective for training will not work
as the model can ignore the entity embeddings.
However, we find that, due to lack of factual
knowledge, these models are not very good at
predicting tokens of entity mentions. Table 1
shows this for RoBERTa (Liu et al., 2019b) model.
Thus, mention-masking – predicting tokens of
masked entity mentions, provides a better objective
to learn to use the candidate entities and learn
knowledge-informed representations. Note that
in Table 1, even when RoBERTa is trained with
mention-masking (+MM) it is unable to provide
a high accuracy on predicting mention tokens.
Thus including entity embeddings should provide
enough context for the model to make correct
predictions by using the entities, as reflected by
the KNIT score in Table 1.

Candidate Ranking To further enable the model
to use the correct entities for a mention, we use a
weak entity linking objective that forces the model
to rank one of the entities, from the candidate set

of a mention, higher than all other entities for the
sentence. Consider the i-th mention in a sentence
with (mi1,mi2) as the start and end indices of the
mention in the sentence, and a candidate set of
entities Ci for this mention. We create a men-
tion representation m̃i by concatenating x̃mi1 and
x̃mi2 . Now, given the representations, we score
all entities for the mention i: sij = W [m̃i; ẽj],
where W is a learnable weight matrix. To en-
force the model to select one entity from the men-
tion’s candidates, we find the highest scoring entity,
êi = argmaxj∈Ci sij , and use that as a target in a
cross-entropy loss:

Lcr = cross entropy(softmax(sij), Iêi) (1)

where the softmax is over all entities (not just for
mention i) in the sentence and Iêi is a one-hot
vector with 1 for the entity êi and 0 everywhere
else. This objective enforces the model to rank
one candidate higher than others candidates for
the same mention as well as candidates of other
entities. Similar objective has been explored for
dealing with noise in entity typing models (Xu and
Barbosa, 2018; Abhishek et al., 2017). The over-
all objective is a combination of bert-style MLM,
mention-masking (MM) and candidate ranking:

Lmlm + αLmm + βLcr (2)

4 Experiments

Implementation details are in Supplementary. Code
of our models is available here1.

1Source Code: https://github.com/dungtn/KNIT

243

Models evaluated: (1) RoBERTa (Liu et al.,
2019b): the model uses the MLM objective for
pre-training; (2) RoBERTa + MM: this model uses
the mention-masking objective (Sun et al., 2019)
in addition to the MLM objective; (3) KNIT: this
is the proposed model which uses MLM, mention-
masking and candidate ranking for pre-training.
We use RoBERTa-base architecture for all mod-
els due to lack of computation resources. We
compare our method with existing state-of-the-
art in knowledge-informed representations: Ernie
(Zhang et al., 2019), KnowBERT (Peters et al.,
2019) and RELIC (Ling et al., 2020).

OpenEntity Precision Recall F1
RoBERTa 76.91 73.84 75.34
RoBERTa+MM 74.67 74.63 74.65
Ernie 78.40 72.90 75.56
KnowBert 78.60 73.70 76.10
KNIT 76.48 75.76 76.10

FIGER Precision Recall F1

RoBERTa 66.89 88.12 76.05
Ernie 57.19 76.51 73.39
KNIT 68.09 88.12 76.80

Table 2: Micro-averaged scores on entity typing tasks.

OpenEnt (4%) FIGER (0.5%) FIGER (0.05%)

Roberta 56.98± 4.71 69.69± 0.38 65.59± 1.65

+MM 60.16± 2.44 69.43± 0.62 65.96± 1.38

KNIT 63.97± 1.59 71.37± 0.14 67.40± 0.41

Table 3: F1 score on entity typing when using only a
fraction of the task-specific training data (0.05%−4%).

4.1 Results on Entity Typing
Entity typing is the task of identifying the semantic
type of a given mention. We evaluate on two Entity
typing datasets - OpenEntity (Choi et al., 2018) and
FIGER (Ling et al., 2015). OpenEntity is a crowd-
sourced dataset comprising 9 general types and
121 fine-grained types. We follow (Zhang et al.,
2019) and evaluate on the nine general entity types.
FIGER is a distant supervised dataset comprising
over 2M examples and 113 entity types. Experi-
mental results are shown in Table 2. KNIT outper-
forms RoBERTa(Liu et al., 2019b), Ernie(Zhang
et al., 2019), and RoBERTa+MM(Sun et al., 2019)
while being comparable to KnowBert (Peters et al.,
2019). Note that KNIT performs comparably to the

No Fine-tuning
Wiki Alias Table 68.78
Our Top Candidate 70.66
RELIC 81.90
KNIT 82.71
KNIT +Wikilinks 90.32

Fine-tune (10% data)
KNIT 92.04

Fine-tune (Full data)
RELIC 94.90
Févry et al. (2020) 96.70
Raiman and Raiman (2018) 94.88
Radhakrishnan et al. (2018) 93.00
Le and Titov (2018) 93.07
Ganea and Hofmann (2017) 92.22
KNIT 92.87

Table 4: Entity linking accuracy under various fine-
tuning scenarios.

state-of-the-art without utilizing any entity-linked
data for pre-training, unlike (Peters et al., 2019).

To further evaluate the effectiveness of KNIT,
we consider the scenario where only a fraction of
the data is used for task-specific fine-tuning. For
this, we sample equal number of examples per type
to create the fine-tuning data. The models are fine-
tuned using the sampled data but are evaluated on
the entire test set. Table.3 shows that KNIT signif-
icantly outperforms RoBERTa(Liu et al., 2019b)
and RoBERTa+MM in the data constrained cases.

4.2 Results on Entity Linking
We demonstrate that our pre-trained model can cap-
ture entity linking information. For this, we use
the AIDA-CoNLL (Hoffart et al., 2011) dataset and
evaluate the linking performance of the model with-
out any dataset-specific fine-tuning. We also com-
pare with a model that used wikipedia hyperlinks
for supervision during pre-training (KNIT +Wik-
ilinks). As shown in Table 4, KNIT improves upon
the candidate ranking by 12.05% and 19.66% when
partial entity linking supervision from Wiki linked-
text data is available. Even without Wiki-linked
data, it outperforms the best pre-trained model that
considers mention context (RELIC) by 0.81%. To
further explore the entity linking capacity of our
model, we fine-tune the model and show that our
model has competitive performance, even when us-
ing only 10% of the training data. When trained on

244

the entire dataset, we find RELIC performs better,
potentially due to the use of entity-linked data in
its pre-training.

5 Conclusion

We propose a simple approach to learn knowledge-
informed text representations using self-attention
between text and mentioned entities. Our approach
does not rely on any entity-linked data for training,
enabling large-scale pre-training. We show that
the method learns better representations than com-
peting approaches and also learns entity-linking
without explicit linking supervision. In the future,
it will be interesting to explore how such meth-
ods can be used to condition the text encoder on
structured KG facts about entities.

Acknowledgments

We thank members of UMass IESL and NLP
groups for helpful discussion and feedback. We
also thank DiffBot for their supports in collecting
the linked-text data. This work is funded in part by
the Center for Data Science and the Center for In-
telligent Information Retrieval. The work reported
here was performed in part using high performance
computing equipment obtained under a grant from
the Collaborative R&D Fund managed by the Mas-
sachusetts Technology Collaborative. Any opin-
ions, findings and conclusions or recommendations
expressed in this material are those of the authors
and do not necessarily reflect those of the sponsor.

References
Abhishek Abhishek, Ashish Anand, and Amit Awekar.

2017. Fine-grained entity type classification by
jointly learning representations and label embed-
dings. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Volume 1, Long Papers, pages
797–807.

Eunsol Choi, Omer Levy, Yejin Choi, and Luke Zettle-
moyer. 2018. Ultra-fine entity typing. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 87–96, Melbourne, Australia. Associa-
tion for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for

Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Thibault Févry, Nicholas FitzGerald, Livio Baldini
Soares, and Tom Kwiatkowski. 2020. Empirical
evaluation of pretraining strategies for supervised en-
tity linking. In Automated Knowledge Base Con-
struction.

Thibault Févry, Livio Baldini Soares, Nicholas FitzGer-
ald, Eunsol Choi, and Tom Kwiatkowski. 2020. En-
tities as experts: Sparse memory access with entity
supervision. arXiv.

Octavian-Eugen Ganea and Thomas Hofmann. 2017.
Deep joint entity disambiguation with local neural
attention. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 2619–2629.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bor-
dino, Hagen Fürstenau, Manfred Pinkal, Marc Span-
iol, Bilyana Taneva, Stefan Thater, and Gerhard
Weikum. 2011. Robust disambiguation of named en-
tities in text. In Proceedings of the 2011 Conference
on Empirical Methods in Natural Language Process-
ing, pages 782–792, Edinburgh, Scotland, UK. Asso-
ciation for Computational Linguistics.

Phong Le and Ivan Titov. 2018. Improving entity link-
ing by modeling latent relations between mentions.
In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1595–1604, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Adam Lerer, Ledell Wu, Jiajun Shen, Timothee
Lacroix, Luca Wehrstedt, Abhijit Bose, and Alex
Peysakhovich. 2019. PyTorch-BigGraph: A Large-
scale Graph Embedding System. In Proceedings of
the 2nd SysML Conference, Palo Alto, CA, USA.

Jeffrey Ling, Nicholas FitzGerald, Zifei Shan,
Livio Baldini Soares, Thibault Févry, David
Weiss, and Tom Kwiatkowski. 2020. Learning
cross-context entity representations from text.

Xiao Ling, Sameer Singh, and Daniel S. Weld. 2015.
Design challenges for entity linking. Transactions
of the Association for Computational Linguistics,
3:315–328.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju,
Haotang Deng, and Ping Wang. 2019a. K-bert:
Enabling language representation with knowledge
graph. arXiv preprint arXiv:1909.07606.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

245

Robert L. Logan, IV, Nelson F. Liu, Matthew E. Peters,
Matt Gardner, and Sameer Singh. 2019. Barack’s
wife Hillary: Using knowledge graphs for fact-
aware language modeling. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), Flo-
rence, Italy. Association for Computational Linguis-
tics.

Matthew E Peters, Mark Neumann, Robert Logan, Roy
Schwartz, Vidur Joshi, Sameer Singh, and Noah A
Smith. 2019. Knowledge enhanced contextual word
representations. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 43–54.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2463–2473.

Nina Poerner, Ulli Waltinger, and Hinrich Schütze.
2019. Bert is not a knowledge base (yet): Fac-
tual knowledge vs. name-based reasoning in unsu-
pervised qa. arXiv preprint arXiv:1911.03681.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8):9.

Priya Radhakrishnan, Partha Talukdar, and Vasudeva
Varma. 2018. ELDEN: Improved entity linking us-
ing densified knowledge graphs. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 1844–1853, New Orleans, Louisiana.
Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Jonathan Raiman and Olivier Raiman. 2018. Deep-
type: multilingual entity linking by neural type sys-
tem evolution. arXiv preprint arXiv:1802.01021.

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
How much knowledge can you pack into the param-
eters of a language model?

Livio Baldini Soares, Nicholas FitzGerald, Jeffrey
Ling, and Tom Kwiatkowski. 2019. Matching the
blanks: Distributional similarity for relation learn-
ing. arXiv preprint arXiv:1906.03158.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi
Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao
Tian, and Hua Wu. 2019. Ernie: Enhanced rep-
resentation through knowledge integration. arXiv
preprint arXiv:1904.09223.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Peng Xu and Denilson Barbosa. 2018. Neural fine-
grained entity type classification with hierarchy-
aware loss. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 16–25.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in neural in-
formation processing systems, pages 5753–5763.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. Ernie: En-
hanced language representation with informative en-
tities. arXiv preprint arXiv:1905.07129.

A Appendices

A.1 Implementation Details(Pretraining)
To train KNIT, we collect 16M sentences from
Wikipedia. We also collect 28M sentences from
news articles and tag them using the DiffBot Entity
Linker 2. We further reduce the size of the entity
vocabulary to 595K and remove examples that have
no entity mentions. We limit each context sentence
to 512 tokens and no more than 5 mentions per
sentence with at least 2 and at most 10 candidate
entities per mention span.

We use pre-trained entity embeddings with di-
mension d = 200 from (Lerer et al., 2019) and
keep them fixed during the course of KNIT train-
ing. We use Adam optimizer with learning rate
1e−4, polynomial decay scheduler with warm-up,
and clip norm 10. We also tune hyper-parameters
in Equation (2) and choose α = 1 and β = 10. The
code will be made available on github3.

A.2 Implementation Details(Entity Typing)
All results in Tables 2-3 are obtained by tuning
a few hyperparameters - batch size, learning rate,
dropout, attention dropout. Batch size was tuned in

2www.diffbot.com
3Code will be opensourced

246

Dataset Train Validation Test

OpenEntity 1998 1,998 1,998
Figer 2,000,000 10,000 563
OpenEnt(4%) 82 1,998 1,998
Figer(0.5%) 11,300 10,000 563
Figer(0.05%) 1,130 10,000 563
AIDA-CoNLL 17,830 4,623 4,292

Table 5: Number of examples in Train, Validation and
Test split of different datasets

range (16-64). Learning rate was tuned in (0.00001-
0.0005). All dropouts were tuned sparsely in the
range (0.1-0.3). During finetuning, we restrict the
max number of candidates per mention to 10. Un-
like pretraining, the entity embeddings were also
finetuned during entity typing experiments and the
best performing validation set checkpoint was used
to generate test set results

Sample dataset creation for experiments of Ta-
ble 3 were done using random seeds. Three differ-
ent sample datasets were collected for each of Ope-
nEnt(4%), Figer(0.5%) and Figer(0.05%). Each
sample would comprise an equal number of exam-
ples per entity type but randomised across the three
runs. Numbers reported in Table 3 correspond to
mean and standard deviation values of the perfor-
mance of the three sample dataset trained models
on the test set.

A.2.1 Datasets
The sizes of sample and original datasets are shown
in Table 5.

247

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 248–262
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

Deriving Contextualised Semantic Features from BERT (and Other
Transformer Model) Embeddings

Jacob Turton
Department of

Computer Science
UCL

j.turton@cs.ucl.ac.uk

David Vinson
Department of Psychology

and Language Sciences
UCL

d.vinson@ucl.ac.uk

Robert Elliott Smith
Department of

Computer Science
UCL

rob.smith@cs.ucl.ac.uk

Abstract

Models based on the transformer architecture,
such as BERT, have marked a crucial step for-
ward in the field of Natural Language Pro-
cessing. Importantly, they allow the creation
of word embeddings that capture important
semantic information about words in context.
However, as single entities, these embeddings
are difficult to interpret and the models used
to create them have been described as opaque.
Binder and colleagues proposed an intuitive
embedding space where each dimension is
based on one of 65 core semantic features. Un-
fortunately, the space only exists for a small
data-set of 535 words, limiting its uses. Pre-
vious work (Utsumi, 2018, 2020; Turton et al.,
2020) has shown that Binder features can be
derived from static embeddings and success-
fully extrapolated to a large new vocabulary.
Taking the next step, this paper demonstrates
that Binder features can be derived from the
BERT embedding space. This provides two
things; (1) semantic feature values derived
from contextualised word embeddings and (2)
insights into how semantic features are repre-
sented across the different layers of the BERT
model.

1 Introduction

The last decade or so has seen a rapid progress in
the field of Natural Language Processing (NLP)
with a combination of new models and increas-
ingly powerful hardware resulting in state of the art
performances across a number of common tasks
(Wang et al., 2020). One important area of improve-
ment has been in the vector-space representation
of words, known as word embeddings. Embedding
models create word vectors within a vector space
that captures important semantic and grammati-
cal information (Boleda, 2020). Models such as
Word2Vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014) were popular in the 2010s,

but are static, meaning only one embedding is pro-
duced for each word. In reality words can have
multiple meanings; 7% of common English word
forms have homonyms and over 80% are polyse-
mous (Rodd et al., 2002).

Deep learning language models such as ELMO:
Embeddings from Language Models (Peters et al.,
2018) addressed this issue, using deep neural-
network language models to incorporate context
and produce contextualised embeddings. Follow-
ing this, the introduction of the transformer archi-
tecture and in particular its implementation in the
Bidirectional Encoder Representations from Trans-
formers (BERT) (Devlin et al., 2019) model, re-
sulted in even better performing contextual embed-
dings.

Regardless of whether the embeddings men-
tioned are static or contextual, they all have the
issue that, as individual objects, they are hard to in-
terpret (Şenel et al., 2018). Whilst efforts have been
made to produce more interpretable embeddings
e.g. (Şenel et al., 2020; Panigrahi et al., 2019),
the general approach has been to interpret them in
relation to each-other. For example, the relative
distance between word embeddings can indicate
their semantic similarity (Schnabel et al., 2015).
Alternatively, dimensionality reduction techniques
can be used to visualise where the words sit within
the embedding space (Liu et al., 2017). However,
these methods may just show how the embeddings
are related, rather than why, further feeding into the
general criticism levelled at deep learning architec-
tures; that they are opaque and difficult to interpret
(Belinkov and Glass, 2019).

Binder et al. (2016) presented an alternative em-
bedding space for words, based on 65 core semantic
features, where each dimension relates to a feature.
Unfortunately, the Binder dataset only contains 535
words, severely limiting its use for large scale text
analysis. Previous research (Utsumi, 2018, 2020;

248

Turton et al., 2020) has shown that the Binder fea-
ture values can be derived from static embeddings,
such as Word2Vec, and successfully extrapolated
to a large new vocabulary of words. The purpose of
this research is to demonstrate that Binder features
can be successfully derived from BERT embedding
space allowing the features to be derived from con-
textual embeddings. Along the way, this also pro-
vided the opportunity to study how different types
of semantic information are represented across the
different layers of the BERT model.

2 Related Work

2.1 Probing Transformer Models

Whilst transformer models such as BERT have led
to impressive improvements in NLP tasks, along-
side other deep learning models they have been
criticised as opaque ”black boxes” that are diffi-
cult to interpret (Castelvecchi, 2016). To address
this researchers have made efforts to better under-
stand how they work. For example, Clark et al.
(2019) were able to show that patterns of atten-
tion in BERT respond to certain syntactic relations
between words. Other work has looked at how
semantic information is represented in BERT. Re-
searchers have shown that BERT can learn to rep-
resent semantic roles (Ettinger, 2020), entity types
and semantic relations (Tenney et al., 2019). Reif
et al. (2019) demonstrated clear ‘clusters’ for differ-
ent senses of the same word, when visualising the
spatial location of their BERT embeddings. Jawa-
har et al. (2019) demonstrated that embeddings
from different layers of BERT performed better at
different tasks, with semantic information tending
to be better represented by the later layers. Whilst
these studies provide important insights into the
inner workings of transformer models, they do lit-
tle to improve interpretability of individual word
embeddings extracted from them.

2.2 Interpretable Word Embeddings

Research has also been done to produce more in-
terpretable static word embeddings e.g. (Şenel
et al., 2020; Panigrahi et al., 2019). For contextual
embeddings, Aloui et al. (2020) produced embed-
dings with semantic super-senses as dimensions,
but these are quite broad. The embedding space of
Binder et al. (2016) offers a more fine-grained rep-
resentation of semantics, but there are challenges
in applying it to contextualised word embeddings.

2.3 Binder Semantic Features

Through a meta-analysis, Binder et al. (2016) iden-
tified 65 semantic features all believed to, and some
demonstrated to, have neural correlates within the
brain. They produced a 535 word data-set scored
by participants across the 65 features. The fea-
tures ranged from concrete object properties such
as visual and auditory, to more abstract properties
such as emotional aspects. This resulted in a 65-
dimensional embedding for each word, where each
dimension relates to a specific semantic feature.

This embedding space is useful as each dimen-
sion is easily interpretable and theoretically con-
nected to a specific aspect of how people under-
stand the meaning of words and concepts. Fur-
thermore, representing words in this way makes it
easy to understand how they are similar or differ-
ent in terms of their semantic features. Figure 1
below demonstrates this by comparing the feature
scores of the words raspberry and mosquito. It
shows how the concepts differ across a range of
dimensions. Also, since these features are derived
from the psychological and neuroscience literature,
it may mirror how people differentiate these con-
cepts.

Unfortunately, the Binder dataset only exists for
535 words, which severely limits its uses. However,
previous work (Utsumi, 2018, 2020) has shown that
Binder feature values can be derived from static
word embeddings such as Word2Vec and this can
be used to extrapolate the feature space to a large

Figure 1: Binder feature values for raspberry and mosquito.

249

number of new words (Turton et al., 2020). Being
able to do this using BERT embeddings would al-
low the features to be derived for words in context.
Not only would this tackle the issues of polysemy
and homonymy, but hopefully also mirror more sub-
tle differences between words when used in context.
Beyond this, the dataset also offers a powerful way
to probe the semantic representation of words in
models like BERT, by looking at: how well the
different semantic features can be predicted overall,
how the semantic representations build over the
layers of the models and whether there are distinct
patterns in how different types of semantic feature
are represented across the layers.

3 Experiment 1a: Deriving Binder
Embeddings from BERT and other
Transformer Model Embeddings

3.1 Introduction

The aim of the first experiment was to derive Binder
feature scores from the BERT embedding space.
Words in the Binder dataset are presented out of
context so the BERT embeddings were treated as
static by taking an the average embedding over
250 randomly sampled sentences for each word. A
selection of alternative transformer models were
included for comparison: RoBERTa (Liu et al.,
2019), XLNet (Yang et al., 2019) and GPT-2 (Rad-
ford et al.). Numberbatch embeddings (the best
performing static embeddings from Turton et al.
(2020)) (Speer et al., 2017) were used as a baseline
comparison.

This experiment also offered the opportunity to
investigate how different semantic features are rep-
resented across the different layers of BERT.

3.2 Materials

The Binder et al. (2016) data-set was used, pro-
viding scores across the 65 features for 535 words.
For random sentences containing the Binder words,
the One Billion Word Benchmark (BWB) (Chelba
et al., 2014) was used. Author provided pre-trained
versions of each transformer model were used. As
far as possible, models of the same size were se-
lected (see Appendix Table a for further details).
Pre-trained Numberbatch embeddings were also
used (Speer et al., 2017) as a benchmark. A simple
4 hidden-layer (300,200,100,50) neural network
was used to predict semantic features from embed-
dings.

3.3 Method

The method here describes the process for the
BERTBASE model, but was the same for all
other models as well.

To produce static embeddings for each of the
Binder words, 250 sentences containing each one
were randomly sampled from the BWB dataset.
Then using the pre-trained BERTBASE model the
embeddings from all 12 layers (24 for large models)
and the embedding layer were extracted for the
target word for each of the sentences. A mean of
the target word embedding across the 250 sentences
was then taken. Additionally, for each model the
best performing sub-word approach was used (see
Table b and Figure a in Appendix for comparisons).

Semantic feature scores were predicted by feed-
ing the extracted embeddings into a feed-forward
neural network. 10-fold validation was used across
the data-set and the final R-squared score aver-
aged across the folds. Each of the 65 features
was evaluated separately as was each of the lay-
ers. A Wilcoxon Ranks-sums test (Demšar, 2006)
was used to compare performance of the different
embedding models.

To investigate how the different semantic fea-
tures are represented across the layers, each fea-
ture’s R-squared score was re-scaled between 0-1
across the layers. A k-means clustering algorithm
was then used to group the features according to
similar patterns across the layers. The re-scaling
ensured it was the pattern of behaviour across the
layers rather than the absolute performance of each
feature that was captured in the clustering. The
membership of the clusters was compared to the
categories of the features given in Binder data-set
using the Adjusted Rand Index (Yeung and Ruzzo,
2001).

3.4 Results

Figure 2 below shows the mean R-squared scores
across all semantic features for the different lay-
ers for the large and small models. The models
showed slightly different performance across the
layers with XLNet and RoBERTa peaking earlier
than BERT. As per Table 1 row 2, BERT had
the best performing single layer for both model
sizes. Table 1 row 1 (combined) shows the perfor-
mance of the models combining the best perform-
ing layer for each semantic feature. All models
except GPT-2SMALL significantly outperformed the
Numberbatch baseline (p<0.05 for all). BERTBASE

250

Figure 2: Mean R-squared scores across all semantic features for layers of (a) small and (b) large models.

MEAN R- MODEL
SQUARED NumbrBatch GPT-2 RoBERTa XL-Net BERT

Small Med. Base Large Base Large Base Large
Combined - .631 .638 .673 .692 .665 .688 .678 .692
Best Layer .646 .615 .616 .658 .674 .656 .670 .667 .679

Table 1: Best overall mean R-squared scores for the models across all 65 semantic features

also outperformed XLNetBASE (p<0.05) but not
RoBERTaBASE (p=0.17).

There was variation in how well different fea-
tures were predicted from the embeddings (some
as low as 0.3 with others over 0.8) (See Figure b in
the Appendix for full results). There was also gen-
eral consistency between the models as to which
features were well and poorly predicted with inter-
feature variance (mean=0.011) larger than inter-
model variance (mean=0.001). This indicates cer-
tain semantic features are difficult to predict regard-
less of the model.

For all models the larger version performed sig-
nificantly better than the base version (p<0.05 for
all). For the larger models there was no longer
any significant difference between the BERTLARGE,
RoBERTaLARGE and XLNetLARGE models (p>0.05
for all), but all three did outperform GPT-2MEDIUM
(p>0.05 for all).

The k-means clustering on the re-scaled
BERTBASE R-squared scores indicated an optimal
3 clusters identified using an elbow plot. Figure 3
(a) below shows the memberships of the k-means
clusters, along with their respective mean scores

Figure 3: (a) mean re-scaled R-squared scores for the three clusters with member features and (b) mean layer raw
R-squared scores for the three clusters.

251

across each layer. Cluster 0 and 1 show a similar
pattern showing a peak in the later layers. Cluster 2
shows a very different pattern with the peak much
earlier in the mid-layers. Figure 3 (b) shows the
mean raw R-squared layer scores for the different
clusters. Clusters 0 2 achieve higher max scores
than cluster 1. Whilst this does suggest different
patterns of representation for the different features
in the model, the clusters do not appear to match
the categorisation of features given by Binder et al
(2016) as the adjusted rand index was 0.02.

3.5 Discussion

The main purpose of this first experiment was to
demonstrate that Binder style embeddings can suc-
cessfully be derived from the BERT (and other sim-
ilar model) embedding space. The secondary pur-
pose was to explore how the representation of the
semantic features varies across the different layers
of a BERTBASE model. The results demonstrated
that Binder features could be derived from BERT
embeddings, outperforming static Numberbatch
embeddings. This is interesting as Numberbatch
embeddings make use of additional human pro-
vided information from a concept network, whereas
BERT and the other models are purely trained on
raw text. This hints towards the power of these bidi-
rectional transformer models in capturing semantic
information from word usage alone.

The poor performance of GPT-2 is not surpris-
ing due to its uni-directional attention architec-
ture. GPT-2 has shown success when using very
large models (up to 1.5B parameters, compared
to BERTLARGE’s 340M). These results highlight
the power of the bidirectional architecture used by
BERT, XLNet and RoBERTa

Perhaps most interesting results from this exper-
iment are in relation to how the different semantic
features are represented across the layers of BERT.
In line with the findings of Jawahar et al. (2019),
semantic features tended to be better represented by
the later layers. However, a small subset of features
were better represented by the middle layers. Clus-
tering the features according to these behaviours
did not match the Binder categories. However, the
Binder categories are not the only way to group
the features and there still are some similarities
between the features in the different clusters. For
example, Cluster 3 appears to capture a number of
features (Human, Face, Speech, Body) relating to
people and Cluster 2 captures 6 of the 7 features

relating to audition.
Variation in how well different features were

predicted by the models is more difficult to ex-
plain conclusively. On one hand, it may be that
certain features are better represented by the trans-
former models than others. However, there is also
variation in the underlying distributions of the dif-
ferent Binder features, with some more equally
distributed across the score range than others. For
certain features with very unbalanced distributions,
this may have had a detrimental effect on their fi-
nal R-squared score (see Appendix Figure f for
residual plot examples).

Further improvements in predictive power may
be possible by fine-tuning the transformer models
directly on the Binder feature prediction task. For
the purposes of this paper extracted embeddings
rather than fine-tuning were used as (1) there were
concerns over the small dataset size and (2) to keep
the models as close as possible to their pre-trained
state when comparing them.

4 Experiment 1b: Towards
Contextualised Binder Features

4.1 Introduction

Experiment 1a demonstrated that Binder seman-
tic features can be predicted from the BERT (and
other model) embedding space, outperforming the
best performing static embeddings (Numberbatch).
However, the real power of the transformer archi-
tecture and its self-attention mechanism, is being
able to represent a contextualised form of words
(Reif et al., 2019). By treating the embeddings
as “static” as in Experiment 1a, the embeddings
were limited to an average of the word over many
contexts. This may have added noise to the em-
beddings and consequently reduced performance
by including word-senses not matching the sense
suggested by the Binder features. Instead, hand
selecting sentences that match the word-sense in-
ferred from the Binder feature scores should help
reduce this noise and improve performance.

4.2 Material

Same materials as Experiment 1a.

4.3 Method

For each word in the Binder data-set, ten sentences
were hand-picked from the 250 randomly selected
BWB sentences used in Experiment 1a. Sentences
were picked by matching them to the word-sense

252

MEAN R- MODEL
SQUARED BASELINE GPT-2 RoBERTa XL-Net BERT

Base Large Small Med. Base Large Base Large Base Large
Combined .678 .692 .656 .670 .736 .755 .707 .730 .725 .741
Best Layer .667 .679 .638 .643 .723 .741 .697 .714 .718 .729

Table 2: Mean R-squared scores for the models using selected sentences vs BERT baseline from Experiment 1a
(randomly selected sentences)

inferred from the Binder feature scores. Following
this, the exact same method as Experiment 1a was
used, this time using the average embedding across
the ten hand-selected sentences.

4.4 Results
Table 2 above gives the mean R-squared scores for
the models. BERT scores from Experiment 1a are
used as a baseline. (Individual feature results can
be found in Figure c of the Appendix). Except
from GPT-2, all embeddings from Experiment 1b
outperformed the baseline from Experiment 1a.

4.5 Discussion
Using hand selected rather than purely randomly
selected sentences improved the performance as ex-
pected. This was likely due to removing noise from
unrelated uses of the word in the averaged embed-
ding. Importantly, this shows to some degree that
context can be captured in the derived semantic fea-
tures as using more appropriate contexts improved
performance. However, since the Binder data-set
lacks explicit context for its words this experiment
still falls short of a true ground-truth test of deriving
contextualised semantic features from transformer
word embeddings. To investigate how well seman-
tic features can be predicted for words in specific
contexts, it is necessary to look at other data-sets.

5 Experiment 2: Predicting
Contextualised Features

5.1 Introduction
Together Experiments 1a and 1b demonstrate that
semantic features ratings can be derived from trans-
former embeddings and that introducing some de-

gree of context improves the performance. But the
Binder data-set unfortunately lacks explicit context
for its words.

An alternative data-set (Van Dantzig et al., 2011)
of contextualised semantic features for words in
context pairs can be used. In each context pair a
property word e.g. abrasive is paired an object
word e.g. lava and participants scored the prop-
erty word across five semantic features in a similar
way to the Binder dataset. In each case, the ob-
ject should influence the meaning of the property
word, in turn influencing its feature scores. Each
property is paired with two different objects giving
two word-pairs for each property and with differ-
ent semantic feature scores for each one (see Table
3). By feeding the property-object pairs into the
transformer models, the extracted embedding for
the property word should capture its specific fea-
ture values influenced by its context object word.
Since each property word is paired with two dif-
ferent objects, a static version of its embedding
can be created by taking the mean of its embed-
dings across both of its context pairs. If the models
successfully capture the specific feature values of
the property words in the individual contexts, the
individual contextual embeddings should outper-
form the static property embeddings in predicting
semantic feature scores.

Due to its poor performance GPT-2 was dropped
and only the better performing LARGE versions of
BERT, XLNet and RoBERTa were used.

5.2 Materials

The Van Dantzig et al. (2011) data-set consists of
774 property-object pairs. Each word pair con-

FEATURE
PROPERTY OBJECT Visual Auditory Haptic Gustatory Olfactory
Abrasive Lava 3.83 1.27 2.37 0.07 0.46
Abrasive Sandpaper 3.37 2.35 4.81 0.26 0.09

Table 3: Feature scores for Property word Abrasive with its two different Object word pairs.

253

FEATURE PROPERTY-MEAN CONTEXTUALISED
BERT XL-Net RoBERTa BERT XL-Net RoBERTa

Visual 0.532 0.448 0.456 0.652 0.583 0.633
Auditory 0.722 0.668 0.680 0.793 0.733 0.772
Haptic 0.556 0.512 0.505 0.660 0.616 0.634
Gustatory 0.611 0.531 0.591 0.800 0.704 0.813
Olfactory 0.610 0.587 0.597 0.740 0.736 0.731
MEAN 0.607 0.549 0.556 0.729 0.674 0.717

Table 4: Mean R-squared scores for the five features for mean and contextualised embeddings from the three
different models, compared to a Numberbatch baseline.

sists of a property and object word, and has a rat-
ing across five semantic features: Visual, Audi-
tory, Haptic, Gustatory and Olfactory. The ratings
are between 0-5 for each. The same pre-trained
BERTLARGE, XL-NetLARGE and ROBERTALARGE
models from Experiment 1a and b were used and
the pre-trained Numberbatch embeddings.

5.3 Method

The property-object word pairs were fed into the
transformer models as the input sequences and the
embedding for the property word was extracted.
Embeddings from all 24 layers and the embedding
layer were extracted. The different layer embed-
dings were then fed into a simple 4 hidden-layer
(300, 200, 100, 50) neural network for training pre-
diction with each of the five semantic features used
separately as the target variable.

For the Property-mean condition, for each prop-
erty word, the extracted embeddings across both of
its object context pairs were averaged. For the con-
textualised condition, the extracted property em-
beddings were left unique for each object context
pair.

Like Experiment 1, the data-set was split into
ten-folds with 90% of the data for training and the
reaming 10% for evaluation. The mean r-squared
scores across the ten-folds was calculated for each
of the five semantic features.

5.4 Results

Table 4 shows the R-squared scores for the best
performing layer from each model. (See Appendix
Figure d for per layer results). The contextualised
transformer embeddings outperform both the mean
transformer embeddings. Overall, the BERT model
performed best.

5.5 Discussion
The purpose of experiment 2 was demonstrate the
ability to derive contextual semantic features from
transformer embeddings. As predicted, the contex-
tual transformer embeddings performed better than
the ”static” ones. This suggests that, for each con-
text pair, the model representations of the property
words were able to capture the specific semantic
features as influenced by the object it was paired
with. Taking the mean across both object pairs was
detrimental for performance as the embedding was
no longer unique to the context pair.

Whilst this experiment demonstrates it is possi-
ble to derive contextualised semantic features from
transformer embeddings, it only involves a small
number of features for words in short word-pair
contexts. Ideally, we would be able to predict the
full 65 semantic features in the Binder embedding
space for words contextualised in longer, more nat-
ural sequences.

6 Experiment 3: Evaluation of
Contextualised Binder Embeddings

6.1 Introduction
Experiment 1a and b demonstrated that Binder fea-
tures can be derived from various transformer em-
bedding spaces and that some effects of context
can be picked up, whilst Experiment 2 demon-
strated that the embeddings can be used to derive
contextualised semantic features, but for a very
limited number of features and only in word-pair
sequences. The lingering issue is the lack of a
data-set of the full 65 Binder semantic features for
words context which would provide a ground-truth
test for deriving contextualised semantic features
from transformer embeddings.

To address this, this experiment used the word-
sense disambiguation (WSD) task as an indirect
evaluation of derived semantic features for words

254

METRIC Raw BERTLARGE Experiment 2 BERT Binder 1a BERT Binder 1b
Accuracy 0.68 0.60 0.67 0.67
F1-Score 0.71 0.66 0.70 0.71

Table 5: Accuracy & F1 score of raw BERT & BERT-derived Binder embeddings on the validation set.

in context. WSD is an open problem in NLP where
the task is to determine which sense of word is be-
ing used in a sequence (Navigli, 2009). Models that
perform well on this task are able to separate the
different semantic meanings of a word, depending
on the context it is used in. By evaluating how well
derived Binder embeddings perform at this task, it
should indicate how good the embeddings are at
representing the contextualised semantic features
of the words. In this experiment the Binder em-
beddings are compared to raw BERT embeddings
which have shown reasonable performance in the
task (Pilehvar and Camacho-Collados, 2019).

For comparison, the different approaches for de-
riving Binder embeddings from Experiments 1a
and 1b were used as well as the much smaller Van
Dantzig feature set from Experiment 2.

6.2 Materials

The Word in Context (WiC) WSD data-set (Pile-
hvar and Camacho-Collados, 2019) was used. It
consists of sentence pairs each containing the same
target word and a binary classification (True/False)
of whether the target word has the same word-sense
or not between them. The data-set is already di-
vided into a training (5429) and separate validation
(639) set.

The same BERTLARGE model and trained neural
networks from Experiment 1a, 1b and 2 were used
to predict semantic feature values.

6.3 Method

Using the pre-trained BERTLARGE model, word
embeddings from all 24 layers + the embedding

layer were extracted for the target word in each
of the sentences of the WiC dataset. Using the
neural networks trained in Experiment 1a and 1b
the Binder features were predicted using the opti-
mal BERTLARGE layer for each of the 65 features
and for the smaller Van Dantzig feature set from
Experiment 2.

For each sentence pair, the cosine similarity was
calculated between the embeddings for the target
words, either using the raw BERTLARGE embed-
dings or the derived Binder or Van Dantzig embed-
dings. For evaluation a logistic regression model
was used with the cosine similarity scores as input.
The model was trained on the train set and evalu-
ated on the validation set using accuracy and F1
Score.

6.4 Results

Table 5 shows the performance of the best per-
forming layer (21) raw BERTLARGE embeddings,
Binder and Van Dantzig embeddings on the WiC
dev set (see Appendix Figure e for all layer per-
formances). Overall the Binder embeddings per-
formed comparatively to the raw BERTLARGE em-
beddings. The five feature Van Dantzig embed-
dings (from Exp. 2) performed worst.

6.5 Discussion

The purpose of this final experiment was to evaluate
contextualised Binder embeddings. In the absence
of a ground-truth data-set for contextualised Binder
features, the WSD task was used as an indirect mea-
sure. The contextualised Binder embeddings per-
formed comparatively to raw BERT embeddings

Figure 4: Example of predicted semantic features for the word building in two different context sentences

255

Figure 5: Example of predicted semantic features for the word catch in two different context sentences

which have been shown to capture contextualised
semantics (Reif et al., 2019; Pilehvar and Camacho-
Collados, 2019). This suggests that the Binder em-
beddings also capture contextualised semantic fea-
tures to some extent. The improved performance
of the approach in experiment 1b did not meaning-
fully contribute to improved performance in this
downstream task. But, the Binder embeddings did
outperform the smaller Van Dantzig feature-set em-
beddings from Experiment 2, suggesting that the
larger Binder feature set is a more complete seman-
tic representation of words.

Importantly, the nature of the Binder feature
space makes interpreting the embeddings easier.
Figure 4 below illustrates how the meaning of the
word building differs in the two different context
sentences from the WiC data-set.

However, Binder features predicted from trans-
former embeddings did not always match what
would be expected. Figure 5 illustrates this, where
the representation of catch in the second sentence
appears closer to the physical act of catching rather
than the intended meaning of to catch fire. Qual-
itative evaluation of the embeddings like this is
powerful for understanding their quality, but comes
at the cost of being time consuming.

7 Conclusion

The overarching aim of this work was to demon-
strate that Binder style semantic feature embed-
dings can be derived from the BERT embedding
space in the same way that previous research (Ut-
sumi, 2018, 2020; Turton et al., 2020) has shown
for static embeddings. It also offered the opportu-
nity to probe how semantic information is repre-
sented across the different layers of BERT. Treating
the embeddings as static, Experiment 1a supported
this aim with BERT and other transformer embed-
dings outperforming the best performing static em-
beddings model Numberbatch. The results also

supported the findings of Jawahar et al. (2019) that
semantic information tends to be represented in the
later layers of BERT. Hand-picking sentences in
Experiment 1b lead to better performance indicat-
ing that some degree of context is represented in
the derived semantic features.

Experiment 2 provided further evidence of the
ability of transformer models to derive contextu-
alised semantic features but was limited by the
small set of features and the short word-pair con-
text sequences.

Finally, the ability of Binder embeddings to per-
form comparatively to raw BERT embeddings in
Experiment 3 suggests that they do capture, to some
degree, contextualised semantic features when de-
rived from transformer embeddings.

In conclusion, within the limitations of the
Binder dataset, this paper suggests that it is possi-
ble to derive contextualised semantic features from
contextualised word embeddings as a proof of con-
cept. However, without a ground-truth test, it is not
able to demonstrate this conclusively. To do this
would likely require the production of a Binder fea-
ture set for words explicitly in context, and this may
be a necessary next step if the Binder feature set
is considered useful for further use. Furthermore,
as the Binder dataset focuses on general use words,
for researchers wishing to derive semantic features
useful for specific domains, they likely would need
to construct datasets of domain-specific features
for a domain-specific vocabulary.

Beyond the direct findings of this paper, we also
hope that this work highlights the usefulness of us-
ing existing psychological research data to improve
the understanding and interpretability of what can
otherwise be somewhat opaque deep learning mod-
els.

256

References
Cindy Aloui, Carlos Ramisch, Alexis Nasr, and Lucie

Barque. 2020. Slice: Supersense-based lightweight
interpretable contextual embeddings. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 3357–3370.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.
Transactions of the Association for Computational
Linguistics, 7:49–72.

Jeffrey R Binder, Lisa L Conant, Colin J Humphries,
Leonardo Fernandino, Stephen B Simons, Mario
Aguilar, and Rutvik H Desai. 2016. Toward a brain-
based componential semantic representation. Cogni-
tive neuropsychology, 33(3-4):130–174.

Gemma Boleda. 2020. Distributional semantics and
linguistic theory. Annual Review of Linguistics,
6:213–234.

Davide Castelvecchi. 2016. Can we open the black box
of ai? Nature News, 538(7623):20.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2014. One billion word benchmark for mea-
suring progress in statistical language modeling. In
Fifteenth Annual Conference of the International
Speech Communication Association.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D Manning. 2019. What does bert look
at? an analysis of bert’s attention. In Proceedings of
the 2019 ACL Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
276–286.

Janez Demšar. 2006. Statistical comparisons of classi-
fiers over multiple data sets. The Journal of Machine
Learning Research, 7:1–30.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Allyson Ettinger. 2020. What bert is not: Lessons from
a new suite of psycholinguistic diagnostics for lan-
guage models. Transactions of the Association for
Computational Linguistics, 8:34–48.

Ganesh Jawahar, Benoı̂t Sagot, and Djamé Seddah.
2019. What does bert learn about the structure of
language? In ACL 2019-57th Annual Meeting of the
Association for Computational Linguistics.

Shusen Liu, Peer-Timo Bremer, Jayaraman J Thiagara-
jan, Vivek Srikumar, Bei Wang, Yarden Livnat, and

Valerio Pascucci. 2017. Visual exploration of seman-
tic relationships in neural word embeddings. IEEE
transactions on visualization and computer graph-
ics, 24(1):553–562.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems-
Volume 2, pages 3111–3119.

Roberto Navigli. 2009. Word sense disambiguation: A
survey. ACM computing surveys (CSUR), 41(2):1–
69.

Abhishek Panigrahi, Harsha Vardhan Simhadri, and
Chiranjib Bhattacharyya. 2019. Word2sense: sparse
interpretable word embeddings. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5692–5705.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237.

Mohammad Taher Pilehvar and Jose Camacho-
Collados. 2019. Wic: the word-in-context dataset
for evaluating context-sensitive meaning representa-
tions. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
1267–1273.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. Language mod-
els are unsupervised multitask learners.

Emily Reif, Ann Yuan, Martin Wattenberg, Fernanda B
Viegas, Andy Coenen, Adam Pearce, and Been Kim.
2019. Visualizing and measuring the geometry of
bert. Advances in Neural Information Processing
Systems, 32:8594–8603.

Jennifer Rodd, Gareth Gaskell, and William Marslen-
Wilson. 2002. Making sense of semantic ambiguity:
Semantic competition in lexical access. Journal of
Memory and Language, 46(2):245–266.

257

Tobias Schnabel, Igor Labutov, David Mimno, and
Thorsten Joachims. 2015. Evaluation methods for
unsupervised word embeddings. In Proceedings of
the 2015 conference on empirical methods in natural
language processing, pages 298–307.

Lütfi Kerem Şenel, İhsan Utlu, Furkan Şahinuç, Hal-
dun M Ozaktas, and Aykut Koç. 2020. Imparting in-
terpretability to word embeddings while preserving
semantic structure. Natural Language Engineering,
pages 1–26.

Lütfi Kerem Şenel, Ihsan Utlu, Veysel Yücesoy, Aykut
Koc, and Tolga Cukur. 2018. Semantic structure and
interpretability of word embeddings. IEEE/ACM
Transactions on Audio, Speech, and Language Pro-
cessing, 26(10):1769–1779.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 31.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
Bert rediscovers the classical nlp pipeline. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601.

Jacob Turton, David Vinson, and Robert Smith. 2020.
Extrapolating binder style word embeddings to new
words. In Proceedings of the second workshop on
linguistic and neurocognitive resources, pages 1–8.

Akira Utsumi. 2018. A neurobiologically motivated
analysis of distributional semantic models. In Pro-
ceedings of the 40th Annual Conference of the Cog-
nitive Science Society, pages 1147–1152.

Akira Utsumi. 2020. Exploring what is encoded in dis-
tributional word vectors: A neurobiologically moti-
vated analysis. Cognitive Science, 44(6):e12844.

Saskia Van Dantzig, Rosemary A Cowell, René Zee-
lenberg, and Diane Pecher. 2011. A sharp image or
a sharp knife: Norms for the modality-exclusivity
of 774 concept-property items. Behavior Research
Methods, 43(1):145–154.

Yuxuan Wang, Yutai Hou, Wanxiang Che, and Ting Liu.
2020. From static to dynamic word representations:
a survey. International Journal of Machine Learn-
ing and Cybernetics, pages 1–20.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. Advances in Neural Infor-
mation Processing Systems, 32:5753–5763.

Ka Yee Yeung and Walter L Ruzzo. 2001. Details of
the adjusted rand index and clustering algorithms,
supplement to the paper an empirical study on prin-
cipal component analysis for clustering gene expres-
sion data. Bioinformatics, 17(9):763–774.

258

Appendix

MODEL

BERT GPT-2 XLNet RoBERTA

Base Large Small Medium Base Large Base Large

Parameters 110M 340M 117M 345M 110M 340M 125M 355M

Layers 12 24 12 24 12 24 12 24

Attention Heads 12 16 12 16 12 16 12 16

Hidden state size 768 1024 768 1024 768 1024 768 1024

Table a. Selected properties of the different transformer models used (large models shaded).

R-sq.

MODEL

BERTBASE GPT-2SMALL XLNetBASE RoBERTaBASE

First Last Mean First Last Mean First Last Mean First Last Mean

Comb. .668 .678 .677 .548 .630 .611 .655 .660 .665 .660 .670 .673

Best .657 .671 .667 .520 .615 .591 .645 .652 .657 .647 .652 .658

Table b. Mean R-squared across all Binder features for different subword embedding approaches

(first subword, last subword or mean across all subwords). Comb. = combined best layer per feature.

Best = best single layer overall.

Figure a. performance of different subword embeddings across the 12 layers for (a) BERTBASE (b)

RoBERTABASE (c) XLNetBASE and (d) GPT-2SMALL

(a) (b)

(c) (d)

259

Figure b. All feature R-squared scores for the Numberbatch baseline and (a) small models (b) large

models, with Binder et al (2016) categories indicated.

(a) (b)

260

Figure c. All feature R-squared scores for the (a) small and (b) large models for selected sentences of

Experiment 1b.

(a) (b)

261

Figure d. Model per-layer mean R-squared scores for Experiment 2 using (a) individual word-pair

property embedding and (b) mean across word-pairs property embedding.

Figure e. Raw BERTLARGE Accuracy and F1 scores on WiC dataset

Figure f. Residual plots for features (a) Attention and (b) Dark

(a) (b)

(b)(a)

R-squared = 0.67 R-squared = 0.38

262

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 263–276
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

Syntactic Perturbations Reveal Representational Correlates of
Hierarchical Phrase Structure in Pretrained Language Models

Matteo Alleman† Jonathan Mamou‡ Miguel A Del Rio3

Hanlin Tang‡ Yoon Kim?,3,• SueYeon Chung†,3,•

†Columbia University ‡Intel Labs
?MIT-IBM Watson AI 3Massachusetts Institute of Technology

Abstract

While vector-based language representations
from pretrained language models have set a
new standard for many NLP tasks, there is
not yet a complete accounting of their inner
workings. In particular, it is not entirely clear
what aspects of sentence-level syntax are cap-
tured by these representations, nor how (if at
all) they are built along the stacked layers of
the network. In this paper, we aim to ad-
dress such questions with a general class of
interventional, input perturbation-based anal-
yses of representations from pretrained lan-
guage models. Importing from computational
and cognitive neuroscience the notion of repre-
sentational invariance, we perform a series of
probes designed to test the sensitivity of these
representations to several kinds of structure
in sentences. Each probe involves swapping
words in a sentence and comparing the rep-
resentations from perturbed sentences against
the original. We experiment with three differ-
ent perturbations: (1) random permutations of
n-grams of varying width, to test the scale at
which a representation is sensitive to word po-
sition; (2) swapping of two spans which do or
do not form a syntactic phrase, to test sensi-
tivity to global phrase structure; and (3) swap-
ping of two adjacent words which do or do
not break apart a syntactic phrase, to test sensi-
tivity to local phrase structure. Results from
these probes collectively suggest that Trans-
formers build sensitivity to larger parts of the
sentence along their layers, and that hierarchi-
cal phrase structure plays a role in this pro-
cess. More broadly, our results also indicate
that structured input perturbations widens the
scope of analyses that can be performed on
often-opaque deep learning systems, and can
serve as a complement to existing tools (such
as supervised linear probes) for interpreting
complex black-box models.1

1Datasets, extracted features and code will be publicly
available upon publication.
• Correspondence

1 Introduction
It is still unknown how distributed information
processing systems encode and exploit complex
relational structures in data, despite their ubiqui-
tous use in the modern world. The fields of deep
learning (Saxe et al., 2013; Hewitt and Manning,
2019), neuroscience (Sarafyazd and Jazayeri, 2019;
Stachenfeld et al., 2017), and cognitive science (El-
man, 1991; Kemp and Tenenbaum, 2008; Tervo
et al., 2016) have given great attention to this ques-
tion, including a productive focus on the potential
models and their implementations of hierarchical
tasks, such as predictive maps and graphs. In this
work, we provide a generic means of identifying
input structures that deep language models use to
“chunk up” vastly complex data.

Natural (human) language provides a rich do-
main for studying how complex hierarchical struc-
tures are encoded in information processing sys-
tems. More so than other domains, human lan-
guage is unique in that its underlying hierarchy has
been extensively studied and theorized in linguis-
tics, which provides source of “ground truth” struc-
tures for stimulus data. Much prior work on charac-
terizing the types of linguistic information encoded
in computational models of language such as neural
networks has focused on supervised readout probes,
which train a classifier on top pretrained models to
predict a particular linguistic label (Belinkov and
Glass, 2017; Liu et al., 2019a; Tenney et al., 2019).
In particular, Hewitt and Manning (2019) apply
probes to discover linear subspaces that encode
tree-distances as distances in the representational
subspace, and Kim et al. (2020) show that these dis-
tances can be used even without any labeled infor-
mation to induce hierarchical structure. However,
recent work has highlighted issues with correlat-
ing supervised probe performance with the amount
of language structure encoded in such representa-
tions (Hewitt and Liang, 2019). Another popular
approach to analyzing deep models is through the

263

lens of geometry (Reif et al., 2019; Gigante et al.,
2019). While geometric interpretations provide sig-
nificant insights, they present another challenge in
summarizing the structure in a quantifiable way.
More recent techniques such as replica-based mean
field manifold analysis method (Chung et al., 2018;
Cohen et al., 2019; Mamou et al., 2020) connects
representation geometry with linear classification
performance, but the method is limited to catego-
rization tasks.

In this work, we make use of an experimen-
tal framework from cognitive science and neuro-
science to probe for hierarchical structure in contex-
tual representations from pretrained Transformer
models (i.e., BERT (Devlin et al., 2018) and its
variants). A popular technique in neuroscience in-
volves measuring change in the population activity
in response to controlled, input perturbations (Mol-
lica et al., 2020; Ding et al., 2016). We apply this
approach to test the characteristic scale and the
complexity (Fig. 1) of hierarchical phrase struc-
ture encoded deep contextual representations, and
present several key findings:

1. Representations are distorted by shuffling
small n-grams in early layers, while the distor-
tion caused by shuffling large n-grams starts
to occur in later layers, implying the scale
of characteristic word length increases from
input to downstream layers.

2. Representational distortion caused by swap-
ping two constituent phrases is smaller than
when the control sequences of the same length
are swapped, indicating that the BERT repre-
sentations are sensitive to hierarchical phrase
structure.

3. Representational distortion caused by swap-
ping adjacent words across phrasal bound-
ary is larger than when the swap is within a
phrasal boundary; furthermore, the amount of
distortion increases with the syntactic distance
between the swapped words. The correlation
between distortion and tree distance increases
across the layers, suggesting that the character-
istic complexity of phrasal subtrees increases
across the layers.

4. Early layers pay more attention between syn-
tactically closer adjacent pairs and deeper lay-
ers pay more attention between syntactically
distant adjacent pairs. The attention paid in

each layer can explain some of the emergent
sensitivity to phrasal structure across layers.

Our work demonstrates that interventional tools
such as controlled input perturbations can be useful
for analyzing deep networks, adding to the growing,
interdisciplinary body of work which profitably
adapt experimental techniques from cognitive neu-
roscience and psycholinguistics to analyze compu-
tational models of language (Futrell et al., 2018;
Wilcox et al., 2019; Futrell et al., 2019; Ettinger,
2020).

2 Methods
Eliciting changes in behavioral and neural re-
sponses through controlled input perturbations is a
common experimental technique in cognitive neu-
roscience and psycholinguistics (Tsao and Living-
stone, 2008; Mollica et al., 2020). Inspired by
these approaches, we perturb input sentences and
measure the discrepancy between the resulting, per-
turbed representation against the original. While
conceptually simple, this approach allows for a tar-
geted analysis of internal representations obtained
from different layers of deep models, and can sug-
gest partial mechanisms by which such models are
able to encode linguistic structure. We note that
sentence perturbations have been primarily utilized
in NLP for representation learning (Hill et al., 2016;
Artetxe et al., 2018; Lample et al., 2018), data aug-
mentation (Wang et al., 2018; Andreas, 2020), and
testing for model robustness (e.g., against adver-
sarial examples) (Jia and Liang, 2017; Belinkov
and Bisk, 2018). A methodological contribution
of our work is to show that input perturbations can
complement existing tools and widens the scope
of questions that could be asked of representations
learned by deep networks.

2.1 Sentence perturbations
In this work we consider three different types of
sentence perturbations designed to probe for differ-
ent phenomena.

n-gram shuffling In the n-gram shuffling experi-
ments, we randomly shuffle the words of a sentence
in units of n-grams, with n varying from 1 (i.e., in-
dividual words) to 7 (see Fig. 2a for an example).
While the number of words which change absolute
position is similar for different n, larger n will bet-
ter preserve the local context (i.e., relative position)
of more words. Thus, we reason that n-gram swaps
affect the representations selective to the context

264

Figure 1: Do Transformers build complexity along their layers? (a) The representation of a word is a function of its context, and
this cartoon illustrates an hypothesis that deeper representations use larger contexts. (b) An example parse tree, illustrating our
notion of phrase complexity. (c) Cartoon of the distortion metric, where vectors are the z-scored feature vectors z, and color map
vectors to words.

with size n or higher within the sentence, and that
lower n will result in greater distortion in sentence
representations.

Phrase swaps The n-gram shuffling experiments
probe for sensitivity of representations to local con-
text without taking into account syntactic structure.
In the phrase swap experiments, we perturb a sen-
tence by swapping two randomly chosen spans. We
explore two ways of swapping spans. In the first
setting, the spans are chosen such that they are
valid phrases according to its parse tree.3 In the
second setting, the spans are chosen that they are
invalid phrases. Importantly, in the second, control
setting, we fix the length of the spans such that the
lengths of spans that are chosen to be swapped are
the same as in the first setting (see Fig. 3a for an
example). We hypothesize that swapping invalid
phrases will result in more distortion than swap-
ping valid phrases, since invalid swaps will result
in greater denigration of syntactic structure.

Adjacent word swaps In the adjacent word
swapping experiments, we swap two adjacent
words in a sentence. We again experiment with two
settings – in the first setting, the swapped words
stay within the phrase boundary (i.e., the two words
share the same parent), while in the second setting,
the swapped words cross phrase boundaries. We
also perform a more fine-grained analysis where

3We use constituency parse trees from the English Penn
Treebank (Marcus et al., 1994).

we condition the swaps based on the “syntactic
distance” between the swapped words, where syn-
tactic distance is defined as the distance between
the two words in the parse tree (see Fig. 6c). Since
a phrase corresponds to a subtree of the parse tree,
this distance also quantifies the number of nested
phrase boundaries between two adjacent words.
Here, we expect the amount of distortion to be pos-
itively correlated with the syntactic distance of the
words that are swapped.
2.2 Contextual representations from

Transformers
For our sentence representation, we focus on the
Transformer-family of models pretrained on large-
scale language datasets (BERT and its variants).
Given an input word embedding matrix X ∈ RT×d
for a sentence of length T , the Transformer applies
self attention over the previous layer’s representa-
tion to produce a new representation,

Xl = fl([Hl,1, . . . ,Hl,H]), Hl,i = Al,iXl−1Vl,i,

Al,i = softmax

(
(Xl−1Ql,i)(Xl−1Kl,i)

>
√
dk

)
,

(1)
where fl is an MLP layer, H is the number of
heads, dH = d

H is the head embedding dimension,
and Ql,i,Kl,i,Vl,i ∈ Rd×dk are respectively the
learned query, key, and value projection matrices
at layer l for head i. The MLP layer consists of
a residual layer followed by layer normalization
and a nonlinearity. The 0-th layer representation

265

X0 is obtained by adding the position embeddings
and the segment embeddings to the input token em-
beddings X, and passing it through normalization
layer.4

In this paper, we conduct our distortion analysis
mainly on the intermediate Transformer represen-
tations Xl = [xl,1, . . . ,xl,T], where xl,t ∈ Rd
is the contextualized representation for word t at
layer l.5 We analyze the trend in distortion as a
function of layer depth l for the different perturba-
tions. We also explore the different attention heads
Hl,i ∈ RT×dH and the associated attention matrix
Al,i ∈ RT×T to inspect whether certain attention
heads specialize at encoding syntactic information.

2.3 Distortion metric
Our input manipulations allow us to specify the
distortion at the input level, and we wish to measure
the corresponding distortion in the representation
space (Fig. 1). Due to the attention mechanism, a
single vector in an intermediate layer is a function
of the representations of (potentially all) the other
tokens in the sentence. Therefore, the information
about a particular word might be distributed among
the many feature vectors of a sentence, and we wish
to consider all feature vectors together as a single
sentence-level representation.

We thus represent each sentence as a matrix and
use the distance induced by matrix 2-norm. Specif-
ically, let P ∈ {0, 1}T×T be the binary matrix
representation of a permutation that perturbs the
input sentence, i.e., X̃ = PX. Further let X̃l and
Xl be the corresponding sentence representations
for the l-th layer for the perturbed and original sen-
tences. To ignore uniform shifting and scaling, we
also z-score each feature dimension of each layer
(by subtracting the mean and dividing by the stan-
dard deviation where these statistics are obtained
from the full Penn Treebank corpus) to give Z̃l and
Zl. Our distortion metric for layer l is then defined
as ‖Zl −P−1Z̃l‖/

√
Td, where ‖ · ‖ is the matrix

2-norm (i.e., Frobenius norm).6 Importantly, we in-

4However, the exact specification for the MLP and X0

may vary across different pretrained models.
5BERT uses BPE tokenization (Sennrich et al., 2015),

which means that some words are split into multiple tokens.
Since we wish to evaluate representations at word-level, if a
word is split into multiple tokens, its word representation is
computed as the average of all its token representations.

6There are many possible ways of measuring distortion,
induced by different norms. We observed the results to be
qualitatively similar for different measures, and hence we
focus on the Frobenius norm in our main results. We show the
results from additional distortion metrics in the A.2

vert the permutation of the perturbed representation
to preserve the original ordering, which allows us
to measure the distortion due to structural change,
rather than distortion due to simple differences in
surface form. We divide by

√
Td to make the met-

ric comparable between sentences (with different
T) and networks (with different d).

Intuitively, our metric is the scaled Euclidean
distance between the z-scored, flattened sentence
representations, zl ∈ RTd. Because each dimen-
sion is independently centered and standardized,
the maximally unstructured distribution of zl is an
isotropic Td-dimensional Gaussian. The expected
distance between two such vectors is approximately√

2Td. Therefore, we can interpret a distortion
value approaching

√
2 as comparable to if we had

randomly redrawn the perturbed representation.

3 Experimental Setup
We apply our perturbation-based analysis on sen-
tences from the English Penn Treebank (Marcus
et al., 1994), where we average the distortion met-
ric across randomly chosen sentences. We analyze
the distortion, as measured by length-normalized
Frobenius norm between the perturbed and orig-
inal representations, as a function of layer depth.
Layers that experience large distortion when the
syntactic structure is disrupted from the perturba-
tion can be interpreted as being more sensitive to
hierarchical syntactic structure.

As we found the trend to be largely similar
across the different models, in the following sec-
tion, we primarily discuss results from BERT
(bert-base-cased). We replicate key re-
sults with other pretrained and randomly-initialized
Transformer-based models as well (see A.1).

4 Results

4.1 Sensitivity to perturbation size increases
along BERT layers

When we shuffle in units of larger n-grams, it only
introduces distortions in the deeper BERT layers
compared to smaller n-gram shuffles. The n-gram
sized shuffles break contexts larger than n, while
preserving contexts of size n or smaller. Interest-
ingly, smaller n-gram shuffles diverge from the
original sentence in the early layers (Fig. 2b, top
curve), implying that only in early layers are repre-
sentations built from short-range contexts. Larger
n-gram shuffles remain minimally distorted for
‘longer’ (Fig. 2b, bottom curve), implying that long-

266

Figure 2: Swapping n-grams and phrases. (a) Examples of
basic n-gram shuffles, where colors indicate the units of shuf-
fling. (b) Distortion metric computed at each layer, condi-
tioned on n-gram size. Error bars hereafter represent stan-
dard error across 400 examples. (c) An example parse tree,
with phrase boundaries shown as grey brackets, and two low-
order phrases marked; and examples of a phrasal and control
swap, with colors corresponding to the phrases marked above.
(d) Distortion, computed at each layer, using either the full
sentence, the subsentence of unswapped words, or the sub-
sentence of swapped words, conditioned on swap type. (e)
Full-sentence distortion for VP and NP phrase swaps. (f) Par-
tial linear regression coefficients (see A.4) for pre-trained and
untrained BERT models after controlling for swap size.

range contexts play a larger role deeper layer repre-
sentations.

Effects of phrasal boundaries Since BERT
seems to build larger contexts along its layers, we
now ask whether those contexts are structures of
some grammatical significance. A basic and im-
portant syntactic feature is the constituent phrase,
which BERT has previously been shown to repre-
sented in some fashion (Goldberg, 2019; Kim et al.,
2020). We applied two targeted probes of phrase
structure in the BERT representation, and found
that phrasal boundaries are indeed influential.

If we swap just two n-grams, the BERT repre-
sentations are less affected when phrases are kept
intact. We show this by swapping only two n-
grams per sentence and comparing the distortion
when those n-grams are phrases to when they cross
phrase boundaries (Fig. 3a), where we control for
the length of n-grams that are swapped in both
settings. There is less distortion when respect-
ing phrase boundaries, which is evident among

Figure 3: Syntactic distance affects representational distortion.
(a) An example of adjacent swaps which do and do not cross
a phrase boundary, with low-order phrases colored. Phrase
boundaries are drawn in red. (b) Distortion in each layer, but
conditioned on the tree distance. (c) For each head (column)
of each layer (row), the (Spearman) rank correlation between
distortion and tree distance of the swapped words. Colors are
such that red is positive, blue negative. (d) Rank correlations
between distortion (of the full representation) in the trained
and untrained BERT models. (e) Histogram of PMI values,
for pairs in the same phrase and not. (f) Similar to b, but
averaging all out-of-phrase swaps, and separating pairs above
(‘high’) or below (‘low’) the median PMI.

all feature vectors, including those in the position
of words which did not get swapped (Fig. 2d). The
global contextual information, distributed across
the sentence, is affected by the phrase boundary.

To see if the role of a phrase impacts its salience,
we distinguish between verb phrases (VP) and noun
phrase (NP) swaps. Swapping VP results in more
distortion than swapping NP (Fig. 2e). Since VP
are in general larger than NP, this effect could in
principle be due simply to the number of words
being swapped. Yet that is not the case: Using a
partial linear regression (see details in A.4), we
can estimate the difference between the VP and NP
distortions conditional on any smooth function of
the swap size, and doing this reveals that there is
still a strong difference in the intermediate layers
(Fig. 2f).

4.2 Sensitivity depends on syntactic distance
of the perturbation

Having seen that representations are sensitive to
phrase boundaries, we next explore whether that

267

sensitivity is proportional to the number of phrase
boundaries that are broken, which is a quantity
related to the phrase hierarchy. Instead of swapping
entire phrases, we swap two adjacent words and
analyze the distortion based on how far apart the
two words are in the constituency tree (Fig. 3a)7.
This analysis varies the distance in the deeper tree
structure while keeping the distance in surface form
constant (since we always swap adjacent words).

If the hierarchical representations are indeed be-
ing gradually built up along the layers of these pre-
trained models, we expect distortion to be greater
for word swaps that are further apart in tree dis-
tance. We indeed find that there is a larger dis-
tortion when swapping syntactically distant words
(Fig. 3b). This distortion grows from earlier to later
BERT layers. Furthermore, when looking at the
per-head representations of each layer, we see that
in deeper layers there are more heads showing a
positive rank correlation between distortion and
tree distance (Fig. 3c). In addition to a sensitivity
to phrase boundaries, deeper BERT layers develop
a sensitivity to the number of boundaries that are
broken.

Controlling for co-occurrence Since words in
the same phrase may tend to occur together more
often, co-occurrence is a potential confound when
assessing the effects of adjacent word swaps. Co-
occurrence is a simple statistic which does not re-
quire any notion of grammar to compute – indeed
it is used to train many non-contextual word em-
beddings (e.g., word2vec (Mikolov et al., 2013),
GloVe (Pennington et al., 2014)). So it is natural
to ask whether BERT’s resilience to syntactically
closer swaps goes beyond simple co-occurrence
statistics. For simplicity, let us focus on whether a
swap occurs within a phrase (tree distance = 2) or
not.

As an estimate of co-occurrence, we used the
pointwise mutual information (PMI). Specifically,
for two words w and v, the PMI is log p(w,v)

p(w)p(v) ,
which is estimated from the empirical probabili-
ties. We confirm that adjacent words in the same
phrase do indeed have a second mode at high PMI
(Fig. 3e). Dividing the swaps into those whose
words have high PMI (above the marginal median)
and low PMI (below it), we can see visually that the
difference between within-phrase swaps and out-
of-phrase swaps persists in both groups (Fig. 3f).

7Note that for adjacent words, the number of broken phrase
boundaries equals the tree distance minus two.

When quantitatively accounting for the effect of
PMI with a partial linear regression (see A.4), there
remains a significant correlation between the break-
ing of a phrase and the subsequent distortion. This
indicates that the greater distortion for word swaps
which cross phrase boundaries is not simply due to
surface co-occurrence statistics.

Relation to linguistic information Do our input
perturbations, and the resulting the distortions, re-
flect changes in the encoding of important linguis-
tic information? One way to address this ques-
tion, which is popular in computational neuro-
science (DiCarlo and Cox, 2007) and more recently
BERTology (Liu et al., 2019a; Tenney et al., 2019),
is to see how well a linear classifier trained on a lin-
guistic task generalizes from the (representations
of the) unperturbed sentences to the perturbed ones.
With supervised probes, we can see how much
the representations change with respect to the sub-
spaces that encode specific linguistic information.

Specifically, we relate representational distortion
to three common linguistic tasks of increasing com-
plexity: part of speech (POS) classification; grand-
parent tag (GP) classification (Tenney et al., 2019);
and a parse tree distance reconstruction (Hewitt
and Manning, 2019)8. The probe trained on each of
these tasks is a generalized linear model, mapping
a datapoint x (i.e. representations from different
layers) to a conditional distribution of the labels,
p(y|θT x) (see A.5 for model details). Thus a ready
measure of the effect of each type of swap, for a
single sentence, is log p(y|θT xi) − log p(y|θT x̃i),
where x̃i is same datum as xi in the perturbed rep-
resentation9. Averaging this quantity over all dat-
apoints gives a measure of content-specific distor-
tion within a representation, which we will call
“inference impairment”.

Based on the three linguistic tasks, the distortion
we measure from the adjacent word swaps is more
strongly related to more complex information. The
inverted L shape of Fig. 4a suggests that increas-
ing distortion is only weakly related to impairment
of POS inference, which is perhaps unsurprising
given that POS tags can be readily predicted from

8While the original paper predicted dependency tree dis-
tance, in this paper we instead predict the constituency tree
distance.

9POS- and GP-tag prediction outputs a sequence of la-
bels for each sentence, while the distance probe outputs the
constituency tree distance between each pair of words. Then
log p(y|θTxi) is simply the log probability of an individual
label.

268

Figure 4: Distortion and inference impairment for increasing linguistic complexity. In each plot, a point is the average (distortion,
‘impairment’) for a given layer and a given class of word swap distance. Points are connected by lines according to their swap
type (i.e. tree distance). The circles are colored according to layer (see right for a legend). Averages are taken over 600 test
sentences, with one of each swap type per sentence, and both distortion and log-likelihood are computed for every word in the
sentence.

local context. A deeper syntactic probe, the GP
classifier (4b), does show a consistent positive rela-
tionship, but only for swaps which break a phrase
boundary (i.e. distance >2). Meanwhile, impair-
ment of the distance probe (4c), which reconstructs
the full parse tree, has a consistently positive rela-
tionship with distortion, whose slope is proportion-
ate to the tree distance of the swap. Thus, when
specifically perturbing the phrasal boundary, the
representational distortion is related to relatively
more complex linguistic information.

4.3 Sensitivity to perturbations is mediated
by changes in attention

In the transformer architecture, contexts are built
with the attention mechanism. Recall that atten-
tion is a mechanism for allowing input vectors to
interact when forming the output, and the ultimate
output for a given token is a convex combination
of the features of all tokens (Eq. 1). It has been
shown qualitatively that, within a layer, BERT allo-
cates attention preferentially to words in the same
phrase (Kim et al., 2020), so if our perturbations af-
fect inference of phrase structure then the changes
in attentions could explain our results. Note that it
is not guaranteed to do so: the BERT features in a
given layer are a function of the attentions and the
“values” (each token’s feature vector), and both are
affected by our perturbations. Therefore our last
set of experiments asks whether attention alone can
explain the sensitivity to syntactic distance.

To quantify the change in attention weights
across the whole sentence, we compute the dis-
tance between each token’s attention weights in the
perturbed and unperturbed sentences, and average
across all tokens. For token i, its vector of atten-
tion weights in response to the unperturbed sen-
tence is ai, and for the perturbed one ãi (such that

∑
j a

i
j = 1). Since each set of attention weights

are non-negative and sum to 1 due to softmax, we
use the relative entropy10 as a distance measure.
This results in the total change in attention being:

∆a =
1

T

T∑

i=1

T∑

j=1

aij log
aij
ãij

which is non-negative and respects the structure
of the weights. We confirmed that other measures
(like the cosine similarity) produce results that are
qualitatively similar.

First, we observe that the changes in the atten-
tion depend on the layer hierarchy when adjacent
word swaps break the phrase boundary. Like the
distortion, attention changes little or not at all in
the early layers, and progressively more in the final
layers (Fig. 5b). Furthermore, these changes are
also positively correlated with syntactic distance
in most cases, which suggests that representation’s
sensitivities to syntactic tree distance may primarily
be due to changes in attention.

To see whether the changes in attention can in
fact explain representational sensitivity to syntactic
distance, we turned to the same partial linear re-
gression model as before (A.4) to compute the the
correlation between the representation’s distortion
and the tree distance between the swapped adjacent
words, after controlling for changes in attention
(∆a). The correlations substantially reduced in the
controlled case (Fig. 5c), which suggests that at-
tention weights contribute to the representational
sensitivity to syntactic tree distance; but the cor-
relations are not eliminated, which suggests that
distortions from the previous layer also contribute.

10Also called the KL divergence.

269

Figure 5: Attention changes explain part of the sensitivity
to tree distance. (a) An example of the attention matrices
for all heads in a single layer (layer 8), given the above sen-
tence as input. Phrases in the sentence are drawn as blocks
in the matrix. (b) The change in attention between the un-
perturbed and perturbed attention weights, averaged over all
out-of-phrase swaps. Columns are sorted independently by
their value. (c) The head/layer-wise rank correlations (±95%
confidence intervals) between distortion and tree distance after
controlling for changes in attention, plotted against the uncon-
trolled rank correlations. Being below the diagonal indicates
that the relationship between distortion and tree distance is
partially explained by ∆a.

5 Discussion and Conclusion

In this paper, we used the representational sensi-
tivity to controlled input perturbation as a probe
of hierarchical phrasal structure in deep linguistic
representations. The logic of our probe is the rep-
resentations which respect phrase structure should
less sensitive to perturbations which preserve the
phrasal unit, and more sensitive to those which dis-
rupt a phrase. We hope that our results demonstrate
the versatility and utility of perturbation-based ap-
proaches to studying deep language models.

We showed that BERT and its variants build rep-
resentations which are sensitive to the phrasal unit,
as demonstrated by greater invariance to pertur-
bations preserving phrasal boundaries compared
to control perturbations which break the phrasal
boundaries (Fig. 2-5). We also find that while the
representational sensitivity to broken phrase bound-
aries grows across layers, this increase in sensitivity
is more prominent when the breakage occurs be-
tween two words that are syntactically distant (i.e.,
when the broken phrase is more complex). Using
the same methods to show that changes in atten-
tion provide a partial explanation for perturbation-
induced distortions.

While our distortion metric is a task-agnostic
measure of change in the neural population activity,

this may or may not reflect changes in the encod-
ing of specific linguistic information. To relate our
metric with specific kinds of information, we mea-
sured the change in the performance of supervised
linear probes trained on top of the representation
(Fig. 4). The probe sensitivity measure also bears
a suggestive resemblance to the saliency map anal-
ysis (Simonyan et al., 2014) in machine learning,
which is used to highlight the most output-sensitive
regions within the input. To draw an analogy with
that work, one way of characterizing our results is
that phrasal boundaries are regions of high saliency
in hidden representations and that, in deep layers,
complex phrase boundaries are more salient than
simple phrase boundaries. Further exploring the
use of supervised probes and our input perturba-
tions as a tool for layerwise probing of syntactic
saliency is a promising direction for future work.

Finally, several studies (Sinha et al., 2021; Gupta
et al., 2021; Pham et al., 2020), have recently found
that masked language models pretrained or fine-
tuned on sentences that break natural word order
(e.g. via n-gram shuffling) still perform quite well
across various tasks, even on supervised probes
of syntactic phenomena. It would be interesting
to apply our perturbative analyses on such models
to see if they exhibit less sensitivity to the experi-
mental vs. control setups (e.g. n-gram vs. phrase
swaps). This may indicate that such models do
not capture representational correlates of phrase
structure in their representations despite their good
performance on supervised probing tasks. In such
a case, what tasks would actually require the “lin-
guistic knowledge” that we are probing for? In
similar vein, applying our perturbative analyses on
models that explicitly incorporate syntax into their
representations (Sundararaman et al., 2019; Wang
et al.; Zanzotto et al., 2020; Kuncoro et al., 2020)
might provide further insights.

Our method and results suggest many interest-
ing future directions. We hope that this work will
motivate: (1) a formal theory of efficient hierarchi-
cal data representations in distributed features; (2)
a search for the causal connection between atten-
tion structure, the representational geometry, and
the model performance; (3) potential applications
in network pruning studies; (4) an extension of
the current work as a hypothesis generator in neu-
roscience to understand how neural populations
implement tasks with an underlying compositional
structure.

270

References
Jacob Andreas. 2020. Good-Enough Compositional

Data Augmentation. In Proceedings ACL.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and
Kyunghyun Cho. 2018. Unsupervised neural ma-
chine translation. In Proceedings of ICLR.

Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic
and natural noise both break neural machine transla-
tion. In Proceedings of ICLR.

Yonatan Belinkov and James Glass. 2017. Analyz-
ing hidden representations in end-to-end automatic
speech recognition systems. In Advances in Neural
Information Processing Systems, pages 2441–2451.

SueYeon Chung, Daniel D Lee, and Haim Sompolin-
sky. 2018. Classification and geometry of gen-
eral perceptual manifolds. Physical Review X,
8(3):031003.

Uri Cohen, SueYeon Chung, Daniel D Lee, and Haim
Sompolinsky. 2019. Separability and geometry of
object manifolds in deep neural networks. bioRxiv,
page 644658.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

James J DiCarlo and David D Cox. 2007. Untangling
invariant object recognition. Trends in cognitive sci-
ences, 11(8):333–341.

Nai Ding, Lucia Melloni, Hang Zhang, Xing Tian, and
David Poeppel. 2016. Cortical tracking of hierarchi-
cal linguistic structures in connected speech. Nature
neuroscience, 19(1):158.

Jeffrey L Elman. 1991. Distributed representations,
simple recurrent networks, and grammatical struc-
ture. Machine learning, 7(2-3):195–225.

Allyson Ettinger. 2020. What bert is not: Lessons from
a new suite of psycholinguistic diagnostics for lan-
guage models. Transactions of the Association for
Computational Linguistics, 8:34–48.

Richard Futrell, Ethan Wilcox, Takashi Morit, and
Roger Levy. 2018. RNNs as psycholinguistic sub-
jects: Syntactic state and grammatical dependency.
arXiv:1809.01329.

Richard Futrell, Ethan Wilcox, Takashi Morita, Peng
Qian, Miguel Ballesteros, and Roger Levy. 2019.
Neural language models as psycholinguistic sub-
jects: Representations of syntactic state. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 32–42, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Scott Gigante, Adam S Charles, Smita Krishnaswamy,
and Gal Mishne. 2019. Visualizing the phate of neu-
ral networks. In Advances in Neural Information
Processing Systems, pages 1840–1851.

Yoav Goldberg. 2019. Assessing bert’s syntactic abili-
ties. arXiv preprint arXiv:1901.05287.

Ashim Gupta, Giorgi Kvernadze, and Vivek Srikumar.
2021. Bert family eat word salad: Experiments with
text understanding. AAAI.

Bruce Hansen. 2000. Econometrics. https:
//www.ssc.wisc.edu/~bhansen/
econometrics/.

John Hewitt and Percy Liang. 2019. Designing and
Interpreting Probes with Control Tasks. In Proceed-
ings of EMNLP.

John Hewitt and Christopher D Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4129–4138.

Felix Hill, Kyunghyun Cho, and Anna Korhonen.
2016. Learning distributed representations of sen-
tences from unlabelled data. In Proceedings of the
2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1367–1377, San
Diego, California. Association for Computational
Linguistics.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proceedings of EMNLP, Copenhagen, Denmark.
Association for Computational Linguistics.

Charles Kemp and Joshua B Tenenbaum. 2008. The
discovery of structural form. Proceedings of the Na-
tional Academy of Sciences, 105(31):10687–10692.

Taeuk Kim, Jihun Choi, Daniel Edmiston, and Sang
goo Lee. 2020. Are Pre-trained Language Models
Aware of Phrases? Simple but Strong Baselines for
Grammar Induction. In Proceedings of ICLR.

Adhiguna Kuncoro, Lingpeng Kong, Daniel Fried,
Dani Yogatama, Laura Rimell, Chris Dyer, and Phil
Blunsom. 2020. Syntactic Structure Distillation Pre-
training for Bidirectional Encoders. Transactions
of the Association for Computational Linguistics,
8:776–794.

Guillaume Lample, Alexis Conneau, Ludovic Denoyer,
and Marc’Aurelio Ranzato. 2018. Unsupervised ma-
chine translation using monolingual corpora only. In
Proceedings of ICLR.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations.

271

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019a. Lin-
guistic knowledge and transferability of contextual
representations. CoRR, abs/1903.08855.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach.

Jonathan Mamou, Hang Le, Miguel A Del Rio, Cory
Stephenson, Hanlin Tang, Yoon Kim, and SueYeon
Chung. 2020. Emergence of separable manifolds
in deep language representations. arXiv preprint
arXiv:2006.01095.

Mitchell Marcus, Grace Kim, Mary Ann
Marcinkiewicz, Robert MacIntyre, Ann Bies,
Mark Ferguson, Karen Katz, and Britta Schasberger.
1994. The penn treebank: Annotating predicate
argument structure. In Proceedings of the Workshop
on Human Language Technology, HLT ’94, pages
114–119, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Francis Mollica, Matthew Siegelman, Evgeniia Di-
achek, Steven T Piantadosi, Zachary Mineroff,
Richard Futrell, Hope Kean, Peng Qian, and Evelina
Fedorenko. 2020. Composition is the core driver
of the language-selective network. Neurobiology of
Language, 1(1):104–134.

Ari Morcos, Maithra Raghu, and Samy Bengio. 2018.
Insights on representational similarity in neural net-
works with canonical correlation. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 31, pages 5732–
5741. Curran Associates, Inc.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543.

Thang M. Pham, Trung Bui, Long Mai, and Anh
Nguyen. 2020. Out of order: How important is the
sequential order of words in a sentence in natural
language understanding tasks?

Maithra Raghu, Justin Gilmer, Jason Yosinski, and
Jascha Sohl-Dickstein. 2017. Svcca: Singular vec-
tor canonical correlation analysis for deep learning
dynamics and interpretability. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 30, pages 6076–
6085. Curran Associates, Inc.

Emily Reif, Ann Yuan, Martin Wattenberg, Fernanda B
Viegas, Andy Coenen, Adam Pearce, and Been Kim.
2019. Visualizing and Measuring the Geometry of
BERT. In Advances in Neural Information Process-
ing Systems, pages 8592–8600.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter.

Morteza Sarafyazd and Mehrdad Jazayeri. 2019. Hi-
erarchical reasoning by neural circuits in the frontal
cortex. Science, 364(6441):eaav8911.

Andrew M Saxe, James L McClellans, and Surya Gan-
guli. 2013. Learning hierarchical categories in deep
neural networks. In Proceedings of the Annual Meet-
ing of the Cognitive Science Society, volume 35.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. 2014. Deep inside convolutional networks: Vi-
sualising image classification models and saliency
maps.

Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle
Pineau, Adina Williams, and Douwe Kiela. 2021.
Masked language modeling and the distributional
hypothesis: Order word matters pre-training for lit-
tle.

Kimberly L Stachenfeld, Matthew M Botvinick, and
Samuel J Gershman. 2017. The hippocampus as a
predictive map. Nature neuroscience, 20(11):1643.

Dhanasekar Sundararaman, Vivek Subramanian,
Guoyin Wang, Shijing Si, Dinghan Shen, Dong
Wang, and Lawrence Carin. 2019. Syntax-Infused
Transformer and BERT models for Machine
Translation and Natural Language Understanding.
arXiv:1911.06156.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT Rediscovers the Classical NLP Pipeline. In
Proceedings of ACL.

D Gowanlock R Tervo, Joshua B Tenenbaum, and
Samuel J Gershman. 2016. Toward the neural im-
plementation of structure learning. Current opinion
in neurobiology, 37:99–105.

Doris Y Tsao and Margaret S Livingstone. 2008.
Mechanisms of face perception. Annu. Rev. Neu-
rosci., 31:411–437.

Wei Wang, Bin Bi, Ming Yan, Chen Wu, Zuyi Bao,
Jiangnan Xia, Liwei Peng, and Luo Si. StructBERT:
Incorporating Language Structures into Pre-training
for Deep Language Understanding.

Xinyi Wang, Hieu Pham, Zihang Dai, and Graham Neu-
big. 2018. SwitchOut: an efficient data augmen-
tation algorithm for neural machine translation. In
Proceedings of EMNLP.

272

Ethan Wilcox, Roger Levy, and Richard Futrell. 2019.
Hierarchical representation in neural language mod-
els: Suppression and recovery of expectations.
arXiv preprint arXiv:1906.04068.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le.
2019. XLNet: Generalized Autoregressive Pretrain-
ing for Language Understanding. In Proceedings of
NeurIPS.

Fabio Massimo Zanzotto, Andrea Santilli, Leonardo
Ranaldi, Dario Onorati, Pierfrancesco Tommasino,
and Francesca Fallucchi. 2020. KERMIT: Comple-
menting transformer architectures with encoders of
explicit syntactic interpretations. In Proceedings of
the 2020 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP).

A Appendix

Here we go into further detail on our methods and
data to aid in reproducibility.

A.1 Model details
Here we give the details for all models considered
in this paper. The majority of results are from
BERT, but we also tested other variants.11

• BERT (Devlin et al., 2018)
bert-base-cased. 12-layer, 768-hidden,
12-heads, 110M parameters.

• RoBERTa (Liu et al., 2019b)
roberta-base. 12-layer, 768-hidden,
12-heads, 125M parameters.

• ALBERT (Lan et al., 2019)
albert-base-v1. 12 repeating lay-
ers, 128 embedding, 768-hidden, 12-heads,
11M parameters.

• DistilBERT (Sanh et al., 2019)
distilbert-uncased. 6-layer, 768-
hidden, 12-heads, 66M parameters. The
model distilled from the BERT model
bert-base-uncased checkpoint.

• XLNet (Yang et al., 2019)
xlnet-base-cased. 12-layer, 768-
hidden, 12-heads, 110M parameters.

Note that the hidden size is 768 across all the mod-
els. For each pre-trained model, input text is tok-
enized using its default tokenizer and features are
extracted at token level.

11We use the implementation from https://github.
com/huggingface/transformers.

Figure 6: Replicating the adjacent word swapping experiments
using different transformer architectures. Lines are the mean
Frobenius distance, and the shading is ±1 standard error of
the mean.

A.2 Additional metrics
In addition to the scaled Frobenius distance, we
also considered other ways of measuring distortion
in the representation. We will briefly report results
for two other metrics, and describe them here.

CCA Canonical correlations analysis
(CCA) (Raghu et al., 2017) measures the
similarity of two sets of variables using many sam-
ples from each. Given two sets of random variables
x = (x1, x2, ..., xn) and y = (y1, y2, ..., ym),
CCA finds linear weights a ∈ Rn and b ∈ Rm
which maximise cov(a · x,b · y). In our context,
we treat the representation of the original sentence
as x, and the representation of the perturbed
sentence as y, and the resulting correlation as a
similarity measure.

Since CCA requires many samples, we use the
set of all word-level representations across all per-
turbed sentences. For example, to construct the
samples of x from S perturbed sentences, we get
use [X1|X2|...|XS], where each Xi ∈ R768×Ti .
Unless specified otherwise, S = 400. For good
estimates, CCA requires many samples (on the or-
der of at least the number of dimensions), and we
facilitate this by first reducing the dimension of the
matrices using PCA. Using 400 components pre-
serves ∼ 90% of the variance. Thus, while CCA
gives a good principled measure of representational
similarity, its hunger for samples makes it unsuit-
able as a per-sentence metric.

We also measured distortion using Projec-
273

Figure 7: Results from the pretrained BERT model using
alternative distortion metrics, on the n-gram shuffling and
phrase swap experiments.

tion Weighted Canonical Correlation Analysis
(PWCCA), an improved version of CCA to esti-
mate the true correlation between tensors (Morcos
et al., 2018).12

As reported in Figure 7, we did not find any
qualitative differences between PWCCA and CCA
in our experiments.

Cosine A similarity measure defined on individ-
ual sentences is the cosine between the sentence-
level representations. By sentence-level represen-
tation, we mean the concatenation of the word-
level vectors into a single vector s ∈ RNT
(where N is the dimension of each feature vec-
tor). Treating each dimension of the vector as
a sample, we can then define the following met-
ric: corr

(
soriginali , sswappedi

)
. This is equivalent

to computing the cosine of the vectors after sub-
tracting the (scalar) mean across dimensions, hence
we will refer to it as ‘cosine’.

A.3 Additional details on the dataset

In this section, we describe additional details of the
manipulations done on the datasets.

n-gram shuffling For a given a sentence, we
split it into sequential non-overlapping n-gram’s
from left to right; if the length of the sentence is not
a multiple of n, the remaining words form an ad-
ditional m-gram, m < n. The list of the n-gram’s
is randomly shuffled. Note that the 1-gram case
is equivalent to a random shuffling of the words.

12For both CCA and PWCCA, we use the implementation
from https://github.com/google/svcca.

In our analysis, we consider n-grams, with n vary-
ing from 1 (i.e., individual words) to 7 and all the
sentences have at least 10 words.

We provide here an example of n-gram shuffling.

• Original: The market ’s pessimism reflects the
gloomy outlook in Detroit

• 1-gram : market pessimism the ’s Detroit in
The gloomy reflects outlook

• 2-gram : ’s pessimism in Detroit The market
reflects the gloomy outlook

• 3-gram : The market ’s gloomy outlook in
pessimism reflects the Detroit

• 4-gram : in Detroit The market ’s pessimism
reflects the gloomy outlook

• 5-gram : the gloomy outlook in Detroit The
market ’s pessimism reflects

• 6-gram : outlook in Detroit The market ’s
pessimism reflects the gloomy

• 7-gram : in Detroit The market ’s pessimism
reflects the gloomy outlook

Phrase swaps Using constituency trees from the
Penn Treebank(Marcus et al., 1994), we define
phrases as constituents which don’t contain any
others within them. (See Fig. 2c or Fig. 3a in the
main text.) Phrase swaps thus consist of swapping
one phrase with another, and leaving other words
intact.

To provide an appropriate control perturbation,
we swap two disjoint n-grams, which are the same
size as true phrases but cross phrase boundaries.

Adjacent word swaps To better isolate the ef-
fect of broken phrase boundaries, we used adja-
cent word swaps. Adjacent words were chosen
randomly, and one swap was performed per sen-
tence.

A.4 Partial linear regression
In order to control for uninteresting explanations of
our results, we often make use of a simple method
for regressing out confounds. Generally, we want
to assess the linear relationship between X and Y ,
when accounting for the (potentially non-linear)
effect of another variable Z. In our experiments,
X is always the swap-induced distortion and Y
is the swap type, like integer-valued tree distance

274

or binary-valued in/out phrase. We wish to allow
E[Y |Z] and E[X|Z] to be any smooth function of
Z, which is achieved by the least-squares solution
to the following partially linear model:

Y ∼ βxX + βz · f(Z)

where f(z) is a vector of several (we use 10) basis
functions (we used cubic splines with knots at 10
quantiles) of Z. Both regressions have the same op-
timal βx, but the one on the left is computationally
simpler (Hansen, 2000). The standard confidence
intervals on βx apply.

Intuitively, the βx obtained by the partially lin-
ear regression above is related to the conditional
correlation of X and Y given Z: ρ(X,Y |Z). Like
an unconditonal correlation, it will be zero if X
and Y are conditionally independent given Z, but
not necessarily vice versa (both X and Y must be
Gaussian for the other direction to be true). To
compute conditional rank correlations (which as-
sess a monotonic relationship between X and Y),
we rank-transform X and Y (this changes the con-
fidence interval calculations).

We apply this method to swap size in Fig. 2
and attentions in Fig. 5. In these supplemental
materials, we will also report the results when X is
the binary in/out phrase variable, andZ is PMI. The
full p-values and coefficients of the uncontrolled
and controlled regressions can be found in Table 1,
where we observe that past layer 2, the p-value on
phrase boundary is very significant (p < 10−12).

A.5 Supervised probes

In this section, we describe the experiments based
on the three linguistic tasks: parts of Speech (POS);
grandparent tags (GP); and constituency tree dis-
tance.

The POS and GP classifiers were multinomial
logistic regressions trained to classify each word’s
POS tag (e.g. ‘NNP’, ‘VB’) and the tag of its
grandparent in the constituency tree, respectively.
If a word has no grandparent, its label is the root
token ‘S’. The probes were optimized with standard
stochastic gradient descent, 50 sentences from the
PTB per mini-batch. 10 epochs, at 10−3 learning
rate, were sufficient to reach convergence.

The distance probe is a linear map B applied to
each word-vector w in the sentence, and trained
such that, for all word pairs i, j, TreeDist(i, j)
matches ‖B(wi − wj)‖22 as closely as possible.
Unlike the classifiers, there is freedom in the out-

put dimension of B; we used 100, although perfor-
mance and results are empirically the same for any
choice greater than ∼ 64. Our probes are different
from (Hewitt and Manning, 2019) in two ways: (1)
we use constituency trees, instead of dependency
trees, and (2) instead of an L1 loss function, we use
the Poisson (negative) log-likelihood as the loss
function. That is, if λi,j = ‖B(wi − wj)‖22, and
yi,j = TreeDist(i, j)

−li,j = yi,j log λi,j − λi,j − log yi,j !

Otherwise, the probes are trained exactly as in (He-
witt and Manning, 2019). Specifically, we used
standard SGD with 20 sentences from the PTB in
each mini-batch, for 40 epochs.

Evaluation A linear model is fit to maximize
p(y|θ(x)), with p a probability function (multino-
mial for classifiers, Poisson for distance), and x
coming from the unperturbed transformer repre-
sentation. We evaluate the model on x̃, which
are the representations of the data when generated
from a perturbed sentence. We take the average of
log p(y|θ(xi)) − log p(y|θ(x̃i)) over all the data i
in all sentences. For example, all words for the clas-
sifiers, and all pairs of words for the distance probe.
Concretely, we are just measuring the difference
in validation loss of the same probe on the x data
and the x̃ data. But because the loss is an appropri-
ate probability function, we can interpret the same
quantity as a difference in log-likelihood between
the distribution conditioned on the regular repre-
sentation and that conditioned on the perturbed
representation. Distortion is similarly computed us-
ing the full sentence, providing a number for each
swap in each sentence.

275

Without PMI With PMI

Layer Coeff.×10−2 p-value Coeff. ×10−2 p-value

Emb. −0.21 5.6× 10−5 −0.11 9.4× 10−2

1 −0.11 3.4× 10−2 −0.05 4.2× 10−1

2 −0.74 < 10−16 −0.53 2.12× 10−8

3 −1.6 < 10−16 −1.3 2.2× 10−16

4 −2.0 < 10−16 −1.4 4.4× 10−16

5 −2.1 < 10−16 −1.5 8.8× 10−16

6 −2.4 < 10−16 −1.7 < 10−16

7 −2.6 < 10−16 −1.7 1.6× 10−15

8 −3.4 < 10−16 −2.3 < 10−16

9 −3.8 < 10−16 −2.7 < 10−16

10 −4.1 < 10−16 −3.0 < 10−16

11 −3.8 < 10−16 −2.8 < 10−16

12 −4.2 < 10−16 −3.1 < 10−16

Table 1: Coefficients and p-values of the regular (‘without PMI’) and controlled (‘with PMI’) regressions of distortion against
phrase boundary.

276

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 277–288
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

Box-To-Box Transformations for Modeling Joint Hierarchies

Shib Sankar Dasgupta, Xiang Lorraine Li, Michael Boratko
Dongxu Zhang, Andrew McCallum

College of Information and Computer Sciences
University of Massachusetts, Amherst

{ssdasgupta,xiangl,mboratko,dongxu,mccallum}@cs.umass.edu

Abstract

Learning representations of entities and rela-
tions in structured knowledge bases is an ac-
tive area of research, with much emphasis
placed on choosing the appropriate geome-
try to capture the hierarchical structures ex-
ploited in, for example, ISA or HASPART rela-
tions. Box embeddings (Vilnis et al., 2018; Li
et al., 2019; Dasgupta et al., 2020), which rep-
resent concepts as n-dimensional hyperrect-
angles, are capable of embedding hierarchies
when training on a subset of the transitive clo-
sure. In Patel et al. (2020), the authors demon-
strate that only the transitive reduction is re-
quired and further extend box embeddings to
capture joint hierarchies by augmenting the
graph with new nodes. While it is possible
to represent joint hierarchies with this method,
the parameters for each hierarchy are decou-
pled, making generalization between hierar-
chies infeasible. In this work, we introduce
a learned box-to-box transformation that re-
spects the structure of each hierarchy. We
demonstrate that this not only improves the ca-
pability of modeling cross-hierarchy composi-
tional edges but is also capable of generalizing
from a subset of the transitive reduction.

1 Introduction

Representation learning for hierarchical relations is
crucial in natural language processing because of
the hierarchical nature of common knowledge, for
example, <Bird ISA Animal> (Athiwaratkun and
Wilson, 2018; Vendrov et al., 2016; Vilnis et al.,
2018; Nickel and Kiela, 2017). The ISA relation
represents meaningful hierarchical relationships
between concepts and plays an essential role in
generalization for other relations, such as the gen-
eralization of <organ PARTOF person> based on
<eye PARTOF of person>, and <organ ISA eye>.
The fundamental nature of the ISA relation means
that it is inherently involved in a large amount of

compositional reasoning involving other relations.
Modeling hierarchies is essentially the problem

of modeling a poset, or partially ordered set. The
task of inferring missing edges that requires learn-
ing a transitive relation, was introduced in Ven-
drov et al. (2016). The authors also introduce a
model based on the reverse product order on Rn,
which essentially models concepts as infinite cones.
Region-based representations have been effective
in representing hierarchical data, as containment
between regions is naturally transitive. Vilnis et al.
(2018) introduced axis-aligned hyperrectangles (or
boxes) that are provably more flexible than cones,
and demonstrated state-of-the-art performance in
multiple tasks.

Thus far, not as much effort has been put into
modeling joint hierarchies. Patel et al. (2020) pro-
posed to simultaneously model ISA and HASPART

hierarchies from Wordnet (Miller, 1995). In order
to do so, they effectively augmented the graph by
duplicating the nodes to create a single massive
hierarchy. Their model assigns two separate box
embeddings BISA and BHASPART for each node n,
where these two do not share any common param-
eter between them, and therefore misses out on a
large amount of semantic relatedness between ISA
and HASPART .

In this paper we propose a box-to-box transfor-
mation which translates and dilates box represen-
tations between hierarchies. Our proposed model
shares information between the ISA and HASPART

hierarchies via this transformation as well as cross-
hierarchy containment training objectives. We com-
pare BOX-TRANSFORM MODEL with multiple
strong baselines under different settings. We sub-
stantially outperform the prior TWO-BOX MODEL

while training with only the transitive reduction
(which is informally the minimal graph with the
same connectivity as the original hierarchy) of both
hierarchies and predicting inferred composition

277

Figure 1: An example Box Embedding representation
of the ISA hierarchy where

edges. As mentioned above, our model’s shared
learned features should allow for more generaliza-
tion, and we test this by training on a subset of the
transitive reduction, where we find we are able to
outperform strong baselines. Finally, we perform a
detailed analysis of the model’s capacity to predict
compositional edges and transitive closure edges,
both from an overfitting and generalization stand-
point, identifying subsets where further improve-
ment is needed. The source code for our model and
the dataset can be found in https://github.com/

iesl/box-to-box-transform.git.

2 Related Work

Recent advances in representing one single hier-
archy mainly fall in two categories: 1) represent-
ing hierarchies in non-Euclidian space (eg. hyper-
bolic space, due to the curvature’s inductive bias to
model tree-like structures) 2) using region-based
representations instead of vectors for each node
in the hierarchy (Erk, 2009). Hyperbolic space
has been shown to be efficient in representing hier-
archical relations, but also encounters difficulties
in training (Nickel and Kiela, 2017; Ganea et al.,
2018b; Chamberlain et al., 2017).

Categorization models in psychology often rep-
resent a concept as a region (Nosofsky, 1986; Smith
et al., 1988; Hampton, 1991). Vilnis and McCal-
lum (2015) and Athiwaratkun and Wilson (2018)
use Gaussian distributions to embed each word in
the corpus, the latter of which uses thresholded
divergences which amount to region representa-
tions. Vendrov et al. (2016) and Lai and Hock-
enmaier (2017) make use of the reverse product
order on Rn+, which effectively results in cone
representations. Vilnis et al. (2018) further ex-
tend this cone representation to axis-aligned hyper-

rectangles (or boxes), and demonstrate state-of-the-
art performance on modeling hierarchies. Various
training improvement methods for box embeddings
have been proposed (Li et al., 2019; Dasgupta et al.,
2020), the most recent of which, GumbelBox, use a
latent noise model where box parameters are repre-
sented via Gumbel distributions to improve on the
loss landscape by making the gradient smooth for
the geometric operations involved with box embed-
dings.

Region representations are also used for tasks
which do not require modeling hierarchy. In Vilnis
et al. (2018), the authors also model conditional
probability distributions using box embeddings.
Abboud et al. (2020) and Ren et al. (2020) take
a different approach, using boxes for their capacity
to contain many vectors to provide slack in the loss
function when modeling knowledge base triples
or representing logical queries, respectively. Ren
et al. (2020) also made use of an action on boxes
similar to ours, involving translation and dilation,
however our work differs in both the task (i.e. rep-
resenting logical queries vs. joint hierarchies) and
approach, as their model represents entities using
vectors and a loss function based on a box-to-vector
distance. The inductive bias of hyperbolic space is
also exploited to model multiple relations, Ganea
et al. (2018a) learn hyperbolic transformations for
multiple relations using Poincare embeddings, and
show model improvement in low computational
resource settings. Patel et al. (2020), which our
work is most similar to, represent joint hierarchies
using box embeddings. However, they represent
each concept with two boxes ignoring the internal
semantics of the concepts.

Modeling joint hierarchies shares some similar-
ities with knowledge base completion, however
the goals of the two settings are different. When
modeling joint hierarchies you are attempting to
learn simultaneous transitive relations, and poten-
tially learn relevant compositional edges involv-
ing these relations. For knowledge base comple-
tion, on the other hand, you may be learning many
different relations, and primarily seek to recover
edges which were removed rather than inferring
new compositional edges. Still, the models which
perform knowledge base completion can be applied
to this task, as the data can be viewed as knowl-
edge base triples with only 2 relations. There have
been multiple works that aim to build better knowl-
edge representation (Bordes et al., 2013; Trouil-

278

Figure 2: An overview of BOX-TRANSFORM MODEL on joint ISA and HASPART hierarchies. Composition edges
are created following certain rules and it should be correctly inferred for a well-trained model. The ISA Wing box
is transformed into a HASPART Wing box representing concepts that has wings, and Bird is a subset of it. Same
follows for Appendage, and the monotonicity in the ISA space is preserved in HASPART space.

lon et al., 2016; Sun et al., 2019; Balazevic et al.,
2019b). Most relevant, (Chami et al., 2020; Balaze-
vic et al., 2019a) recently proposed KG embedding
methods which embeds entities in the Poincaré
ball model of hyperbolic space. These models are
intended to capture relational patterns present in
multi-relational graphs, with a particular emphasis
on hierarchical relations.

3 Background

3.1 Box Lattice Model

Introduced in (Vilnis et al., 2018), a box lattice
model (or box model) is a geometric embedding
which captures partial orders and lattice structure
using n-dimensional hyper-rectangles. Formally,
we define the set of boxes B in Rn as

B(Rn) = {[x1, x1]× · · · × [xd, x
d]}, (1)

where xi, xj ∈ R, and we represent all degenerate
boxes where xi > xi with ∅. A box model for a set
S is a function Box : S → B(Rn) which captures
some desirable properties of the set S. As the name
implies, the box lattice model is particularly suited
to representing partial orders and lattice structures.

Definition 1 (Poset). A partially ordered set, or
poset, is a set P along with a relation � such that,
for each a, b, c ∈ P , we have

1. a � a (reflexivity)

2. if a � b and b � a then a = b (antisymmetry)

3. if a � b and b � c then a � c (transitivity)

Definition 2 (Lattice). A lattice is a poset where
each pair of elements have a unique upper bound
called the join, denoted by ∧, and a unique lower
bound called the meet, denoted by ∨.

The authors note that there are natural geometric
operations which form a lattice structure on B:

Box(x) ∧ Box(y) :=
∏

i

[max(xi, yi),min(xi, yi)],

(2)

Box(x) ∨ Box(y) :=
∏

i

[min(xi, yi),max(xi, yi)],

(3)

In other words, the meet of two boxes is the small-
est containing box, and the join is the intersection,
or ∅ if the boxes are disjoint. These geometric op-
erations map very neatly to hierarchies, where the
meet of two nodes is their closest common ancestor
and the join is the closest common descendent (or ∅
if no such node exists). The ability of this model to
capture lattice structure using geometric operations
makes it a natural choice to embed hierarchies.

3.2 Probabilistic Box Model Training

In Vilnis et al. (2018), the authors also introduced a
probabilistic interpretation of box embeddings and
a learning method which was improved upon in Li
et al. (2019) and Dasgupta et al. (2020). By using a
probability measure µ on Rd (or by constraining the
space to [0, 1]d), one can calculate box volumes as
µ(Box(X)). The pullback of this measure yields a
probability measure on S, and thus the box model

279

can be imbued with valid probabilistic semantics.
In particular, since the box space B is closed under
intersection, we can calculate joint probabilities by
computing P (X,Y) = µ(Box(X)∧Box(Y)) and
similarly compute conditional probabilities as

P (X | Y) =
µ(Box(X) ∧ Box(Y))

µ(Box(Y))
. (4)

The conversion from a poset or lattice structure
to probabilistic semantics is accomplished by as-
signing conditional probabilities, namely a � b
if and only if P (b | a) = 1. We note that the
properties required of the relation � follow as a
natural consequence of the axioms for conditional
probability. Apart from providing rigor and inter-
pretability, the calibrated probabilistic semantics
also inform and facilitate the training procedure
for box embeddings, which is accomplished via
gradient descent using KL-divergence with respect
to the aforementioned probability distribution as a
loss function.

As one might expect, care must be taken to han-
dle the case when boxes are disjoint, as there is no
gradient. In Vilnis et al. (2018) the authors made
use of the lattice structure to derive a lower bound
on the probability, and Li et al. (2019) introduced
an approximation to Gaussian convolution over the
boxes which similarly handled the case of disjoint
boxes. Dasgupta et al. (2020) improves this further
by taking a random process perspective, ensem-
bling over an entire family of box models. The
endpoints of boxes are represented using Gumbel
distributions, that is

GumbelBox(X) =
∏

i

[Xi, X
i],

Xi ∼ MaxGumbel(µi, β),

Xi ∼ MinGumbel(µi, β),

(5)

where µ, β are the location and scale parame-
ters of the Gumbel distribution respectively. The
MaxGumbel distribution is given by

f(x;µ, β) =
1

β
exp(−x−µ

β − e
−x−µ

β), (6)

and the MinGumbel distribution given by negat-
ing x an µ. The Gumbel distribution was chosen
due to it’s min/max stability, making the set of
Gumbel boxes closed under intersection, i.e. the
intersection of two Gumbel boxes is another Gum-
bel box. We denote the space of all such boxes

as G. The expected volume of a Gumbel box can
be efficiently calculated analytically, and in Das-
gupta et al. (2020) the authors use this expected
volume to calculate the conditional probabilities
mentioned in equation (4). This training method
leads to improved performance on many tasks, and
is particularly beneficial when embedding trees,
thus we will use GumbelBox in our setting.

3.3 Modeling Joint Hierarchies

Many existing methods have been proposed for
modeling a single hierarchy, however entities are
often simultaneously part of multiple hierarchies,
for example hypernymy (i.e. ISA) and meron-
omy (i.e. HASPART). Furthermore, useful in-
formation can be shared across inferred compo-
sitional edges between the two hierarchies. For
example, as shown in 2, based on <Bird,HASPART

,Wing> and <Dove,ISA ,Bird>, we can infer
<Dove,HASPART ,Wing>. Due to the composi-
tional nature of these relations, we can infer not
only the per-relation transitive closure edges but
also the compositional edges, i.e <Dove, HAS-
PART , Wing>.

Formally, for two hierarchical relations r1 and
r2, composition edges can be formulated follow-
ing certain rules. In figure 2, the rules are de-
signed as follows: for <Head,HASPART ,Tail>,
< x1, ISA , Head> represent the sub-class of
Head, and <Tail, ISA , x2 > is the super-class
of Tail. Composition edges can be generated as
< x1,HASPART ,x2 >, < x1,HASPART ,Tail> or
< Head ,HASPART ,x2 >. These compositional
edges are identified in Patel et al. (2020), where
it is observed that a model which effectively cap-
tures both hierarchies should correctly predict not
only over the transitive closure of each individual
relation but also on these compositional edges.

4 Methods

4.1 Box-to-Box Transformation

As mentioned previously, our goal is to not only
capture intra-relation transitivity, but also require
the model to capture cross-hierarchy compositional
edges; that is, for a set S with two partial orders�1,
�2, we want a model capable of learning (a �1

b) ∧ (b �2 c) =⇒ a �2 c and (a �2 b) ∧ (b �1

c) =⇒ a �2 c . Furthermore, we hope to do
so without including these compositional edges
in our training data, with the expectation that the
embedding parameters capture relevant structure

280

which allows us to recover them.
As shown in Dasgupta et al. (2020), Gumbel

boxes are able to model hierarchies, we would like
to benefit from this capability, particularly for mod-
eling the ISA hierarchy, and thus we seek to learn
a function f1 : S → G, where

a �1 b ⇐⇒
E[µ(f1(a) ∩ f1(b))]

E[µ(f1(a))]
= 1. (7)

For a given Gumbel box,

f(x) =
d∏

i=1

[Xi, X
i],

Xi ∼ MaxGumbel(µi, β),

Xi ∼ MinGumbel(µi + ∆i, β). (8)

where the free parameters are µi and ∆i. To si-
multaneously model a second relation, we train a
function ϕ : G → G such that

a �2 b ⇐⇒
E[µ(ϕ(f1(a)) ∩ f1(b))]

E[µ(ϕ(f1(a)))]
= 1. (9)

For notational simplicity, we abbreviate f2 = ϕ ◦
f1.

We choose the transformationϕ to operate on the
“min” coordinate of a Gumbel box and the “side-
lengths”, that is, we transform a given Gumbel box

f(x) =

d∏

i=1

[Xi, X
i],

Xi ∼ MaxGumbel(µi, β),

Xi ∼ MinGumbel(µi + ∆i, β). (10)

to

ϕ (GumbelBox(X)) =

d∏

i=1

[Yi, Y
i], (11)

where

Yi ∼ MaxGumbel(θiµi + bi, β)

Y i ∼ MinGumbel(θiµi+bi+softplus(θi∆i+b
i), β)

and the θi, θi, bi, bi are learned parameters. This
effectively translates and dilates the location param-
eters of the Gumbel distributions which represent
the “corners” of a given Gumbel box. We call this
model the BOX-TRANSFORM MODEL .

The softplus function is used here as a way to
ensure the max coordinate remains larger than the

min, and it also provides a simple overflow protec-
tion for the expected box volume, as might happen
with side-lengths larger than one in high dimen-
sions. While mathematically simple, this transfor-
mation allows for parameter sharing between the
embedding of a concept with respect to �1 and
with respect to �2. Importantly, the transformation
is capable of capturing both a global translation
and dilation as well as a scaled transformation of
the existing learned representation, allowing the
absolute position in space (which, for previous box
embedding models, was irrelevant) to potentially
capture relevant features of the entities.

Remark 1. The lack of a transformation on f1(b)
is not an oversight. Using figure 2 as an example,
if we consider the Bird box as representative of “all
things which are birds”, and the HASPART Wing
box as the representative of “all thing which have
wings”, then encouraging containment of the Bird
box inside the HASPART Wing box is quite natural.
This conceptual motivation is precisely captured by
the lack of a transformation on f1(b). This also co-
incides with the probabilistic semantics discussed
in section 3.2, and is also the method employed by
(Patel et al., 2020), where this cross-hierarchy con-
tainment objective is soley responsible for any flow
of information between hierarchies in the TWO-
BOX MODEL .

4.2 Connection to Two-Box Model

There are two main differences between our model
and the model introduced in Patel et al. (2020), the
TWO-BOX MODEL . First, the TWO-BOX MODEL

preceded the Gumbel box model, and instead uses
the Soft box model from (Li et al., 2019). To ensure
that the benefits from our model are not conflated
with the improvements from using Gumbel boxes
we also train a TWO-BOX MODEL from (Patel
et al., 2020) which makes use of Gumbel boxes.

Second, both models use different boxes to
represent different relations, however, TWO-BOX

MODEL allows both boxes to have free parameters,
relying on containment between boxes represent-
ing different relations to pass information. Under
the framework we have currently presented, this
would be equivalent to learning two functions, f1
and f2, both of which have separate parameters
for the min and side length of the boxes for each
entity. While such a model has significant repre-
sentational capacity, we would expect that it would
suffer greatly from a lack of generalization. We

281

evaluate this hypothesis by creating a second test,
discussed in section 5.4, which removes edges from
the transitive reduction of the training data.

5 Experiments

5.1 Dataset
We demonstrate the efficacy of BOX-TRANSFORM

MODEL by using the joint hierarchy that has been
created by Patel et al. (2020) from WordNet (Miller,
1995). In this dataset, hypernymy (ISA) and
meronymy (HASPART) are two hierarchical re-
lations of WordNet over noun sysnets, which are
82, 114 in total. Individually, the hypernymy part
of the hierarchy contains 82, 114 nodes (i.e., all the
synsets) with 84, 363 edges in its transitive reduc-
tion and the meronymy portion has 11, 235 synsets
(out of 82, 114 synsets) with 9, 678 edges in its
transitive reduction.

Joint Hierarchy In order to evaluate the perfor-
mance on the joint hierarchy, Patel et al. (2020) cre-
ated composition edges using the inter-relational
semantics between hypernymy and meronymy. In
particular they use the following composition rules:

ISA ◦ ISA · · · ISA︸ ︷︷ ︸
0 or 1 or 2 times

◦ HASPART ◦ ISA ◦ ISA · · · ISA︸ ︷︷ ︸
0 or 1 or 2 times

= HASPART .
(12)

To illustrate from Figure 2, <Dove ISA
Bird> ∧ <Bird HASPART Wing> ∧ <Wing
ISA Appendage> implies that <birds HASPART

appendage>. In total, 189, 613 composition edges
are generated by the method described above for
evaluation of the model on the joint hierarchy task.
For each test/validation edge, a fixed set of negative
samples of size 10 was generated by corrupting the
head and tail 5 times each. The overall statistics
for the dataset is provided in Table 1.

We have also created a second training dataset
which further removes part of the transitive reduc-
tion to evaluate the models on their generalization
capability (refer to Section 5.4 & 5.5). The dataset
used for those section has different statistics and
they are reported in the respective sections.

5.2 Baseline Models and Training Details
We compare BOX-TRANSFORM MODEL against
geometric embedding methods as well as knowl-
edge base completion methods. We give a brief
description for each baseline below.

1. TWO-BOX MODEL : As mentioned in 4.2,
Patel et al. (2020) extends the idea of Box em-
beddings (Vilnis et al., 2018; Li et al., 2019) to

model joint hierarchies by defining two boxes
per node, one for each relation.

2. Order Embeddings: (Vendrov et al., 2016)
treats each concept as axis parallel cones in
positive orthant. We considered two different
cone parameters for each entity following the
TWO-BOX MODEL (Patel et al., 2020).

3. Poincaré Embeddings: (Nickel and Kiela,
2017) & Hyperbolic Entailment Cones
(Ganea et al., 2018b): Tree-structured data
are best captured in hyperbolic space (Cham-
berlain et al., 2017). Thus in Nickel and Kiela
(2017), the authors learn embedding on n-
dimensional Poincaré ball. For similar rea-
sons, Ganea et al. (2018b) uses the hyper-
bolic space however they extend the hyper-
bolic point embeddings to entailment cones.
Again, for these models, two separate parame-
ters are considered for each entity.

4. TransE and RotatE (Bordes et al., 2013; Sun
et al., 2019): This task can be posed as knowl-
edge base completion for a KB with only
two relations. Thus we evaluate TransE and
RotatE which are simple yet effective meth-
ods for knowledge base embeddings, which
achieve state-of-the-art for many knowledge
base embedding tasks. Unlike the TWO-BOX

MODEL (Patel et al., 2020) or the other base-
lines, these methods have shared representa-
tion for each entity, and thus they are expected
to generalise better on missing edges.

5. Hyperbolic KG Embeddings (Balazevic
et al., 2019a; Chami et al., 2020): We also
compared our method against recently pro-
posed KG embedding methods based on
hyperbolic embeddings to model hierarchi-
cal structures present in KGs. The Multi-
Relational Poincaré model (MuRP) (Balaze-
vic et al., 2019a) learns relation-specific trans-
forms of the entities that are embedded in
hyperbolic space. The RoTH (Chami et al.,
2020) parameterize the relation specific trans-
formations as hyperbolic rotation, where as
the AttH (Chami et al., 2020) combines hyper-
bolic reflection and rotation using attention.
More training details are in Appendix A.2.

282

Table 1: Details of the hypernymy, meronymy hierarchies and the composition edges.

Transitive
Reduction

Transitive
Closure

Validation
(pos/neg)

Test
(pos/neg)

Hypernym 84,363 661,127 28,838/ 288,380 28,838/ 288,380
Meronym 9,678 30,333 5,164/ 51,640 5,164/ 51,640
Composite Edge - - 94,807/ 948,070 94,806/ 948,070

Table 2: Test F1 scores(%)of various methods
for predicting the Composition edges.

Methods F1 score

Poincaré Embeddings 43.8
Hyperbolic Entailment Cones 44.0
TransE 57.0
RotatE 51.0
Order Embeddings 68.5
MuRP 21.4
AttH 51.3
RotE 51.5
RotH 55.8
TWO-BOX MODEL (Patel et al., 2020) 68.1
TWO-BOX MODEL (with GumbelBox) 73.7
BOX-TRANSFORM MODEL 82.2

Table 3: Test F1 scores(%) of various methods for gener-
alization capability.

Methods F1 score

Poincaré Embeddings 33.5
Hyperbolic Entailment Cones 36.0
TransE 57.0
RotatE 55.0
Order Embeddings 54.5
MuRP 20.1
AttH 27.0
RotE 48.8
RotH 46.7
TWO-BOX MODEL (with GumbelBox) 58.9
BOX-TRANSFORM MODEL 63.9

5.3 Composition Edges from Transitive
Reduction

In order to demonstrate the ability of the model to
capture partially ordered (tree-like) data most em-
bedding methods (Ganea et al., 2018b; Nickel and
Kiela, 2017; Patel et al., 2020) train their model on
the transitive reduction and predict on the transitive
closure. For an evaluation on modeling the joint
hierarchy, therefore, it is natural to train the mod-
els only on the transitive reduction of hypernymy
and meronymy and evaluate on the composition
edges, as done in Patel et al. (2020). We report the
F1 score (with 1:10 negatives) for those edges in
table 2. The threshold used for the classification
is determined by maximizing the F1 score on the
validation set.

From Table 2, we observe that BOX-
TRANSFORM MODEL outperforms the other
baselines by a significant margin. As mentioned
in Patel et al. (2020) and so do we observe that in
the next section 5.4 that the Poincaré embeddings
and Hyperbolic entailment cones do face difficulty
in learning when presented only with transitive
reduction edges. However, the hyperbolic KG
method Atth RoTH are able to learn the composite
edges to a certain extent. The performance gain of
RotH over its euclidean counterpart RotE can be

attributed to its inductive bias towards modeling
hierarchies. The performance of Box embedding
method as proposed by Patel et al. (2020) performs
at par order embedding method. However using
GumbelBox formulation (Dasgupta et al., 2020),
we observe significant performance boost as
GumbelBox improves the local identifiability
of the parameter space. Still, the capability
of the BOX-TRANSFORM MODEL to benefit
from shared cross-hierarchy features allows it
to substantially outperform even this improved
version of the TWO-BOX MODEL . This is likely
due to the fact that the inductive bias provided
by the transformation is more in line with the
data; the model can benefit from the containments
learned as a result of the ISA relation, and learn
a HASPART transformation which potentially
preserves these containments.

5.4 Learning from Incomplete Transitive
Reduction

In Patel et al. (2020), and also in our previous ex-
periment, we already observe that box embedding
methods are highly capable of to recovering the
transitive closure (in our case, composition edges)
given the transitive reduction only. In this experi-
ment, we train with even less of the transitive re-
duction, moving some of these edges to the test

283

Table 4: Single hierarchy F1 score (%) analysis on ISA and HASPART . The overall dataset is the combination of
overfitting, generalization and extended generalization

Type Overall
TC(X)

Overfitting
TC(X1)

Generalization
X-X1

Extended
Generalization

TC(X) - TC(X1)
-(X-X1)

TransE
ISA

52.9 52.1 66.5 46.0
Two Box Model 47.8 58.9 19.9 22.9

BOX-TRANSFORM MODEL 57.3 60.0 65.9 44.4

TransE
HASPART

59.9 63.0 56.1 48.3
Two Box Model 51.6 54.8 40.8 37.8

BOX-TRANSFORM MODEL 58.8 64.2 33.4 25.4

Table 5: Joint hierarchy F1 score (%) analysis. The overall data is the combination of overfitting and generalization.

Overall
COMP(X, Y)

Overfitting
COMP(X1, Y1)

Generalization
COMP(X, Y) - COMP(X1, Y1)

TransE 58.8 70.1 68.6
Two Box Model 62.5 72.7 63.6

BOX-TRANSFORM MODEL 69.6 86.1 70.0

set. Now, reconstruction of the closure and the
composition edges require models to generalize
over the missing parts of the graph. We train on
9175 meronymy edges and 80372 hypernymy edges
and test/validate on an aggregated pool of 251783
edges. Please refer to the Appendix A.1 for details
on dataset creation and statistics.
From Table 3, we observe that BOX-TRANSFORM

MODEL outperforms all the baseline methods by
a large extent. Although the two box model is per-
forming worse than BOX-TRANSFORM MODEL ,
it is able to beat other baselines. Out of the two
Knowledge base completion methods TransE per-
forms the best and achieves comparative perfor-
mance to two box model. Although the hyperbolic
KG embeddings were able to perform well on the
composite edges, their generalization performance
is relatively lower than other KG embedding meth-
ods. We also observe that the RotE model that was
under performing in composite edges, outperforms
RotH by some margin in this generalization setting.
We select the top three best performing methods
for further analysis for each type of edges in the
graph.

5.5 Performance analysis on different splits

Training on a subset of the transitive reduction
showed that our model could generalize to com-
position edges even with the absence of essential
edges to make such prediction. We further perform

evaluation analysis using the same training data
with the best-performed model selected by max-
imizing the f1 score on composition edges. We
evaluate the model performance on the transitive
closure for each hierarchy (ISA and HASPART),
and the composition edges on the joint hierarchy.

For each single hierarchy, some edges are re-
moved from the transitive reductionX to create the
incomplete transitive reduction training data X1.
Evaluating the transitive closure of X directly eval-
uates the model’s performance on each hierarchy,
denoted as TC(X). This can be further divided into
three categories: dataset that evaluates model abil-
ity to capture transitive closure of X1, TC(X1),
dataset that evaluates model generalization ability
on missing edges X −X1, and dataset that eval-
uates model’s extended generalization ability on
TC(X)− TC(X1).

Composition edges from the joint hierarchy can
be analyzed the same way. COMP(X,Y) repre-
sent all the composition edges in the full wordnet
dataset, composed by ISA transitive reduction X
and HASPART transitive reduction Y . It can be fur-
ther divided into two categories: data that evaluate
model overfitting ability to capture COMP(X1, Y1)
where X1 and Y1 is the corresponding training ISA
and HASPART data in section 5.4, and data that
evaluate model generalization ability on learning
logical operations COMP(X,Y)− COMP(X1, Y1).
The detailed statistics on each of these splits are

284

provided in Appendix A.4. The evaluation dataset
is created by randomly creating negative examples
with the pos: neg ratio 1:10. We select the top
3 best models from section 5.4, then choose the
threshold that maximized the F1 score for the val-
idation data of each split and report the test F1.
As shown in table 4 and table 5, our model per-
forms the best overall across different dataset splits.
BOX-TRANSFORM MODEL performs much better
on the full transitive closure of ISA , and all the
composition edges. In general, BOX-TRANSFORM

MODEL performs much better on transitive closure
and composition edges by a large margin in all
overfitting settings. TransE does better on predict-
ing removed edges from the transitive reduction
(which serves more as an analysis of the model’s
capability, as it is not a typical evaluation for par-
tial order completion), however we note that our
model does surprisingly well on the ISA missing
edges, which we attribute to the shared semantics
between the hierarchy made possible by this box-
to-box transformation.

6 Conclusion

We proposed a box-to-box transformation that fa-
cilitates sharing of learned features across hierar-
chies when modeling joint hierarchies. We demon-
strate the BOX-TRANSFORM MODEL is capable of
achieving state-of-the-art performance compared
with other strong baseline models when predicting
compositional edges across a joint hierarchy. Fur-
thermore, the model also outperforms other models
when modeling the transitive closure of each rela-
tion independently. In the future, we aim to extend
the current model from two relations to multiple re-
lations in order to obtain more generalization from
hierarchical ISA edges.

Acknowledgments

We the anonymous reviewers for their constructive
feedback. This work was supported in part by the
Center for Intelligent Information Retrieval and
the Center for Data Science, in part by the Chan
Zuckerberg Initiative, in part by the National Sci-
ence Foundation under Grant No. IIS-1763618,
in part by University of Southern California sub-
contract no. 123875727 under Office of Naval Re-
search prime contract no. N660011924032, and in
part by University of Southern California subcon-
tract no. 89341790 under Defense Advanced Re-
search Projects Agency prime contract no. FA8750-

17-C-0106. Any opinions, findings and conclusions
or recommendations expressed in this material are
those of the authors and do not necessarily reflect
those of the sponsor.

References

Ralph Abboud, İsmail İlkan Ceylan, Thomas
Lukasiewicz, and Tommaso Salvatori. 2020.
Boxe: A box embedding model for knowledge base
completion. In Proceedings of the 34th Annual
Conference on Neural Information Processing
Systems NeurIPS.

Ben Athiwaratkun and Andrew Gordon Wilson. 2018.
Hierarchical density order embeddings. In Interna-
tional Conference on Learning Representations.

Ivana Balazevic, Carl Allen, and Timothy Hospedales.
2019a. Multi-relational poincaré graph embeddings.
In Advances in Neural Information Processing Sys-
tems, volume 32, pages 4463–4473. Curran Asso-
ciates, Inc.

Ivana Balazevic, Carl Allen, and Timothy Hospedales.
2019b. TuckER: Tensor factorization for knowledge
graph completion. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing.

Lukas Biewald. 2020. Experiment tracking with
weights and biases. Software available from
wandb.com.

Antoine Bordes, Nicolas Usunier, A. Garcia-Duran, Ja-
son Weston, and Oksana Yakhnenko. 2013. Translat-
ing embeddings for modeling multi-relational data.
In Neural Information Processing Systems.

Benjamin Paul Chamberlain, James R. Clough, and
Marc Peter Deisenroth. 2017. Neural embeddings
of graphs in hyperbolic space. 13th international
workshop on mining and learning from graphs held
in conjunction with KDD.

Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic
Sala, Sujith Ravi, and Christopher Ré. 2020. Low-
dimensional hyperbolic knowledge graph embed-
dings. arXiv preprint arXiv:2005.00545.

Shib Sankar Dasgupta, Michael Boratko, Dongxu
Zhang, Luke Vilnis, Xiang Lorraine Li, and Andrew
McCallum. 2020. Improving local identifiability for
probabilistic box embeddings. In Neural Informa-
tion Processing Systems.

Katrin Erk. 2009. Representing words as regions in
vector space. In Proceedings of the Thirteenth Con-
ference on Computational Natural Language Learn-
ing.

285

Octavian Ganea, Gary Bécigneul, and Thomas Hof-
mann. 2018a. Hyperbolic neural networks. In Ad-
vances in neural information processing systems,
pages 5345–5355.

Octavian-Eugen Ganea, Gary Bécigneul, and Thomas
Hofmann. 2018b. Hyperbolic entailment cones for
learning hierarchical embeddings. In International
Conference on Machine Learning.

James A Hampton. 1991. The combination of proto-
type concepts. The psychology of word meanings,
pages 91–116.

Alice Lai and Julia Hockenmaier. 2017. Learning to
predict denotational probabilities for modeling en-
tailment. In Proceedings of the 15th Conference of
the European Chapter of the Association for Compu-
tational Linguistics.

Xiang Li, Luke Vilnis, Dongxu Zhang, Michael Bo-
ratko, and Andrew McCallum. 2019. Smoothing the
geometry of probabilistic box embeddings. In Inter-
national Conference on Learning Representations.

George A Miller. 1995. WordNet: a lexical database
for English. Communications of the ACM.

Maximilian Nickel and Douwe Kiela. 2017. Poincaré
embeddings for learning hierarchical representa-
tions. In Neural Information Processing Systems.

Robert M Nosofsky. 1986. Attention, similar-
ity, and the identification–categorization relation-
ship. Journal of experimental psychology: General,
115(1):39.

Dhruvesh Patel, Shib Sankar Dasgupta, Michael Bo-
ratko, Xiang Li, Luke Vilnis, and Andrew McCal-
lum. 2020. Representing joint hierarchies with box
embeddings. Automated Knowledge Base Construc-
tion.

Hongyu Ren, Weihua Hu, and Jure Leskovec. 2020.
Query2box: Reasoning over knowledge graphs in
vector space using box embeddings. International
Conference on Learning Representations.

Edward E Smith, Daniel N Osherson, Lance J Rips,
and Margaret Keane. 1988. Combining prototypes:
A selective modification model. Cognitive science,
12(4):485–527.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. Rotate: Knowledge graph embedding
by relational rotation in complex space. Interna-
tional Conference on Learning Representations.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In Interna-
tional Conference on Machine Learning.

Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel
Urtasun. 2016. Order-embeddings of images and
language. In International Conference on Learning
Representations.

Luke Vilnis, Xiang Li, Shikhar Murty, and Andrew Mc-
Callum. 2018. Probabilistic embedding of knowl-
edge graphs with box lattice measures. In Associa-
tion for Computational Linguistics.

Luke Vilnis and Andrew McCallum. 2015. Word rep-
resentations via gaussian embedding. International
Conference on Learning Representations.

286

A Appendix

A.1 Dataset creation steps from Section 5.4

In order to remove edges from the transitive re-
ductions, we iterate through the transitive reduc-
tion edges of meronymy. With 0.5 probability we
choose the edge for further processing. For each
chosen HASPART edge, we select an outgoing ISA
edge and pair them. We drop the ISA edge from the
pair with 0.9 probability (the ratio of HASPART to
ISA transitive reduction) and drop the HASPART
edge in case the ISA is not dropped already. This
procedure ensures that all the edge removals hap-
pen around the composition edges, thus, the results
reflect the models true capacity to generalize well
for this joint hierarchy task. We evaluate the model
on the composition edges, the removed reduction
edges, and the closure edges with 251783 in num-
bers which we split into two parts for validation
and test. In Table 3, we report the F1 score on
this aggregated evaluation data with 1:10 fixed true
negatives.

A.2 Training Details

In our experiments, we have kept the number of pa-
rameters same across all the methods. We use 5 di-
mensional box embeddings for the Two Box Model
(Patel et al., 2020). Since box embeddings are spec-
ified using min and side length in the same dimen-
sion. Thus we compare with 10 dimensional order
embeddings, Poincaré embeddings, and hyperbolic
entailment cones. However, since the above men-
tioned methods has two different number of pa-
rameters for each node, we use 20 dimensional
vectors for RotatE, TransE to account for that. Our
BOX-TRANSFORM MODEL uses 10 dimension box
embeddings for similar reason.

Hyperparameter range: We use Bayesian hy-
permeter optimizer with Hyperband algorithm
for all the methods using the web interface
(Biewald, 2020). The hyperparameter ranges are
Gumbelβ ∈ [0.001, 3], Softplus temperature for
box volume T ∈ [1, 30], lr ∈ [0.0005, 1], batch
size ∈ {8096, 2048, 1024, 512}, number of nega-
tive samples ∈ [2, 30] for all the methods. For max
margin trainging we searched for the margin ∈
[1, 50].

The best hyperparameters for our method and a
few competitive baselines are provided in appropri-
ate config files along with the source code. We will
make the code public after the anonymity period.

In order to remove edges from the transitive re-
ductions, we iterate through the transitive reduc-
tion edges of meronymy. With 0.5 probability we
choose the edge for further processing. For each
chosen HASPART edge, we select an outgoing ISA
edge and pair them. We drop the ISA edge from
the pair with 0.9 probability (the ratio of HASPART

to ISA transitive reduction) and drop the HASPART

edge in case the ISA is not dropped already.
This procedure ensures that all the edge removals

happen around the composition edges, thus, the re-
sults reflect the models true capacity to generalize
well for this joint hierarchy task. We evaluate the
model on the composition edges, the removed re-
duction edges, and the closure edges with 251783
in numbers which we split into two parts for vali-
dation and test. In Table 3, we report the F1 score
on this aggregated evaluation data with 1:10 fixed
true negatives.

A.3 Visualization
We plot 2-dimensional box embeddings to inspect
the quality of our proposed BOX-TRANSFORM

MODEL . Please refer to Figure 3. Here, we use the
box embedding parameters of the best performing
model from experiment 5.3 (Table 2). Note that,
the model is 10 dimensional. However, for a per-
fectly trained model for the hierarchical tree-like
data, we should observe more numbers of full con-
tainments, i.e., containment along each dimension.
Thus, we pick two dimensions randomly out of the
10-d to visualize the box embeddings.

In the example in Figure 3 (next page),
the facts that <Car,HASPART ,CarDoor> and
<CarDoor,ISA ,Door> would enable us to infer
that <Car,HASPART , Door>. This is a particular
example of the compositional edges. We observe
from the Figure 3 that the HASPART transforma-
tion of the ”Car Door” and ”Door” successfully en-
closes the ISA transformation of the ”Car”, thus our
model is able infer that composition edge . All the
other composite edges such as <Sedan,HASPART ,
CarDoor >, <Sedan,HASPART , Door> etc. can
be similarly inferred from the visualization.

A.4 Details of the splits from Section 5.5
We report the performance of our method on dif-
ferent splits which are qualitatively different from
each other. The detailed statistics of these splits
can be found in Table 6 & 7.

287

(a) Example of Joint Hierarchy extracted
from the WordNet dataset.

(b) We plot the transformed ISA box for ”Sedan” & ”Car” and
transformed HASPART box for ”Door”, ”Car Door”, ”Movable Barrier”
on the same space. The transformations do preserve the containment and
provide an consistent assignment of box embedddings for the example

on left.

Figure 3: 2-dimensional visualization of proposed Box embedding model.

Table 6: Dataset statistics for different parts of individ-
ual ISA and PARTOF hierarchy.

Hierarchy TC(X) TC(X1) X-X1
TC(X) - TC(X1)

- (X-X1)

IsA 61,667 51,195 3,991 6,481
HasPart 30,335 26,388 503 3,444

Table 7: Dataset statistics for different composition
edges in Joint Hierarchy.

Hierarchy Comp(X, Y) COMP(X1, Y1)
COMP(X, Y1)

- COMP(X1, Y1)

Joint Hierarchy 189,613 146,867 42,746

288

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 289–306
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

An Overview of Uncertainty Calibration for Text Classification
and the Role of Distillation

Han Guo Ramakanth Pasunuru Mohit Bansal
UNC Chapel Hill

hanguo@cs.cmu.edu {ram, mbansal}@cs.unc.edu

Abstract

Recent advances in NLP systems, notably
the pretraining-and-finetuning paradigm, have
achieved great success in predictive accu-
racy. However, these systems are usually not
well calibrated for uncertainty out-of-the-box.
Many recalibration methods have been pro-
posed in the literature for quantifying predic-
tive uncertainty and calibrating model outputs,
with varying degrees of complexity. In this
work, we present a systematic study of a few
of these methods. Focusing on the text clas-
sification task and finetuned large pretrained
language models, we first show that many of
the finetuned models are not well calibrated
out-of-the-box, especially when the data come
from out-of-domain settings. Next, we com-
pare the effectiveness of a few widely-used re-
calibration methods (such as ensembles, tem-
perature scaling). Then, we empirically il-
lustrate a connection between distillation and
calibration. We view distillation as a regu-
larization term encouraging the student model
to output uncertainties that match those of
a teacher model. With this insight, we de-
velop simple recalibration methods based on
distillation with no additional inference-time
cost. We show on the GLUE benchmark
that our simple methods can achieve compet-
itive out-of-domain (OOD) calibration perfor-
mance w.r.t. more expensive approaches. Fi-
nally, we include ablations to understand the
usefulness of components of our proposed
method and examine the transferability of cal-
ibration via distillation.

1 Introduction

The recent success of NLP systems, notably the
pretraining-and-finetuning paradigm has led to
widespread applications (Peters et al., 2018; Devlin
et al., 2019; Radford et al., 2019). However, these
systems are not always well-calibrated; in many
high-stake decision-making scenarios such as med-

ical diagnosis, even small errors would have large
damage. Suppose an ML system predicts a 20%
probability a patient has cancer whereas the reality
is 40%, diagnosis relying on inaccurate estimates
could lead to devastating consequences (Kumar
et al., 2019). Further, interpreting and communi-
cating these uncertainties facilitates better trust be-
tween humans and ML systems (Bansal et al., 2020;
Wilder et al., 2020; Ribeiro et al., 2016, 2018).

Hence, it is increasingly important for users to
understand not only when the systems would suc-
ceed, but also when they could fail. One seemingly
straightforward approach is to have the systems
output predictions and some measure of their con-
fidence/uncertainty. Users could then use both the
predictions and associated uncertainties to decide
how much they would trust the prediction. For
example, one might decide to take an umbrella to
work only if the confidence of the rain prediction
is more than 50%. For many statistical methods,
confidence/uncertainty is either part of the system
by design (e.g., Bayesian methods) or could be
efficiently estimated (e.g., linear regressions). Un-
fortunately, for large-scale DNNs, estimating un-
certainty becomes a challenge (Gal, 2016): e.g.,
nominal probabilities from the softmax function
are shown to be uncalibrated estimates of model
uncertainty (Platt, 1999; Niculescu-Mizil and Caru-
ana, 2005; Guo et al., 2017; Ovadia et al., 2019).

In this work, we present a systematic study on
recalibrating current NLP systems, particularly
those that fall in the recent popular pretraining-and-
finetuning paradigm (Hendrycks et al., 2020; Desai
and Durrett, 2020), as they are widely deployed
in recent state-of-the-art systems and hence it is
important that they are well calibrated for safety
and transparency. However, the methods discussed
in this work could generalize to a broader range of
systems. We focus on the calibration not only of
the task itself, but also under dataset distributional

289

shift (Ovadia et al., 2019).
We start by introducing uncertainty and calibra-

tion, and cover related advances in the deep learn-
ing literature. In addition to widely-used maximum
calibration error and expected calibration error, we
follow previous works (Ovadia et al., 2019; Kumar
et al., 2019) and include additional calibration eval-
uation metrics for better comparisons (e.g., Brier
scores and `p calibration error).

We conduct experiments on GLUE classifica-
tion tasks (Wang et al., 2019) and show that fine-
tuned language models are usually not calibrated
out-of-the-box, especially when the data comes
from a distribution different from the training
data. We use the term “out-of-domain” (or “out-of-
distribution”, OOD) to refer to the setting where
the train and evaluation data come from different
“distributions”. Related works in NLP have con-
sidered data from similar tasks but from different
datasets as OOD (Ovadia et al., 2019; Hendrycks
and Gimpel, 2017). Next, in order to make mod-
els more calibrated, we study some of the widely-
used recalibration methods, with various degrees
of effectiveness and computational cost. For ex-
ample, ensembling models has been shown to be
very effective in out-of-domain settings (Ovadia
et al., 2019), but the cost of computation scales
with the size of ensembles. On the other hand, dis-
tillation (Hinton et al., 2015) is a widely-known
method for improving the system’s performance
by learning from a stronger teacher model. In this
work, we empirically examine the connection be-
tween distillation and calibration. Notably, we view
the objective function of distillation as a regular-
ization term that encourages the student model to
match the predictive uncertainty of a stronger, more
calibrated teacher model.

We conduct analysis experiments to show that
the teacher’s calibration performance could be dis-
tilled into the student model, even when the teacher
model’s accuracy remains similar. With this insight,
we show that simple methods based on distillation
could achieve competitive performance in out-of-
domain calibration, without introducing extra com-
putation at inference time. Finally, we also conduct
ablation experiments to understand the usefulness
of components of the method. In summary, our
contributions are listed as follows:

• We present a systematic study on the perfor-
mance of various recalibration methods on
finetuned language models for both in-domain

and out-of-domain settings.

• We empirically examine the connection be-
tween distillation and calibration, and conduct
experiments showing that distillation can dis-
till calibration performance.

• We describe two simple recalibration methods,
and experimental results demonstrate their
competitiveness in the out-of-domain settings;
finally, we also ablate method’s components
and measure the extent to which distillation
transfers teachers’ calibration improvement.

2 Background and Related Works

Due to space constraints, we present some of the
most relevant materials in the main paper. Please
see the appendix (Sec. A) for extended background
and related works.

The quality of the uncertainty measurement is
usually measured via calibration (Kendall and Gal,
2017). In the context of calibration, the uncer-
tainties often refer to predictive probabilities. The
model is calibrated if the predictive probabilities
match the empirical frequency of the data (Gal,
2016). Let Ŷ and P̂ be the predicted class and
its associated confidence of a neural network. We
would like the confidence estimates P̂ to be cali-
brated, which intuitively means that we want P̂ to
represent true probabilities (Guo et al., 2017):

P(Ŷ = Y |P̂ = p) = p,∀p ∈ [0, 1]. (1)

Suppose a classification model is given N input
examples, and made predictions ŷ1, ..., ŷN , each
with p̂ = 0.35. We would expect 35% of the pre-
dictions would be correct. The problem of uncer-
tainty/confidence calibration and confidence scores
have been studied and applied in various settings
such as structured prediction problems (Kuleshov
and Liang, 2015), online recalibration (with po-
tentially adversarial/OOD input) (Kuleshov and
Ermon, 2017), model regularization (Pereyra et al.,
2017), and misclassified/OOD examples detec-
tion (Hendrycks and Gimpel, 2017). In practice,
however, perfect calibration is almost impossi-
ble (Guo et al., 2017), and estimating the first term
in Eq. 1 is not straightforward using finite samples,
because in most cases P̂ is a continuous random
variable (Guo et al., 2017; Kumar et al., 2019). In
Sec. 3, we describe ways to estimate the calibration
performance.

290

It has been widely observed that modern neu-
ral networks are usually not calibrated out of
the box (Platt, 1999; Zadrozny and Elkan, 2001;
Guo et al., 2017; Ovadia et al., 2019). Recal-
ibration methods improve calibration by trans-
forming un-calibrated outputs into calibrated out-
puts/probabilities, and they include scaling-based
methods (Platt, 1999; Guo et al., 2017), histogram-
binning-based methods (Guo et al., 2017; Zadrozny
and Elkan, 2001), and ensembles (Lakshmi-
narayanan et al., 2017). Recently, Kumar et al.
(2019) proposed the scaling-binning calibrator and
a more sample-efficient estimator of calibration er-
ror. In our work, we describe simple approaches
that combine the strength of ensembles and temper-
ature scaling without introducing computation at in-
ference time; we further apply the scaling-binning
calibrator to ensure calibration.

Ensemble-based methods work by aggregating
multiple networks trained independently on the en-
tire dataset, and has been shown to achieve strong
performance in out-of-domain calibration (Ovadia
et al., 2019; Lakshminarayanan et al., 2017). More
generally, there are randomization-based ensem-
bles and boosting-based ensembles. Within the
randomization-based ensembles, we use the entire
training dataset to train each model instead of dif-
ferent bootstrap samples of the original training
set (Lakshminarayanan et al., 2017).

Temperature scaling is an extension of Platt scal-
ing (Guo et al., 2017). It uses a single scalar pa-
rameter T > 0 for all classes. Given output zi, the
confidence prediction is:

p̂i = max
k

σ(zi,k/T). (2)

An extension, called heteroscedastic regression,
is used in our work, which replaces the constant
scalar with learned values (Kendall and Gal, 2017;
Kendall et al., 2018).

Knowledge distillation (Hinton et al., 2015) is a
compression technique in which a compact model
(usually referred to as the student model) is trained
to mimic the behavior of a more powerful teacher
model. In the context of classification, knowledge
distillation works by augmenting the loss function
with an additional term DKL(pi‖pj) where pi =
softmax(zi/T) and pj = softmax(zj/T) with zi
and zj the logits from two models, and T controls
the smoothness of the output distribution. In this
work, we show that distillation can also be used to
distill calibration performance, and use it to build

simple yet competitive recalibration methods.
Concurrently, Desai and Durrett (2020) studied

the calibration of pretrained transformers when
finetuned to downstream tasks, and Hendrycks et al.
(2020) studied the out-of-distribution robustness
of pretrained transformers. We are different from
them in that first we present a systematic study
on the out-of-distribution calibration; second we
draw insights from the connection between distil-
lation and temperature scaling to design simple
yet competitive recalibration methods; third, we
conduct experiments to understand the connection
between them empirically; finally, we also include
a more comprehensive set of calibration evalua-
tions following Ovadia et al. (2019) and Kumar
et al. (2019).

3 Measuring Calibration Errors

3.1 Calibration Error Metrics

Let X be the input space, and Y = {1, ...,K}
be the label space, and X ∈ X and Y ∈ Y be
random variables denoting the input and the label,
respectively. Further, let f : X → [0, 1]K be a
neural network that outputs the model’s confidence
for each class. For simplicity of notation, we define
Ŷ = argmaxj f(X)j , and P̂ = maxj f(X)j .

Expected Calibration Error. One notion of mis-
calibration is the expected difference between con-
fidence and accuracy,

ECE(f) = E
[∣∣∣∣P
(
Y=Ŷ |P=P̂

)
− P̂

∣∣∣∣
]
. (3)

As mentioned in Sec. 2, this cannot be estimated us-
ing finitely many samples if P̂ is a continuous ran-
dom variable. Expected Calibration Error (Naeini
et al., 2015; Guo et al., 2017), or ECE, approxi-
mates this via partitioning predictions into multiple
bins and computing the weighted average.

Maximum Calibration Error. In high-risk sce-
narios, we might be interested in measuring the
worst-case performance. Maximum Calibration Er-
ror (Naeini et al., 2015; Guo et al., 2017), or MCE,
estimates the following quantity via binning,

MCE(f) = max

∣∣∣∣P
(
Ŷ=Y |P=P̂

)
− P̂

∣∣∣∣. (4)

Brier Score. Calibration alone is not sufficient.
We could construct cases in which the outputs of
the model are calibrated but not useful. An example

291

includes always outputting 50% in a binary classi-
fication task containing 50% of both labels (Kumar
et al., 2019). An alternative measure is the Brier
score (Brier, 1950), E[(f(X)−Y)2]. Note that the
Brier Score is a proper scoring rule, thus the opti-
mum score corresponds to a system with perfect
calibration. We refer a more detailed discussion
on proper scoring rule to Lakshminarayanan et al.
(2017) (Sec 2.2). An extension of Brier Score is
Brier Skill Scores (BSS). BSS is favored when the
classes are imbalanced. In our early experiments,
we did not observe significant ranking changes be-
tween these two measures, so we report Brier Score
for simplicity.1

`p Calibration Error. A generalized notion of
the calibration error is described in Kumar et al.
(2019),

CE(f) =
(
E
[∣∣P(Y=Ŷ |P=P̂)− P̂

∣∣p]
)1/p

. (5)

This recovers the MCE when p = ∞ and ECE
when p = 1 (Kumar et al., 2019). When p = 2,
we refer to it as Squared Calibration Error (SCE).2

This is estimated via binning the outputs and labels
in practice similar to ECE and MCE. The plugin
estimate for each term in the calibration error has
been shown to be a biased estimate in Kumar et al.
(2019), and the authors encouraged the use of a
debiased estimator for the calibration error. We
refer to this as the debiased Squared Calibration
Error.

3.2 Underestimation of Calibration Errors
for Model with Continuous Outputs

As noted in Sec. 2, the key to estimating the calibra-
tion error is estimating the conditional expectation
E[Y |f(X)]. However, if f(X) is continuous, with-
out smoothness assumptions on E[Y |f(X)], this is
impossible (Kumar et al., 2019). An approximation
could be made via binning the outputs into B in-
tervals, as is done in most of the metrics aforemen-
tioned. However, Kumar et al. (2019) showed that
the binned version always has a lower calibration
error. The authors introduced the scaling-binning
calibrator, which first fits a parametric function

1One can further include negative log-likelihood score.
However, we want to avoid overcrowding the results table
with too many numbers (which is already large, please see the
supplementary materials Table 3-6). Since both Brier Score
and NLL are proper-scoring rules (see Sec.3 in Ovadia et al.
(2019)), we believe the results would be qualitatively similar.

2Technically, this is 2-norm Calibration Error. But we refer
to this as the Squared Calibration Error for notation simplicity.

and then bins the function values to ensure calibra-
tion. Thus, in addition to reporting results using
the metrics described in Sec. 3.1, we report results
by running the scaling-binning calibrator on top of
each method that we considered.3 We further in-
clude ECE results with multiple bin-values in order
to reduce the gap.

4 Methods

4.1 Baseline Model

Our baseline model follows the general finetuning
of large pretrained language models on downstream
tasks: we finetune RoBERTa-base (Liu et al., 2019)
on downstream tasks.

4.2 Distillation and Uncertainty

Despite the strong empirical performance of many
calibration methods (e.g., ensembles), their useful-
ness in practice is limited due to increased computa-
tion and/or memory costs at inference time (Ovadia
et al., 2019). In Sec. 4.3, we describe a simple base-
line: recalibrate, ensemble, and distill.

Distillation has been shown to mostly “pre-
serve” performance in terms of accuracy – stronger
teacher models tend to translate to stronger stu-
dents (Hinton et al., 2015). However, whether dis-
tillation could also “preserve” calibration perfor-
mance is less studied. A model with better per-
formance does not necessarily translate to better
calibration (Guo et al., 2017). Here, we briefly look
at the distillation’s objective from an angle of un-
certainty matching, and show that they are related
intuitively. Sec. 6.1 provides empirical evidence
showing that the teacher model’s calibration perfor-
mance could be distilled into the student model.

There are two ways to see the connection. First,
note that distillation tries to minimize the KL-
divergence between the teacher output distribution
and the student output distribution. This intuitively
regularizes the student model to output confidence
values that would be close to the confidence val-
ues from the teacher model. Later in Sec. 6.1, ex-
perimental results show that the confidences from
two models indeed correlate positively. Another
perspective, which we elaborate below, considers
distillation as encouraging the students to output
uncertainty close to that of teacher models.

3The top-label variant of scaling-binning calibrator we use
outputs calibrated probabilities of the top predictions, whereas
Brier Scores require full probability vectors. Thus we exclude
Brier Scores when using the scaling-binning calibrator.

292

Figure 1: Left-most Figure: Visualization of calibration performance, measured by SCEs (debiased), between
teacher and student models, trained on RTE and evaluated on QNLI. The n in the legend refers to the size of ensem-
ble(s). One metric/task, emphasizing different ensemble sizes. The Other Three Figures: These are zoomed-out
versions of the left-most figure, along with other tasks. Instead of using color to imply the ensemble size, here
the color refers to the task in which the models are evaluated, and points of different ensemble sizes but the same
evaluation task are aggregated and represented by the same color. Each sub-figure represents the evaluation metric.
More tasks/metrics, less emphasis on ensemble sizes. All Figures: The X-axis refers to the teacher model perfor-
mance, and the Y-axis refers to the student model performance. Each dot represents a different configuration used
in the teacher model. The P/S in the legends refer to the Pearson/Spearman correlations.

We start by defining a loss function as a weighted
combination of the regular cross entropy loss func-
tion and a regularization term that measures the
difference in the uncertainty between the student
model, θ, and the teacher model, θ?,

L(θ) = (1−α)LXE(θ)+α|H(θ)−H(θ?)|, (6)

where H refers to predictive entropy (Gal, 2016),
and is defined as (θ is ignored for simplicity),

H(y|x,D)=−
∑

c

p(y=c|x,D) log p(y=c|x,D).

(7)
Gal (2016) showed that H(y|x,D) could be ap-
proximated using samples from the (approximate)
posterior distribution of the parameters. In prac-
tice, this could be satisfied, for example, if the
student model is trained using dropout, and the
teacher model uses either MC-dropout or ensem-
bles.4 Next, suppose we approximate one of the
predictive entropy terms using cross entropy. This
turns the second term in Eq. 6 into KL-divergence,
and hence recovers the distillation objective.5

4.3 Recalibrate, Ensemble, and Distill

This simple algebraic manipulation shows that dis-
tillation has the effect of encouraging the student
model to match the teacher model’s uncertainty,
and motivates us to build a simple recalibration

4Note that the samples from a model using dropout (MC-
dropout) or ensemble could be used to approximate the poste-
rior distribution (Gal, 2016; Lakshminarayanan et al., 2017).

5Note that the approximation error equals the KL diver-
gence, the term that the objective function seeks to minimize.
As KL-divergence decreases, the approximation error also
decreases.

method “recalibrate, ensemble, and distill” by
first building an expensive yet calibrated teacher
model (an ensemble of models each of which is re-
calibrated using temperature scaling),6 and then dis-
tilling the expensive teacher model into a cheaper
student model.

The training cost is roughly (N + 1)C0 + C1,
where N is the ensemble size, C0 the cost of train-
ing the baseline, +1 comes from distillation, and
C1 comes from training the temperature scaling
model (which is relatively cheap). However, the
inference cost is almost the same as a single model
(i.e., small overhead), which is very useful when in-
ference is the primary concern (e.g., deployment).

4.4 Choosing the Distillation Temperature

The distillation term is often written as:

DKL

(
P (x; θ?, T) || P (x; θ, T)

)
, (8)

where P (x; θ, T) = softmax(f(x; θ)/T) and T is
usually a hyperparameter to be tuned. One might
notice that this is similar to the equation of tem-
perature scaling (Eq. 2). This, together with the
uncertainty matching viewpoint, motivates a small
change to the distillation: we can remove the T
from the student, and choose the constant T̂ for the
teacher that minimizes the calibration error,

DKL

(
P (x; θ?, argmin

T̂

CE(θ?, T̂)) || P (x; θ)
)
,

(9)
6There are many ways to construct a powerful/expensive

teacher model, and we choose the popular ensemble method
for simplicity. Alternatives includes MC-dropout (with multi-
ple forward passes) and SWA (Izmailov et al., 2018).

293

which is similar to performing another temperature
scaling. The motivation is that we want the student
model to produce calibrated probabilities rather
than the scaled version of the student. If we simul-
taneously scale the student by T , then f(x; θ)/T
would be calibrated, but the student model itself
would not. We want to emphasize here that we
are not the first ones to describe the connection
between distillation and calibration, related find-
ings have been presented in previous works (Tang
et al., 2020; Müller et al., 2019). However, we
believe our view from the angle of predictive en-
tropy is novel. More importantly, we conduct ex-
tensive experiments and analyses in the context of
finetuned language models for several text classifi-
cation tasks, to empirically verify that calibration
performance between student and teacher model is
correlated.

5 Setup

We include additional details in the supplementary
materials. Also included are expanded experiment
results, such as figures evaluated on more tasks
using more evaluation metrics (Sec. 6.1), and de-
tailed/expanded results tables as well as accuracy
and ECEs with multiple bin-sizes (Sec. 6.2).

Model. Our codebase is largely based on Hug-
gingFace Transformers (Wolf et al., 2019).
When applicable, we use an ensemble size 2, and
choose T̂ (Eq. 9) based on the Brier Scores on the
validation dataset. The baseline model has 125.2M
parameters, the temperature-scaling model (het-
eroscedastic variant) has 125.8M, and our method
has 125.2M (same as the baseline model).

Data. We perform experiments on the classifi-
cation tasks from the GLUE Benchmark (Wang
et al., 2019), and we refer readers to Wang et al.
(2019) regarding dataset statistics. Because the
calculation of calibration errors requires access to
the ground truth data, which is not available for
GLUE data, we split the validation dataset into two
halves, one for validation and the other for test,
following Desai and Durrett (2020). For MultiNLI,
we merge the results for both MultiNLI matched
and mismatched sections. When computing the
out-of-domain performance between the 3-label
MultiNLI and other 2-label NLI tasks, we follow
jiant (Pruksachatkun et al., 2020) and merge the
predictions/labels that correspond to “neutral” and
“contradiction” into a single category.

Evaluation. Our evaluation follows Guo et al.
(2017), Ovadia et al. (2019), and Kumar et al.
(2019). The train and evaluation data come from
the same task for in-domain evaluations, but they
come from different tasks of the same type for
out-of-domain evaluations. We group MRPC and
QQP (paraphrase tasks), and group MNLI (2-label
version), QNLI, RTE, and WNLI (NLI tasks). We
leave SST-2 (sentiment), CoLA (acceptability), and
MNLI (3-label version, NLI) as separate groups.
We use the in-domain validation data to train the
scaling-binning calibrator.7

Analysis Experiments Details. We conduct ex-
periments on RTE, in which we distill teacher mod-
els with different ensemble-sizes (from 1 to 6) and
the temperature scaling constant (from 0.50 to 2.00
with a step size of 0.02) to student models. Each
model is then evaluated on both in-domain task
(RTE) and out-of-domain tasks (MNLI-2, QNLI,
WNLI) using confidence, ECE, MCE, Brier Scores,
SCE (debiased) and SCE (biased). The numbers
represent performances on the validation dataset.

6 Experiments

6.1 Analysis Experiments
Sec. 4.2 shows the connection between distillation
and uncertainty regularization. In this section, we
perform analysis experiments examining the corre-
lation between the calibration performance of the
teacher models and student models. We conduct
experiments on RTE, in which we distill teacher
models with different ensemble-sizes and the tem-
perature scaling constant to student models. Each
model is then evaluated on both in-domain and
out-of-domain tasks. Numbers here represent per-
formances on the validation dataset.

We start by examining the calibration perfor-
mances of teacher and student models, where we
vary the calibration performance of the teacher
model while holding the accuracy almost the
same.8 Fig. 1 (left) shows the debiased Squared
Calibration Error of models trained on RTE and

7We only use the 2-label version of MNLI for evaluation.
We use accuracy for CoLA evaluation so that calibration error
computations would be more consistent across tasks.

8Note the accuracy of teacher models with the same ensem-
ble size but different temperature scaling constants would be
almost the same, as for each model, temperature scaling con-
stant sharpens/flattens the probabilities but usually does not
change their relative ranking. The motivation here is to reduce
external influences, as comparing calibration performance
might not be very meaningful if the predictions/accuracies
change significantly.

294

Without Scaling-Binning Calibrator With Scaling-Binning Calibrator

MCE ECE Brier Score SCE (d) SCE (b) MCE ECE SCE (d) SCE (b)

In Domain

Baseline 24.51 5.80 12.20 6.28 12.18 9.11 3.78 1.71 5.95
Ensemble 23.96 6.10 11.83 7.81 12.03 11.81 2.94 4.36 7.46
TempScale 23.49 4.39 11.87 7.31 10.75 8.81 3.91 0.93 5.41
Ours 17.19 5.66 12.19 8.18 12.28 12.94 3.24 4.39 7.51
Ours (T̂) 16.21 4.93 12.09 8.58 11.91 10.78 3.43 4.66 8.11

Out of Domain

Baseline 29.66 19.30 29.00 20.06 23.92 30.16 17.83 19.44 21.40
Ensemble 30.71 16.61 27.60 18.95 22.95 23.77 14.39 13.45 17.17
TempScale 26.45 16.35 27.53 18.71 22.35 33.60 17.55 18.61 20.65
Ours 28.26 17.17 28.08 17.63 22.15 25.11 14.50 15.55 17.92
Ours (T̂) 29.79 15.52 27.21 17.20 21.28 28.95 14.62 15.97 18.82

Table 1: In-domain and out-of-domain experiment results averaged across tasks. SCE(d)/SCE(b): Squared Cal-
ibration Errors (debiased/biased). Lower scores indicate better calibration. Bold/underscored numbers are the
best/second-best among comparisons, respectively.

evaluated on QNLI. We can observe that, by vary-
ing the teacher model’s calibration performance,
the calibration performance of the student model
also changes in similar directions.

Next, Fig. 1(right) depicts the calibration perfor-
mances of each teacher-student pair across multiple
calibration metrics. Similarly, these figures indicate
that correlation of calibration performance between
teacher/student models are in general positive. This
confirms the intuition described in Sec. 4.2 that cal-
ibration performance of the teacher model could be
distilled into the student model.

6.2 Main Experiments
Next, we show our experimental results compar-
ing the following four models: Baseline (Baseline,
Sec. 4.1), Ensemble (Lakshminarayanan et al.,
2017) (Ensemble, Sec. 2), Temperature Scal-
ing (Guo et al., 2017) (TempScale, Sec. 2), our
method (Ours, Sec. 4.2), and its variant with auto-
matic distillation temperature selection (Ours (T̂),
Sec. 4.4). For each table, we report results with
and without running the scaling-binning calibrator
following the description in Sec. 3.2. Due to space
constraints, we discuss and display the average per-
formances in here (please see Sec. 5).

Baseline Performances. Results are shown in
Table 1; here, we can see that the baseline has
relatively high calibration errors. Notably, the out-
of-domain ECE values are around 18−19, inter-
preted as over/under-estimating the probability by
about 18−19% in expectation.

Ensemble and Temperature Scaling. Next, we
add ensembles/temperature scaling to the baseline.
Results in Table 1 show that performances improve

in general, especially in the out-of-domain settings:
3/9 in-domain metrics improve (2/9 metrics sim-
ilar) and 8/9 out-of-domain metrics improve for
ensembles, 6/9 in-domain metrics improve (2/9
metrics similar) and 7/9 out-of-domain metrics im-
prove (1/9 metrics similar) for temperature-scaling.
The results are largely consistent with previous
observations that temperature-scaling performed
better when the data come from in-domain (it out-
performs ensembles among 7/9 metrics and 1/9
similar in in-domain settings), whereas ensembles
are more competitive in out-of-domain settings at
the cost of extra computation (it out-performs tem-
perature scaling in 4/9 metrics in out-of-domain
settings while being similar in 3/9).

Our Methods. Then, we apply our method,
which has the same computation at inference time
as the baseline. Table 1 showed that performances
improve as well despite having no extra inference-
time computation cost: 2/9 metrics improve (3/9
metrics similar) in-domain and 9/9 metrics im-
prove out-of-domain. Applying the automatic tem-
perature selection on top of our method further
improves out-of-domain performance in 4 metrics.
However, using automatic temperature does not
further improve the performance when we addi-
tionally apply the scaling-binning calibrator. We
hypothesize that this is because temperature values
are chosen based on evaluation metrics before ap-
plying the scaling-binning calibrator, thus fail to
take it into account. Also, comparing our method
to ensembles and temperature scaling, our method
improves upon temperature scaling in 5/9 metrics
in out-of-domain settings (1/9 similar), but out-
performs the more expensive ensembles in just 3/9

295

Without Scaling-Binning Calibrator With Scaling-Binning Calibrator

MCE ECE Brier Score SCE (d) SCE (b) MCE ECE SCE (d) SCE (b)

In Domain

Ours 17.19 5.66 12.19 8.18 12.28 12.94 3.24 4.39 7.51
−Ensemble 18.10 5.90 12.20 10.11 13.19 17.09 5.48 6.40 9.33
−TempScale 21.70 6.13 12.28 8.33 12.58 10.49 3.79 4.45 8.26
−Distillation 13.04 4.51 11.58 4.40 10.09 6.14 2.61 4.30 7.38

Out of Domain

Ours 28.26 17.17 28.08 17.63 22.15 25.11 14.50 15.55 17.92
−Ensemble 27.25 17.40 27.96 18.75 22.89 32.20 16.70 19.86 21.81
−TempScale 29.18 19.89 29.50 21.28 24.89 30.68 17.40 20.76 22.63
−Distillation 21.74 15.39 26.71 15.85 20.58 19.89 14.82 13.05 16.85

Table 2: In-domain/out-of-domain ablation results averaged across tasks. SCE(d)/SCE(b): Squared Calibration
Errors (debiased/biased). Lower scores indicate better calibration.

metrics (1/9 similar). Comparing our method with
automatic temperature selection, we can see 8/9
metrics in out-of-domain settings improves com-
pared to temperature scaling, and 5/9 compared
to ensembles (1/9 similar). This shows that our
methods are competitive in out-of-domain settings
with little extra computation.

6.3 Ablation Experiments

In this section, we (1) ablate our method by re-
moving components to gain insights into how each
of the components contribute to the final perfor-
mance,9 and (2) measure how well distillation trans-
fers calibration performance.

First, we remove ensembles (or temperature
scaling), and include only temperature scaling
(or ensembles) and distillation (−Ensembles and
−TempScale, respectively). We can see from the
results in Table 2 that removing either of them leads
to worse performances in general: 7/9 in-domain
(2/9 being similar) and 6/9 (2/9 being similar) out-
of-domain for removing ensembles, 4/9 in-domain
(4/9 similar) and 9/9 out-of-domain for removing
temperature scaling. This shows that the additional
calibration gains from the teacher model can be
effectively distilled into the student models.

Next, we compare the models before/after distil-
lation (−Distillation).10 As expected, the teacher
model (before distillation) achieved strong perfor-
mance at the expense of extra inference-time com-
putation. We then study to what extent distillation
transfers calibration performance. Let At and Bt

9For ease of comparison, we only ablate the system without
the automatic temperature selection.

10The −Distillation in Table 2 is the result of combining
ensembles and temperature-scaling. In Table 1, we showed
that distillation (especially when combined with automatic
temperature) could be helpful compared to either ensembles
or temperature-scaling alone.

be two different teacher models (before distilla-
tion) with difference in only one of the components
(e.g., ensemble or temperature-scaling), and let As
and Bs be the corresponding student models (after
distillation). Then, we compute the relative per-
centage of improvement because of a component
from teacher to student model (assumingA is more
powerful than B), denoted as ρAB:

ρAB =
ε(As)− ε(Bs)
ε(At)− ε(Bt)

× 100, (10)

where ε(·) denotes the out-of-domain calibration
performance. We compute ρAB for each metric,
and use the median of percentages as the summary
statistic. We found 40.8% (111.2%) of the im-
provements from adding ensembles (temperature
scaling) as extra components in teacher models are
transferred to students models via distillation.11

7 Conclusion and Discussion

We presented a study of calibration of finetuned
language models in the context of text classifica-
tion, where models are evaluated on in-domain
and out-of-domain data. We showed the effective-
ness of a few widely-used calibration methods. We
illustrated the intuitive connection between distil-
lation and calibration, and described simple yet
competitive calibration methods. We conducted
experiments to empirically understand whether dis-
tillation can be used to distill calibration perfor-
mance, and showed that the simple methods we
described achieved competitive out-of-domain cal-
ibration performances. We further presented ab-
lation studies on the usefulness of components of

11We chose median as it is simple and less affected by
outliers. Please see the supplementary materials Sec. C for
more details.

296

the proposed method and examined the transfer-
ability of calibration via distillation. However, our
method is limited in that it requires an overhead
cost involved in training the student model, which
could be expensive in some settings. We leave it to
future works to investigate more efficient inference-
time recalibration techniques.

Acknowledgments

We thank the reviewers for their helpful comments.
This work was supported by DARPA YFA17-
D17AP00022, ONR Grant N00014-18-1-2871, and
Microsoft PhD Fellowship. The views contained in
this article are those of the authors and not of the
funding agency.

References
Eneko Agirre, Llu’is M‘arquez, and Richard Wicen-

towski, editors. 2007. Proceedings of the Fourth
International Workshop on Semantic Evaluations
(SemEval-2007). Association for Computational
Linguistics, Prague, Czech Republic.

Jimmy Ba and Rich Caruana. 2014. Do deep nets really
need to be deep? In NeurIPS.

Gagan Bansal, Besmira Nushi, Ece Kamar, Eric
Horvitz, and Daniel S Weld. 2020. Optimizing ai
for teamwork. arXiv:2004.13102.

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro,
Danilo Giampiccolo, Bernardo Magnini, and Idan
Szpektor. 2006. The second pascal recognising tex-
tual entailment challenge. In RTE.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo
Giampiccolo, and Bernardo Magnini. 2009. The
fifth PASCAL recognizing textual entailment chal-
lenge. In TAC.

Avrim Blum and Tom Mitchell. 1998. Combining la-
beled and unlabeled data with co-training. In COLT.

Glenn W Brier. 1950. Verification of forecasts ex-
pressed in terms of probability. Monthly weather
review.

Cristian Buciluǎ, Rich Caruana, and Alexandru
Niculescu-Mizil. 2006. Model compression. In
KDD.

Kevin Clark, Minh-Thang Luong, Urvashi Khandelwal,
Christopher D Manning, and Quoc Le. 2019. Bam!
born-again multi-task networks for natural language
understanding. In ACL.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The PASCAL recognising textual entailment
challenge. In Machine learning challenges. evalu-
ating predictive uncertainty, visual object classifica-
tion, and recognising tectual entailment. Springer.

Shrey Desai and Greg Durrett. 2020. Calibration of
pre-trained transformers. In EMNLP.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL.

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In IWP.

Pedro Domingos. 1997. Knowledge acquisition from
examples via multiple models. In ICML.

Hady Elsahar and Matthias Gallé. 2019. To annotate
or not? predicting performance drop under domain
shift. In EMNLP.

Tommaso Furlanello, Zachary Lipton, Michael Tschan-
nen, Laurent Itti, and Anima Anandkumar. 2018.
Born again neural networks. In ICML.

Yarin Gal. 2016. Uncertainty in Deep Learning. Ph.D.
thesis, University of Cambridge.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,
and Bill Dolan. 2007. The third PASCAL recogniz-
ing textual entailment challenge. In RTE.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Wein-
berger. 2017. On calibration of modern neural net-
works. In ICML.

Corina Gurau, Alex Bewley, and Ingmar Posner. 2018.
Dropout distillation for efficiently estimating model
confidence. arXiv:1809.10562.

Dan Hendrycks and Kevin Gimpel. 2017. A baseline
for detecting misclassified and out-of-distribution
examples in neural networks. In ICLR.

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam
Dziedzic, Rishabh Krishnan, and Dawn Song. 2020.
Pretrained transformers improve out-of-distribution
robustness. In ACL.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural net-
work. In NeurIPS Deep Learning and Representa-
tion Learning Workshop.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov,
Dmitry Vetrov, and Andrew Gordon Wilson. 2018.
Averaging weights leads to wider optima and better
generalization. In UAI.

Alex Kendall and Yarin Gal. 2017. What uncertainties
do we need in bayesian deep learning for computer
vision? In NeurIPS.

Alex Kendall, Yarin Gal, and Roberto Cipolla. 2018.
Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics. In CVPR.

Yoon Kim and Alexander M Rush. 2016. Sequence-
level knowledge distillation. In EMNLP.

297

Volodymyr Kuleshov and Stefano Ermon. 2017. Esti-
mating uncertainty online against an adversary. In
AAAI.

Volodymyr Kuleshov and Percy S Liang. 2015. Cali-
brated structured prediction. In NeurIPS.

Ananya Kumar, Percy S Liang, and Tengyu Ma. 2019.
Verified uncertainty calibration. In NeurIPS.

Balaji Lakshminarayanan, Alexander Pritzel, and
Charles Blundell. 2017. Simple and scalable predic-
tive uncertainty estimation using deep ensembles. In
NeurIPS.

Hector J Levesque, Ernest Davis, and Leora Morgen-
stern. 2011. The Winograd schema challenge. In
AAAI Spring Symposium: Logical Formalizations of
Commonsense Reasoning, volume 46.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv:1907.11692.

Rafael Müller, Simon Kornblith, and Geoffrey E Hin-
ton. 2019. When does label smoothing help? In
NeurIPS.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos
Hauskrecht. 2015. Obtaining well calibrated proba-
bilities using bayesian binning. In AAAI.

Alexandru Niculescu-Mizil and Rich Caruana. 2005.
Predicting good probabilities with supervised learn-
ing. In ICML.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado,
David Sculley, Sebastian Nowozin, Joshua Dillon,
Balaji Lakshminarayanan, and Jasper Snoek. 2019.
Can you trust your model’s uncertainty? evaluat-
ing predictive uncertainty under dataset shift. In
NeurIPS.

Gabriel Pereyra, George Tucker, Jan Chorowski,
Łukasz Kaiser, and Geoffrey Hinton. 2017. Regular-
izing neural networks by penalizing confident output
distributions. In ICLR Workshop.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In NAACL.

John C. Platt. 1999. Probabilistic outputs for support
vector machines and comparisons to regularized like-
lihood methods. In ADVANCES IN LARGE MAR-
GIN CLASSIFIERS.

Yada Pruksachatkun, Phil Yeres, Haokun Liu, Jason
Phang, Phu Mon Htut, Alex Wang, Ian Tenney, and
Samuel R Bowman. 2020. jiant: A software toolkit
for research on general-purpose text understanding
models. In Proceedings of ACL (demonstration
track).

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In EMNLP.

Siddharth Reddy, Anca D Dragan, Sergey Levine,
Shane Legg, and Jan Leike. 2019. Learning hu-
man objectives by evaluating hypothetical behavior.
arXiv:1912.05652.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. ” why should i trust you?” explain-
ing the predictions of any classifier. In KDD.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Anchors: High-precision model-
agnostic explanations. In AAAI.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. EMC2.

Jonathan Schwarz, Wojciech Czarnecki, Je-
lena Luketina, Agnieszka Grabska-Barwinska,
Yee Whye Teh, Razvan Pascanu, and Raia Hadsell.
2018. Progress & compress: A scalable framework
for continual learning. In ICML.

Jiaxi Tang, Rakesh Shivanna, Zhe Zhao, Dong Lin, An-
ima Singh, Ed H Chi, and Sagar Jain. 2020. Un-
derstanding and improving knowledge distillation.
arXiv:2002.03532.

Yee Teh, Victor Bapst, Wojciech M Czarnecki, John
Quan, James Kirkpatrick, Raia Hadsell, Nicolas
Heess, and Razvan Pascanu. 2017. Distral: Robust
multitask reinforcement learning. In NeurIPS.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2019. Glue:
A multi-task benchmark and analysis platform for
natural language understanding. In ICLR.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba,
and Alexei A Efros. 2018. Dataset distillation.
arXiv:1811.10959.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
TACL.

Bryan Wilder, Eric Horvitz, and Ece Kamar. 2020.
Learning to complement humans. ACL.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2018. A broad-coverage challenge corpus
for sentence understanding through inference. In
NAACL.

298

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

Li Yuan, Francis EH Tay, Guilin Li, Tao Wang, and
Jiashi Feng. 2020. Revisit knowledge distillation: a
teacher-free framework. In CVPR.

Sukmin Yun, Jongjin Park, Kimin Lee, and Jinwoo
Shin. 2020. Regularizing class-wise predictions via
self-knowledge distillation. In CVPR.

Bianca Zadrozny and Charles Elkan. 2001. Obtaining
calibrated probability estimates from decision trees
and naive bayesian classifiers. In ICML.

Xinchuan Zeng and Tony R. Martinez. 2000. Using a
neural network to approximate an ensemble of clas-
sifiers. Neural Processing Letters.

A Background and Related Works

A.1 Epistemic and Aleatoric Uncertainty
Two types of uncertainty commonly appear in ma-
chine learning literature: epistemic uncertainty and
aleatoric uncertainty (Gal, 2016; Kendall and Gal,
2017). Epistemic uncertainty accounts for uncer-
tainty in model parameters, and tends to decrease as
the amount of observed data increases. Aleatoric
uncertainty conveys the noise inherent in the ob-
servations, and thus cannot be explained away with
an increasing amount of data available. In the
case of classification, examples of aleatoric un-
certainty include the probability of the top class,12

and the entropy of the probability distribution over
classes (Kendall et al., 2018); examples of epis-
temic uncertainties include the mutual informa-
tion.13 In the literature of uncertainty calibration,
we usually calibrate aleatoric uncertainty measured
by the probability of the prediction. In Sec. 4.2,
we also view distillation from the angle of match-
ing another uncertainty between teacher model and
student model, the predictive entropy (Gal, 2016).

A.2 Uncertainty Calibration
The quality of the uncertainty measurement is usu-
ally measured via calibration (Kendall and Gal,
2017). In the context of calibration, the uncer-
tainties often refer to predictive probabilities. The
model is calibrated if the predictive probabilities
match the empirical frequency of the data (Gal,

12More specifically, it is one minus the probabil-
ity/confidence of the top class.

13Please see page 54 in Gal (2016) for details.

2016). Let Ŷ and P̂ be the predicted class and
its associated confidence (probability of correct-
ness) of a neural network. We would like the
confidence estimates P̂ to be calibrated, which in-
tuitively means that we want P̂ to represent true
probabilities (Guo et al., 2017):

P(Ŷ = Y |P̂ = p) = p,∀p ∈ [0, 1]. (11)

Suppose a classification model is given N input
examples, and made predictions ŷ1, ..., ŷN , each
with p̂ = 0.35. We would expect 35% of the
predictions would be correct. The problem of
uncertainty/confidence calibration and confidence
scores have been studied and applied in various
settings (Kuleshov and Liang, 2015; Kuleshov and
Ermon, 2017; Pereyra et al., 2017; Hendrycks and
Gimpel, 2017; Elsahar and Gallé, 2019; Reddy
et al., 2019). In practice, however, perfect cali-
bration is almost impossible (Guo et al., 2017), and
estimating the first term in Eq. 11 is not straightfor-
ward using finite samples, because in most cases P̂
is a continuous random variable (Guo et al., 2017;
Kumar et al., 2019). In Sec. 3, we describe ways to
estimate the calibration performance.

It has been widely observed that modern neu-
ral networks are usually not calibrated out of
the box (Platt, 1999; Zadrozny and Elkan, 2001;
Guo et al., 2017; Ovadia et al., 2019). Recal-
ibration methods improve calibration by trans-
forming un-calibrated outputs into calibrated out-
puts/probabilities, and they include scaling-based
methods (Platt, 1999; Guo et al., 2017), histogram-
binning-based methods (Guo et al., 2017; Zadrozny
and Elkan, 2001), and ensembles (Lakshmi-
narayanan et al., 2017). Recently, Kumar et al.
(2019) proposed the scaling-binning calibrator and
a more sample-efficient estimator of calibration er-
ror. In our work, we describe simple approaches
that combines the strength of ensembles and tem-
perature scaling without introducing computation
at inference time; we further apply the scaling-
binning calibrator to ensure calibration.

Ensembles work by aggregating multiple net-
works trained independently on the entire dataset,
and has been shown to achieve strong performance
in out-of-domain calibration (Ovadia et al., 2019;
Lakshminarayanan et al., 2017).14 Temperature

14More generally, there are randomization-based ensembles
and boosting-based ensembles. Within the randomization-
based ensembles, in our work we use the entire training dataset
to train each model instead of different bootstrap samples of
the original training set (Lakshminarayanan et al., 2017).

299

scaling is an extension of Platt scaling (Guo et al.,
2017). It uses a single scalar parameter T > 0 for
all classes. Given output zi (usually logits vectors),
the confidence prediction is:

p̂i = max
k

σ(zi,k/T). (12)

An extension, called heteroscedastic regression,
is used in our work, which replaces the constant
scalar with learned values (Kendall and Gal, 2017;
Kendall et al., 2018).

A.3 Distillation
Knowledge distillation (Hinton et al., 2015; Domin-
gos, 1997; Blum and Mitchell, 1998; Zeng and
Martinez, 2000; Ba and Caruana, 2014) is a com-
pression technique in which a compact model (usu-
ally referred to as the student model) is trained to
mimic the behavior of a more powerful teacher
model. In the context of classification, knowledge
distillation works by augmenting the loss func-
tion with an additional term DKL(pi‖pj) where
pi = softmax(zi/T) and pj = softmax(zj/T)
with zi and zj the logits from two models, and T
controls the smoothness of the output distribution.
Knowledge distillation has been used in a wide
range of applications (Buciluǎ et al., 2006; Wang
et al., 2018; Kim and Rush, 2016; Furlanello et al.,
2018; Clark et al., 2019; Teh et al., 2017; Schwarz
et al., 2018; Sanh et al., 2019). In this work, we
show that distillation can also be used to distill cal-
ibration performance, and use it to build simple yet
competitive recalibration methods.

A related area of research is label smooth-
ing (Yuan et al., 2020). Label smoothing replaces
the hard/one-hot targets yk with modified targets
yk(1−α)+α/K, whereK is the number of classes
and α is a hyper-parameter. Pereyra et al. (2017)
showed that label smoothing provides consistent
gains across many tasks and proposed a new reg-
ularizer, termed confidence penalty. Müller et al.
(2019) studied when label smoothing is helpful ,
and found that label smoothing can implicitly cal-
ibrate model’s predictions. Instead, our use of a
teacher model can be seen as adaptively deciding
how much smoothing is needed (Tang et al., 2020).

A.4 Recent Related Works
Finally, there are also a few recent related works
in the computer vision literature, e.g., Yun et al.
(2020) proposed to distill the predictive distribution
between different samples of the same label during

training to improve calibration performance, Gurau
et al. (2018) proposed Distilled Dropout Network
which distills knowledge from multiple MC sam-
ples from the teacher to improve the reliability of its
uncertainty scores. In our work, we mainly focus
on language tasks. Concurrent to our work, Desai
and Durrett (2020) studied the calibration of pre-
trained transformers when finetuned to downstream
tasks, and Hendrycks et al. (2020) studied the out-
of-distribution robustness of pretrained transform-
ers. We are different from these two works in that
first we present a systematic study on the out-of-
distribution calibration; second we draw insights
from the connection between distillation and tem-
perature scaling to design simple yet competitive
recalibration methods; third, we conduct experi-
ments to understand the connection between these
two concepts empirically; finally, we also include a
more comprehensive set of calibration evaluations
following Ovadia et al. (2019) and Kumar et al.
(2019).

B Setup Details

Model Details and Hyperparameter Search.
Our codebase is largely based on the
Transformers library from HuggingFace (Wolf
et al., 2019).15 We used RoBERTa-base (Liu
et al., 2019) for the language model backbone
and used most of the default/recommended hyper-
parameters in the Transformers library. We
tried two values of the learning rate in our initial
experiments: 2e−5 and 1e−5; these numbers
are chosen based on the hyperparameter search
described in the library, and we stick to one of
them (1e−5) based on accuracy. For experiments
that involve ensembles, we use an ensemble
size 2. For experiments that involve distillation,
we set T = 1.0 (i.e., no scaling) for models
without automatic temperature selection unless
we explicitly mention otherwise. When automatic
temperature selection is used, we chose T̂ based
on the Brier Scores on the validation dataset. All
of our experiments ran on a single V100 GPU.
The baseline model has 125.2M parameters, the
temperature-scaling (heteroscedastic variant) has
125.8M parameters, and our method has 125.2M
(same as the baseline model). We train multiple
models using different random seeds before
ensembling them, but otherwise run the training

15https://github.com/huggingface/
transformers. We used v2.4.1.

300

and inference once. The runtime varies among
tasks, but most of them could finish within a day.

Data. We perform experiments on the classifica-
tion tasks from the GLUE Benchmark (Wang et al.,
2019; Warstadt et al., 2019; Dolan and Brockett,
2005; Agirre et al., 2007; Williams et al., 2018; Ra-
jpurkar et al., 2016; Dagan et al., 2006; Bar-Haim
et al., 2006; Giampiccolo et al., 2007; Bentivogli
et al., 2009; Levesque et al., 2011).1617, and we re-
fer readers to Wang et al. (2019) regarding dataset
statistics. Because the calculation of calibration er-
rors requires access to the ground truth data, which
is not available for GLUE data, we split the valida-
tion dataset into two halves, one for validation and
the other for test, following the approach of Desai
and Durrett (2020). For MultiNLI, we merge the
results for both MultiNLI matched and mismatched
sections. When computing the out-of-domain per-
formance between the 3-label MultiNLI and other
2-label NLI tasks, we follow the approach used
in the jiant library (Pruksachatkun et al., 2020)
and merge the predictions/labels that correspond to
“neutral” and “contradiction” into a single category.
We follow the Transformers library for the rest
of the data preprocessing.

Evaluation Details. Our evaluation follows Guo
et al. (2017), Ovadia et al. (2019), and Kumar et al.
(2019). For MCE, ECE, and Brier Score, our im-
plementation follows Ovadia et al. (2019),18 and
we use the default bin-size of 10 (in the tables
below, we additionally include the performances
when evaluating using bin-sizes of 15 and 50). For
squared calibration errors (debiased or biased), we
use the uncertainty-calibration library
from Kumar et al. (2019) and follow default con-
figurations whenever possible.19

For in-domain evaluations, the train data and
evaluation data come from the same task. For out-
of-domain evaluations, the train data and evalu-
ation data come from different tasks of the same
type. We group MRPC and QQP (paraphrase tasks),
and group MNLI (2-label version),20 QNLI, RTE,

16https://gluebenchmark.com/
17QQP dataset: https://

www.quora.com/q/quoradata/
First-Quora-Dataset-Release-Question-Pairs

18https://github.com/google-research/
google-research/tree/master/uq_
benchmark_2019

19https://github.com/p-lambda/verified_
calibration

20We only use the 2-label version of MNLI for evaluation.

and WNLI (NLI tasks). We leave SST-2 (senti-
ment), CoLA21 (acceptability), and MNLI (3-label
version, NLI) as separate groups. We use the in-
domain validation data to train the scaling-binning
calibrator.

Analysis Experiments Details. We conduct ex-
periments on RTE, in which we distill teacher mod-
els with different ensemble-sizes (from 1 to 6) and
the temperature scaling constant (from 0.50 to 2.00
with a step size of 0.02) to student models. Each
model is then evaluated on both in-domain task
(RTE) and out-of-domain tasks (MNLI-2, QNLI,
WNLI) using confidence, ECE, MCE, Brier Scores,
SCE (debiased) and SCE (biased). The numbers
represent performances on the validation dataset.

C Further Experiment Details

Distillation Transferability of Calibration.
We compute ρAB based on both Table 1 and
Table 2 of the main paper. The percentage of
improvement presented in Sec. 6.3 of the main
paper on ensembles is computed based on tempera-
ture scaling + ensembles (−Distillation in main
paper Table 2) as At, ensembles only (Ensemble
in main paper Table 1) as Bt, temperature scaling
+ ensembles + distillation (Ours in main paper
Table 2) as As, and ensembles + distillation
(−TempScale in main paper Table 2) as Bs. The
percentage of improvement on temperature scaling
is computed similarly with temperature scaling
component as the main difference between the
teacher/student models.

D Expanded Analysis Experiments

Please see Fig. 2 for the expanded visualization of
the analysis experiments.

E Detailed Main Experiment Results

Please see Table 3 and Table 4 for detailed in-
domain and out-of-domain experiment results.

F Detailed Ablation Experiment Results

Please see Table 5 and Table 6 for detailed in-
domain and out-of-domain ablation experiment re-
sults.

21We use accuracy for CoLA evaluation so that calibration
error computations would be more consistent across tasks.

301

(a)

(b)

Figure 2: Figure (a): Visualization of calibration performance, measured by SCEs (debiased and biased), between
teacher models and student models, trained on RTE evaluated on RTE (in-domain), WNLI, QNLI, and 2-label
version of MNLI (out-of-domain). The n in the legend refers to the size of ensemble(s). Figure (b): This is a
zoomed-out version of Figure (a). Instead of using color to imply the ensemble size, here the color refers to the
task in which the models are evaluated, and points of different ensemble sizes but the same evaluation task are
aggregated and represented by the same color. Here each sub-figure represents the evaluation metric. All Figures:
The X-axis refers to the performance of the teacher model, and the Y-axis refers to the performance of the student
model. Within each sub-figure, each dot represents a different configuration used in the teacher model. The P/S in
the legends refer to the Pearson/Spearman correlations.

302

Tr
ai

n
SS

T-
2

C
oL

A
M

N
L

I
M

R
PC

Q
Q

P
Q

N
L

I
R

T
E

W
N

L
I

A
ve

ra
ge

SS
T-

2
C

oL
A

M
N

L
I

M
R

PC
Q

Q
P

Q
N

L
I

R
T

E
W

N
L

I
A

ve
ra

ge

A
cc

ur
ac

y
A

cc
ur

ac
y

(+
SB

C
)

B
as

el
in

e
93

.1
80

.3
87

.2
86

.8
91

.0
92

.3
64

.7
55

.6
81

.3
8

/
/

/
/

/
/

/
/

/
E

ns
em

bl
e

93
.8

79
.9

87
.4

85
.8

91
.2

92
.4

66
.2

55
.6

81
.5

4
/

/
/

/
/

/
/

/
/

Te
m

pS
ca

le
93

.1
80

.3
87

.2
86

.8
91

.0
92

.3
64

.7
55

.6
81

.3
8

/
/

/
/

/
/

/
/

/
O

ur
s

93
.3

79
.7

87
.4

84
.8

91
.0

92
.2

65
.5

55
.6

81
.1

9
/

/
/

/
/

/
/

/
/

O
ur

s(
T̂

)
93

.6
79

.7
87

.3
86

.3
91

.0
92

.4
64

.0
55

.6
81

.2
4

/
/

/
/

/
/

/
/

/

M
ax

im
um

C
al

ib
ra

tio
n

E
rr

or
M

ax
im

um
C

al
ib

ra
tio

n
E

rr
or

(+
SB

C
)

B
as

el
in

e
49

.7
32

.1
38

.6
19

.6
12

.9
21

.5
17

.6
4.

1
24

.5
1

1.
6

7.
9

4.
1

5.
1

2.
6

6.
3

14
.3

31
.0

9.
11

E
ns

em
bl

e
74

.0
29

.2
16

.3
21

.5
12

.6
14

.6
19

.0
4.

5
23

.9
6

6.
6

9.
5

4.
9

8.
7

3.
2

3.
9

17
.9

39
.8

11
.8

1
Te

m
pS

ca
le

33
.0

12
.3

24
.2

16
.7

3.
3

13
.2

80
.5

4.
7

23
.4

9
1.

0
11

.8
3.

3
5.

0
2.

5
4.

2
12

.8
29

.9
8.

81
O

ur
s

34
.0

20
.8

14
.3

16
.6

9.
3

14
.0

24
.0

4.
5

17
.1

9
2.

8
13

.5
3.

8
22

.8
2.

9
3.

8
17

.2
36

.7
12

.9
4

O
ur

s(
T̂

)
44

.3
20

.4
11

.9
11

.7
7.

3
8.

9
21

.1
4.

1
16

.2
1

1.
2

10
.5

3.
8

15
.4

1.
9

3.
9

12
.7

36
.8

10
.7

8

E
xp

ec
te

d
C

al
ib

ra
tio

n
E

rr
or

(b
in

si
ze

=
1
0

)
E

xp
ec

te
d

C
al

ib
ra

tio
n

E
rr

or
(b

in
si

ze
=
1
0

)(
+S

B
C

)
B

as
el

in
e

5.
5

11
.5

6.
3

5.
2

4.
2

4.
1

5.
5

4.
1

5.
80

1.
0

3.
3

0.
8

1.
5

0.
4

1.
2

7.
3

14
.7

3.
78

E
ns

em
bl

e
4.

6
11

.9
5.

5
4.

2
3.

4
3.

3
11

.4
4.

5
6.

10
1.

6
4.

0
0.

9
2.

3
0.

6
0.

9
7.

5
5.

7
2.

94
Te

m
pS

ca
le

3.
4

8.
2

3.
9

4.
2

1.
7

1.
9

7.
1

4.
7

4.
39

0.
2

4.
0

0.
8

2.
0

0.
5

1.
2

8.
2

14
.4

3.
91

O
ur

s
4.

6
11

.6
5.

2
4.

1
3.

0
3.

5
8.

8
4.

5
5.

66
0.

6
4.

0
1.

1
3.

3
0.

5
0.

8
7.

7
7.

9
3.

24
O

ur
s(
T̂

)
3.

6
9.

3
4.

1
4.

0
2.

4
2.

2
9.

7
4.

1
4.

93
0.

2
5.

5
0.

8
4.

5
0.

4
0.

7
9.

6
5.

7
3.

43

E
xp

ec
te

d
C

al
ib

ra
tio

n
E

rr
or

(b
in

si
ze

=
1
5

)
E

xp
ec

te
d

C
al

ib
ra

tio
n

E
rr

or
(b

in
si

ze
=
1
5

)(
+S

B
C

)
B

as
el

in
e

5.
5

11
.6

6.
3

6.
3

4.
2

4.
1

5.
5

4.
1

5.
95

1.
0

4.
6

1.
1

1.
7

0.
4

1.
5

6.
8

16
.3

4.
18

E
ns

em
bl

e
4.

7
11

.9
5.

5
4.

4
3.

4
3.

3
8.

5
4.

5
5.

78
1.

6
5.

4
1.

0
3.

1
0.

6
1.

0
10

.6
5.

7
3.

63
Te

m
pS

ca
le

3.
6

8.
6

3.
9

5.
4

1.
7

1.
9

9.
0

4.
7

4.
85

0.
2

4.
6

0.
8

2.
4

0.
7

1.
5

7.
4

16
.0

4.
20

O
ur

s
4.

8
12

.1
5.

2
5.

2
3.

1
3.

5
9.

4
4.

5
5.

98
0.

6
4.

0
1.

4
4.

4
0.

5
1.

3
9.

4
7.

9
3.

69
O

ur
s(
T̂

)
3.

7
9.

4
4.

1
5.

1
2.

4
2.

2
9.

7
4.

1
5.

09
0.

3
4.

9
1.

1
4.

5
0.

4
1.

4
8.

5
5.

7
3.

35

E
xp

ec
te

d
C

al
ib

ra
tio

n
E

rr
or

(b
in

si
ze

=
5
0

)
E

xp
ec

te
d

C
al

ib
ra

tio
n

E
rr

or
(b

in
si

ze
=
5
0

)(
+S

B
C

)
B

as
el

in
e

6.
2

12
.6

6.
4

7.
9

4.
2

4.
3

11
.2

4.
1

7.
11

2.
1

3.
9

1.
1

2.
2

0.
5

1.
5

9.
9

19
.7

5.
11

E
ns

em
bl

e
5.

2
12

.6
5.

6
6.

9
3.

5
3.

6
16

.8
4.

5
7.

34
3.

3
5.

2
1.

5
3.

8
0.

6
1.

2
11

.9
16

.2
5.

46
Te

m
pS

ca
le

5.
0

9.
7

4.
1

9.
5

1.
8

2.
6

11
.3

4.
7

6.
09

0.
7

5.
0

1.
2

3.
3

0.
7

1.
5

8.
3

19
.3

5.
00

O
ur

s
5.

7
12

.9
5.

2
11

.6
3.

1
3.

7
15

.5
4.

5
7.

78
1.

8
5.

6
1.

6
5.

2
0.

6
1.

4
11

.9
13

.0
5.

14
O

ur
s(
T̂

)
4.

4
10

.7
4.

4
10

.0
2.

4
2.

6
16

.6
4.

1
6.

90
1.

7
6.

0
1.

5
5.

5
0.

4
1.

5
11

.1
8.

2
4.

49

B
ri

er
Sc

or
e

B
ri

er
Sc

or
e

(+
SB

C
)

B
as

el
in

e
5.

80
15

.2
5

6.
63

10
.3

5
7.

00
6.

20
21

.4
5

24
.9

0
12

.2
0

/
/

/
/

/
/

/
/

/
E

ns
em

bl
e

5.
10

15
.2

0
6.

43
10

.0
5

6.
70

5.
85

20
.3

5
24

.9
5

11
.8

3
/

/
/

/
/

/
/

/
/

Te
m

pS
ca

le
5.

15
14

.3
5

6.
37

10
.3

5
6.

65
5.

85
21

.3
5

24
.9

0
11

.8
7

/
/

/
/

/
/

/
/

/
O

ur
s

5.
50

15
.8

5
6.

43
10

.4
5

6.
75

6.
15

21
.4

5
24

.9
0

12
.1

9
/

/
/

/
/

/
/

/
/

O
ur

s(
T̂

)
5.

20
15

.3
5

6.
37

10
.6

0
6.

70
5.

95
21

.6
5

24
.9

0
12

.0
9

/
/

/
/

/
/

/
/

/

Sq
ua

re
d

C
al

ib
ra

tio
n

E
rr

or
(d

eb
ia

se
d)

Sq
ua

re
d

C
al

ib
ra

tio
n

E
rr

or
(d

eb
ia

se
d,

+S
B

C
)

B
as

el
in

e
9.

4
12

.0
8.

2
3.

6
6.

0
5.

5
5.

5
0.

0
6.

28
1.

3
1.

5
1.

3
0.

0
0.

7
1.

8
7.

1
0.

0
1.

71
E

ns
em

bl
e

5.
7

13
.7

7.
2

0.
0

5.
0

4.
7

9.
7

16
.5

7.
81

2.
6

4.
1

1.
7

0.
0

1.
0

0.
7

8.
9

15
.9

4.
36

Te
m

pS
ca

le
5.

1
8.

4
5.

0
7.

4
2.

0
1.

9
0.

0
28

.7
7.

31
0.

0
3.

9
1.

2
0.

0
0.

9
1.

4
0.

0
0.

0
0.

93
O

ur
s

7.
3

13
.0

6.
8

0.
0

4.
2

4.
7

13
.0

16
.4

8.
18

0.
0

4.
8

1.
9

5.
3

0.
9

1.
1

8.
4

12
.7

4.
39

O
ur

s(
T̂

)
4.

8
11

.7
5.

6
4.

2
3.

3
3.

1
12

.6
23

.3
8.

58
0.

0
5.

5
1.

5
1.

1
0.

6
1.

4
14

.4
12

.8
4.

66

Sq
ua

re
d

C
al

ib
ra

tio
n

E
rr

or
(b

ia
se

d)
Sq

ua
re

d
C

al
ib

ra
tio

n
E

rr
or

(b
ia

se
d,

+S
B

C
)

B
as

el
in

e
10

.2
13

.5
8.

3
9.

2
6.

1
5.

8
15

.6
28

.7
12

.1
8

3.
3

5.
2

1.
6

3.
1

0.
9

2.
3

13
.9

17
.3

5.
95

E
ns

em
bl

e
7.

0
15

.0
7.

3
8.

1
5.

0
5.

0
17

.0
31

.8
12

.0
3

4.
0

6.
3

2.
0

5.
2

1.
1

1.
6

14
.4

25
.1

7.
46

Te
m

pS
ca

le
6.

5
10

.5
5.

2
11

.2
2.

2
2.

6
10

.6
37

.2
10

.7
5

1.
6

6.
3

1.
5

4.
2

1.
0

2.
0

11
.6

15
.1

5.
41

O
ur

s
8.

3
14

.5
6.

9
8.

3
4.

2
5.

0
19

.2
31

.8
12

.2
8

2.
2

6.
9

2.
1

8.
5

1.
1

1.
8

14
.6

22
.9

7.
51

O
ur

s(
T̂

)
6.

3
13

.3
5.

7
9.

6
3.

4
3.

5
19

.0
34

.5
11

.9
1

2.
1

7.
4

1.
8

7.
2

0.
8

2.
0

18
.8

24
.8

8.
11

Ta
bl

e
3:

In
-d

om
ai

n
pe

rf
or

m
an

ce
so

n
SS

T-
2

(S
),

C
oL

A
(C

),
M

ul
tiN

L
I(

M
N

),
M

R
PC

(M
R

),
Q

Q
P

(Q
Q

),
Q

N
L

I(
Q

N
),

R
T

E
(R

),
W

N
L

I(
W

).
N

ot
e

th
at

fo
rt

he
m

et
ri

cs
w

e
co

ns
id

er
ed

he
re

,l
ow

er
sc

or
es

in
di

ca
te

be
tte

rc
al

ib
ra

tio
n.

303

Tr
ai

n
M

R
Q

Q
Q

N
R

W
A

ve
ra

ge
M

R
Q

Q
Q

N
R

W
A

ve
ra

ge

E
va

l
Q

Q
M

R
M

2
R

W
M

2
Q

N
W

M
2

Q
N

R
Q

Q
M

R
M

2
R

W
M

2
Q

N
W

M
2

Q
N

R

A
cc

ur
ac

y
A

cc
ur

ac
y

(+
SB

C
)

B
as

el
in

e
68

.3
68

.1
55

.2
56

.8
38

.9
67

.6
55

.4
44

.4
35

.1
50

.1
48

.2
53

.4
6

/
/

/
/

/
/

/
/

/
/

/
/

E
ns

em
bl

e
67

.9
65

.2
58

.5
54

.7
47

.2
67

.7
57

.7
44

.4
35

.1
50

.1
48

.2
54

.2
5

/
/

/
/

/
/

/
/

/
/

/
/

Te
m

pS
ca

le
68

.3
68

.1
55

.2
56

.8
38

.9
67

.6
55

.4
44

.4
35

.1
50

.1
48

.2
53

.4
6

/
/

/
/

/
/

/
/

/
/

/
/

O
ur

s
68

.4
68

.1
58

.6
57

.6
47

.2
67

.3
61

.0
44

.4
35

.1
50

.1
48

.2
55

.0
9

/
/

/
/

/
/

/
/

/
/

/
/

O
ur

s(
T̂

)
67

.2
71

.1
61

.1
59

.7
38

.9
66

.2
61

.2
44

.4
35

.1
50

.1
48

.2
54

.8
4

/
/

/
/

/
/

/
/

/
/

/
/

M
ax

im
um

C
al

ib
ra

tio
n

E
rr

or
M

ax
im

um
C

al
ib

ra
tio

n
E

rr
or

(+
SB

C
)

B
as

el
in

e
35

.8
24

.3
37

.3
34

.6
68

.4
18

.5
19

.7
67

.2
16

.2
1.

2
3.

1
29

.6
6

33
.3

19
.7

33
.2

32
.3

58
.7

7.
4

19
.8

31
.4

37
.8

26
.5

31
.7

30
.1

6
E

ns
em

bl
e

36
.9

46
.7

35
.6

34
.7

94
.7

9.
6

16
.9

42
.7

16
.0

1.
1

2.
9

30
.7

1
34

.7
17

.3
33

.9
38

.8
33

.7
6.

5
20

.5
34

.4
21

.6
11

.2
8.

9
23

.7
7

Te
m

pS
ca

le
34

.5
35

.0
35

.0
34

.6
61

.1
9.

9
20

.0
41

.8
15

.7
0.

8
2.

6
26

.4
5

32
.5

26
.1

34
.2

33
.7

55
.8

8.
4

22
.2

65
.9

35
.8

25
.9

29
.1

33
.6

0
O

ur
s

35
.7

33
.5

33
.2

31
.2

70
.9

11
.3

11
.4

64
.1

15
.9

0.
9

2.
8

28
.2

6
33

.9
22

.8
27

.4
32

.1
52

.7
4.

3
13

.7
30

.1
26

.9
15

.0
17

.3
25

.1
1

O
ur

s(
T̂

)
39

.2
22

.7
30

.3
30

.7
94

.0
11

.2
12

.6
66

.2
16

.3
1.

3
3.

2
29

.7
9

37
.5

19
.8

26
.4

40
.5

91
.0

4.
1

8.
2

35
.6

26
.0

15
.7

13
.6

28
.9

5

E
xp

ec
te

d
C

al
ib

ra
tio

n
E

rr
or

(b
in

si
ze

=
1
0

)
E

xp
ec

te
d

C
al

ib
ra

tio
n

E
rr

or
(b

in
si

ze
=
1
0

)(
+S

B
C

)
B

as
el

in
e

19
.5

22
.9

26
.4

29
.9

40
.0

9.
5

8.
4

35
.2

16
.2

1.
2

3.
1

19
.3

0
18

.2
13

.7
14

.7
17

.1
25

.4
5.

8
9.

1
30

.6
27

.2
16

.3
18

.0
17

.8
3

E
ns

em
bl

e
20

.6
22

.9
21

.7
28

.4
22

.9
3.

5
10

.6
32

.1
16

.0
1.

1
2.

9
16

.6
1

21
.3

15
.2

12
.2

18
.2

12
.9

5.
3

9.
3

28
.5

21
.3

5.
4

8.
7

14
.3

9
Te

m
pS

ca
le

20
.4

17
.6

21
.6

24
.6

34
.3

6.
9

5.
5

29
.8

15
.7

0.
8

2.
6

16
.3

5
14

.8
12

.9
16

.3
18

.0
26

.4
6.

5
8.

5
31

.6
26

.2
15

.6
16

.3
17

.5
5

O
ur

s
18

.3
19

.3
21

.2
24

.5
38

.7
3.

7
9.

0
34

.6
15

.9
0.

9
2.

8
17

.1
7

15
.8

12
.1

12
.8

15
.5

22
.4

3.
7

5.
2

27
.6

23
.7

9.
1

11
.6

14
.5

0
O

ur
s(
T̂

)
20

.4
17

.3
15

.5
19

.4
32

.1
4.

8
7.

5
32

.9
16

.3
1.

3
3.

2
15

.5
2

20
.4

12
.3

9.
9

11
.4

27
.6

2.
2

7.
6

26
.2

23
.4

8.
6

11
.2

14
.6

2

E
xp

ec
te

d
C

al
ib

ra
tio

n
E

rr
or

(b
in

si
ze

=
1
5

)
E

xp
ec

te
d

C
al

ib
ra

tio
n

E
rr

or
(b

in
si

ze
=
1
5

)(
+S

B
C

)
B

as
el

in
e

19
.5

22
.9

26
.4

31
.5

40
.0

10
.6

8.
5

35
.2

16
.2

1.
2

3.
1

19
.5

5
18

.2
13

.7
14

.7
17

.1
25

.4
8.

6
9.

0
30

.6
27

.2
16

.7
18

.0
18

.1
1

E
ns

em
bl

e
21

.0
24

.3
21

.7
28

.4
22

.9
4.

9
10

.8
32

.1
16

.0
1.

1
2.

9
16

.9
2

21
.3

15
.2

12
.2

18
.2

12
.9

3.
4

8.
6

28
.5

21
.3

5.
4

8.
7

14
.1

5
Te

m
pS

ca
le

20
.8

18
.5

21
.6

24
.9

34
.3

8.
5

5.
4

29
.8

15
.7

0.
8

2.
6

16
.6

3
17

.7
12

.9
16

.3
18

.0
26

.4
7.

9
8.

5
31

.6
26

.2
15

.6
16

.4
17

.9
5

O
ur

s
18

.3
19

.9
21

.3
24

.5
38

.7
4.

6
9.

1
34

.6
15

.9
0.

9
2.

8
17

.3
3

15
.8

12
.1

12
.8

15
.5

22
.4

2.
1

5.
2

27
.6

23
.7

9.
1

13
.0

14
.4

8
O

ur
s(
T̂

)
20

.5
17

.5
15

.5
18

.7
34

.7
5.

3
7.

5
32

.9
16

.3
1.

3
3.

2
15

.7
6

20
.4

12
.3

9.
9

11
.4

27
.6

3.
0

7.
0

26
.2

23
.4

8.
6

11
.2

14
.6

4

E
xp

ec
te

d
C

al
ib

ra
tio

n
E

rr
or

(b
in

si
ze

=
5
0

)
E

xp
ec

te
d

C
al

ib
ra

tio
n

E
rr

or
(b

in
si

ze
=
5
0

)(
+S

B
C

)
B

as
el

in
e

19
.8

25
.7

26
.4

32
.4

45
.4

10
.7

8.
5

35
.2

16
.2

1.
2

3.
1

20
.4

2
18

.2
13

.7
14

.7
17

.1
25

.4
9.

0
9.

1
32

.4
27

.2
16

.7
18

.4
18

.3
5

E
ns

em
bl

e
21

.4
24

.9
21

.7
31

.9
41

.3
5.

4
11

.0
32

.1
16

.0
1.

1
2.

9
19

.0
6

21
.3

15
.2

12
.2

18
.2

12
.9

5.
4

9.
5

28
.5

21
.3

5.
4

8.
7

14
.4

2
Te

m
pS

ca
le

21
.1

19
.6

21
.6

26
.1

44
.2

9.
6

6.
8

31
.6

15
.7

0.
8

2.
6

18
.1

5
17

.7
12

.9
16

.3
18

.0
26

.4
8.

1
8.

7
31

.6
26

.2
15

.6
17

.3
18

.0
7

O
ur

s
18

.5
21

.2
21

.4
27

.4
43

.5
5.

2
9.

1
38

.4
15

.9
0.

9
2.

8
18

.5
7

15
.8

12
.1

12
.8

15
.5

22
.4

4.
3

5.
5

32
.4

23
.7

9.
1

13
.0

15
.1

5
O

ur
s(
T̂

)
21

.0
21

.5
15

.6
23

.6
45

.3
5.

8
7.

5
38

.5
16

.3
1.

3
3.

2
18

.1
5

20
.4

12
.3

9.
9

11
.4

27
.6

3.
0

7.
6

28
.4

23
.4

8.
6

12
.6

15
.0

2

B
ri

er
Sc

or
e

B
ri

er
Sc

or
e

(+
SB

C
)

B
as

el
in

e
26

.2
0

26
.5

0
33

.0
0

33
.0

0
40

.6
5

22
.4

0
24

.7
0

37
.0

5
25

.4
5

25
.0

0
25

.0
5

29
.0

0
/

/
/

/
/

/
/

/
/

/
/

/
E

ns
em

bl
e

26
.8

5
26

.4
0

30
.5

5
33

.3
5

29
.8

0
21

.6
0

24
.4

5
35

.2
5

25
.3

5
25

.0
0

25
.0

5
27

.6
0

/
/

/
/

/
/

/
/

/
/

/
/

Te
m

pS
ca

le
26

.1
5

23
.9

5
30

.6
5

30
.6

5
36

.0
0

22
.3

5
24

.4
5

33
.3

5
25

.2
5

25
.0

0
25

.0
5

27
.5

3
/

/
/

/
/

/
/

/
/

/
/

/
O

ur
s

26
.2

0
24

.4
5

29
.9

0
31

.0
5

39
.4

0
21

.9
5

23
.8

5
36

.7
5

25
.3

0
25

.0
0

25
.0

5
28

.0
8

/
/

/
/

/
/

/
/

/
/

/
/

O
ur

s(
T̂

)
27

.5
5

23
.8

0
27

.0
0

28
.9

0
34

.7
0

22
.5

0
23

.4
5

35
.9

5
25

.4
5

25
.0

0
25

.0
5

27
.2

1
/

/
/

/
/

/
/

/
/

/
/

/

Sq
ua

re
d

C
al

ib
ra

tio
n

E
rr

or
(d

eb
ia

se
d)

Sq
ua

re
d

C
al

ib
ra

tio
n

E
rr

or
(d

eb
ia

se
d,

+S
B

C
)

B
as

el
in

e
24

.2
21

.5
28

.9
27

.3
39

.1
12

.0
10

.0
30

.5
16

.3
1.

1
9.

8
20

.0
6

22
.2

15
.2

19
.4

17
.4

28
.9

10
.2

11
.0

23
.9

28
.7

18
.3

18
.6

19
.4

4
E

ns
em

bl
e

25
.6

22
.5

25
.2

28
.1

21
.2

7.
0

14
.3

43
.0

16
.3

1.
4

3.
9

18
.9

5
24

.3
13

.0
18

.5
20

.5
0.

0
6.

2
13

.2
15

.9
21

.4
6.

5
8.

5
13

.4
5

Te
m

pS
ca

le
24

.3
17

.7
24

.5
23

.4
33

.6
10

.7
8.

9
37

.3
15

.8
0.

0
9.

6
18

.7
1

21
.5

14
.3

19
.8

18
.7

28
.6

9.
2

10
.3

22
.6

27
.5

17
.6

14
.6

18
.6

1
O

ur
s

23
.0

18
.5

24
.1

26
.4

33
.8

6.
9

9.
4

34
.0

15
.9

1.
9

0.
0

17
.6

3
21

.1
11

.6
17

.0
16

.5
25

.5
4.

9
6.

8
29

.1
23

.9
10

.1
4.

5
15

.5
5

O
ur

s(
T̂

)
26

.9
16

.6
18

.6
21

.3
39

.0
7.

7
7.

9
32

.8
16

.3
2.

1
0.

0
17

.2
0

26
.1

12
.6

14
.5

14
.2

22
.4

5.
9

10
.3

27
.5

23
.6

9.
6

9.
0

15
.9

7

Sq
ua

re
d

C
al

ib
ra

tio
n

E
rr

or
(b

ia
se

d)
Sq

ua
re

d
C

al
ib

ra
tio

n
E

rr
or

(b
ia

se
d,

+S
B

C
)

B
as

el
in

e
24

.2
25

.0
29

.0
31

.6
48

.6
12

.2
10

.7
43

.1
16

.4
3.

9
18

.4
23

.9
2

22
.3

17
.2

19
.5

20
.5

31
.0

10
.3

11
.3

33
.4

28
.7

18
.6

22
.6

21
.4

0
E

ns
em

bl
e

25
.7

25
.7

25
.2

32
.4

35
.8

7.
2

14
.8

49
.0

16
.4

3.
9

16
.3

22
.9

5
24

.3
15

.6
18

.6
23

.1
13

.8
6.

4
13

.4
29

.9
21

.4
7.

1
15

.3
17

.1
7

Te
m

pS
ca

le
24

.3
21

.5
24

.6
28

.3
44

.3
10

.8
9.

6
45

.2
15

.9
3.

0
18

.3
22

.3
5

21
.5

16
.4

19
.8

21
.4

30
.8

9.
3

10
.6

32
.4

27
.5

17
.8

19
.6

20
.6

5
O

ur
s

23
.1

22
.3

24
.2

30
.6

45
.5

7.
2

10
.1

44
.6

16
.0

4.
2

15
.9

22
.1

5
21

.1
14

.3
17

.0
19

.2
29

.3
5.

1
7.

4
35

.1
23

.9
10

.5
14

.2
17

.9
2

O
ur

s(
T̂

)
26

.9
20

.8
18

.7
26

.5
46

.6
7.

9
8.

6
43

.7
16

.4
4.

3
13

.7
21

.2
8

26
.2

15
.2

14
.6

19
.3

29
.6

6.
1

10
.6

36
.1

23
.6

10
.0

15
.7

18
.8

2

Ta
bl

e
4:

O
ut

-o
f-

do
m

ai
n

pe
rf

or
m

an
ce

s
on

M
R

PC
(M

R
),

Q
Q

P
(Q

Q
),

Q
N

L
I(

Q
N

),
R

T
E

(R
),

W
N

L
I(

W
).

W
e

us
e

M
2

to
de

no
te

th
e

2-
la

be
lv

er
si

on
of

M
ul

tiN
L

It
as

k.
N

ot
e

th
at

fo
r

th
e

m
et

ri
cs

w
e

co
ns

id
er

ed
he

re
,l

ow
er

sc
or

es
in

di
ca

te
be

tte
rc

al
ib

ra
tio

n.

304

Tr
ai

n
SS

T-
2

C
oL

A
M

N
L

I
M

R
PC

Q
Q

P
Q

N
L

I
R

T
E

W
N

L
I

A
ve

ra
ge

SS
T-

2
C

oL
A

M
N

L
I

M
R

PC
Q

Q
P

Q
N

L
I

R
T

E
W

N
L

I
A

ve
ra

ge

A
cc

ur
ac

y
A

cc
ur

ac
y

(+
SB

C
)

O
ur

s
93

.3
79

.7
87

.4
84

.8
91

.0
92

.2
65

.5
55

.6
81

.1
9

/
/

/
/

/
/

/
/

/

−
E

ns
em

bl
e

93
.3

79
.5

87
.4

85
.3

91
.0

92
.5

66
.2

55
.6

81
.3

5
/

/
/

/
/

/
/

/
/

−
Te

m
pS

ca
le

93
.1

79
.1

87
.3

86
.3

91
.1

92
.3

65
.5

55
.6

81
.2

9
/

/
/

/
/

/
/

/
/

−
D

is
til

la
tio

n
94

.0
79

.9
87

.4
86

.3
91

.2
92

.3
66

.9
55

.6
81

.7
0

/
/

/
/

/
/

/
/

/

M
ax

im
um

C
al

ib
ra

tio
n

E
rr

or
M

ax
im

um
C

al
ib

ra
tio

n
E

rr
or

(+
SB

C
)

O
ur

s
34

.0
20

.8
14

.3
16

.6
9.

3
14

.0
24

.0
4.

5
17

.1
9

2.
8

13
.5

3.
8

22
.8

2.
9

3.
8

17
.2

36
.7

12
.9

4

−
E

ns
em

bl
e

49
.6

25
.3

15
.5

14
.3

8.
6

11
.3

16
.4

3.
8

18
.1

0
2.

3
11

.9
3.

5
26

.3
2.

8
9.

6
6.

7
73

.6
17

.0
9

−
Te

m
pS

ca
le

58
.7

34
.3

16
.7

7.
6

15
.6

16
.6

19
.8

4.
3

21
.7

0
12

.5
9.

9
3.

7
3.

8
3.

8
4.

0
5.

5
40

.7
10

.4
9

−
D

is
til

la
tio

n
28

.3
22

.8
8.

4
12

.8
3.

1
8.

2
15

.9
4.

8
13

.0
4

4.
5

9.
7

3.
0

9.
3

2.
1

3.
1

15
.7

1.
7

6.
14

E
xp

ec
te

d
C

al
ib

ra
tio

n
E

rr
or

(b
in

si
ze

=
1
0

)
E

xp
ec

te
d

C
al

ib
ra

tio
n

E
rr

or
(b

in
si

ze
=
1
0

)(
+S

B
C

)
O

ur
s

4.
6

11
.6

5.
2

4.
1

3.
0

3.
5

8.
8

4.
5

5.
66

0.
6

4.
0

1.
1

3.
3

0.
5

0.
8

7.
7

7.
9

3.
24

−
E

ns
em

bl
e

4.
5

11
.8

5.
3

3.
8

3.
0

3.
3

11
.7

3.
8

5.
90

0.
7

4.
5

1.
0

6.
0

0.
5

1.
2

6.
4

23
.5

5.
48

−
Te

m
pS

ca
le

5.
4

13
.3

6.
2

3.
6

4.
0

3.
6

8.
6

4.
3

6.
13

1.
8

3.
5

0.
9

1.
5

0.
5

0.
7

5.
5

15
.9

3.
79

−
D

is
til

la
tio

n
3.

2
9.

3
3.

1
2.

4
1.

3
1.

3
10

.7
4.

8
4.

51
1.

2
4.

3
0.

8
1.

7
0.

6
0.

8
9.

8
1.

7
2.

61

E
xp

ec
te

d
C

al
ib

ra
tio

n
E

rr
or

(b
in

si
ze

=
1
5

)
E

xp
ec

te
d

C
al

ib
ra

tio
n

E
rr

or
(b

in
si

ze
=
1
5

)(
+S

B
C

)
O

ur
s

4.
8

12
.1

5.
2

5.
2

3.
1

3.
5

9.
4

4.
5

5.
98

0.
6

4.
0

1.
4

4.
4

0.
5

1.
3

9.
4

7.
9

3.
69

−
E

ns
em

bl
e

4.
5

11
.8

5.
3

4.
7

3.
0

3.
3

11
.7

3.
8

6.
01

0.
7

3.
8

1.
4

5.
4

0.
5

1.
6

8.
9

23
.5

5.
73

−
Te

m
pS

ca
le

5.
5

13
.3

6.
2

5.
6

4.
0

3.
7

8.
9

4.
3

6.
44

2.
7

4.
4

1.
2

2.
1

0.
4

1.
3

5.
5

18
.0

4.
45

−
D

is
til

la
tio

n
3.

4
9.

4
3.

0
4.

3
1.

3
1.

7
12

.6
4.

8
5.

06
1.

2
4.

4
0.

8
2.

0
0.

6
0.

8
12

.1
1.

7
2.

95

E
xp

ec
te

d
C

al
ib

ra
tio

n
E

rr
or

(b
in

si
ze

=
5
0

)
E

xp
ec

te
d

C
al

ib
ra

tio
n

E
rr

or
(b

in
si

ze
=
5
0

)(
+S

B
C

)
O

ur
s

5.
7

12
.9

5.
2

11
.6

3.
1

3.
7

15
.5

4.
5

7.
78

1.
8

5.
6

1.
6

5.
2

0.
6

1.
4

11
.9

13
.0

5.
14

−
E

ns
em

bl
e

5.
5

12
.7

5.
5

10
.7

3.
1

3.
5

15
.5

3.
8

7.
54

1.
7

5.
5

1.
7

6.
7

0.
5

1.
6

10
.2

27
.5

6.
93

−
Te

m
pS

ca
le

6.
3

13
.7

6.
3

9.
7

4.
1

4.
0

11
.9

4.
3

7.
54

4.
3

4.
1

1.
4

2.
6

0.
5

1.
4

5.
5

18
.9

4.
84

−
D

is
til

la
tio

n
4.

7
11

.6
3.

2
7.

3
1.

4
2.

0
17

.2
4.

8
6.

53
2.

1
5.

2
1.

0
2.

7
0.

6
1.

0
12

.5
4.

8
3.

74

B
ri

er
Sc

or
e

B
ri

er
Sc

or
e

(+
SB

C
)

O
ur

s
5.

50
15

.8
5

6.
43

10
.4

5
6.

75
6.

15
21

.4
5

24
.9

0
12

.1
9

/
/

/
/

/
/

/
/

/

−
E

ns
em

bl
e

5.
25

15
.6

5
6.

47
10

.1
5

6.
80

6.
05

22
.3

5
24

.8
5

12
.2

0
/

/
/

/
/

/
/

/
/

−
Te

m
pS

ca
le

5.
75

16
.0

5
6.

57
10

.7
5

6.
90

6.
10

21
.2

5
24

.9
0

12
.2

8
/

/
/

/
/

/
/

/
/

−
D

is
til

la
tio

n
4.

70
14

.4
0

6.
20

10
.0

5
6.

45
5.

65
20

.2
5

24
.9

5
11

.5
8

/
/

/
/

/
/

/
/

/

Sq
ua

re
d

C
al

ib
ra

tio
n

E
rr

or
(d

eb
ia

se
d)

Sq
ua

re
d

C
al

ib
ra

tio
n

E
rr

or
(d

eb
ia

se
d,

+S
B

C
)

O
ur

s
7.

3
13

.0
6.

8
0.

0
4.

2
4.

7
13

.0
16

.4
8.

18
0.

0
4.

8
1.

9
5.

3
0.

9
1.

1
8.

4
12

.7
4.

39

−
E

ns
em

bl
e

7.
4

14
.6

7.
3

0.
0

4.
2

4.
0

10
.3

33
.1

10
.1

1
0.

0
7.

2
1.

8
8.

2
0.

8
2.

9
11

.7
18

.6
6.

40
−

Te
m

pS
ca

le
9.

7
14

.8
8.

1
0.

0
5.

6
5.

0
0.

0
23

.4
8.

33
4.

8
6.

2
1.

5
0.

0
1.

1
1.

1
10

.4
10

.5
4.

45
−

D
is

til
la

tio
n

3.
7

12
.1

3.
8

0.
0

1.
5

1.
8

12
.3

0.
0

4.
40

0.
0

3.
8

1.
1

0.
0

0.
7

0.
0

10
.1

18
.7

4.
30

Sq
ua

re
d

C
al

ib
ra

tio
n

E
rr

or
(b

ia
se

d)
Sq

ua
re

d
C

al
ib

ra
tio

n
E

rr
or

(b
ia

se
d,

+S
B

C
)

O
ur

s
8.

3
14

.5
6.

9
8.

3
4.

2
5.

0
19

.2
31

.8
12

.2
8

2.
2

6.
9

2.
1

8.
5

1.
1

1.
8

14
.6

22
.9

7.
51

−
E

ns
em

bl
e

8.
4

15
.9

7.
4

7.
9

4.
2

4.
4

17
.8

39
.5

13
.1

9
2.

5
8.

7
2.

0
10

.5
1.

0
3.

3
16

.9
29

.7
9.

33
−

Te
m

pS
ca

le
10

.5
16

.1
8.

2
7.

7
5.

7
5.

3
12

.5
34

.6
12

.5
8

5.
8

7.
9

1.
8

3.
4

1.
2

1.
8

16
.4

27
.8

8.
26

−
D

is
til

la
tio

n
5.

4
13

.5
3.

9
6.

5
1.

7
2.

5
18

.4
28

.8
10

.0
9

2.
6

6.
1

1.
4

4.
5

0.
9

1.
3

15
.6

26
.6

7.
38

Ta
bl

e
5:

In
-d

om
ai

n
ab

la
tio

n
pe

rf
or

m
an

ce
s

on
SS

T-
2

(S
),

C
oL

A
(C

),
M

ul
tiN

L
I(

M
N

),
M

R
PC

(M
R

),
Q

Q
P

(Q
Q

),
Q

N
L

I(
Q

N
),

R
T

E
(R

),
W

N
L

I(
W

).
N

ot
e

th
at

fo
rt

he
m

et
ri

cs
w

e
co

ns
id

er
ed

he
re

,l
ow

er
sc

or
es

in
di

ca
te

be
tte

rc
al

ib
ra

tio
n.

305

Tr
ai

n
M

R
Q

Q
Q

N
R

W
A

ve
ra

ge
M

R
Q

Q
Q

N
R

W
A

ve
ra

ge

E
va

l
Q

Q
M

R
M

2
R

W
M

2
Q

N
W

M
2

Q
N

R
Q

Q
M

R
M

2
R

W
M

2
Q

N
W

M
2

Q
N

R

A
cc

ur
ac

y
A

cc
ur

ac
y

(+
SB

C
)

O
ur

s
68

.4
68

.1
58

.6
57

.6
47

.2
67

.3
61

.0
44

.4
35

.1
50

.1
48

.2
55

.0
9

/
/

/
/

/
/

/
/

/
/

/
/

−
E

ns
em

bl
e

66
.3

66
.2

59
.7

59
.0

44
.4

67
.5

55
.7

44
.4

35
.1

50
.1

48
.2

54
.2

4
/

/
/

/
/

/
/

/
/

/
/

/
−

Te
m

pS
ca

le
66

.6
67

.2
56

.0
56

.1
47

.2
68

.0
54

.6
44

.4
35

.1
50

.1
48

.2
53

.9
5

/
/

/
/

/
/

/
/

/
/

/
/

−
D

is
til

la
tio

n
67

.8
65

.2
58

.7
54

.7
50

.0
67

.8
57

.9
44

.4
35

.1
50

.1
48

.2
54

.5
4

/
/

/
/

/
/

/
/

/
/

/
/

M
ax

im
um

C
al

ib
ra

tio
n

E
rr

or
M

ax
im

um
C

al
ib

ra
tio

n
E

rr
or

(+
SB

C
)

O
ur

s
35

.7
33

.5
33

.2
31

.2
70

.9
11

.3
11

.4
64

.1
15

.9
0.

9
2.

8
28

.2
6

33
.9

22
.8

27
.4

32
.1

52
.7

4.
3

13
.7

30
.1

26
.9

15
.0

17
.3

25
.1

1

−
E

ns
em

bl
e

39
.3

27
.4

32
.5

40
.7

58
.6

8.
7

27
.1

43
.5

16
.7

1.
7

3.
5

27
.2

5
37

.3
21

.4
28

.5
28

.6
17

.5
15

.5
27

.4
28

.0
56

.5
45

.6
47

.9
32

.2
0

−
Te

m
pS

ca
le

39
.1

31
.5

37
.0

38
.3

54
.6

11
.6

21
.1

67
.3

16
.2

1.
2

3.
1

29
.1

8
37

.7
16

.6
31

.9
30

.5
61

.8
3.

0
16

.4
26

.6
38

.4
31

.0
43

.6
30

.6
8

−
D

is
til

la
tio

n
35

.8
25

.6
33

.2
36

.7
34

.6
4.

8
17

.4
31

.9
15

.7
0.

8
2.

6
21

.7
4

33
.5

18
.3

30
.9

27
.6

14
.8

4.
7

18
.4

31
.5

22
.3

7.
7

9.
1

19
.8

9

E
xp

ec
te

d
C

al
ib

ra
tio

n
E

rr
or

(b
in

si
ze

=
1
0

)
E

xp
ec

te
d

C
al

ib
ra

tio
n

E
rr

or
(b

in
si

ze
=
1
0

)(
+S

B
C

)
O

ur
s

18
.3

19
.3

21
.2

24
.5

38
.7

3.
7

9.
0

34
.6

15
.9

0.
9

2.
8

17
.1

7
15

.8
12

.1
12

.8
15

.5
22

.4
3.

7
5.

2
27

.6
23

.7
9.

1
11

.6
14

.5
0

−
E

ns
em

bl
e

18
.9

20
.6

20
.9

24
.7

31
.9

3.
3

15
.2

34
.0

16
.7

1.
7

3.
5

17
.4

0
18

.4
13

.2
10

.6
12

.6
17

.2
3.

6
15

.5
28

.0
24

.9
17

.9
21

.8
16

.7
0

−
Te

m
pS

ca
le

23
.9

22
.4

27
.5

31
.1

40
.6

3.
4

14
.6

34
.8

16
.2

1.
2

3.
1

19
.8

9
21

.2
12

.7
18

.9
22

.5
26

.7
3.

0
16

.4
26

.6
23

.3
9.

5
10

.6
17

.4
0

−
D

is
til

la
tio

n
20

.1
18

.4
18

.0
25

.4
26

.7
3.

7
8.

8
29

.1
15

.7
0.

8
2.

6
15

.3
9

20
.6

15
.2

13
.6

21
.0

11
.8

3.
8

9.
3

28
.6

22
.3

7.
7

9.
1

14
.8

2

E
xp

ec
te

d
C

al
ib

ra
tio

n
E

rr
or

(b
in

si
ze

=
1
5

)
E

xp
ec

te
d

C
al

ib
ra

tio
n

E
rr

or
(b

in
si

ze
=
1
5

)(
+S

B
C

)
O

ur
s

18
.3

19
.9

21
.3

24
.5

38
.7

4.
6

9.
1

34
.6

15
.9

0.
9

2.
8

17
.3

3
15

.8
12

.1
12

.8
15

.5
22

.4
2.

1
5.

2
27

.6
23

.7
9.

1
13

.0
14

.4
8

−
E

ns
em

bl
e

20
.5

21
.2

20
.9

24
.7

31
.9

4.
4

15
.2

35
.5

16
.7

1.
7

3.
5

17
.8

4
20

.8
13

.2
10

.6
12

.6
17

.2
4.

4
15

.6
28

.0
24

.9
17

.9
21

.8
17

.0
0

−
Te

m
pS

ca
le

24
.0

22
.9

27
.5

30
.4

39
.4

5.
6

14
.6

34
.8

16
.2

1.
2

3.
1

19
.9

7
21

.2
12

.7
18

.9
22

.5
26

.7
3.

0
16

.4
26

.6
23

.3
10

.1
13

.3
17

.7
0

−
D

is
til

la
tio

n
20

.9
18

.8
18

.0
25

.4
28

.4
3.

7
8.

9
29

.1
15

.7
0.

8
2.

6
15

.6
6

20
.6

15
.2

13
.6

21
.0

11
.8

3.
1

8.
8

28
.6

22
.3

7.
7

9.
1

14
.7

1

E
xp

ec
te

d
C

al
ib

ra
tio

n
E

rr
or

(b
in

si
ze

=
5
0

)
E

xp
ec

te
d

C
al

ib
ra

tio
n

E
rr

or
(b

in
si

ze
=
5
0

)(
+S

B
C

)
O

ur
s

18
.5

21
.2

21
.4

27
.4

43
.5

5.
2

9.
1

38
.4

15
.9

0.
9

2.
8

18
.5

7
15

.8
12

.1
12

.8
15

.5
22

.4
4.

3
5.

5
32

.4
23

.7
9.

1
13

.0
15

.1
5

−
E

ns
em

bl
e

21
.2

23
.3

21
.0

27
.5

35
.2

4.
8

15
.2

34
.0

16
.7

1.
7

3.
5

18
.5

5
20

.8
13

.8
10

.6
12

.6
17

.2
3.

6
16

.7
28

.0
25

.1
17

.9
21

.8
17

.1
0

−
Te

m
pS

ca
le

24
.5

24
.2

27
.7

34
.1

46
.2

5.
9

14
.6

41
.0

16
.2

1.
2

3.
1

21
.7

0
21

.2
12

.7
18

.9
22

.5
26

.8
3.

0
16

.4
26

.6
23

.3
10

.1
16

.5
18

.0
0

−
D

is
til

la
tio

n
21

.8
20

.0
18

.1
29

.8
35

.6
4.

5
9.

1
31

.6
15

.7
0.

8
2.

6
17

.2
4

20
.6

15
.2

13
.6

21
.0

11
.8

4.
0

9.
3

28
.6

22
.3

7.
7

9.
1

14
.8

4

B
ri

er
Sc

or
e

B
ri

er
Sc

or
e

(+
SB

C
)

O
ur

s
26

.2
0

24
.4

5
29

.9
0

31
.0

5
39

.4
0

21
.9

5
23

.8
5

36
.7

5
25

.3
0

25
.0

0
25

.0
5

28
.0

8
/

/
/

/
/

/
/

/
/

/
/

/

−
E

ns
em

bl
e

27
.9

0
25

.7
0

29
.3

5
30

.4
5

33
.7

5
21

.7
0

26
.1

0
36

.9
5

25
.5

5
25

.0
5

25
.1

0
27

.9
6

/
/

/
/

/
/

/
/

/
/

/
/

−
Te

m
pS

ca
le

28
.6

0
25

.2
5

33
.4

5
34

.1
5

42
.0

0
21

.5
0

26
.2

5
37

.7
0

25
.4

0
25

.0
5

25
.1

0
29

.5
0

/
/

/
/

/
/

/
/

/
/

/
/

−
D

is
til

la
tio

n
26

.7
5

24
.2

5
28

.8
0

31
.4

5
28

.2
5

21
.4

5
24

.1
5

33
.4

0
25

.2
5

25
.0

0
25

.0
5

26
.7

1
/

/
/

/
/

/
/

/
/

/
/

/

C
al

ib
ra

tio
n

E
rr

or
(d

eb
ia

se
d)

C
al

ib
ra

tio
n

E
rr

or
(d

eb
ia

se
d,

+S
B

C
)

O
ur

s
23

.0
18

.5
24

.1
26

.4
33

.8
6.

9
9.

4
34

.0
15

.9
1.

9
0.

0
17

.6
3

21
.1

11
.6

17
.0

16
.5

25
.5

4.
9

6.
8

29
.1

23
.9

10
.1

4.
5

15
.5

5

−
E

ns
em

bl
e

27
.3

21
.0

23
.4

24
.4

28
.9

6.
9

17
.6

30
.2

16
.7

0.
5

9.
4

18
.7

5
26

.2
15

.2
16

.2
19

.2
12

.3
8.

1
19

.7
24

.7
30

.5
21

.5
24

.9
19

.8
6

−
Te

m
pS

ca
le

28
.7

20
.0

30
.0

30
.1

40
.6

6.
8

16
.1

35
.6

16
.2

2.
9

7.
1

21
.2

8
26

.2
11

.9
22

.0
23

.0
32

.4
8.

9
19

.3
29

.4
24

.8
12

.7
17

.8
20

.7
6

−
D

is
til

la
tio

n
25

.4
16

.2
21

.5
24

.5
17

.9
4.

9
13

.0
23

.2
16

.0
1.

9
9.

8
15

.8
5

23
.5

13
.5

18
.2

20
.4

0.
0

4.
7

12
.9

20
.2

22
.5

7.
7

0.
0

13
.0

5

C
al

ib
ra

tio
n

E
rr

or
(b

ia
se

d)
C

al
ib

ra
tio

n
E

rr
or

(b
ia

se
d,

+S
B

C
)

O
ur

s
23

.1
22

.3
24

.2
30

.6
45

.5
7.

2
10

.1
44

.6
16

.0
4.

2
15

.9
22

.1
5

21
.1

14
.3

17
.0

19
.2

29
.3

5.
1

7.
4

35
.1

23
.9

10
.5

14
.2

17
.9

2

−
E

ns
em

bl
e

27
.3

24
.5

23
.5

29
.0

40
.8

7.
1

18
.0

42
.9

16
.8

3.
7

18
.2

22
.8

9
26

.2
17

.0
16

.3
21

.3
17

.2
8.

2
19

.9
33

.9
30

.5
21

.7
27

.7
21

.8
1

−
Te

m
pS

ca
le

28
.7

23
.6

30
.0

34
.0

49
.8

7.
0

16
.5

45
.9

16
.3

4.
7

17
.3

24
.8

9
26

.3
14

.3
22

.1
25

.2
36

.6
9.

0
19

.5
36

.1
24

.8
13

.0
22

.0
22

.6
3

−
D

is
til

la
tio

n
25

.4
20

.5
21

.6
29

.2
34

.0
5.

2
13

.5
38

.3
16

.1
4.

2
18

.4
20

.5
8

23
.5

15
.6

18
.3

23
.3

11
.9

4.
9

13
.2

31
.5

22
.6

8.
3

12
.2

16
.8

5

Ta
bl

e
6:

O
ut

-o
f-

do
m

ai
n

ab
la

tio
n

pe
rf

or
m

an
ce

s
on

M
R

PC
(M

R
),

Q
Q

P
(Q

Q
),

Q
N

L
I(

Q
N

),
R

T
E

(R
),

W
N

L
I(

W
).

W
e

us
e

M
2

to
de

no
te

th
e

2-
la

be
lv

er
si

on
of

M
ul

tiN
L

It
as

k.
N

ot
e

th
at

fo
rt

he
m

et
ri

cs
w

e
co

ns
id

er
ed

he
re

,l
ow

er
sc

or
es

in
di

ca
te

be
tte

rc
al

ib
ra

tio
n.

306

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 307–315
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

ACL-IJCNLP 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Entity and Evidence Guided Document-Level Relation Extraction

Anonymous ACL-IJCNLP submission

Abstract

Document-level relation extraction is a chal-
lenging task, requiring reasoning over multiple
sentences to predict a set of relations in a docu-
ment. In this paper, we propose a novel frame-
work E2GRE (Entity and Evidence Guided Re-
lation Extraction) that jointly extracts relations
and the underlying evidence sentences by us-
ing large pretrained language model (LM) as
input encoder. First, we propose to guide the
pretrained LM’s attention mechanism to focus
on relevant context by using attention proba-
bilities as additional features for evidence pre-
diction. Furthermore, instead of feeding the
whole document into pretrained LMs to ob-
tain entity representation, we concatenate doc-
ument text with head entities to help LMs
concentrate on parts of the document that are
more related to the head entity. Our E2GRE
jointly learns relation extraction and evidence
prediction effectively, showing large gains on
both these tasks, which we find are highly cor-
related. Our experimental result on DocRED,
a large-scale document-level relation extrac-
tion dataset, is competitive with the top of the
public leaderboard for relation extraction, and
is top ranked on evidence prediction, which
shows that our E2GRE is both effective and
synergistic on relation extraction and evidence
prediction.

1 Introduction

Relation Extraction (RE), the problem of predict-
ing relations between pairs of entities from text,
has received increasing research attention in recent
years [Zhang et al., 2017; Zhao et al., 2019; Guo
et al., 2019]. This problem has important down-
stream applications to numerous tasks, such as auto-
matic knowledge acquisition from web documents
for knowledge graph construction [Trisedya et al.,
2019], question answering [Yu et al., 2017] and
dialogue systems [Young et al., 2018]. While most

Document: [0] The Legend of Zelda : The Minish Cap () is an action
- adventure game and the twelfth entry in The Legend of Zelda series.
[1] Developed by Capcom and Flagship , with Nintendo overseeing the
development process , it was released for the Game Boy Advance hand-
held game console in Japan and Europe in 2004 and in North America and
Australia the following year . [2] In June 2014 , it was made available on
the Wii U Virtual Console . [3] The Minish Cap is the third Zelda game
that involves the legend of the Four Sword , expanding on the story of and
. [4] A magical talking cap named Ezlo can shrink series protagonist Link
to the size of the Minish , a bug - sized race that live in Hyrule . [5] The
game retains some common elements from previous Zelda installments ,
such as the presence of Gorons , while introducing Kinstones and other
new gameplay features . [6] The Minish Cap was generally well received
among critics . [7] It was named the 20th best Game Boy Advance game
in an IGN feature , and was selected as the 2005 Game Boy Advance
Game of the Year by GameSpot .
Head Entity: Link
Tail Entity: The Legend of Zelda
Relation: “Present in Work”
Evidence Sentences: 0,3,4

Figure 1: An example document in the DocRED
dataset, where a head and tail entity pair span across
multiple sentences.

previous work focus on relation extraction at the
sentence level, in real world applications, e.g pre-
dicting relations from web articles, the majority of
relations are expressed across multiple sentences.
Figure 1 shows an example from the recently re-
leased DocRED dataset [Yao et al., 2019], which
requires reasoning over three evidence sentences to
predict the relational fact that “Link” is present in
the work “The Legend of Zelda”. In this paper, we
focus on the more challenging task of document-
level relation extraction task and design a method
to facilitate document-level reasoning.

Aside from extracting entity relations from a
document, it is often useful to also highlight the
evidence that a system uses to predict them, so
that a human or second system can verify them
for consistency. What is more, evidence prediction
can potentially supplement RE performance by re-
stricting the model’s focus on the correct context.
In preliminary experiments, we find that current
models are able to achieve around 87% RE F1
on DocRED by only keeping the gold evidence
sentences when trained and evaluated only on the
gold evidence sentences, which is a significant im-

307

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL-IJCNLP 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

provement on current leaderboard DocRED RE
F1 numbers (∼ 63% RE F1). However, evidence
prediction is a challenging task, and most existing
relation extraction (RE) approaches ignore the task
of evidence prediction entirely.

Most recent approaches for relation extraction
fine-tune large pretrained Language Models (LMs)
(e.g.,BERT [Devlin et al., 2019], RoBERTa [Liu
et al., 2019]) as input encoder. However, naively
adapting pretrained LMs for document-level RE
faces an issue which limits its performance. Due to
the length of a given document, many more entities
and relations exist in document-level RE than in
intra-sentence RE. A pretrained LM has to simul-
taneously encode information regarding all pairs
of entities for relation extraction, making the task
more difficult, and limiting the pretrained LM’s
effectiveness.

In this paper we propose a new framework:
Entity and Evidence Guided Relation Extraction
(E2GRE), which jointly solves relation extraction
and evidence prediction. For evidence prediction,
we take a pretrained LM as input encoder and use
its internal attention probabilities as additional fea-
tures to predict evidence sentences. As a result, we
use supporting evidence sentences to provide direct
supervision on which tokens the LM should attend
to during finetuning, which in turn helps improve
relation extraction in a joint training framework. To
further help LMs focus on a smaller set of relevant
word context from a long document, we also intro-
duce entity-guided input sequences as the input to
these models, by appending each head entity to the
document text, one at a time. This allows the LM
encoder to explicitly model relations involving a
specific head entity while ignoring all other entity
pairs, thus simplifying the task for the LM encoder.
The joint training framework helps the model lo-
cate the correct semantics that are required for each
relation prediction. To the best of our knowledge1,
we are the first to present an effective joint train-
ing framework for relation extraction and evidence
prediction.

Each of these ideas gives a significant boost
in performance, and by combining them, we are
able to achieve highly competitive results on the
DocRED leaderboard. We obtain 62.5 relation ex-
traction F1 and 50.5 evidence prediction F1 from
our E2GRE trained RoBERTaLARGE model, which
is the current state-of-the-art performance on evi-

1Based on published papers on DocRED.

dence prediction. Our proposed E2GRE framework
is a simple joint training approach that effectively
incorporates information from evidence prediction
to guide the pretrained LM encoder, boosting per-
formance on both relation extraction and evidence
prediction.

Our main contributions are summarized as fol-
lows:

• We propose to generate multiple new entity-
guided inputs to a pretrained language model:
for every document, we concatenate every en-
tity with the document and feed it as an input
sequence to a pretrained LM encoder.

• We propose to use internal attention probabil-
ities of the pre-trained LM encoder as addi-
tional features for the evidence prediction.

• Our joint training framework of E2GRE which
receives the guidance from entity and evi-
dence, improves the performance on both rela-
tion extraction and evidence prediction, show-
ing that the two tasks are mutually beneficial
to each other.

2 Related Work

Early work attempted to solve RE with statistical
methods with different feature engineering [Ze-
lenko et al., 2003; Bunescu and Mooney, 2005].
Later on, neural models have shown better per-
formance at capturing semantic relationships be-
tween entities. These methods include CNN-based
approaches [Zeng et al.; Wang et al., 2016] and
LSTM-based approaches [Cai et al., 2016].

On top of using CNNs/LSTM encoders, previ-
ous models added additional layers to model se-
mantic interactions. For example, Han et al. [2018]
introduced using hierarchical attentions in order
to generate relational information from coarse-to-
fine semantic ideas; Zhang et al. [2017] applied
GCNs over pruned dependency trees, and Guo et
al. [2019] introduced Attention Guided Graph Con-
volutional Networks (AG-GCNs) over dependency
trees. These models have shown good performance
on intra-sentence relation extraction, but are not
easily adapted for document-level RE.

Many approaches for document-level RE are
graph-based neural network methods. Quirk and
Poon [2017] first introduced a document graph
being used for document-level RE; In [Jia et al.,
2019], an entity-centric, multi-scale representation

308

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

ACL-IJCNLP 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

learning on entity/sentence/document-level LSTM
model was proposed for document-level n-ary RE
task. Christopoulou et al. [2019] recently proposed
a novel edge-oriented graph model that deviates
from existing graph models. Nan et al. [2020] pro-
posed an induced latent graph and Li et al. [2020]
used an explicit heterogeneous graph for DocRED.
These graph models generally focus on construct-
ing unique nodes and edges, and have the advantage
of connecting and aggregating different granulari-
ties of information. Zhou et al. [2021] pointed out
multi-entity and multi-label issues for document-
level RE, and proposed two techniques: adaptive
thresholding and localized context pooling, to ad-
dress these problems.

Pretrained Language Models [Radford et al.,
2019; Devlin et al., 2019; Liu et al., 2019] are pow-
erful NLP tools trained with enormous amounts
of unlabelled data. In order to take advantage of
the large amounts of text that these models have
seen, finetuning on large pretrained LMs has been
shown to be effective on relation extraction [Wad-
den et al., 2019]. Generally, large pretrained LMs
are used to encode a sequence and then generate
the representation of a head/tail entity pair to learn
a classification [Eberts and Ulges, 2019; Yao et
al., 2019]. Baldini Soares et al. [2019] introduced
a new concept similar to BERT called “matching-
the-black” and pretrained a Transformer-like model
for relation learning. The models were finetuned on
SemEval-2010 Task 8 and TACRED achieved state-
of-the-art results. Our framework aims to improve
the effectiveness of pretrained LMs for document-
level relation extraction, with our entity and evi-
dence guided approaches.

3 Method

In this section, we introduce our E2GRE frame-
work. First, we describe how to generate entity-
guided inputs. Then we present how to jointly train
RE with evidence prediction, and finally show how
to combine this with our evidence-guided atten-
tions. We use BERT as our pretrained LM when
describing our framework.

3.1 Entity-Guided Input Sequences

The goal of relation extraction is to predict relation
label between every head/tail (h/t) pair of given
entities in a given document. Most standard models
approach this problem by feeding in an entire doc-
ument and then extracting all of the head/tail pairs

Figure 2: Diagram of our E2GRE framework. As
shown in the diagram, we pass an input sequence con-
sisting of an entity and document into BERT. We ex-
tract head and tails for relation extraction. We show the
learned relation vectors in grey. We extract out sentence
representation and BERT attention probabilities for ev-
idence predictions.

to predict relations.
Instead, we design entity-guided inputs to give

BERT more guidance towards the entities during
training. Each training input is organized by con-
catenating the tokens of the first mention of a head
entity, denoted by H , together with the document
tokens D, to form: “[CLS]”+ H + “[SEP]” + D +
“[SEP]”, which is then fed into BERT.2

We generate these input sequences for each en-
tity in the given document. Therefore, for a docu-
ment with Ne entities, Ne new entity-guided input
sequences are generated and fed into BERT sepa-
rately.

Our framework predicts Ne − 1 different sets of
relations for each training input, corresponding to
Ne − 1 head/tail entity pairs.

After passing a training input through BERT,
we extract the head entity embedding and a set
of tail entity embeddings from the BERT output.
After obtaining the head entity embedding h ∈ Rd
and all tail entity embeddings {tk|tk ∈ Rd} in an
entity-guided sequence, where 1 ≤ k ≤ Ne − 1,
we feed them into a bilinear layer with the sigmoid
activation function to predict the probability of i-th
relation between the head entity h and the k-th tail

2Since the max input length for BERT is 512, for any input
length longer than 512, we make use of a sliding window
approach over the input and separate it into two chunks (Do-
cRED does not have documents longer than 1024): the first
chunk is the input sequence up to 512 tokens; the second chunk
is the input sequence with an offset, such that offset + 512
reaches the end of the sequence. This is shown as “[CLS]”+
H + “[SEP]” + D[offset:end] + “[SEP]”. We combine these
two input chunks in our model by averaging the embeddings
and BERT attention probabilities of the overlapping tokens in
the model.

309

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

ACL-IJCNLP 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

entity tk, denoted by ŷik, as follows

ŷik = δ(hTWitk + bi) (1)

where δ is the sigmoid function, Wi and bi are the
learnable parameters corresponding to i-th relation,
where 1 ≤ i ≤ Nr, and Nr is the number of rela-
tions. Finally, we finetune BERT with multi-label
cross-entropy loss.

During inference, we group theNe−1 predicted
relations for each entity-guided input sequence
from the same document, to obtain the final set
of predictions for a document.

3.2 Evidence Guided Relation Extraction
3.2.1 Evidence Prediction
Evidence sentences are sentences which contain im-
portant facts for predicting the correct relationships
between head and tail entities. Therefore, evidence
prediction is a very important auxiliary task to rela-
tion extraction and also provides explainability for
the model. We build our evidence prediction upon
the baseline introduced by Yao et al. [2019], which
we will describe next.

Let Ns be the number of sentences in the doc-
ument. We first obtain the sentence embedding
s ∈ RNS×d by averaging all the embeddings of
the words in each sentence (i.e., Sentence Extrac-
tion in Fig. 2). These word embeddings are derived
from the BERT output embeddings.

Let ri ∈ Rd be the relation embedding of i-th
relation ri (1 ≤ i ≤ Nr), which is learnable and
initialized randomly in our model. We employ a
bilinear layer with sigmoid activation function to
predict the probability of the j-th sentence sj being
an evidence sentence w.r.t. the given i-th relation
ri as follows.

F i
jk = sjW

r
i ri + bri

ŷijk = δ(F i
jkW

r
o + bro) (2)

where sj represents the embedding of j-th sen-
tence, W r

i /b
r
i and W r

o /b
r
o are the learnable pa-

rameters w.r.t. i-th relation. We define the loss of
evidence prediction under the given i-th relation as
follows:

LEvi = − 1
Ne−1

1
Ns

∑Ne−1
k=1

∑Ns
j=1(y

i
jk log(ŷ

i
jk)

+(1− yijk) log(1− ŷijk)) (3)

where yjik ∈ {0, 1}, and yjik = 1 means that
sentence j is an evidence for the i-th relation. It

should be noted that in the training stage, we use
the embedding of true relation in Eq. 2. In test-
ing/inference stage, we use the embedding of the
relation predicted by the relation extraction model.

3.2.2 Baseline Joint Training
In [Yao et al., 2019] the baseline relation extraction
loss LRE and the evidence prediction loss are com-
bined as the final objective function for the joint
training:

Lbaseline = LRE + λ ∗ LEvi (4)

where λ > 0 is the weight factor to make trade-
offs between two losses, which is data dependent.
In order to compare to our models, we utilize a
BERT-baseline to predict relation extraction loss
and evidence prediction loss.

3.2.3 Guiding BERT Attention with Evidence
Prediction

Pretrained language models have been shown to be
able to implicitly model semantic relations inter-
nally. By looking at internal attention probabilities,
Clark et al. [2019] has shown that BERT learns co-
reference and other semantic information in later
BERT layers. In order to take advantage of this
inherent property, our framework attempts to give
more guidance to where correct semantics for RE
are located. For each pair of head h and tail tk, we
introduce the idea of using internal attention prob-
abilities extracted from the last l internal BERT
layers for evidence prediction.

Let Q ∈ RNh×L×(d/Nh) be the query and K ∈
RNh×L×(d/Nh) be the key of the Multi-Head Self
Attention layer, Nh be the number of attention
heads as described in [Vaswani et al., 2017], L be
the length of the input sequence and d be the embed-
ding dimension. We first extract the output of multi-
headed self attention (MHSA) A ∈ RNh×L×L
from a given layer in BERT as follows. These ex-
traction outputs are shown as Attention Extractor
in Fig. 2.

Attention = softmax(QKT√
d/Nh

) (5)

Att-headi = Attention(QWQ
i ,KWK

i) (6)

A = Concat(Att-head1, · · · ,Att-headn) (7)

For a given pair of head h and tail tk, we extract the
attention probabilities corresponding to head and
tail tokens to help relation extraction. Specifically,
we concatenate the MHSAs for the last l BERT

310

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL-IJCNLP 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

layers extracted by Eq. 7 to form an attention prob-
ability tensor as: Ãk ∈ Rl×Nh×L×L.

Then, we calculate the attention probability rep-
resentation of each sentence under the given head-
tail entity pair (h, tk) as follows.

1. We first apply maximum pooling layer along
the attention head dimension (i.e., second di-
mension) over Ãk. The max values are help-
ful to show where a specific attention head
might be looking at. Afterwards we apply
mean pooling over the last l layers. We obtain
Ãs = 1

l

∑l
i=1 maxpool(Ãki), Ãs ∈ RL×L

from these two steps.

2. We then extract the attention probability ten-
sor from the head and tail entity tokens ac-
cording to the start and end positions of in the
document. We average the attention probabil-
ities over all the tokens for the head and tail
embeddings to obtain Ãsk ∈ RL.

3. Finally, we generate sentence representations
from Ãsk by averaging over the attentions
of each token in a given sentence from the
document to obtain ask ∈ RNs

Once we get the attention probabilities ask,
we pass the sentence embeddings F̂ i

k from Eq. 2
through a transformer layer to encourage inter-
sentence interactions and form the new represen-
tation Ẑi

k. We combine ask with Ẑi
k and feed it

into a bilinear layer with sigmoid (δ) for evidence
sentence prediction as follows:

Ẑi
k = FFN(LayerNorm(Multi-Head(F̂ i

k))) (8)

ŷiak = δ(askW
a
i Ẑ

i
k + bai) (9)

Finally, we define the loss of evidence predic-
tion under a given i-th relation based on attention
probability representation as follows:

LaEvi = − 1
Ne−1

1
Ns

∑Ne−1
k=1

∑Ns
j=1(y

ia
jk log(ŷ

ia
jk)

+(1− yiajk) log(1− ŷiajk)), f (10)

where ŷiajk is the j-th value of ŷiak computed by Eq.
8.

3.2.4 Joint Training with Evidence Guided
Attention Probabilities

Here we combine the relation extraction loss and
the attention guided evidence prediction loss as the
final objective function for the joint training:

LE2GRE = LeRE + λa ∗ LaEvi (11)

where λa > 0 is the weight factor to make trade-
offs between two losses, which is data dependent.

4 Experiments

4.1 Dataset

DocRED [Yao et al., 2019] is a large document-
level dataset for the tasks of relation extraction and
evidence prediction. It consists of 5053 documents,
132375 entities, and 56354 relations mined from
Wikipedia articles. For each (head, tail) entity pair,
there are 97 different relation types as candidates to
predict. The first relation type is an “NA” relation
between two entities, and the rest correspond to a
WikiData relation name. Each of the head/tail pair
that contains valid relations also includes a set of
evidence sentences.

We follow the same setting in [Yao et al., 2019]
to split the data into Train/Development/Test for
model evaluation for fair comparisons. The num-
ber of documents in Train/Development/Test is
3000/1000/1000, respectively. The dataset is eval-
uated with the metrics of relation extraction RE
F1, and evidence Evi F1. There are also instances
where relational facts may occur in both the devel-
opment and train set, so we also evaluate Ign RE
F1, which removes these relational facts.

4.2 Experimental Setup

Hyper-parameter Setting. The configuration for
the BERTBASE model follows the setting in [Devlin
et al., 2019]. We set the learning rate to 1e-5, λa to
1e-4, the hidden dimension of the relation vectors
to 108, and extract internal attention probabilities
from last three BERT layers.

We conduct our experiments by fine-tuning
the BERTBASE model. The implementation is
based on the HuggingFace [Wolf et al., 2020]
PyTorch [Paszke et al., 2017] implementation of
BERT3. The DocRED baseline and our E2GRE
model have 115M parameters4. We implement a
RoBERTa-large model for the public leaderboard.
Baseline models. We compare our framework with
the following published models.
1. Context Aware BiLSTM. [Yao et al., 2019] in-
troduced the original baseline to DocRED in their
paper. They used a context-aware BiLSTM (+ addi-
tional features such as entity type, coreference and

3https://github.com/huggingface/pytorch-pretrained-
BERT

4We will release the code after paper review.

311

6

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

ACL-IJCNLP 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Model Dev Test
Ign F1 RE F1 Evi F1 Ign F1 RE F1 Evi F1

Baseline Models
BiLSTM [Yao et al., 2019] 45.12 50.95 - 44.73 51.06 -
BERTBASE [Wang et al., 2019] - 54.16 - - 53.20 -

Transformer-based Models
BERT-TSBASE [Wang et al., 2019] - 54.32 - - 53.92 -
HIN-BERTBASE [Tang et al., 2020] 54.29 56.31 - 53.70 55.60 -
CorefBERTBASE [Ye et al., 2020] 55.32 57.51 - 54.54 56.96 -
BERT-LSRBASE [Nan et al., 2020] 52.43 59.00 - 56.97 59.05 -
CorefRoBERTaLARGE [Ye et al., 2020] 57.84 59.93 - 57.68 59.91 -
RoBERTa-ATLOPLARGE[Zhou et al.,
2021]

61.32 63.18 - 61.39 63.40 -

Joint Frameworks
BERTBASE-Joint Training - 55.04 43.13 - - -
BiLSTM-Joint Training [Yao et al., 2019] - - - 44.60 51.10 43.8

Ours
E2GRE-BERTBASE 55.22 58.72 47.14 55.4 57.80 48.35
E2GRE-RoBERTaLARGE 59.55 62.91 51.11 60.29 62.51 50.51

Table 1: Main results (%) on the development and test set of DocRED. We report the official test score of the
best checkpoint on the development set. Our E2GRE framework is competitive with the top of the current DocRED
leaderboard, and is the best on the public leaderboard for evidence prediction.

distance) to encode the document. Head and tail
entities are then extracted for relation extraction.
2. BERT Two-Step. [Wang et al., 2019] introduced
finetuning BERT in a two-step process, where the
model first does predicts the NA relation, and then
predicts the rest of the relations.
3. HIN. [Tang et al., 2020] introduced using a hi-
erarchical inference network to help aggregate the
information from entity to sentence and further to
document-level in order to obtain semantic reason-
ing over an entire document.
4. CorefBERT. [Ye et al., 2020] introduced a way of
pretraining BERT in order to encourage the model
to look more at relations between the coreferences
of different noun phrases.
5. BERT+LSR. [Nan et al., 2020] introduced an
induced latent graph structure to help learn how
the information should flow between entities and
sentences within a document.
6. ATLOP. [Zhou et al., 2021] introduced adap-
tive thresholding and localized context pooling to
help alleviate multi-label and multi-entity issues in
document-level RE.

4.3 Main Results

Table 1 presents the main results of our proposed
E2GRE framework, compared with other published
results. From this table, we observe that:

• Our RE result is highly competitive with
the best published models using BERTBASE
model. Our proposed framework is also the
only one which solves the dual task of evi-
dence prediction, while taking advantage of
evidence sentences for relation extraction.

• By replacing BERTBASE with
RoBERTaLARGE, we obtain SOTA per-
formance on the DocRED leaderboard.
Our test result ranks top 3 on the public
leaderboard for relation extraction, and top 1
for evidence prediction 5, which shows that
our E2GRE is both effective and mutually
beneficial for relation extraction and evidence
prediction.

We see that our framework significantly boosts F1
scores on both relation extract and evidence pre-
diction compared to previous BERTBASE models.
Even though we do not have the state-of-the-art
performance on relation extraction, we are the first
paper to show that with appropriate joint training
of RE and evidence prediction we can effectively
improve performance for both. 6

Table 2 compares our proposed E2GRE with the
joint-training BERT baseline, as described in our

5At the time of the submission date
6The original DocRED paper [Yao et al., 2019] did not

report improvement of RE from joint training.

312

7

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

ACL-IJCNLP 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Models Multi-Mention Multi-Evidence

R P F1 R P F1

Relation Extraction

BERTBASE-Joint Training 52.42 43.88 47.77 51.20 37.55 43.33
E2GRE-BERTBASE 55.84 47.75 51.47 53.04 40.78 46.11

Evidence Predictions

BERTBASE-Joint Training 42.59 31.21 36.02 40.44 34.68 37.34
E2GRE-BERTBASE 42.04 37.78 39.79 38.34 40.83 39.54

Table 2: Analysis of how Evidence Prediction (EP)
impact on Relation Extraction (RE) in the joint train-
ing framework. Results on recall, precision and F1 are
shown on the dev set with BERT base model.

model section on evidence prediction. We examine
the comparison under two challenging scenarios
in the dev set: 1) entity pairs which consists of
multiple mentions in a document; and 2) entity
pairs with multiple evidence sentences for evidence
prediction.

From Table 2, we observe that: E2GRE shows
consistent improvement in terms of F1 on both set-
tings. This is due to the evidence guided attention
probabilities from the pretrained LM which helps
extract relevant contexts from the document. These
relevant contexts further benefit the relation extrac-
tion and thus result in significant F1 improvement
comparing to the baseline. In summary, our imple-
mentation of evidence prediction enhances the per-
formance of relation extraction, and the utilization
of a pretrained LM’s internal attention probability
is a more effective way for joint training.

4.4 Ablation Study
To explore the contribution of different components
in our E2GRE, we conduct an ablation study in
Table 3. We start off with our full E2GRE, and
consecutively remove the evidence-guided atten-
tion and entity-guided sequences. From this table,
we observe that: both entity-guided sequences and
evidence-guided attentions play a significant role in
improving F1 on relation extraction and evidence
prediction: entity-guided sequences improve RE
by about 2 F1 and evidence prediction by about
3.5 F1. Evidence-guided attentions improve RE by
about 1.7 F1 and evidence prediction by about 1
F1.

We also observe that entity-guided sequences
tend to help more on precision in both tasks of RE
and evidence prediction. Entity-guided sequences
help by grounding the model to focus on the correct
entities, allowing it to be more precise in its infor-
mation extraction. In contrast, evidence-guided at-
tentions tend to help more on recall in both tasks of

Figure 3: Plot showing the change in RE F1 and
EVI F1 from BERTBASE-Joint Training to our E2GRE-
BERTBASE model for each document in the dev set.

RE and evidence prediction.These attentions help
by giving more guidance to locate relevant contexts,
therefore increasing the recall of RE and evidence
prediction.

Model Recall Precision F1

Relation Extraction

E2GRE-BERTBASE 59.09 56.95 58.72
− Evidence-guided attentions 54.07 60.43 57.08
− Entity-guided inputs 55.06 55.02 55.04

Evidence Prediction

E2GRE-BERTBASE 44.83 49.75 47.14
− Evidence-guided attentions 43.10 49.66 46.15
− Entity-guided inputs 47.50 38.91 43.13

Table 3: Ablation study on evidence guided attentions
and entity guided input sequence components, by re-
moving attention extraction module in Figure 2, and
entity-guided input sequences consecutively on the dev
set.

4.5 Analysis on number of BERT layers

Table 4 shows the impact of the number of BERT
layers from which the attention probabilities are
extracted on evidence prediction and relation ex-
traction. We observe that using the last 3 layers is
better than using the last 6 layers. This is because
later layers in pretrained LMs tend to focus more
on semantic information, whereas earlier layers fo-
cus more on syntactic information [Clark et al.,
2019]. We hypothesize that the last 6 layers may
include noisy information related to syntax.

4.6 Analysis on Evidence/Relation
Interdependence

In Fig. 3, we plot the change in RE F1 and EVI
F1 between BERTBASE-Joint Training and our
E2GRE-BERTBASE . We observe that RE F1 and
EVI F1 are closely linked, with a coefficient of

313

8

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

ACL-IJCNLP 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Model Recall Precision F1

Relation Extraction

w/o attention 54.07 60.43 57.08
Last 3 Layers 59.09 56.95 58.72
Last 6 Layers 61.87 54.14 58.51

Evidence Prediction

w/o attention 43.10 49.05 46.15
Last 3 Layers 44.83 49.75 47.14
Last 6 Layers 46.34 48.19 46.90

Table 4: Analysis on the number of BERT layers for
relation extraction and evidence prediction. Results are
shown on dev set.

Model 10% 30% 50%

Relation Extraction

BERTBASE-Joint Training 40.00 47.12 52.88
E2GRE-BERTBASE 47.37 53.48 56.55

Evidence Prediction

BERTBASE-Joint Training 21.15 30.70 38.25
E2GRE-BERTBASE 36.27 41.92 44.82

Table 5: Analysis on how our E2GRE model performs
on 10%, 30%, and 50% data for relation extraction.

0.7923, showing that when EVI F1 improves, RE
F1 also improves. We observe that the centroid of
the points lies in the first quadrant (2.7%, 5.8%),
showing the overall improvement of our model.

Furthermore, we analyze the effectiveness of our
E2GRE model with smaller amounts of training
data. Table. 5 shows that our model achieves much
larger gains on RE F1 when training with 10, 30
and 50% of the data. E2GRE-BERTBASE is able
to achieve bigger improvements with less data, as
attention probabilities used for evidence prediction
provides a effective guidance for relation extrac-
tion.

5 Conclusion

In this paper we propose a simple, yet effective
joint training framework E2GRE (Entity and Ev-
idence Guided Relation Extraction) for relation
extraction and evidence prediction on DocRED. In
order to more effectively exploit pretrained LMs for
document-level RE, we first generate new entity-
guided sequences to feed into an LM, focusing
the model on the relevant areas in the document.
Then we utilize the internal attentions extracted
from the last few layers to help guide the LM to
focus on relevant sentences for evidence predic-
tion. Our E2GRE method improves performance
on both RE and evidence prediction, and achieves

the state-of-the-art performance on the DocRED
public leaderboard. We show that evidence pre-
diction is an important task that helps RE models
perform better.

References
Livio Baldini Soares, Nicholas FitzGerald, Jeffrey

Ling, and Tom Kwiatkowski. Matching the blanks:
Distributional similarity for relation learning. In
ACL, 2019.

Razvan Bunescu and Raymond Mooney. A shortest
path dependency kernel for relation extraction. In
EMNLP, Vancouver, British Columbia, Canada, Oc-
tober 2005.

Rui Cai, Xiaodong Zhang, and Houfeng Wang. Bidi-
rectional recurrent convolutional neural network for
relation classification. In ACL, Berlin, Germany, Au-
gust 2016.

Fenia Christopoulou, Makoto Miwa, and Sophia Ana-
niadou. Connecting the dots: Document-level neu-
ral relation extraction with edge-oriented graphs. In
EMNLP, Hong Kong, China, November 2019.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. What does BERT look at?
an analysis of BERT’s attention. In ACL, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL, 2019.

Markus Eberts and Adrian Ulges. Span-based joint
entity and relation extraction with transformer pre-
training. 09 2019.

Zhijiang Guo, Yan Zhang, and Wei Lu. Attention
guided graph convolutional networks for relation ex-
traction. In ACL, Florence, Italy, July 2019.

Xu Han, Pengfei Yu, Zhiyuan Liu, Maosong Sun,
and Peng Li. Hierarchical relation extraction with
coarse-to-fine grained attention. In EMNLP, Brus-
sels, Belgium, October-November 2018.

Robin Jia, Cliff Wong, and Hoifung Poon. Document-
level n-ary relation extraction with multiscale repre-
sentation learning. In NAACL, Minneapolis, Min-
nesota, June 2019.

Bo Li, Wei Ye, Zhonghao Sheng, Rui Xie, Xiangyu Xi,
and Shikun Zhang. Graph enhanced dual attention
network for document-level relation extraction. In
Proceedings of the 28th International Conference on
Computational Linguistics, 2020.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. Roberta:
A robustly optimized bert pretraining approach,
2019.

314

9

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

ACL-IJCNLP 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Guoshun Nan, Zhijiang Guo, Ivan Sekulić, and Wei
Lu. Reasoning with latent structure refinement for
document-level relation extraction. In ACL, 2020.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. Automatic differentiation in pytorch. 2017.

Chris Quirk and Hoifung Poon. Distant supervision for
relation extraction beyond the sentence boundary. In
ACL, Valencia, Spain, April 2017. ACL.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. Language mod-
els are unsupervised multitask learners. 2019.

Hengzhu Tang, Yanan Cao, Zhenyu Zhang, Jiangxia
Cao, Fang Fang, Shi Wang, and Pengfei Yin. Hin:
Hierarchical inference network for document-level
relation extraction. In PAKDD, 2020.

Bayu Distiawan Trisedya, Gerhard Weikum, Jianzhong
Qi, and Rui Zhang. Neural relation extraction for
knowledge base enrichment. In ACL, Florence, Italy,
July 2019. ACL.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you
need. NeurIPS, 2017.

David Wadden, Ulme Wennberg, Yi Luan, and Han-
naneh Hajishirzi. Entity, relation, and event extrac-
tion with contextualized span representations. In
EMNLP, Hong Kong, China, November 2019.

Linlin Wang, Zhu Cao, Gerard de Melo, and Zhiyuan
Liu. Relation classification via multi-level atten-
tion CNNs. In ACL, Berlin, Germany, August 2016.
ACL.

Hong Wang, Christfried Focke, Rob Sylvester, Nilesh
Mishra, and William Wang. Fine-tune bert for do-
cred with two-step process, 2019.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing, 2020.

Yuan Yao, Deming Ye, Peng Li, Xu Han, Yankai
Lin, Zhenghao Liu, Zhiyuan Liu, Lixin Huang, Jie
Zhou, and Maosong Sun. DocRED: A large-scale
document-level relation extraction dataset. In ACL,
2019.

Deming Ye, Yankai Lin, Jiaju Du, Zhenghao Liu,
Maosong Sun, and Zhiyuan Liu. Coreferential rea-
soning learning for language representation. ArXiv,
abs/2004.06870, 2020.

Tom Young, Erik Cambria Cambria, Iti Chaturvedi,
Minlie Huang, Hao Zhou, and Subham Biswas.
Augmenting end-to-end dialog systems with com-
monsense knowledge. In AAAI, 2018.

Mo Yu, Wenpeng Yin, Kazi Saidul Hasan, Cicero dos
Santos, Bing Xiang, and Bowen Zhou. Improved
neural relation detection for knowledge base ques-
tion answering. In ACL, July 2017.

Dmitry Zelenko, Chinatsu Aone, and Anthony
Richardella. Kernel methods for relation extrac-
tion. Journal of Machine Learning Research,
3:1083–1106, 08 2003.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,
and Jun Zhao. Relation classification via convolu-
tional deep neural network. In COLING.

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor An-
geli, and Christopher D. Manning. Position-aware
attention and supervised data improve slot filling. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2017), 2017.

Yi Zhao, Huaiyu Wan, Jianwei Gao, and Youfang Lin.
Improving relation classification by entity pair graph.
In Wee Sun Lee and Taiji Suzuki, editors, ACML,
volume 101, Nagoya, Japan, 2019.

Wenxuan Zhou, Kevin Huang, Tengyu Ma, and Jing
Huang. Document-level relation extraction with
adaptive thresholding and localized context pooling.
In AAAI, 2021.

315

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 316–321
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

Scaling Deep Contrastive Learning Batch Size
under Memory Limited Setup

Luyu Gao1, Yunyi Zhang2, Jiawei Han2, Jamie Callan1

1 Language Technologies Institute, Carnegie Mellon University
2 Department of Computer Science, University of Illinois Urbana-Champaign

1{luyug, callan}@cs.cmu.edu 2{yzhan238, hanj}@illionis.edu

Abstract

Contrastive learning has been applied suc-
cessfully to learn vector representations of
text. Previous research demonstrated that
learning high-quality representations benefits
from batch-wise contrastive loss with a large
number of negatives. In practice, the technique
of in-batch negative is used, where for each ex-
ample in a batch, other batch examples’ pos-
itives will be taken as its negatives, avoiding
encoding extra negatives. This, however, still
conditions each example’s loss on all batch
examples and requires fitting the entire large
batch into GPU memory. This paper intro-
duces a gradient caching technique that decou-
ples backpropagation between contrastive loss
and the encoder, removing encoder backward
pass data dependency along the batch dimen-
sion. As a result, gradients can be computed
for one subset of the batch at a time, leading to
almost constant memory usage. 1

1 Introduction

Contrastive learning learns to encode data into an
embedding space such that related data points have
closer representations and unrelated ones have fur-
ther apart ones. Recent works in NLP adopt deep
neural nets as encoders and use unsupervised con-
trastive learning on sentence representation (Giorgi
et al., 2020), text retrieval (Lee et al., 2019),
and language model pre-training tasks (Wu et al.,
2020). Supervised contrastive learning (Khosla
et al., 2020) has also been shown effective in train-
ing dense retrievers (Karpukhin et al., 2020; Qu
et al., 2020). These works typically use batch-wise
contrastive loss, sharing target texts as in-batch
negatives. With such a technique, previous works
have empirically shown that larger batches help
learn better representations. However, computing
loss and updating model parameters with respect

1Our code is at github.com/luyug/GradCache.

to a big batch require encoding all batch data and
storing all activation, so batch size is limited by to-
tal available GPU memory. This limits application
and research of contrastive learning methods under
memory limited setup, e.g. academia. For example,
Lee et al. (2019) pre-train a BERT (Devlin et al.,
2019) passage encoder with a batch size of 4096
while a high-end commercial GPU RTX 2080ti can
only fit a batch of 8. The gradient accumulation
technique, splitting a large batch into chunks and
summing gradients across several backwards, can-
not emulate a large batch as each smaller chunk
has fewer in-batch negatives.

In this paper, we present a simple technique
that thresholds peak memory usage for contrastive
learning to almost constant regardless of the batch
size. For deep contrastive learning, the memory
bottlenecks are at the deep neural network based
encoder. We observe that we can separate the back-
propagation process of contrastive loss into two
parts, from loss to representation, and from repre-
sentation to model parameter, with the latter being
independent across batch examples given the for-
mer, detailed in subsection 3.2. We then show in
subsection 3.3 that by separately pre-computing
the representations’ gradient and store them in a
cache, we can break the update of the encoder into
multiple sub-updates that can fit into the GPU mem-
ory. This pre-computation of gradients allows our
method to produce the exact same gradient update
as training with large batch. Experiments show that
with about 20% increase in runtime, our technique
enables a single consumer-grade GPU to reproduce
the state-of-the-art large batch trained models that
used to require multiple professional GPUs.

2 Related Work

Contrastive Learning First introduced for prob-
ablistic language modeling (Mnih and Teh, 2012),

316

Noise Contrastive Estimation (NCE) was later used
by Word2Vec (Mikolov et al., 2013) to learn word
embedding. Recent works use contrastive learning
to unsupervisedly pre-train (Lee et al., 2019; Chang
et al., 2020) as well as supervisedly train dense re-
triever (Karpukhin et al., 2020), where contrastive
loss is used to estimate retrieval probability over
the entire corpus. Inspired by SimCLR (Chen et al.,
2020), constrastive learning is used to learn better
sentence representation (Giorgi et al., 2020) and
pre-trained language model (Wu et al., 2020).

Deep Network Memory Reduction Many ex-
isting techniques deal with large and deep mod-
els. The gradient checkpoint method attempts to
emulate training deep networks by training shal-
lower layers and connecting them with gradient
checkpoints and re-computation (Chen et al., 2016).
Some methods also use reversible activation func-
tions, allowing internal activation in the network to
be recovered throughout back propagation (Gomez
et al., 2017; MacKay et al., 2018). However, their
effectiveness as part of contrastive encoders has
not been confirmed. Recent work also attempts
to remove the redundancy in optimizer tracked pa-
rameters on each GPU (Rajbhandari et al., 2020).
Compared with the aforementioned methods, our
method is designed for scaling over the batch size
dimension for contrastive learning.

3 Methodologies

In this section, we formally introduce the notations
for contrastive loss and analyze the difficulties of
using it on limited hardware. We then show how
we can use a Gradient Cache technique to factor
the loss so that large batch gradient update can be
broken into several sub-updates.

3.1 Preliminaries
Under a general formulation, given two classes of
data S, T , we want to learn encoders f and g for
each such that, given s ∈ S, t ∈ T , encoded repre-
sentations f(s) and g(t) are close if related and far
apart if not related by some distance measurement.
For large S and T and deep neural network based
f and g, direct training is not tractable, so a com-
mon approach is to use a contrastive loss: sample
anchors S ⊂ S and targets T ⊂ T as a training
batch, where each element si ∈ S has a related
element tri ∈ T as well as zero or more specially
sampled hard negatives. The rest of the random
samples in T will be used as in-batch negatives.

Define loss based on dot product as follows:

L = − 1

|S|
∑

si∈S
log

exp(f(si)
>g(tri)/τ)∑

tj∈T exp(f(si)ᵀg(tj)/τ)

(1)
where each summation term depends on the entire
set T and requires fitting all of them into memory.

We set temperature τ = 1 in the following dis-
cussion for simplicity as in general it only adds a
constant multiplier to the gradient.

3.2 Analysis of Computation
In this section, we give a mathematical analysis
of contrastive loss computation and its gradient.
We show that the back propagation process can be
divided into two parts, from loss to representation,
and from representation to encoder model. The
separation then enables us to devise a technique
that removes data dependency in encoder parameter
update. Suppose the function f is parameterized
with Θ and g is parameterized with Λ.

∂L
∂Θ

=
∑

si∈S

∂L
∂f(si)

∂f(si)

∂Θ
(2)

∂L
∂Λ

=
∑

tj∈T

∂L
∂g(tj)

∂g(tj)

∂Λ
(3)

As an extra notation, denote normalized similarity,

pij =
exp(f(si)

ᵀg(tj))∑
t∈T exp(f(si)ᵀg(t))

(4)

We note that the summation term for a particular si
or ti is a function of the batch, as,

∂L
∂f(si)

= − 1

|S|


g(tri)−

∑

tj∈T
pijg(tj)


 , (5)

∂L
∂g(tj)

= − 1

|S|


εj −

∑

si∈S
pijf(si)


 , (6)

where

εj =

{
f(sk) if ∃ k s.t. rk = j

0 otherwise
(7)

which prohibits the use of gradient accumulation.
We make two observations here:

• The partial derivative ∂f(si)
∂Θ depends only on

si and Θ while ∂g(tj)
∂Λ depends only on tj and

Λ; and

317

• Computing partial derivatives ∂L
∂f(si)

and
∂L

∂g(tj)
requires only encoded representations,

but not Θ or Λ.

These observations mean back propagation of
f(si) for data si can be run independently with
its own computation graph and activation if the
numerical value of the partial derivative ∂L

∂si
is

known. Meanwhile the derivation of ∂L
∂si

requires
only numerical values of two sets of representa-
tion vectors F = {f(s1), f(s2), .., f(s|S|)} and
G = {g(t1), g(t2), ..., g(t|T |)}. A similar argu-
ment holds true for g, where we can use represen-
tation vectors to compute ∂L

∂tj
and back propagate

for each g(tj) independently. In the next section,
we will describe how to scale up batch size by pre-
computing these representation vectors.

3.3 Gradient Cache Technique
Given a large batch that does not fit into the avail-
able GPU memory for training, we first divide it
into a set of sub-batches each of which can fit
into memory for gradient computation, denoted as
S = {Ŝ1, Ŝ2, ..},T = {T̂1, T̂2, ..}. The full-batch
gradient update is computed by the following steps.

Step1: Graph-less Forward Before gradient
computation, we first run an extra encoder forward
pass for each batch instance to get its representa-
tion. Importantly, this forward pass runs without
constructing the computation graph. We collect
and store all representations computed.

Step2: Representation Gradient Computation
and Caching We then compute the contrastive
loss for the batch based on the representation from
Step1 and have a corresponding computation graph
constructed. Despite the mathematical derivation,
automatic differentiation system is used in actual
implementation, which automatically supports vari-
ations of contrastive loss. A backward pass is
then run to populate gradients for each represen-
tation. Note that the encoder is not included in
this gradient computation. Let ui = ∂L

∂f(si)
and

vi = ∂L
∂g(ti)

, we take these gradient tensors and
store them as a Representation Gradient Cache,
[u1,u2, ..,v1,v2, ..].

Step3: Sub-batch Gradient Accumulation We
run encoder forward one sub-batch at a time to
compute representations and build the correspond-
ing computation graph. We take the sub-batch’s
representation gradients from the cache and run

back propagation through the encoder. Gradients
are accumulated for encoder parameters across all
sub-batches. Effectively for f we have,

∂L
∂Θ

=
∑

Ŝj∈S

∑

si∈Ŝj

∂L
∂f(si)

∂f(si)

∂Θ

=
∑

Ŝj∈S

∑

si∈Ŝj

ui
∂f(si)

∂Θ

(8)

where the outer summation enumerates each sub-
batch and the entire internal summation corre-
sponds to one step of accumulation. Similarly, for
g, gradients accumulate based on,

∂L
∂Λ

=
∑

T̂j∈T

∑

ti∈T̂j

vi
∂g(ti)

∂Λ
(9)

Here we can see the equivalence with direct large
batch update by combining the two summations.

Step4: Optimization When all sub-batches are
processed, we can step the optimizer to update
model parameters as if the full batch is processed
in a single forward-backward pass.

Compared to directly updating with the full
batch, which requires memory linear to the number
of examples, our method fixes the number of exam-
ples in each encoder gradient computation to be the
size of sub-batch and therefore requires constant
memory for encoder forward-backward pass. The
extra data pieces introduced by our method that re-
main persistent across steps are the representations
and their corresponding gradients with the former
turned into the latter after representation gradient
computation. Consequently, in a general case with
data from S and T each represented with d dimen-
sion vectors, we only need to store (|S|d + |T |d)
floating points in the cache on top of the computa-
tion graph. To remind our readers, this is several
orders smaller than million-size model parameters.

3.4 Multi-GPU Training
When training on multiple GPUs, we need to com-
pute the gradients with all examples across all
GPUs. This requires a single additional cross GPU
communication after Step1 when all representa-
tions are computed. We use an all-gather opera-
tion to make all representations available on all
GPUs. Denote Fn, Gn representations on n-th
GPU and a total of N device. Step2 runs with
gathered representations F all = F 1 ∪ .. ∪ FN and
Gall = G1 ∪ ..∪GN . While F all and Gall are used

318

Method Top-5 Top-20 Top-100

DPR - 78.4 85.4

Sequential 59.3 71.9 80.9
Accumulation 64.3 77.2 84.9

Cache 68.6 79.3 86.0
- BSZ = 512 68.3 79.9 86.6

Table 1: Retrieval: We compare top-5/20/100 hit accu-
racy of small batch update (Sequential), accumulated
small batch (Accumulation) and gradient cache (Cache)
systems with DPR reference.

to compute loss, the n-th GPU only computes gra-
dient of its local representations Fn, Gn and stores
them into cache. No communication happens in
Step3, when each GPU independently computes
gradient for local representations. Step4 will then
perform gradient reduction across GPUs as with
standard parallel training.

4 Experiments

To examine the reliability and computation cost of
our method, we implement our method into dense
passage retriever (DPR; Karpukhin et al. (2020))2.
We use gradient cache to compute DPR’s super-
vised contrastive loss on a single GPU. Following
DPR paper, we measure top hit accuracy on the Nat-
ural Question Dataset (Kwiatkowski et al., 2019)
for different methods. We then examine the train-
ing speed of various batch sizes.

4.1 Retrieval Accuracy

Compared Systems 1) DPR: the reference num-
ber taken from the original paper trained on 8
GPUs, 2) Sequential: update with max batch size
that fits into 1 GPU, 3) Accumulation: similar
to Sequential but accumulate gradients and up-
date until number of examples matches DPR setup,
4) Cache: training with DPR setup using our gra-
dient cache on 1 GPU. We attempted to run with
gradient checkpointing but found it cannot scale to
standard DPR batch size on our hardware.

Implementations All runs start with the same
random seed and follow DPR training hyperparam-
eters except batch size. Cache uses a batch size of
128 same as DPR and runs with a sub-batch size
of 16 for questions and 8 for passages. We also
run Cache with a batch size of 512 (BSZ=512) to

2Our implementation is at: https://github.com/
luyug/GC-DPR

Examples / Update

Ti
m

e
/ U

pd
at

e
(s

ec
on

ds
)

0

50

100

150

1000 2000 3000 4000

Cache Accumulation

Figure 1: We compare training speed versus the num-
ber of examples per update for gradient cache (Cache)
and gradient accumulation (Accumulation).

examine the behavior of even larger batches. Se-
quential uses a batch size of 8, the largest that fits
into memory. Accumulation will accumulate 16 of
size-8 batches. Each question is paired with a posi-
tive and a BM25 negative passage. All experiments
use a single RTX 2080ti.

Results Accuracy results are shown in Table 1.
We observe that Cache performs better than DPR
reference due to randomness in training. Further in-
creasing batch size to 512 can bring in some advan-
tage at top 20/100. Accumulation and Sequential
results confirm the importance of a bigger batch
and more negatives. For Accumulation which tries
to match the batch size but has fewer negatives,
we see a drop in performance which is larger to-
wards the top. In the sequential case, a smaller
batch incurs higher variance, and the performance
further drops. In summary, our Cache method im-
proves over standard methods and matches the per-
formance of large batch training.

4.2 Training Speed

In Figure 1, we compare update speed of gradient
cache and accumulation with per update example
number of {64, 128, 256, 512, 1024, 2048, 4096}.
We observe gradient cache method can steadily
scale up to larger batch update and uses 20% more
time for representation pre-computation. This extra
cost enables it to create an update of a much larger
batch critical for the best performance, as shown
by previous experiments and many early works.
While the original DPR reports a training time of
roughly one day on 8 V100 GPUs, in practice, with
improved data loading, our gradient cache code can
train a dense retriever in a practical 31 hours on
a single RTX2080ti. We also find gradient check-
point only runs up to batch of 64 and consumes

319

twice the amount of time than accumulation3.

5 Extend to Deep Distance Function

Previous discussion assumes a simple parameter-
less dot product similarity. In general it can also be
deep distance function Φ richly parameterized by
Ω, formally,

dij = d(si, tj) = Φ(f(si), g(tj)) (10)

This can still scale by introducing an extra Distance
Gradient Cache. In the first forward we collect
all representations as well as all distances. We
compute loss with dijs and back propagate to get
wij = ∂L

∂dij
, and store them in Distance Gradient

Cache, [w00, w01, .., w10, ..]. We can then update
Ω in a sub-batch manner,

∂L
∂Ω

=
∑

Ŝ∈S

∑

T̂∈T

∑

si∈Ŝ

∑

tj∈T̂
wij

∂Φ(f(si), g(tj))

∂Ω

(11)
Additionally, we simultaneously compute with the
constructed computation graph ∂dij

∂f(si)
and ∂dij

∂g(tj)

and accumulate across batches,

ui =
∂L

∂f(si)
=

∑

j

wij
∂dij
∂f(si)

(12)

and,

vj =
∂L

∂g(tj)
=

∑

i

wij
∂dij
∂g(tj)

(13)

with which we can build up the Representation
Gradient Cache. When all representations’ gra-
dients are computed and stored, encoder gradi-
ent can be computed with Step3 described in sub-
section 3.3. In philosophy this method links up
two caches. Note this covers early interaction
f(s) = s, g(t) = t as a special case.

6 Conclusion

In this paper, we introduce a gradient cache tech-
nique that breaks GPU memory limitations for
large batch contrastive learning. We propose to con-
struct a representation gradient cache that removes
in-batch data dependency in encoder optimization.
Our method produces the exact same gradient up-
date as training with a large batch. We show the

3We used the gradient checkpoint implemented in Hug-
gingface transformers package

method is efficient and capable of preserving accu-
racy on resource-limited hardware. We believe a
critical contribution of our work is providing a large
population in the NLP community with access to
batch-wise contrastive learning. While many previ-
ous works come from people with industry-grade
hardware, researchers with limited hardware can
now use our technique to reproduce state-of-the-art
models and further advance the research without
being constrained by available GPU memory.

Acknowledgments

The authors would like to thank Zhuyun Dai and
Chenyan Xiong for comments on the paper, and
the anonymous reviewers for their reviews.

320

References
Wei-Cheng Chang, Felix X. Yu, Yin-Wen Chang, Yim-

ing Yang, and Sanjiv Kumar. 2020. Pre-training
tasks for embedding-based large-scale retrieval. In
8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

T. Chen, B. Xu, C. Zhang, and Carlos Guestrin. 2016.
Training deep nets with sublinear memory cost.
ArXiv, abs/1604.06174.

Ting Chen, Simon Kornblith, Mohammad Norouzi,
and Geoffrey E. Hinton. 2020. A simple frame-
work for contrastive learning of visual representa-
tions. ArXiv, abs/2002.05709.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

John Michael Giorgi, Osvald Nitski, Gary D Bader, and
Bo Wang. 2020. Declutr: Deep contrastive learn-
ing for unsupervised textual representations. ArXiv,
abs/2006.03659.

Aidan N. Gomez, Mengye Ren, R. Urtasun, and
Roger B. Grosse. 2017. The reversible residual net-
work: Backpropagation without storing activations.
In NIPS.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 6769–
6781, Online. Association for Computational Lin-
guistics.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. 2020.
Supervised contrastive learning. arXiv preprint
arXiv:2004.11362.

T. Kwiatkowski, J. Palomaki, Olivia Redfield, Michael
Collins, Ankur P. Parikh, C. Alberti, D. Epstein,
Illia Polosukhin, J. Devlin, Kenton Lee, Kristina
Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei
Chang, Andrew M. Dai, Jakob Uszkoreit, Q. Le, and
Slav Petrov. 2019. Natural questions: A benchmark
for question answering research. Transactions of the
Association for Computational Linguistics, 7:453–
466.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In Proceedings of the

57th Annual Meeting of the Association for Com-
putational Linguistics, pages 6086–6096, Florence,
Italy. Association for Computational Linguistics.

Matthew MacKay, Paul Vicol, Jimmy Ba, and Roger B.
Grosse. 2018. Reversible recurrent neural networks.
In NeurIPS.

Tomas Mikolov, Ilya Sutskever, Kai Chen, G. Corrado,
and J. Dean. 2013. Distributed representations of
words and phrases and their compositionality. In
NIPS.

A. Mnih and Y. Teh. 2012. A fast and simple algorithm
for training neural probabilistic language models. In
ICML.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang
Ren, Xin Zhao, Daxiang Dong, Hua Wu, and
Haifeng Wang. 2020. Rocketqa: An optimized train-
ing approach to dense passage retrieval for open-
domain question answering.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: Memory optimiza-
tions toward training trillion parameter models.

Z. Wu, Sinong Wang, Jiatao Gu, Madian Khabsa, Fei
Sun, and Hao Ma. 2020. Clear: Contrastive learning
for sentence representation. ArXiv, abs/2012.15466.

321

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 322–330
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

Direction is what you need: Improving Word Embedding Compression in
Large Language Models

Klaudia Bałazy†*, Mohammadreza Banaei‡*, Rémi Lebret‡, Jacek Tabor† and Karl Aberer‡

†Jagiellonian University
klaudia.balazy@doctoral.uj.edu.pl,jacek.tabor@uj.edu.pl

‡EPFL
[mohammadreza.banaei,remi.lebret,karl.aberer]@epfl.ch

Abstract

The adoption of Transformer-based models
in natural language processing (NLP) has led
to great success using a massive number of
parameters. However, due to deployment
constraints in edge devices, there has been
a rising interest in the compression of these
models to improve their inference time and
memory footprint. This paper presents a
novel loss objective to compress token em-
beddings in the Transformer-based models by
leveraging an AutoEncoder architecture. More
specifically, we emphasize the importance of
the direction of compressed embeddings with
respect to original uncompressed embeddings.
The proposed method is task-agnostic and
does not require further language model-
ing pre-training. Our method significantly
outperforms the commonly used SVD-based
matrix-factorization approach in terms of
initial language model Perplexity. Moreover,
we evaluate our proposed approach over
SQuAD v1.1 dataset and several downstream
tasks from the GLUE benchmark, where we
also outperform the baseline in most scenarios.
Our code is public.1.

1 Introduction

Pretraining deep Transformer models (Vaswani
et al., 2017) with language modeling and
fine-tuning these models over downstream tasks
have led to great success in recent years (Devlin
et al., 2018; Liu et al., 2019; Yang et al.,
2019), and even enabled researchers to design
models that outperform human baselines in the
GLUE benchmark (Wang et al., 2018). Although
these models are empirically powerful in many

∗Equal contribution
1https://github.com/

MohammadrezaBanaei/orientation_based_
embedding_compression

Figure 1: This figure presents a two-dimensional
visualization of a token embedding vector v with its
two approximations: v ′ and v ′′. Vector v ′ has a larger
Euclidean distance error than v ′′, but its direction is
more similar to the reference vector. Our experiments
show that v ′ generally provides a better approximation
of the original token compared to v ′′.

natural language understanding (NLU) tasks, they
often require a massive number of parameters,
making them hard to use for memory-constrained
applications (e.g., edge devices). Therefore, there
have been efforts to compress BERT-like models
while preserving comparable performance with the
original model.

Many of these compression methods are based
on knowledge distillation (Hinton et al., 2015) to
help the compressed model (student) to perform
close to the original model in different NLU
tasks. However, these approaches often need high
computation resources due to e.g., the necessity
of retraining the expensive language modeling on
a huge corpus (Sanh et al., 2019) or the use of
expensive augmentation techniques to make the
distillation effectively work (Jiao et al., 2019).
Moreover, compression techniques that rely on
training/fine-tuning language models are becoming
less feasible due to its ever-increasing cost for
current state-of-the-art architectures with hundreds

322

of millions of parameters (He et al., 2020; Raffel
et al., 2019; Brown et al., 2020).

More recently, there have been efforts to
compress Transformer-based models for more
resource-constrained scenarios (Mao et al., 2020)
by using offline methods, such as matrix factoriza-
tion (Winata et al., 2019; Lan et al., 2019; Wang
et al., 2019), weight pruning (Li et al., 2016; Han
et al., 2015), and also weight quantization (Zhou
et al., 2016; Hubara et al., 2016).

This paper focuses on token embedding matrix
compression due to being one of the largest
matrices in BERT-based architectures. We
specifically question the effectiveness of current
low-rank matrix factorization methods in recent
literature (Lan et al., 2019; Wang et al., 2019)
by comparing them with the performance of a
linear AutoEncoder over different compression
ratios2. We define a new loss objective which
is not only dependent on the commonly used
Mean Absolute Error (MAE) or Mean Squared
Error (MSE) loss between input embeddings and
AutoEncoder reconstruction, but is also sensitive to
the noise in reconstructed embeddings "direction"
(measured by cosine distance). We present the
intuition behind the importance of embedding
vector direction in the Figure 1. In the following
sections we show that cosine distance indeed plays
a more critical role than MAE/MSE (Figure 3) as
measured by the Perplexity of the entire model in
language modeling.

In Section 4, we demonstrate that our com-
pression algorithm is superior or competitive to
the Singular Value Decomposition (SVD) baseline
over several natural language understanding tasks
from GLUE (Wang et al., 2018) benchmark, as
well as the SQuAD dataset (Rajpurkar et al., 2016)
for question answering. We also compare our
performance with the SVD-based compression
over different compression ratios, and specifically
show that our model performs consistently better
in higher compression ratios.

Our contribution can be summarized as follows:

• We demonstrate the importance of direction
(measured by cosine distance) in token
embeddings compression.

• We leverage the AutoEncoder architecture to
explore various multi-objective optimization

2Number of parameters in the original embedding matrix,
over the sum of the parameters in factorized matrices.

functions.

• We outperform the SVD-based baseline
in terms of Perplexity and over various
downstream tasks.

2 Related work

The current mostly used compression methods can
be roughly categorized into four classes, namely
knowledge distillation (Hinton et al., 2015), weight
pruning (Li et al., 2016; Han et al., 2015), matrix
factorization (Lan et al., 2019; Wang et al., 2019;
Mao et al., 2020) and weight quantization (Zhou
et al., 2016; Hubara et al., 2016). This section
focuses on matrix factorization-based methods
that are currently used for token embedding
compression in the literature.

2.1 Background: Low-rank matrix
factorization

This section describes the baseline method that
we are comparing our approach with throughout
the paper. Let A be n × m embedding matrix
representing m-dimensional embedding for each
n different input tokens. The truncated version of
the matrix factorization aims to find a low-rank
approximation Ã of input matrix A (Halko et al.,
2011):

Ã = BC , (1)

where B is the size of n ×k and C is the size of
k ×m. When the inner dimension k is smaller
than mi n(n,m), then the approximation is less
expensive for storing it and performing further
computations. The objective of this approximation
is:

L2(A, Ã) =
∥∥A− Ã

∥∥
2 , (2)

where ‖·‖2 denotes the l2 operator norm. In this
paper, we use the SVD method as a low-rank matrix
factorization baseline to compare our approach.

2.2 Matrix factorization for token
embeddings compression

Lan et al. (2019) proposed to use matrix
factorization to limit the number of parameters
in the token embedding matrix, which also
separates the Transformer hidden layer dimension
from the size of vocabulary embedding. It is
especially important as token embeddings are
supposed to be context-independent, but hidden
layer representation should be a context-dependent

323

representation and hence needs more parameters.
Moreover, reducing the vocabulary embedding
dimension reduces the chance of overfitting, as
many of the tokens are rarely used in downstream
tasks.

There have been more recent efforts that use
matrix factorization idea to compress different
matrices in the Transformer architecture (Wang
et al., 2019; Mao et al., 2020). For instance,
Mao et al. (2020) proposed an iterative hybrid
approach that uses matrix factorization together
with weight pruning (while distilling knowledge
from a teacher model) until reaching the final
desired compression ratio. Lioutas et al. (2019)
also proposed using a non-linear AutoEncoder
model with knowledge distillation to compress
word embeddings. However, we later demonstrate
that only adding non-linearity indeed results in a
minor improvement to the resulting compressed
language model quality.

In this paper, we specifically focus on the
effectiveness of SVD for compression of the
token embedding matrix and show that Root
Mean Square Error (RMSE) is not an optimal
function to minimize the zero-shot Perplexity of
the language model, which is the main criterion
when language models are trained. We propose a
new loss objective for linear matrix factorization
using AutoEncoder to achieve a task-agnostic
compressed language model with reasonable
Perplexity without further fine-tuning the language
model. In this work, we mainly investigate the
effectiveness of SVD, and other complementary
methods such as knowledge distillation can be used
later to further boost the performance.

3 Model Description

Although SVD matrix-factorization is one of the
most popular methods for matrix compression, we
believe it is not an optimal method for compressing
token embeddings in BERT-like architectures. The
objective of SVD is to minimize the l2 norm
between the original matrix and the reconstructed
one; however, focusing on l2 norm optimization
prioritizes the reduction of larger errors, and it may
end up ignoring more minor vector differences.
It is also sensitive to the influence of outliers.
The most crucial reason for the l2 norm not
being the best choice is that it only considers the
distance between the original and reconstructed
token vector, and it does not necessarily pay

attention to the orientation difference between
them. In section 4, we demonstrate that vectors
representing language tokens are more sensitive to
noise in their direction rather than to changes in
Euclidean distance from the reference vector. We
also discuss the motivation behind it further in this
section.

In order to mitigate the problem of focusing
only on the largest errors between two vectors, we
propose replacing the l2 norm objective with the
l1 norm raised to the power of α:

Lα1 (A, Ã) =
∥∥A− Ã

∥∥α
1 , (3)

where A denotes the original embedding matrix,
Ã denotes the reconstructed embedding matrix,
and ‖·‖1 denotes the l1 operator norm. Due to
the flexibility in our defined loss objective, by
decreasing the α parameter, we can control how
much we want to focus on smaller error differences.
We may set the α parameter to be a constant value,
or linearly decrease it during the training. We
denote linearly decreasing strategy for α as:

[t1, t2], (4)

where t1 is a starting value of α and t2 is the
target value to be reached at the end. The intuition
behind using a decreasing α is to sequentially make
the reconstruction harder for the model during
training (as when the α becomes smaller, small
reconstruction errors will also be magnified).

Since we believe that enforcing direction simi-
larity between the original and the reconstructed
embedding vectors is crucial for better language
model performance, we introduce the second loss
objective component, namely, cosine distance.
Cosine distance can be interpreted as a measure
of the difference in orientation of two vectors.
This measure has been widely used in NLP for
finding similar words (Mikolov et al., 2013),
document clustering (Muflikhah and Baharudin,
2009), detecting plagiarism (Foltỳnek et al., 2019),
and many more. The goal of introducing cosine
distance loss as a part of our objective is to enforce
direction similarity of each pair of vectors from the
original and reconstructed matrix.

Taking into consideration all points above,
we propose to replace the l2 norm objective
with a new multi-objective function consisting of
l1 norm (raised to the power of α, where α is
a hyper-parameter that can be changed during

324

Figure 2: Overview of our AutoEncoder (ours) approach for BERT-like embedding matrix compression.

training) and cosine distance:

Φα,β(A, Ã) = Lα1 (A, Ã)+β∗C D(A, Ã), (5)

where A denotes the original embedding matrix,
Ã denotes the reconstructed embedding matrix, and
C D(A, Ã) represents the mean cosine distance of
all embedding vector pairs. It is worth noting that it
is the combination of these two functions that gives
a powerful tool which allows both to optimize the
distance and direction of the reconstructed vectors
to the reference. Focusing only on one of these
functions may lead to suboptimal results. For
comparison, we also define another multi-objective
function which is the combination of l2 norm with
cosine distance loss:

Ψβ(A, Ã) = L2(A, Ã)+β∗C D(A, Ã). (6)

In addition to the new loss function, we propose
leveraging Auto-Encoder architecture for Φα,β and
Ψβ loss optimization (Equation 5 and 6). We use
a simple AutoEncoder consisting of a one-layer
Encoder/Decoder without any activation function
in order to have a fair comparison with the SVD
baseline. Using Auto-Encoder enables efficient

multi-objective optimization, but it also allows to
select the appropriate level of model complexity
when needed. At the end of the Auto-Encoder
training, we extract an approximation of the
original matrix, as shown in Figure 2. We substitute
the original embedding matrix with a new module
consisting of latent representation of vocabulary
tokens along with the Decoder module.

4 Results

In this section, we evaluate our approach, which
is based on using AutoEncoder model with a
multi-objective loss function that incorporates
cosine distance with l1 or l2 norm (Equation 5
and Equation 6) on the task of BERT-like token
embedding matrix compression. We compare our
results versus the commonly used randomized SVD
method (Halko et al., 2011) to perform low-rank
matrix factorization. We have implemented our
token embeddings compression with the PyTorch
backend (Paszke et al., 2019) and as an extension
of Huggingface’s Transformers library (Wolf
et al., 2019), enabling researchers to apply our
compression method in most of the existing
Transformer architectures. It is worth noting that

325

0 10 25 50 75 150 400 750
650

700

800

900

1,000

1,100

1,200

1,300

1,400
1,500

Cosine distance coefficient (β).

Pe
rp

le
xi

ty
Perplexity (compression ratio=2.5)

SVD
Ψβ

Φ1,β
Φ[1.0,0.6],β
Φ[2.0,0.6],β

0 10 25 50 75 150 400 750

1,800

2,000

3,000

4,000

5,000

6,000

Cosine distance coefficient (β).

Pe
rp

le
xi

ty

Perplexity (5.0 compression ratio)

SVD
Ψβ

Φ1,β
Φ[1.0,0.6],β
Φ[2.0,0.6],β

0 10 25 50 75 150 400 750

4,500

5,000

6,000

7,000

8,000

9,000

10,000

12,000

14,000

Cosine distance coefficient (β).

Pe
rp

le
xi

ty

Perplexity (10.0 compression ratio)

SVD
Ψβ

Φ1,β
Φ[1.0,0.6],β
Φ[2.0,0.6],β

Figure 3: The impact of the β coefficient on Perplexity metric (lower is better) in the linear AutoEncoder loss
functions: Φα,β (Equation 5) and Ψβ (Equation 6). In all configurations we select a final model based on the
best Perplexity achieved during training. The term [t1, t2] indicates linearly decreasing α parameter (Equation 4).
Setting β = 0 represents not including cosine distance component in the loss function. We may observe that not
including cosine distance in the loss function as well as making it a too dominant component (very big β) is not
optimal for achieving good Perplexity. We also present the best Perplexity achieved by the baseline SVD method
for three compression ratios: 2.5, 5.0, 10.0. Our approach significantly outperforms the baseline in the studied
scenarios.

the offline training of our compression method on
BERT-base (Devlin et al., 2018) token embedding
matrix takes only few minutes on a single GPU
device.

4.1 Experiments

In this paper, we perform our experiments over
BERT-base model, but the general idea can be
applied to the vocabulary embeddings of any
other similar transformer-based architecture. The
BERT-Base token embedding matrix consists
of more than 23 Million parameters which is
around 21% of all parameters in the model.

We evaluate the quality of our final compressed
embeddings on the masked (Devlin et al., 2018)
language modeling task (using WikiText-103
test dataset), GLUE benchmark (Wang et al.,
2018) downstream tasks and SQuAD v1.1 dataset
(Rajpurkar et al., 2016). We also analyze results
on other metrics, namely RMSE, MAE and Cosine
Distance.

In Figure 3, we compare the Perplexity score
achieved by SVD3 method versus the results

3For SVD training, we select an iteration that minimizes
Perplexity over our language modeling dataset.

326

achieved by a linear AutoEncoder model with
different loss configurations, when compressing
BERT token embeddings. We specifically examine
the importance of cosine distance coefficient (β)
in our studied loss functions over three different
compression ratios: 2.5, 5, 10. The loss
objective Φt ,β (Equation 5) denotes constant
(during the entire training) α parameter (equals
to t) and Φ[t1,t2],β denotes linearly decreasing α pa-
rameter (from t1 to t2). We present results
when α = 0, which represents combination of
l1 norm with cosine distance, and also when α

linearly decreases from 1.0 or from 2.0 to 0.6
([1.0,0.6] and [2.0,0.6] respectively). These values
have been selected experimentally.

Table 1 presents more metrics to compare SVD
method with our AutoEncoder-based approach.
We show the results of the model with the
best performing objective function (in terms
of Perplexity) for a given compression ratio.
Additionally, we examine the effect of adding
non-linear activation function to this selected
AutoEncoder model, where it can be seen that the
improvements due to addition of non-linearity is
marginal.

We further validate the quality of our com-
pressed token embeddings by inserting it into
the BERT-base architecture and fine-tuning the
model on different downstream tasks from the
GLUE benchmark (Wang et al., 2018) and on
the SQuAD v1.1 (Rajpurkar et al., 2016) dataset.
Table 2 presents an extensive comparison between
our best (in terms of perplexity) linear AE and
the SVD baseline on eight different downstream
tasks and over different compression ratios. More
specifically, we can see that our proposed method
is superior or competitive to the SVD baseline and
performs relatively better (compared to baseline)
on higher compression ratios. The original BERT
(without compression) performance is also added
for a better comparison of studied scenarios.

Figure 4 presents learning curves for three
selected NLU downstream tasks: SST-2 (Socher
et al., 2013), MRPC (Dolan and Brockett, 2005)
and SQuAD 1.1 (Rajpurkar et al., 2016). We
show results for the compression ratio of 10,
as we observed more significant gain for higher
compression ratios.

4.2 Discussion

The experiments presented in Figure 3 confirm
our claim that the l2 norm alone is not an optimal
measure for evaluating the quality of reconstructed
token embeddings in a Transformer-based archi-
tecture. We observe that adding cosine distance
objective function correlates positively with a
better Perplexity metric (Figure 3) and also with
higher performance on downstream tasks (Table 2).
Figure 3 demonstrates that the best results are
achieved when the cosine distance coefficient
β is a dominant component of the loss function.
However, if the β factor becomes too large,
the quality of the solution decreases. Hence,
we conclude that taking into account both the
commonly used L1/L2 distance and focusing on
the direction of the token vectors are indispensable.
We show that combining the l2 or l1 norm
with the cosine distance into one multi-objective
loss function and optimizing it by AutoEncoder
model outperforms the baseline SVD Perplexity
for all tested compression ratios (Figure 3).
Our experiments show that depending on the
compression ratio l2 or l1 norm may be a better
choice. However, they are conclusive that adding
cosine distance is the key factor.

Moreover, our approach outperforms SVD in
terms of accuracy for most GLUE benchmark
downstream tasks and on SQuAD v1.1 (Table 2).
We also observe that for higher compression ratios,
our approach outperforms the SVD approach
more significantly. More importantly, Figure 4
demonstrates that using our linear AutoEncoder
compressed module in the BERT model generally
converges faster than SVD-based compressed
module, which is especially important in few-shot
learning scenarios.

Looking at the results presented in Table 1, we
may also reflect on the importance of preserving
the token vector orientation and its effect on
Perplexity. More specifically, the mean cosine
distance measures for SVD and our approach are
pretty close, but its effect on Perplexity metric
is significant. Our approach indeed provides a
compressed submodule with a much better (lower)
Perplexity.

We also show that only adding a non-linear
activation function to the studied AutoEncoder
model has a little effect on improving Perplexity.
Table 1 presents the effect of modifying the
original linear AutoEncoder architecture by adding

327

CR (#Params) Architecture Objective RMSE Cosine Distance MAE Perplexity

2.5 (~9.38M) SVD l2 0.02233 0.10300 0.01734 1130
Linear AE (+ ELU) Φ[2.0,0.6],75 0.02427 (0.02431) 0.1024 (0.1028) 0.01896 (0.01902) 669.8 (664.0)

5.0 (~4.69M) SVD l2 0.02848 0.17490 0.02216 5035
Linear AE (+ ELU) Ψ400 0.03101 (0.03061) 0.17390 (0.17410) 0.02433 (0.02401) 1776 (1730)

10.0 (~2.34M) SVD l2 0.03215 0.23050 0.02506 13501
Linear AE (+ ELU) Φ1,400 0.03680 (0.03707) 0.22900 (0.22910) 0.02909 (0.02934) 4478 (4387)

Table 1: Additional metrics for comparing the performance of SVD baseline and the best performing linear
AutoEncoder model (we select the configuration that minimizes Perplexity, as presented in Figure 3) for different
compression ratios (CR). For each AutoEncoder model, we also present (in parentheses) the results after adding
non-linearity. Bold values indicate best results between SVD and linear AutoEncoder in each compression ratio.

CR Architecture SST-2
(Acc)

MRPC
(F1/Acc)

STS-B
(Pearson/Spearman

correlation)

QQP
(Acc/F1)

MNLI
(Acc)

QNLI
(Acc)

RTE
(Acc)

SQuAD v1.1
(F1/EM)

- Original BERT 91.74 88.12/83.58 88.71/88.55 90.67/87.43 84.04 90.96 65.34 81.97/73.42

2.5 SVD 89.22 82.37/75.25 86.27/85.72 89.88/86.39 82.83 89.46 62.92 80.75/72.34
Linear AE 90.83 86.64/80.88 87.35/86.88 90.04/86.72 83.13 89.16 62.58 81.29/72.85

5.0 SVD 87.04 83.95/77.70 84.88/84.2 89.79/86.45 81.39 87.33 59.21 80.37/71.67
Linear AE 88.07 86.67/81.37 85.9/85.43 89.2/85.66 81.11 87.53 64.26 80.53/72.00

10.0 SVD 82.0 83.95/72.55 80.93/80.67 87.6/83.57 76.59 83.51 54.51 74.15/65.0
Linear AE 84.29 84.06/77.7 84.7/84.16 88.32/84.38 79.26 86.09 58.48 75.70/66.75

Table 2: Performance comparison of the best SVD and the best linear AutoEncoder objective configuration on
several NLU tasks from GLUE benchmark (Wang et al., 2018) and for SQuAD v1.1 in different compression
ratios (CR).

0 1 2 3
60

70

80

Epochs

A
cc

ur
ac

y

SST-2

SV D
AE

0 2 4

70

75

Epochs

A
cc

ur
ac

y

MRPC

SV D
AE

0 1 2 3

40

60

80

Epochs

F1

SQuAD v1.1

SV D
AE

Figure 4: Comparing the learning curves of the best SVD baseline and the best-selected configuration of the
AutoEncoder model for SST-2 (Socher et al., 2013), MRPC (Dolan and Brockett, 2005), and SQuAD v1.1
(Rajpurkar et al., 2016) during fine-tuning for compression ratio=10.0 .

ELU (Clevert et al., 2015) as this activation
shows a better impact on Perplexity than other
activations in our experiments. It can be seen
that the improvements in Perplexity due to
the addition of non-linearities are marginal (as
previously observed by Lioutas et al. (2019) in
a distillation-based approach for token embeddings
compression). Hence, we focused only on the

linear AutoEncoder in all our downstream tasks
experiments.

5 Conclusion

In this work, we propose a simple linear AutoEn-
coder model with a multi-objective loss function
for BERT-like token embeddings compression.
We emphasize the importance of the direction

328

component (measured by the cosine distance
between the original and the reconstructed token
embeddings) in the compression objective function.
We challenge the commonly used SVD-based
matrix-factorization method and show that our
approach achieves significantly better zero-shot
language model Perplexity. Moreover, we show
that BERT-like models with our compressed token
embeddings submodule converge much faster and
outperform the SVD baseline on SQuAD v1.1 and
on GLUE benchmark tasks in most scenarios.

References
Tom B Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp
Hochreiter. 2015. Fast and accurate deep network
learning by exponential linear units (elus). arXiv
preprint arXiv:1511.07289.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training
of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805.

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Tomáš Foltỳnek, Norman Meuschke, and Bela Gipp.
2019. Academic plagiarism detection: a systematic
literature review. ACM Computing Surveys (CSUR),
52(6):1–42.

Nathan Halko, Per-Gunnar Martinsson, and Joel A
Tropp. 2011. Finding structure with random-
ness: Probabilistic algorithms for constructing
approximate matrix decompositions. SIAM review,
53(2):217–288.

Song Han, Jeff Pool, John Tran, and William J Dally.
2015. Learning both weights and connections
for efficient neural networks. arXiv preprint
arXiv:1506.02626.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry,
Ran El-Yaniv, and Yoshua Bengio. 2016. Binarized

neural networks. In Proceedings of the 30th
International Conference on Neural Information
Processing Systems, pages 4114–4122.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2019. Tinybert: Distilling bert for natural language
understanding. arXiv preprint arXiv:1909.10351.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised
learning of language representations. arXiv preprint
arXiv:1909.11942.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet,
and Hans Peter Graf. 2016. Pruning filters for effi-
cient convnets. arXiv preprint arXiv:1608.08710.

Vasileios Lioutas, Ahmad Rashid, Krtin Kumar,
Md Akmal Haidar, and Mehdi Rezagholizadeh.
2019. Distilled embedding: non-linear embedding
factorization using knowledge distillation. arXiv
preprint arXiv:1910.06720.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692.

Yihuan Mao, Yujing Wang, Chufan Wu, Chen
Zhang, Yang Wang, Yaming Yang, Quanlu Zhang,
Yunhai Tong, and Jing Bai. 2020. Ladabert:
Lightweight adaptation of bert through hybrid model
compression. arXiv preprint arXiv:2004.04124.

Tomas Mikolov, Kai Chen, Greg Corrado, and
Jeffrey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Lailil Muflikhah and Baharum Baharudin. 2009.
Document clustering using concept space and cosine
similarity measurement. In 2009 International Con-
ference on Computer Technology and Development,
volume 1, pages 58–62. IEEE.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative
style, high-performance deep learning library. arXiv
preprint arXiv:1912.01703.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the
limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

329

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. 2019.
Structured pruning of large language models. arXiv
preprint arXiv:1910.04732.

Genta Indra Winata, Andrea Madotto, Jamin Shin,
Elham J Barezi, and Pascale Fung. 2019. On
the effectiveness of low-rank matrix factorization
for lstm model compression. arXiv preprint
arXiv:1908.09982.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan
Funtowicz, et al. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv
preprint arXiv:1910.03771.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime
Carbonell, Ruslan Salakhutdinov, and Quoc V
Le. 2019. Xlnet: Generalized autoregressive
pretraining for language understanding. arXiv
preprint arXiv:1906.08237.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou,
He Wen, and Yuheng Zou. 2016. Dorefa-net:
Training low bitwidth convolutional neural networks
with low bitwidth gradients. arXiv preprint
arXiv:1606.06160.

330

Author Index

A Del Rio, Miguel, 263
Aberer, Karl, 322
Alleman, Matteo, 263
Ananthakrishnan, Sankaranarayanan, 231
Anantharaman, Giri, 29

Badola, Akshay, 213
Bałazy, Klaudia, 322
Banaei, Mohammadreza, 322
Bansal, Mohit, 289
Bansal, Trapit, 241
Boratko, Michael, 277
Bouraoui, Zied, 185
Bujel, Kamil, 195

Callan, Jamie, 316
Chang, Baobao, 83
Chanumolu, Shruti, 231
Chung, SueYeon, 263
Cogswell, Michael, 20
Collier, Nigel, 34
Conneau, Alexis, 29

Dai, Damai, 83
Dasgupta, Shib Sankar, 277
Dietz, Laura, 141
Ding, Wenbiao, 47
Divakaran, Ajay, 20
Du, Jingfei, 29

Elliott, Desmond, 152
Espinosa Anke, Luis, 185

Fernández, Raquel, 152
Fomicheva, Marina, 223
Fung, Pascale, 64, 112

Gao, Luyu, 316
Goyal, Naman, 29
Guo, Han, 289

Han, Jiawei, 316
Hao, Yang, 47
Hilgart, Jonathan, 90
Huang, Jing, 307
Huang, Kevin, 307

Kashyapi, Sumanta, 141
Kim, Seungwon, 90
Kim, Yoon, 263
Koirala, Pravesh, 174
Kurfalı, Murathan, 8

Lebret, Rémi, 322
Li, Irene, 1
Li, Xiang Lorraine, 277
Li, Xiaoyan, 72
Li, Yingzhen, 34
Li, Yunyao, 1
Lin, Jimmy, 163
Lin, Sheng-Chieh, 163
Liu, Tianyu, 83
Liu, Zihan, 64, 112
Liu, Zitao, 47
Luo, Fuli, 83

Ma, Tengyu, 307
Madotto, Andrea, 64
Mamou, Jonathan, 263
McCallum, Andrew, 231, 241, 277
Monath, Nicholas, 231
Murthy, Narayana Kavi, 213

Niraula, Nobal B., 174

Obamuyide, Abiola, 223
Östling, Robert, 8
Ott, Myle, 29

P. Ravindran, Renjith, 213
Parfenova, Iuliia, 152
Pasunuru, Ramakanth, 289
Peng, Qiwei, 57
Pezzelle, Sandro, 152
Pogrebnyakov, Nick, 206
Prokhorov, Victor, 34, 128

Qi, Peng, 307

Radev, Dragomir, 1
Rei, Marek, 195
Roth, Benjamin, 100
Rutherford-Quach, Sara, 20

331

Sahu, Pritish, 20
Schockaert, Steven, 185
Sedova, Anastasiia, 100
Sen, Prithviraj, 1
shaghaghian, Shohreh, 206
Shareghi, Ehsan, 34, 128
Shum, Alex, 90
Smith, Robert Elliott, 248
Specia, Lucia, 223
Speranskaya, Marina, 100
Sridhar, Mukund, 231
Stephan, Andreas, 100
Sui, Zhifang, 83
Sun, Sun, 72
Susanj, Nathan, 90

Tabor, Jacek, 322
Tang, Hanlin, 263
Thai, Dung, 231, 241
Thirukovalluru, Raghuveer, 231, 241
Turton, Jacob, 248

Vinson, David, 248

Wang, Guangtao, 307
Wang, Yixiao, 185
Wang, Yunli, 72
Weeds, Julie, 57
Weir, David, 57
Winata, Genta Indra, 64, 112

Xu, Peng, 112

Yang, Jheng-Hong, 163
Yang, Pengcheng, 83
Yannakoudakis, Helen, 195

Zhai, Xiao, 47
Zhang, Dongxu, 277
Zhang, Lan, 128
Zhang, Yunyi, 316
Zheng, Hua, 83
Zhu, Huaiyu, 1

	Program
	Improving Cross-lingual Text Classification with Zero-shot Instance-Weighting
	Probing Multilingual Language Models for Discourse
	Comprehension Based Question Answering using Bloom’s Taxonomy
	Larger-Scale Transformers for Multilingual Masked Language Modeling
	Learning Sparse Sentence Encoding without Supervision: An Exploration of Sparsity in Variational Autoencoders
	Temporal-aware Language Representation Learning From Crowdsourced Labels
	Structure-aware Sentence Encoder in Bert-Based Siamese Network
	Preserving Cross-Linguality of Pre-trained Models via Continual Learning
	Text Style Transfer: Leveraging a Style Classifier on Entangled Latent Representations
	Inductively Representing Out-of-Knowledge-Graph Entities by Optimal Estimation Under Translational Assumptions
	Revisiting Pretraining with Adapters
	Knodle: Modular Weakly Supervised Learning with PyTorch
	X2Parser: Cross-Lingual and Cross-Domain Framework for Task-Oriented Compositional Semantic Parsing
	Unsupervised Representation Disentanglement of Text: An Evaluation on Synthetic Datasets
	Learn The Big Picture: Representation Learning for Clustering
	Probing Cross-Modal Representations in Multi-Step Relational Reasoning
	In-Batch Negatives for Knowledge Distillation with Tightly-Coupled Teachers for Dense Retrieval
	NPVec1: Word Embeddings for Nepali - Construction and Evaluation
	Deriving Word Vectors from Contextualized Language Models using Topic-Aware Mention Selection
	Zero-shot Sequence Labeling for Transformer-based Sentence Classifiers
	Predicting the Success of Domain Adaptation in Text Similarity
	Syntagmatic Word Embeddings for Unsupervised Learning of Selectional Preferences
	Bayesian Model-Agnostic Meta-Learning with Matrix-Valued Kernels for Quality Estimation
	Knowledge Informed Semantic Parsing for Conversational Question Answering
	Simultaneously Self-Attending to Text and Entities for Knowledge-Informed Text Representations
	Deriving Contextualised Semantic Features from BERT (and Other Transformer Model) Embeddings
	Syntactic Perturbations Reveal Representational Correlates of Hierarchical Phrase Structure in Pretrained Language Models
	Box-To-Box Transformations for Modeling Joint Hierarchies
	An Overview of Uncertainty Calibration for Text Classification and the Role of Distillation
	Entity and Evidence Guided Document-Level Relation Extraction
	Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup
	Direction is what you need: Improving Word Embedding Compression in Large Language Models

